CHAPTER XII CLASS GROUPS

Modern Classical Algebra
John C. Moore

XII CLASS GROUPS

1. The Grothendieck Group

Consider an additive category $\stackrel{\checkmark}{\sim}$ of finitely generated left Λ -modules over the ring Λ which satisfies the additional condition:

- (1) with each two modules A and B in \mathcal{L} , $A \oplus B$ is also in \mathcal{L} ; and so are the maps $A \longrightarrow A \oplus B$, $A \oplus B \longrightarrow A$ and $A \oplus B \longrightarrow B \oplus A$. The isomorphisms in \mathcal{L} establish an equivalence relation between the modules in \mathcal{L} . We assume now that also the following condition holds:
- (2) The category \mathbb{Z}' of isomorphism classes of modules in \mathbb{Z}' defined by this equivalence relation is a set.

The last condition is for instance always fulfilled if all isomorphisms between modules in \mathcal{E} belong to \mathcal{E} .

If we do not specify the morphisms for a category of modules, we mean that all the morphisms between modules of \mathcal{E} belong to \mathcal{E} . Let $F\mathcal{E}$ be the free abelian group generated by \mathcal{E} over the integers, and I the ideal in $F\mathcal{E}$ generated by the elements [A] - [B] + [C] where $[A],[B],[C] \in \mathcal{E}$ and A, B and C are related by the exact sequence

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

with morphisms f,g belonging to $\stackrel{\mbox{\scriptsize \it \'e}}{\sim}$. The group

$$K(\mathcal{E}) = F \mathcal{E}/I$$

is the Grothendieck group associated to the category $\mathscr{L}.$

Suppose \mathcal{E}_1 and \mathcal{E}_2 are additive categories satisfying (1,2). We do not assume that they are defined over the same ring. Consider an additive covariant functor T from \mathcal{E}_1 into \mathcal{E}_2 . Recall that if A and B are modules in \mathcal{E}_1 , then

TA \oplus B = TA \oplus TB . (chapter VIII, proposition 5.5).

T is an exact functor if

$$0 \longrightarrow TA \xrightarrow{Tf} TB \xrightarrow{Tg} TC \longrightarrow 0$$

is exact whenever

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

is exact in \mathcal{E}_1 . In this case T induces a morphism $K(\mathcal{E}_1) \longrightarrow K(\mathcal{E}_2)$ which we will denote also by T .

Let us consider an example. First note that whenever \mathcal{E}_1 and \mathcal{E}_2 are additive categories over the same ring such that $\mathcal{E}_1 \subset \mathcal{E}_2$, then we have an obvious morphism

$$K(\mathcal{E}_1) \longrightarrow K(\mathcal{E}_2)$$
.

Now suppose Λ and Γ are rings, and $\phi:\Lambda\longrightarrow\Gamma$ is a morphism of rings. ϕ associates to each left Γ -module in a canonical way a left Λ -module by "restriction" of the operation of Γ to the operation of Λ . (ϕ^*) If Γ is finitely generated as a left Λ -module, then ϕ induces an exact functor

whenever \mathcal{L}_1 is an additive category over Γ and \mathcal{L}_2 an additive category over Λ containing \mathcal{L}_1 (modulo an identification via the morphism ϕ). Thus ϕ induces a morphism of groups

$$\phi^*: K(\mathcal{L}_1) \longrightarrow K(\mathcal{L}_2)$$
.

 $(φ_*)$ Let \mathscr{L}_1 be an additive category over Γ and \mathscr{L}_2 an additive category over Λ. Suppose that either Γ is flat as a left Λ-module or that each module in \mathscr{L}_2 is flat over Λ. If Γ $%_{\Lambda}$ A is in \mathscr{L}_1 for each module A in \mathscr{L}_2 , and $^1_{\Gamma} %_{\Lambda}$ f is in \mathscr{L}_1 for each morphism f in \mathscr{L}_2 , then φ induces an exact functor

$$\phi_{*}: \mathcal{E}_{2} \longrightarrow \mathcal{E}_{1}$$

$$A \longrightarrow \Gamma \otimes_{\Lambda} A ,$$

and thus a morphism of groups

$$\varphi_* : K(\mathscr{E}_2) \longrightarrow K(\mathscr{E}_1)$$
.

2. The Ideal and Projective Class Groups

Throughout this section R is a commutative ring.

Let f be the category of all finitely generated projective modules over R. In f we define an equivalence relation: two projective modules P and P' in f are equivalent if there are

finitely generated free modules F and F' such that

$$P \oplus F \stackrel{\sim}{=} P' \oplus F'$$
.

The set of equivalence classes in \mathcal{P} is a group PCG(R), the projective class group of the ring R. The zero element is [F] where F is free; the inverse of [P] is [P'] where P' is a module in \mathcal{P} such that $P \oplus P'$ is free.

The coherent projective class group CPCG(R) is defined in a similar way taking for \mathcal{C} the additive class of all finitely generated coherent projective modules [chapter 5, § 5].

Closely related to the coherent projective class group is the ideal class group of R. In the class \mathcal{P}_{o} of all coherent projective modules of rank 1 (which are finitely generated [chapter 5, prop 5,12]) we consider the equivalence relation defined by isomorphisms; let ICG(R) be the set of equivalence classes of isomorphic modules in \mathcal{P}_{o} . Define multiplication in ICG(R) by

$$[I] \cdot [J] = [I \otimes_R J]$$
.

[R] is clearly an identity in ICG(R). We show now that ICG(R) is in fact a group.

Recall that a module A over R is coherent projective of rank l if and only if the canonical morphism

$$\operatorname{Hom}_{\mathbb{R}}(A,\mathbb{R}) \otimes_{\mathbb{R}} A \longrightarrow \mathbb{R}$$

is an isomorphism. This shows that $\operatorname{Hom}_R(I,R)$ is in P_o whenever I is, and $[\operatorname{Hom}_R(I,R)]$ is an inverse for [I].

Now let us look at the special case where R is an integral domain. We denote by K the field of fractions of R. If I is in ρ then K $\alpha_{\rm R}$ I is K-free with one generator, hence

$$K \otimes_{\mathbf{R}} \mathbf{I} \cong K$$
.

Therefore we can consider I as a R-submodule of K. Since I is finitely generated over R, there is a non-zero element $r \in R$ such that $r \cdot I \subset R$, i.e. I is isomorphic to an ideal. On the other hand, each non-zero R-module of K is clearly of rank 1. Since R is a coherent ring [chap. 7, proposition 2.3], every projective R-submodule of K is coherent and finitely generated, hence a fractional ideal (which is by definition a R-submodule I of K such that $r \cdot I \subset R$ for some non-zero element r of R). Therefore we may assume that $\binom{O}{O}$ is the class of non-zero projective R-submodules of K or, what amounts to the same, the class of non-zero projective fractional ideals of R.

It is immediate that every morphism $I \longrightarrow K(I \in \mathcal{P}_O)$ is multiplication with an element k of K. Thus two fractional ideals I, $J \in \mathcal{P}_O$ are isomorphic if and only if there is $k \in K$ such that

$$I = k \cdot J$$
.

This shows also that

$$\operatorname{Hom}_{\mathbb{R}}(I,\mathbb{R}) = I^{-1} = \{k \in \mathbb{K} \mid k \in \mathbb{R}\}.$$

Since clearly I.J = I $@_R$ J, we have the following result: \mathcal{P}_o becomes a group if we define multiplication by I.J for I,J $\in \mathcal{P}_o$. Let \mathcal{J}_o be the subgroup of non-zero principal fractional ideals of R. We have a canonical isomorphism of groups

$$ICG(R) = \mathcal{P}_{o}/\mathcal{I}_{o}$$
.

In general we have always an epimorphism

$$i : CPCG(R) \longrightarrow ICG(R)$$

defined as follows. Let $p \in CPCG(R)$ and pick $P \in p$ with rank P = n, and define $ip = E(P)_n$ where $E(P)_n$ is the homogeneous part of degree n of the exterior algebra E(P) of P. Recall that if $P \in P$ is a module of rank $P \in P$ and $P \in P$ is a module of rank $P \in P$ and $P \in P$

$$i : PCG(R) \longrightarrow ICG(R)$$
.

Proposition 2.1 Suppose R is a Dedekind domain; then

$$i : PCG(R) \longrightarrow ICG(R)$$

is an isomorphism.

This is immediate from the fact that a projective module of rank n is isomorphic to a module of the form $F \oplus I$ where F is

free of rank n - 1 and I an ideal which is uniquely determined up to isomorphism (by proposition 5.6 of chap. VII).

Let ${\mathcal V}$ be the category of all coherent projective modules of finite rank over the commutative ring R. Define a map

$$\varphi: \mathcal{P} \longrightarrow Z, \quad \varphi P = \operatorname{rank} P$$

where Z are the integers. If $P,Q \in \mathcal{P}$ have rank n and m respectively, then $E(P \oplus Q)_{m+n} = E(P)_n \otimes_R E(Q)_m \neq 0$ [chap. 5, prop 5.5]; hence ϕ is additive. Therefore ϕ passes to a morphism of groups

$$\varphi: K(f) \longrightarrow Z$$

(every short exact sequence in P being split exact). On the other hand there is an obvious morphism

$$\eta : K(\mathcal{P}) \longrightarrow CPCG(R)$$

sending the class of $P \in P$ in K(P) into the class in CPCG(R) determined by P.

Proposition 2.2. The morphism

$$\nu = \varphi \times \eta : K(\mathcal{Y}) \longrightarrow Z \times CPCG(R)$$

is an isomorphism.

We define an inverse $\sigma: Z \times CPCG(R) \longrightarrow K(\mathcal{Y})$ by setting

$$\sigma(n,[P]) = [F_n] + [P] - [F_{rank P}];$$

 F_k denotes a free module of rank k. Suppose P,Q \in [P] \in CPCG(R); by definition there are free modules F, G in $\mathscr P$ such that P \oplus F $\stackrel{\checkmark}{=}$ Q \oplus G.

Now in $K(\rho)$ we have

$$\begin{split} [P] - [F_{\text{rank} \ P}] - [Q] + [F_{\text{rank} \ Q}] \\ &= [P] - [F_{\text{rank} \ P}] - [Q \oplus G] + [G] + [F_{\text{rank} \ Q}] \\ &= [P] - [F_{\text{rank} \ P}] - [P \oplus F] + [G] + [F_{\text{rank} \ Q}] \\ &= [G \oplus F_{\text{rank} \ Q}] - [F \oplus F_{\text{rank} \ P}] = 0 , \end{split}$$

since a consideration of ranks shows $G \oplus F_{rank} \stackrel{\sim}{Q} \stackrel{\sim}{=} F \oplus F_{rank}$

3. A Relation between Grothendieck Groups over the same Ring

Consider two additive categories α and β of left Λ -modules, Λ being a ring, and suppose that β (α . If

$$(+) \qquad 0 \longrightarrow B_n \xrightarrow{\phi_n} \cdots \longrightarrow B_1 \xrightarrow{\phi_1} A \longrightarrow 0$$

is an (exact) resolution for $A\in\mathcal{C}$ with modules $B_{\bf i}$ and morphisms $\phi_{\bf i}$ in \mathcal{B} , then we can form another resolution

$$0 \longrightarrow B_{n} \longrightarrow \cdots \longrightarrow B_{i+1} \xrightarrow{(\phi_{i-1}, 0)} B_{i} \oplus C \xrightarrow{\phi_{i} \oplus 1_{C}} B_{i-1} \oplus C$$

$$\xrightarrow{(\phi_{i-1}, 0)} B_{i-2} \cdots \longrightarrow B_{1} \longrightarrow A \longrightarrow 0$$

for each module C ϵ eta . Any resolution which can be obtained by a finite number of such steps is called a modification of (+) modulo $oldsymbol{\mathcal{B}}$.

For simplicity we assume now that $\widetilde{\omega}$ containes all the morphisms between modules in $\widetilde{\omega}$, and all their kernels. The category

is said to be \mathcal{G} -resolutive if there is an integer m , $0 < m \le \infty$ such that every module $A \in \mathcal{G}$ has a resolution (+) with modules $B_{\mathbf{i}} \in \mathcal{B}$ satisfying

- (1) $n \leq m$; $n < \infty$
- (2) B_i is projective for 0 < i < m.

Lemma 3.1

Any two resolutions of $A \in \mathcal{G}$. in \mathcal{B} satisfying (1) and (2) have isomorphic modifications modulo \mathcal{B} which again satisfy (1) and (2) (isomorphic as graded modules).

Let (B_i) and (B_j') be two such resolutions of A in \mathcal{B} . We proceed by induction on m. The lemma being trivial for m=1, we suppose that m>1 and that the lemma holds for resolutions of length < m. Since B_1 and B_1' are projective, there are morphisms $\tau_1 \colon B_1 \longrightarrow B_1'$ and $\tau_1' \colon B_1' \longrightarrow B_1$ such that the diagram

$$\begin{array}{ccc}
B_{1} & \xrightarrow{\varphi_{1}} & A \longrightarrow 0 \\
\tau_{1} & \downarrow \tau_{1}^{\tau} & \downarrow \sigma_{0} \\
B_{1}^{\tau} & \xrightarrow{\varphi_{1}^{\tau}} & A \longrightarrow 0
\end{array}$$

is commutative: $\sigma_0 = 1_A$ is the identity. Our first modification is $(\phi_3,0) \xrightarrow{\phi_2 \oplus 1_{B_1'}} B_1 \oplus B_1' \xrightarrow{(\phi_1,0)} A \longrightarrow 0$

$$0 \longrightarrow B_n' \cdots \xrightarrow{(\phi_3',0)} B_2' \oplus B_1 \xrightarrow{\phi_2' \oplus 1_{B_1}} B_1' \oplus B_1 \xrightarrow{(\phi_1',0)} A \longrightarrow 0$$

and we define σ_1 by the matrix

$$\begin{pmatrix} \tau_1 & 1-\tau_1 \circ \tau_1' \\ 1 & -\tau_1' \end{pmatrix}$$

It is easily checked that σ_1 is an isomorphism and makes the diagram commutative. Now apply the induction hypothesis to the isomorphic modules $\ker(\phi_1,0)$ and $\ker(\phi_1',0)$ and their resolutions derived from the above diagram.

Lemma 3.2 Let

$$(*) \qquad 0 \longrightarrow A_1 \xrightarrow{i} A_2 \xrightarrow{j} A_3 \longrightarrow 0$$

be a short exact sequence in \mathcal{A} , and suppose that A_1 and A_3 have resulutions $B_1^1 = (B_k^1)$ and $B^3 = (B_k^3)$ in \mathcal{B} respectively satisfying (1) and (2). Then A_2 has a resulution $B^2 = (B_k^2)$ in \mathcal{B} satisfying (1) and (2); moreover we have an exact sequence

$$0 \longrightarrow B^1 \longrightarrow B^2 \longrightarrow B^3 \longrightarrow 0$$

of graded modules lying over (*).

Consider the diagram

We define $B_k^2 = B_k^1 \oplus B_k^3$, $i_k : B_k^1 \longrightarrow B_k^2$ and $j_k : B_k^2 \longrightarrow B_k^3$ being the canonical morphisms. If $m \ge 1$, B_1^3 is projective; therefore there is a morphism g such that $jog = \phi_1^3$. Define $\phi_1^2 = io\phi_1^1 \oplus g$. Clearly the diagram commutes and $0 \longrightarrow \ker(\phi_1^1) \longrightarrow \ker(\phi_1^2) \longrightarrow \ker(\phi_1^3) \longrightarrow 0$ is exact. Note that $\ker(\phi_1^1)$ and $\ker(\phi_1^3)$ have resolutions of length < m and that the lemma is trivial for m = 1; thus we can proceed by induction on m.

<u>Proposition 3.3</u> Assume the additive category $\mathcal L$ containes all the morphisms between modules in $\mathcal L$, and all their kernels. Let $\mathcal L$ be an additive category contained in $\mathcal L$. If $\mathcal L$ is $\mathcal L$ -resolutive then the canonical morphism

$$\varphi: K(\mathcal{A}) \longrightarrow K(\mathcal{A})$$

(sending the class of $A \in \mathcal{A}$ in $K(\mathcal{A})$ into the class of A in $K(\mathcal{A})$) is an isomorphism.

We define an inverse $\eta: K(\mathcal{A}) \longrightarrow K(\mathcal{A})$ in the following way:

Let $A \in \mathcal{A}$ and (B_i) be a resolution for A in \mathcal{A} satisfying (1) and (2): then define

$$\eta[A] = \sum_{i} (-1)^{i} [B_{i}].$$

Lemma 3.1 shows that $\eta[A]$ does not depend on the choice of the resolution (B_i) ; Lemma 3.2 shows that $\eta[A]$ is independent of the choice of the representative $A \in [A]$. Clearly η is an inverse to ϕ .

Let us look at some examples:

Example 3.4 Suppose R is an integral noetherian domain. Consider the category $\mathcal E$ of all finitely generated R-modules. It contains the category $\mathcal F$ of all finitely generated torsion free R-modules. $\mathcal E$ is $\mathcal F$ -resolutive, for every $A \in \mathcal E$ has a resolution

$$0 \longrightarrow B \longrightarrow F \longrightarrow A \longrightarrow 0$$

with F free of finite rank and B torsion free. Thus

$$K(\mathscr{Y}) = K(\mathscr{J})$$
.

Example 3.5 Let Λ be a left noetherian ring with the following property. Every finitely generated left Λ -module has a finite projective resolution by finitely generated left Λ -projectives. For instance every left noetherian ring of finite homological dimension has this property. If $\mathcal E$ denotes the class of all finitely generated left Λ -modules and $\mathcal E$ the class of all projective modules in $\mathcal E$, then $\mathcal E$ is $\mathcal F$ -resolutive, thus

$$K(\mathscr{L}) = K(\mathscr{P})$$
.

Example 3.6 In particular, if R has finite homological dimension (and is noetherian), then

$$K(\mathcal{E}(R[x_1,...,x_n])) = K(\mathcal{P}(R[x_1,...,x_n]))$$
,

because $R[x_1,...,x_n]$ has finite homological dimension. (By the Hilbert syzygy theorem, chapter IX, theorem 3.4).

4. Some Diagrams

For any ring Λ , $G(\Lambda)$ denotes the Grothendieck group $K(\mathcal{L})$ associated with the category \mathcal{L} of all finitely generated left Λ -modules.

Theorem 4.1 Let R be a commutative noetherian ring, Λ a left noetherian ring which is also a R-algebra, and S a submonoid of R. Then we have an exact sequence

$$(+) \quad \Sigma' G(R/p \ \underline{\alpha_R} \Lambda) \xrightarrow{\alpha = \Sigma' (\phi_p \underline{\alpha} 1_\Lambda)^*} G(\Lambda) \xrightarrow{(j_S \underline{\alpha} 1_\Lambda) = \beta} G(R_S \ \underline{\alpha_R} \Lambda) \longrightarrow 0$$
 where the sum runs through the set of all prime ideals in R which intersect S; $\phi_p : R \longrightarrow R/p$ and $j_S : R \longrightarrow R_S$ are the canonical morphisms.

Proof: First note that $R/p \ a_R^{\Lambda}$ and $R_S \ a_R^{\Lambda}$ are again left noetherian; this follows in the first case from $R \ a_R^{\Lambda} = \Lambda \longrightarrow R/p \ a_R^{\Lambda}$ being an epimorphism, and in the second case it is immediate from the characterisation of the ideals in R_S [chapt. 2, prop. 2.3]. $R/p \ a_R^{\Lambda} \Lambda$ is finitely generated as a left Λ -module, and $R_S \ a_R^{\Lambda} \Lambda$ is flat over Λ because $(R_S \ a_R^{\Lambda} \Lambda) \ a_{\Lambda} \Lambda = R_S \ a_R^{\Lambda} (\Lambda \ a_{\Lambda} \Lambda) = R_S \ a_R^{\Lambda} \Lambda$ for a left Λ -module Λ , and R_S is flat over R. Therefore the maps in (+) are well defined. $\beta \circ \alpha = 0$ since $p \cap S \neq \emptyset$; therefore we obtain a morphism

$$\nu: G(\Lambda)/\text{im }\alpha \longrightarrow G(R_S \otimes_R^{} \Lambda)$$
 .

We construct now an inverse δ for ν ; this will show that ν is an isomorphism, i.e. that (+) is exact. Let A be any finitely generated left $R_S \otimes_R \Lambda$ -module. Pick any resolution

$$0 \longrightarrow N \longrightarrow F \longrightarrow A \longrightarrow 0$$

with F free over $R_S \ _R^{} \Lambda$ and of finite rank. Now choose a free Λ -module F_o of the same rank as F; thus $R_S \ _R^{} F_o = F$, and we have a natural morphism $F_o \xrightarrow{\phi} F$. $N_o = \phi^{-1}(N)$ has the property that $R_S \ _R^{} N_o = N$ (which follows as in the case of ideals in the proposition cited above). In order to have more freedom later on we choose any submodule N_O^* of N_o such that $R_S \ _R^{} N_o^* = N$. We have a commutative diagram

$$0 \longrightarrow N \longrightarrow F \longrightarrow A \longrightarrow 0$$

$$\downarrow \phi$$

$$0 \longrightarrow N^* \longrightarrow F \longrightarrow A_0 = F_0/N^* \longrightarrow 0$$

and would like to define

(++)
$$\delta[A] = [A_O] = [F_O] - [N_O^*] \mod(\text{im } \alpha) .$$

Definition (++) is independent of the choice of F: Suppose

$$0 \longrightarrow N' \longrightarrow F' \longrightarrow A \longrightarrow 0$$

is another choice; then this resolution and the first one have isomorphic modifications. Hence we may assume that

 $0 \longrightarrow N' \longrightarrow F' \longrightarrow A \longrightarrow 0$ has the form $0 \longrightarrow N \oplus F'' \longrightarrow F \oplus F'' \longrightarrow A \longrightarrow 0$ with F'' being free (lemma 1.3). Now

$$0 \longrightarrow \mathbb{N} \oplus \mathbb{F}'' \longrightarrow \mathbb{F} \oplus \mathbb{F}'' \longrightarrow \mathbb{A} \longrightarrow 0$$

$$0 \longrightarrow \mathbb{N} \oplus \mathbb{F}'' \longrightarrow \mathbb{F}_0 \oplus \mathbb{F}'' \longrightarrow \mathbb{A}_0 \longrightarrow 0$$

has the desired property, and will yield the same A ...

(2) Definition (++) is independent of the choice of \mathbb{N}_{0}^{*} :

It suffices to show that

$$[N_0^*] = [N_0] \mod (\text{im } \alpha)$$
.

By hypothesis $R_S \overset{\infty}{}_R N_O^* = R_S \overset{\infty}{}_R N_O$, thus $R_S \overset{\infty}{}_R N_O/N_O^* = 0$. So it suffices to show that $R_S \overset{\infty}{}_R V = 0$ for a finitely generated left Λ -module V implies $[V] \in \operatorname{im} \alpha$. Let $\bigwedge = \operatorname{ann}_R V$ be the annihilator of V considered as a R-module. Each element in V is annihilated by some element in V. Since V is finitely generated, $V \cap S \neq \emptyset$. Now write $V = \overset{k}{}_1 \overset{k}{}_2 \overset{k}{}_1 p_1$, where $V = \overset{k}{}_1 \overset{k}{}_2 \overset{k}{}_1 p_2$ is a finite collection of prime ideals in $V = \overset{k}{}_1 \overset{k}{}_2 \overset{k}{}$

$$0 \longrightarrow (\sqrt{\mathcal{M}}) V \longrightarrow V \longrightarrow V/\mathcal{M} V \longrightarrow 0$$

is exact; therefore we find by induction on m that

$$[V] = \sum_{fin} [W_i]$$

where W_i are finitely generated left \$\Lambda\$-modules with $ann_R^W_i$) for . Now assume that the annihilater of V contains for . We have an exact sequence

$$0 \longrightarrow p_1 V \longrightarrow V \longrightarrow V/p_1 V \longrightarrow 0 \quad ;$$

so by induction on the number k of primes p, we find

$$[V] = \sum_{fin} [U_j]$$
,

where U_{j} are finitely generated left Λ -modules with $\operatorname{ann}_{R}U_{j} = p_{j}$ for some i (depending on j).

3) Finally we have to check that for an exact sequence $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0 \quad \text{of finitely generated left}$ $R_S @_R \Lambda \text{-modules}$

$$[A_{o}] - [A_{o}] - [A_{o}] = 0$$
.

We know (lemma 3.2) that there is an exact commutative diagram

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow 0$$

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

$$0 \longrightarrow 0 \longrightarrow 0$$

A simple diagram chasing shows that

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N \longrightarrow N' \longrightarrow 0$$

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

$$0 \longrightarrow N' \longrightarrow N \longrightarrow N' \longrightarrow 0$$

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F'' \longrightarrow 0$$

is exact, whence

$$\delta([A] - [A'] - [A'']) = [A_O] - [A_O'] - [A_O''] = 0$$
.

Suppose that the R-algebra Λ is flat as a R-module; then $R/p \ @_R \Lambda$ is flat as a R/p-module, and $R_S \ @_R \Lambda$ is flat as a R_S -module. Let ϵ be the canonical morphism $R \longrightarrow \Lambda$ (resp. $R/p \longrightarrow R/p \ @_R \Lambda$, resp. $R_S \longrightarrow R_S \ @_R \Lambda$).

Corollary 4.2 Suppose that in addition to the hypothesis of the theorem, Λ is flat as a R-module. Then the morphisms

$$\varepsilon_* : G(R) \longrightarrow G(\Lambda), \quad \varepsilon_* : G(R_S) \longrightarrow G(R_S \otimes_R \Lambda)$$

$$\varepsilon_* : G(R/p) \longrightarrow G(R/p \otimes_R \Lambda)$$

are well defined (ϕ_{\star} in section 1.). Furthermore, the following diagram is commutative and has exact rows:

$$\Sigma' \ G(R/p \ @_{R} \ \Lambda) \xrightarrow{\Sigma'(\phi_{p} @_{\Lambda})*} G(\Lambda) \xrightarrow{(j_{S} @_{\Lambda})_{*}} G(R_{S} @_{R} \ \Lambda) \longrightarrow 0$$

$$\uparrow \varepsilon_{*} \qquad \uparrow \varepsilon_{*} \qquad \uparrow \varepsilon_{*} \qquad \downarrow g(R/p) \qquad \longrightarrow G(R) \xrightarrow{j_{S}*} G(R_{S}) \longrightarrow 0$$

Before we can deduce the diagram which will be a main tool in the proof of Swan's theorem on decompositions of projective modules over group rings of Dedekind domains we need some lemmas.

Lemma 4.3 Suppose Λ is a ring and \mathcal{E} a category of finitely generated left Λ -modules which satisfies the following conditions:

- (a) Each $M \in \mathcal{E}$ admits a finite Jordan-Hoelder composition series $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M.$
- (b) The factors M_{k+1}/M_k of any such decomposition series belong to $\mathscr E$. Then $K(\mathscr E)$ is free abelian with one generator for each isomorphism class of simple left Λ -modules in $\mathscr E$.

Proof: Let F be the free abelian group generated by the set of isomorphism classes of simple modules in $\mathscr E$. Define a morphism $K(\mathscr E) \xrightarrow{\phi} F$ by sending [M] into $\Sigma[M_{k+1}/M_k]$, where $0 = M_0 \subset \cdots \subset M_n = M$ is any composition series. The uniqueness of the quotients M_{k+1}/M_k of a composition series shows that the map is well defined from $\mathscr E$ into F. It passes to $\tilde a$ morphism from $K(\mathscr E)$ into F because every short exact sequence can be refined to a Jordan-Holder composition series. Since $[M] = \Sigma[M_{k+1}/M_k]$ in $K(\mathscr E)$, ϕ has an obvious inverse; hence ϕ is an isomorphism.

Lemma 4.4 Let R be a Dedekind domain and Λ a finitely generated R-algebra. If I is any ideal in R, then $R/I \otimes_R \Lambda$ satisfies the decending chain condition. Hence, $G(R/I \otimes_R \Lambda)$ is free abelian with one generator for each isomorphism class of finitely generated simple $R/I \otimes_R \Lambda$ -modules. Let \checkmark be the category of finitely generated left Λ -modules which are torsion modules over R; then $K(\checkmark)$ is free

abelian with one generator for each isomorphism class of simple left Λ -modules in $\mathcal J$. In particular, the natural injection $G(R/I \ \underset{R}{\otimes}_R \ \Lambda) \longrightarrow K(\Lambda)$ is a monomorphism.

It suffices to prove that R/I satisfies the descending chain condition, because this implies that every module in \mathcal{J} (being a finitely generated R/I-module for some ideal I) admits a finite Jordan-Hoelder composition series. Let $I_1 \supset I_2 \supset \cdots \supset I$ be a descending chain in R/I; the prime ideals occurring in the factorisation of I_j in R devide I . Since there can be only a finite number of such primes (counting multiplicities), the above chain must be finite. Lemma 4.5 Suppose I is a projective ideal in an integral domain R , and M a maximal ideal. Then there is an ideal J isomorphic to I such that (J,M) = R.

Proof: Since I $\underset{R}{\textcircled{A}}$ Hom(I,R) \longrightarrow R is an isomorphism, there is $f \in \text{Hom}(I,R)$ such that $f(I) \not\subset M$, I.e. (f(I),M) = R.

The setting for the next theorem is a Dedekind domain R with field of fractions K, and a finitely generated R-algebra Λ . Let us denote by $G'(\Lambda)$ the Grothendieck group associated to the category of all finitely generated left Λ -modules which are torsion free over R. As in example 3.4 we see that the natural morphism $G'(\Lambda) \longrightarrow G(\Lambda)$ is an isomorphism. Now let I be any ideal in R; $\phi_{\rm I}: R \longrightarrow R/I$ denotes the canonical morphism. $\phi_{\rm I} \otimes 1_{\Lambda}$ defines a morphism

$$(\phi_T \otimes 1_{\Lambda})_* : G'(\Lambda) \longrightarrow G(R/1 \otimes_R \Lambda)$$

according to (ϕ_*) in section 1, since the finitely generated torsion free modules over R are projective. Hence we have a morphism

$$G(\Lambda) \longrightarrow G(R/I \otimes_R \Lambda)$$

which we will denote by ϕ_{T*} .

Theorem 4.6 There is a unique morphism $\psi_{\rm I}$: $G(K \otimes_{\rm R} \Lambda) \longrightarrow G(R/I \otimes_{\rm R} \Lambda)$ which makes the diagram

$$G(\Lambda) \xrightarrow{j_*} G(K \otimes_R^{} \Lambda)$$

$$\phi_{T^*} \xrightarrow{G(R/I \otimes_R^{} \Lambda)} \psi_{T}$$

commutative. j: $R \longrightarrow K$ is the natural injection (we have written j_* instead of $(j \otimes l_{\Lambda})_*$).

Proof: The uniqueness is immediate since j_* is onto (theorem 4.1). The existence is equivalent with the statement

 $\phi_{I*}[A] = 0$ whenever $ann_R A = p$ for some prime ideal $p \neq 0$ in R. (Theorem 4.1).

Choose a resolution $0 \longrightarrow B \longrightarrow P \longrightarrow A \longrightarrow 0$ with P a finitely generated projective left Λ -module; thus [A] = [P] - [B]. We have to show that

$$[R/I \otimes_R P] - [R/I \otimes_R B] = 0$$

in $G(R/I \ \underline{\omega}_R \ \Lambda)$ or, equivalently, in $K(\mathcal{J})$ where \mathcal{J} is the category of all finitely generated lefe Λ -modules which are torsion modules over R (lemma 4.4). We have exact sequences

$$0 \longrightarrow \operatorname{Tor}_{1}^{R}(R/I,A) \longrightarrow R/I \otimes_{R} B \longrightarrow R/I \otimes_{R} P \longrightarrow R/I \otimes_{R} A \longrightarrow 0$$

$$(+) \quad 0 \longrightarrow \operatorname{Tor}_{1}^{R}(R/I,A) \longrightarrow I \otimes_{R} A \longrightarrow R \otimes_{R} A \longrightarrow R/I \otimes_{R} A \longrightarrow 0$$

which give

(++) [A] - [I $@_R$ A] = [R/I $@_R$ P] - [R/I $@_R$ B] in K(\mathcal{J}). Note that we made use of the fact that $\operatorname{Tor}_1^R(R/I,A)$ is a left Λ -module. Choose an ideal J isomorphic to I such that (J,p) = R (lemma 4.5). Replacing I by J in (+) gives $A = J @_R A$ ($\operatorname{Tor}_1^R(R/J,A)$ and $R/J @_R A$ are annihilated both by J and p , i.e. by R).

Therefore [A] - [I $@_R$ A] = [A] - [J $@_R$ A] = 0. This shows that (++) vanishes in $K(\mathcal{J})$.

5. Applications to Polynomial Rings

First let us note a corollary to corollary 4.2:

<u>Proposition 5.1</u> Suppose R is a commutative noetherian ring, Λ a left noetherian ring which is also a R-algebra and flat over R. Furthermore assume that the following conditions hold:

- (1) R has finite Krull dimension.
- (2) Whenever T is a field of the form $\mathbb{Q}(R/p)$ or R/p (where p is a prime resp. maximal ideal in R, and $\mathbb{Q}(\cdot)$ denotes the field of fractions), then

$$\varepsilon_* : G(T) \longrightarrow G(T \otimes_R \Lambda)$$

is an epimorphism.

Then

$$\varepsilon_{\star}: G(R) \longrightarrow G(\Lambda)$$

is an epimorphism.

This is immediate from Corollary 4.2 using induction on the Krull dimension of R. For R an integral domain choose $S=R-\{0\} \text{ ; if R is any ring, take } S=\{0,1\} \text{ so that } R_S=0=R_S \otimes_R \Lambda \text{ ,}$ thus reducing the problem (via the diagram in corollary 4.2) to the case of integral domains.

A supplemented algebra over a commutative ring R is a R-algebra Λ together with a left inverse $\pi:\Lambda\longrightarrow R$ for $\epsilon:R\longrightarrow \Lambda$; π is called the projection. Clearly ϵ is a monomorphism in the case. Moreover

<u>Proposition 5.2</u> Let (Λ,R,π) be a supplemented algebra and suppose that Λ and R are left noetherian. If

- (1) A is projective as a R-module and
- (2) R considered as a left Λ -module has finite homological dimension, then

$$\varepsilon_* : G(R) \longrightarrow G(\Lambda)$$

is a monomorphism.

Proof: We prove more; we show that ϵ_{\star} has a left inverse η . Define

$$\eta[A] = \Sigma(-1)^{1}[Tor_{\uparrow}^{\Lambda}(R,A)]$$

for [A] \in G(Λ). Note that the sum is finite since R admits a finite resolution by projective left Λ -modules, say of length n. We have to check that η is well defined. If

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

is an exact sequence of left A-modules, then

$$0 \longrightarrow \operatorname{Tor}_{\mathbf{n}}^{\Lambda}(\mathbf{R},\mathbf{A}') \longrightarrow \operatorname{Tor}_{\mathbf{n}}^{\Lambda}(\mathbf{R},\mathbf{A}) \longrightarrow \operatorname{Tor}_{\mathbf{n}}^{\Lambda}(\mathbf{R},\mathbf{A}'') \longrightarrow \cdots \longrightarrow \mathbf{R} \ \mathbf{Q}_{\Lambda} \ \mathbf{A}'' \longrightarrow \mathbf{R} \ \mathbf{Q}_{\Lambda} \ \mathbf{A} \longrightarrow \mathbf{R} \ \mathbf{Q}_{\Lambda} \ \mathbf{A}'' \longrightarrow \mathbf{0}$$

is exact, whence $\eta([A] - [A'] - [A']) = 0$. Now let

$$0 \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_o \longrightarrow R \longrightarrow 0$$

be a projective resolution of R over $\Lambda.$ We may assume that the $P_{\bf i}$ are finitely generated over $\Lambda.$ Since Λ is projective over R , so are the $P_{\bf i}$. Therefore

$$0 \longrightarrow P_{n} \underset{\parallel}{\otimes}_{\Lambda} (\Lambda \underset{R}{\otimes}_{R} A_{o}) \longrightarrow \cdots \longrightarrow R \underset{R}{\otimes}_{\Lambda} (\Lambda \underset{R}{\otimes}_{R} A_{o}) = A_{o} \longrightarrow 0$$

$$0 \longrightarrow P_{n} \underset{R}{\otimes}_{R} A_{o} \longrightarrow \cdots \longrightarrow R \underset{R}{\otimes}_{R} A_{o} = A_{o} \longrightarrow 0$$

is exact for every finitely generated R-module $\mbox{A}_{\mbox{\scriptsize O}}$. By the definition of Tor we get

$$Tor_{i}^{\Lambda}(R, \Lambda \otimes_{R}^{\Lambda} A_{O}) = 0 \quad \text{for} \quad i > 0 ,$$

$$Tor_{O}^{\Lambda}(R, \Lambda \otimes_{R}^{\Lambda} A_{O}) = R \otimes_{\Lambda} (\Lambda \otimes_{R}^{\Lambda} A_{O}) = A_{O} .$$

This shows $\eta o \varepsilon = 1$.

We recollect:

Theorem 5.3 Let (Λ, R, π) be a supplemented algebra such that

- (1) R and A are left noetherian,
- (2) A is projective over R,
- (3) R considered as a left A-module has finite homological dimension,
- (4) R has finite Krull dimension,
- (5) For any field T of the form $\mathbb{Q}(R/p)$ or R/p (where p is a prime resp. maximal ideal in R, and $\mathbb{Q}(\cdot)$ denotes the field of fractions) $\epsilon_*: G(T) \longrightarrow G(T \otimes_R \Lambda)$ is an epimorphism.

Then

$$\varepsilon_*: G(R) \longrightarrow G(\Lambda)$$

is an isomorphism.

We apply now the above theorem to the polynomial rings over A noetherian ring \mathcal{R} of finite Krull dimension. Condition (3) is fulfilled according to the Hilbert syzygy theorem (chapter IX, theorem 3.4). First let K be a field. $K[x_1]$ is a principal ideal domain, i.e. every ideal of $K[x_1]$ is free. Therefore every finitely generated projective module over $K[x_1]$ is free. Hence (cf example 3.6) $\varepsilon_*: G(K) \longrightarrow G(K[x_1])$ is an isomorphism.

Now we find by induction on n that

$$\varepsilon_* : G(K) \longrightarrow G(K[x_1, \dots, x_n])$$

is an isomorphism. Therefore (5) is fulfilled with R, $\Lambda = R[x_1, ..., x_n]$; so we obtain:

Theorem 5.4 Let R be a noetherian ring of finite Krull dimension.

Then

$$\varepsilon_* : G(R) \longrightarrow G(R[x_1, \dots, x_n])$$

is an isomorphism. In particular, for R = K a field,

$$G(K[x_1,...,x_n]) = G(K) = Z$$
, i.e.

$$PCG(K[x_1,...,x_n]) = 0.$$

(Z denotes the integers).

This raises now the question whether every projective module over $K[x_1,...,x_n]$ is free. We have seen already that this is true for n=0 and n=1. In section 3 of chapter XIII we will see that this question can be answered positively also in the case where n=2. It is still open to what extent it will be true in the general case.

6. The Grothendieck Ring associated with a Group Ring.

In this section R is always a commutative ring and π a finite group. ρ denotes the category of all finitely generated R π -modules which are projective over R. We define

$$G'(R\pi) = K(P_0)$$
.

Let $A,B \in \mathcal{P}_{O}$: $A \overset{\pi}{\otimes}_{R} B$ is the tensor product $A \overset{\infty}{\otimes}_{R} B$ with diagonal according of π .

$$T: \begin{array}{c} \rho_{o} \times \rho_{o} \longrightarrow \rho_{o} \\ (A,B) \longrightarrow A \stackrel{\pi}{\otimes}_{R} B \end{array}$$

defines an exact bilinear functor on \mathcal{C}_0 . T induces in $G'(R\pi)$ a multiplication operation. $G'(R\pi)$ becomes thus a ring with unit $[R\pi]$. Hence

Proposition 6.1 G'(R π) can be given the structure of a ring. Proposition 6.2 Let Λ be any R-algebra. G($\Lambda\pi$) can be considered as a G'(R π)-module.

Proof: Let $\mathscr{L}(\Lambda\pi)$ be the category of finitely generated left $\Lambda\pi$ -modules. Pick $\Lambda\in \mathscr{C}_{\circ}$;

$$B \longrightarrow A \overset{\pi}{\otimes}_{R} B = B \overset{\pi}{\otimes}_{R} A , B \in \mathscr{E}(\Lambda_{\pi})$$

is an exact additive functor on $\mathscr{C}(\Lambda\pi)$. It defines for $G(\Lambda\pi)$ the structure of a $G'(R\pi)$ -module.

Now consider a subgroup $\sigma \subset \pi$ and let $i: \sigma \subset \pi$ be the inclusion map. For any ring Λ , $\Lambda \pi$ is a finitely generated free left $\Lambda \sigma$ -module. Hence the maps

$$1*: G(\Lambda\pi) \longrightarrow G(\Lambda\sigma)$$

$$i_* : G(\Lambda \sigma) \longrightarrow G(\Lambda \pi)$$

are defined (cf. (ϕ^*) and (ϕ_*) in section 1 of chapter XII), and similarly for $G^1(R\pi)$.

Proposition 6.3 Let Λ be a R-algebra and $\sigma \subset \pi$ a subgroup of π . We have the following identities:

(1)
$$i*(xy) = i*(x)i*(y)$$
 for $x \in G'(R\pi)$, $y \in G(\Lambda\pi)$

(2)
$$i_*(i^*(x)y) = x \cdot i_*(y)$$
 for $x \in G'(R\pi)$, $y \in G(\Lambda\sigma)$

(3)
$$i_*(x \cdot i^*(y)) = i_*(x) \cdot y$$
 for $x \in G^*(R\sigma)$, $y \in G(\Lambda\pi)$

In particular, the image of i_* : $G'(R\sigma) \longrightarrow G'(R\pi)$ is an ideal in $G'(R\pi)$.

Proof: (1) is immediate. For (2) and (3) note that

$$R\pi \otimes_{R\sigma} (A \otimes_{R}^{\pi} B) \cong A \otimes_{R}^{\pi} (R\pi \otimes_{R\sigma} B)$$

for $A \in \mathcal{P}_{O}(R\pi)$, $B \in \mathcal{Y}(\Lambda\sigma)$ (resp. $A \in \mathcal{P}_{O}(R\sigma)$, $B \in \mathcal{Y}(\Lambda\pi)$ under the map

$$z \otimes (a \otimes b) \longrightarrow z \cdot a \otimes (z \otimes b) z \in \pi, a \in A, b \in B$$
.

For any ring Λ let $\mathcal{P}(\Lambda)$ be the category of finitely generated left Λ -projectives. Define

$$P(\Lambda) = K(\rho(\Lambda))$$
.

A morphism of rings $\varphi: \Gamma \longrightarrow \Lambda$ induces a morphism

$$\varphi^* : P(\Lambda \pi) \longrightarrow P(\Gamma \pi)$$
.

<u>Proposition 6.4</u> If $i : \sigma \subset \pi$ is a subgroup of π , then ϕ^* commutes with i^* and i_* .

This is trivial for i* , and for i* we have

$$\Lambda\pi \ \ _{\Lambda\sigma}^{} \ (\Lambda\sigma \ \ _{\Gamma\sigma}^{} \ A) \ = \Lambda\pi \ \ _{\Gamma\sigma}^{} \ A \ = \Lambda\pi \ \ _{\Gamma\pi}^{} \ (\Gamma\pi \ \ _{\Gamma\sigma}^{} \ A) \ , \ A \ \in \ ^{P} \ (\Gamma\sigma) \ .$$

<u>Lemma 6.5</u> Let Λ be a ring, and A a left $\Lambda\pi$ -module; then

$$\Lambda\pi \stackrel{\pi}{\otimes}_{\Lambda} A = \Lambda\pi \otimes_{\Lambda} A .$$

If A is free as a left $\Lambda\text{-module},$ then $\Lambda\pi\stackrel{\pi}{\underline{\omega}}_{\Lambda}$ is free as a left $\Lambda\pi\text{-module}.$

Proof: Define

$$\alpha : \Lambda \pi \ \underline{\alpha}_{\Lambda} A \longrightarrow \Lambda \pi \ \underline{\alpha}_{\Lambda} A$$

$$\times \underline{\alpha} a \longrightarrow \times \underline{\alpha} \times xa, \quad x \in \pi, \ a \in A$$

$$\beta : \Lambda \pi \ \underline{\alpha}_{\Lambda} A \longrightarrow \Lambda \pi \ \underline{\alpha}_{\Lambda} A$$

$$\times \underline{\alpha} A \longrightarrow \times \underline{\alpha} \times x^{-1}z, \quad x \in \pi, \ a \in A.$$

Clearly $\alpha \circ \beta$ = identity, $\beta \circ \alpha$ = identity.

<u>Iemma 6.6</u> Let A, P be left $\Lambda\pi$ -modules, A projective over Λ, and P projective over $\Lambda\pi$. Then $A^{\pi}_{\Omega_{\Lambda}}$ P is $\Lambda\pi$ -projective.

Proof: 1) Suppose A is Λ -free, and let P' be a left $\Lambda\pi$ -projective such that P \oplus P' is $\Lambda\pi$ -free. A $^{\pi}_{\Omega_{\Lambda}}$ P \oplus A $^{\pi}_{\Omega_{\Lambda}}$ P' = A $^{\pi}_{\Omega_{\Lambda}}$ (P \oplus P') is $\Lambda\pi$ -free by lemma 6.5; so A $^{\pi}_{\Omega_{\Lambda}}$ P is $\Lambda\pi$ -projective. 2) In general, let A' be a left Λ -module such that A \oplus A' is Λ -free. A' denotes the module A' considered as a left $\Lambda\pi$ -module, π acting trivially. Then

$$(A \oplus A_{\varepsilon}') \stackrel{\pi}{\boxtimes}_{\Lambda} P = A \stackrel{\pi}{\boxtimes}_{\Lambda} P \oplus A_{\varepsilon}' \stackrel{\pi}{\boxtimes}_{\Lambda} P$$

is π -projective by 1).

<u>Proposition 6.7</u> If Λ is a R-algebra, then $P(\Lambda\pi)$ is a $G'(R\pi)$ -module. For a subgroup $i : \sigma \subset \pi$ of π , i* and i* satisfy the

identies of proposition 6.3.

Proof: Let $A \in \mathcal{P}_{0}$, $P \in \mathcal{P}(\Lambda\pi)$. $A \otimes_{\mathbb{R}} \Lambda$ is Λ -projective, hence $A \otimes_{\mathbb{R}} P = A \otimes_{\mathbb{R}} (\Lambda_{\varepsilon} \otimes_{\Lambda}^{\pi} P) = (A \otimes_{\mathbb{R}}^{\pi} \Lambda_{\varepsilon}) \otimes_{\Lambda}^{\pi} P = (A \otimes_{\mathbb{R}} \Lambda) \otimes_{\Lambda}^{\pi} P$ is $\Lambda\pi$ -projective by lemma 6.6. Thus the bilinear functor

$$\rho_{o} \times \rho_{(\Lambda\pi)} \longrightarrow \rho_{(\Lambda\pi)}$$

$$(A,P) \longrightarrow A^{\pi}_{R} P$$

is well defined. It is an exact functor; therefore $P(\Lambda\pi)$ becomes a $G'(R\pi)$ -module. The rest follows as in proposition 6.3.

Consider a class M of subgroups $i:\sigma\subset\pi$ of π . Let Λ be any R-algebra. We denote by $G_M(\Lambda\pi)$ the submodule of $G(\Lambda\pi)$ generated by the modules $i_*G(\Lambda\sigma)$, $\sigma\in M$. $G_M(\Lambda\pi)$ is said to have exponent k in $G(\Lambda\pi)$ if $k\cdot G(\Lambda\pi)\subset G_M(\Lambda\pi)$. Similarly are defined $P_M(\Lambda\pi)$ and $G_M'(R\pi)$. $G_M'(R\pi)$ has exponent k in $G'(R\pi)$ if and only if $k\in G_M'(R\pi)$. We will show in the next section that for any ring Λ (considered as a Z-algebra) $G_M(\Lambda\pi)$ has exponent $(\#\pi)^2$ in $G(\Lambda\pi)$ if we take for M the class of all cyclic subgroups of π . This is a kind of induction theorem in that we need prove theorems only for cyclic subgroups of π .

Corollary 6.8.

(a)
$$G'_{M}(R\pi) \cdot G(\Lambda\pi) \subset G_{M}(\Lambda\pi)$$
.

(b) If $G_M^{\prime}(R\pi)$ has exponent k in $G^{\prime}(R\pi)$, then $G_M^{\prime}(\Lambda\pi)$ has exponent k in $G(\Lambda\pi)$. (And similarly for $P(\Lambda\pi)$).

(a) follows from (3) of proposition 6.3, and (b) is a consequence of (a).

Remember that for a noetherian ring R of finite homological dimension $G'(R\pi) = G(R\pi)$ (proposition 3.3).

<u>Proposition 6.9.</u> Let R be a Dedekind domain and K its field of fractions. If $G_M(K\pi)$ has finite exponent k in $G(K\pi)$, then

- (1) $G_{M}(R/p\pi)$ has exponent k in $G(R/p\pi)$ for every prime ideal in R.
- (2) $G_{M}(R\pi)$ has exponent k^{2} in $G(R\pi)$.

Proof: (1) We use the notation of theorem 4.6. ψ_p maps $G_M(K\pi)$ into $G_M(R/p\pi)$ since ψ_p commutes with all morphisms i_* (ψ_p commutes with i_* because j_* and ϕ_{p*} do by proposition 6.4). $j_*(1) = 1 \quad \text{and} \quad \phi_{p*}(1) = 1 \quad \text{imply} \quad \psi_p(1) = 1. \quad \text{By hypothesis} \quad k \in G_M(K\pi);$ hence $k = \psi_D(k) \in G_M(R/p\pi)$.

(2) $j_*: G_M(R\pi) \longrightarrow G_M(K\pi)$ is an epimorphism because $j_*: G(R\pi) \longrightarrow G(K\pi)$ is an epimorphism and commutes with all morphisms i_* . Since $k \in G_M(K\pi)$, there is $x \in G_M(R\pi)$ with $j_*(x - k) = 0$. Therefore

$$x - k = \Sigma^{\dagger} \phi_{D}^{*}(x_{D})$$

the sum ranging over all non-zero prime ideals of R (theorem 4.1). By (1), $k \cdot x_p \in G_M(R/p\pi)$. Since ϕ_p^* preserves G_M , $k(x-k) \in G_M(R\pi)$.

7. Grothendieck Rings and Character Rings

Throughout this section π will denote a finite group and K a field of characteristic prime to the order $n = \#\pi$ of π .

Lemma 7.1 K π is semi-simple, i.e. every K π -module is projective Proof: 1) K is projective over K π . Define

$$\epsilon: K\pi \longrightarrow K , \qquad \sigma: K \longrightarrow K\pi$$

$$x \longrightarrow 1, \ x \in \pi \qquad 1 \longrightarrow \frac{1}{n} \cdot \underset{x \in \pi}{\Sigma} \ x.$$

Eoo = l_{K} ; thus K is K π -projective.

2) Let A be a Km-module. Km $\overset{\pi}{\otimes}_K$ A is Km-free by lemma 6.5. Define

$$δ: A \longrightarrow K\pi \overset{\pi}{&} A$$

$$a \longrightarrow \sigma(1) & a. \quad a \in A$$

$$v: K\pi \overset{\pi}{&}_K A \longrightarrow A$$

$$x & a \longrightarrow ε(x) \cdot a, \quad x \in \pi, \quad a \in A.$$

 $voδ = l_A$; thus A is a direct summand of Kπ ⊗ A:

Corollary 7.2 If [A] = [B] in G(Kπ), then A \cong B.

[A] is uniquely determined by the factors A_i occurring in a Jordan-Hoelder composition series of A (lemma 4.3). Since all A_i are projective, $A = \bigoplus A_i$.

We recall now some facts about group representations. We assume in the following that the characteristic of $\,K\,$ is $\,0\,$.

A finitely generated K\$\pi\$-module A is a finite dimensional vector space over K. Each $x \in \pi$ defines a linear transformation $x_A \in \operatorname{Hom}_K(A,A)$. $\Delta: x \longrightarrow x_A$ is a representation of the group π in $\operatorname{Hom}_K(A,A)$. On the other hand, a representation of Δ of π in the group of linear transformations $\operatorname{Hom}_K(A,A)$ of a finite dimensional vector space A makes A into a K\$\pi\$-module $A_\Delta: x \cdot a = x_A(a)$ for $x \in \pi$, $a \in A$. Two representations $\Delta: x \longrightarrow x_A$ and $\Delta' = x \longrightarrow x_A'$ are equivalent if there is a transformation $T \in \operatorname{Hom}_K(A,A)$ such that $Tx_AT^{-1} = x_A'$ for all $x \in \pi$; i.e. if and only if $A_\Delta = A_{\Delta'}$ as K\$\pi\$-modules.

The character χ_{Δ} of a representation Δ is defined as

$$\chi_{\wedge}(x) = Tr x_{\wedge}$$
,

where Tr denotes the trace. Equivalent representations have the same character. Moreover

Theorem 7.3 $X_{\triangle} = X_{\triangle'}$ if and only if \triangle and \triangle' are equivalent. For a proof see for instance B. L. van der Waeden, Modern Algebra II, the theorem in § 125.

Instead of X_{\triangle} we write also X_{A} , where A is the $K\pi$ -module associated with \triangle . We have

$$x_A + x_B = x_{A \oplus B}$$

$$x_A \cdot x_B = x_{A \otimes B} \quad \text{(A \otimes B means } A_{K}^{\pi}B, \text{ here)}.$$

A finitely generated K\$\pi\$-module A is a finite dimensional vector space over K. Each $x \in \pi$ defines a linear transformation $x_A \in \operatorname{Hom}_K(A,A)$. $\Delta: x \longrightarrow x_A$ is a representation of the group π in $\operatorname{Hom}_K(A,A)$. On the other hand, a representation of Δ of π in the group of linear transformations $\operatorname{Hom}_K(A,A)$ of a finite dimensional vector space A makes A into a K\$\pi\$-module $A_\Delta: x \cdot a = x_A(a)$ for $x \in \pi$, $a \in A$. Two representations $\Delta: x \longrightarrow x_A$ and $\Delta' = x \longrightarrow x_A'$ are equivalent if there is a transformation $T \in \operatorname{Hom}_K(A,A)$ such that $Tx_A^{T^{-1}} = x_A'$ for all $x \in \pi$; i.e. if and only if $A_\Delta = A_{\Delta}$, as $K\pi$ -modules.

The character X_{\triangle} of a representation \triangle is defined as $X_{\triangle}(x) = {\rm Tr} \ x_{\triangle} \ ,$

where Tr denotes the trace. Equivalent representations have the same character. Moreover

Theorem 7.3 $X_{\triangle} = X_{\triangle}$ if and only if \triangle and \triangle are equivalent. For a proof see for instance B. L. van der Waeden, Modern Algebra II, the theorem in § 125.

Instead of χ_{\triangle} we write also χ_A , where A is the Kx-module associated with \triangle . We have

$$x_A + x_B = x_{A \oplus B}$$

 $x_A \cdot x_B = x_{A \otimes B}$ (A\omega means A_K^{π} B, here).

Let $CR(K\pi)$ be the subring of the ring of all functions on π with values in K generated by all characters χ_{A} . $CR(K\pi)$ is called the character ring of $K\pi$.

Proposition 7.4

$$G(K\pi) \stackrel{\sim}{=} CR(K\pi)$$

under the morphism [A] $\longrightarrow \chi_A$.

This is immediate from corollary 7.2 and theorem 7.3.

We consider now representations of $\ensuremath{\pi}$ into the rational numbers Q.

Lemma 7.5 Suppose R is an integral domain and K its field of fractions with characteristic prime to the order of π . If A is a finitely generated K π -module, then there exists a R π -module B such that K \otimes_R B = A.

We know that A is a direct sum of simple modules (corollary 7.1). Let A therefore be simple, say with generator a. Define B to be the R π -submodule of A generated by a over R π . We have K \otimes_R B = A.

If R=Z (the integers), B is free over Z. Hence the transformation x_A on $A(x \in \pi)$ is induced by a transformation of B, i.e. X_A has integral values.

Corollary 7.6 The character ring of $Q\pi$ is a subring of the ring of all integral valued functions on π .

<u>Lemma 7.7</u> Let π be a cyclic group and X a rational character. If x and y are generators of π , then X(x) = X(y).

Proof: Suppose X is defined by the Q π -module B. Consider A = C Ω_Q B (C the complex numbers). We can choose coordinates in A such that \mathbf{x}_A is represented by a diagonal matrix; now all \mathbf{z}_A ($\mathbf{z} \in \pi$) are represented by diagonal matrices, because x generated π . This shows that the representation of π defined by A is the direct sum of one-dimensional representations, say with characters \mathbf{x}_i . Since

$$[X_{i}(x)]^{n} = X_{i}(x^{n}) = 1,$$

 $X_{\mathbf{i}}(\mathbf{x})$ is a power $\xi^{\mathbf{i}}$ of a primitive n-th root of unity, ξ . $\mathbf{X}(\mathbf{x}^{\mathbf{j}}) = \sum X_{\mathbf{i}}(\mathbf{x}^{\mathbf{j}})$; if $(\mathbf{j},\mathbf{n}) = 1$, the map $\xi \longrightarrow \xi^{\mathbf{j}}$ gives an automorphism α of $Q(\xi)$. Therefore

$$\alpha(X(x)) = X(x^{j}) = X(x),$$

X being rational.

Corollary 7.8 Let X be a rational character of π . If x and y generate the same cyclic subgroup of π , then X(x) = X(y). Also $X(yxy^{-1}) = X(x)$ for $x,y \in \pi$.

Consider a subgroup $i:\sigma\subset\pi$ of π . Let A be a Ko-module. We want to express the character X_{i_*A} of the induced representation i_*A in terms of X_A . We have

$$K\pi \bigotimes_{K\sigma} A = \sum_{y \in Y} y \cdot A$$

where $\pi = \bigcup_{y \in Y} y \cdot \sigma$ is a decomposition of π into the right cosets of σ . Suppose $x \in \pi$; then

$$\mathbf{x} \cdot \mathbf{\Sigma} \mathbf{y} \cdot \mathbf{A} = \sum_{\mathbf{y} = 1}^{\Sigma} \mathbf{y} \mathbf{y}^{-1} \mathbf{x} \mathbf{y} \mathbf{A} \mathbf{Q} \mathbf{x} \cdot \sum_{\mathbf{y} = 1}^{\Sigma} \mathbf{y} \mathbf{A}.$$

The trace of the operator x on the second sum is 0 since x permutes all summands yA. Thus

(*)
$$X_{i_{x}A}(x) = \frac{1}{\# \sigma} \sum_{y \in \pi} X_{A}(yxy^{-1}),$$

where we have set $X_A(y) = 0$ for $y \in \pi - \sigma$.

Theorem 7.9 (Artin) Let f be an integral valued function on π satisfying

- (1) $f(yxy^{-1}) = f(x)$ for $x,y \in \pi$;
- (2) if $x,y \in \pi$ generate the same cyclic subgroup of π , then f(x) = f(y).

Then n·f is an integral linear combination of characters of π induced from the characters of trivial representations of subgroups of π . Proof: For a cyclic subgroup $\tau \subset \pi$ of π define the function f_{τ} by induction on $\#\tau$:

(*):
$$f_{\tau} = \#\tau - \sum_{i:\sigma \subset \tau} i_{*}(f_{\sigma})$$
, where $i_{*}f_{\sigma} = \Sigma X_{i_{*}}A$ if $f_{\sigma} = \Sigma f_{A}$.

By induction on $\#\tau$ we find that f_{τ} is an integral linear combination of characters of τ induced from trivial characters of subgroups of τ . Formula (*) shows that

$$f_{\tau}(x) = \{ \begin{cases} \#\tau & \text{if } x \text{ generates } \tau \\ 0 & \text{otherwise} \end{cases}$$

Define $g_{\tau} = i_{*}f_{\tau}(i : \tau \subset \pi \text{ is the inclusion map})$. We have

$$g_{\tau}(x) = \{ \begin{cases} N_{\tau}:\tau \} & \text{if } x \text{ is conjugate to a} \\ \text{generator of } \tau \end{cases}$$
;

 N_{τ} denotes the normalizor of τ . $[N_{\tau}:\tau]|n$. A simple argument shows that $n \cdot f$ is an integral linear combination of the g_{τ} whenever f satisfies (1) and (2).

Corollary 7.11 Let Λ be any ring (considered as a Z-algebra). $C_{C}(\Lambda\pi)$ has exponent n^{2} in $G(\Lambda\pi)$ (and similarly for $P(\Lambda\pi)$. If Λ is a field, we can replace n^{2} by n.

This is an immediate consequence of corollary 6.8 and proposition 6.9. A field can always be considered as an algebra over Q or \mathbb{Z}/p for some prime ideal $p \neq 0$ in \mathbb{Z} .

Theorems of R. Brauer and E. Witt can be transformed into the language of Grothendieck groups in a similar way. The reader is referred to R. G. Swan, Annals of Mathematics 71 (1960).

By induction on $\#\tau$ we find that f_{τ} is an integral linear combination of characters of τ induced from trivial characters of subgroups of τ . Formula (*) shows that

$$f_{\tau}(x) = \{ \begin{cases} \#\tau & \text{if } x \text{ generates } \tau \\ 0 & \text{otherwise} \end{cases}$$

Define $g_{\tau} = i_{*}f_{\tau}(i : \tau \subset \pi \text{ is the inclusion map})$. We have

$$g_{\tau}(x) = \{ \begin{cases} N_{\tau}:\tau \} & \text{if } x \text{ is conjugate to a} \\ \text{generator of } \tau \end{cases}$$
;

 N_{τ} denotes the normalizor of τ . $[N_{\tau}:\tau]|n$. A simple argument shows that $n \cdot f$ is an integral linear combination of the g_{τ} whenever f satisfies (1) and (2).

This theorem shows together with corollaries 7.4, 7.6, and 7.7: Theorem 7.10 Let C be the class of all cyclic subgroups of π . $G_C(Q\pi)$ has exponent $n = \#\pi$ in $G(Q\pi)$.

Corollary 7.11 Let Λ be any ring (considered as a Z-algebra). $C_{\mathbb{C}}(\Lambda\pi)$ has exponent n^2 in $G(\Lambda\pi)$ (and similarly for $P(\Lambda\pi)$. If Λ is a field, we can replace n^2 by n.

This is an immediate consequence of corollary 6.8 and proposition 6.9. A field can always be considered as an algebra over Q or \mathbb{Z}/p for some prime ideal $p \neq 0$ in Z.

Theorems of R. Brauer and E. Witt can be transformed into the language of Grothendieck groups in a similar way. The reader is referred to R. G. Swan, Annals of Mathematics 71 (1960).