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Chapter 1. Basic properties of categories and functors

§1. Categories, subcategories, functors, and some special

classes of morphisms and objects.

1.1 Definition. A category ¥ consists of

1) a class obj (¥) called the collection of objects
of ¥ ,
2) for each ordered pair (X',X") of objects of ¥ ,
a set ¥ (X',X") called the set of morpﬁisms in ¥ from X!
to X", and
3) for each ordered triple (X',X,X") of objects of
X , a function ¥ (X,X") x ¥ (X',X) —> ¥ (X',X"), the
image of (f",f') under this function is denoted by f"o f!
and called tﬁe composite of £" with f!',
further the preceding élements of structure are assumed
to satisfy the following conditions:
1) if X e obj( ), there is a unique 1x€ ¥ (X,X) such
that
2) if X'e obj( X ) and f£'e ¥ (X',X), then 1 £ = £', and
22) if X"e obj( ¥ ) and f£"e X(X,X"), then f"o lx = f", and
2) 4if Xje obj( ¥) for j =1,2,3,4, and fje'X(Xj,Xj+1)
for j =1,2,3, then f3° (f2° fl) = (f3° f2) ° fl.
If X € obj( ¥ ) the element i, of ¥ (X,X) 1is the

identity morphism of ¥ . It is sometimes denoted by X.




If X',X" are objects of X , the symbolism
£:X' —> X" is often used to indicate that £ e ¥ (X',X").

In this situation the object X' is the domain of £ and the

object X" is the range of f.

Observe that in the definition of category it has been
assumed that there is at hand a set theory, and that this set
theory is of the Godel-Bernays type in that there is a distinc-
tion between the notion of class and the notion of set, and
that a set or class is specified when its members or elements
are known.

The notion of category could have been defined some-
what differently as follows: A category ¥ consists of
two classes obj( ¥ ) (the class of objects in %) and
mor( ¥ ) (the class of morphisms in ¥ ). For each morphism
£ in ¥ , there is specified two objects of ¥ , one
called the domain of f and one called the range of £.

The symbolism £:X!' —> X" indicates that f 1is a morphism
with domain X' and range X". If f': X' — X,

f': X —> X" are morphisms iﬁ ¥ , there is defined a
morphism fﬁo fr: X' — X" in ¥ called the composite of
£* with £'s If X is aﬁ object of ¥ , there is specified
a morphism 1x= X —> X. The preceding elements of structure

of the category ¥ are subject to the following conditions:



1) if f£: X' —> X" is a morphism in ¥ , then

lXu“ £f=£f, and f"].xI = £, and
oy if fj :Xj-—> Kj+1 is a morphism in #¥ for
4 =1,2,3, then f3° (f2° fl) = f3° fz) ° fl'

The definition of category given above almost coincides
with that given in (1.1). The difference is that in the
situation above, if when (X',X") is an ordered pair of
objects of ¥ , there is no guérantee that the class
¥ (X',X") of morphisms in ¥ with domain X' and range X"
is a set and not just a class. If one imposes the additional
condition on the conditions 1) and 2) above that for every
ordered pair (X',X") of objects of ¥ , the class
¥ (X',X") of morphisms in ¥ with domain X' and range
X" is arset then a definition of category equivalent with

(1.1) has been given.

In this work, it will always be assumed that in a
category 3( » the class of morphisms between any two objects
is a set. This hypothesis is made in spite of the fact that
some authors have recently found the old and more general
definition of category suitable for their purposes. For
problems of the type considered in this work, the more gen-

eral definition is cumbersome and not needed.

1.2 Example. The category ) of sets and functions.
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An object of _25 is a set. If X',X" are sets, then
an element f ¢ gy(Xﬂ,X") is a function from the set X' to
the set X". If f': X; —> X, f": X —> X" are functions,
then f"e £': X' —> X" 1is the usual composite function from
X' to X'.

For any function £f: X —> Y if x € X, the value of
f at x 1is denoted by £(x). Hence if also g: ¥ —> Z

is a function, then (gocf)(x) = g(f(x))

If £f: X — Y is a function, then

1) f is a surjection or surjective function if for

every y € Y there exists x € X such that £(x) =y,
2) f 1is an injection or injective function if whenever
X15X, € X and f(xl) = f(xz) then X=Xy

3) f 1is a bijection or bijective function if it is

and

both an injection and a surjection.

1.3 Definitions. If X is a category and f£:X' —> X' is
a morphism in ¥ , then

1) f is an epimorphism if whenever g,h: X" —> X

are morphism in 'f' such that g o £ =h o f; then g = h,

2) f is a monomorphism if whenever g,h: X —> X!

are morphism in ¥ such that £ o g = f o h, then g = h,

3) f is a bimorphism if it is both a monomorphism

and an epimorphism, and
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4) £ 1is an isomorphism if there exists a morphism

g: X" —> X! such that £ o g=1 and g o £ =1

x" Xt
Observe that in the category 93 of sets and functions,
if f: X' —> X" is a morphism, then
1y £ 1is én epimorphism if and only if f is a sur-
jective function,
2) f is a monomorphism if and only if f is an injec-
tive function, and

3) the notions of bimorphism, bijection, and isomor-

phism coincide in the category gy .

Note that in any category * an isomorphism is a

bimorphism.

1.4 Lemma. If ¥ is a category, and f£':X' — X,
f": X —> X" are morphisms in ¥ , then

1) if f!' and f" are epimorphisms, then f£f" o £!' is
an epimorphism,

2) if £"o f' is an epimorphism, then f" is an
epimorphism,

3) if £' and f£" are monomorphisms, then £"o f' is
a monomorphism,

4) if f"e f' 1is a monomorphism, then f' is a

monomorphism,



5) if f' and £" are isomorphisms, then f"o f' is
an isomorphism, and
6) if f£"o f' is an isomorphism, then f' 1is an

isomorphism if and only if f£" is an isomorphism.

The preceding lemma follows immediately from the

definitions.

1.5 Definitions. If ¥ and ’Rj,are categories, then a
functor T: ¥ —> ’lf consists of

1) for each object X of * s an object T(X) of ?’,

2) for each morphism £:X' —> X" in % , a morphism
T(£): T(X') —> T(X") in 7{ such that

1) if X 1is an object of ¥ , then T = 1

T(X)’
and

2) if f': X' —> X,f": X —> X" are morphisms in X ,
then T(E"> £1) = TUE*) » TLE).

If T: % — 7?/‘ is a functor, then

1) T reflects epimorphisms if whenever f: X! —> X"

is a morphism in ¥ such that T(f): T(X') —> T(X") is
an epimorphism in 7#’ » then £ is an epimorphism in ¥ .

2) T reflects monomorphisms if whenever f£: X' — X"

is a morphism in ¥ such that T(£): TX') — TEX") is

. . 7 . o .
a monomorphism in 2‘, s then £ 1is a monomorphism in x* .



3) T is faithful if whenever fl,fz: Xt —> X" are

morphisms in ¥ such that T(fl) = T(fz): T(X') — T(X",

then f,= f

i 2

1.6 Proposition. If T: ¥ —> ‘%— is a faithful functor,

then T reflects epimorphisms and monomorphisms.

Proof. Suppose f: X' —> X" 1is a morphism in # such
that T(f) is an epimorphism. If g,h: X" —> X are mor-
phisms in ¥ such that g o £f=h o £, then T(g) o T(f) =
T(g o £) = T(h » £) = T(h) » T(f) , and T(g) = T(h) since
T(f) is an epimorphism. Now g =h since T is faithful,
and it follows that f is an epimorphism. Then T reflects

epimorphisms. The fact that T reflects monomorphisms is

established similarly.

1.7 Examples. The category 9/ of spaces and maps.

The objects of 37' are topological spaces. They are
called merely spaces. If X',X" are spaces, a morphism
f: X' — X" in f] is a continuous function from X' to X".
Morphisms in J are called maps. Composition of maps in 7
issinduced by composition of functions.

If X 1is a space, let S(X) denote the underlying
set of X. If £:X' —> X" 4is a map, let S(f): S(X') —
S(X") denote the underlying function of f. Now S( ):

iI sty xg is a functor., Evidently it is a faithful functor.
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1.0 Definitions. Let ¥ be a category and T: ¥ —>2g

a faithful functor.
If f£: X' —> X" is a morphism in ¥ , then

1) £ is surjective reletive to T if T(f) is surjective,

2) £ is injective relative to T if T(f) is injective, and

3) £ is bijective relative to T if T(f) is bijective.

In the definitions above the words relative to T are
dropped when T is clear from the context. In particular
when dealing with the category -/ , the canonical functor
S: 7 m— sg of (1.7) is always understood. Hence the

notions of surjection, injection, and bijection are defined

in 7

1.2 Definitions. If % is a category, then a subcategory

'

V4
¥° of ¥ is a category X such that

1) the class obj( }(’) is a subclass of obj(¥),

2y If Xl,}{z are objects of 9(’ , then '¥((X1,X2)
is a subset of ¥(X1,X2) , and

3) composition of morphisms in ¥? conncides with
composition of morphisms in X , and if X is an object
of %7 and 1, is the identity morphism of X in ¥

3

then lX is a morphism in }’f.
The subcategory ¥* of ¥ is a full subcategory

of % if whenever X

X, are objects of ¥ 7, then

1.'



O

¥ 1
(X.X)) = ¥ (X.X,).
!
If ¥ isa subcategory of ¥ , the inclusion
Y :
functor I: ¥ —> ¥ is the functor such that if X is
an object of ¥ , then I(X) = X, and if £ 1is a morphism
in ¥’, then I(f) = f.
Observe that condition 3) above is equivalent to the
inclusion from ¥’ to ¥ being a functor.
: / k
In order to specify a full subcategory ¥ of ¥ it
suffices to specify which objects of ¥ are objects of i(/ :

Given a class of objects & in ¥ , the full subcategory Gf

¥ generated by O is that subcategory ¥  such that
/
obj( ¥ ) = &,

1.13 Examples. Let f7CL be the subcategory of Jd having
the same objects as ./ , and such that if f£:X! —> X" is
amap in J , then f ¢ :ZCL(X”X") if and only if whenever
A' 1is a closed subspace of X' the image of A' wunder f
is a closed subspace of X". The category :TCL is the
category of spaces and closed maps. It is a subcategory of
tf s but not a full subcategory.

Let :TOP be the subcategory of fj having the same
objects as J » and such that if f£:X' —> X" 1is a map in
:7 , then f ¢ TTOP(X',X") if and only if whenever U' is

an open subspace of X' the image of U' under f 1is an
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open subspace of X". The category t]OP is the category

of spaces-and open maps. It is not a full subcategory of ir.
A space X 1is a Hausdorff space, or a separated space

if whenever xohgl are distinct points of X there exist

disjioint open subsets UG’Ul of X such that xq€ UG and

x, € Ul' The category of Hausdorff spaces and maps in the

full subcategory j’l of 7generated by the Hausdorff spaces.

1.11 Definition. If ¥ 1is a category, the dual category

*
of ¥ 1is the category ¥ defined by the following condi-
tions:
%
1) obj( ¥ ) = obj(%¥), however when an object X of
%* *
X% is considered as an object of ¥ it is denoted by X ,
* _k
2) if X and Y are objects of ¥ , then #(X 43 )
= ¥ (Y,X), and if f: Y —> 1is a morphism in ¥ , the
* * % %
corresponding morphism in ¥ is denoted by £ :X —> Y ,
and
* % % % % %
9) d4f £ : X% ;, 2 * ¥ —> & are norphisms in
* * % % % %
%*; then go f =(£°g) : X~—>Z.

/
Observe that if ¥  1is a subcategory of ¥ , then

* *
(¥’)" is a subcategory of ¥ .

/
1.12 Definitions. Let % be a category and ¥ ' a subcate-

gory of ¥ .
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If X 1is an object of ¥ , a xeflection of X in

2‘_‘_’ is an object R(X) of ¥’ and a morphism p(X):R(X) — X
in ¥ such that if X' is an object of ¥’ and f£:X'—> X

is a morphism in ¥ , then there is a unique morphism

£: X' —> R(X) in f, such that p(X)- f = f. The sub-

i . ¢ :
category ¥ of X} is a reflective subcategory if every

object of ¥ has a reflection in X/.

If X is an object of ¥ , a coreflection of X in

_-_if_/ is an object R(X) of ¥ and a morphism A(X):X—> R(X)
in ¥ such that if X' 1is an object of 1"/ and f£:X—> X!

is a morphism in ¥ , then there is a unique morphism

£:R(X) —> X' in lﬁ/ such that foM(X) = £. The subcategory

/
¥ of ¥ 1is a coreflective subcategory if every object of

/
¥ has a coreflection in ¥ .

1.13 Proposition. If ¥ 1is a category and ')F, is a sub-

category of ¥ , then

1) if X 1is an object of ¥ , R(X) is an object of ¥’,
and p(X): R(X) —> X "is a morphism in ¥ , then p(X) is

* %
a reflection of X in ¥’ if and only if p(X) :X —> R(X)*
% %*
is a coreflection of X in (14’) .
& .

2) ¥’ is a reflective subcategory of ¥ if and only
. X *
if (¥) is a coreflective subcategory of ¥ .

The proposition follows at once from the definitions.
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1.14 Proposition. If ¥ 1is a category and ‘*/ is a sub-

category of ¥ , then

1) if X 4is an object of ¥ , and p(X):R(X) — X,
pl(X): Rl(X) —> X are reflections of X in.'ff there is a
unique isomorphism U: Rl(X) - R(X) iJl‘X/ such that
pP(X) » U =p (X), and

2y 1f 'XJ is a full subcategory of ¥ , and X is

ol
an object of ¥ , then 1l,= X —> X is a reflection of X

X
sl
in ¥ .

ol
Proof. The definition of reflection of X in ¥ implies
there exist unique morphisms U:Rl(x) e BLR) Ul:R(X) —_
RI(X) such that p(X) « U = pl(X), pl(X) ° U1= p(X). Hence
p(X) = pl(X) ° Ul= p(X) o U » Ul’ but 1R(X) is the unique

morphism in }// such that p(X) - 1 = p(X). Thus U - U

R(X) 1

- 1R(X)’ T 131(3)’ and part 1) of the proposition is
proved. Since part 2) follows at once from the definitions,

the proposition is proved.

1.15 Proposition. If ¥ 1is a category,uf: X —5Y is a
morphism in ¥ with dual £ Y*~—> % in ?1*, then

1) f is a monomorphism if and only if f* is an epi-
morphism, and

2) £ is an isomorphism if and only if f* is an iso-

morphism, :
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The proposition follows at once from the definitions.

1.16_ Definitions. If ¥ 1is a category snd f: X —> Y is

a morphism in ¥ , then
1) £ 1is a retract if there exists g: Y —> X such

that gef =1 and

X’
2) f is a coretract if there exists g: Y —> X such

that fog = 1. sy AR 8

1.17 Proposition. If ¥ is a category and £: X —> ¥ is

a morphism in ¥ , then
i ) ) * * *
1) £ 1is a retract if and only if f : Y —> X is a
. %*
coretract in '¥', and
2) if f 1is a retract, then £ is a monomorphism,

and if further £ is an epimorphism, then £ is an isomor-

phism,

Froof. Assuming £ to be & retract choose g: Y —> X such

that gof = lx. If hl,hzz X0~—> X are such that fohlm fohz,

then h1= lxo h1= gaf°h1= gqfoh2= 1X°h2= h2. Thus f 1is a
monomorphism. If £ is an epimorphism, then f = folx=

(fog)of. Thus £f-g = 1y and part 2) of the proposition is
proved. Since part 1) follows at once from the definitions,

the proposition itself is also proved.

Observe that the dual of part 2) of the proposition
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above is that a coretract is an epimorphism, and that a

coretract which is a monomorphism is an isomorphism.

Convention. When convenient, the dual of a lemma, proposi-

tion, or theorem will be referred to by the notation of the

original followed by the duality symbol (%*).

1.18 Definitions. Let ¥ be a category.

An object P of ¥ is projective if whenever
X

| ¢

Y

is a diagram in ¥ with f an epimorphism, there exists

L =5

-g: P —> X such that fog =g.

An object I of ¥ is injective if whenever

Y
| €
X

is a diagram in ¥ with £ a monomorphism, there exists

.ﬁ: X —> 1 such that h.f = h.

1.19 Proposition. If ¥ is a category, then

1) the object P of X is projective if and only if

* * oo s :
the object P of ¥ is injective,
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2) if f£: P—> X is a coretract in ¥ and P is
projective, then X 1is projective, and Ve ks b
3) if f: X —> P is an epimorphism in ¥ and P is

projective, then f 1is a coretract. e, X—xP-rp gp!

Proof. Part 1) follows at once from the definitions.

Suppose the conditions of part 2) obtain, and

4
|
¥

is a diagram in X with h an epimorphism. Choose
v: X —> P such that fov = 1K' Let %: P—5= ¥ be a
morphism such that hog = gof. Let g: T T A - gov.
Now heg =_ho§ov = gofov = g, and part 2) is proved.
Suppose the conditions of part 3) obtain. Now
X
L | f

P e ¥
is a diagram in ¥ with £ an epimorphism. Since P 1is
projective there exists g: P —> X such that £f.g = 1P'

This proves part 3), and hence the proposition.

1.20 Froposition. If T:'f'——>'3f is a functor, and if the

following conditions are satisfied:

* * * % %*
1) for X an object of ¥ , T (X ) =T(X) , and
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* % * * K, %k *
2) if £:X —>Y amorphismin ¥ , T (f) = T(f) ,
* * * » L] . .
then T : ¥ — Zj is a functor and it is faithful if T
is faithful.
The proposition follows at once from the definition.

%
The functor T is the dual of the functor T.

¥
Note that if ¥ is a category, then Cf*) = %, and

%%
if T is a functor, them (T ) = T.

Exercises.

1. 1In the category “J of spaces and maps prove that
every epimorphism is surjective and every monomorphism is
injective. Give an example of a bijection which is not an
isomorphism,

2. In the category fTH (1.10), prove that every
monomorphism is injective and give an example of an epimor-
phism which is not surjective. Prove that a map f:X — Y
in tTH is an epimorphism if and only if the closure of the
set theoretic image of £ in Y is Y, i.e. f?iy =Y.

3) Prove that in the category QY, every object is
projective and every non-empty object is injective. Prove
that every epimorphism is a coretract and every monomorphism

with non-empty domain is a retract.

4) Prove that for a category ¥ , the following



17
conditions are equivalent:

1) every epimorphism in ¥ is a coretract,

2) every object in ¥ is projective.

5. Prove that a space X 1is a projective in ff if
and only if its topology is discrete, i.e. every subspace of
X 1is open in X. Prove that the full subcategory of tr gen-
erated by the discrete spaces is a reflective subcategory
isomorphic with the category < .

6. Prove that a space X 1is an injective in 7 if
and only if it is non-empty and its topology is trivial,

i.e. the only open subspaces of X are the empty subspace

and the entire space X. Prove that the full subcategory of

ij generated by the spaces with trivial topology is a co-
reflective subcategory of fT isomorphic with the category gy.

7. Prove that in the category i71; a space X is
injective if and only if its underlying set has exactly one
point. Hint: Prove that if J 1is an injective in iTH
whose underlying set has more than one point, then the notion
of surjective map and epimorphism in :TH must coincide.
Since this is not the case, no such J exists.

6. A space X 1is totally disconnected if whenever
Xl’XZ are distinct points of X there exist disjoint closed
subsets Fl,F2 of X whose union is X and such that Xle Fl,
Xze Fz. Prove that the full subcategory of :7 generated by

the totally disconnected spaces is a coreflective subcategory

of 7:
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§2. Some considerations concerning categories and functors.

2.1 Definition. If ¥ , ’%, and ?7 are categories and
S 73' —*%’, T:f — % are functors, then SoT: ¥ ——-"’éf is
defined by

1) (SeT)(X) = S(T(X)) for X an object of ¥ , and

2) (SeT)(f) = S(T(f)) for f a morphism in ¥ .

2.2 Proposition. 1f Tj: }j -t ¥j+l is a functor for

j=1,2,3, then
341° Ty
2) T3°(T2°Tl) o= (T3°T2) 9 Tl.

1) T }’j—-—> ¥j+2 is a functor for j = 1,2, and

The proposition follows at once from the definitions.

If S:Yy—%, T =¥ —>7jf are functors, then the

functor (SeT): ¥ ——>? is the composite functor of S and T.

For any category ¥ , the identity functor of ¥ is the

functor 1* : ¥ — ¥ such that 1&‘ (X) =X for X an object

of ¥ and lq (f) = £ for f a morphism in ¥ .

2.3 Proposition. If S:Y— 7, T: ¥ — ?Z}' are functors,

then
1) T°l¥=T, l1d°T=T,
2) if S and T are faithful, then S°T is faithful, and
3) if S°T 1is faithful, then T is faithful.

The proposition is evident from the definitions.
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2.4 Definition. IE S,7: ¥ -—V?f are functors, then a mor-

phism of functors a: S — T is for each object X of ¥ a

morphism a(X): S(X) — T(X) 1in %f such that if f£: X

_.>x

1
is a morphism in ¥ , then a(xz) o S(£) = T(£) = a(¥Xy).

2

The preceding is equivalent to saying that if f:Xl——> X2

is a morphism in ¥ , then the diagram
s(x) > 5(x,)
a(X1) a(X,)
T(x) =B 1x,)
in ?f—is commutative.

2.5 Proposition. If T,: ¥ — %ﬁ is a functor for j=1,2,3,4,

J
and aj: Tj-----Tj+l is a morphism for j=1,2,3, then

1) if aj+1° aj: Tj-—> Tj+2

(X)) aj(x) for j=1,2 and X an object of ¥ , then

is defined by (aj+l° aj)(X) =
%341
aj+1° aj is a morphism for j=1,2, and
2) Qq° (a2° al) = (a3° az)o a; .
Details of the proof of this routine proposition are
left to the reader.
If T!',7,T": ¥ ——>'y are functors, a'= T' —> T,
a": T —> T" are morphisms then the morphism a"¢ a': T' —> T"

is the composite of a' and a'. N
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A morphism of functors was classically called a natural

transformation of functors. However, in the sequel the termi-

nology morphism or morphism of functors will be used.
If T: ¥ — %ﬁ is a functor, the identity morphism of
T, 12 T—> T 1is the morphism such that for Xe obj(¥) lT(X) =
: 7 . g
1T(X)' If S,T: ¥ — ‘4 are functors and a: § — T is a

morphism, then aols = a and 1T° a = a.

2.5 Proposition. If ¥ is a category, ¥' 1is a subcategory

of ¥, and 1I: 1 —> ¥ is the natural inclusion functor,
then the following are equivalent:

1) ¥' is a reflective subcategory of ¥ , and

2) there is a functor R: ¥ — ¥' and a morphism
p: Ie R —= 1¥- such that if X is an object of ¥ , then

p(X): R(X) — X 1is a reflection of X in X',

Proof. Suppose 1). For each object X of X choose a
veflection of X In F', p(X): R(X) = X. TE £: X1—~> X2
is a morphism in ¥ , let R(f): R(Xl) s R(Xz) be the
unique morphism in ¥' such that p(Xz)° R(f) = fop(X1).
Now using the uniqueness property of reflections, it follows
that R( ): ¥ —> %' 1is a functor, and p:I°R — 1¥ is a

morphism. Thus 1) implies 2). Since the fact that 2) implies

1) is evident, the proposition is proved.
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2.7 Definitions. If §S,T: ¥ — %k are functors, and a:5— T

is a morphism, then

1) o is a local epimorphism if for every object X of ¥,

a(X): S(X) — T(X) is an epimorphism in ‘%&,

2) o is a local monomorphism if for every object X of ¥,

a(X): S(X) — T(X) is a monomorphism in %P,

3) a is an epimorphism if whenever T": ¥ ——*’%k is a

functor and X ,\.: T — T" are morphisms such that A,- a =

1*2

120 a, then K1= Az, and

4) o is a monomorphism if whenever S': ¥ — %f‘is a

1

functor and P1sPyt S' —> § are morphisms such that o o Py=
Q@ Pys then P1= Poy-
. * % % * % %
Define a : T—> 8 by a (X ) = a(X) for X an

object of ¥ .

2.8 Proposition. £ 5,T: %?n*'Qj'are functors and a:5—> T

is a morphism, then
*  * %
1) a: T—§ is a morphism,
*

2) a 1is a local epimorphism if and only if o is a local

monomorphism,
#
3) o 1is an epimorphism if and only if o is a monomor-

phism, and

4) if a 1is a local epimorphism, then a is an epimorphism.
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Parts 1), 2), and 3) of the proposition follow at once
from the definitions. As for part 4), suppose T": %'-¢'Eﬁ is
a functor and kl,lzz T — T" are morphisms such that Ao @
w h2°_a. If .o is a local epimorphism, then for every object
X of ¥, ll(x) o a (X) = AZ(X) ° a (X), and xl(x) = XZ(X)

since a(X) is an epimorphism. Hence k1= 12, and part 4)

is proved.

There is no need to distinguish between the notion of
local isomorphisms of functors and ieomorphisms of functors.
Indeed using the notation above, suppose a(X): S(X) — T(X)
is an isomorphism for every object X of ¥ . Let B(X): T(X)
—> 8(X) the inverse isomorphism of a(X). Now B: T — §

is a morphism, a°f = lT, and Bea = 1S.

2.9 Proposition. If S,T: ¥ -—*’3— are functors and a:S — T

a morphism, then

1) if a is a local epimorphism and T is faithful, then
S 1is faithful, and

2) if o 1is a local monomorphism and S is faithful, then

T is faithful.

Proof. Suppose the conditions of 1) obtain, and fl,fZ:X'-—>X"

are such that S(fl) = S(f2). Now T(fl) o a (X') = a(X")oS(fl)

= a(X")oS(fz) = T(fz)oa(X'), and since a(X') is an epimor-
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phism T(fl) = T(fz). Since T 1is faithful f1= £ and 1)

2.’
follows. Part 2) of the proposition follows similarly, or

indeed by duality.

2.10 Definitions. Suppose T',T": ¥ — 1{ are functors,
and a:T' — T" 4is a morphism.
B 184 x* —> ¥ is a functor, then aS:T'eS —> T"eS
is defined by (aS)(X') = a(S(X')) for X' an object of ¥'.
If S: %f"ﬂ—> ﬁf" is a functor, then Sa:S°T'—> SoT"

is defined by (Sa)(X) = S(a(X)) for X an object of ¥.

2.11 Definitions. An adjoint pair of functors consists of

1) functors T: ¥ Mqﬁ' , S ?ﬁ—" ¥ , and

2) morphisms @:S.T —> 1¥ g Ba 1

., = T+S§ such that

¢

1) TaePT =1 and

T,

B lS : .

2) aSeS

The adjoint pair of functors is denoted by (a,f): S — T
s (% ,?,). This notation is shortened to (a,B): S— T , or
to S — T when the other elements of the notation are clear
from the context.
In the situation above the functor T 1is the adjoint (@5§w

of the adjoint pair, and the functor S is the coadjoint of | ﬁ&ﬁ

the adjoint pair.

2.12 Example. Let D: g — “J be the functor which assigns
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to every set X the space D(X) with underlying set X and
the discrete topology, and to every function f£:X' — X" the
map D(f): D(X') — D(X") with underlying function f. Let

S: J ——>2g be the canonical faithful functor (1.7). For X

a space let a(X): (DeS)(X) — X be the unique map which is
the identity on underlying sets. Note that SeD = £§ and let
B be the identity morphism of 1g . Now (a,B8):D — S:(7J,)

is an adjoint pair of functors with adjoint S and coadjoint D.

2.13 Proposition. If T: ¥'——*’%f, S:'%'——* ¥ are functors
and a: ST —> 1¥ y Ot 122}—--" TS morphisms, then (a,B):
S —+ T: (¥, %p is an adjoint pair if and only if (B sQ )

ol 8 2 (E# ,X ) is an adjoint pair.

The proposition follows at once from the definitions.
Observe that T is the adjoint of the first adjoint pair above

%
while its dual T  is the coadjoint of the second adjoint pair.

2.14 Definitions. The functor T: }-—*>7j is an adjoint
functor if there exists an adjoint pair (a,B):S —Ai T:(}f,%f).

The functor S ofrthe adjoint pair is a coadjoint for T.

The functor S:%f——*_%l is a coadjoint functor if there

exists an adjoint pair (a,B):S — T:(¥ ,%0. The functor T

of the adjoint pair is an adjoint for S.

Observe that T: ¥ —> %?’is an adjoint functor if and
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. i % %
only if T : ¥ — ¥ is a coadjoint functor and that

* _ % *
S: 7jr—> % is a coadjoint for T if and only if S :”y, — ¥

*
is an adjoint for T .

2.15 Proposition. If ¥ is a category and }f’ a subcategory of

¥ , then the following are equivalent:
1) ¥’ is a reflective subcategory of ¥ , and
2) the natural inclusion functor 1I1: 3{’—*’ X is a

coadjoint functor.

Proof. Suppose 1) and let R: ¥ — ¥/, piivrR === ] be as in
2.6, 2). For X an object of ¥, let B(X):X — RI(X) be

the unique morphism in ¥’ such that p(I(X)) B(X) = 1 Now

X"
[3:1_1‘ —> RI is a morphism and (p,B):I — R:(¥ ,X'/) is an
adjoint pair of functors. Hence 1) implies 2). Using 2.6 it

is evident that 2) implies 1), and the proposition is proved.

2.16 Definitions. Let T: ¥ — }f' be a functor.

The functor T preserves epimorphisms if whenever £ is

an epimorphism in * , then T(f) is an epimorphism in y 5

The functor T preserves monomorphisms 1if whenever £

is a monomorphism in ¥ , then T(f) is a monomorphism in Zf .
: %
Note that T preserves epimorphisms if and only if T

preserves monomorphisms.

2.17 Proposition. I1f 8: 7{—> ¥ is a coadjoint functor, then
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S preserves epimorphisms.

Proof. Choose an adjoint pair (a,B):S — T:(3, y). Suppose
g:Y! — Y is an epimorphism in BV and fl,fZ:S(Y) —> X are

morphisms in ¥ such that fl° S(g) = f2° S(g). Now

]

T(£,)°B(Y)og = T(f;° 5(g))°P(Y') = T(f,° S(g))°B(Y*) =
T(f2)°B(Y)°g . Thus T(fl)uﬁ(Y) = T(f2)°B(Y) since g 1is an
epimorphism. Hence (SoT)(f1)°S(5(T)) = (S°T)(f2)°S(B(Y)):

and fl= flo IS(Y)z flo a(S(Y))-s(B(Y))

a(X) «(S°T) (£,)*S(B(V))

£,= £5° Loy £5° A(S(D)S(B(N) = a(X)+(S°T)(£,) *S(BD)).

Then f1= f2 and the proposition is proved.

Observe that proposition 2.1f: asserts that an adjoint

functor preserves monomorphisms.

2.18 Proposition. If (a,B):S — T:(a@,%#) is an adjoint
pair of functors, then the following are equivalent:

1y T 4z f=ithful,

2) T reflects epimorphisms, and

1) @S e —== 136 is a local epimorphism.

Proof. By 1.6, 1) implies 2). Hence suppose 2. ‘I ¥ 18
an object of ¥ , then 1T(X) = T(a(X))e° B(T(X)). Thus T(a(X))
is a coretraction and a fortiori an epimorphism. Since T

reflects epimorphism, a(X) is an epimorphism, o is a local
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epimorphism and 2) implies 3).

Suppose a 1is a local epimorphism. Now 11 is cer-
tainly faithful. Hence ST 1is faithful by 2.9, and T 1is
faithful by 2.3. Thus 3) implies 1), and the proposition is

proved.

2.19 Proposition. If f(a'.,p'): &' =% T': (?{l,)() and

] o
(a",B"): 8"— T: (¥,¥) are adjoint pairs of functors,
T=T"' T', § = 8'c 8", a = q'e«S'a"T': ST —> 1¥, and

»”
B=p"e T''S": lyw —> TeS, then (0,f): S — T X,¥) is

an adjoint pair of functors.

The proposition follows from a short routine calculation.

2.20 Corollary. 1If T':¥ — ¥ , T":¥ — ¥  are adjoint

i / I £ S
functors, then T = T"oT': ¥ —> ¥ is an adjoint functor.

2.21 Definitions. Let S: 71 —> # be a functor.

If X is an object of ¥ , an S-reflection of X 1is

an object T(X) of }f and a morphism a(X):S(T(X)) — X in
* such that if Y € obj(”ljr) and g:5(Y) — X 1is a morphism
in ¥ , then there is a unique g: Y — T(X) in %f-such that
g = a(X).S(g).

If X 1is an object of ¥, and S—corefleci:ion of X

is an object T(X) of 7#' and a morphism B(X): X — S(T(X))

in ¥ such that if Y ¢ obj(’%) and h: X — S(Y) 1is a mor-
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phism in ¥ , then there is a unique h: T(X) — Y in 75’
such that h = S(h).B(X).
Observe that if 4j-is a subcategory of ¥ and S is

the natural inclusion functor, then an S-reflection of X 1is

just a reflection of X in %T'

2.22 Proposition. If S: ’13'-—>% is a functor and X € obj(¥),

then
1) if T(X) 1is an object of %f‘and a(X): S(T{X)) — X
is a morphism in * , then a(X) is an S-reflection of X if
* % % * %*
and only if a(X) : X — S (T(X) ) 1is an S -coreflection of
%*
X, and
2) if a(X): S(T(X)) — X, al(x): S(X)) — X are

S-reflections of X there is a unique isomorphism U:Tl(X)—“>

T(X) in qj*such that a(X).S(U) = al(X).

Proof. Part 1) follows at once from the definitions. The
definition of S-reflection of * implies there exist morphisms
U: T, (X) — T(X), U;: T{(X) — T(X) in Y such that
a(X)-S(U) = al(X) and al(X) = al(x)oS(Ul). As in 1.14,

UoUl = 1T(X)’ Ulo U= 1T1(X)’ and U 1is unique. Hence the

proposition is proved.

2.23 Proposition. 1f S:%T-—*’* is a functor, then the

following are equivalent:
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1) every object of ¥ has an S-reflection, and

2) S 1is a coadjoint functor.

Proof. Suppose 1). For every object X of ¥ , choose an

S-reflection a(X): S(T(X)) — X of X. If f£f: Xl——> X2 is
a morphism in X , let T(f): T(Xl) —_ T(KZ) be the unique
morphism in %f such that a(Xz)oS(T(f)) = foa(xl). For Y an
object of %f , let PB(Y): Y —> T(S(Y)) be the unique morphism

in ‘yrsuch that a(S(Y))S(B(Y)) =1 Now (o,B): S— T

S(Y)’
is an adjoint pair, and 1) implies 2). If (a,f): S— T is
an adjoint pair, then a(X): S(T(X)) — X is an S-reflection
of X for every object X of % . Hence 2) implies 1) and

the proposition is proved.

2.24 Proposition. 1£ S:'%'——* ¥ 1is a functor, and (o,B):

S — T, (al,Bl): S —+ Tl are adjoint pairs, then there is a

unique isomorphism A: T1“~° T such that ae°S\A = ll.

Proof. Applying 2.22 and 2.23, for every object X of * ,
there is a unique morphism A(X): Tl(X) —> T(X) such that
a(X)-S(A(X)) = al(X), A(X) is an isomorphism, and aoSA = Q.

Hence the proposition is proved.

2.25 Conventional abbreviations. If % is a category, and

fr: Xt—> X, f": X — X" are morphism in % , the composite

of f" with f' will usually be denoted by f£f"f' rather than
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£ fF1. Similarly if T': X' — X , T": ¥ — ¥ are functors,
the composite of T" with T' will usually be denoted by

™T', or if T!',T,T": £¥—> Ef are functors, and a': T'— T,
a": T —> T" morphisms of functors the composite of a" with

a' will ordinarily be denoted by a'a!'.

Exercises

1. Prove that the canonical functor §S: :f-*°:kg is a
coadjoint functor, but that Slf]ﬁ::7h—->3§ is not a coadjoint
functor.

2. Let ¢ be the category whose objects are rings
(with unit), whose morphisms are structure-preserving functions,
and such that composition is induced by composition of functions.

The category-”ﬁz is the category of rings and morphisms. Let

T:j@ —*'Qg be the functor which assigns to every ring its
underlying set, and to every morphism in ‘fa its underlying
function. Show that T is a faithful functor and that every
monomorphism in 7% is an injection.

3. Let Z denote the ring of rational integers, and
¢ its field of fractions, the rational numbers. Show that the
canonical morphism ¢y: Z— Q in 7? is a bimorphism in R
which is not an isomorphism. Conclude that 'r:ﬁa——*_kg does

not preserve epimorphisms and hence is not a coadjoint functor.
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4. Show that Z 1is a projective in & and that if
is a projective in #®, then P 1is isomorphic with Z .

5. Let R® denote the full subcategory of # generated
by the commutative rings. Show that R is a coreflective sub-
category of 75{

6. Show that the canonical functor T:'ﬁE-“Q'JX is an
adjoint functor.

7. Let (a,B): F — T: (ﬁﬂgg) be an adjoint pair,
and f: R — R" a morphism in K, Show that f is surjective
if and only if whenever X is a set and

R
K
F(x) -£— R"

is a diagram in Ze, there exists a morphism E: F(X) — R 1in
é such that f g = 2
€. Recall that the radical of a ring R is the inter-
section of the maximal left ideals of R, or equivalently the
intersection of the maximal right ideals. A ring R is without
radical if its radical is zero. Show that the full subcategory
4

™ of '72 generated by the rings without radical is a coreflec-

tive subcategory of 7e.
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§3. Functors of several variables, products, and coproducts.

3.1 Definition. If X and %are categories, a contravariant

functor T: X —> 7?' consists of
1) for each object X of ¥ , an object T(X) of ?d',
and 2) for each morphism f: X'— X" in ¥ , a morphism
T(E): TLX") ~ T(X') in 73— such that

1) for X an object of ¥, T(lx) =1 and

T(X)’

2) if f£': X' — X, f": X — X" are morphisms in X,

then T(£"f') = T(£f') T (£").

3.2 Example. For ¥ a category, define Dy : ¥ — { by

* %
D}: (X) =X for X an object of F , and DSG (E) % F  for E
a morphism in ¥ . We have at once that Dy 1is a contravariant

functor.

3.3 Definitions. If ¥ and (ﬁ' are categories, a pseudo-functor

T: X — ?1' consists of
1) for each object X of ¥ , an object T(X) of 7{,

and 2) for each morphism £ in ¥ , a morphism T(£) 1n ?«

1f 'JI":}H—---> ¥ , T": ¥ —> X" are pseudo-functors,

/H
define T"T':¥’—¥ by T"T'(X') = T"(T'(X')) for X' an
object of ¥ , and T"T'(f) = T"(T'(£f)) for f a morphism

£
in ¥ .
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Note that functors and contravariant functors are
pseudo-functors. Further, the composition of pseudo-functors
defined above agrees with the composition of functors defined
earlier if the pseudo-functors being dealt with are in fact

functors.

3.4 Proposition. If T:¥ -“4'%f'is a pseudo-functor, then
the following conditions are equivalent:

1) T 1is a contravariant functor,

23 TD.¥_*: X*—-* '?f is a functor, and

3) DLJT . ¥ --*-"'71'* is a functor.

3.5 Proposition. 1f T.:¥.— ¥, is a pseudo-functor
. S| j+l
for j = 1,23, then
1) T3(T2T1) = (TBTZ)TI’

g T dy =% and U T =T for j=1,2,3,
(e PR 5403

3} 1if Tl’TZ are contravariant functors, then Tle is
a functor, and
4) 1if either T1 is a functor and T2 is a contra-
variant functor, or T1 is a contravariant functor and _T2 is

a functor, then TZTl is a contravariant functor.

The two preceding propositions follow immediately from

the definitions involved.



34

3.6 Example. Let 7° : ff — & be defined as follows: if 5

is a set, then ‘P(S) is the set of all subsets of S, and if
f: S'— 8" is a function, then 70 CE): 79(5") — 79(3') is
the function such that if A is a subset of S" then /©(f)(4)
is the subset of S' consisting of points s'e S' such that
f(s')e A, i.e. P(£)(A) = f-l(A). Now f° is a contravariant
functor. Moreover, it is faithful i.e. if f£,g: S'— S" are

functions such that 7°(f) = P(g), then f = g.

3.7 Definition. If X and %are categorikes, the product

category ¥ X 7?' is the category such that

1) an object of ( BEXH) is an ordered pair (X,Y)
where X € obj( %) and Y ¢ obj('%), and

2) a morphism from (X',¥') to (X",Y") in ¥ x zd,is
an ordered pair (f,g) where f ¢ X(X',X"), g € ?(Y‘,Y"),
and

3) 1f (F'.g'): XL,1') — (K02 (L 0— 3"

are morphisms in X X ’%,, then (£",g")(f',g") = (£"£", g"g").

3.8 Proposition. If ¥ and %are categories, '7;: ¥ X H —_
and 7’-’% : ¥ xib[ s /tj, are defined by f%(X,Y) = X, 7’3(}{,‘{) =y
for (X,Y) € obj( ¥ x ?é), and 7% (£,g) = £, @(f,g) =g for
(£,g) € mor( ¥ x ’Zj), then

1) “ﬂ, and T-’% are functors, and

2) if S:t/(?-—ﬁll 9 T:ﬂ? s ”j— are functors, then there
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is a unique functor ST T: A~ ¥ x 7{ such that @5 (STT) =
S. and Fg(STT) = T.

The proposition follows at once from the definitionms.

3.9 Definitions. If S: X' — ¥~ o BE 7{—-?' H” are pseudo-
functors, then S x T: l{;< y’——> X" x y" is the pseudo-functor
such that (S x T)(X',Y') = (S(X'),T(Y')) for (X',Y')e objerxy),
and (S x T)(f,g) = (S(f),T(g)) for (f,g) € mor(‘ilx 1:{3

1E 1/, lj , and ’9 are categories, then the pseudo-functor

T: ¥ % y e } is a functor contravariant in the first variable

and covariant in the second variable if the composite

i S, )
I*Xy L y“’l‘x?‘.j

T >.g

is a functor.

3.10 Definition. If ¥ is a category, define ¥ (,):¥ x¥ —osf

as follows:

1) for (X',X") € obj(% x ¥), ¥(X',X") is the set of
morphisms in ¥ from X' to X", and

2y 1if (£f,2)3 (X',Xg) —_— (X',X;) is a morphism in X x %,
then ¥ (f,g): #* (X‘,XB) —> ¥ (X',X;) is the function such
that ¥ (f,g)(h) = ghf for heX (X],X3).

*(): ¥ x ¥ — 95} is the basic structural functor of

the category ¥ .

3.11 Proposition. If X is a category, then X (,): £ X ¥ _.._.;.;9
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is a functor contravariant in the first variable and covariant
in the second variable.

The proposition follows at once from the definitions.

3.12 Proposition. If ¥ is a category and £: X'—> X" is

a morphism in * , then

1) f 1is a monomorphism if and only if for every object
X of ¥, ¥(X,£): ¥ (X,X') — X(X,X") is injective in ,Eg ’
and

2) f 1is an epimorphism if and only if for every object

X of ¥, ¥(£,X): ¥X",X) — ¥ (X',X) is injective in .

3.13 Proposition. If ¥ is a category and X 1is an object

of ¥ , then

1) X is projective if and only if for every epimorphism
f£: Xt—> X" in ¥, ¥ (X,£f): ¥ (X,X') — ¥ (X,X") is sur-
jective in 99 s and

2) X 1is injective if and only if for every monomorphism
f: X'—> X" in ¥, X(£,X): ¥X",X) — ¥ (X',X) is sur-

jective in Ag.

The two preceding propositions though tautologies,
illustrate a point of view which differs mildly from that used
in the original definitions. Note that in their statement we
have used the convention that one sometimes uses the same

notation for an object and its identity morphism (1.1).
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3.14 Proposition. If ¥ is a category and £: X'—— X" is a

morphism in ¥ , then

1) f is a coretract if and only if for every object X
in ¥, E(LE): ¥ (X,X') — ¥ (X,X") is surjective in &,
and

2) f is a retract if and only if for every object X in

X , £(£X): X", %) — X (X',X) is surjective in 2?

Proof. If X (X",f) 1is surjective there exists g: X"— X!
such that fg = lyy. Now for every object X of X% the com-
posite X (£,X) ¥X(g,X) is the identity of X (X,X") and

part 1) follows. Part 2) is merely the dual of part 1.

3.15 Definitions. £ T, T": %k % ?3 —> Jr are functors con-
travariant in the first variable and covariant in the second,
then a morphism b: T'—> T" consists of a morphism b(X,Y):
T'(X,Y) — T"(X,Y) for each object (X,Y) of £ X ?j, such
that if (f,g): (X',Y') — (X",Y") 1is a morphism in ¥ X 7?,,

then the diagram

T‘(X",Y') El££45)¢ Tt(XI,Y")
B Y") l b(X',Y")
TH(XU,YI) T"Lf;g2, T"(X',Y")

in ? is commutative,
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Suppose S: Zar—>3£ , T: X —*«‘»'7?/ are functors. Note
that ¥ (, )(S x 1*),-%(,)(1%>< T Yx ¥ —>of are functors

contravariant in the first variable and covariant in the second.
In the situation above
1} 4 s 1% —> TS is a morphism, for (Y,X) an object
of ‘g % % 5 let bB(Y,X): % (S(Y),X) — %(Y,T(X)) be
defined by bB(Y,X)(f) = T(£)P(Y), and

25 £ B: EAL , )SX]’BE S 73( , )1 x T 1is a morphism

4

for Y an object of 75, let ﬁb(Y): Y —> TS(Y) be

b(L,5(0) (Lg g

3.16 Proposition. If 8 ’g——> ¥ , T: ¥ — g are functors,

then

1) if B: 1’@ —> TS is a morphism, then bB:i_“a( " )SX]'aé
e B 9 )1,3 X T is a morphism, and if b = by, then
B=p8, and

2) if b: ¥({ , IS« L, — Y(., )1y X T is a mor-

phism, then ﬁb: 1,, —> TS 1is a morphism, and if B = Bb’

Y

then b = bg‘

The proposition follows by routine verification.

3.17 Proposition. If S: %f—-s-'i: , T: X — Y are functors,

and B: l,g —> TS 1is a morphism, then the following are

equivalent:
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1) there exists a: ST —> 11: such that (o,B): S = T:
(%, ’g) is an adjoint pair of functors, and

2) by ¥(, )S x 15& — UL )l,yx T is an isomorphism.

Proof, Suppose 1). For (Y,X) an object of yx ¥ , define
a(Y,X): Y(Y,T(X)) — £ (S(T),X) by a(¥,X)(g) = a(X)ST(g).
Now a(Y,X)ba(Y,X) and bB(Y,X)a(Y,X) are identity functions,
and it follows that 1) implies 2).

Suppose 2). Let a: /g( 5 )13 X T— %£(, )S X% 13&

be the inverse of bB' For X an object of X , let
a(X): ST(X) — X be a(T(X),X)(Lygy) Now by 3.18"%,

Gy 91 w-b 1* is a morphism. A routine verification shows
that (o,B): S - T: (¥, ﬁ) is an adjoint pair of functors.
Hence 2) implies 1), and the proposition is proved.

Note that the preceding proposition affords an alter-

native formulation of the notion of adjoint pairs of functors.

3.16 Definitions. Let X be a category, and X;,X, objects
of ¥ .

A product of Kl and X2 is a pair of morphisms

Py: X —> Xy, Py X — X, in X such that if £,8 X' X,
fzz X Ve X2 are morphisms in ¥ , there is a unique morphism
fl'T F2: Xt—> X such that pl(fl‘r f2) = fl and pz(flT f2) = £,

A coproduct of Xl and X2 is a pair of morphisms

il: Xl—-—-> Ay i2: X2—> X in ¥ such that if flz Xl—-"r- X,
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f2: X2—> X' are morphisms in ¥ , there is a unique morphism

£ . 1 = L 1 =
fl.L f2_.X-—-> X' such that (flJ. f2)11 f1 and (fl fz):.2 f2'

3.19 Proposition. If ¥ is a category, then

1) the morphisms Py X — Xl’ Pyt s X2 are a

product of X:L and Xz in ¥ if and only if the morphisms
* % % *

* %
(pl) : Xl —s X , Py }{2——'> X are a coproduct of X

*
in ¥ , and

ax
g o4 2

1) if Pyt X — Xy, Py X == Xz, and E]_: X —> X5

Py X — X2 are products of X, and X, in ¥ , then there

is a unique isomorphism u: X —> X such that Elu =P and

Proof. Part 1) follows at once from the definitions. As for
part 2), the definition of product guarantees there are unique

morphisms u: X —> X such that Elu = Py Ezu =Py and

v: X —> X such that PyV = Pys PyV = Py Further P{U ¥ = Bya
-ﬁzu v = .1;2, but 1_ is the unique morphism having this prop-
X
1

erty. Thus u v = , and for the same reasons v u =1

X X

Hence part 2) and also the proposition are proved.

3.20 Definition. If X is a category, the diagonal functor

of X is the functor A: ¥ —> ¥ x ¥ such that

i

1) if X € obj(k), then A(X) = (X,X), and

2) if f € mor(¥), then A(f)

(£,£).
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3.21 Proposition. If X is a category and (Xl,Xz) is an

object of ¥ X ¥ , then

1) the following are equivalent:

i) Pyt X w Xl, Py s X2 is a product of Xl,X2
in ¥, and
ii) (pl,pz: A(X) — (Xl,xz) is a A-reflection of
(lexz) in i 3 and
2) the following are equivalent:
i) il: Xl——s- X; i,: X2—> X 1is a coproduct of X].’XZ

in ¥ , and

ii) (il,iz): (xl,xz) —> A(X) 1is a A-coreflection of
(X,,X,) in % .

The proposition follows at once from the definitions.

3.22 Definitions. Let * be a category, J a set, and Xj an
object of ¥ for j e J.

A product of (Xj)jeJ

is a J-indexed set of morphisms

(Pj)jeJ’ pj: X — XJ. in ¥ such that if (fj)je.]’fj: ) Xj

in a J-indexed set of morphisms, then there is a unique mor-

phism 7, .f.: X*—= X such that P (T

jeaty jlej) = fk for ke J.

A coproduct of (xj)jeJ is a J-indexed set of morphisms
i,: X.—> X in % such that if (f

jea, 1y° % j?

is a J-indexed set of morphisms, then there is a unique morphism

X,— X!

(lj) jeJ, fj: g

'LjEij: X —= X' such that (-Ljlej)ik; fk for k e J.



42

1f (xj)j(_:J is a J-indexed set of objects of ¥ having

a product (Pj)jeJ’ pj: X — Xj, then for ke J the mor-

his
P m ‘P.,k

If (ij)jeJ’ij: Xj-—v X 1is a coproduct of (Xj)jeJ’ then for

is the projection to k -th factor of the product,

k € J the morphism 11{ is the injection from the k -th

cofactor of the coproduct.

3.23 Proposition, If * is a category, J is a set, and

(Xj)jeJ is a J-indexed set of objects of ¥ , then
1) (pj)jeJ’ zj: X -—; Xj* is a*product of (Xj)jeJ) in
if and only if (pj)jeJ’ pj: Xj-—> X 1s a coproduct of
X* i & d
XDy in ¥, an
2) if (pj)jsJ’ pj: X — Xj and (pj)jeJ’ pj: X —> Xj

are products of (xj)jeJ’ then there is a unique morphism
uiX-— X such that 55u = pj for §ed, aml v 15 an
isomorphism.

Part 1) of the proposition follows at once from the
definitions, while part 2) is proved exactly as 3.19,2) using

J rather than {1,2} as index set.

3.24 Definitions. The category ¥ has products if whenever J

is a set and (xj)jeJ is a J-indexed set of objects of ¥ a

product of (Xj)jEJ exists in ¥ . It has countable products

if the condition above is satisfied for any countable set J,
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and finite products if it is satisfied for any finite set J.

The category * has coproducts if whenever J 1is a set

and (xj)jeJ is a J-indexed set of objects of ¥ a coproduct of

(X.j)jEJ exists in % . It has countable coproducts if the con-
dition above is satisfied for any countable set J, and finite

coproducts if it is satisfied for any finite set J.

3.25 Example. The category & has products and coproducts.

If J is a set and (Sj)jEJ is a J-indexed set of objects

of QX ,» then in a rough way a product of (Sj)je may be thought

J

of as follows: Let xjeri be the set of functions s with

domain J and such that s(j) ¢ Sj for j € J, and let

Py ijJSj——> S, be the function such that p, (8) =s(k)

for k € J, 8 € X, _ .S Now (pj)

.. is a product of S.
Jed ] 5 =

jeJd jed
in Qg. Indeed if fj: St— Sj is a function for j € J, then
'13€Jf5: St *jeJSj is the function such that kaTalej)(S')
= fk(s') for s'e S', ke J.

Usually in of the product of two sets S',S" is denoted
by S' x 8" and thought of explicitly as the set of ordered pairs
(s',8") such that s'e S', s"e 8". When using this notation if
£: Sy— 84, g: SB—~> SI are functions, then f X g: 86 5 SB——>
Six S; is the function such that (f x g)(x,y) = (£(x), g(y)).

If J 1is a set and (Sj)jeJ is a J-indexed set of objects

in ;g s a coproduct of (Sj)jeJ is a disjoint union of the



J-indexed family of sets, If a coproduct is (1j)jeJ’1j: j
then for any set X, (,g(ij,X))jeJ, Qg(ij,X):szg(S,X) —-.»,zg(sj ,X)

is a product of (,éf (Sj’x))je.l in :zg .

3.26 Proposition. If ¥ is a category, J 1is a set, and

) jeq

(pj )j cJ? pj: X = Xj is a J-indexed set of morphisms in ¥ ,

then the following are equivalent:

is a J-indexed set of objects of ¥ , then if

1) (p.) is a product of (X.)

$)5ed in ¥ , and

jjed

2) for every object X' of ¥, (X—(X',pj))jepf(}{',pj):

¥ (X',X) — X(x',xj) is a product of (ae'(x',xj))j(:_J in

3.27 Proposition. If ¥ is a category, J is a set, and

(Xj)jeJ is a J-indexed set of objects of # , then if
(1j)jeJ’ 1j: Xj-—-- X 1is a J-indexed set of morphisms in X* ,

then the following are equivalent:

1) (ij) is a coproduct of (Xj) in ¥ , and

jed jeJ

2) for every object X' of ¥ , (‘f(ij,X'))jeJ,
¥ (ij,X'): X (X,X') — X (Xj,X') is a product of ('f'()(__],}{')%&_.I
in z? .

In each of the two preceding propositions, the two parts

are merely reformulations of each other.

S,— 8,
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3,28 Notation. Usually in a category ¥ such that every

ordered pair of objects has a product, a product of the objects

X, and X, is denoted by p;: xlﬂ'xz-—> X;sPpt X T Xy— X,
H 1 ] 1 . 1 ! 1

If also pj: X| TTX — X}1,py: Xj TTX2—> Xy is a product of

X]‘_ and X!, and f£: X]'L—v- Xl, g X‘z——e» XZ are morphisms in

¥, then £ T g: X T Xy— X T X, 1is the unique morphism
such that pl(f Tg) = fp] and pz(f‘ﬂ' g) = gP5e
Similarly if every ordered pair of objects of ¥ has a

coproduct, the usual notation for a coproduct of Xl and X

.
+ P S b il $1 . Y
in iy: Xl-—v Xl-LL Xps iyt Xz--'> X, X2. If also i X|—
1 1 it 1 1 4l w1 3 £ 1
Xl.LL XZ’ iy X2—>- Xl X2 is a coproduct of Xl and X'z, and

i X:'L-—a- Xl, g X'Z-"-> X2 are morphisms in % , then f lg:
Xi.LLX'Z«-—v- XI-U. X2 is the unique morphism such that (£l g)i]'_

=i,f and (f«ﬂ-g)ié = i8.

If J is a set, ¥ a category with J-indexed products,

and (pj)je is a product of (X, )JGJ in % , the domain of

the morphi . is usually denoted by ™I, AP /-
morphism pJ is usually denoted by JEJ’XJ

(p;!;)je;f’ pj: TrJeJ J‘—v X:} is another J-indexed product and

f.: X!=> X. is a morphism in ¥ for j e J then
3" j ® . g Tieaty’

T['j > J.X:‘]—> TTj . ij is the unique morphism such_ that

(; f) = f for k € J.

1
jed kPk
If J is a set, ¥ is a category with J-indexed co-

products, and (i. )JEJ is a coproduct of (X, )Je.} in ¥ , the



range of the morphism ij is usually denoted by L, x 5% o

jed7y°
I. 1 -LL 1 2 -
(i )JeJ’ 3t Xj*-% jeJXj is another J-indexed coproduct and
fj: Xj——> Xj is a morphism in ¥ for j € J, then iljlej:

JleJXj-—> jeij is the unique morphism such that

(4l

jlej)ii =i f for k e J.

k™k
The preceding notation is often abbreviated. Thus a

product of X, and X, in % is denoted by X, T X, the pro-

1 2

jections to the factors being understood from the notation or a

4

from the cofactors being understood by the notation. If J is

coproduct of X; and X, is denoted by XlJi.XZ the injections

a set, a product of (Xj)jeJ

in this abbreviated notation, the appro-

is denoted by TT. or a co-

ey
product by TT. eJ ;
priate projections or injections being understood implicitly.
In some special categories the standard notation for
products or coproducts differs from the standard general nota-

tion (e.g. in the category of the product of S' and S" is

denoted by S' x S", as in example 3.25.

3.29 Definitions. Let T: * m&>@j be a functor.

The functor T preserves products if whenever J 1is a

set and (pJ)JEJ, Ps X — Xj is a product of (XJ.)jEJ in ¥,

then (T(p. ))JeJ’ T(pj): TX) — T(Xj) is a product of

(T(X. ))J€J in Ef . It preserves countable products if the

preceding condition holds whenever J is a countable set, or
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it preserves finite products if it holds whenever J is a

finite set.

The functor T preserves coproducts if whenever J is

a set and (i, )JeJ’ ij: Xj——> X is a coproduct of (X, )JEJ in

¥ , then (T(4i, ))JEJ’ T(ij): T(Xj) —> T(X) 1is a coproduct

of (T(xj))jeJ in y . It preserves countable coproducts if
the preceding condition holds whenever J 1is a countable set,

or it preserves finite products if it holds whenever J 1is a

finite set,

3.30 Proposition. If T: £ — %’ is an adjoint functor,

then T preserves products.

Proof. Let (a,B): S -4 T be an adjoint pair. Suppose J is
a set and Trje ij is a J-indexed product in ¥ . For Y an

object of %r , there is a commutative diagram

X, T X)) — %{(YF(TTJGJJ

|

Xieg (LX) —— X, Y (LTE))

in ﬂx , where the horizontal morphisms are isomorphism by 3.17,
and the left vertical morphism is an isomorphism by 3.26. This
implies that the right vertical morphism is an isomorphism.
Since this is the case for every object Y of Y, applying

3.26 again the proposition is proved.
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Note that we have already seen that an adjoint functor
preserves monomorphisms 2.16. Further, the dual of the preceding

proposition asserts that a coadjoint functor preserves coproducts.

3.31 Definitions and comments. Let ¥ be a category.

¥ has a terminal point if there is an object ¥, of *
such that if X is any object of ¥ there is a unique morphism
qX): X — *1 in ¥. If *1 and ;Fl are terminal points

of X there is a unique isomorphism u: *1—-‘-‘ ;’;1 in ¥ .
Observe that the hypothesis that X has a terminal point is
equivalent with the hypothesis that # has products indexed on
the empty set. Thus a category ¥ with finite products has a

terminal point.

¥ has an initial point if there is an object *, of X

such that if X is any object of X there is a unique morphism
7 (X): k=X in X, 1If *0 and ;O are initial points of
¥J there is a unique isomorphism u: *,—> ;O in % . Observe
that the hypothesis that X has coproducts indexed on the empty
set is equivalent with the hypothesis that ¥ has an initial
point, Thus a category X with finite coproducts has an initial
point.
Note also that an object *0 of % is an initial point

* *
if and only if its dual (*0) is a terminal point of %,

The empty set ¢ is the initial point of o .



49

3.32 Proposition. If %X is a category, % is a reflective

subcategory of ¥ , and R: ¥ — %’ is a reflection from X
to %’ » i.e. an adjoint for the natural inclusion 1I: ¥ — ¥ 3
then

1) if J 1is a set, and (pj)jeJ’ pj: & Xj is a

product of (Xj) in X, then (R(p.). 3 R(pj): R(X) —

jeJd j'je
R(Xj) is a product of ("R(xj))j‘_:‘:r in ¥', and

2) if ffis a full subcategory of ¥ , then ¥'has
products, countable products, or finite products according as ¥

has products, countable products, or finite products.

Proof. Part 1) is a special case of 3.30. Observing that if
X’ is a full subcategory it may be assumed that R(X) = X for
X e obj(fl), by 1.14, part 2) follows at once from part 1) and
the universal property of reflections. Hence the proposition is
proved.

Note that in the situation of the preceding proposition

/
it is possible that X has products even though X does not.

3.33 Definitions. Let ¥ be a category.

A weak separation subcategory of ¥ is a full coreflective

subcategory ¥ of % such that if f: X' — X 1is a retract in
X and X is an object of ¥, then f is a morphism in X',

A weak coseparation subcategory of % is a full reflective
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subcategoryl| X of ¥ such that if f: X — X" 1is a coretract
in ¥ and|X is an object of 3’ , then f is a morphism
in ¥ .
Note that i/ is a weak separation subcategory of * if
b ¥ & y f
and only if (%7) is a weak coseparation subcategory of .
When dealirng with a weak coseparation subcategory %’ of ¥ one
assumes thdt the reflection R( ):¥ —> X% ,p( ):R() —>1,

has been s¢ chosen that p(X) = 1x for X € obj(i"), and dually.

3.34 Propeésition. 1f %’ is a weak coseparation subcategory

of ¥ , then

) : / -

1) 1if J is a set, Xje obj(X') for j e J, and (ij)jeJ
i,: Xj——s- X is a coproduct of (Xj)jeJ in ¥ , then it is

also a coproduct of (XJ.) in ¥, and

jed
2) ¥/ has coproducts, countable coproducts, or finite
coproducts| if X has coproducts, countable coproducts, or finite

coproductsl

Proof. Let p( ):R() — ]1 be the reflection of X in X',
Under the conditions of part 1), there is a unique v: X —>

R (X) such that p(X) v ij= p(X)R(ij) =i, for j e J. Now

J
p(X) v = L. Thus p(X) is a morphism in ¥, p(X) =1, and
part 1) ig proved. Part 2) follows at once from part 1) and the

propositidn is proved.




51

3.35 Definitions. Let ¥ be a category.

The object P of % 1is a generator of X if the

functor i (p, ): ¥ ——>J£ is a faithful functor. The cate-
gory ¥ has a generator if there exists a generator P of ¥ .

The object I of ¥ 1is a cogenerator of ¥ if the

contravariant functor X ( ,I): ¥ — J is faithful. The

category X has a cogenerator if there exists a cogenerator

I of ¥,

3.36 Proposition. If X is a category, then

1) the object P of ¥ is a generator of X if and only

* * %
if the object P of * is a cogenerator of X , and

2) suppose X is a category with products, and 1 1is an
object of X ; and that for X an object of %, ('pf)fei(x,l)’
Pt T(X) —> I is a product of copies of I indexed on the set
X(X,1), B(X): X — T(X), and PpPR(X) =1£f for f e s §6 up P

then the following are equivalent:

i) I 1is a cogenerator of ¥ , and
ii) for every object X of ¥ , B(X): X — T(X) is a

monomorphism in X% .

Proof. Part 1) follows at once from the definitions.
Suppose the conditions of ii) obtain and that fl,fz:

Xt—> X are morphisms in ¥ such that 6(X)f1= B(X)fz. Then
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ff1= ff2 for every: f ¢ ¥(X,I), X (fl’I) =?3(f2,1): *(X,1) —
¥ (X',I), and f1= f2 since ¥ ( ,I) is faithful. Thus 2i)

implies 2ii). Suppose 2ii) and that £ f2= X' —> X are

1,
morphisms in % such that ¥ (fl’I) = (fz,I). Then for every

fe (X,1), ff1= ffz. Hence B(X) f1== B(X)fz, f.= f 2ii)

L =%

implies 2i), and the proposition is proved.

Exercises
1. If * is a category with a terminal point, show
that the following are equivalent:
i) every ordered pair (xl,xz) of objects of ¥ has a
product in X , and

ii) % has finite products.

2, Show that the category R has products. Show that
the category RF is a weak separation subcategory of R ,
and conclude that RF has products. Show that the ring of
rational integers Z 1is an initial point of R , and that a
ring whose underlying set has exactly one element is a terminal
point of R . Note that it is assumed that every ring R has

a unit, the unit is not necessarily different from zero.

3. Show that the categories 7 and 71-1 have products

and coproducts and that the natural inclusion functor 7H—->7

preserves both products and coproducts.
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4, Suppose that X% is a category, J is a set, and

X = TTjstj is a product of (Xj) in * , Show that if

jed
each Xj is injective, then X 1is injective.

5. Show that the category /X has coproducts, and that
the natural inclusion functor TQC —> & does not preserve

coproducts.

6. A space X 1is a Kolmogoroff or T0 space if when-
ever XO,Xl are distinct points of X there is an open subset
of X containing one but not the other. Let i?K be the full
subcategory of 7 generated by the Kolmogoroff spaces. Let T0
be the space with underlying set {0,1} , and closed subspaces
p, {0}, {0,1}. Show that T, is a cogenerator of TTK. but

not of 7 . Find a cogenerator of i (g

7. Show that :7K is a weak separation subcategory of
‘j , and that it contains iTH' Show that the monomorphisms
in 77 g are the injective maps and that the epimorphisms in

7 g are the surjective maps.

8. Let I denote the unit interval with its usual
topology. Recall that a completely regular space X is a
separated space such that whenever A 1is a closed subspace of
X and XO a point of X - A, there exists amap f: X — 1
such that f(a) = 0 for a € A and £(X) = 1. Let ijéR be

the full subcategory of jﬂ generated by the completely regular
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spaces, Show that I is a cogenerator of j%R' but not of

J7H, and that jER is a weak separation subcategory of i7.

9. Show that if X ¢ Obj(:7bR ) and A is a subspace
of X, then A € obj( 7LR ). Show that the monomorphisms in
”]ER .are the injective maps and the epimorphisms are those

maps which viewed in t7H are epimorphisms (§1, Ex. 2).

10. Recall that a compact space C is a separated space
on which every ultra filter is convergent, or alternatively a
Hausdorff space such that every open covering has a finite sub-
covering. Let C denote tﬁe full subcategory of / generated
by the compact spaces. Show that £ is a weak separation sub-
category of ']6R or alternatively of :7. Frove that I is
an injective cogenerator of (¢ (Tietze's extension theorem).
Prove that every epimorphism in C is surjective and every

monomorphism in C 1is injective,

11. A subspace A of a space X 1is compactly closed

in X 1if whenever f: C —> X 1is a map with C compact, then
fpl(A) is closed in C. The space X has a compactly generated
topology if every compactly closed subspace of X 1is a closed
subspace, Let :jc denote the full subcategory of T generated
by the spaces having a compactly generated topology. Show that
ijc is a weak coseparation subcategory of 7 which contains C .
Show that the epimorphisms in j]c are the surjective maps and

the monomorphisms are the injective maps.
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12, Suppose that C 1is a compact space and Y is a
compactly generated space, Show that if p: X — C, q: X —Y
is a product of C and Y in jc, then it is also a product
in .7 . Show that the natural inclusion functor jc——> 7 does

not preserve finite products.

13. Show that the category % has a generator which is
commutative and without radical (§2, Ex. ). Show that the full
subcategory of &’ generated by the rings without radical is a

weak separation subcategory of .

14, An element X of a ring 'R is a non-trivial nil-
potent element if X # 0 and Xx"= 0 for some positive integer
n. A commutative ring with no non-trivial nilpotent elements is
called a reduced ring. Show that if R is a commutative ring
without radical, then R is a reduced ring. Show that the full
subcategory of ZEC generated by the reduced rings is a weak

separation subcategory of ffc}



56

§4, Limits and Colimits

4,1 Definitions. Let ¥ be a category.

If fl’fz: X'—> X" are morphisms in ¥ , then

1) u: X — X' 1is an equalizer of fl and f2 iE

flu = fzu, and whenever g: Y — X' 1is a morphism in * such

that flg = fzg, there is a unique gE ¥ == X such that

g=u g, and

2) v: X" — X is a coequalizer of £, and f, if

vf1= Vf2’ and whenever h: X" — Y is a morphism in ¥ such that

hf;= hf,, there is a unique h: X — Y such that h = hv.

4,2 Proposition. If * is a category, and fl,fz: (r — X"

are morphisms in * , then

1) u: X — X' is an equalizer of f f2 if and only if

1’
%

2
2) 1f u:r X — X', uy X0~—> X' are equalizers of fl’fz’

% * * % . %*
u: (Xt) — X is a coequalizer of fl,f in ¥ , and

there is a unique isomorphism w: XO——> X such that uy= uw.

Part 1 of the proposition follows at once from the def-
initions. Part 2 is a routine verification of a type often

made earlier in this chapter.

4,3 Definitions.

The category X has equalizers if whenever f,f,:X'—> X"

are morphisms in ¥ an equalizer of fl,f2 exists in X ,
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The category X has coequalizers if whenever £ ,f,:

1272
X' —> X" are morphisms in ¥ a coequalizer of fl,f2 exists

in X .

4.4 Proposition. If % is a category, f £,: X' — X" are

1’
morphisms in X , and u: X —> X' is an equalizer of fl’fZ’
then u is a monomorphism.,

The proposition follows at once from the definition of

equalizer,

4.5 Definitions., Let T: ¥—> Q%. be a functor.

The functor T preserves equalizers if whenever

u: X —> X' is an equalizer of f,f,: X' — X" in X, then

2
T(u): T(X) — T(X') is an equalizer of T(fl),T(fz): Tx*)y —=
T(X") in %ﬁ

The functor T preserves coequalizers if whenever v: X'"—>

X 1is a coequalizer of £ ,f,: X' —> X" in ¥ , then T(Vv):

T(X") — T(X) is a coequalizer of T(fl),T(fz):T(X') —> T(X")
in %.

4,6 Proposition. If T: £ — Zcf is an adjoint functor, then

T preserves equalizers.

Proof. Let (a,B): S= T be an adjoint pair.
Suppose fl,fzz X' —> X" are morphisms in X, and

u: X —> X' 1is an equalizer of fl’f2' Suppose g:Y —T(X'")
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is a morphism in Ef such that T(fl)g = T(fz)g. Now a(X')S(g):
S(Y) —> X', and further fla(X')S(g) = a(X")S(T(fl)g) =

a(X”)S(T(fZ)g)= fza(X‘)S(g). Hence there is a unique h:S(Y) —

X such that uh = a(X')S(g). Let g = T(h)B(Y):Y — T(X).

Note that T(u)g = T(uh)B(Y) = T(a(X'))TS(g)B(Y) =
T(a(X'))B(T(X'))g = g. By 4.4, u is a monomorphism, and by
2.17*, T(u) is a monomorphism. Thus g is the unique mor-
phism such that T(u)g =g, T(u) 1is an equalizer of T(fl)’
T(fz), and the proposition is proved.

Observe that now it has been proved that an adjoint
functor preserves monomorphisms, products, and equalizers, and

by duality a coadjoint functor preserves epimorphisms, coproducts,

and coequalizers, 2.17, 3.30, and &4.6.

4.7 Proposition. If X' is a weak coseparation subcategory of

¥ with reflection R : ¥ — X', p: R—> 1*: , then

1) if fl,fz: X' —> X" are morphisms in %f , and

u: X — X' 1is an equalizer of f.,f in ¥ , then R (u):
2

1!
R (X) — X' 1is an equalizer of fl’fZ in 17’, and
2y if fl,fzz Xt—> X" are morphisms in E%I, and

v: X" — X 1is a coequalizer of f £, in X, then v is a

l’

coequalizer of f£,,f, in x7,

Proof. Part 1 follows at once from the preceding proposition.

As for part 2), R (v)f1= R,(v)fz, and there is a unique morphism



w: X —> & (X) such that #(v) = w v. Thus v = p(X) R(v) =
p(X)w v, and p(X)w = lX since v 1is an epimorphism. Hence
since 'fj is a weak coseparation subcategory of £ , p(X) = lx,
part 2) is proved, and the proposition is proved.

4.8 Corollary, If % is a category and X is a weak co-

separation subcategory of ¥ , then
1) if ¥ has equalizers, then ¥ has equalizers, and

2) if ¥ has coequalizers, then ¥  has coequalizers.

4.9 Definitions. A category ¥ is complete if it has equalizers

and products, it is countably complete if it has equalizers and

countable products, and it is finitely complete if it has equal -

izers and finite products.

A category ¥ is cocomplete if it has coequalizers and

coproducts, it is countably cocomplete if it has coequalizers

and countable coproducts, and it is finitely cocomplete if it has

coequalizers and finite coproducts.

4.10 Proposition. The category £ is complete, countably, or

*
finitely complete if and only if the category ¥ is cocomplete,

countably cocomplete, or finitely cocomplete.

4.11 Definitions. The category * is bicomplete if it is com-

plete and cococomplete, it is countably bicomplete if it is

countably complete and countably cocomplete, and it is finitely
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bicomplete if it is finitely complete and finitely cocomplete.

Observe that bicompleteness is a self dual notion.

4.12 Examples. The category & is bicomplete.

Suppose that fl,fz: St —> 8" are functions. Let

s ={x|l x e s and fl(x) = fz(x)}, and let u: S — S' be
the natural inclusion function. One sees at once that u is
an equalizer of fl’f2' Hence & has equalizers,

Suppose again that fl,f2: St — S" are functions. Let
S be the set obtained from S" by identifying fl(x) with
fz(x) for every x € §', i.e. one divides S" by the least
equivalence relation on S" having the property that fl(x) is
equivalent with fz(x) for every x € S'. Let wv:§8"—> S be
the function that takes an element of S" into its equivalence
class. One verigies at once that v 1is a coequalizer of fl’fz'
Hence o has coequalizers,

Since it has already been observed that zg has products
and coproducts, it now follows that 53 is bicomplete.

Recall that a set S 1is finite if whenever f: § — §
is an injection then £ 1is a bijection or equivalently if
whenever f is a surjection then f is a bijection. Let ﬁff
be the full subcategory of Eg generated by the finite sets,

The category ng is finitely bicomplete, and the natural

inclusion functor Rgf——ﬁ }g preserves equalizers, coequalizers,

finite products and finite coproducts.
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4.13 Proposition. If % is a weak coseparation subcategory

of * , then
1) % is complete, countably complete, or finitely complete
if % is complete, countably complete, or finitely complete, and
2) ¥ is cocomplete, countably cocomplete, or finitely co-
complete if ¥ is cocomplete, countably cococomplete, or finitely

cocomplete,

The proposition follows at once from 4.8, 3.32, and 3.34,

4.14 Definitions. Let ¥ be a category, and

2 3
1 0 . n
X5 X0
1 u' l u"
f
1 1 n
) = | =

a commutative diagram in X .

The diagram is a cartesian square if whenever g:Y— X!,

Ba ¥ Xa are morphisms in ¥ such that f,g = u"h there is

a unique wv:Y — Xb such that u'v =g and fov = h.

The diagram is a cocartesian square if whenever g:Xi——% Y,

h:XJ—> Y are morphisms in ¥ such that ju' = hf. there is a
0 0
unique v: X;——> Y such that vf;=g and vu" = h,
Observe that a diagram in ¥* is a cartesian square if
*

and only if the dual diagram in ¥ is a cocartesian square.
Cartesian squares have sometimes been called pull-back diagrams

and cocartesian squares have then been called push-out diagrams.
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4.15 Proposition. If X is a category which has a terminal

point, the following conditions are equivalent:
1) X is a finitely complete,

2) every diagram

11}
X
£
Xj —i g2

in % can be completed to a cartesian Bquare in ¥ .,

Froof. Suppose 1), and that

0

2
-
fl 1
Xi ety Xl
is a diagram in ¥ . Let p:XiTTXB — X{, q:XiT[XB——b X! be
a product of X!,X" in X , and v:X!— X!

0 0

17TXB an equalizer

of flp,u"q. Letting u' = pv, £y= qv, one checks at once that

S
Xé —— XO
e
X fl

is a cartesian square in % ., Hence 1) implies 2)s

Suppose 2), Let *

Xl,X2 are objects of % , 1let

1 be a terminal point of ¥ .

if
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p
2 X,
p 1 £(X,)
l L a(xl) 2
&) =y

be a cartesian square in ¥ . Using the fact that * is a
terminal point of ¥ it follows at once that plzx — Xl’
Pyt X — X, 1is a product of X; and X, in ¥ . Details of
finishing the verification that ¥ has finite products are left
to the reader (§3, Ex, 1). Suppose fl,f2: X'— X" are mor-

phisms in % |, 1et

X__.Y_.ﬁ,x"

u lanln
lfle lx .

X' —=—2 gy

be a cartesian square in ¥, Ope verifies at once that u is
an equalizer of fl, 9+ Thus ¥ has equalizers, 2) implies 1),

and the proposition is proved.

4,16 __Proposition. If ¥ is a category, then the following are

equivalent:
1) £: X' — X" 45 a monomorphism in ¥ , and

2) Ly
X' ——— 31

e

X' — X”

is a cartesian square in X ,
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The proposition follows at once from the definitions.

4.17 Proposition. If * is a category, y is a category with

terminal point *1, and lel — ’Zf is the functor such that

if X e obj(%), Tl(X) = *1, and if £ € mor(¥ ), then
Tl(f) =1, , then if T:¥ — '?‘ is a functor, there is a
|

unique morphism of functors e: T — Tl'

Proof. For X € obj(X), let e(X): T(X) — *_. be the

1

unique morphism in 'g from T(X) to *l.

4.16 Proposition. If T,T": %X —> ’g are functors, y is a
finitely complete category, and a: T — T" is g morphism of

functors, then there is a functor T': £ — ﬂUr and morphisms of

functors a

1°¢

9t T'=— T such that for X e obj(Xx) the diagram

is a cartesian square in g *

Proof. TFor X e obj(¥) choose a cartesian square satisfying
the conditions of the square of the diagram of the proposition.
If f£: X' — X" is a morphism in ¥ , then cx(X”)'I‘(f)al(X') =
T"(f)cx(X')al(X'), a(X"}T(f)az(X') =T"(f)a(X')a2(X'), and

hence a(X")T(f)al(X') = a(X”)T(f)az(X'). Thus there is a
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unique T'(f): T'(X') —> T'(X") such that al(X")T‘(f) =
T(f)al(xf) and az(x")T'(f) = T(f)az(X'). Consequently
T': % _*¢.3¥ is a functor, al,a2: T'" — T are morphisms

satisfying the required conditions, and the proposition is proved.

4.19 Corollary. If T, T": £ — % are functors, and f is

a finitely complete category, then the following are equivalent:
1) @ T —= 1" 48 & monomosphism of functors,

2) a: T-— T" 1is a local monomorphism of functors.

The proposition follows at once from 4,18, 4.17, and the

definitions 2.7, 4.14.

4.20 Definitions. The category SP is a small category if the

the class mor(9—) is a set, it is a countable category if

mor(8-) 1s a countable set, and a finite category if mor(é}) is

a finite set.

Observe that 9‘ is small, countable, or finite, if and

%
only if 3’ is small, countable or finite.

4,21 Examples and definitions. An ordered set J is a set

T(J) together with a subset 7E(J) of T(J) x T(J) called
the order relation of J such that if one denotes by jlg_j2
the fact that the ordered pair (jl’jz) e £(J), then

1) 1<% for all i s T4,

2) Jl...<.. 32 and 325. j3 implies J]_S J3 for jl’jZ’jB e T(J),
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and
3) i<y, and jzg_j1 implies j;= j, for 3135¢ T(3 )=
Condition 1) says that the order relation is reflexive and con-
dition 2) that it is transitive.
If J',J" are ordered sets, an order preserving function
f: J' — J" is a function T(£f): T(J') —> T(J") such that

T(f)(jl) < T(f)(jz) for (jl’jZ) e £#(J'). The category

ord(,ﬂ) of ordered sets and order preserving functions is the

category whose objects are ordered sets, whose morphisms are
order preserving functions and such that composition is induced
by composition of functions.

For neZ ,n >0 let 5 be the ordered set whose
elements are integers j € Z such that 0 ¢ j ¢ n, and such
that the ordering of A is induced by the standard ordering

of the natural numbers. The simplicial category A 1is the full

subcategory of ord(qf) generated by the objects A mE Z
n > 0. The category A 1is a countable category such that if
m

A, An are objects of A, then A(Am, An) is a finite set.

%*
The cosimplicial category A is the dual of the category A.

An ordered set J 1is a small category such that
obj(J) = T(J), and if jl and j2 are objects of J there is
a morphism from jl to j2 in J if and only if jlg jz, and
in this case the morphism is unique. Composition of morphisms

is determined by the transitivity of the order relation.
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LE 9' is a small category such that there is at most
one morphism between any two objects of 9~ and such that every
isomorphism is an identity morphism, then 9/ is an ordered set
with set obj(9*) and order relation j;< j, if there is a
morphism in 9' from j]_ to j2.

An ordered set J 1is discretely ordered if jlg j2

implies j1= jz, i.e. the only morphisms in the small category

J are identity morphisms.

4,22 Definitions. If 9— is a small category and ¥ is a
category, the functor category [9,, %¥] 1is the category such
that
1) an object of [9,35] is a functor T: 8—-—> X,
2) if T',T" are objects of [9,3‘_] a morphism
a: T!' =—> T" in [9, ¥] 1is a morphism of functors, and
3) composition of morphisms is composition of morphisms
of functors.

If % 1is a category, the simplicial category over ¥ is

*
the functor category [A , %] and the cosimplicial category

over ¥ 1is the functor category [&, ¥].
The condition that 9' is a small category insures that
for any category ¥ , if (T',T") is an ordered pair of objects

of [‘9.,}6] , then [%,X](T’,T") is a set.
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4.23 Proposition. If 5” is a small category and ¥ is a
category, the category [9,1 ]-'!r is the category [%*, %*].
The proposition is evident. Note that if 3 is a small
category, the category of contravariant functors from 9' to X
may be viewed either as [9'*, ¥1 or | 9», f:*[. The category
of simplicial objects over X , [!_\*,1'] is the category of
contravariant functors from the simplicial category A to the
category X , and its dual is the category [a, f*] of

*
cosimplicial objects over ¥ .

4.24 Proposition. if 9’ is a small category and ¥ is a

category with equalizers, then [E}, %] 1is a category with
equalizers, and if a: T' — T, a0y T —> T" are morphisms

in [9': %], the following are equivalent:

1) a is an equalizer of « and

1*%2
2) for J e obj(?), a(J) is an equalizer of al(J),az(J).
Proof. Suppose a ey T — T" are morphisms in [}, %],
For every object J of 9— s let a(J): T'(J) — T(J) be an
equalizer of al(J), 0’.2(3) in X . If j:J' — J" is a
morphism in 9' , then al(J“)T(j)a(J') = T"(j)czl(J')a(J') =
T“(j)az(J')a(J') = az(J")T(j)a(J'). Hence there is a unique
morphism T'(j): T'(J') —> T'(J") such that a(J")T'(j) =
T(j)a(J')., Now T!': 9——-—» X is a functor, a: T' — T" is

an equalizer of A5y in [ 9“ %], and the proposition is proved.
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4,25 Proposition. If é} is a small category, I is a set,

and ¥ 1is a category which has I-indexed products, then

1) [9,?%] has I-indexed products, and
2) if (pi)iel’ Py T — Ti is an I-indexed set of

morphisms in [9q3&], then the following are equivalent:

i) pi)ieI is a product of (Ti)ieI

in [%:%]: and
ii) for every J ¢ obj(?), ( Pi(J))ieI is a product of

(Ti(J))ieI in X .

Proof ; Suppose (Ti)iel is an I-indexed set of objects of
[9,3&]- For J e obj(gr) let (p,(I)); 1> p; (3):T(J) —T,(J)
be a product of (Ti(J))ieI In 2. If j: J' —> J" is a
morphism in 9—, let T(j): T(J') —> T(J") be the unique
morphism such that 'piﬁJ")T(j) = Ti(j) pi(J') for i e I. Now
T is an object of [9,?%] s C Pi)ieI s Pyt T — T, is a
product of (Ti)ieI in [ 9,'% ], [S_,)é] has I-indexed
products, and the construction of products in [9 » %] from

products in X insures the validity of part 2) of the proposi-

tion. Consequently the proposition is proved.

4.26 Proposition. If 9* is a small category and X* 1is a

category, then the functor category [9,,%'] is complete,
countably complete, or finitely complete according as ¥ is

complete, countably complete, or finitely complete.
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The proposition follows at once from 4.24 and 4,25,
Observe that the duals of the preceding propositions
assure that coequalizers, coproducts, etc. pass appropriately

to functor categories.

4.27 Definition. it } is a small category and £ is a

category, the constant functor 09,( ): £ — [9—,%] is the
functor such that

1) if X € obj(¥), then for J e obj(%), C (X)(J) = X,
and for j ¢ mor(%), C9(X)(j) = lX’ and

2) if f: X' — X" is a morphism in ¥ , then

Cy(f)(J) =f for J ¢ obj(g—).

4.28 Definitions. Let 9 be a small category and ¥ a category.

If T is an object of [9—,%] a limit of T is an

object limg_(T) of X and a morphism a(T) : Cg (lim }(T)) ~ P

which is a Cg( ) reflection of T. A colimit of T is an

object colim (T) of X and a morphism B(T): T-—>C9_(colim9_(T))
which is a 09( ) coreflection of T.

Limits are also called pProjective limits or inverse

limits, while colimits are also called injective limits or

direct limits.

4.29 Theorem. If X is a category, then

1) the following conditions are equivalent:
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i) X is finitely complete, and
ii) for every finite category 9 y( ): X — [9. i ¥ ]
is a coadjoint functor,
2) the following conditions are equivalent:
i) ¥ is countably complete, and
ii) for every countable category 9’ " 09( ): ¥ — [9— , %1
is a coadjoint functor, and
3) the following conditions are equivalent:
i) X is complete, and
ii) for every small category 9, . 09( i — [9,35']

is a coadjoint functor.

Proof. Suppose either (i), ii), or 3i), and that 97 is a
category satisfying the corresponding condition. For T an
object of [(-, %], let ( P(J))JEObj(%), P(J):c(T) —T(J)
be a product of ('I‘(J))J , obj(%‘) in ¥ . For j € mor(g'),
let R(j) be the range of 8& and let ( P(J))J . mor(})’
P (3): C (T) — T(R)j)) be a product of (T( R(J))J . mor(%)

&0 61: C kT) == C (T) be the morphisms in ¥*

in X . Let s
such that for j € mor(?), P(3i) 6 =P(R (j)) and P(j) &
T(j) P(D(j)) where D(j) 4is the domain of j. Let &: 11m9(T)
— C (T) be an equalizer of 60 1, and a(T): Cﬁ_(llm(’r))—*T
the morphism in [9—, X] such that o(T)(J) = P(J)d for

J € obj( 9). One verifies at once that o(T) is a C&Q( )
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reflection of T. Consequently every object in [9h,¥i has a
%}( ) reflection, i.e. a limit. The fact that i) implies ii)
under the conditions of either part 1), 2), or 3) of the theorem

now follows from 2.23.

Suppose 1ii). Let 9—be the small category with two

objects J', J" and four morphisms 1J,,1J“ . io,ilz

Jt == Jn, Tet {(6,5; Q9( )— 1lim ( ) be an adjoint pair.

and

1f fo,flz X' —> X" are morphisms in ¥ , let T be the
object of [9,,3&] such that T(ij) = £, T(i;) = £;. Now
a(J)(J'): limgﬁT) —> X' 1is an equalizer of fO’fl' Hence X
has equalizersi

If I is a set, consider it as a discretely ordered set,
and hence as a small category. The objects of [I,*%] are now
just I-indexed sets of objects of ¥ , and a CI( ) reflection

of an object (Xl)ieI of [I,X] in ¥ is exactly a product

of (X.)

ilier In ¥ . The preceding observations complete the

proof of the theorem.

4,30 Notation and comments., If % is a small category and ¥

is a category, if an adjoint for the constant functor 09( Yyt ¥
—_ [9 » ¥] exists, it is usually denoted by 1im9_( ):[9,35]-——>)6 s
and the adjoint pair by (ag,Bg): C% — lim(b:([%, ¥1,¥%).

Often abbreviations of the notation are used such as dropping

the subscripts 9 when they are clear from the context. A
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standard exception to the preceding is if I is a set, i.e. a
discrete small category, the adjoint for CI: ¥ — [1,¥] is
denoted by 'TTI( Y: [I,¥] — ¥ in conformity with the nota-
tions used earlier it was not yet known that products are limits
and thus a special case of reflections.

Observe that the dual of ?9‘ ): ¥ — [§~,33] is
CB’* ( ): 33*—-:- [9,*, i*]. If a coadjoint for the functor
cg( ): ¥ —> [9,%_] exists it is usually denoted by
colﬁn%( )2 [9.,*] — ¥ , and the adjoint pair by (GQ"BQ):
colimg () C%_ s (%, [ %., ¥]) or some appropriate abbreviation.
Note that although neither of the limit functors are unique,
they are unique up to functional isomorphism (2.24). A standard
exception to the usual colimit notation is that in the case of
a set I; a coadjoint for CI: ¥ —> [1,%] is denoted by
iél( Y: [I,%] — ¥ in conformity with the earlier notation
used for I-indexed coproducts.

There are other special exceptions to the preceding.
They usually occur in dealingwith some special classical category

such as Rg where for a set I, the usual product notation is

XI( = [IJXg] b Qg .

It is perhaps worth observing that diagrams

0

£o

S = X

f
L
Xl x 2
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in a category ¥ , are nothing but objects in the functor
category [9,.¥] where 9, is a small category with three
1’ ..T2 and

the morphisms in 9' other than identity morphisms being

objects and five morphisms, the objects being JO, J

3gt Jg— Jps dq: Jo—> Jo+ The limit of an object of [9,,35]

may be viewed as a cartesian square

i
0
X ——— XO
fl
Xl —_— X2

in ¥ where the lower right-hand part is the original object of
[§,%] . 1In the proof of the preceding proposition, this fact
could have been used in proving the implication (ii) implies (i)

rather than properties of equalizers.

4,31 Proposition. If (o,B): S — T: (ir,?}) is an adjoint

pair of functors, SO: qe i ET is a functor, Z an object of
gr, T,(Z) an object of ¥, and a (2): s (T,(Z)) — Z an
0 0 00 S2a(T(2))
a
S0 reflection of Z , then the composite SOST(TO(Z)) S0

an(Z)
SO(TO(Z)) B A Z 1is an SS0 reflection of 2.

Proof. Suppose g : 5¢S(Y) — Z is a morphism in 2, where
Y e obj(%}). There is a unique E: S(Y) — TO(Z) in ¥ such

that g = aO(Z)SO(E) since ao(z) is an SO reflection of Z.
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There is a unique g: Y — TTO(Z) in y such that E =
a(TO(Z))S(g) since a(TO(Z)) is an S reflection of TO(Z).
Now aG(Z)SOa(TO(Z))SOS(é) = g, and g is the unique morphism

having this property, which proves the proposition.

4.32 Definitions. Let (9',9” be small categories, Xf, X”
categories, S: 8/-—~> 9”, T ?EIWX# functors. Let
(s,T]: [Bh,lf]-#ﬂ> [9,,Xﬁ] be the functor such that

1) if V 1is an object of [&",f’], then [S,T](V) = TVS,
and 2) if a: V!'— V' is a morphism in H%",Xj, then

[S,T](a) = (Ta)S = T(aS).

In the preceding if = Q" and S =1 ,, the functor
4

?

4 ”
The functor T: ¥ —> ¥ preserves limits if whenever 9,

[S,T] 4is usually denoted by [2ﬁ Tl

is a small category, V 1is an object of [9«,-{/] and
a(V): 08. (limg, (V)) — V is a limit of V, then [gf,T](a(V)):
c} ('I‘(lima, wv))) — [%,T](V) is a limit of [%,T](V).

The functor T: ¥ —>¥" preserves colimits if whenever

9' is a small category, V 1is an object of [9» ,%'/], and
B{Y): ¥ —= 09, (colim? (V)) 1is a colimit of V, then
(4, 71(BC(M): 4,71V -—->L'”9, (T(colimy (V)) is a colimit of
[%,T](V)-

Thus a functor T preserves limits if and only if its

dual preserves colimits.
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4.33 Proposition. If ¥ is a complete category and T:JE-—>%
is a functor, the following are equivalent:
1) T preserves products and equalizers,

2) T preserves limits,

The proposition follows at once from the construction of

limits from products and equalizers in a complete category, 4.29.

4,34 Proposition. If T:i¥ -“ﬁ-%} is an adjoint functor, then
T preserves limits,

The proposition follows at once from 4.31. For the case
X complete it also follows from 3.30, 7.6, and 4.33.

Observe that the dual of the preceding proposition is

that a coadjoint functor preserves colimits.

4,35 Proposition. it 9’,5#’ are small categories, then

9, x:9” is a small category, and if ¥ is a category, there is
an isomorphism of categories 6: [ 9—' X ?(’f', ¥] — [g’, [ 8.", ¥1]

such that

1) if J'e obj(§), T e objl §’ x 0%, %1, then
6(TI(I)(I" )
e(T)(JI")()

2) if j'e mor(é)’), T ¢ obj[g’ x%",ae] , then

T(J',J" ) for J" e obj(?’f), and

T(lJ,,j) for j e mor(&"), and

6(T)(j*)(J) = T(j',1;, ) for J'e obj(g").
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Proof. The fact that 9’ X 9»” is a small category if 3\’,9"
are follows at once,

Let TI': [9;, [9-”,%]] —> [%,X 9", ] be the functor
such that for T e obj(l[ 3’,[9",%]], F(T)(J',J%) = T(J')(I" )
for (J',J") € obj( g’x%"), and if (5',3"): (34,38 — (I,
is a morphism in g'x %*, then T(T)(§',3") = T(3")A) TG

Note that the diagram

T(3")Iy"
T(J) (3) > T(I)
l TAPGM l’ T(IGY
TG
T(IH Y > T

in X is commutative. The conditions of the proposition insure
that the functor 6 1is well defined. Further I'6 1is the
{ b
identity functor of | 8 X 9‘, X] and 6 the identity of
] /1
[9 ,[9_,%]]. Hence the proposition is proved.
/ "
Observe that if ¥ , ¥ are categories, the category
I, 4 . i -
X" x ¥ is canonically isomorphic with the category X x % ,
7 /i 44 !/
the isomorphism ¥ x ¥ = X% x % being induced by the canonical

interchange of entries in the ordered pairs involved in the

definition of these categories.

’ 17
4,35 Proposition. If 9’ ,() are categories, X 1is a cate-
gory, and one of the following conditions is satisfied:

1) 9' ,}” are small and ¥ is complete,
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2) 9’,%ﬁ are countable and ¥ is countably complete, or
3) 8‘ ,9” are finite and ¥ is finitely complete, then

there exists a commutative diagram of categories and functors:

[333&12[993&1

g
[3 [% m [9",[9 ¥]]
1i ><;,() 11m,, ()
11ﬂ9& )

lim. ( ) limy' ()
[3”,361 'l > X < s [9’,36]

Proof. The proposition follows at once from the composition
proposition for adjoint pairs of functors 2.19, 4.26, 4.29, and
4,35, together with the fact that the composites of the appro-
priate constant functors are again constant functors.

It 3 ,8" are small categories and ¥ is a category,
then using the natural isomorphism between [9'2 [2’,¥J] and
[9-’: [9; )]] the constant functor C ,, )i [}. y ] —

[9”, [%3 ¥]] may be identified with the functor 9,084( )1:
[9', [3”, ¥]]. This identification is made for convenience in
the next proposition showing the general local character of

limits when they are universally defined.
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4.37 Proposition. L 9 ,9- are categories, * 1is a cate-

gory, and one of the following conditions is satisfied:
1) 9’,3” are small and ¥ is complete,
2) 9’ ,9" are countable and ¥ is countably complete, or

3) 9 ,9” are finite and ¥ is finitely complete,

then if T e obj[é}’, [Br”,ae]], 1im9,,("r) e obj[g’,aé] and
a(T): [9’,03h( )] (limgﬂ(T)) —> T 1is a morphism in
[9’, [9”, ¥]], then the following are equivalent:

1) aofT) is a Iimit of T, and

2) for every object J'e obj(gf), gfT)(J')} is &

Limit of TCJ').

Froof. Proposition 4.24 is the special case of the preceding
where 3" is the small category used to define equalizers (4.29),
and proposition 4.25 the special case where 3” is a discrete
category. The construction of general limits from products

and equalizers (4,29) insures that the two special cases imply

the general case., Hence the proposition is proved.

Exercises

1. Show that the category °/ is bicomplete. Conclude
that the categories j7IU jER’ and (@ are bicomplete since
they are weak separation subcategories of f7 (83, ex. 7, 8, and
10), and that the category :70 is bicomplete since it is a

weak coseparation subcategory of J (§3, ex. 11).
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2. Show that the natural inclusion functor :7kf—° 7,
ﬂj CR ;7K; preserve coproducts, but not coequalizers, and
that the natural inclusion functors (€ —> 7CR’ C — jH s
C — 7@H preserve finite coproducts and coequalizers, but
not countable coproducts. Show that the natural inclusion
functor j - 7 does not preserve equalizers.

3. Define a functor TK( ): ord(Qf) s in having
the following properties:

1) if J is an ordered set, the space TK(J) has
the same underlying set as does the ordered set J, and

2) the functor TK( ) 1induces an isomorphism of
ord(®)) with a weak coseparation subcategory of i7K' Conclude
ord(o]) is bicomplete.

4. A space X 1is a Frechet space if every one point
subspace of X 1is a closed subspace. Let 7} denote the full
subcategory of 7 generated by the Frechet spaces. Show that
j.F is a weak separation subcategory of :TK' Prove that the
epimorphisms in :IF are the surjective maps and the mono-
morphisms are the injective maps.

5. Let N denote the natural numbers, i.e. the set of
positive integers. Consider N as topologized with the
topology such that {n} is open in N for ne N, n # 0, and
the neighborhoods of {0} are the subsets containing {0} and

having a finite complement. With this topology N 1is a compact
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space. A space X is sequentially separated if whenever

f: N— X 1is a map, the subspace of X determined by the set
theoretic image of f 1is a closed subspace. Let 73F denote
the full subcategory of f] generated by the sequentially sep-
arated spaces. Show that TTSF is a weak separation subcategory
of jTF’ and that the monomorphisms in CYSF are the injective
maps.

5. A subspace A of a space X is sequentially closed
in X if whenever f: N — X 1is a map, fvl(A) is closed in
N. Show that if g: X — Y 1is a map in jéF’ then g is an
epimorphism in iTSF if and only if the least sequentially
closed subspace of Y containing the set theoretic image of g
is Y itself. A space X has a sequential topology if every
sequentially closed subspace is a closed subspace., Let C?F
denote the full subcategory of ﬁ7‘generated by the spaces having
a sequential topology. Show that :7F is a weak coseparation
subcategory of :70 (§3, ex. 11). Prove that the epimorphisms
in U’F are the surjective maps and the monomorphisms are the
injective maps.

6. A space X satisfies the first axiom of countability
if every point of X has a countable basis for its filter of
neighborhoods. Let :]I denote the full subcategory of 7
generated by the spaces satisfying the first axiom of counta-

bility. Show that fYI is countably complete and has coproducts.
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Prove that the natural inclusion functor :71——*,7 preserves
coproducts and countable limits.

8. Show that fII is a subcategory of J F. Prove
that if X € obj(’jl) and X 1is sequentially separated, then
X 1is separated.

9. A space X 1is a compactly separated space or a weak
Hausdorff space if whenever f: C — X is a map with C
compact, the subspace of X determined by the set theoretic
image of f 1is a closed subspace. Let :TWH be the full sub-
category of f] generated by the compactly separated spaces.
Show that iTWH is a weak separation subcategory of (TSF’
and that ZTH is a weak separation subcategory of iTWH' Show
that the morphism g: X — Y 1in erH is an epimorphism in
iFWH if and only if the least compactly closed subspace of Y
containing the set theoretic image of g is Y itself.

10. Show that if X 1s a space, the following are
equivalent:

1) X 1is a sequentially separated space, and

2) the diagonal subspace of X 77 X is sequentially

closed.
Conclude that if X ¢ obj(’]F), the following are equivalent:

1) X is a sequentially separated space, and

2) the diagonal subspace of the product X T X in

7F is a closed subspace,
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11. Show that if X 1is a space, the following are
equivalent:

1) X 1is a compactly separated space, and

2) the diagonal subspace of X T X is compactly closed.
Conclude that if X € obj(f?c), the following are equivalent:

1) X 1is a compactly separated space, and

2) the diagonal subspace of the product X T X in :7C

is a closed subspace.

12. Prove that the natural inclusion functors iICR—-"YH’
fjwn“_’ 7F’ T 7wu’ Jsg— JTg» and J g— Ty preserve
coproducts, but not coequalizers.

13. Prove that the category R of rings and morphisms is
bicomplete. Conclude that the full subcategory generated by the
rings without radical is also bicomplete (§2, ex. 8, §3, ex. 13).
Conclude also that the category RC, and the full subcategory
generated by the reduced commutative rings are bicomplete
(83, ex. 14).

14, Prove that the full subcategory of R generated by
those rings whose underlying set is countable is finitely com-
plete and countably cocomplete.

15. Prove that the full subcategory of R generated by
the rings whose radical is nilpotent is a finitely complete

category.
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Chapter 2. Some special classes of categories and

some of their basic properties

§1. Factorization of morphisms and some properties of limits.

1.1 Definitions. Let * be a category.

An epimorphism f£': X' —> X 1is an extremal epimorphism

if whenever

is a commutative diagram in ¥ with fg a monomorphism, there
is a morphism h: X — XO such that hf' = fé

A monomorphism f": X — X" 1is an extremal monomorphism

sl
N ﬁ

is a commutative diagram in X with f' an epimorphism there

if whenever

is a morphism h: Xy;—> X such that f'"h = 0.
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Observe that in both cases above, the morphism n is unique

and if added to the diagram makes the entire diagram commutative.

1.2 Definitions

If % is a finitely complete category, the morphism

ft: X' —% X is an effective epimorphism if when

is a cartesian square in ¥, then f' is a coequalizer of
. 1 1
Pl,pz' XO e X °

If ¥ is a finitely cocomplete category, the morphism

f": X — X" is an effective monomorphism if when

X. Ry Xn
j'fll i l i2
X —2, X

is a cocartesian square in ¥ , then £f" is an equalizer of
'X“ x“

1.1, 0

1.3 Proposition. If ¥ is a category, then

1) the morphism f': X' —> X in ¥ is an extremal
* % %
epimorphism if and only if the morphism (f') : X — (X')

*
in % is an extremal monomorphism, and



2) if ¥ is finitely complete, then
i) the morphism £': X' — X in ¥ is an effective
* % %
epimorphism if and only if the morphism (f') :X — (X')

%
in X is an effective monomorphism, and

ii) if f£': X' X is an effective epimorphism,

then f' 1is an extremal epimorphism.,

Proof. Both parts 1) and 2i) of the proposition follow at once
from the definitions. Hence suppose ¥ is finitely complete and

f': X' X 1is an effective epimorphism. Let

a commutative diagram in * such that fa is a monomorphism.
Now fafbpl = f“f'p1 = f"f'p2 = fgfbpz, and flp, = fyp, since
fa is a monomorphism. Thus since f' is a coequalizer of

p;sP, there is a unique hi X = X, such that he! = £), and

the proposition is proved.
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1.4 Proposition. If ¥ is a category and f': X'—> X 1is an

extremal epimorphism which is a monomorphism, then £f' is an

isomorphism.

Proof. The diagram

i
N

is a commutative diagram such that £' is a monomorphism.

Hence there exists h: X — X' such that hf' 1 f'h=1

X x*

and the proposition is proved.

1.5 Proposition. 1f ¥ is a category and f' = X' X 1is a

coretraction in ¥ , then f is an extremal epimorphism.

Proof, Suppose

is a commutative diagram in ¥ such that fg is a monomorphism.

X'
Now f£fhf' = £0fpef' = £'f1gf' = £"€' = £, and hf' = £} since

fg is a monomorphism. Consequently the proposition is proved.

Choose g: X —> X' such that f'g =1 Let h = fég: A == XO.
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1.6 Proposition. If ¥ is a category and f': X' —> X,
f": X — X" are morphisms in ¥ , then
1) if f£',f" are extremal epimorphisms, then f"f' =
Xt —> X" is an extremal epimorphism, and
2) if f"f': X' —> X" is an extremal epimorphism, then

f" is an extremal epimorphism.

Proof. Suppose the conditions of part 1) are satisfied and

\
o

that the diagram

in ¥ is commutative with g" a monomorphism. Since f' is

an extremal epimorphism, there exists u: X — XO such that

e 7
A

uf' = g', Thus the diagram

in ¥ is commutative and there exists v: X" —> XO such that

vi" = u. Hence vf"f' = uf' = g', and part 1) is proved.

If the conditions of part 2) are satisfied, and



y K
X Xl
\ hu
p
is a commutative diagram in ¥ with h" a monomorphism, then
since f"f' 1is an extremal epimorphism, there exists
u: X" — X, such that uf"f' = h'f'. Thus Hh'uf" = gf" = K"h,

and uf" = n' since W' is a monomorphism. Thus part 2) of

the proposition is proved.

1.7 Definition. If ¥ is a category and f: X' — X" 1is a

morphism in ¥ , then a factorization of f 1is a diagram

X fl> i LI n =
X X in ¥ such that f"f' = f,

1.6 Proposition. If ¥ is a category, f: X' — X" 1is a

1 n
morphism in 3¥ , and X! — X LB X" is a factorization of

f such that f" is a monomorphism, then the following are
equivalent:

1)

G

X
X X

! =

is a cartesian sequence in ¥ , and
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2)
Py
Xy Tee—t—es B
fl
b | eer——

is a cartesian square in ¥ .

Proof. Since £ = f"f' and £" 1is a monomorphism, if
g,:8,: Y ™ X' are morphisms in ¥ , the assertion fg,= fg,
is equivalent with the assertion f'g1= f'gz. The proposition

now follows at once from the definition of cartesian square.

1.9 Definitions. Let ¥ be a category and f: X' — X" a

morphism in ¥ .

A coimage of f is an extremal epimorphism £': X' — X
such that there exists a monomorphism f": X —> X" such that
f"f' = £, If ¥ is finitely complete, the coimage f' of f

is an effective coimage of f if £' is an effective epimor-

phism.

An image of f 1is an extremal monomorphism f": X — X"

such that there exists an epimorphism £': X' — X such that
f'f' = £, If ¥ is finitely cocomplete, the image f" of f

is an effective image of f if f" 4is an effective monomor-

phism.

1.10 Proposition. If % is a category and f: X' — X" 1is a
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morphism in ¥ , then
1) f£': X* — X 1is a coimage of f in ¥ if and only if
* % * %* * *
(f') : X — (X') 1is an image of f : (X") — (X')  in

b4 and

g ]

2) dr fb: X1 o X

in ¥ , there is a unique isomorphism u: Xo——v Xl such that

0’ fi: Xt Xl are coimages of f

1 = 1
uf0 fl'
Proof. Part 1) of the proposition follows at once from the

definitions. Under the conditions of part 2), let £ =

0
Xy — X", f;: X;—> X" be monomorphisms such that fgf¢= f =
f;fi, and note that fg,fi are unique. The diagram
Xo .

: \\\\jzi\i
X! X

is a commutative diagram in X such that f{ is a monomorphism,
Since fé is an extremal epimorphism, there is a unique
u; XO-> Xl such that ufé = fi. Similarly there is a unique
. —— ! = 1 =
T Xl > X0 such that vfl fO' Now wvu 1X s and the

0
proposition is proved.

1.11 Definitions. The category ¥ has projective factorization

if every morphism in ¥ has a coimage; it has injective faetor-




ization if every morphism in ¥ has an image. If f£: X'— X"

is a morphism in ¥ , then a projective factorization of f is

1 "
a factorization X' £, X X" such that f£' is a co-

image of f while an injective factorization of f is a

1 n
diagram X' s X s X" which is a factorization of f

with £" an image of f£.
Note that a category ¥ has projective factorization if

*
and only if ¥ has injective factorization, and that

1 1"
-t g B o g a projective factorization of £ = f"f!

% (f“)*’ X* (f:)*

%
in ¥ if and only if (X") > (X') is an

* %*
injective factorization of £ in ¥ . Observe further that

' "

if X L gL 37 454 projective factorization of f£,
f' f"

and X! s 15 XO — X" 1is any other factorization of £

such that fa is a monomorphism, then there is a unique

1wy X = XO such that uf' = fé "

1,12 Definition. The functor T: 14-“:-/? is an extremely

faithful functor if it is a faithful functor which reflects

isomorphisms.
Note that T: ¥ —> ?f is extremely faithful if and only

: % * % )
if T : 2 —> ’y is extremely faithful,

1.13 Proposition., IE (8.8 ¢« 5 5 (‘f—,y) is an adjoint

pair of functors and % has projective factorization, then the

following are equivalent:
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1) T is extremely faithful,

2) T reflects extremal epimorphisms, and

3) for X € obj(¥*¥), a(X): ST(X) — X is an extremal
epimorphism.
Proof. Suppose 1) and that f: X' —> X" 1is a morphism in *
such that T(f) is an extremal epimorphism. Let KiEn ¥ £ X"
be a projective factorization of £. Now T(X') Iiﬁll_, T(X)
{CN T(X") is a factor of T(f), and hence by 1.6 2), T(f")
is an extremal epimorphism. Further T(£f") is a monomorphism
since an adjoint functor preserves monomorphisms (Chapter 1,
2.17 ). Hence by 1.4, T(f") is an isomorphism. Since T is
extremely faithful, £" is an isomorphism and £ is an extremal
epimorphism. Consequently 1) implies 2).

Suppose 2). For X e obj(¥), J-T(X) = T(a(X))Be(T(X)),
and thus T(a(X)) 1is a coretraction. By 1.5, T(a(X)) is an
extremal epimorphism. Hence a(X) is an extremél epimorphism
and 2) implies 3).

Suppose 3). By 2.18, T is faithful. Suppose f:X' —> X"
is a morphism in ¥ , and T(f) is an isomorphism. Then £
is a monomorphism since T reflects monomorphisms because it is

a faithful functor. Now

ST(X') ST(E) ST(X")

1 a(X') h l a(x")

x, e X"
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is a commutative diagram in ¥ , ST(f) is an ieomorphism, and
a(X") 1is an extremal epimorphism. Thus by 1,5, f is an
extremal epimorphism, and by 1.4, f 1is an isomorphism. Hence

3) implies 1), and the proposition is proved.

1.14 Definitions. The category ¥ has full factorization if

it has both projective and injective factorization. It has

unique factorization if it has full factorization and every

bimorphism in ¥ is an isomorphism.,
If ¥ is any category and f: X' — X" is a morphism in

£1
‘¥, then a full factorization of f is a diagram X' — Xé

£ £"

— XB —= X" in ¥ such that f' is a coimage of £, £"
is an image of f, and f"ff' = £,

Observe that the condition that a category ¥ have full
factorization is equivalent with the condition that every

morphism in ¥ have a full factorization. If ¥ has unique

factorization, then if f: X' — X" is a morphism in ¥ there
1 "
is a factorization X : > X £ > X" such that f' is a
£y _ %5
coimage of f and f" is an image of f. If X'— Xy X"

is a 2-nd factorization of f where fé is an epimorphism and
fg is a monomorphism, there is a unique ieomorphism u: X — XO
characterized either by the property that uf' = fb or the

property that £, u = f"., 1In a category with unique factoriza-
: 4 0 q

tion every epimorphism is an extremal epimorphism and every
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monomorphism is an extremal monomorphism.

1,15 Proposition. If ¥ is a finitely complete category with
projective factorization and g} is a small category, then

1) [9435] is a finitely complete category with projec-
tive factorization , and

2) if oty T' — T 1s a morphism in [9, %] the fol-
lowing are equivalent:

i) o' is an extremal epimorphism and
ii) for every object J of 9‘, a'(J): T'(J) — T(J)

is an extremal epimorphism.,

Proof. Suppose a: T' — T" is a morphism in [9’,95]. For
. "

3eobi(§), let T'(3) TLEL 1¢5) 2 17(s) be a projec-

tive factorization of a(J). If j: J' -~— J" is a morphism

in 9’, then there is a commutative diagram in o P

T(J')

a! (JV‘ T"(§)a" (3"
T (JI) Ty
a' (I")T(3) \\‘\\\\\* ////’2 a? (I
T(J")

where a'(J') is an extremal epimorphism and o"(J") is a
monomorphism, Hence there is a unique T(j): T(J') — T(J")
such that T(j)a'(J') = a'(JMT'(j). Note that a"(IJ")T(j) =

n
T™(j)a"(J'). Thus T 8 2

>~ T" is a factorization of



a such that a" is a local monomorphism and for J ¢ obj(g ),
a'(J) is an extremal epimorphism. By 4.19, Chapter 1, every
monomorphism in [9—,22] is a local monomorphism. Thus

a's: T' — T 1is an extremal epimorphism, [9 , ¥] has projec-
tive factorization, and part 2) of the proposition is proved.
By 4.26, Chapter 1, | 9, ¥] 1is finitely complete, and the

proposition is proved.

1.16 Proposition. F 5 gf —~— % is a coadjoint functor,

then S preserves extremal epimorphisms.

Proof. Suppose (a,B): S = T is an adjoint pair, and that

g: Y' — Y is an extremal epimorphism in %f~.

S(Y)

- e 8
\ /

is a commutative diagram in ¥ with h" a monomorphism, then

////z \\\\\if)B(Y)

T(X)

T(h' )B(Yk /T-(h“)

T(X')

is a commutative diagram in.%f with T(h") a monomorphism.

Therefore there exists v: Y — T(X'), vg = T(h')B(T'). Let



u=a(X")s(v): S(Y) — X'. Now uS(g) = a(X')S(vg) = h', and

the proposition is proved.

1.17 Definitions. Let ¥ be a category.

/
A separation subcategory ¥ of ¥ is a weak separation
/
subcategory ¥ of ¥ such that if f£: X — X" is an extremal
' /
monomorphism in ¥ and X"e obj(¥ ) then £ is a morphism in

/
¥, A strong separation subcategory ¥ of ¥ is a weak separa-

tion subcategory X of ¥ such that if £: X — X" is a mono-
. /
morphism in ¥ and X"e obj (L) then f 1is a morphism in ¥’ .

. 4 . "
A coseparation subcategory X of ¥ is a weak coseparation

subcategory ¥ ‘of ¥ such that if f: X' — X is an extremal
epimorphism in ¥ and X'e obj(%f) then f is a morphism in

¥/ . A strong coseparation subcategory ¥/ of ¥ is a weak

coseparation subcategory ¥’/ of ¥ such that if £: X' — X is

i/
an epimorphism in ¥ and X'e obj(¥) them £ is a morphism

/
in X,

/
1.186 Proposition. If ¥ is a weak separation subcategory of

/
¥ with coreflection R: ¥ —> * g 1¥ — R, then
1) if R preserves extremal monomorphisms, f£: X'— x"
/
is a morphism in ¥ , and f": X — X" 4is an image of f in

’
X , then R(f"): R(X) — X" 1is an image of £ in * , and

hence if ¥ has injective factorization, so also does 2
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2) 4f * is a separation subcategory such that the
inclusion functor QX{*¢Vf preserves epimorphisms, £:X'—> X"
is a morphism in ¥, and £": X — X" 1is an image of £ in
¥ , then £" is an image of £ in X’ and if X% has injective
factorization, so also does ¥,

3) if the inclusion functor 'if-—* * preserves extremal
epimorphisms, f: X' — X" 1is a morphism in.fi/, and £':X'—X
is a coimage of f in * , then f' is a coimage of £ in
HE/, and hence if * has projective factorization, so also does
¥/, and

4) if ¥ has projective factorizations and ¥’ is a strong
separation subcategory of %, the inclusion functor X —X
preserves extremal epimorphisms.

1 n
Proof. Under the conditions of part 1), let x'f—»x e X" be

an injective factorization of £. Since f! is an epimorphism
and R is a coadjoint functor, R(f') is an epimorphism in X’
(though not necessarily in ¥). Since R preserves extremal
monomorphisms and £ = R(£) = R(f")R(f'), part 1) is proved.

Part 2) follows at once from the definitions and the con-
ditions stated.

"
Under the conditions of part 3), let X! S X £ xv

be a projective factorization of £ in X ., There is a com-

mutative diagram



R(f'\ R(E™)

R(X)

in ¥ , R(f') is an extremal epimorphism in Xl since R 1is a
coadjoint functor (1.16), and hence since X — % preserves
extremal epimorphisms, R(f') is an extremal epimorphism in x*
Thus by 1.6, A(X) is an extremal epimorphism in ¥ . However
A(X) is a monomorphism since £" 1is a monomorphism. Thus by
1.4, X(X) 1is an isomorphism, X(X) = :LX and part 3) is proved
1f ¥’ is a strong separation subcategory, ¥ has projec-

tive factorization, and f: X' — X" 1is an extremal epimor-

. . / ; . "
phism in ¥, there is a commutative diagram

P ity o
X
/ £’
X

in ¥ with f£' a coimage of f in ¥ . Hence £" is a mono-

. s n N . - / . 1" s
morphism in ¥ , and £ is a morphism in ¥ since X'e obj( )
Thus f' is also a morphism in ¥’ , and there exists a mor-

phism wu: X" — X in ¥’ such that uf = f', f'u = 1 Hence

le .

u is an isomorphism, and part 4) is proved, which proves the

proposition.
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1.19 Proposition. If ¥ is a finitely complete category, the

following are equivalent:
1) every morphism in ¥ has an effective coimage, and
2) ¥ has projective factorization and every extremal

epimorphism in ¥ is an effective epimorphism,

Proof. Suppose 1). If f: X' — X" is a morphism in ¥,
there is a factorization X' e L . -0 X" of £ such that
£' is an effective coimage of f and £" is a monomorphism.
This is a projective factorization of f., If £ 1is an extremal
epimorphism, so is f" by 1.6, and by 1.4, f" is an isomor-
phism. Thus 1) implies 2). Since certainly 2) implies 1), the

proposition is proved,

1,20 Proposition. If ¥ , 2/ are finitely complete categories
and S: ﬁ# —> ¥ is a coadjoint functor, themn S preserves

effective epimorphisms.

Proof. Suppose g: Y' —> Y' is an effective epimorphism in

ﬁ% , and

P
YO 2 > X!
Pl l 8
e s Y

in a cartesian square in ’y . Let
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P
R =——fees  S(EF)

Py l l s(g)

S(YI) _S_(g.l_> S(Y")

be a cartesian square in ¥ . There is a unique w:S(Yy) —> X,
such that EI.W = S(pl), 5;& = S(pz). Suppose f: S(Y') — X

is a morphism in ¥ , and f S;'= f ;;. Let (o,B): 51 T

be an adjoint pair. Now T(£)B(Y'): Y' — T(X), and
T(f)S(Y')p1 = T(fﬁ(Y')pz. Thus g being the coequalizer of
Py.P,, there is a unique T : YY" — T(X) such that

¥ g = T(E)B(Y'). Let F = a(X)S(F) : S(Y") — X. Now

f=f S(g), and S(g) 1is an epimorphism. Hence the proposition

is proved.

1.21 Definitions. A finitely complete category X has effective

projective factorization if every morphism in ¥ has an effective

coimage. A finitely cocomplete category ¥ has effective injec-

tive factorization if every morphism in ¥ has an effective

image. A finitely bicomplete category ¥ has effective full

factorization if it has both effective projective factorization

and effective injective factorization. It has unique effective

full factorization if further it has unique factorization.

1.21 Proposition. If ¥ is a finitely complete category with

. : ; £ .
effective projective factorization and ¥  is a weak separation
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subcategory of ¥ with coreflection R: ¥ — ¥’ | A: 1 — R
then if either

1) R preserves monomorphisms, or

2) the inclusion functor X — % preserves extremal
epimorphisms,
then ¥ 1is a finitely complete category with effective projec-

tive factorization.

*
Proof. By 4.13 , Chapter 1, ¥ is finitely complete. Suppose

/ X n
f: X' — X" 4is a morphism in ¥ , and X' L

- X“

is a projective factorization of £ in ¥ . Now £ = R(f),

"
and X' —5££i2> R(X) R(E), X" 1is a factorization of f in

¥ . By 1.20, R(f') is an effective epimorphism in "
Thus if R preserves monomorphisms R(f') is an effective
coimage of f in ¥” . 1If the inclusion preserves extremal
epimorphisms, then by 1.18 3), R(X) =X, R(f') = f', ad

R(f") = £". Hence the proposition is proved.

1.22 Proposition. If ¥ is a finitely cocomplete category

with effective injective factorization, ¥ is a weak separation
’ S
subcategory of ¥ with coreflection R: ¥ — X , )\.:11; —= R,
/
and R preserves effective monomorphisms, then ¥ is a finitely
cocomplete category with effective injective factorization.

Proof. By 4.13, Chapter 1, ¥ is finitely cocomplete.

y "
Suppose f: X' — X" is a morphism in X7 , and xdl. x £, xv
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is an injective factorization of f in * , Since R preserves
t ~1
£, X! .M_f_l, R(X) R(f xr

is an injective factorization of £ in ¥’ , and it has the

]

effective monomorphism and R(f)

desired property.

1.23 Proposition. If % is a finitely complete category with

effective projective factorization and 9- is a small category,
then [9—,39] is a finitely complete category with effective

projective factorization.

Proof. By Chapter 1, 4.26, [9,;&'} is finitely complete.
By 1:15, [9-,3&] has projective factorization, and by 1.15
and Chapter 1, 4.24 and 4.25, it follows that every extremal
epimorphism in [83 ¥] is an effective epimorphism. Hence

the proposition is proved.

Exercises
1. Prove that the category ‘zg has unique effective full
factorization. Prove that the category 7T has effective full
factorization but not unique effective full factorization.
2. Let TO be the canonical Kolmogoroff space (Chapter
1, §3, ex. 6). Prove that if f: A— X is a map, the fol-
lowing are equivalent:
i) £ is an effective monomorphism,
ii1) f 1is injective, and ’I(f,TO):’J‘(x,TO) — T (A,T)

is surjective.
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Prove that fTK is a strong separation subcategory of T with
coreflection RK: ZT R :rK’ lK: ;7, o :TK such that RK
preserves effective monomorphisms, and further the inclusion
iTK g iT preserves epimorphisms. Conclude that tTK has
effective full factorization and that if £ 1s a map in iTK
its full factorization in J coincides with its full factoriza-
tion in T .

3. Prove that T, ‘-TSF’ TWH’ and 7T, are strong
separation subcategories of j- with effective full factoriza-
tion. Show that the inclusion iTF o :TK preserves full
factorization, but the inclusions TSF s jF’ ;TWH——‘} TF’
er iy j-F preserve projective factorization_but not injec-
tive factorization.

4, A space X 1is nearly completely regular if whenever
X, X, are distinct points of X there exists amap £:X — I

such that f£(x,) = 0, f(x1) = 1. Let T be the full sub-

NCR
category of j' generated by the nearly completely regular
spaces., Show that j‘NCR is a strong separation subcategory
of J with effective full factorization and that I is a co-
generator of ir§CR'

5. Show that if X ¢ obj(fTNCR), C is a compact sub-

space of X, and x € X-C, there exists f: X —> I such that

f(c) =0 for c e C, and f(x) = 1.
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6. Show that is a strong separation subcategory

TTNCR
of 71{ such that the inclusion j-NCR —> 7‘H preserves full
factorization. Show that jrCR is a separation subcategory of
T which is not a strong separation subcategory. Show that
j'CR is a separation subcategory of 7JNCR with coreflection
R: ’j'NCR — ‘ICR, A: lgyeg — R such that A(X):X — R(X)
is bijective for X € obj(:TNCR). Show that j’CR has effec-
tive full factorization and that UJCR e 7—NCR preserves
injective factorization .

7. Show that ¢ has unique effective full factorization,
and that C —> J preserves full factorization. Show that C
is a separation subcategory of j’WH but not of j‘F“

8. Recall that a locally compact space is a separated
space such that every point has a compact neighborhood. Prove
that if f: X —> X" is an effective epimorphism in T and L
is a locally compact space, them f£7Tl : XTIL — 'L i= an
effective epimorphism in ir .

9, If X 4is a space, prove the following are equivalent:
i) the topology of X 1is compactly generated, and

ii) there exists an effective epimorphism f: L — X in 0
with L 1locally compact,

10. Use exercises 8,9 and chapter 1, §3, ex. 12 to show
that in STC finite products of effective epimorphisms are

effective epimorphisms. Show this to be false in fT .
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1l1. Show that jlc is a coseparation subcategory of %
but not a strong coseparation subcategory., Show that if
RC: j-——* j‘C, f?c: RC e 13. is the reflection, then
PC(X) is bijective for any space X. Show that 7’C has
effective full factorization and that the inclusion jﬂc — 7
preserves projective factorization but not injective factoriza-
tion.

12. If X 1is a space, prove the following are equivalent:

i) the topology of X 1is a sequential topology,

ii) there exists an effective epimorphism £f: L — X, L
locally compact metrizable, and
iii) there exists an effective epimorphism £: Y —> X, Y sat-
isfying the first axiom of countability.

13. Prove that j'F is a coseparation subcategory of J
but not a strong coseparation subcategory. Show that 7'F has
effective full factorization and that J B e 7‘ preserves pro-
jective factorization but not injective factorization. Show
that the reflection, RF: T T T F, pF: RF e 17 is such
that pF(X) is bijective for any space X.

14. Recall that a subspace A of a space X is locally
closed in X if it is the intersection of a closed subspace
and an open subspace. Show that if X € obj(frc) and A is a
locally closed subspace of X, then A ¢ obj(fTC). Show that
if X e obj('TF) and A is a locally closed subspace of X
then A ¢ obj(TF).
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15. Prove that the natural inclusion functor 7’F — T‘C
preserves finite products. Use this together with Chapter 1,
8§84, ex. 9, 10 to show that if X € obj(]_F) and X 1is sequen-
tially separated, then X 1is compactly separated.

16. Let jF(C) be the full subcategory of T generated
by those spaces whose topology is both compactly generated and
compactly separated. Show that 7'(C) is a strong separation
- subcategory of 7ﬂc and a coseparation subcategory of iTWH'

17. Let 7 (F) be the full subcategory of T generated
by those spaces whose topology is a sequential topology which
is sequentially separated. Show that jr(F) is a strong sep-
aration subcategory of J k and a coseparation subcategory of
Tsr

18. Show that the categories ~J(C) and °J (F) have
effective full factorization. Prove that fr(F) is a cosepara-
tion subcategory of °J (C) such that the inclusion 7T (F) —
fr(C) preserves finite limits. Prove that both the category
T(F) and the category °J (C) have the property that finite
products of effective epimorphism are effective epimorphisms.

19. Prove that if f: R' — R" is a morphism in the
category & of rings, the following are equivalent:

i) £ is surjective, and

ii) £ 1is an effective epimorphism.
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Show that the canonical functor 'I:7?-—->ﬁ! (Chapter 1, §2,
ex.2) is an extremely faithful adjoint functor which preserves
effective epimorphisms.

20. Show that 7? has effective projective factorization.
Prove that '7§ is a strong separation subcategory of 7¢. Prove
that the category of reduced commutative rings (Chapter 1, §3,

ex, (4) is a strong separation subcategory of 7§c.
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§2. Introduction to pointed categories.

2.1 Definitions. If ¥ is a category, the object * of ¥ is

a point of ¥ if it is simultaneously an initial point and a

terminal point of * ,

A pointed category ¥ is a category which has a point.

If ¥ and Y are pointed categories, a pointed functor

T: ¥ — % 1is a functor such that if * 1is a point of ¥ ,
then T(%*) 1is a point of ¥ .
If ¥ is a pointed category with point *, and X',X"

are objects of ¥ , the trivial morphism from X' to X" is

the composite X' — % —> X",

Notice that ¥ is a pointed category if and only if its
dual BE* is a pointed category. Further, if ¥ and ¥ are
pointed categories, then the functor T: ¥ —> % 1is a pointed

* * * 5
functor if and only if its dual T : ¥ — ¥ is a pointed

functor.
If * and *1 are points of a category ¥ , there is a
unique isomorphism * —> *1 in ¥ . Further, if X',X" are

objects of ¥ there is a commutative diagram

x./*hxt.
\*/?

in ¥ . Hence the point of ¥ is unique up to canonical
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isomorphism, and the trivial morphism between two objects of
is unique.

Standard practice is to denote the triviai morphism from
X' to X" in a pointed category ¥ by the same symbol as is
used for the point of ¥ . The two most usual symbols for the
point are * and O. The symbol #* 1is usually preferred when
% does not have additive structure and the symbol O when ¥

does have additive structure.

In a pointed category ¥ the dual of the trivial morphism
*: X' = X" in ¥ is the trivial morphism from (X)* to (X')*
in 'f*. Further, if f: X' — X" is a morphism in ¥ ,
*: X —> X' 1is the trivial morphism then f * = *: X —> X",
or if *: X" —> X 1is the trivial morphism then *f = *:X'—> X,
If ¥ and Y are pointed categories, T: ¥ — Y 1is a
pointed functor and *: X' —> X" is the trivial morphism in %
from X' to X", then * = T(¥*): T(X') — T(X") is the

trivial morphism from T(X') to T(X") in Ef .

2.2 Definitions. Let ¥ be a pointed category with point *,

and f£: X' —> X" a morphism in ¥ .

A kernel of f is a morphism k: N —> X' in ¥ such

that fk = %, and if g: X —> X' is a morphism in ¥ such

that fg = * then there is a unique g: X —> N such that
g q

kg = g.
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A cokernel of f is a morphism 3ji: X" —> C in * such

-

that jf =%, and if h: X" —> X 1is a morphism in ¥ such

that hf = * then there is a unique h: C — X such that
hj = h.

2.3 Proposition. If ¥ is a pointed category with point %,

and f: X' —> X" is a morphism ¥ , the following are equiv-

alent:
1) k: N —> X' is a kernel of f in ¥,
* % * * %
2) k: (X*) — N 1is a cokernel of f in X , and

3) k: N— X' is an equalizer of f£,*: X' — X" in ¥ ,

The proposition follows at once from the definition .
Observe that the fact that 1) is equivalent with 3) implies that
kernels are limits, and hence when they exist they are unique

up to canonical isomorphism.

2.4 Definitions. Let ¥ be a pointed category.

The category ¥ has kernels if every morphism in ¥ has a

kernel.

The category * has cokernels if every morphism in X has

a cokernel.
*
Observe that ¥ has kernels if and only if ¥ has co-
kernels. Further, if * has equalizers, then ¥ has kernels

(2.3).
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2.5 Example. The category Qfo of pointed sets and functions.

The canonical terminal point of 95 is {@}, the set whose
only element is the empty set. This set is usually denoted by 1.
An object S of Ego is a function n(S): 1 — T(S) in 28 .
If S',S" are objects of é%, a morphism £: S'— S" in ié;

is a commutative diagram

n(S')/ \cs">

T(S') T(E"™)

in Eg. Composition of morphism in ¢ﬁ% is induced by composi-
tion of functions. The morphisms in xgo are called pointed
functions. There is a canonical functor T( ):di——>!£ which
assigns to every pointed set its underlying set and to every
pointed function its underlying function. The canonical point
of 280 is ll: 1 —> 1. Observe that T 1is an extremely
faithful functor which preserves terminal points. Note also
that the underlying set of a pointed set is never empty for
certainly it has at least one element.

The category ng has kernels and cokernels. If
f: ' —> S" is a pointed function, the kernél ki N —> 8 of
f is the unique morphism in Ego such that T(k) is a natural

inclusion function and the diagram
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T(N) e 1
T (k) 7 (8")

sy ZEL qpeem

is a cartesian sequence in gg . The cokernel j : S"— C of
f 1is the unique pointed function such that T(j): T(58") — T(C)
is a projection induced by dividing T(S") by an equivalence

relation and the diagram

T(S") B, pismy

Eng

1 =L} ey

is a cocartesian sequence in 23 -

2.6 Conventions

If ¥ is a pointed category, the basic structural functor
of ¥ is viewed as taking values in 250 rather than & in the
following way:

1) if X',X" are objects of ¥ , then (X',X") is
the pointed set 1 —— T(¥ (X',X")) such that TC¥ (X',X"))
is the set of morphisms in ¥ from X' to X", and 1 (@) is
the trivial morphism from X' to X" , and

2) the composite ¥ * ¥ iﬁlﬁ)—* 280 -Jlﬁ'jg is the
functor contravariant in the first variable and covariant in

the second variable which would previously have been considered
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to be the basic structural functor of ¥ .
Observe that the basic structural functor of a pointed

category ¥ 1is a pointed functor.

2.7 Proposition. If ¥ is a pointed category, and k:N—> X',

£: X! —> X", j: X" — C are morphisms in ¥ , then
1) tﬁe following are equivalent:
i) k 1is a kernel of £, and
ii) for every X e obj(¥), ¥(X,k): ¥ (X,N) — ¥ (X,X")
is a kernel of X (X,f): X (X,X') — ¥ (X, X"} 1in J?go, and
2) the following are equivalent:
i) j 1is a cokernel of £, and
ii) for every X e obj(¥), X (j,X): ¥(C,X) — % (X",X)
is a kernel of X (£,X): ¥(X",X) — ¥ (X',X) in ﬁgo.
The proposition is a tautology. Notice however, that both
kernels and cokernels in ¥ are characterized using kernels in
J .
0

2.8 Proposition. If % is a pointed category, £: X' —> X"

is a morphism in ¥ and j: X"—> C 1is a cokernel of f, then

j 1s an extremal epimorphism.

Proof. Suppose 81+85° C —> X are morphisms in ¥ such that

glj = gzj. Then gljf =% = gzjf, and there is a unique mor-

phism E: C — X such that glj =gj = gzj. Hence g1= E = g2

and j 1is an epimorphism. Suppose
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is a commutative diagram in ¥ such that g" is a monomorphism.
Then g'g'f = hjf = *, and g'f = % since g" is a monomor-
phism. Thus since j 1is a cokernel of f there is a unique

i G — XO such that uj = g'. Hence the proposition is

proved.

2.9 Definitions. Let * be a pointed category and f:X'——> X"

a morphism in 5

The morphism f 1is a normal epimorphism if it has a

kernel k: N —> X' and is a cokernel of k.

The morphism £ is a normal monomorphism if it has a

cokernel j: X" —> C and is a kernel of j.

Observe that the notion of normal epimorphism is dual to

that of normal monomorphism.

2.10 Definitions. Let * be a pointed category.

If f: X' — X" 4is a morphism in ¥ , the morphism

f': X'—> X 1is a normal coimage of f if it is a normal epi-

morphism which is a coimage of £, and the morphism f":X — X"

is a normal image of f if it is a normal monomorphism which
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is an image of f.

The category * has normal projective factorization if

every morphism in ¥ has a normal coimage. It has normal injec-

tive factorization if every morphism in ¥ has a normal image.

2.11 Proposition. If ¥ is a pointed category with normal

projective factorization, then % is a category with kernels,

and the following are equivalent:

1) f : X* — X" is a normal epimorphism in ¥ , and
2) £ : X' —> X" 1is an extremal epimorphism in ¥ .
Proof. Suppose f : X' —~— X" is a morphism in ¥ . Let
1 "
o & x££ . 3 3ea projective factorization of f£.

Since f' 1is a normal epimorphism, it has a kernel k: N — X!
and since f" is a monomorphism, k 1is also a kernel of

f =f"f'. Hence *# has kernels. If f is an extremal epimor-
phism, then so also if £" by 1.6. Thus eince f" 1is a mono-
morphism, it is an isomorphism by 1.4, and 2) implies 1). By

2.6, 1) implies 2).

2.12 Proposition. If ¥ is a pointed category with normal

projective factorization the following are equivalent:
1) f : X' — X" is a monomorphism in ¥ , and
2) * —> X' is a kernel of £f.

Proof. Certainly 1) implies 2). Suppose 2) and that

"
R I T - X" 1is a projective factorization of f.
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Since f" 1is a monomorphism, * —> X' is a kernel of f',
but since f' is a normal epimorphism, £f' is a cokernel of
* —> X', However, 1X,: X' - X' 1is a cokernel of * — X',

Thus £' 1is an isomorphism and 2) implies 1).

2.13 Proposition. If * is a pointed category and 9— is a
small category, then [%, %] 1is a pointed category, and if X
has kernels, then [9-,%1 has kernels. Further, if a:T'—> T"
is a morphism in [9,'%] , the following are equivalent:

1) B T0 —> T' is a kernel of a, and

2) B : Ty === 17 is a morphism in [9.,1;] such that

for J ¢ obj(%—), B(J) 1is a kernel of a(J).

Proof. If % 1is a point of ¥ and Cgﬁ Y: ¥—> [%.,Z:] is
the constant factor, then C9_(*) is aupoint of [%u %] and
thus [%.,f;] is pointed.

Suppose a : T' —> T" 4is a morphism in [ ngil- For
J e obj(%»), let B(J) : TO(J) —> T'(J) be a kernel of a(J).
If j : J' — J" 4is a morphism in 9. , a(IMT'GIBE! =
T"(§)a(J')B(J') = * and there is a unique To(j):TO(J') —
T,(J") such that T'(1)BI') = BI"Ty(i). Now P : Ty —> T
is a kernel of a. Thus [gq ¥] has kernels and the construc-

tion of kernels in [9, ¥] from kernels in ¥ shows the eguiv-

alence of 1) and 2). Hence the proposition is proved.
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2.14 Proposition. If X is a pointed category with normal

projective factorization and 9- is a small category, then
[9 ,¥] 1is a pointed category with normal projective factor-

ization.

Proof. By 2.11 and 2.13, {(}, *] 1is a pointed category with

kernels. Suppose a : T' —> T" is a morphism in [9,,3?],

and let B : TO—*> T' Dbe a kernel of a. For J € obj(%),

let T'(J) M T(J) a”(J T"(J) be a projective factoriza-

tion of a(J) in % . By 2.14, a'(J) is a cokernel of B(J)

for J e obj(%). If j : J'— J" is a morphism in 9’ , then
a(IT'(GIBI') = T"()a(I")BI') = * , and o' (I")T'(J)BI') =%
since a"(J") 1is a monomorphism. Thus there is a unique

T(j) : T(J') — T(JI") such that a'(I"MT'G) = T(jla'{J").

Now a' : T' —> T 1is a normal coimage of a in [}}«,36] and

the proposition is proved.

2.15 Proposition. If X is a pointed category and ¥' is a

weak separation subcategory of ¥ , then
1) if * 4is a point of ¥ , then * 1is a point of ?E/,
2) if f : X' —> X" 1is a morphism in ¥, and k:N — Y
is a kernel of £ in ¥ , then k 1is a kernel of f in ¥,
and

3) if R : ¥ -ﬂ-b-)‘/, ) W 1% —> R 1is the coreflection

of ¥ in ¥, £ : X' — X" 4is a morphism in ¥’ and j:X" —=C
P
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is a cokernel of £ in X , then R(j) : X" — R(C) 1is a

cokernel of £ in ¥7.

Proof. If * is a point of ¥ , A(*) : * — R(*), and

e(R(*¥) A(*¥) = 1,. Hence X(*) = 1,, and part 1 is proved.
*
Parts 2 and 3 are special cases of Chapter 1, 4.7 , and hence

the proposition is proved.

2.10  Proposition. If ¥ is a pointed category and X' is a

il
weak separation subcategory of ¥ with coreflection R: ¥ — X |

l:lf——* R, then

1) if R preserves kernels, £ : X' — X" is a mor-
phism in ¥  and f£": X — X" is a normal image of f in ¥ ,
then R(f"): R(X) — X" 1is a normal image of f in 1/, and
hence if ¥ has normal injective factorization, so also does X',

2) if the inclusion functor %X’ — ¥ preserves normal
epimorphisms, f : X' — X" is a morphism in ¥  and f':X'—> X
is a normal coimage of f in X , then f' 1is a normal co-
image of f in X', and hence if ¥ has normal projective
factorization, so also does ¥, and

3) if ¥’ is a strong separation subcategory of ¥ and ¥
has normal projective factorization, then the inclusion functor
X' — % preserves normal epimorphisins.

Proof, If the conditionsof part 1) are satisfied, and

1 "
gt £ x £ g is an injective factorization of f in X ,
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then X! R(£1), R(X) RCED, X" is an injective factorization of
f in ¥ since R(f') is an épimorphism in f/ due to the fact
that R 1is a coadjoint functor and R(f") is a normal mono-
morphism since R preserves kernels. ﬁence part 1) is proved.
Parts 2 and 3 follow from 1.18 parts 3) and 4), 2.8 and 2.11.

Hence the proposition is proved.

2.17 Example. The category zﬁ) of pointed sets and functions

has projective factorization and normal injective factorization,
but not normal projective factorization. These facts follow at
once upon examination of the construction of kernels and co-

kernels in kgo (2.5).

2.18 Definitions and observations.

Let X be a finitely bicomplete category.

An initial point *; of ¥ is_effective if for every
object X of ¥ the projection to the second factor ¥ X —X

is an effective epimorphism. A terminal point *_ of ¥ is

T

effective if for every object X of ¥ the injection from the
second cofactor X — *T 4L X 1is an effective monomorphism.

The terminal point 1 of B is effective, but the initial
point @ 1is not effective.

If both the terminal point and the initial point of ¥ are
effective, then *I*—> *T-u-*I ::*T is an effective monomorphism,

and *I:{*I‘”.*T s *T is an effective epimorphism. Hence



121

*I i *T is an isomorphism since it is both an effective

epimorphism and an effective monomorphism, and it follows that

¥ is a pointed category.

If the terminal point *T of ¥ is effective, the pointed

category ¥0 associated with ¥ is the category such that an

object X of 3?0 is a morphism i (X): *T — Ty AR %

and a mdrphism f: X* — X" in '3.‘0 is a commutative diagram
%*
n(x'yT \., (2"
rxy  HE- pim
in ¥ . Composition of morphisms in "fo is induced by com-

position of morphisms in ¥ . There is a canonical extremely

faithful functor T( ): ?fo-—} % . The point of }70 is

T: e *T. The category ¥ is pointed if and only if the
canonical functor T: '350 —> ¥ 4is an isomorphism of categories.

If the initial point *; of ¥ is effective, the pointed

category }_‘0 associated with ¥ is the category such that an
object X of 360 is a morphism &(X): S(X) — *, 1in ¥* ,

and a morphism f: X' — X" in XO is a commutative diagram

S(X') _g_Q» S(X")

E(X') \ / S(X")
A1]
*
I
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in ¥ . Composition of morphisms in 260 is induced by compo-
sition of morphisms in ¥ . There is a canonical extremely
faithful functor S( ): YO —> X . The point of 1(0 is
1*1: ¥ — *;. The category ¥ is pointed if and only if the
canonical funétor S5 ¥O——> ¥ is an isomorphism of categories.
Observe that the initial point of ¥ is effective if and
only if the terminal point of ;{'* is effective. If the initial
point of % is effective, then (%O)* = (X*)O and the dual of
the canonical functor S: BEO—-> X 1is the canonical functor

%* *
T: (% )0 —> % ., If ¥ should happen to be pointed both of

these functors become identity functors.

2.19 FProposition. If X is a finitely bicomplete category

with an effective terminal point, then %O is a finitely

bicomplete pointed category and the canonical functor T: 10—;‘%

is an extremely faithful adjoint functor.

Proof. Suppose f,,f,: X — X" are morphisms in ¥ 5 Let
T(f): T(X') —> T(X) be the equalizer of T(fl),T(fz) in &
and let J7(X'): ¥ — T(X') be the unique morphism such that

T(£) 7 (X') =7 (X). There is a unique f£: X' — X in ¥,
9 in

such that T(f) is as above, f 1is an equalizer of f£f.,f

1,
¥ and ¥ has equalizers.
0 0 q

Let J be a finite set and suppose XJ. is an object of

o o for j e J. Let T(ﬂje.]xj) = T T(Xj) with projection

ied



123

T(p Y L. jed _]) —_— T(Xk) to the k-factor for k e€ J. Let
* . -
TI(TTJEJXJ) et RO eij) be the unique morphisms such that

T(pk) ﬂ(ﬂjeij = h(Xk) for k € J. There are unique morphisms

pkiﬂje.] y —* X, in i—o for k e J such that T(p,) is as

above. These morphisms define a product of (X. )JEJ in X

0
Hence 3{-0 has finite products. Since it also has equalizers,
it is finitely complete and the construction of products and
equalizers in 1‘0 shows that T: )‘O—F’Zf. preserves finite
limits,

For X an object of ¥ , 1let S(X) be the object of
¥ such that TS(X) = * %X and &(S(X)): *, — TS(X) is
the injection from the first cofactor. If f: X'— X" is a

morphism in ¥ , let S(f): S(X') — S(X") be the unique

morphism in ¥0 such that TS(f) = i, L f, Now S:¥— ¥ 0

i i
is a functor. For X € obj(¥) 1let BX): X — TS(X) = *T-l-i-X
be the injection from the second cofactor. Now B: 1 —> TS

£

is a morphism and P£(X) is an effective monomorphism for
X € obj(¥).

For X ¢ obj(‘fo), let a(X): ST(X) — X be the unique

morphism in ?{40 such that T(a(X)) = l*T lT(X)' Now
a: ST —> 1-}0 is a morphism and (o,B): S--%T:()EO, ) is an
adjoint pair of functors.

Suppose that X B X!

e |

xﬂ
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is a diagram in X . There is a diagram

in %O such that

T(X) & T(X')

TLEY ) l l T(fé)
Tx"Hy T(XO)
n
T(fo)
is a cocartesian square in ¥ . This implies that the pre-

*
ceding diagram is a cocartesian square in 3%0. Hence by 4.15 ,

Chapter 1, fo is finitely cocomplete and the proposition is

proved,

2.20 Proposition. If ¥ is a finitely bicomplete category

with an effective terminal point and (o,B): S—T: (.fo,?ﬁ) is
the canonical adjoint pair, then
1) T preserves cocartesian squares, and

2) S 1is an extremely faithful functor.

Proof. Part 1) follows fmm the construction of cocartesian
squares in ¥f) at the end of the proof of 2.1¢. While part 2)
follows from the fact that if X € obj(¥), BX): X — TS(X)

* *
is an effective monomorphism together with 1.3 and 1.13 .
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Note the preceding does not imply that T preserves
finite colimits, for it does not preserve finite coproducts

except in the case * is pointed.

2,21 Definition. A terminal category ¥ is a finitely bi-

complete category ¥ with an effective terminal point and
effective injective factorization such that
3 . 1 . ! 3
1) if £4: Xy — X, and f;: X{ — X, are effective
monomorphisms, then fOLLfl: XélLXi — XOJJ-X1 is an effective

monomorphism, and

2) if 5

is a cocartesian square in ¥ with £f" an effective monomor-
phism, then fé is an effective monomorphism, and if further
f' 1is a coretract, then the square is cartesian.

An initial category ¥ is a finitely bicomplete category

¥ with an effective initial point and effective projective
factorization such that
. " n . " -
1) 1f fo. XO e A 4T fl' X1 S Xl are effective epi
morphisms, then fdﬂ'flz X T X — XSTTXE is an effective

epimorphism, and

2) if X, fo -
; "
fol l £
T
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is a cartesian square in ¥ with £" an effective epimorphism,
then fé is an effective epimorphism, and if further £' is a
retract, then the square is cocartesian.

Note that * is a terminal category if and only if }:*

is an initial category.

2.22 Froposition. If ¥ is a terminal category, then ifo is

a pointed terminal category with normal injective factorization.

Froof. By 2.19, ffo is a finitely bicomplete pointed cate-
gory. Suppose f': X' —> X 1is a morphism in }-0 such that
T(f') is an effective monomorphism and that £": X — X" is a
cokernel of f', Now

T(X') T(E!t)

T(X)
l e(X") TCE™)

1

is a cocartesian square in ¥ with T(f') an effective mono-
morphism, and &(X') a coretract. Since ¥ 1is a terminal
category, the square is a cartesian square and f' 1is a kernel
of £".

Suppose f : X' —> X" is a morphism in *Xr There is

1 1}
a factorization X! £ s x-Lf 53" of £ in Qio such that

1"
T(X') (), T(X) (), T(X") 1is an injective factorization

of T(f) in ¥ . Since T 1is faithful, £' 1is an epimorphism,



and by the preceding paragraph,
Thus ¥:0 has normal injective factorization.
x f"

is a cocartesian square in }'G.

cartesian square in ¥ by 2.20.
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f" is a normal monomorphism.

Suppose that

x"

X,

Its image under T 1is a co-

Now the fact that T(F") is

an equalizer of T(il), T(iz) implies that f£" 1is an equalizer

of 1,.:%:%
1772

coincides with the notion of normal monomorphism in ¥ .

i

XN

is a cocartesian square in ifo
cocartesian square in ¥ |,

morphism, then T(£f")

an effective monomorphism, and hence

monomorphism, If further £!'

Hence the notion of effective monomorphism in ¥

and if

0

U'

its image under T 1is a

f" is an effective mono-
is an effective monomorphism, T(fb) is
fé is an effective
is a coretract, then T(£f') is

a coretract and the fact that the image by T of the square is

a cartesian square in ¥ implies the original square is a car-

tesian square in '%0.

Consequently the proposition is proved.
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2.23 Proposition. If X is a terminal category and 2} is a
small category, then [2,,%-] is a terminal category and
[§.x1, = (9, %1

Proof. By Chapter 1, 4.26 and 4.26", (. %] 1is a finitely
bicomplete category, and by 1.23*, {9-,1§] has effective
injective factorization. Now the local character of the car-
tesian and cocartesian squares in [9 , %] (Chapter 1, 4.37,
4.37*) insures that since ¥ 1is a terminal category, so also is
[%)&] Given the preceding, the fact that [9,,%]0 = [%L ¥ ]

is immediate. Hence the proposition is proved.

/
2.24 Proposition. If ¥ is a terminal category and X is a

weak separation subcategory of ¥ with coreflection
ol ik
R: ¥ — ¥, A\ ¥¥ —> R and R preserves finite limits,

then ¥’ is a terminal category.

%
The proof is routine using 1.20 , and Chapter 1, 4.13,

Exercises.

1. Prove that 28 is a terminal category, and that 230
is a pointed bicomplete terminal category with unique factori-
zation. Give an exampie of an epimorphism in ,kgo which is
not a normal epimorphism. Prove that every object in Ego is
both projective and iniective. Show that ng has a generator

and a cogenerator.
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2. Prove that if ¥ is a finitely bicomplete category
with an effective terminal point, then
i) 4if * is complete or countably complete, then %lo is
complete or countably complete,
ii) if ¥ is cocomplete or countably cocomplete, then X—O
is cocomplete or countably cocomplete, and
iii) 4if * has a generator, then T{D has a generator.

3. Prove that ) is a terminal category, but that

ey

Ix
and ‘7 F are not terminal categories.
& i i

4, Prove that fng and:7ﬁH are terminal categories, but

o ' g . : -
that Sy tTNCR’ and 7 CR are not terminal categories.

5. Prove that J'L and :TF are terminal categories
with effective projective factorization. Show that 1(Cy and
“J (F) are terminal categories with effective projective fac-
torization.

6. Prove that C is a terminal category and that (30 is
a pointed bicomplete terminal category with unique factorization.
Show that (fo has a projective generator and an injective
cogenerator.

met
7. Lex. ©C denote the full subcategory of ( gener-
. . met
ated by the metrizable compact spaces. Show that & is a
countably complete terminal category such that the inclusion

(szt —> ( preserves countable limits and finite colimits.

C met

Prove that has a projective generator and an injective

cogenerator.
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8. Show that the categories ‘78 n T, ‘7C n 7F’

"'_]C n ’]'H, ﬂc n ?NCR’ and 70 n T’TCR are not terminal
categories. \

9. Prove that the categories 7 and 7Ec are initial
categories. Show that (7?0)0 is a strong separation sub-
category of 7?0.

10, Let R be a commutative ring, If A and B are

R-modules, let A ® B denote the tensor product of A and B

over R. An R-coalgebra C 1is an R-module C together with

morphisms of R-modules A(C): C—> C® C and &(C): C — R
such that
1) the diagram

_A(C)

C At C®C

A(C) 1 C ® A(C)
cec LLOEC rscec

of R-modules is commutative,

2) the diagram

is commutative.
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The morphism A(C) is the diagonal or comultiplication
of C, while &(C) 1is the unit of C.

If C',C" are R-coalgebras, then a morphism f£f:C' —> C"
of R-coalgebras is a morphism of R-modules such that the dia-
grams

c’ Y g

l A(CY) l 240"

C'® C' o C" ® C"

and
g! N, SR g
E(C'\;\\q z//// e(c")
R
are commutative,

The category of R-coalgebras, coaig(R) is the category
whose objects are the R-coalgebras, whose morphisms are the
morphisms of R-coalgebras, and with composition induced by
composition in the category of R-modules mod(R).

Show that coalg(R) is a cocomplete category with a
terminal point and that there is an extremely faithful colimit
preserving functor S: coalg(R) —> mod(R).

11. If R 1is a commutative ring, and C 1is an R-coal-

gebra, then C 1is commutative if the diagram of R-modules
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is commutative., The category of commutative R-coalgebras
coalgC(R) is the full subcategory of coalg(R) generated by the
commutative R-coalgebras.

Show that the category coalgC(R) is a cocomplete category
with a terminal point and finite products. Show that the inclu-
sion functor coalgC(R) —> coalg(R) preserves colimits.

12. Show that if R 1is a commutative ring, then the
categories coalg(R) and coalgC(R) have effective injective
factorization .

13. Show that if k 1is a field (commutative) then the
category coalgc(k) of commutative coalgebras over k is a
terminal category.

14, If R 1is a commutative ring, define the category of
R-algebras in such a manner that if alg(R) denotes the cate-
zory of R-algebras, then

i) if R=2Z , then alg(Z) ='EL the category of rings,
gnd
ii) there is an extremely faithful coadjoint functor
S: mod(R) —> alg(R).
15. Show that if R 1is a commutative ring, the category

alg(R) is a bicomplete initial category.
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16. If R- is a commutative ring, define the category
of commutative R-algebras so that

i) if R =2Z , then the category algc(R) of commuta-
tive R-algebras is the category 'RF of commutative rings,

11} algC(R) is a strong separation subcategory of alg(R),
and

iii) the composite
mod(R) — alg(R) s algC(R)

is an extremely faithful functor when V is the coreflection

of alg(R) in algC(R) and S 1is the functor of exercise 14.



