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Chapter 10: Homology of monoids and groups

This chapter will introduce the homology and cohomology theories
of monoids and groups. We will first discuss the general theory and then
study the simplest special case, that of free monoids and groups. Finally,
we will treat the extension problem for modules and groups.

§1. Homology and cohomology theories.

In this section, we introduce the concepts of modules over monoids
and groups end of monoid and group rings. Since the latter have natural
structures as augmented rings, it will be convenient to define homology
end cohomology as in section 3 of chapter 9. We will then derive an
alternative characterization in terms of the functors AG and AG.

Throughout this chapter, the letter G will denote a monoid
with unit 1.

Definition 1l.1: Let A be an abelian group. A is said to be a G-

module if there exists a map ®: G x A - A, denoted by &(o, a) = oa,
o€G, af€A, such that:
i) la=a
ii) ole + 2%) = 0a + 0a’
iii) (or)a = o(ra)

Definition 1.2: Let K be a commtative ring. Let K(G) denote the

free K-module generated by the elements of G. If AN = 2 koa and
o€G

A= I k'_r'r are elements of K(G), define the product A\’ as
€G

AM’=L2Z kok'.r(a-r). The resulting ring K(G) is called the monoid
0%
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ring of G with coefficients in K.
If Z denotes the ring of integers, we observe that a G-module
A may be given a structure of Z(G)-module by defining Ma = Z nc(oa)
o€G

if A=2 naoez(c). Conversely, a Z(G)-module has a unique induced
o€G

structure as a G-mcdule. In the following, if A = 2(G), we will use
the notations A &, B, Hom(A, B), Toro(a, B), end Exti(a, B)
instead of A ®, B, etc. Observe thet the map e: 72(G) -2 defined

by e( Z ncc) = Zn_  is aring epimorphism. € is called the (umnit)
o€G o€G

augmentation morphism.

Definition 1.3: The homology (resp., cohomology) groups of the augmented

ring (2(G), e, Z) with coefficients in a right (resp., left) G-module
A are called the homology (resp., cohamology) groups of G with
coefficients in A.

Remsrks l.4: € may be used to furnish Z with a structure as left and
right G-module by defining on = €(o)n = n = n€(c) = no. In general,
if A 1is an Abelian group, A may be given a structure of G-module
in a similar manner. We then say that G acts trivially on A. If

A is to be regarded as a left (resp., right) G-module with trivial
action, ve write A (resp., Ae). If A is a left G-module, we will
use the notations E_(G, A) = Tocrg(z o A) and E(G, A) = Exti(Z, A)
and similarly for right g-modules. We recall that the homology and
cohomology theories were axiomatized in chapter 9, section 3.

Remarks 1.5: If I = Ker(e), then I is a two-sided Z(G)-ideal,
called the augmentation ideal of Z(G). o - 1€I for all o0€G and if

Zn 0€I, then Zngs= I na(o - 1) since = n =0. Thus
oG otG oG



{o - 1 | 08G)} is a set of generators for I over Z.

Definition 1.6: Iet A be a (left) G-module. AG = {a [ a€A, 0a = a

for all otG}. If 0: A »B is a morphism of G-modules and aFAG,

then ®(a) = 0(ca) = od(a) for all ot¢, and o(a%) CB%. Thus A°

is an additive covariant functor of (left) G-modules with values as
Z-modules.

Proposition 1.7: let A be a (1eft) G-module. If aPAG, let

faEHomG( Zs A) be given by fa(l) =ga. Then &(a) = £, defines a

Z-isomorphism A® -)HomG( s A), and o establishes a natural

equivalence of functors of (left) GC-modules A.

]

Proof: O is clearly a monomorphism, and if fGHomG( 2> a), £(1)

£(ol) = of(1) for all o£G, so that f(l)SAG. The rest is clear.

G

Corollary 1.8: A~ is a left exact functor of A; the right derived

functors of AG provide a cohomology theory for G.
Definition 1.6’: Let A be a (left) G-module. AG = A/J’A, where I
is the augmentation ideal. If &: A -»B is a morphism of G-modules,

then ®(IA)C IB and & induces a morphism A; »B,. Thus A, is

an additive covariant functor of (left) G-modules with values as 2-
modules.

Proposition 1.7’: Let A be a (left) G-module. The morphism

®: Z, ®, A »A, defined by o(n ® a) = na, where a is the natural

image of a in AG’ is a Z-isomorphism and establishes a natural

equivelence of functors of (left) G-modules A.
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Proof: @ is clearly an epimorphism. Let x€ ker @, and write

= . -== = € EA. = =
x=1®a. a=0, 80 a ilkiai,kiI,aiA X E;l@kiai

Zl)si ® ay = 0, since ZeI is clearly zero. The rest is obvious.
i

Corollary 1.8°: AG is a right exact functor of A; the left derived

functors of AG provide a homology theory for G.
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§2. Stendard resolutions of 2

Tt is usually most convenient to calculate homology and
cohomology theories of monoids and groups by means of resolutions of
7. In this section we will obtain certain standard resolutions of 2
for erbitrary monoids and groups.

let G be a monoid. For n >0, 1let Xn(G) be the free G-

module generated by all ordered sets [cl, ceoy on], 0,¢G, where

XO(G) = 2(G) is generated by the symbol [ ]. Define a differentiation

by
n-1 r
dn[O' ) s00y Un] = 01[02, ey Gn] + rfl(-l) [0’ F} e oy Grar-lnl’ eco gy O'n] +

n
+ (-1) [0'1: ceey Un_l]: n>1,
where dl[al] = al[ ] - [ 1. Define an augmentation e: XO(G) -2 by

el ] =1. Simple calculations give that 4 ,d = 0, ©>1, end ed; = 0.

1
To show that the resulting complex X(G) is actually a resolution of
2, define the Z-morphisms (not G-morphisms)

8_1% 2 ->X°(G), 8¢ Xn(G) —»Xn_l(G), n>0, by

s_l(l) =[1 sn(o[al, coey on]) = [a, 035 +ees an]. Then

es , = iz, 8_,& + dlso = i'Xo(G)’ dn+1sn + sn-ldn = ixn(G) so that the
complex ... -)Xn(G) - aee -9X°(G) <2 =0 - ... is null homotopic:

Hn(X(G)) =0, n>0, HO(X(G)) = Z.

Definition 2.1: The resolution of Z obtained ebove is called the

standard non-homogeneous free resolution of Z.
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Now let A be a right G-module. Hn(G,‘A) = Hn(A & x(@)).

An element of A ® Xn(G) is called a (standard) n-chain.
n-1 r
dn(a® {Ul) soey Cn})= a.Ul@ [O' ) ey Gn] + §l ("‘l) a@

€ log, oes 0,0, 45 os o] + (-1)% & [0, .-+, 0,.1]

Observe that if G acts trivially on A, a0, = &, then the homology
groups are the same wvhen G operates on the left as when G operates
on the right.

If C is a left G-module, the elements of HomG(Xh(G), c)
are called (standerd) n-cochains. Since a typical n-cochain f is

determined by an arbitrary mapping of the base elements [ol, veoy on]
into C, we write f(al, ceey on) for the image of [ol, coey on].
The differentiation 4 on HomG(Xn(G) , C) 1is given by

(dnf)(ﬂl, 00y Un+l) = O'lf(o’e, veey Gn+l) +

n
+ z (-l)rf(ol, coey g

n+l
o1 rorsl’ 0 on+l) + (-1) f(Ul’ tet on)’

(dof)(d) =o0¢c - ¢, where c = £([ 1).

Again, if G acts trivially on C, the esame cohomology groups are
obtained when G acts on the left as wvhen G acts on the right.
Now let G be a group. We transform the standard complex to

a homogeneous form. Define

-l -]
(oo, ceey on) = cxo[uo 015 <ees O 3 cn]. Then c(oo, ceey o‘n) =
21 -1 -1 -1
= aao[ao 07" 00), ey 0 10 °°n] = (aoo, cony ccn), and
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free Z-module generated by the elements (ao y esey on) or the free

G-module generated by the elements (1, Oys oes crn) vith G-action

as above. Finally, the differentiation takes the form dn(oo, ceny on) =

n
= z (-1)1(0' 3] RS ] a ) s ey g ), Vhere the a means that O'i 18
i=0 o i n i

to be omitted from the expression. This results from

-1 -1 -1 -1
d (o [o Gys vees an_lan]) = ol[ul Ops +405 G lan] +

n o o0 n-
n-1
r -1 -1 -1
' ril (-1) co[co Op2 009 Op1%422 *°? on-lon] +

-1

n -1
+ (1) ao[co 012 o2 Un-Zon—l]'

Definition 2.2: The complex Xn(G) es described above is called the
standard homogeneous free resolution of 2.
Remark 2.3: A second fundamental difference between groups and monoids
is that for a group G, the map ®: G -G defined by &(x) = it
gives an isomorphism of Z(G) with Z(G)*, the opposite ring. Thus
if A is a left G-module, A may be given a structure as right
G-module by defining eo = ola. Hence ve need use only left G-modules
in constructing the homology and cohomology theories of groups.

We now will give a brief general discussion of the first
homology and cohomology groups, using the standard non-homogeneous
resolution of Z.

let G be a monoid, A a left G-module. The exact sequence

0-I-2(G) ~Z, >0 implies the exact sequence
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G
0 = % (2(6), A) = Tors (2, A) > 1@ A -2(c) G A. Thus
Hl(G, A) = Ker (I & A - z(G) & A). If G sacts trivially on A,
we have, for (o-1) ® a€l &, As (0-1) ® 8 » 1 ® (0-1)a = OEZ(G) ®, A.

I®GA§I®G(GZ®ZA)?=(I®GeZ)®ZA.
I/IQ@ZA.

Thus Hl(G, A)

-1
Since I®, 7% /12, Hl(G, A)

Now let G be a group. Let [G, G] denote the commutator
subgroup of G.
Lemms 2.h: /1% 2 %/(a, @)

Proof: Define G ->I/12 by 6>0-1=0 -1 (mod ).

Since o1 -1 =(0-1)(t-1)+ (o ~-1)+ (v -1), we obtaina
R G I,.2 - —
morphism of Abelian groups &: /[G, G} = °/I%, &(c) =0 - 1.

Define I -)G/[G, G] by o-1=0.
(6 -1)(t-1)=(ot=1) =(oc=-1)=-(7-1) - or0 it = 0, so we

obtain V: I/12 ->G/[G, G], ¥(o - 1) = 0. Since Y& and &Y are
identity maps, this gives the result. |

Proposition 2.5: If G is a group, A a left G-module with trivial
%/tc, ¢1 @, A

We turn now to the first cohomology group and let G be a

n

G-action, then Hl(G, A)

monoid, C & left G-module. A 1l-cochain is a mapping F: G =»C
since Xl(G) is G-free on generators [o], o€G).

af(o, ) = of(t) - f(or) + £(o), so £ is a l-cocycle if and only
if f(ot) = of(1) + £(o). A 1l-cocycle is also called a crossed

homomorphism. If hé HomG(XO(G), c) s HomG(Z(G), C) corresponde to
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ceC, then (ah)(c) =oc -c. £: G->C is a l-coboundary if and
only if f£(o) = oc - ¢ for some c€C. Such an f is also called

a principal crossed homomorphism. If G acts trivially on C, then
Hl(G, C) is the group of monoid morphisms f: G —=»C, that is, the
set of maps f such that f£(ot) = £(o) + £(<), where

(£ + g)(o) = £(0) + g (). If G is a group, each such map will
vanish on [G, G] (since C 4is an Abelian group).

Proposition 2.5°: If G is a group, C a left G-module with

trivial G-action, then Hl(G, c) 2 HomZ(G/[G, G}, C).
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§3. The mapping theorem

We return briefly to the general theory of augmented rings.
Let (A, €\ QA) and (T, €ps QI.) be left augmented rings with
augmentation ideals I, and Ip. A ring morphism 0: A -»F isa '
morphism of augmented rings if Q(IA) C In. Let ¥: Q‘A -»Qn be
the morphism induced by a morphism &: A » [ of augmented rings.
The diagram

€\

A —>Q,

ol lw

I ——Qp
€r

comutes. Thus ¥(hx) = (&\)(¥x), AeA, x€Q,, so that ¥ 1is a
A-morphism where QI. is given a structure as A-module by means of
®. Let XA be a A-projective resolution of Q‘A’ X[. a TI-projective
resolution of Q‘I" r ®A XA is a P-projective complex over
re Q (since EomA(P, C) = Homy(T ® P, C), where P is A-
projective, is an exact functor of left I-modules C). Iet
g: T ® Q, —Qp be defined by g(7 ® x) = y(¥x). By propositions
1.7 and 1.8 of chapter 8, there exists a translation g: T ®A XA - Xp
lying over g, end g is unique up to a homotopy. & induces
morphisms

Fh:E (A8 X) =H(AG (T® X)) +E (A& X)

ng Hn(Homr(XP, c)) -)H'n(HomI.(I‘ ®, X c)) = Hn(HomA(XA, c))
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defined for right T-modules A and left [I-modules C.
Theorem 3.1: Fg is an isomorphism for all n and for sll right [I-
modules A if and only if

i) g: T ®A Q’A - Qp is an isomorphism

ii) Torﬁ (r, QA) =0 for n>O0.

If i) and ii) hold, then Fg

for all left P-modules C and T ®A XA is a T-projective resolution

is also an isomorphism for all n -and

of QP .

Proof: If Fg is always an isomorphism, conditions i) and ii) result
from taking A =T. Conversely, if i) and ii) hold, then T ®, X,
is a projective resolution for QI" vhere XA is any A-projective
resolution of QA' This implies the conclusions.

Now let G and G’ be monoids and let ¥: G’ -G be a
morphism of monoids. & induces a morphism &: Z(G’) -»Z(G) end if

€ and €’ are the respective unit augmentations, e® = €’. Thus

® is s morphism of sugmented rings and morphisms

o, Y
F: Hn(G , &) qnn(c, A)

Fo: E'(G, C) - H%G’, C)

are defined for right G-modules A and left G-modules C.

0

Corollary 3.2: Fn is an isomorphism for all n and for all right

G-modules A if and only if
1) g: z(c) ®; s 2 22 glven by g(x ®q) = e(x)q is an
isomorphism.

i1) Hn(G', z(G)) = 'rorg'(z(c;), e,z) =0 for n>O0.
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n
®

left G-modules C, and Z(G) ®,. X is a G-projective resolution

If i) and ii) hold then F, is an isomorphism for all n and all

of A for any G’~-projective resolution of X of 2Z.

Remerks 3.3: Since 2(G) and Z(G’) are both left and right
augmented rings, similar results hold for left G-modules A and
right G-modules C. Also, condition i) will hold whenever &: G’ =G
is an epimorphism: g will clearly be an epimorphism; if

XxX®q€ ker g, X = Znoo, then ):‘,n(J =0

and x®q = Z‘.naa ®q
= Zno@( 1) ® q for some elements 7EG’
=Inl.t®q by G’ action on Z(G)
= EinalG ® 1q
=Znl.®q=0 by G’ eaction on Z.

Proposition 3.4: lLet G be a group, G’ & monoid contained in G

end such that o€G implies o = a-lﬁ, OEG’, PEG’. Then if &: G’ =G

¢

is the inclusion map, Fn and Fo are isomorphisms and if X 1is

]

a G’-projective resolution of Z, then 2Z(G) ®.X isa G-projective
resolution of Z.

Proof: We must verify conditions i) and ii) of the corollary. For i)
it suffices to show o ®1l = lG ®1 for otG; but if

o= o 1p, 0€G*, pEG’, then

o®1=a'ls®l=a'l®ﬁ1=a'l®l

aleom -1,01.

4
For ii) we must prove 'I'or?1 (z(G), 2) =0 for n>0, and, since
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Tor‘ commutes with direct limits {by propositions 5.12 and 5.17 of
chapter 3), it suffices to prove that 2(G) is the direct limit of

a directed system of G’-projective right G’-modules. For ofG,
define the mep f : G’ -G by fo(x)= ox. £ gives a G ’-isomorphism
of Z(G’) with a right G‘-submodule Au of 2(G). ofA , 80 z(G)
is the union of the submodules A . Finally, the family {a a} is
directed: if o0€G, 716G, o lr = a"ls, 0EG’, BEG’ and

ot = -qs'l =7, say; then ox = 7(Otx)8A7, T = 7(6x)€A7 for x€G*
and A C A7, ATC Ay.
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4. Free monoids and groups

In this section we discuss the homology and cohomology theories
of free monoids and groups.

We consider first the non-Abelian case. We need a lemma.
lemmg 4.1: Let G be either the free monoid or the free group
generated by a set S. lLet A be a left G-module and f£: S —»A be
an arbitrary mespping. Then there exists one and only one extension of
£ to a crossed homomorphism of G into A.

Proof: For the case of a free monoid, define

2(1) = 0, 2(s) = £(s), £(s, ... 85 ) =8

... 8 f(s
P p+ 1 p(

p+l) + ;(sl sp).

Then a simple induction on the length of «t gives
£(ot) = of(<) + £(0), o, 1€G. For the case of a free group, define

£(1) = 0, £(s) = £(a), Es™1) = -s™F o), sy +-e 85,) =

=8y ..o spf(qu_l) + f(sl sp),

. -1
vhere 8, ... 5,8 is irreducible (s, o3 8 1512 p), end

1 P+l

8,65 or slles. f(s'l)= st f(s) for sE€S or s~les. 1f

... 8_ and <t is of length ome, T # s;l, £(at) = of(1) + £(o).

O(E(T) + -r;'('r'l)) + E(a'r)

-
+
A
]
()
-
Y
L)
Q
pr
g
i

"

of(7) + By <o sp_lf(sp) + f(sl sp_l)

u;(-r) + ;(Bl Sp) = u‘:E"('r) + ;(a).

Again, a simple induction on the length of T gives
#(ot) = of(t) + £(0o), 0, 1€G. Clearly if an extension of f to a

crossed homomorphism exists, it must have the form indicated, hence
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the proof is complete.

Proposition 4.2: let G be the free monoid or free group generated

by a set S. Then the augmentation ideal I(C z(G) is a free G-
module generated by the elements s - 1, s€S.

L

1}
]

Proof: Let J be the ideal generated by (s -1 [ s€8}. If o
for the free group, o =1 = (-s’l)(s - 1)eJ. Inductively, if
O =8 .o 8 is irreducible, o -1 =8, ... p—l(sp'l)"'

+ (sl cee 8 - 1)¢J and since {0 - 1 | oG} generates I, I =J.

p-1
Consider the standard non-homogeneous resolution X of 2. ' Identifying
X with z(G), X —Z becomes the augmentation morphism, hence has

d
kernel I. X2 -n& —>l I -0 is exact, dl[a] =0=-1. If A is a

left Ge-module, O -—)HomG(I, A) aHomG()L_L, A) -—)HomG(X2, A) 1is exact,

HomG(I, A) 2 Ker (HomG()&, A) ->HomG(X2, A)), the right side being the
group of crossed homomorphisms of G into A. If he HomG(I, A)
corresponds to the crossed homomorphism £, h(s - 1) = f(s). By the
lemma, we obtain a G-morphism I — A for any arbitrary choice of the
images of the s - 1, and since A is also arbitrary, this implies
that the 8 - 1 form s G-base for I.

Corolla.rxj;-3: 0-I-2(G) 22 -0 is a G-projective resolution of

Z end HYG, &) = Hn(G, A) =0, n>1, where G is a free monoid or
group .

Remark 4.4t: If G is a free monoid or group generated by a non-void
set 8, I/ ° is Z-free on the generators (8 - 1 | s€8)} (as follows

from the identity xy -1 =(x-1) +(y -1) + (x - 1)(y - 1), %, y€G).
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Thus H (G, 2) 2 TorS (2,2) 2 Y72 40 am 4. by )% = L,
r d.hZ(G)Z = 1.

We now consider the case of a free Abelian monoid G generated

by a finite set s sn. z(G) is isomorphic to the polymomial

17 v
ring Z[sl, caey sn], hence gl. dim Z(G) = n + 1 by theorem 3.k of
chapter 9. We will obtain a G-free resolution of 2 of length n.

We need one preliminary result. let G and G’ be monoids,

A a G-module and A’ a G’-module. A ®, A’ can be given a
structure as (GxG‘)-module by defining (9.0°)(a ® a’) = 0a @ 0’a’,
oG, 0’€G’, a€A, a’A’. If A 1is G-free and A’ is G’-free, then
A®A’ is (GxG’)-free. If X is a G-free complex, X’ a G’-free
complex, then X X’ is a (GXG’)-free complex.

Lerma 4.5: Let X be a G-free resolution of Z, X’ a G’-free
resolution of Z. Then X @, X’ is a (GxG’)-free resolution of

zZ QZ Z =12.

Proof: H,(X® X‘) ETors (2,2) =0 for 1>1, amd

X Q] X(; ®X° ], }q ->X° ], Xc; =2 ® Z -0 is exact by proposition 5.10
of chapter 8. This gives the result.

Returning to the situation of the free Abelian monoid with n
generators, let Y be a G-free module on n generstors Vyr oo yn
and let E(Y) be its exterior algebra. ILet E()ﬂ’)q = Xq, X = z(G).
Define
dq: xq ->xq_l, 1<q<n, by d.q(yil yiq) =

q
= z “1 +1 - l) LI ] oo s
v=1( ) (siv Yy, %, Y1y
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vwhere § 3 means that yj is to be omitted from the product. Define
£: X -2 by £(1) = 1. X 1is easily seen to be a complex over 2Z.

Proposition 4.6: X is a G-free resolution of Z.

Proof: We use inductionon n. If n=1, G is the free monocid
genersted by s,. I = (sl - 1) by proposition 4.2, (sl -1) -y,

a
defines an isomorphism I = Xl, and O -.xl ->1 Xo Ez -0 is exact.

Now let n > 1 and assume the result for free Abelian monoids with
less than n generators. G 2 G’xG’, where G’ is the free Abelian

monoid generated by &,, ..., 8 and G” is the free monoid

n-1
generated by 8, If X’ and X* are the free resolutions of Z
over G’ and G? respectively then, by the lemma, X’ ®X” is a
G-free resolution of Z. A trivial verification shows that X’ @ X*
may be ldentified with the complex X.

Corollary 4.7: If G is the free Abelian group generated by a finite

set, G’ G the free Abelian monoid generated by the same set and X
the G’-free resolution of Z obtained ebove, then Z(G) ®,,X is a
G-projective resolution of Z.

Proof: This follows from proposition 3.k.

Corollary 4.8: If G is the free Abelian monoid or group generated by

a set with n elements, then Hq(G, A) =HYG, A) =0 for any g>n

and any G-module A.



$. Extensions of modules
In this section, we digress from the subject of the chapter
to give the theory of extensions of modules over amn arbitrary ring.
We will apply the result to group rings over a field, obtaining an
interpretation of H (G, Hom (s, C)) for K(G)-modules A amd C.
Let A be aring and let A and C be (left) A-modules.

Definitions 5.1: An extension (E) over A with kernel C is an

exact sequence of A-modules 0 = C 1‘-‘>x 9)A - 0. lLet
4 4
0-C -”I-') X’ LA A -0 be another extension (E’). If there exists a

A-morphism f: X =X’ such that the diagram

SN

b 4

AN v,/

commutes, then (E) and (E’) are said to be equivalent (and £ is

X

then an isomorphism). E(A, C) denotes the set of equivalence classes
of extensions over A with kernel C. All split exact extensions are
in one class, vhich is called the split class. We define a multipli-
cation between elements (E) and (E’) (as above) of E(A, C): in
X ®X’, comsider B = {(x, x’)[o(x) = 0°(x°)} and

D = ((-¥(c), ¥*(c))[ceC}; DECB. Let Y = B/D. let ¥: C=>Y be

given by ¥(c) = (¥{c), 0) = (0, ¥"(c)) and let ©: Y »A be given
vy o(x, x') = ®(x) = ¢’(x'). Then 0 =C Yvy8as0 1s exact, and
is called the Baer product of (E) and (E’). An extension

(E): 0 »C »X =»A -0 defines canonically a connecting morphism
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§, : Hom (4, A) —)Exbl(A, c) %(i), where 1 is the identity map,
is called the characteristic class of the extension and is clearly the
same for equivalent extensions.
Theorem 5.2: The map E —» %(1) gives a one to one correspondence
between E(A, C) and Extl(A, C). Baer multiplication goes over to
addition, the split class going to zero.
Proof: Choose and fix an exact sequence O =C i Q E)N ~- 0, vhere
Q is injective. Suppose f€Hom(A, N) is given. Consider A ®q.
Define a morphism v : A DQ - N by:

1) v(a, q) = -£(a) + B(a).
Let X = Ker(v). Define further:

¥:CoX by ¥(e) = (o, @(c)) (a monomorphism, since & is)

1i) 4 : X->Q vy 'q(a, a)
$:X—>A vy 9a, q)

q
a (an epimorphism, since B 1is)

Then the following diagram is commutative and has exact rows, the upper
rov being denoted (E f.):

v 9
iii) 0 =+C ~»X=->A -0

¥y g if

a g
0-C-Q->N-0, where J is the identity.

On the other hand, since Q is injective, given an extension (E) we
obtain an 1 and f such that diagram iii) is valid. Here, if
v:ADPQ-N is given as in i), X may be identified with Ker(v)
(via x - ($(x), n(x))) and relations ii) will hold. Now (E) and

(B f) are clearly equivalent. Diagram iii) gives rise to a commutative
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diagram with exact row.
iv) Hom(A, A)

&
lnom( 1, ) N\J

(<]

Hom(a, @) 2o2(LB) 5 pon(a, w) —8—SExtl(a, c)

> 0,

where & 1s the connecting morphism arising from the bottom row of iii),

and 5(f) = B (1). Since & is en epimorphism, the map E -)SE(:L) from
¢

E(A, C) to Extl(A, C), is onto. To show that it is one to one, suppose

8(£,) = 5(f,). We must show that (E_, ) and (E_ ) are equivalent. By
1 2 £ £,

iv), fl - :t‘2 = Bg for some gE€Hom(A, Q). Define an automorphism
Ww:A®Q--A0qQ vy wla, q) =(e, q + g(a)). Since

vy¥(a, q) = -£,(a) + Ba(a) + Blq) = -£,(a) + B(a) = vy(a, @), .induces
en isomorphism w' : X, »X;, vhere X =.Ker(vl), X, = 'Ker(va"), such

that w'¢2=\!!l and ¢lw' =¢2. Thus (Ef) and (Ef) are equivalent.
1 2

If ve take f = 0 and construct Epy X = Ker(v) 2 A®©C and the split

class goes to zero in Extl(A s C)e Fina.l%)y, to show that Baer multiplication
¥

goes into addition, let (E), 0 - C =X = A -0, be the Baer product of

(B, ) and (E,) end let £=£ + £,. Define : : X->Q by
fl f2 1 2

n(x), x5) =0, (x)) + 0,(x,).
£0(x5 %) = £, (%) + £,8,(x) = B (x)) + Bny(x,) = Ba(; %) and
7w = since “lwl = Qs Thus we obtain a diagrem like iii), so that

(E) is defined by f£. This completes the proof.

Before applying our result to group rings over a field, we
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need some preliminary results. Let G be a group. Let K be any
commutative ring and let C be a K(G)-module. Clearly

K @k(G)c =z QZ(G)C and HomK(G)(K, c) = H%(G)(Z, c) as K(G)-
modules. If X(G) is the standard free resolution of Z, K ], x(e)
is a K(g)-free resolution of K ®, 2 = K. Further, we have

X(G) & K @(g) C 2 X(6) & Z §(q) C = X(6) Grgy € and
Homy () (K &, X(6), ©) '%HomZ(X(G), Homg () (K, €)) & Hom, (X(G), Homyqy(2, ©))
= HomZ(G)(X(G), c).

Thus Torﬁ(c) (X, ¢) ;Tori("’) (2, ©) =H (G, C) and

Ex\-,f(‘(a)(x, c) SExt.;(G)(Z, C) = BYG, C), n > O. This result motivated
our previous use only of Z.

Now let A end C be K(G)-modules and consider
HomK(A, C) as a K(G)-module under diagonal G-action,
(o£)(a) = of(a"la), 08G. We assume that K i1s a field. If P is a
K(G)-projective module, C any K(G)-module, then, since HomK(A, C) is

an exact functor of K(G)-modules A, so is HomK(G) (4, HomK(P, c)) =

S HomK(A @k(G)P, c) = HomK(G)(P, Hom (A, C)). Thus Hom (P, C) is
K(G)-injective and 1f X is a K(G)-projective resolution of a K(G)-
module A, then HomK(X, C) is a K(G)-injective resolution of
HomK(A, C). Further, HomK(G)(A, c) = HomK(G)(A, HomK(K, c) =
HomK(G)(K, HomK(A, C)). Therefore we have

Ext;(G)(A’ c) = Exh;(c)(l{, HOmK(A: C)), n > 0.
Corollary 5.3: let A and C be K(G)-modules (representation modules
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for G with corfficients in the field K). Then there is a one to one
correspondence between E(A, C) and Hl(G, HomK(A, C)) in which the
split class goes to zero.

Proof: E-(G, Hom(a, C)) 2 Ext.!"'{'(G)(K, Hom (4, C)) 2 Ext;('(G)(A, c).

We conclude this section by obtaining a classical theorem
(due to Maschke):
Theorem 5.4: Let G be a finite group of order q and K a field of
characteristic zero or p, where (p, q) = 1. Then K(G) is a semi-
simple ring.
Proof: By 8.6 of chapter 9, we must prove that every K(G)-module is
projective, or that every exact sequence 0 - C - F-A -0 splits,
vhere F is free. By 5.3, it suffices to prove Hl(G, HomK(A, c)) =X=o0.
Now for any G-module B, qu(G, B) =0 since if f : Z(G) »B is a

l-cocycle, f(ot) = of(t) + £(0), and if a =2 £(0), oa - a = =-qf(0),
oc€G

or qf 1is a l-coboundary. Therefore ¢X = O, and since X is a

K-space, X = 0.
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§6. Extensions of groups

Definition 6.1: Let G be a group. A pair (I, §) vwhere' I is a
group and V¥ : I -G is a group epimorphism with kernel A iJjs called
an extension of A by G. A is then necessarily a normal subgroup of
I. Let (I', ¥') bve a second extension of A by G. (I, ¥) is said
to be equivalent to (II' » ¥') if there exists a morphism of groups

0 : 11" such that the diagram

is commutatie. © must tken be an isomorphism. We assume that A is
a commtative group. For each 0€G, choose :toslI such that \F(nc) = O
{nO] is called a section of II. Since A 1is a normal commutative sub-
group of I, the map a = :tcano'l is an automorphism of A depending
only on o. Defining

g 1

=1 -
a 0,8.1(0

’ al = a,(al aa)o = alo aga, and (ao)'r =aY. Thus an

extension (I, ¥) of A by G induces a structure of G-module on A.
Theorem 6.2: let G be a group and A & G-module. The equivalence
classes of extensions of A by G which induces the given G-module
structure on A are in one to one correspondence with the elements of
HZ(G, A).

Proof: Using the standard non-homogeneous G-free resolution of Z, a
2-cocycle is amap f : G XG = A such that

of(t, p) - £(ot, p) +.f(a, 7p) - £(0,1)= 0, or, writing f£(o, 1) = 8,1
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for all o, 1€G. Conversely, if we can so choose (n:], the map

I - ¥ given by ax

reduces to the identity on A (since = nI = 1) and therefore

- a.:t: , a€A, is clearly an isomorphism which

defines an equivalence. Since the choice of section does not effect
the cohomology class, (I, ¥) and (II*, ¥) are equivalent if and
only 1f {a o 'r) and [a.:’ 1:} (resulting from any choice of sections)
represent the same element of Ha(G, A). It remains to prove that
every element of HZ(G, A) results in this manner from an extension.

Let {a.(y ,t] represent ozH2(G, A). Ve may assume a, , =1, whence
2 2

8 =1, 0€G. Define Il = ((a, o) | atA, otG),
2

end define multiplication by (e, o)(b, 7) = (ab’a ., 07). Bince
>

. |
= o 0T
2,7% 1,0 = ®1,0%,, ((2,0)(b,7))(c,p) = (ab’c’'a; 8 ., 0) =
’ sP

o 0T O

b
(ab e & p%, 1p

»0Tp) = (a,0)((v,7)(c,p)). Let

o’ o) = (e, o) = (a ‘30,1: o) = (a, o)e.

(e, l)(a-l: 1) = e; since (a, o)(1, o-l) = (b, 1), (1, “-l)(a: o) = (e, 1),

every element has a left and right inverse. We have provem therefore

that I is a group. (I, ¥) is an extension of A by G, V¥(a, g) =&,
vhere ACH under a-»(a, 1). ((1, 0)) 18 a section of I.

(1, o), 1)1, )} = (2% o), o)™ = (%101, o)1, )™ = (7, 1),
so that (I, ¥) induces the given G-module structure on A. Finally,
(1, o)1, 1) = (a,c,.t, ot) = (8‘0,1" 1)(1, ot) so0 that the resulting factor

system is Just l.'a.‘3 1_), as desired.
3
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Definition 6.3: ean extension (I, ¥) of A by G is called inessential
if there exists a morphism ¢ : G »1I such that V9 is the identity of
G. Then {%(c)} is a section such that 8,1 = 1 for all o, 1€G.
Thus 0832(6, A) corresponds to the class of inessential extensions.

We next obtain en interpretation of H'(G, A). Let (I, ¥)
be a fixed extension of the commutative group A by G, and consider
A as a G-module under the induced structure. An automorphism ¢ of
I such that P(a) =a and ¥$ = ¥ is said to be trivial for hoth A
and G. The set of all such automorphisms forms a group denoted U(I).
Since A 1s commutative and A = ker ¥, if €A, then ¢ : N T
given by ¢a(n) = ayaL da en element of U(I). The set of such elements
forms a subgroup V(II), the set of inner eutomorphisms of Il determined
by elements of A.
Theorem 6.4: U(Il) is a commutative group and U(m/v(n) S H]'(G, A).
Proof: Choose a section {fna} of I. let ¢ eu(m). ‘W(:tc) = g, say

1
¢(ﬂa) = an_, aA. If :t(', = br_, bEA, then ¢(uc',) = b¢(n°) = ebn_ = af,

go that a = 8 depends only on O.

-1 o
CE S 4’(“0:(7) = 4’(1:0)4)(:\:1) =amad NI =aexK. Therefore

G a.ia.o and [aol is a l-cocycle. Clearly the mep £ : U(IL) -»2(a),

£2(P) = {a.U} , 1s a monomorphism of groups, Z(A) the group of l-cocycles

of A. Given (allsz(a) , define ¢'eU(m) by ¢'(ax,) = ajen ,ecA.

f("") = {a.;], so that £ 4is an epimorphism. If a€A, we have

ln;]'xa = 8/g°% - x, and f(¢a) =(%/a%},2(v(1) )= B(A), the

attaa = af o,a

group of l-coboundaries of A.





