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Lectures on Characteristic Classes
by John Milnor

Notes by James Stasheff
(Spring 1957)

I. n-plane bundles:

in the study of characteristic classes, we will be
concerned with n-dimensional vector spece bundles or, briefly,

n-plane bundles,

Definition: An n-plane bundle consists of a triple (E,B,w) with

T a map (i.e. continuous function) from a Hausdorff space E onto
a Hausdorff space B, and the structure of an n-dimensional vector
space over the reals R in the f4bres w'l(b) for all b e B,
satisfying the further requirements that

1) there exist a distinguished class of open sets (U]
coverlng B and n maps oy ¢ U —> E for each U, such that

2) each ¢y 1s a cross-section, that is me (o) = b ror
each b e U, and

3) the map UxR" —» rr'l(d) defined by
(b’}"l""’}\'n) —_ ZAici(b), Aj€ R, is a homeomorphism. (This
is the local product structure on E.)

We call B the base space, E the total space, w the projection

jnnd denote the triple and structure by a’ Greek letter i.e.

Ta (E,B,7}. A Ssuperscript on a bundle indicates the dimension

. of the fibre 77%(b), e.g. {D,
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Rewavlc: Although not necessary for what follows, it should b

noted that an n-plane bundle is an example of a fibre bundle.

(See Steenrod; Topology of Fibre Bundles, 1951.) 1In fact, an
n-pléne bundle is exactly a fibre bundle with real n-dimensional

vector space as fibre and GL(n,R) as structural group.

Examples of n-plane bundles:
1) The product bundle Bx R"

2) The tangent bundle T " of a differentiable manifol

n

M of class C1 or more., Here B = M' and E 1is the set of

211 pairs (b, contravariant vector at b)..
3) The normal k-plane .bundle v K
1= gK

manifold (For a differentiable manifold "<=" is always

to be read "differentiably imbedded in".,) Here the base space B
is again .Mn
b).

4) The l-plane bundle or line bundle §‘i over real pr
Jective n-space P defined as follows.
of all unordered pairs [x,-x] where x ranges over all unit
vectors in ,Rn+1. The total dpace E is to be the set of all
((x,=x],n.x)

pairs with A a real number.

Remarlk 1. Every cross-section of this bundle (i.e. a map

1s somewhere zero,

¢+ B =—> E =such that wd = identity on B)

#(b) = (»,0,0,...,0) for some b. We call a "non-zero cross-

scotion" one which is never zero.

.

of a differentiable

and E is the set of all pairs (b, normal vector a‘

Consider P" as the se

" Proof that the bundle 2; of

3

el s Mgy,

e PSR J—

(4) has no non-zero cross-sections, n » 1: Glven any cross=

section ¢: P®" —> E we can define a map A :S" —> R by
$({x,-x]) = ((x,-x], A (x)x). MAl=x) = =A(x) and S" is
connected, there i1s a point x “for which A (x) = 0 or

$([x,-x]) = ([x,-x],0).

Since

The following alternative description of ‘gi

S"<R with the identi-
fication (x,A) = (-x,-A). {325 %
{(=%,=N\ )] ; can be identified with ([x,-x], Ax) € E.

fo%e this new bundle is equivalent (sce next paragraph) to the one

Remark 2. will

be useful later. As total space El take
Evidently the elenient

of E There=-

defined above.

Bundle maps and induced bundles:

Definition: A bundle map f: ¢ —> T), where 5 = (E,B,7} and

N = (E!,Bt,7!'] are n-plane bundles, 18 a pair Bf maps (T 'fu)

-such that

1) the following diagram is commutative

fE 3
E > El
T ! (1.e. wifp = wa) and
f
v v
B B, B

2). rElw'l(b) is lineér and non-singular for each b in B.

e ~ n r TR ——rT rv— v " Y
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Special Case: B = B!

Definition: Two n-plane bundles £,7 over B are equivalent
if there is a bundle map f: {—> | with fy = Identity on B.

This 1s an equivalence relation and using it we define

Definiti~~+ An n-plane bundie is trivial if it is equivalent to

the product bundle BX R".

Remark: A bundle is trivial if and only if there exist n
independent cross-sections. (We use them to define f.)

Using this concept, we have

Definition: A differentiable manifold M" is parallelizable if

the tangent bundle Tfn(Mn) is trivial,

Induced bundle: Given a bundle ¢ with w:E —> B, another space

B! and a map £ there is a construction by which we

B
get another bundle {E',B}r'] and a bundle map f = (fE,,rBI). Let

(b',e) with

B! —> B,

E! be the subset of B! X E consisting of all pairs
bte B!, e ¢ E such that fB,(bl) = w(e)., Define w!:E! —> B! by
w1{bt,e) = b1. Each fibre v"l(bl) will have the structure of a

vector space isomorphic to w'l(fB,(bl)). ‘Thus we have constructed

It is easy to

the induced bundle, the bundle induced by fB,.

verify that the projection map rE,(bl,e) = ¢ gives a bundle map

{fB,,rE,) of the induced bundle into the original bundle.

-~

e e Sl e

‘E(Ei v::E(ﬁi+l) ‘and there is the obvious

LR

Remark: Given two bundles § and T and a map fB_ of

their base spaces as indicated in the dlagram, it is often possible

i is a i e
.to define a map fE so that Fne pair SRS 4 S
bundle map. This is possible, 1f and only
X ol
if ¢ is equivalent to the bundle induced gl” L L
IE = Pk+1 v )
by fB from T1. For example, P~ - » B. . 3B
: B

bundle map f n_(iE,iB) where iE’ 1B are the indicated:inclusiap

maps. Thus ei is equivalent to the i-plano bundle over 'Pk il

duced from €i+l by 1B: PkC:'Pk+l.

We need one more relation between n-plane bundles: -

The Whitney Bundle Sum: @Given an m-plane bundle Y= (E,B,v) and

an n-plane bundle T = (E!',B,w'), let E" be the subset of EME!

consisting of all pairs (e,e!) such that w(e) = w'(e!).

EII ;

Define: p: E'" —> E by po(e,et) = e
: P
Pt EY —> B by,c'(e,el) m el ly: \\
i ' E R
N

m™: E" —3> B by ﬂ,-rr/g_ -n-l/_—,l
i B

T .\\J\I,/' t '
5 !

’

Since w,w' are projections of m, n-plane bundles respectlvely,

7" is the projection of an (m+n)=-plane bundle, the Whitney sum,

1:-'3'3 T = [E",B,r;"].




Example 5: For a differentiable manifold M= RPK e
have that -nEPyk is trivial (equivalent to the product bundle
M ¢ Rm-lc) :

II. Stiefel-Whitney classes:

We begin to look at the cohomology of n-plane wundles.
Henceforth ﬁnlgss otherwise stated, we will use some cohomology
ag coefficients.

theory with Z, nt (X) will mean H* (X;2 ) and

H'(X), the direct sum RO(X)@ ut (X)Pees . We have the following,
simllar to the axioms for Ghern classes given in lezebruch '_
Neue topologlsche Methoden in dep Alpebraischen Geometrie, Berlin

1956 p. GO:

Axioms for Stiefel-Whitney Classes

1) To each n-plane bundle /, over a paracompact base space B,
there corresponds an element W(i) m 1 + Wils) + '+ W s i
H*(B)

'

where W,cH (B), such that

2) For a bundle map f = (rE,rB). ¢ —> 7 we have
r“(W(n)) = W(%)
3) The Whitney Product Theorem holds:

a, (0 = : A v
l.e. ”k( .Cﬁﬂ) 1+3=k wi(")"’u‘j(ﬁ-)

W(i@n) = w(e)w(n)

[originally proved by ¥hitney "On the Theory of Sphere-Bundles"
Proceedings Nat. Ac. Sci.-26 p. 148 (1940) ],

hence wl(ei)

i

k) For the non-trivial line bundle over st (wiiich can be |

represented as the open Moebius band or, since Sl = Pl, as Ei

" of Ex &)

W(eD) 4 o,

We will call wi(c) the Stiefel—Whitney classes and W(C) the
total Stiefel-Whitney class.

Consequences and examples.

A, Axioms 2} and 4) imply

41) For the bundle Ei of example 4, w(ai) = 1 + a where
a 1s the non-zero element of '

H (™).
For we have S1 o PlC‘Pecl S3cph and using the inclusion maps

in the bundle spaces as well, we define bundle maps

gl ——p

5 ca""""""""

‘N’/,/z"}

W N |
Call the composition f = (rE,fB).cl > &

Then for 3 H* (") -——QVH*{SI) we have

o3 (iy(en)) m wy(ed) 4 o,

- 18 the non-zero element of 'Hl(P“). The Stiefel-

Whitney classea: wiiei), 151, are zero by Axiom 1,

YT,




We can solve for w;, in terms of wi', 1 <r and the known W,

Axiom 4') may be uged lnstead of 4) in whicih case it would .

not be necessary to specify in Axiom 1) that w(I™) has at most ; and . Wi: | | : '
n-dimensional classes, ‘ A Wom IOW, = Wl = (WO W, )+ eee & LARESU NS o )

%, Mo 2) gives us that W 1s a function of equivalence | This formula together with Wi = WY -, to start things off, gives
classes. In particular, if © A8 wriviel then W(I) = 1 aince a complete recursive solution for the x—q (Note that this procedure
fg:BX R —> R'; fp: B —> (P oint), gives a bundle map and ¥ { depends on the fact that W  1s always equal to 1.) This discussion

Hi(point) =0 for 1> 0. ‘can be simplified by noticing that the set of all infinite sequenszes

1 . N
c W(E™(s™)) = 1 where T 7(s") 4is the tangent bundle of 1+ a +a,+ where a, ¢ H'(X) forms a group under._., which is
‘ : abelian since we are working mod 2. For exaiple, (1 + ul)'l'n
the n=-sphere. . ' ; 5 - w4 "1‘. | .
define the Voot ¥ « Thus we can write W(¢) = W(; @MW (%) to
:s" —> P be the natural map and : :
Proof: Let [fp:8 >P b it indicate the solvability of Axiom 3), In particular, for Mncﬁn"'k,

£:20(s") —> 7™(P") 4in the obvious manner. Then

bundle map e 1]

we know that v™(M")DvX(M?) 1s trivial and that therefore
' 1qn . ' bl K . . ,
e N(s")).= 0;. 0.< i < n_aince_ H-(50)-=-0;-0<.1<n, - W4 V") = L. Thus we have:

T
* oy pM) —s HYS") is zero so that O = fX(W _(7(P7))). =
and f}:H (p") —> H(S) i B''n ‘ | Theorem 1. The Whitney Duality Theorem [see Lectures in Topolozy

=Ty o0 r 1. P Sn = 1.
\-,rn{l_ (s™)). Therefore (i (5)) 0 Unlv. of Michigan Press, 1941, p. 133, especially (21.9]): If we

Axiom since : ;
This can also be found through Ax 3) have a differentiable Manifold MN'e Rm'k with tangent bundle 7“

g iy k
D. Axiom 3) 1is "solvable", that is, glven any two of w(r), and normal bundle y *,then

w(n), of (T M) we can solve for the third. For example, given WEMW(V) = 1 or Wyk) '-'l'l('i'n)-
Ww(t) and w(f @), let us write W(o) = We 1+ Wl + W2 + 20 . 2 ~ b i
¥l w(n‘,nwul'l-‘«’i*‘ ve+ % %1, and W) = W' e & We write W 1+wl+we+n- + W, with as usual W =
14 Wy 4 ¢o0 + W, » Expanding Axiom 3) we find SR ! A Wy & Wp o e * Wye (Note that by the above theorem, ._,‘,-1(_;!1}
has classes of at most dim k.) Solving as above’
Wl w1 WY+ W '

. |
Whom LWL Wy WYk N, 1 |

W LWL Ny W

i
r by, B R B U gudlly F W




s 2 L2
H4 = W, + wl w2 + U2 -+ W4 etec.

In particular, we have another proof for assertion C. Taking

the usual imbedding of s" in Rn+l we have'

w(zh(s™) = wlvi(s™). But y(s") 1s trivial

which implies W(Y™(s™)) = 1.

III. Applications:

We will often be concerned with the situation of e:ample 2,

the tangent bundle 'Fn to a differentiable manifola M. Though

we have defined W only for bundles and not for manifolds, we will

extend our use of classes by writing W(M™), defined as W(:™). For

the salte of cxposition, these are called the Stiefel class (of a
manifold) and the Whitney class (of a tangeﬁt bundle) respectively.

Consider, for instance, T ™(?"). This ocan be represented in

1

terms of the unit- S"=A a8 follows.

1

Let E(7™(P")) be the set of all unordered pairs [(W,V ),
(-4, -V )] where (U, ¥ ) is an ordered
pair with ¥V perpendicular to the unit
‘vector U, 1In other words, E(T(P")). - .

is the set of all pairs (U, V ). with

v perpendicular to the unit vector U . N
modulo the identification (U, V ) a (-U,=V ). ".}-.\)
On the other hand, consider the (m+l)-
fold Whitney sun ¢1® uf,i where &l 1is the line bundle
over P" of example 4. The bundle space E(eiﬁb-o- EBE;), consists

of all (n+2)-tuples (ﬁ} URAL tn) where

('u;to,--- t,) 1s identified with (-, -to,---,-th,

—

or (W;w) u(-?ﬁ-w ), | @ = 1. (See Remark 2 after
Example 4.) Notice U need not be perpendicular to W, though at
least
EGTSE(GL @« @),
—d
n+l

Let 7' be the 1-plane bundle over P® with E(n') = (W, tT))
modulo the identification (W, t3°) m (-0, -t ). Clearly 7* is a
trivial bundle, | i
As can readil& be seen,

,gn({anl 1s equivalent to E:lme oo B E}:

- U
3 .

n+l -




1

Taus  W(5™w(t) = WeR)™ and since M 1s trivial,

wE®) = ()™ a1+ )™, o ¢ BYPY). Thus

Theorem 2: The Stiefel class of projective n-space is given by

wie™) a (1 + u)n+1 where a 1is the non-zero element of Hl(Pn)

In other words, W,(P") = (™1) a¥;a e HM(PY),

The following is a table of binomial coefficlents mod 2,

We do not use the last ; \
coefficient since W has no 101
. _ : 1133
n+l-dim component. e.g, 100 6\1
o
WES) & 1 s 6o 1z o it

'I.'I(PB) & o 101010\%

W(Pu) =1+ a+ au ete.

In making use of these formulas it is important .to know that
the rowers q, ae,..., o are all non-zero, ‘'We will assume this to
>e known, (A proof based on the Gysin sequence'will be glven later

In these notes.)

arallelizability: Now we are ready to asic

~ which p" are
rarallelizable? We have necessary conditions at hand since PpP"

arallelizable implies that W(P") a'1.

heorem 3:

(From the above work, this reduces to an exerocise in arithmetio
od 2)

W(P") = 1 4f and only if n+ 1 1s a power of two.

A

i T

15

2

Proof: Since (a + B)E =a° + BE wod 2

21‘ 21‘ .
we have (1 + a)® =1+ a° ,

n+l 1.

Therefore, for n+l = 2°, W(P") = (1+G)g+l =1+a

Conversely n+l = Qrm, m odd > 1, implies that "

r : % &
W(Pn) = (1+G)n+1 (1+02 )m = 1 + (I’lﬂ)az + ' = l4+qa + ‘ " 1
since 2r {n+ 1.

Thus the only P"
91,93,97,P15,P31,"'

which can be parallelizable are
It is known that Pl,P3,P7 are in fact
parallelizable and that Pls is not.

Immersion:

Definition: An immersion of M" in R"*k

H" ——py RUH

is a differentiable map

such that the Jacobian is never singular {this means
there 18 a well-defined tangent plane at every point). This differe

from an imbedding in that "nice" self intersections are permitted.

Theorem 4: If the manifold M™ can be immersed in R"+k, then the.

dual Stiefel-Whitney classes Wi(Mn) must be zero for i » k. .

Proof: is trivial so

As in the ‘base of an imbedding, t M EB;{
that W™L(4P) = w(v9),

Applying this to P

But W, (v¥) w0 for- 1> k.

n immersed in Rn+1, we have that

Wivl) = 2 or el W(E") = W(5™) = Wwiv}) w2
of 1+ a+ 02 + see + o,
Ve have seen that W(P") = i if and only if n+l = 2°. On the
then (i+a)™?

kol & (1+a)™2 a1,

other hand 1f W(P") m(14a)™! w 1 4 g + ¢eo + P

l+an+¥ mod 2 and again Hn+l(Pn) = 0 ;..qn+




14
n
As beforec this implies that n+ 2 = o', Thus the only P which
2 6 o w516 o
cah be Afmeretble in S BT wre PGPS B,R0BL, PPN e [ 1t
15
is

is knovm that Pl,Pe,P} are in fact immersible but that P

not. (See Milnor, "The immersion of n-manifolds in (n+1)-space",

th. Helv. 30 (1956), pp. 275-284. )

On the other hand, consider the case

Comm. Mat
Then

NnNe= aro
RS
WEE™) e (1 & )L - (1 a)ar(l +a) = (1+a® )1+ a) = lrara”,

and WLP") = (1 + ™71+ )t

LN ] n
o {2+ oMl +a+a® & + o)
a (1+ a+ of @ v g gl ,(moa" 2).
In other words Wi(Pn) =0, i=mn

£0,1al, ***, n-1,

2n=2
Therefore by Theorem 2, for n = Er, P™ -is not immersible in R
We would like to lmow how good an answer this is. i1.e. for

q > 2n~2 can Pn be immersed 1n Rq? There is,

any Mn, n » 1, can be lmmersed in

what dimensions
fact, the Theorem of Whitney:
2n-1

[See Whitney, "Singularities of a Smooth n-Manifdld in

(2n-1) space", Ann. Math. 45 (1944) p. 247.] So for n=2t
exact result: P® is ismersible.in RZV"L, but not immersible inR

R

z.na

OQur results can be extended somewhat, as follovis:
; 8. . e
It P9 13 immersible in le, 50 18 P FJPQ, but this we kngw is im
possible, &o P9 is not immersible in 314° Simila?ly, we have in

general, if n=2’ + q where r 13 the largest power of 2 in wn, then

in

we have the

i b T kA o n

-V N

- Dlvision algebras:

15
S 105 ™1
P’ is not ymmersible in R® 2,
Imbedding: Similar results can be obtained for imbedding. We wil

show later that if M" is imbedded in Rn+k, then the highest

Stiefel-Whitney class wk(vk) is zero, Hence if M"™ is imbeddabl

in gROHK In particular, for n=2'+q

r+1
P" 1s not imbeddable in RZ & -1,

then W (N )= 0 dor 43 ks

as above,

Another application of Stiefel-Whitney classes

is in the question: for what n.doea there exists a division alget

of dim n over R? (Again we will get necessary but not sufficie
conditions.) We are looking for a product operation in R which
1) 4s bilinear, and
2) has no zero-divisors.
Suppose such exists and choose a basis [el,...,en} for R®., Let a

vary over R so that a*e; varies over the unit sl 4 ",

_fa-el,...,a-en} are linearly independent by 1) and 2), and the pro-

Jections of a-ea,...,a-en on the tangent plane to thewnit sphere .
at a-e; are still linearly independent. This 1n effect gives us
n-1 linearly independent tangent vector fields on §™ l, as arey

varies over 8"~ l.

If we identify a and -a we have that‘(ea)fei
-(a- ei) is identified with a- e; and thus we have nel lifeariy
1ndepcndent tangent vecter fieids on 7" 1«

spel 19 parallelizable or 5 = 2F,
in fact, we know that there are the

following éivision algobrag:

/ e
r’:/

o
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n=1R n = 4 Quaternions,
= ’
‘n = 2 Complex numbers n = 8 Cayley numbers.
IV. Stiefel-Whitney numbers.
We wlll now construct a tool which will allow usa compare

>homology classes of different manifolds., (So far we have only

mpared W's which could be represented in terms of the cohomology
™)

MY will be a closed, possibly disconnected differentiable

T a fixed manifold,

inifold.
n
Let p be the fundamental class in Hn(M ‘ZE)' (There is one

1ce we use coeflidlent group 22)
For any v ¢ Hn(X,ZE), there 1s defined the Kronecker index

W € 2, [See Iefschetz Algzebraic Topology, AMS, 1943, p. 118]

usual, write W{M®) = 1 + Wy + Wy wee + W

i element of
‘W consider any monomial in wl,...,wn which 1is a? -

. ; 1 ol ith
‘{M“,zz), that is, has total dimension n, loes Wymoo W

Wi’T

; R . Each such monomial is of the
20, r, + 2?2 + + o, = n

oper dimenslon to obtaln a Kronecker index; therefore we defilne

. n -
findtion: The Stiefel-Whitney number of the manifold M corre

Ty P T . .
1y.2 iy integer mod 2:
onding to the monomial v = wl_w2 ...wn ;s the integ

¢ “>. In using Stiefel-Whltney numbers as a tool, we will usually
PRI N

' eoncerned with the complete set of numbers. When we compare

2 Stiefel-Whitney numbers of different manifolds, we naturally

ipare the numbers corresponding to the same monomial.

———— e

. dnvariant overlooks.

e s

it
Let us apply this to projective spaces, about all we can work

with at this point. For n even, wn(P“) = (n+1)a™ % 0 s0 that
<M,u> £ 0. Similarly Wi (P") = (n#1)Q® # 0 50 that W™ pu> £ o,

l-’
(In the special case n=2Y, we know that W(P") = 1 + o + o, so that

these are the only Stiefel-Whitney numbers different from zero,)
For n odd, on the other hand, we can get n+1 =2m
W(P%) = (14a)® o (14020, Therefore W, = O for all odd 1,

Any monomial of dim n 6ontains a factor of odd dimension

and
therefore ig 2erc. Thus alil Stiefel-Whitney numbers are zero,
This gives some indication of how much detail and structure thig
On the other hand, these numbers are very

‘useful as is indicated by ‘the following theorem and its cbnverse.

Theorem of Pontrjagin: the

For "B™ . o manifelrd with boundary m",

Stiefel-Whitney numbers of Mn are all zero, [see Pontrjagin,

“Characteristic Cycles on Differentiable Manifolds," Math, Sbor, (NS
21 (63), p. 233, ams Translation 32], '
In this case we Tepresent the fundamental class of Hh(Mn) not by
(BI’H-J.

but by Ou where K 18 the fundamental class of Hn+l LM,

Proof: By a standard result for arbitrary cohomology classes.
T : r r r
1 no. ; 71
swl ¥ i wn s AU = ¢ Q(wl - wnn),u>

As usual, let B be the tangent bundle to MO, Let ﬁn+1 be

the tangent bundle to Bn+l, and let Bn+1]Mn be the restriction of




=1,
&n+l to ii'. (That is the bundle with total space w (M), base

n

space M0, and progjection w|M .
H n+

1). Choosing a Riemann metric on § ( see

where 1w denotes the

proijection map of F

next section) there is a unique unit inwiard norinal vegtor to

: 1 pn
P, This generates a trivial bundle ol. Clearly BT |M is

n n+t
In other words, i:M —> B

' S |
equivalent to the bundle = Nate*,
s g™ r e (£s2).

¢
is covered by a bundle map I:T 150

n+l 1
Therefore- 1*(w1(6 )) = Wi(! ). .

But in general we have the exact sequence
ix s n+l ,n
(el — (M) —— 2T 0L i
T r
> efe
Thus, by exactness, 2 (wll e W ) = 0 and so all the Sti 4

“* are O.

Whitney numbers of ‘
Thom, is true, although much hardex o

The converse, due to

prove: 1
Theorem of Thom: If all the Stiefel-Whitney numbers of iy
‘ ) < - -

are zero, then ¥? pounds. [see Thom "Quelgues propriétés glotal

des variétés différentiables", Comm. Math. Helv. 28 (1954) pp-

Thm. IV. 10].
For eximple, MW_:M“, where we mean the union of disjoint

copies, clwayé bounds (This_can be thought of ag the two ends

bound a eylinder.)

L . ///_jliif:fffﬂiizgf?;

‘only if corresponding Stiefel-Whitney numbers are equal,

Definition:

Definition: n

i9

ibre generally we deifine cohordism clasus:

.. N n
i [1 3 I\'[2
there exists Bn+1

Definition: belong to the samo cobordism class if

i s M 3 T . i
with boundary Hl N and ovtain the:
2 TR ; P
Theorem: .hl r Fb belong to tho samo cobordism ¢lass if and
[see Thoin,

op,cit, Cor IV,11],

V. Paracormaciness:

‘e next give some basic tools necessary for the study of n-plane

bundles, First lot us define soiic of our ter.as:

e

Definjition: A partition of Unity on i 1s an indexed collection

po )
such that
1) each pg is a map X = [0,1],
2) each x € X has a neighborhood U, such that p (U&) =0
for all but a finite nuwaber of o 's, and

5 S Py {(x).= 1, each x € %
cL

Given an indexod open coveriing {qu } of a space i,

an agsociated partition of unity is a partition of unity ﬁ)il with

the samo index set such that P = 0 outsido a closed subset Eu off U
: oL

is paracompact if X is Hausdorff and given any

lacexed open covoring of X there is an associated partition of unity
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Remari: The usual definition, which is equivalent, is: X 1is para=-

compact if X .is Hausdorf{f and if every open covering has an open
locally finite refinement,
of paracompactness, see Kelley, General '‘onology, VanWostrand, 1955,
p. 156],

In particular, every metric space is paracompact as is every

[see

rogular space which is a countable union of coipact subsets,

Morita, bath, Jap, vol 1 (1948) p, 50-6&, Thm, 10]. These are all

we will need, Note that separable manifolds are paracompact since

they fall in both of these categories,

Illustrations of the Usc of Paracompaciness in Bundle Tneory,

First:  Dofinition., A Riemannian metric on an n=-plane bundle is an

inner product dofined in oach fibre [el'e2 = réR for all 61*°2€E

v

such that ;T{el) = T,(ea)] such that

e1%05 18 1) symmetric: el‘ezfeé'ol;
: 2} bilinear;
3) positive definite: el‘gl>0

_except for 0°0 = 0; and
4) 01'02 is a continuous function of fwo.variéblaa
(ul_though'el'a2 is dofihaq only for 01505 in
the same fibre, we require continuity with
- . respect. to thoe toyology of &, not just that

of the fibre, 1I,0, if. 0],0} are cloage

[For this cefinition and other properties

<l

to el,e2 respectively and if 91'92 .and

ara defined then a{'eé 18 close to

‘ Gl

el'ea in R,)

Remarlk: The term Riemannian metric is ordinairily used only i

the tangent bundle, but tuis seoms like a natural generalizaticen,

Theorem 5: 4&very n-plane bundle { over a paracompact bass X
admits a Riemannian metric,

Proof: Case I: oproduct bundlo Yie need only define the

product’ on a basis of each fibro and extend by bilinearivy, Vo ca
uso as a basis forwv-l(x),xcx tho {c;(x)} givon by the cvosa-sect

which in tho.case of a product bundle can be talcen to be global,

(x)= 6, .: 1 1=}

define ¢, (x)*c 150 o 1#£3°

M 1 -—
3 the Kroneclker Sij—{

Casa II: In general, lot {Uy } be thne distinzuished class

open scta of X riviag tho local product structure for { . Let {p,
be an associated partition of unity and {(ol'ezhu } the ascociatod
Riemannian metric dofined as in case I for each f]Ub_

Define e,%0, to be é pa_.(n'(el))(al'oz)o [uith the conver
tion o0° (upderined) = 0 since (01'32)0_ is defined only for
iT(el)GUu_J. It is casy to verify that this is
1) symmotric - since 17(01) ='T}(62),

2) bilinear - since it is. a waizated sum of bilinea

functions,

3) positive dofinite
and 4) continuous = since locally it 48 a finite sum of
e s aa da st e T e o e B U ‘::;'W:'. MRS = F e e




rontinruwous functions, . (For some neighborhood of x, all but a
finite number of Pg. = 0.)
QD

jgcond Illustration: Grassmon manifolds,

In classical differential geometry, there is encountered Gausa!.

ctonstruction of the spherical image of a manifold e Rn+1.

This is a mapping of M* into S" given by mapping a point x of

h

¥* into the unit vector at the origin of Rn+l with the same direction:

n nt+k

as tac normal to M at X, lore generally, for N immersed in R

we associate with x€M® the n-plane through the origin pérallel to
che tongent plane at x, [Tangent plancs correspond 1-1 with the
undirectod normal in the case & = 1], This gives a map not of Mt
into 5" but rather into G, g

The Grassman manifold G

Jefinition: is the set of all

n,k

i-dimensional subspaces in (n+l)=space (n-planes through the origin).7

This sot has a natural structure as a differentiable manifold and ia- .

in, fact compact, [seo Steenrod, op.cit, p. 35] Note that there is
10 natural structure for the symbol for a Grassman manifold; there

i3 no agreement in the literature,

;
By tho usual duality between n-dimonsional -subspaces of RATHE
and (n+k;-n or Kk-dimonsional subspaccs, G il .  One example

X" Thk,n
Wo obtain S"

iy Gn X% i3 easy to picturo:
s o
‘n Rn+l or, what ia oquivdlent, the set of directed lines {hrough the
rigin of Rn+l. Since the n-planes in Gn K -are unoriented, ve see
'] e .

ag the set of unit vactors.

that

vt _ o0
Gn,l'”'Gl,n =P,

n
Now let. V¥

o be the n-plane buiadle over Gn,k with
E('vz) = set of all pairs (n-plane througn origin, vector in that
plane) . '
7} T
0.8 i (O 0 = ¢ o

and vwe obtain

Theorem 6: For M* immersed in Rn+k, there is an aasociated bundle

map £:C n(Mn) - ]’E such that rB is the generalized Gauss map:

i - Gn k
»

This theoren is expre.sed by saying Y. is "universal" for suffici-

ently large . k: 1i,e, every tangen: bundle maps into 1t,

The map ‘fE is defined in the obvious fashion and the verifica
tion that the pair is a bundle map is left to the reader,

In a stili rore pgeneral situation, we define

(1.0, k=) 18

Dofiniti. n: The Infinite Grausman manifold G

"the set of all n-dimonsional subapacoes of R°°, countably infinite

dimensional GLuclidean space, with tho topolozy piven as follows,

Lok {bi) be a basis for R®, { = 1, 2, ..., and let R™ be the subsvace

2

% m 1. @ - o
-Pf\nned by bl)-oc)bmo Then R™C. R \-—- eee TR Gn’o(_ Gn.l"---.’__Gn,

and this sequenco of inclusions inducos a topology on Gn by defining

e
N
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k-

Hi:lGn to bs closed if and only if H /\ Gn,k is closed for all
Note: Gn is not metric, but is regular and a countable union of
compact subsets G',k and therefore is peracompact, (Ve will omit
the proof that Gn is regular, since we will see presently that Gn
is actually a Gl=-complex, dvery CW-complex is lnowa to be normal,
[See J.H.C. wﬁitehead, "Combinatorial homotopy I", Eull, Awer. Fatl,
Soc, 55 (1949), pp. 213—245,]

As above we define )fn, an n=-plane bundle over Gn’ with total

space
; n) = set of all pairs (n-dimensional subspace of-Roo,

vector in that subspace),

The following is a generalization of Theorem =T

\ : n .
Toeorem 7., For any n-plane bundle { 7 over a paracompact base X

there exists a bundle map | B P

(Actually a someuhat sStronger result holds, Any two such bundle
maps | e },n are homotopic,  Furthermore any two homotopic maps
o= Gn induce squivalent bundles, Mor this reason ),n is called

a universal bundle and Gn a ciassifyings space for n=~j>lane bundles,)

Proof: Case I: product bundle,

z S Sp o % n
There exists a linear homeomor nzsm h: i( () - i x R

Let o be the projection: X x R® & R®, Then sh 1is linear
. i

. 4 ; 5 e —_— " G
ent. non-singular in each fibre., Let £: R = origin, z:X = ovigin,

il

Then (iﬂh,g) is a bundle map into the bundle {an,o,r), vhich maps

into },n in the obvious fashion,

- Lemma

¢
Case TI: There is a countable distinguished covering {Ui}

~

Let {pi} be an associated partition of uwity, R%® can be

represented as R" G R™ D RP 7w cen s

Map E() > R® by F(e) = (py (4) (e))I‘l(e),pg(?‘r(ei).f‘g(e),...J

where fi:77"1( Ui) -+ R® &8 in case I.

F is continuous and is linear, non-singular on each fibre since each

fi is,

Let gB(x) = subspace - _. Rouapanned by {F(e)|e € H'l(x)},

therefore gB(x) is an element of G,. That 8 1s coatinuous con

be checlked easily since locally &g lies in scme finite Gn ?f” G
s - "n

Define 8giE(5 ) =~ E(y™) py

ggtel = (gglrrle)),F(e)),

"Then (gE,gB) is the required bundle aap.

Thus we vill have proved the theorem as scon as we show

Given an n-plane bundle ( OVer a parscompact base space 'y
there 1s a countable covering {Un} of X such that ths restrictions

¢ fUn are trivial,

Proof: Let {VG,} be the distinguizhed dovering. Choose an
associated partition of unity {p‘i}. Call the index sot 4 and for
each finite SC 4

1ot Wg = {x|Min p_ (x) > Hax Ppix)}
o €8 Bgs '

e 2 i Bea Sl S o
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{US} is an opon covering of X since

1) Vvg 1s open by continuity of all p, , and .
2) x € We Tor 3 = { A EA| P (%) > 0} for each x € X,

T 3
Let Uh be the union of ws over all 3 with n elements, dgain

{Un} is an open covering,

ilotice the HS in U, are disjoint sincc the 3 all have the sanie

length and therefore for 5; # 3y, thore exist X, B such that
©2.€5,, ;!.32; 3 €Sy, AL S,

for x € i,

Thus 8 P (x) > Py (x),

Taorefore U, i

and for o
1 ~2

x € *;:Sz, Pd(x) < plé-(x).

and thers=

On the other hand for each = € 3, p =0 outside V,

s=Vo .

local product structure of 7 }

fore W Thus {UN} is a countable open covering giving the

VI, The cohomolozy ring H*(Gﬁfza).

In a littlo whilo, wo will nced to !mow something of the structur
ol Gn.aa a coll comrlex, and this wo iavestlizate by mcans of matrices
over the roals, !e need tho following notions end theoreis of matrix

theory, (Soo, for oxamplo, Birauoff and NacLane, A Survey of findera

Alpebra,

The Macmillan Co, 1946 », 271.]

‘R

Two n x m matrices A,B8 are row coulvalent 1S A

Definition:

‘can’ be obtained from B by a successiun of elemontary row operations

i.0e,
1) interchanging any two rovs,
2) multiplication of a rov by a non zero scalar,

3) addition of ono row to another,

Pefinition: The row saace of an nx(n+k) matrix is the subspace of

R spanned by the n row vectors of the matrix (= "rangze" in

Birkhoff and MacLane op., ¢it,)

Theorem: Two matrices are row equivalent if and only if they have
the same row space,

Theorem: Gvery matrix is row equavalent to a matrii of canonical

form, the reduced echolon matrix, i,e,

100‘ [ ] e ® . @
\ o \
( ; \
n pud |
{ °l {n=1
. ’ : * o :1 .
i\f’ v o o o BT b
: SN N - e —
Tn Tnel r

where anch'r‘i 2 0, and the ri x 1 blocka are arbitrary depending on

the original matrix,

L T e T aon
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By these matrix tools, wo have reduced the study of n-dimensional

nt+k

subspaces of R to the study of reduced echelon matrices, Since

;iven a pattern as above, we can vary the entries in the blocks

.ndependently, each such pattern deternines a vector space over R or

v cell in G Thus we have a cell subdivision of Gh Kk [For full
T 2

k"

letails, sse Chresmann, Ann, Math, 35 (1934) p, 396.]

Examplae: abl0oOO0OO0OO0O represents a 7-cell
( cd010000 ‘ in G5 g
e £f00g1l0O0 | :

imilarly for G,» wo look at such patterns in n x o matrices e.g.

(

hat 1s, for ocach sequence o n non-negative integers Tiseeesl .

; :) an 8-cell in GS;.

o 0o
OHe
O

1
0
0

Cop
Te e
e =
Oe o

3

o obtain a coll of dim ry+2r,+ vee T nr_  in G,. This gives G

n
he structuro of a CW-complex, Thus there is a,uniqﬁa 0=-cell in

ach . ‘(T)

! 1%
Gn' ,u-\'o 2
LI T

e

nd a unique l~-coll: B m bA

' 100

. Oal

or the spocial case Gl v 5 Pk, wo havo one cell of each dimensional

2

=r = 3
-

coking at thn Stiofol=Whitnoy classes of rn, Wo s0e:

e

ey v

-~

Theorem 8: The cohomology ring H*(Gn,zz) is a polyromial aigebra

‘over 22 generated by Wl( /“),,_,,Wn(yli),

Proof: First we show

Lomma:  There are no relations among the W, ( v

- . : i S (AT (4 My = s
Proof: if & »olynoaial P(”1(§ )'-°"Un(‘§ )) =0  taen

i ; n : .
p(l‘v’l((_’, )’“'""n(‘; ))= 0 for any .)n

since the bundle map given by Theorem 6 induces a homomorphiam g*

over a paracompact base A,

such that g*(W,( ;™) = %,(£™ and thus

81U O M A e

pCe M Cr ™)y 006" (™)

S?P(“]_( '/n}n oo l»l”n( "_n))

n

g*(o) = o,

To prove the lemma, we need only fiad sumo < % yith no relations

armong the “i( tn),

i = & :
Consider &2 W(. w =1+ o€ nl(P&:ZQ)

5 s il '
Let X —\f X 2 0 o0 X with projections

—— ———
n

k
£ A

into the n faotors, Pk; i=1,

sees D

It is known that

)

Cnl
3

% 500 ' : -
HY(P ,Za) is thq polynomial algobra gonerated by c\GHI(PQD;Z

and for k = o, H*(X) is the polynomial dlgebrn ﬁonorutod by -

dlfunoo!dn ) where ‘ji = 7"’;((\;)

A T e




[“19]
I ; 1w ...®al X vhere it 1is the
Let ¢ Yec Lhe bundle r‘lgﬂ o &;r‘n over vhere ;7
bundle over X induced from < k by i 1.
Taus

ug g er Hn )

"
=
—
i
(g

=TTE 2D e lig L)

(e (140 ,) o o 4 (2+0L)

In other words

n .
¢ f + i +
W (5T) magr was ol

ey o= 4 shero the polynomials which
Valg™) =9y wve 0 s vhero poly

appear on the right are just the elementary sywmmetric functions oy

From algebra ve have [cf Van der

‘raerden, riodern Alrebra

in the ﬁi' : ’

Uhgar, 1953 p, 79 or 176,]

indeter-

Theorem: For /% a commutative ring with 1 and Xy seeesXy

minate symbols, the symmotric clements of /ﬁ[xl,...,xnj form a

polynomial ring A [cy, .. o1,

This mcans in particular that if some polynomial p satisfies’
' ‘ n
p(01,.4456,) =0, thea p = 0, Thus for %" as above,
* - n e
= 0 implies p(wl(t n).....wn{ 7)) =0 and

P (7™ s vees W L p™)

thus p = 0; or thoro are no (polynomial) reletions among the

S,
Ry ok B Taut 46 Ui v 2o q - T RNl TE o £ e e o o . T

of thB polynomial algebra generated by Wy (" ik

' such monomials correspond to sequences TiseeesT

. mt (G ) is the i-dimonsional part of the polynomial

:w (Y )J-on;w () ).

. Further for g*

5morphi§m onto

n
(W, (7 )}, which proves the lemma,
Thus we !mow that H*(Gn) contains the polynomial algebra

generated by {Wi( rn

Let Gi(G ) fepresent the i =-cochains of Gh and Z La ), the

i-cocycles, The dimension of G (G ) as a vector space over Z2
is the number of i- dimensional ¢olls, which 13 finite since they

correspond to sequences rl.....,r with r +2x-2 ...+nrn = 1, More=-

over it is > dim Zi(G ) 2 1th
in {W.( s

Betti nuwnber mod 2 Z number of monomial;
of total dimension 1, since Kt (G ) D i-dimensional nart
On the other hand,

with

¥y B o, rl+2r2 esotnr, =4, That 13, thero is a one to one corres=-

pondence between cells and monomials of the samne dimension, Thus all
the_abovo inequalities aro in fact equalities or:
dim ¢l = dim Ht (G ) = number of monomials of dim i, Therefore

algebra and

N (Gn,z ) is the polynomial algebra over %, generatod by

QED

as above ive X P®) is an iso-

3*:3'*(%) - H¥(p®x
the subalgebra consisting of all symmetric Polynoinials
in al"'."an- i

Lot v

3. s =0 e z o eipbaf AR I
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Unicueness of Stiefel-Vhitney classes:

At this point, wve still have not shown_that‘there exists‘a collection

of classcs satisfying the given axioms, but before investigating that

guestion we will prove

Theorem 9:

¥1e axions,

and {ﬁ} satis-

Proof : Suppose we have two collectlons {%}
£ying the axioms, As we showed in proving alternative Axiom 1),

W(E i) and U( l) must both equal 1+ o, uhere o T the_non z8ro

eloment of K’ P‘Q} This 8111 holds true for

PP Wk L o) = Ltud= "(, 1 o) O EH (POQ). By naturality of W and W
0o ®, L@
under mappings, in partioular the proj»ctions PPxp% , o« AP P

By Axiom 5) therefore,

' -

TFor g.P A ...x PP . G

of the previous section, N(r;i) = W(, i)
@ ,.. &0 ).

~"11'~.--‘+'| 1y o 111
8 before ‘
. g™ = :J(l\l&' - :’] )
g ™) = U(y1G . Onp) |
and g* 13 a monomorphism so W( y®™ =u( ;™). But G, ‘13 a classify-.

X, thero';s a

% over a paraconpact bade
(y™) =

‘g space; for any bundle ¢
Rgy 105 ™s B

g n *,0
buwvile map r:g"a ;™ and oo LTi(M( y
" over a paraconrpact base space,

QD

ﬁf' *). Thus for ovory {

Hiety = th,

ni=
emark: ‘It is possible to prove ?hia for bundles restricted to ma

olds for hase, but not just for tangent bundles of manifolda,

There 1s at most one collection of classes compatible with

Existence of Stiefel-Whitnev classss,

VII.

We now proceed to prove the existence of Stiefel-kiitney classes.
by giving a construction in terms of known operations, For any
n-plane bundle ¢ with total space &, base space B and projection
T , we denote by Eo‘the set of non-zero elemantg of E and by Fo’
the set of all non-zero elements of F = TT-I(b), a libre, Clearly.'
F, = FNE_. ~ |

Using singular theory and one of several techniques (e.g.‘bpao-

tral sequences or that of tho appendix) we have that

f O forr 41-< i

wF, P ;5,) = {o for 4 #n and HY(E,E i Za)
\NP(B) for 1>n°

22 for 1 =n

(This can bo seon intuitively, though not rigorously, without

spectral sequences as followa: The unic n=cell is a deformation

retract of RV and the unit (n-l)-sphere is a deforination retract of

n n
(R =origin) = Ro' For B paracompact, Wwe know that wo can put a

Riomannian metric on E, Looking at the cohomology of (E,Eo), e

might just as well look at the cohomology of (E',E&) where L' 18 the

set of all elements of E with norm =1, £} is the set of all

elaments of E with norm 1, since as indicated above E and Eo nave

the same homotopy type as E' and & ' respootively, Now assume that B

is a cell complex, Take a fine oenough coll subdivision of B so0 that

ve have a product bundle over each cell 01. In (&',

') We are
looking at ol x(n-cell) mod ¢ x(tho boundary of that n-cell), taus
w0 have a colleotion of cells covering L' and can extend it in a
trivial fashion to giv& a coll subdivision of (E, El)s Tho relation

botwoon the cell structure of B and that of s&E',Eé) indicatos why

TP —




the dimunsicn of the cohomology gets shifted by n, As can be ser

i !
there are no cells at all of dimension <n which are not in Eo.)

Rigorously and more explicitly, it is possible to prove (see appel

Theoren 10: 1) Hi(E,EO) =0 fori<n
n .
_2) There exists a unique class U in H (E,Eo) 8uo

. that for each fibro T = W'l(b), we have jg U = the non-zero elem

‘U; of Hn(F,Fo) where Jb is the inclusion map Jb:F,Foﬁ E’Eo'

3) i (g) —Y— g}*P(E,E_) 15 an Lsomorphism for ell i,
Now Tr¥:E¥(n) = n¥(E) 1s an isomorphism, since thera is the trivi
zoro cross-section of B=E piven by b = (b,0) and the image of B u
£his erons-section is a deformation retract. of E and homeomorph

to B, Following Thom, we combine these two igomorphisms in a new

-4somorphism

? .,
g =(-0 avf*:Hj(B} =T e 7 (2,B,)
. _n*'-. ..._,__“.. Hj(a) — .:»U .

and thon defina the Stiofel-Yihitney classes as follows:

W, () =

known the following properties of the Steenrod squares, Sq

'lSqiﬁtlj. To study this definition, we will assume as
i

aquara uppor 1):
l) For spaces X,Y with X _,Y, Sq
sqts (1) - 1 (x, 1) such that

"2) it is natural with respect to_méps £3X,Y X000 L0,

1r« = f*ﬁqi
J I O fori>k : .
3 g (ah) = k indicates tho dime
) 4 {c*k‘)oy e g = whero Jeus
4% Sqo

= iden y

(rea

13 an additive homomorpk

5) ‘ (Cartan) qu(u.uh) = 1%::.;5‘11( Q-) qu(fe)

writing 3q(~) for (Sq°+3q1+ ces * SqL+ eees)l”1), property 5)

‘becomes Sq(Iw o) = Sa(1)-Sq(4).  (Note that for dim o= k,

Sq(CI) ‘reduces to (uq +Sq1
homomorphism

Sq:H"(X,¥) - H*(X,Y)
‘We can now wWrite our construction of Stiefel-Whitney classes as

H( ¢ ) = ﬁ-ISqﬁ(l) - ﬁ"lsqu.

Vorifichtion of the Axioms: :
Axiom 1: Our cﬁnstruction gives elements of the proper dimension
f.e. W, (¢)€H (B) and by property 3) above W, =0 for i>nand
by property 4), Wb =1,
Axiom 2: Naturality under bundle maps: For f = (rE,rBJ, L

-+ E', 2! and by the definition of U,

induces a map g: E,Eo
g"(U') = U, Thus # 1s natural and 2) above gives us that Sq is

natural, and so % 4s natural,

Axiom 4: (Ve will return to Axiom 3 4n a mom¢1t). Lot { 1
be as usual the twisted line bundle over Sl Pl, 0.norwlse presen=
table as the lioebius band, As can clcarly be geen by homotopy type
arguments similar to those above, we have H’(E,Eo) = H" (Moebius -
band, Boundary of tho loobius band), Since we can obtain a Moebius
band by ronoving a 2=coll from the projoctive plane, we havo
B*(E,E )~ H P, Bcallt), e N (i s e i =0, hl-Za, =z
Furthor it 1s known that for . tho non-zoro l-dimensional olaas;

.~ 3 4is the non-zoro 2=dimenaional olass, Thorefore Sql( 1) Ao
and ao wl(ql) # 0, '

+ oonn"'sq) (C‘:) ol) Thus. Sq 133.”198.

~xmm

v



7 raspecti#a fibres F, F1, 7", 6tg,” From the structure of the Whitney
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fixdom 3: Ve prove ; i
Theorom 11: W(t. @--‘:') = ’r~'(§)1"(§'). !

Proof: Let ¢ " ={@ ' and represent the total space of {

by E, that of ¢ ' by B! and so on, with similar notation for the
¥y

bundle sum, We know FXFt =F"'}

Let " = L 7 ox Pt
& 211 iibres © :
o= ‘ '
: 0= ) FxFr,
4 all fibres e
-Obviously ENC. BY, g#(TE) and'ft is clear that E'UE! = B!

Be - kS c o
The following diagrams will be helpful in following the rest of

the proof:

EKC En,:_-_ "!”,E" ?‘g ““ ;nw .-qll’Elcl
R R T L2 |Pe J‘la
; T S Bt t e @@t
EOC E 7. BB ::.OC_E [ 8Y,E!
1 2.
Diagram l

Here p, nad p, aro the i and F' of the definition of ‘the bundle

sum (cs, Diagram 3 and pago 5) and tho restrictions of 9 and d_‘,a
Just as ry and r, aro -the restrictions of Py and p,.

inco tho fibros are contractible,. ry and r, are Homotopy equiva-

lencoa, Similarly Lor -2 and pz'gnd 80 on the oohomology-lovel, we

BT Lo M i S sitmips

B
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have ' *
3¢ o 9 ey =
U 8 H'(E,E,) —=——> K*(:",E})
-»
Ut €H (E' E') > H {e", "")
" We assert that ql(U) w q (U') = U"., By the uniqueness of U" as

5 s
\op E",E“ \

19 U "o
that Jb(ql .;qzul) is the non-zero element U% of ‘n(F“ “” ),

given in Theorem 10, we need only show, for each jb:Fg,Fg

Consider the following diagram
. *

: 9% 1 ’
UR U (E, B )& K (BT, B 2Lk (50, 50) 05" ",

ary LS L tm -
gg) = HKEY,EN)

ey o g ;
.136'.14 Jru(‘jz j* :
i 3 o B "
4, %q i
EY(F,F )@ H"(F1 sF) R EN P, PR, F")» ¥ E (e pis

Diagram 2

where we have written systematically F for the arbitrary fibre Fb’
F,; Tor Fb,o etc, and where jl:F’“,F“

" ol . -
- B n Ja.F",F"; - EIE",“I’! ;

JS:F’Fo - E,Eo; 34:Fl,Fé -+ Ef,Eé are the inclusion maps, ‘

The element

"oty ' . '
J (ql quU'} i3 obtainoed by following the oute

side edge of the diagram clociwise from 1M (h,u J*gHm{“' E') t
ﬂ"‘m(Flr lr)

o
By commutativity of the diagram, the samo olament is
reached by the outside counter clockwise path,
U and yr

Wo have JSU = Ub.tJ.;U'

710ld faomorphisms q;,q:, the oloment we reach in Hn+m(F",?g) ic the

By the definition of

= Uls Since tho projections 9509,

fA%n=zorv omonont ﬁg :

QzD
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Since

1) U.quUt = U"

9
we have SqU" = Sq(qI Utaq5U').
By property of 5) of Sq, .
SquU" = Sg(qi U)\JSq(quf).
Using the natu}nlity of Sq this becomes
2) 5qU" =(q) SqU)'v (qzSqUu'), i
Our definition of W:W({ ) = ﬁ'lSqﬁ(l) = ﬁ'ISqU oan‘be rewritten '
3) r™i({ ) U= SqU -
and similarly for ('t and ! ",
Cambining 2) and 3) we have'
4) SqU" = Y ( n™i(¢ )uU)wqg( M SNV L
We will make use of the relation q;(r‘--g 1 = va’u'qfﬁ
¥ eH*(B), ¢ €R™(Z,E ) (soe Diagram 1), And the corresponding
rolation for q2 and p2. Thus 4) bocomes
SqU" = (pY ™5 )0 qiW) w oy n ™l g e qun),
By commutativity of o mod 2, we obtain

r i : ¥
SqU' = py (L Jopy WL Vo q) Tuqiur,

—.II

VN

thus, using 1) we have _ // -
; ‘ - : P |
: ’ Vi /i .
- ‘Bu_’

Roferring to diagram 3,

i =m'py =g

Diagram 3.

which holda';

E Hn(V,VO;Z)

. %
. 9) Squ" = yi" (H( ( )N Q;)) ~U",
But the class Y( ") ia ‘uniquely defined by tae equation

SqU" = T Il(w{ - II))‘JUII
This completes the proor that W(&") =%({) .JW( o

VIII, Oriented Bundles:

Up to this point, we have been worxing strictly with Z as co=
efficients for the cohomology we have used, This of necessity means
that we overlook some detail in the structure; now we talte a closer
1o§k using Z as coofficient group, Since part of the study we have
conducted so far made strong use of the existence of a non-zoro
elemont of Hn(E,Eo) which was Buaranteed by using Z, as coefficients,
We will have to limit ourselves when using 2 as coefficients to

oriented bundles, as will be seen in whau follows, First, soue

proliminery definitions:

'Dcrinition: Two bases of a finite-dimonscional vector space are

equivalent i1f the determinant of the matrix oxpressing one in teims
of thoe other is positive,

Definition: An oriontation of a vector space V of dirmension n is
&n equivalence classg of bases, -
This corresponds to choosing a genorator (there are two) of

fand incidently to tho intuitive geomotric idea of
orientation), The corroauondoncd can bo given as follows: .

Let vl,.,.v bo a basis for Vv and ¢) n? the standard n-aimplex with
vertices A ,Al,....A o The linocar map g{nw V given by

0 TV1TVaeeeemv, Ay = vy for i =1,2,,,,,n detoraines a generator




Two bases will Getermine the ! :
-Hecall that before wo had W*:H*(E) - kl(3) and we defined

Of H (U ¥ Z) ill the Shlgulﬂl ]
me :;:nerjtor mdar tl"‘js cor esponﬂence 9’"(\. ) th 2L} .!l’]"‘ mnod v h d
T . . (B) H {E E ) and hen w | u we &
jx antl Only ij tlley : u) - H o rx e 2 %

equih‘aleu‘u. #
n t i § =
r ul ii I n q U /] ( }

An oriented n-plane bundle ic an n-plane bundle together Now usi
using our new U, this last construction can 59 tarough with

Definition:
with an oriontation for each fibre guch that these orientations are
For each point bo of the

_ coefficiept group 2 if we omit tho reference to Sqn
locally compatible, in the following ssnse. Dofinition: T Se==n=ofss A .
=flinition: The Euler class X of an n-plano bundle ¢ is the cless

base space there should exist a neighborhoed N and cross=sections.

of EHY(B; ' =gt
(B;2) defined by X = (U« u) where U is as in Theorea 12,

CrseassC t N =B Yo ! z i :
1200020, 5 BEEQ££.&: X( &) reduced wmod 2 L3 W_({ ), X(-* ) is a strength
such that for each b € N the vectors ¢ (b),...,c (b) form a basis for | . | ol | n . engthensd
.| Stiefel-Whitney class, .
the fibre Fb which is coumpatible with the given orientatlon of Fb ‘ [y Bt T w dx o8, § 45 &F Sedens et .
! B | ‘ . ; ; e . nce for U of odd
in terms of cohomology this means that for each fibre Ib we dimension Ul = ~(ULU)
i : ey y -n 4 v - 1 - i )
have a distingulshed gonerator Ub € H (Pb'rb,o'z)' The local comn | Thoorom 12, X = g*i*U W s ds e &
. L —————— o o -
patabllity condition can thon be put in the following form, For eacn . ! EATRh e ot et . : meomorphism of B into ' 2
. ’ e on, and 1:8 -+ 2,8 is t .
b EB thero should oxist a neighborhood N and a cohomology class : Broofs Siuss F 1 ) L8, he injection,
= o s« " S ———— 3 an somorphisim, w
u € B 77w, v L(¥) ;2) such that J5(u) = U, for oach beN, . de*i*y » We need only show that
g b ‘ g'1°U is equal to X = U_U, But g=(wlen¥ 4 gg*i¥
-1. =1 { g . * W, % . 7 0 s_U=
where J"”b"b e (M), n (N) denotes the inclusion map, The . fﬁ g'1*0). U  Since g(B) 1s a St bt 3
; X of i,
proof that these two definitions of "oriented n-plene bundle are 3?72'1d9nt1t¥ B - -
equivalont 13 not difficult. il Ehts IR 14
g . Hg o= entity,
For an oriented bundle ¢ with total space I, base 3, and projection Thorefore s st  ;

: Ae'itu = (M),

Tr , Theorem 10 can be gencoralized as follows: :
L o

Since 1 is the injection: Eﬂm, we have (1*U)uU = Yo U bk

= ~ cup

Theorem 10?: For £ an oriented n-plane bundle as indicated, Sidinti B ey
1) HY(E,E,;2) =p for i <n = b Ze*1*u = ¢ G detined in the proper groups and thereforo

2) Thoro exists a unique cluqs UGHn(E,Eo;Z} such that j:U =W 5 13" ' Lt ' Qi _

H ;-1(b) always possible to define i thig way sinco there is

4 j " F —Il‘,E and F o | i r I tion Ii howave o 8 a4 non=zo (o] aver
nluuyﬂ bﬂo Zero ¢ 088 8ec
]] 1 c B whero ity 4 L] 1 r’ ; 1
I 1A eyl (n

3) ni(e ;) = 1+n(“,u ;2) is an 1lsomorphism for all 4. 2070) orosa sootion, g*i* = o 5 -5
\ . ’ = .and thus wo h
(Hpaq gonorally, any commutativo ring with unit may be usod as coof= . ; ’ e

firtont group,) The proof wili be given i the appondix,

et TH e
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- w Yyl :
Corollery: An oriented n-plane bundle 5 with ML) # 0 cannot

have any non=-zoro cross section,

Ve won't attempt an axiomatization of Euler_classes here, but

note that Axiom 2), naturality under bundle maps, holds for Zuler
classes &> *~tom 1) is satisfied except fort he nndiricatioq that

we have an Buler class only in the dimension of the fibre, As for

o tatioi.d V. yeee2V
Axiom 3), let v?’xv;, whore V? and V2 have orientatio: 12000

m
Vi""’vﬁ’ be given the obvious orientation Vises Yoo

m
C 3 - tinmes
By the way this means that the orientation of vg KV? is (=1)

Vi; .o olvx;-

; ; for Stlefel=-
the orientation of v?;gvn. Corres?opdins to A*iom 3)

Whitney classes, we have

XMW ) =2(5)Xn)

Theorem 13
Aneorem .2

The proof here is completely analojous to the proof of Theorem 1l;

Neon o0,
using tho same notation nnd the uniquoness of U"GHm+ {E", iy 32) as

=y h s to show
given by Thoorem 10%, to prove that plU\;an' U and thu

XM = Xo K, . _
Note: though the product formula loois coimplotely analqgous to the

formula for Stiefel-“hitnoy classos, it works out ratiuer differontly
in prncticc;'ainco V(e ) is a unit in the cohomology ring
tho comploto diroct product, while .xX( ¢ ) is never a unit 1n-T_TH (B; 2)
Given X(l ) and X( < &
for X(Z).
Corollnyx:

order 2, then ¢

1), this means it is not possible to solve

_-

For ¢ an orientod n-plane bundle, if X( %) is not of

i
is not the sum of two odd dimensional bundles, In

particular, thls shows thoreo dooa not exist a continuous field of

% 1d
orientced odd dimensional subspacos in the tangent bundle of a maniro :

with X # 0. (Tho hypothesia that the subspaccs are oriented is not

actually nocossary,)

‘ .J Hi(B'Z /N

STy L)
byt Pk

b Sty

Corollary 2:

base B with n(c ) # 0, cennot have any non-zero crosa secticn,

¢ , an oriented n=-nlane bundle over a paracor@act

(This gives an alternate proof for the corollary to the oreceding
" Theorem 12 under the restricted condition that'the base be paracompact

For if ¢{  has a non-zero cross section, let 8% be the line

bundle spanned by the cross section and lat =n Bel be the (n=l)=

 plane bundle orthogonal to el(in the Riomannian metric wiaich we can

agsume gince the bage is paracompact),

obtain I(Bl) =

Since ot is trivial, we

0 and henco the contradiction 0 # X(¢) = A(Olixfn?“lJ

=0,
IX, Computatiocs in a differentiable nmanifold,
1) The normal bundle

Using Theorem 12, we naad Imovled;

&6 of the maps
B--_E_;..E

i - . p
> E,mo (g = zoro cross section, 1 inclusion)

in order to atudy Xy bub this inouledge is available ia a nei- shbor=

hood of the Zero cross section as will be ssen in waat follows, Let

us first conaider a eimple case to illustrate the situation,

Let V be the normal bundle to a c¢losed diflferentiable manifold

M imbedded in R™ k. Instead of looking at the entire total space L,

consider small veotors in each Jibro, that. 13 vectors of longth 2 €

in the Hiemannian metric which we know we can define, Denote this

subset of E by Z(6), Similarly, tho nou=zoro sriall vectors are to be

donoted by E {(6). The inoclusion map u(e) E (G)w

H‘(aﬁe)
{3 difforontiable of class G2

’“o is an oxcision

80 we have that Hk(E,u ) (6}}. Assuming tho manifold I .

» 8ince-it is compact, W0 can pick an




w
N

€ so that the map which assigns to each vector in i(€) its endpoint
in Rnik is a 1-1 correspondence between Z(€) and a neighborhood N

N _ k Il
Thus we have H‘(E(G),Eo(e))*x HY(N,N-NM"). Again by

focl

of 3* 1n ROVE,

o ntk ntk_.n
the excizion axioil, we imow that Hk(ﬂ,m-lffl}:bﬁk(ﬂ sR M),

Putting trasa three isomorphisms together we have an isomorphism

+ +
v HNE,E) - BEETE R

Now assume that the normal bundle is oriented, ' (This is equivalent |

‘to the assumption that the tangent bundle 1s oriented,) Then the

' ot ondle o0
" class U & Hk(E,E ) is defined and determines Y UEH™(R #R =)
o : .

The inclusions ' 0

i ntk povk_n

R
L el N el

¥*
1%k, _n+k k, o0tk ntk_.n
gives maps of conhomology: Hk(Mn)¢——~— H™(R )<——i— H'(R 7,R M)

§ k
under which, using the above isomorphisms, \V U goes into X§H (M?).

But Hk(Rn+k) =0 so X=1%*vu= 0, Thus we have proved

k with an oriented normal

. %
Theorom 14: If M 4s imbedded in R

bundlo 1Ik, then X(t}k) =0, (Altapnativoly, without orientability,
the same argumont shows wk(\!k) = 0, a fact we usod on page 15.)
Remark: These rosults are true for inbedding but definitely do not
carry ovor to immeraions, For instance, consi@or the well known
immeraion of P2 in Ra (Boy's surfaco), According to the VWhitney
duality thcorem, we have wl( Vl) # 0, Reocently, S, Simale has shown

4 50 as to obtain any desired oven multipli

that 32 can o immorsed in R

of the geTorator of Ha(sa;z) Lor X( ya). Rouzhly, this multiple

2
corresponis to the self-intersection number of S” aa immersed, (Seo

Bull, Amcce, Math, Soc, 63, (1957), p. 1V6).

e PR e
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2) The tangent bundle of an oriented manifold,

Now.let us turn our attention to the ¢ angent bundle of a mani-
fold M' which is differentiable of class C°, Such a manifold can
be given* a diemannian metric of class 02, Let Pb(E).denote the
set of all tangent vectors at b of length < €, Then for € suffi-
clently small a homeomorphism

> N Mo

Fb(G)
is defined by mapoing each vector Vv into the endpoint of the geodesic
which starts at b in the direction of ¥V and has length‘” vil.

N 1is a neighborhood of b in hn.

-The image Thus we have isomorphism:

Ho(FyaPy o)<, (F (€) Fy | (€)=l (N, Neb)—msit_(i7, M0,
i hid |

Call the coiposite isomorshism,

Ve
We will say that b is oxriented if its tangent buﬁdle is

oriented. If tho orientation of cach Fb 1s spocificd by a generator

; ufb(Ub) of
n .n -
Hn(M s M -b) will be denoted by My s (Integer coefficients should be

ﬁSEHn(Fb’Fbo) then the corresponding enerator

‘understood,)
. " . ; .
Lomma 1, If M' is'a closed orionted differontiable manifold ther
there is a unique homology class E € Hn(Mn) such that for each point
b the inclusion homomorphiam Hn(Mn) *H {Mn,rp-b) corrios 1 1nto,:£.

The class ;'18 called the fundamontal clpss o hn, Proof of

Lomna 1, A theorem of Cairns asserts that evory difforentiabls manie

fuld can be triangulated, For a rocont proof see Whitnoy, Geomstrle

datogration theory, Princoton, 1957,

Hovievesr, under the hypothosis

W ek . :
4he prool 1s tho samo as our provious proof of tho oxistence

" a Riomannian metric, exco t that difforentiad
4
= tvy must be usoed, ) P iablo partitions of




that M* is triangulated, a proof of this Leima has been given by

S nrod, Tibro Bundles, p. 200, (sSteenrod works with the system of
Stoe ; SxbD . ;

; i £ .
However the hypothesia that M° is

local coefficlents i, _4(F ).

- d implies that - & bt
oriente c woop (Fo) *o Hy o (F) .o B (F,F )
13 canonically isomorphic to our coefficient group Z,)

the proof,
If ¥ 1s connected, as well as being closed, oriented,

Lomma 2, : '
: ¢

and differentiable, thon the homology group Hn(Mn) ia infinite cycli
i

- with genorator The cohomology group 1 (M*) is also infinite

cyclic with a unique gonerator such that the .ronecker index
<p, > i3 +1, .
This i3 also proved by Stoenrcd (Ses the reference cited above,

AL N I 6,
Compare Eilenberg and Steenrod, Alpebraic 'opolomy, p. 106.)

1 will be called the fundamental couomolomy cleass of_Mn' (1t
! 2

is definitely not defined unless thg man;fold is congegted.) :
Now consider the total space & of The tangent bu;dla, A map
E{€) = M % M" 13 defined by sending (x,V) into (x,y) where y is the
end point of a goodesic, as above, For € surficienbly small this
gives a homeomorphism of £(€) onto a suvset D qf.Mnx\Mn, Clear;y D )
A in MUx M,

is a neighborhood of the diagonal

Let Y/ denote the composition of the

is isomorphic to Hn(D,D- Lady
followiny isomorphlama:
n B
H (E,:..o}

-~
~a

2 H(D,0= 8) <R (T, i )

> Hn(E(G),Eo(e))‘-"—"‘ l
" '\i L

U 4in the first group corresponds to'g class

The olas3s

- --frwv-g-?

13

This complétee'

Thus H™(E(€),E,(€)) |

E Ysually the rational numbors, Q.

<arrios the fundamontal clasg -
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Vove (M x ML, M x M. A )L Finally define U = 1*W U where
LMk MR (M x 2, M0 % - &) is the inclusion map,

Thus. we 'have

H"(E,EO) —¥ s # O M“;m“»z Moy =1 (P x )
R U

' 3) Computation of the class U,

In the next soctlons, we will be engaged in investizating pro-

porties of Stlafel-whitney ¢las3os and Eulor classes through computa=

tion of thoe claas Y. Ouwr imost im:ortant rosult.will be '/u's formula

for.the Stiofol clasa of a manifold If:W = SqV  where .V is charace

torized by the equation’ <Sq 4, fie =<y ~+V, A > for all eH® (N,

This gives a direot computational construction for W which does not

roquire knowledgs of the tangent bundle, Fop duler classes, wo will -

elucidate a relation the reader has probably been Suspecting, that of

the Euler clasgs to'the LEuler characteristic of a manifold, In the

course of this development, we will obtain a proof of the Poincare

duality theorem,.

Assumoe that the manifold M° ia oonnectod;

of the section,

For the remainder
wo will consider two cases simultaneousiy,

Case 1: M® i not neooasaptly oriented, but the coefficiont

group 1§ 32'

Case 2: M® 1s orfented and tho coefficiont groun 1s a field A

L

Tho coofficlent homomorphiam Z- A
?Hn(Mn;Z) into a class in HY(M?; A)

' ¥:ich will also be denoted by .

In eithor case the group Hn(Mn)'ia a ono dimdénsional vootor

#2%20 ovor the coeffiociont field with gonerator M. Let Aresesany




be a basis for the cohomology of M*, In particular, let =1,

as the generator of E* (M) .will be sowe O-i. Using a field for

coefficients, we knca".-: that " (M) & H*(M) ~+ H¥*{MX 1) . given by

a%'b - aAb is an isomorphism,

cohomology of products of finite comple xes,) We can represent U

consequently in terms of the genoerators
(Since U is of dimension n, cij =0

U= 2 oij“i A UJ‘
2
unless ‘dim®., + dj.ruot‘1 = n,) Consider the map fb:_M - MX 1l defined by

i‘b(y) = (b,y). As i.ndicated in the diagram below, the compatlbility.

condition on U reduces to i‘::(_g) = 5.:'; My =/

U .- —> U
B*(E,E,) “i > B (M X Mn,-r-i“ x il 4) i H*(MHX )
| ' o
Lo T ; L
H*(?bﬁ,Fb’o) ___1b> ¥ (1%, 1 =) o' > H¥ (1)
U, > jL > M

 the othor hand, by vhe very dei‘inition of 'fb it 1s clear that

BT B L ,
fb(lc*i.’s ’lj) = (0 for dim :x,>0,

{o, Lor dimmi:o,that is for.ul, whic‘n is

J
equal to 1,

Thus the coefficient of the 1lxu  term must be 1 and wo have

2 : = < S, RN
formula 1: U=1lXpu+ 5°F 054 %y JJ

aver all 4,J with dimda, > 0, dim 4 j‘ <n,

To got more information doout U, considor the projoctibna pl, P2,

G 4 I-In)& ' into its first and soocond factors rospectively, Obaorve

1ab pliD corresponds to 'n|E(€) undor the homeomorphism we have 30t

{This 1s a well-imovn result on the .

whore tha summation § ' extends -
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up (see 1llustration), On the o.ther haﬁd, plld = pela and since +&:

i . 7 ~ ‘

8 a deformation retract of D 41t follows that pllDup D i is
= Fpl¥e A3

t0 be read "is homotopic to':)

ah

Ill‘[i

:E(a&“ Il

Lm
Y

Formula 2,  Uu(1: =
U (1xak)-yv(okx1) for all Ao

Proof: 1X O, = p¥ ) .

‘Consider the commutative diagram

1y 3 .
H*(MxUM 1* N 1775
( JMAMe 8) =Ly () Py:P2 £ (30) P
3 '
e #
s g L sl
H*(D,D=4) J > §*(D)

We obtained U
Y as the image under 1* of the class YU in

HYMX M,MXM=4) detormi
rmined by U, so to compare U.ull Ndk) and

U ..,‘- 1 We ¢ rst s} wit v U mld th.ell app the
— I: & .

rospectiv o] b l'U (<] a bh. th roducts w t U “1
p i -] pl" dLICtS wi h \J ar Bqu l‘ en e p d 1 h 11

a Lao be equﬂl 4
®
I m'tﬂ.ol » si]luo tho 04\01810]) }10 1omo7x pﬂiall [:] is an

1!30‘ 10rphi-‘3m W can ollaok bho Q ualil‘. b ta“in d of ] (‘J. mld
q y J O a 2 lf)

o know that d*p $inco py|D.polD

3
(o) = a*p}
N Pp(al,) hence the oup producta with PR

T




= 51, e
60
Theorem 15. The class U ¢ H'(M"X M") is equal to Zcijuix C‘J

" - wa M Y
are equal and 1ifting back up into K (MAM,M AM-2) we have that where the matrix ¢ of coefficients is, up to sign, the inverse of the -

W U"’(?‘;"'c) =“’U~‘Pf“1 i) il . matrix Y, where Vi = <@4Y B> C¥af+1 ( )
| ‘ +.1
Calling the coefficient fiold /~, define a homomorphism CHE (M) - A If n'is even, then C is actually the = g d
by »¥(m) = <¢i,7A>; &, the fundemental class of }In(M). Using this inverse of Y. , O ‘. A
‘ _ , ! :
= ¥( 55 u, ). Extend * /

homomorphism,~define coefficients yjk by yjk

\ From Theorem 15, there follows as a corollary one of the classic
Y to HU(MYRH¥(M) by 1R ¥ ¢ HY MR uE*(M) - 01¥(M) % N2 F¥(H) and

results of combinatorial topology:

n+y i
3 ¥ di nomomomorphism h:H (M xM)=%" (1),
denotc by h the corresponding ; P ; Corollary 1: (Poincare Duality Theorem): For M a closed, connected )

y hism h to Formule 2,
How apply this homomorp manifold (oriented unless the coefficient field A1s z,), the groupz

i hav
On tho left side we have ) X H (N ,A ) and - i(h A Have the SENS TRELE e

p - = SR LB B L Kk ) )
R(T W (LX) Z g 43 ( (g 3 k groups are dually paired to A by the correspondence (a,8)—><av B, 5>

= ;‘j ijh(c: X xju ) = {_;j Siy¥ycdy o ~ ; Proof: Arrange the. basis QY enes0y ] ;iin 5 o8 - n\
in increasing order of dimension. Y uim 0] £ e, 1
ST e e At oddas - . will then have the form at the ri(;ht : ___D. (
il ke E-J o L kcidh(u 1™k X-.'X.J}. ] ' Since Y is a square matrix and the fdim lf - L j
Formula 1 agserts that cij ;'(dj)'=0 except 'for 15.?19 single term ::::rj: :::wzlit ba o Her-BinaulaLy 'dim 2 ( - |
: X = : horefore _ deel ;. o ; : ocks in this form must E .
°ij“‘1 Xaj alial o Tnm.t.a ' ; be square, as can readily be seen ‘ ' . . "
h“l\-"(qk"l) = (=1)7 40 ““‘d-k. _ , . from an elementary argument with . j 5
Comparing these two formulas we have bt i matrices. Thus the ranks of the : " ] *
. o for 1K ‘ ' ' Palred cohomology groups are equal ,: .
§ ijyj.c \‘ Mndimuk g 4 B g : oy ~ and the pairing of* the generators jdim L DD
. %3 given by <a U gJ,Fb &y :
Lot G bo the matrix {-oii) and ¥ the ma;rix ‘.3'13)0 fhen f2te: We have given a proof only 1f M" is differentiable of

: ‘ 7 | . ’ 5
‘Wwo have proved: ‘ ‘ iz *laas ¢ The more general result can be obbainad by somewhat

{finep reauoning.

S

— T e
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4) The Euler Characteristic £ .

We will now carry our computations over to ‘the 1nvest;gations
of the Euler class X, and we will show
Theorem 16: If M” is a closed connected oriented manifold, differ-
entiable of class C°, then the Euler class X(<"(M")) is equal to

the Euler characteristic & (i.e. the alternating sum of the Betti

numbers) times the fundamental class p. € B (M7;2). (This result is

1

actually .true for a ¢~ manifold.)

Proof: For n odd, we have seen that X is of order -8 Since
H“(m“;z) is infinite cyclic, this means that X = 0. By: the
Poincaré Duality Theorem, the ©Bettl numbérs in cqmplementary
dimensions all cancel out to give X = 0.

Fér n even, we will make a computational 1nvestigatioﬁ of
X(Tn(M)) using coefficients in a field, e.g. Q, the rationals.
The theorem wili roilow for Z as coefficlents since i

Hn(Mn;Z) oy HP(Mn;Q) is an isomorphism into. Recall that

|
, I v
{

5% e

, YU
H*(E,Eo)-z-ba*(E(e).Eo(e))-'—“—m* (D,D- &) <——H¥ (3x M,1% M- & !

li*

H¥ (MxuM) U

.

H* (E)

H* (M
X - i
where d: M—>MXM i8 the diagonal map which as can be ceen corres-

ponds to the zero cross section. Thus X = i |

Now representing U again by Z °1J“1X a,, we see that:
1,J g

—
X = f 3 cij(ai" aJ) which for the Vi defined as before shows
that E: c

15913 or in terms of matrices X = Trace (CYTran°p°33)fb

Since dim M" 1s even, X = Trace (Y'lYT)

Arrange the basis as rollows‘(the ordering of the basis has not been

B . T B—8 3 E i, E,Eg» used in our work so far except in corollary 1)
g 1s bn? zero cross section. The following diagram ;elatea ‘ Qpseensly, Gpp1r oo sy - .
these maps to our homeomorphism and WU : '
s to . even dim odd dim :
A With respect to this basis, Y has the form
) Ye 0 ‘ ;
Y= where Y, refers to the even
0] Y |
i [+ dimensional’ elements, Yo the odd.
———-l"»“"""ﬁ'?".—,
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|
-1 ]
b2 Ye 0
Thus Y =3
o] X
T Yoo °
and ¥ =
(o] -Yo

because of the anticommutativity of the cup product.

Therefore -1

Trace (Y-IYTt'anspoae ) = Trace

e ) € :
~l . i
0 Y 0 -Yo.

) = 2_(even Betti numbers)- o_(odd Betti

. Q.E«Ds

I 0

= Trace (

numbers) = X

5) Wu's Formula A
Returning to Stiefel-Ynhitney classes, recall .the definition

according to Thom, SqU = U w 7 W. Under our, canonical 1somorphism

*(E,u )-—>H* (Mx M,Mx M~A ) and the incluaion homomorphism
F(M¥M,MX N-A)—> ¥ (MXM), U goes into U’ (aee page 47) and |

gt :H
the above relation becomes SqU = Uu (WX 1).

Agein applying h (see page S50) after aubstituting U’Zcijaix aJ
: ' ‘

we have first hSQ(}:ci,j“ix qj) a W,

.'l

Using known propertles of Sq, this givea W -I:cijh(SqaixSqaj)'

Pofining o4 = ')’(Sqdd) - < _ch:J,F.) > we can rewrite our formula as

W= ):ci‘jad.?.qx:u:L ’ |
or wrii:in:: V = }:CLJ Jai we have W = SqV. Now, followlng Wu, obae?:re
that V in charactorized by the ‘equation < 5q,a, f">.- SauV, >,

__..—4-

e = e

. Poingaré duality theorem there is a unique element Vn-i

- 55 =
In each dimension 1 the correspondence a —» ¢ Sqn'ia, F_ > defines
According to the

eHn-i(Mn;Za)

an additive homomorphism of H?‘(M’n;za) into 250

such that

n=-1

<8¢ e, p> = <avV, , B

for each a. (Note that Y =1,V = 0 for n-1 > 1.) Defining

n=-1
Ve V + VJ. +...+ V = 1 4+ Vl oot V[n/r—:] this formula becomes

¢ chz,}u- >= <auV, '.:. > for all aeH™ (M"; iZ,)+ The element V

defined in this way is equal to EciJsjai' Certainly V can be

expressed in the form Z"k“k for some cocfficients Viee Thén the

identity e -
< San,rL > = < GJVV’F')
can be written as

8y = E-'y,jkvk .

Now multiplying on the left by ciJ and summing over J we have

> ﬁik\fk - Vi . Q-E-D-

llence we have

Theorem 17 (Wu): W(M) = SqV where V.is characterized by the equation

Corollary:

1 ihopeen

<auVe f@> =< Sqa,fl > for all aeH™ (M). Since W 1s thus defined

entirely in termg of cohomology and hpmology operations, we have:

The Stiefel-Whitney olasses of manifolds are invariants

Cef the homotopy type:

,E‘xamplea: i

g .
I" (C): For complex projectiva 4-space (eight real dimensions)
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X. Obstructions:
G £ tors: leH° aeH2 a2€H4 a35H6
we have the following system of generators: s 3 ’ TH tie: sabbion an Hoit I Lk familarity vitis g1l

a4 = pE H8, on which 3q operates as follows

' i i
Sql =1, Sqa = a+a2, Sqai =a (1+a)” .

Thus
qul = 0 and VB = 0, Sq6a = 0 and V6 =0
h Sq4a2 = dé and V; = aE, quas = a4 and V2 = &,
or Va=1+a + a2 .
Thus

2
W=38gV =1 + {a+a2) + ae(l + 20 + a“)

=1+Q’.+G4l

In general, to calculate w(p“(c)) we go through a procecure

n
which 1s formally identical with the calculation for W(P"'(R)).

we already know the results in that case; thus we have:

2
l -
Theorem 8: w(Pn(C)) = (1 + a)™ for a the non-zero class in H

Similarly w(Pn(Quaternions)) = (1+a)n+1 for a the non-zero
class in Hi.

2 for ¢ the non-zero class

in HS.

W(Cayley plane) = l+a+a

(These are the only known examples of differentiable manifolds M"
In fact, accor-

such that H*—(Mn;ze) is a truncated polynomial ring.

ding to a theorem of Adew,
k+1
is generated by aeHr, r> 1, with relation o =0, k > 2,

must be a power of 2.
for r < 16 the above manifolds give the only possible truncated

polynomial rings.)

But

1f a complex K exists such that H* (K;Ze)
then r

If k > 2, then r must be 1,2, or 4. Thus.

definitions of obstruction ang primary obstruction. (See, for exampl

Steenrod, Topology of Fibre Bund}gg é 32,35). With terminology

close to that of Steenrod, p. 190, given an n-plane bundile ‘;n we

have for each 9 < n the associlated (9 witn base B and fibre V;,n-q’
the Stiefel manifolg of (n-q)-frames in n-space. By an (n-q)-frame
We mean Jjust a set of n-q linearly independent vectors. (Note:
Steenrod uses orthogonal unit (n-q)-frames in n-space; the modifica-
tion does not affect the argument. ) Explicitly, a point in the
assoclated bundle fibre over beB can be represented as (b, frame
(vl,...,vn_q} in the n-plane iuhl(b)). The primary obstruction to a
eross section of £.9 15 ap element Oq+1 OF HQ+1(B; ﬁﬁ(vln,n—q)!'

Thls coefficient Eroup is elther 7 op 22, depending on the dimensions
In general these are twisted coefficlents, but this complication can
be avoided by reducing mod 2; this we write as (01)2. (In general,
Wwe losg nothing by this reduction since 0; can be recovered from
(01)2 but for the one dimension where we ¢an calculate X. See
Steenrod p. 195.) Now, 1t 1s possible to interpret Stiefel-Whitney-

classes as follows:

Theorem 19; - oi((‘;)2 - wi(ﬁj

Proof: Consider the bundle map f = (fB,rE) mapping ¢ into 3"
the canonieal bundle over Gn' Since obstructions are natural with res
: n 5
pect to bundle maps, we have ¥ oy ( v )p = 01(‘7)2' Since H* (Gn;zz)
is a polynomial algebra in the WJ, for each pair i,n we have that
n
OI(V )2 can'be glven as a pPolynomial pi‘n in the stiefel—Whitney

classes wJ( »%). The above relation shows that




=

0, () = 0, p(W(C)seee,¥W () and this formula is valid for all

n-plane bundlies, dependent only on 1 and n. We need to know the

exact form of this polynomial, but this can be determined from a
. » D 1-1 -, on=1+1
For fixed 1, let B = Gy 4 and 74 =y 1 @

Now 1n general

speclal case.
where 077141 14 the trivial (n-i+l)-plane bundle.

the associatced bundle (¢ 9 has a cross section if and only if & can
be split into a bundle sum with the trivial n-q bundle 0"~ a5 one
summand. (Given the cross-section and uslng the usual Riemannian

metric defined in an n-plane bundle over a paracompact base, we can

split { by taking the orthogonal complement to the n-q dimensional
Con=-

‘yersely, the decompoaition specifies a non-zero cross sectlonof {‘q

subspace spanned by the frame specifiled by the cross section.

by taking the n-q frames which are the bases for the fibres of e""4,)

Oon the other

. n
Thus we see that °1( i)wO and therefore °1(§-1)2“0'
i-l)
E]

Together this means that O=p, n(wl( o
»

hand NJ{ )=UJ( /i l).

""”1-1( / ),0,0,...,0) where Wy, .. Wy generate a polynomial

algebra. Since oy is always of dimensional 1, Py n must have the form
i r

pi,n(xl"“’xn) = "x1+pi,n(xl""'x1-l)' Now the equality 0 =

Py n(xl,...,xi_l,o,...,o) implies that pi’n must be identically zero.

Thus we have proved: for each i,n there 1s a number in - such that
E]

W,(¢) holds for all n-plane bundles.

the identity o,(¢ ), = Ad,n

We know that A 1 To prove the theorem

A) Let 1 = n. . O 0

in this casc we necd only show that for eéch 1,. there exists a bun-

1)% 0. Let BaF' and let n”l(b) de the set of all

ale 3% with o (7

veetors orthogonal to x in Ri+l, where P1 is consldered as the unit

st witn antipodal points identifled i.e. b = [x,-x]. We can start

with a cross section on the (1-1)-aﬁéleton as illustrated 1in the

Lt
et TN ey

Theorem 20;
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second rigurg. This extends without trouble \
until we reach a singularity at the poles \
which can be seen to correspond to a genera-

tor of the h¢ i
e homotopy group. Thus o, ( 4 )aﬂb

for this particular ¢ 1 s M

e A \

B) Suppose n » 1. Repeat with : \ { i \-'\‘ j

e el R0

4 n-% @ where -}1 is the bundle \{ { ke ;/
e

of A). By th h
) ¥y the same reasoning, oi(g ) A0

and so for all i,n we hav ¥
s ,n we e shown A, ,an=loro (), mu s

To follow the same procedure in order to relate the Euler class

to a
n obstruction, we must work with the 1ntegers as coefficients and

will introduce the 0
oriented analogue of 7, Let Gn be the set of

all -
oriented n-planes in g%® with topology defined to correSpond to

th -
at -of G « As can easily be seen, the obvious map G _— G is a

two~
~fold covering. Call V » the bundle induced by this map from ¥ D,

Note that Y 1s naturally an oriented bundle.

dle 7 ;
» » We can 1ift the map B —> G, into G by using the orientation

For an oriented bun-

o
f the fibre F, to determine which leaf of G, to map b into (the local

co
mpatibility of orientations inaures that this will be a continuous

.

map). From this, it 1is easy to L }
¢omplete the diagram to zet an . x é
IJ ]

oriented bundle map § —> y

For § an oriented n-plane bundle over a pdracompact

bage
B, there is an oricentation preaerving bundle map f into y "

Wi
th rn the canonical lifting.of “he map B ——) G .
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Gysin Sequence:
Using 2 a8 coefficienta throughout this sectlon and assuning {

'to be oriented, we have determined an element UEHn(E,Eo,Z) and know

that .,U-Hi(E)——an+i(E,Eo) is an isomorphism, as 1s

s Hi(B) Hn+1(E E,). From the exact sequence of the pair E,E.:
—> B (EE) L HH(E) —> H(Eg) — e (ke ) —
if‘ I I X7
: “: 1 9§, lentl
— w0(E) =X ot (B) —25K (E,) —>H (8) —

we get the lower éxact sequence by the indicated isomorphisms. The
indicated map 1s ‘« X since

B 5 g g = ' -l
¢ s gomme "L ax (wha o U)ers "H(mra LirU)ma L7 iT=a L X,

That 1s,

Theorem 21 (Gysin): For an oriented n-plane bundle we have an exagt

sequence
' L’ i+l !
>H1(B} Xy yi*0(p) —2> #*(E)) —> B (B) —

where o 18 the restriction 1r|E :

Note: For unoriented bundlea, we would get a correaponding ‘exact

sequence using z2 as coefficients and wn in place of X.

S e W

. o7 Ay,
4 et S0 Bk

. Let - be the bundle over E, induced by =

-6l -

_The FEuler class as an obstruction.

B o) "
Now consider the top obstruction class on( r U )ek (B}"n-lcvg,l))'

For an oriented bundle the coefficlent group

1) - nn I(F ) s Hn-l(Fo). i HH(F"FO)

Hence the following

n-l(
is canonically isomorphic to*the integers Z.
statement makes ueﬁae.
For an oriented n-plane bundle 2 n’ we have

onl &™) = x(¢ ™).

Thecorcm 22:

Proof: Consider the Gysin sequence in the special case B = G..
—---—>H(G)

We want to show the special case of the theorem,

X =0, ( yn)-e H"(&”; T 1)) First we show w*(o ( yn)) = 0.

ne- 1(

from / By definition

o
of the induced bundle, a point in E(, ) 1s a pair (e,e') where e is

a point in E_( y ") and e' 1s any point in E(y ") which belongs to the
same fibre.

(e:e')

is clearly a non-zero section of

The . projection E( q) > B(;J) - EO( / ) is given by

> (e,e)
Therefore o (1 ) - 0, but

> €. Now the map B() ——> E(rj) given by e
.ll"
by naturality with respect to bundle mapa ° (v]) = %0 (y )

e .

Hence 7 o ( 7 7) = 0 as asserted.

By exactness of the above sequence, this implies that
O(r ) = A < X for some AGHO(G)
A, 10 an integer since H°(Gn)

That is o, = A.nx where

=2 2. to emphasize

We write An
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that the integer ’ﬂn depends on the dimension of the bundle and not
on the particular bundle, since the above formula relating on and X
holds for all bundles by naturality (cf. the similar discussion for

Stiefel-Whitney classes). Thus we can deftermine hn from speclal

cases:
For n even, consider the tangent bundle Tn(Sn). By Theorem 16,

we know that X is X (5") times the fundamental class, that i3 twice

the fundamental class. On the other hand it is easy to verify that

oL i3 also twice the fundamental class in this case. Therefore

nn+ln

A

= 0 or 1 since X is already of order 2. To

For n odd,

’\n

need only show that o_ 1s not zero for all n-plane

n

show An = 1 we
have already done this while relating Stiefel-

bundles, but we

Wnitney classes to obstruction. In fact, we even showed {on)alwas

not identically O. Thus we have shown that the relation

on( (™ = x( Qn) holds true for all n.

XI. Complex n-plane bundles.

For many investipgations in other branches of mathematics, e.g.

“he study of complex analytic manifolds, the structure of a rcal
n-plane bundle 1is not a aufficient tool; it is therefore natural to
give the'following generalization of the definition of an n-plane

bundle: .
ncfinibfgﬂ: A complex n-plane bundle @” consists of a triple (E,B,7)

4 Y
where w 16 a map from & Hausdorff space E onto a Hausdorff space B

together with the structure of a complex n-dimensional vector space

in ecach [ibro v'l(b) satiofying the further conditions

Yl

o ipprr iy pevmar AR

I

R e sy
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1). There exist a distinguished class of open sets {U} covering.
B and n maps g,:U -+ & for each U auch that
2)

each 8; 1s a cross section and

n -
3) the map U x 6" = "L(y) defined by (b, Ayresesd ) SA e (E

where aiec, is a homeomorphism,
fote: Throughout these notes we will represent tho complex numbers
by C,

A R . !
sxariple: Tho tangent bundle 1 of a coinplex analytic manifold Mn.. -

A complex analytic n-manifold is defined analogously to a difleren=

tiable manifold except that we use n comdlex variables as local

coordinates, and require that bhe functions relating the local

coordinate systeins must be analytic,

Remark: A complex n-plane bundle - (2®

n
R DY ignoring the multiplication by complex numbers,

can be regarded as a real 2n-
plane bundle w .

Canonical orientation of ufg

We can choose a basis

al,az,...,an over C for each fibre

=1
o . .
(b). The real fibre, that is, the underlying roal vector space of

=1
W 7(b), has a canonical oriontation al,ial,ng,...,a ,ia This
ntn” =

orientation is .indopondent of the cholce of the complex basin

i nl.aa,...,an, since GL(n,C) is'oonnooted and we can pass from this

| basis to any other continuously i,e, without change in sign

. Lorollary: Every qomplex manifold has a atandard orlontation, As wo

havo alroady seen in tho real case,

»

tund
o corresvonds to an orientation of tho manifold,

an orientation of the tangent

st
t e SRS
T W o DA e b
p S Ao s T L) TP i Ve e e i -~
o g s ,‘f_ v ey BN D W At e e



orollary: there is a well

efined Eulor class

Jur every complex n-plane bundle A
e :
(B;2),
n+¢k

and bl""?bk

S Tl s i
(s R JEH
If we taks the bundle sum ‘! of two complex plane bundles

n

1,
g and ﬁ‘, with bases the vectors

B.l's ll.,an
1,
form a basis for "4 g<,
+ ﬁ )R
L‘ial""’a ’ian’bl’ibl""’b ,iok. Thus we see that in a natural

This means that the

l!o-tlanl Ul’...,bk

anonical orientation of Ou
_y (u, + ﬂ )Rx'i. + ﬁR as oriented oundles.
or defining the canonical orientation this way.)

olicus that X(-- 2@ ) = X(w DX

From this it

hern ¢lagses
We will now give an inductive dofinition of characteristic

- n
asses for a complex n-plane bundle, ¥, We define a canonical

omplex (n=-l)-plane bundle “'2-1 over Eo(u;n). (As in the real

g TN
868, Eo(a‘n) denotes the set of all non-zero vectors in Bleu) =

(u' 2} il

A point in and a non-zero

specified by a fibre of I

We will obtain :. 2'1

B, is
sctor in that fibre. by considerin; the

rthogonal (n-1)=-space in that fibre, This can be done using the

ermitian motric, which can bo ‘dofined in any complex n-plane bundle
ver a paracompact base B by a procadure analogous to that for real
Altornatively it can be obtained

Bu ™

~plane bundles (gec Tncorem 5),

Lsébruically by looking at tho factor space, will consist

all paira (01*02 + Col) whoro oy i3 tho non-zoro voctor, e, is

ia a cosot, The projeo-

sthor vector in tho same fibre and 02+Ga:L

m Ti':z(lun;l)ﬂﬁn(gun) 15 dofined by ;1l(01,o2+091)=al.
Rocall that for roal orionted 2n-plane bundles, wo. have a Gysin

jucnee

(This vas one reason
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o 2n(8) =X ht ()L 8yt (B, )

For 1 = 2n-2, Hi+l'“n(B) =0 and so -ro‘H

B — i+1-2n(B) -

Yy wlz)
Definition: oi(c»“)eﬂgi

The Chern classes (B,2) are defined as

follows, by induction on n,

(o

ci{:JnJ = 2 x(g;g) for 1 =

for i >n

WT:-l c ((un l) for 1 <n, ;
The last oxpression 18 well defined since
ey 24 Lo
flo-H (B) = ~H2 (no)
1s an isomorphism for 1 < n, The expression c(r:™) =

n n ;
L+ eg{w )+ sos + e (e.™) 13 called the total Chern class of W™,
Lemma 1: Chern classes are natural with respect to bundle maps i

for a bundle map f = (fE,fB): w =+ w! w9 have fgc(lg') = ¢{w)

Proof: 1) fpe (w') =¢ (W) since Buler classes are natural,

2) fE:E0 -+ Eé cap‘be covered by a bundle map °’o”'“g ”
between the canonical (n-l)-plane bundles over Eo and T, But.
( e -l n=1 - -
nvl W ) 7 Gn-l( ) and anl(uJO ) = x(°32 ;) wh;ch is
natural with respect to bundle mgps, Since fB11° =4 If,, v) see that
i oL
cn_lgqg ) is natural with respect to bundle
maps, Desconding this way, we ghow 1aturality B s fs B!
- ° i
n
of eaoch 01( »i') and 80 naturality of the i
. total elass o(w®), 3 " To Evé
: b b
B v > A
‘B

X T, ; ;
e v % d MLy s Y 2 ;
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Lemma 2: Lot © be the trivial complex k-plane bundle, then

an@&5=cwﬂh

roofl: It 1s sufficient to prove the assertion for &

general case then follows by induction,

sonvenience, write " = g" 1 ® e, We vant to show that

:(u!n) = c(¢nfl). Since the bundle (L'g has & non=zero cross=-section

it is certainly true that cn(an) = X(u)g)

: B = Eo(ﬂn'lta 91) be the canonical cross-section, Then fg

et £
-+ u’ln;]. ° Thus

B

s covered, in an obvious way, by a bundle map " %
% n=l, _ n=1 . n=l
£peliv ™) = el(g™ "), But for i, <n, e liag™") s

; ci(ngn) by definition; so that.

oy Lemma 1,

agual to v

e fw™ = (£f whe (W™ = £E(mie (w™)

o, (™),

- it n=-1
= hewpTh)
This completes the proof,

We continue our complex aaalogy of real bundle theory with the

The complex Grassman manifold Gn k(C) is
r

n+k

following., Definition:

the set of all n-dimensional aubspaces in C (When working with

somplex structures, dimensional notation will always refer to complex

dimension unless otherwise atated,)

Just as in the real case, Gn k(C) has a natural structure as a
’ 3

iifforentiablo manifold; in fact, G, k(G) has a natural structuro
. ]

as a complex analytic manifold, For example, still paralleling the

Gy M(C) =~ P¥(C) 15 a complex projoctive spaco,
e

(C), Jhero

real caso,

Similarly let 7Y E(G) be the n=plane bundle over Gn,k

. : T

1 since the -

Caanging the notation for

=0 1is equal to ontﬁn'l),

-
Lheorom 23,
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E(w . (C
k( })) 1s the set of alil. péirs (n-dim subspace, vector in that

Subspace),

de}investigate the structure of H*(Pk(c) i2) . Applying the Gysi:
. 4Ng Tl 78

Sequence to
o (73)
1+1

1.
Y, over Gl’k(c} A= P (C) and using the fact X(Y
we have

K R)

=

#*
i+2, _k Ii
H -0 ni+2
(P™(C)) > H9(g,) - :

The space &
o (} k(C)) 18 the set of all pairs (complex 1159

through ori
I gin in C ’ non=zoro vector in tﬂat linﬁ) 01351 ly this
L] ’

is just the set ¢t
o

homotopy type as SEK+1: Hence B

S2k+l

of all non-zero vectora, wnich has the same

has the same cohomology ring aa

« Thus the sequence becomoa

0 - H (p (€)} = Hi+ 2(Pk
That 1s, H(P¥(c)) x-
1pkey)

kK > 0 the sequence becomes E

(C)) »0 for 0<1i<2xaa2,

o (P 1)=, . (P {C)) and each group-

is infinite cyelic generated by o ("l)

For 1 = <1 and

—_— H"

. Ry B
(10— BFC)) —— 1M (g ) s

(0] 0
(0]
Combining this with the isomorphism
. el
H(PY(C)) e i (PK(C) ) A, w2 Rlsliakicy
Har 24+1, _k )
obtain § (P7(C)) =0 fop all i, That is:

* 5
H (Gl‘k(u))
*ing torminating in

= H“‘Pk c
(C)) .15 the truncated polynomial

dimension 2k ang ' :
: ene sd
generated by o, (r Lic)),
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g
n-1
those of (C) which by the induction hypothesis, are the genera-

tors of H*(G 1 fe))s o 1w3

' under bundle maps, takes the Chern classes of y™(¢) into

A formally idontical procedure can be carried through in the

roal caso to show that H*(P“;Za) is the truncated polynomial ring

This means that is an epimorphism

terminating in dimension k and generated by <., the non-zero

element of Hl(Pk;Zz). In particular this means that Chz,(is,..., Uk (onto H*(Gn_l(C)J ]J.  In other words the exact sequence becomes:
are all different from zero, a fact of which we made extensive use in i
sections III and IV, i -n- i
If we let k = o0 wWe have shown explicitly that n*(cl(c)} is the | /n-l J el
! : Y
In general we wWill show ! .

polynomial ring generated by o, Vl(G)). )
n
El V") ey Gq-1(C)

is the polynomial ring generated by F

Theoram 243 H*(Gn(c)f

03 (5 (@)}, curse Ly O,
roef (by induction): Ve have already shown 1t to be true for G (¢) :

T 20 D N B

n =1, Using the Hermitian motric defined in C™%, i,e, | Diagram 4
ntk :
(-\ll seey ’\n_“k)o(,f l’.-olj-'.n_'_k) = i—-r:l iy .Ni.l We xnow what is - T to sit 1)
= ! show that every element
meant by orthogonality, For a point of Eo(;'ﬁ(c)) given by ann= 1 Lo a of I*(G (C)) is a poly-
; N Cyseeeyc, and 2) that no non-trivial polynomial is zero,

+) )
imenaicnal subspace of ¢™< and a non-zero vector therein, we take

the complementary (orthogonal)(n-l)-dimensional subspace in the given '

-+ G (C)., On the other
9 n=1l, 4+l

+% -
074 any orthogonal non=-zero vector

™

subspaco md thus obtain a map [': E

hand, given an (n=l)~plane in C

determinos an n=plane and hence a point of.Eo.

a fibro map and the fibre is CE+1. For i < 2%, tho Gysin sequence

of this bundle gives P*‘Hi(cn-l,k+l(c)) e Hi(Eo).

Letting ¥ ——> « as usual, we have

—>i {1 (€))—2 3 3G Ty Lot

rcfercing to diagram 4, we sce that by naturality of Chern classes

In other words, P is

o
e A L Y

We will prove both assertions by induction; 1) will be proved by

induction on the dimension of a. [At the same time, we have the

induction hypothesis on the structure of H*(G (c)} Js
-1

Certainly the assertion is true for dim a8 = -1,

v*(a)eﬁ*(

Since
pr-t
Cl( )’

G,.1(C)), 1t 15 a polynomial in
He))sennne, o (797Y(cy)

il.8, P*- w*(a) = p(o (),n-l(c),,....c (),n-l(c))). To simplify

Y e
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=1
notation, we will write ¢, for c ey (¥ P(c)) and e for ¢ ()’n (c)), and:

shown A {a) can be written as some

A for o 175 Thus we have

poljnomial p(ei,el,+..,ct 1), Consider a.h:-a-p(cl,..,,cn 1)cH*(G (C))
lie see that A (a')=o which by exactness of the above sequence means

there ir some a"eH*(Gn(C)) such that a'=a".c_ . Now a" has a smaller.
dimension than a and hence by our special induction for 1) can be
is a poly-

‘written as a polynomial in cl,..,cn.j Therefore alwma" Jc

But this implies a.na'+p(c1,...,cn_1
...,cn. QED
As for 2), suppose p(cl,.}.,cn)eo. Then A [p(cl,...,cn)la

n

nomial 1in ¢;,.4:i,C . ) is a poly=-

nomial in cl,

p(ci,...,cﬁ_l,o) = O, This means that p(%,...,*,0) must be

In other words, p(xl,...,xn) has

ldentically zero as a polynomial.

Again we use a subsidiary induction, this

X, asa factor; paxnp'.

time on the dimension of p. holds for dim p = -1.

Certainly 2)

Having p = x_p', we know p(cl,...,cn) = p'(cl"'°*°n)"°n = 0,
is a monomorphism, this means p’(cl,...,cn) - 0. By

" QED

\;Cn

the induction hypothesis, p?

" Since
= 0 thus p=pi_c = O.

Just as for real n-plane bundles we prove:

Theorcm 25:

a bundle map into 7f“(c) covering the generalized Guuss map into

Gn(C). (As in the real case, G,(C) ie assumed to have the weak

topology.)

Every complex n~plane bundle over a paracoﬁpact base has

Sy,
Pt

Gmx G,

any two bundlés w™ and N

Tk

Product theorsm for Chern clagses

‘We will use this universal bundle construction to prove the

product theorem for Chern classes, Let ;™ and .,

be complex plene

bundles over the same pPeracompact base B,

' maps ™ - w1

Then there exist bundle

TR i
and v '~ ¥, (The C's will be omitted whenever they

are clear from the context,) The corresponding maps B = G m? B = G

of the base space combine to give a map
rB:B -+ Gm x Gn.

m n .
Let Y, and ¥ o bo the bundles ovor G X G, induced by the projec-

tion maps Py G X G -+ G m*  Pat G *x G w-G respeciively, Thon we
m
have a bundle map (2™ & y l’ whera the dotted arrow in tne following
diagram is defined so that the diagram is commutative,
(w™

B
.
“
S~
-8
S RLY
B J

\\;\\‘*x,\
B -)c-xc

m

> E( 7™

1)/
l
/

Similarly we have a bundle map , ¥ - )#n, and hence a bundle
,m n m n 2 -
W Dy *Va@yw

Thus we have proved the following: Tho bundles y and j . over
2

are univerasal ror pairs of bundles, in tho sense tnat given

of the same dimanaiona over a paracompaoct
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i n
T, G .1 g and

o }‘EE% r 2 covering the same map fj of the base space,

space B, there exist bundle maps W -

. " m@ o
The exlistence of these bundle maps, together with Lemma 1, gives

us _ -
(1) el )-—ch(f’“). ol - M=rie( v g)selu
Since d“(G ) and H“(G ) are voth polynomial rings generated by .

the respective Chern classes, it follows that i’ (Gm P Gn) is a poly-

nomial ring generated by the Chern classes
.m .m Boe n
cl() l):o-o’cm( ’1)1 cl() 2):---’°n(/2)-
(This is a consequence of the Klinneth sequence

X ‘1t : * i ‘
> H*(G, X Gn)‘-———>Tor(H (G ),H (6 )) =0

1]

Q

-3 . 3*
0 = K (G )WH(G)

This
is

which is knouwn to be exact for any pair of finite corplexes,

sequence is exact in this case also since each subcomplex Gn &
]

finite,)
How consider the Chern claas el y 1R Vg) Since it belongs to

this polynomial ring H_(G xG }, there must be & unique polynomial

pm n(xl,...,x sfoerea ¥y ) with integer coefficlents such that
cw‘l@‘-y‘;) = Py nfCy rl),...,cm(, e 48 wzn

Applying r; to both sides of this equation, and using the

naturality conditions (1) wo have:

Lemma: For any palr of complex plane bundles «u?, v over a

paracompact base B, tho formula
. o= PR Ty
c(w™B ™ =y (03 (wM s eesoplw™aey (v M),ae0 (0

holds.

"@uMarie(y T @ g

73

Recall the derinition of Chern classes, In particular

n
,cn(‘” ) = X(uJR) and So we have the product theorem for the top Caern
class from that for Euler classes:
m . n . v
1) ﬂéw)%(u)=cméwnwﬂh

Recall further that we have already proved a sﬁecial case of the
product theorem

2) cf
Now we are ready to prove in goneral:

= gl uel

sty ady n
T F0T) = c(w ‘(see Lemma 2, of this soction),

Theorem 26: c(, @ y") )
‘ L 2

In other w z
ords, the polynomial pm:ntllff"'xm’yl’""Vn) of Lemma 3

is 1
n fact (1 + xl *,ant xm)(l + ?1 Tanet Yn)-

Proof: By induction on m+n, Certainly tho assertion is true
if m+ n=0 or 1l or if either m or n is zero, By induction,
essume the theorem true for m+ n = 1 Look at «.™ 4 ,,0" -1 4'6
Grouping it one way, c¢(w ﬁ-"un -1 @ Ol} = c((;..‘.m&)un'l) ) ).

By 2)  we have ‘ = c{wPw 0%y,
By the induction hypothosis, = o(;)m)c(h,n'l)_
On the other hand, asaociatiﬁg the other way:
(@02 @ 6l = o(w M@ he Yoo,
By the lemma and 2) this ig
Pa,n 2l WM reenson (™, o (v ™), 0000 (L7 ,0),

This is true for all coqplox bundle pairs; in prarticular, considering

the bundle ¥ 1@} 1

~ where tbarg are no polynomial relations, this




must be a polynomial identity ' - .

(xl"",x ,Vl:...’y l:o}o

(1 + X +xm)(l+yl+..."‘?fn_l) : l’ll n

l+.l'
In other words
(xl....,x ,yl,...,y ) = (Lxg b, okx ) (Leyg+ .._+y Jmod(y,)

where (yn) is the ideal generated by V¥, .
If we repeat the same procedure with Glﬁf qu-l

n’ we find B
= (1+x +xm)(l+yl+...+yn)mod(xm)r

& v

1+III
It is a sinple algebraic consequence that
(Al)-uhlx le:..uy }:' (l+x +.u-+x )(l"'-.."'y )qu(ﬁ- )h('.‘f ) (x‘
belongs to . |

(xl,..',x lyl!o-oly ) !

pm')

= wnere 2
That ;5, pm’n

(L4, 0 otx ) (At o uty Vbax v

the polynomial ring concerned, By 1), the only term of dimension

(the dimension of the top class is twice that of the
QED

2 2m + 2n

bundle over C) 18 x y ; that is, 2 = 0,

{(again analogous to the real case}

Application
Theorem.27: el c® (P™(G)) = (1 +0)™L  here . is the standard

genorator of HE(Pn(C);Z) the one corresponding to the stan=-!
? = 2ho) = PHOT.

dard gonerator of Hz(sz} undor the inclusion 3§
S has a uniquely distingulshed genorator of |

(1,0,

As a complex manifold,

f
; i
52(s%;2) ) . f
Proof: Complex projective n-space P?(C) can be ropresented as

catl o~ Cn+1 undor the idontification U =AU for all

tho uolt S
A8 C,fi| =1,
all pairs (U, V), with || ¥ Il =
under tho identification (W,%) = (AH,AV) for all A.6C, Al =1

Considor the complex lino bundle $ i over Pn(c) obtained from

Then E{T:n(Pn(Ci) can. be ropresonted as the set of

1l and W'V = 0 in the Hermitian metric

4.__,.'--'

e pp—— ——
(o :

! The inclusions §

i Considering S

: ! shows tnat ol(ﬁl) = or e(T™? (p (c))) = (l+‘:‘)n+l.

- Corollnry, P

?*-w-.,,f_“

(E]

2n+1 .

57 7»C Dby the ldentification (U, ) = (AU, A ) whero € C and

3 ;
#\ 1s as above, and, as in the rcal case, take the (n+l)-fold

: e L, 1 ) B
bundle sum o o & ,,, @&, Then E(Z, Loy, l) can be reprasented

> n
as the set of pairs (W, ¥) € gentl, (:r‘Hl with the identification

(U, ¥) = (~# T, A7) where A is as avove,

o)) | n(pic) ).

=1 1
lp‘? .:L;lEEL has a cross soction (taking uesentl into (u,u))"
n+l

By taking toe orthogonal compliment to this cross section,

Comoaring this with
14% ®43)2

(7 we see &(F S On the other

hand

using the

Hermitian g
metric, 3 n(t "lii:i, splits into “(p“(c;);g e By
n+l
she product theorem, we hava cf+ P(p" (c)) = ¢of -1)n+l (2re (& 1))n+

o Pl(C)c: p° (C),,_,,

o 12

. 0 are covarod by bundle maps
Sy -rfaa and by naturality

fact, the homomorphism H (Pn(C)) -~ Ha(Pl( c))

. goes into ¢ (\,1). In
is an isomorphism.
= P (C) as a complex manirold, there is a distinguisho.
and o) (£1)
standard generator. We hava shown that c(’"l(P (C))) =
1(pl (c)) =

% (T (2(e))) = x(p* (€)) = x(s%), ns 1s known, X(5%) =

generator & of H° (S :2) must be some multiple of this

(1+e( 4 1))2

or o, (1 1( l)‘ On the other hand, by definition,

21 which
QED,

is the fundamental claos of Nen(Pn(C)J since

{n+1) &0 = D ¢ ’
Y onl ¢ = }(Pn(c}) =¥./t and 1t 1s known that the Zuler

char
acteristic is n+l, (Since H (Pn(C)) i3 the truncotod polynonial

-l
ing, u M 45 4 gonorator, Hero we hava sottled tho ambiguity as to

viotl
othor 4t was + or = the fundamental cohomology clasa,)

e T LT

in ordor J
Lo gain more information about the charactoristic




classes of complex n-plane bundles, we introduce a new tool,

Tvo complox n-plane bundles &) and v are conjugate

equivalent if there is a map f:2(W)-E( )
and 2) f(Ae) =,f(e) for all e€E(wW).

Definition:

such that 1) ‘ﬂR an§ g

are equivalont under f We

will denocve— .~ BY W

Notc:

in general ' 1s not conjugate equivaleni to itselX, ¥For example,

consider T:I(PI(C)). (Ignoring the complex structure, tiuls is just

the tangeni bundle of the 2-sphere,) If this bundle were self-

conjugate, thero would be dofined a map of the tangent plane at each

point into itself so that thé corplex structure (rotation by i) was
reversed, The only such maps are obtained by reflection in some line

of the plano, We would thus have a continuous field of lines in the

tangent bundle of the 2-sphere, but this is impossible according to
l(Pl(C)) is not self-conjugate,

the corollary to Theorem 13, Ilence

An alternative proof of this will be given bolow using Chern classes,
Conjugate oquivalence is however an involutive relation, like the
relation between two oriented bundles yhich are equivalent excoept that
their oricntaeions are opposed, in thd% tho .conjugateo equivalent to
the conjugate oquivalont of a bundlo is oquivalent to the original
bundlé., ‘'horo ;s a-canonical roprosontative of & ; namoly, the
'bﬁndle with the identical totul space and éonjugate structure in each

Libro,
Exampla: Over Pn(C) n(C) we have made use of two line
bundloes, < ﬁ(C) and Y i(c). They are in fact conjupgate oquivalent,

Lookins at the Chern olasscos of the conjugate'bundle we 860!

Conjugate equivalence is not an equivalence relation since '

e ¥

-’“'r-u-...

9

Theorem 28, o{w) = l-cl (W) + ca(iu) - c5(hJ) +

ggfgzi _Let vl,...,vﬁ bé a basis for the complex fibre j
F =1 "(b) of W for some arbitrary b € B, This gives

vl,ivl,vz,iva,...,vn,ivn a3 the orientation of the roal fibre,

Apply;ng £ which gives the conjugate equivalence,

f(vl).f(vg),c...f(vn) gives f(vl), i (vl),...,f(vn). ic (vn) as

tho oriontation of (u)q. On tho other hand applying £ to the oriene
tation of the real fibre wo got £lvy), =111 vy );...,f(V i “if(V )

which ia (~1) times the orientation of .. Thus wo sge

R.

(0t = (=~ 0
('JR) (-;)éx(ﬂig) and so o (w) = (=1)7 ¢, () which checks vith’

the formula,

To check the formula for the lower dimensional classes, recall
the definition ¢_ . (wyM=7* "L (P - s % .
n-1t W )- g cr.l_l((,lo +)o’ But Chazltiy )=z:(i.:2 f{)i
by the ab i '1 i n=
y ove argument therefore, cn_l( ) (=1)2"1g L 1( 1).

Descending in this way, we obtain the above formula for the total

Chorn class, Note: This glves us a new proof of our eariier assere

tion that « 1(pl (C)) 1is not self-conju.ate for ey ‘1(Pl(c))— 2;

(aee proof of Theorem 21) which is not of order 2.

XII, Pontrjarin Classes

To complete our study of characteristic elanszsos of n-plane

b
undles, wo need one new tool: the construction of the comnlex

R .
plane bundle induced by a roeal bunile, Thore aro two ways of lookin'

at
the new structuro although the structuro itself is the same
L]

Aary
Inition: Given a real n-plane bundle { the inducod complex n=-

Tt %
o bundle Sg with the samo base B is obtained by cona;doring as

g
° over b the got of all formal.sums x + iy whero x,yC¢?., thn

i e 1
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d e oy »
of % . (Zach fibre of % ¢ 15 an n-dimensional vector space

o

five

over C &3 desired,)

Alternative definition: Given a real n-plane bundle ¢ , the induced

complex n-plane bundle {c with the same base space

B is defined as
follows:
aach fibre by 1i°*(x,y) = (-y,x).

Using this second definition, 1t is easy to see that

Lemma: §|3 is equivalent to its conjugate Z c? which 1is the same a8

saying ¢ ¢ 1s conjugate equivalent to itselfl,

Proof: Let I:E( ;G) - B (c) be dofined by £(x,y) = (x,-y),

Clearly £ gives the equivalence of the reoal - bundle structures,

£i*(x,y)]) = £{(~y,x)] = (-y,=x) = -1°(x,-y),  Q=D, a

i we look at the Chern classes of

Further
S ¢ We see c({'c)=0(3 o)

which, by our result on the Chern classes of the conjugate bund;a,

gives us e{f ) =1+0,({p)+ ca(i ¢t oeee
= c(—f c) =1-01(‘:C)+02(‘PC) "' 05(4‘0)"' LR
Thus we have
2c1('<c)_ = 203( QC) = =0

This means that theso odd classes carry a liimited amount of inforima=-

tion; wo thorofore confine our attention to the even classes,
For a real n=-plane bundle § , the i~th Pontrjapgin Class
41

Definition:
pi(’ } 13 defined to Vo (-l}czi(g ¢) §E(B),
such as it is, will appear below,)

The total Pontrjagin class p(& ) is defined to be

E({g). = E(¢{®{) and multiplication over C .is defiéed_in _

1
{The reason for (=1)"

- — e 4 e

BTN N S O

= TN vy

1+ p1({ )+ pa(( )+ L. F P /E]( $). (The highest Charn class is

¢ sine
n ince

Pontrjagin class corresponds to (n/2], the integral part of /2,1

§'c 18 a complex n-plane bundle and thus the highest

As for the other classes we have studicd, we would like the
Pontrjagin classes to satisfy the product formula, but we are likely
to run into trouble because we have thrown éway the odd dimensional

Chern classes of § The factors (-1)1 We have introduced will

cause no trouble since if (1+02+c +...)-(1+c£+c”+...)

4

*eed)(1telrol
then (1-c +°4-"'}(l"°'+°4 eee)=(locirel=,,,), In fact, throwing

away the odd dimensional ¢lasses forces a revision of the product

theorem as rfollows:

p(f(EW})-p( sIpln) 1s a sum of eiements in order 2

Proof: ;C@"\c =

Theorem 29:

(s N), and by the product theorem for

Chern classes

e({@n),

It

o(§ el o)

We lknow the odd dimensional classes not included 1in the
Pontrjagin classes are all of order 2,

Examplo: p(T(s)
1l unless n = 4k, in which PR p(-,n)

QLD,

If we look at wWe see that 1t is trivially

N 1

-~

1+ pk' However, T 1s
gy J-p(t plul) =
%4 has no elemoent of order 2 other than

and so p(T (sn))

trivial as 1s y % s0 p(t
But H'(s") =

fero, That 1is, Py (“‘4k)

1- (l+pk)— —p, must be
of order 2,

=1 for all n,

We sce that the Pontrjagin classos of aphores are uninteresting;

}t turna out that the things to looi at are complox projectiva dpaces
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At this pcint, we have a rair (x,y) where

but at first let us consolidate our gains,

situation which is represented symbolically

: CoONplex 113)
at the right, Given a real n-plane bundle 5 pair;
We now can obtain the induced complex n- and will be written with
: | 1)
s ) = = |
plane bundle, Given a complex n-plane SEET E SN the subspacs orf B(&J
bundle we can look at its underlying real ;g\ i E(“fl) is invariant undep 1°

e -
structure to obtain a real oriented 2n=plane :

bundle, Given a real oriented 2n-plane bundle, we can always ignore

the orientation to get a real 2n-plane bundle, In other words, we can

start at any point on the circle above and traverse it in the clocl~-

Wise direction; notice that when we return to the original point we is equivalent to
do not have the original bundle but rather one of twiecs the dimension, intO.E(hJ).

We would next like to investigate the behavior of characteristic ix = if({x,-1x) andg

In particuler, ws have
™ & complex n-plane bundle, [ E(W,)
|

clesses under this sequence of operations,
Theorem 30: For 1
==l oy

i n —
(=M pyling) & o
PR e

(-ljjck(c.n)cj(uin) 8s required,
Lemmg:

Broof: By definition

f
pylwp) = ("1)1021("'520)

where W QC is obtained by neglecting the complex strueturs to get an

oriented real 2n-plane bﬁndle, ignoring the orientation, and then

.complexifying to get a complex 2n-plane bundle, By definition,

) ) stated
n = n = n FEE T ¢ . o n e

B wy h(?;R) and m(hJRC) = n(l,R-ﬁ v R). Therefore n(blﬁc‘) &=

HeP@uwP), ow problem is to coipare the complsx .structure of

E(l)ge) With that of B{ 6™ @uP), 4 point in B(iRg) 1s given by a

multiplication by 1 defined in iR

! (1x,x) which 1s of the requireq form,
the subspace of all pairs of the form (x,ix),
since i°(x,ix) = {=1x,x),
£ E(u D 5 LY yeix), x1y y-ix
of E(¢)p.) can be written as (=5=&, Vé x}+{x21 4 Bix)'

Gyl

Similarly, “o 1s equivalent to i
into E(wh), ‘

n T ' I ‘
c = w D)= - n a
((L)Rc) C( )C( ) (14(31(“) }+°2(Cl) )+---)(l?cl(‘mn)"|'c2( mn)-.li)
all the odg dimensional classes in ths,product.

n
l-pl(‘dR)*'pa(wgJ-l-o

o1

X and y belong to the Same fibre of nln. The

will always appear inside the

the n :
& multiplication by 1 for bipo Will appear outside the pair

* as, for example, i“(x{y), Let E(LJI) be

EC) consisting of all pairs(x,-iz}, This 8pace
43 We have defined it, for 1'(x;—ix) =
S;milarly E(LJB), defined ag
is invariant under i;
Now a.gb = W) & U since any point (x,y)
Moreover bi

Consider the map  f:(x,~1x) - x taking E({Jl)

Since i-(x,-ix) = (ix,x), Wwe have f(i'(x,-ix)) i

£ gives the equiyalenca of" the complex bundles,

Let g(x,1x) = x take

then S(i'(x,ix)) - g(-ix,x)‘: i e -1g(x;ix)

_Thus we have shown:
in -n
W Re is équivalent to Q;nr%‘u o

By the product theorem for Chern clauses

Observe that the minus signs in this formula Cooperate to cancel out

The result can be

1}

A :
(1+cl(u) )+...)(1-cl(t;n)+c2(gun)-...)

5 (-1
= (-1) ol wMe, (w?)



e

!
v |
5 These last results.were obtained from the sequence
éroken down this is { complex ~——> oriented real ——> real —> complex
: (_1)ipi(u,n) ST l)J ¢, ( w )c o PL RED ¢ 2 BRI diagram above.) If we follow the sequence
R I - '

k+.j—2 i :

A ! oriented real —> real ——) complex ——> oriented real

These formulas can.be written as follows | Fl ks w
: ; instead we find that starting with an oriented n-plane bundle &%

: 2 n
pl(u)g) = ci(ujn)-Ece(UJ ) we have

i :
pg(wg) = cg(wn)—Ecl(wn)CB(wn) +2°4( w) EER ., '!.'( ;‘:n&_,, g‘n}

‘n ...n r.n -n- n. -
pj(ng) = cg(tnn)-EGQ(UJ )Cq(ui ) +2°1(m‘ )cs(“’ ) Ecﬁﬁd ) the only question being the agreement of the orientations,

e The orientation in each fibre is given by a basis vl,...,vn'

g i )n+l el ] for that fibre. The corresponding orientatiaq pri e i given by
Ezample: We already know c(g (:n(C))) - (n:: I (vl,o)...(vn,o),(o,vl),...,(o,vn). On the other hand using
&EHE(FH(C))- It is clear that C(TR) = (=g} i B vl,...,vn as a basis for the complex fipre of CE; the correspond-
above formula % ing real basis for fgﬁ is given by (vl,o)i'(vl,o),(ve,o),i-(vz,o),
1-p, (T ) + Py(iR) = Py(iR)+eewmel(T™)e(T") = (1-0%) vees(¥,0),14(v_,0) or '

n#d 2) (V1,°),(0,V )i (V2.0) (o,v 2),---,( v,40),(0,v 3., I is easy to.

determine the sign of the permutation relating these two bases

Therefore p(T’R(Pn(C))) e (1 4.02)

n o D7 a0
Since there will be no ambiguity we will write p(M") for p 'B(M ))

1 and therefore relating ¢ s s Y
where 11" ‘i3 a complex manifold. In particular p(P (C)) - ( aving the corresponding orientations of “CR Eag

(14¢®)% = 1 where aeB?(P*(C)), since HY(P(C)) = O for 1> 2,
‘ 3 2y A
-(This checks with our previous result since P7(C) = S v)

"% CM).. The permutation can’'be effected my moving each (o,v ) to

-'the left in 1) ‘until it is in the proper place for 2), and the sign

can thus be seen to be

Further - ,

P(PQ(C)) o (1-+ a2)3 = 1+ 3“2a s o (_1)(n—l)+(n-2)+-..+2+1 - (-1 )2“(n 1)
p(2%(0) = (1 + a®) = 1+ 4a?, e . ‘ 3
4 i ¢ 4l we confine our attention to even dimensional bundles (where the

5, : 2y5 2 eto
l+a = 14 5a”° + 10a ', . "
p(P*(C)) = ( ) Fuler olasr 18 not neoossarily of order 2) we have

gt T N
: sy




2n Negng pon oriented 2n-plane bundle
Lemna: ( cp = (-1} (LT @ ) for any
Fan
Therefore, looking at the Euler classes we have,

2n - 2nyy 2
Theorem 31. For any oriented 2n-plane bundle pn(§ J(X( <)) 5

_ Proof: pn({!en)n(-l)n cen(cﬂgn) = (-l)nX(Q 2n

' ; 2n 4. 2n
=(=1)%( (-1 P @ %)) = X( (% 2N
Thus by the product theorem for Euler classes, pn(g f ‘
QED.

e defined
(This is the one place where we find it convenient to hav

2n i i
the factor (=1)".)
pi( £ =7) with the tor (

G, (R); A)

‘a coefficient ring which contains 1/2 (so that we need
rationals Q), we can

(See

Structure of H*(

For A
not worry about elements of order 2, e.g. the

G (R); A)
" now give the structure of the cohomology ring H*(Gn(R),: )

pg. 59 for definition.)
The result will be only slightly more complicated than the cases

i i i hich we have already computed.
h*(Gn(R);Ze) and H*(Gn(c),z) W :
Theorem 32 If A is an integral domain containing 2 then
i G 1 omial ring generated by
the cohomology ring H*(G2m+1’ /) is a polynom
Lokl
Gk TR O e

p,( ¥
) is a polynomial ring generated by

The cohomology ring H*(GEm;

2m . 2m 4 om R
Pl( ¥ )J---:pm_l(?' ), and X( : )

~ start the induction,

65

This can be summarized by saying that H*(G;;{\) is the poly-

nomial ring generated by pl""’p[nfe]’ and X, moduio the relation

. X =0 for n odd

for n even,

2 !
X" = pn/2

Proof by induction on n. Since G0 1s a point, we can clearly

Just as in the complex case we have an exact

Sequence

— 5 31(65)—5—> Hi+n(Gn}~——¢Hl+n( ) >Hi+l(G ) 5

where - Gk ¥ carries the Pontrjagin closses of Gn into those
: 1
of Jn_l.
Case 1. Assume that the theoren is true for Gem i That 1is
H*(G om-1 ) is a polynomial ring generated by pl,...,p Now the

argunent used in the prool of Theorem 24 shows that H*(G ) is a

polynomial ring generated by Pyseessp s ang X.
r
Case 2. Assume that H*(Ggm) has this form. Since X( ¥ 2m+l)u0

(with coefficient group V) the above sequence, for n=2m+l,

J=i+2m+1, becomes

(g 2m+1)“““>HJ(G ) S>HI =2

2m+1)"'_"'> L
Thus HX(G2m+1) can be considered ag a subring of H*(G This' sub

Thus,

2m)

ring is known to contain the elements pl,...,p .12 and Py -x

if R* denotes

the subring generated by pl,...,p we have




86 ;
R* = A h*(E}J }c H*(a' I . = . P 55
' gy Euts f Leotures on Characteristic Classes {conclusion)
‘ . ‘ Contents Pago
which implies that ; XIII, Pontrjagin numbers 87

-~

a) rank R ¢ rank HJ(GEH&I)' . :
(For the concept of rank, seec for‘éxample Ellenberg and Steenrod, . |

l, Partitions,

2, . Pontrjagin numbers.

3. Symmetric functions, the polynomials s,;,
P+ 52.) Trom the exact sequence above we see that ; ' = 4. A product formula, the group r'lA* .

Jo J-2m, o ) = rank HJ(EEm)- , B! i 5. Linear independence of Pontrjagin numbers,
rank H (G2m+1) + rank H (G2m+1 _

But the equality &
ranic RV + pank RJ'Em = rank HJ(sz)

XIV, Corbordism . p g6
1, The corbordism ring %,

« The Thom space of a bundle,

- Reguler values of difforentiable maps,

.« Transverase regularity,

. Tho main thoorem 1% =

0o

: e ~ .om J=om
is easily verified. {In fact HJ(Gem) = RI@ x5 ')
\ -0
Therefore nael T V), .
. Homotopy and cohomotopy groups wodulo EJ.
+ The structure of Ji * ioduls & ,

Joom o
(Gopy)

‘ Jra 0
Using a) for both J§ and J-2m, we have rank RY = rank H (G2m+l)'

' -2m
T Firy = rank RV + rank RY
rank H (sz+l) + rank H :

A LI ¥ B N )

| §ad 2V, THB index theorem - 111
From this 1t follors easily that RJ = HI(G, ) which completes the . , =

1, Multiplicative sequences,
2, The index Theore.: I =L[~],
3, Axiomatie charactopiatic claaaeh.

proof.

: ‘ ; ; XVI, Combinatorial Pontrjagin classes R - |
B L | B 1. The differentiable case, ; ‘

a s ] = oo ‘ + The combinatorial case, ) . _
+ The compatibility thoorem: 4, (i) = Li(t"
« The unreatrioted case,
« Applications, '

(LT TR

Apﬁaﬁdix The Thom 1aomorphiom 2. 136
1. Conastruction of the cohomology class w,
2, The homoloax isomorphism,
3. The cohomology isomorphism,’

o Raroronoeal 142

i

-y Lt TR

it
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XIIT, Pontrjagin numbers
1., Partitions

A partition & of an integer % 1is an unoidered ssquence
il"‘ir of positive integers with sum k. The set of all such

pPartitions will be denoted by T (i) and the number of partitions
by 7 (k) ,

[For k = 0,1,2,3,4 the number i (k) is equal to 1,3,2,3,5
respectively, As k tends to infiasty, a thiorem of Hardy and
Ramanujan asserts that

B S

T (k) ~ —
4% /3

For further information see Ostmann [14].

The natural composition operation IT (k) ATC ) = TT(x+ )

will be denoted by juxtaposition:

ifws= il"‘ir’ w' = jl.,.js, then ive! = il'...irjl...jS :
This composition operation is associative, comnutative and hes an
identity element, which is denoted by « It is also possible i

define a partial ordering relation among partitions, A refine-

~ment of il...ir will mean any partition which can bs “pitten in

the form «y...qy With Wy € TWi)),...w € T (1),

2, Pontrjagin numbers

Let M be a compact, oriented, differentiable manifold with

tahgent bundle 1:n and fundamental homology class Mo Given any

pertition il...ire T (%), define the (%1...1r)-th Pontrjamin numbar..

i

i
|
i
{

| Y

J48

Py «eedy (M) of ¥® o o, (¢ D
1 1, e the integer < pil(z )...pi (in),,un >
_ r

Note that this is zero unless n = 4,

(Compare Stlefel-I'hitney numbers page 16,)

As an example consider the com>lex projective space Pan(c)
. L} *

Recall (pg, 82) that
2n, .
Py (P™(0)) = (P41 21
" :
where L€ | (;En(C);Z) and <oL2n, Mg> = 1,
Hence ? ’

2n+1

Py +eopy [P%R(0)) = SR B

of ¢ b
he Pontrjagin numbers of g manifold, The rest of this chapter

will b
€ concerned with one such set of linear combinations. Others

will occur in Chapter AV,

~

3. BSymmetric functions; the oolynomials s
7

Con;ider & polynomial ring in n variables ov
Z{tlln--!tnlo

degree of each ti to be 1,

er the'intagers:

This is made into a graded ring by defining the
The elementary Syminetric functiohs
Y1005 O are defined by. 5

1)

2)

degree m =1, and

1+ 0

1" Sea o = (146))0u(1rt ),

e




e I [

(There 4s an important connecticn betueen symmetric functions
and Fonirjajin classes dus to Borel, ror our surposes tiuis can be
. 2n
cmotivated as follows, OSupypose that a bundle S splits into a

sum f(ﬁ...kggi‘or 2-plane bundles, Then the idsntity i

b %

/ o
1,0 %M ep = (e (39N e (0 2 )

shows that pi( §2n) is the 1-th elomentary symmetric function'of
2 2
pl(gl )7o-n!pl( §n )‘ ]

Let S denote the graded subalgebra of Z{tl,...,tn}'consisting
of the polynomials which are left fixad by'all permﬁtations of

T e

tyse0ist . A standard theorem asserts that & = Z[ Tiseans Cply

wWhere ci,...,:vn are algabrdically independent,

An alternative description of & is the following:

monomials in t1se0ssb  to be oquivalent 17 some psrmutation of

n

tl""’tn carries one into the other, Define

1 i ' ;
=) l r 2 i e
L’ tl osctr ¥ '
11' 1r:
to be the summation of all monominls equivalent to tl eest T

(For oxample oy =y tl"'ti)

Lomma, An additive basis for sk =

‘k, k g'n, is piven by tho sot of polynomials
i i
1 r
Loby Soeshs
whore 11...ir rangoa ovor all partitions of Xk,

Tho proof is not diffioult, -

Define two .

subspace of S of dimension -

-Now define a polynomial in % variables 8 seodi belonging
to s where 1 i b nti ¥
| P A1reets @ i, B th? identity
b ¢ S ¢
( "_“ few 0 = 1 =
ir ll ’ k) z tl llltr (]

8
ill‘ll

(This polynomial does not depend vn n, as long as the condi-
tion X = n is satisfied,)
The first twelve such polynomials are

s( ) =1 ;

81( 0'1) = \"'l H

32( ¥1s Ty) = !5‘12-2 &

913(0ys ) = Xy i

85(51. a2 O5) = 3"15 =33, + 39,

S120 ¥12 22, 93) = 6,9, -3 oy

31210 F s Tpr 95) = <¥; ; and

8, = 0'14 -46120'2 1-2'321-4;" Y, =4
‘ g 1 "8 4

oy - i ’712 C2 -2 A SRR

522 = : Oée - 2‘71{3 + 20,

 br (B e,

Ml ® . - T

(For more inrormation_nee van der Vaerden [26) Chapter 26; in

particular the ‘exercises,)
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4, A nroduct formula; the zroun L-'lf\

It will be convﬁnient to introduce the following concent, . i

#*
Given any graded ring A* with-un;t, define a ripg A" as the

{
. 5 L]
cartesian product . ! . . f
: |
fXﬂxfx.n
with composition oparations

(a :ﬂl:--»)"'(bosbl:u-) = (a +b Jal+b1!'°0) and

e +a.h_+a_ b ...).
(&O)all.--).(bojbls---) = (aObO'aO l+a '-) »8 bz 5‘1 1 9270

. Each olement aiGAi will be identified with the sequence

(9] (9] e} n I A ‘}halleve y f ion is DOSSlblB,
a 1 I no conius
( ey i.l e ') . +

uri formal sum a_+a.+,,
" the sequenco (ao,nl,...) will be uritten as a for X Sas e
Let I‘ln*( " A¥ denote the subset consisting of sequences

licative
(1 al,aa,,..) with leading term 1, Then (B A) is a multip

group,

v

i o il G R

As an exaiple, given any commutative ring with unit A and

given a space X, tho groups At = ati A) give rise to a commuta=

b5,
tive graded A -algebra, wiaich will be denoted by H "(X;/A ). The

total Ponfrjngin class

= (11 pl!o&llpnlolnl‘uj

P = l,+pl+ e +pn

with coofficionts in A of a bundle ovor h_ip an element of 1

L% A)y Recall (p. 79) tho identity
(U@ 0 ) =n()p(n) o
holds henevor K**(X;/A) has no 2-torsion,
Givon any partition we€ I (k) end ¢iven a € flA*, vhere A* is
I

commutotive, defino 8, (a) € A" to be 5., (8,835,058, ).

satiofy tho iduniity

Thaorom 33,  The polynomials s8,,

i RS e s b b

yaers 1T P

s, (a’d) {a) *s

TR (b} -
'P:L I.Ue - () hl ) "‘2 ’

to be summed over all pairs Wy Wy such that ui'wz =W, ;
. As an example, for W= X, this formule takes the parcicularly
8imple form:
Corollary 1, sk(a'b) = sk(a) * 8, (v).
Given any n-plane bundle § » the elements s, (p ( g))ﬁﬂék(X;Al

; A t
can be considered as new characteristic clesses oi |,

Corollary 2,

9. (p(§ )"Lu'  Wps

The identity

weia® e 0L M0 Galsg 1)
) 1 > ue | .
holds rodule 2-torsion,
Now consider a compact, orionted, differentiable manifold Mn.

For each w € (%), dafine a neuw characteristic nwiper by the formuas

8,[M") =0 4if n # 4x

aw_[M4k] =.$ % 8, (Bl Mc)),qu >

These numbers are linear combinations of tho Jontrjagin numbers,

and conversely the Pontrjagin’ numbers can be expressod as linocar

combinations of theso, Houever tho now numbers satialy a very

simple product formula,

Corollary 3 (Thom),

Sw “-Il X M2J =Z

(M 8, (M 3
22?

'-Jl u..‘2 :g u;
Note that most or the teriis on the right drop out for
dimonsional reas.ns, For examplo:




GE e ——— e

a3 !

If M) and M both have positive dimension then

Corollary 4. o

ak[Mlx M2] =0,
The characteristic numbers sk{Mp] will turn out to be part;cu-

larly important,
o 2.2n+1
sxample, For the manifold Pzn(C), since p = (1 +a3.7) -

the class p;y can be ccnsidered as the i-th elementary aymmetriof

function in cxg,...,‘g?. Hence ak(p) is equal to

2k
Siel) = {en+1) 2" ;
ticular
5, (P7P(C; ]

froa Corollary 4 that Pen(C) cannot be expressed as a

In par »
= 2R F L E O,
It follows
product of positive dimensional manifolds

Proof of Theorem 33, Consider the speclal case

E z[tll-llJ tzk]!

= () el (14,)y b= (1rE )00 (D40,

Then the

e+l
whero the ti are algebralcally independent of cegreo 1,

elecmonts Qyseevrlly and bl,...,bk are_algebraically independont,

Eenco if Theorem 33 is true in this special case, it will be truo

universally.

Lot W = i,e00l, o BY definition s ,,(a’b) io oqual to
i

1
E:tl 1 3 T . Zach term of this sum has the form

13 )

t OOOt
oy B

and 2%, Lot "y be the partition formed by thoso expononis iq

‘.lt

whore ¢y,..., 04, are distinct numbers batween 2

such that 1 < 0_q < k, and let tdz be the partition formed by the

remaining iq. Tho oum of all tho terms corresponding to a given

- ool 26

B e
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decomposition u)=bﬁ”% is clearly just

s (a) s (v), ' .

.‘_]1 wz

Since every such decomposition occurs, tais completes the nroof, -

Corollaries 1, 2 and 4 are clear,

Proof of Corollary 3, For i = 1, 2 the tangent bundle ., of

1

'Mi, together with the projection nlx Ne ﬂ'mi, induces a bundle 31

The tangent bundle T of ;
the sum ¥ 1@ §2,

over M, , X l% may be identified vith

Hence Corollery 2 ta%es the form

a.,k.(p(-z:))=.:-‘Zh,1 '-’2=w° wl(p(‘rl))a,,,aip(rg)) (mod 2 torsion),

‘The fact that the itrcaccker indox with integrnl.coofficients
ignores torsionu, togethor with bhel1dent1tlea ;.=/11K;12 and

CANS My h Mp> = <0 fy 31D, fay> .
coupletes the proof,

5, Linsar independence of Péntrjagin numbers,

The object of this saction will be to prove the following
theoram, which shows that the 17 (n) ’ontrjauin numbers of a general
4n-manifold sat isfy no linvar relations,

"Theorem 34, (Thom)

e,

Tho 17 (n)X7(n) matrizx

2] : 2
“ pil -n-pir[P l(c)XnocA P ﬂ(c) ] ” »
whe?e'il.;.ir and jl...ja range over (n), is non=siagular,
Remark., 1In place of the manifolds P2( C), P4 (€), ... ona could
Substitute any sequence M ’ ﬁa,... of manifolds uaich satiary the

conditiona 8, [w‘k] F
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f"’nolu, For n = 2,
: 2le%(c) 1 =25
pPtFRc)xFB(c) 1 =18 p,(p |
4, . -
Py (P*(c)nP%(c) 1 = 9 p, [P7(C) ] = 1o,

- k4 h
co that the determinant is =45 # 0, It is evident that the

of simply computing the matrixi will nst hgxp rch

direci -w.p.s0ach

in thc goneral. case,
- In place of the lontrjagin nunbors

s”JM}f

?rcof of Theorem 34,

thomsclves we will use the linear combinations The

‘following formula is a direct generalization of Thaorém 33 Cordilary

3, ;
[Ml] sve 8

= s M)
[M Xees XHT. f—ul"“'Jl T r T

3y

dimenslons
Supnose thet the manifolds Ml,...,Mr have i

.{11,...,41n rospectiveoly,
8. [M:1 z0s 8
-ul Y W

Then tuae term

(M,]

: i This proves:
is zero unless v/, € T (i,),...,w € TW(i ), This p

(2) Sw(ﬁlk o--xﬁr] |
For the spooianl case ly = il...i the formula becomes

[ilﬁ OOIXM ] il Fl] LR Sir[ﬁr] J'

= 0 wnless 1) is a refinemont of 11...1#

3 3 olo
(3). sy

since all the other torms are necessarily zero,

: b in uch thet
How ¢hooso gome Bsogquence M4, hs,...,M of manifolds suc

denota the product

ai{H ] # 2 for &L = 142;,.,,n. Lot mil °"1r
manifold ¥ +X .. XM
Then wo will prove: |
(4) tho matrix || su:[M;vt] uu),m'.G T(n) & mon=singular,

&5

fold,

96 .

e

In fact 1et “’1"""Hﬂ(n) denote the partit1ons of n, number=

ed so that, irf ldJ is a refinament op

en k’ then j 3 x,
(2} implies.that

Asdertion

-] (M

1=0for j<uy,
Ny ;

wille (3) impliss that
8,00 _1#06,
.t L

Thus the matrix is trlangular and nonsingilar, 7This comzleétes tha

proof of (4), and therofore of Theorem 34, for the pil...pi 0,

1] 80 that dependence of the
latter,

are linear combinations of the ‘8, (M,

former would imply dependence of the

* XIV, Cobordism

This chapter will give a presontaiion of the coborﬂism'theory
of Thom [23],

iy THE ping f1 ¥

All manifolds considered ere to bo coripact, oricnted and

differentiable unless othorwise stated, iMe word "c:i':T.i‘er'tsmt::mt:d.o‘.l

Will alvays maan "di.forentiable of class ¢®n,

‘e constpuct an’
addition among manicolds of the Same dimonsion:

Defimuon. M, " ‘-12 11l ropresont the disjoint union
I n -
o Byt

£ disjoint copiles of N

operation of

It is natural tnoreforo to urite kNP for the union of

s x> 0, Further uerine -y to bo the same

mnifold but with .o op.osite oriontation,

This aum operation has a4 2o0ro element: hemoly the vacuous imani-

- Note ‘however that pf.yh is not equal to zero,




yr

An cquivalence relationship between manifolds of the saime

dimension is defined as follows (as was indicated briefly on

p. 19):

Dafinition:

dlffeﬂbntlable bounded-manifold ol 2 whose boundary is Mn. The

induced differentiabla structure on the boundary K™ should coincide

with the differentiable structure originally given, [The differ=-

ontiable atructure on g may be 3peQif1ed by a coordinate system

{(UQ ’1.‘(1\
1) The Uy

)} where

are open sets covaring Bn 1

-+ Rn+lis a homeomorphism, either onto Rn+l

2) each Lot o
or onto a closed half=-space; and

3) Trlor each 01;3 the composition

s -1 = +

R ERUE SIS
is differentiable (i.e, can bo extended to a difrerentiable nap

definod on a noighborhood of fB (Uy o Us )), For further details

soe [12] appondix 1,)

tion: Mlnr- My
cobordiom class) if Mln-M o

It 4is oloar that this relation 1s reflexive and symmotric;

Dofini (road: Hln and Man belong to tho same

is a boundary,

“that it is transitive can bo soen using the obvious construction,
1 v D_y B n+l n_. n
has boundary hl '“2 and B23 > N3 4

n*1 ing 323n+1 aro idontifiod along the commion boundary

Tho rosulting structure can bo omoothod out to give a
(500 [12] Appendix I,

e s Blan+ has boundary'M

thon Bl2
R
%",
¢ nanifold whoso boundary is k-1,

womma 4,) If we donoto by + tho oporation on equivalence clasasecs

tnducod Ly tho oporation + on tho manifolds, the classes form an

tmalian zroup U™ undor +, A" 10 tho cobordism group in dimension

Mn is a boundarx if there e:tists a compact, oriented, o

93
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mﬁ’l“to’“““*

* the correspondenca Ml M2 -+ meg
= o 1 2
nF (0, Jl O  vuus) GF cobordism groups hes the structurs of a

A bili pai B
ilinear pairing from L s defined by

Thus the sequence
graded ring, It is easily verified that P&nlben'is isomorphic (as
\'“x‘i

is anticormutative, : .

an oriented manifold) to (=-1)" Thus the covordism ring

The Pontrjagin nvmoers provide a basic tool for studying this

cobordism ring,

Theorem 35 (Pontrjagin), If i 15 a boundary, thea every

Pontrjagin number pil._..p1 [MnJ is zero,
r

Proof: The argumant is completely analogous to that on yage

17, Since the identity
piliiu‘i [M +“2} = Pilo--:)i [‘\111 + pi --.Pi {}“ J i
is clearly satisfied “a havo: .

Corollary 1, F
_ .y or each il...ire il (%) the correspondence

4k
M S pil...n [V4'f]

defines a homomorphism o 114k into Z,
Comparing Theorewms 34 and 35 we have:
Corollarx : The manifolds
PiLe) ¥ ... ;&pair(c) .

peeed 3 G II(k) represent linocarly 1ndopandent elemonts- of tha
cobordism group Il

with 1

« Honco the group i) i has ranic > 7T(A),

T I
‘ he prancipal object of Caapter IV will be to show that this

io a. Y T
a.best poasible rogult, (Jhﬂt is fl" has rank exactly y1(%);
r

waile Il has rank zero for n F) (nwd €),)
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[(Romork, The actual structuro of the first few groups is the y
following:

1) P s Z, -since the only O-manifolds are finite sets of points,
and the algebraic number of points determines the cobordism class
uniquely,

al=n®= aQ’ = o,

{orientable!) 2-manifold bounds.

{t is well xnown that every l—manifold or
The corresponding assertion for
" 3=manifolds is non-trivial,
n%=7z Generated by the complex projective plane PQ(G).
n®=2, 0%=n"= o, n®
Pa(C)x P2(C) and P4(c). For further information see Dold.III and

=2 + Z generated by

Milnor [13]. ]

2, Tne Thom space of a bundle,

[

Let ¢{ be an n-plane bundle over a compact base Spaca B{ € )s
By the Thom space T( §) will bo meant the one point compactificatién
of the total space i g) Tho base apace will bo 1dent1fied with
the subget of L({) corresponding to the-zero eross-section, Thus '
woe have .
() CECOC 20T
The point at infinity will bo donotoed by I
Remaric 1, Tho rolloﬁing alternative dafinition is sometimes
more convonient, Choosing a Riemannian motric, let L' denoto the
subspacce of i consisting of vectors of longth < 1, and let E'o
denote the subspace of unit vectors, Define T! as the identifica=
tion spaco F'/BO'.
V — V0=V 1))
givea rise te a homoomorphism

h: TV =T,

Thon tho corrospondence

e b,
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Remark 2, Let G be a closed

Thom's notation is as Tollows,
subgroup of the orthogonai group 0., and let { ve the n-plane "’
bundle associated with a universal bundle for G, Then Thom
denotes T( { ) by M(G}

The following two lemmas describe uhe structure of the Thom
space

Lemma 1, If B(Y{ ) is a finite cell coiaplex then T({ ) is an,
(n=1)~connected finite cell complex,

EProof, For each open gq-coll e of B, tho.inverse image
(e)C EC T is an open (n+q)-cell,

then'the cells (1p~

If the cells {e } cover B
(e )}, together with the point t o Cover T,
Note that there are no cells in d;mansiona 1 through n=-i,

Lot D% denote the unit ball in RY, and 1ot £:0% —s> 3 5e al.

characteristic map for the cell e, The induced bundle | ovar Dq

is necessarily a product bundle qu /P ‘Dq A Dn. Hence the com=

position of the natural mnps
PIx D" = &r( ) «EV(L) UL )

glves the.required characteristic map for 7T-1(e). This completes

the proof,

Loemma 2, 1Ir { is an oriented A-plane bundle, then each

cohomology.group Hn+k(T(( )it ) is isomorphic to H (B(C )), a>o,

, Proof, There are natural isowmorphisms

H(p) —f— W™z, 5

(See the apppndix for the detaila of ¢4,)

)<oxciaion Hn+k(T,T—B).

Since the space-T-B is ¢ontraotible to tho point t o’ this last

grovp can be replaood by Hn+k{T,t ), whioh completos tha proofl,
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3, RAerular values of differentisbie maps, (1) &lC has the origin 0 as regular value;

Lot ' be an open subset of euclidean space R", and let ? (2) g coincides with £ outside of V; and
£:4 = B be a differentisble map, ; (3) lgglx) = £,(x)] <e, |2 si(X)/j;xJ- ), | <e

X
Definition: A point y € R® is a rﬂgular value of £ 1f, ror . _ J
each x € £~ (y), the Jacoblan matrix . forall xin W, all 1 <1 <k, and a1l 1 < § < n,
lirs (x)/ca;j Il i Proof. Let A :W =R be a differentiable function which takes

has vanx %, (The case f"l(y) vacuous is not e:cluded., For example | the value 1 on C and the value 0 on V-V, (See Steenrod [20]

P. 26,) If y is any regular value of £, tnen the function g
definod by

if n < k then y is a regular value only if f"l(y) is vacuous,)

More gonorally, for any subset C of ', wo will say that y is a
g(x) = £(x) = , (x)y

8 s i g

regular valve of £|C if the Jacobian matrix has rank k for all

x € r’l(y)/n c. Will certainly satisfy conditions (1) and (2), But, according to

ilotivation for this definition is provided by ~ the theorem of Sard, the vector y can be choson arbitrarily close

Lemma 3, If y is a resular value of I then f'l(y) is a to the origin, Hence condition.(3) can also be satisfied,

differcntiable submanifold of W, with dimension n-k, Finally, the following will be needed:

froof. This foilows imaediately from the implicit function Lemma 5. Let C again denote a compact subset of V, and

k
v :w e i i
theorcn, (See for example, Graves [6] », 138.) - g »R” a map such that g|C has 0 as rogular value, %hen thore

The following extremely delicate theorem shows that regular exists € > 0 such that, 1€ h:W = R gatisfies

valuas exist, lhi(x)-gi(x”(e’ |2 hi(x)/axj‘.38i(x)/ {”‘J | <€

; Theorem of Sard, If 13 = Rk is differentiable (of class an)

5 for all x € C, then h|C also has 0 ag regular value,
then the set of all y € R .which are not resular values has measure i The proof is straightrorward.

Z6ro0.
4, Transverse ropularitv.

For the proof, see Sard [15], =
€ LM - M' be a different " N
Tho following lemaa is based on this theorem, - Let C be a com~ e entiable map, and ¥' e submanifold
i : of i,

pact aubsoet-of W, and V a heijshborhood of G, with V compact (_ W, g .
: : Definition: f£.1s transverso rogular on ¥' if, for each

Lemma 4, Givon any difforontiable map £:W - RF. and gliven.

e " 3
7 & M" and cach x 6 £~ (y), tho induoced map from the tangent vector

C'> 0, thore oxiuts a differontiable map giW = Rk auch that
) ; apaoo nt % to the normal veotor spaco at y,

Lo
g w161 -
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F - Pt _"nly/ n'll

is onto, (Notice in particular that dim 1> dim M'~dim M" 1flf(MJ

intarsects'ﬂ", and if n = n'~n" then £(if) must be normal to N" at ,

the intersections,)
Using Lemma 3 it is not hard to seo that the inverse_imaga

f'l(M”) is a dirferentiable manifold of dimension ne-n'+n'", pros.

'viding that £ is transverse regular on M"

Consider the following situation: Let M and B be compact

" @ifferentiable manifolds, and let § be a differentiable k-plane

bundle .over 3, That is we assume that the total spoce E has a

differentiable structure compatible with the bundle structure.

Then B is a diiferentiable suﬁmanifol@ of £ with normal bundle .

eguivalent to g °

Thoorem 36, Every map £:M* - T( {) is homotopic to a map h

which

(I) is differentiable on h'l(E) (1.0, where ever differen=

tiability m:kes sonse); and : .
(II) is transvorse reéular on .
Proof: Firat choose a map £ 0 = T, () wnich coinc;dos with

£ on r'l(t ), and which,is differentiable on £ l(L). (Compare
Stounrod (20] § 6.7.) Lot {BJ} be .a covoring of B by coordinate

.noithorhooda. Thus the bundlo ( reatricted to Bj ia equivalent :

to Bj X Rk,-nnd the projoctiona of BJ b Rk into tho two factors
correspoivl to maps
-1 -1 X
Vs B : B,) =R,
iwen (BJ) =" J' PJ w ( 3

. e
Choose a covering of £ 1_B by opon 80t0 Wyseees¥W L "(E),

MEDROPPLY b h ity o e .

v ey ———y Y oy r—
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These sets should be small enough so that
;) each ”1 is diffeomorphic to an open subset of Rn, and

2) each ro(wi) 13‘0011‘?&1118(1 in "T-IBJ for some j= J(i).

Choose smaller open sets U » V1 with
- i
Ui(, Vi' V.l W

‘so that the union U = Ug ces U

L]

still ocontains ro‘ln

Now Lemma ¢ will be used to construct a series of modifica-
tions fl,...,rm of fo' Bach f will coiivcide with ri -1 ®%cept on
Vi. Each projection n ri:r

o=l
Tifo-f E-+B,

(;) =+ B will coincide with

Thus to construct these modifications, 1t is only

nocessary t ke 1 '
_ ¥ to construct maps Wi = R” which coincide with the compo=

sition g, of
i 5 W
1-1] 71

> TT-lfBJY ._f:i__> R

outisde of Vii where § = j(1),

Assume by induction that fi_l:ﬁp = () has been defined, as
’

‘ above; 8o that

1) r IIUE“"'L'U l 1a transverse regular on B, and
2) rllsCu ;

F ~ = i
or th~ case 1 = 1, both conditions are certainly aatisfiad Con=-

sidor th
? Sompheltion & above, carrying W, .into R*, Choose an

'
approx
pproximation 8y .wi - R » 88 in Lemma 4, so0 that

(a). gi'IU has the origin as 4 rogular valuo.
b
(v) gi coincides with 8, outside of V,» and
(c) the approximation is sufficiontly close so that
G'[(.G U.’..\JU |w
L gy ) has the orizin as rogular valuo (making use

of Lamma 5
)i and 8o that gif(u =U) dous not contain the origin,

How dorino-xl by the oonditiona




Tffi(x) = Tifo(x)
f-jfi(x)'= gi'(x)
£y(%)

i

£,(x)

Conditions 1)
of the &y

The required map h:M® - T({ ) is now glven by h=g .

that:

1) rmiﬁ 13 transverse regular on B, and

2) ™8 u;
OB

and 2) above are clearly satisfied, since regularity

corresponds to transverse regularity of the fi
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1

for all x € ro‘ (E)

hos M x [0,8] »T( L)

for all x €U '
i so that ho(x.lt) = f{x) for t.s 2} hoix’t) = E(x) for t > 3, and s0

for all x £ Vie
Then, just as in
‘along B,
‘Tha conditions
o : t<lort>4,
[Ghoose the open

compact set ho-l(B) X

~/that By 1s aifferentiable on ho‘lcm).

the pro 6
proof of Theorem 33, ho can be approxi-

mated
: by a map h, which is transverse regular on B, Furthermore

this a)pl Oxllﬂation can be CI103911 80 bll&t ll X,t = 11 X t on
m( b J ( ] )

aets ”1 in M* x (1,4) 80 as to cover the

{2,3). Then the argument of Theorem 36 sn0wWs

that
hh will be transverse regular overif‘% [2.5] It 1s only

guarentee that rm is transverse rogular on 3, .
{  necessary to choose al

Romark: Suppose

i1s an oriented bundle,

orientation induced as follows:

(1) The map h

V 0

¥,
equivalent to { . Honce o5 is orientod,

{2) TFor any submanifold there is a bundle map

n=k
1 ®

Kence if the tangent bundlo i

orientcd, thore is an
) TLamma 6: Let [
'_which arc both differ

rogular on B,

Then the oriented manifold £™X(B) and g —(B) beleng

& [¥]
that i is an orlented manifold and that

= : transverse regul
hen the manrfold h™(B) ( M* has a standard gularity

The inverse image h "1
m

manifold with boundnfy

induces a bundle map of the normal bundle

K or h-l{B) in i into the normal bunile of 8 in &, which is
‘ | 5. Ihe main theorem,

\jk—rrn = )
: ! Lemma 7, Le k
‘M .nd the normal bundle 1< are ! S e
|
-l {
induccd oriontation for 7 B ‘,. ¢

and g bo homotopic maps of M into T( L)

entiablo wherovaf possible and both transverae
cobordism group N7,

Proof: Thoorem 36

1l of the approximations close enough so that
is not lost on the remainder Qr Hn; [0;5).]
(B) will then be the required bounded-
.Bifreomorphic to g-l(B) -f-l(B).

In |
the pl&ce Of tha mani .Old M Of thG px‘evious Sootion 8 b
b y » ub=

satitute the (n+k)-sphere,

be an oriented differentiable k=plane

bundl
e, The correspondence which assigns to each transverse
) +l )
regular map :877€ . 7 t‘) the manifold f'l(ﬂ( Lk)) gives rise ¢t
: se to

a homomorphism )\ of th
o ol e homotopy . m k
Py group T ., (T( {")) into the

and Lomma 6 imply that ovory olemont of the

to tho inmo cobordiam claas, ; =
{ omoto; .
PY Group corresponds to a uniquo olement of the cobordism

Pronf: The homo

topy will givo the bounding manifold, That

is3, choouoo a homotopy

Rt .

grou I
p.- It is clear that tnis correspondence is a homomorphisi
. L L

—rT——— e
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Let [: Vk -»75 be the generalized Gauss map, défined by' tﬁa
correspondence : \
. normal plane = parallel -plane through origin v
(see p. 22-23) and let ‘
BT Ky (Y )

denote the induced map of the Thoin space, Then the comp&sition
gTI':Rn'.'k - T( 7 ;,f)

is clearly transverse regular on B(;rg) = Gk;n' Fuythermor? the

inverse image is

]l =1 , - - . .
by ET (Gk,n) e w'. .

Now renlacing euclidean space by its one=-point conpactification
Sn+k, this completes the proof that

“ K

: e !

‘ T lTlrn)) =0 ‘ 7

is onto, The more general case h > n 1s easily handled by the vl

same method,

6. _Homotopy and cohomotopy sroups modulo (%,

Lot [ denote the class of all finite abelian grddps. A

homomorphiom
h:A =+ 3B
botween abolian groups is called a C,-isomorghism if the liernel an

= B/nA) belong to (¢, (Tuais oconocept is due to

and cokoraol

Sorro [16].[

Lomma 9, Lot X bo a finito complex which is (k-1)-comnected,

Then tho Hurewicz homomorphisp ]

Buil (X) = B (X;2)

—— -y

e e o i e e -

e
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Now consider the universal bundle }rk of oriented ke-planes

through the origin in kth-dimensional Euclideun space (see P. 59)

The main result of cobordism theoreir is the following:

5

Theorem of Thom, If k and h are sufficiently large, then the

homomorphism

." oY

.:k
i (TCFE)) = 2f

is an isomorphism,onto,

(Thom's notation for T(} lc) is M(30(k)). ), Thus the computﬁtion
the cobordism group is reduced to a provlem in homotopy theory,

For our purposes it will be sufficient to prove half of this theorem

Lomma 8, For %k, h.> n the homomorphism
. L ("(v )) ="
is onto,
Proof. Start with any manifold Nn. According to Wh;tnay (28],

M can be 1mbedded in RO providzn& that x > n, Let < denote

the normal bundle and E "e( Vv ) the subset of the total space

consisting of normal vectors of length < €, Hero € should be amall

.enough so that the correspondence

normal vector —%—> end point
o k
defines a diffeomorphism o of ne( « ) onto a neighborhood U of Hn.
Define a map ' T
' B L T
transverse regular along Mn'by
f{x) =

t(e(Vv )) =

for x £ U

;7(6- v for of( V) G v,
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N

is a (7 -isomorphism for r <2k -2,
Instead off giving a detailed proof? itAis sufficient to

observe that this Lemma is dual, in the sense of the Spaniers

Whitehead duality {19], to Lemma 10 below, ,
' It X 1s a finite complex of dimension < 2n=2 then the set of

all hoﬁotopy classes of maps
— £:X -+ s°
Mama
form a group T;n(x), called the n=th cohomotopy group, Thelloo“’
Hurewicz homomorphism"
g P - 1(x;2)
is defined by -
(£) =% ™) _
where o O genarates Hn(sn;ZJ. (For further details see [18;.)

Lomma 10 (Serre): The homomorphism

g (X) - BR(X;2)
is a (¥ -isomorphism (for dim X < 2n-2),
For the proof see Sorrs [16],
Applyiﬁg Spanier-Whitehead duality, Lemma 9 follows,

* - 3
7. The structure of {°* modulo i

By the rank of an abelian group 13 meant tho maximal numbor.or‘

elomonts which are lincarly 1ndapundent.

5 an erated and
Tueorem 37, The cobordism group 1o is finitely gen

has rank

T Vel

e

e ot

s b =L

e R e

~ —

P P e e
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. 17(8) for n = 45
l 0 for n:£ 0 (modulo 4),
The proof will be based on
Lemma 11: Assume that k and.h are suffieiently large, Each}

of the following groups is finitely generateq, and haq ranic I7(s)
.or O.according as n = 43 op p Z 0 (mod 4):

(1)  the cohomology group Hn(a;;h;Z):

(2) the cohomology group En+k(T( F;k);z) H

(3) the hormology group Hm_k('l‘('.}"’hk);z); and

(4)  the homotopy group T b )‘v‘hk)),

Proof.

Assertion (1) foliows from Theorem 32, According to

Lemma 2 the cohomology Groups of the Thon Space are iaomdrphic to

those of the base Space, with g dimonsion shift, This proves (2);

Assertion (3).now follows from the univorsal coofficient theorem,

together with the fact that T(iyhk) i3 a finite complox (Lomma 1),

'”Assortion (4) now Lollows 8ince the Hureuioz homomorphism is a

& ~isomorphism (Lemma 9),

Proof of Theorem 37,

According to Lomma By 1 tn u homo=
morphic image of .TTn+k(T{ ;}Tkj),

geénerated and

Therefore 1 ™ 44 finitely

~ rank f}435 71(8), rank D = 0 for n3o (riod 4),
But according to Thoorem 35 Coroilnrx,?:
rank 049 5 (g,
This Completes the proof,
Now conaidor the tensor product of iL* with tho rationdl
numbers, The argumont ohows that the veotop 8pace qu“{? Q has

rank 7i(a), ang also gives an 0xplioit basisg

namoly the set of
products ' -
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211 21, :
P (c)r\occy\? (G)J 11.'.11'6 i:':(s) L

This proves:

Corollary l.
polynomial algebra

¢ ure of &

The alpebra .. *& Q has the struct

generated oy the complex nrojective anaces

226y, 1 =15 25 eee o
Corollary 2. If all of the Pontrjagin nwnbers pf M2 are zero,
thon some multiple Ayn x>0, 18 & boundary.

For otherwise there wculd be too many linearly indepandent

: n
eloments oF o

Thom has made the following conj
“Whutney numbers of W

ROmATL, ecture (un:

1L all tho Pontrjagin nwioers and the stlefel

ported oY
ir M

are zcro, then M 1s & boundary. This conjocture is sup

the feot that (L™ nas no odd torsion (}ilnor [13]),.that 13,

15 not a boundary no odd multiple bounds, (ilote that Thom has

proved 8 voaker statement if wa lgnore nuastions of orientation

(p, 10): 1F all the stiefel-Whitnoy numbers are 610, ‘hen ﬁnlia
an (unorionted) boundary.) '
"XV The indexX theorom

The material in this chapter iy due to Hiirzebruch {73, [8).

Mw]tinlicutiva sgguenced.

Lot A po a fixed comaubativo rin

application A\ will ®

1.

[ with unit, (In the main

a tho rational nuwibors.)

The symbol A% will stand for a

Rovi iy of Chapter XIII

mmatative. I\-algobru corres=

with unit, To each such AY

graded c©

ponds & group i 1A with olomont3

= (1’ al)aalo-v) =1 +al * 02 ¥ eee *

oublished).’
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For each ()€ T(n) there 18 a polynomial
o3[ A" = A%

which satisfies.the product -formula of Theoreil 33

Consider a sequence of polynomials

(x i I ‘

[w:lth Kl l)’ ‘cz(xl!xz)l &J(xl‘x2’x5)’ LR ]

. coefficients in /\ such '

: that, if the variable x

[degree i : ;8 aaﬂignad

!

|

i
@ f

(1) each'Kn is homogeneous ol depree n,
Then given A¥ as abo el
ve and given a €l 1A*, define a new

element XK "
ent K(a) €1 lA by the formula

. Alz,
K(a) = 1 l 2
o (1, 1(1(31): ‘(2(‘11:32): seiel i
efinition: {Kh} i3 a multi
plicative scauence of
the identity  polynomials if

(2) K({a*b) = K{a) "K(b)
1s satisfied for all A¥ and all a, b € L IA“

O Y y
I L ]pl ° ( I ) 1 n ﬂn n an l’\ A pOl n 1 l
ar es G U 9 cons t t 6 tl]e omiala

Kn(xl..ﬁ.,xn).. A xn

oy

=

Corm a multiplic v ma,
by ¥ ative sequence The ¢ +
inl % ases A 1 (identit
4 Y P)

and A = =1 (o
ompare Thoorem 28 p, 77) are of particular 1nteréat
L]

(II) Tuo- identity K(a) 8~

= dofinaﬂ a..] e
bequonco with nu tip_licativo

l: ul(xl) = l-xl

G (xlxa,xa)

L
nge polynomiala describe

By i
Kg(xl:le = X 7e%y s

—_—
xl + lexa- 50 oto,
the rolations boetwoon the Fontrjagin

REEELE of the
: tangont bundle and normal bundlo of'a manifold in -

W b
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‘Euclidean spacs, 5

(IIT) The polynomials Koney = 05

+ ase * Bx.x 2\ on

e
e T 1%2n-1 *

n

)

Iczn(xll ese Jxan

form a multiplicative secquence (Compare p., 82),]
The following theorem gives a description of the set of all

_possib;e multiplicative sequences, Consider the polynonial ring

A (t], with degree t = 1, Then |’ 17 A [t] 1s the set of all formal

pbwer series

s goowe
f(t)_=1f?~t+)\2t +

l a0 8
:with coafficionts in /\.

) Alsl.

Theoruin 38 (Hirzebruch),

In particular 1 + t is an eloment of

Given & formal power series

Cfit) ef}j“[t]' thero 1s ono and only one multislicative ssquence

1} satlsfying the condition
KL+ t) = (%),
(The condition K(1 + t) =

; n :
the coeffioient of x,” in oach Kn(xl""'xn) be }\n).

Dofinition,
belonging to the power series £{s).

Tho throo mult;plioative gequences montionod above
‘bolong to tho power sories 1 + At, 1 =t + t® 4+ eo0ep And 1 + ¢

(Examples,

rospoctivaly.]
_Pumark. Supposo that {K } helongs to £(t), Then the 1dentit7
1} '
Howover this 1dentity i8 no long*’

K(l+ay) = f(a
*holds for any A* and any aleAl.
truo i somothing of dogree # 1 is substituted for 8y,

————

i
‘l
|
|
l
[

£(t) 1is equivalent to the condition that integers,

{? } will bo colled the multiplicative sequence ! For the Bpecial case a = 1 + t
- ?

e VR 8 g

[
(3

Proof of oxistence,

£(t)

Given

+

= + A 2
1 Ayt f\a t

define

(x e esXy
Tlogoeeasny) =8 e ritmy A
where w = 11...1r€jT(n). Introducing

1 ...,\i 511,..111"*-1! n--!-xn)l
- the abbreviation
A 11"'11': f\il...y‘\ir, this, ileans that

i{a) =Enz-

weIln) -4,,%, (a)

or

= Zw’\wau(a)

Whera + '
. he'summation ia over all partitions of all the integers,Now

K(a*b) = A ( 3 |
a'b) =
“CwTw w }—cu >\l.».iz"-t’l"n.‘a =iy u' (&} 4 (b)
- T : . ’2
= > ® s : '
— ) o) =t - (a ‘ i
1w S ) fw, () ﬂ‘”zs“‘a(b)
=L My 8y a) T, A '
17w Py _Zwa Luaswz ()
whare again the sum .
mations are over all .
partitions of
Henco S5 o
K{a‘p) = &(a)*it(v),
‘note that
k
t b &7 11 =
8,(1+t) = i
" 0 1r w=
‘Honce K - 1 ‘ N 11"'1r' e
(1 +6) =3 +F S T required
Proof of . )
Zroof o uniquoneaa Considor the 8pocial cage
A[tlluol't J Hhere the t

are alged
_H0groo 1, ana gebraically indopondght of

o = {l+tlf ...'€l+tn);




Then

Telting the homogeneous part of degree
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R Rk i L LM S £(6).

n, it follows that

T ¥ £t
K (a’l,...,d ) is completely determined by the poaer series {t):

are algcbraically indegandent, this® comletes

Since Cflj'oa-’ a-n :
the proof.,
Romark, Hirzebrucn has given the following, more convenjent,

descerintion of {&n} in terms of f£(t):

‘:equal 'G'O sil.'.ir ,(.Al,'.', f\n) .

[T 8]
[y

The coefficient pf»xilz'.xir

Assertion: in Kh(xl,...,x ) is

v

o s gt

. ¥ b o TSR |
: {
|

Comparing this with the uniqueness proof above, the following

idéntity—is obtained

I{n(xljl-.jxn)'=z f\‘iliili f\irsi ‘..i (xlaono)xn}

=5's

This evidently cxpresses a symmetry pfopdrty of the Follecﬁioq O{.

L

(A.l‘...’{\n)xsjl"'xj ] !

Jl-'.jk k ;

polynomials 8, .
Definition: Given any multiplicative saquonce {Kigxl....,xi%

S : ]
with rational coeffioionts define the (-genus K[i'] of a (compact,

oriented, difforentiable) manifold to he zero 1f n is not.diviaibl

by 4 and '
48, _ '{( p) =
]{SIM ] =< .la pll..-i 8 ’ f\43 !
o jagi £ the tanil
for n = ﬁa, where the p, denote the lontrjagin c;ass§s o ti. tangl
‘bundlo,

Lawmna 1, Tho correupondonco M = K[h] dofincs a ring homo~

i i i . ratd numbers, (&
.morphiam from tho cobordism ring 0" to thg rational ; . :

alpebra homomorpniam from rg to Q)

saan

. quadratic form in the usual terminology) .
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Proof, It is clear that this correspondence is additive, and

that the i{-genus of a boundary is zero, For a product manifold

MXM' with Pontrjagin class pxp', ve have K(pxp!) = K(p) Wi (p'),

hence

< K(pxp'), PNV > = < K(p), e><ipt), s>,
- which completes the proof, :
-Any ring homo=

Remark: The convefsq 18 not hard to prove:

morphism 1" +'Q 1s given by the K-genus for some uniquely deter=

mined X,

2, The index theorem

The index I of a manifold M* is defined to bo zero if n is not

a multiple of 4, and as follows for n = 48, Choose a basis

-3 1reees dl" for HQBCMQS

; Q) 80 thai the syrinetric matrix
I :rr Yo flyg >l
is diagonal, Then I(M"Y) is the number of positive diagonal entniq:

minus the number of negative ones (1,0, the sicnature of the

The followin, three pro-
perties will be noeded: . |
(1) I(q + iy) = 100) .+ I(M,),
(2) I(Ml M,) = 1)) o (M) . |
(for tho proof soe Hirzebruch [9]},‘nnd e
(3)

(The proof, due to Thom [22], 13 based on the Poincars duality

if M is a boundary then I6i0) =

theorem), In other words I gives risa to a ring homomorphiam: rrom

O to' the integers,

nomar®, -Although those proportios will be nooded only for

1ifferontiadlo manifolds, they are true for much moro nenoral

.
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‘(compoct, orliented) manifolds,
' ihooreg_?Q,(Hirzebrﬁch). Let {Lk(pl""'pk)} be the multi=-
" plicative sequence of polynomials belong to the power series

1 .2 k-1 2%k

£ AR T | il S e g
(%f/ tanhjt =1+ £t = == 87 + = ., +(-1)

Thon the index I of any‘(compact, oriented, differentiable)

manirold M4k is oqual to the L-genus Lk{M4k],

Hore B, donotes the k-th Bernoulll number: B, = 1/6,

2 X/30, Jiw w The first thrae polynomiala are

1 e w2 "
Proof, Since both I and L] ] define algobra hopomnrphisms

*®ae~q, _
it 19 sufficient to check this assertion on a set of generators for
the algebra 7.*QQ, According to'Theorem 36 Corollary 1, such a
set of generators 1a provided by the complex projactive apacaa
ke
- Lik\lct NI TR 1 follows that the index of sz(C) is +l.

Since Hak(Pak(C) :Q) is genarated by :L » with

Rocall ghat tho Pontrjagin class p of ng(c) 1s (1+ 42)2L,
(Seo p. 82,) Ve have i
L(1+x%+ 0 + ... ) =%/ tanh o
and hence
‘L(p) = (a/ tanh ou)?¥L |

The Aronockor indox < L(p),,a4k> 13 oqual to the coofficlent of u
Roplacing o by tho compleox variable z, this

in this powor sories,
2l ara (2)

coofficicnt can be ovaluated by (1) ‘dividing by 21) iz

intograting around the origin, But the subatitution u = tanh 2

) B ""f

~ 2k

. Bequences, without giving detailed proofs,

-~

e
s
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shows that

4 dz :
0 ~— : = ¢
5 z)ﬁk+i :

.| 2 '
=4 (1+u"+ ,,,)du = 2,714,
9 2kl _

du
[21)
u”‘+;(l-u2)

Therefore < L(p),/14k> = +1, which corpletes the proof,

The L=-gonus ol any manifold is an integeq.'

Coéollarx Ly

Tho index I 1s an integor by definition, In other words the
Pontrjagin numbers of any manifold satisafy cousruonoea.
py (4] = o (mod 3),

7p2[Ma] - pl [M 1=0 (mod 45), etc.

Corollary 2, The L-genus of a manifold is a homotopy type in-

varlant of the oriented manifold, asince I 18 a homotopy type

invarient by definition, It is likely that the Pontrjagin numbers
thomselves are not homotopy type invariants, (The Pontrjagin
classes are definitely not homotopy type invariants: see Chapter

XVI§ s,)

Unsolved Problem: Is the L-genus the only lincar combination -

of the Pontrjagin numbers which is a homotopy type invariant over
the integers?

3., An axiomatic description of characteristic classes,

This‘suotion will sketch another.applicat;on of multiplicative

For further iaforma=-

tion see Wu(29] as well as (7],

Lomma 2, Lot /\ be an 1ﬂtogra1 domain containing %. Then the
cohomology algebra

H* (6.; ”\)

'o$ the rpaI Grasamann space 18 o polynomial algebra gonerated by




"y
Ry

pl( /n}; cew) P[n/g}(/n)u

Proof, This follows from WQheorei 32, together with tha fact

En is a 2-fold covering of G, » and the fact that the Zuler class.
changes sign when the oricntation of a oundla is reversed,

It follows that characteristic classes with coefricients in A
can only bo defined in dimensions divisible by 4,

Lot {Kh} be any multiplicative sequence uith rational cosf-

ficients, Then tho formulas

k(% Kp(f)seeesp AEEIP
claarly dofine "characteristic classes" of £ with the following
proporsies: ' . |
' (1) For each real n-plane bundle ‘§ over a paraconmact base-
B, the classes e ( ¢ )€H4n(B :A) are defined,

(2) the operation . - Ic, (¢) is natural with respect o,

bundle maps; and

» (3) the sum k = 1 + k, + ...'Gf'lH“(B; f.) satisfies . .

1
WD n) = k({)k(n).
The following converse is easy to prove, Consider the 2-plane |

r '
bundle § R ovor PORC). (Comparo pages 63, 75,

‘The total Pontrjagi
class of g TR +ci2, whore Cx hes dimension 4, ¥ '
o d. ' Suppose that an cperation k sat.iafying' (1) '(a],' l
(3) is givon, Dofine a formal power scries £(%) by the condition L
£a®) = K(g ) 4 ¢
and leot {Kn} be tho oorrospondina,multip}icative_seqmoncnf Thén
kal €03 K (23067, 00 0s2, € 1)

e . . :
for all & , a

i

o ey

ok
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As an example for'any bdd;prime' q, consider the reduced g-t

pOWe;\_ppeI‘&t_i..qllﬂ
Cpi. i (x z ) —»H’“'+2 (a-1) ;32 "R

- In ana]ogy with Thom's definition of &tiefel-'hitney classes (p.)

it isirnatural to define a characteristic class_
' 21(q-1) 5
9 (5)er™ B )52

by tho fdentity Q(() = g .

°

Theorem (Uu) This characteristic class gi(g) is equal to

LjK : (p( )} mod q where {h } is the multiplicativa aequence
(q-l)
over Zq-corraSponding to the power series - i
e g g %(q-l)
£{t) =1+ ¢

(Thus for q =3, Q({ ) =p,(¢); and

o i )
for q=5, Q =Py =2py 1P,y += ees X 2Dy, ]

.

The proof 1is not difficult,

Remark, Just as in the mod 2 caso it can be -shown that'Qi(n
for the tangent bundle Ln of a manifold, is a homotopy tipe
invariant, (Compare Theorem 17 p», 55,) 1In fact

- E 2
Q= Vg vV +TVyp ¥+ e

‘Wwhere V ié characterized by the ideatity <q?5 JETT R )“VJ'P
for ,all o Gﬂnﬂaj(q'l)(Mn;Zq). As indicated eariier, less is
known about the existenco orX linear combinations of the Pontrjagl
numbers which are homotopy type invariants with integral

coeffirients,

g
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XVI Gombinatorial Pontrijagin classes,

For any triangulatad manifold ™ Thom (25] has dofined classes

3167H41(Kn;Q) wiaich are combinatorial invariants, In the case of a

ifferantiable manifbld,'suitably triangulated, these coincide with
n .

he Hirzebruch classes Li(pi""’pi) of the tangent bundle +
ince the equations ji = Li(pi,...,pi) can be uniquely solved for

ne Pontrjagin classes:

. e
=34y py =g (a8, -

: follows that the rationaerontrjagin classes pi('rn)€H4i(Mn;Q) are .

ymibinatorial invariants, {This rama?k depends on the fact that the
refficient of Py in Lk 1s never zero, See Yirzebruch [9].)

Sections 1 to 4 will give a new version of Thou's construction,
ction § will give two applications, )

(1) 4An example 1s given of two 8imply connected manifolds which
long to tho same homotopy tyse, but are not combilnatorially equiva=
at, :

(2) an example i1s given of a combinatorial manifold which does
> possess any difforentiable structure compatible with tae Given

binatorial giructure,

Tho difforontliablo cagse,

In order to notivate the dofiniticn ve will first give a new
erprotation for tho classss Li(pl,...,pi) in a differentiable
anifold, Tho restriction n > 81+ 2 will be aescded at firast,

Considenr o “difforontiable map £:M° o Sn-&i of class C°°.

(S8

' i n=-41
Lemma 1, For almost every point y € S the Inverse image

r’l(y) is a differentiableé manifold M 1( M having trivial normal

bundle,

il
Here "almost every" means "except on a set of measure zero',
Proof: (Compare Chajster XIV 3 3.) It follows from the Theore
of osard that almost every y € Sn-41 is a rogular value of £, 3But i

¥y 1s a regular value -then f'l(y} 15 a manifold (Chapter XIV Lenma
and the norwal bundle of f'l(y) maps ;nto the tangent bundle of
sh-4l o¢ y, hence is a product bundle,
' k(5. 2
Let o k, M. denote the standard genarators of H"(S";Z),
n :
n :
I (M%;2) respectivoly, The class Li(pi(f },...,pi(r ) )eH (2 ;Q)
n
Wwill be written as Li(iin : oy
"’ . s i

Theorem 40: Tor every differentisblo nap £:00-s and almos
sh~41 41s" Kwonesker index
n'4i)'/4n> .
' -1 A .
is equal to the index I of the manifold £ ~(y) = M -, In the cas

every y €
<L, Moo

n > 81 + 2 the class Li(ﬂ_n) is complotely characterized by this

ldentity.
41
Proof: Let T 4% be the tangont bundle of N ~, and

gt o

‘the inclusion map, Then J {18 covorod_by_n bundle map

T4 @ v L1, Since the noraal bundle + P g trivial, tn

' : n
means that Li(T'4i) is equal to J*Lit-r )+ Hence the 1nde§'
— 41
I(M4i) = <.Li(‘ ),/;ri>
is equal to < Li(I'Q), I pigy >
Tho Poinocaré dual of tho homology olasa

Jupgy 8 :x“(a-r-.“;m'
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1learly tac cohomology class 2 e B s o

(o n~4i) € Hn'4i(Mn;z) . . 5 | s } A typical consequence 1is:
efore ‘ W e :b‘ : Corollary 2,
'n.éi)f‘/un > ' B T 1"=8(p™(c);2) is divisible by e

£¥(o il Vs prg> o L . 2, 'The combinatorial case )

Tho following will be a convanient class of objects Lo work witl,

If m= 0 (mod 3) then every element o thae image

<Li( fn)J R 4T = < Li( ?n)a o

= L, T T

ra discussion off cap products, sec the appandix )

3 proves the Tirst assertion of Theorem 39, i _ Let K be a finite simplicial coriplex,

Definition: X 1is a (compact, J;'@l;cial) (rational) homolony

To prove the second rocall that, for n < 2k - 2, the group

ﬁn;Z) is genorated, modulo Qj, by tuose conomology classes of the n-manifold if the atar boundery of each slwplex has the rational

™o k); where (7~ is the class of finite abelian groups, (This ' ' ‘homology groups of an (n-1)-8s>here, [Tais condition can also e put
a pesult of Serre (16)], Oee Chapter iIV Lemma 10,) Now substi=- ‘ } 11 the following topologically invariant form:; for esch point X e
ing « = n—éi, the restriction n < 2(n-4i) - 2 becomes n > 81 + 2, ; | she local nomology groups
¥

. [Romariz, As a method for computing L, i w1 Thoorven 39 is Hi(K;K - x; Q)

bably hopeless, Howover the following consequence might be useful should be zero for 1 # n and isomcrphic to @ for 1 = nsl

studying cohomotopy groups of manifolds, Eanch cor onent of such a comploi K 1is clearly a simple n- |

Corollary i, For any element ﬁ*(f) in the iﬁage of circuit, (See Lilcnberg and Steenrod [4] p. 106,) Hence it makes

#ptitaf) - Bl 2)
By, gEe), ol i ! specified by an element
€ H_(K3),

aense to require that K Dbe oriented, The orientetion may be

ironecker index < Li(T

an integer,

~ This is non-trivial since the class Li(*cn) is usually not -an Similarly one can define the concept of a "bounded houwlogy

egral class, For example, for the complex projective space BT, n-manifold" X, In this case tho boundary K is a homology (n=1)=

manifold, and the orientation is spocifiod by /,e Hn(R,K;Z).

v class 1 + Ll + L2 + ... 18 piven by

Let f:r donote the boundary of an (r+1)=simplox, Tuo key iecmma

' 2
L( th) = (¢ /tanh & )m+l =1 +-P%.l.u2+w Sm” + 3m = 2 (14"' .
‘ : - y will be the following

Lemma 2, Let £ be a piocowise lincar map from a howology

n-manifold X to ‘y', 'r = n=4j, Then:

e B e e D e mmn  — e —

e ——
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(1) For alnoat evory yei'r tho inverse image £ (y)‘is a

xmology 4 j-manifold. Given orientationa for X and’ E' , there is

1 induced orientation for £~ (y). _
(2) The index I T 'l(y) is independent of ¥ for_almost all vy,

;ﬁote this constant value by I(f), Finally:.

(3)

Here "almost every" can be taken to mean "except for Yy bLelonging

The integer I(f) depends only on the homotopy olass of £,

’
i

> some louer dimensional complex",

(Remark: There is some analogy between this defznition of I(£),

2d the definition of the Hopf invariant,)

The proof will be based on: e
Lemma 3: Let f:i - L be a simplicial mgp and let y Dbelong

5> the interior ( of a simplex of L, Then £ (A ), is8 homeomorphio

> bx My,
(This assertion would be fulse.for a closed simplex,)

2roof. Lot A ,..esh, denoto the vertices of [ and let gl

LD i s
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Note that the composition
£ wpx £ D
£X(A) ). Hence £71(y")

Remari:
seonard

is just the original map £ (restricted to
(y) for all y' € A
(1), Subdivide K

Assume that ¥ belongs

is homeomorphic to et

Procf of Lemma 2: and [ ¥ so that £ 18

to the interior A of a top

& o
Since A has tue local homology

simplicial,

dimensional simplex, Then by Lemma 3, (y) has tho local

homology groups of an n-manifold,
groups of an (n-d;)-manifold, it follows easlly that f-l(y) is a
homology 4i-manifold, Furthermore, given orientations for A and
Ax et .

The remari above stated that f'l(yﬂ 1s homeomorphic to r'liy) for

(y), there is clearly an induced orientation for £

all y' € A . Therefore:
(¢) If y 4is chosen as above, then the index If'l(y')'is inde-
pendent of y' at least for y! in a neighborhnood of ¥.

Now suppose that f and g are homotopio plecowise linear m&ps

K= 51, Then they are related by a niecoulse linear homotopy.

Y = Bohot eee + o, i hiK v (0,1) » 57
shere t, > 0, Z:ti = 1), Then. any x € f'l(ﬁ) can be expressed E Subdividing and choosing y € A as above, a similar argument shows
niquely as : _ ' T EL that h-l(y) is a b~unded homology manifold with boundary f-l(y) -
x = tol Aol t st tr' Ar' J; g"l(y), Since the index of a boundagy is zoro, this imﬁlias that
ith A, & f“l(Ai) being points of the boundary of the simplex of K % () ;f £ 18 homotopic to G{ then Iffl‘Y) = IG-l(Y) for almost
o which X belongs., The requirad homoomorphism -3 ; all y.
‘ I"l(A) — f'l(y) ' g ‘Given £:X™ = f_r let y; and Yy, be any two points satiafying
s now defineod by (4) above, Let :
x<—--->{t'h+...*t‘A.tA‘+;..+tA'). . u=£"~£’
; : ”‘——-v-**"‘""“ g e e e
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? a piecewise linear homeomorphism of degree +l1 carrying vy into y,. - Ppoof's Consider the dlagram e
aen uf is homotopic to £, heTice _ # : % ; : .

-1 4 o | ) —L > Z

I(£f™u "z) = I(L “z) _ ;
: B ..1 3 : £ "
»r almost all 2z, Choosing 2z close to y,, 80 that u “z is olose' ) : g s o
b) it follows from (4) that * y -
- a o ' . (0 2) ——> Q.

12 S Yl) = I (Yz ) ‘ %
1is proves assertion (2), Since (3) now follows from (5), tais - 7 Since g* isa C -isomorphism (Chapter XIV Lemma 10), the bottom
ompletes the proofl, : IR arrow can be filled in uniquely, By the Poincars duality theorem,

Lomma 4, If n> 81 + 2 then the correspondence f = I(f) :3 the resulting homomorphism I' is given by the formula

n=41,.n _

nes a homomorpnism from the cohomotopy group T (K") to the . s
ofl P . ¥ ﬂ'-“:"’i"'/s‘,/‘n’ | .

ntegers, : ior some unique 'fi € H4i(xn;Q). This completes the proof,
Proof, It follows from the definition of additjon in the coho-

- - : -1 ‘
otopy group that (£ + g) 1(y) is the disjoint union of £ (y) and | 8, Tho compatibility thssben *fi(Mn) =L (Th
X i e 1 »

B i nd aln their - :
(y), providing f and g are chosen carefully vitaln the - 1 Now it is necsssary to compare the combinatorial and differon=-

omotopy classes, Hence I(f + g) = I(f).+ I(g). "'""‘ |, tiablo situations,
The main tpeorom will now follow easily: . ! 1 . ; By a trisngulation of a space 1s meant a homooworphism of &

Theorem 41, For n > 81 + 2 there exists a unique cohomology simplical complex onto tho space, J, K, 6, Wattakisad hua shoun Al

a differentiable manifold M" has a preferred class of triangulations

i
laas '
L € B EQ) )

l' ‘ . tiK =+ Mn
|
|

:"-i
uch that the identity =

< Zy wf¥(o ), > = I(1)

y _ned4i’
5 satisflod for overy map £ =~ ;.n i.

which are called_Cl-triangulutiona. (See [27], (12],) The complex
K which occurs is uniquoly dotermined, up to combinatorial equiva=

n-41(z:ni4i;z).) lonce ( = piocewise linoar homoomorphism), iience the class

(Here o donotes the standard generator of H ‘
' | : (" ¢ attofq) a t de; SR
' 5 Ay H 088 no epond on tho particular ¢ =triangulation

t which is chosen, This olass will be denoted by Likﬁn). (It 18

of course defined only for n 3 81 +2,)

POREPe B SRR I AJR0H PR L L T it a7 v T T— Py ——m— -
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Thoorem 42, The class -":i(mn) (defined for a differentiable

manifold by a cowmbinatorial procedure) is equal bo the Hirzebruch

class Li of the tangent bundle,
Proof: Let £:M™ =+ S be a differentiable map, We will con=

struet a diagram

t -> w
l
}fl i
’ w‘
—i &,
- : 1 : E
commutative up to homotopy, "here t and tl are Cr-t?iangulations,_
" 80 that
= VP -1
If ") =17

for almost all yleKl, y € Sr,

~will complete the'proof.

Let y € s ve any regular value of T, JIf B is a sufficiently

small ball around ¥, then the inverse image f'l(B) can be considered

(y)s Choose a Cl-triangulation

! b ol
tlle -+ S

80 that somo subcomplex K2 of Kl triangulates DB; and choose a

as the product BX

Cl-triangulation Ky - f'l(y), Thon the product triangulation

Ky XKy = BXL7H(y)
oan be extonded to a triangulation t:i - Mn.

Tho composition tl‘lr tiK ~ Kl will not, in (general, be plece=-

wise linoar, Howover its rostriction to Kzﬂ.l{3 is Just thP pro jec=

tion map into Ka 4 Ki, hence is piecewise linear, Choose a piecewlso

Together with Theoremes 40 and 41, this

gLy
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linear map'rl:K -+ Kl which agrees with tl'lf t on KVN‘KBJ and approxie
(y‘) will be
1

mates 1t elsewhere, Let vy denote f l(y). Then f

homeomorphic to f(y), Hence

" = 1My = 1y = il

for all yl', y! close to 7y and y Yespectively,

This completes the proof,

4, The unrestricted case:

So far the condition n > 81 + 2 has beon imposed, iowever given
K™ one caﬁ always form the product space Kn; E_m with m large, The
class .,1(39) can then bo defined as tho class induced‘from

.éi(Knx Erm) be the natural inclusion map, It 1s not hard to show tha
this new class is well defined, and has the expected properties (For

< of U5 ey im0 )

Another extenslon which can easily be made 1s to bounded nomology

axample

manifolds, It is only necessary to substitute the relative cohomotopy

groups
ﬁ‘n-41(Kp’Rn)
and the Lefschetz duality thoo§0m in the above discussion,
5. Apolications

The first example which will be discussed was diascovered
independently by Thom [24] Pe 8l; Tamura [21], and Siimada {17].

Lomma 5: Given integers

m and n uith n > 4, thero oxists an:
n-plane bundle ¢ over 34 with pl( {) = 2mer ,

(oo = atandnrd generator of i (s i2).)
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famesi: A corresponding assertion for any sphere s%% has

recently been pro#od by Borel, Hirzebruch and Boit, The ipteger'Eﬁl

must be replaced by :
(2k-1)} G6.C.D. (k+1,2),

Tnls is a best possible result,

proof of Lomma 5: First assume that n = 8, Let 1:8 denote = . |

the tangent bundle of the Quatanniop projective plane

u generate K4(P2(K);Z)¢w Z. According to Hirzebruch (8], the ik

Pontrjagip class of 'Ta is 1 + 2u + 7u2. Since this apéoe is 3=~

connectod, there exists a map- 3 &5 A
r:s? - p2(x

satiofying t*(w) =mo . The induced bundle EB over 54 will noy 

satisfy Lomma 5 for n = 8, Forn > 8m the Whitney sum

;8 ) trivial (n-8)-plane bundle
will catisfy the Lemma, -
Next consider the case n=7, Using obatfuction theory, it 1is
seen that 38 has a non-zero cross-section, In other words 278 is
~ -

the Wnitney sum of the required 7-plane bundle g7

and a trivial line
bundle, This construction can be iterated until the case n=4 1s

reachod, which completes the proof,
[Tho obstruction to further iteration is X( t4)€H4(S4;Z), This

is dofinitely non-zero since w4('ra) # 0, Seo Theorem 18, p. 56,]

Tomma 63 Lot 4 D ve a differontiable n-plane bundle over B and ;

1ot TF bo tho tangont bundle of 3, Thon tho Pontrjagin class of the

total space E of {n 13 glvon by
r
plE) =¥ Ml T

P%(K), and let |

Similarly, if EO' 13 the set of unit vectors in E, then

p(E,1) = M, *(pC{Mpl "))

Proof: The tangent bundle of E - 1s the Wnitney sum of

(1)
: (2)
Since (1) maps into gn and (2)

the bundle of vectors tangent to the fibre, and

the bundle of veotors normal to the fibre,
maps into T ', the rfirst assertion 18’

1s trivial, the second

clear, Since thglnormal bundle of E ! in RS

assertion follows, N
Zxample 1: Consider an n-plane bundle . over 5% vhere (for

convenience) n > 6. Then it follows frcm the Gyain sequence that tue
homomorphism

rPtstin) - BHE, 12
is an isomorphism, If pl(g ) = 2m o, it follows that 25

f

py B YY) = 2m1T°'*(c )
(p. 79.).

Since the Pontrjagin class of Ed' is & coimbinatorial invariant, it

since p(T‘n(Sn)) =0

follows that the intéger |m| is a combinatorial invariant of B M
Thus as m varies we obtain infinitely many manifolds which are
combinatorially distinct,

On the othor hand, according to James aad Whitohead (10], these
manifolds Eoly for fixed n, fall into a finite number of distinct
homotopy tymes (namely 13), This proves:

. Assertion: Thore exist two differontiable 8imply connected Y=
manifolds whici have the éame homotopy typa,‘bﬁt are not combina=

torially equivalent,
- [l l \ 1 r '

3 W !
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(The dimension‘g can easily be improved to 7.) It 18 not known

~ whether theso manifolds are homeomorphic, In dimension 3 there do,

exist manifolds which have the same houotopy type but are nut homeo=

morphic, although the proof in that case hinges on the fundamental

group.

and Shimada [17]).)
Lemna 7: Given integers 1,j eavisfying 175 2] (mod 4), there

exists an oriented 4 plane bundle % over 34.having characteristic

"
classes
ppln) =10 Ap)=3o .
Remart: The integers i,j actually determine the BQULValenGG

class of tho bundle, Tnis is due to the fact that the homotopy group:

ICAE®

Prooi of Lemma 7:

1’3(80 ) 1s Z2 + Z, :
First let r) range over all oriented 4-plane

bundles over 54. Observe that the corrésponding set of palrs
pl(r\} X(r,) forims a subgroup of ths direct sum
wt(s?; 2)53(342)-«4&2

In fact each.auch bundle [}y 13 induced by some map fl:S% -+ 54.

Given two such mapa‘fl,fz form the sum or differonco fi L fa as

defined in homotopy theory, and lot rj be the bundle induced by

L, + rz. Then it can be seen that tho charact:ristioc clagses ok =y

1 -
“are: .
pl( '\) = Pl( ql) * pl( ']2)’ A( ) = x{ hl) + a{ V\ )o
liow considor the following two bundloa. (1) The tangont bundlo
T ot .SG, which satisfios- . '

(th =0 XTtHh.s20 . (s0e p, 79.)

The next example is due to Thom [25}. (see also Milnor [11, [12]

134
(2) In Lemma 5 talte n = 4, m =?l. The resulting bundle §4 will ’
satisfy. '
" .
W4( Q ) # 0,

2
since w4(?-(K)) # 0 [See Theorem 13, p. 56] and hence

Pl(§4)=20',-

4
x( {*) = somo odd multiple of o ,

But starting with the pairs (0,2), (2,2r+l) and forming sums

" and differences, one can obtain any pair (i,j) which satisfles

4 =2 (mod 4), This completes the proof,

Example 2: In particular consider the bundles for which j =

(that is X = o), Then 1 can be any integer congruent to 2 modulo

4, Using the Gysin sequence, it is seen that the coryesponding total
spacea Eo' all have the homotopy';ypu of the 7=-swhere, Actually each
such Eof is homeomorphic to 87(389 (11])); and even combinatorially

equivalent to s (see (12]). Nou'consider the Thom space T of such
a bundle, T can be formed from the space E! of vectors of length

g 1 by attaching a cone over the boundary Eo" Since Eol is a_7-spﬁare
it follows that E' is a compact B-manifold, [Furthermore any cl-

triangulation (in the sense of Whitehead) of &' gives riso to a

triangulation off T.

It follows from Lomma 2 of’ Chapter XIV tuat
nZ for k' =0, 4, B
H(1;2) ={ i

0 othorwiso

Furthermore it is ousily vor:fiod that tha homomorphi sma.
nt(st ;2) —Jl-——, H (E';2) < i (T;2)

aro isomorphising, Lot d', ¢" bo the elemonts in tho aecond £wo groupa




corresponding to the standard generator o% By tie Poincare duality”
t ieorem, < O h;d",}l > must be * 1, ience, choosing the orienta= -
tion /( properly, the index I(T) is o
According to Lemma 6, the Pontrjagin class p, of the bounded
manifold ﬁ‘ is ior ', Hence the cowbinatorial Pontraaéin classea
(n') and pl(T) are the rational classes corras;onding to io-'! and

10" respecuively. Therefore the Pontrjagin number p, {T] is equal

to 12

Using the index theorem

_ 1) = J5 pplT] - =35 py (7]

it follows that the other Pontrjagin number is given by

45 + 12

.pa[T} B e——
But in general this is not an integer, .{e.g. for i = 6,) Since a
Pontrjazin nunber of a differentiable manifold imust be an integer,

this implies

Assortion: For 1 7 + 2 (mod 7) the triangulated 8-manifold T '

possesses no differontieble atructure which 1s compatible with the

given triangulation,

As a corbllary, it follows that the differentiable 7-manifold
E ' is not diffeomorphic to 37, For otherwise T could be given a
differentiable structure which was compatible, :

In conclusion, hore is an

Ungolved Problom, Lot (1. [or (1,1 denoto the analosuo of ‘the

cobordism group in waich homology n-manifolds [or combinatorial
( = formal) n=manifolds] aro used in place of differentiable

n-manifolds, VWhat is the structure of these gHroups, and wiat can be

456

said about the natural homomorphism n° 4(10N - ian? It should be
noted that in the combinatorial case, Zontrjagin nwibers are not &
invariants of homotopy type (ef, p. 118) for it can be shown that

2
45 + 1
——

among the 8-manifolds.above for which p2[T] = (for any i =

2(4)), there are only finitely many homotopy types.

Appendix: The Thom isomorphism g

Let ¢ be an oriented n-plane bundle with projection-y:Z = B,
This Appendix will give a proof that the oohomolo oy grou) ﬂn i( EO}A
is isomornhic to H 1(B; A). (See Theorem 10' p, 40.) A corresponding
theorem for homologﬁ groups is included as part of the proof, "The
corresponding proof for the unoriented case, witﬁ coefficient group

Z is left to the reader,

al

1. Construction of the cohosmology class u,

Let SE denote the total singular complex of &, and define the

relative Eilenberg subcomplex S (E;E ) as the set of all singular

.simplaxea

e = .
such that £ maps the (n-1)-skeleton of [\r 1nto‘E°. Then the

Tolloving assertion will be proved,

Lemma 1: . The ipeluﬁion Sn(E;Eo) =+ SE induces isomorphisms of
homology groups, -

Next a canonical cocycle d ez (S (E;Z& ), Sg ) will be defined,
Intuitively spealking, d(f) can be considered as the intersection
number of the 1mngg £{A™) with B = E-E . (Nopa that every n=simple;
£ in Sn{_E;Eo) maps the Iﬁound.ary of Ax_‘- into Eo.) ‘ e :
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Finally u € Hn(E,Eo) will be defined as the cohomology‘claaé

determined by d,

Lemma 2. The correspondence ~. - u({{) is natural with reapect .

to bundle maps, For the special case

B = point, E = R" , iy

u is the atandard generator of H n(gnt 'Ry Ry

The proofa will be based on the following constructicn. Given

any map
£: AT+ B
let 4y denote the bundle over A i induced from 'qf by the composition .
¥1 £, and let ! be the unique cross-section of ‘v, such that the s
diagram : : L : : ' e

E(1]) ———> L

L=

n ‘////1.

£t

Ar

is commutative, Noto that ¢ 1s necessarily a product bundle. (S5ee

Steenrod [20] 11,6,) Hence the'pnir E(r}),Eo(r\) is (n~l)-connocted

and Hn(E(’.)JEO(‘I)) is infinite cyclic with a preferred genorator,

Proof of Lorma 1: TIirst observe that the palr E,EO is

(n-1) -connocted, since .in fact -the above argument showa that any mg
£y: AI" AT = E,Eo can be racto'red through a pair B( f\.},ED{*{‘,) which
is {(n-1)- connqctod 7 ' :

But now Lomma 1 can be provod by an argumont completaly analogous

to that givon by Cllonbarg [2] Chnpter ¥I.

1s8

Definition of d(f): Any n-simplex £ of Sn(Eigd) gives rise

to a map .
n o
i‘l: X ,!_\n -+ B, 8.
Define d(f) as the degree of the associated map

fllzﬁé’dn -»E('r.),Eo{ ne

This defines a cochain d € C™(8_(E;E ),52,).

It is easily verified that the coboundery of 4 1is zero,

The proof of Lemma 2 will be left as an exerclse,

2, The homology isomorphism,

Recall that the cap product oi a singular n-cochain
singular (n+i)-simplex is dofined to be tie product of the "front

¢ with a

i-face" of the simplex sixth the integer obtained by evaluating )

on the "bacl n-face", The roliowing properties will be needed,

(1) alona) =cnza+ (-)i(be) a,-
(2) < ¢y vy 8 >= <05, Cpna > , and
(3) the cap product gives rise to a bilinear pairing
s = 5
HY(X,Y) & Hpyy (6Y) ~ Hy (X)),
Lemma 3, The correspondence
a =+ nafu~a)
defines an isomorphism § of Hn+i(E,E°;Z) onto Hi{B;Z).
The proof will be divided into four casos,
- Case 1: g is a product bundle 8o that (J,u ) =B K(Rn,ﬁon).
Lot , donote the standard 3enarator of H, ™ WRy T), It follows Lr¢
the Klnno%h Theorem that the correspondonce '

nwaxﬂ
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fines an iuomorphism of Hi(B) onto Hn+i(E,E°).‘ (See Eilenberg and
1ber [5] togetner with Eilberg and Cartan [3] p, 113,) But 1t
1lows from Lemma 2, together with a short computation, that glans)=
#(u '\(;th!{)).;ﬂ equal to a, :

Case 2: D is the union of open subsets é','B“ with intersection
", where the Lemma is known to be true for g restricted to ﬁ',B“u

|d 31", It will be shown that the following diagram of Mayer=

.etoris sequences is ccmmutative:

-

n - g @ 1] a0 R ; ot
B n+i(E“" Eo by Hh+l(“|’bo') \":"]'in-i-l(E =0 i Hn+i(“’ Eo) g
g ' g +‘ﬁ” : : ‘ﬁ
1] e n ] .
H, (B"Y) > (H, (B') ® Hy (B") H, (B)—>

nce @', g" and ¢g"! are known to be isomorphisms, it will follow
om the Five Lomma ([4] p. 16) that ¢ is an isomorphiém. '

The ﬂayer-Vietoris sequenﬁe can be derived as follows: The
itural homomorphism of singular chain groups '

C#(B') + C«(B") = Cx(B)

\s kernel isomorphic to C#(B!'") and an image Cx(B{B', B"}) which 18
1ain equivalont to Cx(B), (Seo (4] P 197.,) Now the short exﬁoﬁ
yquenca ‘
). 0 = Cu(B'") = Ca(B') + Cx(B") -» C#(B; (B*,B"} ) =0 _
lves rige to thb faquire& toquonce of homology groups, Similarly

10 short oxact soequence

1.

(2) 0 = C*(E"'n EOI”) s Cﬁ'.‘E'JEO‘) + C*(E'!,Eo") =5 C*(EIEOF{E'ns"})"o

gives rise to the relative Mayer-Vlietoris seguence,
Choose a representative cocycle z € Zn(E,EO;{E',E“}) for tane
be the aprropriate restrictions, Then

is defined

class u, and let z', z", z'"

a chain mapping from the sequence (2) to une ssquence (1)

by the formulas

at =y
#

This chain mapping induces the reguired hom.worpnism between the

{2"';.&"')). seer 8 "‘"”‘#_(Z.’\a),

Mayer-Vietoris sequences.

Case 3, B is the union of finitely many distinguished open

.

sets Vl""’vk' For % = 1, the asserticn follows from Case 1, Tor

k > 1 it follows by induction, applying Case 2 to the pair
B" = V

Bt = vl\J e ka_ll Kk*

Note in particular that this argument applies whenever B is

compact,

General cera; Let B* range ove, all coupact gubsets of B, Then

H,(B) is tho direct limit of the groups Hi(B*); and H_,, (E,3)) 1s the
direct limit of the corresponding groups }%+1(E*'Eo*)' Since the
assertion is true for each BY, this completes the proof,

Remarlk: The arguments given for cases 2 and 3 wouid apply
equaily wall to cohomology, .owever tﬂa limiting argument docs not

apply to cohomology.

3. The cohomologfy isomorphism, :

Consider the homomorphism of Lemma 1 on the chain level, That

bt -
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L)

e

is choose ¢ cocycle z € Zn(E,Eo) which represents u, and define

g, :

b (B,E)) - ¢, (B)

Cn+i

by g#ga) =]tﬁL(;z\a). It is easily verified that g . is onto, Let

C,(K) denote the zernel of ﬁ##' Then there is a exaot segquence

e it &
--o"’l‘li(‘{) =p: Hn+i(E'no) -'Hi(B) > eee

It follows from Lemme 3 that the chain complex K has trivial homology.

Now for any coefficient group /\ consider the corresponding

sohomology sequence

2 #* i
coem BY By A) = g A0 b A) =S5 L

It fellows from the universal coefficient theorem that K has trivial

cohomology, So that'ﬁ*.is an isomorphism,
The identitles ;
<d }’Lcia > =< c,;b’#'_a > = < c,}'l']#(z--.a) > =
show that §/~ is just the correspondence - K
A WA l
Thus wo have proved
Lemma 4,. An isomorphism
#g: 5hB; A) - HHE, B, A)
is given by tho correapondenco
J = mlylvu,
Nou to complote the proof of Theorow 10' (p. 40), it is only

nscessary to show that u is charactorized by the condition

Sp¥u = uy ¢ KM "ty o ai)

< ﬂ' Gy Z,a >

Pt a ra Y
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for each b € B, But applying the isomorphism ¢-l, this is equivalent

e L

o 0 1 Y

to showing that the element

1 € 5°(B)

is characterized by the fact that its Aronecker index with each point

Since this 4is clear, this completea the proof,
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