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Chapter 5: Linear algebra and the structure of modules over
commutative rings.

In this chapter we will begin to exploit the relationship
between modules and their exterior algebras. Often, a three step
procedure will be used. First we will obtain results in the case
where the ground ring (the ring over'which all modules are taken)
is a field. These results will be used to obtain results|when the
ground ring is a local ring. Finally the results obtained about
modules over local rings wlll be used to obtain resulis about modules

over more general commutative rings by the process of localization.
Convention: Throughout this chapter ring will mean commutative ring.
Usually the ground ring will be denoted by K .

§1. Free modules and the notion of rank.

Definitions 1.1: If A 1s a module, the rank of A is the least

integer n such that E(A)q =0 for q>n . If no such integer
exists the rank of A i1s infinite. We denote the rank of A by
r(A) . In case the rank of A 1s infinite we write r(A) = .
When we write r(A) = n , we mean that the rank of A is finite,
and that it is n . The symbol = will be combined with itself and

with o according to the rules n + w = ® =w+n , and ® + © = o ,

If f: A—> B 1s a morphism of modules, then
E(f)q: E(A)q-—%> E(B)q for every integer .q . If an integer n

exists such that E(f)q =0 for q>n , the least such integer is
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the rank of f . If no such integer exists the rank of f 1s in-

finite. In any case the rank of f is denoted by r(f) .

Notation 1.2: If 1,jJ are non-negative integers, then the bi-

1)¢
nomial coefficient (%-,-1’39,-)‘ is denoted by (1,J) . Recall that

ol =1.

Proposition 1.3: If A 1is & free module with basis 8y yeeesB

then
i) E(A)q is a free module for any q ,
i1) if 0<q<n, a basis for E(A)q consists of the

eeed such that
i
1 q

0<i, <...<1i <n, and
1 q -

(q, n-q) elements ay

111) E(A)q=0 for q>n .

Proof: 'The proposition is an immediate corollary of 3.18 of the
preceding chapter. However, in order to perform a few calculations

with exterior algebras we will give a direct proof.

Let A? be the free submodule of A generated by
al,...,aq for g=1,...,n, and let [aq] be the free submodule

generated by 24 for ¢ =1,...,n . Now A' = [al] , and certainly

a+l

the proposition is true for A!' . Since A =1%09 (a_.] for

q+1
qQ=1,...,n-1 , we have by 3.13 of the preceding chapter that

atly _ q
E(A*) = E(A7) ® E([aQ+l]) . Thus
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E(a%) E(a?), ® E([ag, 1)y 1) .

Now using the fact that (r, g-r) + (r-1, q-r+l) = (r, g+l -r) for

= _ a q
r = Yiter = E(a )r ® (E(a )r-l ® [aq+l

r = l,.;. ,4 1t follows that if the proposition is valid for Aq it
is also valid for Aq-"l . Hence by induction the proposition is

proved.

Corollary 1.4: If A 1is a finitely generated free module, then

every basis for A has 1r(A) elements.

Corollary 1.5: If A is a free module of renk n , then E(A)q

is a free module of rank (g, n - @) for q = 0,...,n .

Notice that for any module A, E(A)o K , and that A =0

if and only if r(A) = 0 since E(A)l =A.

Proposition 1.6: If K is a field, and A is a K-module, then

i) the elements 81,+++,8, of A are linearly independent
if and only if the element a,...a e E(A)n is not

zero, and

i1) (8),..-,8.) is a basls for A if and only if r(A) =n

and the elements 8qjyeee,8 are linearly lndependent.

Proof: Let A!'! Dbe the submodule of A generated by Byreeerd

and let A" be a submodule of A such that A = At ¢ A" ., If
{8y,...,8 ) is a basis for A’, then E(A )y #0 by l.3, and
& ...a 1s a basis element for E(A')n . Since E(A) =E(A')®E(A")

we have that a,...a ¢ E(A) 1s different from zero. If the
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elements 81,058, are not linearly independent a proper subset
of (al,...,an] is a basis for A' , and E(A‘)n =0 . Thus
part i) of the proposition is proved. Part ii) follows easily

using 1.3 once again.

Comments 1.7: Notice that if K is a field then a module over K

and & vector space over K are the same thing. Further if A 1is
& vector space over K +the rank of A 1s almost what is usually
called the dimension of A . In fact if r(A) 1s finite then the
notion of rank coincides with the notion of dimension. In case
r(A) = © there is a difference between the notion of rank and that
of dimension. The dimension of A 1is the cardinal number which is
the cardinal number of any set of basis elements of A . In order
for this to make sense it must be shown that any two bases of A
have the same cardinal number. The assertion r(A) = » tells you
that every basis of A has infinitely many elements, but it does

not tell you what the cardinality of a basis of A is .

Proposition 1.8: If K is a field, and A and B are vector

spaces over K , then r(A ® B) = r(A) + r(B) .

Proposition 1.9: If K i1s a field, and f: A —> B 1s a morphism

of vector spaces, then

i) i4f r(B) =n , then f 1is an epimorphism if and only
if r(f) =n , and

i1) 4if r(A) =m , then f is a monomorphism if and only
if r(f) =m.

Both 1.8 and 1.9 follow immediately from 1.6. The details

are left to the reader.
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§2. Exterior algebras and change of rings.

Notation 2.1: If K 1s a ring, and A is a K-module, we let

EK(A) denote the exterior algebra of A . When no confusion will
result, such as when there is only one ring in the discussion, this

notation is abbreviated to the earlier notation E(A) .

Comments 2.2: If f: K —>L 1s a morphism of commutative rings,

then L may be considered as a graded algebra over K which is
concentrated in degree zero. If I is any other graded algebra

over K , then L @k I' is a graded algebra over K such that

(L R P)q =L & Iy - Turther L& T is a graded algebra over

L, where if x, ye L, 7eI‘q, then x(y®K7) = (x’y)®K7 .
Obser&e that 1f I is a strictly commutative graded algebra over

K, then L Qk I' 1s a strictly commutative graded algebra over L .

Proposition 2.3: If f: K —> L 1is a morphism of rings, and A

is a K-module, then

E(L& A)=L& EK(A)'.
Proof: Let I' be a strictly commutative graded algebra over L »

and suppose g: L Sk A(L) —>T is a morphism of graded L-modules,

]

where A(l)q O for q#1, and A(l)l = A . We know that g
is uniquely determined by the moxrphism of graded K-modules,

h: A(1) —>T such that h(a) = g1 R a) (chapter 3, 1.11).
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Since TI' is a strictly commtative graded algebra over K , there

is a unique morphism of graded algebras h: EK(A) —>I' such that

h) = h: A(l) =T . Considering h as a morphism of K-modules,

it determines a unique morphism of L-modules g: L & EK(A) —T .

~

Observe that g is a morphism of graded algebras over I ,

(L & E(4)),

algebrag over I, such that él =h: L ®K A(l) — I . This proves

L @k A, and E is the only morphism of graded

that L ®K EK(A) satisfies the required universal property for it
to be the exterior algebra of L ®K A over L , and hence proves

the proposition.

Corollary 2.4: If I is an ideal in K , then

B (5/1 & &) = K/ G B(A) -

Corollary 2.5: If P is a prime ideal in K , then

EKP(AP) = (Be(a))p -

These corollaries follow immediately from the proposition.

Recall that if P is a prime ideal in K , then KP is the ring K
localized at P , and AP is the modile A localized at P

(Chepter 2, §2). Further A, = K, ® A (Chapter 3, 1.11).
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§3. Direct decompositions of modules.

Definition 3.1: If A 1s an algebra over K , an element x € A

is idempotent if x2 =X . The set ® of idempotents of A is a

set of orthogonal idempotents if

i) xy =0 for x,ye® and x #y , and

11) 0¢ ® unless A =0.

Comments and recollections 3.2: If A 1is a K-module, then

Hom(A,A) is an algebra over K , where if f,g ¢ Hom(A,A) , then
(fg)(a) = £(g(a)) for a e A . Further if f is an idempotent
element of Hom(A,A) , then A=Im f @ Ker £ . If & is a set of
orthogonal idempotents of Hom(A,A) such that for a e A , the set
e, = (plp e ¢ and o(a) # 0} is a finite set, then there is a unique
element V¥ ¢ Hom(A,A) such that Yy o=@ =9y for 9e ® , ¥ is
an ldempotent, and Im ¥ = @

pe?

by ©® . Note that for ae A, & ¢(a) = F.:(p

00 =1¢ Hom(A,A) we say that @ is a decomposition of 1 , and in

Imn ¢ . This idempotent is denoted

c o p(a) . If
a

this case A = Im ¢ .

% ¢ o

Proposition 3.3 (Keaplensky): Let A be a K-module, and & a decom-

position of 1 such that if @ e ¢ then Im @ 1is a countably
generated module. If « is an idempotent element of Hom(A,A) ,

there exists V| a decomposition of 1 such that

i) if ye¥, ay=v o, and
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11) 1f Ye§ and o = {p|lpe ® and @y # 0} , then

v

Q\[r is countable, and ¥ =6 @

W L]

Proof: Let p=1-«a . Choose P € ® . Let Io = [q)[q) € ® and
either ¢ Q @ 0 or 9B cpo‘ # 0} . Suppose that subsets of @
called I ,...,I ~are defined. Let I ., = {(plp € @ and for some

¢' e I either pa o' #0 or ¢p o # 0} . Observe that each

In is countable. Let I, = Un I - We have that I  1is & countable
set of orthogonal idempotents. Let 1]!0 =@IL . We have that

1]:0 P =@ = @ qro , and « \Lfo = \!ro o . Further ﬂro is an idem-
potent such that Im \J/o is countably generated. In fact xlro

satisfies conditions 1) and 11) of the proposition for I =@ _

o
Now let { be the set of all idempotent elements of

Hom(A,A) satisfying conditons 1) and 1ii) of the proposition,

and let ¥ be a subset of § maximal smong those subsets which

consist of orthogonal idempotents. Let A =6 ¥ . Note that for

pe ® either Ao

]

O or Np=¢, and AO=0CON . Suppose

P, € ® , and A P 0. Let 1[10 be defined as in the first para-

graph of the proof, and let qu = \lfo - N \lro . Now 1[!1 Py =P, 2

¥y A=Ay =0, and \{rla=a\vl . Thus j{U{\lrl] is a set of
orthogonal idempotents contained in ﬁ and properly containing ¥ .
Since this is impossible, we have A ¢ = ¢ for every ¢ e ¢ , and.,

A =1 . Consequently the proposition is proved.
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Corollary 3.k: ILet X be a K-module, and suppose X = QieI Xi

and each Xﬁ is countably generated. If X = A @ B, then for
some index set J , A = QJGJ Aj and each Aj is countably
generated.

Proof: Let ® be the decomposition of 1 e¢ Hom(X,x) corresponding

to the decomposition of X and ®, . X, . Let @ be the idem-

ieXl
potent such that ofa,b) = (a,0) , and let | be a decomposition
of 1 satisfylng the conditions of the preceding proposition.

¥
corollary is proved.

For YeV,let A =Imay . We have A=®wef%,andthe

Corollary 3.5: If A 1is a projective module, then A 1s a direct

sum of countably generated projective modules.

Proof: For some free module X , we have X = A & B . Applying

the preceding corollary, the result is proved.

In closing this paragreph it should be pointed out that
the commutativity of the ring K was never really used in the para-

graph, and that all results are valid for an arbitrary ring.
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§4. Exterior algebras and modules over local rings.

Proposition 4.1 (Nakayama): If K is a local ring with maximal

ideal M, and A 1is a finitely generated K-module, then A = 0

if and only if K/MQ® A = 0 .

Proof: Suppose first that A has l-generator. In this case we
may assume that A = K/I where I is an ideal in K . Now
KM®K/I =K/M+ I . Since M is the unigue maximsl ideal in X ,
we have KM + I =0 if and only if I =K s 1l.e. if and only if
K/I = 0 . Suppose that the proposition has been proved for modules
having n-generators or less, and n >1 . Let A be a module with
n + 1 generators or less . Certainly there is an exact sequence

0 —>A' —> A —> A" —> 0 vwhere both A' and A" have at most

n generators. There results an exact sequence
KMO®A' —KMO®A—>KMOA" —>0. If KM®A =0 so does

K/M® A" , and then A" =0, This implies that A' = A and that
A hes at most n-generators. Consequently A = O by inductive
hypothesis. If A =0 certainly K/M® A = 0 , and the proposition

is proved.

Proposition 4.2: If K i1s a local ring with maximal ideal M ,

f: A—> B 1is a morphism of K-modules, and B is finitely generated,
then f 1s an epimorphism if and only if iK/M ®f: KM®A—>KM®B

is an epimorphism.
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Proof: Certainly if f is an epimorphism, so is iK/M<8 f . Suppose
that :LK /M ® f is an epimorphism. Let C = Coker f . We have an
exact sequence A —> B —> C —> 0 , and a resulting exact sequence
KM®A—>KM®B —>KM®C—>0 . Since i ® L is an epi-
morphism, it follows that X/M® C = 0 . Further C is finitely
generated because B is finitely generated. Consequently by the

preceding proposition C = 0 , and the desired result follows.

Definition 4.3: Let P be a free K-module with basis {ei}ieI .

An element x € F is of length n with respect to this basis if

there is a subset It of I with n elements such that

X and further n 1is the least such integer.

= Zyerr Ky%5 -

Proposition k.4 (Kaplansky): If K 1is a local ring, and A is

a projective module over K , then if a € A there is a finitely
generated free module F , and morphism a: F—> A , p: A—>F
such that

i) ae Ima

i1) pa = iF the identity morphism of F .

Proof: et B be a projective module and X a free module such

that A ® B = X . Choose a basis such that the length

{ei}ieI
of a 1s as short with respect to this basis as it is with respect

to any other basis of X .

Suppose that the length of & i1s n, I = (1,...,n} UI*,

and a = 2321 kJ eJ . Let « be the projection of X on A .
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n n
If k = zj=i kJ k5 , then a = zj=i kJ (k'j e, + ej) , and we could

1

replace e, by k'.e. + e, in the basis for X for J} =2,...,n,

J J1 J
thus obtaining a new basis for X such that the length of a with
respect to this basis is (n-1) or less. Since this is impossible,
we have that ky 4 I, ‘the ideal generated by k,,...,k . Similarly
if I

J
have k, ¢ I .

is the ideal generated by kl""’ k.n ) we

kj—l, k'j-l-l,...,

Now let ay = a(ej) for y =1,...,n0 . We have

n
ad = Zi=1 kji e:L + yJ whexe yj belongs to the submodule of X

complementary to the one generated by €028y il.e. assuming

that {1,...,n} and I' are disjoint yj belongs to the sub-

n
module generated by [ei]ieI' . Now zj=l yj =0,
_ oD _ D _ D n ‘
aEhig ke s h k8 =B D) kykyy ey, and

k

n

Let M Dbe the unique maximal ideal of X , and recall that
ke M if and only if k is not a unit in K . Now
IJ(: M for y=1,...,n , and the calculation of the preceding

paragreph shows us that k, , e M for 1 #3,and (1- k, i) eM
2

»d

for 1 =1,...,n since otherwise we would have k, ¢ I, for some

J J

J . The fact that (1 - kii) € M says that k is a unit in K .

ik
Thus {al, ei,...,en] u {ei]ieI' is a basis for X , or proceeding

{al,...,an} u [ei}ieI' is & basis for X .
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Let F be the free module generated by él""’én . Define

a, for i=1,...,n . Define

éi for i =1,...,n, and B(ei) =0 for

ieI'. Since AC X, we have defined « and p satisfying

a: F—> A by 0‘(51)

B: X —>F by B(ai)

the conditions desired in the proposition, and the proposition is

proved,
We now state a reformulation of the preceding proposition.

Proposition 4.5: If K is a local ring, and A 1s a projective

module over K , then if a,€ A there is a finite set of orthogonal
idempotents ¢1.C:Hbm(A,A) such that if ¢ ¢ ® , then Im ¢ 1is

free with l-generator, and (@ @l) =&, . Further if a, also

il 2
is an element of A , there 1s a finite set of orthogonal idem-

potents o, (C Hom (A,A) such that o Co if ¢e ¢, , then

2)
Im ¢ is free with l-generator, and (0 @2) &y = a, .
Proof: The first part of the proposition is immediate. To prove
the second part it suffices to observe that A = Im(6 ¢l) ® Ker(® Ql) R
and to apply the first part of the proposition to the element

52 =(1-0 ¢l) &, of the projective module Ker(® Ql) .

Theorem 4.6 (Kaplansky): If K is a local ring, and A is a

projective module over K , then A 1is a free module.

Proof: In view of 3.5 it suffices to prove the theorem assuming

that A 1s countably generated. Thus suppose I i1s the set of
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non-negative integers, and that {ai} is a set of generators

ieXl
of A. ILet & be the set of idempotents of A such that if
P € ® then Im ¢ i1s free with l-generator. Note that we may

assume A # O for otherwise the theorem is trivial.

Let ¢o be a finite subset of 5 consisting of ortho-
gonal idempotents and such that @ @o a, =&, . Suppose that @n
1s a finite set of orthogonal idempotents contained in ® such

that & @n a, =a, for 1i<n . Choose ¢n+ of the same type

i i 1
and containing Qn such that & ¢n+l a; =&, for i<n+1.
This 1s possible by the preceding proposition. Let @ = Un Qn »
and observe that @& ® 1is defined and & =1 , i.e. ¢ is a

decomposition of 1 . The existence of @ proves the theorem.

Up until this point in this peragraph, the fact that the
ring X dis commutative has not been used. Everything that has
been broved is true for left or right modules over an arbitrary
local ring. Now we pass on to a few propositions concerning exteriox
algebras and modules over local rings. Here since we use exterior

algebras we do need commutativity of the ring.

Proposition 4.7: If K 1is a local ring, and A 1is a finitely

generated K-module, then the rank of A over KX is the same as

the rank of K/M® A over K/M where M is the maximal ideal in K.

Proof: This proposition follows immediately from 4.1, and the fact

that EK/M(K/M®K A) =KM@ E(a) (2.h).
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Proposition 4.8: If K is a local ring, and A and B are finitely

generated K-modules, then
r(A & B) = r(A) + r(B) .
Proof: This proposition follows immediately from 1.8 and 4.7.

Proposition 4.9: If K is a local ring, and A is a finitely

generated K-module of rank n , there exist elements Bygeces8 € A
wvhich generate A , and every set of generators of A has at least

n elements.

Proof: We observe that this proposition is implied by 1.6, L.2,

and L4.7.

Proposition 4.10: If K is a local ring, and A is a finitely

generated K-module of rank n , then E(A)q is a finitely generated

K-module of rank (q, n-q) for q = 0,...,n .

Proposition 4.11: If K is a local ring with maximal ideal M,

f: A—> B a morphism of K-modules, and B is finitely generated

of rank n , then the following statements are equivalent:

i) £ is an epimorphism,
ii) EK(f)n: EK(A)n — EK(B)n is an epimorphism, and
1ii) EK/M(iK/M ® f)n: EK/M(K/M ®4A) —> EK/M(K/M ® 13)n
is an epimorphism.
Proof: Certainly i) dimplies 4i), and 1i) implies iii) because
EK/M(K/M® A) =KM® EK(A) by 2.4. By 1.9 we have that 1ii) dimplies

KM®A —> K/M®B is an epimorphism. Condition i) now follows

from 4.2, and the proposition is proved.
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§5. Coherent modules.

Definition 5.1: If A is a K-module, and P is a prime ideal in

K , the rank of A at P is the rank of AP over KP It is

denoted by rP(A) .

Proposition 5.2: If A 1s a K-module, then

i) r(a) > rM(A) for every meximal ideal M in K,

ii) if r(A) = n , there i1s a maximal ideal M in K

such that rM(A) =n , and

ii1) if r(A) = » , then for every integer n there is a

maximal ideal M in K such that rM(A) >n .

Proof: By 2.5, we have K, ® EK(A) = EKM(AM) for every maximal
ideal M in K . The proposition now follows from Theorem 2.1l4

of Chapter 2.

Definition 5.3: If A 1s a K-module of finite rank, then A is

coherent 1f r(A) = rM(A) ‘for every maximal ideel M in K . If
A 1is a K-module, then A 1is coherent if A is a direct sum of

coherent modules of finite rank.

The main object of study of this paragraph will be coherent
projective modules of finite rank. Notice that every free module
is coherent, and that 4.6 shows that every projective module over

a local ring is coherent.
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Proposition 5.4: If A is a projective module of rank n , then

i) E(A)q is a projective module for every integer q ,
ii) r(E(A)q) = (q, n-q) for ¢ = 0,...,n , and

1i1) if A 1s coherent then E(A) a is coherent.

Proof: Part 1) of the proposition is a special case of Chapter L,
3.20. Now if M is a maximal ideal in K, AM is a free KM-
module of rank less than or equal to n . Thus (E(A)q)M is a free
KM module of rank less than or equal to (q, ‘n=q) . Further there
is at least one maximal ideal such that rM(A) =.n . For any such
maximal ideal rM(E(A)q) = (q, n-q) for q = 0,...,n , and part ii)

follows. Part 1i1i) is now immediate.

Proposition 5.5: If A is a coherent projective module and

A®B =0 then either A=0 or B=0.

Proof: If A = 0 the proposition is immediately true. Therefore,

suppose A # O . For every maximal ideal M in K, O = (A®B)M=
AM & BM . However, AM is free and different from zero. There-
M

fore BM=O for every maximal ideal M in K , and B =0 .

Definitions 5.6: If A is a K-module, let 6: Hom(A,K) ® A —> K

be the morphism such that 6(f ® a) = f(a) . The ideal Im 6 1is

called the trace of A , and is denoted by tr(A) .

If A is of rank n , the ideal tr(E(A) ) is called the

determinant of A , and is denoted by det(A) .




144,

Definition 5.7: If X is a module, a coordinate system for X 1is

a set I , a set of elements of X, {xi} , and a set of elements

ie I

of Hom(X,K) , such that

OO,
i) for xe X, (i|]i eI and qk(x) # 0) is a finite

set, and
i1) for xeX, X =3 4 ¢i(x) X,

Proposition 5.8: The module X 1s projective if and only 1f there

exists a coordinate system for X .

Proof: Suppose {xi}ieI s [Qi}ieI is a coordinate system for X .
Let F be the free module with basis [ei}ieI . Define «a: X —> F
by alx) = BieT ¢i(x) e; , end p: F—>X by B(ei) =x; . Now
po. is the ldentity morphism of X , and so X 1s a projective
module.

Suppose X is a projective module, let F be a free module,
and @: X —>F , p: F—> X morphisms such that pa 1s the identity

morphism of X . Let {e be a basis for F . Let xi==5(ei)

i}ieI
for 1 e I, and let gq,: X —> K be the morphism such that
a(x) = ZyeT mi(x) e; - Now {xi]ieI s (Qi}iel is a coordinate

system for X , and the proposition is proved.

Lemms 5.9:; If A is a module of rank 1 , and f: A —>K is a

morphism, then f£(x)y = £(y)x for x,y € A..
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Proof: Looking at the construction of E(A) , we see that E(A)2

is the quotient of A ® A by the submodule generated by the elements
of the form x ® x for x € A (Chapter 4). The assertion that the
rank of A is 1 , says that E(A)2 =0 , or that A®A 1is
generated by elements of the form x® x for x e A . Let

T: AQ A—> A® A be the twisting isomorphism, i.e. T(x®y) =y®x .
Notice that T(x ® x) = x® x . Since A® A is generated by such
element T 1s the identity morphism of A® A, and xey=y®x
for x, ye A. Now let f: A®A—> A be the morphism such that
F(x®7y) = f(x)y . We have fT =% , i.e. f£(x)y = £(y)x , and the

lemma is proved.

Lemms 5.10: Let A be a projective module of rank 1 , and
{ai]ieI s {'q)i]ieI a coordinate system for A . If e, = cpi(a.i)

for 1 e I, then

i) e, e tr(a) ,

i
11) 1if x e tr(A) , then (1|1 e I and e, X £0)} is a

finite set, and
i1i) 1f x e tr(A) , then x = zieI(eix) .

Proof: The ideal tr(A) 1s generated by elements £(a) where
f ¢ Hom(A,k) and a € A . We have eif(a) = f(eia) = f(q)i(ai)a) =
f(aicpi(a.)) and since q:i(a) 1s different from zero for at most a

finite number of 1i's this proves ii). Part i) is immediate.
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Now f(a) = £(z q&(a)ai) = f(z q&(ai)a) = f(z eia) = Z(eif(a)) s

and the lemma follows.

Note that 5.9 was used twice in the preceding proof.

Proposition 5.11: If A is a projective module of finite rank,

then det A is a projective ideal in X , and (det A)2 =det A .

Proof: By 5.4 we may as well assume r(A) =1 . Note that if

r(a) =), E(A)o =K, and det A=K . Now let {e be

i}ieI
elements of tr(A) = det A as in the preceding lemma. Define

¥y tr(A) —=> K by wi(x) =e,x for 1 eI, xe tr(A) . Now

i
v,(x) # 0 for at most a finite number of 1i's . For 1 e I, let
i b4

I, = (3|3 el and es€; 0} , and let & = 2351163 . Note that

I, is a finite set, and ee; =€ for iel. If xe tr(4) ,

then I, o ﬂri(x)ei =Z, 1€ X, =%, r&X=x, 80 {ei]iel s
{wi)iel is & coordinate system for +tr(A) , and tr(A) is projective

by 5.8. Since e;6; = e, Tfor 1 eI and both e, and e, are
elements of tr(A) , we have tr(A)2 = tr(A) , and the proposition

is proved.

Proposition 5.12: If A is a projective module of finite rank,

then A is coherent if and only if det A =K .

Proof: If det A =K , we have an exact sequence

Hom(E(A)n,K) ® E(A)n —> K —> 0 vwhere n =1r(A) . Thus for every
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maximel ideal M in K , we have

(Hom(E(A)n,K) ® E(A)n)M > K, —> 0

is exact, and rM(AJ >n . Since rM(A) < n this shows that A

is coherent.

Suppose now that A is coherent. In order to prove that
det A = K it suffices to consider the case r(A) =1 . Now we

have an exact sequence
0 —> tr(A) —> K —> Kftr A —> 0 . )

Note that since xr(A) =1, det A = tr(A) . Since A is projec-

tive, this glves rise to an exact sequence
0 —> Hom(A,tr(A)) —> Hom(A,K) —> Hom(A,K/tr(A)) —> 0 .

'Hovever, looking at the definition of tr(A) , we see that if

f: A —> K 1is any morphism, then Im £ tr(A) . Thus

Hom(A,tr(A)) —> Hom(A,K) , and Hom(A, K/tr(A)) = O . Observe

that if f£: A —>Kftr A, then tr(A) AC Ker £ , and s0

Hom(A, K/tr(A)) = Hom(A/tr(A)A , K/tr(4)) . Now A/tr(A)A = K/tr(A)®A
is & projective module over K/tr A . Thus if A/tr(A)°A i1s not

zero there is a non-zero morphism f: Aftr A-A —> K/tr A . Since

this 1s impossible K/tr(A) ® A =0 and by 5.5, K/tr(A) =0,

i.e. tr(A) = K, and the proposition is proved.

Proposition 5.13: If A 1s & K-module of rank 1 , and tr(A) =K,

then
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i) A is a finitely generated projective module, and

i1) 6: Hom(A,K) ® A —> K is an isomorphism.

Proof: Since tr(A) = K , there exist elements £15000,8 € Hom(A,X) ,

n
and X;,...,X € A such that l—z,j=l fj(xj) . Now if xe A,

Cewi _ oD _on :
X =x1 = Z,j=l x f,j(xj) = zj=l 3‘.‘J.(x)x'j by 5.9. Thus

{fl,...,fn] s {xl,...,xn} is a coordinate system for A and A is

a8 finitely generated projective module.

Now let A: K —> Hom(A,A) Dbe the morph.ism such that
Mk)(a) = ka , and let &: Hom(A,K) ® A —> Hom(A,A) be the morphism
such that &(f ® a)(x) = f(x)a . By Proposition 4.2 of Chapter 3,
® is an isomorphism. Further A(6(f ® a)(x) = A(f(a))x = f(a)x = £(x)a

using 5.9 once again. Thus A 6 = & which implies that 6 1is a

‘monomorphism and hence an isomorphism, and thus proves the proposition.

Observe that A 1s also an lsomorphism.

Proposition 5.14: If A is a coherent projective module of finite

rank, then A is finitely generated.

Proof: Suppose r(A) =n . Using 5.12 and 5.13, we have that E(A)n
is finitely generated. Since E(A)n is generated by elements of the

form XyeeeX where x, € A for i =1,...,n , we have that there

i
exist elements XygeeesXy finite in number such that the products '

X, eeeX
ll in

E(A)n . Let A' be the submodule of A generated by Xj,...,X -

of these elements with 1< i < ... < in < m generate

1
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For every maximal ideal M in X, AM is free of rank n ,
so it is finitely generated. Further if f: A* —> A is the in-
clusion morphism, then EK(f)n: EK(A')n — EK(A)Il is an epimor-

phism. Hence EKM(A'M)n — EKM(AM)n is an epimorphism for every

maximal ideal M in K . Thus using 4.11, Aty = Ay for every

maximal ideal M , vwhich implies A' = A and proves the proposition.

Proposition 5.15: If f: A—> B is a morphism, and B 1is a

finitely generated coherent module of rank n , ‘then the following

statements are equivalent:
i) £ is an epimorphism,
ii) E(f)n: E(A)n — E(B)n is an epimorphism,

ii1) EKM(fM)n: EKM(AM)n —_ EKM(BM)n is an epimorphism for

every maximal jdeal M in K , and

iv) EK/M(iK/M ®f) EK/M(K/M ®A), —> EK/M(K/M ®B) is

an epimorphism for every maximal ideal M in K .

Proof: The proposition follows using the now familiar process of

localizing at each maximal ideal M of K and using 4.11.

Observe that there are other equivalent assertions to those
stated in the preceding proposition such as, K/M ® A —> K/M ®B

is an epimorphism for each maximal i1deal M in K.
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Next we turn to the question of which rings have the pro-
perty that all projective modules of finite rank are coherent. In
order to do this we define the notion of idempotent ideal which

corresponds in many ways to the notion of idempotent element.

2

Definition 5.16: An ideal I in K is idempotent if I" =1,
and I is a projective ideal. The ring K is coherent 1f the

only idempotent ideals in K are O and K.

Proposition 5.17: If K 1s a ring, the following conditions are

. equivalent:

i) +the ring K 1is coherent,
ii) every projective K-module of finite rank is coherent,

iii) 4if A dis any non-zero projective module of finite rank
over K, and B is any K-module, then A® B =0 if

and only if B =0 .

Proof: Using 5.11 and 5.12, we have that conditions 1) and 11)
are equivalent, and by 5.5 we have that i1) implies 4ii). Now
suppose 1ii) and assume that I is an idempotent ideal in K .
There is an exact sequence

' 0—>I—->K—>K/[I—>0.

There results an exact sequence

0 —=>IQ®I—->I®K—>I®K/I—>0



