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Chapter 1

Introduction

1.1, ~periodicity.

V1
These noﬁeé will study the 2-primary homotopy of s for all n.
All homotopy groups will be 2 primary homotopy groups, unless other-
wise stated, and all cohomology groups will be with Zé for coeffi-~
cients, The primary emphasis will be on the stable image of the J
homoﬁorphism and elements, stable and unstable, which are related
to them. Much of the material here represents new work of the first
author and some of it has been announced in various places [20],
[21], and [22]. 1In particular Chapter 9 contains details of the
results of [22], among other things. The central result there can
be summarized by the following key theorem which needs some notation
to state. TIn Chapter 8 we will define “vl-periodic“ elemenﬁs.

Heuristically they are a sequence of elements {al, a em (sn)

1e2+j+n
for some k> 3, a; # 0, and o, and a; ; are related by a particular

Toda bracket, Elements in the image of J are "vl-periodic". We

will define a spectrum J such that under s - .J there is an iso-

morphism of Vl-periodic elements,

Theorem 1,1.1, The "v14periodic” elements in ﬂ*(82n+l) are mapped

isomorphically to the "vl~periodic" of w*(P211 A J) under the com-

posite map Q2n52n+1 - Q(ZPzn) - Q(EP2n A J) where the first 1is the

‘snaith map [32] and the second is the Hurewicz homomorphism.

1.2, EHP sequences.

In this section we will introduce several spectral sequences

1



which are useful for understanding the point of view which lead to
the results discussed here. very little use will be made.of'this
material directly. ”

First we ﬁill be interested in studying several spectral ge-

quences which are given by the following,

Thebrem,l.z.l.F-There is a mapping between towers of fibration

33 (e ~ Q. > L ... . Qe B
T : 1 1 1 : .

Qg 6252 N Q-353 " Q454 Son A Qn+lsn+-1 . Qn+25n+2 Lo
T 1 1. : .

© S0(2) = 50(3) = 50(4) =+ +-+ = s0(ntl) - SO(a42) o ...

Proof. The top diagram follows from Snaith's theorem [32] and the

bottom is the Whitehead J~homomorphism,

There are a variety of functors which can be applied to these

towers,
1) Ordinary homology. The Serre spectral sequence for each fibra-
3

tion

n
QP - P - g5

QnSn - Qn+lsn+1 o Q.n+l‘52n+l

so(n) - so(n+l) ~ g%

collapses, Thus the homology of each is easily described,



Theorem. 1,2.2 EOH*(QPH) = @ H*(QSj)
j<n
0 + ~ i j
E H*(Qn 1Sn+l) @ H*(QJ+1S2J+1)
j<n
0., ~ j
E H*(SO(n—l) = ® H,(57).
jzn

and the maps between the left hand sides are induced by the standard

GIFL2IHL

maps S§7 = Q Qsi .

Proof. The parts dealing with each sequence separately is standard.

The only possible new thing is the observation that the Snaith map

in homolbgy induces the usual map from QJ+1SZJ+l - QSJ, i.e., is a

j+1 loop map. To see this note that the composite
Qn+lsn+1 - QPn - QSn is the loops n times of the composite
as™t! o g2t L os?™.  Thus

‘QSZnil ~ an-an . Q(SZn--l)

N

n n25n+l R Q252n+l

>

commutes with f being a double loop map. Notice that at most g

is a loop map. In fact it probably is not a loop map at all, But

. . . n- .
we now can continue by induction to conclude that Q £ is a nt+l

fold loop map.

2) Homotopy functor. This gives the three standard "EHP" type

spectral sequences.



53]
»
A3
ot
~
-,
=3
g
I

wt(Ss)

s,t, . s+l _2s+1
E7 () = m @7 ™)

s,t

E)C (D) = _(q(s®))

The maps between the E; terms are again the stablization maps.
Note one important property. The E; term for each is itself a

result of the calculations of E (), To caleulate r (s?™*1) ye

start with EI" = e'wh(ﬂs+lszs+l). The“point is that we need

S<n

information about ﬂ (SZS+1) for j < 4. This spectral sequenca is a

bootstrap operation. This is, in part, the approach taken by Toda

B2 1 and his school.

3) - Adams spectral sequence type functors.

In Chapter 3 we will describe an Adams type spectral sequence
for S with the property-lthere is a map of spectral sequences
£ : Erf (S ) - Er"(S ) where Erf (S ) is the stable Adams spectral
sequence and at E, level fh-is an isomorphism for t - s « n - 1,
For many spaces a similar unstable spectral sequence exists.

In pérticﬁlar if S0 = USO(n) then E (SO) is the E, term for such

a spectral sequence. Detalls are in Chapter 3,

Theorem1l.2.2. For each sequence (9,,&(, and’P there is a spectral

sequence whose E, term is



, s E-
£S5 = 8570 (s%)

0,8,t, ¢ _ _s=1l,t-o, 20+1
)% () = By

£’ 5(P) = Exe (2,52,

A
and S ' e EZ’S’t({Q) = Eg’t(so)
' o
0,s,t ~ Syt 4 s,t '
® E_T’ QJ) = Ey’ (o]) = Ext,’ "(Z,,2,)

g

1?

0,s,t
orS @)

s,t >
ExtA (H (P),Zz).

This will take a little work to set up the machinery. Note
that no claim is made about maps between these sequences. There
exist ways of doing things so there are maps but then one can

hardly identify the objects.

1.3. bo resolutions

Let bo be the Q-spectrum given by Bott periodicity. This
épectrum”is a ring spectrum with a unit and H*(po) = A/A(Sql,qu).
(Unless otherwise noted coefficient groups are always Zﬁ') Wé

will assume that the reader is familiar with the standard proper-

ties of bo.

Associated to a spectrum with unit, like bo,we have a tower of

spaces
SO < S < S @<= e a0 S <— S <"" b
1. 2 < s s+1
: Vv
bo A bo A bo s A bo

Sy



idnai . . . .
,where S /@0-< N SS L sS+l 18 a fibration and i: SO =~ bo is the

unit. If we use the homotopy functor we get an exact couple with

Ei’t = Wt~s(ss A bo). Under reasonable hypothesis En" is an

associated graded group of W*(S.). This is true for bo since
N = . - s,t:: s,t
ﬂj(ss) 0 j<3s and so for t - 5 « 3s E E,,

enough r. It is also true if bo is replaced by K(z). This spec-

for large

tral sequence will be written E. (SO bo,7).

Clearly T,(bo) acts on E and each (E »d ) is a 7 4 (bo) module,
A 7, (bo) module M is said to be Z,-vector space if the T,bo action
factors through the map 7,bo - Z, given by i, where i: bo = K(ZQ,O)
is the obvious degree one map, Under the action of 7, (bo) the
class which generates ﬁs(bo) plays the role of vi and classes which
have iterates of this class non~zero are V{-periadic. Precise
definitions are given in Chapter 8,

Chap;ers 7 and 8 investigate this Spectral sequence in some

detail, The principle result is

]
N
rt

I
=

Thoerem 1.3.1. a) E:’t(so,bo,n’)
= Zé t=1,2 mod 8

= 0 all other t,

b) El t(so bo,m) = zzp(k) t = 4k
= Z, t =1,2 mod 8
= 0 otherwise,

where p(k) is defined by 4k = 2°(K)=1 4 ,0(k)



c) Esit(sg,bo,ﬁ) = 0 for 6s> t + 6 and is a Zé
vector space as a 7 (bo) module for all s> 1

and all t.

The proof of this result uses much of the theory developed in
these notes. The final steps are in §8.3. The vanishing liﬁe
asserted in part c is an immediate consequence of 4.4,12. Note that
this ;anishing line prevents any vy periodicity from arrising an--
onymou51§; ?he only vy periodicity possible is what occurs from part

a and b,



Chapter 2

The A-algebra

2.1, Statement of the results

In this chapter we will develop the p-algebra [ 8] to facilitate
calculations as well as to prove Theorem 1.2.4. The development
given here is a modification of the approach of Priddy [29]. In
Chapter 3 we will discuss unstable resolutions. The main result of

these two chapters can by summarized by

Theorem 2.1.1 [14], For.every n> 0 there exists a graded differen-

tial éh%in complex (A(n),d) such that

2.1.2a) A(n) is the Z, vector space generated by symbols

AI.= ail coe Xiz for 1 = (10,...,12) such that 21j S

forj_<__£-1andi.0<n

2.1.3b) d(A )= = @)r\A_. and d is a derivation with respect
; n . k’"j k-1
J+k=n :
to the product. The product satisfies
_ m~j-~1
M 944m jEO( i MMamejt2ia14ge

—

alants
EANAY
2

n

unstable Adams' spectral sequence for s@.

2.1.4c) Hy,(A(n),d) = EZ*Sn where E Sn is the E,-term for the

The two gradings arise by assigning ki bidegree (1,i+l). Then
the first grading represents the length of an element and the

second represents the internal degree.



7.2 some auxiliary algebras
As a first step towards proving Theorem 2,1.1 consider the alge-
. . = a .

bra with unit over ZQ,A, generated by symbols Sq , a > 0 an integer.

These symbols are subject to the relation Sanqb = 0 if a < 2b,

=

Note that as Z,-vector spaces, A is isomorphic to A, the mod-2

Steenrod algebra.

Recall the following definitions and lemmas.

Definition 2.2.1. Let ﬁ be a graded connected algebra over R a
commutative ring with unit, for example A over Z. Let M and N
be modules over B and f£f: M~ Nbe a B-map. Then £ is minimal if
ker £ < IB-M. Here IB is the ker e, the augmentation, €: B = R. A
B resolution {Cgs,ds} of a B~module is minimal if each dS is a mini~-

"mal B-module homomorphism.

Lemma 2.2.2 [28]. sSuppose IB*R =0, B and R as above,and

, ‘do d; d, .
0 <— M <— Cy < Ci < »e+ is a B-minimal resolution of M,

* t [
a B-module, Then ds’ HomB(CS_l,B) - HomB(CS,R) are zero homomor-

phisms. The super script t denotes those maps which decrease fil-
tration by t.
The proof is an easy exercise., Details may be found in L 2g].

We now obtain

t ~ t
Corollary 2.2.3. Extg’ (M,R) = HomB(CS,R) for B,R,M,{CS} as above.

Proposition 2.2.4. Extf’t(ZQ,Zb) = As’t as Z, vector spaces where
e | |
A. has filtration (4, = (i. + 1)) for 1 = (io,...,i ).
I 5=1 J 2



T ' . ' i G+, 2043 i
proof: Let L = {Sqn,Sq2P+qun, j=> 0; Sq2n+23+“8q2n JSqn:J,kEi 0

pog|

etc,}. Let €; "z, be the augmentation.

IA= © L - Thus we can exhibit an explicit minimal & resolution
>0 "

of za as follows:

= 99 dl ' = d, =
Z& A<— ®A0, <= .9 A 0; 95 <= A 07 04 0g < oo
1d>0 0 1d>0_ 1 -0 1d>0 2 71
i1<2i0 1<210
i2<211
o i. ’
Wheré'dj(cij coo cio) = Sq Jcij—l <o UioeLijcij;l cee aio.

This sequence is clearly acyclic and minimal, Applying
Hom_( »Z,) to this sequence we see that by Corollary 2,2.3
A :

Ext ot (zé Zé) Hom:(cs,zi) where ‘CS is the sth term in the resolu-
A .

tion. There is an anti isomorphism of Z, vector spaces

R Ext (z& Z&) - A 21t given by ¢(§j) = kj-l' Here Gj represents

its own image in Ext=(za,zé).
A

' Now define A to be the algebra with identity over Z, generated
by the symbols Sqa, a> 0, an integer, subject to the relation

2.2.5 - osd%q = 3 ¢
. ' j=1

a+tb- J i

)Sq Sq~ for a < 2b,

a-2j
Note that as Z, vector A is isomorphic to A

Proposition 2.2.6. There'is an.anti isomorphismof Ext_(z?z,zz) with

as algebras over Zb.

Proof: Consider the following sequence of A modules,



d d
Ao, <—

e} .
%?O 0 %fo lllO

z, <l A <

Here e 1is the augmentation

Le /2] i g=3=1 i M -j
+ = - .

j=1 i_-2j I
Note that j < Zir-l' The chain complex 2,2,5 is acyclic and

minimal which can easily be checked by the reader. Applying

Hom (-3 Zi) to 2.2.5 and taking homology we obtain an algebra
x
TSHt o Ex;i’t(Zé,Zz) where the product is the Yoneeda composition,

‘ - '3 - ]-,a — .
o, will denote the element in Ex;x (Zé,Zé) dual to G, I, as

a module, has a homogeneous basis o_ where I = (iO""’iA) aqd

I

The anti-homomorphism ¢(Gj) = kj-l is clearly an isomorphism
of zz-vector spaces. We need qnly check that the relations are carried
isomorphically and to do this we calculate.the Yoneeda product 00"

. s . . 2 Lo
Since o_ is a cocycle there is a unique map fa' im do ~ Z,

such that'fad0 = 0_. We can define maps (Ga)o: idfOA o; ~ A and

0

(0);: ® Ao 0. - @ Ao
1d>0 170 ld>0 0

il<Zi0



i, # a
I
Ca)oS979y
io = a
1O+1l~a
(0501095 95 ) ="
1 70 .
: 0 otherwise
-
Clearly the.following»diagram commutes
d d
imd0< L o Ko, <=t & _ol
i>0 | *o >0 1 %0
i.,<21i
fa (Ua)O 1 0 (Ga)l
\' V.
e — ——
Z. < A < L O
2 170 i

and (Ga)o and (oa)1 are unique up to chain homotopy.

Let"cb be a cocycle with b < 2a, Then the composition Ub(ca)l

represents the Yoneeda composition of 9, with Ty
Since {o, o, |i, > 0, 1, < 2i,} form a basis for the vector space
1,715°70 1 0
of elements of length 2 we can compute 9.9, for b > 2a. Now

/. |
10-a-1
( ) ifi +1i. =a+b
e 0 1
11—2a

0  otherwise.

Tp%a(3 95 ) =




_ io—a—l
2.2.7 Thus 0,0 = b a; 0. .
i+ =atb\i-2a [ 1 "0

Now, consider the anti homomorphism T L. xk-l' We will show
that these relations are carried to the relations in A.

Letting i1 = j we obtain
Pl

3 .
b-J-f)
0,0 = )X ( . g.o _s
b a j=2a j=2aj j atb-j

Applying the anti homomorphism ¢ and letting
a=1i+4+1;b=2i+1+n,n>1; k=3~ 2a
we obtain

_ n-j-1
Y 14140 T jEO( i Mian-5 21414

which are precisely the relations in the A-algebra. Thus

3

Ex;_(Zé,Zé) = A as algebras.
A

2.3. The resolution for A.
The mod-2 Steenrod algebra 1s generated by symbols Sqa, a> 0,

subject to the relations

a. b |
Sq°sq = (", 08¢ ~ * I (;755)59

In order to construct an A resolution for Zy, as above, we will

add this relation to the A resolution for Zé to obtain




L E% » - E R - j
Theorem 2.3.1. EAtA (Zé,Zé) H, (A,d) where d(li) j+§=i(k)ljkk_l

and d is a derivation with respect to products.

Proof: Consider the resolution of Proposition 2.2.6. We con-

vert it to an A-resolution of za as follows.

(3 "~ d d
@ [
o <— A < & Adg, <« 1] Ag, o, < ...
K ip0 0 - 10 1 %o
1l<210
where € 1is the usual augmentation
i
dy(o; ) = sq 0
: 0]
< 1,1 i L1y/2)f4p~1-] 1+
dl(oi a, ) = (. )cri 4 + Sq 9 + -E Sq Gj
170 i 170 0 J=LA . .
1 11-23 :

Applying Hom, (-,Z,) we see that the algebra generated by ci's'is
isomorphic to 3. Taking homology we have that the nonzero part of d
are the first terms of di(ckcl). This induces a differential d' on

' 1
the algebfa Z, namely d' (o, )

= )X (i)(o.cl_l). Thus, the
j+i=k+n g

desired differential in A is obtained by applying ¢ to (z,d').
Therefore taking homology and applying the anti homomorphism

Gk-~ Ak-l we obtain the isomorphism of the theorem.

2.4, Brown-Gitler approach.
In this section we will describe a second approach to resolu-

tions over the Steenrod algebra which is based on a conversation with



Fd Brown. It is related to the Brown-Gitler spectrum L9l. wWewill
filter the Steenrod algebra by F_(a) = {x(sql)ll admissible and

i, > n}. Then A® F_(A) o F_(A) and F_(4) > F_,1(A). Also

FH(A)/Fn+1(A) = M(n) = A/A{xSql]i.> n}. Let B be the associated

graded algebra; B = oM
- >0

n Then B can be thought of as the alge-

bra generated by symbols xSqa, a an integer > 0, subject to the
relation XSqaxqu = 0 if 2a > b. This algebra is related to A but
one should note that M(n) is finite for each n. As before we can

write down a minimal B resolution

B:

B<— © BT BTT © BT,T,T <= *°*
>0 n nfO k'n >0 s jkn
2k>n 2k>n
235k

| n k .
where Tn - %Sq EMn, T Th ™ %Sq aMan, etc,

Proposition 2.4.1. jB is a minimal free acylic B -resolution:

-4

Proof. We can write 1B = nfdMn. The map B TkTq - M T has kernel

e MkaT because of the relation. Since each map of the resolu-
2i>k

tion is a similar map the proposition is clear.
Following closely the ideas of §2.2 and 2.3 we can pass from

this associated graded resolution to a free A-resolution. The

| | L2(a+b)/3] __ 4
relationwe end up with is T nzza (n—-2b )Ta-l-b-n'rn' The

balance of the identification of this resolution with the A-algebra
is straight forward. Note that the result is directly isomorphicto A
as opposed to the anti-isomorphism of the other approach. The

resolution described here is exploited in some fashion in the papers



of Brown and Gitler [ 91 and the recent paper of Brown and Peterson
[36]. tinderstanding this approdch helps to see the motivation

behind the calculations in §5 of 23].

2.5 The A-algebra for a space X.

In'this section we show how to modify the results of 2.2 and

2.3 to obtain

! Kk ~ .
Theorem 2.5,1 [14]. Ext) (H*(X); Z,) is isomorphic to
H¢+(ﬁ,(X)A® Asd). 'The differential in H,(X) ® A is )
given by d'(y ® A ) =Xy Sq ® A,

k +y®dh_.. Here d is the

i-1"1 g5
usual A-algebra differential and y Sq represents the right action
of the steenrod algebra on H (X)) .

We will outline the proof since many of the details are similar

to those presented in 2.2 and 2.3,

'+ Consider the resolution of 2.3.1 tensored on the right with.
-~ /
H%(X). ¢’

e®1 4,81

° A ®Fr(x) < .-

10 “ig

2.5.2 H¥(X) < A ® H*(X) <

; i _
where (¢ ® 1)(1 ® X) = x (d1 ® 1)(0i ® x) = (8q 0 ® X) etc.
0

Now a basis, over A, of (?;, the s'® term of 2.5.2 is given by
(@, ® x), xXeH*(X), I = (1gsigseeesiy_y) and iy > 0, £, <"21,1...
O . - . A e ‘. ,
i1 < 21.0‘,...,15__.1 e 213;2. The A~-module structure:of (:S is the

diagonal one. This implies, for example,

(sq" ® x) = £Sq  J(1 ® %Sq7x)



Thus, the maps in 2.5.2 can be rewritten as follows.

Let I = (io,il,...,is), and I" = (iyseeerig)
(ds ® 1)<O-I ® x) = (( )O"i i, T + Sq o5 LIV
i 1°7°0 0
1
(i /21 . . . e s .
1 i,=1~j LatHi, =]
®
+ = (io-z' ) sq 0 L7 @ %)
j=1 174
= (. Jo. ,. 0.,® X +8q 0, 0 ® x
iy i+, 1 i I
(1,721 10-1-3 g -] |
+ x (, _o: )Sq 0.0 nw ® X
=1 i 2j JjI
i~1 i, =k k
. 0 171 : 1
= (, )0, ,.0_,®%+3Z Sq (1 ® %5q "x)
iq 11+10 I kl
[11/2] i.-1-j io+il-j-k. k,
+ £ (.. )(= sq - 31 ® xsq Ix).
e_q L.-2j '
j=1 "1 kj

'Using'this differential one can check that 2.5.2 is a resolu-
tion.

Applying Hom, (-; Z&) to 2.5.2 we see that, using the adjoint-
ness of ® and Hom, we are left with % ® ﬁ*(X). (Recall that
xSqix = x*Sqi for xeH*(X).)

Using the methods of 2.3 and the anti isomorphism
@eT:; T ® H*(X) a-ﬁ*(xs ® A, T is the map which exchanges factors,
one can.show the above differential corrésponds to

d'(a @ XI) = zasql ® ki-lll +a® dXI for asﬁ*(x).



Chapter 3

Unstable Resolutions

3.1 Massey-Peterson Theory
This section is an attempt to summarize some of the work of

Massey and Peterson [25] [26].

Definition 3.1.1. A graded module M over A, the mod-2 Steenrod
algebra is called unstable if for any mem Sq"(m) = 0 for i > |m|.
For a graded module u, |m| is the dimension of meM. -
Definition 3.1.2. Let M be an unstable A-module. TLet A: M {ﬁbé
defined by A (m) = Sqlml(m) for all meM. Thus M can be considéred
as aIZé[X]-module with Xi(m) = X(Xi-l(m)) for méM. M is then
called a Xfmodule. More generally, if N is a graded module over
Z, and X 1is a Z, vector space homomorphism from N to N with

A(N)j c (N)zj then N . inherits, as above, a gé[k] -module struc~

ture. As usual a \~-module will be called free if it has a basis.

Definition 3.1.3. Let M be a A-~module, Theq UM) is the free
symmetrié'algebra on M modulo the ideal generated by all elements

of the form mz-k(m).

Proposition 3.1.4 (10.4 of [26]). Let M be as in 3.1.3 and suppose
also that M 1is locally finite. Then U(M) is a polynomial algebra

if and only if M is a free A-module,

Definition 3.1.5. Let M be a graded module over Z, Define oM to

o~ — 1 . i-1
be the free A~module generated by M, where (M)l is equal to (M)l .



befinition 3.1.6. Let M be a graded module over Z, and N be a

‘~msuwule. A boundary-type map f£f: M - N is given by the composite

M = > oM f.> N for some A-module map f where i 1is the obvious

degree one inclusion.

Recall that a graded ring R over za has a simple system of
generators {x_} if the monomials x, x. <+++ x, , i, < i, < e¢so < i |,
a i i i 1 2 r
_ 1 72 r
form a Z, basis for R. For example, the polynomial algebra
k
szx], with |x] = 1, has a simple system of generators {x? }, k> 0.
Proposition 3.1.7 [25]. Let M be an unstable A-module with base
point 7n: Z, > M. Let bO = n(l),bl,bz,... be a set of homogeneous
generators for M as a Z, vector space. Theg {bi}ﬁzo is a simple

- system of generators for U(M) as an algebra over Z, -

We also recall

Theorem 3.1.8 (A. Borel). Let F —i;> E 2> B be a fibre space with
E acyclic over 22- Suppose that H*(F) has a simple system of trans-
gressive generators {Xa}' Then H*(B) is the polynomial algebra on
(Tka) where T 1s the transgression.

In terms of A-modules the Serre-Cartan basis theorem has a

particularly simple formulation. Let Z, be the Z, vector space with -

one generator in dimension zero.

Proposition 3.1.9. The Z, cohomology of K(Zé,n) is U(anb)'

i .
Proof: Note that (cz&)z = Z, for i > 0, generated by kl(l).

(1 represents the generator of E&, the Zb vector space with only one

generator in dimension one). kl(l) is equal to



gt pi-l 2 1
Sq~ Sq -++ Sq9°Sq (1). TLet I = {il,...,iz} be admissable, that

is, lj 2-21j+1 1 '

&
and let e(I) = 2i, - =
J:‘_‘

i.. Then a 7 basis for
1 “

cnzé is {SqI(uole(I) < n} where u= o™(1).
The proposition is clearly true for n = 1, Suppose that

H* K(Zé,q-l)) = U(cthzb). Consider the path fibration

K(Zé,q-l) 25 p K(zz,q). A simple system of generators for

HWK(Zé,q-;) is given by (tq_l = bO’bl’bZ"°’) where tq*l is the

fundamental class and the bi's are a homogeneous system of generators
Gn~1

Zey o Clearly these generators are transgressive and so Borel's

theorem implies that H*K(Zé’q> = z&[de, thl,...}h A sﬁort admis~-

sable sequence argument shows that Tbi ié admissable with e(Tbi) < q
and that these are the only such sequences. Thus Tbi generate
ch§. ;U(quﬁ) is a polynomial algebra by Proposition 3.1.4 and has
a homogeneous basis for qqz%a

We will prove the proposition by induction1 The propoéition is
clearly true for n = 1, Suppose'H*K(Zé,q) = U(GqZé) for all

q.<n - 1., Consider the path fibration
K(Zy,n-1) = E - K(Z,,n).

A simple system of generators for H*K(Zé,n~l) is given by
{1n-l = bo,bl,bz,...}, a homogeneous basis for cn~le as a z, vec-

tor space. C(Clearly the bi's are transgressive and so Borel's

theorem implies that p* K(zZ,,n) 1is ZZETbi]i>O'

Consider the following diagram



n"l g ~ ~ v
o Tz, —> z&[cbi] = H*K(Z,,n)

i £ 7
V’L 8

Uo nzz

The maps f and g exist since H*K(Zé,n) and U(cnzb)'are
polynomial algebras. Since fg(tn_l) = gt(tn_l) and 0 commutes
with squaring operations we have fog = gof and H*I((Zz,n) = UUHZQ.

We will find it useful to decompose anb as a sum of free

A-modules and Zé. Let Lo(l) = (d(Z&))l and Ll(l) = ‘81(0(25))1.
i>

Then U(Zé) = Lo(l) & Ll(l). Applying o to both sides we obtain
0?(zy) = 9 (Ly(1)) @ o (L, (1)).

Let 0(Ly(1)) = (0 (1y(1) @ _ez(ch(l))i.
. 1>

The first factor is called LO(Z). The second L1(2) and
'U(Li(l)) is L2(2). Inductively proceeding in this fashion

cn(zz) ~® L.(n). Each Li(n), i> 0, is a free \ module,
n>j>0

™ e

Definition 3.1.7. A chain complex of free A-modules is a collection

~of free A-modules Ci and boundary type maps di: C; = Cy_q 80 that

— e————

d; .d; = 0. H (C;,d;) = ker di/ln d; ,; where di+l is given by

the following diagram

i
—_— g G,
i

i+l +1
d. . ’ 7
J l+]:,’z di+l
L’I
C



Note that i+l exists since o(]l 1 is free

+
The key result of [25] is the following

Theorem 3.1.8 (7.4 of [25])., 1f C, and C, are A-free, unstable
A-modules and H*(X ) = U((Ii),i = O,l,and_xl s E 2 XO is a

fibre space with C, < H*(xl)‘transgressive then T(Cl) < Gy and

I

H*(E). = U(ker T) ® im p* and ker p* = y im(T).

3.2. A particular unstable resolution

In a purely formal fashion we can construct a chain complei of
i
A-free unstable A-modules whose homology will be H*(S 0).

N i d i+, -1
LO( 1) «— ¢ 0z2 <t e (%1 z,)0,
gL s O<i;<i 1
1=-70
d i +i,+i,.-2
< 2 o ( 271 ‘O ZZ)U. G m—
- i i
1%% S
0<12<211
‘where di is essentially as in 2.3. That is,
i
1
d.g, = Sq
1 iy |
i i,=3=1 i +i.-j
2 1 2 71
d, (0, 0. ) = 8q "o, + xn(. —nz )SqQ - o,
2 12 iq iy 3 19 2] j
and in general
d (c. o, s 0. )
R | Sl
i ~j=1 i+ . -j
-1 r "r~1
= [sq Yo. + 555, )Sq a. (o, ces T, )
tr-1 =23 It 1



propogition 3.2,2. With the augmentation ¢ this chain complex of

free A-modules is acylic  (as A-modules).
We will outline the proof since it is very similar to 2.2 and

2.3D

Proof: It will suffice to prove the proposition under the hypothesis
that éanqb = 0 if a < 2b, This is equivalent to writing

: y) . .th
GHZ& = @ L,(n). Notice that if o Z, 1is a summand of C; the i
329 i L+1
L N . + -
term in the chain complex, then di is defined on o Z, -

Ker ¢ = ®& J.(:i.o) and d, restricted

j=>0 1
to e [L,@d,ei)e e L (4. + 2. )o. ]is an isomor-
S (AN 1 . 40 1771
O< 1=Lg 211<£< ot 1 1
phism onto ker e. The ker d, = e L.(i, +1i, - 1).
1 c o 1 0
0<J<21l
O<11<10

Again it is easy to verify that E; restricted to

e LO(:L0 + i, + i, - 1)0i a; @ ® Lr(iO<+ i + i2 - 1) is
271 2l1<-511+10

an isomorphism onto ker-dl. A similar argument proves the case for

d L]
5

We next wish to show that 3.2,1 is related to a geometrically

l .
. 0
constructed resolution of § .

Theorem 3.2.3. There is a sequence of spaces X; and maps P; such

that the following diagram commutes



s
K(Vz) ey . K(VS)
and
1) P; 1s a fibration with K(Vi) as fibre and ker Pi = ker fi-l
in z, cohomology.,
N .
2) fi is an epimorphism
3) V., is a graded Z, vector space generated by 75 where
J = (jl"°"js) and jk < 2jk+l' The dimension of UJ is
s
.. j.-s.
j=1 7"
4) Let M, be the free unstable A-module such'tHat
s
U(MVS) = H*(K(Vs)). Then MVS = C, of 3.2.1 and the com
posite
ds
C, —> Cs-l —> U(CS l)
Prooff Let Xy = K(Z§=lo)' Let X; be the fibre of
10
8y: Xy~ N K(z,,i, + j) where g, is defined by the cohomology
1" 70 j=1 270 1
1

class (Sql,qu?...,Sq O). Let vy be generated by {Tj} j= 1,...,:1'.0n
This gives a fibration K(Vl) - X - Xy. Theorem 3,1.8 asserts that

H*(Xl) & LO(iO) ® U ker T. However, T is just



d,: & Un+k~12 T, = Ulo - Thus H*(X;) & L,(i,) ® U(ker d.)
1t % 21 Zy- 4 o'*o 1
O<i,<i 1
1--0
i0
Let fo: S - K(Zé,io) be the generator., Let fl be the unique lift

of £, to X,. Now suppose we have defined X, and fé with

0 1
H*(XS) =:LO(iO) ® U ker ds’ then we define X ,q 2@s the fibre of

g

s
X . > B(KVS+1).

——

Where g, is induced by s+1° Cgyp ™ C,- Note that this is

well defined since im ds+l is isomorphic to ker ds. Note also that

U(Gqs+l) is isomorphic to H*(BKVS+1). This yields the fibration

i P
s+l s+1
K(Vs+l) Xs+i > Xs'

which clearly equals

Thus ker p is generated by im dS

s+1 +1

ker £ .. by 3.1.8. Again by 3.1.8 we have that H¥X_,; & Ly(K) ®

s+l
U(ker ds+1) and the induction is complete.

3.3. Spectral sequences from a resolution

In this section we generalize the resolution of 3.2.1 to locally

finite C~-W complexes. This leads us to a proof of Theorem 2.1.1.

Definition 3.3.1. Let Y be a locally finite C~W complex. Then

X = [Xs,ps,fs,is,vs} 1s a resolution of y 1if

1. The following diagram commutes



A _
ATy
A/P b/ P '-

<—-—-—..._X <—-—-—__.—_X Qe————e—— s a »

0 1 2 Xg S ==
N A A A
K(Vg)  K(Vy) K(V,) K(V,)

where K(VS)_is the Eilenberg-Maclane space associated to the graded

22 vector space VS. In addition K(VS) '13 > X Ps > Xs-l is a.
fibration and
s
' T te-1 '
2, .MVS — H%xs_l —_— = H*Kvs—l factors through,MVS—l.

(Notation as in 3.2.3,4)

Note that no assumptions about ker P; and ker f; are made. The
resolutions which satisfy 3.2.3,1,2 are often called Adams' resolutions.
Associated to any resolution is a spectral sequence obtained

from its homotopy exact couple,. This spectral éequencevhas the

: t
property that Ei’t+s==(Vs) arld’ﬁ:‘f”t-lnS is an associated graded group

to lim T X (The limit is taken with respect to (Pi)*’ the induced

I :

maps in homotopy,) Under the additional hypothesis that for each
s,t+s

IR . * n n_ . .
n there exists an s such that fS: HX -~ HYis onto, EJ’ is
an associated graded group to ﬂtY.
Associated to the resolution y of a space Y is a chain com-

plex of A-free unstable A modules { Cs,ds} with Ci = MV . Note
i

s,t+s

that El

= Homz(cs,zz) where the superscript t denotes maps



winlch decrease filtration by t. Likewise,

iy WS t % % indi

“g Hs(HomA( CS,ZZ),d ), where d* indicates HomA(d,Zz) and d
is the differential of the chain complex.

Another interesting spectral sequence results from the homology
of the above chain complex { Ci,di}. The Massey-Peterson theory

asserts that UHs(Ci’di) is the E,-term of a spectral sequence whose

E,-term is H*(Y) as a.zé vector. space.

Now to complete the proof of Theorem 2.1.1 we apply the homotopy
spectral sequence to the resolution given by 3.2.1l., Thus i
y Where J = (Jl,...,JS) and

< k. (= 1is defined in Chapter 2.,) The anti~isomorphism

Ei’t = Es’t(k) c £5°% consists of those o
Is
©: Z(k) = A(k) given by qxci) = Xi—l preserves the differential (and

relations as in Chapter 2). The proofs are almost identical and are

left to the reader. This completes the proof of 2.1.1.

3.4. The loop functor applied to resolutionms,

In the last section we discussed resolutions which were not
necessarily Adams' resolutions. A simple way to,obtain such a
resolution is to use the functor. 0. That is given a resolution ¥
of'a space X we apply Q to every object and map in ¥.

Recall that for an associative H-space Y,H*(X) = U(P(H, (X)) as
Zéfvector spaces, where P(H,X) denotes the set of primitive ele-

ments in H, (X) £37]. using this result and Borel's theorem we have

Proposition 3.4.1. If H*(X) = U(WM) for some unstable A~module M

then H*(QX) = U(M) as vector spaces,

If we take the resolution of 3.2.3 and apply 0 to it we

obtain



QPl QPS

OX, < Qx, < cer < QX < S,
0 Al A

This corresponds to a chain complex analagous to 3.2.1.

d d yor
3.4.0. c,k--lzz2 <__1;_ & (Un+k-22é)c L. 2 = (Gn+1+k-322)c.c
O<a<k " O<n<k P
O<i<2n
dS k~s+z.;
< ® (¢ leé)cj < e
J
s

where J_ = (gl = {jl,...,js}, 0<3j; < 2j;4903, < kL The.map d_

is defined as before. Recalling definition 3.1.7 we can prove
Proposition 3.4.3, The homology of 3.4.2 is given by

Hy £(C(3.4.2),d) = z, for each s > 0, t = 2%

and is generated by o 19 g °*° 0, for s> 0 and is L (k-1) if
9S=1 o8 k 0

s = 0,

Proof: Let k be a fixed integer greater than zero. As
before it is sufficient to work in the setting where Sqasqb =0 if
a < 2b. In this setting the chain complex 3,2.1 for k - 1 is a
subcomple# of 3.4.2. The quotient chain gompiex»is easily seen to
be 3.4.2 for 2k - 2 and starting in dimension 1 instead of zero,

That is,



[CS (3.2.1 for k = 1), ,} {L"S (3.4.2 for k)}
- {cs_l (3.4.2) for 21<-2)}ak°

The long exact homology sequence associated with these short exact
sequences completes the proof,

This i1s analagous to the EHP sequence map which we will dis-
cuss }ater. Also note that H*(st) = U(H,(C (3.4.2),d)). This does
represent an independent proof of this result if k> 2 since classes
once produced in this resolution cannot be annilated for dimen=
sional reasons. We can get analagous results for iterated loops.
The resﬁits of Dyer and Lashof [16] imply that the homology of the
complex which results from 3.2.1 after applying iterated loops, |
Qi,i < k,satisfies U(H*(Qic (3.2.1))) = H*(Qisk). We won't use this
but it seems worth noting because it, in principle at least, de-

scribes the cohomology operation represénted by each Dyer-Lashof

homology operation,

3.5. A mapping theorem for resolutions

Bécaﬁse of the results of the preceeding section we would like

to look at resolution which are not acyclie.

Definition 3.5.1. A regular resolution of a space X 1is

i) a tower of fiber spaces and maps fS: X - Xs

P P2 P

X, <
0 1

1
Y Xl<
N
Rfl/f
X




ii) The fiber at the s stage in K(\fs) where Vg is a graded
group.
iii) The k-invariants at each stage are stable in the sense of

[267:

. ‘k__ %
iv) ker PS = ker fs-l'

% %

- Note that we do not require fo to be an epimorphism. TIf fO is
an epimorphism in a regular resolution we have the usual idea of an
unstable Adams spectral Sequence. If we have such a resolution for

a sphere and take its loop resolution we get a regular resolution

*
with fy no longer an epimorphism.

Theorem 3.5.2. Suppose we have k: X -~ Y and we have a regular reso-
lution of X and some resolution of Y. -‘Let Fi(X)(Fi(Y)) be
im f:(im f:). Suppose k*Fi(Y).c Fi(X) for all i. Then there is

a mapping ki: Xi - Y, of the resolution covering k.,

Proof. Since k*FO(Y) c FO(X) we can define

.ko

XO > YO.

Suppose now we have



i

> BR(V )

> Y

L N
L3

i8; = 0. But ker Pi+l
kit

——&;—~> Y.

i

Since k exists f;k = ker f;. Thus

ote

Ll

P

* % s : ;
i+lkigi = 0 and the lifting Xi 1 exists. Since

+1 +

N - - ' : -
k*Fi+1(Y) c Fi+l(X) we can choose a lifting to make the diagram

Ki41
X — ¥

£ i+l

commute,

~3.6. The cone construction
In this section we discuss the geometric analogue for the cone

construction for chain complexes. We first do a stable version and

‘then do it unstably.

Construction 3.6.1. Let X and ‘Y be spectra and £: X - Y a map .

with cofibre Y Ug CX. Suppose we have a minimal resolution for X



Pl P2 P
T X X, < e S

0 Xs S

Let c: Y Uz CX - =X be the usual collapse map. Then we have

the following diagram

X

3.6.2‘ \ .7 > Exl | )
! / |

2n
_X—-> y Loy U CX > zox %o K(aaH(z:x) z,)
: i=n

Using'thé null homotopy of cem: Y - ¥ we obtain a map q; v - Zl
? .- 2n
where‘zliis induced from the path fibration over K( @& Hl(zx),Zﬁ)

: A =n+1

by kec. Hy is the fibre of the map Z; - Y Uf CX. By an easy homblogy

argument.zi is homotopy equivalent to Y Ugp CX With the usual

1

Adams' reSolution for this space we obtain a resolution which we

l‘

call a resolution of the map f. Applying homotopy, T,» We obtain

an exact couple

TRy
o

T,A,

z 7;‘1

for the map, denoted Er(f),-from the fibrations Ai - X; - Xi—l'

The following lemma is standard, ([1] 2.6.1),

Lemma 3.6.3. Let A and B be finite C-W complexes and f+ A - 1



33

a map with cofibre B Uf CA. If £%: H*B -~ H¥*A is onto then there is

along exact sequence,

s,t ., oStL,t .
2 B [% CA E2 A

s, t K s,

t
> E2 B~ E

o

Lemma 3.6.4, Leth,Y,z be as defined in 3.6.2. Then qg: ﬁ*zl - HxY

| is onto and Y —3—> Z1 - ZXT is a cofibration.

Proof. The first part of the lemma is clear by the construction.

The second part follows from an easy homology argument. .

Thus applying Lemma 3.4.3 to the cofibration Y - zl - X we

obtain a long exact sequence

s,t L pSHt £ s,t . s+l,t
By (£) » E)” X —=> E,” Y = E, (£) -

Proposition 3.6.5. There exists a map b: Er(YUfCX) - Er(f) where:

Er(YUfCX) denotes the usual Adams spectral sequence for YUfCX.

Proof. Observe.that a map exists on the level of resolutions.

t

Proposition 3,6, 6,

s,t " . ~ oS,t . i . .
Ex;A (H*(X Uf CY); Zé) E, (£) if £% is zero in z, cohomology.
Proof, This is implied by Lemma 3.6.3 and 3.6.4.

The following example will be useful later.

Let £f: X = Y be as above and suppose H@(X,Z) and Hm(Y,z) have
a free generator, We would like to calculate the effect of these
classes and the degree of f in [Er(f)}.

Consider



> Y —> Y U_. CX¥

3.,"6.,6'.  i i

oty o

v v
K(Zm) = K(z,m) » K(z,m),

where i and j represent the integer classes, 7 is the induced
map on cofibrations, and k is the degree of f on the integer
classes, |

If k = O(mod 2), then in E (£) we have adjacent infinite towers

representing arbitrary non zero h0 multiplication.

Lemma 3.6.7. Tet k = 2%(2a + b).and Iet acE,(f) be the class |

arrising from the ho tower from Ex;i’t (ﬁ*(X),za). Then there igs
a j such that’for all j' > j d.+1hg'a # 0 in E.+1(f).

"Proof. This is exactly the case 1n the sequence

K(Z, m) ——~> K(Z,m)-’K(Zk m). Note that if k 1isg odd the dlfferen-
tial is a dl and if k = 0 there is no differential, . Naturality

completes the argument, ,

A construction similar to 3, 6.1 can be carrled out to yield,

under ceértain hypothesis results similar to 3.6.5 in the unstable

case,

Construction 3.6.8., Let F be the fibre of a map f: X =» v between
C~W complexesf Let {Xi} and {Yi} be regular Adams' resolutions
(unstable) for x and' Y respectively, TLet Fy be the fibre space
over F induced by the path fibration over K(ﬁ*(X)) via

F =X K(H*X). ﬁsing the null homotopy of vy - K(ﬁ*(x)) We obtain

a lifting h: Qv = F;o Let il be the induced map from Fy = Xy



Qy, ]
i

Fy L1 X, —> K(i*X,)
—7
h o |
Nt v v
QY —> F —> X —> K({H*X)

Note that H*F; maps onto H®MY. Thus there is a map F; ~ K(H¥Y.)

Let F..1 be the fibre space over F1 induced by the path fibration

15

over K(H*¥*(QY). Let F, be the fibre space over F 1 induced by the
1=
2 .

-

path fibration over K(H*X;) via the composite

F . = Fl - Xl - K(H*(Xl)

1
17
Continuing in this fashion we obtain the resolution fFi}iezﬁ of the
map f. Applying homotopy, w,, to this resolution we obtain an
exact couple for the map £ denoted {E:(f)}; Note that

Ei(f) = E,QY @ E;X and we have a short exact sequence of chain com-

plexes

s, t. us,t s,k
0 - E” _nY - E;70 () - Ef7 X~ 0.

Taking homology we obtain

Proposition 3.6.9. For X,Y and £ as above there exists a long

exact sequence
s,t s, t us+l,tf .

us é £
=~ E, ’ (f) »E,” X —> E’ Y~ E

pProposition 3,6,10, The usual Adams' spectral sequence for F, Er(F)

maps to E:(f).



Chapter 4

Some Stable Calculations

4.1 A spectral sequence,

- In this section we will introduce a spectral sequence which we
will use extensively in the rest of this chapter and in Chapter 7,
As before let A be the mod 2 Steenrod algebra and let Ay be the
sup-Hopf algebra generated By {Sql,'...,qul}.. Let £ = { CS,dS] be
a chain complex of Ai modules and A; maps ds with an augmentation
e: Cp ~ M. That is, e: ( CO)O - M is an isomorphism. If ﬁ*((i) =
the chain complex is called acyclic with augmentation M. The chain

complex is called convergent if lim(connectivity of (}S) = o,

S—

Proposition 4.1.1l. Associated to a convergent acylic chain complex
over A, with augmentation M is a sPectral sequence with
g,s,t s~0,t g,s
El ‘ExtAl (cC ,zz) and E_ = EOE t (M 22)
o o R

(Recall that Eogg for a filtered group,&? is the graded group
of successive quotients.)

The spectral sequence which arises from a complex (? in this

fashion we will designate Er(c ).

Pfoof} The acylic requirement gives short exact sequences

d

: s+l
0 < ker dS < (?s+l <— ker d <— 0. Thus EKt ,Z&) gives

s+1
a loﬁg-exact sequence for each t and produces an exact couple in

the standard way. The spectral sequence is a separate exact couple
for each t and this accounts for the trigrading.. The convergence

hypothesis guarantees the convergence of the spectral sequence in a



strong sense. Indeed, for t fixed the chain complex is finite,
Some -examples of the above which we will use later include the

following. Let I.(A.) be the kernel of A, ® Z, ——> 7. where &
Ji _ i Aj 2 2

. ; . s . ) .
.1s the obvious augmentation, ILet ‘Ij (Ai) be defined inductively as

s~-1
.) - Ij (Ai)- LEt

i s-1
the kernel of_Ai ®Aj22 ® Ij (A:L

- 5 .
Cs = A; ®, Z, ® Ij (Ai) and let ds be the composite map

s s s=1
Ay ®Aj22 ® 1A = I5(4;) < A; 8, Z) ® I, “(4;).

Proposition 4.1.2. The above chain complex (G ~,d ) is a convergent

acyllc chaln complex of Ay modules with augmentation 22

The proof is immediate. The Ej term is EXt (60-322)

By the standard change of rings theorem

_ - s,t . .
Ext 1 (A. ®Aj Z, ® M,Zz) ExI:Aj (M,Zz). This gives us for any

Ai module M

Theorem 4.1.3. There is a spectral sequence suéh that

g,s,t sctc

E;°°°" = Ext A, (I;(4;) @ M,Z,))

which converges to Eth’t(M,zz).
i
4.1.4. We will have frequent recourse to this particular example

and so the above chain complex will be written e (i,3).

It is worth noting that if in 4.,1.1 C is a free Ai module

then El’s ot Hom (C’ ,22) if s = 0 and El’s ot = 0 for o # s.

Thus E2( G) = E_ and this is the standard way to calculate ExtA .
i



4,2, Aj-free modules.
In this section we will Prove an important result of Adams [ 2 ],

The proof is 1ntended Primarily to illustrate »in a simple example ,

the methods which we will use later.

Theorem 4,2.1 (Adams)., If M is a connected free Ay module such

that.MJ = 0 if j < 0, then Eth’t(M,zz) =0 for t < 3s - 2 for all
: i

i> 0,

The first step is

Lemma 4,2.2, If the conclusion of 4,.2.1 holds for AO’ then it holds

for any connected free A0 module,

Proof: Let (? be a minimal resolution over A, for Age Let
V = Z2 ®A M. Then @® V is a resolutlon for M and
0

Hom ( C ® V. Z‘) =0 for t < 35 - 2 if Hom ( C z&) Ext ’t(AO,Zé)
1 1
does,

The next lemma is important in its own right,

Lemma 4,2.3, EXtZ’t(AOsZQ) is given by 2§[h1,a5P]/{hi = O,éz = 0],

The filtrations of the generator are

(1,2)
a, (1,3)

P, (4,12)

Proof., 4t is easy to check that the following Sequence is exact,



£o £ £, £ 53 £
A0 < A1 <— Alhl ® Ala <—= Alhl 8 Alahl < Alahl <— AOP.

fo is the augmentation

flhl = Sq fla = 5q°Sq
£.h? = quh + Sq a f ah, = Sq“a
271 T oed 271 ~ ~4
3 2 3, 2
f3ahl = Sq ahl + Sq hl
_ 2.3 .2
f4P = Sq Sq ahlf

»

Iterating this sequence we obtain along exact sequence of free
A1 modules resolving Ay. It is easily seen that this sequence

yields Eth’t(Ao,zé) as stated in the lemma. Chart 4.,2.4illus-
1
trates the result.

S

7
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t-s= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

s,t
ExtAl.(AO,Zz)
Chart 4,2.4

Vertical lines represent h0 multiplication, Diagonal lines



We will complete the proof of 4.2.1 by using EL (Gt
Since (C )t = 0 for t < 4s and

G SIS S=0,t, a .
(C,1) @ Ag) = ExtAl T(I1(A;) ® Ay>Z,) we see that this

group is zero by 4.2.2 and 4.2.3 for 2(s~0) - 2> t - 58 ~ 0 or
3s - 2> t when 0 = 0 which is the extreme case. This completes

the proof of 4,2.1.

4.3. :Some Aq modules.

In this Section we will calculate Eth;tﬂn,zz) for various Al-
modules which we will have occasion to use latter. First we will
prove a standard result in two ways. Both will ﬁse the spectral
sequence of 4.1. One way is simple and easy. The other way, which
~appears labored, is intended to illustrate a technique which will be
crucial later o;. It should be viewed as pedagogically interesting,
The result is proBably originally due to Adams. The reader should

compare also the result of Toda [34].

Theorem 4.3.1. Ext (z 2Z,) = szh05hl;55P]/R wvhere R is
d by h3,h h ,3h, and a2 = 12
generate M 123k 52 1 and a~ = OP'
First proof: C(Consider the following exact sequence
d - d d

€ 1 2 2 4
Zz<_—-_A1®AOZZ<_—ZAl< l<

7 M 12
1®A022<—z Z,

where Zé is the A1 module which is Zﬁ in dimension zero and zero

elsewhere and X is the usual module suspension. The map € is clear.

di(genérator) = sq2 i=1,2, d3(generator) = Sq3. Then ker d3 = 22

and M is the inclusidn of the ker d. into 27A ® Zé' That this



sequence is exact is an easy calculation in A,. We can apnly 4.1.1
q l e y

to this chain complex giving

alants ‘

g,s,t % 3 3
E;°7? = ExtA (22,22) = P(ho) with bidegree of h0 = (1,1).

{

=L 0
ELeS0T o peeS ot oy o s =1, t =2 (call this class h
1 s BB -G ’ chass by)
= O‘ otherwise,
2’S’t = = =
El 'Zb s 2, t 4

= () otherwise

Ei’ L Eb(ho) with bidegree a = (3,7)

43*,* — 5;4,t‘12

This defines a polynomial generator P of bidegree (4,12). There
can be no differential in this spectral sequence and thus the

theorem is proved.

Second Proof of 4.3.1. Let the generators of Ad'be a, and a;. Then

s
® A can be viewed as the z, module generated by all words in Ag

i=1
: s
of length s. Let BS be the sub module of & A0 generated by linear
i=1

combinations of words which are symmetric. By using the Cartan for-
S

mula we have an action of A on ® A0 and on BS. The Cartan for-
i=1

mula guarantees that B, is a submodule over A. Also observe the

following sequence

£ '

g
s+1 s
> pM Bs~1 - O’




: s+1
where g (a; ® «++ @ a. )= T a, @a, @ s ®a, ® ++°® a, :
L] Yer1t g=1 iy T 1y toar

is exact as A modules, (This is an easy special case of the

Koszul comples; see [10], Chapter VIII, §4).

Recall that A1 ®A. Zﬁ as an A0 module is Z& e zzAO e 2525 where

)X 1s usual module suspension &nd Z, is the module which is Z2 in

dlmenSlon zero and zero else'where° Let

d:A® ZZ®ZZB-*A zz®z i

S Bs—l be defined by dS on -

28 2 25~2_ .
Z' Bs ~ Iz AO ®@ = Bs-l belng the map & and d2 o]

2542 2543 . " , 2s_
= Ag ® Bs z B, being fs' Let C, = Al ®A0 Z, ® x B.; then
C? — {Cs;ds} is a chain complex of AO modules with augmentation Zé.

Lemma 4.3.3. The chain complex e is a convergent acylic chain com-

plex with augmentation Z,.

Proof: Using the exact Sequence described above the chaln complex

can be expanded to look 1like

28 28+2 25+ '
‘Z By zf///,/// /ELj%,//’ Bst2
S
23+2
% ‘5)"?)
23+5 . 23+7 25+9

The slanting lines are just examples of 4.3,3. The convergence pro-
perty'is'immediate. This completes the lemma,

This chain complex can be used to calculate Ext (Z ,Z&) We



' . 0,8,C _ S=~0,t~0 ® s .
have El ExtAl (A1 ®AO Z, BG’ZZ) wnich is equal to
Ex S Tst- G(B Z&) One easily sees that

Ag

Jauls
&

XtAO(ZZ’Zé) . P(ho) and h0 has bidegree (1,1)

s,t _ ) .
ExtAO (AO’Zﬁ) Z, if s t=20

0 otherwise

4.3.4 Ext (BZ’Zé) = Z, ifs=t=0

P(hy)(a) with a having bidegree (0,2)
=0 otherwise

Ext (B3 Zé) = Z, ifs=t=0; or if s =0, t = 2

I

0 otherwise.

. L Gk .
Since as A0 modules B4k+i = B4k-1 e x Bi these calculations com=-

pletely determine the E, term.

We can summarize these calculations by Chart 4.3.5

Chart 4.3.5




The element in (2,6) comes from Ex to’"(Bz,LZ) and is repre-
A

sented by {Sq 1} where 1 generates B, a4s an A-module. This deter-

. 0,2 0,2 . .
mines the differential dl‘ ExtAO (Bz,Zé) - ExtA; (33,22) which is

non zero, This differential implies the remaining ones indicated,
Since the non zéro class in (B4) i1s not in the image of an Ay
operatlon there are no further differentials, This gives the
theorem,

l,

Chart 4.3.6 is the result of this calculation,

l .

t=s=0 1234567891011 12 13 14 15 15 17

Ext >t (Zé Z,).

Chart 413.6‘

4,3.7, Consider Pk as the set of lines through the origin in Rk+1.
To each point of Pk'we can assign a linear transformation of‘Rk-+1

by reflection in the hyperplane, in Rk+l; perpendicular to the line
determined by X€Pk, Composition with a fixed orientation feversing

transformation provides an element of S0(k+l). One can check thar



e k. . . .
the_map.kk: P - S0(ktl) defined in this fashion is continuous. Let

J: SO(k+L) - nk+1sk+l be defined by J,(T): 5 5 = ST, TeS0(k+L),
%

k+1

is the extension of T to the one point compactification of R
'aﬁd demaﬁding that Jk(T) fix the base point. J, in homotopy is the
usual Whitehead J-homomorphism.

Let R(k) be the cofibre of J,_ = i@ and denote by R(k) its
cohdﬁdlogy with z, for coefficients.

Similarly one can define JeA: 'Pm - Qaz with cofibre R and

H"‘(R; Zz) ‘= Ro

Proposition 4.3.8. Ext (R, z,) =z, if t - s =4k

0 otherwise

Proof. . Filter R by requiring ’}n c R t6 be the image of A _g‘ﬁ"(lm)

in 'R under the standard map. Note that Tén/?}n-l = z:411("3‘]_ ®. Z§)°

A9
We consider the sequence
-~
}chgl—' o a0 =5 jn_. -.o:.
We can apply ExtA>( ,Zé) and obtain an exact couple
’ 1
n,s,t s,t - s,t~4n
El EXtA1 (E}n/?}n—l’zﬁ) EXt O (Z? Z )
" There are no possible differentials thus
: s,t-4n S ..
Ext (R Zé) = $ EXtA (ZZ’ZZ) and this is the proposition,
0

Note that the above proof also yields



Proposition 4,3.9. If k = 4n + i, 1 < i < 3 then

3
xt ot (R(L), z&) e Ext S,t- 41(22 25) & o EYtZ’t 4“ z&) where

j=0 0 i=1 1

€P" =2, ife=o

0 otherwise

) = Z, if t = 0,2 and sq2 # 0

0 otherwise

(€)= 2, if £ = 0,2,3 and 5q3 4 0 )

0 otherwise,

Remark. Proposition 4.3.9 does not indicate the action of o

(z& Zé) on Ext (R(k) Zé)’ however, we note that Pl, the Bott

periodicity operator, acts monomorphically. (P is the class in
(4,}2) in ExtA (Zé,zz); see 4.3,2.)
The calculatlon of Ext ’t(c Zﬁ) is ea311y accomplished using

41
the following short exact sequences,

: 2
Cl <= C, <=~ X C

2 1

3

- The maps involved are the obvious ones. .

These results are summarized in the following charts.



14

12

10

s

s =0 2 4 6 8 10 12 14 16 1B 20 22 24 26 28

s,t
ExtAl (C,,2,)

Chart 4.3.10

16, ) - y

14

12

ol _ L
6 %
L

t - s=0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

s,t
EXtAi (CS’ZZ)

Chart 4.3.11



Using these calculations we can easily get

Proposition 4.3.12. Exts’t(ﬁ*(P),Zé) and Exts’t(ﬁ%(Pk),z5) are
Al A1 ~Tn 2

given by the following charts.

14 . . | | ‘////

12

19 ////

t-s= 2 4 6 8 10 12 14 16 18 20 22 24 26 28
'Ext t " (P),2,)
12 ) Chart 4.3. 13

10

6 | . . '///%

t-s = 4j-4k+ 0 2 4 6 8 10 1 14 16 18

s,t

Ext, @ (P4k+l),Z )

Chart 4.3.14

The portion of thls chart for s near (t-sj/Z is the same
as in Chart 4.3.13.



4.4 Aléffee Resolutions

In this section we will present some results analogous to those

obtained for A0~free resolutions, 1In particular we will prove

~ Theorem 4.4.1 [20,Corollary 4], If M is an A, module which is

A.-free then Eth’t(M,Zé) =0 if 6s> t+e, e < & depends upon the

1

congruence class of s mod 4.

‘OQur methods allow one to easily get the exact edge but we feel

that this simpler statement is more useful,

Another result we will include is a calculation of Ext (22 z ).

This has:been calculated by many people but first published by
Shimada and Iwai [31] . Our calculation is intended to shed light
on the methods of Chapter 7. It does seem to have some merit since
one of us found it quicker to do this calculation in order to con-
struct the chart than to use [31]. We prefer to give answers
in terms of charts like those given because in ah algebraic system ’
with generators and relations these objects are extremely compli-
cated. The representation on the charts seems to give a geometric
pattern which is possible to comprehend. This may be a mattef of |
taste!

Qur proof of 4.4.1 will follow the model of 4.2.1.

Lemma 4.4.2. If the conclusion of 4.4.1 holds for Al then it holds

for any connected A -free module.

The proof is almost identical to 4.2.2.

Lemma 4.4.3. Ext, *C(ay Z,) = 0 if 65> t + 4.
)

We will delay our proof until after we calculate th (zh zz



To complete the proof of 4.4.1 We use the spectral sequence

{E ((3(1 2) ® Al)} Then El’S SIENS Ext (I.(A ) ® Al,Zé). Since

Ii(AZ) is 80 connected Ei’ = 0 if 6(s~s) > t +-4 Taking the
wWorse case g = O gives the theorem.

Next we wish to calculate Ext ’t(Zé Zé) We will use the

spectral sequence 4.1.1 but the complex (2(2 1) is too complicated,
We w1ll find a complex similar to the one used in the second proof
of 4.3,1. This approach is, in a Strong sense, a May spectral

Seéquence approach but it does seem to have some advantage over the
straight May appfoach, There is no doubt that originally our cal-

culations were helped by knowing, in some form, the answer.

5 PropoSitien 4.4.4, As A; module I(Az) = 2403 2] 21032 e 21722 where
Cy 1s as in 4.3.9 and Bz'ie as in 4'3‘2f

This is an easy e#ercise and is left to the reader.

Using C3 We can construct a sequence of modules analogous to
the way B2 was obtained from AO. Let C., i=0,1,2 be generators

S -
of 03 4s a Z, vector space. Then ® C, consists of all words

i=1 3
involving Ci'of length s, Let N, © ® C3 be the symmetric sub-
i=1
s
vector space. As before @ Cg has a Steenrod algebra action and N

i=1 §
is a submodule over A. The Z, vector space of A2 Al Zé is that

of an exterior algebra generated by C where ]COl =4, ]Cll = 6,
IC | = 7. Thus the standard Koszul resolution result (C1o01,

Chapter VIII, $4) yields

Proposition 4.4.5. The following sequence is exact:



f | g h
S s-1 2 5-2 5
0 - Ng > C3 ® N__y > 2B, ® N, >IN _ 4~ 0.

Let Cq be the vector space generated by Co and Cy. Let ﬁs be
s-3
the symmetric sub-vector space of ® ‘63 ® Cq ® C3 ® C5. Then
i=1

. 1., 3., _

N, < N, as a zz~vector space. Since Sq'C; = C, and Sq Co = Gy no

Aq operation on a class in'ﬁs can get out of ﬁs. Thus'ﬁs is a sub
. . ) 4 ~

A modgle,of N_. Notice that sq (C1 ® Cy ® Cg ®_Cl) =

C. ® C

® C. ® C. and s0 N is not an A, submodule, This fact will
29 8L2° 605 5 2
be important a little later, It is easy to see that )
= . 12 |

- 4s )
Let =4y ©, T 0N 544

~ 16= . _ 28
L " (A2®Al z,® T N) e £7z,.

Using 4.4.4 and 4.4.5 and. the maps fs’gs and hs’ we have

. b4s. bhs=4 .
ds' AZ,.Al 22 ® 3 Ns A2 ®A1 Zb ® = stl just as 4f3'3' The

: ) hs= . 3 _
map dS restricted to A2 ®A1 Z, ® £ "N, gives a map dS. Cg Cooq

except for s = 4,

Proposition 4.4,6. There is an extension of the definition of Ez
so that (3== (Cs’ds) is a convergent acylic chain complex of Ay

modules with augmentation Zé.

Proof: Following the argument of 4.3.3 we see easily that

4s . . .
(A2 ®A1 zZ, ® = Ns,ds) is a convergent acylic chain complex of A2

modules with augmentation Zy o The quotient map

. = _ 12 . ) .
Ng NS/NS =z N,_, gives a chain mapping
B 4s - 4s+12 .
(AZ ®A1_22 ® 5 Ns,ds) A (A2 ®A1 Z& ® 5 NS*Q) augmenting the



right hand complex by 21622 for s = 3 making both complexes acylic,
The map d4 is defined to produce this augmentation, This gives
4.4.6,

From 4.1.1 we have

Theorem 4.4.7. There is a spectral sequence such that

c,s t . 8=0,t=4G 8-4,t-28
E,; 7 EXtA (N ,Z ) @ ExtA (Zé,zz) and whosev
: 1 2
CsS,t _ O s,t
E_ EOExt (22 Z, ).
' s~4,t-28 ; . . _ .
The term ExtA ( Z’Zi) gives rise to a virtual polynomial
2 .

generator. The fact that ﬁ; is not an A2 submodule gives a differ-
ential on the class but the square of it in (8,56) is indeed a
polynomial generator,

The groups Ext ot (N ,z ) are easily calculated,
l

il

Proposition 4.4.8, a) ExtAl(NO’Zb)

thl(Zz,%)
b) ExtAl(N'l;zz) ~ ExtAl(c3,22)
c) Ext (N 52 %) =

+ .
Ext (22 z,) o elExtzOt"'"zs(zzz z,) @ Extzlt+zs 2 CysZy)) ifs > 2,
j=

Proof: ©Parts a and b are immediate, Part ¢ for N = 2 and N = 3
are special calculations, which follow easily from the calculations
done in 4.3. The rest of part ¢ follows easily by observ1ng that

c ﬁ;+l 2 +2 3 and a simple induction argument completes the

=]

s

proof.

As in 4.3 the differentials in the spectral sequence reflect



A Y 1 4 < =
the A, structure of each Ns' Since §Sq CO & CO = Cl ® Cl and

SQGCO @ C0 = C2 ® C2 we would expect differentials to occur

reflecting this,

S represent the generator of Extz’O(ﬁS,Zi); let

We let h
, 2 1
(N, Z,).

2i —

2:—1(NS,ZQ); and let bs generate Eth,Zs+2

1 1

Note that h%h; and h%a . are non zero and b_ is free over
s,1 s

£ ~ ‘ . :
; (CZ’ZQ) = P(ho,vl) where vy has bidegree (1,3). Then the

a . enerate Ext
5,1 & E

e
ExtA

presence of Sq4 gives di‘éaS 9 = hs+l. The presence of Sq6 gives
_ ) .

2
# = pSHL £ 50 sives dfa _ =
ds?s,z h2 . The presence of Sq gives dsas,5 as+1,4. The

class PeExti;lz(Zé,Zé) acts monomorphically and commutes with df.
This allows one to calculate everything in the spectral sequence
| except for the free generator in (4,28) coming from the free z2
in C4. As noted, this class has a'differential since it is in the

image of Sq4. There is one choice and linearity completes the cal-

culations. The following charts illustrate these calculations.



ExtAl(No,Zz)

ExtAl(§l,zz) /////

gxt, (N,,2,) [
ALY
ExtAl(NS,ZZ) I
4
ExtAl (¥ 525)
thAlcﬂg,zz)
t-s= 0 2 4 6 8 10 12 14 16 18 20 22 24
Stages of the calculation for ExtA (zz,zz)
2 >

Chart 4.4.8
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mxﬁ> (25,2,) is periodic¢c on two generators. one of (s,t-s) filtration (4,8) and one of
2

filtration (4,48). Some of the first are indicated but none of the second are drawn.

There is also a periodicity Operator of filtrationm (1,5) acting on the class in filtration (6,30)
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Ve Lue Coaln complex OL 4.4.6. The chain '

T e T » ae o o
complex C ® Al‘is easily seen to be a free A2 resolution. The

peculiar form of C4 is the problem, The resulting spectral sequence

has as its E; the following chain complex

- 8— _
Z% - Z4Nl - 5 N2 - 212N3 - Zl6ﬁz - Ezoﬁz = ==

)

ts-4,t--28

Ex A, (A,Zz)

where all groups for s # 0 are zero except in the fourth place. The
Qifferentials described above in the proof of 4.4.7.dre sufficfént
to yield the proof of 4.4.3., We include a chart with the
result of the complete differential. The thesis of Lin [}7 ] has

related results.

The following,which follows immediately from the above .calcula-

tions,is useful,

Theorem 4,4,12., For each i the spectral sequence Er((?(i,l)) sat~
isfies £,"°""(@(1,1)) = 0 if s> 0, 60> t and if s = 0 then
60 > t+.

4.5. Stable A; modules

In this section we present a few odds and ends which we will

have occasion to use later.

Theorem 4.5.1. There exists a spectrum, denoted bo, such that

Hr(bo,Z)) S48y Zpe
A very nice proof is in [6] and we will not present another

‘here. The reader can easily see, with a change of rings theorem,

how calculations of Eng (H*(X); zz) can be changed into calculations




of Ext (H*(X A bo); Z,). This has been considered in great detail

by many people.

Theorem 4.5.2. There exists a spectrum bspin whose cohomology is,
H*(bspin; Zé) = A/A(Sq ,Sq ). E4bsp1n is the three connected cover

of bo,

Proof; It is easy to verify.that E(l) exists. It is the stable
complex representing the null homotopy of me2. 1In 4.2 we examined
a module over A, BB' In Chapter 6 we define a spectrum.f(l) séch
that g*(B(1)) = By. An easy calculation shows that

H*(bspin) = H*(B(1) A bo). The spectrum B(l) is the 3 skeleton of
b spln and hence we have B(l) A bo = b Spln A bo - b spin where the
last map uses the ring structure. Tt is not hard to see that thig

is an isomorphism in cohomology since

H*(B(1)) = A;/A, (sq,54%,5¢3) and a S5, % © Ar/a(sahse%,sq%) =

2 _
a/a(sq",54%,54%) - A/A(Sq ,5¢°).
The following ideas can be described in a more general setting;
however we will only need two Special cases. See Adams and

Margolis [ 57 and Margolis [ 24] for more in thig direction.

Definition 4.5.3. Let R = A or A;. Let M and N be R-modules, .
M is stably equivalent to N 4if there exist locally finite pro~
Jectlves P1 and P2 such that M & P1 =Ne P2'

The following result is useful,

Proposition 4.5.4, If f: M~ N is a map between two A modules and



f induces an isomorphism f - Ext s>t (N, Z&) - Ett (M ) for s > 0

then £ 1is a stable isomorphism.

AProof: Let M' = M ® V where V is free and v ®, Z, =
v ®A zé = coker f# c Extg’*(M Zb). Then we can modify f to
f': M = N so that f'#: Ext, s>t (N, 22) - Ext (M',Zé) is onto if s = 0
and an isomorphism for all other s, By using the cone construction
‘of 3.4 we see that the E (f ) is 0 if s> 0 and hénce is free,
Thus M' = N has free coker. Using [24] we see that N = M' ® W
where W 1is a free A module,

Another useful fact in this direction was proved by wall £35]
and Anderson, Brown, and Peterson [ 7], ILet Q = Sql and

2

Q = Sq3 + Sq Sql. Since Qg and Qi,are both zero Q; acts as a

boundary operator in any graded module over Ays M. Let H, (M; Q; )

be the resultlng homology.

Theorem 4.5.5. (Wall; Anderson, Brown and Peterson). If £: M - N
is an Al map between two graded Ay modules then f is a stable Al

isomorphism if and only if H*(f;-Qi) =0 for i = 0 and 1,



Chapter 5

The Double Suspension

5.1 1Introduction. In this chapter we return to the material of
Chapter 3. We need one result from Chapter 4 but otherwise this
material is independent of the previous chapter,

Let wn be the fiber of the map s2n~l c 0252n+1. Using the un-
~stable A algebra as developed in Chapter 3 we can construct a spec-
tral sequence for W, - See 3.6.8 for a discussion. We will normalize
so that El’z(w ) = and Es’t(w ) = 0 for all t if 5=0 ang

w2 W) = 7, 2 Iy top=

for all s if t = 0,1. The main results of this chapter-are

Theorem 5.1.1, There are natural maps

s : f1

z’t(w

- -]
E > By’ (Wy) =+ eee = ExtSTHEL (A 7Y

1) A
so that fn is an isomorphism for 6s > t + 20 - 4n.

This result is algebraic in that it asserts only that there is
a map between the Ez-terms. This result is proved in [21] and sub-
stantial parts of the paper are reprinted herel.‘ Since that paper

was written Snaith's work [32] and Gohen and Taylor's [12] improve=

ments have appeared. This allows the following strengthening.

s-1,t~1
A

5.1.1 for each n 3 induce maps between the (unstable) spectral

Theorem 5.1.2, The maps E;’t(wn) - EXt (AO’ZZ) given by

sequence {Er(wn)] and the stable Adams spectral sequence of

{Er(z"lRPZ)}.

l"The double suspension homomorphism", Reprinted from the Transactions
> of the American Mathematical Society, Volume 214, pp. 169-178 by per-

mission of The American Mathematical Society ¢ 1975 by the American
"Mathematiecal Qantaorw .



Recent work of Cohen, May and Taylor [11] seems to give

Yo,

Theorem 5.1.3. There is a geometric map kn: W(n) ~ Q4W(n+l) which

induces the map fn of 5.1.1.

Theorem 5.1.4 (Theorem 3.1 of [22]). At the E, level

s,t, 2n+l

mxe, S e, 2,) = By E (2

A

for 6s> t + 16,

The majority of the calculational work of this chapter is done
to prove 5.1.1 and occupies sections 5.2-5.5. The proof of 5.1.2
is given in 5.6. :The proof of 5.1.4 is contained in 5.5. The

balance of this section begins the proof of 5.1.1;

To prove Theorem 5.1.1 we wish to look at the double suspen-
sion. Let A(Wh} = nzA(4n) S ﬂlA(4n-2) and assign My filtration

(1,i+1l). Then we have

$

5.1.5. ) - As’t(Zn-Z) - As’t(Zn) P As’t-2n+2(Wh) -0

where the firit map is the obvious inclusion and the second map

satisfies{p@bnkl) = nzkl, p(l2n~lx ) = ”1l1 and, if the basis mono-

mial XI star:s with X, for i < 2n - 1, then p(AI) = 0., From 5,1.5

we can defire a boundary operator, dy, in A(wn), so that the sequence
5.1.5 is a short exact sequence of chain complexes. Theorem 5.1.1

will be prived explicitly by proving the following.

Theorem 5.1.6. There is a natural sequence of chain maps



AS,t(wl) - As’t(Wz) - "t LR A® KlA’ where the lagt Lerm is asgsgo-~

2
ciated to P2 as described in 2.5 and A(wn)/A(wn+l) has zero

homology if fs'> t + l4 - 4n for n> 1.

5.2. The Chain Complex A(wn)°
The first step in proving Theorem 5,1.6 is to determine the

differential in A(Wh).

PrOPOSltlon 5.2.1. d(leI =) ali) =1 di_ e ul(AOxI + le + a)

21

where a = 0 if XIEA(4n-l) < A(4n) and a = (dk4n+1)x1’ if

Definition 5.2.2. The map fn: A(Wh) - A(Wh+l) 1s given by

B (rp @ wga ) = Pty @ m(a; @ P4ns1tpr) vhere o= 0 if

XIEA(4n-l) and ¢ = 1 if AI = lén AI,.
Proposition 5.2.3. fn is a chain mapping,

Proof. The proof is clear from 5,2.1. Indeed,

£d(uphy @ xy20)) = E(ydip @ % (da; ® Aoty © dd, d))

diy © "0 g1 A @ Az e hohs

© e(dk4n+l)ll')

i

Rpddp @ % (d(A 5 @ Antitrr) @ Agrp)

I

dfn(nle @ %A ).



Sketch of the Proof of Theorem 5.1.6.

We will construct the chain complex A(Wn+l/wn) and find a com-
plex A(C) which maps into A(wn+l/wn). This map will be shown,
using an induction hypothesis, to induce an isomorphism in homology.
This is done in 5.3. In 5.4 we consider an Al—free stable complex
X and show that A(Cn) maps into A(X) and induces an isomorphism in
an appropriate range of dimensions. Finally, we recall that
Eth’t(Al,Zé) satisfies the edge given in 4.4.1 and thus completes
the proof.

We note, at this point, that A(Cn) is for our consideratioﬁs,

an algebraic object and not known to be related to any spaces.

Proof of Proposition 5.2.1.

We need to calculate the differential in sz(4n) o nl(A(4n-2).

The differential is evaluated by the following sequence of maps:
5.2.4. w,A(4n) @ % A(4n-2) » A(20) & A(2n) ~ n, A(4n) @ x A(4n-2)

where the first map is given by ne = A2n+i-2 and the last map is p

)

~o0f 5.1.4. Thus we need to put in admissible form (dkzn)kl and

(d and determine the coefficient of x2n-l' We need the

Monr1dt g

following lemma.
Lemma 5.2.5. A A(k) @ a(k-i-1) y A(D).

Proof. We wish to look at Xilj where XJGA(R). If XJ is also in

A(21i) then liXJ is admissible and in p(i). We suppose that kikJ is
not admissible as it stands., If J = 1 then

A, = £ aX., . A and this is in A(j-i-1). Suppose we have
i7j k>2i+1 ki+j-k k



established the lemma for all i and J such that J < n. Sup-

pose'j1 = 24. Then

- _ n-1,,.
M ado= A, oAl Ao, = AN, . ,exﬁle_lA (23¢)

~1"J T £39=1"7

n,. n+l
A A Gg) = ()

and this is the lemma, Suppose jl = 224 + 1, Then

_ nlE ' . .
kz 1lJll Xz+l}j1—2XJ'elz+lA (Jl+l)EA(£+l) which is the lemma,

Now suppose we have established the lemma for A A_if T < n then
i3

then 31_~ 2i - 1 < q. Suppose J = n and jl - 2i - 1 = qg. Then

o\l Y x SR S Y + X If

- _-_._). >y X [ B
iJ f>k>21+l %k i+i; k™k i1 172i+173
. n~1 . 1 .
iy > k> 2i + 1 then Xi+jlekxkA (231) c Ai+jl~kA (231~k-1). Since
2j1 -k - 1= Z(i_jl-k) - 1 < q the induction hypothesis implies

that the last expression is in An+;(jl~i~2). Finally

“if1x21+l (ZJl) c. 1 3,1 _1M234-21-2) < A(Jl~l-l) ‘This com~

i1
pletes the double induction and the proof of the lemma.

Now we can compute the coefficient of ) in (dx2n)xI. If I

21‘1"_'1
Begins with il < 4n then
_ 2n~-1i
d(XZn)XI . ( i ) 2n~1A1 1 I 2n-l O I
¥i1
2n-1i
+ = ( A i AP
i>1 i 2n-i i~ l I
and
- - - -?
2n-1 . lA(lm 1) c Xz A(én i-1) € A(2n-2).

Thus if I€A(4n-1), d(uzkI) = azde + KlkO}I'



Using 5.2.5 in a similar way, we see that if il = 4n then

(dAZn)KI - 121( i ) 2n- 111 1 4n 1’

2n~-i
A
i ) Zn-lx4n-2i+lx21-lk1' te X2n-1kol1

|
™
—~

where c€A(2n-2).

2n-1

Lepme 5.2.0. d)\lm+1 =z A 4n-21+l 2i-1°
i>1
Proof. dA,’ = X (4n+1'j)x A, Thus we need to show that
’ 4n+l i>1 j 4n-j j-1°
(4“f§“3) = O(mod 2) if j .= 1(mod 2) and (4“+1 21y o (zﬁjl)mod 2.
Note that if « generatesl{(RP ) then SqJ 4n+l-3 = (4n;l~3)a4n+l
and if ® generates }I(CP ) then Sq21x2n—1 = (Zn- )n . Since

a4n+léim_5ql(4n;1-3) = 0(2) for j = 1(2). Since there is a stable

map f: ZCP - RP so that f*(a2l+1) = %" we see that

(4n;i-2i) = (Zn 1) od 2.

We return to the proof of 5.2.1. Note that

B

A = 0 since 2(2n-1) + 1 = 4n - 1., Thus

on-1*n-1M111

2n-1i _

xSZ( i )x2n-lx4n—2i+1k21—ll1' h )\211-].((“\4-n+l))L
— ' . ' - | .

d(lzn)k 'AZn—l(lOlI + (dl4n+l)ll,) + ¢’ where c'€A(2n-2). Putting

I by 4.3. Hence

all of this together, we see that

= 11
d(X2 AI + 12 -1 J) l _l(dkJ + AOXI + a) + lznde + ¢ where

c""éA(2n-2) and this proves the Proposition.

5.3. The Chain Compleg A(Fn) = A(wn+l/wn),

Let A(Fn) be the quotient chain complex of the map fn' Then



4 2

= e ' _
A(Fn) ", 4n+ . A(8n+2i) o "y _9 )4 +l,a(8n.21) and \(F ) re
i=1 _ i=
ceives a differential from A(wn+l). The differential is calculated

by the following composite
i d
A(Fn) P A(Wh+1) e A(wn+l) - A(Fn)

vector space inclusion and p 1is the projection. The exact form of
this differential is very complicated and we will not need it.,

Let A(C ) = "y ® [(X4n+l @ l4n+2)A(8n-2) e (k4n+2+A4n+4)A(8nﬂ

* @ L0 @ 2y )ME0-2) @ (0, + M i) A(80) ]

Let g: A(Cn) = A(F_) be given by

= A A 2 ot
g(“i(l4n+2j*1'*14n+2j-1lJ)) %3 ( 4n+23j 1'*X4n+zj-1( gn+1’1r TR )

for j = 1,2, i = 2 and j = 1, i = 1 and where XIQ is zero unless

XI = XSan'; AIGA(Sn) and AJEA(8n~2);

gCt (A y Mo+ 2 LGRS VR R

tn-1*1)) = n-1M1

Lemma 5.3.1. dg c im g.

Proof. The d in A(F ) is calculated by retracting A(F ) into
AW +1), calculatlng d in A(wn+l) and projecting back to A(Fn).
When this is done for the image of g Wwe get the following for-

mulae:

%P anasry = Ho Cunigdhy + 2, nt3 oty T (Bhgp )iy +

i k8n+1dxx') M) F Ry Pangp ory + l1’\8 ety Tt



et pnetahr PR SETS SR PSR SID)
wheare € = (m)mod 2 and where XI' = 0 unless XI = xgnxl..
dlryhgniar ) = R Opungoty F Apd3) s T Mrpiadh
d(8% 00t p) = M Cpnpa® 1+ Mnaa Corp + (Ghgpydiyr  Agpy Py
G L T O SRR L S LD PR LY

dgmp ppi1t ) = PP ® gt MMMt

[t an ) F A g

d(g* M nior ) = M Pungr Gt gn+1) 4n-1"2 1

Mnp29h ) o1 Cyrgngr T gt

d(@*ne1ty) = 1 Cuni®y + Mp-1MAy)

d(gurs 1))

ar ) = M Candrp F Mo Corp TR

8 +l I

d(e* gn-1ry) = MMan-19ye
To see this observe that d(ujl4n+i)k1 in Agwn+l) involves terms

of the form xu. Aén- p+i-1xI or, if j = 2, terms like

ﬁj—ll4n-pxp+ill' 1f j # 1 and i is neither 0 or 2, terms such as

these, when made admissible, project to zero in A(En). Indeed,

4n -p p+1AI c A(4n~-i-1) y A(4n-p) < A(4n-2) except for the above

exceptions. In the case of exceptions when i = 0 the argument is

just that of Section 2. When i = 2 we see that

4n+l-1i
pxldx4n+l 8n+1 = x( i In *1 4n-l ‘8n~-2i+3 21~l

8n+3-1

2
i 2N 8n+3-1i 1 -1° The argument from Lemma 5.2.5

Also d) = %(

8n+3

shows that these are the same and thus



puld(l4n+l)x8n+l = “1X4n-1(*1*8n+1 + d(l8n+3))° Thus we see that in
all cases the above formulae describe what happens.
It is a simple direct verification now that dg ¢ im g. We will

do the first one term by term. Suppose that 2\ The

I~ P8atrre
other case is easier. Consider

"2 Pnyg ((@rg Ay + hg dd ) + Mtz Rorgptyr + dhg A +
k8ﬁ+ldll’)' The classes (dABH)AI. < A(8n-1) by 5.2.5. The class
XOASniI’ + (dl8n+1)l1' <. A(8n-2) by 5.2.4, Thﬁs the above term is
g(uz(l4n+4(a + xsndxl.) + X3 (P)) where agp(8n-1) and b&A(8n-2).
- The cl;ss’u2k4ﬁ+2klxl is handled by noting that

xllI C A(8n-2) < A(8n). -Continuing with the terms of dgu2X4n+4lI
we see XZXI € A(8n-3) < A(8n); 1118n+lkli c xlA(8n+l) c A(8n-=1);
- .1311 < A(8n~4) c A(8n-2);.X4XI C A(8n-5) < £(8n-1);
kBA(8n+l)Ac A(8n=3) < A(8n). All the other cases are similarly

‘handled. This proves the lemma.

A key step in the proof of 5.1.1 is the féllowing result,

Lemma 5.3.2. For a fixed t, if Theorem 5.1.6 is true for all

t' < t, then g 1induces an isomorphism in homology for

6s > t + 3 - 12n,
Proof, We will filter the map g in the following fashion.
- . . g - -
A = ul(kén_lA(8n 2) ® X4nA(8n)) ul(lén_lA(Sn 2) © X4nA(8n)) By

2
© 14n+iA(8n+21)
i==-1 -

i
jws]

Ay = Ay @ % (y 1 MB-2) @ 4naah(80)) =

A3 = _AZ e u2(2\4n+§3_!\(8n—2) e k4n+21\(8n) - B2 =] uziialk4n+i;\(8n+21)=33



A4 = A(Cn) - A(Fn) = 34

For the resulting spectral sequence we see that

s,t,k : s,t s~1,t~4n-¢e;
Eg’ (c) = (Ai+1/Ai). N S l(wzﬂ) where e; = 0,-2,-3,-5

for i = 1,2,3,4 respectivély. Also

s,t,1 s-1,t-4n-¢; : .
Eg’ (F) = (B, +1/B ) RN il l(w2n+ﬁi) where e, is as above

and Si = 0,1,1,2 for i = 1,2,3,4 respectively. The map g induces

s,t,k

T EO (Cc) - E (F)

g

and 8, is an isomorphism, &, and g4 are f2n and 8, is f2n+l°f2n'

These are quire easily seen but let us look at 8,
84 (" 0132 F Mnyargnin? + A4nis©)

= 043 T At gn18 T Ane3tento? T Aangs)

. and this is just what f2n does. The second inclusion is just the
identity.

If Theorem 5.1.6 is true for t' < t, then ‘g induces an iso-

morphism at the E, level,

g8 0T (0) = BB (r) for all 1 if 65> t - 120 + 2.

‘Thus g_ is an isomorphism for all i, if 6s > t - 12n + 30.

This proves the lemma.

5.4. The Second Complex.

The complex A(Cn) is not known to represent any spaces which
have been identified. It was introduced because it also is com-

parable with an identifiable stable complex.



!%*."

The following is an easy exercise in stable homotopy.

Proposition 5.4.1. TLet Al be the subalgebra of A, the Steenrod a

algebra, generated by Sq1 and Sq2. There is a space X such that

 H*(X) is a free module over A1 on one generator x.

Proof. Take K(Zz,n) for n'> 6 and kill Sq4,Sq4Sq2 and everything in

dimension above n + 6. The resulting space is X.

There is a choice of X so that either Sq4Sq2 = 0 or -
Sqasqzx = Sq35q3x. Let X, have SqAqux # 0 and X, have Sq4Sq2x = 0,
In both X, we require Sq6x = 0, '

2 2i
Proposition 5.4.2. A(Xk) = @ ®& ", . pwith

i=1 j=2i-3 *+»J

A%y, = g 300 F Ry Myt SNyt (k)mod 2%1,1%3 + % g%
q(“égé) = oM oM

d(uz’z) = nz’lxo + Kl;lll it ul’0k2 + u1’ 113

d(%y 1) = *1 oM

Al 9) = % 1k + % 1k

dm 1) = % 1M

d(*1.9)

" Proof: By the results of Chapter 2 the p-algebra E. term for a

1
stable complex is given by ﬁ*(x; Zb) ® A and the differential is
1 - k=3 i i - - - -
given by d(a ® 1) = z asq ® Ri_l_where Sq Hj(X, Zé) eri(x, ZQ)

. i
i1s the dual Steenrod square [14]. A direct check of the squaring



operations in Al gives the result. The following picture may help
the reader. Each O represents a cell and 0-0 represents sql and

0 represents qu.

Figure 1. H*(X)

Note that there are several other Sq4's non-zero in the complex.

Since Sq5 + Sq4Sql’= SqZSq3 and SqZSq3 # 0 and SqlSqax = 0, we see

SSql # 0 we see

that Sq4Sq1x # 0. Since Sq6 = SqSSql + SqZSq4 and Sq
4

that Sq6 = 0 implies Sq x # 0. These are reflected in the differen-

tials given above.

Let g: A(Cn) - A(X(n)), where (n) is the congruence class of

n mod 2, be given by:

ngx4n+21x1 = nj,ZixI + u2,2i~118n+1XI' j=2, i=1,2; j=1, 1=0;
8% anets T *10M T ML 1 enet T -1 803t
Where AI' = 0 unless AI = XSnAI'; and gujl4n+2i-ll1 = ﬂj,Zi-lXI'

—_— 7/
Proposition 5.4.3. g 1is a chain map.

Proof. This is a direct comparison of the two sets of formulae,

Analogously to Lemma 5.3,2 we have

Lemma 5.4.4. For a fixed t, if Theorem 5.1.6 is true for t' < t,




then induces an isomorphism in homology for 6s > t + 3 - 12n.

The proof follows closely to that of Lemma 5.3.2.

5.5. Proof of Theorem 5.1.6 and 5.1.4.

The last step in the proof of Theorem 5.1.6 is the following:

Proposition 5.5.1. H_  (A(X, ,,d)) = 0 if 6s > t = 4n + 14.
s,t (n) .
This is a special case of Theorem 4.4. Now the proof of
Theorem 5.1.5 follows easily. TFirst note that Theorem 5.1.6 is
true 1f t = 1. Then note that the case n = 1 is not needed in the

-

induction and thus
{(s,t); 65> t+30-12n) o {(s,t); 6s > t-14n+l4) if n > 1.

. . ~ _S,t '
The first is when Hs,t(A(X(n)’d)) = E2 ‘(Fn) (4.2 and 5.4) and the
second is when the left hand side is isomorphic to zero (5.5.1).
2n

Proof of 5.1.4. We have seen that'A(2n+l) = @ XiA(Zi) and
i=1

A(Pzn) = & . A. Although the differential on ki is given by the
same formula as that of h; there is no mapping either way of these

chain complexes. But we do have the following maps

= "0 2n !

\ g . G
O Fpi-1M2) @ wy  A(4) 2> @ A p(21)
i=1 i=1

e N,
i A <

- g )\ 7 - Q .
where for each pair nZi_lA(Z) =) nZiA(é) > zi_lA(41 2) XziA(41).
g 1is the composite W(l) -~ W(i) and £ is the map £ -.. fl' Using

Proposition 5.2.1 it is to verify that both g and f are chain

Y

maps and hence induce maps'in homology. If we filter the complexes by




S ]
= ., “w /7 '
Fj(iilKZi_lA(Z) D %, A (4)) iilAZi_lA(Z) ® %,.A{4) and analogously

for the other two then the resulting spectral sequences have iso-
morphic E, terms by Theorem 5.1.1 in the range 6s > t + 16 and thus

isomorphic E_'s for the range 6s > t + 16 and this is the theorem.

5.6. Proof of 5.1.2,

2n-1 0252n+l° Hence there is a

Recall W(n) is the fiber of S

n252n+1/82n-1. Cohen and Taylor [12] show that

hnd2 4n+3 _
) =S Uy, e =

there is a map W(n) - Q5X. We will use 3.5,2 to show that this map

map K: = W(n) -

2 2n+1'52n—1

there is a map 24(9 S / X. Thus finally

covers a map between the given resolution of W(n) and the unstable
resolution for X. The resolution for W(n) is built for a resolu-
tion for st4n-1 and one for 0354n+1' Let {Xi} be the spaces in
the resolution for W(n) and {Yi} be the corresponding spaces in
QSX. Using the notation of 3.5.2 we need to verify that

k*Fi(Y) c Fi(X). Fi(X);is generated by classes of dimension
5'21(4n)-— 2. H*(X)/Fi(Y) is generated by classes of dimension
2_21+1(4n-3). If n> 1 then Zi(Zn)-Z < 2i+1(4n~3) hence

k*Fi(Y) < Fi(X) and thus 3.5.2 completes the proof.



Chapter 6

Ring Spectra and Thom Complexes

6.1 Introduction
In this chapter various ring spectra which are Thom complexes

of bundles over H-spaces are studied.

Definition 6.1.1. A ring spectrum is a spectrum E with a map of
spectra u: EA E= E and a unit i: S0 - E such that the following

diagrams .commute up to homotopy

A iA Ad
EAEAE-EAM, oA SO/\E11>E/\E<11E/\SO
I " p u/

Y v v
N YL
Lo g E

EAE

M 1s commutative if

commutes up to homotopy where T 1is the map that exchanges factors,

Let 1L be a space and £ a bundle over L classified by a
map £ from L into some H-space (e.g. BO, or BF, the classifying
space of stable sphere bundles). We can form the Thom Spectrum
T(f) of f” as a suspension spectrum by letting (T(f))n be the Thom
compleXIOf " - BFn or L* - BO(n). The structure maps for a spec-
trum are the obvious ones,.

Spectra which arise in this fashion have a unit which is the

b ¥ 4



inclusion of the fiber on the Thom class., The following simple

theorem is basic,.

Theorem 6,1.2. Suppose L 1s an H-space with multiplication u
and f: L - BF is an H-map. Then the Thom spectrum is a ring spec-
trum. If L 1is a double loop space and f is a double loop map
then T(f) is a commutative ring spectrum,

We note that the theorem is true for BF replaced by a suitable

classifying space, e.g. BO.
Proof: The hypothesis gives a commutative diagram

£xf

L X L > BF X BF

I

My,
v Y
> BF

BF

Taking Thom complexes we have TGHl):T(f) A T(f) » T(f). The Thom
class multiplies and so the spectrum has a unit, The commutative
conclusion is also immediate from an appropriate diagram at the
space level,

The ring of operations of spectra which arise this way is

often tractible.

Theorem 6.1.3. If T(f) is a ring spectrum which is the Thom com-
plex of a bundle over an H-space L with an inverse classified by
an H~map £: L = BF, then T(f) A T(f) = L, N T(f). (+ denotes a dis-

joint basepoint.)

Proof: Let A: L - L X L be the map defined by A(x) = (x,x—l). Let



g: L XL =L X L be the composite
Axid {
LXL——s1 xpxp98), p

where | 1is the multiplication in L. Then, clearly, g is a homo-

topy equivalence. Consider the bundle over L x L given by
LxL-8>1xp 58 gp

The bundle induced by (f,f) is equivalent to the bundle induced
by (£,f)eg. Consider

L—> LxL-8s1p x1ED, 5
A 7

H £

L L

where i: L = L X I, is the left hand inclusion, and j is the right
hand inclusion,
The ‘Thom complex of fugi is homotopy equivalent to T(f) while

T(fugj) is trivial. Thus, as spectra L, A T(E) & T(E) A T(E).

6.2 Some'examples I

Some very useful spectra are given by taking L, = Qsi for
i= 2,3,5,9 and letting fi be the Ow where w: Si - B20fis a genera-
tor. We will use these speétra frequently and so let X; = T(£;),
i=2,3,5, and 9. By a different procedure Barratt described
similar spectra in 1967. His approach was quite different but he
obtained éome of the properties we use. Theorems 6.1.1 and 6.1.2
give a much more direct path to these properties. We note several

of them,



6.2.1. The ring spectrum X3 is abelian,

Proof: The map 83 - B20 is equivalent to the loop of EPQ LN B3U
where W 1is a generator on 3 and is extended by standard obstruc-

tion theory. Then the realification of Qw 1is w.

s,t . '
6.2.2. ExtA? (H*(XZ),ZZ) contains Zﬁ(vl’WS’VZ) where V1s¥WssV, have
filtration (1,2), (1,6), (1,7) respectively and v, are related to

the BP generators of the same name.

Sketch proof. Using the results of Chapter 4 it is not hard to.

calculate EXtAz(H*(XZ)’Zé) and show that it equals Zé(a’vl’WS’VZ)
where a has filtration (0,8). Next one calculates by hand to
show that VyoWss ¥y, all exist in ExtA(H*(Xz),ZZ). The ring map and

~ - |
the map ExFA(H«(X3),zb) - EXtAZ(H“(XZ)’ZQ) completes the proof,

6.2.3. From 6.1.2 we have maps kji X - z(l—l)JXi which have

degree 1 in dimension (i-1)j. The evaluation of these maps in all
other dimensions will be ‘important later on. To do so we will
describe k.j more explicitly. Let gEl be the homotopy inverse of

the map g described in 6.1.2 as applied to as’. Then kj is the

composite
0 T(g;h) -
1dAS i i (1-1)] (1-1)3
—— A —_— = -
X; > X; A X > QS A X; = V z X, = Z X;

j=0

The first three maps are the maps induced in Thom complexes by the

following space maps

- -d . - 'X - - . - - - -
Qsl i, QSl X nsl —L~—I—> QSl X QSl X nsl —l‘i’——> Qsl X QSl



lwhere4A'(x) = (X,X). Let a.J be a class in H( ~1)3 (ﬂS ) then

2 L
a, > (@,®1l)~» 3z (da,®a 1~ ¥ (;)a. ® a,.
o £ btk=g 3 3 S b=z 1 .

Thus

¥ )
6.2.4. k_l a = - .o @
.J*( z) (J)a-z".]
If i = 2 then everything is with Z, for coefficients and this

formula is less interesting.

6.2,5. (Brayton Gray and M. G. Barratf). If aswj(so) let M, be. the

0 J+U B .
complex § U, & » Then X A M o= X, and X5 AM X

24~ “2°
Neither of these follow from H maps but up to homotopy equivalence.
QSZ = S1 X QS3. Note that X # Xg A M_. First to see that

‘X2 # X3 A MZi note that S3 = S2 - B20 gives a generator, Thus

there is a map X3 ™ X, of degree 1 on the Thom class. Now it is

2i

easy to verify that My, A X 9+ (Note that in X3 5¢7°U # 0 for

g = X

every i).

It is a litctle harder to verify M, A X5 = X3. The starting

place is the observation that there is a map Mv“* X3 with degree 1

on the Thom class, Using the multiplication we have M, AN, - XB'
Using the homotopy commutativity of X3 we see that

S4 - Mv A M, - X3 is null homotopic and the cofiber of 84 o= el M,

is the 2-skeleton of X Now suppose we have a commutative diagram

5.

M, A X&E 4Z+4

\/



42 LA+,

A A - A —p 11
Then we have Mv Mv X5 Mv XS X3 and the composite
4 44 4h 4 +4 L4548 .
A A - A
S A x5 =M, A M, X5 M, 5 has X5 as the cofiber,

But as above the composite S4 ~ M, A M, - X3 is zero and so

2 4
h4it+h 4248 _ Now X. A M, = X

| A : - . b
M, X5 extends to X5 . Hence X5 X3 s by

3
again checking the Steenrod operations. (Everything is still

localized at the prime 2.)

6.2.6, Let L = 0283 and let w: 53 - B3O be a generator. Let

f = sz. Then T(£f) = K(Zé,O). This case has received a lot of

attention in recent literature [ 231, [ 18] and [ 30].

6.2,7. If F_ is the Milgram filtration of 9253 (seeMay's paper [387
for a good account.and fn= f/Fn (f is as in 6.2.6). Then Brown and
Peterson [ 36] have shown T(f)) = B(n), the Brown-Gitler spectra [ 917,

In particular ﬁ*(B(n)) £ M(n) where M(n) is defined in 2.4, [23].

Let W(1) be the fiber of the degree 1 map of 9253 - Sl. (wW(l)

is related to the W(1l) of Chapter 5.) Then f induces a map
£: W(l) ~» BSO and T(f) = K(Z,0) at the prime 2. * Snaith [32] has

2.3 I

given a stable map of Q°g QZZP-ZMP where Q represents

p* prime
ché. These maps are just the p-adic part of the Snaith decompo~
sition for each p. For every p there is an essential map of

2p 2M - BF. Thus ﬁQZZP 2M ——> BF is given. Let g be the

composite Y - 0253 - HQEZP 2M —> BF.
Proposition 6.2.8. T(g) = K(Z,0).

Proof: We will outline the proof since the result is really one

dealing with primes other than 2. The proof follows closely that -



8lven in [23] for 6.2.6. First note that g%g> - QEZP-ZMP is part

of a commutative diagram

a’s? - Qz:zP'zmp -~ BF

A -7
6.2.9 , ﬁ,
ns? - g2P1

(We will do one prime, they all work the same way,) By using the
Cartan formula and Iig 2y 2 QSZP -1 = BF we see that in T(fp)
pt U #0 and XP U # 0 for all 1, (x is the anti isomorphism,)-
Next observe that analagously to 2.4 there is a filtration on Ap
. glven by & 'Ap = Vector space generated by XPI |
(el,...,ek_'l,ek,ek,o,...) (see [40]. page 77) with¢, > n. Then
EjA, T H*(R(Z,0), Z,) and ElA(P) T E)A(P) D c++ D EA(PP) o ...,
"Then ® N A(P)/E 1A p = I n(2p-2) (P)/ (P) {xa®p li> n, e = 0,1},
. Let y (P) =i .(Fpn)' Following the product methods of (407 it is
easily seen that ﬁ*(Y (P)/Y 1(P)) = B A /E p as Apt modules,
Combining this filtered action of A(P) with the generators given by
. 6.2, 9 gives a proof.
.F° Cohen has obtained a more elegant proof of this using more
directly the homology operations. This Proof appears to be in the
- spirit of the Madsen-Milgram proof ([18] and £30]) of 6.2.6. The
above proof, although admittedly not elegant, does seem to show that
.theorems of this sort are really theorems about the A structure
of H*(BF) rather than homology statements, (Recently we have

received a copy of the thesis of Ralph Cohen [13]. The modules

F_ p/Fn+1CA ) are discussed there in some detail,)



The Milgram filtration induces a filtration on Y so that

Y = i"l-(an) where i: Y - 0%5°. Let B(n) = T(?/Yn). Note that

B(n) A M, = B(2n+l). Later we will use

Proposition 6.2.10. H*(B(n)) is isomorphic to M(2n) ®A Z -
0

Proof: Recall that Ekn) is given as a Thom complex. The right
action of Sq1 is obtained by looking at the classes SqISql. Since
Squ‘= U U ¥y and Squl = 0 for all I we see that under the map

B(n) — B(2n), i* is just the projection M(2n) - M(2n) ®, z.
0o -

6.2,11, Another collection of interesting spectra result from

restricting f of 6,2.6 to QJ (52) c 0253 where Iy is the
27-1

. . 2, .
James construction. The homology of QJzi-l(S ) is Zﬁtxl""’xi-ll

and T(f/QJ i (SZ)) is a ring spectrum realizingffhe part of A*

which is Zb(§1,..o,§i~1). We leave the details to the interested

reader,

6.2,12, As a last example of an interesting spectrum which arises

this way we give the following without proof. Consider 55 - B3F

which represents a generator. Let f: QZSS,ﬂ BF be the double loop
map. Then T(f) has the property ¢3,jU # 0 for every j where ¢3,j
is the secondary operation described by Adams [ 1 1. The proof is

easy but does use homology operations, We do not know of one which

does not proceed from the homology point of view,

6.2.13. Finally,having constructed lots of examples of spectra,we
would like to note that it seems clear to us that BP, bo and bu

cannot be gotten in this fashion.



6.32' Resolutions with respect to ring spectra

The ring spectra which arise from 6.,1.1 yield particularly nice
resolutions, Before describing these resolutions we fix some nota-
tion. Let 0 be an H-space with homotopy inverse and X the Thom
Spectrum of a bundle over 0 gilven by an H-map. A: q x Q~Q xq
will denote a map which yields the equivalence 0, ANX=XAX

(6.1.3)." By the geometric bar resolution with respect to a spectrum

X with unit we mean the tower of fibrations in the stable category-

1As
X2 > Xl AN X
) P
6-3.1 ) ) 2
. . ) .
1ns
Xl > Xl A X
Py
v P
0 0

S — X

S0 - X is the inclusion of the unit, X; 1s the fiber of Ppe In
0

1Ag

general'xn‘ is the fiber of X1~ > X A X. Associated to

n-1

- this resolution is the cofiber sequence

6.3.2 /

2'I'here is probably much overlap between this section and Adams'
article [ 41, e



Here IX is the cofiber of SO > X, the inclusion.

i;: IX = IX A X 1is 1A SO. Inductively we define 17 (X) to be the

cofiber of ij—I: IJ—lX - IJ-lx A X. (The notation 19X is suggestive
of the augmentation ideal analogue.) Note that lei = 17X,
Applying the functor 7, to 6.3.1 and 6.3.2 the "dl" of 6.3.1

is the composite (i ), of 6.3.2,

P
s+l s

Associated to 6.3.1 or 6.3,2 is the sequence

6.3.3 |
Pohs” ST NS on '
X ‘_""-'—-4 IX A X ‘—'—> I X A X -5 e o0 —~> IX A X -) e oo )

0
_ A . . . .
Let di P; S°. Clearly di+l di is null homotaopic. Since

this resolution is associated with 6.3.1 we have the stronger con-

dition that brackets of arbitrary length can be formed (and hence

L O -

]

contain zero). Indeed IX A X U CS
~ 0 _
(IZX A X) UC(IXAMX)UCcCExX = 225 U CX3; etc.

Consider the sequence

-—

d. d. d
6.3.4 K> XA X —2> XA XA X oo 9715 40
, g I o A i i
where X 1is X A +++ A X O-times and d, = T (-—1)*dCI for
' i=1

at: X - XU+1 defined by 1 A «o0 A SO A eee A1 and s0 occurs in the

5°
ith'place. (Recall that X 1is the Thom complex spectrum of a

bundle over Q, an H-space with inverse, induced by an H-map). By

standard nonsense we see that dc*ia& is null homotopic. The

sequence 6.3.4 maps, in an obvious way, to 6.3.3. Indeed, it seems

easiest to consider the following diagram displaying these maps



sz N X L > sz A X
7 A A
A
Py AL PjAL
l/\_g:L IAd | 3 -
6.3.5 IXA-X———>IXAXAX > IX A X T e

0 7 A A A :
POV PyA1 Py AL
/d; :

Continuing this process yields the desired maps from XG+l - 17 A X.

For notational purposes we write it again as

2 o

X———>> IX A X - I XAX e - IXAX=-
A N A ) A
6.3.5" T £, £,
. d d .
x—te xax —» x3 ... o, ol

It seems likely that the bottom row satisfies the stfonger condition
that brackets of arbitrary length can be formed but this is not
known to us,

Next we wish to compare 6.3.4 with what we have using the

Structure maps of 6.1.2., We have the following diagram

d d d
X—-——lé X2 _2_> X3 - s oe ) >3 X0+l - s ae
A A A A
6.3.6 |81 & &3 8ol
6 6 6
1 2 o a
X >Q+Ax~—-——>Q+AQ+AX_. .o > (@) A X -

 _where'the~gi are homotopy equivalences by g: 0 A Q = Q A O (6.1.2).

where 6, = & + 50 A 1 6,=BA1l-1a3+80A1

63 =BALAL=-LATAL+1A1AT-5"A1A1, cte. for

the map induced by the usual diagonal,



Proposition 6.3.7. This diagram commutes,

Proof: It is sufficient to look at the space level, The first

square becomes

g _(LO-=(0,1) | g

A A

id g

0 —— >0>0
8- (0,1)

Now AeA = (1,0) an& 4(0,1) = (0,1). (Recall g is the composite
0 x0 ——é&-::- Q2 x0N xQ —im—> Q xn+ A' is (1,~1).) The general
case represénts a sequence of similar steps.

Also note that the sequence of maps in 6.3.5 which eliminéte

the various axes amount to removing the basepoint in 6.3.6. This

gives

Proposition 6.3.8. We have the following commutative diagram

POASO Pc_lASO .
X ——=> IXAX — +» 2= 5 9% A X = =0
A A
id Ly Eo+1
X—-_._)Q/\X >.n-—_;‘>QUAX -~ e »0
0 0 0
S 2 g

6.4, Some examples II

In this section we apply 6.3 to a few of the spectra described

in 6.2,

6.4.1, The theory gives a particularly nice situation when applied

to 0S* and X5 of 6.2. For each 1 we have spectral sequence



coming from the exact couple of the resolutions whose

Ei’t='ﬂt((ﬂs) A X)) = [H (s" A ... A glg, Z) ® 7,(X)].. The

dl is induced by GS above,

6.4.2, When we apply the theory to QZSB and K(Zﬁ) we get the clasgsi-
cal bar resolution from 6.3.1. The resolution 6.3,1 looks slightly
different than the bar resolution since it appears to make each of
the exterlor algebra generators in H*(QZS ) primitive in the reso-
1ut10n, These generators can be identified with §iJ€Au and Ei

is not primitive. This apparant discrepancy is cleared up when one
recalls that the fact that QZSB,as a stable complex,breaks up into

parts each of which has a non trivial Steenrod algebra action. The

k
action is given by X = x2 ® § When this additional term is
Jtk-1i

'added to the primitive term we have the usual bar resolution,
The May spectral sequence seems‘to be able to be obtained this

way also, We look at the resolution

ZZ " K(Zzao) - 023.3 A K(Zz,o)

@) A K(2,0) » v 4 @737 A k(z,,0) - -
Now Hom ((I z&) (0283)8. The differential in the associated

chain complex has two parts, one is the differential in

=k " :
0233 A >.(Q 3)2 INA+AA L (0253)3

1A1AA+1AAA1+AA1A1

(QS) - eo00

and the second part interprets the action of the Steenrod algebra in

0283. Using the Koszul resolution we see that H,(C l) =_Z:2(R,i i)



i n
1> 0, j> 1 where R. ., is represented by x?- and H¢(QZSJ) = Z,(x.).
- "' 1,7 J ” 2V

This is the E; term of the May spectral sequence. The dl results
i - ook
from identifying x? with a€¢A and asking how o, i acts on X, -
- b
i o1tk

2 _ D .
We have hj = ai,kxj-k for k= 1,...,j ~ 1. This follows
easily from the Brown-Gitler decomposition description of A (see
£231). 1It probably is easily read from the Nishida relation. Any-
. j-1
way, When dualized this yields dRij = Rlei,kRi+k,j—k° The higher
differentials reflect more complicated squaring operations. The

evaluation of differentials seems to be easier in this setting.' In

particular in Tangora [ 33], 4.9, the proposition

d4(b03)2 = h b2 +h b2 is proved. It is apparantly not easy to

2712 4702
verify that the term hzblz_2 is present. The statement after 4.4,7
gives a simple proof of its presence. (Note that our development
of Ext (z&,z&) is really a modification of the above and hence a
)
modification of the May spectral sequence. It seems likely that

1.3 of [ 33] could be proved in this manner,)

6.4.3. An interesting description of the E, term for the Novikov
spectral sequence results when one applied the theory of 6.3 to BU

and MU. The resulting chain complex is

Z > BUA BUA MU = ---

MU > BU A MU

where 51 is the map of Thom complexes given by

BU —£L> BU X BU —911;> BU 62 = AAL1l~-1A 61,

53 = AALALlL-1AAAL+1ALA S and so forth., Many standard

formulae result,



6.4.4. BO [8,...] and MO [8,...] yield an interesting spectral
sequence and recent work of Davis and Mahowald [15] have applied it,

6.4.5. The space Q(J i 52) where Jk is the James construction
ol

yields interesting Spectra when one uses the composite

(I i S ) ¢'9233 —F ™ BO. .The homology of QJ i 52 is equal to

ol £ s

P(xl,...,xl l) The resulting resolution seems to give a geometric

realization of the various spectral sequence of Adams [ 11, Chapter

2,

6.5 An iﬁferesting spectrum

This section is really a part of the proof of the main éésults
of these lectures, There does not exist an H-space 0 which pro-
duces bo as a Thom Spéctrum. TIn this section will describe a stable
spectrum which looks like the suspension spectrum of a space which,
if it did exist, would generate bo. The stable space does exist,

From this we will have available the ideas of 6.3 even if we cannot

use, directly, the results,

v

Let {Yi} be the sequence of spaces defined inductively Yo =5,
0
i . 1AS :
=== A
Y; 1s the fiber of the map Y; 4 > Y 1 K(Zﬁ,O). Note that
Y. AY. =Y Lt5=;z4i/\Y4 Let
1755 7 tiege Let oy 2i-a(i)*

i=0
A: QSS;» QSS X QSS be the usual diagonal map. We wish to define

—

A so that we have a commutative diagram of spectra

s N - -
—_— O A
9] > 1 A Q+

"+

h hAh

6.5.10

(QSS)+ — > (QSS)+ A (nss)+



i . .
24 . Consider the composite
0

where h =V 1A SO and Qsi =

i=0 i

4i 5 5 5 43
- () - A - A
x Os+ QS__,_ QS+ bH

<<t

24k where j + k = i, This composite
has degree (;). The power of 2 present in (;) is

é%j) + a(j-k) - a(i). Hence A can be made up of composites

41 e 4k
o ¥gima@) T 0 % Yagac) M F Yokeaqk) N Ya(i)ee(k)-a(i)
Vv
sty e A s°

The coﬁposite S0 - Y2(j)+a(k)—a(i) - SO is multiplication by
Q23 (k)= (1)

This gives the following commutative diagram

d d
st _— QSS A QS5 2 > eoe > (QSS)0 - ees
6-5'2
: v - - A
—_- 3 d d
— A — —_— —
Q _— Q A Q 2> L J > (Q)G -) wvoe

where d = Z(-1)16; and 5; = 1A +ee ANAALA -+« A1, where the

A occurs in the ith place. The map 3& is analogously defined.

Proposition 6.5.3. Diagram 6.5.2.induces a chain complex

d
o H*(QSS)G+1) < unn

C s e o< wr(@s0)) <

of graded groups and H,(C®) = Z,[a; Iwithbidegree (1,2%) 1 > 2.

This is a very simple calculation.

Proposition 6.5.4. Diagram 6.5,3 induces a chain complex



H7':(50+l) L— e s e

(g ol <— H*(ﬁo) <
of graded groups and

i i i
Y = I % 1 2 ool i Ay
@ = e almr(r) 'A(r) 2a ey gar D) T A e

I 2 -1
a.sZZCai]

alez)la,1 i
where I ='(il,iz,...,ij).

Proof, The 1-1 correspondence between classes in H*(Ds ) and
modules H*(Z k Zk Z(k))) identifies a particular H*(Yf( )) for each
asH*((OS.)_). If d;a is not zero then ddH*(Yf( )) is an isomor-
phism, 1If d a is zero then d H*(Yf(a)) is zero. Hence theihomology
of @ will be a sum of complexes H*(Yf(a)) in 1-1 correspondence
with H (@). _ |

Let bo <— bdl <— b02 <~ +++ be any resolution of bo by
Eilenberg MacLane spacé K(Zb). ‘'That is the fibér of the map
boi -&—Ei—-‘boi+l is K(V) where v is a graded za vector space and

*

P; is zero,

Proposition 6.5.5. As A modules,H*(boU) is stably isomorphic to

H*(YG' A bo).

2

Proof. By definition Ext (H*(bo s Zi) Ext € (H*(Y A bo),zz)
for s > 0 since both are equal to ExtA+G’ (H*(bo),Zé). Two

modules with a map between them inducing such an isomorphism are



stably equivalent.

Let R(2°-1) and R(2"-~1) be as in 4.3.7.

Proposition 6,5.6. If i # 2 then there is a map

£: R(21~1) -y such that f#*: H*(Y i N bo) - H*(R'i A bo) isa
27-1 27-1 : 27-1

stable equivalence of A-modules.
Proof: The Adams edge theorem yields the map f: R(Zl-l) Y, .
. 27-1

That f* is a stable A-isomorphism follows from 4.2.6 and 4.3.5.
We would like to modify Q. to get a second similar spectrum,
The diagonal map will be defined in a manner analogous to that for

5; but with a crucial difference.

—' m -—
Let O = V £%. where
+ =0 i

Y2i—a(i) for i = 0 mod 2

il

B(1l) A YZ(i—l)fa(i—l) for 1 = 1 mod 2

An easy calculation gives

proposition 6.5.7. H*(B(l) A B(Ll)) is stably equivalent to H*(Yz)

as A1~modules.

1
We wish to construct a diagonal map for Q+ but it will be

defined on the cohomology level as Al-modules.

8ity— L JBithg 8k=
a) = Yoi40 ° L Yj Az Y,

Since a(23j) + a(2k) - a(2i) = a(2j+l) + a(2k) - a(2i+l) this map

is defined as above.



8k
A
2i 2j-1 N F 0 Y-

This map does not seem to exist with the desired properties,

However, we do get the required map in cohomology from the maps.

8i— g 81i

z Y2i <2, ¥ Yll-i-a(Zi)-Z A B(1l) A B(1)
6.5.8
. - 28j~4 8k+4

a1 (2g-1) A B A Ty 0 A E(D) A

L 8-+
Ya(25-2)+a(k)ma(biytz = = Yo5-1 M B Yy

Since a(2j-2) + a(2k) + 2 = a(2j-1) + o (2k+l) the composite

g 0 2i : .
- Yﬁ(Zj-2)+G(k)+2~a(4i) - S has degree (2j~1)' The map g has

an inverse in the following sense.
— ghl P = ' .
Since Y2i A bo < Y4i~a(21)-2 B(l) A B(1) A bo induces a

stable isomorphism of A modules, there is a map

1. = i) AR A i i ‘{ -
EfE YZi A bo Yﬁi-a(Zi)vz A B(1l) B(l).‘bowhlchlnducesaistablelsq_
morphism of A modules. The desired diagonal map is the composite
in cohomology of diagram 6.5.8 in which g*,which is a stable A1

isomorphism,is replaced by an inverse map which is also a stable

A-l--isomorphism°
f
Hence we have a chain complex G+;

: gl

1 __l
e BE@T < H*(ﬂj"*l < e

Analogously to 6.5.3, again we have



——' ~
Proposition 6.5.9. H*(€+)== 5] aIH*(Y ) ©

j+1
I 2 %, . (2371
a ezzfal,az, ool ij
o alme(y 41 A B(1)) as stable A, modules.
alea, z [al,a),...1 132 "Dl
< l% ‘ 1, 2,-.. J

Proof. The proof follows closely that of 6,5.4.



Chapter 7

bo Resolution I; Algebraic Version

7.1. Introduction

There does not seem to be an H-space Q with an H-map q - BO
whose Thom complex is bo. Yet bo resolutions exhibit the same

character that resolutions described in Chapter 6 have. Let Q be
V 24 B(i) where the space B(l) are de-
i=0

scribed in 6,2.5. 1In Chapter 8 we will construct a map

the stable spectrum Q+ =
g: bo A bo - Q+ A bo which is a homotopy equivalence. The construc~
tion of this map will involve a calculation of 7,(bo A bo) and this

chapter is devoted to, among other things, this calculation, First

we will prove the cohomology version.

Theorem 7.1.1. There is a map g*: H¥(bo A bo) - H*(Q+ A bo) which
is an isomorphism as modules over A.

Using this map we will analyze the chain complex arising from

the bo-resolution

- EXtA (H*(I bo A bo) ,zz) - Ext (H*(I°+lbo A .bO),ZZ) I

The results we get are technical and S0 we will not summarize them,

7.2. The algebraic decomposition theorem

By 6.2.6 H*(B(n)) = =M(2n) @ zb l(n), Thﬁs 7.1.1 can be

restated as the following

Proposition 7.2.1. Let g%: © E4le(1<) - A® Z

Al 5 be defined by

4kM ( k) - M (lt)XSq4k CTA® Then g* is an isomorphism of

A, s



Al—mﬁdules.
We will give two proofs of this result. The one which follows
is self contained. We give another in 7.5 as a corollary of

another development containing some other results we also need.

Proof of 7.2.1. 1In §2.4 we discussed a filtration of A which we
will use here. Let E}H(A) = {xsqI]I admissible and il > n}. Then
) n n
F.@ oF . (a) and Fa®/F 58 = 2™M([F)xsq”. Under the
natural map of bo = K(Z,) we have i: A ~ A ®, Z, and this map is an
1
epimorphism, The filtration ?; filters A ®A Z,. We will prove
1

Z, = @ ﬁi(i)x8q4l. We will show this by
>0

7.7.1 by showing EOA ®
‘ A l

showing
a) 1if k# 0(4) then xqu = 0 in A.® Zy 5
1

b) if k = 0(4) then sz([gj) is mapped isomorphically to szl(k);

and

c) as left A, modules ECH¥*(bo) = H*(bo).

Proof of a: If we apply X to_'sqlqun and Sq28q4n'= Sq4n+’2 +

SqlSq,lqu1 we see that in A ®A Z, xqu = 0 if k # 0(4).
1

Proof of b: We need to show that under i M(Zi)XSq41 maps into
M(21) ®A 22)x8q4l. To see this it is sufficient to verify that

Sqlx8q41 = 0. But quSq41'l = Sqlsq41 + Sqélsql, applying x com-

pletes the argument.

Proof of ¢: Let B(l) be as in §6.2. There is a map

g': 26§(1) - BBO so that S6 ~ 263(1) - 330 is a generator. Let g



be the double loop map and let T(g) be the Thom complex of g and let
h: T(g) » bo be the K~theory orientation. ILet {FL} be the Milgram
filtration [38] of 0’z B(l), XSq EH“(T(g/Fk)) It is an easy
calculation of the kind done in (237 to see that
H*(T(g/Fk)/T(g/Fk;l)) < Ml( k)XSq4k is a monomorphism. Thus the

representation A ®,Z as ® zAle(l&) is compatible with
i i

=) H*(T(g/Fk)/T(g(Fk l) Since g 1is a spin bundle"Al acts on
H*(T(g)) exactly as it does in H*(QZZ6E(1)).Y Thus as Ay modules
HA(T(8)) 2 © WH(T(8/F)/T(e/F,_,)). |

Note that the following proposition can be praved in essentially

the same way. Part ¢ in the proof, of course, requires -more work.

The praoof.in 7.5 is probably easier to generalize,

Proposition 7.2.2. Let Mi+1( k ) bethe image 0fM(k-2") inA ®Aizl and

@ 1+l

let £ e,z( )kM l( k) - A'®A. Zﬁ be given by
k=2 1 i+l
2i+lkM ) : Zik
T M, (k) *ﬂ/Mi+l(lﬂ)xSq €A ®Ai+1Zi. Then £ is a left
Ai+l isomorphism,

We leave the proof to the interested reader. This decomposition

should have some applications,but that is another story.

7.3. The functor ExtA( ,Zb) applied to the bo resolution,
Armed with 7.2.1 we now can calculate ExtA(H*(IGbo A bo),zz),
Using the standard change of rings theorem (compare the proof of

4.1.2) we see

Ir

.0 T '
7.3.1. ExtA(H*(I bo A bo),Z&) xtAl(Hn(I bo),z&)

¢ factors
y -

~ Sl R
= t v A a2 e w
Ex Al(Hf(Q+ ALQ+),Z§),




We will be content to determine these groups for s > 0. what
we miss this way "essentially' will be the A free parts of these
conomology modules. Thus we can replace Ml( k) by something which
'is stably isomorphic as A, modules.

Proposition 7.3.2. There is a map g: QA bo - EQ_A bo whose induced

.
map in cohomology is a stable A isomorphism. 01+isdefinediJ16.5;)

Proof. The Adams edge theorem gives immediately the maps

B(i) ~ Y41~a(21) for i a power of 2. Here a(n) is the number of
ones in the dyadic expansion of n. If 2i-27 < 23 < 2i then there
is a map B(21i) -~ B(ZJ) A B(2i~23) of degree one on the Thom class.
. X s ody o .

Thus if B(21i-2") -'?4i-a(21)+1 then

3 = 323y A Bl210] L
82i) » 3@y ABt2dy sy . Ay -y
Ity 4i-pitlg(aayp 4E-e(2i)

There does not seem to be a map of B(2i+l) - Y4i-a(21) A B(1l) but

the following maps B(2i+l) <~ B(21) A B(l) - Y4021y » B(L) each

induce stable Al isomorphisms in cohomology. Hence there are maps

B(21+1l) A bo - B(2i) A B(l) A bo = Yioac2i) El;)\ﬁ\bo and/fyis
™~

composite induces the stable A . isomorphism in cohomolagyi’

Corollary 7.3.3. H*(bo A bo) is stably isomorphic to H*(al A bo) as
A-modules,

This yields immediately

Theorem 7.3.4. If s> 0 then’Eth’t(H*(bo A bo),Zz) =

s+ii-a(i),t-bi-b=a (i)

s+4i—a(i),t~4i—a(i)(zz,zé) o Ext®
1

Ay . (C352,) 1.

e [Ext
i=0

If t-s = 3(4), s > 0 then Eth’t(H*(bo A bo)’zz) = 0. On the

other hand classes in this group for t-s = 1,2 mod 4, if non zero,



are h1 composition from a class with t-g = 0 (mod 8). Hence, there
can be no differentials in the Adams spectral sequence. Thus, we

have

Theorem 7.3.5. TIn the adams spectral sequence for bo A ho

Ef::t‘ = Extz»t(H*(bo A bo),Zz)g

__fihis effectively calculates T, (bo A bd);“ As an A, module
H*(Iobb) is stably isomorphic to H*(GT')G). Since Q' is a wedge of
*
.'s and Y, A B(l) (6.5) and ExtS°t , and
¥;'s and Y, A B(1) (6.5) A H (¥4),Z%) |
EXt, (H*(Yj A'E(l),zé) are calculated in Chapter 4, we have calcu-
1 .
lated all the groups which arise in a bo-resolution. We will be

content to describe explicitly a much smaller calculation in 7.4.

7.4. The'algebraic E2 term for bo resolutions
We have all the pleces to begin the investigation of the chain
complex which results from a bo resolution. Consider the following

chain complex
S’t - s,t ; - ses e op 5,C 3 s e
7.4.1. ExtAl (zz,zz) ExtA.-i (H*(Q),Zz) ExtAl (Hx(Q2 A

A n),zz) - s

which results from the bo resolution after repeated use of 7.3.3
by applying Eth’t(ﬁ*( )’Zb) as the functor and using the change of
rings theorem.

We will analyze this complex by studying the corresponding

cohomology complex
7-402."- . ZZ < H*(ﬂ) K= s < ﬁ?’\‘(Q AN eeoe A Q ) L= 4 e

as left A; modules. There is a subtle point here which the reader



should note. The chain complex 7.4.1 is not the one induced by

s,t

A ( ,Z,) to 7.4.2, There is an additional component in.
1

applying Ext

the differential of 7.4.1 which arises from the action of the coeffi-
cients, Ethit(Z%,Zé). This action induces a term in the differen-
tial of 7.4.1 which does not arise from an A; map in 7.4.2. How
this term behaves is illustrated nicely in the calculation of 4.4
and also in the discussion of 6.4.2. 1In addition this term will be
crucial in Chapter 8. 1In this section, then; we will only énéi&éé
7.4,2 and we will show that when the complex 7.4.2 is tensored with
A, and the functor Eth;t( ’Z%) is applied the resulting homology
is the homology of 7.4.l. The key idea will be to show that 7.4.2
is just C' of 6.5.9.

be themépectrum of 6.4.1.

'Let‘Xs

Proposition 7.4.3. There is a map h: X5 - bo which is a rational .
equivalence and induces an isomorphism

_hu:‘H*(X5,§) ~ H*(bo,%)7T. (2' denotes the 2-adic integers).~

Proof. The map h is the K-theory orientation. It is then suffi-
cient to note xSq4kU # 0 in H*(XS), U the Thom class, to complete
the proof, |

Let f: Q+SS =0, be given by the composite

Q+85 -yt oyt oA 3.

Proposition 7.4.4. The following diagram commutes



H*(bo) ® H¥*(bo) <& H#(@,) ® H#(bo)

v 5 v
H¥* (Xs) ® H* (Xs) <—g;— H* (Q S+) ® H* (Xs)
S0 &5

Proof. This is immediate from the definition of the maps g, and g*,

.The map h induces a map between the Xg~resolution and Ehe bo

resolution. Thig gives (we suppress the subscript on XS)

H*(X) <— H*(QSS) ® H¥(X) <— ¢+o <—'H*(985 A eee A 55) ® H*(X)
A . A A
7.4.5, 1 ,
d . d
H:':(Q) ® H:’:(bo) <-

H*(bo) <
We also hav; a stable A isomorphism from Y
H*@ A ... A Q) ® Hr(bo) = H¥@' A Q' «ee A n') e H*(bo)
Hence from»7f4.5 we get a chain complex of Al modules

dl — - g,
7-4.6. 22 < H':’f(Q') <= oo <—" H*((Q’) )¢- ¢ eon

Proposition 7.4.7. The chain complex 7.4.6 is (3 of §.5.9.

Proof, The complex Z$'is constructed by using the complex which

5

results from 0S° and this is just what 7.4.5 asserts,

The homology is given by 6.5.9. 1If we apply Extz?t( ,22) to
1

the chain complex 7.4.6 we get a chain complex
S’t - ses = 'S’t L0 o > ees
7.4.8. ExtAl (22’25) ExtAl (H=((@Q") :ZQ)

This complex is not 7.4.1 but is related to it.

e <= HF(QA-..AN) ® HE(bo).



Let'gf = {I; I

fij}, ij are non-negative integers with
ri, < e 3. Lettg T o {1ed; i, =0(2)} and «5' = {1ed; i, = 1)}

Let!g‘o = {1; Eij =0}, Let p(I) = §(I) + Eij (Zj-l) where 8(T)= -1.

X A : :
if IE'S} and 0 if IE-§?\+. Let v(I) = Zij-23+l.

Theorem 7.4.9. For s > 0 the homology of the complex 7.4.8 in
dimension ¢ 1is

e Exts—c+p(1):t+p(1)-y(1)(22’22) o

1ed T M1

) Ext$—0+p(l)’t+p(I)—Y(I)(C3,ZZ).

CHE

Probf. This is now immediate from 6.5.9.

1f we tensor the complex 7.4.6 with Ay We obtain

Theorem 7.4.10. The E2 term of the bo resolution for Ay for s> 0

is

Ec,s,t - Exts—or+p(1‘),t-1-p(I)—v(I)(A ,Z.) @

2 A 0’72

+ 1
1e$
A 3 0
red

Proof. All that remains is to show that the portion of the complete

differential not covered by 7.4.9 does not contribute anything.

This follows easily since no differential is possible for reasons

of filtration.



7.5. Alternate discussion of 7.1.1,

In this section we will produce another proof of 7.1.1 together
with some other results which we were not able to get in a fashion
more completely in the spirit of earlier sections. As before it ig

sufficient to look at A ®A Z& as a right Al module. This section

is heavily influenced by Peterson's lectures [39]. Recall Milnor's

result A% & Zé(§i;§2,...).

Proposition 7.5.1. As left A modules x(A ® Zé)* = Z%(§1’§2’§3"")'

-l
Proof. Since A ® Z, = A/ A(sq ,qu) we have
Al '
2 1
R(sq97)®R(S8q")

A ® A > A= A/A (Sql,qu) - 0 which gives

1 2
. : @
A*® A * < 15q P1.8q A¥ <— {A/lx(Sql,qu)}* <~ 0 and finally

1 2 :
® : : _
A e AF < RSq ®RSq A* <= x( A/A(Sql,'qu))* <- 0.

‘e

But §kSq = §k + §k41 where Sq = oz Sql. ‘Hence x(A/(ASq;,qu)) =

i=0
z (§l,§2,§3,...) = ker RSql ) Rqu. This completes the proof.
i-1 3 S )
Assign to each Ei degree 2 and each monomial E™ = §1 §2 see
degree E'ij 2Jfl. Let N4 be the Zé vector space generated by

monomials of degree 4n. Then Z (§1,§2,§3,.. ) =6 N4 .
: n

S ek | | Al ) el il
Proposition 7.5.2. As left Ay modules Zé(§l§2§3 ) = i Nﬁn'
Proof. The left A action is given by Sq§k § + Ek 1+ In the
absence of §1,§1,§1,§ and products ,degree (Sq 3 ) = degree gI and

degree (Sq § ) = degree § (of course 0 has every degree),

Proposition 7.5.3. XNZH =¥(n).



-

Proof. Using the multiplication in A* and the multiplicative nature

of the degree we have maps

ota ale
Ay

% % . B
Wy = X5 ® XNy J+k=n

which are monomorphism if n # 2 and 4j = 2% and 2 is such that .
4n < 2* < 4n + 1. Ifn= 2" then the class corresponding to
§i+é_generates the kernel. Now using the obvious isomorphism

ata

XNZ‘é‘ﬁ(l) and the kind of argument of [23] §4 we get the result.

Combining 7.5.2 and 7.5.3 we get the proof of 7.1.1. Using
this explicit calculation we also can get the following. TLet .
Q = Sql and Q; = Sq3 + SqZSql. Then Qj acts as a differential in
M for any A (or Al) module M.
Proposition 7.5.4. H, (x(A i Zf)*’QO)==Zz(§§) arid
: 1 .

H(X(A® Z,)%,q)) = E(52,6%,...).
A
1

Proof. Both of these are easy calculations from 7.5.2.

I

Proposition 7.5.5. As stable A, modules H¥(R(2°-1)) and H(2!) are

isomorphic,

Proof. We have the A module map f: ﬁ(Zi) - H*(R(Zi—l)) given in
6.5.8. The map is degree 1 on the bottom class and hence induces a
Q homology isomorphism. The Q homology is easily seen to be
generated by the cohomology class in dimension Zi~2 in both cases

and £ is an isomorphism in this dimension.

Corollary 7.5.7. Let V be a graded Z, vector space. Then

E(zi) A bo = R(Zi—l) A bo V X(V).



Proof. Proposition 7.5.5 and 4.5.6 imply this immediately.

Using the ideas of this section a neat proof of 7.7.2 is

possible,



Chapter 8

bo Resolutions; Geometric Version

8.1. The decomposition of bo A bo

In this chapter we will show that much of the algebraic

material of Chapter 7 can be done geometrically. We will use the

s,t
A

the corollaries of this approach is a new proof of the Adams-

explicit calculation of Ext (ﬁ*(bo A bo),zz) to do this. Among

Priddy theorem about the uniqueness of bo. The result which is

central is

~

Theorem 8.1.1. bo A bo = Q+ A bo.

This result was first pfoved by the first author and dates from
the original lectures, Later Milgram [27] found a very nice proof
which does not use the results of Chapter 7. His proof does not
seem to yield the Adaﬁs-Priddy theorem [6]. The proof giveﬁ here is

essentially the same as the proof given in the 1969 lectures.

8.2. Proof of 8.1.1.
The first step will be to construct a map

i . £, -
22 R(21-1) —2> bo A bo so that f; is an epimoxphism and so that

i

H* (2% R(2-1)) <—— H%(bo A bo)
fi i
2o 5
o2 A s%) <o mr@sD A )
E—n
i

commutes. R(k) is defined in 4.4.7. We will do this by showing

Lemma 8.2.1. There is a modification of the composite‘



g+ ‘ '
7 A SO - Qsi A X = bo A bo, fi’ by a homotopy class of filtration

2t 2y a5t B
> 1 so that the composite n° p —= 5 - bo A bo is null homo-

topic.

Proof: TLet AS (1) = Ext2241 SLIES 41—@(1)(25 Zﬁ) e

+4i t-bimbo o _
Extz i-a(i),t-4i-4-a(1) (C4,Z,) then Extz (B¥(bo A bo),z,) =

1

© A% 5(1), we write this in two parts as g 2%%G) @
i>0 |

i~2 e | :

There is a graded finitely generator free abelian group vV,
such that Ext = (V Z o G ’t(J) if s> 0 and t ~ g < 21+1.
0 j>21-
There is a map bo A bg - K(V) which induces thié,isombrphism. Let

i £,
> bo A bo + R(V) is zero and

b be the fiber. The composite 22

so fi lifts to fi: 22 = b. We now wish to consider the composite

2t 2ty it - -
TP %> & ——> b. Because of the splitting of bo A bo as
: £. L '
l C .

A modules there i1s no obstruction to extending f to a map of

i
22 R(Z ~1) ‘at filtration 1, Suppose the composite fil lifts to Adams

flltratlon S but does not lift further, Then there is a k suech

i 4 A1 i
that 3 2 k 1 22 - bS is trivial but 22 Pk - 22 - bs.is not,

This identifies a particular element in Ext (H (bo A bo), z ).

This element belongs to one of the summands in 8, A(J),say'A ’t(').
: J<7 -2

s+s t+t

s+q t+t
o Ep) e me, T, )

for'g,z,E and t chosen appropriately. Thus the essential map

4bs is the sth stage of an Adams resolution,

For 21 < t-s5 < gttt As’t(j)==Ext



i i i 1ot 1
t ~-s s+s : -
22 Pk - 22 - bS represents a map 22 Pk - 3 " bo where s' = g

. (bo” is defined in 6.5.5.) A simple chack

rtil

or s and t' = T or

shbws t'-s' = 0 mod 8, The following lemma completes the proof,

Lemma 8.2,2. Every map of ZSJPk - bo’ of filtration s > 0 can be
factored through ESJPk —A-> 88J ~£& . bo’ where g has filtration

s - 1,

Proof: Note that [28J k ,bol = [ESJ k ,bo(83,...1] = [Pk,bo] where
bol8j,...] denotes bo~8j connected. Note also that .
[ESJPk bo’] = [Pk,boc-4j]. ‘Thus, it suffices to prove that a map
felp ,boG-AJ] of filtration s> 0 factors through SO. This we will

do by induction on og.

A generator of [Pk,bo] is given by

Pk-» P—)‘--——> s0

v
P A bo —lﬁl—b S0 A bo = bo

Thus the case 0 = 0 is true. Suppose that any essential map
pX - bo

5 30 Pk & bo® 4] be an essential map of filtration s > 0. Consider

Tf43,-7 < 0, of filtration s > 0, factors through SO. Let

the composite

P ___> bo o7 4i~1

\/



By the induction hypothesis there exists a map g: SO - boU"4j~l

factoring jof through SO. Thus we will be finished once we factor

g through b00-43. Since

EXt oE (H (b00-4q), ) = gxe3T-4d,t »Z2,) and se g factors
Z) A Z)s2,

through boq~43.

In Section 7.5.6 it is shown tgét
E(Zi) A bo = R(Zi-l) A bo V K(V) where V. is some graded Zé-vector
spacé. (In what follows vV is some graded Z, vector space and may
be dlfferent in each case) Proposition 6.5.6 asserts that

R(2 l) A bo V K(V) = i N bo. Combining these we have for
2 -1

= j 3 - j_ -
k 22 . lj < J+1 2k ~a (k) A bo 3 R(2 “~1) vV R(V). Since

k"(!.(k) A bo = B(k) A bo K(V) the map

24k A A R(2 J---l) ————J-b A bo.~» bo gives a map of
J X

E4kﬁ(k) A bo - bo A bo, Finally we get Q+ A bo = VZ4kE(k)_A bo - :
bo A bo and by this map is a stable A equivalence., As Z, vector
spaces H*(Q A bo) = H*(bo A bo) hence the wedge of Ellenberg-

MacLane spectra., (R(V)), Vv a Zé,vector space, on each side can be

matched up to give 8.1.1.

Remark 8.2.3, Note that the proof of this theorem only used the

calculation of Eth’t(H*(bo A bo),zz) of Chapter 7 and thus uses

only. the cohomology of bo as an“Alnmdule. Thus suppose bo and bo'
were two spaces whose cohomology is A ® z& and suppose bo is a ring

A
B h,e.
spectrum. Then 8,1.1 is valid and asserts 0, Abo = bo' A bho.

lASO

Thus the composite bo' > bo' A bo - L, A bo ~ bo is a homotopy

equivalence and this is essentially the main result of [e61.




8.3. calculation of Eg’t(so,w).
In this section we will do most of the work to prove Theorem

1.3.1. .Using 8.1.1 we have

bo -» Ibo A bo -~ Izbo A bo - se- ﬁ_cho A bo ~ e
A A A T

8.3.1 bo—. Q A bo—bQ AQ/\ bo - ® 088 Qo A‘bo—. X

A A A /'\

X~ 05” A X, =08 AQs” A X = cer - @50) A X - e

where the first two rows are homotopically equivalent,

In Chapter 7 we analyzed what happened to the chain complex
induced fﬁom the top row in cohomology. In §6.5 we studied the
middle réw and in 6.4 we studied the bottom row, Recall.that:if
X - Y induces a stable isomorphism over A in cohomology there
exists V and V', Z, vector spaces, so that
0~ K{W)=X=KW'" - 0is an exact sequence of spectra. Let

. . 1., |
zm‘ﬁ(l)u,\ cer A E(zJ“l) J where T = {ii,...,ij,o},

:Q(I)‘
|Il_= zij-2j+l. Let Ec ={I: = ij =g},

We will use 8.1.1 to construct maps

vV a(I) Abo 25 0% Abo > v Q1) A bo.

I€ 3:0 I‘GIU
whose composite is the identity. Here VIEff (L) A bo = Q(I[c) A bo,
of

The map p 1is defined as follows.:
k -1
2% =k
Let ik: pX B(27) - 2 be the obvious inclusion. Then

P =1, A eee Ad. AL A voe Ad_A coe Ad, A see Adi.. T 1is made
1 1 2 2 1l 3



<

e k+

up in a similar manner by the projections -—5ﬁ> zz E{zk)_ Let
d.: V Q) Abo~ vy Q(I) A bo be defined by 7 d 0.
ag - ~ o '
Iel, I°I¢5+l

Proposition 8.3.2. The two chain complexes (H*(I bo A bo), g’ ) and

(H*( ¥§ Q(I) A bo), d ) have isomorphic homologies as stable A
Ie

fod
modules,.

.This is juSt a restatement of 7.4, 7.
Thus in order to understand the homology of the chain complex
(wr(I bo ‘A bo), d ') as a 7,.(bo) module it is only necessary to -

l\

understand (ﬂ*(ﬂ(:[c) A bo),dc ) as a 7. (bo) module.

t=20

i
N

Theorem 8.3.3. Hg(ﬂ*(ﬂ(iio) A bo),ag ))

=z, t =1,2(mod 8)

0(4) and
P (E)~ lmod 2P (E)

't - . . _
Hl("T*<Q( IO') A bO),dU*) b Zzp(t) t
==
t = 1,2(8)

= () othérwise

foro > 1 H (w (Q( I ) A bo), d ) Vc’ a z2 vector space. 7,.(bo)

acts non-tr1v1ally on H, and Hy and acts trivially on H, for o> 1,

Proof. TLet I = {ij} with i, = 1(2) for a particular k# 1., Let

]
{ij] where ij = ij # k or k -~ 1 and 1 + 2 and

S
I

k- L~ Mkl

i, =1, Let i: Q(I) ~ ¢ I,) and

k
j: g Ic+1)-* 0(1') be the obvious inclusion apd projection.

]
1. If 1¢ - then 1'€ Ic+l'



Lemma 8.3.4. The kernel and coker of the composite

aC)'.v.
> 7, (A( 1) A bo) —2

ate
N

m,(Q(I) A bo).

ota
"

7, (Q( IG+1) A bo) > 7, (Q(I') A bo)

are Z, vector spaces as 7,bo modules.

Proof. From the bottom the composite map

—

d
Y

Q(I) N bo = ¢ Ic) A bo

k+1
plication by (2k ) on the cell in dimension I by commutativity
2

of 8.3.1. Thus is a map of filtration 1 and by 6.5 induces an iso-

morphism of E_ terms Ej’t(Q(I) A bo) - E:+1’t+l(ﬁ(l') A bo) for

> (I, 1) A bo~Q(I') A bo is multi-

s > 0 and an epimorphism if s = 0. Hence the kernel and cokernel
représent qlassesmof a filtration 0 in E:’t(Q(I).A bo) and
E:’t(Q(I') A bo) respectively.

Coming back to the proof of 8.3.3 we note that the sequences
Ie ]y are in 1-1 correspondence with monomials in 22( al,...); The
correspondence of 8.3.4 corresponds to a differéntial in |

2 .

22( 815000 a) generated by d a, = a; ;1 # 1. Since

Hi(zzl( a13-°-: ai):d) = ZZ i=20,1
=0 i>1

we have that as ﬂ*(bo) modules the chain complex w*(Q(}[c) A bo, 0*)

has non-trivial homology only in gradation 0 and 1. 1In these dimen-
sions the homology is the homology of T;: m,bo - w*z4§(l) A bo
where 7' is the composite given by 8.3.5 bo » 0 A bo = 245(1) A bo.

Thus 8.3.6 completes the proof.



&

' ' 1
Lemma 8.3.6. ‘The ker. of 1 is H; of B.3.3 ‘and «cokeguof *r 15 of

1t
18 2]

Proof. We have the following diagram

bo =+ Q A bo - 243(1) A bo
A A A

o

X ﬂ-QSS AX = 3zX.

The top row is T', The infinite cyclic classes in H,(X) are mapped

isomorphically to those of H,bo and.likewise those of y
by b=

H*(Z X) - H (2 'B(1l) A bo) In 6.2 we see that H4k(x) - H4k(z X) is

of degree k. Hence T1H4k(b°) - H l\(Z: B(1l) ‘A bo) has degree k.

Hence, in the spectral sequence described in 3.4 for

(243(1) A bo) y C(bo) we have a differential Gi(k) in t-s = 4k and

i(k) satisfies k = zl(k)-l mod 21(k). A simple comparison of the

chartsu8.3.7 gives the desired result.

8.4, ‘v -periodicity. ;
Note that Theorem 8.3.3 somewhat descrlbes E ot (S bo,7). we

need .to show that all higher differentials on Eg’ and Eé’t are

zero, Since they can not be boundaries this will imply that they

survive to E_.

Proposition 8.4.1. The classes in HS (of 8.3.3) are cycles.

Proof. Consider the map s0 - bo. This induces

s,t

356 Ext (zé z&) - Exts’t 2,2&) and the results in Chapter 4 imply

that 1f s =41 + ¢, € = 1,2; t = 121 + 2¢ then f 1is an isomorphism.



1 1

i+e,12i4+2¢
If there were an GEEi T such that Gga # OEE31+ > 12 then

fa # 0, But fo = 0 and so these classes are never boundaries,

By the edge theorem they are cycles so they project to non~trivial

homotopy classes.
Proposition 8.4.2. The classes in Hi (of 8.3.3) are cycles.

Proof. We have Spin L QQSQ ~£E> B0 where p is the "looped”
version of S0 - bo. QBspin - QBBO is easily seen to be zero since
Q3Séin = B Simplectic and’Hj(BSpin; wj(QBBO)) =0, Thus J lifts
to the fiber of p and this gives QBSpin - Qg(QmIGbo) £ QBSpin
where g 1is the "looped" version of QIUbo - 23bspin given by

QA bo - 245(1) A bo. On the class in dimension 4 of QBSpin

e

o
I bo
this composite is an isomorphism. By Bott periodicity this gives

R .. . . . t
an isomorphsim in every dimension. Thus all the classes in H, are

cycles,
This completes the proof of Theorem 1.

Now we can define vy periodicity,

i

Proposition 8.4.3. [ 37]. For each j > 3 there is a map

] 31 A
27 V1 8 V1
2 Y., ——> Y ., and if j<3, v, > Y . such that all
21 27 23 27

iterates are non zero.

Proof. Theorem 8.3.3 asserts that in 7 i (SO) there is a class
e k(27)-1

a, of order 23 and ﬂ8i(bo) acts non trivially on it. The map

j-1 ]
1 is the coextension such that the composite 22 Y i~ Y 5 - g'
2 2

v



is aj. If j < 3 we have 40 or o as our maps,

Definition 8.4.4, A family of classes Bken : (Sn) are v,-
k~2']+n+q
periodic if there is a K such that for k > K, 27 B =0 and B .
is the composite
i=-1
; o2 i o
(k+1) "2nkq L (k). 23+n-1-qY . 2k-23+n+qY k, gn

j J i
2 2

i is the lnclu31on of the bottom cell and B# is the extensioq of
| A
ke2 +n+q ——> 5™ to all of 2k .2 +-n+qY .

the map S
By 9]



Chapter 9

Applications

9.1, The Moore space and Theorem 1.1.1

In this chapter in addition to proving Theorem 1.1 we will give
details on some of the results given in [22]. The starting point

is the. following.

Theorem 9.1.1. (Theorem 1 of [20] and Theorem 5 of [22]). 1In the

Adams' spectral sequence for the stable Z, Moore space M if

s-2,t-9

2 (M A bo). .

6s > t + 18 then E°C = Eg’t(M A bo) @ E

Proof, There is a mapping of resolutions which is induced by

bo - K(z§,0) given by 9.1.2

M A 1%0 - M A IGK(ZZ)

1 i

¥ l

M A Ibo = MA IK(ZZ)"

Lo

M - M

1f we use 7, as the functor there is a filtration respecting map

4,b0) - Ex*Ta,K) 3 ExeS T (HEM),Z,) .
Recall that E (M bo)=0.for 3s-2 > t. If there is a class in

St
7]

it must have filtration s' < s in the bo resolution. The classes

(M,K) with 3s- 2 > twhichprojects to a non-zero class in E_ then

described by the theorem belong to s' = 0 and 1. The edge theorem



of 4.4,12 asserts that the class corresponding to <1;2i,v2k) is the

highest filtration possible this way. This completes the proof,

 Theorem 9.1.2. (Theorem 2.3 of [22]). There is an- isomorphism

qa: E°Fw) = £5%u) if 6s > ¢ + 13,

Proof. For n> 1 this follows from 5,1.2 and 9.1.1, The important
‘ pointxis that in either Wn or Mﬁvi is a homotopy class and composi-
tion with it)if defined,commte with Adams differentials. For

n = 1 we need to work a little harder. We first note that W(l) is
the loop four times of a space B4W(1) which is tﬁe fiber of .
HP - K(Z,4). By direct calculation we see that f: V?,Z - B4W(l)

exists with f* being an epimorphism. Let V be the fiber of

5

_ gz:'S aiSS. There is a map Jf¢§16'~»nv7’2; Finally there are maps

Adams spectral seqﬁences

£ () > 5.0, ) Fo 5 00)

2

9.1.3
E, ()

Wherel p is the sﬁabilization map.

If we use the | élgebra approach it is easy fo see that the
fiber of ¥ ~ BW(L) is W(2). We have maps E_(W(2)) — E (V) ~
EG(B3W(1)). Above the 1/5 line the fiber »F'?bf.v'*.Qzéﬁ also looks
1ike‘w(2). Since v? commutes with Adams differentials we have that
above the 1/5 line Ey°"(¥) = E"() o E5*Y((2)). Hence the Fibra-
tion W(2) - V - B3W(1) the classes above the 1/5 line behave just as

they do in F = V ~ QE@M. This proves the theorem,



Corollary 9.1.4. There is an isomorphism of the vl—periodic ele-

ments of w*(wn) and 7, (M).

This corollary allows us to :prove part of Theorem 1.1,1.

Theorem 9.1.5. There is an isomorphism of the vl—periodic elements

of "*(323+1) and W*CPZP).

Proof. For n = 1 this is just 9.1.4 for n = 1. Suppose we have the

result for n - 1. Consider the fibration

2n-2 2n 2n : i
Qp7 7 - QpT - P,
A ]
fn-—l fn fn
n2n—152n—1 - Q2_n+152n+l o QZHW(n)
Il\ A N
A > B —> C
7
where A, B, and C are fibers of the maps fn_l,fn and fn respectively,

(Recall Q(X) = szmx.) The bottom row is again a fibration. The
_ hypothesis implies that in 7 (A) and m,(C) there are no vy periodid
elements. By exactness there are none in 7,(B) which is what we

wanted to prove,

9.2. vl#periodic homotopy of M = MZt.

First it is necessary to name the family of elements given by
Theorem 9.1.1. We first label them in the E, term and finally will
identify them as homotopy classes. The labels which we use are as

consistent as we can be with those of May and Tangora [33]. We will

use the following exact sequence



i
i

P
B S s,t - - _ # S,t=-1 _
ExtA (Zé,Zé) > E‘ctA (Ao,zb) ~ ExtA (zﬁ,zg)

A
s+1,t
> 3 L]

E*«:tA

(z,,2,) -

s, t

to both calculate‘E2 (M) and name the elements. The convention

will be to identify i,a with a and label a class (a coset really)

as a if p#z = a. Theorem 9.1.1 describes two families and in the

chart-below we separate them also. The first family is given by:

8 =4k +0 a,
; 1 kh kh
+ R
+ 2 pkh2 pkh2
1 1
+ 3 pkhi
t~-s = 8k + 0 il 2 3 4 5-7

where ag = 1; and 8, k> 0 has the property P43 # 0 and repre-
r

sents the unique solution to this equation. The second family

given by:
. l ’
s =.4k +1 pkh2 (k> 0)
2 pk'lh§
3 k~1 k-1
P ¢y P ¢
. k-1 k-1
4 P "hjey p h;cq
t~s = 8k + 0 1 2 3 7

In homotopy the elements of the first group represent the
M-family ({pkhl},{pkhi}) and the elements of order 2 in the 4k-1

stem image of the J-homomorphism. The second family represents the



generators or the image of the J-homomorphism. In each case the
elements of order 2 which are summands are counted twice, one from
each sphere, and otherwise the generator is counted from the 0~
sphere and the element of order 2 is counted from the l-sphere.
There is a further confusion with pk-lhg. . The above claims this
should represent the generator of the image of J in stem 8k-1.

If k > 0, this is indeed true but if k = 0 we should use h3. Also
<y ard hlcO are not proper names for ng and nzc. Still if you keep
these exceptions in mind the theory works as if this were a correct
description. For further convenience we label elements as folldws.
a, is the homotopy class in filtration i for the first family .
which is either the element of order 2 in the image of the J~homo-
morphism in stem 2i~1 (i = 0(4)) or stem 2i-3 (i = 3(4)) or

M (1L =1(4)) or mu (L = 2(4)). The element Bi is the generator of
the ith nonzero image of the J homomorphism with v = Bl, o = 52,

etc. Note that in each case the filtration assigned to a; or Bi is

i (with the difficulties about ¢ already noted). It will be

convenient to have functions giving the stem of:di and Bi. If

aewn+j(sn) then la] = j. If i=4a + b with 0 <b < 3 then

Iail =8a+b, b=1, 2, or 3
=8 -1,b =0,
and
le,| = 8a + 2°"1-1, b = 0,1,2
= 8(a+l), b = 3.

9.3. The‘vl-periodic homotopy of P2n'

In this section we will describe the vl-periodic structure of



P2n. We will introduce a spectrum J which includes the vy perio-

dic homotopy of s0 and a filtration on 7,J which will allow us to
. . . 2
describe quite completely the vy-periodic structure of P " and hence

52n+1.

9.3.1. Let J be the fiber of the map T': bo - z4bspin given by

8.3.5. The homotopy groups of J are given by

Proposition 9.3.2. (Lemma 3,3 of [22]). ﬂj(J) = Eg’j(s,bo) a
£33 (s,boy.

This is just the calculation given by 8.3.6.

Using théitheory of 3.6 we can get a resolution for,Pzgxﬂiby
using ordinary Adams resolution for P2n A bo and P2n A bspin., If
we use minimal resolution of the. spaces then.the charts 9,.3.6
deScribé Ei’t(P2n ATd).

Let p(k) be defined by 4k = Zp(k)-l mod 2p(k)° The'homotopy

calculations follow from the following

Theorem 9.3.3. (Theorem 3.6 of [22]). The homdtOpy of P2n AJ
rgsults from the above charts by a differential 5p(k)-2a4k~l # 0 if

possible for any element k1 int - s=4¢4k -1,

0

Proof. Consider the sequence P -» S° = R. In 4.2 it is shown
. . T . 3 %1 +
R A bo = vE'ik(z,0). R A mbspin = viti(k(z,0) o vsil 2(k(z,,0).

Thus we have P A J - SO A J - RA J. The differential in R A I ie
-glven by that of SO A J which is given by 8.3.6. The connecting
homomorphism from El(R AJ) - El(P A J) 1s onto and this gives the

result,
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The theorem was first proved using the work of Toda and the
Adams' resolution of the vector field problem. This proof is
clearly independent of that work and thus gives an independent
proof also of the vector field problem. Let ¢(k) = 8a + 2b where

k=2 mod 2" and i +2=4a+b, 0 <b < 3.

_ 4k-1
Theorem 9.3.4. There is no map of degree 1 of § P4k-¢(k)"

Proof. 1If there were then there would be one in P4k-¢(k) AT,

- - A 1
But if we look at P A J P4kﬂp(b) J we see that the class of
filtration zero in dimension 4k-1 has a nonzero differential.

Finally we note

Proposition 9.3.5. The vy periodic homotopy of P2n is mapped iso-

2n A

morphically to the vy periodic homotopy of P J.

The proof is immediate. We should note that not all of the

2n

homotopy groups'of P™ A J are parts of vl—periodic families.

Proposition 9.3.5 completes the proof of 1,1.1.

9.4, Whitehead product structure and composition properties,

The EHP sequence from Chapter 1 gives diagram

2n-2 i 2n i 7n
QP R —_— QP | > Q(PZn—l)
F 2

9.4.1.

QZnSZn--l - > Q2n+lS2n+l —ﬁﬁ> anw(n)

and where P is the boundary homomorphism in homotopy of the bottom

sequence., (E and H are used both to present the map and the induced



.map in homotopy.)

we wish to restrict our attention to odd spheres for simpli-

city, We call S2n+1 the sphere of origin of a non zero class

2k+1 2n+l 2n+1 2k+1 2k+l
’ J+_2k+1(S ) if aeim ﬂ (Q ) - ﬂJ( ") and n is

the smallest integer with thlS property. - The Hopf 1nvar1ant cf a

af

is the coset H(a') for all o Eﬂ (an-'"l 2n+l) which map to a under

2n+1 2n+1 2k+1 2k+l. The central result of these notes asserts

thét‘withfrespect to vV, pPeriodic elements the two sequences of

9.4.1 are the same. S0 the Hopf invariants of Vi periodic classes

among odd. spheres is the same as for the corresponding stable class

211}

e, U Theorems 4.1 through 4.8 of [22] list the results which

follow- lmmedlately from this observation and the charts of ‘the pre-

vious sectlon.

Adams in [ 3] gives some stable compositions involving ?1-“

periodic elements. pHis calculations can be summarized by

Propos?;;on 9.4.2 (Adams), If i = 1,2 mod 4 and ]ail +_[lelfljﬁi+j[r

1

then a.«B, =
SR SRE

In the stable Moore space the composition properties of the.

elements described in 9.2 are as follows,

Theorem 9.4.3. Suppose f: EkM -£L> M is a mapping of stable Z,

k i

Moore space so that § —> EkM —> M is one of the elements de-

scribed in 9.2 and suppose the Adams' filtration of f is the same
| sts!, ts' +k
as fi and is s'. Then whenever f#. E GH) g8 L ETS (M) can

be non-zero if 6s > t + 18 it is non-zero.

. Proof. The theorem follows easily by checking cases after observing



N

that if £: ESKM ~ M represents vg(bo-periodicity) then the composite

. B,. ,
gBkH8I-Ly _41-2, 8%y . M represents Batctsj-pe Now various com-

positions with n,v, and the secondary composition { ,2i,n) give all
remaining possibilities.

The crucial steps for proving the results of [22] are now com~

plete. The results given there for W*(52k+1) are direct conse~
quences of the calculations of wi(Pzk A J) via the exact couple

spectral sequence which results from Pz c P4 c P6 c P8 = A - PZk.
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PAGE LINE INSTRUCTION

5 6 ' Add "where A is the mod 2 Steenrod algebra."
9 2 bottdm‘ X should be K
10 5 A should be K
49 14 chart than should be chart 4.4.10 than
50 3 bottom C2 should be Qéwer cas§§c2.
4 bottom C;,C,, and C, should be lower case

7 bottom  C; should be lower case

9 bottom C; should be 1ower case

N.B. C. where it occurs on this page is not to be changed.

51 2 Cq and Cy §bould be lower case
4 Co> Cl %Eé.cz should be lower case
6 C1 four times should be lower case,
7 CZ four times should be lower case
o Let
10 Let s should be ECS (upper case)
10 N.. should be N
§ — s
11 4 = should be Cy =
11 N. should be N,
52 6 Nc should be Nc
6 bottom N = 2 and N = 3 should be s = 2 and s = 3
53 1 Co and C; should be lower case (twice)
2 CO and CZ should be lower case (twice)
56 the chart should be number 4.4.10
57 10 chart with should be chart 4.4.10 with

17 t+ should be t+7







PAGE LINE INSTRUCTION

77 12 Exty (H(x5) ,2,) should be BExt, (H(x,),z,)
78 11 X, %_XS A M,, should be Xy = X5 A M,y
102 10 sq should be Sq
106 8 generator should be generated
108 12 Bk) & bo(W K¥) - +rwstey
) "i. .
109 13 0> KV) »X~>E>KV) + 0

111 9 Eg terms should be E_
111 'hl6 Zz(al,...)a) %EEE}ﬂ.E? Zz(al,...)
17 Zz(al...,ai) ?EEEEE_EE Zz(a e o)

112 12 Charts 8.3.7 should be replaced by
CEarts 4.3.6 and 4.3.11

112 8 H™ should be H )

113 15 Add to Line 15 Let Y,j be the 2%
Moore spaces

115 11 bo - K(ZZ’O) given by 9.1.2 should be

bo 4'&(25;0)

116 12 g, should be 21
12 add after maps of

Diagram 9.1.3 should be

E_(21) g E,(Vy 5) 5 E_(W,)

E. (M)
116 18 W(1) should be W,

W(2) should be W2 (twice)
19 LICO I






116 20

21
22

111 5

W(2) should be
W(2) should be
w(z) » n
W(i) o "

should read The

I should be ]L]

W

a8

W
w
W

o

) o o8]

composite map






