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CHAPTER 7T
DEDEKIND RINGS

1. Hereditary Rings.

. Definition 1.1: A ring A 1is left hereditary if every left ideal
is projective.
Lemma 1.2: Iet A be a ring and let P be a A-module. Then P
is projective 1f and only if for every exact sequence Q — Q!
-0, vhere Q is injective, MHom(P,Q) - Hom(P,Q') -0 is
exact.
Proof'; Necessity follows from proposition 2.10 of Chapter 3. Let

A > A" 50 be exact; we may embed this sequence in a commutative

dlagram with exact rows and columns:

o 0
‘ :

) 0 - A' 5 A - A" - 0,
14 W

QSQ" - 0

where Q 1s injective, Q" =Q/A'. Iet g: P - A" be a mor-
phism. There exists B: P —Q such that £ & = i'g. But then
im § Cim 1, so there exists . g': P —A such that fg* =g,
and P is projective by proposition 2.10 of Chaptexr 3.

Lemma 1.2°; A module Q 1is injective if and only if for every exact

sequence O —»P' »P where P is projective, Hom(P,Q) - Hom(P',Q)

. -0 1s exact.
Proof': Necessity follows from proposition 3.5. Iet O —A' - A De

exact, and embed this sequence in a commutative diagram with

exact rows and columns:
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o
4

M

'

0O - P gtP
iy i

0 - A& 54
y ¢

0 0

where P 1is projective, P' = i-]T(A'). let g: A' -Q be a mor-

~

phism. There exists ¥ P —Q such that &f' = gi’. But then

(M) = 0, so there exists g': A »Q such that g'f =g, and

Q 1is injective by proposition 3.5 of Chapter 3.

Theorem 1.3: The following are equivalent:

1)
ii)
111)

Proof';

3

A 1s left herediteaxy

Each quotient module of an injective left A-module is injective
Each submodule of a projective left A-module is projective.

i) = 1i1) follows from the proof of proposition 3.7 of Chapter

which depends only on the fact that (in a principal ideal do-

main) every ideal is projective.

i1) => 1ii) Consider a diagrem with exact rows

P j('— P' « O
£
Q J—) Q" - 0

where P 1is projective and Q is injective. Q" 1s injective

80 there exists f: P —»Q" such that fi =f. P is projective,

80 there exists f': P —»Q such that Jf' =f, jf'i =f1 = £,
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s0, by lemma 1.2, P' is projective.
iii) => 1) Every ideal is a submodule of A, which is A-free.
Definition 1.k A Dedekind ring is an hereditary integral domain,

that is, an integral domain every ideal of which is projective.

2. Tractional ideals.

Throughout this section K will denote an integral domain,

Q 1ts field of quotients,

Definition 2.1: A sub-K-module I of Q, I # (0), is a fractional
ideal if there exists k €K, k # 0, such that kI CK; a frac-
tional ideal I is called integral if I ( K. Let ! denote
the set of fractional ideals of K. It is clear that Y is a
monoid under multiplication, with K as identity. Iet t
=(k|k eq end kI (CK); aince I “I(CK, I' e« . In vhat
follows, ideal will mean fractional ideal.

Proposition 2.2: TIf I ek, then I°' 1is isomorphic to Hom(I,K).

Proof: If keI, xelI, then f(x) =kx defines £, & Hom(L,X),

and ¢(k) = £ defines a morphism ¢: Tt S Hom (I, K). Conversely,

k
let g eMom (I, K). Let xeINK, x#0 and &(x)=y.
Let k =y/x. Let g' e Hom (I, Q(K)) be given by g'(w) = kw.
Then (g' - g)(x) =y -y =0, end for any w e I, O =w(g' - g)(x)
= (8" - g)(wx) =x(g' - g)(v), and g -g=0. If y(g) =k,
defines +¢: Hom (I, K) —-»I-l, then g = iI_l, and oy = 1ﬁom<I’K),
Hom (I, K) is isomorphic to I L.
Proposition 2.3: Every integral domain K 1s coherent.
Proof: Iet P be a projective module of finite rank, r(P) = rm(P) for scme maxi-

mel ideal . :a (prop 5.2 of chapter 5). Since P, 1s free and (P’I)(O)

B P(O)’ To)(P) = T(o)(l“M) = r(PM) = rM(P) for any maximul ideal Mj

hence P is coherent, since r(P) = rm(P) = rM(P) for any M.
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Corollary 2.4k: If I ¢ J where K is an integral domain, then I
is invertible if snd only if I is a projective module; when this
is the case, I 1s finitely generated.

Proof: E(I) = (X, I, 0,...) so I is of rank one. If I is in-
vertible, 6: Hom (I, K) ® I -»K is an epimorphism, tr(I) =K,
and by propbsition 5.13 of Chapter 5, I is a finitely generated
projective module. If I is projective, I 1is coherent, and
'tr(A) = K by proposition 5.12 of Chapter %, Then by proposition
5.13 of Chapter 5, 6, Hom (A, K) ® A K 1is an isomorphism, _

Corollary 2.5: Iet K be an integral domain. Then K 1is a Dedekind
ring if and only if \R forms an Abeliam group, If K is
Dedekind, then K 1is Noetherian,

We remark that if K is an integral domain, any projective,
rank one K-module A is isomorphic fo a fractional ideal of
K: A.@k Q@ 1s free with one generator over Q; hence 1scmorphid
to Q, so A 1is isomorphic to a submodule of Q, which, being

finitely generated (by proposition 5.14 of Chapter 5) is in J.

3. Some properties and characterizations of Dedekind rings.
Proposition 3.1; K 1s Dedekind implies that every proper integral
ideal I 1is a product of maximal ideals.

Proof: Let A De the set of non-zero ideals in K which are not
products of meximal ideals. Since K 1is Noetherian, A has a
maximal element I, assuming A is not void. I is not a maxi-
mal ideal, hence is properly contained in & maximal idealv M.

"ICMCK, so M‘,lICKcm'l, and ICM'lI. Suppose I

= Mt I; then K = II"Y = M"Y, Hence I is properly contained
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-1 1 1 N N,
in M I Therefore M I £A, and M I =M "...M, °,
N N

I=M M l... Mr r, a contradiction, and A 1is void.
Corollary 3.2: If K is Dedekind and I ¢ \‘9 » I 1is a product of

maximal ideals and their inverses.

\ N N
Proof: ILet k €K, k £ 0, be such that k I (K. kI—-:Mll...M *
r
Non Note Non Nots, W1 .
kK =Mr+1 °“MI‘+S ’ and I =Mr+l .--Mr+s Ml -o-Mr 0

Corollary 3.3: Every prime ideal in a Dedekind ring is meximal,
Proof: Each prime ideal is a product of maximal ideals, hence contains
some maximal ideal.,

Lemma 3.4; ILet A and B be two finite sets of invertible prime
8

b o

T
1deals in an integral domain X. Suppose TP ¥ =T R where

A B
the rp and. 8, are non-negative integrers. Then A =B and

T =8 for all P .
p o € A

Proof; Assume false, We may suppose AN B = ¢ Choose P g A such

8
that P is a minimal prime of AuB. P D7TR r, hence P DR
B
for some ReB, and P = R, by the minimality of P, contradicting

ANB =g,

Proposition 3.5: If K 1is Dedekind, V& is freely generated by the

maximal ideals,

1
Proof; If I e, I-1,71, L and I, I

and I, may be assumed to be without common factors, and the

for some integral I 1
representation of I as a product of meximal ideals and their in-
verses is unique by the lemma.

Remark 3.6: If K is & Noetherian integral domain, let G(K) denote

the set of projective (invertible) ideals, The proofs above give
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that G(K) is an Abelian group generated by the maxima) elements
in G(K) ;G(K) is not necessarily freely generated since its gener-
ators need not be prime ideals,
Proposition 3.7: If K 1is Dedekind, K 1is integrally closed.
Proof: Iet x €Q be integral over K. There exists k e K, k £ 0,
ry () 7, ()

MlMl oo oM s .

rM(k) + NrM(x) > 0.

such that kx' e K for all N> 0. (ko)

il

For all maximsl ideals M in K, =, (i)
Since this holds for all N > O, rM(x) >0 for all M. Hence
the ideal K(x) dis a product of maximel ideals , and is contained
in X, x eK.
Remark 3.8: We observe that if I and J are ideals (in any commu-
tative ring &) such that I +J=A, then IWCINJT = (I +J)INJ
=X(INJ)+3(InJ)CII +JI =1J. Now let K be Dedekind.
" K is a Noethex;ia.n integrally closed domain such that every prime
ideal is maximal, hence minimal and relevent. Thus P(N) = PN
for all prime ideals P in K, ~and the unique representation of
any integral ideal in 3 as a product of maximal ideals is -its
unique reduced primary decomposition. 3ois isomorphic to /8 R
the group of divisors in K, Hence we can define an order function
on members of N& . Let 8 be the set of all prime ideals in
a Dedekind ring K. Note that if I e, then I = (afa e q,
orcl.p a> orde for all P €9 }.
Lemna 3,9: Let K be a Dedekind ring, let I ¢ ‘% and let T( 8
be a finite set, Then there exists ¢ € I such that ord.p a =

ordIJ I forall P e T,
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Proof:  Assume ord.p I =0 forall Pg$S - T. By theorem 7.11 of
Chapter 6, there exists o £ Q such that ordp a = o:rdp I for
all PeT and ordpazo for all PegS - T,

Proposition 3.10: 1Iet K be Dedekind, I ¢ ‘gq . Then a minimal set
of generators of I has at most two elements.

Proof: Let BeI, B#£0. Let T(CS be a finite set for which

ord.p I ord.p p for all PeS - T, Choose ¢ € I such that

ord-P o ordp I forall PegT, Then (e, B) C I while
ordp(a +B) = m:Ln(ordp o, ordp ) < ordp Iforall PeS, I=
(o, B).

We will now obtain four characterizations of Dedekind rings.

We need the

Lemma 3,11: ILet K be a Noetherian integral domain and let J g WA .
Suppose I € <> 1is such that INCJ for all N>O, Then I
is included in the integral closure of K.

Proof: Iet a el eandlet I =(a,...,8"). Then LCI,C... is
an ascending chain of submodules of J, For some N, I, =1

) N
N N-1
& € (8,...,8 ~) and a 1is integral over K.

N-1’

Theorem 3.12: ILet K be an integral domain., The following are
equivalenf:
1) K is Dedekind, (\z& is a group)
11) X 1is Noetherian, integrally closed, and every prime ideal is
maximal,
iii) K 1s Noetherian and every prime ideal is invertible.

1deal
iv) Every proper integral/is a product of prime ideals.
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Proof: i) => ii) has been shown.
11) = 11i1) Every prime ideal P 1is relevant, hence is the
minimal ideal of a principal ideal, say (@) = PR. K = a'l(a)

)

= P(oz-:L R), P
ii1) = iv) We will prive that every prime ideal is minimal,

hence maximal. Thus the (unique) reduced primary decomposition

of any proper integral ideal I will be a product of prime id.ea.la..
Assume OCR(CP, where R and P are prime ideals, P £ R.

Ten R CK, (RRI)PCR RCP, so RDRP™Y, RP = R. Thus
RF® = R for all N and RCN i (0) by proposition 1;9 of
Chapter 6. :

iv) => 1) Iet P be a prime ideal. We first show that for any

aegK-P, P=PP+ (a)). PDPP + (a)) is clear. Let K

= XK/P, a = a(mod P), By hypothesis P + (&) =7 RMR, P + (8.2)
_ N A
=78 ® 5 Where A and B are finite sets of prime ideals.
B N,
(&) =1 'ﬁMR, (52) =T8S S, end since (a) and (52) are

A B
invertible in J, so are all Re XA and § € B. By Lemma 3.k4
K=38 and 2Mp = Ny for all R e A, Hence (P+(a.))2=P+(a2),
PC(P+(a))2CP2+(a). If beP, b=c +ad, cePg, d ek,
then adeP, deP, s0 PCP2+a.P=P(P+(a))..

Now if P is invertible, K =P + (a) for all a gK - P
and P is ma.;;li;mal. If P is any prime ideal and a € P, a # 0,

PD(e)= TR

A
P DR for some R ¢ A, but R 1is invertible, hence maximal, so

where A 1is a finite set of prime ideals, and

P = R, and every prime ideal is invertible, Thus every integral

ideal, is invertible.
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b, vValuations, valuation rings.
Definitions 4.1: A valuation of a field F 1is a function | | from
F to the reals such that:
1) |a|] >0 for afo, |o| =o.
11) |ap| = |of |8l
111) |a + 8| < la] + |8]

If o + B| <,max (|a|, |B]), then || is called a non-Archimedian

valuation. Observe that if l | is non-Archimedian and chl >
|pl, then |a +p| < |a| and |a| = | +p - B, usx (Ja + 8|, |8]) = |a + 8|,
so that |a + B| = |a].

Definition 4.2: A valuation which is non-Archimedisn end non-trivial
(there is an o e F, « #0, with lee] £#1) 1is called d.iscréte if
im | | 1s an infinite cyclic (multiplicative) group.

Definition 4.3: ILet | | be a non-Archimedian valuation on a field
F. Define €= {ala eF, |a|] <1) and P = (a|a e F, |a| < 1}. -
By the definition of a non-Archimedian valuation, & 1is a ring
and P 1is its only maximal ideal, & 1is called the valuation
ring of | | and will be denoted ®(P) when more than cne such
ring are being considered. |

Proposition 4.b; TLet @ be a valuation ring. Iet I eand J be proper
1deals in & Then I(CJor J C‘I.

Proof: Assume I(J. Let ael, afJ. Let bed, b fo.
af (b), s0 afo £8, |ab|>1, [v/a] <1, bfae®,
be(a) I,

Definition 4.5; The ordinal type of the totally ordered set of proper
prime ideals of ¢ is called the rank of the valuation | |,

Proposition 4.6: TIet & be a valuation ring in a field F. Then



36.

any proper subring R of F containing ©® is the localization
G;? of & at a prime ideal P C ®.

Proof: ILet I be the set of non-units of R. If x, y € I, then
x[y or y/x, say y/x, is in &, hence in R, and x (1 + y/x)
=X +Y €I. Hence I 1is an integral ideal of R, I 1is a

 prime R-ideal contained in the meximal ideal of &, so R = o

Corollary 4.7: The (non-Archimedian) valuation | | on F is of
rank one if and only if ¢ is a maximal proper subring of F.

Proposition 4.8: A valuation ring © 1is Noetherian if and only if
its value group (imege | |) is discrete and when this is the

case | | is of rank one.

Proof: 1) Let ® be Noetherian and I (C & be an ideal. Iet I

(u,eeoou ) and let lull > |u,| for 2<1i<N. Then

1
]ui/ull <1, weuw® ad I-= (ul). Thus I is principal.
Iet P be the maximal ideal of & and P = (x). If P = (0),

Y is a field and | | is trivial. Assuming P = (x) #0, we
have that @ is a regular local ring of dimension one., By pro-
position 6.11 of Chapter 6, 1f y e®, yeM, y #M L, then
(¥) =M‘N, ¥ = M vhere A 1is a unit, |y| = |xN| = |x|N and

| ]xl generates the value group. |

i) 1If | ] is discrete, let |1r| generate the value group.

We may assume ITr] <1 (replacing T by 'lT-l if necessary).
(1) = {alaeF, |la] < |7]) = {alaeF, |af] <1}, so (w) is
the maximal ideal of & Lt I be an ideal, I CMN, I QMNH'.
Let a eI, a;éMN+l. a=MTN, A a unit, M - (a)CICM‘N,

and I is principal.
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Proposition 4.9; Let © Ye a valuation ring in a field F. Then
¢ is integrally closed.

Proof: Let o e F and aN + 8y aN'l et ag =0, a8 € 9. Assume

i
aN'il, 1EiSN: ldN"‘al aN-l+

l¢| > 1. Then [o] > |a;
ceeta] = laN] >1>0, a contradiction.
Theorem 4.10: The following are equivalent

1) @ 1is a discrete rank one valuation ring.

i1) @ 1is a discrete valuation ring.

1ii) ® 1is a local Dedekind ring, not a field.

iv) & 1is a regular local ring of dimension one.

Proof; 1) = ii) 1is obvious.

i1) = i11) O 1s a Noetherian, integrally closed domain with
one prime ideal by propositions 4.8 and h.9, hence 1s Dedekind
by ii) of theorem 3,12.
i1i) = iv) follows from corollary 7.4 of Chapter 6, which states
that the localization of an integrally closed Noethefian inteéral
domain at a relevant prime ideal is regular and of dimension one,
and the fact that o = 6.
iv) = 1): Let ¢, 0<ec <1 be aconstant. Define | | on
®) by |m| =c where T generates M, |A| =1 if A 1is
a unit in @ and IOI = 0. Any other element of €& is a unit
times a power (positive, negative or zero) ofypggposition 6.10
of Chapter 6, so | | 1is well defined. | | is clearly non-
Archimedien and discrete with valuation ring ©, It is of rank

one by proposition 4,8,

Corollary 4.,11: If K is a Noetherian integrally closed domain and
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P 1is a minimal prime ideal of K, then KP is a discrete rank

L]

one valuation ring., If the minimal prime ideals of K are indexed
by I, K=n L .
1er P1
Proof'; Kp is a regular local ring of dimension one by corollary 7.4
of Chapter 6, hence is a discrete rank one valuation ring by the

theorem. We define each valuation by fixing ¢, 0<c <1, and

orclp (04
defining o = 1 for aeq(X). aeK if and only if
1
o:r'dp >0 for all i € I, which holds if and only if
i
a eﬂ(Pi) =K_  for all i g I.
Py

5. Tae structure of finitely generated torsion free nodules over Dede-
" kind rings.
In the remainder of this chapter we will completely determine
the structure of finitely generated modules over Dedekind rings.
Definition 5.1: Let K be an integral domain. Iet A be a K-module.
An element a € A 1is said to be a torsion element if there exists
k €X, k # 0, such that ka = 0., The set AT of all torsion
elements of A 1is a submodule of A, called the torsion submodule,
If A, =0, A is said to be torsion free, A/AT is torsion free,
and O —>AT - A —>A/AT -0 1is an exact sequence.
Proposition 5.2: Let K be an integral domein, 7: K —»Q be its field
of fractions and let A be a K-module. Then ker (T ®1 A)’
! 1r®isz K®A -Q ®A, 1is isomorphic to AT
Proof: If ae A, end ka=0 with k ek, k £0, then 1®a
- in K®A
->1/k ®ka =0, If L®a =0 /there exists k ek, k £0,

such that k a = 0,



38.

Corollary 5.3: A flat module A over an integral domain is torsion
free,

Proof: O 5K®A -5Q®A 1s exact, so A'I'=O'

Proposition S.h4: If A is a finitely generated torsion free module
over an integral domain X, then there exists a monomorphism of
A 1into a finitely generated free module F; F may be chosen
to have as many generators as the maximal number of linearly in-
dependent elements of A.

Proof': A may be regarded as a submodule of Q ® A. Iet (al,...,am)

[}

A and let the vector space Q ® A over @ have a basis € seres

M .
ey 8y = j§1 83y B3 €9 Let MF e K, k £0, be such

that kgij e K for all 8y 8 = I (kg11
J=1L

A is contained in the sub-K-module F of Q ® A generated by

)kt e,), so that

the k~* ey F 1is free, and the k7t e

j are linearly independent
over K.
Corollary 5.5: Let K be a Dedekind ring and let A be a finitely
generated K-module. The following are equivalent
1) A 1is projective

ii) A is flat

ii1) A 1is torsion free
Proof: 1) => 1i) is clear (proposition 2.11 of Chapter 3).

ii) = i1i) was shown in corollary 5.3
iii) => 1) follows from the proposition and theorem 1.3.

Proposition 5.6: Iet A be a finitely generated torsion free module

over a Dedekind ring K. Then A 1is isomorphic to F ® I, where

I is an ideal and F 1is free with 4d(A) - 1 generators, d(A)
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being the maximal number of linearly independent elements of A.

Proof: We proceed by induction on da(A). If d(A) =1, there is
a monomorphism A —»K and the result is clear. Iet d(A) =N >2
and assume the result holds for d(A) =N - 1. We will obtain
an epimorphism f£i{ A —K. Then if A' =ker £ d(A') =N - 1.

A will be isomorphic to A' ©®K while A' is isomorphic to

P @I wvhere F is free with d(A') - 1 = 4(A) - 2 generators,
end the proof will be complete. ILet A = (I|I & 4 , ICK,
and there exists f: A I such that £ is an epimorphism].
Iet I be maximal in A and let A' =ker f, f: A->I. A

1s isomorphic to A'® I, so by the maximality of I, tr(A')

C I. But by proposition 5.12 of Chapter 5, ' det (A') =K,

so tr(A') =K, and I =K.

Corollary 5.7: If A 1is a finltely generated torsion free module
over & Dedekind ring, and A 1is isomorphic to F GBI, then T
is uniquely determined up to isomorphism.

Proof: E(A) = E(F ©1) = E(F) ® E(I). E(A)y = E(F)N_l ® E(I)l
which 1s isom‘orphic to 1I.

Remerk 5.8: We obtain a second proof that if I ¢ 3 , then a mini-
mal set of generators of I has at most two elements:; E(I @ I"l)2
= E(I)l ® E(I-l)l is isomorphic to K, so I 1t is free with

two generators and I can be generated by two elements.,



Lo.

6. The structures of finitely generated torsion modules over Dedekind
ring.

Now 1f A 1is a finitely generated module over a Dedekind ring,
0 AL »A ->A/AT -0 1is split exact, and A is isomorphic to An @A/AT,
the structure of A/AT being shown.

We remark that we cannot represent a ring as a direct sum.
This follows from our assumption that all rings are unitary and that
for f: A - T to be a morphism of rings, it is necessary that f(lA)
= iT: an injection of a direct factor of a ring A into A cannot
be a morphism of rings. No such difficulty arises in the case of mo-
dules, for which a finite direct sum is the same as a finite direct
product.

Iet K Dbe Dedekind, and let A be a finitely generated tor-

. sion module. If A=(81""’8‘N) and k., €K, ki;éo is such that

1
k; & =0, then k =k-...’k 1is such tha; kA;O. Lot I = amn (A),

I ;4 0. A is a K/I-module. Assume I = Ml l...Mr T is the represen-

tation of I as a product of maximal ideals. We will first show that
N N
K/I is isomorphic to the direct product (K/Ml l,...,K/Mr Ty and

that A is isomorphic to (Al""’Ar) = A e,..0 A, where amn (Ai)
N N
i
=M J

Proposition 6.1: Let A be a commutative ring, Tet I and J be

' A-ideals such that I +J =A. Then A/T N J is isomorphic to

AT A[T.
D ('1T1,1T )
Proof: Let / A?I nJ - /1, a/7). (1T1, 'n'2) is clearly a mono-

morphism. Let ([x], [y]) € ( A/I, A/T), and ('ﬂ‘l; 1r2)(x) =

([x], [x]). Teking differences, to prove (‘]Tl, 'rr2) an epimorphism
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it is sufficient to show that (0, {z]) € im ('n'l, 11'2) for all
[z] e /7. Tet L=a+b, ael, bed. Then z = az + bz,

(m, m,)(2) = ([b2], [az)), (m, m,)(az) = (0, [az]) = (o, [z]).

N N
Corollary 6.2: If I(C A is such that I =M T...M_ ' where the

i N N,
1
(A/Ml ,.-.I:I’ A/Mr )‘N

N N
Proof: I =M Y a..n M, ¥; A/T 1is isomorphic to (A /vy ;"'Mr-l r.'l)]_,
N

M, are distinct maximal ideals, then A/I 1is isomorphic to

r).

and inductively A/I is isomorphic to (A/Ml l,...,/\/Mr

Proposition 6.3: If A is a commutative ring and A is isomorphic
to (Jl,.. "Jr)’ then there exists a set of orthogonal idempotents
el,-oo,er Wj.th ei £ (O,...,O, Ji, 0’0--,0) and (el,--o,er) = l.
If B 1s & A-module, B =e, B +...+ erB. If bee Bne

i

b = eib1 = ejbz = e?bl = eJer2 = 0, and the sum is direct.

3B

Corollary 6.4: If A 1is a finitely generated torsion module over

N N,
ann (A) = M ...Mﬁ

a Dedekind ring and I , then A = Al @
@
Ar’ where Ai N
1 r
Proof: A is a K/I-module and K/I = (K/Ml ""’K/Mr ).

is a module over K/M, 1,

It remains to study the structure of finitely generated modules
over rings of the type K/MN . K/Ml\I is a primary ring (with maximal
1deal M/M'), all of whose ideals are powers of the maximal ideal,
since the only ideals of K containing MN are lower powers of M,

Iet L Dbe a primary ring all of whose ideals are powers of the maxi-

mal ideal M, end with M = (o).

Lemma. 6.5: M 1s a primcipal ideal, hence every proper ideal is princi-
pal. If M= (t), tY=o, |

Proof: Iet teM, tgM MD(t) + M, 1<r<N (t)+M =M
for some s, but t )éMQ, so 8 = 1. In particular, ;d= (t) v

= (t). Hence MF =(tT)y, 1<r <N. (0) = MY - (tN), so N =o0.
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Lemma 6.6: Iet O A 5 B TLL/MN_r -0 be an exact sequence of
L-modules, where N> r > O. Then if f: A »L 1is a morphism,

there exists a morphism f£; B - I such that f i = f.

Proof: If r =N, A is isomorphic to B, and if r =0, B is

isomorphic to A ® I, and the result is trivial is these cases.
Assume N> r>0. Let M= (t). Choose b g B such that 7(b)
= [1]. w(tN‘rb) = 0 dimplies T (ao) for some a € A.

0 = tT(t""p) = t7(1(a, ) = (¢ a ), so t'a =0 and trf(a.o)

0. Thus f(a.o) € M, f(ao) = t% for some s >N-r and
veL-M Write f(a) = tN'ru, where u = vts'(N'r). Note
that any x € B has at least one representation x = i(a) + kb,
k £ L. Define f£(b) =u, £(x) = £(a) + ku. We must show that
£ 1s vell defined. Assume 1i(g) + kb = i(a') + k'b, Then
1(a-a') + (k-k')b=1(a") + k" b = 0. w(i(a") + k"b) = [k*]
= [0], k" € MN-r, K" = wtN T say. But 1i(a") + Wt Ty o
i(a") + wi(ao) =i(a" + wao) =0 implies a" +wa =O. Now

£(1(a") + wtVTb) = £(a") + wt' Tu = £(a") + wt(a, )

£(a" + wa.o)
=0, and E is well defined. Clearly Ei = f and the lemma
1s proven,

Lemme 6,73 L 1s an injective L-module,

Proof; Iet 0 -A l)B be an exact sequence of L-modules, If
f: A-L 1is a morphism, we must find a morphism E; B 5L such
that f1 = f,
Let A = (B', £')|B' is a submodule of B, f'; B! »L is a mor-
phism, and there is a commutative diagram with exact row

i'
0 -» A > B'}.

|/

L
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(A,, £) € A, so A 1is not empty. Partial order A by defining
(B', £1) < (8", £") if B' CB" and f'[,=prlet ((B], £3)), ;
be a totally ordered subset and B = e Bj. If be B, be B!
€

for some i ¢ I. Define F(b) = fi(b). Then (B, F) e A, A
is iIndnctive, and by Zorn's lemma has maximal elements. Iet
A A A la)
(B, £) € A be maximal. Assume X,€B-B. Let B =B+Lx.
If IT=am (Lx), L X, = (L/1) x1is isomorphic to L/I.

A
Bl/B is isomorphic to L/MN'T for some r, 0<r<N, eand

by the preceding lemma, there exists fl: B1 —- L such that

0O 5B - B o LM~ 50

hig ) u// fl
L

is a commutative diagram with exact row. Now (Bl, fl) €A
and (g, 'f\) < (Bl, fl), a contradiction, so B =§ and the
proof is complete,
Proposition 6.8: ILet A be a finitely generated I-module. Then:
1) A is isomorphic to a direct sum L/Mkl Gi..G9I/MkS, 0<
k.i <N
11) The number of modules of type L/MJ, 0< Jj <N, occurring
in such a decomposition is unique.
Procof: 1) Let I = ann (A), I =Mk,‘ O<k<N, and A 1is an
L/Mk-module. let a € A be such that gt a, # 0, and let
i: L/Mk —»A be defined by i(k) =Ka_. 0 —>L/Mk La 1s an
exact sequence. Let A' = coker (1i). L/Mk satisfies the conditions
on L in the previous lemma, hence is injective., Thus L/Mk

is a direct summand of A, A is isomorphic to -L/Mk D ar,
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Repeating the argument on A', since A is finitely generated,
A 1is isomorphic to L/Mkl Gi..€9L/MFS.
11) M annihilates MjA/M‘j+1A, J =0,...,N-1 and M,A/ Hy
1s a vector space over L/M of dimension dj say. dN-l =
dim /M (MN'lA) is the number of summends of type L/M‘N, since
all other summands are annihilated by M' T, Similarly,
Ao - bdN_l is the number of summands of type L/MN'l. Inductively,
the number of summands of each type and the total number of
summands are unique.
We summerize the results of the last two sections in the
Theorem 6.9: ILet A be a finitely genersted module over a Dedekind
ring K. Iet A' be the torsion submodule and A" = A/A'. Then
1) A=A ©a
i1) A" =2F ®I where F is free with d(A") - 1 generators and

I. is an ideal isomorphic to E(A")

d(ﬁ").
Nl T
111) If A' #0 and ann (A') =M, "...M_ ", then A sA'lfB...
@ A' , vhere A ; 1s uniquely determined by the condition
N
i
1) =
ann (Ai) M, "

iv) Each Ai is isomorphic to a finite direct sum of syclic sub-
Ni Ni j Mq
modules of type (K/Mi !)/(Mi/Mi )Y =x/ jy 0<JI<N,
where the number of summands of each type is uniquely deter-
mined by Ai.
As a final result we observe that for K = %2 we obtain the
Corollary 6.10; Iet G be a finitely generated Abelian group. Then
G 1s a direct sum of a uniquely determined number of infinite
cyclic subgroups and of its Sylow subgroups; each Sylow subgroup
is the direct sum of cyclic subgroups, the orders of which are

uniquély determined.



