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CHAPTER 6
IDEAL THEORY IN COMMUTATIVE NOETHERIAN RINGS

In this chapter we develop further some of the results of
Primary decompositions of ideals obtained in chapters 1 and 2 and
develop briefly the ideal theory of local rings. The results obtained
will be used in the next chapter for the characterization of Dedekind
rings. The results on reguler local rings will be amplified later by
the use of homological methods.

In this chapter A will denote a commutative Noetherian ring.
1. Preliminaries (Krull's theorem).

We begin by restating some of the results of chapters 1 and

2 as applied to ideal theory. |

Proposition 1.1: Any ideal I in A hes a reduced primary decompo-

sition.

Proof: This is immediate from TheQrem 2.9 of chapter 1.

Notations 1.2: An associated prime ideal of én ideal I is said to
belong to I. An ideal I will be called P-primary if I is
primary end P =wI. I(M)={k/keA ,mke I for some me M) ,
where M 1is a monoid, is called the M-component of I.

Proposition 1.3: The set of ideals belonging to I is uniquely

determined by I .

Proof: This follows from theorem E.il of chapter 1.

Proposition 1.4: Let I be an ideal and P a brime ideal minimal
among the prime ideals containing I. Then P belongs to I and

in any reduced primary decomposition of I » ‘the P-primary factor is
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uniquely determined as I(Ap - P) .

Proof: This follows from proposition 1.6 of chapter 2.

Definition 1.5: Let P be a prime ideal. P is certainly a minimal
prime belonging to P , N>1, P(N) = PNKA - P) , the
P-primary factor of PN s is called the Nth symbolic prime
rower of P, If P is maximal, then PN is primary,

N) N

P( =P .

Lerma 1.6: Let J = R IN ; then IJ =J .

Proof: This follows from proposition 2.16 of chapter 1.

Lemmo 1.7: Let I and J be ideals such that IJ = J . ‘Then there
exists 2z € I such that (1 - z)J = (0) .

Proof: Let J = (xl,...,xN) . Define J, = (xi,...,xN) > Ty = (o) .

By induction on 1 , we prove that there evicts 2z, € I such that

i

(1 - zi)J'CJi . zZ=2 will then be as desired, TFor i =1,

N+1

z) = 0 suffices, Now assume we have z; with (1 - Zi)J<: J; ;

J=IF ,s0 (1- zi)JC I(1 - zi)JC I, . (1 - Zi)xi zjgi Zy5 X5 5
2;4 € I. (- zy - Zii)xi € Ji+1 . Then 1 - Zigg = (1 - zi)(l - 2,

defines a suitable Zi41 °
Corollafy 1.8: J = R IV is the (1 - I) -component of (0),
L-1I={1-alaeiIl)).

Proof: There exists z € I with (1L -2)J=(0), s0o JC (0)(1 - I).
But if (1L -x)y =0, xeI , then y =xy = xay = +s+ and
yed,so g=(0)1-1I).

Proposition 1.9: R . (0) if and only if 1 - I contains no zero

divigors [Krull's theorem].



Proof: 1 - I contains no zero divisors means that the (1 - I)-
component of (0) is (0).

Corollary 1.10: If A is a locel ring with maximal ideal M , then
R ' = (0).

Proof: Every element of 1 - M is a unit.

Corollary 1.11: If A 1is a local ring with maximal ideal M , then
R (T + MN) =1 , where I 18 a proper ideal.

Proof: /I is a local ring with maximal idesl M = im (M) .

Q M = (0) implies g+ My =1,

Corollary 1.12: Let P(C A be a prime ideal. Then N P(N) is the
(A = P) -component of (0) .

Proof: Let T: A 91\1) be the localization of A at P, ker (T)
is the (A - P) -component of (0) . P(N)l is the (A - P) -com-
ponent of P" , which is Pgiﬂ AL p(0) _ (q Pg) NA=(0)NA =ker (1) .

We conclude this section with the useful

Proposition 1.13: Iet A be a commutative ring. Let I be an ideal
and Pl seee ’PN prime ideals none of which contains I . Then
there exists a € I such that a belongs to none of the Pi .

Proof: We use induction of. N , the case N =1 being trivial. Assume
the result holds for any set of N - 1 prime ideals: For each

1(1 <1< N) choose a, ¢ I such that a, does not belong to

i i

any of Pi,eesPy 15P; 150, Py . If forany i, 8, ¢ P, the

i

result holds., Assume then that each ai [ Pi . Let

a =ig1 (a.l cee 851 ai+1 cee a’N) « The Jjth term of the sum is not

in P 3 while all the other terms are in P 3"

Hence a is as desired.



2. Residual division of modules and ideals.

Let B be a fixed A-module.

Definition 2.1: Let A be a submodule of B and I an ideal; define
A: I=(x|xeB,xICaA).

Lemma 2.,2: Let Q be a primary submodule of B with associated prime
ideal P and let I be an ideal not contained in P . Then
Q I =q.

Proof: By definition I(Q : I)CQ; I¢P, s0Q IC Q.
Q: IDQ is obvious, so Q: I =Q.

Proposition 2,3: Let A be a proper submodule of B and let I be
an ideal. Then A: I = A if and only if .I is not contained'
in any associated prime ideal of A in B .

Proof: Let A = Ql N...N Q‘N be a reduced primary decomposition of

" oA in B and let Pi be the associatgq prime ideal of Qi .

Assume no P, contedns I . By‘the lemma, Q:I=@ forall
i . Then A:I=(QQ1):I=Q(Qi:I)=QQ1=A. Now
assume that A: I = A . Observe that if J and K are ideals N
(A:J):K=A:JK. A=A: TI=4; I° ,end A=A:I° forall
r ., Choose r such that PEC ann (B/Qi) for ell i . If
ICP, forany i, Q: I' =B, while if IQPi then
Qi: T = Q‘.L » by the lemma., Thus I( P, for any i would con-
tradict the choice of: Q.i N...N QN as a reduced primary decom-

position of A in B,
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Corollary 2.4: Let I be an ideal such that (0): I = (0). Then I
contains an element a which is not a zero divisor for B
(L.e., @b =0, be B implies b = 0).

Proof: I 1s not contained in any of the prime ideals Pi associated
with (0) . Choose & € I such that za,g,’P:l for any l;i,
assoclated with (0). Then (0): (a) = (0) , and this means that

a 1is not & zero divisor in B .

3. Composition series, rank and dimension

Definition 3.1: Let Q be a P-primary ideal. A chain
P= Q{) Q, Deee ) Qqy = Q@ of primary ideals, where the inclusions
are strict, is called a composition series 1f it has no proper
refinements.

Theorem 3.2: Let Q be P-primary. Then there exists at least one
composition series for Q , any two such series have the same
number of terms, and every primary chain from P to @ can be
refined to a composition series for Q .

Proof: 1) By propositions 2,10 and theorem 2.13 of chapter 2, there
is & 1 - 1 length preserving correspondence between primaxry chains
from P to Q@ in A and in Ap » 80 we may assume that A

is a locel ring with maximal ideal P .
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11) Let QC ICP ; then there exists N with PNC ICP.
I is P-primary since 1f P' DI, P' =P, and P is the only
prime ideal belnnging to I . Thus any chain of ideals is a
primary chain. |

1ii) P is the only prime ideal containing Q , and chains are
preserved in A/ Q so0 we may assume that A is primary (A is
commutative and Noetherian with exactly one proper prime ideal) )
and Q is the zero ideal. Since Q is P-primary, there exists
£ such that p? = (o) . '

1v) For N>1 PVE™! 45 o vector space of dim ay , say,

over A/P - Thus there is a composition series of length d

N+l
N+l )

between PN and P and combining these from N =1 +4
=4 -1 , we obtain a series from P to (0) .

v) If P= I )...DIO = (0) is & chain, and P = Iy D...DJO = (0)
is & composition series, then r < N: J, I . Let k be such
that JQ L Iy C Ik+l We will show that
J, + I )Jl + Ik-l coe DJl +I = J, is a primery chain:

Let 0< J <k ; choose 8y € Typ o & d I, .+ - Then
since Jl'q IJ_‘_l > dp N IJ+1C g, (strict)

85 n;(I'j +J)

and Jianﬂ:(O). It a,j+18Ij+Jl’a,j+l'=aj+b’

aJﬂ - a'j =be J‘ n IJ+1 ’ J+l = 'a.'j € IJ » & contradiction.

Now P=Ir)...jlk+l Ik+J )...)I ta =J D (0)

has at least r + 1 terms and ends with Jl » (0) . Arguing

similarly in A/Jl > using the original composition series and

the new primary chain, and returning to A » there is a primary
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chain from P to (0) ending in Iy 5 d7 5 (0) with at leest
r +1 terms. Inductively, there is a chain from P to (0)
with at least r + 1 terms ending with JN,...,(O) , 80 T<N,
vi) By symmetric use of v), any two composition series have the
same length. Finally, any longest possible refinement of & chain
will be a composition series, and tke proof is complete.
Definition 3.3: If Q dis primary, the number of terms in a composition
series for Q will be called the length.of Q .
Definition 3.4: A proper prime ideal P is said to be of rank r
if there exists a descending chain of r prime ideals all strictly
contained in P and no chain with r + 1 terms; P 1s said
to be of dimension 4 if there exists an ascending chain of 4d
prime ideals all strictly containing P , and no chain with
d +1 terms. If I is any proper ideal, define rank (I)
= min rank (Pi) and dim (I) = max dim (Pi) , where
Pl,. .o ,PN are the prime ideals belonging to I . An ideal I
is said to be unmixed of rank N if rank (Pi) =N for all
primes Pi belonging to I .

Note that in determining rank (I) and dim (I) we may restrict
ourselves to the minimal primes belonging to I . Also, if I is
unmixed, then all primes belonging to I are minimel, and I has s
unique reduced primary decomposition.

Proposition 3.5: Let b be a non-unit and P a minimal prime belonging

to (b) . Then rank (P)<1.
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Proof: Assume P )Pl )PE , P % P,. We will prove P

1

=P

2.

Localizing

at P , we may assume that A is local with meximal ideal P ;

(b) is P-primary, spd every ideal between P and (b) is

P-primary. Let P

(r)

be the rth symbolic prime power of Pl .

The number of terms in P](_l) + (b) )P](_E) + (b) D... 1is finite,

being bounded by the length of (b) , so for some

80 AEP(M) , x-y+}».b£-: (b)P(M)+P
PiM)C PPiM) . P£M+l) , Pl

r, () <o

p(M) _ P£M+l)

20 s ) <28 L ) -
(M) C (b)P(M) . P(M+1) '

y+)\.b,y8P(M+l)

1

for a1l M>S .

5,

. . We assert that for M>S ,

let xeP(M)C () + P

;s NEA x-y=>~.bt—:P](_M),b¢P

(M+1)
1 )

(M+l))

Then
/P(M+l) - (1 /P(M+l)) ,

» by proposition 4.1 of chapter 5, and

1 2

mus 25 C 2{8) C g2 |

vhich is the (A - Pl) -component of (0) by corollary 1.15.

Iet xe P

1

M¢P2 since Pl)P2 s

This completes the proof.

Proposition 3.6:

Let PDP DP,

; there exists Me A - P, such that

8

80 X €P ,xeP2,Pl

2

MxS

CPz’

=0 3

P1=P2.

be & chain of proper prime ideals.

Let P]'_ gese ,Pl'c be any finite set of prime ideals none of which

contains P . Then there exists P¥ not contained in any P{

such that P D) P¥ DPO

Proof':

of the P! . (a)+PoCP

(

is a chain of prime ideals.

Choose & € P such that a does not belong to Po

i

a) + Po contained in P .

or to any

;5 let P¥* be a minimal prime of

P* D) P and P¥ is not contained



in any of the P! . If P =P , P/Po is a minimal prime of

' (a) in A/P0 and P/Po N\PO/PO DPO/PO, contradicting proposition

-

3.5. Hence P D) P¥)) P is a chain as desired.
Corollary 3.7: Let P = Pz ... )Pl )Po be a chain of proper prime

ideals. Let P]'_ ,'...,Pl; be any finite set of prime ideals none

of which contains P . Then there is a chain of length £ from

P to P with P
o} 1

Proof: If £ =1 , the result is trivial, If & > 2 , we apply the

not contained in any P:{ .

proposition to P, and P s then to P and the new P

2 £-2 £2-3 £-1

and so on until we obtain tke result.
Theorem 3.8: ILet I = (al""’aM) be a proper ideal and let P be
1 a minimal prime ideal belonging to I . Then rank (P) <M.
Proof: If M =1 , proposition 3.5 gives the result. Assume M > 2
and the result holds for M - 1 generators. Let Pi PP ’Pl': be
the minimal prime ideals of (ag,...,a.M) . Rank (Pi) <M-1,
80 we may assume that P 1s not contained in any of the P_,: . '
Let P =P, e )Pl )PO be a chain of prime ideals. We
will show that £ <M, By corollary 3.7, we may assume that
Pl is not contained in any of the P{ » Choose b € Pl such
that b is not in any of the P! . (v, a.2,...,a.M)C P, so
there is a minimal prime ideal P* belonging to (b, 8pyees ,a.M)
such that P*C P . P*)) (a2,...,a.M) so P* )Pi for some 1 .
. By construction, P¥ # P! . P DY DP:{ , but P/(az,...,aM)

is & minimal prime of E.l in A/(az,.;.,atd) , 80 P = P¥
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Thus P is a minimal prime of (b, a2,...,aM) , and P/(b) is
& minimel prime of (3yy...,8) , inA/(b) . Bamk (T/(b))<M -1
and P/(b)'= Pz/(b) Do )Pl/(b) is a chain. Therefore
£-1<M-1 ,8<M,.

Theorem 3.9: Let I be a proper ideal with rank (I)=1r >1 .
Then there exist r elements S EEEEPL of I such that for
1<i<r , rank (al,...,ai) =1,

Proof: We proceed inductively, The prime ideals of rank O are
Just the minimal primes belonging to (0) , hence are finite in
number, and none contain I since rank (I) 21 . Choose a € I
so that &, is not in any prime ideal of rank O . Rank (al) >1,
8o by proposition 3.5 rank (al) =1 ., Now assume we have found

(, -

a‘l,...,a.'j as desired, j<r o et Pl""’Ph be the prime

ideals of (al,...,ad) of ragk J , B ,see05Py

higher rank., Since rank (I) =r>j , I is not contained in

those of

any of Pl,...,Ph. Choose P € I such that a

J+l j+l¢Pi’

i=1,...,h . Let P be any minimal prime ideal of (al,...,ajﬂ) .

P)Pu for some p<k. If p> h , rank (P)_>_rank(Pu)23+l.
If p<b, P;‘Pp by construction and renk (P) > rank (Pu)+l=J+l .

Thus rank (P) > j + 1 . By Theorem 3.8, rank (a.l,...,a. )<J3+1 ,

JHL

80 rank (a.l,...,a )=3+1. This completes the proof.

Jtl



11.

4., Polynomial rings

To facilitate the discussion of local rings in the succeeding
sections, ve introduce some auxilary results concerning idealsin poly-
nomial rings.

Let A¥ = A[xl yeee ,x.N] be the polynomié.l ring in N indeter-
minates over A . A¥ is Noetherian by theorem 3.9 of chapter 1. An
element of A¥ will be written as ¢( Xyseee ,xN) or, for brevity, as
¢(x) . I, 3T, etc. will denote ideals in A , I* = A¥L , J% = \%J ,
etc. their extensions to A¥ .

Lemma 4.1: ¢(x) € I¥ if and only if all the coefficients of ¢(x)
to I.

Corollary 4.2: I*NA =1.

Corollary 4.3: If I = J, N...nJ, , then I¥* =J¥ N...0 J% . |

Proposition 4.4: If Q is ?-primary, then P¥ is prime and Q% is
P¥-primary.

Proof: We may assume A% is the polynomial ring in one indeterminate
by proposition 3.4 of @apter 1. Assume #(x) g P*, y(x) ¢ P* .

8 r
If d(x)=a.o+alx+...+asx ,ty(x)=bo+bc+...+brx ,

1

and a ) and bM are the first coefficients not-in P , then

¢ = i§j=£~l~maibj is not in P and ¢(x)¥(x) is not in P* ,
Thus P¥ is prime. Let P' C A¥ belong to Q% .

PPNADQNA=QP NA is prime, hence PCP' na , P*C P,
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We will show that P' = P¥ , Suppowe d(x) = a.hxh +eaot akxk g P .
By proposition 2.3, Q¥*: 4§ + Q*. Choose W(x) = b;,xr oot bsxs
such that ¢(x) ¥(x) e @* , ¥(x) ¢ @* . We may assume b, ¢Q ;
ab.€Q ,s0 a eP. ¢(x)-a.hxheP' + P¥ , P' =P¥ , and

Q% is P¥-primary.

Corollary 4.5: If I = Q N...N Q vhere Q is P, -primary, then
I* = %’ Nn...n Qi)\? where Q}f is Pa!f-prima.ry, and if the first
decomposition is reduced, then so is the second.

Proposition 4.6: If ¢(x) is a zero division in A% , then we can
find ¢ # 0 in A such that c ¢(x) =0 .

Proof: (0): ¢d(x) # (0) , so ¢(x) € P* where P¥ is some prime
ideal belonging to (0) in A% , by proposition 2.3. P* is
the extension of a prime ideal P belonging to (O) in A .

By lemma 4.1, a1l the coefficients of ¢(x) are in P .
(0): P # (0) , so there exists c # O such that c & (0): P .
Then ¢(x) =0 .

Proposition 4.7: If P is a prime ideal in A , then
rank (P) = rank (P*) .

Proof: We may assume A¥* is a polynomial ring in one indeterminate.
By corollaries 4.2 and 4.5, if P is a minimel prime ideal of
an ideal I , then P¥ is a minimal prime of I*¥ , Let rank (P) =r ,
rank (P*¥) =8 . If r=0, P is a minimal prime of (0) ,
P* is a minimel prime of (0) in A% and s =0 . Suppose

r>1. Let P:)PlD...DPr be a chain. Then P)PE’L"D...DP;G
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is a chain and s > r . By theorem 3.9, there exist r elements
85058, of P such that (al,...,a.r) is of rank r ;
hence P¥ must be a minimal prime ideal of A¥a, +.ou+ A¥a

By theorem 3.8, rank (P*) <r . Therefore r =s .

5. Local rings; systems of parameters.

For the remainder of this chapter, a local ring will mean a
Noetherian commtative ring with one maximel ideal. Q will denote
such a ring., M its maximal ideal. By dim Q we shall mean the
| dimension of the zero ideal, dim Q = rank M . A local ring of
dimension zero is a primary ring.

Proposition 5.1: dim Q is equal to the smaellest number of non-zero
elements required to generate an M-primary ideal.

Proof: Let dimQ=d4 . If 4 =0, .(0) is an M-primary ideel, and
the result is trivial. Suppose d > 1 and (al,...,a.s) is
an M-primery ideal. By theorem 3.8, & = rank (M) <s . By
theorem 3.9 there exist elements bl""’bd in M such that
(bl,...,bd) has rank d . Since M is the only prime ideal of
rank >4 , (bl""’bd) is M-primary. This completes the proof.

Definition 5.2: If dim Q=4 >1 , a set of d elements which
generates an M-primary ideal is called & system of parameters

in Q.
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Proposition 5.3: ILet I = (a.l,...,as) be a proper ideal in Q , and
let @ =YI . Men ain Q> din @ >dim Q-5 . Also,
dim Q' = dim Q - s if and only if al,...,as is a subset of a
system of parameters.

Proof: Let dim Q' =t . If t =0, (0) of Q is M'-primary,
8o I is M-primary, dim Q<s , dimQ-s5< 0 =dim Q' . If
t>1 , choose bl,... b, in Q such that there residues

t
mod I generate an M'-~primary ideal. Then (al,...,a.s,b ""’bt)

1

will be M-primary. By theorem 3.8, rank M <s+t,

dim Q' > dim Q-8 . If dim Q' =dim Q - s , then 8+t =4dim Q,

and (al,...,as,bl,...,’bt) is & system of ﬁarameters. Finally,

if (al,...,as,cl,...,cr) is a system of parameters, the residues

of Ccy yeeesCy mod I generate an M'-primary ideal R

dim Q' <r=AaimQ-s ,dim Q" =dim Q- s .
Corollary 5.4: If I is a proper ideal in Q containing an element

which is not a zero divisor , then dim Q/:r <dim Q. If beQ

is neither a unit nor é. zero divisor , then dim Q/ (b) =dim Q -1 ,
Proof: Any minimel prime P of I has rank > 1l , since other-

wise (0): P # (0), (0): I # (0). Hence Qim P < rank M |,

dim Q/I =dim I<rank M = dim Q . Setting I = (b) s

aim Q/ (b) < dim @ - 1 , and the opposite inequality follows from

the proposition.
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Definitions 5.5: Let Q¥ = Q[xl,...,xN] . A homogeneous polynomisal
of degree s will be called a form of degree s . Let tl,...,tN

be elements of M. The ¢, will be called analytically independent

i
if ¢(tl,...,tN) = O implies that ¢ € M* = Q¥M , where ¢ is
a form of arbitrary degree.

If tyseee,ty ave analytically independent and v M¢ is a
form of degree s , then w(tl,...,tN) 4 M(tl,...,tN)s : otherwise
W) =y (), v (6) e Mt,..,ty)® 5 ge) = w(t) -y (8) =0 ,
and g =

M ; hence ¥ =4 + ¥, would belong to M* |,
a contradiction. This property will be of use in characterizing regular
local rings. We prove now
? Proposition 5.6: If tl,...,td is a system of parameters, then the
ti are analytically independent.
Proof: i) Let ¢(t) = ¢(tl,...,td) =0 , wvhere ¢ is a form of degree
8 . We first show that the coefficient a of ti isin M.
ati € (te,...,td) ;if agM , a is a unit, ti e(tE""’td) ,
(tl,...,td)s C:(te,...,td) and since .(tl,...,td) is M-primary,
so is (tz,...,td) . This contradicts the minimality of a4 ,
S0 agM, |
ii) We now reduce the problem to the part already proven. Let
Q*=Q[xiJ],M*=w » where xij(lsiSd,lSJSG)
are d° indeterminates. M* is prime by proposition 4.4.

v Let m: Q* —> Q' Dbe the localization of Q% at M¥¢ . If
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If Y& @ ~M¢ , y has a coefficient not in M, so by
proposition 4.6, ¢ is not a zero divisor in Q% . Hence
ker () = (0) . Let M' = Q'M* = Q'M. rank M' = rank M by
proposition 4.7, and Q'tl deeet Q'td is M'-primary by

proposition 4.4. Hence t seeey,ty 18 a system of parameters in

1 a
Q' . Consider the determinant Ixi,jl . Ixijl g M*¥ , so lxijl
is & unit in Q'. Define ul,...,ud by ti =jgl Xijuj .
Q'u1 +eect Q'ud = Q'tl toeot Q'td 8O W ,...,u, 1s a system of
parameters in Q'., Define f(u) = ¢(§ xijuj,...,g xdjuj) =d(t)=0.

By part i) the coefficient of ui in f(u) is in M'. But this coefficient
is ¢(xll,x21,...,xdl) , which therefore is in M' N Q% = M¥ .,

This completes the proof.

6. Regular local rings.

We need one more preliminary result:
Proposition 6.1: Iet A be a finitely generated Q-module and let

ByseeesBy bein A . Let a = a, mod MA. Then the a;, gen-

i
erate A if and only if the 5.1 generate A/MA over K = A/‘M.
Proof: Assume 7MA=Kal T Ka.s . Let aeA,a=qlal Feoot qNB‘N’

9 £ Q. a.e(al,...,aN)+MA, AC (al,...,aN)+MA,
A MA A
/(a.l,...,aN) = /(al,...,a.N)., hence /(al,...,a.N) =0,

A= (al,...,aN). The converse is obvious.
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Corollary 6.2: [al,. ..,a.N} is a minimal generating set of A if and
only if {5.1,...,51\]} is a basis for the vector space A/MA over
K . The length N of a minimal generating set for A is equal
to dim, A/MA . |
Definition 6.3: Let Q be a local ring with maximal ideal M gener-
ated by a minimel set of N elements U,...uy and let K = Q/M .
By proposition 5.1 and corollary 6.2, dim Q <N-= dim, M/M2 .
A local ring for which dim Q = N is said to be regular.
Note that if dim Q = 0 and Q is regular, M =M2 , 8O
M=M for 11 N ; since HMN= (0) , M= (0). Thus a regular
local ring of dimension zero is the same as a field.
If Q is a local ring and M = (ul,...,uN) » the u, form

a system of parameters if and only if Q is regular. By proposition

5.6, if Q is regular, the u, are analytically independent. We will

i
prove the converse, and simultaneously obtain some fundamentsl properties
of regular local rings. For the next two lemmas » assume that Q is
local, Wy seee sy form a minimal set of generators for M , and the

u, are analytically independent.

i
Lemma 6.4: Let ath, a¢Mh+l ,bz-:Mk, b;!Mk"'l where

h and k are non-negative integers. Then ab ¢ AL
Proof: ae M® = (ul,,...,uN)h , 8O & = d(ul,...,uN) = d(u) where

¢ is a form of degree h not all of whose coefficients are in

M (since a ¢ Mhﬂ).‘ Similarly, b = er(ul,...,u.N) = y(u) where
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¥ 1is a form of degree k not all of whose coefficients are in
M. If Q% = Qlx,...xg) = Qlx], dlx) ¢ M, y(x) f W%, so
#(x) ¥(x) ¢ M* . Since the u, are analytically independent,
ab = ¢(u) y(u) ¢ Ml (by the comment after definition 5.5).
Corollary 6.5: Q is an integral domain.
Proof: If a #0,b #0,ab¢M forsome s>0 ,s0 ab #0 .
Lemma 6.6: Suppose N>2 . ILet Q' = Q/(ul) , Ei = u; mod (ul)("a <i<N).
Then (62,....,51\[) is a minimal base for M' and 62"""3‘1\] are
analytically independent.
Proof: It is obvious that the ﬁi , (<1< N) form a mimimal base
for M' . Let ¢'(ﬁ2,...,ﬁN) =0 where ¢' is a form of degree
8 . Let ¢ be the form obtained from ¢' by replacing each
coefficient by a representative in Q . It suffices to show that

4
all the coefficients of ¢ are in M . Assume not. Then

¢(u2,...,u.N) € (ul) , say gf(ue,...,uN) =au ; a # 0 since
+
¢(u2,...,uN) g™ Let b be such that a & M , 8 th 1 ,
say a = w(ul,...,uN) where ¥ 1is a form of degree h not all
_ ' +1
of whose coefficients are in M. au =u \!r(ul,...,uN) e M
but not to Mh+2 58 h+1l=3s. The form X of degree s
defined by X(xl,...,x.N) = g{(xl,...,x.N) - xlq:(xl,...,x.N) is such
that not all its coefficients are in M ; hence, since the uy
are analytically independent, X(ul,...,uN) ¢M5+l . Since

X(ul,...,uN) = 0 this is a contradiction.
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Corollary 6.7: The ideals (0), (ul),...,(ul,uz,...,uN) are all
prime.

Proof: (0) dis prime by corollary 6.5. By the lemma, Q/ (u:L ) satisifes
the hypotheses on Q , hence is an integral domain and (ul) is
prime,

Inductively, the result is obtained,

Corollary 6.8: @Q is regular.

Proof: dim Q< N . But by the previous corollary, dim Q >N.

Definition 6.9: Let A be a Q-module ’ ql""’qp a sequence of
elements of Q. If 9y all belong to M and for each i ,
1<1<p, q isnota zero division for A/(ql,...,qi_l) A,
then the sequence is said to be a normal A-sequence.

We collect results in

Theorem 6.10: Let Q be a local ring and let {ul,...,u.N} be a minimal

set of generators for M. Then

i) Q is regular if and only if the u, are analytically independent.

i
i1) If Q is regular, Q is an integral domain.

i1i) If Q is regular, (0)(C (ul)C oo C (ul,...,uN) is a chain

of prime ideals and the sequence ul,...,uN 1s a normal Q-sequence,

iv) If Q is regular, Q/(ul""’ul)
is a regular local ring of dimension N - i .
Proof: 1) folows from proposition 5.6 and corollary 6.8.

1i) follows from i) and corollary 6.5
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iii) follows from corollery 6.7 and the fact that q € Q, qu, +l€(u1,...,ui)
implies q e(ul,...,ui) .

iv) Let Q' = Q'/(ul,...,ui) - By proposition 5.3, dim Q' =N - i ;
but M! = (ul,...,uN)/(ul,...,ui) hasna minimal bage of N-1i
elements.

We conclude this section with
Proposition 6.11: ILet Q be a regular local ring of dimension one.
Let I be a proper ideal in Q . Then there exists N > 0 such
that I = MN .
Proof: M dis primcipal, say M = (u) . Choose N > 0 such that I MN ,
IQMl\I""l . Let agI, a.¢MN+l . ae() , say a = gu ;
- g gM , hence is & unit. Thus MN=(uN)=(a.)CICMN.
We will later show that this result means that Q is a local

Dedekind ring.

T. Integral closure; divisor.

Definitions T.1: If A is a subring of a ring B , an element x € B
is sald to be integrel over A if it satisfies a monic polynomial
with coefficients in A . The elements of B which are integral
over A form a ring which contains A : if x and y are
integral over A ,x and y are contained in a finitely generated

algebra M(C B over A, say M= ZAx,. Now zx =Z7\.1ij,

i
. . Xz 513-}\.13)}(3 =0 for zeB, hence AB=0, A=0, where
A = det(z Si J—}“ij)' A =0 is an equation of integral dependence

for z over A . — The ring so obtained
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is called the integral closure of A in B . Let B be the full
quotient ring of A (the ring of fractions of A with respect
to the monoid of non-zero-divisors) ; A 1is said to be integrally
closed if A is equal to its integral closure in B .

In the remainder of this sections, A will denote an integrally
closed, Noetherian, commutative ring, R its full quotient ring.
Definition T7.2: A prime ideal P of A is called relevant if P

is of rank one and contains at least one non zero-divisor.

Theorem 7.3: Let a € A be neither a unit nor a zero divisor. Then
(a) 1s unmixed of rank one and the localization of A at P
is a regular local ring of dimension one fpr any P belonging
to (a) .

Proof: 1) Let P belong to (a) . (a) # (a) : P by proposition
2.3. Choose be(a) :P, b¢ (a) . Let c=b/e.sR; cd A
bPC (a), so cPCA . If cPCP and P = (ul,...,uN) , then
cu, = .g. }‘i
A = det (c Si

3%y Jz_:(c B - hij)uj =0, AP =0 vwhere

J'}\i.j) , Aa=0, A=0., Tis means that c
is integral over A , c € A , a contradiction. Hence cP({ P .
Choose p € P suchfhat d=cpgP. ad=bp, AagP.

ii) We now consider m: A —> AP = Q , the localization of A
at P . ker (m) is the (A - P)-component of (0) . ILet
m(a) = a' , etc. a'd® =b'p', (a'da') = (b'p')C b'M , where
M =P' is the maximal ideal of Q. d¢ P , so a'¢gPp' ,

hence d' isaunitin Q , (a') = (a'd*)C b'M, Conversely,
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bPC (a) , M (a'), hence b'M = (a') . Choose me M
such that b'm =a' , b'M = (b'm) . We will prove that b!
is not a zero divisor in Q , so that M = (m) . It suffices
to show that b' is not a zero divisor in mA) . Let b'A' =0 ,
AMeA . Then b Ae ker (T) so there exists YEA~-P with
7bA=0. bp =ad , O=7Abp =9 Nad, O0=7ANd , since
& 1s not a zero divisor. A ¢ P, y¢ P so yagp ,
Aeker (1) , A =0,
i1i) We nov have that M = (m) . a g P » (0): P=(0) , soby
broposition 2.3, P does not belong to (0) . Hence
vank P>1 , dim Q=vank M =rank P > 1 . By theorem 3.8,
vak M<1 . Thwus renk P=1, dimQ=rankM=1, and
Q is regular.
| Corollary 7.4: If P is a relevant prime ideal of A , then AP
is a regular local ring of dimenéion one,
Proof: If b e P is not a zero divisor > P belongs to (b) . |
Corollary 7.5: Iet P be a relevant prime ideal of A . Then every
P-primary ideal is a symbolic prime power of P .
Proof: Let I be P-primary and let Q = AP, M= P:p . Ip =M for
some N> 0 by proposition 6.11. Then I = IP na=xn A= P(N) .
Corollary 7.6: TLet b e A be neither a unit nor a zero divisor and
let- P,...,P; be the prime ideals vhich belong to (b) . Then

N

the P i 8re precisely the relevent prime ideals which contain

b , and all of them are minimal prime ideals of () . (b) has
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exactly one reduced primary decomposition and this is of the

(r;) (ry)
form (b) = P, 7 N...N Py .
Proof: This follows from proposition 1.4, the theorem, and the pre-
vious corollary.
Definition T7.7: By a divisor will be meant a member of the free
Abelian group (written additively) generated by the relevant
prime ideals of A ; that is, if the relevant prime ideals are

indexed by a set I , a divisor is a formal sum £ s, P

b
iel 1
s, € Z , 84 # 0 for at most a finite number of i . If s; >0
forall 1eI, Z 84 Pi is said to be an integral divisor. If
iel
s, =0 forall i, Zs, P, is called the null divisor.
i S qer i 1

Let b e A be an element which is not a zero divisor and let
P be ; relevant prime ideal. Define ord p(b) as the symbolic power
to which P occurs in the reduced primary decomposition of (b) ,
where P(O) is defined as A so that ordp(b) =0 if P does not
belong to (b) . Writing si(b) = ord Pi(b) , we obtain a unique
integral divisor corresponding to b . If a &€ R and is not a zero
divisor, say a = b/c , define si(a) = si(b) N si(c) . This extends
the order function to the non-zero divisors of R .
Proposition 7.8: Let a and b be elements of R which are not zero

divisors. Then:

1) ord, &>N2>0 if and only if a e M)
i
i1) ord eab =ord a+ord b .
Dy Dy by
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iii) If a + b is not a zero divisor, then
ord  (a+b)>min (ord_ a. ord_ b) with equality if
D; - b Pj
ord a ford b.
bi b _
Proof: It suffices to prove the proposition for a s DEA . Let
Q= A, have maximal ideal M . Let ord,, a‘=r , ord b =s .
P(r) =Qa)NA so Qa) =M ; similarly Q(b) = M° . (
- N) _
i) If r?_N,asP(r)CP(N) ; if aeP(N),Mr-Q(B-)CQP —MN,
and r >N,
11) Q(ab) = Q(a)Q(d) = M and the result follows from i).
T
(), a+bep®)yple) p(E) Lpiae
if r<s,ad B peple)cplr) cp®) o

a+be P(r) ;a+b¢ P(r+l) ; the result follows from i).

1i1) If r<s , P(S)CP

Corollary 7.9: Let a and b be non-zero divisors in R with

corresponding divisors £ r,P, and % s,P written

17 14 jge7 11’
a<> X r P b<> X s8.P, . Then
1€ 11’ e 1d

i) ab <> Z (r; + 800, 5 %o <> 1§I(ri - 8, )P; .
i1) a € A 1if and only if its divisor is integral.
iii) a and b have the same divisor if and only if 8'/b 1s a unit
in A .
Proof: 1) ond ii) are obvious. iii) follows from ii) since a‘/b has

null divisor if and only if b/a. has, and then both are in A .
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For the remainder of this section we assume that A 1is an
integrally ¢losed Noetherian integral domain, R 1its field of
quotients. The relevant prime ideals are now the minimal non-zero
prime ideals
Lemma 7.10: ILet Io be a finite subset éf I and let i1 - Io.

Then there exists b € A such that ordPi b=1, ordpr =0
for all Jj € IO.

Proof: Choose x € Pi ; X # Pga). Let Io =I, + 12 where x € P

1 J

‘ (2)
if jeI, x¢P  if ke L,. Since Py ])Pi n (kg12 P,)
if Jel (since all relevant primes are minimal), we may
(2) 2o
choose y € P;"' N (kgT Pk) and y ¢ PJ for j € I,. Put
_ () _ L o4 pl2) _
b=x+y beP +P°/ =P, but b £ P;~’ go ordp, b= 1.
If eI, ,x€P; and y ¢ Py if keI, x £ P, yEP.
Thus b ¢ PJ it JeI, ordpj b=0 forall jETI.
Theorem T.1ll: Iet Io be a finite subset of I and let 8y E Z be

given for each 1 € I_. Then there exists & € R such that

8 - .
D i for 1€ Io and ordPi a>0 for J ; I0
Proof: For each 1 € I , choose b, €A such that ord b, =1,
o] i s Py i
: - - i -
ord:pj bi =0 for jE I0 - 1. Iet B —igio bi . ordPi g = si

for all i € Io. Iet I, be a finite subset of I - Io such

that orqpk B=0 if keI - (I0 + Il). For.each hel,,
choo c, EA ch that ord ¢, =1, 0ord ¢, =0 forIeIl_.
R 1 IR B T J

Iet 7 =g ¢,. 7&A. Consider f N vhere N>0 is an
3, %

integer. If 1 eI, ord B 7 =ord P+ Nord 7 =s,.
o’ %, P, P, 1
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N
If €1 or = ord + N ord > ord + Nord c
SO ordP B 7N > or@p‘ B+N>0 for N sufficiently large.
J

If keI- (I + Il)’ ord. B 7N > ord B=0. Thus a=p 7N
° Py T K
has the desired properties if N is sufficiently large.
Note that the proof of the theorem used only the lemma and the
fact that any element of R corresponds to a unique divisor. This

result will be useful in the study of Dedekind rings.



