33.

Chapter 2: Modules, monoids, and rings of fractions.

In this chapter we wish to proceed further with the study of
commutative rings and modules over commutative rings. Consequently

we adopt the convention that throughout the chapter ring means commu-

tative ring.

§1 . Monoids and prime ideals.

Definitions 1.1: A monoid consists of a set M , a function

@: MXM—>M, and an element 1 ¢ M such that if we denote o@(x,y)

by xy for x,y e M, then

xy)z for x,y,z € M, and

1) x(yz)

i1) 1+ x=x=x-1 for xe M.

If M and N are monoids, a function f: M —> N is a morphism of
monoids if
i) f£(xy) = £(x) £(y) for x,y e M, and

ii) f£(1)=1.
The monoid M i1s commutative if xy = yx for X,y e M.

Since in this chapter we are dealing only with commutative
rings, we adopt a similar restriction concerning monoids. Thus

monoid will mean commutative monoid.

If K is a ring, then K gives rise to a monoid also denoted

by K . This monoid is obtained by forgetting about the addition
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operation in K . In other words if ¢@: K X K —> K 1is the multi-
plication, and 1 € K 1s the unit we have a monoid. Thus by a sub-
monoid of K we mean a multiplicatively closed subset M of K
such that 1 € M . More generally if M is a monoid when we say
that f: M —> K is a morphism we mean that it is a morphism of
monolds where K i1s endowed with the structure of a monoid as de-

scribed above.

In recalling the definition of integrel domain (Chepter 1,
§2) we were a little careless. Our general definition of ring demands
that the ring K must have a unit 1 . However, it is possible that

1

O . In which case there is just one element in the ring, and in
every module over the ring. In an integral domain this situation

does not obtain, for an integral domain is a ring K such that 0 f 1,
and such that if x,y € K are elements such that xy = 0 then x =0
or y =0 . This is the reason that for P to be a prime ideal.in K

we must have that P #K .

Proposition 1.2: An ideal I in X is a prime ideal if and only if

K - I 4is a submonoid of K .

The proof of the proposition is immediate from the definitions.
Observe that since K - I is & submonoid of K, we have 1 e K - I

and I 1s a proper ideal.

Lemma 1.3: Let I be an ideal in K , and let M be a submonoid

of K such that M N I = ¢ , then there is a prime ideal P in X
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such that
1) 1CpP,
2) MnP=¢, and
3) if P' is a prime ideal in X such that ICP'CP,

then P' =P .

Pfoof: Let /71 be the set of all submonoids Mi of K such that

MCM ,and M NI=¢g. since Me/ , we have //{ #0 . If
(Ma}a c A 18 & subset of /1 such that if @, p e A then either

"
MaC MB or M‘3 C M,, vehave U, , M e /N, . Therefore /)] hes

maximal elements. Suppose N 1is a maximal element of /?2 , and let
P=XK - N. Suppose yl,ye ¢ P then there exist integers: rl,r2

r T

1 2
and elements m, ,m, € N such that o me I and Yo W, € I

for otherwise using the maximality of N we would have y, or

Yy € N. DNow if r = T +T,, and m

at the binomial expansion of (yl + ye)r that (yl + ya)rm e I, s0

I m, , We seée upon looking

it 1s not possible that (yl + yg) € N, and thus (yl + ya) cP.

Suppose k € K , then (k yl)rlm1 eI, so ky ¢ N, and
k'yl € P, proving that P is an ideal in K . Since P =K - N
and N is a submonoid of K , we have that P 1is a prime ideal.
The maximality of the submonoid N of K among the elements of /hb
implies the minimality of the ideal P among prime ideals contalning

I , and the lemma is proved.
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Proposition 1.3: If I is a proper ideal in K , then ~I is the

intersection of those prime ideals in K which contain I and are

minimal among the prime ideals contaeining I .

Proof: Proof if «x ¢~Ji , then l,x,xe,... is a submenoid of K
which does not intersect T . Applying the preceding proposition
there 1s a prime ideal P such that x ¢ P and this prime ideal is

minimal emong prime ideals of K which contain I » hence the lemma.
It is suggested that the reader compare this proposition

with Proposition 2.14 of Chapter 1.

Lemma 1.4: Let M be a submonoid of K , and A a sub K-module of
B. If AM)=(v|beB and for some me M, mb ¢ A}, then A(M)

is a sub K-module of B containing A .
The proof of the lemma is immediate from the definitions.

Proposition 1.5: Let A be a proper sub K-module of B such that

B/A is finitely gemerated. If I dis the annihilator of B/A and
P 1s an ideal in K minimal among those prime ideals containing I,
then

i) A(K-P) is a primary submodule of B with associated
Prime ideal P , and

ii) 4if C 1is a primary submodule of B such that

AC CC A(K-P) , then C = A(X-P) .
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Proof: By the preceding lemma A(K-P) is a submodule of B contain-
ing A . Suppose x e K-P , b e B and xb ¢ A(K-P) , then for some

yeK-P, xybe A so that b e A(K-P) .

Suppose bl""’bn are elements of B which generate B

modulo A . If A(K-P) = B there exist v,

vi bi e A. Let v = vl...vn . Now veK-P and Vv bi e A for

i=1,...,0 80 v e I wvhich is impossible. Therefore A(K-P) 1is

yeeesV, € K-P such that

a proper submodule of B .

Let J be the annihilator of B/A(K-P) , and note that

ICJ. Suppose y e J . Choose W, € K-P such that wiybi € A

for 1 =1,...,n , and let WS Wi el W . Since wye I and w{P,

it follows that y ¢ P and J(C P .

e

Since K-P is maximal among the submonoids of K éisjoint
from I , it follows that if y € P there exists x € K-P and a
positive integer m such that x ym € I . There x ymbi e A for

1=1,...,0, and y" b, € A(K-P) for 1 =1,...,n , showing that

i
ym € Jd and J& =P .
Combining the preceding paragraphs we have that A(K-P) is
a primary submodule of B with associated prime ideal P . Let C
be a primary submodule of B such that AC ¢ A(K-P) , and let
I' be the annihilator of B/C . Since IC I'C J, and NIt ois

a prime ideal containing I we have Jit =p , and that the associ-
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ated prime ideal of C in B is P . Suppose that b e A(K-P) ,
and choose Vv ¢ K-P such that vbe ACC. Since v¢ P and C
is primary with associated prime ideal P , we have b e C, C = A(K-P),

and thus the proposition is proved.

Proposition 1.6: Suppose that A 1is & proper sub K-module of B ,

Al""’An is a reduced primary decomposition of A in B , the associ-
ated prime ideal of A, in B is P, for i=1,...,n, I is the
annihilator of B/A , P is an ideal in K minimal among those prime

ideals containing I , and B/A is finitely generated, then

1) for some 1 between 1 and n, P = P, , and

11) A, = A(R-P) .

Proof: Since PDI, and NI =P N...N P, , we have P =P, for
some 1 between 1 and n . Consequently Ai n A(K-P) is & primary
submodule of B with associated prime ideal P . Applying the pre-
ceding proposition, we have AN A(K-P) = A(K-P) , and thus

A(k-P) C A .

Using the fact that P i1s a minimal prime containing I ,

choose x, ¢ P

J J
belongs to the annihilator of B/A 3 for 3 #1 , and let

-P for j #1 . Choose an integer m such that
£
J
_.m m m m
X =X eeeXy g XygeeeX . Now x ¢ P, and if b e A, then
b xe AN...NA =A sothat be A(K-P) and the proposition is
proved.

Notice that the preceding proposition may be considered as

an addendum to Theorem 2.11 of Chapter 1 .
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§2. Rings of fractions and modules over rings of fractions.

Recall that element x of a ring K 1is a unit if there
exists an element y € K such that xy =1 . The element y is
unique and is usually denoted by x-l . Notice that the set of all
units of K 1s a group, the group operation being induced by multi-

plication in K . This group is called the group of units of K .

Given a ring K and a submonoid M of K , there is inter-

est in finding a ring A and a morphism m: K —> A such that if

meM, then m(m) is a unit in A . The most classical example of

this procedure is when K is an integral dbmain, M=K -{0}, A
1s the field o:t; fractions of K , apd 7: K —> A 1s the imbedding
of' K din its field of fractions. Generalizatiom of the procedure
of constructing the field of fractions of an integral domein were

introduced and studied by Grell and Krull in the 1920's and 1930's.
In this paragraph, we begin the study of such generalizations, The

classical case will be included.

Definition 2.1: Let M be a submonoid of the ring K . A ring of

fractions of K relative to M is a ring A and a morphism

T K —> A such that:

i) 7w(m) is a unit of for me M, and

ii) if f: K —> I is a morphism such that f(m) is a unit
of I' for me N, then there exists a uniqu_e morphism f‘: A—>T

such that §7T =f .
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Proposition 2.2: If M is a submonoid of the ring K , there exists

m: K —> A , a ring of fractions of K relative to M , and if
Tt: K —> A?! 1in another such ring of fractions there is a uhique

isomorphism 6: A —> A' such that © o 1 =T

Proof: Let A be the set of pairs (k,m) such that k ¢ K and
me M . Define addition and multiplication in A by letting

(k,m) + (k*,m*) = (m'k + mk',om'), and (k,m)(k',m') = (kk',nm') .
Qbserve that K is an abelian group with zero element (0,1) wunder
the operation of addition. TFurther the multiplication in A is
associative and has a unit, (1,1). However, A is not a ring since

the multiplication is not distributive with respect to addition.

Introduce an equivalence relation in A so that (k,m)
is equivalent to (k',m') ((k,m) ~ (k',m')) if and only if there
exists m" € M such that m"m'k = m"mk' . Denote the set of
equivalence classes by A , and observe that the addition and multi-
plication in K induce operations of addition and multiplication
in A which make A into a ring. Denote the equivalence class of
(k,m) by k/m . DNote that the zero of A is the element O/; and

the unit, the element 1/1 .

Define T: K —> A by letting w(k) = k/1 , and notice
that 1f m e M , then w(m) =m/l , and m/l - 1/m =1/; so that

m(m) is a unit in A .
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Suppose f: K —> I' is a morphism such that f(m) is a
wnit in T for me M. Observe that if (k,m) ~ (k',m') , then
(k) :r(m)':L = £(k') f(m')’l . Define f: A —> I' by letting
f(k/m) = £(k) f(m)‘l . Certainly f T =f , and the existence part
of the proposition is proved. The proof of uniqueness is standard,

and it is left for the reader.

Since m: K —> A is a morphism, we see that A 1is a
K-algebra. The concept of ring of fractions of K could easily

have been formulated in terms of K-algebras.

Observe that it may happen that O/; =1/ , and that this
is the case if and only if 0O e M . Most usually this case.will be
avoided.

Now that we have proved the existence and uniqueness of rings
of fractions of K relative to M , we will refer to the ring of
fractions of K relative to M instead of a ring of fractions of

K relative to M .

Proposition 2.3: Let M be a submonoid of X , and m: K —> A the

ring of fractions of K relative to M .
i) If J is an ideal in A , and I = TT-l(J) , ‘then
J=A7(I) .

ii1) If I is an ideal in K , then w‘l(A m(I)) = I(M) .
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Proof: Under the conditions of the first part of the proposition,
ATI)CJI. If kfme J, then k/1 e A(m(I)) , and

k/m =1 /m' k/l eAT(I) which proves the first part of the proposition.

If I is an ideal in A , and x € v‘l(A(vr I)) , then

m(x) = y/m where y e I, me M . Therefore, there exists m'e M

such that m'mx = m'y . Since mme M, and m'y € I , ve have
x e IM) .

If x ¢ I(M) there exists m e M such that mx e I .
Since w(m) is a unit in A this implies w(x) e AW(I) , and the

proposition is proved.

Corollary 2.4: If K is Noetherian, then A is Noetherian.

Proof: If J is an ideal in A , there is a finite subset X of
Tr_l(J ) which generates 1r'l(J ) as a K-module since K is Noetherian.
Applying the first part of the preceding proposition, m(X) generates
J as a A-module, and so any ideal in A i1s finitely generated which

proves the corollary.

Corollary 2.5: A 1is an integral domsin if and only if Ker m 1s a

prime ideal in K .

Proof: Suppose Ker T is & prime ideal in K , then 0 #1 in
K/ker 7 , 80 O #1 in A, and MCK - Ker 7 . If k/m - k!/m'= 0,
there exists m" ¢ M such that m"kk! = 0 . Since m" ¢ M, this

implies k,' € Ker T , and either k e Ker 7 in which case k/m =0,



L3,

or k! ¢ Ker m in which case k'/m' =0 .
The converse part of the corollary is immediate.

Proposition 2.6: ILet M, N be submonoids of K such that MC N,

T': K —> K!' the ring of fractions of K relative to M , and
T™: K —> K" +the ring of fractions of K relative to N. If
f: K! —> K" 1is the unique morphism such that 6 m!' = 7" , then

9: K' —> K" is the ring of fractions of X' relative to wf(N) .

Proof: Suppose f: K* —> I' is a morphism and f 7'(x) is a unit
in I for x e N, then there is a unigue morphism f£;: K" —>T
such that f, 7" = f 7' . Since O w' =7', f,07 =£7 , and
this implies i‘l 6 =1 . Checking that if f2 6 = f then :t':‘2 = fl )
we have that 6: K! —> K" satisfies the universal property necessary
for 1t to be the ring of fractions of K' relative to 7'(N) , and

the proposition is proved.

Definition 2.7: Let w: K —> A be a morphism. If A 1is a K-

module, the extended module of A relative to T is

i) a A-module T(A) , and

ii) a morphism of K-modules w,: A —> T(A) , such that if

Al
B is a A-module, and f: A —> B 1s a morphism of K-modules, then
there is a unique morphism of A-medules :E": T(A) —> B such that

f‘n’A=f.
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Since the extended module of A is defined by a universal
Property if it exists it is unique. In a later chapter we will see
that extended modules exist relative to any morphism rings. In this
chapter we will content ourselves with showing existence in the
special case that mT: K —> A 1is the ring of fractions of K rela-

tive to a submonoid M of K.

Observe that in the preceding definition we used the fact

that any A module may be considered as a K-module via the morphism 7 .

Theorem 2.8: Let M be a submonoid of K , and 7: K —> A the

ring of fractions of K relative to M .

i) If A is a K-module, then the extended module of A

relative to 7, L

: A—> T(A) exists.

i1) If £: A—> A' 1is a morphism of K-modules there is a
unique morphism of A-modules, T(£): T(A) —> T(A') such that
T(f) Ty = 'rrA,f' .

iii) If A" —i> A-£5 A 15 an exact sequence of K-modules,

then T(A") —El(i)—> T(4) _’_['Lg_)e_ T(A') 1s an exact sequence of

A-modules,

Proof: Let T(A) be the set of pairs (a,m) such that & e A ,
me M. Define an equivalence relation in EJ(A) by saying that

(a,m) 1s equivalent to (a',m') if there exists m" e M such that
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m"n'e = m'ma’ , and let T(A) denote the set of equivalence classes.
Meking the appropriate veriﬁcatibns define addition in T(A) 80
that if a/m denotes the equivalence class of (a,m) , then

afm + at /m" =m'a + ma'/m' . Similarly define the operation of A
on T(A) by k/m' a/m' =ka/m' for keK, mm'eM, and aeA.

Define m,: A —> T(A) by 'ITA(&) =afl .

If f: A—> B 1s a morphism of K-modules, and B 18 a
A-module, one verifies that a morphism of A-modules £ : 7(a) — T(B)
is defined by £ (a/m) = 'rr(m)':L £(a),and that m,= Tpf. Checking
that if g: T(A) —> B is a morphism of A-modules such tha.t g, = Tf
ilflplies that g = T , the proof of the first part of the ‘theorem is
complete,

The second part of the theorem follows immediately from the

definition. Notice that T(f) a/m = f£(a)/m .

In order to verlify the third part of the theorem first ob-
serve that since gf =0, T(g) T(f) =0, and Ker T(g) D Im T(£) .
Now if a/m e ker T(g) , there exists m' ¢ M such that
0= m'g(a) = g(m'a) . Consequently there exists a' ¢ A' such that
f(a') =m'a , and since T(f) a'/m'm = m'a/m'm = a./m ,

Ker T™(g) C Im T(f) , and the proof of the theorem is complete.

Proposition 2.9: Let M be a submonoid of K , and m: K —> A

the ring of fractions of K relative to M. If A is a A-module,
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P

then the identity mep i,: A —> A is the extended module of A

. . A:
relative to T .

Proof: Suppose B is a A-module, and f: A —> B is a morphism
of K-modules. In order to prove the proposition it suffices to show
that f is a map of A-modules. If K/ e A and a e A, then
me(¥/y 8) = £(m - ¥/ - a) = £(k-a) = kf(a) . Since w(m) is a
unit in A , we may multiply both sides of the preceding equation
by 'rr(m)"l , and thus obtain f£(¥/, a) = ¥/, £(a) . This proves f

is & morphism of A-modules, and hence the proposition.

Proposition 2.10: Let M be a submonoid of K , m: K —>A the

. ring of fractions of K relative to M, I a primary ideal in K

such that MNI =¢ , and P =~I , then

i) Mnp=¢,
i1) T(I) 1is a primary ideal in A ,

ii1) Yo(T) = ™(P) ,

iv) I =1I(M), and

v) P=pPM).

Proof: Suppose x € M N P , then for some positive integer n ,

x® e MN I which is impossible so MNP = § .

. Suppose X/ + X'/y1 e T(I) , and K'/ut ¢ T(I) . Now for some

m" ¢ M, kk'm" ¢ I and k'm" ¢ I so that for some positive integer n ,
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€ I . This implies (k/h)n e ™(I) and T(I) is primary. Further
it implies . X/; e (P) so YT(T)C T(P) . Clearly T(P) D VT(I)

and so JT(I) = T(P) .

Suppose x € I(M) , then there exists m e M such that
mx € I . Since m" ¢ I for any positve integer n , end I is
primary, we have x e¢ I , and I = I(M) . The preceding also implies

P = P(M) and hence the proposition.

Proposition 2.11: Let M be a submonoid of K, w: K —> A the

ring of fractions of K relative to M, and I an ideal in K,
then ﬂk/I: K/1 — m(K/1) 1s the ring of fractions of K/I relative
to the image of M in K/I .

Proof: Note that A itself is the extended module of K relative

to m: K —> A , so we could write T(K) instead of A . By 2.8,
iii), the sequence 0 —> T(I) —> T(K) —> T(K/I) —> 0 1is exact,

so T(I) is an ideal in T(K) , and T(K/I) is a ring. Certainly
ﬂk/I: K/I —_> T(K/I) is a morphism of rings. Verifying that it
satisfies the universal property for it to be the ring of fractions

of K/I relative to the image of M in K/I , the proposition

follows.

Notations and remarks 2.12: If P is a prime ldeal in K , the

ring of fractions of K relative to K-P is denoted by m: K -—>-Kf .

If A 1is a K-module the extended module of A relative to T is
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K-modules, fP: AP —> BP denotes the corresponding morphism of

denoted by w,: A —» AP . PFurther if f: A —> B is a morphism of

KP modules.

In one special case a notation different from the precedir{g
is used. If K is an integral domain, then the ring of fractions
of K relative to K -~ {0} is denoted by &(K) . The field @(K)

is called the field of fractions of K . Since m: K —> Q(K) is

& monomorphism, we may consider that K is a subring of Q(K) .
If M is any submonoid of K - {0} , the ring of fractions of X
relative to M , is just the sub K-algebra of @(K) generated by
the elements m—l for me M. In particular if P is a p.rime
ideal in K , then kK ( KPC Q(K) , and K, is the sub K-algebra

of @(K) generated by the elements xt for xe K-P.

Theorem 2.13: Let P be a prime ideal in K, and 7: K —> KP

the ring of fractions of K relative to K - P , then

1) every element of KP - PP is a unit in KP s

ii) P, 1s the only maximal ideal in Kp

iii) KP/PP = Q(k/P) ,
iv) if I 4is an ideal K , then lP fl{P if and only if
ICpe,
v) J is a primary ideal in K, if and only if Tr“l(J) is

a primary ideal in K ,

R
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vi) J is a prime ideal in K, if and only if W-l(J) is
a prime ideal in K , and
vii) if I, I' are primary ideals in K such that I = I'P ’

then I = I' .

Proof: Part ii) of 2.8 implies that if I K , then IPC K,
If xeK,-P,, %= k/m where k, m e K-P , and since
xT =me X, part i) follows. Further parts ii) and iii), iv) of the

theorem follow from part i), and 2.11.

Suppose J is a primary ideal in K, , and I = v‘l(J) .
By 2.3, I=1I(k-P). If xyeI end y¢ I, then ¥/4-Y/, e,

and Y/y ¢ J for Y/; ¢ J would imply that there exists m e K-P

such that my ¢ I so y e I(K-P) = I . Therefore there is a posi-

tive integer n such that (x/l)n € J , and an element m' ¢ K-P
such that m' x° e I . Thus el , and half of part v) is proved.
The converse part of v) follows from 2.10, and vi) follows from v)
and 2,10. |

Part vii) follows from 2.3 and 2.10, and the proof of the

theorem is complete.

Definitions and comments 2,14: A ring K 1is called a local ring

if the non units in K form an ideal, and O #1 in K . Clearly
K is a local ring if there exists a unique maximal ideal in K and

conversely. One of the assertions of the preceding theorem says that
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1f K 4is & ring and P is a prime ideal in K , then K, 1s a

local ring. The ring KP is called the localization of X at the

prime P . Similarly if A is a K-module, the KP—modu_'Le AP is

called the localization of A at the prime P .

Theorem 2.14%: ILet X be a ring.

i) If A is a K-module, then A = 0 if and only if Ay =0
for every maximel ideal M in KX .

ii) If f: A—> B is a morphism of K-modules, then f is
an epimorphism if and only if :t’M: AM —_—> BM is an epi-
morphism for every maximal ideal M in K , and f is
& monomorphism if and only if fM: AM —_—> BM is & mono-

morphism for every maximal ideal M in K .

Proof: If A # 0, then A has a non-zero submodule A' , with
1l-generator, so to prove part i) of Athe theorem it suffices to prove
1t under the additional assumption that A has a single generator

in view of 2.8, iii). Thus we may assume A =K/I where I is an
ideal in X . Now if (K/I), = O for every maximal ideal M in X,
then I =K, for every such ideal, and by 2.13, iv), IJM for
any maximal idesl M . Consequently I =K , and K/I=0. This

proves part i).



Suppose now f: A —> B . We have an exact sequence
0 —> Ker f-—>A—£—>B-———>Cokerf———>O » and for every maximal

ideal M in K, an exact sequence

by
M
0 —> (Ker f)M —> A, —> B, —> (Coker :E')M —> 0 . Consequently

part 1) implies paxrt ii), and the theorem is proved.

Notice that in the preceding it was not necessary to study

localizations at every prime in K , but only at the maximal ideals.
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Exercises

Show that if I is an ideal in X , and I is a maximal

ideal in K , then X/; is a local ring.

Let A Dbe a K-module, and let I Dbe the annihilator of A .
Show that if VI is a maximal ideal in K , then A = Aji

snd A =0 for M a maximal ideal in K , M #4I.

Suppose that if K is a local ring with maximal ideal M , and
A is a finitely generated K-module such that MA = A , then

A=0.

Give an example to show that there is a local ring K with
maximal ideal M , and a K-module A such that MA = A and

Afo.

Let K Dbe a local ring with maximal ideal M , and let A
and B Dbe K-modules such that A(C B, and A+ MB =B .
Show that A =B if B 4is Tinitely generated. (The pre-

ceding is known as Nakayama's lemma. )

List all monoids with 3 elements.
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Show that if X is a set, there exists a monoid M(X) and

a function i: X —> M(X) such that if N is a monoid, and
f: X — N is a function, then there is a unique morphism of
monoids Ff: M(X) —> N such that i = £ . The monoid M(X)

is called the free (commutative) monoid generated by X .

Show that if M is a monoid, there exists a group G(M) and
& morphism of monoids i: M —> G(M) such that if H is a
group and f: M —> H is a morphism of monoids , there is a

unique morphism of groups f: G(M) —> H such that Ti = F .

Determine necessary and sufficient conditions that the morphism
i: M —> G(M) of the preceding exercise be injective, i.e.
that i(ml) = i(m2) implies m =m, . Show that if M is
finite, a necessary and sufficient condition for M to be a
group is that 1 be injective, and that in this case i is an

isomorphism.

Suppose that N is a submonoid of M . Show that there exists
& monoid denoted by M/ and a morphism of monoids i M —> M/
such that if f£: M —> M!' 1is a morphism of monoids such that

f(n) =1 for n e N, then there is a unique morphism of monoids

f: M/y —> M' such that fr=f . Let N={(mmeM, and w(m) =1

Show that N is a submonoid of M conteining N but that it may

happen that N # N .



11.

12,

If M is a monoid, let K(M) be the K-algebra such that as

a K-module it is the free K-module. generated by M , and such
that the naturel map i: M —> K(M)"“, is & morphism of monoids.
Show that if A 1s a commutative K-algebra, and f£f: M —> A
is a morphism of monoids, there is a unique morphism of

f: K(M) —> A such that fi = £ . The algebra K(M) is
called the monoid elgebra of M over K. If M is a group R

it is called the group algebra of M over K.

Show that if M 1is a submonoid of K , and m: K —> A 1is
the ring of fractions of K relative to M , then the're is a
commutative diagram
k(M) T x(a(M))
l m 1 Ta
K —1> A
of morphisms of K-algebras where T.

1
and 7' is induced by the morphism M —> G(M) . Further show

and 11'2' are epimorphisms,

that m*: K(M) —> K(G(M)) is the ring of fractions of K(M)

relative to the submonoid M of K(M) .



13. A monoid M is finitely generated if there exists a finite
set X , and a function f: X —> M such that the corresponding
morphism of monoids £: M(X) —> M is onto. Show that the
slgebra K(M) is Noetherian if and only if the ring K 1is

"Noetherian and the monoid M is finitely generated.

14, Show that if X is a set, then K(M(X)) is Jjust the poly-

nomial algebra K[X] .
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