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1. The Grothendieck Group

Consider an additive category C(/ of finitely generated left
A-modules over the ring A which satisfies the additional condition:
(1) with each two modules A and B in & , A®B is also in &;

and s0 are the maps A —> A B, A B —>A and A& B —>B & A.
The isomorphisms in é" establish an equivalence relation between the
modules in ff . We assume now that also the following condition holds:
(2) The category & of isomorphism classes of modules in 4" defined
by this equivalence relation is a set.
The last condition is for instance always fulfilled if all isomorphisms
between modules in é’ belong to f/ .

If we do not specify. the morphisms for a category of modules,
we mean that all the morphisms between modules of f/ belong to é& .
Let F & be the free abelian group generated by & over the integers,
and I the ideal in F & generated by the elements [A] - [B] + [C]
where [A],[B],[C] €& and A, B and C are related by the exact

sequence

0 —>A—-—>B-&x¢0c—0

with morphisms f,g belonging to g . The group

K#) =r&/1



is the Grothendieck group associated to the category g .

Suppose é/ , and {{2 are additive categories satisfying (1,2).
We do not assume that they are defined over the same ring. Consider
an additive coverient functor T from £, into £ . Recall that

if A and B are modules in {’

12 then

TA®B=TA®TB . (chapter VIII, proposition 5.5).

T is an exact functor if

0—>mh <L 5 78 85 70 — 0

is exact whenever

0—>AL>B8-E5¢c—0

is exact in !5_ . In this case T induces a morphism K( fl) - K(fa)
which we will denote also by T .

Iet us consider an example. First note that whenever f?t and:
Ca2 are additive categories over the same ring such that z‘ic é; s

then we have an obvious morphism
KE) — k(&) -

Now suppose A and TI' are rings, and ¢ : A —> T is a morphism of
rings. ¢ associates to each left I'-module in a canonical way a left
A-module by "restriction" of the operation of I' to the operation of A .
(o*) If ' is finitely generated as a left A-module, then ¢

induces an exact functor

o*: ¢ — &,



whenever ga- is an additive category over I' and "?2

an additive category over A containing &’l (modulo an
identification via the morphism ¢). Thus ¢ induces a morphism

of groups
o k(Z) —> k(&) -

(p) ILet ? 1 Dbe an additive category over I and ?2 an edditive
category over A. Suppose that either I' is flat as a left
A-module or that each module in {,’ 5 is flat over A. If T @7\ A
is in Z/l for each module A in 5/2’ ,and 1,8 £ 1isin édl

for each morphism f in g; , then ¢ induces an exact functor

o =

A———>I‘&AA s

and thus a morphism of 'groups

9 : K(E) =K -

2. The Ideal and Projective Class Groups

Throughout this section R 1is a commutative ring.
Iet QW be the category of all finitely generated projective
modules over R. In 00 we define an equivalence relation: two

projective modules P and P' in p are equivalent if there are



finitely generated free modules F and F' such that
POF=-P oF .

The set of equivalence classes in l) is a group PCG(R) , the
projective class group of the ring R. The zero element is [F] .
where F is free; the inverse of [P] is [P'] where P' is a
module in /9 such that P @ P' is free.

The coherent projective class group CPCG(R) is defined in
a similar way taking for fg the additive class of all finitely gen-
erated coherent projective modules [chapter 5, § 5].

Closely related to the coherent projective class group is the
ideal class group of R. In the class f%) of all coherent projective
modules of rank 1 (which are finitely generated [chapter 5, prop 5,12])
we consider the equivalence relation defined by isomorphisms; let:
ICG(R) be the set of equivalénce classes of isomorphic modules in ”0.

Define multiplication in ICG(R) by
[x1.[3] = [1 e J]

[R] is clearly an identity in ICG(R). We show now that ICG(R) is
in fact a group.
Recall that a module A over R 1is coherent projective of

reank 1 if and only if the canonical morphism
HomR(A,R) 2 A —R

1s an isomorphism. This shows that HomR(I,R) is in /70 whenever

I is, and [HomR(I,R)] is an inverse for [I].



Now let us look at the special case where R is an integral
domain. We denote by K the field of fractions of R. If I is in

p o then K QR I 1is K-free with one generator, hence

K QR I£K .

Therefore we can consider I as a R-submodule of K. Since I is
finitely generated over R, there is a non-zero element r € R such
thai; r-ICR, i.e. I is isomorphic to an ideal. On the other
hand, each non-zero R-module of K is clearly of rank 1. Since R
is a coherent ring [chap. 7, proposition 2.3], every projective
R-submodule of K 1is coherent and finitely generated, hence a fractional
ideal (which is by definition a R-submodule I of K such that
r-I(: R for some non-zero element r of R). Therefore we may assume
that LL is the class of non-zero projective R-submodules of K or,
what amounts to the same, thé class of non-zero projective fractionél
ideals of R.

It is immediate that every morphism I —> K(I € }OO) is
multiplication with an element k of K. Thus two fractional ideals

I,J e po are isomorphic if and only if there is k € K such that

I=%kJ

This shows also that

Hom (I,R) = 1™ - (xex ] xrCR).



Since clearly I.J =1 &R J , we have the following result: &52
becomes a group if we define multiplication by I.J for I,J e.dﬂo.
Let 570 be the subgroup of non-zero principél fractional ideals of

R. We‘have a canonical isomorphism of groups
ICG(R) = )70/90 .
In general we have always an epimorphism
i : CPCG(R) —> ICG(R)

defined as follows. Iet p e CPCG(R) and pick P € p with rank
P=n, and define ip = E(P)n where E(P)n is the homogeneous part
of degree n of the exterior algebra E(P) of P. Recall that if

A is a module of rank n , and B 1s & module of rank m , then

E(A ® 13)][1+m = E(A)n e E(B)m. This shows that i is well defined and
that it 1s a ﬁorphism of groups. (Remember that E(F)n = R for a free
module F of rank n). In particular CPCG(R) = PCG(R) whenever R

is a coherent ring; so in this case we have an epimorphism

i : PCG(R) —> ICG(R) .

Proposition 2.1 Suppose R 1is a Dedekind domain; then

i : PCG(R) —> ICG(R)
is an isomorphism.
This is immediate from the fact that a projective module of

rank n 1is isomo:phic'to a module of the form F & I vwhere F is



free of rank n -1 and I an ideal which is uniquely determined up
to isomorphism (by proposition 5.6 of chep. VII).
. let }a be the category of all coherent projective modules of

finite rank over the commutative rlng R. Define a map
P :}9—92, ¢ P = rank P
where Z are the integers. If P,Q € ¥ have rank n and m
respectively, then E(P ® Q) = E(P) & E(Q), # 0 [chap. 5, prop 5.5];
hence ¢ ig additive. Therefore ¢ passes to a morphism of groups
P : K(‘P) —_ Z
(every short exact sequence in p being split exact). On the other
hand there is an obvious morphism
7 s k(F) — cpoa(R)

‘ )
sending the class of P ¢ p in K(/L ) into the class in CPCG(R)
determined by P.

Proposition 2.2. The morphism

v=0px1:KY¥)— 2z x CPC(R)

is an isomorphism.

Ve define an inverse o : Z X CPCG(R) — K()P) by setting

o(n,[P1) = [F 1+ [P] - {F 15

rank P

Fy denotes a free module of rank k. Suppose P,Q € [P] e CPCG(R) ;

by definition there are free modules F, G in ¥ such that PO FZ Q6 G.



Now in K(/)) we have

[P] - [Fpop pl- QI+ [F__ ]
= [P] - [Fmnk P] - [eecl+ [Gg] + [F Q]
= [P] - [F ok P] -[PoFl+[c]+ [Fonk Q]
=lGoF o gl-[FOF, p pl=0,
since a consideration of ranks shows G @ Fr ank Q ZF e Frank p

3. A Relation between Grothendieck Groups over the same Ring

Consider two additive categories ( and /4) of left A-modules,

A being a ring, and suppose that/‘ng . If

(+) 0 —>B —> """ —>B, A =0

is an (exact) resolution for A e <C with modules B, and morphisms

i
q)i in ﬁ » then we can form another resolution

(®;_7:0) ;01
O —>B —> ¢+ —>» B, —————3> B.6C ————> B. .&C
n i+l i i-1
(9;_4.0)
—————-—--—->Bi_2--- ’Bl > A 0

for each module C € A’f). Any resolution which can be obtained by a
finite number of such steps is called a modification of (+) modulo ,g .
For simplicity we assume now that s containes all the morphisms

between modules in Q: , and all their kernels. The category o



is said to be S-resolutive if there is an integer m , 0 <m < w
such that every module A € & has a resolution (+) with modules
Bi € »& satisfying
(1) n<m; n<ew
(2) B, 1is projective for 0 <i <m.
lemma 3.1
Any two resolutions of A €& in /3 satisfying (1) and (2) have
~ isomorphic modifications modulo A which again satisfy (1) and (2)
(isomorphic as graded modules).

let (Bi) and (B&) be two such resolutions of A in A .
We proceed by induction on m. The lemma being trivial for m =1,
we suppose that m > 1 and that the lemma holds for resolutions of
length <m. Since B, and B! are projective, there are morphisms

1 1

. ] | . [}
Tl' Bl——>Bl and Tl : Blv_»B

kol
B, —=> A —>0

I I1Ti log

Bl —=>A—0

1 such that the diagram

t
1 2
is commutative: o, = lA is the identity. Our first modification is
o
0-—>Bn...———>Be®Bi—$Bl®Bi A—0

t t t
O%Bn -..WBe(BBlWBl@Bl——'—-}A*}O
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and we define oy by the matrix

. - 1
Tl 1 TloTl

-T!
1 Tl .

It is easily checked that o is an isomorphism and makes the diagram

1
commutative. Now apply the induction hypothesis to the isomorphic
modules kexr( Py ,0) and ker(cp]'_ ,0) and their resolutions derived
from the above diagram.

lemma 3.2 Iet

(*) 0 —> A i>A2 j,A3—->o
be a short exact sequence in ﬂ» , and suppose that Al and A3 have
resulutions Bi = (Bi) and B = (Bi) in ﬁ respectively satisfying
(1) and (2). Then A, has a resulution B- = (Bﬁ) in & satisfying
(1) and (2); moreover we have an exact sequence

1 2 3

O —B > B > B 0

of graded modules lying over (¥*).

Consider the diagram
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We define Bi = Bl]; o Bi, ik : BIJ; —_ Bi and jk: Bi —_— Bi being

‘the canonical morphisms. If m 2> 1, Bi is projective; therefore

there is a morphism g such that jog = q)i. Define cpi = iocpi o g.

Clearly the diagram commutes and 0 —> ker(cpi) —> ker(cpi) —_— ker(q:?_) —> 0
is exact. Note that ker( cpi') and ker((pi) have resolutions of length < m
and that the lemma is trivial for m = 1 ; thus we can proceed by

induction on m.

Proposition 3.3 Assume the additive category Q containes all the

morphisms between modules in d: , and all their kernels. ILet /vo\ be
an additive category contained in Q . If é is ﬁ -resolutive then

the canonical morphism
o : K(4) — k(@)

(sending the class of A ¢ ,{3 in K(A) into the class of A in K(C))
is an isomorphism. |
We define an inverse 1 : K(c2) —> K(&) in the following
way: |
let A e and (Bi) be a resolution for A in /3 satisfying

(1) and (2): then define
nlal = 2 (1), 1.

Lemma 3.1 shows that n[A] does not depend on the choice of the reso-
lution (Bi) ; Lemma 3.2 shows that n[A] 1is independent of the choice

of the representative A ¢ [A]. Clearly 1 is an inverse to @.



Iet us look at some examples:
Exemple 3.4 Suppose R is an integral noetherian domain. Consider
the category z? of all finitely generated R-modules. It containes
the category J of all finitely generated torsion free R-modules.

2? is J-resolutive, for every A € é/ has a resolution
O0~—~B—F—A—0
with F free of finite rank and B torsion free. Thus
k(&) =x) .

Example 3.5 1Iet A be a left noetherian ring with the fbllowing
property. Every finitely generated left A-module has a finite pro-
Jjective resolution by finitely generated left A-projectives. For in-
stance every left noetherian ring of finite homological dimension has
this property. If Z? denotes the class of all finitely generated
left A-modules and /é) the class of all projective modules in éd »

then Z? is /éiresolutive, thus

K(¥) = k(#) .

Example 3.6 In particular, if R has finite homological dimension

(and is noetherian), then

K(& (RDxp, e ox, 1) = KA (RIx 5 0x D)

because R[xl,...,xn] has finite homological dimension. (BY the

Hilbert syzygy theorem, chapter IX, theorem 3.L4).
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4. Some Diagrams

For any ring A , G(A) denotes the Grothendieck group K( 2_,/)
associated with the category K of all finitely generated left
A-modules.

Theorem 4.1 Iet R be a commtative noetherian ring, A a left
noetherian ring which is also a R-algebra, and S a submonoid of R .

Then we have an exact sequence

=2 (8L )% a(A) gy )P

(+) z'e(R/p gh)

>G(RS @RA) —> 0

where the sum runs through the set of all prime ideals in R which
intersect S ; ¢ : R —> R/p and Jg : R —> Ry are the canonical
morphisms.

Proof: First note that R/p @A and Ry @A are again left
noetherian; this follows in the first case from R @A =A —> R/D A
being an epimorphism, and in the second case it is immediate from the
characterisation of the ideals in Ry [chept. 2, prop. 2.3].

R/p @, A 1is finitely generated as & left A-module, and Rg B A
is flat over A because (RS & A) 2 A =Ry @R(A 2, A) =Ry 8 A
for a left A-module A , and RS is flat over R . Therefore the
maps in (+) are well defined. Poa =0 since P NS # ¢ ;

therefore we obtain a morphism

Vv G(A)/imot—->G(RS & A) .



1k,

We construct now an inverse ©® for v ; this will show that v is
an isomorphism, i.e. that (+) is exact. Iet A be any finitely

generated left RS QR A-module. Pick any resolution

O—N—-F—>A—0
with F free over RS QR A and of finite rank. Now choose a free
A-module Fo of the same rank as F ; thus RS QR Fo =F , and we

. P =1
have a natural morphism Fo F. No = @ (N) has the property
that Ry @ N =N (which follows as in the case of ideals in the
proposition cited above). In order to have more freedom later on we

* * =
choose any submodule NO of No such that RS QR No N. We have a

coommtative diagram

O—-N—F—>A—>0

| o

O —>N¢ —>»F —>A =F /N —>0
o ) o} o’ 7o
and would like to define
(++) 8[A] = [Ab] = [FO] - [w¥] mod(im a) .

1) Definition (++) is independent of the choice of F:

Suppose
O —=>N'—>F' —>A—>0

is another choice; then this resolution and the first one have

isomorphic modifications. Hence we may assume that
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O—> N! —> F' —> A —> 0 has the form
O—NOF' —->FO6F" —A—>0 with F" being free

(lenma 1.3). Now

O—>NO6F'—>FOF' —A —>0

|

1" 14
O—->Ng® Fo —>F® Fo-—>Ao——>O
has the desired property, and will yield the same Ao.

(2) Dpefinition (4+) is independent of the choice of N% :

It suffices to show that
= i .
[vx ] [No] mod (im o)

By hypothesis Ry @& N* =R, & N, thus Ry @ N /¢ =0 .

8o it suffices to show that Ry @ V = 0 for a finitely generated
left A-module v 1mp11e5 [V] € ima. Iet fP==annRV be the
annihilator of V considered as a R-module. Each element in

V 1is annihilated by some element in S. Since V is finitely
generated, /NS #¢@. Now write N =iﬁl p; » vhere [pi}

is a finite collection of prime ideals in R. Clearly p, N8 té.

We have (\/— M)EC »¢ for some integer m > 0. The sequence
0—=> (WA W —=v—=vNAYT 0

is exact; therefore we find by induction on m that



3)

Vl=2 [u.l
fin 1

vhere W ; are finitely generated left A-modules with

a.nnRWi JNLZ. . Now assume that the annihilater of V contains

's/.«-d, . We have an exact sequence

0 —p,V—>7V >V/pV—>0 ;

so by induction on the number k of primes Pi we find

[V]= )N [U-] )
fin Y

where U

J

for some i (depending on j).

Finally we have to check that for an exact sequence

0 —>A' —A A" —> 0 of finitely generated left

RS@RA -modules

[Ao] - [A(;] - l=0 .

We know (lemma 3.2) that there is an 2xact commtative diagram

A simple diagram chasing shows that

are finitely generated left A-modules with a.nnRU j =

16.

1
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0 0 0 s

{ N 17/0
0 —> ?& — ?o —_— ?o Né —> 0

O —F —TF > BV > 0
o (o] 10
0 — As -4>.Ao \>Ag > 0
‘ l \\ F"
0 0] (0] 0 N
[s]

is exact, whence
5([al - [a'] - [a"]) = [A)] - [A)] - [A%] =0 .

Suppose that the R-algebra A is flat as a R-module; then

R/p 2 A is flat as a R/p-module, and Ry @ A is flat as a Rg-module.

Let € be the canonical morphism R —> A (resp. R/p — R/p e A,

Tesp. RS —_— R, @, A).

Corollary 4.2 Suppose that in addition to the hypothesis of the.

theorem, A 1is flat as a R-module. Then the morphisms
€ ¢ G(R) —>G(A), &, : G(Rs) —_ G(RS 8 A)
€y : G(R/p) —> G(R/p @ A)

are well defined (¢, in section 1.). Furthermore, the following

diagram is commutative and has exact rows:
(e @1, )* (32, )y
2t G(R/p & A) P A S an) —2 5 (R g, A) —> 0
1€, 1€, g
' ¥ jS*
= G¢(R/p) P_seR) ———> ¢(Rg) —> 0 .
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Before we can deduce the diagram which will be a main tool in the proof
of Swan's theorem on decompositions of projective modules over group
rings of Dedekind domains we need some lemmas.
Lemna 4.3 Suppose A is a ring and ¢ a category of finitely
generated left A-modules which satisfies the following conditions:
(2) Bach M e z‘,/ admits a finite Jordan-Hoelder composition series -

0 =MOCM1C ---CMn = M.
(b) The factors Mk+l/Mk of any such decomposition series belong to Z/ .
Then K( 2,/ ) 1is free abelian with one generator for each isomorphism
class of simple left A-modules in & .
Proof: Iet F Dbe the free abelian group generated by the set of
isomorphism classes of simple modules in E’ . Define a morphism
K(¥) B F by sending [M] into zhM, M) , where 0 =M C---CM =M
is any composition series. 'The uniqueness of the quotients Mk+1/Mk of
a composition series shows that the map is well defined from & into F.
It passes to & morphism from K(J”) into F because every short exact
sequence can be refined to a Jordan-Holder composition series. Since
M] = Z[Mk+l/Mk] in X(#), ¢ has an obvious inverse; hence ¢ is
an isomorphism.
Lemma 4.4t Iet R be a Dedekind domain and A a finitely generated
R-algebra. If I 1is any ideal in‘ R , then R/I @R A satisfies the
decending chain condition. Hence, G(R/I & A) 1is free abelian with
one generator for each isomorphism class of finitely generated simple
R/I &R A-modules. Iet \/ be the category of finitely generated left

A-modules which are torsion modules over R ; then K((/ ) is free
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abelian with one generator for each isomorphism class of simple left ,
A-modules in J . In particular, the natural injection G(R/I B A)—> K(A)
is a monomorphism. ‘

It suffices to prove that R/I satisfies the descending chain
condition, because this implies that every module in \;f (being a
finitely generated R/I-module for some ideal I) admits a finite
Jordan-Hoelder composition series. Iet I :)I2 Deee vee DI beoa
descending chain in R/I ;3 the prime ideals occuring in the factorisation
of Ij in R devide I . Since there can be only a finite number
of such primes (counting multiplicities), the above chain must be finite.
Iemma 4.5 Suppose I is a projective ideal in an integral domain
R, and M a maximal ideal. Then there is an ideal J isomorphic
to I such that (J,M) =R.

Proof: Since I & Hom(I,R) —> R 1is an isomorphism, there is
f ¢Hom(I,R) such that f(I){ M, I.e. (£(I),M) =R.

The setting for the next theorem is a Dedekind domain R with
field of fractions K , and a finitely generated R-algebra A . ILet
us denote by G'(A) the Grothendieck group associated to the category
of all finitely generated left A-mocdules which are torsion free over
R . As in example 3.4 we see that the natural morphism G'(A) —> G(A)
is an isomorphism. Now let I be any ideal in R ; @ : R —> R/T

denotes the canonical morphism. QI @ lA defines a morphism

(pp & 1), : G'(A) —> G(R/I & A)



20.

according to (q*) in section 1, since the finitely generated torsion

free modules over R are projective. Hence we have a morphism
a(A) — a(R/1 2 A)
which we will denote by Prxe

Theorem 4.6 There is a unique morphism Yt G(Kx 2 A) — 6(R/I 2 A)

which makes the diagram

Ix
G(A) ————> G(K e A)

W\ L

G(R/1 2. A)
commtative. j: R —> K is the natural injection (we have written
Jx instead of (Jj & lA)*)°
Proof': The uniqueness is immediate since J, 1s onto (theorem 4.1).

The existance is equivalent with the statement

¢i*[A] = 0 vhenever amn A =p for some prime
jdeal p #0 in R. (Theorem 4.1).

Choose a resolution 0 — B — P A 0 with P a finitely

generated projective left A-module; thus [A] = [P] - [B]. We have
to show that
[R/1 e P] - [R/I g Bl =0
in G(R/I @ A) or, equivalently, in K(</) where J  is the
category of all finitely generated lefe A-modules which are torsion
modules over R (lemma.h.h). We have exact sequences
0 —> Tor?(R/I,A) —> R/I 2, B —> R/I &, P —> R/I 8, A —> 0

(+) 0 —> TorX(R/I,A) —> I 8 A~——>R @& A—>R/I & A—>0
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which give
(++) [A] - [T @ A] = [R/1 &P] - [R/I &, B] in K(J).

Note that we made use of the fact that Tor?(R/I,A) is a left A-

module. Choose an ideal J isomorphic to I such that (J,p) =R
(lemma 4.5). Replacing I by J in (+) gives A =J 2 A (Tor?(R/J,A)
and R/J 8 A are annihilated both by J and p , i.e. by R).
Therefore [A] - [I 2 Al = [A] - [T QR A] = 0. This shows that (4+)

vanishes in K(J).

5. Applications to Polynomial Rings

First let us note a corollary to corollary L.2:

Proposition 5.1 Suppose R is a commutative noetherian ring,' A a

left noetherian ring which is also a R-algebra and flat over R.
Furthermore assume that the following conditions hold:
(1) R has finite Krull dimension.
(2) Whenever T is a field of the form €(R/p) or R/p (where p
is a prime resp. maximal ideal in R, and @(-) denotes the field

of fractions), then
€y : G(T) —> G(T & A)

is an epimorphism.
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Then
€, :G(R) —> G(A)

is an epimorphism.
This is immediate from Corollary 4.2 using induction on the
Krull dimension of R. For R an integral domain choose
S=R- {0} ; if R is any ring, take S = {0,1) so that Ry =0=Rg 2. A,
thus reducing the problem (via the diagram in corollary 4.2) to the case
of integral domains.
A supplemented algebra over a commtative ring R is a R-
algebra A together with a left inverse = : A —>R for € : R—>A ;
1 1is called the projection. Clearly € is a monomorphism in the case.
Moreover

Proposition 5.2 Iet (A,R,x) be a supplemented algebra and suppose

that A and R are left noetherian. If
(1) A 1is projective as a R-module and
(2) R considered as a left A-module has finite homological dimension,

then
€ : G(R) —> G(A)

is a monomorphism.
Proof: We prove more; we show that Ey has a left inverse 71 .

Define

n[al = Z(-l)i[TOrg(R,A)]
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for [A] € G(A). Note that the sum is finite since R admits a finite
resolution by projective left A-modules, say of length n. We have to

check that 7 is well defined. If
0 —>A'—>A—>A"—>0

is an exact sequence of left A-modules, then
0 —> Torﬁ(R,A') —> Torg(_R,A) — Torﬁ(R,A") —> " —>R@g A
—> R @A A — R QA A" — 0

is exact, whence n([A] - [A'] - [A"]) = 0. Now let
0 —>P —> .+ —>P —>R—>0

be a projective resolution of R over A. We may assume that the Pi
are finitely generated over A. Since A 1s projective over R , so

are the Pi . Therefore

0 —>» PnTr\(A @RAO) —_ cee —> R&A(II\IQRAO) =A —>0
0 — Pn&RAO —_— *** —3> R QR Ao = Ao —> 0
is exact for every finitely generated R-module Ao . By the definition

of Tor we get

A
Tori(R,A&RAO) 0O for i>0,

A -
Toro(R,AQRAO) R &A(A @RAO) =A .

This shows necE = 1.
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We recollect:

Theorem 5.3 Iet (A, R, n) be a supplemented algebra such that

(1) R and A are left noetherian,

(2) A 1is projective over R, 4

(3) R considered as a left A-module has finite homological dimension,

(4) R has finite Krull dimension,

(5) For any field T of the form @(R/p) or R/p (where p is a
prime resp. maximal ideal in R, and R(-) denotes the field of
fractions) &, : G(T) —> G(T @R A) 4is an epimorphism.

Then
e ¢ G(R) —> G(A)

is an isomorphism.

We apply now the abOvé theorem to the polynomial rings over A
noetherian ring ﬁ of finite Krull dimension. Condition (3) is ful-
filled according to the Hilbert syzygy theorem (chapter IX, theorem 3.4).
First let K be a field. K[xl] is a principal ideal domain, i.e.
every ideal of K[xl] is free. Therefore every finitely generated
projective module over K[xl] is free. Hence (cf example 3.6)
€, : G(K) —> G(K[x.l]) is an isomorphism.

Now we find by induction on un that

€yt G(K) —> a(klx),..0,x 1)
is an isomorphism. Therefore (5) is fulfilled with R, A = R[xl,...,xn] ;

- 80 we obtain:
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Theorem 5.4 Iet R be a noetherian ring of finite Krull dimension.

Then
€y ¢ G(R) — G(RIx,...,x 1)

is an isomorphism. In particular, for R = K a field,
G(K[}(j-,""xn]) = G(K) = Z 3 ioe-
PCG(K[Xl)---,Xn]) =0 .

(z denotes the integers).

This raises now the question whether every projective module
over K[xl,...,xn] is free. We have seen already that this is true
for n=0 and n =1. In section 3 of chapter XIIL we will see that

this question can be answered positively also in the case where n = 2.

It is still open to what extent it will be true in the general case.

6. The Grothendieck Ring associated with a Group Ring.

In this section R 1s always a commutative ring and = a
" .
finite group. /90 denotes the category of all finitely generated

Rr-modules which are projective over R. We define

G'(Rx) = K(/”o) .
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7t
Iet A,B € /C;: A @R B is the tensor product A QR B with diagonal
twvion of =,
)
P x /)O — /o

T : <
(A,B)———>A@RB

defines an exact bilinear functor on /,o'. T induces in G'(Rn) a
multiplication operation. G'(Rn) becomes thus a ring with unit
[Rr]. Hence

Proposition 6.1 G'(Rn) can be given the structure of a ring.

Proposition 6.2 Iet A be any R-algebra. G(An) can be considered

as a G'(Rn)-module.
Proof: Iet f,/ (Ax) be the category of finitely generated left
Ax-modules. Pick A ¢ /’; H
b S T
B—>A® B=B&A, Bef”(m()

is an exact additive functor on ¢ (Ax). It defines for G(An) the
structure of a G'(Rr)-module.

Now consider a subgroup o (C n and let 1i: ¢ C n be the

inclusion map. For any ring A, Anx 1s a finitely generated free left

Ao-module. Hence the maps
i* : G(An) —> G(Ao)
i, : G(Ac) — G(An)

are defined (cf. (¢*) and (9,) in section 1 of chapter XII), and

similarly for G'(Rx).
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Proposition 6.3 TIet A be a R-algebra and ¢ ( n a subgroup of .

We have the following identities:

(1) i*¥(xy) = i*(x)i*(y) for x e G'(Rn) , y € G(Ax)
(2) 1. (i¥(x)y) = x+1,(y) for x ¢ G'(Rn) , v € G(Ao)
(3) Lu(x-i*(y)) = 1,(x)-y for x e G'(Ro) , y € G(Axn)

In particular, the image of i, : G'(Ro) —> G'(Rx) is an ideal in
G'(Rn).

Proof: (1) is immediate. For (2) and (3) note that

~ LS
R & (A&RB) Y2 & (R, B)
for A e PO(Rﬁ), Be é/(Ao) (resp. A€ po(Ro), B € f(An) under
the map
2@ (a®b) —> z.a8 (2 8Db) zen,aeh,bzB .
For any ring A 1let P (A) be the category of finitely gener-

ated left A-projectives. Define

p(r) = k(A (n)) .

A morphism of rings ¢ : ' —> A induces a morphism

@* : P(Ax) — P(I'x) .

Proposition 6.4 If 1 : o = is a subgroup of =, then %

commites with i* and 1g.

This is trivial for 1¥ , and for 1, we have

An @ (Ao &, A) =An @, A=Ang, (Tx8, A), AeP (o) .
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Leima 6.5 Iet A be a ring, and A a left An-module; then

7
Ax & A = Ax QA A .

A
Tt
If A is free as a left A-module, then Ax QA is free as a left

Ar-module.
Proof: Define
e
o Ax QAA —> Ax QA A
x@a—>x0xa, xX€EN, ach
7
B : Ax QAA —> Ax QA A
xﬁA—-—>x@x’lz,xen,aeA.
Clearly oof = identity, PBox = identity.
Iemma 6.6 Iet A, P be left An-modules, A projective over A,
14
and P projective over An. Then A QA P 1s Ax-projective.
Proof: 1) Suppose A 1is A-free, and let P' be a left An-projective
: 7 7t
guch that P & P' is Ax-free. A&APeAaA P' =48 (POP') is
7
Ax-free by lemma 6.5; so A 8 P is Am-projective. 2) In general,
let A' be a left A-module such that A & A' is A-free. Aé denotes

the module A' considered as a left Am-module, = acting trivially. Then
T
! - )
(a0a) gAP_A@APcBAS&AP
is m-projective by 1).

Proposition 6.7 If A is a R-algebra, then P(Ax) is a G'(Rx)-

module. For a subgroup i : o n of =, i¥ and i, satisfy the
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identies of proposition 6.3.

Proof: Iet A e Po, Pef(An). A @ A is A-projective, hence
7 S 7 s 18 7t

AR P=A8 (A 8 P)=(Ag A)Q P=(ag A& P is

An-projective by lemms 6.6. Thus the bilinear functor

P, x £ (Ax) — P(ax)
(4,P) — A§R P

is well defined. It is an exact functor; therefore P(Ax) becomes
a G'(Rn)-module. The rest follows as in proposition 6.3.

Consider a class M of subgroups i : 6 x of =x. Let A
be any R-algebra. We denote by GM(Arr) the submodule of G(Ax) gen-
erated by the modules i,G(Ac) , o € M. GM(An:) is said to have
exponent k in G(Ax) if k-G(Ax) C GM(Aﬂ). Similarly are defined
PM(An) and Gb'd(Rn). GB',I(Rn)_ has exponent k in G'(Rx) if and only
if k e GB;I(Rﬂ)' We will show in the next section that for any ring
A (considered as a Z-algebra) GM(A:t) has exponent (#u)2 in
G(Ax) if we take for M the class of all cyclic subgroups of .
This is & kind of induction theorem in that we need prove theorems
only for cyclic subgroups of =.

Corollary 6.8.

(a) Gyy(Rat) -G(Ax) C Gy An).
(p) If GI:A(R“) has exponent k in G'(Rx), then GM(A:t) has exponent

k in G(Ax). (And similarly for P(Ax)).
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(a) follows from (3) of proposition 6.3, and (b) is a consequence
of (a).

Remember that for a noetherian ring R of finite homological
dimension G'(Rx) = G(Rn) (proPosition 3.3).

Proposition 6.9. Iet R be a Dedekind domain and K its field of

fractions. If GM(K:r) has finite exponent k in G(Kx), then

(1) GM(R/p:t) has exponent k in G(R/px) for every prime ideal
in R.

(2) GM(Rﬁ) has exponent ¥ in G(Rn).

Proof: (1) We use the notation of theorem 4.6. \IIP maps GM(K:t)

into G (R/px) since ¥, commites with all morphisms i, (v,

commutes with 1, because Jj, and P do by proposition 6.4).

Je(l) =1 and cpp*(l) =1 imply wp(l) = 1. By hypothesis k ¢ GM(Kzt);
hence k = wp(k) € GM(R/p:t).

(2) 3y : GM(Rn) — GM(Kn) is an epimorphism because Jj, : G(Rx) —> G(Kx)
is an epimorphism and commutes with all morphisms 1i,. Since

kK € GM(Kst), there is x € GM(R:t) with J(x - k) = 0. Therefore
-k =3
X q);(xp)

the sum renging over all non-zero prime ideals of R (theorem L4.1).

By (1), k-xp € GM(R/pn). Since qJ; preserves G, k(x - k) € GM(Rrr).
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T. Grothendieck Rings and Character Rings

Throughout this section =t will denote a finite group and
K a field of characteristic prime to the order n = #x of =.
Iemma 7.1 Kn is gsemi-simple, i.e. every Kw-module is projective

Proof: 1) K 1is projective over Kn. Define

€ : Kn —> K, g : K-> Kn
1
X—>1, Xexn l—%ﬁ’xgﬁx.

€00 = ZLK; thus K 1is Kn-projective.

: 13
2) Iet A be a Kn-module. Kt & A 1is Kn-free by lemma 6.5. Define

5
B:A—>Kn@A
a—>g(l) @a. acAl
xt
V:KJI@KA%A

x@a— €(x)a, xemn acA.

vob = lA;

Corollary 7.2 If [A] = [B] in G(Kx), then A ¥B.

i
thus A 1is a direct summand of K=x @K A:

[A]l 1is uniquely determined by the factors A, occurring in a

i

Jordan-Hoelder composition series of A (lemma 4.3). Since all
Ai are projective, A :(B Ai'
We recall now some facts about group representations. We

assume in the following that the charactaristic of K is O .



32.

A finitely generated Km-module A 1is a finite dimensional vector
space over K. Each x € n defines a linear transformation

X, € HomK(A,A). 4 : x —>x, 1s a representation of the group =

in HomK(A,A). On the other hand, a representation of A of = in
the group of linear transformations HomK(A,A)' of a finite dimensional

vector space A maskes A into a Kn-module A, : x-a = gA(a) for

A
X € t, a € A. Two representations A : x —> 3A and A' = x —> g&
are equivalent if there is a transformation T ¢ HomK(A,A) such that
-1 _ 1 . =
TxA$ = X for all x e n; 1.e. if and only if A, =A,, as
Kn-modules.

The character xA of a representation A 1is defined as

XA(x) =Trx, ,

where Tr denotes the trace. Equivalent representations have the
same character. Moreover

Theorem 7.3 XA =% if and only if A and A' are equlvalent.

A
For a proof see for instance B. L. van der Waeden, Modern Algebra II,
the theorem in § 125.

Instead of XA we write also XA’ where A 1is the

Kn-module associated with A. We have
Xy + Xg = %o

Xy C X = *aqB (A@B means AgKE, here).




32.

A finitely generated Kx-module A is a finite dimensional vector
space over K. Each x € t defines a linear transformation

X, € HomK(A,A). H i X —> X, is a representation of the group =

in HomK(A,A). On the other hand, a representation of A of =n in
the group of linear transformations HomK(A,A)' of a finite dimensional

vector space A makes A into a Kn-module A, : x-a = xA(a) for

Al

X € Xy, &a € A. Two representations A : x —3> *A and A' = x —>» g&

are equivalent if there is a transformation T € HomK(A,A) such that
'l_x . =

TXAT =X, for all x € n; i.e. if and only if AA _‘AA' as

Kn-modules.

The character X

A of a representation A 1is defined as

Xn!x) =Trx, ,

where Tr denotes the trace.' BEquivalent representations have the
same character. Moreover
Theorem 7.3 Xp = XA' if and only if A and A afe equivalent.
For a proof see for instance B. L. van der Waeden, Modern Algebra II,
the theorem in § 125.

Instead of XA we write also XA’ vhere A 1is the

Kn-module associated with A. We have
Xy + X = Xpgp

%yt Xg = Xagp (A@B means AgKB, here).
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Iet CR(Kx) be the subring of the ring of all functions on = with
values in K generated by all characters XA' CR(Kx) 1is called the
character ring of K.

Proposition 7.4

a(xn) ¥ cR(Kx)

under the morphism [A] —> XA .
This is immediate from corollary 7.2 and theorem 7.3.

We consider now representations of x into the rational num-
bers Q.
Lemma 7.5 Suppose R 1is an integral domain and K its field of
fractions with characteristic prime to the order of =x. If A 1is
a finitely generated Kwx-module, then there exists a Rx-module B such
that K QR B =A. .

We know that A is a direct sum of simple modules (corollary 7.1).
Let A therefore be simple, say with generator a. Define B to
be the Rw-submodule of A generated by a over Rn. We have
K @R B =A.

If R =12 (the integers), B is free over Z.- Hence the
transformation x, on A(x € n) is induced by a transformation of

A

B, 1i.e. XA has integral values.
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Corollary 7.6 The character ring of Qun is a subring of the ring

of all integral valued functions on =.

Iemma 7.7 ILet = be a cyclic group and X a rational character.
If x and y are generators of =, then X(x) = X(y).

Proof': Suppose X 1is defined by the Qmn-module B. Consider
A=¢8 B (€ the complex numbers). We can choose coordinates in

Q

A such that x, 1is represented by a diagonal matrix; now all =z

A A

(zen) are represented by diagonal matrices, because x generated .
This shows that the representation of = defined by A 1is the direct
sum of one-dimensional representations, say with characters Xi’ Since

[Xi(x) ]n = Xi(xn) =1,

k
Ei(x) is a power ¢ 1 oora primitive n-th root of unity, E.

X(xj) = I Xi(xj); if (j,n) =1, the map & —> gj gives an
automorphism o of Q(&). Therefore

a(X(x)) = X(x9) = X(x),
X Dbeing rational. -

Corollary 7.8 TIet X be a rational character of =n. If x and ¥y

generate the same cyclic subgroup of =, then X(x) = X(y). Also
X(yxy-l) = X(x) for x,y € m.

Consider a subgroup i : 6 (C n of =n. ILet A be a Ko-module.
We want to express the character Xi A of the induced representation

*

i*A in terms of XA' We have
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Km &y A= y%& y-A

where T = ng y-0 1is a decamposition of T into the right cosets of

oc. Suppose x € T; then

x.Z y-A = _lZ yyflxyA Q x-. 12 yA.

Yy “xyeo y “xyfo
The trace of the operator x on the second sum is O since x per-

mutes all summands yA. Thus
(*) | X a(0) = g5 %, (™),
where we have set XA(y) =0 for yem-o.
Theorem 7.9 (Artin) Iet f be an integral valued function on T
satisfying
(1) £2(yo™) = 2(x) for x,y €m;
(2) if x,y € T generate the same cyclic subgroup of T, then
£(x) = £(y). |
Then n.f is an integral linear combination of characters of 7 in-
duced from the characters of trivial representations of subgroups of 1.

Proof: For a cyclic subgroup 1 T of w define the function fT

by induction on #1:

%) = - = i ’ =
(*): £ # i%ﬁ:T i*(fo) > where i,f =32 Xi*A if £ =2Lf,.
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By induction on #T we find that fT is an integral linear
combination of characters of T induced from trivial characters of

subgroups of T. Formula (*) shows that

_ (v if x generates T
£2(x) = (§" Stherwise J.

Define g = i*fT(i : T( = is the inclusion map). We have
[N :T] if x 1s conjugate to a

g.(x) = ( generator of T )
0 otherwise

N, denotes the normalizor of T. [NT:T]In. A simple argument shows
that n.f 1is an integral linear combination of the & whenever f
satisfies (1) and (2).

This theorem shows together with corollaries 7.k, 7.6, and 7.7:

Theorem 7.10 Iet C be the class of all cyclic subgroups of =.

: GC(Qn) has exponent n = #n in G(Qn).

Corollary 7.11 1Iet A Dbe any ring (considered as a Z-algebra).

GC(An) has exponent 22 in G(Ax) (and similarly for P(Ax). If
A 1is a field, we can replace n2 by n. |

This is an immediate consequence of corollary 6.8 and proposition
6.9. A field can always be considered as an algebra over Q or Z/p
for some prime ideal p # 0 in Z.

Theorems of R. Brauer and E. Witt can be transformed into the
language of Grothendieck groups in a similar way. The reader is

referred to R. G. Swan, Ammals of Mathematics T1 (1960).
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By induction on #t we find that fT is an integral linear
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Define & = i*fT(i : T n is the inclusion map). We have
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0 otherwise
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that n.f is an integral linear combination of the g; whenever f
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Theorems of R. Brauer and E. Witt can be transformed into the
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