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Chapter 1: The elementary theory of Noetherian rings and modules.

§1. General properties of Noetherian modules.

Definition 1.1: The A-module A is Noetherian if each submodule of

A 1is finitely generated. The ring A 1is (left) Noetherian if when

considered as a module it is Noetherian.

There are examples of rings which are left Noetherian; but
not right Noetherian. Since, however, all of this chapter except this
paragraph will be devoted to commutative algebra we will omit any con-

sideration of such problems.

Proposition 1.2;: If 0 —> B' —> B —> B" —> 0 1is an exact sequence

of A-modules, then B is Noetherian if and only if both B' and B"

are Noetherian.

Proof: Let A be a submodule of B . We then have a commutative

diagram
0 0 0
¢ ¢ }
0—>A' —>A—>A"—>0
! i y

O—>B'—>B~>B"—>0

with exact rows and columns where if we suppose B' ( B, then
A'=ANB', and A" = A/A' . If B' and B" are Noetherian, then

A' and A" are finitely generated, and hence A 1s finitely generated.
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However, since A was an arbitrary submodule of B +this says that
B is Noetherian.
The proof that if B 1s Noetherian then B' and B" are

Noetherian is immediate.

Proposition 1.3: If A is a Noetherian ring, then any finitely

generated A-module is Noetherian.

Proof: If 'B is a A-module with l-generator, there is an epimorphism
f: A—> B and so B 1s Noetherian. Suppose that we have proved
that'every A-module with less than or equal to n-generators is
Noetherian, and that B has n+l generators. Now there is an exact
sequence O —> B! —>» B —> B" —> 0 such that B' has ﬁ genera.-
tors and B" has 1 generator. Applying the preceding proposition

B 1is Noetherian, and by induction this proposition follows.

Notation: If X and Y aresets XC Y, and X #Y , we write

X<Y.

Proposition 1.4: Let A be a A-module. The following conditions

on A are equivalent:

i) A 1is Noetherian,

i1) if A1CA2C ...CAi,C Ar+lC
is an ascending sequence of submodules of A , then for some integer
n, An = .l\.r for r>n , and

i1i) every non-empty family of submodules of A has & maximal

element.
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Proof: Suppose that A 1is Noetherian, and that A C A, C... 1is
an ascending sequence of submodules of A . Let A!' = Uh A.n . Now
A' 1s a submodule of A and hence finitely generated. Thus if we
choose a finite set of generators for A' there must exist an ihql
teger n such that these generators belong to A.n . Consequently:
A =A',andif r>n, A, = A =A', vwhich says that i)
implies ii) .

Suppose that A satisfies condition ii). Let (L ve a non
empty set of submodules of A . Choose Al € CZ , choose A2 € a
so that Al(: A2 and so that if possible A1 < A2 . Proceed in this
way to obtain an ascending sequence of submodules of A . iet Ah

be an element of this sequence such that Ar = An for r>n . Now

A is a maximal element of (! , and so 1i) implies iii).
n

If A satisfies condition iii) and B is a submodule of
A, let B be the family of finitely generated submodules of B.
We have B is non empty since O e¢ B, and so B ﬂas a maximal €lement
B'. Certainly B' must edual B. Thus since B was an arbitrary

submodule of A, 41ii) implies 1) and the proposition is ﬁroved,

Definition 1.5: If B 1is a A-module, then A 1s an irreducible

submodule of B if there do not exist submodules Al, A2 of B .such

that A< A1 s AL A2 , and A = Al n A2 .
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Proposition 1.6: If A is a submodule of B , and B/A is Noe-

therian, then A 1is a finite intersection of irreducible submodules

of B.

Proof: Let (L be the set of submodules of B such that if X ¢ CZg
then AC X, and X is not a finite intersection of irreducible
submodules of B . Since B/A is Noetherian, there is a maximal
element in ~(2:, if szis not empty. Suppose Y 18 such a maximal
element. Since Y ¢ (T > Y 1is not irreducible, therefore

Y=Y,n Y, vwhere Y < Yl » Y<Y,, and Yy and Y are sub-
modules of B . Now by the maximality of Y , we have Y, Y, ¢ (I,
therefore there exist irreducible submodules Xl,...,Xh of B such
that Yl = X1 n...n X, Y, = Xp oo X - Thus

Y = Xl n...n Xn which is impossible gnd Cz,is empty. This proves

the proposition.
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§2. Noetherian modules over commutative rings. -

In proceeding with the study of Noetherian mocdules we need
to recall a few properties of commutative rings. A commutative ring

A 1s an integral domain if whenever x,y € A are such that xy =0

and y # 0, then x =0 . An ideal P in A is & prime ideal if
A/P is an integral domain. In other words P is prime if P #K ,
and whenever xye P and yd P then xeP . Thus A 1s an integral
domain if and only if O is & prime ideal in A . An ideal I in

A 1s a primary ideal 1f I fA , and whenever xy el and yg’I

there exists a positive integer n such that eI .

Definition 2.1: ILet I be an ildeal in the commutative ring A .

The radical of I is the set of all elements xeA such that some

power of x 4is in I ; it is denoted by ~I .

Proposition 2.2: Let A be a commutative ring. If I 1is an ideal

in A , then
1) NI is an ideal in A , and I NI,
11) 1f J 4s an ideal in A such that IC JC I, then VI =47,
ii1) 4if I is a primary ideal, then ‘J.I 1s & prime ideal, and

iv) 1f I=1, NI, , then J-I=~/-Ilﬂ~/-12.

2 2

The proof of the preceding proposition is easy, and we leave

it to the reader.
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o

Definition 2.3: If B is a A-module, the annihilator of B is the

ideal in A consisting of those elements A e A such that A B =0 .
Suppose that A is a commutative ring, A is a submodule of B and
I is the radical of the annihilator of B/A , then A is a primary

submodule of B if A # B, and whenever A eA ,beB and Abe A

either ANe I or be A.

Proposition 2.4: If A is a commutative ring and A is a primary

sub A-module of B , then the annihilator of B/A is a primary

ideal in A .

Proof: Let J be the annihilator of B/A . Suppose xyed , y¢J ,
then for some b e B, yb¢ A . However since xybe A, we have

X € JB‘, and thus J is primary.

Definition 2.5: If A is a commutative ring, and A 1is a primary

submodule of B, then the radical of the annihilator of B/A is the

agsociated prime ideal of A in B .

Proposition 2.6: Let A be a commutative ring, B a A-module, and

Al 5 A2 primary submodules of B with associated prime ideal P,
then Al n A2 is a primary submodule of B with associated prime

ideal P .

Proof: Suppdse A e A , b e B, and AbeA NA, . If bg(AlnAe,
then b g’Al or b ¢[{A2 » and in either case A e P since A and

A2 are primary submodules with associated prime P .
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Proposition 2.7: If A is a commutative ring, A 1is a proper

irreducible sub A-module of B , and B/A is Noetherian, then A

is a primary submodule of B .

Proof: Suppose ANeA, be B yand Abe A. Let I be the
radicel of the annihilator of B/A . Suppose b ¢ A . Let JJ be
the family éﬁ submodules B' of B such that A < B! , and A
belongs to the radical of the annihilator of B'/A . Since
A+ADbeB, we have that AB is non empty. Let A' be a maximal
element of t?, and let n be an integer such that A belongs to
the annihilator of A'/A . Suppose YyeA' N (A+ A" B) . In this
case y = a + AY g for some z ¢ B, and x?y = \'a + x2nz € A.
Consequently A?nz € A, and by the maximality of A', z ¢ A! ’
N'zeA,and A=A'nD (A+ A" B) . Since A 1is irreducible, and
A<A', this implies A=A+ N'B, and Ae I . In other words A

is a primary submodule of B .

Definition 2.8: Iet A be a commutative ring, and A a sub A-module

of B . A primary decomposition of A in B 1is a finite set

n

3= A

Al""’An of primary submodules of B such that A = Such

J L]
a decomposition is a reduced primary décomposition if

1) Aj Dni;ﬁj A; for j =1,...,n, and
2) if 1 f J then the associated prime ideal of Ai is 4if-

ferent from the associated prime ideal of Aj .



17.

It is understood that a primary decomposition of an ideal

I in A refers to a decomposition of I as a submodule of A .

Theorem (Lasker- Noether) 2.9: If A 1s a commutative ring, and

A 1is a proper sub A-module of B such that B/A is Noetherian,

then there is a reduced primary decomposition of A in B .

229223 Appl&ing propositions 1.6 and 2.7 some primary decomposition
of A in B exists. Applying proposition 2.6 this decomposition
may be repléced by one such that the primary submodules of B in-
volved in the decomposition have distinct Fssociated prime ideals.
Having obtained such a primaiy decomposition, a reduced primary de-
composition may be obtained by throwing away so many primary submodules
involved in the decomposition that no one of the remaining contains

the intersection of the others, always being sure to keep enough of

them so as to have a primary decomposition of A in B .

Definition 2.10: Let A Dbe a commutative ring, and suppose A 1s

a proper sub A-module of C . The prime ideal P in A 1is an

associated prime ideal of A in C 1f there exists a submodule B
of C such that AN B 1s a primary submodule of B with associated
prime ideal P . An associated prime ideal of A in C 1is an

isolated prime ideal of the imbedding of A in C if 1t contailns

no other assoclated prime ideal of A in C ; otherwise it 1s an

imbedded prime ideal.
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In the special case where A =1 1is an ideal 1n A , an
associated prime ideal of I in A is called merely an associated
prime ideal of I . Similarly an isolated prime ideal of I is

Just an isolated prime ideal of I considered as a submodule of A .

Theorem 2.11: Let A be a commutative ring, A a proper sub

A-module of C , and Al,...,An a reduced primary decomposition of

A in C vwhere the associated prime ideal of A, in C is Pi

i
for 1 =1,...,0 . A prime ideal P in A 1s an associated prime

ideal of A in C 1if and only if P (P ,...,P} .

Proof: Suppose P 1is an associated prime ideal of A 1n C .
Let B Dbe a submodule of C such that AN B is a primary sub-
module of B with associated prime ideal P . Denote by Q1 the
radical of the annihilator of 13/.1\:l NB for 1 =1,...,0 . Now
P=Q N...NnQ , end Pi(: Q for i=1,...,0 . Suppose
beB - A.i NB and \e€ Q1 , then for some integer r we have

'xr beA NB, vhence AeP Thus for 1 between 1 and n

4"
elther P, =Q , or BCA . Since ANB#3B there is at least
one integer 1 such that P1 = Q1 . Consequently we may suppose

P, =Q for i=1,...,k, k>1, and BCAi for 1 = k+l,...,0.
Thgs if 1>k, Qi =\ , and P = Pl n...n Pk . Since P 1is

prime P :)Pi for some 1 between 1 and k , and thus P = Pi
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aqd P e{Pl,...,Pn} .

It remains to show that Pi is an associated prime ideal
of A in C for 1=1,...,n . Let Al =Ny Ay - ow Al #a
since Al""’An was a reduced primary decomposition of A in C .

Let I, be the annihilator of Ai/A for 1 =1,...,n . Suppose

i

KeA,xieAi-A and A x, ¢ A, then A e P, , so for some

i i
integer r we have A cC A and A € I, . This shows that A
is a primary submodule of Al with associated prime ideal J&i(: Pi
for 1 =1,...,n . However since 1f A\ ¢ Pi ’ A cC Ai for some r ,

and this implies A' AiC A , we have J_Ii =P, for i=1,...,n,

i

and the theorem follows.

Observe that the preceding theorem shows that the number of
primary submodules which occur in & reduced primary decomposition
does not depend on the choice of decomposition for there must be ex-

actly one for each assoclated prime ideal of A in C .

Before proceeding we insert a criterion for an ideal I to
be primary.

Proposition 2.12: If A 1is a commtative ring and I 1is an ideal

in A such that J& -is a maximal ideal, then I is & primary ideal.

Proof: Recall that a proper ideal] M is maximal if and only if it
is contained in no proper ideal other than itself, or equivalently if

and only if- A/M is a field.



20.

Now let M =\/—I . Suppose that x,y e A , xz2 € I, and
y¢I. Since M is maximal and y ¢ T , we have that A = M + A y,
and 1 =m+ ANy for some me M, Ae A . Thus X=mx + ANXy,
and x ¢ M . Since M =41 saying that x € M 1is equivalent to

saying that some power of x is in I , and the proposition is proved.

Corollary 2.13: If A is a commutative ring and M is & maximal

ideal in A , then for any positive integer n , Mn is & primary

ideal and E=M.

Proposition 2.14: If A is a commutative:ring, I 1s an ideal in

A, Il""’In is a reduced primary decomposition of I , J-IJ is an
isolated prime ideal of I for 1 <k, and ~/-I 3 is an imbedded prime
ideal of I for 1 >k , then J—Il" .o ,J-IK is a reduced primary

decomposition of J_I .

The proof of the proposition is easy, and it is left to the

reader.

Lemma 2.15: If A 1is a commutative Noetherian ring end I is an

ideal in A , there exists an integer n , such that (\/.I)nC I.

Proof: Let J be an ideal In A maximal among those ideals which
have some power contained in I . Now for some integer n , J‘n C1.
Suppose A € 'fI - J , then for some integer m , }\m e I, and

(T +A A.)n+mC I . However, by the maximality of J this is impossible,



so NIC J . Clearly J(CWI and the lemma follows.

Proposition 2.16: If A is a commutative.Noetherian ring, I is

an ideal in A , C 1is a Noetherian A-module, and A = nn " ¢ »

then IA =A.

Proof: We may as well suppose IA # ¢ ~for in that case the propo-
gition is trivial. Now let Al"“’Ah be a reduced primary decom-
position of IA in C . Suppose Pi is the associated prime ideal
of Ai for i =1,...,n . If xe}\.-.l\:L and A e I, then )\.::(-:A1
80 A'e Pi . Thus for each i between 1 and n we.hawe either
IC®P or ACA . It IC P, , ve have PinCCAi‘for some
integer n , by the preceding lemma. Consequently .

ACT cCr cChA , 50 ACHA for 1=1,...,n, a0d A=TA

as was to be proved.

The preceding proposition is the main proposition in the
proof of Krull's theorem. We will not however prove fha.t theorem
now, but delay until we have some linear algebra a.tA our disposal.
We close this paragraph with one more proposition concerning Noetherian

modules over Noetherian rings.

Proposition 2.17: If A 1s a commutative Noetherian ring, I 1is

an ideal in A , C 1s a Noetherlan A module, and A 1is a sub-

module of C , then there exists a submodule A' of C such that
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i) IA =ANA*', and

11) for some integer n , I cC A

Proof: Let Al yeea ’An be a reduced primary decomposition of IA

in C , and let P, be the assoclated prime ideal of A, in C

i 1
for 1 =1,...,n . Let A' Dbe the intersection of those Ai's such
that ICP; , and A" the intersection of the remaining Apts .

Now IA =A'N A" . For some integer n, I CC A', and further
AC A' as may be seen by looking at the proof of the preceding
proposition, Thus

IA=A'NA"DA'NAD IA,

and the proposition is proved.
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§3. Polynomial algebras and Noetherian rings

At this stage of events we have seen no examples of the pre-
ceding theory. This situation will be partially rectified by begin-

ning the study of polynomial algebras.

Definitions 3.1: ILet K be a commutative ring. A K-algebra (or

algebra over K) is a ring A which is a K-module, and such that if
@: A X A —> A is the multiplication map, then q)(kx,y) =k @fx,y) =
o(x,ky) for x,yeA, keK . In other words (kx)y = k(xy) = x(ky) .

There 1s a canonical map n: K —> A defined by nfk) = k-1 .

If A and I' are K-algebras a morphism f: A ——>_I‘ is a

moxphism of rings which is simultaneously a morphism of K-modules.

Observe that 7 is a morphism of K-algebras. Further, if
n is a monomorphism then for £: A —> I' to be a morphism of K-

algebras it is sufficient that f be a morphism of rings.

Definition 3.2: Let K be a commutative ring, and X a set. A

polynomial algebra over K generated by X consists of a commutative

K-algebra A and amap 1i: X —> A such that if I' 1is any commu-
tative K-algebra and f: X —> I' any map, then there is a unilque

morphism of K-algebras f: A —> I' such that fi =1,

Proposition 3.3: If K i1s a commutative ring, and X 1is a set,

there exists a polynomial algebra A, 1: X —> A over K generated

by X . Further if A', 1%: X —> A' 1is a second such polynomial
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algebra there is a unique isomorphism f: A —> A' such that fi =i' .

Proof: We prove the second part of the proposition first. Let

i': A' —> A be the unique morphism of K-algebras such that ii'= 1 ,
Now fi'it =31'=1 anda Itf1* ={i=4i', so I{' is the identity
morphism of A and 1T 1is the identity morphism of A' . Let f =it »

and the second part of the proposition is proved.

LetA X be the set of functions h: X —> % suc'h that

i) if xe X, then h(x) >0, and

11) {x|x € X and h(x) # 0) 4s a finite set. Now let A be
the free K-module generated by X . To meke A into a ring_ it suffices
to define a multiplication between elements of X since they form a
basis for A . Then if hy,h, e X, let h,h, be the element of X
such that (hlhe)(x) = hl(x) + h2(x) . This multiplication meskes A
into a K-algebra, the unit 1 € A being the element of X which assigns
0 to each element of X . Define i: X —> A by letting i(x) be the
element of X which assigns 1 to x and O to all other elements
of X.

| Suppose now TI' is a commutative K-algebra and g: X —_ F,

is a map. Suppose h e X , and let X),++4,X, be the elements of X
such that h(x2) # 0 . Define g(h) = g(xl)h(xl)...g(xn)h(xn), and
g(1) =1 ¢ . Now since A is the free K-module generated by X

we have a unique morphism of K-modules g: A —> A such that g(h)
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is as above for h ¢ X . Observing that g is a morphism of K-
algebras and §1.= g we have that A, i: X —> A 1is a polynomial

algebra over K generated by X , and the proposition is proved.

Notations and conventions 3.3: Let K be a commutative ring.

Heving proved that given any set X +there exists a unique polynomial
algebra over K generated by the set X , we denote this algebra by
K[X] , and write X K[X] dinstead of 1i: X —> K[X] . The elements

are called indeterminates of the polynomial algebra K([X] .

In the notation of the preceding proof if h € X and
XyreeerX)y are the only elements of X on which h does not venish, -
then the integer 2321 h(x,) is called the degree of h . The ele-
ment 1 ¢ X 1s of degree O . The K-submodule of K([X] generated
by the elements h e X of degree n is demoted by K([X] , and

elements of this submodule are called homogeneous polynomials of de-

. b = .
gree n Observe that K[X] e <5 K[X]n

An arbitrary element f € K[X] 1s of degree n if f 1is a
linear combination of elements of X of degree less than or equal to
n but not a linear combination of elements of X of degree iess than

or equal to n-1, i.e. f ¢ Zﬁ <n K[X]'j and f ¢ Ej < pol K[X]J .

Sometimes a slight change in notation is made. If X =
{xl,...,xn} is & finite set one frequently writes K[xl,...,xn]

instead of K[X) . Further if h ¢ X is of degree n , and
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X)seeerX, are the elements of X on which h does not vanish one

h(xl)- .

h
often writes xl .xm (xm) instead of h .

In the proof of proposition 3.2 we tacitly assumed the set
X to be non empty. If X is empty by convention K[X] = K , this
definition is consistent with the definition of polynomial algebra
over K since if A 1is a K-algebra the morphism n: K —> A 1s the

only morphism of K-algebra from K to A .

Proposition 3.4: If K is a commutative ring and X,Y are sets,

then

.

K[X U Y] =K[X]Y] .

Proof: Let A Dbe a commutative K-algebra, and f: XUY —>A &
mep. Now there is a unique morphism of K-algebras fl: K[X] —> A

such that Ellx =f|Xx. via £ , A may be considered as an algebra

1
over K[X] and there is a unique morphism of K[X] algebras

f: K[X][Y] — A such that £ Y = £|Y . Now f 1is a morphism of
K-algebras, and it is certainly the only morphism of K-algebras such

that £ |[XUY = £ which proves the proposition.

Proposition 3.5: Let K be a commtative ring, and X a set. Then

if f,g ¢ K[X] ,
i) degree (f+g) < max {degree f, degree g} ,

i1) degree (fg) < degree £ + degree g .
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Proposition 3.6: If K is an integral domain, and X is a set,

then K[X] is an integral domain.

The proofs of the preceding proposition are easy, and they

are left to the reader.

Until now we have seen no connection between polynomial
algebras and Noetheriasn rings. We must now introduce a few definitions

in order to see such a connection.

Definitions 3.7: Let K[x] be the polynomial algebra over the com-

mutative ring K in one indeterminate x . Let LI K[x] — K be
the morphism of K-modules such that @n(xn) =1 and @h(xq) =0

for gq f n vhere n is a positive integer.

t = X for a positive integer.
Le FPK[x] z‘liPK[ ]q P P [

Abbreviate the notation FbK[x] to Fi when no confusion will arise.
If I is an ideal in K[x] 1let I, = image 9,2 INF, —K.

The ideals I Il""’In"" are called the associated ideals of I .

Lemme 3.8: If I,J are ideals in K[x]), and I( J, then I =J

if and only if In = Jn for all positive integers n .

_ 1IN Fy
Proof: Suppose I =J for all n . Notice that /1 q F,1

= J N Fn ~ .
—=>1I , and /J n Fh-l——4> J, for n>0, and

In Fb —_— Io" J N Fb ———>-Jo . Therefore we have I N FB =J N Fb .
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Suppose I N Fq =dJdnN Fq for ¢ < n . Now we have a commutative

diagram

0O—>INF, —>INF,, —>I  —>0
4~ ' [P
0—>JNF, —>JTNEF,, —>J

+1 w1 >0

where the rows are exact. Thus I N F£+l =JN Fh+l , and we have

by induction that I | Fn =Jd N Fn for all n . Thus -

I-= u, In Fn = Un Jn Fh ; .

If I =J it is clear that In Jn for all n , and

the lemma is proved.

Theorem (Hilbert) 3.9: If K is a commutative Noetherian ring and

X 1is a finite set, then K[X] 1is a Noetherian ring.

Proof: 1In view of proposition 3.4t it suffices to prove the theorem
in case X has one element x . Consequently we deal with the poly-
nomial algebra in one indeterminate X[x] . ILet J be an ideal in

K[x] , and let Jgseeesd be the assoclated ideals of J .

q,.l.
Let A: K[x] —> K[x] be the morphism such that A(f) = xf .
It follows from the commutativity of the diagram

Pq
F N3 —=>K

P e

F .nJ’

qQ+l
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that Jq(: J for all q . Since K is Noetherian there exists

qQ+l
an integer n such that Jq = Jn for ¢ >n . Now for q = Q,...,n ,
let Yq be a finite subset of Fq N J such that ¢q(Yq) generates
gy - Theset Y= quo Y, is a finite subset of J. Let I be

the ideal in K[x] generated by Y . We have I( J , and further

if IO, Il""’Iq"" is the set of associated ideals of I , then

Iq =J foraell q. Taws I =J, and J is finitely generated.

q
Since J was an arbitrary ideal in K[x] , the theorem is now proved.
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Exercises

In the algebra Z[x] , let I Dbe the ideal generated by 9,3x;
J the ideal generated by 9,x; M = JB', and P the ideal
generated by 3 .
i) Show that J i1s a primary ideal and M i1s a maximal ideal.
ii) Show that J, P and M?, P are both reduced primary de-
composition of I .

111) Show that NI =P .

.

In the polynomial algebra KX[x,y] over the field K , let I
be the ldeal generated by x2 and xy . Find at least two

distinct reduced primary decompositions of the ideal I .

Let K[x] be the polynomial algebra in one indeterminate over
the commutative ring K . Show that K i1s an integral domain
if and only if for every f£,g e K[x] , degree (fg) = degree f +

degree g .

Let X be a finite non empty set and K a commutative ring.
Show that the polynomial algebra K[X] is a principal ideal domain

if and only if K is a field and X 1is a set with one element.

Recall that a principal ideal domain is an integral domain A such

that every ideal i1s generated by one element.



ls.

Let K Dbe a commutative ring, I =0 , and A a K-module such
that IA= A, i.e. such that if a € A there exist elements
XyseeesX) € I, Bireeer € A such that a = 2321 I
that A = 0 if elther K is Noetherian or A is finitely

X. & Show
J

generated.

Let K be a commutative ring, and A a commutative K-algebra.
If X 1s a subset of A the image I of the morphism of K-
algebras K[X] —> A dinduced by the inclusion map X —> A 1is

the sub K-algebra of A generated by X . ©Show that if K is

Noetherian and X 1is a finite set, then I is Noetherian.

Let T be the subring (or sub Z algebra) of Z[x] generated by
3x, x2, x3 . Let P Dbe the ideal in I' generated by 3x, xa, x3.

Show that P is a prime ideel and that P2 is not a primary ideal.

Find a finitely generated commutative algebra over a field and a

prime ldeal in this algebra whose square is not primary.

Let G be an abelian group such that if the group operation is
written multiplicatively, for every y € G , there exiéts X €@
such that x2 =y, and such that if y € G there exists an integer
n such that y2n =1 . Let K =2/2Z , and let K(G) be the vector
space over K with basis G . Make K(G) into an algebra by as-
suming that if x,y € G their product in K(G) is the element

Xy € G. Let I =+0 in the algebra K(G) . Find a basis for the

ideal I considered as a vector space over K . Show that I2 =I.
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