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VIII. HOMOLOGICAL ALGEBERA

In this chapter, some basic concepts of hamological algebra
will be defined and some of their elementary properties developed. The
duality of the concepts "projective module" and "injective module" will
be systematically employed and, where applicable, dual propositions
will be stated.

We will need to modify some of the definitions concerning graded
modules. We will mean by a graded module a sequence indexed on the
integers rather than on the positive integers. If X and Y are
graded modules, a morphism of degree n , £f: X —> Y , 1s a sequence
of morphisms fi: Xi —_— Yi'm .

A will be a ring, not necessarily commutative. All modules

will be assumed left modules unless otherwise specified.
1. Differential operators and resolutions.

Definitions 1.1: A differential operator, or complex, is a pair (X,d)

where X is a graded module and d: X —> X is a morphism of degree
+1 such that a¥%a% =0 for all q . We define further the q*° co-
cycle, 2Z4(X) , as ker(ad) , the q*® coboundary, BX(X) , as im(a%l),

and the qth cohomology as Zq(X)/Bq(X) .

We introduce the convention Xy = x¥ , Ay = a~y > Yy = 7N ,
BN = ]3'N ’ H.N = H'N . Thus, when (X,d) is written as a complex with

b s = :
subscripts, c‘xq Xq —->Xq_l and dqdq-l-l 0 ; in this case Zq(X)

is called the qth cycle, Bq(X) , the qth boundary, Hq(X) the qt'h
homology.
(X,d) 1is called & right complex if X =0 for all N<O ;

it is called & left complex if X.N=0 for a1l N< O . Thus a right
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L6.

-1 o 1l 2
complex has the form ... —> 0 —>0 2> x° La gt &5 2 45 .,
d2 dl do a_
a left complex ... —>X, =>X =>X 25050 —>... .
For notational convenience, a complex (X,d) will hereafter

be denoted simply by X .

Definitions 1.2: A left complex over a mcdule A i1s a left complex X

together with an epimorphism e: X o ~——> A such that
vee —>X, —> X —>X —>A—>0 ise O-sequence (the compo~
sition of any two consecutive morphisms is zero). A left complex is
called a left resolution if ... —> x2 — x.l. -_— Xo ~> A —>0 is
exact. A projective (free) resolution of A 1s a left resolution such
that for each 4q , Xq is projective (free).

The concepts of right complex over A , right resolution, and
injective resolution are analogously defined. In this case,

0—>ASs> Xl — X2 —> ... 18 a zero (resp., exact) sequence.

Definitions 1.3: Let X and Y be complexes. A translation f: X —> Y

is a morphism of degree O which commutes with the boundary maps, that
is, for which
£

q
. '
Xq q

S

g-1
Xq1 T > Y1

is & commutative diagram for all q . If f is a translation, f in-
duces morphisms H(f): Hy(X) —> H(Y) , since £(2(x)) C ZN(Y) and
£(By(X)) C By(¥) .

If f: X—>Y and g: X —> Y are translations, a homotopy

between f and g is a morphism D: X —> Y of degree -1 such that






L.

g -gq = dq_'_qu + Dq 19 - The relation of homotopy is an equivalence

equation.

Proposition l.4: If two translations of X into Y are homotopic,

then the corresponding morphisms EN(X) —_— HN(Y) coincide.

Proof: If f and g are the homotopic translations, then f -g
is null homotopic (homotopic to zero). Let stZN(X) .
(f‘g)(xu) = A Py(y) + Dy_pdy(y)
A4y Dy () € B(Y)

Therefore f£-g induces a zero map HN(X) —_— HN(Y) .

We now obtain a series of propositions concerning projective
resolutions of modules. We will then give the dual results concerning

injective resolutions.

Proposition 1.5: Every module has a projective resolution.

Proof: Given a module A , construct exact sequences
0 —> Zo —_— Xo — A ——3> 0
0 —> Zl — }L_L — Zo — 0
0—->ZN—-->XN—>ZN_1->O ’
vhere the Xi are projective. Define dN as the composition
=% > %y
Then ... —éxm —_— .. -—->Xl ——>Xo > A —=3> 0 18 a projective

resolution of A .

Corollary 1.6: If A is left Noetherian and A is a finitely generated

left module, then A has a free resolution X where each xN is finitely
generated.
Proof: Xo may be chosen free and finitely generated. Then Zo

is finlitely generated, and }L_L may be chosen free with a finite base, etc.



'R

ey

LYRLE

SeEev e

RN NSRRI &

‘

W N

to Sl 2

(EN
¥

-
W
e

§ e

RPN 8 )

-
pAS




43.

Proposition 1.7: Let A and B be modules, let X be a projective

resolution of A and Y a left resolution of B. If f: A—>B

is a morphism, then there exists a translation f: X —> Y such that

£
X —2>Y
[o] (@]
el le
A—f 3B
commutes. f is said to be over £ .

Proof: Since Xo is prcjective, there exists fo: Xo —_— Yo

such that ef =fe . Since efd, = fed, =0, £ d (xl) C ker(e) = :lm(dl),

and there exists f X, —> Y, such that Eodl = dlfl Proceeding

inductively, we obtain the proposition.

Proposition 1.8: Under the hypothesis of proposition 1.7, if f and §

both lie over f , then f and g are homotopic.

Proof:
Xl Y
dll f,g ld
L, —>
€ l 16
R S

fe = ef = eg, , 80 e(i'o - go) = 0 . Hence im(fo-go)C ker(e)=1m(dl) ,

end, since Xo is projective, there exists Do: Xo —_ Yl such that

dln = fo -8, - Now comsider fl - g - Dodl: Xl —-—> Y

o & 1’
o
%2{ £,-g-D 4 da
X 22—ty
q | Y
X Y

dl(§1-§l-nodl) =t dl-g a,-4,D. 4, = 0 , so in(F,-§,- odl) C ker(a, )=in(d,)

and there exists l: xl —> ¥ such that daDl fl - gl - Dodl .
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Proceeding inductively, the result is obtalned.

Proposition 1.5': Every module has an injective resolution.

Proof: Given a module A , construct exact sequences

0 —> A >¥° > —>0

0 —> 2° > Y > 2t —> 0

0=l s s so,
vhere the Y- are injective (proposition 3.10 of ch.3). Define a¥ as
the composition Y‘N —_— ZN — YN+1 . Then
0~—>A—>Y —>Y' —> ... is an injective resolution of A .

Note that there is no statement dual to corollary 1.6.

Proposition 1.7': Let A and B be modules, let X be a right reso-

lution of A and Y an injective resolution of B. If f: A—>B

is a morphism, then there exists a translation % A—~>B over .

Proof: Since Y° is injective, there exists : x° — Yo
such that f e = ef . Since a°f% =a%f =0 ’ d°%° induces a

o
morphism X°/im(e) —> ¥l . Since 0 —> x°fim(e) L s xt s exact,

1l

there exists 51: X" = Yl such that fl d° = d°§° . Proceeding in-

ductively, we obtain the proposition.

Proposition 1.8': Under the hypotheses of proposition 1.7', if f and

é both lie over f , then f and é are homotopic.

Proofs A—i—s3
L
a° 1 £, ido

X,l Yl

ef = % = goe s 8O (fo - go Je = 0, Hence £ - go induces a morphism

°/im(e) —> ¥° , and, since 0 —> X°/im(e) —> x} is exact, there

~ ~o
fO

exists & morphism D': X+ —>Y° such that D'a° = 1° - g° .



Now consider £+- gt - a°D%: X+ —> YT .
(o]
do 1( 1 71 0.1 Todo
1 fr-g”-d D" 1
xt = > Y
a* 1 l al
X2 Y

(£1-g+-a°p1)a° = a°%°-a%°-a°p%° = 0 . Hence £+-g=-a°D' induces a

1
a morphism Xl/im(do) — 1 , and, since 0 —> X]’/im(do) A5 % s
exact, there exists D2: x2 —> Y' such that D2dl = El-él-d%l .

Proceeding inductively, the result is obtained.
2. Resolutions of sequences.

Here we obtain some results concerning translations of resolutions
over the modules of short exact sequences. We will prove our statements
only for left resolutions, since the method of proof for right resolutions

is step-by-step dualization just as in the proofs given above.

We first obtain a general lemma that will be of great importance
in later applications.
Lemma 2.1: Suppose 0 —> X! —ji—> X —‘j-é X" —> 0 1is an exact sequence

of complexes and translations. Then there is a canonical exact sequence

H (1) H (3)
cee —> Hq(X') L SN Hq(x) ——‘-1-9-9 Hq(x“) I Hq-l(x') —> .0

® 1is called the connecting morphism.

Proof: We are given a commutative diagram with exact rows and

whose columns are O-sequences:

R
O-——)X'N_._l _>xN+l —->X"N+l——->0
ld i ld 3 }d
0 >X'N >XN 4~>X"N——>O
ld i Jyd 3 lnd
0——>)1{'N_l——>)in_l——->)fn_l——->0
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i) Definition of & : Let x"sz.N(x") . Let xeXy be such
that J(x) =x" . Jja(x) =0, so da(x)e im(i) . Let x'eXy , be such
that 1i(x') =da(x) . 4ai(x') =0, so d(x') =0 . Define B&(x")=Xx'.
Now assume that y"aZN(X“) is such that y" = x" mod BN(X") . Choose
any y and y' such that J(y) =y", i(y') = d(y) . We must show
that x' = y' mod BN_l(X') . x“-y"eBN(X“) , say x"-y" =d(z") . Let
2eXy,, De such that J2) = 2" . J(x-y-d(z)) = x"-y"-d(2") =0, so
x~-y-d(z)e im(i) , say i(z') = x-y-d(z) , z'eX’y .

i(xt-yr-a(z')) = a(x)-a(y)-1d(z*)
= d(x-y-i(z')) = dd(z) =0 .
Since 1 is a monomorphism, x'-y'-d(z') =0, x' =y’ mod BN_l(X') .

8 is thus well-defined, and is clearly & morphism.

11) HN(X') — HN(x) —_— HN(X") is exact:
Clearly ker(Hg(J)) )m(nN(i)) since Ji =0 . Let xeZy(X) be such
that Ho(3)(x) =0 . J(x)eBy(X") . Let yeXy, be such that
aj(y) = 3(x) . J(x-a(y)) = 3(x) - a3(y) =0, so x-d(y)e im(i) , sey
i(z') = x-d(y) . di(z') =dx-ddy =0, so d(z') =0 . Thus
H(1)(z') =X, and ker(8y(3))C im(H(1)) .

111)  Ey(X) —> B (x") —> B, (X') is exact:
xezn(x) implies wm(a)(;c') = 0 by construction of &5, so
ker(d) D im(E(3)) . Let x"eZN(X") and 5(x") =0 . Let Jj(x)=x",
i(x*) = a(x) . x‘eBN_l(X') , 8ay x' =d(y') . DNow
a(z-1(y*)) = d(x) - 4(x') =0, 8o x-1(y*)ezy(X) . B (3)x-Ily")) =
E(3)(x) = 2", and 1im(Hy(3)) D xer(s) .
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iv) HN(X“) — HN_l(X') —_— EN-l(x) is exact:
If x'eZN_l(X') and X' = 5(x") , then i(x') = d(x) for some xeXy ,
and H(1){X') =0, so ker(H(1)) Dim(s) . Let x'eZy o (X') end
(1)) =0. i(x')eBy  (X), sy a(x) = 1(x') . Let x"= j(x) .
d(x") = aj(x) = Ja(x) = 3i(x') =0 . &(x") = X* by construction of & ,

and im(d) )ker(HN(i)) . This completes the proof.

Corollary 2.2: If O —> X' —> X —> X" —> 0 13 an exact sequence

of complexes and any two of X', X, X" are exact, then so is the third.

Definitions 2.3: Let 0 —> A' 13> 4 454" 50 be an exact

sequence. An exact sequence 0 —> X! -i—> X -§—> X" —> 0 of com-
plexes, where X', X, X" are left complexes (or left resolutions, ete.),
over A', A, A" and 1 s 3 are morphisms over 1, J is called a left
complex (or left resolution, etc.), over 0 —> A! isadan 5o .

Right complexes over exact sequences are analogously defined.

Proposition 2.4: If 0 —> Xt —> X —> X" —> 0 is a left complex

over 0 —> A' —> A ~—> A" —> 0 and if X' and X" are projective

complexes, then so is X .
Proof: For all N O-->X'N->xw —>X"N-->O is split

exact, xN is isomorphic X' & X" hence is a direct summand of

N N
a free module.

Corollary 2.5¢ If X' and X" are projective resolutions of A' and

A" , then X is a projective resolution of A .

Proposition 2.6: Let 0 —> A! -5 A —¥1> A" —> 0 be an exact sequence.

Let X' be a left resolution of A!' , X" a projective complex over A" .
Then there exists a left complex X over A andmaps 1 , J over i, J
such that 0 —> X* #x—%x"-—)o is a left complex over

o—>At Hadsan 50,
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. = no, .
Proof: Set XN-X‘NGXN, let :LN.XN——>XN and
31\1: XN X"N be the canonical injection and projection. We must
define a differential operator on X such that the desired commute-

tivity relations are satisfied.

1) Consider degree O .

~ ~

0 —> X!, 1 X' @ X" --4->.x"0 —>0
' [
le' L4 € cf "
I
i o3
0 > A? > A > A" > 0
| : |
0 0 0

Since X"O is projective, there exists f : X"o —> A such that Jf = e" .
Define e: X' @ X"o ~—> A by e(x',x") =ie'(x') + fo(x") . Then
eI(x') = iet(x') , Je(x',x") = ,jfo(x") = e"g(x',x") , and the diagram
commutes: We must show that € 1s an epimorphism. Let xeA . ILet
x"ex"o be such that J(x) = e"(x") . et y = x-fo(x") .

3y) = 3(x) - 3£ (x") = )(x) - e"(x") =0, so yeim(i) . Let

x'eX'  be such that iet'(x') =y . Then

e(x*,x") = ie'(x') + fo(x") =y + fo(x") =X .

. gy 1
i) For N>1, let £yt X"y —> X'y, be, for the moment,

arbitrery morphisms. Define dN(x',x") = (d'mx' + fo",d”Nx") . Clearly

o—-ax'l\I >xN >x"N >0

lew o o

T 1
0—>XN_1-—> _l-AXN_l-—>0

is commutative for all N-Z 1. We will define the f,, so that

N
edl=0, dﬂ-ldN=o for N>1 .,
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Proposition 2.8: Let

oAt dsadsan_ 5o

b, b, ke

0 —> B! —>B —>B" —> 0
be a commutative diagram with exact rows. Let 0 —> X! N X S5 X" =—>0
be a split exact left complex over 0 —> At Asadsar 50 ama

0—>1 L5y —£—> Y" —> 0 be a split exact left complex over

0—>38" £5B-L£5B" 5 0. Further, let X" be a projective com-
plex and let Y' be exact. Then if g': X' —> Y' and g": X" —> Y"
are translations over g' and g" , there exists a translation
é: X —>7Y over g such that
0 —> Xt -i—>x—l>x"—>o
I
0 —> Y —:E—>Y-z->x"->o

is a commutative diagram of complexes and translations.

. 1] 11} .
Proof: Writing XN as X'N 6X N and YN as Y'N oY N’
y v oGUY . (o1 t " ~u "
we see that gN(x ,x") = (g N(x N) + qN(x N), g N(x N)) is necessary

for _ n
0—>X'N->KN-—>XN->O

~ |~ ~n
lg'm HEN 15 N
0—>Y_ —>Y —> 1" —>0

N N N
to commute, where Gy X"N —_ Y'N is to be determined. The problem
is to choose the qN such that
X —Eesy
e 1 1 €
A—E_5 3

conmutes. We write 4',d4,d",e',e,e" and &',5,5", €', €, €" for the

differentiation and augmentation morphisms of X',X,X" and Y',Y,Y" .
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. L] - 1 1

Pyt Y"N -4>'Y'N_l be morphisms as in the prcof of the previous propo-

and @ :Y" —>B,

sition. (These necessarily exist, since the sequences of complexes are
split exact.)
By hypothesis, then, we have relations:

[ L]
N-1fw * Tyad

o, S'N 1%t qh;lﬁ"m =0 and

"_n nin

et = glg! . ot - o = o "o gttt
gle =8y Bl My = Oy B =gy gy, dy = By

e = ie' + £, de'f, + fod"l

1
ke' + 9, ke'g + @ 8"

0, 4 =0,

€

We wish to obtain ge = eE

o 7 gN;ldN = aNéN . These relations then take

the forms
1) ke'q, = '¢5g“o + et
(eg, = e’  + q ,8" ) = ke'g'_ + ke'q_+ 98" ;
ge = gle! + gfo = kg'e' + gfo = ke'é'o + gfo ) .
1) 8'yay = &'y Ty + 918"y - By
(B0 = By, (' + £3p,0") = (@' ja'y + &'y ) Fy + Gy 1" E"y 18" 5
Syl = Oy(Ely + apE"y) = (' + 8'yay + 9"y 5 B"E"Y) 5
8"y = &'y.8"y » O'f'y = B'ygd'y)
Finally, then, we observe that in the following diagrams, the rows are
exact and the diagrams commute, so that, by the projectivity of X",

the desired morphisms are obtained:

n
i
- oV . o ol - _eWon " = Mgt 4 M
9.8 °+gfo 1 \\\\:i : £¢bg° + zgfb €8, + 8 jfo €'g +g'e 0
S
o XS 25 pe

o
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1 ~ ~
g’ £+ " -9 8" \0 : ke'g! £, + ke'q 3", - ke'qE"
sll k = kgtetf _¢ gll d" +$f d" 8" gﬂl
T > ¥ —-?-> B

g(ie'f +£ " ) +9 (5'l§ - g" a")=o0

xll

N
" n . .
RS LS T3 J \0§ '
5! 5!
Y il >y Ly

N N-1 N-2

n o oap ot
N8 Nty * ' nad'y - O na %y

- ~ " ~n X ~n
= 8'y o8 oy Pyt (8 o1 P08 "N P B2 PN O e

o~ " " N ot
= &'y p(a' gy PPy 8" y) = (B By + 'y Pyl = O

5'

Proposition 2.4': If 0 —>Y' —> Y —> Y" —> 0 is a right complex

over the exact sequence O —~> A' —> A —> A" —> 0 and if Y' and Y"

are injective complexes, then so is Y .

Corollary 2.5': If Y' and Y" are injective resolutions of A' and

At , then Y is an injective resolution of A .

Proposition 2.6': ILet O ~> A! -1‘-> A —'-j—-> A" —> 0 be an exact sequence.

Let Y' be an injective complex over A', Y" a right resolution of A" .
Then there exists a right complex Y over A and maps i ,,j over 1,J
buch thet 0 —> ' —-> Y > Y" —> 0 1s & right complex over

o—>atdsadsar 5o,

Corollary 2.7': In the proposition above, if ¥Y' and Y" are injective

resolutions of A' and A" , then Y will necessarily be an injective

resolution of A .
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Proposition 2.8': Let

0—>A' 2sadsar 5o

b, e, b

0—>B' £>8-LsB"—>o0
be a commutative diagram with exact rows. Let
0—>X' 23>x-dsx" =0 bea split exact right complex over

n "
o>t taadsan 50 and 0> S5y E5¥" 50 vea

split exact right complex over O —> B! Xsp —z-> B" —> 0 , Further,
let X" be exact and let Y' be an injective complex. Then if

g': X' —> Y' and g": X" —> Y" are translations over g' and g",

there exists a translation 5: X—xY over g such that

o->x'-i:-ax—3—>x"—->o

IC O
0> Exyv-Lsy o0

is a commutative diagram of complexes and translations.

3. Construction of Tor(A,B)

et A be a right A-module, B a left A module. ‘Then
A®B is an Abelian group (see ex. 10, 11 ch. 3). Recall that if
0 —> Al —>» A —> A" —> 0 is exact, then
A'®B—>ARB —>A"®B ~> 0 1is exact, and if
0 —> B —» B —> B" —> 0 1is exact, then so is
A®B!' —>AQ®B —> A®B" —> 0. In this section we will construct
objects by means of which the behavior of tensored exact sequences on
the left may be studied.

Let X be a complex of right A-modules, Y a complex of left

A-modules. X ® Y is a graded module with (X ® Y)N = 0 X®Y For

N1 97
i+j=N
notational convenience, we write X1® YJ=X1®JY .
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59.

Now let X',X" be further complexes of right A-modules, Y'
and Y" of left A-modules. Let f: X —> X' be a morphism of degree p ,
g: Y —>Y' be a morphism of degree q . Define
fié'js = (-l)iqf:‘_@gd and (f@E)N = Qi_'_'jszié!jg . Suppose f£': X! —> X"
and g': Y' —> Y" are morphisms of degrees p' and q' . Then f£'f
and g'g are morphisms of degree p+p' and q+q' . Further, we have

ftfiéjglg = (*l)i(Q+q')f'i pfigg’j-qgj

- (¥, @, N2@E)

- (_l)i(‘?.'*'q )(_1)-(1-P)q (£ i-pgd- g')(-l)‘iq(fiéfjg)
= (1P (o1 Bg -9 ) (£%g) .

We now return to the consideration of X® Y . We will define a dif-
ferential operator on X@®@ Y by 4 = dx ® 1y + 1x ® dy vhere dx and
d_ are the differential operators on X and Y and ix end 1i_ are

y y
the identities of X and Y. d is of degree 1 , and 44 = O since

dd dd ®iyiy+id ®4di +di ®1id +1i ®d4dad

Yy XX Yy XX yy

id ®dyiy+dxix®id

(-1)(1x ® dy)(dx ® 1y) + (ax ® iy)(ix ® ay) =

]

Thus X®Y is given the structure of a complex.

Before defining Tor(A,B) , we prove the

Lemme, 3.1: Suppose X and Y are left complexes, Xq is flat for

all q and Y 1is exact. Then X ® Y is exact.

Proof: i) Suppose Yq # 0 for g=s and g=s+l only. Then

d
0 —> Ys-&-l —_— YS —> 0 1s exact. Let fs’ YS ——> Ys+l be the inverse
isomorphism to 4 £f =0, qfses . Then 4f + £fd =1_ . Define

s+1’ q
D: XY ——>X®Y by D=ix®f.

y
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Then dD=dxix®iyf+ixix®dyf
Dd = ixdx & fiy + ixix® fdy
dD + D4 =

ixix ® dyf + ixi % ® fdy

+ = = 1 .
1,8 (dyf i’dy) 1,®1, =10
Hence the identity of X ® Y is homotpic to the zero mep and

HN(X®Y) =0 forall N.

II) Proceeding inductively, assume Yq =0 for gq<r and
for ¢ > Ml >r . Define ¥Y' by Y'q=0 for g # N, N+1,
1§ = T = . ] = .
Y N BN(Y) s Y Wl Nl Hq(X@Y ) =0 for all q by step 1)
Define Y" such that O —> Y!' —> ¥ —> Y" —> 0 is exact. Since

q
if 9q<r and if q > N, so, by induction, Hq(X®Y") =0 forall q.

Hq(Y')=Hq(Y)=O for all q , Hq(Y")=0 forall q. Y" =0

Since X is flat, 0 —> XQY' —>» XY —>X® Y" —> 0 is exact

(and is a sequence of translations), and nq(x ®Y)=0 forall q.

iii) Now assume the original hypotheses. For s 20,

8
= LI
(X®Y)s ® X1®Ys- Define Y' by Y q Yq if ¢g>s+1,

i=0
- - "
g4l = Bs+l(Y) , Y'q =0 if g<s + 1. Define Y" such that

0 —>Y' =—>Y —>Y"—>0 is exact. Hq(Y')=0 for all q by

ic
Y'

construction since Hq(Y) =0  forall q . Hence Hq(Y") =0 forall q .
Y"q=0 for @< 0, Y"q=0 for gq>s8+1, sobystep ii)
Hq(X ®Y") =0 forall q. HB(X ® Y') = 0 by construction, hence
0 ~> HB(X®Y) ~> 0 is exact, HS(X®Y) =0, Since s was
arbitrary, Hq(X ®Y) =0 forall gq.
Note that the hypotheses and proof of the lemma are symmetric
in X and Y: If X is exact and . Y is flat, Hq(X®Y) =0 for

all. q .
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Definition 3.2: Let A be a right A-module, B a left A-module, X

& projective resolution of A, and Y a projective resolution of B .
Define '.IbrN(A ® B) = HN(X ® Y) . We must prove that 'lbrN(A ® B) is
independent of the choice of the projective resolutions X and Y .

Instead of proving this directly, we first prove

Proposition 3.3: Hq(A ®Y) , Hq(X ®Y), and Hq(X ® B) are iso-

morphic for ell q , where A and B are regarded as complexes con=-

centrated in degree O with d =0,

Proof: Y -S> B —> 0 may be regarded as a translation
(eq=0 for q # 0) . Define Y' by ¥ =Y, for afo0,
Y = ker(eo) . Then 0 —>Y' —>Y —> B —> 0 is an exact sequence
of translations. Hq(Y‘) =0 for all q since ker(eo) =BO(Y) = X'
By lemma 3.1, hq(x ®Y') =0 for all g . By lemma 2.1, there is en
exact sequence
ees —>0 = B (XV') —> B (¥) —> H (X2B) —>H_ , (XBY*)=0 —> ...
80 Hq(x ® Y) is isomorphic to Hq(X ® B) for all q . Similarly,

Hq(x ® Y) is isomorphic to Hq(A@ Y) forall q.

Proposition 3.k4: Ibrq(A,B) is independent of the choice of X and Y .

Proof: Let X and X' be projective resolutions of A . By
proposition 1.5, there exists f£: X —> X' and g: X' —> X 1lying over
the identity i, of A —> A . By proposition 1.8, gf: X —>X

lying over iA is homotopic to ix:x—ax,say éaD+Dd =1~ gf .

X

Then ix®iB-gf®iB (ix-‘gf)®iB

]

(c1D+Dd)®:I.]3

dD®iB+Dd®iB

(a @ 13)(D ® iB)+(D ® 13)(d ® 13) , and,
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since d&LB is the differential operator of XRB , D&'I.B is a homotopy
between 1 @i, and gfRl, . gfRi; = (g&lB)(f&lB) , 80 Hq(gleiB) =
Eq(e.&lB)Hq(f@iB) , and, arguing similarly for f£g , since Hq(ix&B)
is the identity on Hq(XBB) and Hq(ix,&iB) is the identity on
Hq(X'®B) , Wwe have that Hq(g&lB) and Hq(f&B) are inverse isomor-
phisms. Thus Hq(ma) and Hq(X'@iB) are canonically isomorphic for
all q . Arguing similarly, Torq(A,B) is independent of the choice
of Y.

Proposition 3.5: Let 0 —> A! -—]-S—-> A i> A" —> 0 be an exact

sequence of right A-modules and B a left A-module. Then there exists
& canonical exact sequence
soe —_— TOI‘N(A'B) — 'IbrN(A,B) —_— TOI‘N(A",B) —> TOI‘N_l(A',B) —> ee e

—_> 'l'oro(A',B) — 'J.bro(A,B) —_— Toro(A"B) -—>0 .

Proof: Let X' and X" be projective resolutions of A' and
A" . By proposition 2.6 and corollary 2.7, there exists a projective
resolution X of A and morphisms k and £ over k and £ such

that 0 —> X' 2> X —-z-> X" —> 0 1is a projective resolution of

o—>a Esa i 5o, 0 —> X'@B —> XXB —> X"®B —> 0
is exact, so by lemma 2.1 there is an exact sequence i)

eer => H(X'@B) —> H(X%B) —> Hi(X'gB) 5x) 5. Hy ,(X'e8) —> ...
—> H (x'¢B) — H (¥8) — H (X'&8) —> 0 .

To complete the proof, it suffices to show that the connecting morphism
© 1s independent of the choice of X. Suppose
0—>X'=—>Y —> X" —>0 also lies over 0 —> A! —> A —> A" —> 0 ,

Then by proposition 2.8, lying over the commutative diagram
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0 == A! ==> A w=> A" =3 0
P Jue
0 —>A! —> A =—> A" —> 0

is a coomutative diagram

0 =3 X! ==X =——3> X" —> 0

[« I

0 ~—>X! e Y > X" > 0

The latter diagram induces & translation of the sequence 1).

e (%)
' 8(X .
B,(X"€B) > 8, (x'e8)
IHI\T(iX’&B) JHN-l(iX'&lB)
Hq(X&B) 5(¥) > Hq_l(X‘GZEB)

is & commtative diagram whose columns are identity morphisms, and &

is independent of the choice of X .

Note that the proof holds equally well for an exact sequence
0 —> B! —> B —> B" —> 0 of left A-modules and a right A-module A ,
Yielding a canonical exact sequence
ces —> ‘BorN(A,B') —_— ‘IbrN(A,B) —_— tzbrN(A,B") —_ 'Ibrm_l(A,B') —_> ..

—_ ‘Ibro(A,B') - 'Ibro(A,B) - Toro(A,B") —>0 .

Proposition 3.6: '.lbro(A,B) is isomorphic to ASB .

Proof: Let X be a projective resolution of A .

4,®ip eRip
X,@8 ——> X €8 ———> /% —> 0 is exact, 80 HO(XZB)=XO®B/1m(d1¢8d.B)

is isomorphic to AXB .
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Proposition 3.7: The following are equivalent:

i) A 1is flat
ii) Tor,(A,B) =0 forall B.
ii1) Ibrq(A,B) =0 for all g>1 and for all B.

iv) Tor (A,B) =0 for all ¢ > 1 and for all finitely
q generated B .,

v) 'I'orq(A,B) =0 forall g>1 and for all cyclic B.

vi) '.Ibrq(A,A/I) =0 forall g¢>1 and for all ideals I .

Proof: i)==>iii) Let B be a module and X & projective
resolution of B . ... —9-13@(“ — .. > A&Xo —> ARB —> 0 1s exact.

111 )==>1i) is immediate.

ii)==>i) Let O —> B! —> B —> B" —> 0 be exact.
0= Ibrl(A,B") —> ARB' —> ARB —> ARB" —> 0 1is exact.

iii) ==> vi) is obvious.

iv) ==> 1ii): Let B be a module. Let the finitely generated
submodules of B be indexed by I vhere we define 1< J if B By -
Let B denote the direct system of the finitely generated submodules
of B so obtained. Then 1lim B=B. @(m) = AQ1lim B = ASB
by proposition 5.12 of chapter 3. If X is a projective resolution
of A, ... -—>XN@ —> .ee —axom —> 0 1is an exact sequence
of direct systems, so that ... -->XN®B —_—> e -—>X°@ —>» 0 1s

exact, by proposition 5.16 of chapter 3.

v) ==> 1iv): Let B have N generators, and assume the result
for modules with N-1 generators, Let O —> B! —> B —> B" —>» 0 be
exact, vhere B" has one generator, B! has N-1 generators. ‘Then
cee =>0 = '.'Lbrq(A,B’) — ’Ibrq(A,B) —_ 'Ibrq(A,B") =0 =—>,.. 18

exact, 'lbrq(A,B) =0 for g>1.
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vi) ==> v): Let B have one generstor. Then there exists I
such that 0 —=> I —> A —> B —> 0 is exact, B is isomorphic to
A/I . Of course » the proposition holds also if the roles of the first

and second variables in Tor(A,B) are interchanged.

Remark 3.8: If A is a commutative ring, then ASB and XSY are

A-modules, so that Torq(AXB) will be a A-module.

For further use, we note the following:

Proposition 3.9: If A is a finitely generated module over a commu-

tative Noetherian local ring A with maximsl ideal M, the following
are equivalent:
i) A is free
ii) A is projective
ii) A is flat

iv) Torl(A,A/M) =0.

Proof: i) ==> ii) ==> iii) ==> iv) are clear.

iv) ==> 1) A/MA = A/MRA 1s a finitely generated vector space
over AM . Choose x,...,x€A such that -xl""’EN generate A/MA .
Let F be free with N generators e seees®y o Define f: F—> A
by f(ei) =X, . Since AMSF ) A/MRA is an epimorphism, so
18 P by proposition 4.2 of chapter 5. Let B = ker(f) .
Since A is Noetherian, B 1is finitely generated.
0O—>»B~—~>»F —>A-—>0 is exact, hence
0 = Tor, (A, ,AM) — B AM — FD AM —> R AM —> 0 is exact. Thus
BRAM =0 ; B =0 by proposition k.1, chapter 5. Thus A is isomorphic

to F.
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L, Conmstruction of Ext(A,B) .

In this section all modules will be assumed to be left A-modules.

If A and B are modules, Hom(A,B) is an Abelian group. Recall

that if O —> A' —>» A —> A" —> 0 and 0 —>B' —> B —> B" —>» 0
are exact sequences, then O —> Hom(A",B) —> Hom(A,B) —> Hom(A',B)
and O —> Hom(A,B') —> Hom(A,B) —> Hom(A,B") are exact. Here we
will construct objects by means of which we may study the behavior of
the latter sequences on the right. The constructions of this section
will closely parallel those of the previous section, and most proofs

will be outlined only.

Let X and Y be complexes, X written with subscripts, Y
with superscripts. Hom(X,¥) is & graded module with Hom(X,Y)¥ =

I Hom(Xi,!'j) . Observe that if feﬁom(x,Y)N , then fi:X'i=Xi—> -4 ;
1+3=N

that is, f 1s a morphism of degree N . For notational convenience

1)
we write Hom(X,Y) = Hom(xi,YJ) .
Now let X',X",Y',Y" also be complexes. Let f: X —> X' and
g: Y —> Y' be morphisms of degrees p and q . Define

i,d i,
Bon(2,g) = (-1)'? Bom(z,,,e) (Bém(2, 8):Bom(x},¥) - Bom(x,, ,¥%*9)) ,

i,d
and define Hmn(f,g)N = I Hom(f,g) . Thus Hom(f,g) is a morphism
i+3=N
of degree p+q . Suppose £1; X' —> X" and g: ¥' —> I" are mor-

phisms of degrees p' anmd q' . f'f and g'g ere morphisms of

degrees p+p' and aq+q' . We have
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1,3 :
Eon(2'2,g'g) = (-1)H(T2") Bom(2'y ) 2y prapr’ e €))
= (-uyt(erat) Hom(fi+p.+p,s'3+q) Hom(f'i,,p.,s")
' i+p',J+q qqlsd
= (-uyterat) ) (ptat TR e oy (1) %R g)
i"‘P',J"'q i,

= (1P " TEm  (£,8") Hori(f',s) .

We will now define a differential operator on Hom(X,Y) by

d = Bom(d,,1.) + Hom(1,,d.) .

ad = Hom(dx,:ly) Hom(dx,iy) + Hom(d x,1y) Hom(ix,dy)
+ Bom(ix,dy) Hom(dx,iy) + Hom(ix,dy) Hom(ix,dy)
= Hom(dx,iy) Hom(ix,dy) + Eom(ix,dy) Hom(dx,iy)
= Hom(ixdx,iydy) - Hom(dxix,dyi y) =0.
As in the construction of Tor , we will employ
Lemma 4.1: Suppose X is a left complex and Y is a right complex.
Then: i) If X is projective and Y is exact, Hom(X,Y) is exact.

ii) If X is exact and Y is injective, Hom(X,Y) is exact.

Proof: Note that Hom(X,Y) is a right complex. The proof is
similar to that of lemma 3.1, using propositions 2.10 and 3.5 of

chapter 3 and lemms 2.1 in the second and third steps.

Definition 4.2: Let A and B be left A-modules, X a projective

resolution of A and Y an .injective resolution of B . Define
Bxt™(4,B) = B (Bom(X,Y)) .

Proposition 4.3: H(Hom(a,Y)) , E%(Hom(X,Y)) and BY(Hom(X,B))

are isomorphic for all q .
Proof: Define Y' by Y'9 =Y for q#0, ¥'°= ¥/im(e) .
Then 0 ~—>»>B —> Y —> Y' —> 0 1is an exact sequence of translations,

BY(Y') = 0 for all q, hence by lemma 4.1 B¥(Hom(X,Y')) =0 for all a.



Since by proposition 2.10 of chapter 3,

0 —> Hom(X,B) —> Hom(X,Y) —> Hom(X,¥') —>» O 1is exact, by lemma 2.1
0 —> EY(Bom(X,B)) — B%(Hom(X,¥Y)) —> O 1s exact for all gq .
Arguing similarly using proposition 3.5 of chapter 3, H3(Hom(X,Y))

and Hq(Hom(A,Y)) are isomorphic for all q .

Proposition b.4: Ext3(A,B) is independent of the choice of X and Y .

Proof: The proof is similar to that of proposition 3.4.
Propositions 1.5 and 1.8 are used to prove independence of X , 1.5'

and 1.8t for Y .

Proposition 4.5: 1) Let O —> A* —> A —> A" —> 0 be an exact

sequence and B a module. Then there exists a canonical exact sequence
0 —> Ext°(A",B) —> Ext°(A,B) —> Ext®(A!,B) —> ...

—> ExtV1(ar,B) —> mxtN(a",B) —> Ext"(a,B) —> Ext¥(a',B) > ...

ii) Let 0 —> B' —> B —> B" —> 0 be an exact sequence
and A a module. Then there exists a canonical exact sequence
0 —> Ext®(A,B') —> Ext®(A,B) —> Ext°(A,B") —> ...

— BtV 1(4,B") —> ExtN(a,B') —> BxtV(s,B) —> Ext](4,B") —> ... .
Proof: The proof is similar to that of proposition 3.5:

i) follows using proposition 2.6, corollary 2.7, proposition 2.10

of chepter 3, lemma 2.1, and proposition 2.8.

ii) <follows using proposition 2.6', corollary 2.T', proposition 3.5

of chapter 3, lemma 2.1, and proposition 2.8°.

Proposition 4.6: Ext°(A,B) is isomorphic to Hom(A,B) .
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Proof: Let Y be an injective resolution of B .,

Hom(iA,e) Hom(iA,do)

> Hom(A,Yl) is exact,

0 —> Hom(A,B) > Hom(A,Y°)

so H(Hom(A,Y)) = ker(Hom(iA,do)) is isomorphic to Hom(A,B) .

Proposition 4.7: The following are equivalent:

i) A 1is projective
11) Ext(A,B) = 0 for all B
111) Ext}(A,B) =0 for all gq>1 and for all B.

Proof: This follows from proposition 2.10 of chapter 3.

Proposition 4.7': The following are equivalent:
1) B is injective
11) Ext'(4,B) =0 for a11 A .
111) Ext?(A,B) =0 forall q>1 and for a1l A .
Proof: This follows fram proposition 3.5 of chapter 3.
Note that since there ies no analog to proposition 5.16 of

chapter 3, we do not obtain & complete analog to proposition 3.7.

Remark 4.8: If we had used right mcdules throughout this section,
we would have obtained analogous results. If A is commtative,

then the values of Ext(A,B) are A-modules.

Proposition 4.9: If A is a finitely generated module over a commu-
tative Noetherian local ring A with maximal ideal M , then A is

free 1f and only 1f Ext (A,A/M) = O .

Proof: If A is free, then Extl(A,A/M) is clearly zero.
Conversely, we proceed exactly as in the proof of proposition 3.9,
obtaining an exact sequence
0—>B—~>F—~>A~—>0 vhen F is free and F/MF is isomorphic
to A/MA . Hom(A,A/M) = Hom(A/M A,AM) so Hom(A,A/M) 1is iscmorphic
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to Hom(F,AfM). O —> Hom(B,A/M) = Hom(B/MB,A/M) —> Ext(A,A/M) = O
is exact, Hom(B/MB,A/M) =0, B/MB = O and by proposition 4.1 of

chapter 5, B =0 . Thus A is isomorphic to F .

5. Categories and functors.

In this section, we introduce terminology which greatly sime

Pplifies the statements of homological algebra.
Definitions 5.1: Let § be a set with elements denoted by f,fl oY)

etc. such that for certain pairs (fl ,f2) a product £ £, is defined

in 5‘ . An element ie Ef' such that ifl' = fl' and fzi = f2- - whenever

1fl and fai are defined, is called an identity. -:53— is called a

system of abstract maps provided that

»f

i) If either fl(f2f3) or (f1f2 )f3 is defined, then so

is the other and the two are equal.,

ii) I¢ £,£, and £,£5 are defined, then so are (flfa)f3
and fl(f2f3)’

ii1) Ir fe F , then there exist (unique) identities i,
and 1, in - such that f£i, end 1,f are defined.

Definitions 5.2: A category C 1s a system § of abstract maps

together with objects C, Cl,C

2’.'.
with the identities of 59‘ . If fe ‘jﬂ” s then the unique objects Cl

and Ca such that ﬁc and ic f are defined, are called the domain and
1 2

renge of f , and we write f; Cl-—->02 . If for each pair Cl

C, of objects 10 C , the set of all maps f: ¢, —> C, has a natural

which are in 1 -1 correspondence

and

2
structure as an Abelian group, then & is called an additive category.

If for each pair Cl end C_, the set of maps f: C, —> C., has a

2 1 2
structure as a left (right) A-module, then C is called a left (right)

A-category.



.

The set of left (or right) A-modules and their morphisms is
an exemple of an additive category. If A is commutative s the set
of A-modules and their morphisms is a A-category. Diagrams of
A-modules and their translations give further examples of additive
categories (a translation f: D —> D' of two similar diagrems D
and D' is a family of morphisms #£,: D, —> D', such that for

s R J
each pair (J,k),

P
DJ-—Q-I-‘———>DK

I
LR

is & coomutative diagram where DJ,Dk,...,D'J,D'k,... are the mocdules

and q)Jk"" »P* sk are the component morphisms of the diagrams

D and D' ).

Definitions 5.3: Let (f’ and D be categories. Suppose that for

each object Cg( , an object T(C)e ) is given and for each map

£: ¢ —>C' in C amap T(£): T(C) —> T(C') is given such that

1) If. £ =1  then T(f) = iT(C) .

i1) If £'f is defined, T(£'f) = T(£') () .

Then T i1s said to form a covariant functor from C) toJD . If
T(£): T(C') —> T(C) and T(£'f) = T(£)(£'), T is said to be a

contravariant functor from C’ to oD .

We extend the definition to N variables as follows:

)
Let cl,..., CN,OD be categories. Let C,,C'y,...,f;,f'... be
objects and maps in , and let the set (1,...,N) be divided into
disjJoint subsets I and J . Assume that for each set Cl,...CN of
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obJects there is given an object T(Cl,. .o ,CN)EGD , and for each set

. ] . 1
there is given & map in ;) T(fl,...,fN): T(Cl""’cm) —_ T(C'l,...,C'N).
Then T is a functor, covarient in the variables in I , contravariant

in those in J , provided that

i) If £15-++,%y are identities, then so is T(fl,...,fN) .

N
i1) 1f £1seeesfpfty, . £ty are such that £',f,, iel , and
fJf'J, Jed , are defined, then T(...,f'ifi,...,fJf'J,...)

= T(f'l,...f‘N)T(fl,...,fN) .

: >
I? Cl""’ C_N,a{) are all additive categories, and f,,...,fy ,
Ve
8)see+s8y &re maps in 12002 GN such that fi end 8y have
the same domain and range for each i , then if
T(fl’.l.’fr + gr"..,fm) = T(fl,...’fr’...,fm) + T(fl’.."gr,...fm) ,
1<r<N, T is said to be an additive functor. We will only be

concerned with additive functors.

Definitions S.4: Iet T and U be functors of N variables from

(Cl,...,EN) toOD . Let (1,...,N)} Ve partitioned into I and
J with both T and U covariant in the variables Ci » 1eI , contra-
variant in C."j s JeJ . Denote (Cl""’cN) by (C) . If for each

set (C) , there is amap u, ¢ T(C) —> U(C) such that whenever
(c)

fl’ooofN are m&pB, fi: Ci ->C'i ) 181 ) f'j: C'J —é CJ s JEJ F)
then the diagram
T(f ,o.o,f )
T(C) —t N> o)
[ Jer)
U(fl,.‘.,fN)
u(c) > u(c?) is commutative,

we say that p is a natural transformation of T into U . If u( c)

is an equivalence for all (C) , we say that p(c) is a natural equivalence
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or a natural isomorphism. (A map £ is an equivalence if there

exists a map g such that fg and gf are both identities.)
Let A, Ay, A e rings. We restrict ourselves (for

notational convenience) for the remainder of this section to an

additive functor T(A,C) define for A.,-modules A and A,-modules

1 2
C with values es° A-modules. We assume that T is covariant in

A, contravariant in C.

i J 2
Proposition 5.5: If Aa—la—aA—-"‘-aAa and Cy 1{‘3>c Bsc

are finite direct sum representations of A and C, then
(1 25) ( 3y %5)
T(4,,Cq) ———> T(4,0) ——> T(AyCy) 18 & direct sum

representation of T(4,C).

Proof: T(Ja,,ka,)T( ia,zﬁ) = T(Ja,ia,ﬂﬁkﬁ,), is the identity if

(a,8) = (a',B') and zero otherwise. Aleo
Ea,BT(ia,zﬁ)T( Ja,kﬁ) = Za’BT( iaja’kﬁ‘eﬂ) = T(Ea,ﬁiaja,za’ﬁkﬂza)
= ldentity.

Corollary 5.6: If 0 —> A' —> A —> A" —> 0 and
0 ~—>C'—>C —>C" —> 0 are split exact sequences, then so
are 0 —> 7(A',C) —> 7(A,C) —> T™(A",C) —> 0 and

0 —> 7(a,C") —> 7(A,c) —> T(A,C') —> 0.

Definitions 5.7: Iet A' —>A —> A" , C' —> C —> C" be exact
sequences. If T(A',C) —> T(A,C) —> T(A",C) and

T(A,C") —> T(A,C) —> T(A,C') are also exact, then T is said to
be an exact functor. let 0 —>A' —> A —> A" —> 0 and

0 —~>C!' —>C—>C" —> 0 be exact sequences.
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If 0 —> 7(A',C) —> T(4,C) —> T(A",C) and

0 —> T(A,C") —> 7(A,C) —> P(A,C") are exact, then T is said

to be left exact. If T(4',C) —> 7(4,C) —> T(A",C) —> 0 and

™(A,C") —> T(A,C) —> T(A,C') —> 0 are exact, then T is said

to be right exact.

The proofs of the following propositions are straightforward

and will be omitted.

Proposition 5.8: T 1is exact if and only if T is both right and

left exact.

Propcsition 5.9: The following are equivalent:

i)

ii)

iii)

T is left exact

If 0—=>A"—>A—>A" and C' —>C —>C" ~> 0 are

exact, then so are 0 —> T(A',C) —> T(A,C) —> T(A",C)

and 0 —> T(A,C") —> T(A,C) —> T(a,C').

If 0—=>A'~>A~—>4A" and C'—>C—>C" —> 0 are

exact, then so is 0 —> T(A',C") —> 7(A,C) N T(A",C) @ T(A,C')

where 1V has coordinates T(A,C) —> T(A",C); T(A,c) —> T(A,C')

Proposition 5.10: The following are equivalent:

i)
ii)

iii)

T 1is right exact

If ' >A—A"—>0 and 0—>C' —>C —>C" are exact,
then so are T(A',C) —> T(A,C) —> T(A",C) —> 0 and

T(A,C") —> 7(A,C) —> T(A,C') —> O.

If A'—=>A—>A"—>0 and 0—>C' —> C —>C" are exact,
then so is T(A',C) & T(a,C") J’é 7(A,C) —> T(A",C') —> O,

where ¢ has coordinates T(A',C) —> T(A,C) and ?(A,C") = 7(a,C).

We observe that by propositions 1.10 » 2.7 and 2.8 of chapter 3,

the functor ®A» is right exact and the functor homA is left exact.
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Definitions 5.1): A connected sequence of covariant functors is a

family T = ['I‘NI of covariant functors (of one variable) together

with connecting morphisms TN(A") —_— TN+1(A’) defined for each

exact sequence 0 —> A' —> A —> A" —> 0 subject to the conditions:

1) eee —> TN']‘(A") — A1) —> T(a) — T(aA") —> m™rlar) — ...
is & zero sequence.

ii) If 0 —> A' —> A —> A" —> 0 1is a commutative diagram

b

0—>B'—>B—>B"—-—>0

with exact rows then TO (A") — TN+1(A') is a commutative diagram

| |

™) — (s,
If the roles of A' and A" are reversed, {‘I‘N }] is a
connected sequence of contravariant functors.

Generalizing, a multiply connected sequence of functors is a
sequence {TN] of functors of the same varisbles and variance such
that there are connecting morphisms with.respect.to each variable’ for
vhich
i) (™ ] 1is a connected sequence of functors with respect to each
variable separately.

i1) If 0 —>A' —>A—>A"—>0 , 0->C} —>C —>C] —>0

Fobod oo

O-—>Ai—->Al—§.A'i-—>O 0~>»C'—=>C —C" —>0

1
are commtative diegrems with exact rows, then TN(A",C) — (A',C)

|

1" l L}
™(a ,cl) > iy ,cl)
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end T (a,¢') —> 'I'N+1(A,C") are commutative diagrams (where we

1
T(a,,C") —> T (s ,0")
have chosen {TN} all covariant in A, contravariant in C, . as a
typical example). If (" ] and (W) are multiply connected
sequences of functors, a morphism @: [TN] —_— [UN} is a sequence
of natural transformations @N: ‘I’N —_ UN vhich commte with the
connecting morphisms.

[Tor% (4,C)) end [E;ct}g (A,C)} are examples of exact multiply
connected sequences of functors (that condition ii) is satisfied
follows from the constructions, and propositions 1.8, 1.8', 2.8 and
2.8'.). The method by which TorA and Ex’cA were constructed is
actually quite general. Iet T(Al,...,A r) be any functor of r
variables. Assume that Al’ sA - are all graded. Define
TN]' PR ,Nr( _ elNl ez...Nr .

Al,...,Ar) = T(Al seeesh ) wvhere € =+ 1 if

A
i ,ooo,N

N
_ 1l T
TN(Al,...,Ar) '@T}NT (A)s--sa,) [for ], if all
complexes are left complexes as in the comstruction of TorA s this
Nl,-.o,Nr .
. ]
is the same as il\&wl\t T (Al,...,Ar)]. Ir Al"”’Ar

is another set of graded modules and fi: Ai —_ Ai

is a covariant variable, -1 if contravariant, and define

are given for

A, a covariant varieble, f,: A] —> A, for A, contravariant,

i i* 1 & N i
vhere f, is of degree p,, define T Lyeees r(fl""fr) on
Nl,---’ﬁr
T (Al’a.o,Ar) as
: B 2 €. N €N €. (N, +P.) e (N +P
1l 11 171 rr rt
('l)/T(fl oo .,frr): T(A1 ’ooo,Arr r) — T(A]'. K .,AI.'

where } =i% NipJ’ Zi = Iﬁli if T 4s covariant in Ai’ Bi = '(Ni + Pi)

if T is contravariant in A,. If g,: Ai—>Ag (resp.

8¢ A'j'. — A_,;_) ere morphisms of degree 9, we then verify that

2
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T(glfl, .o "grfr) = (-1) " T(gl, . .,gr)‘l‘(fl, o .,fr), where
o2 =1EJ P iq',j' Now suppose each Ai is a complex with differentiation
4, and let B, = T(iAl""’di""’iAr)’ The 5, anticoumute,
hence define T(Al’ cee ,Ar) as a complex with differentiation
z 61. If fl’ . .,fr and f]'_, .o "f;' are respectively homotopic
translations of complexes and 8y 1 <i<r are homotopies, then
for o, = T(iA]_""’Bi""’iAr)’ L o, defines a homotopy between
T(fl,...,fr) and T(fi,...,fl',).

Now if we are given a functor T of modules and we replace

all covariant variables A, by projective resolutions X all

i i’
contravariant variables Ai by injective resolutions Xi we obtain
a left complex. We define I.T(Al, .oe ’Ar) as HT(Xl, cos ,Xr) . By
propositions 1.8, 1.8' and the previous paragraph, LT 1is indepen-

dent of the choices of the X 1T is graded, and the component of

i
degree N gives a functor INT called the Nth left derived functor
of T. LT =0 for n<O0. By corollary 5.6, lemma 2.1, and
propositions 1.8, 1.8', 2.8 and 2.8', [LNT} is an exact multiply
connected sequence of functors. The augmentation morphisms

€: X —> A (resp. € 1 Ay
T LoT(Al""’Ar) —_ T(Al”"’Ar)' 7, is a natural equivalence

—_— Xi) induce a natural transformation

if and only if T is right exact: +the condition is necessary since
LOT is right exact; if T is right exact, considering our typical case
7(A,C), and letting X be a projective resolution of A, ¥ an
injective resolution of C, the sequence

X, ,Y°) @ T(Xo,Yl) 2. (X ,¥°) —> (A,C) —> O is exact by
proposition 5.10; since HO(T(X,Y)) = coker (#), +this gives the

result. For this reason, left derived functors are of interest for
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the study of right exact functors. Similarly, if we replace all
covariant variables by injective resolutions and all contravariant
variables by projective resolutions in a functor T of modules, we
obtain & multiply connected sequence of functors [RNT], called
the right derived functors of T. ROT is naturally equivalent to
T if and only if T is left exact.

It is clear that {Torg} are the left derived functors of

® and that {Exbg} are the right derived functors of Hom,.



