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Chapter 4. Some well known algebras.

For convenience we will assume that we have chosen a fixed
commtbative ring K. All modules and algebras considered in this
chapter will be assumed to be modules or algebras over K without

further comment.
§1. PFree algebras and -free products of algebras.

Definition 1l.1l: If X is a set, the free algebra generated by X

consists of an algebra A and amap i: X —> A such that if T
is any algebfa and f: X —>I' is any map, then there is a unique

morphism of algebras F: A —>T such that Ti = f .

Note that the definition of algebra (Chepter 1, 3.1) requires
that an algebra be associative. In the literature this requirement
is not alwayé made. Consequently the algebra defined sbove is some-
times referred to as the free associative algebra generated by X .
Notice that since we have defined the free algebra generated b&ﬂ X

by means of & universal property if it exists it will be unique.

Thus as usual we are stuck with the problem of proving existence.

In'order to provevexistence it is convenient to make a slight detour.

Definition 1.2: If X 1is a set, the free monoid generated by X

consists of a monoid M and a map i: X —> M such that if N is

& monoid, and f: X —> N is a map, then there is a unique morphism

of monoids f: M —> N such that Ti = £ .



101.

In the preceding definition we do not use the convention
used in Chapter 3 that monoids are comutative. By convention if X
is the empty set the free monoid generated by X is the monoid with
l-element. Notice that this monoid satisfies the desired universal

property.

Proposition 1.3: If X is a set, the free monoid generated by X

exists.

Proof: Let M be the set of finite sequences of elements of X, in-
cluding the empty sequence which is denoted by 1 . Now if x==(x1,...,xn)
and y = (yl,...,ym), let xy = (xl,...,xn, yl,...,yn). Thus M be-

comes a monoid and its unit or identity element is 1 .

Suppose N is a monoid, and f: X —> N is a map. Define
f: M—> N by ¥1)=1, and f(xl,...,xn) = f(xl)...f(xn) .
Clearly f 4s a morphism of monoids. Let 1: X —> M be the map
such that for x € X, i(x) is the one termed sequence (x) . Now

f1 = f , and it is clear that if g: M —> N is a morphism of monoids

]

such thét gi =f then g = f . This proves the proposition.

Proposition 1.4: If X 1is a set, the free algebra generated by X

exists.

Proof: Let A be the free module generated by the free monoid M
generated by X , and let i: X —> A be the natural mep. If I is
an algebra, and f: X —> I is a mpa, let 'f*;: M —> T be the morphism

of monoids obtained by considering I’ as a monoid under multiplication.
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Since A 1is the free module generated by M we have that ft in-
duces a unique map of K-modules f: A —>Tr . Purther A is an
algebra in a unique way so that M —> A is a morphism of monoids,
and f | is a morphism of algebras. Certainly T is unique, and the

proposition is proved.

Proposition 1.5: If X is a set, and i: X —> A is the free algebra

generated by X , then A as a module is the free module generated by

M vhere M is the free monoid generated by X .

This proposition is just a restatement of some things we have

observed previousiy and needs no proof.

Notation 1.6: If X is a set, we denote by T[X] the free algebra

generated by X. Purther if f: X —> Y is a map of sets we denote

by T(£): P[X] —> T[Y] the corresponding morphism of algebras.

Definition 1.7: If A end T are algebras, the free product of A

and T' 1is an algebra A ¥ I’ together with morphisms of algebras

'Ly: A —>A*¥T and i,:T —>A ¥T such that if % is an algebra,

r
end f: A —> %, g:I' —> & are morphisms of algebras, then there
is a unique morphism of algebras f % g: A ¥ ' —> X such that

(£ * g)iA =f and (f % g)ir-= g .

Before proving the existence of the free product of algebras

in general, we first prove a special case.
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Proposition 1.8: If X and Y are sets, then

T(X] * P[Y] = T[X U Y] .

Proof:  Corresponding to the natural maps il: X—>XUY and

1,: Y —>XUY ve have morphisms of algebras j.: T[X] —> T[X U Y]

Ik
and J,: T[Y] —> TXUY] . If £: T[X] —> £ and g: T[Y] —> &
are morphisms of algeb:as; they correspond to maps fi: X — % and
gl: Y —> I, and there results a unique map fingl; XKJY —_—
such that (fl Ueg )il = f, and (fl Ueg )i2 = g . There results
& unique morphism of algebras f % g: T[X U Y] —> £ such that

(£ * g)i = £ U<gi wvhere i: X UY — T[X U Y] is the natura; map.
Clearly (f * g)3, = f and (f * g)j, =g and f *g is the only
morphism of algebras having this property. Consequently the propo-

sition is proved.

Notlce that the preceding proposition not only gives infor-
mation concerning what the free product of free algebras look like

but also proves the existence of the free product of such algebras.

Proposition 1.9;: If A is an algebra, there exists a set X and

an- epimorphism of algebras f: P[X] —> A .

Proof: Choose for example X to be A considered as a set, and
f: X —> A to be the identity map. There results a morphism of
algebra f: T[X] —> A such that i = f . Certainly f is an epi-

morphism of algebras.
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Proposition 1.10: If A and I' are algebras , then their free

Product A *¥I' exists.

Proof: Let X, Y be sets, and f: T[X] —> A , &: T[Y] —>T be
eplmorphisms of slgebras. Let T = ker ¥ and J = ker g . Purther
let Jl: T[X] — T[X U Y] and ot T[Y] —> T[X U Y] be the natural
morphism of algebras. ,Lef A¥DP be T[XUY] modulo the ideal
generated by jl(I) u JZ(J) . Letting 1,: A —>A *¥T be the mor-
phism induced by ‘jl and iI': I'—> A ¥ +the morphism induced by

J, the result follows easily.

Definition 1.11: If A 1s a module, the free algebra generated by

A 1is an algebra T(A) together with & morphism of modules i: A —> T(4)
such that if f: A —> A is any morphism of modules where A 1s an
algebra, then there is a unique morphism of algebras *t: T(A) —> A

such that i =f . If g: A—> B is.a morphism of modules, then .

T(g): P(A) —> T(B) is the corresponding morphism o;‘.’ algebras, i.e.
;I(g)iA = 1.8 . “

Proposition 1.12: If A 1is a module, then the free algebra generated

by A exists.

Proof: If X is a set and F(X) 1s the free module generated by
X it is easy to see that T(F(X)) = T[X] . Thus the free algebra

generated by a free module exists.

Suppose now A is any module, let 7: F —> A ‘be an epi-
morphism where F 1is a free module. Let N = Ker 7 , and let

7
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i,: F— T(F) be the natural morphism. Lét T(A) be the quotient
of T(F) by the ideal generated by il(N) , and let i: A —> T(A)
be the morphism induced by i, . Clearly T(A) together with i
satisfies the desired universal property and the proposition is

proved.

Notstion 1.13: If A is a module, let T (A) =K and

T +1(A) =A® Tn(A) for n an integer greater than or equel to zero.

Note that Tn(A) = A®...Q9 A the tensor product of A with

itself n-times.

Proposition 1.14: If A is a module, then T(A) = ® 150 'I‘n(A) as

a module. | B

Proof: Let A =@ 'I'n(A) . Now we want to map A into an algebra.
In order to-do this _;otice that TP(A) ® Tq(A) is naturally isomorphic
with Tp+q(A) . The natural isomorphisms define a morphism of modules
'q): A ®A —> A such that if x = X ©...8 X, € TP(A) and

Y=y 8.8 yq € 'I'q(A) , ‘then

(x ®y) =.x:L ®...® X, ®y, .8 Vg € ij+q(A). . Thus we have a
bimorphism A X A —> A  such that (x,y) goes into ¢@(x® y) and

A becomes an algebra. Further we have A = Tl(A)C A . Suppose now
I' is an algebra, and f: A —> I’ 1s a morphism of modules. For each
integer n , we have a morphism of modules o : Tn(I‘) —> T such

that if y =y, ®...®y,_ ¢ Tn(I‘) then an(y‘) =y) - ¥, » Turther

if T (f): B (A) —> T (F) is the tensor product of f with itself
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n-times, we have o Tn(f ): -Tn(A) —>I' and thus have defined a

‘morphism of modules f: A —>TI such that if x € Tn(A) , ‘then

f(x) = o Tn(f)(x) - Since there is no doubt that f is a morphism

of algebras this shows that A —> A satisfies the {miversa.l property needed

to be the free algebra generated by A and proves the proposition.

Comments 1.15: In vigw of the structure of T(A) as a module, the

algebra T(A) 1is frequently called the tensor algebra of A .

Notice that now £hat we have tensor products at hand the
deﬁn:l.tibn of algebra (1, 3.1) may be rephrased. Thus an algebra A
is a module A ‘together with morphisms of modules P: AOA —>A
and 19 K —> A such that

1) the diagram
AoA@p 2815,
Ji@(p J 0]
AN —2 5

':Ls commtative, and
2) the diagram
A=koaLl8is o,
14
A®K

Ji@n

A®p — 3

i ?

is commutative, where 1 is the identity morphism of A .
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Note that condition 1) says that A is associative and 2)
that it has a unit namely n(1) . The other conditions used in de-
fining a ring are included in the fact that A XA —> A ®A is a
bimorpﬁism, or that the composite A X A —> A ® A —2> A is & bi-

morphism.

Proposition 1.16: If A is a projective module, then T(A) is &

projective module.

Proof: If A 1is projective there exists a free module F , and a
morphism A —=-> F —T->.A such that ii is the identity, i.e.

A is a direct summand of A free module. Thus T(A) QEQ; (F) 2(1; P(A)
and T(w) T(i) is the identity. Since T(F) .is free the proposition

is proved.

Proposition.1.17: If A is a flat module, then T(A) is a flat

module.

Proof; This follows immediately from three facts. First the tensor
'product of flat module is flat, secondly the direct sum of flat modules

is flat, and thirdly proposition 1.1k.

Proposition 1.18: If A and B are modules, then T(A @ B)=T(A)*D(B).

The proof of this proposition duplicates that of 1.8.
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§2. Tensor products of algebras and free commutative algebras.

Recall that in 1.15 we observed that an algebra A consisted
of a module A ‘together with a morphism of modules @: A ® A —>A
and a inorphism N: K —> A satisfying certain conditions. The
morphism ¢ is called the multiplication morphism of A and 17 is
called the unit of A ., More properly n(1) should be the unit of

A and 1 should be called by some slightly different neme.

Definition 2.1: Let A be an algebra with multiplication morphism

P A ®A ~> A and unit m, K—> A, and let ' be an algebra
with multiplication @p: T ®TI —>TI' and unit Mpt K—>T . Let

:LA and :I.I, denote the identity morphism of A and ' respectively.
The tensbr product of A .and I' is the algebra A ®I' with multi-

plication theé composite morphism
:LA TR in cpA ® q:r

A®TI®ABT —>AQ@AQ®r®T ——> A ®T' and unit

nA®'qI.:K=K®K——>A®P where T: ' ® A —> A ®I' 1is the

Stwisting isomofphism.

The preceding says that if x, x' € A,. y,y' ¢ I' then
(x®y)(x'®y') = xx* ® yy* , and the unit of A ®I' is the element
1®1 . Properly we should verify that the multiplication in A ®T
is associative and that 1®1 is & unit before making the above defi-

nition. These verifications are left to the reader.

We have canonical morphisms of algebras tA—>AQT
®1i

jA
‘ W® " r,
defined by A =AQ®K —~——>AQ®T and ' =K®P ——=3A®D .
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Proposition 2.2: If f: A —> % and g: I —> £ are morphisms of

. algebras such that the diagram

A®r£9§z®z¢ °
z \
T \\\\\; s
g® f /‘Pv

rer i ye z

is commutative, then P5 o(f ® g) is the unique morphism of

algebras h: A ® I' —> £ such that h,jA =f and hJP =g .

The ‘proof of this proposition is immediate from the defi-
nitions.

In view of thé preceding proposition it is easily seen that
if A, are commutative algebras then A ® I' is a commutative
algebra such that if x j:s a commtative algebra and f; A —> I
g: ' —> ¥ are morphisms of algebras then there is a unique morphism
of algebras h: A ® I' —> = such that th =f and h,jr =g .
;’.L’nis means that when we are working with commutative algebras the
tensor product of algebras plays exactly the same role as does the

free product when we are working with all algebras.

‘Definition 2.3: If X is a set, the free commutative algebrsa gener-

ated by X consists of a commutative algebra A and a map i:X—> A
such that if I' is any commutative algebra and f£: X —> I' any
map, then there is a unique morphism of algebras T: A —> I' such

that fi = f .
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Notation and recollections 2.4k: In Chapter 1, 3.2, we have already

defined the notion of the free commutative algebra generated by a
/

set X . It is just the polynomial algebra K[X] . Recall that

K[X] is a free K-module.

Proposition 2.4: If X and Y are sets, then

K([X] ®,K[x] = K[X U Y]

Proof: This proposition has a proof completely anslogous to that of
1.8. It is left to the reader. The reader is urged to compare this

proposition with 3.4 of Chapter 1.

Definition 2.5: If A is a module, the free cormutative algebra

generéted by A is a commutative algebra L(A) together with a

morphism of modules i: A —> L(A) such that if A is a commutative
algebra and " f;: A —> A is ahy morphism of modules, then there is

& unique morphism of algebras f: L(A) —> A such thet 1 = ¢ .

If g: A—> B is a morphism of modules, then L(g): L(A) —> L(B)

is the corresponding morphism of algebras.

Proposition 2.6: If A is a module, then the free commutative

algebra generated by A exists.

Proof: There are two easy proofs of this proposition. One is an
imitation of the proof of proposition 1.12 using K[X] . The other
is made by letting L(A) be the quotient of T(A) by the ideal I

generated by those elements of the form i(x) i(y) - i(y) i(x) for

X,y € A . The ideal I is the comnmutator ideal of T(A) .
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Proposition 2.7: If A and B are modules, then
L(A ® B) = L(A) ® L(B) .

. This proposition follows at once from 2.4. It is the ana-

logue of 1.18.

Proposition 2.8: If A is a projective module, then L(A) is a
projective module. '

Proof: If A 1is projective there exists a free module F , and
morphism ALsF "o 4 ouch that T is the identity of A .
Thus L(A) L) 5 L(F) Ii(ﬂ—> L(A) and L(m) L(i) dis the identity
of L(A) . If the set X is a basis for F , then L(F) = K[X] ,

so L(F) is free, and consequently L(A) is projective.
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§3. Graded modules and graded algebras.

Definitions 3.1: A graded module A is a sequence Ao’ Al, of

modules indexed on the non-negative integers. The module An is

called the component of A in degree n . If A and B are graded

modules a morphism f: A —> B 1is a sequence of morphism

fn: An S Bn indexed on the non-negative integers. If f: A —> B
is a morphism of graded modules, then Ker f is the graded module
vhose component in degrée n is Ker fn, Im £ is the graded module
whose coinponent in degree n is Im :E‘n, Coim £ is the graded module
whose component in degree n is Coim fn > and Coker f 1is the

graded module whose component in degree n is Coker fn .

Saying that a morphism f£f: A —> B of graded modules is a
monomorphism is equivalent to saying Ker £ = 0 . Similarly f is

an epimorphism if and only if Coker f = 0 . The sequence of morphisms

of graded modules A -=>B &3 ¢ 1is exact if Im(f) = Ker(g) .

‘Notice that this is the same as saying that for every n , the sequence
f g

A > B > is exact.
n n g Cn

Definition 3.2: If A and B are graded modules, then A® B 1is

the graded module such that (A ® 13)n = @ A, ®B

1+3=n A4 5 The standard

twisting isomorphism T: A® B —> B® A is defined by letting

Ma®b) = (1) b®a for aech,beB .

A graded module A 1s projective if every exact sequence

0 > B > X > A > 0 of graded modules is split exact.
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This is equivalent to saying that each An is projective. Similar
considerations apply to flat modules, or injective modules. We

take these to be understood.

Notice that in the preceding the fact that our ground ring
K 1is commutative entered only into definition 3.2. Otherwise all
of these considerations apply equally well to modules over an arbi-

trary ring.

Definitions and remark 3.3: The graded module A 1is concentrated

in degree n if Aq =0 for q#n . If B is any module we can
associate with B a graded module B(n) concentrated in degree n
for any n , by letting B(n)q =0 for q#n, and B(n)n =B .
By an abuse of notation we write K instead of K(0) . With this
convention we have that if A is any graded module, then

K®A=A=ARK .

Definition 3.4: A graded algebra A 1s a graded module A together

‘with morphism of graded modules ¢@: A®A —> A and n: K —>A

such that
1) the diagram
iA ® ¢
AQARAN ———3>ABA
J P %A J (o)}

A ® A —2 5 g

ls commutative where ?A is the identity morphism of A , and
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2) +the diagram

1]®iA ~
A=K®@AN ———>A®A
n o
A®K
:I.A CP
iA®n “
A®A I N

is commutative.

If xe AP s Y € Aq we frequently denote by xy +the element
cp(x ® y) belonging to AP +q Notice that condition 1) says that
graded algebras are associative, and conditon 2) that they have a

unit. Morphisms of graded algebras are defined in an evident manner.

. Definition 3.5: If A 1is a graded module, the free graded algebra

generated by A is a graded algebra T(A) together with a morphism

of graded modules i: A —> T(A) such that if A is any graded
algebra and f: A —> A any morphism of modules, there is a unique

morphism of graded algebras %: T(A) —> A such that fi=r.

Proposition 3.6: If A is a graded module the free graded algebra

generated by A exists.

Proof: ‘The proof is essentially the same as the proof of 1.1h. We
let TO(A) =K, and Tn+l(A) =AQ® Tn(A) for n a non-negative
integer. We then let T(A) = ® 5o Tn(A) , eand define a multiplica-
tion in T(A) such that if x = x; ®...® x, € ‘I‘p(A) , and

Y=y, ®..8y, €T (A) then (x, ®...0 xp)(yl 8.8y ) =

()L_L ®...Q X, ®y, ®..8 yq) . Note that xy € Tp+q(A) . TFurther
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observe that Tn(A) is not the component of T(A) in degree n

which we denote by T(A)n .

If A is a graded algebra, and f: A —> A is a morphism
of graded modules then fT: T(A) —> A is defined by letting

F(x) = f(xl)...f(xp) if x=x 8..0¢ TP(A) .

Proposition 3.7: If A is a graded module, then

1) T(A) is projective if A is projective, and

2) T(A) is flat if A is flat.

Definitions 3.8: The graded algebra A is commutative if the diagram

'A®Aq>
Tl\l
<

AB®A

is commutative where T is the twisting isomorphism and ¢ is the
miltiplication of A .

The graded algebra A is strictly commutative if it is cum-

mutative and if further for x ¢ An where n dis odd 'xe =0.

.

Definition 3.9: If A 1is a graded module, the free strictly commu-

~ tative graded algebra generated by A is a strictly commutative

graded algebra L(A) together with a morphism of graded modules

i: A—> L(A) such that if A is a strictly commutative graded
algebra and f: A —> A is a morphism of graded modules then there
is a unique morphism of graded algebras f: L(A) —> A such that

fi=1~.
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Proposition 3.10: If A is a graded module, the free strictly

commtative graded algebra generated by 'A exists.

Proof: .Let I be the ideal in T(A) generated by the elements

Xy - (_l)pq yx for x e AP y Y € Aq and the elements x2 for x e Ap
where p 1s odd. Let L(A) = T(A)/I , and let i: A —> L(A) be
the natural morphism. .Obéerving that the algebra L(A) is strictly
commtative and that it satisfies the desired universal property the

proposition follows.

Definition 3.11: If A and I are graded algebras then A ®TI' is

the graded algebra with multiplication the composite

1 ®T® 1 9 © %

A®re®A®r -2 L >A®A®r®r 2—I>A®r where q

is the mltiplication of A and P the multiplication of T' , and

., ®n
wit K=K®K-2—TL>A @ where 7 is the unit of A and n,

is the unit of T .

- Let jA:A—->A®I‘,and jI,:I'———>A®I‘ be the natural

morphisms of graded algebras.
H b 4
Observe that if x®yeAP®I‘q,x Ry eAm®I‘n then

x®y)(x'®y!) = (-l)qm xx!' ® yy' is an element of

A;p+m ® I‘q+n Cher )p+m+q+n . A '

Proposition 3.12: If f: A —> % and g: ' —> £ are morphisms

of graded algebras such that the diagram
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r®r £28& se 5.
%
T z
gL p2

roA —=—>20Q®=

is commutative where P is the multiplication of X , then
s o(f ® g) is the unique morphism of graded algebras h: A @' —> &

such that hJA = f and th =g .

Proposition 3.13: If A and B are graded modules, then

L(A & B) = L(A) ® L(B) .

The proofs of the preceding proposition are immediate from

the definition and they are left to the reader.

Definition 3.14%: If A is a graded module A° is the graded module

such that A: =0 for q odd, and A: = Aq for q even. Similarly
A° is the graded module such that Ag =0 for q even and‘A;:Aq
for q odd. The graded module A° 1is called the even part of A ’
and A° is called the odd part of A . The module A is even if

A =A%, and odd if A = A° .
Notice that if A 1is any graded module, then A = A% e a° .

Definitions 3.15: If F is a free graded module a basis for F is

a graded set X , i.e. a set for each non-negative integer n , such

that Xn is a basis for Fh .
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If X is a graded set, let X be the graded set such that

an element of in is a function h: Uq Xq —> % such that

1 ‘
) h(x)>0 for xe Uq Xq s
2) {x|x e Uy X, end h(x) # 0} 1is a finite set, and

3) if for q a non-negative integer we let

hq = Q(er.th(x)) , then z‘.q hq =n .

Note that in 3) above though we are taking infinite sums in
each such sum only a finite number of elements are not zero, so that
we are in reality dealing with finite sums.

It h.l. € Xm, h2 € Xn , define hl h2 € Xm+n by
(hl he)(x) = hl(x) + he(x) for x e U X . With this definition we

q
. Consider XC X by

ta Bte)

have defined' a function Xm X Xn o _—
X C in the element x of X being the function which takes the

value 1 on x and vanishes on all other elements of Uq Xq .

Let K[X] be the graded algebra over K such that in is

a basis for K[X‘]n and such that the diagrem

X, x X > Xy

! |

K[X]P X K[X]g —> KXl

is commutative for every pair of non-negative integers p and q .
The inclusion X X induces a morphism i1; F —> K[X] if X is a

basis for F .
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Proposition 3.16: If P is an even free graded module with basis X,

then K[X] = L(F) .

Proof: Let A be a strictly commutative graded algebre and

f: F—> A a morphism of graded modules. Define f!: X —> A in

the following way. Suppose h e i% , 8nd X;,...,X, are the elements
of UX, onvhich h is not zero. Let ft(h) = f(xl)h(xl)...f(xt)h(xt).
Let T: K[X] —> A be an induced morphism of graded modules. Observe
that T is a morphism of graded algebras, and in fact it is the only
morphism of graded algebras such that Ei = £ which proves the pro-

position.

The reader is urged to compare the preceding with Chapter 1,
3.3. The algebra K[X] is the polynomial algebra generated by the
graded set X . Note that we needed that X be even, i.e. Xq =@

the empty set, in order that K[X] be strictly commutative.

Definition 3.17: If X is a graded set, let X be the graded set

such that an element of in in a function h: Uqu —> {0,1} such
that
1) {x |xe Uqu and h(x) # 0} is finite, and

2) if 'hq = q(gxexq h(x)), then %y hq =n .

Let E[X] be the algebra which is as a K-module the free graded
module with basis X . Consider that X (C E[X] , and let the multi-

plication in E[X] be such that if hl € zm and h2 € in then

hih, is zero if there exists x Uqu such that hl(x) = h2(x) =1

and such that if there is no such x then hlh2 is the element of



120.

fc'mm such thet (b, h,)(x) = by (x) + ha(x) for x e U X .

Notice that we consider that the empty set is the basis for
the zero module. Further in the preceding when ve say hlh2 is
zero we mean the zero of the module E[X]m*n .

If F is an odd free graded module, and X i1is a basis
for F , then X is an odd set. Using the imbedding X —> X
defined as in 3.15 we hgve i: F —> E[X] . Since the set X is

odd we have that the algebra E[X] is strictly commutative.

Proposition 3.18: If F 1is an odd free graded module with basils

X , then E[X] = L(F) .
The proof is as the proof of 3.16.

Proposition 3.19: If F is a free graded module, then L(F) is

a free graded module.

Proof: Whave F =F 6 F , and thus L(F) = L(F°) ® L(F°) . The
proposition now follows from 3.16, 3.18, and the fact that the tensor

product of free modules is free.

Suppose that X is a basis for F . Observe that a basis
T r
for L(F)n consists of the mononomials x,™ ... xqq where

Xy € Xni for i =1,...,q ; r; = 1 if ny is odd, and Ty is

positive if n, is even, and T r.n

1 it T
n =0 , the element 1le¢ L(F)o must also be included.

n . In the special case



Proposition 3.20: If A is a projective graded module, then L(A)

is a projective graded module.

Proof: Choose F free and morphisms i and T A i> F—2>a

such that mi is the identity morphism of A . Now
L(A) —Lgi—)-> L(F) —Lﬂr)—> L(A) and L(w) L(i) is the identity

morphism of L(A) . 1In view of 3.19 this proves the proposition.

Definition 3.21l: If A is a module, the exterior algebra of A

is the graded algebra L(A(lL)) . The exterior algebra of A is
denoted by E(A) . If f: A—> B is a morphism of modules, then

E(f): E(A) —> E(B) 'is the corresponding morphism of graded algebras.

Recall that A(1) is the graded module such that A(l)q=0

for qf1,and A(l); =A. Dwsvehave E(A) =K, B(A), = A.

The module E(A)q is called the g-th exterior power of A . Note
that if A 1is projective, so is A(1), and thus E(A) is projective

and E(A)q is projective for any q .
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Exercises.

Show that if A, I and X are algebras, then

(A*r)*n=A% (D *32).

Give an example of a ring K and algebras A and I' over

K such that A *I' =0 .

Show that if G and H are groups (not necessarily abelian),
there exists a group G *¥ H and morphisms of groups

iG: G—>G*H, and iH: H—> G * H such that if 7 is
a group and g: G —> T , h: H—> T are morphisms, then
there is a unique morphism f: G ¥ H —> T such that

fi =g and fi =h .
TG H

Show that if M is a monoid, there exists an algebra K(M)
and morphism of monoids i: M —> K(M) such that if A . is
an algebra and f: M —> A is a morphism of monoids then
there is a unique morphism of algebras %: K(M) —> A such
that 1 =7 . (Recall that when considering'a ring A as
a monoid it is the muitiplication in the ring which is used
to give it the monoid structure (Chapter 2) and the unit of
the monoid is the element le A . Compare this problem with

11 of Chapter 2.)
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If G 'is a group the algebra K(G) of the preceding problem
is called the group algebra of G . Show that if G and H

are groups, then K(G * H) = K(G) * K(H) .

Show that if A and I' are algebras, there is an epimorphism

f: A¥T —> A ®I' . Describe the generators of Ker f .

Show that if A , I and % are algebras, then

A®Tr)®=z=AQ(r®=x) .

Show that if G and H are groups

K(G x H) = K(G) ® K(H) .

Show that if H is a subgroup of G , then K(G) is a free

K(H) module.

Let I Dbe a partially ordered set, and let A be a system
of algebras indexed on I, i.e. for i eI, A, isan algebra,

if 1<J, o 43 A —>A; is a morphism of algebras, and
)

if 1<Jj, J<k, then aj,k ai,j = ai,k .

g /A using algebras in a fashion similar to that used to define

Define % /A and

direct limits and inverse limits of modules in Chapter 3, §5.
Show that ‘Eﬂ/A always exists. Give an example to show that
lig /A may not exist. Show that if I is direct, then g/A
exists. (Recall that algebras have units and thet if f£: A —> T

is a morphism of algebras then £(1) =1 .)
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Iet I be a direct set and /A a system of modules indexed
on I . Show that there is a direct system of algebras T(A)
indexed on I such that if 1 ¢ I the corresponding algebra
is T(Ai) , and if 0y A __>Aj for 1< Jj , then
'I‘(ai’ j): (4,) —> T(Aj) . Show that lim T(A) = T(Lig/A) .

Iet I bea diréct set and /A a system of modules indexed
on I. Let L(/A) be the corresponding system of free com-
mutative algebras. Show that lim L(A) = L(Jﬂ /A) . Show

that if for each 1 e¢ I, A, is projective, then L(glA)

i
is a flat K-module.

Define the notions of direct and inverse limits for graded
modules and graded algebras. Derive the elementary properties
of such limits and carry out the analogues of exercises 10, 1l

and 12.

If A is a graded module the free commutative algebra generated
by A is a commutative graded algebra A together with & mor-
phism of graded modules i: A —> A such that if I' is any
commutative graded algebra and f: A —>» I' 1is any morphism of
graded modules, then there is a unique morphism of graded algebras

f: A —> T such that ¥i = £ . Prove that if A is any graded
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module the free commutative graded algebra generated by A
exists. Show that if A is even, then A = L(A) . Give an
exemple to show that it may happen that A # L(A) . Prove

that there is always an epimorphism A —> L(A) .

Give an example of a free graded module A over some ring K
such that the free commutative graded algebra generated by A

is not projective -over K .

Show that if K is an integral domain of characteristic dif-
ferent from two (i.e. such that 1 + 1 #0), and A is a
graded commutative algebra over K which is a flat K-module,

then A is strictly commutative.

If A is a graded module, let ® A =8 A . Thus & A is a
module (not graded). Show that if A and B are graded modules,

then (0 A)® (0 B) =6 (A®B) .

Show that if A is a graded algebra, then @ A 1is an algebra.

Show that if A is commutative and even, then & A is commutative.

Let A be a module, and let i: A —> & E(A) be the natural
morphism of modules. Show that if A 1s any algebra and f: A —>A
a morphism of modules such that f(a.)2 =0 for ae A, then

there is a unique morphism of algebras f: Q'E(A) —3> A such

that fi =¢ .
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