Chapter O
~This .preliminary chapter contains = short exposition of
thé set theory we shall need. It begins with a brief discussion
of logic, so that set theory can be presented with precision,
and continues with a review of the way in which mathematical
objects are defined as eefs. The chepter ends with four sec-
tions which treat spec1f1c set-theoretlc toplcs._ {
Some of this material will be familiar to the reader and
some of it probably will be new. Ve suggest that he read it

through "lightly" at the beginning, and then refer back to it
for details as needed
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§1. Logic: quantifiers

We begin with logic. A statement is a sentence which is true or false
as it stands., Thus '4 + 3 =5' and 'l < 2! are, respectively, false and true
mathematical statements, Many sentences occurring in mathematics contain
variables and are therefore not true or false as they stand, but become statements
when the variables are given values, Simple ex;;u_;np_ies are: 'x < 4!, 'x<y',
'x is an integer!, '3x2'+ yz = 10', Such sentences will be called statement
frames. If F(x) is._a._ frame containing the one variable  'x', suchas 'x < 4',
then P(5) is the sentence obtained by replacing’ ' in va};)y l?t)étﬁe ngmeral 5T,
and P(l) and FE(5) are accbrdin'gly 'statei"'nents-; Angther ,\:‘obta'.in 5. étatement
is toassert that F(x) is always true, That is, if wle;'xiepla(.:e- P(#) by
(For every x) F(x), then this sentence is either true or false as it stands., It
is true if P(x) is true for every x, and is false if F(x) is false for some x.
Thus, 'For every x, xz > 0! is false, and 'For every x, %° 5 In (x = 1)(x + I)!
is true. Symbolically we use the prefix '(x)', which can be variously translated
as 'for all x!, 'for every x', or 'for each x'. This prefixing phrase is called

a universal quantifier, and the process of applying it to convert a statement frame

into a statement is universal. quantification,

Frequently sentences containing variables are presented as being always
true without explicitly writing in the universal quantifiers. Thus the associative

law for the addition of numbers is cffen written
x+(y+tz) = (x+y)+tz,

it being understood that the equation is to be true for all x, y and z, The actual

statement being made is thus
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(VY Y2+ (y+2) = (x+y)+a)

The reader may have realized that the frame F(x) can also be made into
a statement by asserting that if is sometimes true, We write "3 x)F(x)' and
read it 'There exists an x such that F(x)'. This process is called existential
quantification, Notice that '( 3x)' abbreviates the :ib'ng phrase 'There exists
an x such that!', |

The statement ' '(‘v/x)( x < 4)" still contains the véfié:_b'le %' of course,
but 'x' is no longer _1:1;'29_' to be given values, and is now called a bound variable,*
The notation '..P(x)’. i; used only when 'x' is freé in the sentence being discusse

Now suppose that we have a sentence P(x, y) containing two free
variabieé. Clearly two quantifiers are needed to obtain a statefnent from ity
and we now come to a v very important observation, 1f quantifiers of both types ‘

then .
are use Athe order in which they are written affects the meamng of the statement;

('ﬂy)(Vx)P(x, y) and (\fx)( Ay)P(x, y) say dxfferent things, The first says that

one y can be found that works for all x: "There exists a y such that for all

x ---". The second says that for each x a y can be found that works: ""For
s % fiave. wuiate y such that ---", ‘But in the second case, it may ‘very
\ké].'l l;appe;tx t:h;at when :x'!-i; changed the y that can be found will also have to be
changed, The existence 'c.J.f';. smgle y that works for all x is thus the stronger
statement., For example, it is true that (\/x)( Jdy)(x < y) and false that
(AyVx)(x < y). The reader must be absolutely clear on this point; his whole
mathematical future is at stake, The second statement says that there exists a
y, call it Yor Such that (Vx)(x < yo), that is, such that every number is less

than Yoo This is false; Yo t 1, in particular, is not less than Yo « The first

*Roughly speaking, cuantified varables are bound and unguantified

varables are free,
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statement says that for each x we can find a corresponding y. And we can!

take y=x+ 1,

On the other hand, among a group of quantifiers of the same type the
order does not affect the meaning. Thus '(vx)(Vy)' and (7 y)(¥x)' have the
same meaning. We often abbreviate such clumps of similar yguantifiers by using
the quantification symbol only once, as in '(¢x, y)', which can be read 'For
every x and y'. Thus the strictly correct =) (YN VaNx+ (y +z) =(x+y)+2)

receives the slightly more idiomatic rendition Y, \j,Z)(X"'(Y"“Z)=(X+Y)+Z)'o
The situation is clearly the same for a group of existential quantifiers.

The beginning student generally feels that the prefixing phrases ""For every
x there exists a y such that" and '""There exists a y such that for every %'
are artificial souﬁding and unidiomatic, This is indeed the case, but this
awkwardness is the price that has to be paid to fix the order of the quantifiers,
S0 tha't the'meaning of the quaﬁtified statement is clear and unambiguous, Quan-
tifiers do occur in ordinary idiomatic discourse, but often their idiomatic
occurrences house ambiguity, The following two sentences are good examples of
sukh ambiguous idiomatic.usage : "Every x is less than some y', and "Some
y is greater than every x'. If a poll were taken it would be found that most men
on the street feel that these two set_‘:tence.s say the same thing, but half will feel

that the common assertion is false and half will think it true!
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... B2, The logical connectives

When the word 'and" is inserted between two sentences the resulting
sentence is true if both constituent sentences are true and otherwise is false.:
That is, the'truth value", T or F, of the compound sentence depends only on
the truth values of the constituent sentences, We can thus describe the way-'and'
acts in compounding sentences in the simple ''truth table"

F Q PandQ

W . il g
T F F
Y F
‘ stand for o frgmes.

where'P' and 'Q' ; arbitrary statament Words like 'and' are called logical
connectives,

‘Another such connective is the word 'or!, Unfortunatel,y,_ this wgrg ila‘__: &
used ambiguously in ordinary discourse, Sometimes it is intended in the
exclusive sense, where 'F or Q' means that one of P and Q is true but not @_:go‘th,.
and sometimes in the inclusive sense that at ieast one is true and possibly both
are true, Mathematics cannot tolerate ambiguity and in mathematics 'or' is
always used in the latter way. We thus have the truth table

Q PorqQ

p
T i
T F T
FT T

The above two connectives are binary,in the sense that they combine two
sentences to form one new sentence, The word not applies to one sentence and
really shouldn't be considered to be a connective at all; nevertheless it is called

a unary connective, Its truth table is obviously P not F ,
T ¥

F y
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In idiomatic usage the word 'not' is gererally buried in the interior of a
sentence. We say that 'x is not equal to y' rather than 'not x is equal to y'.
However, for the purposes of logical manipulation the negation sign (the word
'not'or a symbol like ") precedes the sentence being negated. We shall, of
course, coutinue to write 'x 3% y', but keep in mind that this is idiomatic for
'not x = y',

We come now to the troublesome 'if - then' connective, which we write
either as 'if F then Q' or 'P => ', This is almost always applied in the uni-
versally quantified context (\/x)(P(x) = Z(x)), and its meaning is best unravelled
by studying this usage. We consider 'If x < 3 then x < 5' to be a true sentence.
More exactly, it is true for all x, so that the universal guantification
(Vx){x < 3=>x<5) is a true statement. This conclusion forces us to agrzfal;\iﬁ
particular *. '2<3 = 2<5' '4<3=4<5"'" and '6<3 =r6<5' areall

true statements, The truth table for '=>' thus contains the values entered

below, .
F Q F =20
T I i
T F -
F T T
F F T

On the other hand we feel that it is not always true that x <7 =>x <5, and
therefore, in particular, that '6 < 7 = 6 < 5' is false. Thus the remaining

row in the table above gives the value 'F' for P = Q.
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Combinations of frame variables and logical connectives
such as we have been considering‘are.called truth functional
forms. The elementary forms such as 'P == @' and ‘~P' can
be further combined by connectives to construct composite forms
such as '~(P==»0)' and '(P#Q) and (0=P)' . The class
of all truth functional forms can be defined recursively as
follows. First, any form variable, such as. 'P' or 'Q'. is
a truth functional form. Second, if '¢' and ‘¥' are. re-
placed by truth functional forms, then '¢ and ' , ‘'@ or ¥' ,
o= P .ahd _'¥¢' .become truth functional forms. 2 frame has
a given (truth functional)form if it can be cbtained from that
form By substitution. Thus 'X<y or ~(x<y)' has the form
'"P or ~“P'. Conposite truth functional forms have truth tables.
that can be worked out by combining the above tables. For ex~-. -
ample, !'~(P=)Q)' has the table below, the truth function
ﬁorrthe‘who;e_form being in the column under. the connective s

which is applied last ( '~' in this example)

bRy O



F & ~(FE =40)
T TF T
T FT F
F TF T
F FF T

and thus is true only when F is true and C is false.
A truth functional form such as 'F or (~F)' which is always true (i.e.,
has only 'T'! in the final column of its trith table) is called a tautology, or a

tautologous form. The reader can check that '(P & (P =»Q)) =~ Q' and

(P = Q)4 (Q =5R)) = (E =»R)' are also tautologous. Indeed, any valid
principles of reasoning that does uot involve gua utifiars must be expressed by
a tautologous form,

The 'if and only if' connective, designated '<=;' is defined by: 'P & Q'

is an abbreviation for (P = Q) & (G =¥ F)'. Its truth table works out to be

P Q P&ESC
T T T
T F F
F T F
F F T

That is P<=>Q is true if andonly if F and Q have the same truth values,
Two truth functional forms A and B are said to be equivalent if and
only if (the final columns of) their truth tables are the same, and, in view of

the table for '~=>', we see that A and B are equivalent if and only if A= B

is tautologous. Replacing a statement exemplifying a form A by the version

obtained by recasting it under an equivalent form B is a device much used in



logical reasoning, Thus to prove a statement P true it suffices to prove the
statement ~’F is false, since 'F' and '~(~P)' are equivalent forms, Other
important equivalences are:
~(E or Q) <= (~P) & (~Q)
(F =Q) < Qor (P)

P =Q) &> P & (~Q)



-9
§3. Negations of quantifiers

The combinations '~ (¥x)' and '('4x)~' havethe same meaninges:

something is ‘not"é;:l"w'ays true if and oniy if it i:s';g_g_'}-xjetime_s false. Similarly,

t~(5y) and Y Wy)~' have the same meanings. These equivalences can be
applied to mowe a negation sign past each quantifier in turn in a sequence of
quantifiers, giving the important practical rule that

in taking the negation of a statement beginning with a string

of quantifiers we simply change each quantifier to the opposite

kind and move the negation sign to the end of the string,

Thus ~(Vx)( 3y V2)P(x, v, 2) <> (Ix)(VyN I 2) ~“Pxs vy, z).
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84, Other principles of quantification

Besides the equivalence '~ ({Vx)P(x)<&=> (3 x)~P(x)' and our con-

clasions about the commutativity of quantifiers, there are a few other basic

principles of quantificational reasoning.that we use constantly., We list them

below; the reader should convince himself that each is valid.

(1)

If P is a tautologous frame and 'xl', Cee g 'xn' are its free variables,

then (Vxl, ees xn)P is true,

(2).
(3)

(4)
®

(6)

(K

(V)P & (Vx)(F =>Q) = (Vx)Q.
(Vx)F & (Vx)Q = (V)P & Q).
If 'x' is not free in P then (3x)F = P,

(V)P = (E?x}P.

If x is not free in .P then P & (3 x)Q < (Ix)(P & Q).

If x is not free in P then P or (3x)Q < (Fx)(P or Q).



§ 5. Sets

It is present déy pfactice to defi'ne every rﬁathematical objéi:t as a
| set of rs‘ome_l'tind or other, a;nd wé muét ceri:s;iniy examine this fupdamenta.
notion, howeyer b;.'i.efly;

A set is a collection of objects considered itself as an entity. The

objects in the collection are called the elements or members of the set.,

The symbol for ' is a member of "' is "€'" (a sort of capital epsilon) ,
so that "x € A" is read " x is a member of A", 'x is an element of
AV, Y% belong-s to A " or 'x is in- A,

' The concept of set is such that a set A .is the same object as a
set B if an;i only if A anci B have exactly the samelmembers.' The
identity symbol ' ="' ig thus defined by : '"A = B'" is an abbreviation for
" (Vx)x €A<=>x€B)" , We repeat: the meaningof " =" is
logical identity, so that (A = B) <> (A is B ).

We say that a set A is a subset of a set B , or that A is included
in B (or that B is a superset of A) if every element of A is an elemeu
of B, The symbol for indclusionis "<'" , Thus "A<B'" is an

abbreviation for " (Wx)x €A =x€B)" , Andsince " 2 <> Q" has

the same meaning as " (P =(C) and (Q = P)'" , we see that
(A=B) <= (ACB) and (BCA).

This is a frequently used way of establishing set identity: we prove that

A = B by proving that A € B and that BCA,



A set is defined by specifying its members, If the set is finite the members
ean actually be listed, and the notation used for the set is curly brackets sur-
rounding a membership list. Thus il', 4, 7}‘ is the set containing just the
three numbers 1, 4 and 7, {x} is the unit class of x, the set having only the
one object x as a member, and {x, y| is the pair class of x and y. This
notation can be abused to name some infinite sets, Thus {2, A, B B, i }
would certainly be considered to be the set of all even positive integers, But
generally infinite sets are defined by statement frames. If P(x) is a sentence
containing the one free variable 'x', then {x : P(x) E is the set of all x such

that P(x). In other words, {x:P(x)} is that set such that

vy {x : P(x)} &7 Ply) .

e
For example, {x : xZ < 3_‘; is the set of all real numbers x such that xz < 3,

i.e,, the open interval HS, \B), and yGC {x : :',:2 <. 3 } <= yz < 3,
A statemeat frame P(x) with one free variable x can be thought of as

stating a property that an object x may or may not have, and {x:P{x)} is

the set of all objects having that property,

We need the empty set, g » in much the same way that we need zero in
arithmetic, If P(x) is never true then gx : P(x)} = ¥
For example, Ix:x#xl=0.

We shall now digress for a moment to be sure that the reader understands
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the distinétion between ah'bbject and a name of that object, A chair is not the
same thing as the word 'chair' and the number 4°is a mathematical object that
is not the same thing as the numeral '4' ., The numeral 14" is a name of the
number 4, as also are 'four!, '2 + 2' and 'IV'. According to our present view-
point 4 is taken to be some speci'ﬁcr set. There is no need in this course to
carry logical analysis this far , but some readers may be interested to know:
that we usually define 4 as {0, 1, 2, 3} . Similarly 2= 10, 15, 1= {0
and 0 is the empty. set . o

In order to avoid éverworki;lg the word 'set' many synonyms are used
such as 'class', 'collection', 'family' and ‘'aggregate', Thué we might say,

"Let a be a family of classes of sets'' . If a shoe store is a collection ef pairs

of shoes, then a chain of shoe stores is such a three level object.
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86, Restricted variables

A variable used in mathematics is not allowed to take alll objects as
values but only the members of a certain set, called the domain of the variable,
The domain is sometimes explicitly indicated, but is often only implied. For
example, the letter 'n' is customarily used to specify an integer, so that
'(Vn)P(n)' would automatically be read 'For every integer n, F(n)'. However,
sometimes n is taken to be a positive integer., In case of possible ambiguity
or doubt, we would write (VnC Z )P(n)' and read it "For all n in Z ’
P(n)", where 'Z' is the standard symbol for the set of all integers,

Similarly, '(3nCZ )F(n)' is read "There exists an n in Z such
that P(n)", Notice that the symbol 'C! is here read as the preposition 'in'.
The above quantifiers are called restricted quantifiers,

In the same way we have restricted set for mation, both imi)licit and
explicit, as in ! {n : P(n)} v and ! EnQ%l : P(n)}'l})’s‘rtl];lié)l{ are read ''the set
of all integers n such that P(n)".

Restricted variables can be defined as abbreviations of unrestricted

variables by:

(VxCA)P(x) <> (Vx)(x€C A = P(x))
(FxC AV P(x) & (Ix)(xC A & P(x))

{xGA:P(x)} - {x:XGA&P(x)}

Although there is never any ambig: ity in sentences containing explicitly
restricted variables, it sometimes helps the eye to see the structure of the
sentence if the restricting phrases are written in superscript position, as in

(‘V’6>°)("3n€ ik =

Some restriction was implicit on page 2,If the reader ag;‘eed that

. e i,
{ Vx)(xz-l = (x~1)(x+1)) is true, he probably took x to be a real-number, } ’

4
L [l FLLAA i | Lo
s J
A5



<15~

§7. Ordered pairs and relations

The notion of an ordered pair is basic in mathematics. According to our
general principle the ordered pair <a, b> is taken to be a certain set, but
which of the many' possible models we use is unimportant. The only esseatial

fact is its chai'actér'izin-g property:
<x, Y> = (a, b><&> x=aandy=b,

Thus <l,;3>.=,£ {3 17,

We do identify the model for the notion of relation (strictly speaking, the no

of dyadic relaii.on): a reiation is simply a set c}_f ordered pairs, If R is a relation
then we say that x has the relation R to y, and write 'xRy', if and only if

<x, y>€ R. We also saf that x corresponds to y under R, andcall R a

correspondence, The set of all first elements occurring in the ordered pairs of a

relation R is called the domain of R, and is designated dom R, dom (R) or

S)(R), Thus:

] . , 7
domR = {x:(Jdy) (x» yJERS,
The set of second elements is called the range of R:
range R = {Y :(3%) {x, yYERS.

The inverse, R'l , of a relation R is the set of ordered pairs obtained by

reversing those of R:
-1 . )
R = {<x'y> . <Y, x7€ R_:' °

A statement frame P(x, y) having two free variables determines a pair of



mutually inverse relations R & S, called the graphs of P, by:

£<.Yt x) 1 P(x, Y)}

-
=

R = {<x, y” :Px, V)}’,S

A two variable frame together with a choice of which variable is considered to be
Then a directed frame WOUlE BR¥fuely

first micntbe called a directed frame.

determined relation for its graph.
-f(x. vy 1 xC A & y& B} of all ordered pairs with

The set A X B =
first element in A and second element in B is called the Cartesian product

of the sets A and B, A relation R is always a subset of dom R X range R,
R ™A,

If R is a relation and A is any set, the restriction of R to A,

is the subset of R consisting of those pairs with first element in A:

RIMA = {(x, yy : {x, y7&@R and xQA}

Thus R[MA = R N(A #range R),where C N D is the intersection of the sets C

and D,
If R is a relation and A is any set then the image of A under R, R[A],

is the set of secoud elemeute of oxdarcd pairs in R whose first eleuseuts ate in

Fi%
R[A] = {y:(IxMxC A& “x yyCR){

Thus R[A] = range (R "A),
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88. ' Functions and mappings

A function is a relation f such that each domain element x
is paired with only one range element' 'y ., This property can

be expressed as below:
(x, y}éf and <%, z>€f >y =z.

The y which is thus uniquely determined by f and x is
designated £(x): o : 5 - v ow

Y = E DX, Vet

One tends to think of a function as being active and a
relation which is not a function as being more passive., 2
function f acts on an element x in its domain to give f(x).
We take x and apply f to it; indeed we often call a function
an operator. On the other hand if R is a relation but not a
fuﬁgtion, then'thete is no particular y related to an -
element x in its domain and the pairing of x with y is
viewed more passively. :

A function f is generally defined by specifying its
value £f(x) for each x in its domain. In this connection a
stopped arrow notation is used to.indicate the pairing. Thus
we say, "Consider the function. xf¥§x2 ", or, "Let f: x+%x ",
or, "where £ : xrﬁhxz ", which can be read, respectively, as:
"Consider the function taking x  into x2 ", "Let £ bec the
function mapping X into x2 ", "where f 1is the function

2 ;
taking. x into x ". Thc domain must be undcrstood for this

to be meaningful.
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If f is a function f-'1 is of course a relation, but
ir general it is not a function., If fm1 is a function we say
that f is gne-to-one, and that f is a one-to-one correspond-
ence between its domain and its range. Each x Edom £f cor-
responds to only one ¥ crange f:(f is a function) and each
ye range f corresponds to only one x¢ dom f (f-l is a function).

The notation

is read "a(the) function f on A into B" or "f is a
function on A into B." The notation implies that f is a
function, that dom f = A and that range fc B, Many people
feel that the very notion of function should include all of
these ingredients, That is, a function should be considered
to be an ordered triple <%, A, §> . where f is a function
according to our more limited definition, 2 is the domain of
f, and B 1is a superset of the range of f, called the codomain
of f in this context. We shall use the terms 'map', 'map-
ping' and 'transformation' for such a triple, so that. the
notation f ; A-ﬂﬁiB in its totality presents a mapping.
Moreover, when there is no question about what set is the co-
domain we shall often call the function f itself a mapping,
since the triple <f, A, B> is then determined by £ . The
two arrow notations can be combined, as in: "Define

f: R—IR by x -0x° .

A mapping f : A—>B is said to be injective if f is
one4to—one,'surjective if range f =B and bijective if it is
both injective and surjective, A bijective mappiﬁg: £f : A—>B
is thus a one—to-one correspondence between its domaln A ‘and
its codomain B. Of course a function is always surjectlve onto
its range R, and the statement that £ is surjectlve means that

R = B where B is the understood codomain.
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-~ B8a Product sets ; index notation

Définitidn.' If S and-}-\-'are.sets-‘tll'lén'sA is the
set of all functions on A into S . 7-

" Thus IR ‘{5 the set of alllreal-valued functions of
one real variable and S% ' is the set of all infinite sequences
in § (it being understood that an infinite sequence is
nothing but a function with domain the set ZZ+ of all positive
integers). Similarly, if we set n = {1, ..., n} then s"  is
the set of all finite sequences of length n in S ,

If B is a subset of 2 then its characteristic
function in- 2 is the function (usually designated XB) which
has the constant value 1 on B’ and the constant value 0 on
B' = A~-B ., The set of all characteristic functions of subsets
of 2 .is thus 2A -(since 2 =°{0, 1}). But because this set
is in a natural one-to-one correspondence with the set of all
subsets of ‘A, we use the same symbol for the latter set.

Thus 2A is also interpreted as the set of all subsets of 2 .

We shall spend most of the remainder of this section
discussing certain definitional ambiguities which mathematicians
tolerate.

-'A finite sequence of 1 ngth n is equivalent to an
ordered n-tuple, so that the set S° is essentially the set s"
of all ordered n-~tuples in S ., However, there is a technical
difference. We take note of it now and then dismiss it, The
ordered triple X, 'Y, %> is usually defined to be the ordered
pair (i&, ¥>, 5>~. "The reason for this definition is probably
that a function of two variables x 'and y is ordinarily con-
sidered to be a function of tHe sirigle ordered pair variable

<kr ¥> 8o that, for example, a real-valued function of two



real variables is a subset of (IRXR)XR , But we also consider such a

function to be a subset of Cartesian 3-space ]R3 . Theref.ore we define IR:
as (IRXIR )xIx ; that is, we define the ordered triple < x,y, 2 .> as
<K X, ¥ 2,2 >,

The corresponding sequence of length 3 is the set
{<1l,x>, <2,y>, <3,2>} which, of course, is a different object. But
it would serve just as well as a model for an ordered triple, and
mathematicians tend to slur over the distinction, We shall have more to
say on this point later when we discuss natural isomorphisms ( ) »
For the moment we shall simply regard 1R3 and ]R5 as being the same ;
an ordered triple is something which can be 'viewed'" as being either an
ordered‘.pa.ir of which the first element is an oz;dered pair or as a sequence
of length 3 (or, for that matter, as an ordered pair of which the second

element is an ordered pair ) .

Similarly we preténd that Cartesian 4-gpace

1R4 is ]R; or RZKIRZ or ]Rl)(IE{3 = RX(({RKR)XIR) etc,
Clearly we are in effect assuming an associative law for ordered pair
formation that we don't really have, This is one of the prices we pay for
the precision of set theory ; in vaguer days there would have been a single
fuzzy notion,
The device of indices is much used in mathematics and it also has

amhigous implications which we should examine,
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An indexed cbllecticm, as a set, is nothing but the range set of a
function, the indexing fuhction, and a parﬁcular indexed object, say X
is simply the ‘va.luel of that function at the domai.n element i, If the set of
indices is 1 the indexed set is designated { %, ¢ i€1} or { xi}ie 1

25
1y

o : " . .
( or {xi}i-l incase I1=%Z ), However, this notation suggests that
we view the indexed set as béing obtained by letting the index run through

the index set I and collecting the indexed objects, That is, an indexed

set is viewed as being the set together with the indexing function, This

ambivalence is reflected in the fact that the same notation frequently
' "des'ignates the mapping. Thus we refer to the sequence { xn}o:=l , wWhere,
of course; the sequence is the mapping n —> X e W_ e believe that if the
reader examines his idea of a sequence he will find this ambiguity present.
He doesn't mean just the set, nor just fhe mapping, but the mapping with
emphasis on its range, or the rangé "together with'' the .ma.pping. But
since set theory cannot reflect these nuaﬁces in any simple and graceful
way we shall take an indexed set to be the indexing function, Of course,
the same range object may be repeated with different indices ; there is
no impiica,tion that an i;adexing is one -to-oﬁg. Notice also that indexing
imposes no restriétion on. the set beiﬁg indexe_d y any sgt can at least be
self -indexed (by the ideﬁtit)lr f@ction) :

Except for the ambiguous {xi :i€1} there isrnioruniv.ersally
used notation for the iﬁdexiqg functién. Sin.ce. X is the value.of the

function at i we ﬁmight think of x, as another way of writing x(i) in
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which case we designate the function x ., We certainly do this in the

case of ordered n-tuplets when we say , '"Consider the n=tuplet

X =<% ,000,% >'", On the other hand, there is no compelling reason

to set x, = x(i) » All that we are compelled to do is to set x, = £(i) 1f we

have called the indexing function £ , .
We come now to the general definition of Cartesian product, Earlier

we argued that the Cartesian product A XBXC is the set of all ordered

triples X = <X ,%,,X; > such that xleA, xzeB and x3€C.

2'73

More generally AIXAZ SR An is the set of ordered n~tuples

x=<x1,..,,xn> such that xiEAi for i=1, ,4e, n, #We also use the

notation n?—lAi for the Cartesian product Al X e ... XAn s and if we

interpret an ordered n-tuplet as a functibn on n = { Liiosals F ; We
have
i ?—IAi is the set of all functions x with domain n
such that X, € Ai for all i€ n ,

This rephrasal generalizes almost verbatim to give us the notion of

the Cartesian product of an arbitrary indexed collection of sets,

S. of the indexed

DEFINITION , The Cartesian product Hi 1S

collection of sets { S, ¢ i€1} is the set of all functions f with domain I
such that £(i) € Si forall i €1,
‘We can also use the potation [I { Si :1i €1} for the product and fi

for the value f(i) ,
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' §9. The Boolean operations

Let S be a fixed domain and let ‘% be a family of subsets of S, The
union of ‘A, or the union c_b_;_gll the sets in_ “, is the set of all elements
x & S such that x lies in at least one set in . We designate the union

U, or Ak.é‘,"é , and thus have
#*

-t -
UF = {x:(3a°)xCa)
Often we consider the family _(}' to be indexed., That is, we suppose given a set

p—
> A » 50 that

I (the set of indices) and a surjective mapping A :1
- Ajzi€l) | _

" ' Then the union of the indexed collection is designated UiQI Ai or
U{A, :1€1f . The device of indices has both technical and psychological
advantages, and we shall generally use it, | |

If I is finite, and either it or the index set is listed, then a different

notation is used for its union. If F o= ‘{A, B} "we designate the union A U B,
a notation that displays the listed names.

If F = {'Ai t1i=1, seey n}, we generally write 'Al LJAZ UV osee UAn'

n -y
! 1 -,
2T Ui=1 Ai for U % .

. . " : g e ) : s .. C ) ) V - .
The intersection of the indexed family (A, fiQI , designated ) iC1 Ay

is the set of all points that lie in every A ; + Thus:
| sy g E
x Q,.ﬂiEI,Ai Ry (v’i )(xEAi)

For an unindexed family ¥ we use the notation (‘4 or mAE ’FA , and if
F ={A, B} then NF = AhB,



The complement A', of a subset of S is the set of element xC S not

in A; A' = % dA The law of de Morgan says that the complement

g_ga;g_intersectmn is the union of the complements ,

(M &) = Y a))

This an 1mmedzate consequence of the rule for negating quant1f1ers. Since
~ (Vi) E(i) <ﬁ--—§> (3i) ~“F(i) , we have (V¥x) [“(Vi)(xC A, )<—==:> (3 1){xg A, )] which
says exactly that '

(VxMxC€ (M A) & xC€ U (4)) .
If we set Bi = Ai‘ and ;ake c;t.)mplell'neqlc-g again, we obtain tﬂe:dual form:
(Vg B = Ny 8 | |
Other principles of quantificxa;:ion yield the laws.:
B (Ucpay) = | Ui (B nAy
(from F & ( 3x) Q(x) <> (Ix)(P & Q(x)),
BU(Micra) = NycypBuay,
'B n‘(miQIAi) = Nyci(Bnay,
Bu(Uc a) = Y, (B uay.
In the case of two sets, these l'a\‘vs i:';aply the familliar lawslof: set algebra;
(AuB)'=A'"'n"B', (An B)!'=A' UB' (de M()Irga.ni

(AN(BuC)=(AnNB)u(ANnC), AU(BNC) = (AuB)N(AuC)
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£ven here, thinking in terms of indices makes the laws more intuitive, Thus

:_Al

(Alf\A 1

' i !
2) #2a

is obvious when thought of as an equivalence between 'not always in' and 'some-
times not in',

The family % is disjoint <= distinct sets in £ have no elements in
common, i.e,, & (WX, YE T)(K # Y = X " Y =f)., For an indexed family
\iAi}iQI the condition becomes i # j = AN 'A'j =g. If F ={A, B | we
simply say that A and B are disjoint,

Givenf : U ——> V and an indexed family leg of subsets of V then

we have the following important identities:

i

U, B = U B

"

-lp ~ -1
£ [f\iBi] ﬁif [Bi]

and, for a single set BCvV,
By = (B,
For example, x(-jaf'l[ﬁ.1 B.] &= f(x) « ﬂi B.1<-‘:3? (Vi) (f(x) & B.)

= (\fi)(fo-l[Bi]) =9 xgmif-l[Bi] :

One, but not the other two, of these three identities remains valid when

f is replaced by any relation R,
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810, Composition

If, we-are givennmaps f : A——> B and g: B ——> C then the compo-~

sition of . g with f, gof, is the map of A into C. defined by:
(gof)(x) = g(f(x)) for all xC A,

Notice that the codomain of f has to be the domain of g in order for gof : -
to be defined.

This operation is perhaps the basic binary operation of mathemati¢s, -

Lemma, Composition satisfies the associative law: fo(goh) = (fog)oh,

Proof. (fo(goh))(x) = f((g>h)(x)) = £(g(h(x))) = (£ og)(b(x)) = ((f g) *k)(x),
for all xC dom h , ‘ B W R

If A is a set the identity map I, : A—> A is the mapping taking
every x( A into itself. Thus IA = {(x, X7 xCA} » If f maps A into B
then clearly

fﬂIA = f = IBof.

If g:B—> A is such that geof = 1, then we saythat g is a left inverse of f

and that f is a right inverse of g,

Theorem. A mapping £f: A —> B has a left inverse <= f is injective,
-and f bhas a .right inverse <> f. is surjective,
,_‘B:Ifoo_\_f. If gof = IA then {(x} = f(y) == x = g(f(x)) = glf(y)) = y and f
is injective. Conversely, if f is-injective, with range R, then. e is a function
with domain R. Define g on B by gMR=£"' and gl (B - R) is any:function

on B-R into A. Then g-f = IA . Next, suppose that foh = IB « Then each
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y€B can be written y = f(h(y)) and so f is surjective, Conversely, if f is
surjective we can form a subset C(C A by choosing one point xy from
f"l'[y] for each yC B, Then the pairs <y, ::y > form a function h:
B—>A and f°h=Ilg.

Lemma, If the mapping f: A —> B has both a rightinverse h and a
left inverse g they must necessarily be equal,

Froof, This is just algebraic juggling and works for any associative

operation. We have
h=I,oh=(gef)eh = golf-h)=g°l = g.

In this case we call the uniquely determined map g : B —> A such that

fog=1lp and gof=1, the inverse of f. We then have:

' Corollary: A mapping f: A —> B has an in_verse if and only if it is
bijective. | |
Now let (5(A) be the set of all bijections f: A —> A . Then G5(A)
is closed under the binary operation of composition and
(1) £o(goh) = (fog)eh for all f, g, e & .
(2) There exists a unique I1C &(A) suchthat foI=1cf=1{ for all
€S,

(3) For each fGC & there exists a unique gk & suchthat fog=gof=1L

Any set G closed under a binary operation having these properties is
called a group with respect to that operation. Thus (2(A) is a group with

respect to composition,
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Composition can also be defined for relations as follows. If RC AXB

and SCBXC then S°RC AXC is defined by:
G 7Y ESoR & (IF-B)((x yYER & ¢y, 27C )

If R and S are mappings this definition agrees with our earlier one,
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8§11, Fartitions and equivalence relations

A partition of a set A is a disjoint family T of sets whose union is A,
We call the elements of * 'fibers', and say that Tt fibers A or is a fibering of
A, Passiné frlom a; s'et A to :;L fibering of‘ A is one"o.f the prineipal ways of
forming new mathematical object:s;

Any function automatically fibers its domain D into the sets D_ on
which f has t?ze constant va.llug Ve 3ere, of course, DY = f-l[y] ={x' H f(x) = yJ
for each y in the range R of £ al,nci it is clear that y # z = Dy. n D = # and
that D = { DY : y&R } . Also, the mapping y —> DY is a one~-to-one
correspondence between R and the set ’f of fibers.

Different functions on the same domain can define the same fibering, but
there is one '"'canonical' function associated with a fibering, namely, the
"projection' mapping 7 from D to F which assigns to each element x €D
the fiber m{x) which contains it.

A function f also defines a natural relation ~ on its domain: Xy~ xz<::>
f(xl) = f(xz). Thus Xy~ Ky &5 Xy and %, belong to the same fiber , or, in
terms of the projection map 7 into the fiber space, Xy~ x2<§:¢ ﬂr(xl) = ﬂ(xz).

This relation ~ is a subset of DX D which is reflexive (x ~ x for every
x € D), symmetric (x~y => y~ x) and transitive (x~~y and y~ z = x~ 2z).

Any relation £ C D X D having these properties is said to be an equivalence

relation on D, The most important fact to be noted in this section is that, con~

versely, any equivalence relation £ on a set D arises in the above way from a

function on D (or a fibering of D),
To see this, define [x] as the set of elements y & D equivalent to

X, [x] = Ey - xEy} yand let ¥ be the family of subsets of D obtained this way,



Thus % is the range of the mapping f: D —> K defined by f(x) = [x].

Theorem, rf' is a partition of D, E is its induced equivalence relation

and f{ is its projection mapping.

Proof, We start by observing that

(#) xEy: & [x] = [y].

For xEy and yEz = xEz, sothat [y] C[x]. Similarly ery. = y Ex =>>
[x] C[y]. Thus xEy = [x] = [y]. Conversely yGC [y] (reﬂexivity} and
[x] =[y] = y& [x] => xEy. Thus E is the equivalence relation arising
from the mapping f. Moreover, the same condition (¥) says that y€[x]<?—‘—> f(y) =
f(x), so that [x] = D_= m(x), q.e.d. | P &3
The set f of fibers arising in this way from an equivaiéﬁcé relation El
on a set D will be designated D/E and called the quotient o.f.' D l.ay' E. |
The fundamental role this argument plays' in mathemétics' {s ciue to thé :
fact that in many important situations equivalence relations occur as the primary
object, and then are used to define partitions and functions, We give two
examples,
Let Z be the integers (positive, negative and zero), A fraction can be
considered to be an ordered pair <m, n) of integers with n # 0. The set of
all fractions is thus Z x (Z - 5:0}). Two fractions {(m, n) and (p, q>
are ''equal" if and only if mq = np, and equality is checked to be an equivalence
relation, The equivalence class [{m, n>] is the object taken to be the
rational number m/n. Thus the rational number system (@ is the set of fibers

in a partition of Z X (Z - [0}).
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Next, wé choose a fixed integer p C Z and define a relation £ on Z
by mEnd{=% p divides m-n. E is an equivalence relation and the set Z __ of
its equivalence classes is called the integers modulo p. It is easy to see that
mEn if and only if m and n have the same remainder when divided bjr p, sbr
that in this case there is an easily calcula.'t:ad fun‘ction f, f{{(m) being the remainder
after dividing m by p, which defines the fibering, The set of possible remain-
ders is {0, Yo saa pfl% so that zp contains p elements.

Functions can be "lifted" from a set. D f:o a fiberingof D by thé:
following theorem, -

Theorem, Let g bea f_gr-x;:tion on D and let E be an equivalence
relation on D, Then'there exis.ts alfunciéién g on'thels quotient space D/E such
that g=7go 7 if and quyi_f_ g is constant orn ihg fibéré of E,
| for each fiber A, wedefine

Proof, If _g[A]__ig a unitt gl_ass S{UKA) :

g(A). as x, and have, obviously, g =gom. The converse is even easier.

A
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812, Duality,

There is another ele:hentary but very important phenomenon called duality
which occurs in practically all branches of mathematics, Let F tAXE —> C
be any function of two variables, It is ehvious that if x is held fixed in F(x, y)
then we obtain a function of y for each value of x, That is, for each x there is
a function fx : B ——> C defined by fx(y) = F(x, y)« And then x > fx is a
mapping f of A into ol Similarly, each y& B yields a function gyE i 3
where gy(x) = F(x, y). |

Now suppose conversely that we are given a mapping f : A —> CB .
For each x -QlAl we designate the corresponding value of f in index notation
as f}; , anld. déﬁne F:A xB‘ ——>~ C by F(x, y) = fx(y). We are now clearly

BEFLAKD wei G nnd

back ‘. where we started. The mappings f: A —> C
giB—p CA are thus equivalent to each other, and can be thought of as being
three ‘.different ways of viewiﬂg the same phenomenon, The extrene mappings £
and g will be said to be dual to each other,

The mapping f is the i&dexed family of functions ffx : 2 G A} o
Now suppose that | FC cP s an Ei'rldexed collection of functions on B into
C. We can index T‘ bSr so‘me'index'set A if we ivaitit, but we can also treat SF
itself as though it were A. That I.S, we can define F: FX B —=> C by
F(f, y) = f(y). Then g:B —> c* is defined by g (f) = £(y)." What is
happening here is simply that in the expression f(y) we regard both symbols
as variables, so thrat f(y) is a function on x B. Then when we hold y fixed
we have a function on CJF, mapping # into C.

We shall see some important applications of this duality principle as our

subject develops. For example, we shall regard an mx n matrix as also being
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a sequence of m column vectors, as well as a sequence of n row vectors,

In the same veain, a sequence fl' euy fn of functions on A into B can
be regarded as a single function on A into BH , where we have set n = {tyeos,n}
since n itgelf is taken to be.the set f'L“O, % 50 n-lé'. Also, we shall regard a
finite dimensional vector space V as being its own second conjugate space
(V*)* , sothat V and V* are in duality,

It is instructive to look at elementary Euclidean geometry from this point
of view, Today we regard a straight line as being a set of geometric points, An
older and more neutral view is to take points and lines as being two different
kinds of primitive objects. Accordingly, let A be the set of all points (so that
A is the Euclidean plane as we now view it) and let B be t'be set of all straight
lines. Let F be the incidence function: F(p, /) = 1 if p and ¢ are incident
(p is "on" ./, ¥ is "on" p) and F(p, /) =0 otherwise, Thus F maps Ax B
into {0, lg .. Thenfor each £ © B the function g\i (p) = F(p, {) is the characteris-~
tic function of the set of points that we think qf as being the line A g_{,(p) =1
if p ison £ and is 0 if p is noton: ¥, Thus each line determines the set of
points that are on it,  But, dually, each point p determines the set of lines
4 "on'' it , through its characteristic function wfp(,L/). Thus, in complete
duality we can regard a line as being a set of pcints . and a:point as being a set

of lines. This duality aspect of geometry is basic in projective geometry,



Chapter I

VECTOR SPACES

§ 1. Fundamental notions ; Function spaces,

The calculus of functions of more than one variable unites the calculus
of one variable, which the reader presumably knows, with the theory of
vector spaces, and the adequacy of its treatment depends directly on the
extent to which vector space theory is really used, The theories of
differéntial equé.ti;ons and differential geometry are similarly based on a
mixture of calculus and vector space theory., Such lyector calculus' and
its applications constitute the subject matter of this course, and in order
for our treatment to be completely satisfactory we shall have to spend
considerable time at the beginning studying vector spaces themselves.
This we do in the first two chapters, the: present chapter being devoted
to some of the algebras of vector spaces and the next chapter to their
limit theory,

First we éive tﬁe abstract definit.:ion of a ve;;tor space and look at
an important class of concrete exa:lnples. We th'en dévelop the notions of
subspace, linear'cc.u'nbination énd linea;'r t;'ansforrxiation, and esfai:;iish

some of their most elementary propertiés.

A, A vector space is a collection of objects that can be added to
each other and multiplied by numbers, the two operations being required

to satisfy certain laws of algebra.
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DEFINITION , Let V be a setandlet A: VXV —>YV and
S: RX V —> V be given mappings, Write 'a+ p' for 'A(c,p)
and 'xa' for S(x,a)' . Then V is a vector space with respectto A

and S if and only if

Al a+ (B+y) = (etB)ty for all a,B,y €V

Az atf = pta for all o, €V

A3 There exists an element O € V such that &+0O = a for
all ¢ €V

A, For every a € V there exists $ € V such that otp =0

Sl (xy)lae = xlyx) for all x,y € R, a €V

52 . (x+y)e = xa + ya for all x,y € R, a€V

53 . x(e+B) = xz+ xB forall x€ R, «,BEV

S4 la=qa for all o€V,

In‘ ccentexts where it is clear (as it generally is) what operations
are intended we refer simply to the vector space V .

The simplest example of a vector space is the set vV = IRA of
all real-valued functions on a set A , together with the natural
operations of adding two functions and multiplying a function by a
number. That is, f+g is the function defined by (f+g)(a) = f(a)+gla) ,
and cf is the function defined by (cf){a) = c(f(a)) . The laws Al-54

follow at once from these definitions and the corresponding laws of

algebra for the real number system. For example, the equation
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(xty) = xf+ yf means that ((xty)f)(a) = (xf)(a)+ (yf)(a) fpr all a€ A,

But ((xt+y)f)(a) = (x+y){f(a)) = x(f(a)) + y(f(a)) = (xf)(a) + (yf)(.a) , where we

have used the definition of scalar multiplic;tion in IRA , the distributive

law in R and the definition of scalar multiplication in ]RA , in that order,
The set A can be anything atall, If A= R then V = IR]R is the

space of all real valued functions of one real variable, If A = RXR , then

RXR
V=R is the space of all real-valued functions of two real variables,

H A< { lisiagti) = n , then V = R" is Cartesian n-space,
B. If one vector space is included in another vector space and has

the same vector operations we call it a subspace of the larger space.

DEFINITION , A subset W of a vector space V which is itself a
vector space under the (restrictions to W ‘of the )operations of V is

called a subspace of V ,

LEMMA 1, If a subset W of a vector space V is non-empty and is
closed under the operations of V then W is a subspace of V ,

Proof: The closure of W under addition means simply that atf is
in W whenever o and B are bothin W , and similarly for scalar
multiplication,

The universally quantified laws Al ’ A2, and S1-54 holdin W because
they hold in the larger set V , In order to check A3 we notice that by

hypothesis there is some B€ W , Butthen 0 =08 €W , aince W is
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closed under slca.la.r multiélica.tion. And, for every « €W , -a=(-l)a€W
for ?t‘il(j': same reason. Therefore W =is a..vector space,

Consider for example V = IRA wheré A .is the closed interval
[a,b] < R , and let :f::([a, bj) Ee the set of continuous real-valued
functions on A = [a,b] . Then &%4([a,b]) is a subset of V which is closed
unter: the. operations qf V (i.e.,, f+g and cf are continuous whenever f
and g are ) , and 8o islésubspac—e o'f V.

A S %
Subspaces of the vector spaces IR are called function spaces ,

Thus a function space is a collection of real-valued functions with common
domain which is closed under addition and multiplication by scalars.

What we have defined so far ought to be called the notion of a
real vector space and its subspaces, There is an analogous notion of a
complex vector space, examplified by the space A of all complex-valued
functions on A , In fact, if the reader knew what is meant by a field F ,
we could give a single general definition of a vector space over F , in
which scalar multiplication is by the elements of F, the standard example

being the space V = FA of all functions on A to F ,

LEMMA 2, The intersection W = Wl N W, of two subspaces of a

2

vector space V is itself a subspace, In fact, the intersection W = niE Iwi
of any collection { Wi :1 €1} of subspaces of V  is itself a subspace,

"Proof: If a and B are in W then they are in every 'W‘i . But

then o+P is in every Wi and soisin W ., Thus W is closed under
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addition, Similarly W is closed under scalar multiplication, Moreover,
W is non-empty since O is in every W, and soisin W , Thus W is
1

a subspace, by Lemma 1 ,

COROLLARY , If A is any subset of a vector space V then there
is a uniquely determined smallest subspace of V which includes A ,

Proof: Let {Wi 11 €1} be the collection of all the subspaces which
include A and let W be the intersection of this collection, Then W is
a subspace including A , and any other such subspace U is one of the Wi's
and so includes W , Moreover, if U # W then U is properly larger
than W , Therefore W is the unique smallest subspace including A .

We call W the linear span of A ,at: the subspace generated by A ,

and designate it L(A) .

C. We gave above a ''non-constructive' definition of the linear span
L(A) of a subset ACSV , In order to see.what the elements. of L(A) look
like we must consider linear combinations, The associativé and commutative
laws for vector addition imi)ly that a finite collection of vectors {ozi}:;1 has
a uniquely determined sum which is independent of the order in which the
@, are taken and of the way in which they are grouped; Since n = {1,...,n}
has a natural ordering, the best. way to express this independence is to

take a finite unordered index set I, a corresponding indexed collection

of vectors {.fzi :1€1} and then observe that there is a uniquely determined
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vector Ei'GIC"i which can be obtained by adding the £A in any order and
in any grouping., This "'obvious'' fact requires a rather fussy proof by .
mathematical induction, but we shall simply assume it, If c = {'ci:i €1}
is a corresponding set of scalars then zié lciai is called a linear

. ) ; x . .
.combination of the czi's . Thus 3 sin x - cosx + 2e 1is a linear

combination of  { sinx , cosx , e_x} and any polynomial of degree at most

. . P : 1.5
5 is a linear combination of the set of monomials {x }i—O' .

LEMMA 3, The linear span L({ai}) of a finite set of vectors

{a'i :1 €1} is exactly the set of all linear combinations of these vectors.

Proof: “7e have that

because the left side equals E(xia’i + A ) when it is regrouped by pairs,
and then S2 gives the ‘right side. Since S3 (and mathematical induction)
cl.ea.rly imply that c“Zx.iai = Zlc xi}ai , we see that the set of all linear
combinations- of {a'1 :‘i G 1} isa s'u.bspace W . W contains each @,
(why ? ), and if V is a subspace including {a'i} then W €V (why ?).
Thus W = L ({Qi}) .. .- |

We define a.ﬁ element P to'be a linear combination of an infinite
indexéd sef {al 14 € I‘} if B ié é 1.i-near combination of {cﬁl : 1€ Il} for
sofne'f‘ini.te .subsét Il C I | . This is the only possible definition since we

cannot form infinite sums in a purely algebraic situation, fowever, when
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we add a notion of convergence we shall be able to consider infinite

linear combinations ( ) .

. : & i = = i
Notice that if I1 12 and if B 211 c,a then also B Elzciai if
= i€ - e i = =
we set c, 0 for i ‘12 I1 . Therefore if ;31 Ellciai and [32 zlzdiai
= = U = A~ SR
then [31+f32 EJ (ci+di}r.zfi where J Il I2 y G 0 for i 12 I1 and

di =0 for i€ I1 -Iz « We thus have the corollary :

COROLLARY , The set of linear combinations of any infinite
(indexed) set of vectors is its linear span,

For example, the set of all linear combinations of the infinite set of

; i,oo |, .
monomials {x }o 1s the vector space of all polynomials,

Any subset A of a vector space V can be considered to be self
indexed (by the identity function) and a linear combination of the vectors in
A is therefore obtained by choosing a finite subset A1 A and a scalar
x for each o € A, , and then forming the sum X x a , If the

a i 1 a€ ATa :
reader feels more comfortable with the integérs, he can choose a finite
sequence {afi}ll1 CA and an n-tuple x = {xi}? of numbers, and then form
n £ e ‘
the sum Bi-l X, . In any case, the word "indexed" can be omitted

from the corollary,

D, The general function space IRA and the subspace f([a,b])
of IR[a’b]' both have the property that in addition to being closed under

the vector operations they are also closed under the operation of
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mul;jp_lying two functions together. The pointwise product of two

functions is a function ((fg){(a) = f(a)g(a)) and the product of two. continuous
functions is corxrtinuous‘._‘ With respect to these three operations, addition,
mgltiplica.ti_on and scalar multiplication, they are called algebras, If the
r_eade; noticed this extra operation he may have wondered why, at least

in the csntext of function spé.ces, we bother with the notion of vector space.
Why not study the richer structure these spaces have as algebras ? The
answer is that the vector operations are exactly the operations that are
preserved'’ by many of the most important mapping of functions. For
example, define T : ?_—"f([a,b]) —> R by T(f) = j: f(t)dt . Then the

laws of the inifegral calculus say that T(ft+g) = T(f) + T(g) and T(cf) = cT(f) &
Thus T 'preserves' the vector operations. Or we can say that T
""commutes'' with the vector operations, since plus followed by T. equals
T followed by plus. Notice, however, that T does not preserve

multiplication : it is not true in general that T(fg) = T(f)T(g) .

DEFINITION ., .If V and W are vector spaces then a mapping

T: V—>W is a linear transformation if and only if T(a+p) = T(a)+T(p)

for all o,p €V , and T(xe) = xT(a) forall e €V, x€ R ,
These two ''preservation of operation'' equations are often combined

into a single ''preservation of linear combination'' equation :

T(xla + %

1t an) xlT(a1)+x2T(a2) for all @, ,

2
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and all X9 %, € R ., More generally we have

i .
T(Z] x,a) = z‘l‘xi T(a, )

Other examples of linear transformations will be given in the
exercises ; we go on now to some elementary properties of linear

transformations,

LEMMA 4, If T:V —>W is linear then T_I[Y] is a subspace of
V whenever Y is a subspace of W and T[X] is a subspace of W
whenever X is a subspace of V ,

Proof: If {afi} ©X , thelaw T( Z‘-xiafi) = Z'IxiT{ai) , read backward,
shows that L(T[X]) < T[L(X)] = T[X] . Thus T[X] is its own linear span,

and so is a subspace, The other proof is almost the same and we omit it,

- &
COROLLARY ., Thenull setof T , T 1(O) = {a V:'I‘(mf) =0}

is a subspace of V and range of T , T[V] is a subspace of W ,

LEMMA 5. A linear mapping T is injective if and only if its null
space is {0} ,
Proof: To say th_at T is injective_ means that T(z) = T(B) if
and_ only if a=8, i,e,., T(x-B) = 0 if and only if a-B=0,. i
i,eq, T(y)=0 if andonlyif =0 , i,e,, the null space

N(T) is {0} .



DEFINITION , A linear map T : V —> W which is bijective is

called an isomorphism, Two vector spaces V and W are isomorphic

if and only if there exists an isomorphism between them,
* For example the map < € je04,C_>—> Zn-l c xi is an
1 n o} itl
P 4l n .
isomorphism of IR~ with the vector space of all polynomials of degree
< n,
Isomorphic spaces '""have the same form'' and are identical as abstract

vector spaces, That is, they cannot be distinguished from each other solely

on the basis of vector properties which they do or do not have,

§ 2. Geometric vectors,

This section is not essential to the course, It concerns plane
geometry and the transition from plane geometry to analytic geometry,
which is part of our assumed background, However it points up the
vector aspects of that transition; which may be unfamiliar to the reader,
and should at least be read through, Since it is difficult to develop the
theory of geometric vectors adequately on the basis of synthetic plane
geometry we shall content ourselves with a brief description which will
include no proofs,

A geometric vector is represented by a directed line segment, It
cannot taken to be a directed line segment, since a pair of different

directed line segments represent the same geometric vector if they are
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parallel, equal in length and similarly oriented, We say that two such
directed line segments are equivalent, It should be geometrically evident
that this does define an equivalence relation on the- set of all line segments,
and a geometric vector can be identified with an equivalence class, Let

: (E = '
pq be the directed line segment from p to q and pq the corresponding
geometric vector, We define the sum pq + ab of the geometric vectors

iy — - ] : y ) k
pq and ab as pr where qr is the unique directed line segment equivalent
: , : a

2
to ab and with initial point at q , / \
1
It follows from theorems in p ¢ I 4 i
geometry that the sum is /\

P = vr 4 h r!
independent of which directed e
line segments represent the P
vectors, and thus is uniquely -
: — 1
defined, The product x(pq) is V,,f- q
i . d o : 1

- . 2

the vector pr where pr is parallel to pq , with length lx[ times the
length of pq and similarly or oppoaitely.oriented depending on whether =x
is positive or negative., Similarity theorems in geometry imply that again
the geometric vector x(pgq) is independent o the directed line segment pgq

L= : fiids. . :
representing pq . We thus have a pair of vector operations, and in
terms of them the set V of all geometric vectors is a vector space,
each of the laws Al-S3 being a theorem in plane geometry,

If we choose a special point O (the origih) in the plane then it is

pepmissible to identify a geometric vector with that directed line segment
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emanating from O which represents it, Moreover, with the origin O
thus fixed as the universal initial point, these segments are in turn
uniquely specified by their terminal points, Thus the choice of U allows
us to pair any point p with the geometric vector Op and the space of all

geometric vectors corresponds to the plane itself, Addition is now given
F.'

by the paralielogram rule : ptq = r if and only if T il o
r is the fourth vertex of the parallelogram having N R
Op and Oq as two of its sides, However, this nice formu ation .of
addition doesn't hold when O, p and q are collinear !

The vector space V of plane geometric vectors actually turns out
to be isomorphic to R £ , and we usually try to minimize the- ;.mOunt of
unsatisfactory plane geometry that we have to do by establiéhing this
isomorphism as early in the game as possible. This process is
essentially the introduction of axes and coordinate systems by which we
start analytical geometry, The beginning facts are still established in a
génerally unrigorous fashion. They are:

(1) The choice of an ordered pair of perpendicular axes and a unit
seg}né-nt determines a unique one-to-one ;oordina.te correspondence
between the Euclidean plane and R . S o

(2) If we use the notation that x = <x ,x2 > is the coordinate pair

1

of the point x in the Euclidean plane then the directed line segments xy

and zw are equivalent if and only if y - x = w = z in the vector space R
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(3) Three distinct points x,y and z are collinear if and only if
z -x =c(y-x) for some real number ¢, in which case the segment xz is
|c| times as long as the segment xy , and x is between y and z if
and only if and only if ¢ is negative,
— i
Assuming these facts the reader will see that xy —> ¥y =% isa
2 ol
one-to-one correspondence @ from V to R~ , that O(xy + yz ) =
— —_ - — F s s
@ (xy) + 8 (yz) and that @(cxy) = c©(xy) . Thus O is an isomorphism,
However,‘ this conclusion assumes that we have proved that V is a
vector space and therefore needs all of the dubious geometry that we
sketched earlier, There is another way of proceeding which requires only

that we establish (1) - (3) above., Then without any further geometric

arguments we can conclude that the equivalence of directed line segments

is indeed an equivalence relation so that the set V is defined, that our
b : ’ =]

definition of the operations on V are meaningful and that 3 = @

preserves operations (from ]‘Rz te V).

But now we can apply the following general and very useful lemma,

LEMMA & ., Let W be a vector space, let V bea set having
two vector -like operations afzd let T: W—>V be a bijection preserving
the operations, i,e, satisfying T(ca + dﬁ) = cT(a)+ AT(B) . Then V is
a vector space, ..

Proof: It follows from the fact that T preserves operations that
T(0) is the zero for V , that T(-a) is the negative of T(«) and that the
¥
universally quantified laws all hold, The reader will be asked to make some

of these calculations in the exercises,
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§ 3. Product spaces, Hom (V,W) and quotient spaces,

"A. Product spaces. If 7/ is a real vector space and A is an

arbitrary set then the set V = w of all W-valued functions on A is a real
vector space in.exactly the same way that ]RA is, Addition is the natural
additioa of functions : (f+g)(a) = f(a) + gla) , a.ud; similarly, (xf)(a_): a(f{a))
for every f€V and x € R, The 1a\;rs Al-54 follow just-a.s before and
for exactly the same reasons, For variety let us check the associative law
for addition, The equation f+{g+h) = (f+g)+h means that

(fr(gt+h))(a) = ((frg)+h)(a) for all a € A, But

(f+(gth))(a) = f(a) + (gthl(a) = f(a) + (glakh(a)) =(f(a)+gla))+h(a)

= (f+g){a) + h(a) = ((f+g) + h){a) , where the middle .equality in thié chain of
five holds by the associative law for W and the other four are all
applications of the definition of addition, Thus the associative law for
addition holds in WA . The analdgue of Cartesian n-space here is the set
Wr_l of all n-tuples a =< @ ..,’c'rn > of elements in W 5 it is also
designated wh o, By analogy with Cartesian n-space we call Qj the

J lcoordina.te of the n-tuple @ , Generalizing agaiin; we can call fa. = fla)
the a_th coordinate of the function f€ V = WA .

There is no reason at all why the same space W has to be used at
each index as we did above. In fact, if WI' 6 ey Wn are any n vector
spaces then the set of all n-tuples a= Sseeen > such that aj € Wj
for 5 =1,4e4;n is a ve'(':.tof-répace under the ...D_:a.me definitions of the

operations and for the same reasons, That is, the Cartesian product
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YV iz WlXW M oees X Wn is again a vector-space of vector - valued functions,

2
Much later in the course we shall need the corresponding fact about

a general Cartesian product of vector spaces, We remind the reader that if

{Wi :1 €1} is any indexed collection of vector spaces then their Cartesian

product, nielwi , is defined as the set of all functions f with domain 1

such that f(i) € Wi for all i€1 ( see§ 0,8a) ,

THEOREM 1, The Cartesian product of a colrlec'tion of vector spaces
is itself a vector space under the natural operations of addition of two
functions and multiplication of a function by a scalar (real number) .

Proof: The proofs of Al-S4 that we sampled earlier hold verbatim.,
They did not require that the functions being added have all their values in
the same space, but only that the values at a given domain element i lie in

the same space,

n n
Notice that the function spaces ]RA i WA " Rr" s W and H? Wi are

all special cases of the function space nie 1 Wi .

These notions should be easily grasped conceptually, since they
involve the same old idea that the natural addition of functions leads to a
vector space of functions, The only difficulty is that the more general
Cartesian product notions are hard to illustrat.e in a simple way apart from
the eventual uses that we shail make of them.. With V apd W as vector
spaces the function space WV has. -the importa;nt subspace Hom(V,W) of

all linear mappings from V to W , which we shall look at next, and the
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subspace of all differentiable mappings that we shall study in Chapter 3,
Our use of ff;Wi will be principally when the ‘Wi are all subspaces of a
given space W in our study of direct sums in § 4. The general Cartesian
~product vector space is needed when later on we consider the collection
{_VP :p €M} of all tangent spaces Vp at the poipts p of a differentiable
manifold M , Then a vector field on M is simply a fun‘ctiqn f in

!!pe MVP and the vector space of all continuous vector fields is a subspace

of this Cartesian product, .

B. Hom(V,W) . Linear transformations have the very simple but

important propértiés that the sum of two 1inear t:ransforrnations' is linear
and the comPOSition.of two linear ‘tra.nsformatiOns is liﬂear. These
imprecise statémeﬁts neéa bo;ls'i:.-ér'irng“t.)y conditions on domains and
codomains, but m essence Tthéjr' ;re the' theme of this section, The proofs
are simple formal algebraic arguments, but the objects being discussed
wiii escalate in conceptuél 'co;ni)léxity;

If W is a vector ;pace' and A is .any”se-t,. we know that the space
V= WA of a.il f'ﬁnctioﬁs; f A ———>-W' is a vector §pace of func.tions (now
vectof -vl:;tl‘ued) .in tht.a‘same way that'IRA is, If A 1is itself a vector space
v , we né.turally single 6ut' for special study the.subset of WV cdnsisting
of all linear mappin:gs. We de.signate this subset Hom(V,W) . The

following elementary theorem summarizes its basic algebraic properties,
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THEOREM 2, Hom(V, #) is a vector subspace of WV . AL
TE Hom(Vl,Vz) and D € Hom(Vz,VS) then So TE HOm(Vl,V3) .
Moreover, composition is distributive over addition ;
(SI+SZ)°T = (SloT)+(Son) and So(T1+T2)=(SoT1)+(SoT2)
under the obvious hypotheses on domains and codomains, Finally,
composition commutes with scalar multiplication ; ¢(S o T) = (¢cS) o T =So(cT
Proof: The whole theorem is an easy fgrmality, but we shall write down
two of the arguments as examples of how these things go., If S, T € Hom(V, W)
then (S+T)(4:1|:zf1 + czaz) = S(clcx’l + czafz) + T(clal + czaz) = CIS(a1)+ czs(arz) +
clT(al} + czT(a'z) = cl(S+ T)(afl) + (:2(S~I‘~ T}(az) , 50 that S+T is linear and
Hom (V, W) is closed under addition, The reader should be sure he knows
what hypothesis is being used at each step of the above continued equality,
The closure of Hom(V,W) under scalar multiplication follows similarly,
Thus Hom(V,W) is a subspace of W , Next, if S and T are linear
we have S o T(cl @ 4 czafz) =S (T(c:la.fl + CZQZ” = S(clT(arl} + cZT(az))
= CIS(T((ZI)) + CZS(T(QZ)) =

S o T(al) +c.So T(az) , sothat So T is

1 2

linear, The two distributive laws will be left to the reader,

COROLLARY , If TE€ Hom(Vl,Vz) then composition on the right

by T is a linear transformation of Hom(V V3) into Hom(Vl,V3) . It

z’
is an isomorphism if T is an isomorphism.

Proof: The algebraic properties of composition stated in the

theorem can be combined as follows :
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(ClS1 + czoz)- & T = 'Cl(Dl o T)+ C‘.Z'(S2 o T}

So (ClTl

+ c'zTZ) = cl(S o} Tl) +.c2(S o TZ) .

The firs_t equation says exactly that composition c.m the 'right by'a fixéd T
is a linear_transforrqation. If T is an isomorphism then composition by
T—l "undoes' cornpo_sitioz} by .T and so is its inverse,

The second equat_:iqn implies a similar corollary about composition on
the left by a fixed S, -

Now consider in particular the space Hom(V,';f) P WhiCi’l we may as
well designate Hpm(V) . In ;addition to being a féctor space it is also
closed under -compos_i;i_on, which we ctl)ns;lder a multiplication operation,
Since composition of functions is alﬁags associative (see 0, 10.) we thus
have for multiplication the la:ws A o(BoC)={AoB)oC,
Ao(B+C)=(AoB)+ (AOC) y (A+B)oC-= (.AOC)'l' (B‘o C) and
k(A o B) = .(kA) o B =A o(kB). Any vector space which has in addition to
the vector qper;tiong an ;':pera;tion of rﬁultipliéation related to the vector

operations in the above ways is called an algeb.ra. Thus :

THEOREM 3. Hom(V) is an algebra.
. _We noticed earlier that c_érta.in real-valll;ed function spa(‘;es were also
algebras, R and ([Q, 1]) were examples, In those cases :fnultipli-
cation was commgtative, but in the caée of Horn.(V) multiplication is not

commutative unless V 1is a trivial space (V = {0} or V is isomorphic
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to R ) . We shall check this later on when we examine the finite

dimensional theory in greater detail,

C. Product projections and injections, There are two related

classes of simple linear mappings that are of basic importance in handling
a Cartesian product space ﬂkE Kwk « The first is the mapping

"j i £ —> f(j) assigning to each element of I'Ika its value at j . Thus

T on W :z'—‘Nz;:W

2 ) We call £(j)

is the mapping < Q2,0 > B @, o

3

the jth coordinate of the "point'"' f and 75 the jth coordinate mapping,

The second is the mapping Qj taking each vector « € Wj into the function
G . - - . - - -

f ﬂkEKWk defined by £(j) = o and £(i) =0 for i# j ., For example,

92 for Wlx‘Wz‘«.WB is the mapping a—> < 0,0,0 > where a €W

2 L]
We call Gj the injection of W.i into l'Ika « The linearity of ﬂj and
Qj follows directly from the definition of the vector operations for

functions, The mappings ﬂj and Qj are clearly connected, and the

following projection-injection identities state their exact relationship :

T8 = 1 and 7.00, = 0, if i£j ;
i 3 3! it i i S

_I_f__K is finite then

Here, of course, Ij ‘and Oj are the identity and zero transformations

on W, and I is the identity on ;W . In the case ..'23 W. we have
h] k' k i=l i
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92 o (< @) a >)=<0,c,,0> , and the identity simply says that

2!

<crl,0 0>4+<0, afz,0>+<0,0,a' >—<o: s, > for all «

Eae
3 2°%3 e L

The coordinate projections ﬂj areruseful in studying any product space,

but because of the limita.t_i;aﬁ in the a.iaove identi‘ty the injections Qj are

of interest principally in the case of finite products, ‘i‘he following theorem

states a characteristic property of product spaces.

THEOREM 4, If Ti € Hom(V,W.) for‘ each i€ I then there exists
a unique | T € Hom_(V, 1i . € IW ) such that T ﬂ'i oT forall i€ I‘.

Proof: This theorem is true for any product spacé but we prove it
~only for a finite product, as an exercise i.n. applying the abuve injoction-

. projection identities, If T exists such that Ti = rri oT for each i , then
T=IoT =Z(Qiﬂi)'oT Ze o' (. o T) 29 iy w

Thus T is uniquely determined as the map ?Qi o Ti . Mioreover, this T

does have the required property, since

0
H

7. 0T = ﬂ.o(z.e.oT.) =E.(ﬂ.09.)oT.=I.oT.
J J i1 1 i ] i i i

There is a similar theorem in the other direction whose proof will

be left to the reader,

THEOREM 5, If Ti.G'HOm(Wi,V) for each i in a finite index
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set I , then there exists a unique T € I—Iom(HiWi,V) such that T o szT.

for each j€ I .

D. Quotient spaces ; affine subspaces. If N is a subspace of

a vector space V and a € V then the set N+ae={E+a: EEN} is

called either the coset of N containing « or the affine subspace of V

through « and parallel to N, If N is given and fixed we shall use the

notation [a]=N+ « (see 0,11 ),

THEOREM 6, The relation a~f <= B-a €N is an equivalence
relation and its fibers are the cosets of N ., The vector operations on
V 1lift to the space of fibers and make it a vector space, called the
quotient space of V by N and designated V/N . The projection
mapping 7 is a linear mapping of V onto V/N and the nullspace of 7
is N,

Proof: Checking that o~ is an equivalence relation is an easy
mental exercise, Then, since B-a € N<> B E N+ a =[e] , we see that
a~p <> B € [a] so that the fiber m(a) is the coset [@] . The space of
fibers is thus the set of all cosets of N,

We shall check that the operations of V liftto V/N by direct
argument, First, if «

=itk € N and ;31 - B, € N then (a1+i31)—(a'2+[32)€ N,

1 2

since N is closed under addition, That is, a ~a and

[31 “ B e a, + ]31 ~a+ P (see § 0,11), This implies that the set sum
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'rr(a'l) + 7?({31) is a subset.of the coset Tr_(czlﬂ.’:l) . Therefore, if we define
@ : V/NxV/N— V/N by taking A ® B to be the unique coset including

the set sum A+DB , we have
me) B w(B) = marp) .

 Similarly, A ~q => ca ™ c¢a for any scalar ¢ , so that the set
product cn‘(czl) is a‘ subset of the coset 7(c al) o If we define o

from RXxV/N to V/N by taking ¢ @1 A to be the unique coset

including the set product cA , we have
c & 7w(z) = mlca) .

Tc;gether, the two diSplﬁyed'equations above say that the projection
mapping | 77 .preserves the :vecfor operations, and it follows from Lemma ¢
that V/N is a vector sbace.' The zero vector of ‘V/N is the coset N,
so that 7(a) = 0<> o€ N , This completes the proof of the theorem,

Cén's-idé.x" néw the collection (& of all affine subspaces of a vector
space V ; (1 is thus the set of all cosets of all vector subspaces of V ,
'I“he propérfieé we are intereéted in are very elementary and will be
simply listed, with at most a hint at a proof,

| (i) The intersection of any family of affine subspaces is either
empty .o.r. i.s- itself an affine subspace, In fact, if. {Ai}iE I is an indexed
collection of ‘af\fine'subspac‘es'an‘d if Ai is a coset of the vector subspace

Wi for each i €1 , then niE IAi is either empty or a coset of the
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vector subspace niE IWi .

To see this it is crucial to remember the different descriptions
of a single affine subspace : if A =a+ W where W is a vector subspace,
then also A =+ W for every B € A , Therefore B € niEIAi

implies Ai=f5+ Wi for all i and ﬂAi=f3+ﬂWi .

(2) f A,B€ (1 then A+ BE€ (1 . Thatis, the set sum of any

two affine subspaces is itself an affine subspace.

(3) A€ (X and TE Hom(V,Vl) => T[A] is an affine subspace of

(4) If B is an affine subspace of V. and T € Hom(V,Vl) then

1
-1
T [B] is either empty or an affine subspace of V ,

(5) For a fixed @ € V the translation of V through o« is the

mapping Sce: V—> V defined by sa(g) =f+a forall £€V ,
Translation is not linear ; for example, SG(O) =a , Itis clear, however,
that translation carries affine subspaces into affine subspaces, Thus

SQ(A) = A+ ¢ and Sa(ﬂ+ W)=(a+B)+ W .

(6) An affine transformation of a vector space V into a vector

space W is a linear mapping of V into W followed by a translation in
W . Thus an affine transformation is of the form Eb—2>T{E)+ B,
where T € Hom(V,W) and B € W , Notice that £ —> T( £+a) is
affine since T(§{+a)=T(£)+ B , where B = T(a),

It follows from (3) ‘and (5) that an affine transformation carries

affine subspaces of V into affine subspaces of W ,
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(7) It is obvious that S_ 0 S

F

composition of translations as an addition operation, Next, if nSa is taken

g2 hall i
" S(B+a} , and we shall interpret

tomean S 05 o,.. 05 to n composition summands, than nS =S,
o g . a ¢ na

— i S
Also, (1/m)sa = sa/m in the sense that Sa/rn o Soz/rn O sae S v to m

summands equals ScE . Thus xSC_ = Sxa for x rational, and we simply
define x5 to be S for x irrational,
— a xa

Bul now we have two vector-like operations on the set J of all

translations of V , and, since S = xSa oyS, , the mapping

(xa + yB) B
from Lemma 6
Q> SQ of V onto (? preserves the operations, It follows™ (first

. E g G .
homework assignment) that ,{S’ is a vector space, The zero of |\ 1s

S. , which is just the identity mapping I

of V onto itself, Since S
0 a

\'s
is not So unless a =0 , the mapping a+—> Sa is an isomorphism

between the vector space V and the set of all translations of V , This

has taken sorne time to describe but it is really pretty obvious,
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§ 4, Direct sums.

A, Direct sums, LEMMA 7, If Vl,---,Vn are subspaces of

the vector space V then the mapping < Vseee,a >+ 2? oA is a
linear transformatiqn from 11 I;Vi to:-"V ,

Proof: If 7 is the mapping and a is the n-tuple < @yreee, >
then m(a)+ m(B ) = ( E?ai) + 3111 ﬁi) » Regrouping by pairs this sum
becomes zil(aimi) =m(a+ B ). Thus 7 is additive. Also

x7 () = xETa’i = f? xa,. = 7(xa) , by S3 and induction, Thus 7 is linear,

DEFINITION . We shall say that the Vi's are independent if #
is injective and that V is the direct sum of the Vi,s if 7 is an
isomorphism, We express the latter relationship by writing
Ml B @Y« By, ,
thig: ¥ = @ iflvi if and only if # is injective and surjective,
i,e., if and only if the subspaces {Vi}:1 are both independent and span V .,
A useful restatement is that each o € V is uniquely expressible as a
sum Zrllai with A & Vi for all i ; « has some such expression because
the Vi's span V , and the expression is unique by their independence,
For example, let V = ﬁz( [-1,1]) , the space of functions on
[ -1,1] having continuous second derivatives, let Vo be the space of

constant functions, ,Vl the space of linear functions of the form f(t) = ct,

and R the space of functions f € V such that £(0) = £'(0) = 0 , The two
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term Taylor expansion of f gives the _unique_representation
f(t) = a+bt + r(t) , where r(t) € R , and of course a = £(0) , b=£'(0).
Thatis V=V, @V, ® B %
On the other hand, if M is the subspace of polynomiab'c'}f degree
< 2 , then V=M+ R (why ? ) but the sum is not direct (why ? ).
Since 7 is injective if and only if its nullspace is {0} (Le mma 5, §1.1D)

we have :

LEMMA 8, The independence of the subspaces {Vi}i1 is
equivalent to the property that if Z I;czi =0 and a, € Vi for all i then
a, = 0 for all i ,

The case of two subspaces is particularly simple,

LEMMA 9, The subspaces V of V are independent

1 2

and V
if and only if _Vl-ﬂ-Vz = {0}

Proof: . If a +a,=0 then a =-« EVN. AV Thus

1 2 1 2 1 2"

o) ta, = 0. will imply «, = @, = 0 if and only if V, n ¥, =-{0} ,

COROLLARY . V=V, (® V, ifandonlyif V=V, +V, and
Av_ = {0}, |
v, 0V, =40}

DEFINITION , If V =.V1 D \1"2 _then V1 and Vz-a.re called

complementary subspaces, and each is a complement of the other,

Warning : A subspace M of V does nothave a unique

complementary subspace unless M is trivial (i,e., M= {0} or M=V),.
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If we view R 4 as ;oordinatized Euclidean 3-space then M is a

proper subspace if and only if M is a plane containing the origin or M

is a line through the origin, If M and N are proper subspaces one of
which is a plane and the other a line not lying in that plane then M and

N are complementary subspaces, Moreover these are the only non-trivial
complementary pairs in R B + The reader will be asked to prove some
of these facts in the exercises and they all will be clear by the end of § 6.

The following lemma is technically useful,

LEMMA 10, If V1 and VD are independent subspaces of V and
{Vi};l are independent subspaces of Vo then {Vi}zl1 are independent
subspaces in V ,

Proof: If @ €V, forall i and I a. =0 then setting a_ = a,

F——— i i l1i ot &1

we have o, + @ =0 with a €V ., Therefore o =a =0 by the
. o ‘ o o] 1 o

mdependenge of Vl rand V(J « But then @y =0y = e e g 5 by

1

the independence of {Vi}g » and we are done (Lemma 8) .

COROLLARY . V=V, ®V, and V_=@® :z V, together imply

that V= (5.7 V. .

i=l i

n ‘
B,  Projections, If V = @ i=1 Vi » if 7 is the isomorphism

n
<@ reee, @ > > a = L, a, andif . is the projection map

n ‘ i -1
< e e ; " 5 = .
., T > p—> afJ of n1=1V1 to Vj , then (13:], o )a) aj
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DEFINITION, We call cJ the jth ccfngonent of o and we call

=1 ; ' ‘
the linear map Pj - Trj o m ~  the projection of V onto Vj (with

respect to the given direct sum decomposition of VV )

This use of the word '"'projection'' is different from its use in the
Cartesian product situétion, and each is different fr-.c.rm its &se in 0.11
in the quotient 'spacé context, It will become apparent that these three
uses are related, and the ambiguity causes little confusibn siﬁ.ce the

proper meaning is always clear from the context,

THEOREM 7. The projections Pi are such that range Pi = Vi ’
. " n

P - . = I.
Fy;® s 0 for i £j , and 20 I

Proof, If p is any element of Vj then B is the sum of itself and
the 0 vectors in all the other subspaces Vi . That is, Pj(ﬁ) = f and
PB) =0 if ifj . Thus range (Pj) =V, and P, 0P, =0 . Finally,

n n n :

El P (a) = Z]l o =S I{a) , so that EI Pi =1 , and we are done,

i

The above projection properties are clearly the reflection in vV of
the projection-injection identities for 11111 Vi .

A converse theorem is also true,

THEOREM 8, If {Pi}rllC Hom V satisfy ZTPi =1 and

P o Pj =0 for i#j then V= & :1 V. , where V. is the range of

Pi , and P.i is the corresponding projection on Vi .

Proof: The equation « = >R P.1 (o) where Pi(a») € Vi shows

1
that {Vi}i1 span V ., Next, for any @ € Vj , Pi(aj) =0 for i#j
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(since aj = Pj(cr) for some « , and so Pi(afj) = Pi o Pj(a) = 0) ., Also,
Pj(aj) =(I - Ei;éjpinaj) = I(a'j) = a'j . Now consider a = ETa’i for any
choice of a € Vi . Using the above results, we have

P(a) = z’fpj(ai) = o . Therefore a =0 implies & =0 forall j .
That is, the subspaces Vi are independent, Therefore V = @ ? Vi .
Finally, the equation a= I Pi(a) with Pi(a) € Vi shows that Pi(a)

is the projection of « onto Vi .

4, e 7.

COROLLARY ) The projections Pi are idempotent (Pf: Pi) "
or, equivalently, each is the identity on its range,

Proof: P?‘—'P.O(I-E P) = Pol =P, .

Since this can be rewritten Pj(Pj(o:)) = Pj(a) for every a in V , it
says exactly that Pj is the identity on its range,

Apgain we have a converse,

THEOREM 9, If P € Hom(V) is idez:;'x-potent then. V‘ is the direct
sum of its range and nullspace and P is the corresponding prdjection
on its range,

Proof: Setting Q =1-P , we have PQ:P-P2=0 é
Therefore V is the direct sum of the ranges 6£ P and Q and P is
the corresponding projection on its range by the above TtheoremV."/’f‘{’\fe

therefore only need to know that the range of Q is the nuliépa.cé of P,

But P(a) = 0 if and only if Q(a) = ¢ (since P+Q =1), and since Q
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is the identity on its range (Q2 =C )‘ this hb.lds if and only if « € range Q.
Thatis, R|(P) = RQ) , q.c.d.
If V=M *' N and P is the corresponding projection on M we

call P the projectionon M along N, P is not determined by M

alone, since M does not determine N,

C, Polynomials, The material in this and the next subsection

will be used in our study of differential equations with constant
coefficients and in the proof of the diagonali;zat;ility of a symmetric
matrix, In li'nea.r algebra it is basi;c‘...in almost any approach to the
canonical forms of matrices,

If pl(t) = E:;naiti and pz(t) = 22 bjtj are any two polynomials then
pit) = pl(t) pz(t) = z:n+n cktk , where ¢ = Ei+j=k aibj = 1i<=0 aibk-i .
Now let T be any fixed element of Hom(V) and for any polynomial
q(t) let q(T) be the transformation obtained by replacing t by T ,
t2 by ToT , etc., in q(t) , Then the biline'arity of composition
(Theorem 2) shows that P, (T) o pz('I‘) ha.s the same expansion as the
polynomial p, (t) p,(t) , so thatif p(t) = p| (the, (t) then
p(T) = pl(T) o pz('I‘) . In particular any two polynomials in T commute

with each other under composition, Much more simply, the

commutative law for addition implies that if

p(t) = pltt) + pztt) then p(T) = pX(T) * p?_(T) "
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The mapping p(t) —> p‘(T) from the algebra of polynomials into
the algebra Hom(V) thus preserves addition, composition and (obviously)
scalar multiplication, That is, it preserves all the operations of an
algebra and is therefore what is called an (a.lgebra)Ahom.Omorphism.

The word "hOmornorpHism“ is a general term de.scribing a mapping €
between two algebraic gystems of the same kind such that 8 preserves
the operations;: of fhe sirstem.. Thus a homomeorphism between vector
spaces is simply a linear t.ransforma.tion and a homomorphism between -
groups is a mapping preserving the one group operation, An accessiblg,
but not; r.eally typical, example is the logarithm function, which is a
homon;orphism from the multiplicative group of positive real number-s to
the additive group of R ., The logarithm function is actually a bijective

homomorphism and is therefore a group isomorphism,

If this were a course in algebra we would show that the division
algorithm and the properties of the degree of a polynomial imply the

following theorem,

- THEOREM , If pl(t} and pz(t) are relatively prime po}.}?nomiais

then there exist polynomials a (t) and aZ(t)' such that

a_nl(t__) pl(t) + az(t) pz(t) 8 1 . F’g' { g 5 o |

P
Being relatively prime means having no common factors except

constants, We shall assume tﬁis theorem and the results of the discussion
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preceding it in proving our next theorem.

D, The null space of p(T) .

DEFINITION , A subspace M © V is invariant under T € Hom (V)

if and only if T[M] €M (i.e., T MM € Hom(M) ) .

THEOREM: 10, Givenany T € Hom V and any polynomial p , the
nullspace N of p(T) is invariantunder T, If p = PP, is any

factorization of p into relatiiég prime factors and if '1\;'1 and N_ are the

N NA

A 2N
nullspace of pl(T) and pZ(T) respectively, then N:{Nl & NZJ. Also,

N, is the range of pZ(T){\N and N

1 is the range of pl(T)[‘ N,

2
Proof: Since T o p(T) = p(T) o T we have that

p(T)[T[N]] = T[p(T)[N]] = T(0) = O

and so T[N]S N , Notice also that since p(T) = pl(T) o pZ{T)
it follows that any « in
N2 is alsoin N , so that NZCN « Similarly , N1 SN . We can
therefore replace V by N and T by T[N , and so can assume that
T€ Hom N and p(T)=0 ,
Now choose polynomials a, and a, so that 3Py + a,p, = l1 .

Since g —> q(T) is an algebraic homomorphism we then have

aI(T) op,(T)+ aZ(T) ) pZ(T) 2 1 5



1,33

If o€ N, then o= all'.I')(Pl(T)(ﬂ’) ) + a,(T) p,(T)a) = p,(T)(a, (T)(a) € R,

g
= range pZ(T) » Thus N1 = R2 « But since pl (T) o pz(T) = 0 we also
have pl(T)[Rz] = 0 so that R,EN, , Thus R2 = N1 and, similarly
Rl = N?, -

1 2

Supposé next that a € N, N N_. , Then o= al(T)(pl(T)(a))
+ aZ(T)(pZ(T)(a)) =0+0=0 , Thatis, N1 n N, = {0} . Finally, for any

a€ N.: a = PI(T)(aI(T”a” + pz(T)(az(T)(a)) = @, + a, where @ €ER

1 2 1

2 Thus }:'{1 * R2 = N , Putting the four equations R_ = N

€
and az R 2 1?

= N2 3 N1 n NZ = {0} and R1 + R2 = N together we get in particular

that N = N1 ® N2 » which finishes the proof of the theorem,

=y

An equivalent but more algebraic proof begins by noticing that the
maps Pi = a.i(T) o pi(T)‘ » 1=1,2, are complementary projections, See

the exercises,

E. On solving a linear equation, Many important problems in
mathematics are in ther following general form. A linear operator
T V——>W is giveﬁ, and, for given 77 € W the equation 7= T(§) is to
be solved for €€V ., Inour terms the condition that there exist a
solution is exactly that 7 be in the range space of T , In special
circumstances this conditiou can be given more or less useful equivalent
alternate fo;-mulations. Lét us suppose that we know how to recognize
R(T) , ir.1 which case we may as well make it the new codomain and so

assume that T is surjective, There still remains the problem of what
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we mean by solving the equation, The universal principle running

through all the important instances of the problem is that a solution

process calculates a _right inverse to T ; that is a linear operator
S: W-—>YV suchthat ToS = IW ; the identity on W , Thus a
solution process picks one solution vector § € V for each n €W in
such a way that the solving § wvaries linearly with 7 . Granting that

this is what is meant by solving, we have the following fundaruearal

reformulation,
S

THEOREM 11. The linear right inverses to T are in 1-1
correspondence with the subspaces of V complementary to N = N(T) »
If S is a right inverse the corresponding complementary subspace is
R = range (S) « Conversely if R is a subspace of V complementary to
N then TMR : R —> W is an isomorphism, and S is its inverse,

Proof: If S is a right inverse of T and P = ST then N(P) =N,

)
since S is injective, and R(P) = R(S) since T is surjective. Moreover,

Pz = S(TS)T = SIWT =ST =P , so that P is a projection, Thus
V=N® R , where R = R(P) = R(S) , by Theorem 9 . Ifwe
consider S as being from W to R then of course Sql =TIR .
Conversely, if R is a complement of N then TFR is certainly
injective, since R N N = {0} . Its surjectivity follows from the

surjectivity of T : for every [ € W there exists o € V such that

T(a) =pf, andthen a=n+p, with € N and p<E R, gives
B=TM+ T(P)=T(). Thus TMR: R —> W is an isomorphism and its

inverse $ is a right inverse of T,
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§ 5. Bases

A, The linear combination map, For a fixed finite sequence of

vectors ‘{ai}? in V the linedr combination formula defines a linear map of

R” to V

THEOREM 12, For a fixed n-tuple @= <aeee,a >EVT the
mapping Ta : R® —> V defined 1 2111 x.a is liﬁéér.

Proof: The formulas 'Et:iafi + Ediai = Z(:::i + &i)ai and
k Eciai = E(kc:i)ozi by which we showed in Lemma 3 that the set of all linear
combinations of {ai} is a vector space, are preciseiy the formulas showing
the linearity of the mapping ¢ = < Claeee,C >H—> E? c,a . After
noticing this Lemma 3 becomes a corollary of Lemma 4,

The theorem above wa‘s stated for ordered n-tuples but it is equally
valid for any finite index sréi. In fact the equatiorsfrom Lemma 3 cited above
were over an arbitrary finite index set,

In the indexing i > a; the vecfcr a-j .c:t.arresponds to the index j ,
but under the linear map .Taf the vécfor afj cﬁfresponds to the n-tuple

6,', which has the value 1 at J and the value 0 elsewhere , so that

Eiﬁiai = aj « This function 5j is called a Kronecker delta function, It

is clearly the characteristic function Xg of the one-point set B = {j} .
Notice that thel sy.r‘nbol o éj "' is ambiguous in not specifying the

domain just as " X‘B” ié érﬁbigucus : the same symbol names different -

functions depending on the domain S, the only requirement on S being
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that it be a superset of B. Also  for any index sct [ the set {6J:j€ I}
of all Kronecker functions on 1 is equivalent (duality ; § 0.11) to the
single function of two variables { 6; } which is the characteristic function

of the diagonal in IxI : 6:1:1 if i=j and 6';=0 i 1§

B. Independence and bases,

DEFINITION ., The finite indexed set {ai :1i €1} is independent if

and only if the above mapping T is injective and {cri} is a basis for V
if and only if TQ is an isomorp};sm (onto V) , In this situation we call
{afi :i€1} an ordered basis if I=n for some positive integer n .

Thus { 2, i €I} is a basis if and only if it is independent and its
linear spanis V , Or, again, {ai : 1 €1} is a basis if and only if for
each §€ V there exists a unique indexed ''coefficient' set x € IRI such
that €= Exia-i . The numbers x, always exist because {ai: i€1} spans
V, and x is unique because T is one-to-one .

The form of these definitions is dictated by our intei:pretation of the

linear combination formula as the formula of a linear mapping., The more

usual definition of independence is now a simple corollary ,

LEMMA 11, The independence of the finite indexed set {ai: i€1l} is
equivalent to the property that Exiai = 0 only if all the coefficients X,
are 0 ,

Proof: This is the property that the nullspaces of Ta' consist only
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of 0 , and is equivalent to the injectivity of Ta .3 i,e,, to the
independence of {a.} , by Lemma 5,

If {ozl} is an ordered basis for V the unique n-tuple x such
that € = ET ; is called the coordinate n-tuple of § (with respect to the
basis {ai}) and x, is the £ coordinate of §, We call x. @ ( and

sometimes xi) the ith component of §, The mapping Ta will be

oA ; s -1 " ;
called a basis isomorphism and its inverse Ta , which assigns the

unique n-tuple x to each vector § € V , is a coordinate isomorphism.

T h ; .th : : s
The linear functional & pr—> xj is the j coordinate functional ; it is the

compositiOn of the coordinate isomorphism S§+—> x with the functional
3 Hemy xj which we called a coordinate functional in the special case of the
function space R" , (But the latter functional can be thought of as
obtained from the composition of the identity coordinate isomorphism on
R = with itself so that the two definitions are consistent, )
the = .

Above we took”index set I tobe n={1,..,.,n } and used the

language of n-tuples., The only difference for an arbitrary finite index set

is that we speak of a coordinate function x = { x ¢ i €I} instead of a

coordinate n-tuple,

LEMMA 12, 'I‘he Kronecker functions { § J}n form a basis for R,

Proof: Smce Z.‘ X, . (J) = xJ by the definition of 6 we see tha.t

z !11 xiél is the n-tuple x itself so that the mapping x—> LI; xiﬁ is

the identity mapping, a trivial isomorphism,
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Among all possible indexed bases for R" the Kronecker basis
is thus singled out by the fact that its coordinate isomorphism is the
identity, and for this reason it is called the standard basis or the

; . n
natural basis of R,

THEORENM 13, If T € Hom(V,W) is an isomorphism and
{ai: i€ I} is a basis for V then {T(ai) :1€1} is a basis for W ,

Proof: If 6: x> b X, & is the given basis isomorphism then
To®e : IRI,-—-—> W is an isomorphism and T o €(x) = T(Exia’i) = 2xiT(cri) g
Thus, ’ % ExiT(c:i} is an isomorphism ; i.e., {T(ai) } is a basis.

in the original situation we can view the basis {a'i} as the image of
the standard basis { 6'1} under the basis isomorphism ! In any case, any
isomorphism 0 : IRI —= V becomes a basis isomorphism for the basis
aj =0 (ﬁj) . Conversely, we notice that if ¢@: Ii-'{I —> VYV and © :IRI'—B» W

are basis isomorphisms over the same index set then

8o <p-1 : V—>W is an isomorphism,

C. The existence of a basis. We shall now prove the existence of
ordered bases for vector spaces V that are finite dimensional, in the
sense of being spanned by a finite set of vectors, The situation for infinite
dimensional V will b;a discussed briefly in E . We build up a basis

one vector at a time by using the following lemma.

LEMMA 13, I {ﬁi}rl1 is an independent ordered subset of V and
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THEOREM 13a, I {a}" i i el ;
i13a {c.vl} | isa basis for V1 and {ai}m+1 is a basis
for V2 , and if Vl and V2 are complementary subspaces of a vector space

V then {cei]-;:l is a basis for V ., Conversely, if {o:i}ll1 is a basis for V and

=9

n
v = I 4 = .
i ( {al} i ¥ L {Qi}m+1 ) then Vl and V_ are complementary

2 2

Proof: It is clear that {a'i}li1 spans V since its span includes both

n
V1 and VZ and so Vl # V2 =V ., Suppose, then, that '231 X, = 0 .

. m n
Setting ’31 =X L %1% and ”;2 = 7

i t =i )
sl Kl it follows tha §1 + gz and

E.€V., , i=1,2. Butthen § =6_=0 since V. and V_ are
i i 1 2 1 2

complementary, Finally, X 7 0 for i=1,..., m because {afi} , s
n
independent, and x, =0 for i=mtl, ..., n because {a’i}mH is indepen-

dent, Therefore {ai}lll is a basis for V , We leave the converse argument

as an exercise,

COROLLARY., If V =) Tvi and B, is a (self-indexed) basis for V,
then B = UII‘Bi is a basis for V.

Proof: If we count off B, UB2 starting with all the elements of JB1
m——— i

we see from the theorem that BIU BZ is a basis for Vl @ Vz 2

Proceeding inductively we see that U . Bi is a basis for G'},l Vi for
i=1 1=

j=2,40.,n and the corollary is the case j=n .
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if L({{Si}) # V 'then {ﬁi}T’1 is independent for any choice of [Sn_” from

n
n+l ;
Proof: Suppose that T c.p.=0 , with B . chosen as above,
S—— 1 G § ntl
Then By = 0 , for otherwise this equation can be solved for ﬁn+1 ’
% ed. 1
pn+1 = - El (ci/cnﬂ)ﬁi » contradicting the fac?t that ﬁn+1 was chosen
outside of the linear span of ﬁl, ey fin » But with By = 0 we have

E? ciﬁi =0 and therefore all c, are zero by the independence of {[3]..}111 F

Therefore ‘{ﬁi}zrlis independent,

THEOREM 14, Any finite spanning set {aai}rln includes a basis,
Proof: We can suppose that the @, are all non-zero, We define
a subsequence inductively by running through the afi's and at each step

choosing the first arj which is independent of those already chosen., Thus

i =1 ,andif L{{a, ,eee,a })#V , then i, . is the smallest i

1 i 1j j+l

greater than i, such that o. isnotin L({ @ ,ese,2. }) . If a.

AT J i, i i, i
jtl 1 J n

is the last vector we can choose this way we have a subsequence

B. = a, for j=l,eeesm

J

which is independent by repeated applications of the lemma, Also,
L({ ﬁl""l ﬁj}) = L{{alrazr‘--Osaij}) ’

by induction on j , Itis true for j =1 since i, =1 » and if it is true

1

for j then it follows for j+l by the choice of i.

py » In particular
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i
LB 1) = Lit{e},")

and since ir+l cannot be chosen this common span must be V , Thus

(6,)

T is an ordered basis for V ,
THECOREM 15, If {Bi} r;; is independent and {o:j}l}i1 spans V then
m
the sequence {Bi} , can be extended to a basis,
Proof: We simply put the ﬁi’s before the aj's in a single
sequence and proceed as above, The first m choices will be exactly

P

preee ,ﬁm because they are independent,

D, The existence of linear transformations, If we follow a

coordinate isomorphism by a linear combination map we get the following

existence theorem, which we state only in n-tuple form,

THEOREM 16, If {{*}i}j1 is an ordered basis for the vector space V
and if {ai};1 is any n-tuple of vectors in a vector space W then there
exists S € Hom(V,W) such that S([Eii) =a, for i= Lieowas B a4

Proof: If 6: ._3_:_!-—‘->-Exi;31 is the basis isomorphism and
T: x> Exiai the linear combination map then S =T o 9-1 is linear
and S(B,) = T( e'lsi) = T(ﬁi) =a for i=1l,...,n .

The above transformation is in fact uniquely determined by its values
at the basis elements {ﬁi} but uniqueness only depends on having a

spanning set,—
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LEMMA 14, If BCV and L(B) =V then any T € Hom(V,W) is
uniquely determined by its values on B ,
Proof: We have to show thatif T=S on B then T =S , Butany

n
€ € V is a linear combination § =T 1 ;;iﬁi with {ﬁi} C B , and therefore

T(E) = Z]xT() = Zx,5(,) = S() , q.e.d.

e

More elegantly, we have to show the linear map4: Tf'—-> 'I‘ PB tobe "\ /
injective, i,e., N (i) tobe 0 , Butif T[B] = {0} then 7 /)<
T[V] = T[L(B)] = L(T[B]) = L{{0}) = {0} , andso T =0 ,

It is natural to ask how the unique S above varies with the n-tuple

{ai} . The answer is : linearly,

THEOREM 17, Let {ﬁ}? be a fixed ordered basis for the vector
1

space V and for each n-tuple « = {cxfi}l]:l chosen from the vector space |

W let S_€ Hom(V,W) be the unique transformation defined above. Then
the map at—> Sa is an isomofphism from W to Hom(V,W) .
Proof: We know so far that the mapping is uniquely defined on W# .

It is linear.

Tcg_+dz(g) = 'Tca+ ay (Zxp,) = Tx;(ca;+aY)) = cIxa +dIxY,
= cT (Ex ﬁ ) + dT (zxﬁ | cTa(§)+ dTy(g) %
Thus T;E' F é?_: eT, + 4T, . It is injective : if T, =0 then
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Ta(pi) =a =0 forall i andso =0 , Finally,
it is surjective : if T € Hom(V,W) and @ = T(B,) , i=1,...,n, then

T = TQ, by the above uniqueness theorem again.

E, Infinite bases, Most vector spaces do not have finite bases and

it is natural to try to extend the above discussion to index sets I that may
i
be infinite.The Kronecker functions { § :1i €1} have the same

definitions but they no longer span JRI . By definition f is a linear
combination of the functions 5i if and only if f is of the form riEI ciﬁi
where I1 is a finite subset of I , But then f = 0 outside of Il . :

I is 0 except on a finite set Il then f = ZiE Ilf(i)ﬁi A
The linear span of {0 g i €I} is thus exactly the set of all functions of

Conversely if f € R

I
IR that are zero except on a finite set, We shall designate this subspace

R, .

If {o:i :1 €1} is an indexed set of vectors in V and f € IRI then

the sum EiG If(i)cri becomes meaningful if we adopt the reasonable
convention that the sum of an arbitrary number of 0's is 0 , Then

v = where I is any finite subset of I outside of which f is
i€ 1 1610 o
zero,

With this convention, TQ > Eif(i)ai is a linear map of ]RI to

V, as in Theorem 12, And with the same convention ZiE If(i)ozi is an
elegant expression for the general linear combination of the vectors a; .

Instead of choosing a finite subset J'.l and numbers < for just those
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indices i in 1l » we define ¢, for all i €1 but with the stipulation
that c, = 0 for all but a finite number of indices, Thatis, we take

g:{ci:iel} as a function in R .

We make the same definitions of independence and basis as before,

Then {c:.'i :1€1} is abasisfor V ifandonlyif T : ]RI——> V is an

—

isomorphism, i,e., if and only if for each E € V there exists a unique

x € R. suchthat € =2 x.0. .
- 1 11

I
The above sum is always finite (despite appearances) and the above

notion of basis is purely algebraic, However, infinite bases in this

sense are not very useful in analysis, and we shall therefore concentrate

for the present on s‘paces that have finite bases (i.e., are finite

dimensional) . Then in one important context later on we shall discuss

infipite bases where the sums are genuinely infinite by virtue of limit theory,
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§ 6, Bilinearity

A, Bilinear mappings, The notion of a bilinear mapping is important

to the understanding of linear algebra because it is the vector setting for

the duality principle (0.12).

DEFINITION, If U,V and W are vector spaces then a mapping
wi<g,n>—>w(, n) from UxXV to W is bilinear if it is linear in

each variable when the other variable is held fixed,

That is, if we hold § fixeld then n+—> w(§{,n ) is linear (and so
belongs to Hom(V,W)) , and if 7 is held fixed then similarly
w(,m) is in Hom(U, W) as a function of § . This is not the same
notion as linearity on fhe product vec.tor space UxV , For example,
< X,y > > xty is a linear mapping from R XIR to R but it is not bilinear,
If y is held fixed the mapping x> x+y is affine but not linear unless
y is 0 , On the other hand, < x,y >F> xy is a bilinear mapping from
RX R to R butitis not linear, If y is held fixed the mapping

x> yx is linear, But the sum of two ordered couples does not map

to the sum of their images :

<X, ¥> + <u,v> = <xtu,y+v>+—> (xtu)(y+v)

which is not the sum of the images, xy + uv .

The linear meaning of bilinearity is partly explained in the

following theorem,
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THEOREM 18, If w: UxV —> W is bilinear then w is equivalent
by duality to a linear mapping from U to Hom(V,W) and also to a linear
mapping from V to Hom(U,W).

Proof: For each fixed 71 €V let w?? be the mapping
Et—=wit,.n) s That'is, wﬁ({-’,) = w(§,n) . Then wn € Hom(U,W) by
the bilinear hypothesis., The mapping 7+ w?? is thus from V to
Hom(U, W) , and its  linearity is due to the linearity of w in 77 when §

is held fixed;

w_ () = wig,e.q, +e ) = c ilE, 1.)+
cl.]1+ cznz £ 22 1 1
7] = E
Czw(g:‘iz) = Cl wn_l(t,)“i' czwnz(ﬁ) " so that
w = C, W + ¢ W "
Oy hegly - R[S

Similarly, if we define wg by w«ﬁ(m = w(f,n) then §b—> wg
is a linear mapping of U to Hom(V,W) ., Conversely,if
T : U—> Hom(V, W) is linear then the function w defined by
w(,n)=(T)n) is bilinear, Moreover wg = T(£) sothat T is the
mapping £ +H—> w'E .

We shall see that bilinearity occurs frequently, Sometimes the
reinterpretation provided by the above theorem provides new insights

and at other times it seems less helpful .

For example, the composition map <S5, T>FH>350 T is bilinear,
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and the corollary of Theorem 2 to the effect that composition on the right
by a fixed T 1is a linear map is simply part of an explicit sta.tementr of
the bilinearity, But the linear map T+—> compositionby T is a
fantastic object that we have no need for except in the case W = R,

On tl;na other hand, the linear combination formula » 111 xiafi and

Theorem 17 do receive new illumination,

THEOREM 19, The mapping w(x,a) = Z‘-I;xia'i is bilinear from

n
R X V? to V and the mapping ab—> w, is therefore a linear mapping

n -1
from V to Hom(R,bV) .
Proof: The linearity of w in x for a fixed a is exactly the
assertion of Theorem 12, and its linearity in @ for a fixed x is seen

in the same way, Then at—> w, is linear by Theorem 18,

Composing w, with the fixed inverse of the basis isomorphism

—

-1
8: x> Exiﬁi we obtain the linear map at+H—> w,° e = SQ of

Theorem 17, Of course its bijectivity still has to be established, From

our present point of view we would probably do this first for a¢—> w

where wa(z) = TTxio:i , and then transfer the results to the map

g |
@ Sa by compo©Osing wa with the fixed coordinate isomorphism € .,

~

B, Natural isomorphishas.; Often we find two vector spaces related

to each other in such a way that a particular isomorphism between them is

singled out, This phenomenon is hard to pin down in general terms but
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easy to describe by exampl'es.:
Duality is one source of such ""natural' isomorphisms, For example,

an mxn matrix {tij} is a real-valued function of the two variables
0, : . r?:x’ﬁ
<1,j> , and as such is an element of the Cartesian space K . We can

also view {tij} as a sequence of n column vectors in R™ , This is the

dual point of view where we hold j fixed and obtain a function of i _ _
for each j , and from this point of view {tIJ} is an element of (R )",
m>n m, n

o and ( R )" 1is clearly an

This correspondence between rR™
isomorphism, and is an example of a natural isomorphism,

We review next the various ways of looking at Cartesian n-space
itself, One standard way of defining an ordered n-tuplet is by induction,
The ordered triplet < x,y,z> is defined as the ordered pair <<x,y>,z>,

and the ordered n-tuplet < XKjseeaX > as <<x1,...,xn_1> ’ xn> .

Thus R” is defined inductively by setting R = R and R =R* &R .

The ordered n-tuplet can also be defined as the function on

:::{ 1,40e,n} which assigns xirto i , Then

<x PR e - e < Tom D oo SN, X >
AL { ’ 2000y ¥ }

R{I:---:n}

) n
and and Cartesian n-space is R =
Finally, we often wish to view Cartesian (n+m)-space as the
Cartesian product of Cartesian n-space with Cartesian m-~-space, so that

sese X >>

now we take <x X
Sl n+m

n+m'> as <<x1,...,xn>, <

xn+ 1

and BT op RPN

Here, again, if we pair two different models for the same n-tuplet



1,48

we have an obvious natural isomorphism between the corresponding
models for Cartesian n-space,

Fiﬁally, the characteristic properties of Cartesian product spaces
given in Theorems 4 and 5 yield natural isomorphisms, Theorem 4 says
that an n-tuple of linear maps {Ti}:1 on a common domain V is
equivalent tc:.> a single z}-tuple valued map T , whére
T(E) = < T (§) 5 weey Th(g)é forall £ €V . (This is duality again !
Ti(g') is a function of phe two variables i and §, ) And it is not hard
to see that this iderftifica?.tion of T with .{Ti}ll-l is an isomorphism.

‘Similarly‘, ‘Tl'aeorem 5 identifies an n-tuple of linear maps {Ti}lll
into a comn?q_n codomain V with a single lineaz_' map T of an n-tuple
variable and this identification is a natural isomorphism from
HT Hor;;(_Wi,V) to Hom(I W,V ),

An arbitrary isomorphism between two vector spaces identifies
them in a transient way. For the moment we think of them as _;‘gpresenting
the same abstract space, but only as long as the isomorphism is before us,
If we shift to a different isomorphism between them we obtain a new
temporary identification, Natural isomqrphisms , On the other hand, effect
permanent identifications, and we think of paired objects as being two
aspects of the same object in a deeper sense, Thus we think of a matrix
as ''"being'' either a sequence of row vectors, or a sequence of column

vectors, or a single function of two integer indices,

(% \ fp e ik
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C. We can now make the ultimate dissection of the theorems
centering around the linear combination formula, The axioms S1-53 say
exactly that the scalar product xo is bilinear. More precisely, they say
that the mapping S: <x,a>rH> xa from R XW to W is bilinear, In
the language of Theorem 18 xa = wa(x) and from that theorem we conclude
that the mapping abF—> W, is a linear mapping from W to Hom(R,W) .
It is easily checked to be an isomorphism , If @, = 0 then
0= Loa(l) =1¢* a=a , sothatitis injective, An.d if T € Hom(R,W) then
T(x) = xT(l) = xa where a = T(l) so that T = wa and the mapping is
surjective,

This isomorphism between W a.nq. Hom(IR, W) extends to an
isomorphism from w? to (Hom(R ,W))n » which in turn is naturally
isomorphic to Hom (]Rn,W) by the second Cartesian product isomorphism.
Thus W" is naturally isomorphic to Hom (JRn, W) , the mapping being
a—> T where T (x)= T xa . To get the form of Fheoratn 17 We
cdmpose with the isomorphism T+ T o 9-1 from I—Iom(]Rn, W) to

Hom(V, W) , where © is a basis isomorphism 3 -t Exiﬁi .



L, 50

- 8§ 7, Dimension . .

A, The fundamental lemma, The concept of dimension fééfs on

the f.act that two different b‘a.s.es for the same space ahvays contain the

same numbe?r of elem‘ents. This number,‘ which is then the number of
elements in every basis for V , i;ﬁ; called the dimension of V , It tells

all there is to know about V to within isbmorphism : there exists an
isomorphism between two spaces if and only if they have the same dimension,
We shall consider qnly finité dime:-;sional spéces. If V is not finite
dimensional, its dimension is an infinite cardinal number, a .céncept with
which the reader is px'-oba.bly unfamiliar,

- The following replacement lemma is fundamental,

LEMMA 15, If A and B are subsets of V such that A is
indépeﬁdent and B spans V , thenany a € A-B can be used to replace
some B € B-A in such a way that the new set still spans.

Proof: By hypothesis « is a finite linear combination on B ,
a= Z‘Ill Ciﬁi 3 Where .mj-ci £ 0 , and the Bi are distinct elements of B ,
If all Bi were in A this equation in the form a - Eciﬁi = 0 would

contradict the independence of A , Therefore some ﬁi £ A , Let C

: 0
be the set obtained from B by replacing ﬁi by a , Since the above
0
equation can be solved for [Si s we have pi € L(C), Thus B < L(C) ,
0 0

and so V = L(B) ©L(C) , Therefore L(C) =V and we are done,
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Notice that the number of elements ip A-C is one less than in
A=-B ; we removed from B an element notin A and replaced it by an

element of A ,

In the theorem below # A is the number of elements in A ,

THEOREM 20, If A and B are finite subsets of a vector space V
such that A is independent and B spans V then & A < ;yi’»B "

Proof: The proof is an induction on # (A-B) , If [j{A-B) =0 , then
A ©B and we are done. Suppose that the theorem is true if {“(A-B)<n
and suppose that we have a pair A and B for which #(A-B)=n , If C
is defined as in the lemma, then j) (A-C) = n~1 , so that }A < #C by the
above inductive hypothesis, But }'C = }' B, and therefore A < ¥B,

q.e.d,

DEFINITION ., V is finite dimensional if V = L(A) for some finite

set A ,

THEOREM 21, If V is finite dimensional then there is a non-
negative integer n , called the dimension of V , such that every basis
has n elements,

Proof: The finite spanning set A includes a basis B (Theorem 14)
so that V has at least one ﬁ.hite basis, By the above theorem,

#C S # B for any independent set C , If C is also a basis, the same
theorem gives us # B E:tPC .. Thus every two baées have the same

(finite) number of elements,
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‘THEOREM 22, Two finite dimensional vector spaces are
isomorphic if and only if they have the same dimension,

Proof: . If T is an isomorphism of V onto W and B is a basis
for V then T[B] is a basis for W by Theorem 13, Therefore
d(V) = # B = ¥T[B] = d(W) . Conversely, if d(V) = d(W) = n then V and

. . n
W are each isomorphic to IR~ and so to each other,

THEOREM 23, Every subspace M of a finite dimensional vector
space V is finite dimensional,

Proof: Let (I be the family of finite ifndependent subsets of M ,
By Lemma 15, if A € (l then ¥}A <d(V) . Thus {l,f?A tA €LY} isa
finite set of integers, and we can choose B € (] such that ﬁ ;%B is the
maximum of this finite set, But then L(B) = M , because otherwise for
any a € M - L(B) we have B U {a¢} € /? by Lemma 13 and -
#(BU{a} )= n+l, contradicting the maximal nature of n . Thus M

is finitely spanned, q,e.d,

B, Dimensional identities, We now prove two basic dimensional

identities, V will always be assumed finite dimensional,

LEMMA 16, If V1 and V_ are complementary subspaces of V

then d(V) ; d(vli% d(Vz) .

2

Proof: : This follows at once from Theorem 13a,



LEMMA 17, Let U,W be any two subspaces of a vector space V
and let U1 be a complement of UN W in U , Then Ul is also a
complement of W in U+W ,

Proof: First, U1 + W = U1 + ((UN W)+ W)= (U1+(U N W+W)=U+W,
We have used the obvious fact that the sum of a vector space and a
subspace is the vector space. Next, Ulﬂ W;(Ulﬂ UINW = U1 nunw)= {0}
because U1 is a complement of UNW in U , We thus have both
U1+W = U+W and U, NW = {0} , and the lemma follows from the

Corollary to Lemma 9.

THEOREM 24, If U and W are subspaces of a finite dimensional

vector space then d(U+W) + a(UN W) = d(U) + 4(W) .

This is a corollary of the above two lemmas. We have d(U)+ d(W) =

(d(UNw) + d(Ul)) + d(W)=4(U N W) + (d(U1)+ d(W)) =d(UN W)+ d(U + W),

THEOREM 25. Let V be finite dimensional and let W be any
vector space, Let T € Hom(V,W) have nullspace N (in V) and range R
(in W) . Then R is finite dimensional and d(V) = d(N) + d(R) .

Proof: lLet U be a complementof N in V ., Then we know that
TPU is an isomorphism onto R . (See Theorem 11.,) Therefore R is
finite dimensional and d(R) + d(N) = d(U) + d(N) = d(V) , by our first

identity,

COROLLARY, If W is finite dimensional and d(W) = d(V), then T
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is injective if and only if it is surjective, so that in this case
injectivity, surjectivity and bijectivity are all equivalent,

Proof: T is surjective if and only if R = W , But this is
equivalent to d(R) = d(W) , and if d(W) = d‘V) then the theorem shows

this in turn to be equivalent to d(N) =0 , i,e., to N= {0}, q.e.d.

THEOREM é6. Ifl d(v) =.n and d(W) =m then .Hom(V, W)
is finite dimeﬁsional and its dimension is mn .. |

Proof: By Theorem 17 Hom(V,W) is isomorphic to W” which
is the direct sum of the n-subspaces isomorphic to W under the injections
O-i'. i=1,.0eyn .+ The dimension of w is therefore E? m = mn by
the corollary to Theorem 13a,

Another proof of Theorem 26 will be available in § i
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8§ 8. The dual space

A, Dual bases. Throughout this section all spaces will be

assumed finite dimensional, Many of the definitions and properties are
valid for infinite dimensional spaces as well, but for such spaces there is

a difference between purely algebraic situations and situations in which -
algebra is mixed with hypotheses of cont.inui;ty. One of the blessings of finite
dimensionality is the absence of this complication. As the reader has
probably surmized from the number of special linear functionals we have -.
met, particularly the coordinate functionals, the space Hom(V, IR) of all

linear functionals on V plays a special role,

DEFINITION . The dual space (or conjugate space) V' of the

vector space V is the vector s'pa.ce_ Hom(V, R) of all linear mappings
from V to IR . Its elements are called linear functionals,
s
One naturally wonders how big a space V is, and we settle the

question immediately,

THEOREM 27, Let {Bi}ll1 be an ordered basis for V , and let Gj

: .th : .
be the corresponding j coordinate functional on V: {({t+—> Xj » where

%

E=¥ xiﬁi « Then { ej}T is an ordered basis for V .

n
1
Proof: Let us first make the proof by a direct calculation,

(a) Independence. Suppose that '1.7!1.l cjej =0, i.e, , that

z’l‘ cje:j(g) =0 forall £ €V, Taking £ = B, and noticing that e,(p;) = 0
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if j£i and Gi{pi) =1 {i.€:; ej(ﬁi) = 6; ) we see that the above sum
reduces to c, = 0 , and this for all i , Therefore {Ej}xl1 is independent.
£
(b) Spanning, Now let A be any element of V  and set .Eiz )L(ﬂi) ,
for all i, Th A(g)QA(rn ) = D8.x, = Enﬂe(g)- and so
at t. cuen =A% ZR) = 2k = S Rl o 2808
A ='E£i€i . This shows that { ej}rll spans V“ , and together with (a)

that it is a basis,

DEFINITION . The basis {Gj} for V* is called the dual of the
basis {Bi} for V .

As usual, one of our fundamental isomorphisms is lurking behind all
of this, By Theorem 17, if {J(é',i}rl1 € R® andif X € V" is the unique

functional such that A (pi) = zi , i=1,...,n, then the correspondence

%
{,ei} F—> A is an isomorphism of R™ onto V . The jth standard

basis element in R " is the n-tuple & (6] = 0 if i/#j and 5; - 1)

o]

and the corresponding functional is clearly Gj . The set {<-Ij}1 is thus
the image of the standard basis of IR under the isomorphism, and is

therefore a basis,

%
COROLLARY . d(V ) =d(V).

B. The second conjugate space, By choosing a basis in V we

have set up the coordinate isomorphism from V to R  and the above

. - ;
isomorphism from R"™ to V , and have therefore defined an

= » sk
isomorphism between V and V , This isomorphism varies with the
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s
basis, and there is no natural isomorphism between V and V ,

% %
However, with (V ) it is another matter,

THEOREM 28. The function w: VXV —> R defined by
w(&,f) = £f(§) is bilinear, and the mapping £ —> w‘E from V to V**
is a natural isomorphism, |

Proof: In this context we generally set 5** = wg , 60 that g*' is
defined by §**(f) = f{E) forall £ & V* . The bilinearity of w should be
clear and Theorem 18 therefore applies, The reader might like to run
through a direct check of the l.i.nea.rity of £ == g*d‘ starting with
(<:1‘.‘f-',1 + czéjz)fs*(f) + There still is the question of the injectivity of this
mapping.

If «a#0 we canfind f € V* so that f(a) # 0 . One way is to make
a the first vector of an ordered basis and take f as the first functional
in the dual basis. Then f(a) =1 . Thusif a£ 0 then (Zf)(a (f) £ 0),
and so oz** #0 , and the mapping £ —> g** is injective, It is bijective
by the corollary to Theorem 25.

If we think of V** as being naturally identified with V in this way
the two spaces V and V* are symmetrically related to each other. Each
is the dual of the other, In the expression ' f(§)" we think of both
symbols as variables and then hold one or the othef fixed for the two
interpretations. In such a situation we often use a more symmetric

symbolism, such as (f,{) to indicate our intention to treat both symbols

as variables,
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%
LEMMA 18, If {)\} isthe basisin V  dual to the basis {o.ri} in

' He Eg
V , then {ai

. I3 - * . - *
} is the basis in V dual to the basis {’\i} in V ,

- e i ok
Proof: /e have @ ()Lj) = )Lj(czi) = 5j , showing that % s the

i coordinate projection. In case the reader has forgotten, the basis

' . . . ek :
expansion f = Ecjhj implies that a (f) = f(ai) =: f Z'cj?\j)(ari) = ¢, so that

@, is the mapping f —> c;

C.  Orthogonality, It is in this dual situation that orthogonality first

naturally appears, However , we shall save the term "orthogonal'' for
; w _
the later context in which V and V have been identified through a scalar

product, and shall speak here of the annihilator of a set rather than its

orthogonal complement,

. o
DEFINITION. If A ©V the annihilator of A, A , is the set of

£ #
all f €V such that f(a) = 0 for all o € A, Similarly if A<V then

W

a” ={e€V:f(a) =0 forall {€A} , Ifweview V as (V) , the
second definition is included in the first,
The following properties are easily established and will be left as

exercises.,

(1) A.o is always a subspace.
(2) ACB == pYep®

(3) (L(a)° = a°.

4 auB)’ = a°nB?,

(5) Lia) Ea%° .
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We now add one more crucial dimensional identity to t hose of the

last section,

THEOREM 29. If W is a subspace of V then d(V) = d(W) + d(W°) .
Proof: Let {ﬁi}rln be a basis for. W , and extend it to a basis
(8.)° for ¥V . Lot TAT™ Beihe dusd Bangs i Y . and gei =LA )
ﬁil or o e i1 e the dual basis in .an =1 im.‘*'l.
We claim that WO =U . Firstif j> m then )Lj(ﬁi) =0, i=l,..., m

m, o (o]
}

and so )Lj € L ({p, L) = W . Thus U cw° . Now suppose that

f € Wo and let f = },‘,jnlcjl‘_ be its (dual) basis expansion, Then, for each
. = J ‘
o n o

1 = = = € = L4

i :__(_ m, c f({Si) 0 , so that { Em+lcjkj U . Thus W . U The

o
two inclusions imply that W = U , as claimed. Since n=m + (n=-m) and

n-m = d(U) , we are done,

COROLLARY . A°°® = L(A) for every subset AC V ,

Proof: Since L(A)” = A° we have d(L(A)) +d(a%)= d(V) , by the
- *
theorem, Also d(A°)+ d(A°°)=d(V')=d(V) . Thus a(aA®%) = a(L(A)),

and since L(A) CAoo,by (5) above, we have L{A) = Aoo :

e i R . %
D, The adjointof T, If T € Hom(V,W) and £ € W theén of

* : i :

course £ o T €V , and right composition by a fixed T € Hom(V,W) is
x* # ' .

a linear mapping of W into V by the corollary to Theorem 2, This
: ; = T .

mapping is called the adjoint of T and is designated T ., Thus

# * % e
T 1 W =¥ is the map £+> 4o T.

T 27]

1

e et v T
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THEOREIi 30, The mapping ThH— T* is an isomorphism from the
vector space Hom(V,W) to the vector space Hom(W*,V*) . Also
(T o S)* =] Sa‘= o '1‘=:g under the relevant hypotheses on domains and codomains,
Proof: Everything that we have said above through the linearity
of TF—=> T* .is a consequence of the bilinearity of w(£4,T) =420 T, The
map we have called T* is simply wT and the linearity of T H—> T*

thus follows from Theorem 18, Again the reader might benefit from a

s
T,) (£).

direct linearity check, beginning with (c1 T1 te,T,

To see that T +—> T* is injective, we take any T # 0 and choose
@ €V sothat T(e) #0 . We then choose £ € W* so that £(T(a)) £ 0.
Since £(T(a)) = (T (£))(@) we have verified that T # 0,
Next, if d(V) = m and d(W) =n then also d(V*) =m and
d(W*) = n by the corollary of Theorem 27, and
d(Hom(V,W)) = mn = d( Hom ('\Y*,V*)) by Theorem 26, The injective
map T+H—> T* is thus an isomorphism (Theorem 25, corollary) .
Finally, (ToS)4=4o(ToS)=(%oT)oS=5 (£oT)-=
s* T N = 8" o1 , sothat (Tos) =8 0T .
The reader would probably guess that T** becomes identified with

sl
T under the identification of V with V . The proof will be left as an
1!
(-

exercise (starred, of course) .
Finally we have the following elementary identity, which is like
i

2% = -1 in being a seemingly mystical but in reality trivial

relationship among a number of different concepts.
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THEOREM 30. R(T') = (N(T)° and N(T") = (R(T))° .

Proof: The following statements are definitionally equivalent in pairs
as they occur : £ € N (T*) . T*(.e) =0 ,20T=0 , LIT(&)) =0 for
all & §V SR (R(T))o + Therefore N(.T*) =‘(R(T))o . The other proof

is similar and will be left to the reader,

COROLLARY . d(R(T )) = &(R(T)) and d(N(T ) = d(N(T)) .
_ Proof: The dimensiomsof R(T) and (N(T))° are each d(V)-a(N(T)),
by Theorems 25 and 29, and the second is d(R(T*)) by the above theorem,
Therefore, d(R(T)) = d(R(T*)) « The proof that d(N (T)) = d( N(T*)) is

practically identical.
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§ 9., Matrices,

A, Matrices and linear transformations,
?resurnably the reader has already acquired some information about
matrices and their relationship to linear transformations from the

exercises, But to be on the safe side we start again at the beginning,

By popular conception a matrix is a rectangular array of numbers

b1 Gz by
1 Lo
tml trnn

Notice that the first index numbers the rows and the second index numbers
the columns, If there are m rows and n columns in the array it is called
an m Xn matrix, This notion is inexact., A rectangular array is a way
of picturing a matrix, but a matrix is really a function, just as a sequence
is a function, With the notation m = { 1,...,m} the above matrix is a

function assigning a number to every pair of integers < i,j> € mXn , It

z myxn g ;s
is thus an element of the set R X . The addition of two m xn matrices

is performed in the obvious place by place way, and is just the addition of

mx n - T

two functions in R £ ; similarly for scalar multiplication, The set
o mxn .

of all m xn matrices is thus the vector space R , a Cartesian



space with a rather fancy finite index set, We shall use the customary
index notation tij for the value t(i,j) of the function t at <1i,j>, and
we shall also write {tij} for t just as we do for sequences and other
indexed collections,

The additional properties of matrices stem from the fact that each
m Xn matrix {tij} directly determines a corresponding transforzﬁation

m

T € Hom (R",R™) .

THEOREM 32, Let _1_:_J € R™ be the jth column of the matrix
{t..} » andlet T be themap xb—= y = E_nlx_tj frbm R" to ]Rm "
1) 3= 1=

Then T is linear, and the map {tij} > T is an isomorphism from the

space ]Rmx = of all m xn matrices to Hom( RrR™ 7 r™ )

Proof: Clearly, T is just the linear combination map from R
to R defined by the n-tuple { 1*._‘]}1; € ]Rm)n and is linear by
Theorem 12, Then Theorem 17 shows that {E_J}? F—> T 1is an isomorphism

i n
from ( R™)® to Hom (R®, R™). Also, (g > { ;_J}l is an

o ( lRm)n , the natural isomorphism

isomorphism from rR™
arising from viewing a mat;ix as an n-tuple of column m-tuples
(duality) ., The composition of these isoxlj;.ix"{.)h'isr)'ss is the ie(»h:<-4'p1nism
of the theorem, q.e.d,

There is another way of obtaining T from {tij} which is

th : : :
illuminating. If we take i conrdinates in the m-tuple equation
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y = 23 ,Ijl"lij-J-- we get the equivalent and familiar system of numerical
(scalar) equations ¥i = E?—ltijxj y 1T dgeeealls Now a mapping

S e E;,l__ltjxj from R" to R is simply a linear combination mapping

of Theorem 12 for the special case V = R , In the above rlnf.u_'nerical
equations, therefore, we have simply used the m rows of the matrix
{tij} to define an m-tuple of linear fupctioqals on r® » which in turn
is equivalent to a single m-tuple valued linear mapping T . (ianom(]Rn, lRm)
by Theorem 4.

The choice of ordere.d bases for arbitrary finite dimensional spaces

V and W allow us to transfer the above theorem to Hom (V,W) .

THEOREM 33, Let {ozj}zl1 and {Bi}rf be ordered bases for

the vector spaces V and W respectively, For each matrix {tij}e o

let T be the unique element of Hom (V,W) such that

Ta) =2 ™ t.p. for j=1 Then th ing {t.}F—=> T i
aj =& ijﬁi r i- _,...,n.l en the mapping ° i is an
'm xn

isomorphism from R to Hom(V,W) .

Proof: We simply compose the isomorphism {tij} F—> T of the
- o il
above theorem with the isomorphism TH> o To® from

Hom ( ]Rn’ ]Rm) to Hom(V, W), where ¢@: x> 2;-1-1 xja'j and

m
p:yr— Bi—l yiﬁi are the two fixed basis isomorphisms, Then

- -1 .
T=WboTog is the transformation described in the theorem, for
' i m

Tiay) =-%’J(T<<D'l(ajm.=¢ (T =pih=2z,_t.p

i1 i « The map '

j
{tij}J ¥ T is the composition of two isomorphisms and so is an

isomorphism.
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It is helpful to keep in mind the following relationships between

{t..} and T .
ij

LEMMA 19, In the situation of the above theorem, if
§=1I. an=z,. th = T(¢) if and only if
=By TPy W0 e ey Uihy Wee @=TET Taudenlyd

n . :
yi-Ej=1 tijxj’ - PR
The matrix element tij can be obtained from T by the formula

*
tkj = ,uk(T(a'j)) » Where Py is the kth element of the dual basis of W ,

_— ; |
Proof: Rewriting the equations Y= Ej=1 tijxj as
n Jj n -] =
=%, . %8 = % TE") = T&E) ,
L= %1% j=17] )

we see that they hold if and only if

n = dly) = zbof(:_:)_ = z,bo’-f'ofp—l(ﬁ) = THEY .

m

t..p

Next, p(T(a))= m (T, ¢t

- %
U T U TR T

completing the proof of the lemma.

We call {tij} the matrix for T with respect to the given ordered

bases for V and W,
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B, The transpose.

DEFINITION , i e i
N, The transpose of the mxn matrix r{tl‘]} is the
. 5 ’ % g .3
n X m matrix {tji } defined by tji % tij ; forall 1,4 .

5 , :
The rows of t are of course the columns of t , and vice versa.

%
THEOREM 34, The matrix of T with respect to the dual bases
in W and V is the transpose of the matrix of T,

Proof: Using the last assertion of the Lemmas 18 and 19, and we have

N Aesle T* , 5 sk : T )

= (ui o T)(aj) - ,'Ji(T(afj}) = tij .

mxn : 7
DEFINITION , The row space of the matrix {tij} E RS T 4

the subspace of ]Rn spanned by the m row vectors., The column space

is, similarly, the span of the n column vectors in R™ ,
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COROLLARY ., The row and column spaces of a matrix have the

same dimension,

Proof:If T is the element of Hom( EY, BR™ ) defined by T(5j) = t_j
then the set {1:_'.1}1;1 of column vectors in the rna.trix {tij} is the image
under T of the standard basis of R » and so its span, which we
have called the column space of the matrix, is exactly the range of T .,
In particular, the dimension of the column space is d(R(T)) .

!,

%
Since the matrix of T is the transpose t of the matrix t ’

%
we have similarly that d(R(T )) is the dimension of the column space
£ s
of ¢t + But the column space of t is the row: space of t , and the

assertion of the corollary is thus reduced to the identity

E
d(R(T)) = 4d(R(T )) from the corollary to Theorem 30,
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DEFINITION . This common dimension is called the rank of the

matrix,

Finally we relate matrix multiplication to transposition,

A ; % %
THEOREM 35, If the product st is defined thensois t s and
L %
t s =(st) .
Proof: A direct calculation is easy., We have
%k m m % % LI
= = t i =. (t e
(sthy = (sth; = Ty oty = Ziy b fae = 88 Iy

Thus (st} = t s , as asserted,
This identity is clearly the matrix form of the transformation

B % £
identity (SoT) =T oS , anditcan be deduced from the latter

identity if desired,

C. Matrix products,

If T € Hom (IRn, R™) and S € Hom(IRm, II:"Ue ) then of course

SoTE€ Hom( IRn, JR'z ) and it certainly should be possible to calculate

its matrix from the matrices s and t of S and T respectively, To

make this computation, we set y = '-f‘(g:_) and z = é(x) so that
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z=(SoT Mx) . Ifi terms of the miatrices t and s we have

e R .
¥, = ij:l tijxj and z), = Zi=1 5115
s0 that
~ Im -1 _ n m
z, = Li:l Sici z'j:ltijxj = zj=1 (Ei=1 skitij )xj .
> “n -
That is, B lj:l T X for ks 1y & if we set
- m 4
= I 1 .
rkj Li:l skitij for all k and j

We thus have found the formula for the matrix r of the map
R=50T: Xx—>2z ., Of course, r is defined to be the product of the
matrices s and t and we write r = s+ t or r =st,

Notice that in order fpr the product st to be defined the number of
columns in the left factor must equal the number of rows in the right
factor. We get the element rkj by going across the kth row of s. and
simultaneously down the jth column of t , multiplying corresponding

elements as we go, adding the resulting products., Pictorially,

K row |-

m
.t ] t g
J column '
i
e o

jthcolumn
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Since we have defined the broduct of two matrices as the matrix of
the product of the corresponding transformations, i.e., s0 that the mapping
T —> {tij} preserves products : 5o T +—> st , it follows from the
general principle of Lemma 5 that the algebraic laws satisfied by
composition of transfofmatiéns will automatically hold for the product of
matrices, For example, we know without making an explicit computation
that matrix multiplication is associative, And for square matrices we have

the following theorem.,

THEOREM 36, The set Mn of square n xn matrices is an aléebra.
naturally isomorphic to the algebra Hom(]Rn) "

Proof: We already know that T —> {tij} is a natural linear
isomorphism from HOm(IRn) to Mn (Theorem 32 ) and we have defined
the product of matrices so that the mapping also preserves multiplication,
The laws of algebra (for an algebra) therefore follow for Mn from our
observation in Theorem 3 that they hold for Hom (an) y Qeeed,

The identity T in Hom (an) takes the basis vector 5j into itself
and therefore its matrix e has 5 for its jth column : gj =87, Thus
e =5'2=1 if i=j and =0 if i£j. That is, the matrix e is 1 down

ij

the main diagonal (from upper left to lower right) and is zero

elsewhere, Since I —> e under the algebra isomorphism TH=> t , we

know that e is the identity for matrix multiplication, Of course, we can

n

check this directly: ~,  t..r.. =t and similarly on the left,
j=1 1ij jk

. ’
ik
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The symbol "e' is ambiguous in that we have used it to denote the

S pitl nyxn ,
identity in the space R X0 of square nxn matrices for any n .,

COROLLARY ., A square n xn matrix t has a multiplicative inverse
if and only if its rank is n .

Proof: By the theorem there exists s € M = such that st=ts=e
if and only if there exists S € Hom (]Rn) suchthat So T=ToS=1, But
such an S exists if and .Only if T isan isomorphism, and by the
corollary to Theorem 25 this is equivalent to the dimension of the range of

T being n , But this dimension is the rank of t » and the argument is

complete,

THEOREM 36, If {a*i}l]:1 4 {ﬁj}rln and {‘yk}f are ordered bases for
the vector spaces U,V and W respectively, and if T € Hom (U,V) and
S € Hom(V, W) , then the matrix for So T is the product of the matrices
for S and T (with respect to the given bases) ,

Proof: By definition, the matrix for S o T is the matrix
of SoT = x-l o(SoT)o®E€ Hom (IRn, JRZ ) , where
Q: x> E?xiai and lx :'g_l——> Ef 2, are the given basis isomor-
phisms for U and W , Butif i is the basis isomorphism for V , we

have S50 T = (X-loSoarn’J)é(z,b—loToqo) =SoT s and therefore its

matrix | is the product of the matrices of
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S and T by the definition of matrix multiplication, The latter are
the matrices for S and T with respect to the given bases, Putting these

observations together we have the theorem,

D, Cartesian vectors as matrices,

We can view an n-tuple x =< S SERERTEN > as being alternatively

either an n X1 matrix , in which case we call it a column vector , or a
1 xn matr_ix, in which_ case we call it a row vector , Of course these
identifications are natural isomorphisms, The point to doing this is, in
part, that then the equa?ions y ;= Z};ll tijxj sa;y exactly that the column
vector y is the matrix product of t and the column vector x:y=t* x,
The linear map T: R"—> R™ becomes left multiplication by the
fixed ma.tri;_; t e

In particular, a linear fugctipnal F € Rn)* becomes left
multiplication byﬂi matrix f vyhich isrof course 1 xn , and therefore is
simply the row matrix interpreta.tjon of an n-tuple f{ € ]R'n . That is, in
the natural isomorphism s fa. from R to (IRn)* _,_where

—_—

fa (x) = ETa.ixi , the functional fa. can now be interpreted as left matrix

multiplication by the n-tuple a viewed as a row vector. The matrix
product of the row vector ,_(‘1 X ‘n. r_n_atrix) a and the column vector
(nx1 matrix) x isa le matrix_ ae+«x ,i,e, anumber,

We shall take the colump vector as the standard matrix interpretation

e
of an n-tuple x; then x is the corresponding row vector,
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o %=
The number fa( T(x)) is thus the 1X1 matrix a tx, Since

£0T@) = (T = gylx) » where g = T'(£) € (R™)" we have the

* *
matrix identity a tx=b x for all x , and so

b=t"a
%

%
b = at.,

a/'t*n e *" i~
. . F e P n
That is, if we use the isomorphism of (an) with R to represent
-
functionals by n-tuples viewed as row vectors, then the matrix of T is
right multiplication by t . This only repeats something we already know,
*

for the transpose of the above equation is b=t a, and since the n-tuples

b and a are the coordinates of the functional fa and g, with respect to

® *
the standard bases in (]Rn) and (]Rm) » this equation simply shows

A %
ai t the ixof T is .t / /oW
again that the matrix s S0 1. (F )
-5 "
¥ &£
£0:7 o & bees
i \ v d
E, Change of basis, e /

] e AR, :
xiﬁi and 0:y—>£=2 lyiﬁi are two basis

-1
isomorphisms for V , then A=6 o0 is the isomorphism in

f @:x+—>§& = 21;

Hom (IRn) taking the coordinate n-tuple x of a vector £ with respect

to the basis {[3i} into the ‘coordinate n-tuple y of the same vector with

respect to the basis {B.'} . A is called the "change of um.u-din\-lm‘_.” o raniens b
The change of coordinate map A = 9-1 o0 ¢© should not be confused

with the similar looking T = @ o 9-1 « The latter is a mapping on V , and

is the element of Hom(V) which takes each B, to [31' .

[ v

r-"i ; i ALn

rw a $ vt - ] . vl ¥ A VT4
v -{-. Voeters s A G| 1 L P
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We now want to see what happens to the matrix of a transformation
T € Hom(V,W) when wé change bases in its domain-and codomain spaces .
Suppose then that <p1 and (pz ‘are basis isomorphisms from IRn to V ,
that ?'bl and :sz are basis isomorphisms from R™ to w , and that
t' and t' are the matrices of T with respect to the first and second

bases respectively, Thatis, t' is the matrixof T'= (1’)1) oTo "01

€ Hom( R™, R™) , and similarly for t" ., The mapping

-1
2

V : if x is the coordinate n-tuple of a vector £ with respect to the first

A=¢@p_o (pl & I—Iom(-IRn) is the change-of-coordinates transformation in

basis (i,e., § = ®; (x)) then A(x) is its coordinate n~-tuple with respect

to the second basis, Similarly let B be the change of coordinates map
=1 :

ef)z o .n’gl for W , The following diagram will help keep the various

relationships of these spaces and mappings straight, We say that the

diagram 5
n
R It \IR
; - " >
oy
) <|D 4
Y b
A . : > ' B
//f’\V WS |
ri ;'D 3 i
S 2
v/ T2 \\\],
= : ) s
Rn Trl ]Rm

is commutative, meaning that any two paths between two points represent
the same map., By selécting various pairs of paths we can read off all the
identities holding between the nine maps T, T 9, Py ®, A, :,bl, z,bz, B.

For example, T'" can be obtained by going backward along A , forward
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along T' and then forward along B . Thatis, T" =Bo T'o A-1 .

Since these 'outside maps'' are all maps of Cartesian spaces we can then

read off the corresponding matrix identity,

¥ = b a.-1 .

showing how the matrix for T with respect to the second pair of bases
is obtained from its matrix with respect to the first pair,

What we have actually done in reading off the above identity from the
diagram is to eliminate certain retraced steps in the longer path which the

definition would give us, Thus from the definitions we get

BoT'oA'l

(3,090 (3 0Top) o] 0p)

1]

-1 i}
p ,0Top, = T" ,

In the above situation the domain and codomain spaces were
different and the two basis changes were independent of each other . If
W =V , sothat T € Hom(V) , then of course there is only one basis change

and the formula becomes
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§ 10, Computations

The computational process by which the reader learned to solve
systems of linear equations in secondary schooi algebra was undoubtedly
" elimination by successive substitutions'' . The first equation is solved for
the first unknown and the solufion expression is substituted for the first
unknown in the remaining equations, thereby eliminating the first unknown
from the reinaining equations, Next, the second unknown is solved for in
the second equation and then eliminated from the remaining equations, In
this way the unknowns are eliminated one a* a time and a solution is obtained

It turns out that this same procedure also solves the following
additional problems :

(1) to obtzin an explicit basis for the lincar span of a set of m
vectors in R s and therefore, in particular,

(2) to find the dimension of such a subspace ;

(3) to compute the determinant of an m xm matrix ;

(4) to compute the inverse of an inveriible m X m matrix ,

In this section we shall briefly study this process and the solutions to
these problems,

We start by noticing that the kinds of changes we are going to make

on a finite sequence of vectors do not alter its span.

LEMMA 20, Let {ai}rin be any m-tuple of vectors in a vector space
and let {f-'.%i}z;f1 be obtained from {(zi}rf by =ny one of the following elemen -

tary operations :



(1)} intercliaipiag . weciors §

(2) maultiptlying scne % Ly 2. non-=ero scanar

! 2\ i : : : 3 e s
{2} replacins w  bv Q’i - xa, for svias i F and some X & R,
A
o
Tren

ECT RS IEI R ES S

S i - i 3 '-3 ;.',l'_:.—:“_',-vi._. Yk
Proof: ¢ 2 =a, -ze, then ¢, = o +=xe, , Thus if {f ), *=
T ’ “ J L : J et
o - oo, S
obtained from {47 2y ons operauon i wwoe (3) then {f*f.}m 27 be
o = - |
obtainea from {ﬁl} by one operation of tyy- (?V . In particular. ach

senuence is in the linear spar of the <thar and ike twWo Tiieor spans ace

therefore the same.

Similarly each of ti.e other operacions can be undone by one ¢f vha

cam?2 type and the linear =pans are uonchanged,
When we perform these operations on the setusnce of row vectors in

a matrix we call them eiementary row operaiions,

We define the crder of ar n-tuple X = <X, :ceayX > ‘as the index
of the first non-zero entry, Thus if @, = 0 for i<j and x, £ 0 then the
order of x is J .

et {a'i"} be an m x n matrix, let V be its row space, and ief
J

n, <n, < oss a, be the integers that occur as orders of non-zero
vectors in V ., We are going to cons'ruct a hasis for V -~onsisting of k
elements having exactly ihe above set of orders.

If every nor-zero row in {2..} has cwder > p taen each non-zero
i ;

vector x in V has crder > p , since » % a ilaear combinaiion of these
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row vectors, Since some vector in V has the minimal order n, it
follows that some row in { a'ij} has order n We move such a row to
the top by interchanging two rows and then multiply this row by a constant

: ; ! 1 n
so that its first non-zero entry x is 1 , Let a ,...,2 be the row

n
1
vectors that we now have, so that 31 has order n and a.:l =1 , We
: 1 ,
: 2l ) 2 1
next modify each of the remaining rows, replacing 3'] by EJ = a.i ca ,
1
Jh . . )
so that the mew j  row has 0 as its n, coordinate, The matrix that we

1

th
thus obtain has the property that its ] column is the zero m-tuple for

; . 1 L s
each j<n, andits n th colurnn is 6  in R™ . Its first row has order

1 1
n, and every other row has order > n, . Its row space is still V ,
m i ; 3
Now let x = Z 162 be a vector in V with order nz « Then
By £ g , feor if .Cl # 0 then the order of x is n . Thus x is a linear

; . th . ) :
combination of the second to the m rows, and, just as in the first case,

one of these rows must therefore have order nz -

We now repeat the above process all over again, keying now on this
vector, We bring it to the second row, make its n2 coordinate 1 , and

subtract multiples of it from all the other rows (including the first) so that

, 2 '
the resulting matrix has 6" for its n2th column, Next we find a row with

3
3 bring it to the third row and make the n3t-h column 67, etc,

We end up with an m x N matrix having the same row space V and

order n

the following special structure: (1) For 1 < j<k the jth row has order

n,; (2) if k<m the remaining m-k rows are zero ( since a non-zero
J : S0
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h

row would have order > n, o, a contradiction) ; (3} the nj'C column is

6! . It follows that any linear combination of the first k rows with

th

coefficients Cis esss € has c. in the n‘j place , and hence cannot be
J

k
zero unless all the cj's are 0 , These k rows thus form a basis for V ,

solving problems (1) and (2) .

O_ur final matrix is said to be in row-reduced echelon form ., It can

be shown to be uniquely determined by the space V and the above require-
ments relating its rows to the orders of the elements of V ., Its rows form
the canonical basis of V , We sketch a typical row-reduced echelon

matrix below ,

‘a I & &= 00 =« 0 = = I =f This matrix is 8 x11 , its orders are

; ) lil G =@ = & B = 1, 4, 5, 7, 10 and its row space has

' kJ l__tl -0 - -0 - dimension 5, It is entirely 0 below the
: I

The dashes in the first 5

( \)‘ O :‘1 - -To broken line,

= l lines represent arbitrary numbers, but
- Oy £ ()

i 2 7o) /\ 3y | change the spanned space V ,

1 =~

any change in these remaining entries

We shall now look for the significance of the row reduction
operations from the point of view of general linear theory,., In this
discussion it will be convenient to use the fact that if an n-tuplet in rR"

is viewed as an n X 1 matrix (i,e,, as a column vector ) then the system

n

Ej 1 a._jxj i=1,.,.,,m expresses exactly
=1 i

of linear equations ¥y = »

the single matrix equation y = a ¢ x . Thus the associated linear
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transformation A € Hom (IRn, IRm) is now viewed as being simply
multiplication by the matrix ay Yy=A)I<= y=a.x,

We first notice that each of our elementary row operations on an
m X n matrix a is equivalent to premultiplication by a corresponding
m X m elementary matrix e , Supposing for the moment that this is so,
we can find out what the matrix e is by using the m x m identity matrix
im + Since e+ a= (¢ -_i_m)' 2 , we see that the result of performing
the operation on a can also be obtained by premultiplying a by the
matrix e i—m « That is, if the elementary operation can be obtained as
matrix multiplication by e , then the multiplier is B " ?:-na + This
argument suggests that we should perfornﬁ the operation on im and then

see if premultiplying a by the resulting matrix performs the operation on

a .

th

If the elementary operation is interchanging the i0 h

and j:; rows,

then performing it on 1m gives the matrix e with Bt = 1 for k /£ i

and kﬁ'jo s €. . =e. . =1 and e , = 0 for all other indices,

Yolo Joio ki

Moreover, exarnination of the sums defining the elements of the product
matrix e * a will show that premultiplying by this e does jusi inter-
. th . th :
change the i and j, rows of any m x n matrix a ,
. th . .
In the same way, multiplying the i row of a by c is equivalent
to premultiplying by the matrix e which is the same as l—m except for

th LI,
having e 4, =C . Finally, multiplying the jO row by ¢ and adding it
oo
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to the i row is equivalent to premultiplying by the matrix e which is

the identity }-'m excépt that eij = ¢ instead of 0 ,
G0

These three elementary; matrices are indicated schematically below,
Each has the value 1 on the main diagonal and 0 off the main diagonal

except as indicated,

AT LR / i f | \

i i \, / \ . |
_ \ ol oy ! % 4 s ' ,I N /
These elementary matrices e are all non-singular (invertible) ,

The row interchange matrix is its own inverse, The inverse of multiplying

th .
the j  row by c¢ is multiplying the same row by 1/c, And the inverse of
) . £ th , : : .th
adding c¢ times the j o row to the i  row is adding -c times the j
.th
row t_o the i row.

1 2 i ; .
H e ,e ; sniy gp is a sequence of elementary matrices, and if

b= _e_e_p' ep-l- ese ° 9_1 then b ¢ a is the matrix obtained from a by

performing the corresponding sequence of elementary row operations on a .

1 :
e, ..-.,gp is a sequence which row reduces a then r =b* a is the

resulting row reduced echelon matrix,
Now suppose that a is a square m X m ‘matrix and is non-singular
(i.e,, invertible) , Thus the dimension of the row space is m , and

hence there are m different orders nl, -...,-nk. . Thatis, k=m , and

since 1§n1<n2<...~<nm = m , we must also have ni—i ¥
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; : - th " ; i
L= lysuasm, Remembermg that the ni column in T 1s 6t s We see
.th : . i ks
that now the i~ column in r is 0" and therefore that r 1is simply the
identity matrix i , Thus bs a =i and b is the inverse of a .,
—m Al Tl = =

Finally, since h=i

B ™ b we see that we get b from - by applying

the same row operations (gathered together as premultiplication by b )

that we used to reduce a to echelon form, This is probably the best way

of computing the inverse of a matrix, To keep track of the operations we

can place im to the right of 3 to form a single m x 2m matrix

(g _i__m) and then row reduce it, In echelon form it will then be the m X 2m
matrix (i_m_?g_) and we can read off the inverse b of the original matrix a.

Finally we consider the problem of computing the determinant of a

Square m y m matrix, Since this computation is being made before the
reader knows what the determinant function really is, he will temporarily
have to accept on faith the correctness of the procedure,

We use two elementary operations ( one modified) as follows :

(1') interchanging two vectors and simultaneously changing the sign
of one of them ;

(2) as before, replacing some row a, by @ - xaj for some j£1i,

-

iy 0\ - When applied to the rows of a square matrix these operations leave the

determinant unchanged,

Consider, then, a square m x m matrix {aij} . We in_terchange the
t slg
first and p B row to bring a row of minimal order n, to the top, and

change the sign of the row being moved down ( the first row here) , We
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do not make the leading coefficient of the new first row 1 ; this
elementary operation is not being used now. We do subtract multiples
of the first row from the remaining rows so as to make all of their
o S h ” 1
entries in the nlt column 0, The nlth column is now 016 , Where
¢, is the leading coefficient in the first row. And the new matrix has the
same determinant as the original matrix,
We continue as before subject to the above modifications, We
change the sign of a row moved downward in an interchange, we do not
. . th
make leading coefficients 1 , and we do clear out.the n. column so
n, L th
that it becomes cjﬁ J , where Cj is the leading coefficient of the j row
(1<j<k). As before the remaining m-k rows are 0 (if k<m)) .,
Let us call this matrix semi-reduced., Notice that from it we can find the
corresponding reduced echelon matrix by k application of (2) 3 we
. . .th : .
simply multiply the j row by l/cj for j=1l,.ea,k. If 5 is the
semi-reduced matrix which we obtained from a using (1" and (3) , then

its determinant and therefore the determinant also of a , is the product

m
of the entries on the main diagonal, ni-—l S e Recapitulating we

compute the determinant of a square matrix a by using the operations
(1") and (3) to change a toa semi-reduced matrix s , and then take the
product of the numbers on the main‘diagonal of s .

If the original matrix {aij} is non-singular, so that k = m and

th . : :
n =i (i=1l,.e.,m), thenthe j column in the semi-reduced matrix

i
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- J : . m
is cj5 so that sjj = ej and the determinant is the product ni—lci
of the leading coefficients, This is non-zero., On the other hand, if

o th ;
{aij} is singular, so that k = d(V) <m , then the m row in the
semi-reduced matrix is 0 and, in particular, B s 0 . The
determinant of a singular matrix is therefore 0 . We have thus found

that a matrix is non-singular (invertible) if and only if its determinant is

non-zero,






g 1. heview in I ,

Every student of the calculus is presumed to be familiar with the
properties of the real number system and the theory of limits. But more is
needed at this point, It is absolutely essential that by now the student underst ard
the & -definitions and be able to work with them, To be on the safe side we
shall review some of this material; the confident reader can skip it.

The definition of sequential convergence contains three quantifiers, as

fcllows:

>0
Definition, X, —a as n—> o> (Ve Y ANNVYn)n >N =>

fxn -al < 6),

Tbe arrow '——>" is a verbal symbol which is read "tends to" or
""converges to', The three prefixing quantifiers makes the definition sound arti-
ficial and unidiomatic when read as ordinary prose, but the reader will remember
from our introductory discussion of quantification that this artificiality is
absolutely necessary in order that the meaning of the sentence be clear and

unambiguous. Any change in the order (Ve IN) Vn) changes the meaning of

the statement,

The meaning of the inner universal quantification (¥ n)(n >N => Ixn-— al< ¢

is intuitive and easily pictured graphically, " )
a+€l .
. n i ¥ »
For all n beyond N the numbers x, are ‘f""if'- . :
g . ¢ .
closer to a than €. The definition a-& S
ji
begins by saying that such an N can be found [
t
]
for each €. N will of course vary with i o i o

£
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€; if € is made smaller we will generally have to go further out in the sequence,
i.e., take N larger, before all succeeding terms become € close to a.

This definition is used in various ways, In the simplest situations we are
given one or more convergent sequences, say x —> a and y, —> b (in
informal notation), and we want to prove that some other sequence is convergent,
say z S

In such cases we always try to find an inequality expressing the quantity
which we wish to make small, ]zn - c[, in terms of the quantities which we know
can be made small, (xn -a| and |yn -b| ., For example, suppose that
2, =Xt Y, Since X is close to a and ¥s is close to b, z is clearly
close to a + b, but how close? Setting ¢ =a+b we have z_ ~-c= (xn‘-a.) + (yn-b),-
aud so

|2 - el S Ix, =2l + |y, -l

From this it is clear that in order to make ]zn - c| « € it is sufficient to make
each of 1xn -a| and lyn - b| < G/Z" Therefore, given any positive €, we can

take N, sothat n>N, =5 |x_ =-a|< &/, and N, so that n>Nz:~:f;»|yn-b1<€,

1 1
and then take N as the larger of these two numbers, so that if' n > N then

both inequalities hold, Thus
n>N = |z - c| ilxn+ al + |yn -b| + €/2+ ©/a = €

and we have found the desired N for the z - sequence.
1

., Clearly -}-{L is close to %

Suppose next that a s# 0, and z
n

o]

when X, is close to a so we take c = and try to express z - C in terms

of X, - a., Thus
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a=x
z -c:=-1—---1- = —B_ and Iz -c| S la-xnl .
n xn a xna n = coea———

| %2l

The trouble here is that the denominator is variable, and if it should happen

to be very small it might cancel the smallness of Ixn - a| and not give a swnall
|z, - c|. But the answer to this problem is easy. Since x, is closeto a

and a is not zero, x cannot be close to 0, For instance, if X is closer to
a than |a|/2 then x ~must be farther from 0 than |a|/2.

We therefore choose N,; so that n > N, = Ixn -al< |a|/2, from
which it follows that ]xn| > Ia]/Z. Then {zn - c] < len o a.]/lan.l2 s and now,
given any €, we take NZ. so that n > Nz' = |:|:n - aI < € [a[?‘/z . Again
taking N as the larger of N1 and NZ + 8o that both inequalities will hold

simultaneously when n >N, we have
ity 2 2 &
n>N = |z -c|< 2|x -al/|a]®< 2€[a|?/2]a]® = €,

and again we have found our N for the z, sequence.
We have tried to show above how one would think about this situation, The

actual proof that would be written down would only show the choice of N, Thua:
Lemma} If x, — a and Vo =3 .b: then x ty —>a+ -

Froof, Given € (> o), choose N, sothat n >N, =3 [xn -al < €/2 (by the

assumed convergence of :an:f to a), and, similarly, choose Nz 80 that

n>N2 = Iyn -b[ < €/2. Take N as the larger of N; and N Then

1 2°
n>N = [(x + y)-(a+b)| g |x, -al + !+ -b]< €/2 + €/2 = €,
Thus we have proved that (\v"G)o)(BN)(\;‘n}(n > N) = !fxn+ yn)-(x+y)] < €), and

we are done,

An even more formal procedure would be to write down the hypotheses
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explicitly in terms of other €’s., Thus, we are given that
(VENAN(VYaln >N) = [x -2a| < €))
(VE,(IN)(Vnl{n >Ny = |y, - b < &)

and we want to show that
(VENINAVm(a >N = [x_+ y)-(a +b)|<EC. |

Since |[(x_ + y,) . (a+ b)| $ |x;-a]+ |y, -bl, wetake €, =€, =€/2
and N:.= ma.x(Nl, NZ). That is, we start with €, then define Gl and GZ
suitably in terms of €, and then N  suitably in terms of the N1 and Nz given
for €y and €2, by the hypothesis,

The given proof of the lemma is perfectly adequate for this course,

Besides € techniques in limit theory, it is hecessary to understand and
be able to use the equivalent fundamental properties of the real number system

called the least upper bound property and the compactness of closed intervals,

We shall not discuss the equivalence of these properties here; we shall simply
assume them both,

The semi-infinite interval (-co, a] is of course the subset {x(:R: x £ a.}

(B) If A is a non-empty subset of IR such that A C (- c0, a] for gsome
a then there exists a uniquely determined smallest number b such that
AC (-CO, b] [

A number a such that A (-co, a] iz cailed an upper bound to A;

clearly a is an upper bound to AED (Vx C ANx S a). A set having an upper
bound is szid to bounded above, The principle (B) says that a non-empty sét

A which is bounded above has a least upper bound,
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If we reverse the order relation by multiplying everything by -1 then we
have an alternate formulation of (B) which asserts that a non-empty set which

is bounded below has a greatest lowef bound,

It is true, but not particula.rly easy-to prove, that (B) is also equivalent

to (C) below.
(C) Every bounded sequence of real numbers has a conwergent subsequence,

A subsequence of a sequence J{xnl‘ is a new sequence formed by selecting
an infinite number, but generally not all, of the terms X and counting them off
in the order of the selected indices.

Thus, if 0y is the first selected n, n, the next, and 8o on, we obtain

1

this counting off of the selected set of indices n is a mapping m —> n of

% : ’ ;
the subsequence (X 0 xnz. sy xnm_._;._. . .} or {xnm% m Strictly speaking,

nm-l-l > o for all m. And the sub-

sequence m p—> X, + is the composition of the sequence n +—> X with
m

Z.+ into z* which preserve order:

the selector mapping.

In order to avoid subscripts on subscripts we may use the notation n(m)
instead of n. . In either case we are being conventionally sloppy: we are using
the same symbol 'n! as an integer~valued variable, when we write x_ » and
for the selector function, when we write n({m) or LN This is one of the
standard notational ambiguities to which we submit in elementary calculus
because the cure is considered worse than the Aisease, We could say: let f be

. : o AT :
a sequence, i.,e,, a functionon Z into IR. Thken a subsequence of f is a
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composition f~g whereg is a fuuction on %+ into Z+ such that g(m+l) > g
for all m.

In any case, we have the following more explicit statement of (C).

(CY) If ilxn-[‘l' is any sequence into an interval [a, b] C IR, then there exists

=

a subsequence Sx { and a number { such that x —> K as
Ca(m) fm a(m)

m—> ©.
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§2. Norms

In the limit theory of IR, as reviewed briefly above, the absolute value
function is used prominently in expressions like ! |[x - y|’ to designate the
distance between two numbers, here between x and ¥ The definition of the

convergence of x, to a is simply a careful statement of what it means to say

that the distance [xn' - a| tends to zero,

~ The limit theory of vector spaces is studied in terms of functions called
norms, which serve as multidimensional analogues of the @bsolute value function.
on R. An example of a norm on R" .is the function p(x) = max Uxi| s i G'ﬁ'}

h = P
where, of.course. X=X Xpp eaes xn> %

Definition. A norm is a real-valued function p on a vector space V

such that
(nl) pla) >0 if o £ 0 (positivity)
(n2)  p(xa) = |x|pla) forall « €V, xCR ., (homogeneity)

(n3) pla + B) = pla) + ptB) forall a,BC V. (triangle inequality)

A normed linear space (nl ), or normed vector space, is a vector space

v together with a norm p on V, A normed linear space is thus really a pair
v, P/ » but generally we speak simply of the nls V, a definite norm on V
then being ﬁnderstood.

Ilt'haé been customary to designate the norm of a by Iull, presumably
to sﬁggest the analogy with ’ab:zaoiute value, The triangle inequality. (n3) then
becomes: lla+ BIl £ llall +1IBN, which is almost identical in form with the

basic absolute value inequality: [x +y| S |x| +- ly|. Similarly (n2) becomes
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Hxa ll = le e I , like Ixy| = [x‘ ly| in IR, Furthermore, la ~Bll is similarly
interpreted as the distance between o and f, Therefore, if we set a = § =7

and B =1 -8, (n3) becomes the usual triangle inequality of geometry:
g €0 SUE =mll +1p =810,

We shall use both the double bar notation and the ''p'' notation for norms,

each being on occasion superior to the other.

n n
Other common norms on R" are llx I, = E |x,| and lxl, =6 xf)l/z
1 1

The norm already mentioned is designated lxll . Thus lixll = max i] xi[h .

Similar norms on the infinite dimensional vector space C?O([a, b]) are IIf II1 =

b b .
£(t) {dt, W £, = { f(t) | “dt) and I1fll = max J|f(t)] :0StSI ;.
l5(t) | L= {lan 2072 - l ;
a a.

The reader should work through the proofs of (nl) = (n3) for | “I and
il "oo . The proofs for the 2-norm |l llz are trickier and can be postponed

for a while,

Uniform norms, The two norms |l '“co considered above are special

cases of a very general phenomenon. Let A be an arbitrary non-empty set and
let R (A, R) be the set of all bounded functions f: A —> R. That is,
f£C B(a, R) & £C R?® and range f is a bounded subset of IR, Then
& (A, R) is a vector space V, since if b and c are bounds for |£f] and lg]

respectively then le + yg| is bounded by |x?b + |y]c. The uniform norm on V

is defined by
: pC A E

1N = lub {[f(p)



That is, | f“oo is defined as the smallest bound to |f]. Of course, it has to be
checked that Il Il |~ is a norm, For any pG A, [f(p) + g{p)|Z |f(p)] + |e(p)| S

s s >
Ilflloo + ligh, . Thus Iif!lm + 1l g[lQD is a bound to £ + ‘g[ and is therefore Z the
smallest such bound, which is Iif + g“co . This gives the triangle inequality.
Next we notice that for any non-empty set A of real numbers and any x £ .4,
lub (xA) = x lub A. It follows that |l xfll | = lub(range |x£]) = lub (|x| range [£]) =

- 3 4 > - = 1

|x| lub(range |£]) = |x| WEll, . Finally, Wl 2 0 and Ifl =0 == { is the
zero function,

As usual we can replace IR by any normed linear space W and define

the uniform norm on {5 (A, W) by £l = lub{li€(p)ll: pC Af.

If £€ (< ([0, 1]) then we know that the continuous function |f] assumes
the least upper bound of its range as a value, so that then Ilfllm is the maximum

value of ]f[. In general, however, the definition must be given in terms of lub,

Sequential convergenc,.Let V be any normal linear space, If {o:nic v

and o & V we are clearly going to want the sentence 'an — i A = oot
to mean that the distance between @, and a tends to zero, But this distance

is Ilan -~all. Thus:
Definition, R, == 0 gR e Iid.n ~-gll —> P as n—> 0, .’
If we substitute for the defining sentence its definition, we have:

a —>a as n—> o & (V‘€>0)(3N)(\g’n)(n>N"—’:—>ilan-all( Sl

We shall generally wwork with the latter characterization, and thus involve
ourselves directly with € calculations, However, the first definition can

sometimes be used to transfer convergence questions from V bagk to IR,



Theorem4,If a —> « and B —> B then a + Bn > o+ B. I

a —>a in V and x_ > x in IR then xnan———-% xa in V.

Proof. If the direct €, N definition. is used for norm convergence:,
the proofs of these two statements are obtained, word for word, from the cor-

responding proofs for real sequences by replacing absolute value signs by the

norm symbol.
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Remembering that ||a-§ | is interpreted as the distance from a to £ it

is natural to define the open sphere (or ball) of radius r about the center a as

{8: Jla-€ ||[<r } . We designate this sphere Sr(af) . Translation through #

ought to carry Sr(a) into Sr(aﬂ-ﬁ) » and we can check that it does, for

TolS (@] = {5+B:8€5S (@} = {n:n -p € S0} ={n:n€s (a+p) } . Also,

multiplication by the scalar c¢ ought to take a sphere of radius r into one of

radius cr , and the reader can check that indeed c S (a) = Scr(ca') .
Although Sr(a) behaves like a sphere the actual set being defined is

different for different norms, and some of them "look''"unsphere-like " ,
}
R e £ 2

The unit spheres about the origin in R © o the P | b |

v o 1

(Y
\w-
<

A

o 0]

\ g

three norms | || L I “2 and || | are -“i
sketched at the right, .
A subset A of anls V is bounded if it lies in some sphere, say Sr(ar} é
Then it also lies in a sphere about the origin, namely Set flaf(®) + This is
simply the fact that if |[§-a|| <r then (] <r+ |Ja , which we get from
the triangle inequality upon rewriting & ]l as [(£-a)+ af .
The radius of the largest sphere about a vector B which does not tonch

a set A is naturally called the distance from 3 to A , Itis clearly

glb{ ||[£-Bll: €A},
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Let V and W be any twonormed linear spaces, We shall designate both
norms by Il . This ambiguous usage does not cause confusion. It is like the
ambiguous use of "0" for the zero elements of all the vector spaces under con-

sideration,

Let A be a subset of V and let f be a mapping of A into W,

Definition, The function f is continuous at a point o« € A =&
(VEN2INVEC A)NE-all < 6 =2 NE(E) - fla}ll < €),

Here, again, the general norm symbol instead of the absolute value sign is all

that distinguishes this vector space definition from the standard real variable

definition.,

Definition, The function f is continuous <=> f is continuous at each point
of its domain,
The following theorem characterizes continuity in terms of sequential

convergence, and helps greatly to use the notion of continuity in a flexible way.

Theorem 2A,,The function f is continuous at o & for every GBQUBHééi A [E\Jj in

&, if gn——> X  then f(gn) 3> f(ar),

Proof. We first prove that continuity implies the sequential condition,
Our hypothesis, then, is that given € there exists a 0 such that NE —all<d =
NEE) - fla)l < €. If £n —> ¢ then there exists N suchthat n>N =
g -ali< 6, Combining these implications we have that n >N =3

I £(& n) - fla)li< €, Thus £(& n) —> fla).



Now suppose that f is not continuous at a, i. e.,that (SN TEHNE ~all < O

i

and lf(¢) - fla)ll 2 €). Take & =1/n andlet £ Dbea corresponding &,
so that i En ~all < 1/n and I£(E n) - f(@)ll 2 € for all n. The first inequality

> o and the second that (£ ) —/-> f(a). Thus, if f is not

shows that f;’n

continuous at o then the sequential condition is not satisfied. This completes
the proof of the theorem.

The above type of argument is used very frequently and amounts almost
to an automatic proof procedure in the rel.evant. situations, We want tb i}rove that
(V x)( 3y)(Vz)P(x, y, 2). Arguing by contradiction, we suppose this false, so
that (A x}(Vy)(2z)~ P(x, y, z)s Then, instead of trying to use all numbers vy,
we let y run through some seéuence converging to zero, such as ﬁ_l/n} » and
choose one co'rl"esponding Zy 29 for each such y. We end up with ~ F(x, 1/n, zn)
for the given x and all n, and we finish off by arguing sequentially,

For a linear map T : V —> W continuity has a simpler characterization

as boundedness,

Definition. A linear mapping T : V —> W is bounded <>
(Ec>°){\f§€v)(u"r(g)u £ CLE .

Any such C is called a bound of T. |

It should immediately be pointed out that this is not the same notion of
boundedness we discussed earlier, There we called a real-valued function bounder
if its range was a bounded subset of R, The analogue here would be to call a |
vector ~valued function bounded it its range is norm bounded. Buta non-zero
linear transformation cannot be bounded in i:llu-irs sense because |l T(xa)ll= lxl Il T(a)hi

The above definition amounts to the bomdedhess in the earlier sense of the



guotient T(w) /lall (on V - '{0 -}).

Theorem 3If T is a linear mapping of a nls V into a ﬁls W' then the
following conditions are equivalent:
- (1) T is cortinuous at one point;
(2) T is continﬁous;

(3) T is bounded.

Proof, (1) =7 (3). Suppose T is coutiunous at 4 Then, taling S~ 1. +thav~

0 e
exists 0 such that lla -a oll < 6 =2 IT(a) = T{ap)ll < 1, Setting £ = a=ag
and using the additivity of T, we have: £l <& => I T(E)Il < 1. Now for any
non-zero 7, £ = 671 /2yl has norm §/2., Therefore Il T(£)ll < 1, But
WT(EM = SHTmI/2Inll, giving I T@H)N < 2linl/6 ., Thus T is bounded by

C= 2l6,

(3) => (2). Suppose WT(E)NS CUEN for all §. Then for any a, and
any € we can take 8= €/C and have lla~a ol < 6 =2 I T(a) - T(agll =

HT(a-aO)ll - Clla-aoll < Cd =¢.

{2} =>{1). Trivial.

Lipschitz functions. Let V and W be normed linear spaces, A a

subset of V and f a functionon A into W, Then f is said to be a lLipechit=
function & (4C){(Va, B(":A)(u fla) - £(B)I1 S Clla - Bl).
Every bounded linear T is a Lipschitz wapping, and we prove in the
lemma below that the norm function is also a Lipschitz function on V into IR,
Lemma %, For all ,BC V, |llall =lgHI]| S lla =B,

Proof, We have llall = lifa =B)+ Bl € lla~Bli+ BN so that



Hall = BN : llg = B I, Similarly, g~ llal <IB=all=lla = Bll, This pair
of inequalities is equivalent to the lemma,

Other Lipschitz mappings will appear when we study mappings with
continuous differentials, Roughly speaking, the Lipschitz property lies between
continuity and continuous differentiability, and it is frequently the condition that

we actually apply under the hypothesis of continuous differentiability.
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§4. The space of bounded linear transformations

If V and W are normed linear spaces then Hom(V, W) is redefined
to be the set of all bounded linear maps T : V——> W, The resul_ts of Thm, 2, Ch

all remain true, but require some further arguing,

Theorem 4,Hom(V, W) is itself a normed linear space if I Tll is defined
as the smallest bounci for T,

Froof. By definition Il TIl is the smallest number C such that
HT({a)Il S Cllall forall a © V, We can then check the triangle inequality and
homogeneity in much the same way we did for uniform norms in §2, For
example, 1(S+ T)(e)ll £ US(a)ll + I Tl S USHellall + ITHellall = (WS+ T |
Thus S+ I TIH is a bound for S+ T and is therefore 2 the smallest such
bound, IS + T,

Other characterizations of Il Tl are useful, It is the smallest C which

is 2 IT@)/llall for all # 0 in V and hence,
ITH = lub J I T(@)l/lall:a € V and a0}

Also IIT(a)ll/llall = I T(a /la Il by homogeneity, and [la /ila I | = 1.

Therefore
ITH = lub {i T(a)ll: € V and ol = 1% .

Finally, we can define I Tll as a uniform norm. For this, it is convenient to let

P be the norm on V and then notice that T/pC 8 (V - {0}, W) and

ITH = HT/p o

The proof that I Tll is a norm is now unnecessary by virtue of §2,



Theorem 5 I1f U, V, W are normed linear spaces, and if TC Hom(U, V)
and SC Hom (V, W), then S°TE Hom(U, W) and WS TH S USWHTH, It
follows that composition on the right by a fixed T is a bounded linear trans-

formation of Hom (V, W) into Hom (U, W), andsimilarly for convolution on

the left by a fixed S .
Proof, l({SeTHa)ll = HS(T(a)ll € USHIT(a)! S USH{iTiHa )y =

(IS« TH)(Ne 1)y Thus ST is bounded by ISl Tl and everything else

follows at once,

As before, the conjugate space v* is Hom (V, IR}, now the space of

all bounded linear functionals,
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§5, Equivalent norms.

Definition, Two norms p and q on the same vector space V are equivalent <
there exist, constants a and b suchthat pS aq and q < bp .

Then (l/b)q £ p £ aq and (l/a)p £ q S bp, so that two norms are
equivalent %= either can be bracketted by two mu]tiplés of the other, The above
definition simply says that the identity map on V, considered as a map from
the normal linear space <V, p> to the normed linear space (V, q is

bounded in both directions, Theorems z and 3 then imply :

Theorem6,Two norms on V are equivalent if and only if they define exactly
the same convergent sequences in V,

If V is infinite dimensional two norms will in general not be equivalent,

For example, if V= G°%[0, 1]) and £ (t) = t" then £l =1/ntl and
i fn"co = 1, so that £, —> 0 in tke l-norm but not in'the;"uniform norm.. The
theorem above then implies that I I, and i "oo are not equivalent, This is

why the very notion of a normed linear space depends on the assumption of a

given norm,
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§6. Norms on finite dimensional spaces.

We shall devote the present section to proving that if V is finite dimen-~

sional then all normson V are equivalent, We shall also see that then every

S R La) in

linear transformation is continuous, and that a,
R for every { & v* . It follows that the study of limits and continuity over a
finite dimensional vector space is really independent of norm considerations.,
However, norms are exceedingly handy even here, and the fact that all norms
are equivalent means that in 2 given situation one can use whatever norm seems
most suitable,

If @ : V—> W is an isomorphism and q is a norm on W it is easy
to see that p = qof is anormon V.If 6:V —> R" is a coordinate
isomorphism and q is the l-norm on R"™ we shall call p the l-normon V

associated with the basis defining 6.

Lemme 3,A sequence {_}5_1} in R" converges to X in the l-norm <&
each coordinate sequence {xlj}i converges to X, in R, j=1, eoe, m.

g n ‘
Proof, Since I _:f._l - x{ll = Z Ix; - xj] the proof follows from

—

j=1
Iemma 1.
Theorem 7,1f p = I Il1 with respect to some basis in V then every

p-bounded sequence in V has a p-convergent subsequence,
Froof. We may as well suppose that V is R", The proof is by
induction on n. If n=1, Vis IR and the theorem is just the fundamental
principle (C) of §2:ﬁ Suppose now that the theorem is true for dimensions
< n ,and let {351% be a bounded sequence in IR®, Thinking of R" as .’aRn"'1 X IR,

we have _:_«:_i= {Xi, zi§ where yl is the (n~1)~-tuplet composed of the first n-1



coordinates of 3_51 and z;, is the ntbcoordinate of ;_c_i. By' the inductive hypothesig,
a subsequence {Xi(j)}j is ;:onvergent; say to Yo+ By tbe.principle (C) fbr R
the bounded sequence. {zi(j)} has a subsequence {zi(j(k))}rk which converges, say
to 25 Then yilill)

" > Yo and so _:_cf(‘](k)}——-?_{c_o = <y0, 207. by the

above lemma.,

Theorem§ On a finite dimensional vector space any two norms are
R L .

equivalent,
Proof, ‘It is sufficient to prove that an arbitrary norm Il |l is equivalent
to the l-norm Il I} associated with a basis {B,{. Setting b =

n . -

max {HBili: Bl B } we have £l = IIZI € (ﬁ)BiH b le @:i(g) IilBill
. = :
= bt iy

Conversely. we assert that there exists a > 0 such that: Il EII S allgl,
Otherwise (Va>0)(3 ) §I! >all§ll), and if we take a = m, with. corresponding
£, » we have HE 1ty > mil £,/ for all m, Setting { = gm/u.g'mu1 s we have
1€mlly =1 and WL Il < 1/m. Since {{ % is thus bounded in'the l-norm it -
bhas by the above theorem a subsequence {gm{i)} which converges.in-the l-norm,

say to {, and since the l-norm is continuous with respect to its own convergence,

we have I C.lll = lim, S cm(i)“l

=1, But from IIC i< l/m(x) =1/ B
we have cm[')_ﬁ 0, and from Hcm(i) -8 S bl ':m(i) - CII‘l we have
cm(i) —>{, both with respect to the other norm., Therefore £ = 0, ~con-
tradicting IH;'II1 = 1,

Theorem3If V and W are finite dimensional then every linear T:V —>V
is bounded, Thus Hom (V, W) is the same no matter how V and W are

regarded,

Proof, Choose bases in V and W and let the matrix of T be th_]J .



Let £ in V have coordinates {xj%r;, let 7 in W have coordinates {yl‘;rf

-1 IX <1 1) <ln
and suppose that 7 = T(£), Then 5l = Z_J [yil =/ L/, ti.jle
1 T i=l j=1
§ Itijl nE “00 . Thus T is bounded by the l-norm of its matrix when the

1i
uniform norm is used in V and the l-norm in 1V,

Theorem |01f V is finite dimensional then §n-——-—->§ in V =

(VLE VH(L(E) —> L&) in R).

Froof, <= . If iﬁlkr; is a basis then ei(gn) —> Gi(é} for each i

and |l §n - “,’IIl > 0 by the lemma.

=, H ﬁnﬂ——>§ and LC V* then Q[%n)——-%-ﬁ(&) by the

7

continuity of { ,

. .
Remark, If V is an arbitrary normed linear space, 80 that V = Hom {V, R)

> £ weakly

is the set of bounded linear functionals, then we say that En

Q(ﬁn) —_— Q(E) for each /QE V* . The above theorem can therefore be

rephrased to say that in a finite dimensional space weak convergence and norm

convergence are equivalent notions.




———

.2

p—

87, Product norms.

We now ask what kind of norm we might want on the Cartesian product
V= VIX V, of two normed linear spaces, A reasonable requirement is that
a sequence should converge in V if and only if its two component sequences in
vV, and V, both converge. Now if p; is the given norm on Vi;» i=1, 2, then p,
defined by p({a,, @, ») = pyle;) + pyla,) clearly is a norm on V and has the
required property, Then by 85 any other suitable norm on V must be equivalent

to the above sum norm, Any such norm will be called a product norm, The

reader can check that q( (@), @,)) = max {pl(a 1)» Pyl,) | is another
product norm, and so is II(al, az> Il = (pl(a'l)2 + pz(az)zll/z .
Each of these three norms can be defined as well for n factor spaces

as for two, and we gather the facts for this general case into a theorem.,

Theorem J) If {(Vi, pi>})? is a finite set of normed linear spaces then
: n Z“
pp I I, and I N definedon V = Hi=1 Vi by el = L pilay),

n
2,1/2 : P
i!allz= ( é 3 pi(ai) ) / and llallm = maxipi(ai) 2L E Yy veni n} are

equivalent norms on V and each is a product norm in the sense that a sequence
converges in V if and only if its n component sequences all converge in their
corresponding factor spaces,

It looks above as though all we are doing is taking any norm Il i on R"
and then defining a norm Wl [l on the product space V by lila =
1< pyleg)s oees Pala,) VIl

This is almost correct, The interested reader will discover, however,

that Il Il on IR® must have the property that x = y =Ry H?_:_ = lllil for the
o/
X ¢ Y Y



triangle inequality to follow for Il Il in V. If we call such a norm on R” an

increasing norm, then it is true that:

If II Il is any increasing norm on R” then Hall =1l <pl(al),... 1P lay) >

n
is a product norm on V = H Vi ., Howevér, we shall use only the 1, 2, ©
1

product norms in this course,
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88. Metric spaces; open and clcsed sets

In the preceding sections we have occasionally treated questions of con-
vergence and continuity in situations where the domain was an arbitrary subset
A of anls V., The vector operations by themselves were never made use of in
these discussions, Indeed, they could not be used because A is not a vector
space, What was used was the combination lla - Bll, interpreted as the distance
from & to B, together with the triangle inequality for this distance function, If
we distil out of those contexts what was essential to the convergence and continuity
arguments we end up with a space A and a function p: A XA —> R, p(x, y)
being the distance from x to y, such that:

(1) p(x, y) > 0 if x % vy, and p(x, x) = 0 ;

I

(2) p(x, y) = ply, x) for all x, yC A;

p(x, y) + ply, z) for allx, y, 2z A.

A

(3) p(x, 2)

Any set A together with such a function p on AX A to R is called a metric
space, the function p being the metric, It is obvious that any subset B of a met-
ric space A is itself a metric space under pl'B xB,

Moreover, metric spaces do very often arise as subsets of normed linear
spaces, the metric being the restriction of the norm metric pla, B) = lla~-Bll.
But they come from other sources, too. Andeven in the normed linear space
context, metrics other than the norm metric are used.

For example, S might be the two dimensional surface of an ertdinary

sphere in ]R3 » 8ay S = [n_r: ?3 xiz = 1}. and p(x, y) might be the great

circle distance from x to y . Or, more generally, S might be any smooth

2-dimensional surface in JR3 and p(x, y) might be the length of the shortest



curve connecting x to y in S.
For the rest of this chapter. we shall adopt thé metric space context for
our arguments. ‘We do this so that the student may become familiar w{th this
more general but very intuitive notmn. It is not accidental that the change over tak
place now, Up until this point a lar ge part of our concern has been with linear
matters, whereas the rest of fhe chapter is largely independent of linearity,
Alt'hough probably unnecess'ary, we begin by reproducing the basic

definitions.

>0 & (V6T (IN)(Va)n >N =

Definition, X, —_— X a.é n -
P (xns x) < €).

Definition. If A and B are metric spaces, then £: A—> B is

continuous at a € A & (V€>O j5>0 (Y CA)(p(x, a) <6 = plf(x), £f(a)) < €).

The proof of the sequential'characterizafion of continui-ty is correct as it stands
(when llq - Bll is replaced by p(a, B}

The (open) sphere of radius r about a, Sr(a), is simply the set of points

whose distance from « is less than r:

Sfa) = (& :oalk e <l

L€

A subset ACV is open <> (Vo€ AN T2 (S (a)C A). Thus A is
open <> every point of A is the center of some sphere included in A,
Lemma 4% Every sphere is open; in fact, if BC—: S.{a) and 6 = r ~pla,B)
then S G(B)C S (a).

Proof This amounts to the tnangle 1nequal1ty.

For, %CSgB) = o(&, B)< 5-‘>p(€. a) S elE.p) 4 p(ﬁ. a)< o+ pla, B)-
r = £ CS_).



Theorem |4 The family 7 of all open sets has the following properties;

(1) the union of any collection of open sets is open; that is, (1. C T =
Jag 7

(2) the intersection of two open sets if open; that is, A, BC J —=>

AnBGEC T ;
(3) ¥, v€& 7T,

Proof, These properties follow immediately from the definition, Thus,
any point ¢ in Ua lies in some AQCZ and therefore, since A is open, some
sphere about o is a subsetof A and hence of the largerset U a .

Corollary: A setis open <> it is a union of spheres,

Froof, This follows from the definition of open set, the lemma above and
(1) of the theorem,

The union of all the open suﬁsets of an arbitrary set A is by (1) an open
subset éf A and therefore is the lafgest open subset of A, It is called the
interior of A and is designated A¥, Clearly, o€ A* & (:_?:>O)(Sr(a)c A),
Also A is open <> A = A%,

The definition of sequential convergence becomes perhaps more intuitive
when it is rephrased in terms of spheres and the notion of something Eeing true
for almost all n, We say that P(ﬁ) .is true fcr almost all n &= P(n) is true
for all but a finite number  integers, or, equivalently, ( IN){ vn >N)P(n). Then

the definition of convergence can be restated as follows:

@ —>a as n—> o (> every sphere about o contains almost

all the @ .



Definition, A set A is closed &=> A! is open,
The theorem above and dei.M_organ's law then yield the fellowing
complementary set of properties for closed sets,
Theo‘rﬁm'c;;.lﬂl) The intersection of any family of closed sets i8 closed,
(2) The union of two closed sets is clos ed.r-

(3) # and V are closed,

Continuing our "complementary' development, we define the closure, A,
of an arbitrary set A as the intersection of all closed sets including A, and

have from (1) above that A is the smallest closed set including A and from

de Morgan the important identity:
(A)! = (an®
' This identity yields a direct characterization of closure:
Lemma 5 BC A <= every sphere about f intersects A .
Proof. ~(BCA) <=> B C (A!)* &> ( 37 %(s,(B)C AY. Negating the
extreme rﬁembers of this equivalence gives the lemma.
I'E'inally, tﬁis lemma in turn leads to a sequential characterization,
Lemma 6, BE A & there exists a sequence in A converging to 8.
Proof, If {a CaA and [, === B then every sphere about B contains

almost all the «_ and hence, in part:cular, mtersects A, Thus BCA by the

n

above lemma,

Conversely, if BE A then every sPhere about ﬁ intersects A, In
particular, we can choose for each n one point a c A s Sl/ (B) and so construct
a sequence .{an} in ‘A which converge to S. |

Definition. The boundary, &8 A, of an arbitrary set A is the difference

between its closure and its interior, Thus
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ga & B = A"

Since A-B = A N B', we have that A = AN (A') and therefore that 8A = d(A').

Also,

B @ 8A (> every sphere about B intersects both A and A'.

Example, A4 sphere Sr(a) is an open set. Its closure is the closed sphere
about o of radius r = '{"g’ v plE, o) = r}. This iggf.szyeasily seen by using

the sequential characterization of a point in the closure. The boundary BSr(a) is

then the spherical surface of radius r about ¢ = i{; tp(E@)=x j » If some but

not all of the points of this surface are added to the open sphere we obtain a set
that is neither open nor closed., The studert should expect of a random set he
may encounter that it will be neither open nor closed,

Continuous functions furnish an important source of closed sets by the
following lemma .

Lemma7,If V, W are metric ° spaces, if f: A —> W is a
continuous function and if A is a closed subset of V, then f"l[B] is elosed
whenever B is closed. -

Proof, If 1a el [B] and @ —>a , then a © A since A is
closed, f(a ) —> f(a) since f is continuous, and {f(a )} CB = f(a)C B
since B is closed, Therefore o © £~ [B] and f~ [B] has been proved closed.

If dom(f) =V in the above lemma then we can take complements and get
the following corollary,

Corollary, If f:V —> W is continuous then f'l(A) is open in V
whenever A is openin W,

This can also be argued directly from the €, § definition of continuity,

The converse holds as well, As an example of the use of this lemma consider for



a fixed a € V the continuous function f: V —> IR defined by £(£) = o (§, ).
The sets (-r,r) [0, r], S%ir.j are respectively open, closed and closed subsets
of R, Therefore their inverse images under f, the sphere Sr(a), the closed
sphere {E : pl&y a) S r} and the spherical surface {g : plé, a)= rjc
are open, closed and closed in V, In particular, the triangle inequality argument
demonstrating directly that Sr(a)-_ is open is now seen to be unnecessary by
virtue of the earlier triangle inequality argument which demonstrated the
continuity of the norm function and which remains unchanged for a general metric
function, e e w5 g

It is not true that continuous functions take closed sets into closed sets
in the forward direction. For example, the sequence {2u7 + l/n} is a closed
subset of JR (strictly speaking, has a closed range), but its image under the
sine function is the sequence {sin(l/n)} which is not a closed set.

If A is not assumed closed in Lemmma 7 then the conclusion is_that the
get C= £ I[B] is the intersectionof a closed set with A; in fact, C=C N A,

For CCE and CCA = CC-(-l‘.f'l A, and conversely, if aQEﬂA' then

= %anuf( C C with i, P and we are now back to the beginning of the above
proof, A subset of A that is the intersection of A wih a closed subset of V

is said to be relatively closed - it A, It’s complement in A is relatively open

in A and ts the intersection of A with an open subset of V.



§9. Topology

If V is an arbitrary set and J is any family of subsets of V satisfying
the conditions (1] = (3) in Theorem | then 7 is called a topology on V, That
theorem thus asserts that the open subsets of a normed linear space V form a
topology on" V. The subsequent definitions of interior, closed set and closure
were purely topological in the sense that they depended only on having the .
topology 7, as was Theorem I3 » and the identity (A)' = (A")* . The study of

the consequences of the existence of a topology is called general topology,

On the other hand, the definitions of sphere, sequential convergence and
continuity given earlier were metric definitions, and therefore part of metrip
space theory. In metric spaces, then, we have not only the topology bﬁt also
our € definitions of sequential convergence, continuity and spheres, and the
spherical characterizations of closure and interior.

The reader may be surprised to be told now that altbough continuity and
convergence were defined metrically they also have purely topological characteri=
2ations and are therefore topological ideas. This change-over is easy to see if
one keeps in mind that in a metric §pace an open set is nothing but a union of
spheres, We have:

(a) @, —>a as n—> o <= every open set containing o contains

almost all the Q.

(b} f is continuous at ¢ < for every open set A containing f(g)

there exists an open set B containing « such that {[B]C A,

Furthermore, these local conditions involving behavior around a single

point o are more fluently rendered in terms of the notion of neighborhood., A
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set A is a,\neighborhood of a point B &> BC A¥ ., Then we have:

&'} a, =% @ a8 n=—>a < pvery neighborhood of o contains

almost all a .

" (b') If domf is a neighborhood of ¢ then f is continuous o &>

for every neighborhood N of f(a). f'l[N] is a neighborhood of a.
Finally there are elegant topological characterizations of global
continuity, Suppose that S, and S2 'are topological spaces, Then f: 5, >S5,
is continuous (every where) <= f-l[A] if open \w;héne\;er A is open <=
f-l[B] is closed whenever B is closed. These conditions are not surprising

in view of Lemma | .



810, Sequential compactness

Definition, A metric space A is sequentially compact <=5 every sequence

in A has a subsequence which converges to a point of A,

Lemma §, A sequentially compact set A is cIosed and bounded,

Froof. Suppose that { }C A andthat @ —> B. By compactness
there exists a subsequence {(I-“fn(i)}i converging to a point o € A, But

a — B = @ ——> 3. Therefore B=a and BC A. Thus A is closed,

n(i)

Boundedﬁess here will mean iying in some sphgre_about a given point S,
If A is not bounded there exists a C A such that p(a , B) > n. By compact-
ness a subsequence ‘{an(l)} converges to a point oC A and pla a(i)’ By —>

plas B). This clearly contradicts p(an(i)' B) > n(i) 2
Theorem ;4 If V is a finite dimensional nls then every closed and bounded
subset of V is sequentially compact,

Proof, ThlB has essentlally been proved already in §6, There we showed
that if A is bounded then every sequence in A has a convergent subsequence,
If A is also closed then the limit of this su_baequet;ce_is__in A, and we are done,

Sequential compactness in infinite di‘mensional spaces is a much rarer
phenomenon, but is veryimportant when it does ocbcuf. We shall study one such
occurence in connection w1th Sturm-L;ouwile theory in Chapter IV.

Continuous functions carry compact sets im.forc_ompact_‘sets._ The proof
of the following result will be ieft as an exéfcise. B

Theorem 15, If f is continuousand A is a sequentially compact subset

of its domain, then f[A] is sequentially compact,
A non-empty compact set A(C_ IR contains maximum and minimum

elements. This is because lub A is the limit of a sequence in A, and hence belong:



to A itself since A is closed, Combining this fact with the above theorem we
obtain the following well-known corollary,

Corollary, If f is a continuous, real-valued function and dom (f) is
sequentially compact, then f is bounded and assumes maximum and minimum
values.,

The proof in 86 actually involved this circle of ideas, We first showed
that bounded closed sets were compact in thel-norm, andin particular, the
surface S of the unit l-norm éphere is compact., The inequality Il Il £ b II1
implies that the second norm is continuous with respect to the l-norm and
therefore assumes a minimum value m on S. Since Il Il cannot be zero on S
we have m >0, and therefore Il |, < (1/m)ll Nl on S. By homogeneity the
inequality holds everywhere,

The following very useful result is related to the above theorem.

Theorem (|, . If f is continuous and one-to-one and if dom (f) is
sequentially compact then £°! is continuous.

Froof. We have to show that if B ——> B in the range of f, and if

> q. We do so by showing that every

s )
a = 1B, and o =£1(B), then a,

subsequence Ean(i)}i has itself a subsequence converging to a (8 ). But,
since dom (f) is compact, there is a subsequence {an(i(j))}j converging to
some ¥ , and the continuity of f implies that f(y) = 1imj——->-oo fle n(i(j))) =

1i = B . Therefore 7y = f'l(B) = o, which is what we had

™ >0 Bagi

to prove,



811, Compactness and uniformity

A ] The wora 'uniform! is frequently used as a qualifying adjective in
mathematics, Roughly speaking, it concerns a "point" property P(o) which
- may or mai,r not hold at each pcint a in a domain A, and whose definition involves
an existential quaniiiier, A typical form for Fla) is (Ve) Jd)Qla, ¢, d).

The property holds on A if it holds for all ok A, i,e., if
(VoS A Vo) Fd) Qlay ¢ @) »

Here d will in general depend cn both o and c; if either a or c is changed
the corresponding d may kave to be changed. The property holds uniformly
on A, or uniformly in a, if a value d can be found that is independent of o,

though ‘still depending on ¢, Thus the property holds uniformly in ¢ <=
~ &
(Vo) FaVa=MQfe, ¢ a) ;-

the uniformity of the property is expressed in the reversal of the order of the
quantifiers (\7/01(—: A) and (3d).
According to the definition of continuity, a function f : A —> W is

continuous on its domain A <—>
« B (-.- y
(Vo= 2)(Ve (T8 O VBE A)o e ,8) < 5=p (tr), (B < €)

Then f is uniformly continuous on A <&

(vVe” %367 O(Va, B Mpla, B0 =70 (), 14BN < €)

Noew 0 is independent of the point at which coatiruity is being asserted, though



oy
still depencent on € , of course.
A sequence of functions %fn} C wh convergeto f: A—> W ata
point o C A <71 (o) > fla) in W. & (VETNIN(Vo)n >N =

o (fn(()! ), fla)) < €), The sequence converges pointwise to f if it converges io

f at every point a @ A, i, e., e
(Vo S8 Ve O 3N) Val(a >N => pl£ (a), fla)) < €.

The sequence converges uniformly on A &= N exists which is independent

of a, in0s, >
(Ve O INNVaN Valn > N =3 p(f (a), £)) < €)

When pio, B = lla - B, saying that p(fn(a), fla)) € € for all ¢ implies
that ¥f -l $ €. Thus f —> { uniformly & olg -l —> 0;
this is why the norm I £ “co is called the uniform norm,

Fointwise convergence does not imply uniform convergence. Thus
fn(x) =x" on A = (0, 1) converges pointwise to the zero function but not
unifor mly,

Nor does countiruity on A imply urniform continuity, The functicn
f(x) = 1/x is continuous on {0, 1) but not uniformly continuous, The function .
sin(1/x) is continuous and bounded on (0, 1) but is not uniformly continuous,
Compactnzss changes this situation, however.

Theorem | 7. If f is continuous on A and A is compact then { is

uniformly continuous on A.

Proof, This is one of our "automatic" nzgation proofs, Uniform



continuity (UC) is the property
(V€ F67 % Va, B Mota, BI< 6 => plla), £B) < €)

Thus ~ UC &= (Jde) (VN da, B)pla, B) < & and plfla), £B) 2 €).
Take 0 =1/n, with corresponding a, & B, . Thus, for all n, pfe., B ) < 1/x
and p (f(an), f(Bn) 2 € , where € is a fixed positive number, Now {an}
has a convergent subsequence, say (i) el G A8 L2 10 ; By 'the

compactness of A, Since p(Bn(i)’ o )) < 1/i, we also have 'Bn(i)—'—> Q.

n{i
By the continuity of £ at o, p(f(an(i))’ f(Bn(i)) =5 (f(an(i), fl@)) + p (fla), f(Bn(i)))
——> 0, which contradicts p(f(anm), f(ani))) 2 €. This completes the proof

by negation,

The compactness of A does not, however, automatically convert point-

wise convergence on A into uniform convergence, 1
The '"piecewise linear' functions £ 3 [0, 1] — [0, 1]
defined by the graph at the right converge pointwise

to 0 on the compact domain [0, 1], but the con~

vergence is not uniform, R S . .
i L

o L

Thke distance between two non-empty sets A and B, p(A, B), is

defined as glb{p(e, B): «C A and BEB}. If A and B intersect the
distance is zero. If A and B are disjoint the distance may still be zero, For
example, the interior and exterior of a circle in the plane are disjoint open

sets whose distance is zero. The x~-axis and (the graph of) the function f(x) = 1/x
are disjoint closed sets whose distance apart is 0, Howéver, if one of the closed

sets is compact then the distance must be positive,



Theorem18lf A is compact, B is closed and ‘I—A, B} is disjoint, then
plA, B) >0,

Proof, Automatic contradiction,

This result is again a uniformity condition, Saying that a set A is
disjoint from a closed set B is saying that ('v’ag A)(_73r>0)(5r'(a) A B =)
Saying that p(A, B) >0 is saying that (3Ir >0.)( Vag A-) see

B. As a last consequence of sequential compactness we shall establish a
very powerful properiy which is taken as the definition of compactness in general

topology. First, however, we need some preparatory work, If A isa subset

of a metric space W, the spherical neighborhcod of A of radius r,

Sr[A] s is simply the union of all the r-spheres about points of A:

n-

s_[A] U{'Qria) taC A S

{e:03aSHale, @) < 1 ]

A set B is said to be totally-bounded <=>

(v’r>°)( 3 a finite subset F CB)(BC S _[F]).

Thus for every positive r there exists a finite set {ai}?c B such that for
every £ C B we have pl(&, @) < r for some i,
Lemma 9, Every sequentially compact set B is totally-bourided.

Froof, If B is not totally~-bounded then
( 3r”9( ¥ finite subset FCB)B ~ (S_[F]'# ¢)

We can then define a sequsnce {an} inductively by taking a,; as any point of B,
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@, as any point of B not in Sr(arl), and @, A§ any point of B n_ot in

S. [U;"I a;’] = U;l-l S.(a;)e Then -?an} is a.sequence in B such that

plag, aj) 2 r forall i# j, But this sequence can have no convergent sub-
sequence, Thus if B is not totally-bounded then B is not sequgntially compact,
proving the lemma,

Lemma |0, Suppose that A is sequentially compact and thatl F is an open
covering of A (i,e., F isa family of open sets and AC U F). Then there
existe r > 0 such that every sphere of radius r about a point of A lies entirely
in some set of the family F , = de bes ,nf [ hon Ut

Proof, Otherwise, (‘V’r>0)(.‘] CA ‘V’BC )(S_(a) is not a subset of B),

Take r = 1/n, with corresponding sequence { an} « Thus Sl/n' is not a

subset of any BC ¥, Since A is sequentially compact {qn} has a convargent
subsequence a a(i) —_— a. ag i-——» . Since A covers A, sgme B in f;(—:
contams @, and then S (a)CB for some € .> 0 since B is open, Taking i
large enough so that 1/1 < G/Z and also p(a a(i ), a} < G/Z. , we have

l/n(L) (an(l)) C Sg (a)C B, contradzctmg the fact that Sl/ (a ) is not a subset of
any BC ¥ . The lemma has thus been proved

TheoremlQ, If % is an open covering of a sequentiéliy compact éet A
then some finite subfamily of i covers A,

" Proof, By the lemma immedialtely above there exists r > 0 such that
(Vag A)( HBG £ )(Sr(a)c B), and by the first lemma there exist Qs sees anC A
such that AC U;:‘ S la;). Taking corresponding sets B, ¥ with Sr(ai)CBi :
i=1, .os, n, we clearly have ACU? By .

In general topology, a set A such that evary open covering of A includes
a finite open covering is said to be compact. The above theorem says thatin a

~Roruigd-linear space every ssquentially compact set is compact,

i’lj’! Q ')
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§1la, Further properties of ihe distance between two sets in a nls,

1. Distance is unchanged by a translation: p(A, B) = p(A+v, B + )
(because ll{a + ) ~(B +y)li=la =Bl .,

2. p(kA, kB) = |k| p(A, B) (because lka - kBl = [k|lla-Bll)

3, If N is a subspace then the distance from B to N is unchanged
if we translate parallel to N :p (N, B) = p{N, B +7) if 7 C N (because

~N +1n =N)

4, If TC Hom(V, W) then p(T[A], T[B]) £ IITIlp(A, B) (because
Il T(a) =~ TGN E NTHelle - BU).
5. In any metric space P C A <«=> p(p, A) = 0 (see the lemmas on
page 2, 26) and therefore if A is closed and p & A then p(p, &) >0,
. '\-%0,%9}'.) ;
6, If N is a‘closed subspace and €> 0, there exists « such that

el =1 and pla, N) > 1-€,

Froof, Choose any B@ N. Then p(B, N) >0 (by (5) and there exists
nE N suchthat B -5l < p(B, N}/(1 - €) (by the definition of p(B , N)).
Set o = B-n /B~ nll. Then llall=1 and pla, N) = p(B-n, N)/IB -7k
= p(B, N)/UB=nl > p(B, NH1 = €)/p(B, IN) = 1-€, by (2), (3) and

the definition of 7.
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8l2., Comnleteness,

If !jn ——> a as n-—> © then the terms ljn obviously get close to

each other as n gets large. On the other hand, if {En} is a sequence whose

terms get arbitrarily close to each other as n > o then i’g’n} clearly
ought to converge to a limit, It may not, however; the desired limit vector may
be missing in the space V. If V is such thatevery sequence which ought to
converge actually does converge then we say that V is complete,” We now make
this notion precise,

Definition, {Eni is a Cauchy sequence <= (V&) IN)YVm, n)

(m>N and n>N —> p(gm, ‘g’n) <€),

Lemma 1. If §n———-—>a as n > @ then {«fn} is Cauchy.

Proof. Given € we choose N such that n > N S p(éé, a) < €72,

Then if m and n are both greater than N we have

e £ S plEp @) + pb, E) < €/2+€/2 = ¢,

m

Lemma j2. If (?Enfg is Cauchy and if a subsequence is convergent, say

gn(i) —>a as i—>a , then g€, —>a as'n > co,

Proof, Given €, we take N so that for all m ‘and n > N we have
P(Em. E.n) < €. Now take an arbitrary 0 and choose I sothat i > I =
both n{i) >N and ""‘En(i)’ @) < 6, Then m >N and i>I =>p (-Em, a) S
P(‘Emt gn(l)) + p(En(i)' a)<€+6, Thus m>N —> p(gm, a) <€ + 6,
for all &6, and so (§m,‘a) S €. Thus we have shown that ’cjm —>

as m—> o,
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Theorem 29, If V and W are normed linear spaces, %&n} is Cauchy in V

and TE Hom (V, W) then {T(&n)} is Cauchy in W,
Froof, Given € choose N sothat m, n > N =2 ilﬁm - Enll < /T,
= - = (g = - e - U
Then m, n > N =% IT(§_) - T(E ) = UT(E =) SNTIWE &0 <€
This lemma has a substantial generalization, as follows,

Theorem 21, If A and B are metfric spaces, {gn% is Cauchy in A and

F : A——> B is uniformly continuous, then tF(En)} is Cauchy in B.

The proof will be left as an exercise. " )

The student should try to acquire a good intuitive feel for the truth of
these lemmas, after which the technical proofs become mere transcriptions of
the cbvious,

Definition, A metric space A is complete << every Cauchy sequence

in A converges to a limit in A, A complete normed linear space is called a

Banach space.

We are now going to list some important examples of Banach spaces. In
each case a proof is necessary so the list becomes a collection of theorems.,

Theorem 322. IR is complete.

Froof, Let {xn}; be Cauchy in IR. Then {x_J is bounded (why? and
so, by O , has a convergent subsequence, lLemma 12 then implies that any
is convergent; q. e, d.

Theorem 33, If p and q are equivalent norms on V and <V, p>

is complete then so is <V, q7/.

Proof, If 3E { is q~Cauchy then it is p~-Cauchy, hence p-convergent,
(5n 4 y

hence g-convergernt,

Theorem 24, If Vl and V., are Banach spaces then so is le V’2 N

2
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Proof, Use the sum norm on '\f1 x V2_' If {(én, 'nn>} is Cauchy then
soare eachof (& [ and {7 _§ (since NEN S UHEN + gl = NCE, o),
Then §n —>g and nn—-—>~ B for some « (—:Vl and B VZ. « Thus
WE = all + Iy - gl >0, dves, W{E , 1 7 - {a B
e M7 —> Caw B? tn Yy xV,, :

Corollary 1, If {Vi}i‘ are Banach spaces then so is H Wi

1
i=l
Corollary 2, Every finite dimensional space is a Banach space (in any

> 0, i.e.,

norm),

Proof. R" is complete (in the l~norm, say) by Theorem 22 and
Corollary 1 above. We then impose a l-norm on V by choosing a basis,

Theorem 75, Let W be a Banach space, let A be any set, and let
fﬁ(A, W) be the vector space of all bounded mappings of A into W with the
uniform norm Wl = lub f‘nu fla)ll s aEAj'. Then @& (A, W) is complete.

Froof, Let {f | be Cauchy., Given €, let N be such that m, n > N

=21 fo ~fpllo < € . Chooseany aC A,  Since N (a) =£ (a)n g f-falg <

€, it follows that '{fn(a)j is Cauﬁhy in. W and so convergent, Define g :
A——> W by g(a) = lim £ (a), for each aC A, We have to show that g is
bounded and that fn T g

Now, - just as in the proof of Lemma ’)

It (a) - fn(a) <€ and £ (a) > g(a)

together imply that IIf_ (a) -g(a)ll S €. Thus m >N = | £ (a) - gla)lis €
for all alC A and hence m >N => Ilfm - g!im S €. This implies both that
£, -8 @ £ (A, W), andso g = £ -, -8& (3(A, W), and also that

fm — > g in the uniform norm, q.e.d.



Theorem 25 . A closed subset of a complete metric space is complete,

The proof is left to the reader.

Theorem 27 . In the context of Theorem 25 let A be a metric space,
let ﬁ(A, W) be the space of continuous mappings of A into W, and set
G3a, wy= B, w) n &, W),

Then £C is a closed subspace of & .

Froof, We suppose that 32f } C ¢ and that Il fn e Gl it 0
where g C § ., We have to show that g is continuous. ’I‘his is an
application of a much used "up, over and down'"

argument which can be schematically indicated

as at the right,

‘Given € we first choose any n such that I fn - gilco < €/3. Consider,

now, any a & A. Since f is countinuous at «, there exists 0 such that

uA

plE; @) <8 =2 If (g) - Hlatt < €/3. Then, p(£ a)< 0 =ylig(§) - glalll
hg(g) - £ () + Nf (&) - £ ()l + Nf (a) - gla} I < €/3+ €/3+ €/3=€., Thus
g is continuous at «, for every o« CA ‘and so gC e » Qs€.ds

This 1mpor;a.nt classical result is traditionally stated: the limit of a

uniformly convergent sequence of continuous functions _1__s__cont1nu01.s.

Corollary; &G (A, W) is a Banach space.

Theorem 23 . If A is a compact metfic space then A is complete,

Froof, A Cauchy sequence in A has a‘sﬁbsec‘iuencg converging to a limit
in A, :a.rid therefore, by Lemma 12 , itself con&erges to that limit, Thus A
is:conﬂﬁiete. o |

In.the last séction we proved that a compact set is also totally bounded.
It can be shown, conversely, that a complete, totally-bounded set A is compact,

so that these two properties together are equivalent to compactness,
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The crucial fact is that if A is totally bounded then every sequence in
A has a Cauchy subsequence, If A is also complete this Cauchy sub-
sequence will converge to a point of A, Thus the fact that total boundedness
and completeness together are equivalent to compactness follows directly

from the next lemma,

Lemma 13 , If A is totally bounded then every sequence in A

i
{ . A

has a Cauchy subsequence,

Proof, Let {pm} be any sequence in A, Since A can be covered
by a finite number of spheres of radius 1 at least one sphere in such a
covering contains infinitely many of the points Epm} » More precisely,
there exists an infinite set MIC Z+ such that the set {pm : mE Ml}
lies in a single sphere of radius 1, Suppose that Ml’ e atals MnC '/Z+
ﬁave been defined so that Mi+1C Mi s A= L, sney Hinly M!;ifsfinfinite.
and {pm :mE& Mn} is a subset of a sphere of radius 1/n, Since A
can be covered by a finite family of spheres of radius 1/(n+1), at least
one of the cdvering spheres contains infinitely many points of the set
{pm s mC Mn} « More precisely, there exists an infinite set
MnHC M such that ipm :mG Mn+1} is a subset of a sphere of
radius 1/(n+l), We thus define an infinite sequence 'E:Mn} of subsets
of z*t having the above properties,

Now choose m1€ M, m2€ M, so that m, > m, , and, in general,

m

n+1€ Mn+1 so that M ¢1 ~ ™, . Then the subsequence {pm '}n is

Cauchy, For, given €, we can choose n so that 1/n< €/2., Then
iL,j>n =5 m., mJ-C Mn = p(pm.. pm‘) < 2{i/ny < € .- This proves

i
the lemma,
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€13, Some anplications of completeness,

As we have seen, completeness, ‘as a property of a metric.space is
weaker than compactness. .Tbi.s rmeans that whenever compactneas‘ is present we
use it as the primary tool, Howevér,‘ in infinite dimensionai normed linear space
settings compactness is very rare and it is fortunate indeed fbat so much can be
done with completenss, We prove below two important theorem.s :involving
completeness which we shall apply in the next chapter,

Theorem 29, Let U bea subspace of a normed lineai"space V and let
T be a bounded linear mapprirng of U into a Banach space W, Then T has a
uniquely determined extensién to a bounded linsar transformation S ‘cn the
closure T of U into W. Moreover, IS = UTH,

Proof, Fix a Cﬁ alnd choose {ﬁni CU so th.a-,t ‘En ‘311 ,.. Then
{ﬁn%’ is Cauchy and {T(gn)} is Cauchy (by the lemmas of the preceding
section), so that _{T({;n)} converges to some BE. We | 1f '{nn} is any other

> 0, T(g n) 'VT(nn) =

sequence in U converging to o then §n-- Ty

T 'En - nn) _— 0 and so~ T(nn)' SURS B also. Thus f is"independent of the
sequence chosen and, cleérly, 38 must be the value S(a) a-t: o of any continuous
extension S of T, If a @ U, then § = lim Ttan) = T(a) by the coﬁtinuity of T.
We thus have S ulniciuely defined on U ‘b.y the requiremeﬂt that it be a
continuous extension of T, and Sl\U =T,
It remains to be shown that S is linear and bounded by I T, For auny
> B

and then have S{xa + yB)' = lim T(xgn + n)- = x lim T(En), + y lim T(nn) =

ay BQ- U we choose {En?f i {nn% CU so that &n > a and My

xS(a) + yS(B). Thus S is linear, Finally IS{a}ll = lim ITEIN S

HTHlim Enli = THh-Nla! Thus HWTI is a bound for S, and, since S includes



T, ISl = NITH q.e.d.
The above theorem has many applications, but we shall use it only once,

b ‘
to obtain the Riemann integral S f(t) dt of a continuous function f mapping a

= ;
closed interval [a, b] into a Banach space W as an extension of the trivial

integral for step functions,

We prove next the very simple and elegant fixed point theorem, for
contraction mappings, which will be the basis for our proofs in the next chapter
of the implicit function theorem and the fundamental existence and uniqueness
theorem for ordinary differential equations.

Definition, A mapping F : A ——> A is a contraction if it is a Lipschitz
mapping with constant < 1; that is, if there exitts C with 0< C< 1 such that
p(Fla), F(B) S Cpla, B) for all a, BC A. A fixed point of F is of course a
point o such that Fla) = o,

Theorem 30, Let A be a non-empty complete metric space and let
F :A——> A be acontraction, Then F has 2 uniquely determined fixed point
in A,

Froof, Choose any ao(—: A, Define the sequence {ani"‘z inductively by
setting @, =T{ao), a, = T(al) = Tz(ao) and o, = T(an_l) = Tn(ao). Set a =
Play gl Then play, ay) = p(Tley) Tlegh < Cplay ag) = Ca, and, by

. : -1
induction, p(an+1, el = p(T(arn), T(an_l)) = Cp{an, an-l) = C-C"™3 = €6,

It follows that {an’t is Cauchy, for if m > n then p(o:m, an) -

m-l vm"l i i
E p(ai—rl’ ai) E aZ C" < aC /(1-C) which —> 0 as n —> co,

u n
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Since A is complete, {ang converges to some « G A, and then it
follows that T(a) = lim T(arn) = lima_,, = @, 80 that « is a fixed point, If
B is any fixed p;int then o, a) = p(T(B)s Tla)) < CplB, @), which implies
that p(B, @) = 0 and thus that o is the only fixed point, This complétes the

proof of the the orem.
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D ‘ ( T
If we tried the above construction for a contraction mapping
K :A —> X, where A is anopen subset of the complete space X, then
the limit point which turns out to be the fixed point might not be in the
domain of K at all, However if A is an open sphere, and if K doesn’t
move the cent.er very far, then we can recapture the earlier situatiou.
- Corollary |.Let X be a complete metric space and let

2\
K:S (po) e x be a contraction, with coatracting constant C.

Suppose that p (K(po), PO) < (1= C)r . 'fhi; )Ig has a umque fixed point,
Proof. We simply check that if € is small enough then K maps
the closed sphere m) into itself, so thatthe theorem applies.
Take € < (1-C)r - p(K(pg)» po)-*’ DThen p(p} Pyl = r-€ =
p(K(p)s py) S p(K(p), Kipg)) + p(K(pg)s Py) € C(r-€)+(1-C)r - € £ r-C,
Thus K[A)C A if A'= m) « The uniqueness of the fixed point
is shown directly exactly as in the theorem,
Now let A and B be metric spaces with A complete, aqd let K
be a continuous mapping of A x B into A such that p -—-%K(p, .q) is
a contraction on A for each q in B, Then, of course, for each qC B
a unique fixed point pE A is determined, so that a fuﬁctién ‘f. :' B—> A
is uniquely defined by f(q) = K(f(q), q)s In order to make the notation
a little simpler we shall suppose that A and B are aubsets.bf normed

linear spaces,

Corollary 2, If the contraction is uniform with respect to q, that /¢

if, if there exists C < 1 suchthat IK(p;,q) - K(p,, q)ll € Clip, - p, I

for all qC B and all p,, p,& A, then the solution functmn £ above
4 r P

o
v ': % 4"1‘“"""" >/

is cortmuous.( l)\" s - : X

KlpN= 1= (1-gx1-8): 8t e-ed <e-(i-c)r [C1-c

S’
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Proof, Given € and gq,, choose 6 sothat llq-q,ll < 6 =>
IK(pg» qo) -K(po, gl < (1-C)€, where pg = f(qo). Similarly setting
p = £(q), we have llg-qyll < 6 = llp-pyli=IIK(psq) - K(pgs qq)l <
IK(p,q) - Klpge )l + 1 K(pg»q) = K(pgs qq)l S Clip-pyli+ (1-C)€ so
that llp=pyll < (1-C)E/(1-C) = €. That is, llg-qyll < & =>

iHf(q) = f(qo)ll< €, q.e.ds

We shall also find later use for the following theorem,

Theorem 3| . Let V and W be Banach spaces. Suppose that

TE Hom (V, W) has a bounded inverse and set m = l/IIT-IiE. Then S

has a bounded inverse whenever |l T-Sll < m, Moreover, I T-SlIS €< m

1 1

-5 S €/m(m-€). In particular the invertible maps form

an open subset o0 of Hom (V, W) and the mapping T —> T'l is

=> T

. continuous on Q,O ”

1

Broof. If aCV then a = T YT(x)) and lall SUT 0l T,

Thus I T{a )l 2 mliall for every a C VvV ; that is, T is bownded below

by m. Suppose now that [IT-5ll £ €< m . Then HS(a)ll =

HT{) + (S8=T)(a)ll 2 NT(a)ll = H(T=S)(a)ll 2 mlall-€llall= (m=-€)llall,
Thus, if IT-SI £ € < m, then S is bounded below by m-€ , and,

in particular, is injective. It also follows that R =range S is a
complete subspace of W (§2,13) and therefore closed, We assert that
in fact R = W, Otherwise J BE W suchthat lIgll =1 and p(B, R) >
by

€/m (§lla), Then a = ;I‘-I(B] bas norm < NT 'l = 1/m and
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B =S}l = I(T-S)@)t € N(T=S)+liall § €(1/m) = €/m , a contradiction.

Therefore R = W and we have proved that S has a bounded inverse
whenever [IT-Sll< m,

Finally, if ¢ = T-I(B) and a' = S-l(ﬁ), then T(@-a') =8 - T(a') =
(S = T)a'") andso (¢ -a') = (‘I"lﬁ (S - T)°S-’){B). Therefore

1

1T «57H(BM = lg-a'll £ 1/m €« m-CliBl , 8o that

ns~t - p-ly S €/m(m=-€). This completes the proof of the theorem,
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Chapter 3, The differential calculus

§1. Vector functions of a real variable ; integration.

We shall begin by taking a brief look at the integral and differential
calculus on a one dimension?domain, which we shall always take to be a
closed interval [a, b] C R. The integral of such a function will be
thought of as (b=-a) times the ve;:tor which is th.e "average value'' or
"average vector'' of the vectors making up the range of the function,
The derivative of a function at a point will be interpreted as the tangent
vector to the curve that is the range of the function.

To begin with we shall integrate only certain elementary functions
called step functions. A finite subset A of [a, b] which contains the
two end points a and b will be called a partition of [a, b]. Thus A
is (the range of) some finite sequence '*Lt1§8 where a =tg, < t1< see < tn= b,
and A subdivides [a, b] into a sequence of smaller intervals, To be
definite, we shall take the open intervals (ti-l’ ti), i=1l, ooy n as
the intervals of the subdivision. If A and B are partitions and ACB
we shall say that B is a refinement of A. Then each interval
(S'-l’ sj) of the B subdivision is included in an interval (tial’ ti) of

J
the A subdivision ;ti—l is the largest element of A which is < s.j 1

and t, the smallest 2> 85 . A step function is simply a map

f:[a, bJ] —> W which is constant on the intervals of some subdivision

5, Lo
A= Lti.) 0"

flE)= a; when & G (ti-l 3 ti)' The values of f at the subdividing points

That is, there exists a sequence of vectors 3013? such that

may be among these values or different,
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b step function £ we defis rbf(t dt T i Ak
.For each step unction f we define m; ) as 321 94 i ?

a
where f = a; on '(ti-l' ti) and mti = ti' - ti-—l' If £ were real-valued

this would be simply the sum of the areas of the rectangles malking up the
region between the graph of f and the t-axis. Now, f may be described
as a step function in terins of many different subdivisions, For example,
if f is constant en the intervals of A and if we obtain B from A by
adding one new point s, then f is constant on the (smaller) intervals of B.
We have'to be sure that the value of the integral of f deesn’t change
when we change the describing subdivision. In the case. just mentioned
this is easy to see, The one new point s lies in some interval (Iti- 1 ti),

defined by the partition A. The contribution of this interval to the A

sum is ai(ti - t‘i-l" while in the B sum it splits into ai(ti - 8) + o:i(s - ti-

But this is the same vector,. The remaining summands are the same in
the two sums, and the integral is therefore uanchanged, In general,
suppose that f is a step function with respect to A and also with respect
to C, Set B =l AU C, the "common refinement'" of A and C.- We

can pass from A to B in a sequence of steps at each of which we add
one new point, As we have_ seen, the int'egral remains unchanged at

each of these steps and so it is the same for A as for B, It is similarly
the same for C and B, and so for A and C., We have thus shown that

b :
§ f is independent of the subdivision used to define f.
a ' T e L :

Now fix [a, b] and W and let E be the set of all step functions
on [a, b] intoe W, Then & is a vector space. For, if f and g in

é are step functions relative to partitions A amd B then both functions

)



are constant on the intervals of C= A _ B and so therefore is x{ + yg.
: i in . -
Moreover, if C = "iti_‘\ o » and if on (t, 1 &) £= a; and g =8, so

that xf + yg = xa; + YBi there, then the equation

n n s 1
g (xai-I- YBi) L‘sti = x(z air.}-t.1> + y(? BiL\t.1>
1

i=1 1
b b b rb
is just g (xf + yg) = x S‘ f + yg g, and the map £ —-—-——>-5 f is thus linear
a a a
from £ into W, Finally
b n Tn
= < , < -
il SI £l II? aiAti s / Il aill Ati S Hfllm(b a)

a 1

where Ilfl_=1lub {Uf(t)I:t€[a, b] | = max e i:18ig 0y,

That is, if we use on &~ the uniform norm defined from the norm of

b
W, then the linear mapping f{ +—> S‘f is bounded by (b ~a), If W

a

is complete this transformation therefore has a unique bounded linear

of & in " ([a, b], W) Dby Theorem 29

extension to the closure 7

0

But we can show that ~ includes the space

\

of Chapter II .
(G(la, b], W) of all continuous functions on [a, b] into W, and the

integral of a continuous function is thus uniquely defined.

Lemma 1, G{([a, b], W) C E ;

Proof. A continuous function f on [a, b] is uniformly continuous (II,

Thm.z?.\That is, given G>O , there exists 0 i
|s ~t] < 6 = Ilf(s) - £(t)li< €. Now take any partition A= %ﬂrtizg on

such that

[a, b] such that at, = =t 4 < 6 for all i, and take a; as any
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value of £ on (ti-l’ t;)e Then Hf(t) -a. H< =k [t -1’ t] Thus if g is

the step function with value a; on Iti-l’ t,] and g(a)= a, then
Il £ g[lm S €. ‘
Our main theorem is a recapitulation,

Theorem 1 . If W is a Banach space and V= &(la, b], W),

under the umform norm, then there exists JGC Hom (V, W) uniquely

determined by settmg J(f) = lim g » where | an is any sequence

wm

a -
in & converging to f, and Sbfn is the elementary integralon & ,

a
Moreover, IJIIS (b - a),

If £ is elementary on [a, b] into W and c & [a, b] then of
course f is elementary on each of [a, c] and [c, b] . If ¢ is added
.‘ . - . y ki . Z e b
to a subdivision A used in defining f and if the sum defining - Sf with

respectto B= A v {ci( is broken into-two sums at c, we clearly

b c b :
have S":t' £ + S f. This same identity then follows for any

| c
continuous functmn f on [a, b] since Sf = .'l_imS\ £

lin';__( Sjc.ﬁn-lj,ybfn ). = LmSv f + lim S S‘:f 4 S.
a ¢
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§2, Vector functions of a real variable ; differentiation

In the last chapter we were principally discussing continuity and had
no compelling need for the generél notion of limit. The difference
quotients of the calculus, on the other hand, are functions not defined
at the point near which their behavior is crucial, and their discussion
requires the notion of the limit of f({) es § approaches, but stays

distinct fromja &

Definition. f(() —> B as & —>a <>
(\'/e>°)(§i5 O (Y E)NE € dom fand 0< IE -~all < & =>1£(§) - BlI< €).

One word of warning. It might happen that for some 0, S55(a) n dom {£
is empty or contains just the one point «. In the first case aé (dom 1) ,
and in the second ¢ is an "isolated point" §f dom f. In either case for
this 6 the hypothesis of the implication in the definition is never true
and the implication is therefore '"vacuously' true for any f. On the
other band, if every sphere about o intersects dom f in points other
than o (in which case we say that o is a li‘mit point of &om f) then

we have the usual proof that
HE) ==>f and ) == g = E= P,

so that now B is the limit of f as £ —> o , and we can write

B = lxmg ____}a f({f),
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A continuous f on [a, b] into W will be called a parametrized arc

in W, We now want to consider the derivative of such a function (arc)

at t;C [a, b] . The old definition works perfectly:

g e COH(t) - £(tn)
f(to) = hmt—-—>t0 ---—-——-Q—-_ E=tg.

where the difference quotient on the right above has domain [a, ‘b] - {to} .

We shall also call f"(to) the tangent vector to the parametrized arc

£ at 'to . This terminology fits our geometric intuition as the following

sketch suggests, i“or simplicity we have set t, =0 and £(t)=0,

L ’ ‘.{ (é-) 'j‘__i_f_lf_u\
R
= e
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There is no need to go into any detail about the derivative here
because our later discussion of the differential will include everything, but
it should be clear that we could establish the standard laws of the
differential calculus by the same old arguments., In particular, f+—> f'(to)
is a linear map from the set of arcs having a tangent at t; into W/

The fundamental theorem of the calculus is still with us;

Theorem 2 , If f& (G([a, b], W) and F :[a, b] —> W is

x
defined by F(x) = S\ f(t)dt , then F' exists on (a, b) and F'(x) = f(x).

a

Proof: By the coutinuity of £ at x,, for every € there exists O

such that | f(xo) - f(x)ll < € whenever [x - xol < 0, But then

X X
”5 (f(xo) - f(t)) dt “ g e ix - xOI , and since S f(xo) dt = f(xo)(x - xo)
X %0
by the definition of the integral for an elementary function, we see that
(wx X
llf(xo) =“{ 3 £(t) dt)/(x - xo)ll < €, Since g f(tydt = F(x) - F(xo) this

X X
0 ¢
is exactly the statement that the difference quotient for F converges

to f(xo), as was to be proved,



83, The mean value theorem.

We agree with Dieudonné [ ] in taking the mean value theorem to
be an inequality.

Theorem 3 ., Let f be a continuous function on a closed intérv‘al
W o , £ Vo8 (o

{a, b] into a normed linear space, and suppose that f'(t) e_Jfl.EtS anc}
RE'(t) | Sm for every t Cw(\a,(“ b)l:. .1-‘) ’I't;(er; I f(b) ’- fla)ll S F(n hm':(b g h)

Pro-of. Fix € >0 and ¢ >a and let A be the set of points
x € [c, b] suchthat I£(x) - £(c)l € (m + €)(x - ¢), A is non-empty
since cC A, Set ( —lubA Then 4 x C A with x —> ¢, and
since || f(x ) = £l (m + G)(x - c) for each n, we bave
HE(L) = £(e)ll € (m+ €)( L =c) by the contmulty of £ at K, Thus KC A.
We claim that ( =b, For if )l< b then f'(Y) exists anci ‘llf'(i))ll T i

Therefore there exists & such that ” f(x) - f("

l( ‘m '+ € when
|x - £] S 6. It follows that Nlf{/+6) - f(c)ug HE( L+ 6) « £ N+

HE() - £(e)l € (m + €6 + (m+€)(l-c)={(m+ E)F+06-c), sothat

~

2+ 6 C A, a contradiction, Tkerefore X =b. We thus have
I £(b) = £(c)ll < (m+€ )b ~c) for every cG (a, b), Using the continuity
of f at a we get ilf(b) - f(a)ll S (m +€)(b - a), and finally, since €

is arbitrary, If(b) - f(a)ll 2 m(b - a).

¢ fuelk [ E R Wls B8
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* § 4, Weak methods,

If V is finite dimensional the above theory can all be thrown back

to the standard calculus cf real~valued functions of a real variable by

applying functionals from V¥ and using the natural isomorphism of V¥¥

with V. Thus, if £ C & ([a, b], V) and N C€V*, then X\-f (i([a,b], R)

b
and so the integral S‘ o f exists from standard calculus, If we vary X
. b
we can check that the map A\ —— S rno f is linear, hence - (V**) and
a

therefore is given by a uniquely determined vector « © V (by duality,

see I, Thm,28)That is, there existsa unique o & V such that

b b
Ma) = g A2 f for every )\CV*, and we define this a to be § )

a a

Thus integration is defined so as to commute with the application of

b
linear functionals: g f is that vector such that

a
Fab b

x(‘gﬂ = g NE(t) dt  for all AEVT,
a a

) 1
Similarly, if all the real-valued functions Snof N C V¥ | are

\

differentiable at X then the mapping A+—> (A ° f)'(xo) is linear by
the linearity of the derivative in the standard calculus: ((clh1 + ca)\.z)o i =

(cl(llu f) + ¢ (kzﬂ ) =c,(\,0o )! + cz(kzﬂf)‘. Therefore there is again

2 1'1
a unique o © V suchthat (A ¢ £)'(xg) = \(e) for all X\ € v*, and if
we define this o to be the derivative f'(xo) we have again defined

an operation of the calculus by commutativity with linear functionals:
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(o £l = (h 2 £)'(x)

Now the fundamental theorem of the calculus appears as follows.

x x
If F(x) = (“ f then (N2 F)(x) = g A2 {f by the weak definition of the
o/
a a

integral, The fundamental theorem of the standard calculus then says that
(A © F)! exists and (A © F)Yx) = (A ¢ f)(x) = Nf(x)). By the weak definition
of the derivative we thenhave that F' exists and FYx) = ‘f(x).

The one conclusion that we -dn't get so easily by weak methods is

b
the norm inequality “‘S‘f_ “ S (b-a)ll f“co . This requires a theorem
a

about norms on finite dimensional spaces that we shall not prove in this

course,
Theoreml . o™ Il = llall for each o€ V. What is being
asserted is that iubo la *¥(\)|/UNl= llall, Since &**(\) = A{a) and since

IN(a)] € HNNsllell by the definition of Hl\ Il, we see that lub !a**{h)l/lll":
el Our problem is therefore to find \C V¥ with IINIl = 1 and
11\ (a)] = llall, If we multiply through by a suitable constant (replacing
@ by ca, where ¢ = 1/llall) we can suppose llall = 1. Then
@ is on the unit spherical surface, and the problem is to find a
functional N € V* such that the affine subspace (hyperplane)
where N =1 touches the unit sphere at o (so that \(a) =1) and
otherwise lies outside the unit sphere (so that [(M(€)] €1 when 1l &N =1,
and hence I\l < 1), It is clear geometrically that such "tangent planes"
must exist but we shall drop the matter there, |

If we assume this theorem, then, since

] \

) 3 § {

! C p 715 T i & Ll As '
{ e \ X {
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(‘b\_ b ai 2~ ] C " \,(
Ix( J f)l = |S M) at| S (b -a) max | [ME)] : t & (a, B])YS

a a
(b - a) Ixll max {nf(t)u% (from |Na) | S liMlisligl) = (bea) inie NN,

we get

b b b
."g-fn PO (.S £)** I = 1lub ]Ng £) [/UNIE (b =a)lfll
a . : a

a

the extreme members of which form the desired inequality.
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§5, Infinitesimals

Definition, A subset AV is a neighborhood of a point g <=> A

includes some open sphere about a. A deleted neighborhood of o is a

neibhborhood of o minus the point o itself,

We define special sets of functions J) . C)’, & as follows. As
usual, V and W are any two normed linear spaces,

1@ QQ (V, W) <= dom f is a neighborhood of 0 in V, range
fCw, f(0) = 0 and f is continuous at 0, These functions are the

infinitesimals.

1C C}’(V, W) <= §C QQ(V, W) and there exist positive constants

Nt s :'_h-‘;lg, I;N " A A = o X

r and c suchthat HEE) S c IgN on 5 _(0), 1 b b )?‘ X0
- € It

€ oV, W) <=> € J(V, W) and NEE)/NEN —> Oas £ —> 0,
d+ (0) = o

A simple set of functions on R into IR makes the qualitative

difference between these classes apparent, The function f : f(x) = ]x] 1/2
: e & o )
is in (R, R) but not in @’, g:g(x) =x is in L) and therefore in
N

é) but not in &7, and h:h(x)=xz . ; 6 2 ‘ZI 6 ,, 4
=X {) -

is in all three classes,

OQurprevious notion of the sum of two functions does not apply to
a pair of functions f, g Q,C (V, W) because their domains may be
different, However f+g is defined on the intersection dom f N dom g,
Wwhich is still a neighborhood of 0. Moreover, addition remains com-
mutative and associative when extended in this way, It is clear that then

0V, W) is almost a vector space. The only trouble occurs in connection



\ .
\ L]

f {
t

T3

with the equation £+ (-f) = 0, where the domain of the function on the left
is dom f, whereas we naturally take 0 to be the zero function on the
whole of V,

*The way out of this difficulty is to identify two functions f and g
in O if they are the same on some sphere about 0. Strictly speaking,
we define f and g to be equivalent (f ~g) <= there exists r > 0
such that f=g on Sr(O); We then check (in our minds) that thisr_ig_
an equivalence relation, and that we now do have a vector space, Its

elements are called germs of functions at 0. A germ is thus, strictly

speaking, an equivalence class of functions, but in practice one tends
to think of germs in terms of their representing functions, only keeping
in mind that two functions are the same as ger mé when they agree on
a neighborhood of 0
: .
'I‘he algebralc properties of the three classes \Q <, and &
are cruc1al for the d1iferent1al calculus. We gather them together in

the £ollowmg theorem.

Theorem 5 .(1) &(v, w) C (v, w)y C U(V, W), and each

of the three classes is closed under addition and multiplication byscalars.
(2) fC OV V,) and g€ OV, Vy) => gofC TV V3

where dorn g of = £ [dom g] ‘ ; ),

(3) If either £ or g above is in 5’then so is ng

(4) £C O(v, W) and gC '(v, R) => fgC &V, W), 'and similarly

if fCoQ and gC @’f

{5) In (4) if either £ or g is in & and the other is merely bounded
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on a neighborhood of 0, then fgC & (V, W).
(6) Hom (v, W) C &(v, W)

(7) Hom(V, W) n o(V, w) = {0¢,

Proof, Set (o (V, W)= {£f€ J(V, W) : UE(£)I % CIE Il on some
sphere about 0 J’I’. Then fC O > (3 ENEC @’G) and fC & <=>
(Y €>0)(f€ (9/6) + Obviously & C OO,

| (1) If HEE S € IlEll on Srl(O) and Il g(£)H ;gzngn on s_ {0)

PR
then Wf(§) + g(&)l < (€l+ Gz)if‘ill on Sr(O), where r = min trl, T, fe

Thus O is closed under addition, The closure of & under addition
follows similarly, or simply from the limit of a sum being the sum of
the limits,

(2) If nggyn < GIIIEH when &N S r, and lig{y ) = Gzlli', 1
when Il 5l £ r, then hg(f(E NN S szif(:g)ll = €261H§H when
IEN & = = min {r,, ra/ey §

(3) Now suppose that fC = in (2), Then, given & we can take
€, = €/€, andhave Hg(f(£))l < CHEN when NE I S r., Thus gof €
The argument when gG < and fC (¥ is essentially the same.,

(4) Given If ()l S clléli on Sr(O) and given €, we choose
6 : |gl&)] € €/c onm S5(0) and have If(£)g(E)ll S ClENl when .

Hen min(0, r). The other result follows similarly(\%} Cal‘ll:;‘;\\égia‘;?g).

(6) A bounded linear transformation is in (J by definition,

(7) Suppose that f C Hom(V, W) n ~(V, W), Take any a# 0,

Given € choose r sothat I£(£)Il SEIEN on S_(0), Thenwrite a

as o = x£, where Wl < r, (Find ¢ and x)s Then lf(a)ll = Il £f(x&)l
v Najf » o
- te B = —

X
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[xPlig(z)l € |x|- €N &N = €llel. Thus Ii(e)ll T €llall for every
positive € and so f(e) =0, Thus f=0, proving (7).

Remark: The additivity of f was notused in this argument - only
its homogeneity, It follows theréfore that there is no homogeneous
function in & except 0.

Sometimes when more than one variable is present it is necéséary
to indicate with respect to which variable a function is in (or & .

We then write '"f(&) = " for " C (XM, "r(E)" being used to

designate an arbitrary element of (7,

"
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§6, The differential

Definition, 4F(a, §) = AF, (£) = Fla + &) - Fla). PARP IR £
Definition, Let A be a neighborhood of ¢ in V., A mapping

F:A ——> W is differenitiable at ¢ <==> JTC Hom (V, W) such
that AFQ(‘g') = T(E) + #(§).

The (o theorem implies then that T is uniquely determined,
for if also AF =S5+ then T-SC 9 andso T-S=0 by (7) of

the theorem, This uniquely deternined T is called the differential of

F at o andis designated dFQ. Thus

AFQ = dFa + &, where dFQC Hom (V, W),

and dFa is the unique (bounded) linear approximation to JAFQ . We
gather together in the next theorem certain elem entary facts which follow
immediately from the definition.
If £fC V¥ and B © W then the mapping £ ——> f£(£)B
clearly belongs to Hom (V, W). It is called a dyad ; we naturally
designate it '£g', <0 vecomal oizac: i(?»é)v x?u;;/ liver prod p
It will be convenient to use the notation iﬁa (V, W) for the set
of all mappings on neighborhoods of @ € V into W which are

differentiable at o .

Théorem 6. (1) F C ;QQ(V, W) => &F_ € GV, w).

(2) F, GEF (v, = F+GC O _(v, W)

and d(F + G)a = dFa + dGa .
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(3) FEC PV, R) and GE D, (V, W) => FGE (5% (V, W) and
d(FG), = Fla)dg, + dF, Gle),

the second term being a dyad.
(4) If F is a constantfunction on V then F is differentiable and
dF =0,
i |
(5) If VFQ Hom (V, W) then F is differentiable at every
«a©CV and dF, = F.

J’ by (1) and (6) of the O

u

Proof. (1) AF =dF + .= U+
o o o .

theorem,

it

(2) It is clear that A(F + C:)a !.&Fa + A Gcz .

' et ) : &) = ' &
Therrefore A(F +G‘)a = (dFa+ ) + (dGa+ ) (dFa + dGa) + 4
by (1) of the (J>- theorem. Since dF  + dG @ Hom (V, W), we

have (2).

(3) &(FG) (§) = Fla+§)Glat £) - Fla) Gla)

L]

AF, (£) Gle) + Fla)a G, (€) + OF, (£)A G, (£) . Thus

A(FG), = (dF, + &) Gla) + Fla)dG, + &) + O = dF, G (@) + Fladdgy+ &
by the (7o theorem. | B S :

(4) AF& =0 => dFa =0

(5) AF, (&) = Fla + £) - Fla) = F(£).

Thus é.\Fa = F E Hom (V, W), q.e.d.

Somewhat more complicated is the chain rule,
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- O
Theorem 7 . F & 53& (Vis V,) and G € Pr@)Var V3

=> GoFC 2 AV} V3) and
dGeF), = dG Fla) ° Fy

Proof, & G» F)a(g) = G(F(a +§)) - G(Fla)) = G(F(a) taF, (€) -

G(Fla)) £ dGp, \(OF, (EN + (AE, (£) = d Gy (dF, (£)) +
dGpo (=€) + o (7 =qd Gp(q) @ 4F, M) + Fotry ool
Thus A(G? F), = dG F(a) ° 9Fy + 7 by (3) of the (s theorem.

Since d GF(a) o dFQ,Q Hom (V,, V), this proves the theorem,



€7, Directional derivatives

If the parametrized arc vy :[a, b] —> V is differentiable at

x © (a, b), then dy,(b) = hdy (1) = ha, where a =dy(l). Since

Ay ~dy G o, this gives 4wy (B} = ha @ and 50
x x > 0
T ol
&'yx(h) ‘ :
h >q as h—>0, Thus ¢ is the derivative ¥'(x) in the

| ordinary sense, By reversing the above steps we see that the existence

: (,'()‘ of 4'(x) implies the differentiability of vy at x. Thus:

Theorem 3 . A pafametz;ized arc v:[a, b] — V is differentiable

at x C (a, b) <= 4'(x) exists in the ordinary sense, and |dy (h)=hy'(x).
Now let A be a neighborhood of ¢ in V and suppose given

F:A—> W. We can then consider the behavior of F along the

various straight lines through o. F¥or any non-zero £ C V the straight

line through « in the direction £ has the parametric representation

t —> o + té, Composing with F, we have the parametrized arc

v: ¥(t) = Fla + t§). Its tangent vector (derivative) at the origin t =0,

if it exists, is called the derivative of F inthe direction £ at @, or

the derivative of F with respect to £ at o, and is designated DEF(Q’)-

As noted above it is a derivative in the ordinary sense:

Fla +t€) - Fla)
t —>0 t

DgF(a) = lim

We notice also that if V = R® then the derivative of F in the direction of
the jth standard basis vector & is just the partial derivative 8F/d xj 3

W
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0%, =
t j

D Fla) =lim _ Flapazgic.aitieei,a))-Flaj,a...,a) OF
Tl t -0

The theorem above has the following corollary,
Corollary, If FEC ffja (V, W) then Dg F(a) exists for every ¢

and Dg Fla) = dFa(?,-').

Proof, The parametrized line k :Mt) = o+ t§ is the sum ofrt;ne
constant function ¢ and the linear function t +—>tf and is thus
differentiable at every t, with d?\t(h) = h§, The composite y = Fo\
is thus differentiable and gy = i )L)D= dFa o d\y, giving v'(0) =
d(F o N\)o(1) = (dE, = dngN(1) = ar_(\'(0)) = dF,_ (£).

This computation can also easily be made directly as in the theorem,

It is natural to wonder whether the existence of all the directional
derivatives of F at a imply the differentiability of F there. The
answer is ''no" and the following theorem supplies most of it.,

Theorem 9 , Let F be any homogeneous but not linear mapping

of V into W. Then th(O) exists and equals F(£) for all £, but
F is not differentiable at 0,

Proof, The homogéneity of F is the condition F(x§) = xF(!) for
allx C IR, £€ V. Then the composition v: vy (t) = F(tf) of F with
any parametrized straight lines through 0 is linear and D‘EF(O) ='(0) =
(1) = F(E), On the other hand, if F is differentiable at O then
dFo(g) = Dg F(0) = F(£) implyingthat F = dF, is linear, a contradiction,

We have left only to find a non-linear homogeneous function, Taking
: 3

:ﬁ:+y2

the simplest possible situation, where F : IR?“ —> R, set F(x, y} = =
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if (x, y? # <0, 0> and F(0, 0)=0. Then F(tx, ty) =tF(x, y) so that
F is homOgenebus, But ¥ is not linear,

We shall see later ‘(_§ ) tha.t if the directional derivative DgF(a)
exists and is continuous as a function of ¢ in some sphere around @ g
for each £ in some finite spanning set of §’s (V is thberefore finite

dimensional) then dFa exists and is continuous in a.



i, 22

88, The differentiability of an m~tuple of functions,

We know that an m~tuple of functions on a common domain, e A —> W.1
i=1, ,,.,m, is equivalent to a single m~tuple valued function

Fi1A— W= Hm Wi. » Fa) being the m-tuple {Fl(a)} lmfor each
i=] '
a & A. We now check the obviously necessary result that F is differentiable

at ¢« C A if and only if each F' ig differentiable at «. By virtue of

the inductive definition W = (H ! Wi) X Wm’ it is sufficient to consider
i=1
only an ordered pair of functions, although the reader will notice that

the proof could be made about as easily directly for the general case.

Theorem /D, Given F:A —> Wys G:A—> W, and {F, G)=

H:A—> W, x W, then H is différentiable at o C A if and only if
F and G are both differentiable at o, and dH = (dF, dG) .

Proof, Let 91 be the injection map & —> <:§, 0> of W, into
W, X W, and, similarly, let 9,n) = {0, 7>, Then, strictly
speaking, H= 0, F + 6,2G (the equation H = (T, G> not being
really accurate), Since 91 and 92 are linear and hence differentiable,
with d(ei)a = Gi, we see that if F and G are differentiable at a then
so is H, and that dHa = @ lodxr_dg; Bzﬁ d.‘(}a . Less exactly, this is the
statement dHa-'-"- <d1-“a, H'Ca> "

Conversely let T, be the projection map <§, T,‘> — k£ of W, X W,
onto Wl' We know that T is linear and obviously F = T° H, so that
if H is differentiable at o then so is F, with dFa =Wy dHa' ‘Similarly,

dG =w,odH |,
o o

2



Iy, 23

Corollary 1, Gi,ven_ Ft t A —> W’.1 5 1= lyseesm and

o m
<Fl,...,Fm > = F:A—> W= H Wi then F is differentiable at
: 1

@ A if and only if each F is differentiable at o, andthen
_ 1 m
aF = dF, ,e00,dF D .
The reader will notice that again the really correct statements are
_ m i = m P . C e
F= Z’leioF and dFa Z’l QiodFa ’ whereA Bj is the injection

; n_
of W'j into Hl Wi .



!

89. The differentiability of a function of n=-tuples,

The question at the domain end is much more complicated and its
answer constitutes one of our fundamental theorems. We regard a
function F(El. coey ‘g'n) of n variables as a function of the single n-tuple
variable 5” = & 1* +++» &, > and we are therefore concerned with a
function F : A—> W where A is an open subsetof V = H Vi .

If F is differentiable at o = <o 1 sees an> we define the partial

differentials dF‘]; b ng nas the restrictions of dFa to the n

coordinate spaces Vl. coey Vn « Strictly speaking we must again use
the injection 6. of V. into V= |[[ V., and thenset dF* = dF o4, ,
J J gk A " o o
Thus if & = '\'El, - En> then § = le Gi(gi) and dFa({_f) =
2. art (&) |
, L
Suppose now that we cc;mpose F with a differentiable n=-tuplet
of functions G = <g1, seny gn> defined on an open set containing a point

v such that a = G(v), and ask for the differential of the composite function

H=F~G at Y¥e Actually, of course, G = Z 0. og » so that d(FOG)

dF dG'}’ Z, dF o . Odg'}’ Z dFt odg » giving a kind of

chain rule in terms of partial differentials:
i N
d(F =G = » dF_od .
bt R N e

Since AFG('CO,...,O, §_]’ 0seess03) - dFi, (g,])

=AFa(<0’0-cs gi, 03t0030>) - dFa(<0,..., gj, 0,...’0>} = @/(gj)
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we see that dF(iy is simplf ﬂie di.fferential of the function of the one vector
variable Ej obtained from F by holding all other variables fixed at a;

(i# j) Ifl Vj =R this function of one vector variable «’_E,j = t is now a
parametrized arc and its differential is equivalent to a directional derivative
as in 83, 7If every Vi=R, sothat V = Rr", | rhase direckional derivatives

are (vector~valued) partial derivatives, as we saw earlier, so that

iy = . OF
dFE(hj) = h

g gx g sud
A

Y
L

.. Fla)

IR . C I
= dF;(hi) - ) by =

dF , ()
1 1

This final equation is clearly our old expansion

() = T() b 0) = ) BT(0)

_.which sirﬁpiy expresses again the fact that ' %‘F;'(_(i) = dFa(Gi) = %Fﬁi(i).
| Ren_':__ember',‘though, that 9F/0X.(a) is a vect_or1 in W _an-d not a number,
To g}.t numerical partial derivatives we must have ‘W also a Cartesian
spaceﬂ ; see the next s’ection.l

We already know that the existence of the n {laia’rtial differentials

a)ll
if the dF:r exist for all "aC A é.nd are continuous functions of « then

/ ) g P . .
~"Ld}? ‘% does not guarantee the existence of dFa (see §3. 7)., However

it does follow that dF_ exists for each o © A and that ¢ > dF  is
continuous, The proof of this important' fact is our next concern, Again
it will suffice to consider‘only the case n =2,

Theorem || ., Let A be an open subset of V = Vl X VZ. and suppose




n, 1b

that F : A —> W has continuous partial differentials dF< B>3nd

dF< B> on A, Then dF< LB exists and is contmuous on A, and
dF<a‘.B>(<E' 7?>) = dF < B>{£) & dF< B>m)

Froof, Since dF{a B is linear on Vl and dF( B> is linear
’

on VZ » the transformation T on Vy X VZ defined loosely by

- 1 2 G 2 !
T(E 7)) “, dF(a,B>(€) + dF<Q’B>(n) is linear. Strictly speaking
T = dF]‘c Tyt szoﬂz where T, is the projection {g,n> —> £
‘and similarly for T, « Inany event, weare claiming that dF B
(2 F]

is this T, so our problem is to show that /AF B>(§ ' 1) - T(<§s my) =

BCE, BN (o BS being held fixed,
We shall use the sum norm (the sum of the given norms on Vl

and VZ) for V. Given €, we choose 0 so that IIdF< >-dF< B>H<€
for every <a B') in the &-sphere about . {a, B) andfor i=1,2,

. 1 2 ik
We then express AF<Q’B>(§, M) as A"+ A%, where A" =
Flat &, B+1) = F(a, B+ 1) and AzzF(a, B+n) -F(a,B)s We new
estimate A' in terms of dF! when Il (¢, n> T Consider first

the function £(t) = F(a + t &, B+ 7 ) ~ tdF < B>(§) for tC 0 1
. 1
! ! =

We know that f' exists and f'(t) = dF<a+ tE, 3'”7\5&) < B>(5)
Since Il (&, T;>IE <0 we have lif'(t)li< C NE I Therefore II£(1) - £(0)Il
< € il by the mean value theorem. This is exactly the inequality

o 5 dF<1 o B < €NEN. Similarly Il 4% -

2
dFg, oo (M < € linl,
Therefore IIAFC [35{&"”) = T(E, g . € N&E. )1l , and this is

just what was to be found,
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Corollary 1. If A is an open subset of H v and F : A—> W
is such that for each i=1,...,n the partial dszerent:.al dF ex1sts
for all aC A and is continuous as a functmn of o = <al,. verc '> i then

c!FQf exists and is continuous on' A. If & = (El,... ,§n7 then
— N . '. . - '
- i
dF €E).=. z 4 dE (gi)', -

Proof, The existence and contir.xu'u.:y of dF{lI and dFj’ imply by
the theorem that dF; (E'lj‘ + dFﬁ (& ,) is the differential of F censidered
as a function of the first two variables when the others are held fixed.
Being the sum of continuous functions it is itself cbntinuou,s in o, and
we can now apply the theorem again to add dF to this sum partial
 differential, to get Z dF (€,) to be the differential of F on

Vl X'Vz X V3 ." And so on {which is colloquial for induction),
Corollary 2, If A is an open subset of R® and F:A—> W

has all of its first partial derivatives 8;E‘/8x_i existing and continuous

i ; : ,,_.‘n
then F is continuously differentiable on A and dFa(E) = 2_,1 (BF/Bxi(g._))hi.



§10, The Jacobian matrix

We are now concerned with a mapping F : A —--—>-IRrﬁ where A is
an open subset of R™, If F is differentiable at _a;Q A then

dFaC—: Hom (an, IRm), and dFa is therefore given by an m X n matrix,

— —

say {‘tij f( « We want to evaluate the entries tij .

F is an m-tuplet valued function and therefore equivalent (by duality)
to an m-tuplet of real-valued functions, As usual, we assert this
equivalence loosely as an equality: F = (fl, ey £ - 38 According to

83,8, we then have dFa = (dfl" R dfr: > » which simply displays

the linear mapping dFa into R™ as an m-~tuplet of linear functionals,

From our general matrix theory we know that the jtB column of the

matrix )':tij‘} is the m-tuplet T(Gj) ; here it is the m~tuplet dFa(ﬁj) =
DF5 (a) = _gf{_fj_ (a) . By the above paragraph, this m-tuplet is
j J

1 m
1 m of of .
<df2(6j), ceer A8 D = ( B o)y s o (a) > . That is,
_ gt
ti = ax @

If we use the notation ¥i = fl(x) » We can also write tij = E}f}_ (a) « This
= 8x.

J
matrix of first partial derivatives evaluated at a is called the °

Jacobi an matrix of the transformation F = \/fl, seey £ > at a.,

If we also have a differentiable map z = G(y) = <gl(_g), eess g"‘q(_g)>

of an openset B C R™ into IR‘Q » andif B contains b = F(a), then
e = il
dGy, has, similarly, the matrix 28— (b) = 9%k (b) , Then the chain
b y. —_— Y. -
= i 9

i
rule
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d(GOF)a = dG OdFa

2 b "a
becomes
oz —m 8z oy,
k k
@) e ® g @
J - i
i=1
or simply
sz o Tm sz ayi
R dy. ox,
%5 L %%

Thls is the usual form of the chain rule in the calculus. We éeé tha;l’: it
is merely the expresswn as matr:x multtphcatzon of the comp051t10n of
linear maps,

Sﬁppose now that A is an 0pen subset of a fmn-:e dimensional vector
space V and that H: A —> W is differentiable at o & A, Suppose
that W is also finite dimensional andthat &:; V —> R" and
& : W —> R™ are any coofdina_te isomorphisms, If A = ®@[A] then

-1

A is an open subset of R” and H = @0 H°®"" is a mapping of A

into R™ which is differentiable at 2 = ®(a), with dH_= @ odﬂao@v"‘.
Then dH is given by 1ts Jacobi an matrix | 'La.h'l/ax.(a) } which we

now call the Jacobtan matrix of H with respect to ‘the chosen bases in

V and W, Change of bases in V and W changes the Jacobxan matrix

' accordmg to the rule in Sl 9e



#* 811, The differentiability of composition

N

> W and an arbitrary set B, let G : AB e WB be

Given g: A
composition by g, Thatis, h = G(f) <=> h=gof., The question we
wigh to consider here is the differentiability of G, It will be sufficient
for our purposes to take A to be an open sphere Sr(ao) in a2 normed
linear space V. Then let U be the open sphere Sr(a"o) in V = & (B, V)
under the uniform norm, Here ‘-;0 is the constant function on B with

value ay, and £ C U == fC AP and 1£-37 I, < .

il

Theorem Y., Let V and W be‘normed linear spaces, let A

be an open sphere S (a,)C V, let B be an arbxtrary setand let U be
the open sphere Sr(ao)CV = (B, V). Let g: A—> W be
uniformly continuously differentiable. That is, dg’a exists for all
¢ A and ot—> dga is a uniformly continuous mapping of A u}to ; };
Hom(V, W), Suppose also that |l dg Il is bounded on A, s,:yélbt;’ b? T’;Zn
the mapping G: U —> W = © (B, W) defined by G(f)=g-f is
continueusly differentiable, For any fC V , dG, : V —> W' is
defined by (dG(h))(t) = dgf(t)(h(t)) for all tC B, and | 4G £ b.
Proof. We first notice that « C A => lig(a) - glagll < rb, by
the mean value theorem, so that g is bounded on A and g-f is
bounded for all fC U,
Given €, choose 0 sothat ¢, a'C A and lla-a'll < 6 =
i dga - dga, Il < €. This is the hypothesis of uniform continuity. It

then follows exactly as in the proof of the theorem in §3, 9 that I Ellc §=>



ey

A ga(g) - dga(.‘;)ll S engun,

provided a and a+ £ are both in A, We now take any fC U, and set
6'=r - nf-a"‘ouw . Thenfor any hc V, lhll <0 =>f+ hC U,

"and the above displayed inequality implies that
- <
1agg ) (B(D) = dggy (b(ENI S € B

for all tC B . If we hold f fixed and define T : V —> W by

(T(h))(t) = dgf(t)(h(t)), then this inequality says exactly that
- T(h <
1AGyR) - T()l, S € Nblg, .

Since this holds for every h in V such that llhll_ < 6!, we have

AG,=T + © , and it remains only to show that TC Hom(V, W).

f
. The linearity of T is easy to check, Thus, (T(h1+ bz))_(t) =

: ldgf'(t)(-.(b_]_"' hz)(t)) = dgf(t)(bl(t) + hz(t)) = dgf(t)(hl(t)) + dgf(t)(hz(t)) =
(T(h))t) + (T(b,))(t). Thus T(h;+h,) = T(h)) + T(h;), and bomogeneity

follows similarly. Also, IT(h)ll_ =1lub {li T(n(t)i: tC B ] S

lab § Wdgg - lib(e)l: tC B £ g vumig . Therdore TG Hem(V, W)

and 1T S b,

Finally, if Hfl- “fZ“co < 6, so that H-dgil(t)-- dgfz(t)"; € for all t,

: < :
then we see just as above that |l del(h) -d sz(h)"co s el h"co .- That
- f, 1< 6 => dG, ~dG, | 5 - atlild t'li:e‘r'rriapping f—> dG
™ g gy g, = % | £

is continuous, This finishes the proof of the theorem.

is, I f
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8§12, The fixed point as a differentiable function

We now return to the situation studied in the second corollary in
82, 13 under the additional hypothesis that K(e, B) is continuously
differentiable, and show that the solution function F defined by
F(B) = K(F(B), B), must then also be continuocusly differentiable,

Theorem |3, Suppose that S = Sr(ao)C V, when V is a Banach

space, that B is an open subset of a normed linear space W, that
K:5 xB —> V is continuously differentiable, and that there exists a
constant C < 1 such that |l dK;a.B>“ < C on S ¥B and
ey - Klegs Bl < (1-C)r on B, Then for each BC B  there exists a
unique o & S such that ¢ = K(a, B) and the function F : B —> S thus
defined is continuously differentiable,

Proof. The inequality IdK'l < C on Sx B implies that
K@), B) - Kla,, BII S C la)-a,ll for any o, a2€s and any BC B
by the mean value theorem. Thus for each fixed B& B, K(a, B) satisfies
the hypotheses of the first corollary of the fixed point theorem (82.1 3)
and therefore there exists for each BC B a unique a C S such that
a =K@, B)e Let F :B —> S be the function thus defined,

We now fix BC B and choose 0 so that S5(B)C B, and so that
I dx2<F(B,)’3,3 I is bounded, say by b,for B' in this sphere, Setting

= F(B) and a' = F(B') we have, first, that

le' ~a ¥ = IK{@', B') - K(a, B)Il & IK(@', B") - K(a, B") I

+ UK(a, B') -~ K(a, BIIl S Clia" =all + bIB' - Bl
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so that lla' -a Il £ (b/(1-C)) IIB' -Bll, or
hEN S (b/(1=C)) linl.

where £ = of -_-a and 7 = B'-B. Thus & = On). Also,

£ =a'-a =Kl ) - Kla, B) = Kla +£ B+7) - Kl B)

]

AK<Q'B‘7 (gln):"'dK /\a’3>(§:7?) + @'( <'gl 77>)

RS T 2 ,
—Ad,K<Q’B>(£) + K gy @)t s(L M 7).

. 1 < . _ T 5
Since IlIdK 2oy B 7!1 = C< 1, it follows that T =1 dK(a, 8> is
invertible, by 82, 13, We can therefore solve the above equation for

1

£, getting £ =T~ "dKZ@. go() + o). Since £'=a'-a =F(B) -F(p) =
F(B+n) -F({B) = AFB('I)), this says that F is differentiable at B, The
differentiability. of F on B implies its continuity, and since the partial
differentials dK<]:\a.6> and dKz(“:B> are continuous functions of

{a, By by hypothesis, and since S }|—> (I - S’)"1 is a continuous mapping
of the open unit sphere gl < 1 in Hom (V, V) into Hom(V, V) by -

the lemma in 82, 13, we have, altogether, that

¢ 1 = T
Wp = L=l r@ne>! ¥ <rELe>

is a continuous function of 8 on B. This completes the proof of the

theorem,
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§13. The implicit function theorem

We state first an important special case, It says that if the linear

transformation dHa is invertible then H itself is invertible near Qg .
0

Theorem 14 . Let A be an open set of a Banach space V and let

H:A—> W be a continuously differentiable map of A into a normed
&Y rd.]c el

linear space W, Suppose that w aOC A, dHao has a bounded
inverse, and set BO = H(ao). Then there exist r,p >0 such that for
each B Sp(BO) there exists a unique o C S ley) such that B = H(a).
The inverse function F : Sp o Sr thus uniquely defined is con-
tinuously differentiable, and its differential at B = H{a) is given by
dF g = (cma)‘1 .

This theorem is a corollary of the implicit function theorem which

we now state and prove,

Theorem 15, Let V and W be Banach spaces and let A x B

be an open subset of V XW, Let G:AXB —> W be continuously

differentiable, and suppose given a point {ag Bo > @ A XB such that

Glans Bn) = 0 and such that d Gl has a bounded inverse, Then there
0’ Po Lags By

exist r and p greater than zero such that for each B C SP(BO) there

exists a unique o € S (ay) satisfying Gle, B) = 0. The function

F: Sp(BO) — Sr(ao) thus uniquely defined by the equation G(F(B), B) = 0

is cortinuously differentiable, and dF can be calculated from the equation

1 = 2 =
w8 * 9 i), 8y = O
obtained by differentiating the equation G(F(B), B) =0,



Proof, Set T = dG - and Ko, B) = a - ’I"I(G(a, B))e Then
e Lag B>
dK(“yBO? = 0 and Kagr Bg) = g« Therefore, for any CG& (0, 1)
1 < - &

we can choose r such that |l dK(a.B> IS C when lICa, B (aO,B-ONI r
and 0 S r so that IlK(aro, B) -crOH < (1 =-C)r when [If - 3(]1[ < 0, Then
§3, 1%, together with the fact that Gla, B) = 0 <> Kla, B) =a, gives
the theorem,

The inverse mapping theorem follows from the implicit-function-

theorem upon setting Gla, 8) = H{a) - B and observing that

1 -
daza,ﬁk) = dHa %

Wi,



814, Ordinary differential equations ; the basic theorem,

Let A be an open subset of a Banach space W, let I be an open
intervalin R, andlet F : A x I —> W be continuous, We want to

study the differential equation
da /dt = F(e, t)

If Ip= (tg =0, t;+6)CI then a function f: I, —> A is a solution

of this equation on I <==> f'(t) exists for every tC I, and
f'(t) = F(£(t), t)

on I,. Notice that a solution f has to be continuously differentiable,
for if f' exists on 10 then f is continuous on IO and then f£'(t) = F(£(t),t)
is continuous there by the continuity of F .
We are going to see that if F is uniformly a Lipschitz mapping in
its first variable, then there exists a uniquely deter mined "local"
solution through any point lage to7 C A xI,
In saying that the solution f goes through <°'0’ tyy we mean,
of course, that ag = f(to). The requirement that the solution f have

the value ag when t = to is also called an initial condition.

Theorem /&, Let A, I and F be as above and suppose that for

some constant c, I F(al. t) - F(al, t)ll € ¢ Hal -aztl for all al,QZE A,

tC I. Then for any <a0, to\/ € AX I there exists r, 6 >0 such that

there is a unique solution f to da /dt = F(a, t) aatisfying £(ty) = ap

dom f = 10 & (t0 - 0, t0+ 0) and range £ C Sr(ao).
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Proof. If f isa solution on .IO through ,<q0, t0>. then

t
S F(f(s), s)ds so that

0 P

t
£(t) - £(t,) = S £'(s) ds
‘t

£(t)

t :
ay t gF(f(a), s)ds
to
for tC I« Conversely, if f satisfies this equation then the fundamental
theorem of the calculus implies that f'(t) exists and equals F(f(t), t) on
Iy 80 that f is a solution which clearly goes through <a0, t0‘7 . .Thus

the solution f is a fixed point of the mapping K defined by setting

g = K(f) —=>glt) = ap + gtF(f(s), &) s
g 5
We must now find the right domain for K to act on as a cortr_action
mapping, - -
We start by choosing r such that Sr(ao)C A, If A= W' v;re
can take r = co, We also choose 50 such that [to - §0. to- + 50] C I
and set b = max {"F(G’O,t)”: |t - tol ‘_;,760-’%’. We take some 6 < 60
and let V be the Banach space C.(Igs W) of bounded continuous
functions on Io =ty - . ty + 0) into W (see 82,12), Our late;
calculation shows how small we have to take 8.,
‘We é.an inject W. into V as the constant functions ; in particular,
Qe take zr-o " as the constant function on Iy ‘with Va.lue ag e Then_. any
£ sr(&‘éjc V has its range in A and F(f(t), t) isin V, with S

IF(E(t), ) S IF(£(t),1) - Flag, )l + I Flag, )l S re + b for all



.38

tC I+ Therefore K as defined above maps Sr(a'o) into V, and

t
(1) IIK(&'O) .-217011Go S 1ub {IJS Fag,s)dsli: |t -tol < 5} s Oh,

to

t
(2) IK(£) - K(E) S lub{ﬂv 5 (F(f)(8)s 8)- = F(£,(s), s) }

to

S 0lub § IF(f fa), s) - F(f,(s), sll { < 6C lub Lt (s) -£,(s) §

Oc I £, - fZ"oo .

Thus K is a contractionif 6c < 1 and K has a unique fixed point by
the first corollary to the fixed poirt theorem if also 6b <(1 - &c)r ,

We take any & satisfying these. -two inequalities-and the. theorem is proved,
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o
§15, Differentiable dependence on parameters,

It is exceedingly important in some applications to know how the

solution to the systém
£'(t) = Gl(i(t), t), £'(t)) =@,

varies with the initial point <a 1’ t1 \) . In order to state the problem
precisely we fix IO = (t0 -0, tg t 6) and U = S;_(EO)C V= (B@{IO, W)
as in the previous section and require a solution in U passing through
<cx.1, t1> , where <a1, t1> is near <a0’ t0> . Supposing that a
unique‘éolutipn f exists we then have a mapping <a1, t1>—-—> f, and
it is the continuity and differenrtiability of this map that we wish to
study;. |

The céntinuity of the solution as a function of the initial point
follows already from the last section and the second corollary to the
fixed point theorem. But the differentiability of this mapping depends on
83,11,

Theorem /7. Let A be an open subset of a Banach space W,

let I be an open intervalin R, andlet F : A x] —> W be continuously

differentiable, with dFl<a £ uniformly continuow on A x I, Then for
?

any <a0, to\; © A x1 there exist r, 0, and € such that for any

<a1, ;7€ Sc (Lags toY )s the differential equation do/dt = Fa, t)

has a unique solution f on I, = (t0 -0, ty + 6) into Sr(ao) satisfying

£(t;)= a;, and lapp ;7 —>f is a continuously differentiable mapping
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of So({ags ty”) into U,

Proof, We choose r so that | dF(a,tB” is bounded, say by c,
on S_( (ao,t0> )e Then IF(a,, t) - Flay, )l £ ¢ e, =a,ll for any
<a1, £, <a2, t> in this sphere by the mean value theorem, We next
choose 6 as in the preceding theorem so that IF(@y,t)l S b on
Iy = (tg= o, tot 6), 0c< 1 and 6b< (1 = 6c)r, andset V = \‘BG(IO, W),
U= Sr(a-olc V. We choose € < 6 and set B = S€ (a O)C W and
J=8c(tg) = (¢, - €, tp+ € C R, Finally Wetdefine K:Ux(BxJ)—>V
by setting g = K(f,al, tl) <> g(t) = a)t S‘ F(f(s), s)ds for all

t

t in Iy = (to-é, t0+5). 1

t
Now the mapping h —> k defined by k(t) = S‘h(s)ds for all
t
1
s Iy is a linear mapping of V into V and bounded by lub {It-tll : tE IO}
S 6+ €., By83, 11 the integrand map f —> h defined by h(s) = F(f(s), s)
is continuously differentiable on U with differential bounded by c,

Combining these two maps we see that dK l<f B exists on Ux B xJ,
e I

is continuous there, and bounded by C=(0+ €)c. Now AK2<f’al’t1\(5) =f,

2 3 t1+h
so that dK"™ = I, and AK<f.al.t1>(h) = —S' F(f(s), s)ds so that

o
dak 3 (B) = BF(f(t)), t)). Since these three partial differentials.
<f,al, t1> 17* 1
are all continuouson U x B x J, it follows from §3. 9 that K is

continuously differentiable there,

t
Finally, "Eo - K(&‘O, @y )l = (@, -a) -S F(&'o, s)dsllm

1

= fa =all+ 8b < € + 6b, We now require that € be small enough
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e

R

sothat C = (0+ €)c <1 and so that €+ 0Ob < (1=C)r=(1=-(06+ €)c)r.
Since we already have Il dKlll : C on Ux B xJ we can now, at last,
apply 83, 12 and conclude that the solution fC U is a continuously

differentiable function of the initial point <a1, t17 in B x J,



816, Global solutions

The solutions we have found for the differential equation do /dt = Ffa,t)
are defined only in sufficiently small neighborhoods of the initial point
typ and are accordingly called local solutions. Now if we run along to
a point (’al, t17 near the end of such a local solution and then consider
the local solution about <a1, t17 it will first of all have to agree on the
approach. side with our first solution, because there is only one
solution gecing through <a 1? t1> » and secondly it will in general extend
further in the other direction than the first solution, so that the two
local solutions fit together to make a solution on a larger t interval
than either gives separately. We can continue in this way to extend our
original solution to what might be called a gloBal solution, made up of a
patch work of matching local solutions, T.hese netions are somewhat
vague as described above and we newiturn to a more precise construction
of a global solution,

Given <ao, t0> C A x1, let “F be the fafnily of all solutions
through <a0, t0‘7 « Thus g &_;l:c==> g is a solution on an interval
i t0€ J and g(to) = g

We show that the union f of all the functions gc F is a function,
Since each function g is a set of ordéred pairs, f is just the union
of a family of sets; a point <t, @y isin f if and only if {t, o>
is in some g in (7(:_. If £ is not a function it'contains two distinct
pairs (s, 7 and s, @, vith the same first element s, Suppose

that g >t0 and that <s, a1> Q gz, (s, 02§€ g2 . Set
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x = glb {t 1>ty and g-l(t) # gz(t) }. Then x< s and gl(t) = gz(t)

for tC [to, xX)s Since gl and g, are continuous, gl(x) = gz(x). Call

this common value o, and choose r such that Sr(a)C A and € so

. that gl(t) and _gz(t) (-:Sr(a) for all tC (x - €, xt €). Also take ©

. small enough s.o that the differéntial equation has a unique solution on

(x-€, x+€) thrcugh La, x> ‘wifh values in S (a). Since the restrictions

0% 8y and g, to (x-€, x+€) are such solutlons, g =8, on (x~-€, xt+€)

and this contradlcts the definition of x as glb {t >ty gl{t) # gz(t)j .
Thus f is a function, It is'a solut:.on_because around any x in

its domain f agrees with some g C * By the way f was defined

we -see that f is the unique maximum selution through <a0, t07 We

have thus proved the following theorem, -

 Theorem /f . Let K 2 AR]L —_— V be a functicn satisfying the

hypotheses of either 83,14 or 83,15, Then through each point
<ao, :t07 © Ax 1 thér_e exists a uniquély determined maximal solution
to the differential equation de/dt = F(a. t).

We shall examine the nature of a maxlmai solution under somewhat
stronger hypotheses than we used in §3 14, We shall suppose bcth tha.t
I Flay, t) - Fla,, £l < clia) - a,ll for all a), a_zG A andall t &I,
and also that for some a, H;E‘(ao, -t)ll is bounded on I, If
I F(ags )l & b on I then NF(a, t)I S clla-ayll + b and we have control
of the size of F everywhere, In particular lIF(a}, t)il is bounded by

b, on I where b1 = cll a‘l-aoll+ b,

1 :
It g is any édlut_ion through <-ab, t0\7 then of course
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t R
g(t) ~ay = S. F(g(s), s)ds for all t in the domain J of g. Suppose
. P t : \ t
‘that " t > to". Then llig(t) - aoll ‘é 5 I F(g(s), s) = F(ao, s)‘ll ds-!-S ] F(ao, s)ll

Yo o

-t . '
- 5 cS‘ il g{s) - ugllids + b(t - to). If the function 6 is defined for t > to

-t |
by 6(t - to) = llg(t) - aoll , then 0 is a continuous, non-negative real-

valued function defined on an interval [0, /) and satisfying ¥ -

| B(x) S G(y) dy + bx for all x C [o, 3’2). Now it can be shown that
0 ‘
o i " ' .- b, ex ‘ .
this inequality forces the inequality 6(x) < g (e - 1) (see )e
Therefore, . ‘ .
llg(t) - aoll < b (e Slt-tol _

for all tC J, This inequality can also be proved dir‘ectly by a closer
examination of the iterated sequence of the fixed point theorem m this
special situation, . |

‘We now show that the impossibility of extéﬂ&ing the ﬁéxiﬁd f any
_ further can be explained loosely as the fact tbat £ already goes right up to
- the boundary of the domain A xI on whxch F is defmed. -

Theorem /7, If the right endpoint d of the domazn mterval J of

the maximal solution f is less than the right eudpomt of I then f(t)
approaches the boundary of A as t —> d. _
Froof, Given € >0, s'et"€ G/k where k is to be determmed

later, The construction process used in 83, 14 to obtam the 10ca1
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solution through <a1, t1‘> involved first choosing any r such that
S (al)C A and then choosing the solution domain radius O to be any number
such that 6c <1 and 5b < (1 - 6c)r, where in the present situation

1l < b ( C(dﬂto) ).

b, = cllal- a0|1+ b, and Ilal - 00H= Ilf(tl) -agl = ¢

1
For simplicity we shall take & <1/2c so thatthe second inequality will be

satisfied if §bl < r/2., Substituting for bl this becomes O < r/k where
k = 2b 2%(3-%0) Now it t1‘> d-€ , then 6 must be < €, for the
solution through (ozl, t1> on (t; -0, t +6) cannot éxtend beyond d,
and so t1+5 < d, implying that 6% d-t; < €. Therefore r/k must
be < €ys and r s € k=€, Since r was any number such that
Sr(o:l)C A, the fact that r must necess-a.fily be £ € means that
p(f(t)), 9A) < € . Thus for every €>0 we have found €; >0 such
that |d -t,| <€, => p(f(t;), 24) < €, Thatis, f(t) —> 8A as
t —>d, q.e.d.

It is also possible to make the continuous and differentiabdle
depéndence of the solution on its initial value oy, ty7 into2 global

affair, The following is the theorem. We shall not go into its proof here.

Theorem <0 ., Let f e s aadimal solutmn through <ao, ty?

with lc-loma.in J, and let [a,b] be any closed submterva.l of J containing toe
Then there exists € >0 such that for every (al, t17 - S (ao,t ) the
domain of the global solution through <a1, t. includes [a,b], and the
restriction of this solution to [a, b]is a continuous function of Lap 7 -

If F satisfi.es the hypotheses of 83,15 then this dependence is continuously

differentiable,
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817, The linear equation
If Fa, t) is linear in o for each fixed t, the hypothesis of a uniform
Lipschitz constant ¢ under which we 0perated in..83,14 becomes
WF(a, t)l S cliall for every (a, t” € Vx I. It now follows that the
solution function varies linearly with the initial value Qg .

Theorem </ . Let V be a Banach space, I an open interval'in R

and F a continuous mapping of V;&I into V., Suppose also that F(a, t)
is lmear as a function of ¢ for each te 1 and that there exists a constant
o ek that Il F(a, t)il Scllag ll for all la, t5 @ VxI1. Fix tOQI ‘
Then for each BC V there exists a unique solution ff3 : I—> V to the
differential equation do /dt = F{a, t) such that B(to) = B, and the
mapping B —> fﬁ is a bounded linear rﬁappmg of V into 4£/3(I, V).
Froof, Since IF(B, t)ll < clipll for all tC I the maximal solution
f3 through <B, t;7 satisfies IlfB(t)Il < Bl ",*"‘0I . The domain of
fB is the whole of I because V has no boundary for the solution to run |
into, and the ‘above inequality gives I fgll o S kil Bll where k= ¢ c.(fi-a)
and I = (a. d). This is the boundedness. of B—> fﬂ - Finally "o
Fltglt) +1, (), 0. -

B+ 'y » it follows -

(fg + £ = fh(t) + 1] Mt = F(fg(t), t) + F(£ Athe t)

. n

Thus fﬁ + _f‘Y is a qolutt_on, and:since (fB + f )(to)

that fB+ ITI := fB $y ° It follows similarly that xf‘3 B » and the

mapping B }—> fﬁ_ is therefore linear, q. e, d,
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§18. The otP order equation

Let Al, AZ,...,AII be open subsets of a Banach space W, let I

be an open interval in R and let G : Al)q Ay xees xAan —> W be

coatinuovs We consider the differential equation

n

- -1
49 - Glo, da/dt, vuuy d° L, 7a*=, 4
e

A function f:J —> A1 is a solution to this equation if J is an open

subinterval of I, £ has continuous derivatives on J up to the nt? order,

f(i"l)[J] & A, i=1,...yn, and
{2 = e, 0, ...y {270, 1)
for t. J . An initial value is now a point

<Bl' Bza L Bnr t0>€ Al)‘\ LECIUI 4 An)( I,

The basic theorem is almost the same as before, To simplify our
: P
notation, let o be the n-tuple - <a1. @ypees 'an> in W = V and set

A = H: A; . Also set £8) = (g, 11, L., f‘“"”) .

Theorem 22, Let G : A xI—>W beas above and suppose, in

addition, that there is a constant c such that Il G(g_ , t) - G(_[_%_, )l 'f__.
cllg - gll for all o, §_€ A X I, Then for any <§_, t07 - A X1 there
exist r, 6 >0 and a unique function f: (to-ﬁ, t0+5) — Sr(Bl)C W
such that f is a solution to the above n'P order equation and such that
(n) =

f gt (to) - E -

Proof. There is an ancient and standard device for reducing a single
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ath order equation to a system of first order equations, ' The idea is

to replace the single equation
_dnt_lf_‘ /dtn = G (0.': da/dt’ soey d(ﬂ-l)a/dtn-l' t)

by the system of equations

fial/dt = a,,
daz/dt = oy
dan-l/dt -

dan/dt -~ G(al' azl-oota H t)

n

Clearly, a system of functions a; = l(l:), cees@ = fn(t) satisfies
this set of equations if and only if f,(t) satisfies the original nth
order equation,

For us, this device will simply amount to replacing the nth order
equation involving the space W by a single first order equation involving
the space V = w%, We define the functions Fi‘ :éxl - W By
setting Fi(_q_, t) = @y for i=1,,,.,n=1, and Fn{g, t) = G (g_. t)e
Then F : A x I—> V is simply the n-tuplet <F1,... SF S That is,
F = ZI: Bic-.'E‘i » where Gi is the injection of W into V = W" ag
the ith coordinate subspace., Now the system of first order equations. is

entirely equivalent to the single first order equation

dﬁ/dt = F(Q’_’ t)
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A,',ld the n~-tuplet initial condition f(-t-l-)(to) = B is now just £‘ (to) = B, where,
of course, f = {f,... ,fn7. Finally, the Lipschitz inequality

lGla, t) = G(Bs t)l £ cllg - Bll implies that | Fla, t) = F(B,t)l Scllig - Bl
where c'= c+l. This is because IF¥a, t) - Fi(8, )l = ™’ - g1
if i < n, and it supposes that we have used the sum norm in

n
v=w". e Il = Z lla,Il. But now our nth order theorem for G

has turned into the first order theorem for F and so follows from §3. 14,
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*819. More on the linear equation

Now let X, be the Banach space ST, V) of all bounded continuous
functmns on I into V, under the umform norm | flf = lub {l‘l £(te)ll : tQI 5
and let X.l be the subspace (not closed) Cz (1, V) of functions having
a bounded continuous derwatwe on I. Accordmg to the above theorem,
if F is linear in o then the set N of global solutlons of the differential
equation dg/dt - F(a » t) = 0 is a subspace of Xy« Writing the equation
in this way suggests pretty clearly that N 1is just the nullspace of a
linear mapping T : K= XO defmed by da/dt - Fla, t) Thus
we define T by setting g = T(f) if and only if g(t) = £'(t) - F(£(t), t).
¥ £C J_JG(I. V) = 1' then A'I‘(f)@.;lj r;;(;, V) = X, and the linearity of
T follows from the linearity of differentiation and the assumed linearity
of F. T is not bounded in the unifurm' norm because f |—> fl is not - -
bounded, (Houvever' if w'e-f.ix tOC II‘: aud "set e = 1l f(t HI+ LL£? H . e
then |l ﬂN is a new norm on Xl and it is not hard to check that Tis
huunded thh respect to it.)

;. An important property_of Tl s that it is surjective ; every
g ¢ JTG’L{I, V) is the image under T of at least one £ CEek, '3 T
To see tljn'.s _we set G(a y t) = F(a. t) ¥ g(t) anci consider the new:
equatlon (no longer lmear) da/dt = G(a, s By our general tbeory it -
has a unique solutwn f through any 1n1t1a1 point <a0, to‘y » and,
just as for F, its global extension has domain I and is (exponentlally) :

bounded._ Because f'(t) = F(£(t), t) + g(t)_, the derivative f' is also
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bounded (Il £Y(t)Il S UF(i(t), t)ll+ [l g(t)l < clif(t)li+ lig(t)ll and so
ne'n S oclfll o+ ligl ).

According to 81, 3c, a general solution to the inhomogeneous
equation T(f) = g is a linear mapping of X, into X} which is a right
inverse of T, and is completely determined by the complementary subspace
M that is its range. Now for each initial point t, the subspace

. DeC % sty = 0} 3 .

Mto LfC 2(1 - f(to) 0 } is such a complement of N in X, . For

if fC M, AN then f is a solutionto da/dt= F(a, t) having value
0

0at t Since the zero function is also such a solution, and since

0 L
this solution is nnique, we must have f =0, Thus Mt N N= {0} .
0

To see that M, + N = Xy we take any f& X4 and let g be the unique
0 ; '
element of N through <o 0 t07 = <f(t0), t07 ., If h=f-g then

h{tg) = 0. Thus f=g+ h where g N and h& Mt , and we have
0

finished proving that Mt and N are complementary, Altogether
0

we have proved the following theorem,

Theorem X4 ., Let V be a Banach space, I an open interval in

IR and F a continuous map of V X I into V. Suppese also that F(a, t)
is linear as a function of o for each t& I and that there exists a constant

¢ such that IF(a, t)Il $ cliall for every <e, t7C V » 1. Define a

mapping T by setting g = T(f) <> g(t) = f'(t) - F(£(t), t) for all
t € I. Then T is a linear mapping of Btﬁl(l, V) onto EE A 'V

For each tOG I the mapping f —> f(to) is an isomorphism of the null=-

space N(T) onto V, The subspace M, = fE X, f(t,) = 075 is a
oy . { R _
complement of N in V, and therefore determines a general solution

transformation for the inhomogeneous equation T(f) =g .
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If J is a closed subinterval of I and we confine our attention
to solutions over J, then we can locate our initial cordition (ao, t0>
at an endpoint of J if we wish, If ty is the left-hand endpoint of J
this merely means that the local solution on (to-ﬁ, tyt 0) is now restricted
to [t,o, ty+ 0).

It is also possible to start with the original domain of F in the
form A X J, where J is a closed interval, The derivative f' of a
parametrized arc f makes perfectly good sense as a one~-sided notion;
we only have to notice that the limit of the difference quotient Af/At
is now being taken at a point not interior to the domain of 4f, Generally,
however, it is permissible to think of a one-sided derivation or differ-
ential of f at a bomdary point @ of its domain as being given by the
ordinary derivative or differential of an extension of f over - a larger
domain having @y as an interior point, as we did above in taking the
closed interval J as a subinterval of the open interval I,

If Jis the closed interval [a, b], then according to our discussion

above the subspaces M, and My in particular are complements in
X, of the nullspace N of our differential operator T : XI e XO .

We remember that Ma is the nullspace of the coordinate mapping of
Xl = Iﬁ C;I( J, V) into V defined by f{—> f(a). The problem that will
Occupy our attention in the next chapter can be roughly described as
follows, Let V, and V, be closed subspaces of V and let M; and Mg
be their inverse images in Xl under the a and b coordinate maps,

Thus, for sxample, M; = {fE X, : £(a) c Vls - Nowif V| is larger
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than ‘[05L ‘then M; is too large to be a complement of N in X4 since

it includes the complement M_ as a proper subspace. In the same way

Mg is too large. But it may happen that M= M; N Mi is a complement

of N. If so it is a new type of complement, different from any initial

values complement Mt . In this situation the requirements that
0 . .
f(a)C V1 and f(b)g Vz are called boundary conditions, and the problem

of solving the equation T(f) = g subject to these conditions is called a

boundary value problem. Thus the solution to the bowndary value problem

is the inverse of the isomorphism T MM : M —> X, where M is the
complement of N determined by the boundary conditions.

In the special situation that will concern us (T self-adjoint) the
actual computation of this inverse will be accomplished by using an
infinite basis for X, (and Xl) consisting entirely of ''eigen ;tfl?lsng!:'ions"
of T. The exact situation cannot be described without more mac_hit_;er Ve
but it corresponda to finding a basis in 2 finite dimensional space _wi;h

respect to which the matrix of T is diagonal.



Chapter IV

§1. Bilinear functionals

Let V and W be any two vector spaces and suppose that
f: V X W—>R is bilinear in the gel;xse that f(o, B) is lincar in
each variable when the other is held fixed, Thié is an entirely
different notion from fhat of being linear on t.;he produé‘t vector space
V x W. The function xy is bilinear on R X R but not lmaar, wne; eas
xt+y is linear l?ut not bilinear, Indeed, a linear functlonal on VX W
cannot be bilit;ear unless it is 0, |

A bilinear f:R" x ]'Rm';——;»ili ha;'anr'ob{ridus metiix aé-éociated

i |

with it, néfnély 1:J f(451 ﬁj). Then f(x, .X) = f{ Z " Z

s ek A
- 2 owud Ty, ) = 7 Z_- 28 6% 7 by s

i=1 : =1 i=1 J=1
giving >
the value of f(x, y) in terms of the matnx of £ and the components
of x and _x i ' o '
: j’ e e H
If i_a } and LBJ i are bases for the finite dimensional spaces
V and W, then relative to these bé,sas a bilinear functional f Tt VXW—=>N

: ‘ ; n
Hagr B))e I £ = L, xa, and
1

has similarly the matrix ‘tij

It

A=), ypB. then £(£,7)
1 J)

case,

Z_, tux:.y_] s Jjust as above in the Cartesian
ipj :

We are used to associating matrices with linear transformations,
‘and it might occur to the reader that probably some linear transformation

is associated with a bilinear functional, We shall look into this shortly,
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If V and W are infinite dimensional we shall assume as usual
that they carry norms and that a bilinear functional on V X W is bounded,
Here this means that there exists a const.ant C such that
|f@, B)| & Cllall 1Bl for all <a, B> & V x W,

‘The space of all bilinear functionals on V X W is easily checked
to be a vector space.. We designate it V*@W* and call it the teasor=-
product of T émd w*, We come now to the correspondence with

linear transformations,

Theorem 1 . The vector spaces ) (}"g)W* , Hom(V, W*) and

Hom(W, V*) are naturally isomorphic,

Proof, This is nothing but duality again. An element f < e @W*
is a function of two variables, and thereforedetermines a mapping
@ —> f , where f () =f(a, B). Butnow fag W* . It is linear
by the linearity of f as a function of B when o 1is held fixed, and the
inequality [f (B)| = [f(a, B)| S Cllall Il shows that f is bounded
and that | f‘:z I £ Cllgll, Moreover, the mapping afl—> :Ea is an element

of Hom(V, W*). It is linear by the l-i.nea.rity of f in its first variable,

f(a'1+ a'z: B) = f(a’li B) ¥ £os; B) = fa1+ faz(@a

Thus, f( a1+a2)(3)

so that f =f + f ., Anditis bounded by C since we saw
{gytay) "oy "o
above that Ilfa!I S Chgl
Conversely, if T € Hom(V, W*¥) then we define fCV*®@W* by
fla, B) = (T{a})(B). The bilinearity of f and its boundedness will be

evident to the reader, Also, T is the transformation then defined by f{,



since fa(ﬂ = f(a, B) = (T)(B) = fa = T{a) => T is the mapping
g S : |

Finally, this bijection between V¥ ® W¥ and Hom(_\_{,_d“‘g‘{‘_") is an
isomofﬁﬁi:sm. If fT is the bilinear functional corresponding to T
then f(T+S) = fT + fs 3 for f(T+S)(a" B) = ((T+S)(e))}B) =
(T@) + S@)(B) = (T@)(B) + (S(@)B) = fplas B) + fle, B). And
similarly for homogeneity. -

The isomorphism of V* tOW™ with Hom(W, V¥) follows in exactly
the same way by reversing the roles of the variables. Thus if gg is
defined by gB(a) = fla, B) then gBQ V¥, B—> gg is a linear mapping
of W into V', etc. We are thus finished with the proof, . -

Before looking for bases in V¥ ® W* we define a bilinear
functional y ® X from any two functionals v& v and X\ C W by
(YONNE 1) = YE)EQG). Wecall v\ the tensor prﬁdﬁct of the
functionals 4 and M\ and call any bilinear functional having this form
elementary. It is not too hard to see that £ C V¥ ® w* is elementary
if and only if the corresponding T C Hom(V, W*) is a dyad.

If V and W are finite dimensional, with dimensions m and n
respectively, then the above isomorphism of V* & W¥* with Hom(V, w¥)
shows that the dimension of V* @ W* is mn, We now describe the
basis determined by given bases in V and W,

Theorem < , Let {ai};n
W, and let their dual bases in V¥ and W* be {p.l};n and JLVJ}; 5

Then the mn elementary bilinear functionals {p.i 5 vj % form the

R
and 1{ij1 be any bases for V and
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e
corresponding basis for V & w*

Proof, Since u, & uj(ﬁ, n) = By (§) Vj n) = Xi¥; 0 the matrix

expansion f(§, 1) = Lt .x.y. becomes f(§, 1) = B p, o v, 1)
g T . o) Y1 J
1] 7 1]
or
i,
The set jtp’i. & vj { thus spans v* {S;TW* . Since it contains the same

number of elements (mn) as the dimension of v* X w* , itforms a

basis,

Of course independence can also be checked directly: If

I

(R
-
i

tij“'i ® v = 0 then for every pair <k, X >, ey

™M

ti.j Pli@Vj(aka ﬁi)=0.

-
-
L
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82, Multilinear functionals,

All of the above consideraﬁoné generalize to multilinear functionals
Vi Xewe ¥ V, —>R. We change notation, just as we do in replacing
the traditional <x, y> C E{Z by x = <x1,...,xn>€ R". Thus
we write flay,..., a ) = fla), where @ = <g,....0 > ECV Xee XV,
Our réquiremént now is that f(al, 5 ,an) be a linear functional of aj
when @, is held fixed for each i # J. The set of all such functionals
is‘ a vecto-r sPIé.ce.‘, called the tensor product of‘the dual spacés

i y ; . * T
Visess, VE , and designated V) e BN

. J'us‘t as béfbre, there are natural isomorphisms between these tensor
prod;zct spaces and various Hom spaces, For example, Vf AR R ®V§
and Hom(V,, V’S Dese @ V:;) are naturally .isomorphi‘c. And there are
further isomorphisms of a variety not encountered in the bilinear case, _
However, it will not be necessary for us to look into these questivns,

We define elementary multilinear functionals as before. If

)\i G Vi* » i=1’.-.,n, a-nd é = <'§1|vv0|£n.> F then

().,1 D ese & )\n)(_g_) = "‘1‘5,) sse kn(gn)_

To keep our notation as S'imple as possible, and also because it is
the case of most interest to us, we shall consider the question of bases
only when V‘l = Vz = ees = Vn = V. In this case (V*)(F-D = VE@eee @ V*

(n factors) is called the space of covariant tensors of order n (over V),

it fa, 1" is abasis for V and £ C (v the d
,—_aiJI is a basis for an = (V™) then we can expan

the value £(§) = f(&l, c5Eis §n) with respect to the basis expansions of
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the vectors 51 just as we did when { was bilinear, but now the result

5 (e ':‘_"m .
is notationally more complex, If we set 5 = /. x‘;_ a. for i=1,,.0,0
; j=1

and use the 11near1ty of the f(&l,. " ,§ ) in its separate va.rlables one

variable at a time, we get

T oFl o B
f(El""f& ) 1 Z ‘e e e xn f(a’plt apzl o-blapn)l

where the sum is taken over all n-tuples P = <p1, e "'Pn >‘, such that

15 p, S m for each i from 1 to m. The set of all these n-tuples is

just the set of all functions on RIEE .,Vn‘!i‘ into ‘:1, e wp m} . We have

— . PR i
designated this set mn » using the notation n = -il,.. - n}. and the

scope -of the above sum can thus be indicated ir'x‘th“e' formula as fellows:

W " : S
f(&l’--vs g ) >‘ :__ xl-l-.. x, ﬂﬂ '---;CEP.,)_ o
e = C n-. . P

T

A s'trict.‘p-rodf of this forrnula would require an jgduction on n, and will

be left to the interested reader, At the inductive step he will have to

rewrite a double sum Z " Z, __ by the single sum Z, e o
pC m jem o e m
“using the fact that an ordered pair -'<B, j> € m" x m.is equivalent
to an (n+1)-tuplet q oy .ﬁ"!m.l , where q; = P; for i=1;%..,n and
1 =3 -
o0 T
.p jl is the dual bas1s for V* and _g_G o let pﬂ be the

elementar functmnal soe . Thus p { o =7y
y uqla.@ | ®uqn pg(apl. % apn) '“1-" i(a i)

= _Ol_tlmless 'P= g, in which case its value is 1. More generally,
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}Lﬂ(‘g’l...., ﬁn) = pql(gl) . e pqn(gn) S LR T Thercfore, if we

set t = fl@ ,...,0_ ), the general expansion now appears as
g 9 qn

s B S A et

L =
pCm”

<7
or f = /,tp , which is the same formula we obtained in the bilinear

p BEER
case, but using more sophisticated notation. The functionals

-'-H '? | n ! . i

{pR: P C mo § thus span V’k‘?p . They are also independent, For,

A

if 2.t p_ = 0 thenfor each q, t =Zt (@ seeesa_ ) =0,
A P g q pP-P_ ‘11’ ’ a,

We have proved the following theorem,

. M ' . L } R
Theorem 3 . The set {p.R : p @ m | is a basis for (V*)UE) .
- i

For any f C (V*)@) its coordinate function t ¢ is defined by

- = ) -4 "
tR = f(apl, i ,apn). Thus f = utB pR and f(&l, PR En) =
<+ Vi pl pt’l %,
L/"tP_ pg(g-l,.. aies ‘én). = A tp X" vee X for any £ G V B/ and any

<Eyreeank, >C V" .

Corollary, The dimension of (V¥) " is m",

—

Proof, There are m"” functions in ™" , so the basis . o : pC m

n
has m elements,

L
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B3, Perfnutatio'ns

A permutation on a set S is a bijection f:8 —>5. If - (8)
is the set of all permutations on S then, clearly, ./ = ¥ (S) is
closed under composition (<, p & /:('.-—->rfop €. #) and taking inverses
(¢ C & =5 & € ). Also, the identity map I is in < and,
of course, the composition operation is associative, Together these
statements say exactly that < is a group under composition, The
simplest kind of permutation other than I is one which intefchanges a
pair of elements of S and leaves every other element fixed. Such a

permutation is called a transposition,

We now take S to be the finite set n = fl,. eaghl i and set

.{fn = p<‘/(?1') . We s.halll assixme’ from élementary gro gp thebry the

fundamental fact thét there exists a homomorphism (denoted 'sgn ') of

]
~

‘{‘fn onto the two element multiplicative group 11, -1 } such that

“sgn G = -1 whenever ¢ isa transposition. Being a homomeorphism
means preserving the group operation, so we are saying simply that
sgn (!71 2 Cj‘z) = (sgn G"l)(sgn G'Z) for all G"i, o, = ;.».f"[‘nf . The
permutation U is c‘allg_d i‘i‘ii if sgn < =1 and odd if sgn ¢~ = -1,
It :is_ﬁot hard to see thét 'a:my' p‘e-rrﬁhtéti'on canbe expressed as a product
of transpositions, and in more than one way, The exiétéﬁce‘ of the
mapping sgn is equivalent to the fact thatthe number of transpositions

in a factoring of -7 is either always even (if ¢ is even) or always odd

(if ¢ is odd),



“/-q

A more elementary fact of group theory that we shall need is that
if (in the present context) p is a fixed element of )z’sn then the

mapping o b—> To p' is a bijection ,««’:"n S o /n « It is surjective

because any ' can be written 5'= (0 p-l) ' p and it is injective

' ' s -1 : ,
because o—lop = OT‘ZOp = (t_.\lop) 5P = c‘:zu 0 Jp => (__"‘1 = (_,.—2‘
Similarly, the mapping < |—> p >< (p fixed) is bijective,

We also need the fact that there are n! elements in ,-?‘.;;/n ‘. This
.ils'. the elementary count from highrefichool algebra, In defining an eiement
g ’fi{n » < (1) can be chosen in n ways. For eachof these choices
G(2) can be chosen in (n-1) ways, so that < (1), € (2)> can
be chosgn in n(n-1) ways, For each of these choices & 7(3) can be
chosen m n-2 ways, etc, Altogether < can be chosen in
n(n-1)(n=2) +++ 1 = n! ways,

In the sequal we shall often write ! instead of 'p~<C', just
as we occasionally wrote 'ST' instead of 'S ¢T' for the composition

of linear maps.
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84, The permutation representation on (V¥) ‘I-D.

. " n ‘ -
If £ =<E,...,6 > C V and ¢ C /:a’;n , then we can "apply G~

to £, or "permute the elements of <Eqrese ,§n> through o .

We 'mean, of course, replat'cing <§l,'...,§n>': by <£G_“) o ..,g&(n) >

i.e., repla.cmg £ by 'g’ T,
@)

Permutmg the var;ableschanges a functional f € V* into a

new such functional. Specifically, gi.ven f C V* ar and s g

nAl

L LT
we define f by
o -=1
CE(E) = HET )
The reason for dsing 6"1 instead of O is,‘ in part, that it gives

us the followihg formula,
e

Lemma 41 . f(flﬁ—z) = (f 1) 2. ‘l

(('-r ) )
Proof. f © (g) =f(§ «(C’"u(")-]')'-f(g 0(6' '3"‘-_1 ))

“1,°2

fgoo N ool = hg osh = £h X .

Theorem 4 , For each O J{Yn the mapping T defined by
f+—>£° is a linear isomorphism of (V*)@j onto itself, The mapping
Ct+—> T, isan anti-homomorphism of the group fjn into the
group of non-singular elements of Hom((V*)@ ¥

Proof, Permuting the variables does not alter the property of
€

multilinearity, so T, maps (V¥ into itself, It is linear, since

(af+bg)? = af® + bg” . And T o = T,°T,, because Po= (1P)°
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Thus < |—> T preserves products but in the reverse order,

This is what is meant by an anti ~homomorphism. Finally, T _1) a =
————— &
L = TI =1, so that T(r is invertible (non-singular, an

isomorphism).

The mapping o I—> T_ is a representation (really an anti -

representation) of the group ""::n by linear transformations on (V*)(@ .

Lemma 2 . Each T__ carries the basis P‘p} into itself

and s0 is a permutation on the basis,

1 n

) = by (E,,_
Hi=1 Iy

Setting j = G”-l(i), and so having i = C(j), this product can be

Proof, We have (pp)ﬁ_(f,_) & P-p(_'g_ oG

n
itt o) =
revfrm en ,H'j=1 }Lpﬁ‘p (gJ) p’gorﬂ“
o(i)

(£). Thus

and since pl—>poo is a permutation on m we are done,
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85. The subspace A of alternatirg tensorsg

nd . T
s symmetric <> { =f{

Definition, A covariant temsor f C V

for all ’:‘Q/ .

If £ is b11mear (f C V* -')) thlB is Just the condmon

(¢, n)~ £, £ for all £ Cv

Definition. A covariant tensor f C V*L/ is anti-symmetric or

alternating <=> .f = (sgn 75)f for all Sl ) o({ Since each 0o
is a product of tranSposzttons, th1s can be expressed also as the fact
that f just changes stgn 1f two of its arguments are mterchanged In
the case of a bilinear functr.onal 1t is ‘the condltwn (&, 1) = -f(n &)
forall ¢, 73C V. The set of all symmetric elements of V* @

is clearly a subspace, as also is thlc--a (for us) more important seot # 3
of all alternating elements, There:is an important linear projection of

v¢® onto (1" which we now describe,

< ¢

Lemma . The mapping f —> 'r'xlr P g (Sgnc“)fr
® a i _?.,\
n

P
is a projection {2 of v*® onto an.

Proof, We first check that 2f € (L® for every £ € V¥*®, we
1 7 <
have (Qf)P = s o Z.f,.rsgn £°P, Now sgn ¢= (sgn o p)(sgn p).
Setting o' = 6 op and remembering that ¢ —> « ! is a bijection
y 5 51 ~1
S —> 4 we thus have (uf)P= ‘_%ﬁ-“rfl o, sgn S'f = (sgn p)(Q).

Thus QfC t®



If £ is already in (1" then £7 = (sgn < )f and Qf =

-

cé

n

™

—}5[- £f. Since );) has n! elements, f =£f, Thus § is
n T

q

. it 0y : N
a projection of V (@ onto A

Lemma Y, Q(fp) = (sgn p )t .

Proof. The formula for Q(fp) is the same as that for (Qf)p_
except that p o replaced ¢p. The proof is thug the same as the one

occurring in the above lemma,

Theorem 5 ., The vector space (L™ of alternating n-linear

functionals over the m-dimensional vector space V has dimension ( n e

= S . o
Proof, If f C 4" and f = L‘p tp p’p » then, since f = (sgn o)f
7 i = T "
for any o A+ We have Lp tB B, 5 ,._f_,p (sgn G‘)tR p.g . Setting

— — —

P29 =g, fhe left sum becomes Z',q tq — -1 »_, and since the
basis expansion is unique we must have tq sc—=1 =880 T tq s OT

— —

tp = (sgn ™ )tp 2o~ for all p Cm Working backward we see, con~

versely, that this condition implies fF g (sgn @), Thus f C ™ it

and enly if its coordinate function t, satisfies the identity:

t = (sgn &) t, for all pC m" .

P o067

This has many conseq&ences. For one tbing, tp = 0 unless p is

one-to-one (injective). For if p; = pj and ¢ is the transposition
interchanging i and j then po G = p, tp = (sgn J7) tp e B -tp »
and go tp =0, S'h.t(?e':no”ﬁ. can be injective if n > m, we see that in

_—



this case the enly element of /| % s the zere functional, Thus
aSm ==Didim LVE G |
Now suppose that n §:m .:- For any injective p , the set
'L'E e 57 X ), consists of all the (injective) n~tuples with the
same range set as p. There are clearly n! of them. Exactly one
q =p°0 counts eff the range set in its na;grgl order, i.e,, sa_.tisfies
q; < q, < e -; < Ay * Ve srelle'ct this unique q as the representa.tive_ .
.of all the elements p ulc" having this range, The colle‘ction C O.f, |
these canonical (representative) q's is t.hus in one-to-one correspendence
with the collection of all (range) subsets of m = "[1, cos ,m} of size n,

Each injective p € m"” is uniquely expressible as p = qc 0’

for some’ q E: "C,-i""g "('I\;n . Thus each f in /}n is the sum
<1 SN '

ﬂé_(l: -"‘E‘f ) _9_ 2 ¥ ® b Siake ‘tq o - (Sgn 7 tq § (R S
S = ¢ S - % ':;':
can be rewritten \_, ( w_» (agn CJ I-l u) = /.- ts V
. T gtcC ﬂ ' ﬂﬁ./‘lgc 475

o N i . o
where we have set vS_ =L, (sgn ™) P'gaa"v n! (ps-).
We are just about done. Ea.ch yﬂ is alternating, being in the
range of I, and the expansion
> tv
13
qcc

L.

whxch we have Just found to be vahd for every f C L shows that

the set 5 v g C C spans ,-:i,n .. It‘r.s also }ndepen_dent, since



| T C s
t v = Z t and the set . is independent,
ZoCc ta¥ s DR Hp ] P
pem
o

It is therefore a basis for (.,

Now the total number of injective mappings p of m = {1, sewj i 7[
into m = -{1,.. ; ,m} is m(m=lJee+ (m=n+l), for the first element can
be chosen in m ways, the second in n-1 ways, and so on down through
n choices, the last element having m=(n-l) = m-n+1 possibilities.

We have seen above that the number of these p's with a given range
is n! Therefore the number of different range sets is

6|

il ® Andthis is the

m(m-1) *++ (m-n+1)/n! = m!/n! (m-n)! =

number of elements q C C.
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86, The determinant,

We saw in 85 that the dimension of the space .‘_j,m of exterior

o o " % m ok
m-forms over an m-dimensienal V is ( m) = 1, Thus, to within

scalar multiples there is only one alterﬁating m-linear functional D
on V=R™ , and we can adjust the constant so that ‘D(ﬁl,. s ﬁn) =1,

This uniquely determined m~form is the determinant functional, and

its value D(_:::_l. - ’E:m) at the m-tuple '<_)_c_1, 5 ,_)_c_n> is the

determinant of the matrix ¢ x;} (where f_] = xj s
At & x%
J
‘m
X,
J

i,

Now let dim V = m and let f be any non-zero exterior m-form

on V., For any T € Hom V the functional f.. defined by

T
fT(gl,... ,E;n) = f(T&l,.. - T&n) also belongs to 0™, Since C{m

is one~dimensional, fT = ka for some constant k'I‘ « Moreover, k’I‘

is independent of £, since if gy = k,'I,g and g = cf we must have
cfp = k,'l, cf and k.‘r = kT . This unique counstant is called the determinant

of T; we shall designate it A(T), Notice that A(T) is defined
independently of any basis for V,

Theorem & . A(S oT) = A(S) A(T).

Proof, A(S °T) f (El.. e .En) = f((s OT)(gl)v teoy (S DT)gn) =
HS(T(ENseees SIT(E ))) = A(S) LT(E)yoee, T(E D) = A(TIA(SM(Eyout, )
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Corollary 1, If s and t are mx m matrices then D(s*t) =

D(s) D(t).

Proof, An m X m matrix t is equivalent to a transformatien
2 il I—Iom(Rm), the columns ef t being the rﬁ-tuples T(GI).. - T(Gm}.
Thl.lS D(t) = D(E—l".."'t—m) = D(T(ﬁl))-oq T(én))z A(T)D(all.'.lén)z A(T)'

The Corollary now follows from the lemma,

Corollary 2. D(t) = 0 if and only if t is singular.

Proof, If t is non-singular then 1 exiers and D(t)D(t-l) =

D(tt“]‘) = D(I) = 1, In particular D(t) £ 0, If t is singular some

.j:'im
column, say 1:__1 s is a linear combination of the others, Ll = /_';,Z c; _t_i ;
and D(E_l,...,_g_.m) = L., G D(-t—i' t—z""’-E-m) = 0 since each term

in the sum evaluates D at an m-tuple having two identical elements

and so is 0 by the alternating property.
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87. The exterior algebra.

Our final job is to introduce a multiplication operation between

alternating n~linear functicnals (also now called exterior n-forms), We
first extend the tensor product operation that we have used to fashion
elementary covariant tensors out of functionals,
,‘
Definition, If f C (v*)@ and g & (_V*)U-D then f %0 g is that

element of (V*¥) @D efined as followa:

£ Ral€poneek 3.} = HEyieswnt ) gl NP y )
1 nt+ 4 1 n ot 1 nt 4

We naturally ask how this operation combines with the projection
of (V*}@:) onto (L".

Lemma 5 ., Q(f @g) = QUL @Qg) = QQf ® g)
5 (sgn—)(f ® Qg)"

Proof, We have Q(f ® Qg) = (n+

= (;r::,—;r Eqﬁ (Sgnr)(féoé-_r E (sgn rau
: - P

= nh ? (sgn =)(sgn p)(fogP)”
TP

We can regard p as acting on the full ' n+iz places of f () g by taking
it as the identity on the first n places, Then (f ® gp)"q—- = (f QO g)pﬁ“.

Set p~— = ', For each ' there are exactly JZ' pairs < p, o>
with p@ = «!, namely, the pairs {< ‘p, p-l;j"" > 1 pl Jﬂ Thus the

: ; Wi . L
above sum is _1/(n+;{ ) i (880 TINE D g) = Qf gl The

proof for §3(Qf (D g) is essentially the same.
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/
Definition. £ ~n g =( ntr ) Slf 20 g)e

; n! P o
Lemma & . fl"-f'Z‘A o szr-n‘ g Uoh ©6 0 Bys ‘Q(flv"d‘”%}f
1' 72 kk

1

- where g is the order of fi s i=1,...,k, and n = :5111 n; .

Proof. This is simpl;} an induction, using the definition of the

wedge operation /* and the above lemma.

Corollary, If xiC_v* , i= l,...,n‘then .xl’z\‘-'g- AN, =

s -~ am
| ] s(.) 'R 2] 3 1 s e \ { i
n! @ (h) X @' \,)e In particular, if q; < < q, and LB Jl is
a basis for V¥, then BN eee Ay = nlid(p ) =the basis element
o 9y n 3

vV of i,

; .
Lemma 7/ , If £ C an , g2 & . them g A f= (-l)gnf A Be

In particular . A A A = 0 for A C v* .
Proof, We have g 3 f=(f ® g){'r— where -~ is the permutation

moving each of the last X places over each of the first n places.

n

Thus < is the product of A n transposition, (sgn ) = (-1) %, and

Qg 0 f) = K H g) )= (sgn ) D @) = (D P gl We

multiply by ( n-:x ) and have the lemma,

L
Corollary, If A, , C V* then A\ ~ ++e AN = 0 if and only if

1

ST < S
the sequence X\ ;1 is dependent..

Proof, If J_r_?\ii . is independent it can be extended to a basis for

Vf and then Ay~ °°° A~ is some basic vector P of (L™ by

the above corollary. In particular | N A e AN # 0,

K



If {ki’} is dependent then one of its elements, say A\ »isa
a4 n

-
?\1 = LZ Ciki and )\.lf\)\zf\-.. A kn

linear combination of the rest,

—_
.

C; A A (N, A eess AN ), Each of these terms repeats X\,
j=z 1 2 n i

and so is 0 by the lemma and the above corollary.

Lemma & .

The mapping <f, g> —> f A g is a bilinear
i .y
mapping of i Sl B into (! BTX

Proof, This follbws at once from the obvious bilinearity of f © g,






Chapter 5. Scalar products and self-adjoint transformations,

8l; Scalar products,

A scalar product on a vector space V is a real-valued function on

V XV to R, its value at the pair .{£,n > ordinarily being designated
(£, 1), such that:
(a) (&, n) is linear in £ when 7 is helci fixed ;

) (£, m) =, )
(c) (5; >0 £ 2 Al

If (c) is replaced by the weaker condltmn
(e (£, .§)> 0 for all ng

then (& n) is called a pseudo scalar product

Two 1mportant examples of scalar products are :

n
(3_5. y) = 5 X ¥; when V = R" ;  and’
3 :

(£, g} = Sh f(t) g(t)dt when V ="-(%([a, b]).
a. ;
There are ‘a.number of very elementary but important prepertiea which
must be established at the very béginning-of the theory and ‘which give it
its special flavor, These constitute a collection of lemmas and remarks
which we shall treat informally as a series of numbered paragraphs,
1. It follows from (a) and (b) that a pseudo-scalar product is also

linear in the second variable when the first variable is held fixed, and
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therefore fits into the general theory of bilinear functionals as a special
kind of symmetric doubly covariant tensor,

2. The Schwarz inequality
el < (&, 02, m'/?

is valid fof any pesudo-scalar product,

Proof, Wehave 0 € (£ -, &=tn) = (£, £) - &£, n) + t2(n,n)
for every tG IR, Since this quadratic in t cannot have distinct roots the
usual bz-4ac formula implies that 4(£, 7 )2 -4(&, &)(n, 1) 2 0, which is
equivalent to the Schwarz inequality. We can also see this directly, If
M» M) > 0 and if we set t =(£, n)/(W, ) in the above quadratic inequality
then the resulting expression simplifies to the Schwarz inequality. If
Ny n) =0 then (£, 7j) must also = 0 (or else the inequality is clearly false

for some t) and now the inequality holds trivially.

3. NEN= (&, £)1/2 is a pseudonorm, an.d ﬁence is a norm if and
only if (£, 1) is a scalar product,

Proof. NE+nil = (E+ n,&+m) = NENZ+ 2(E, n) + IniZ< NE N2
+ 20E0UnN +1n 1% (by Schwarz) = (I £1l + I )2, proving the triangle
inequality, Also, lic &Il = (c&, cg)l/zr- (c2(§ 3 .E- ))I/2 = |c|WEN,

Notice that the Schwarz inequality [(£&,7 )| S WEN IRl is now
Jjust the statement that the bilinear functional (£, n) is bounded with
respect to the scalar product norm,

4, A normed linear space V 'in which the norrr; is a scalar product

norm is called a pre Hilbert space, 'If V is complete in this norm it
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is a Hilbert space, The two examples of scalar products mentioned earlier

give us the norms that we have called 2-norms:

n - :
Hxl, = (? x2 Y2 for xCR", and
1

. ‘
e, = (S % e € SIS Y
: L

We know that R" is complete in any norm and therefore R" is a
Hilbert space under the 2-norm, But (J([a, b]) is incomplete in the 2-norm
(although we shall not show this) and is therefore a pre-Hilbert space but
not a Hilbert space in this norm, Remember, however, that {[a, b])
is complete in the uniform norm e .

Scalar rp’roduct norms have in some sense the smoothest possible
unit spheres. For example, if V has dimension 2 or 3 then the surface
of the unit sphere in a scalar product norm is an ellipse or ellipsoid
(these notions being independeﬁt of coordinate systems!). We shall see
this later on,

5, A slcalar product is differentiable: with respect to its own norm
‘(on V X'V, of course). For, if we set £(£, 1) = (£,7 ), then
Af-@'B\)(ﬁ: n)=(a+&,B+n)-la,B) =, B)+ (@, n) + (£, n). But
4 {&my) =(§,B) +(a, ) is linear on V XV. And if we use the
maximum nerm on V. ¥V, then_ j-ia‘-b&m&;d&d by llalt+ligll, for
[2(<¢CE,n> JSHENUBI+ Mo lllinll (by Schwarz) £ (llall + UBN) NLE,n 0.
Thus.. AE 54 .' Finally [(£, n)| S WEN Unph € 1<E,n i =

&I (E,n> ). Thus Af<a,B; L+ 65 and 85 2,
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6. We need from general bilinear theory the fact that if for each .
B © V we define GB V. R by GB(‘;'):.-.-. ‘(g , ;3) then GBZ.G 'V*
and the mapping 6 tdking B into GB is a linear mapping of V i:ﬁt'd-hv*.
Of course this can be directly checked in the present context. If

(£,7) is a scalar product then G(f) = Ngné> o if B# 0 and 6 is

injective, If V is finite dimensional it follo?vs that 0 is an isomorphism,
Actually, § is an isomorphism when V is ény H.ilbet't space, but this
is much harder to show when V_ is mf1n1te dlmensmnal.

7. Two vectors ¢ and B are orthogonal, wrztten a J.B, 1f and
only if (@, B) = 0.  Since B(a) = (a, B th:s is exactly the condn:mn
that the functional OﬁC V be orthogona] to a in the uld sense. Far
any two subsets A, BC V we write A 1B if and only 1£ a .L B for -
every {e,B) € A xB,. and set A {BCV BJ.A;. _ is alwa.ysa.

closed subspace.of, V, (Check this,) Also, ‘

BLA => B 1L(A) = BLI[AT.

" o Z_ 2 a2

8, The Pythagorean theorem :a L Bw#s=>lig + BII" = lla I + Il
For, lla+ BiI® = a®+ 2(a, B) + NEI%, and this is Na W2+ UBN2

<=>(a, B) =0, By induction we then have that if the sequence {O"i‘} '11

is erthogonal, in the sense of being pairwise orthegonal, then i!Zl aillzz

n
_ 2
hAPR P LI
9. If {t;bﬁ;? is an orthogonal set of non-zero vectors and a = Zl ap.
e L R Az LR o . S _ i
then g = (. ¢j)/ll q)jll « (For {a;, qu)—- Z’i=1 ai((pi_, ¢j) = aj(¢j_’.'¢j))' It

follows in particular that {gbl%'ll » is independent (a = 0 = (a, (p_j) = 0 =>



aj =0, all j)o Generally an orthogotiai set is normalized, replacing q)i

£ o fa ADE
by Y, = ¢,/Ul¢,ll, which has norm 1. If {9}, is thus orthonormal

n .
and o = Z a.¢. then a. =(a, ¢.) for each j.
1 b G - J . J
10, If B is an orthogonal set of non-zero vectors and « is any
vector in V then the function a : B —> R defined by 'aB = (a.r,[i?)/llBllZ

for all B B is the Fourier coefficient function of a with respect to B.

If {(,bi }n is a finite orthogonal set, with linlear‘ span M, a C V,
d {a}. FomiaE SosHetanEs of v S
and 1{a, 1 are the Fourier coefficients of o, then o - 1 ,aitﬁi .
In particular, V = M @Mt .
<N ‘ n

Froof, Set B =a -Z—’laiﬁbi' Then (ch’J): (e ¢J) = Zl ai(¢i'¢j)
= = n ¥ -
= (o gbj)n- 3¢5 ;) = 0. Thus g1 {qbigl and so Bif({qai}'l’) = M.
Since Z’l ai¢i€ M, we have ¢ = Zaigbi +B Mf M~ ., Finally, if

QCMan then ¢ La, (@, a) =0 and so @ = 0, Thus Y=M‘(‘BM'L.

11, If V is a finite dimensional Hilbert space then orthogonal bases can
be constructed wery easily, We take ¢1 as any non-zero vector in V
and set M, = ¥ {qbl}). Since V = M@ M'i we can take ¢2 as any
: ¥ : 4 ; 1
non-zero vector in M) . Set M, = L( {¢1, gbzg), take ¢3 in M;, etc.
We thus define an orthogonal (and hence independent) sequence ; therefore

Mn =V when n=dim V,

n
12, Abasis {¢.}, for V is orthonormal if and only if it equals

its dual basis under the identification 6§ of V with V¥, For orthonormality
i
J
exactly that the functional in V* corresponding to qu is the jtb dual

is the condition (95, qu) = 6., and since (9, qu): 9¢ (¢;)s this says
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basis vector, An equivalent statement is that the matrix of 6 witu rcspect

to these two bases is the identity matrix! |
Fmally, smce JR is naturally isomorphic to (an)*. i:he scalar

. product effectmg thzs natural identification can be cons 1dered to be

the atandard scalar product on IR.?]L . (See. 82, 8). It is, of course,

n
(_35: .X) a Zi:l XY » the first of our samplc scalar products,

13, Suppose that {¢ }l is orthogona.l, M= L( {qb f(), and that { }
are the Fourier coefficients of a vector @, Then O = Z a, (jb is the

~ best approxxmatlon-m‘a-. in M, For,BC M =>

. 2' . it ; 4 : -_ X x .
e - BII® = li(@ = o)+ (6= B)IF = Ha= % 10w Bl

(by 8 and 10) > lle -G1% unless B = &

14; If ‘qu } is an infinite orthonormal sequence and {al} is the

'

Fourier coefficient sequence of aC V, tben

. B

‘ 3"”*11 S lal®  (Bessel’s inequality)

and o = /,,1 a9, = 7 la;|2 = Nal? (Parseval’s equation).

n
= E , 2
Proof. _Sct c‘,‘n = Y aiqbi- « Then |l G'nﬂ i

() a9is ) e =) aa (% 9 DI 1

s R o S i



n
Therefore lla I’ = lla- oo 1%+ oo 1% (as in 10) & Na- o %+ Zl |a, | %.

n

From this identity we have first that Z Iailzg Ila 1% for every n,
1

proving Bessel’s inequality, and, second, that O—n = o

IZ

=) ;
(la - O”nli-e*-—>~ 0) <==> Z_, lai =l 'HZ » proving the Parseval
1

identity,

15, An infinite orthonormal sequence is a basis for V if and only if
o . i

-

a= /,
1 ‘

space then an orthonormal sequence {tbl} is a basis if and only if

{9, 5 = {ot.

Proof, Take any o & V, The sequence {O’n} of partial sums

ai¢i for each o © V. We now show that if V is a Hilbert

2 s 2
(as in 14) is always Cauchy, since lo, - o, 1% = 1) ag.l
n m+1
s 200 falte € to give ot P € g A n e SIGCIE ¥ s
m+l ! - - F

coemplete {O'n} converges to some ¢ & V. But then, for every j,
(@ -G, ¢j) = lim(a - Oy ¢j) = 0, since a - o‘;llt;bj if ns i,
Therefore a- ¢ 1 {q)l} » and if the only vector orthogonal to all qbi is 0,
then @ = 0 = Z a;p. . Thus {gbl} is a basis, Conversely, if

1 .
there exists ¢ # 0 with o 1 {qbi.f » then the Fourier coefficients of o

are all 0 and o cannot be the sum of its Fourier series, so that in this

case {q&i?; is not a basis,

5 :
16, ¥ g = Z b.¢. for each B in a dense subset B C V then
1

{t;bi} is a basis, Take any ¢ C V, Given € choose B B such that
n
la-Bll < €/2 andtake n sothat B - O Il < €/2 where T = 7 b, .
1
Then lla - O 1€ €. Therefore lla=7." a .l < €, by (13). Therefore

=7 €@ 1
a = Z.JI a,6. and so {qbi} is a basis,



82, Self-adjoint transformations,

Deﬁmtwn. If V is a preHl.lbert space then T C Hom(V, V) is

self-adjoint_ if and only i (Ta, B)— (@, ’I‘B) for every a, BC V. The

set of all self-adjomt transformatzons will be deszgnated SA,
Self-adjomtness suggests that T ought to be equal to its own adjoint

under the identification § of V with V¥, We check this now. Since

{a, B) = B(a), we have (Tee, B) = (@ TB) » all @, BE V <

0g(Ta) = 615, all @, BEV <= (T*(0 glla) = 6.p @)y all a,BCV <=x

T* (0

Tp
g = Og

which is the asserted identification.

all BEV «=> T¥cf = QoT <=> T*=0.T-071,

Lemma 1. If V is a finite dimensional Hilbert space and {ep 5‘

is an orthonormal ba.sm for V, then T € Hom(V) is self-adjomt if
and only if the matrix } of T wu:h respect to {_qb } is. symmetrtc
(t=th), '

Proof, Parssing from transformations to their matrices we have:
‘that T* = goTo §™! <= ¢ = it {n =t (since the matrix of 6 is
the identity i)e |

- .‘We can é.lso- argue difeé-tlf. Since T(9,)= 2; tjitpj and
(Ta, B) = (a, TB)‘ it T -isiself adjoint, we have tyi = (T(¢i). ¢k) =

(d)i, T(qbk)) e tik » and so t is symmetric.

Lemma 2. SA is a vector subspace of Hom(V), If S, T & SA

: then S oT C SA = S o = TOS In particular, TE SA = Tn€ SA



and hence P(T)& SA for any polynomial F, _

Proof. It is clear that SA is a subspace. If S, T C SA then
(S(Ta), B) = (Ta, SB)= (a, T(SP)) for all @, B € V. But SoTC SA <>
(S(Ta), B) = (@, S(TB)). Thus S oTC SA<=> (o, T(SB)) = (a, S(T(B)),

all a,BC V,<==> T(SB) = S(TB), all B € V<=>ToS = SoT,

Lemma 3 . If TC SA then N(T) = R(T)%.

Proof. a @ N(T)e=> Tg = 0 <—> (Ta,B) = 0 for all BC V
<=> (@, TB) = 0, all B <==> o L R(T).

Lemma 4, T € SA and x # 0 == T2 + xz# 0, Therefore,

T cannot satisfy a polynomial identity P(T) = 0 where F is an
irreducible quadratic polynomial,
Proof, ((T2+ xz)a. a) = (Tzaf, a) + (xza. a) = (Ta, Ta) + (% ,x) =

ITe 1%+ 15?2 Hxl®> 0 if x # 0, Therefore T2

2

+ x2# 0. Any

+ bt + ¢ can be rewritten (t + y)2+ x%

irreducible quadratic P(t) = t
with x # 0, so that E(T) = (T + y)% + x2 = o,

Lemma 5, T C SA and T"=0 = T =0,

‘Proof. T®=0=> (T%e, B} =0, all o, BE V. We suppose of

1

n-2

course that n 2 2. Taking B = T' ‘% and transferring one T by

n—la IIZ = 0 for all ¢, and so 'I‘n-1 = 0.

self adjointness, we obtain IIT
Continuing inductively we finally get T = 0,

Theorem 1 . If T € SA and P(T) =0 for some polynomial P

m
then P factors into linear factors (i.e.,, P = H Pi, where Pi(t) =
1 :



(t - ri)ui » and 1, %'rj for i <+ j), the subspaces N'i‘= Ii(-Pi) are
orthogonal, and P = r,I on N, . ' '
Proof. This follows from 81, 4 D‘ahd the-above'twu lemmas, We

- first factor P as far as possible into relatwe].y prime factors, getting
H P., where the P, are ‘relatively pr:me andno F; can be further
iactoreld into relatively prime factors, We assume the algebraic fact
that the only irreducible polynomials (real coefficients and roots) are
linear (P(t) =t - r) or quadratic (P(t) = t “+ bt + c). Thefefbre each
Pi_ above .19 of the form. Pi Q?” where Q; is linear or quadratic.
It follows frorh_él. 4B that V = @-TNi » and that T[Ni]' C N, for
each i, Now the restriction of T to N; is self-adjoint on N, as a
preHilbert space, and it satisfies Qi(T)“igo there, ' Since Q,(T) is
I self-adjoint (Lemma. 2 ) it follows from the above lemma that
Qi('i‘) = 0 on Ni . T}m\g Lemma 4 . implies that’ Q1 cannot be an
irreduc.ible quadratic and therefore is linear, Thus Qi(t) =t-r, and
T -r;=0on N, Fianally, if oG N; and B& Nj » i# j, then
?i(a, B)-=. (ria, B) = (Ta, B) = (@, TB) = (a, er)= rj(a. B)e Since
T ¢ r, (@ B) =0. Thus N, L N, if i# j. This concludes the proof
of the theorem. |
This theorem is also a corollary of the much more sqp}:is;icated
' theore;q on _coz_'npac_;t operators in 85,4,
Def:.mtlon. If a # 0 and T(a) = ca then a is callea an eigenvector

(or a proper vector) for T and c is the corresponding eigenvalue

(proper value).



v, il

Theorem < , If V is a finite dimensional Hilbert space and

TG SA then V has an orthonormal basis consisting entirely of
eigenvectors of T,

Proof. If n = d(V) then we kﬁow that Hom{V) has-dimension n2

2
3 n |
and therefore the set of nz + 1 vectors {Tl }0 in Hom(V) is
dependent, This is exactly the same thing as saying that P(T) = 0 for
some polynomial P of degree £ n? . Now the above theorem gives us
m .
V= B, N, with N;LN, if i#j and T=rI on N,. If B, is
i i j i i i
; m

any orthonormal basis for N, and B = . ; B, then B is an orthonormal
basis for V. Since T(8) = rB if B C B, , the theorem is proved,

Although the above theorem constructs the eigenvalues r and

eigensubspaces N; in a non-unique way, they nevertheless are

unique,

‘Theorem 3 o« In the context of the above theorem, if o # 0
and T{a) = ra for some rC R then a & N; (and so r =r,) for some i,

n
Proof. We have o = Zl c;; s With an Nj for all j, Then

n n
Zl rea; = ra = T(a) = T( Z’Ciai) = ZciT(aib) .= Zl Ciriaif Therefore

re, =r.c, for all i, Choose j such that cj #0, Then r=r., and

since r # rs for all i #j it follows that c; = 0 for all i # j. Thus

= el . .
@ = co;C N;



<y

A4

If .V is a finite dimensional vector space and we are given

TEC Hom V' then we know how to compute related mappings such as T
and T (if it exists), and vectors Ta, T3 , etc., by choosing a
basis for V. and then computing matrix products, inverses (\'ii-hén they
exist) and so on,  Some of these computations; particularly those
- related to inverses, can be quite arduous, One enormous advantage
. of a basis consisting of eigen-vectors for T ‘is that it trivializes all
of these calculations.:

-,‘To see fhis, let {Bn} be a basis of V consisting ént'ii'efy of
eigen-vectors for T and let {rn}' be the corresponding eig'eﬁ-valués.

To compute T£ we write down the basis expansion for £, =
2

<

n .
£ = Ll xiBi and then TE = Z'l rixiBi: « T” bas the same eigen=~

n
2 g e
Z 1 i xiB_i .

vectors, but with eigen=-values {rf'} . Tﬁus Tza
T exists if and only if no r. =0, in which case it has the same eigen-

. N R ely R |
- vecto®s with eigen=values l/rij o« Thus T & = Zl (xi/:ci)Bi ¢
. B SLE: T 2 : ) b 3
¥ Pit) = ,, " at  is any polynomial, then P(T) takes Bi mté
=D '

P(r‘i)Bi'. Thus P(T)E = /, P(r;) x,8, « By now the point should
0 . ;

be amply clear,
The additional value. of drthonormality in a basis is already clear

from the last section. Basically it enables us to compute the coefficients

£0e

{xij of £ by scalar products : x, = (£, Bi)'
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Another virtue of an orthonormal basis of eigen-values of a-self-
adjoint T is that in certain infinite dimensional situations, where V
is a pre-Hilbert space but not a Hilbert space, this is the easiest way

of showing that V has a basis, See 86



'. I<|
=

83, . Orthogonal transformations

~Assuming that .V is a Hilbert space and that therefore 0: V — v*
is an isomorphism, we can of cou’r;se feplace the adjoint T*C .Hor.n“ V'-‘f
of any T & Hom V by the corresponding tfa:isfbi:mation 9-1 oT* o6 € Hom V
In Hilbert space theory it is this mapping that is called the adjoint of T.

Then, exactly as in our discussion of a self-adjoint T, we see that
s
(Ta,B) = (@, T B) for all ¢, BV,

and that T™ is uniquely defined by this identity, And T is self-adjoint
<=> T=1%,

Ancther very important type of transformation on a Hilbert space is
one that preserves the scalar product,

Definition, A transformation T C Hom V is orthogonal if and only
if (Ta, TB) = (@, B) for all a, B & V.

By the basic adjoint identity above this is antirely equivalent to

(e, T*g B) = {a, B), for all ¢, B, andhence to T*T =1, An orthogonal

2 2

T is injective, since Il Tall” = lle 1", and therefore invertible if V is

finite dimensional, Whether T is finite dimensional or not, if T is
invertible then the above condition becomes T~ = -l :
If T C Hom R"” the matrix form of the equation T*T =1 is of

course t¥t = in » and if this is written out it becomes

-

n o
. t..t . = 0 forall i, j
£ jesi ki kj h] »J

which simply says that the columns of t form an orthonormal set (and



hence a basis) in R", We thus have:

Theorem 4 , A transformation T € Hom R"” is orthogonal if

and only if the image of the standard basis {Gi };1 under T is another
orthonormal basis (with respect to the standard scalar product).

The necessity of this condition is, of course, obvious from the scalar-
product-preserving definition of orthogonality, and the sufficiency can
also be checked directly using the basis expansions of a and B.

We can now state the eigen basis theorem in different terms. By
a diagonal matrix we sbali mean a matrix which is zero everywhere
except on the main diagonal.

Theorem 5 , Let t= {tu} be a symmetric n X n matrix,

Then there exists an orthogonal nX n matrix b such that b'ltb is a

diagonal matrix,

Proof, Since the transformation T C Hom R" defined by t is
self-adjoint there exists an orthonormal basis 4?_111 };l of eigenvectors
of T, with corresponding eigen values {rd ;l. Let B be the orthogonal
transformation defined by B(6j) = _t_:j v J=1...,0. (The n-tuple Ej
are the columns of the matrix b = {bij} of B,) Then (.B-1 T B)(Gj) =
rjﬁj » Since (B'lv T OB)(ﬁj) is the jth column of b-ltb » we see that
s = blth is diagonal, with Bjj. =T

This theorem simply recognizes that since the standard basis in R"
is not an eigen basis for I (in general) the change of basis matrix b
taking the standard basis into an eigenbasis results in a matrix for T

which displays its eigenvectors and eigenvalues,



For later applications we are also going to want the following result,

Theorem 6 ., Any invertible T Hom .V on a finite dimensional

Hilbert space V can;be expressed in the form T = RS, where R is
orthogonal and S is self-adjoint, : 5 g ; .
Proof, For any T, '1_‘_*'1‘ is self-adjoint since (T*’I‘)*= ’I‘*'If** = T*T,
Let {gbl ir be an orthonormal eigen-basis and irlfr the corresponding
eigen-values of T T.Then 0 < || T¢in3= (T*T¢,, 9,) = (.0, ) = 1,
for each i. Since all the eigen=-values of T*T_ are thus positive, we
can define a positive square root S = __('1""'1‘)1/.z by S¢i = (ri) 1/2 qbi,
i=1,2000,n. Itis clear that S°= T*T and that S is self-adjoint,
Then A =ST! is orthogonal, for (ST 'a, sT™!g) = (T ,s%T"'p)
= (7%, T*r77lg) = (1%, T*8) = (T T")%, B) = a, B). Since
T =A‘-IS, we st B= A aud bave the theo::em.
It is not hard to see that the above factorization of T is unique,
Also, by starting with TT*, we can express T in the form T = SR,
where S is self-adjoint and positive, and R is orthogonal,
Corollary, Any non-—singula_i. n Xxn matrix.t can be expressed as
t = udv, where u _and v are orthogonal and d is di‘agolna.l.
Proof, From the theorem we hév’e t =rs, where r is orthogonal
and s is symmetric, By 83, s = bdb'1 where d is diagonal and b

1

is orthogonal, Thus t = rs = (rb)db" " =.udv, where u=rb and

-1

v=D>b are both orthogonal, . ..



84, Compact transformations

The preceding theory .brea.ks down when V is an infinite dimensional
Hilbert space. A self-édjoint transformation T does not in general
have enough eigenvectors to form a basis for V, and a more sophiéticated
analysis, allowing for a ''continuous spectrum' as well as '"discrete
spectrum' is necessary, This enriched situation is the reason for the
need of further study of Hilbért space theory at the graduate level, and
is one of the sources of complexity in the mathematical structure of
quantum mechanics,

However, f.here is one véry important special case in which the
eigenbasis theorm is availé.ble, and we éball spend the rest of the
chapter studying this special kind of self-adjoint T and its eccurrence
in the classical theery of ordinary differential equations,

Definition, Let V and W be any normed linear spaces and let
S be the unit sphere in V. A transformation T € Hom(V, W) is
compact if and only if the closure of T[S] is a sequentically compact
subset of W,

Theorem 1 , Let V be any preHilbert space and let T ¢ Hom V

be self-adjoint and compact, Then there exists a uniquely determined
sequence -,{rnqs C R and an orthonormal sequence %’n} C V such that:
€ Cip LLE
(1) |rn[ \]/ 0 or ‘Lrn} and -)kfi)n]g are finite;

(2) T(¢)=r ¢ ,ald n;

(3) {q’)n} is a basis for the range of T.
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Proof, Set m = [I Tl and choose . such that ila =1 and
I T(a I —> m. Smce T is compact we can suppose (passing to a
subsequence 1.t' uecessary) that {T(a )} converges, say T(a )---) B.
Then IIBll =lim ITa il = m. Butnow IT(BIE ITHNENS mz. Also’
= (Bs B) = lim(B, T(a )) Lm(TB, a ) S ITBI (by Selivsrs and the
fact that |l a_nu =1). Thus Tl = mé But then I(TZ - m?)pN2 =

(T2 - m2)(B), (T% - mA)(B) = 172812 - 2m21TBIZ + mtupn? < uT?n?ugn?

m®< m® - m®= 0. Thus T28'= m28. Set a = B/UBI.

We have thus found a §ector a ‘such that llgll =1 and 0= (t_nZ-Tz)'(a)
= (m = T)(m + T){e@). Then either (m+ T){a) = 0, in which case T(a) = -ma
or (m+ 'I‘)(a) L & 0 and (m-T)-y = 0, in which ca;sé Ty =m¥y.

Thus there exists a vector ¢1 (a or 7/" -yu) such that ll¢, Il =1 and
T(9,) = r,9,, where ]rlf =Wiw |
For notation consisfen.;:y we set m; =m, Vl =V, and now set

{qb{gl Then T[VZ] C VZ’ since o 1 ¢1=$ (a, ¢,)=0 =
0= (a, T¢,) = (Ta, ¢, ) =>Tq 4 ¢1 . Thus T I v, is compact and self-
adjoint, and if m, = T ™ V,li there exists ¢, with ¢, =1 and
T(qbz) r :pz where Irzl = My y We continue inductively, obtaining an
orthonormal sequence {(png C \4 and a sequence '{rn—k C R such
that T¢ =z ¢ and ]r | HT]\V Il, where ¥y = 1¢1""'¢n-lzl"

We suppose for the moment, th:s bemg the most mterestmg case,
that r =+ 0 for all n. Then we claim that x| —> 0, For ]rn[

=

is decreasing in any casg, and if it does not converg-e to 0 then there

exists b>0 suchthat |r |2 b for all n. Then IT(g,) - T(¢j)llz



¥.q

" 2 o e e ? mpea ‘
hro, - rjqull =llr¢ 017+ 1 rjqull = r’+ ry s 2b” for all i # j, and the
sequence {T(q‘Ji)} can have no convergent subsequence, contradicting
the compactness of T, Therefore ]rnl \L 0,

Finally, if B = T(a) and {bn} and {an} are the Fourier coefficients
of B and a, then b, = (B, §) = (T(a), 9,) = las T($)) = (a, r $ )=

r (@, 9 )=ra ,and IB - Z‘; by¢; Il = I Tl - L agpy =

n

n
Irn+1|||a -. Zl a.it,‘bi Il (since a =~ Zl ai¢i - Vn+l by § ll,\() )

: ! o
B _|rn+ 1] la) —> 0. Thus B =Z, b.¢. for every § in R(T) and
: 1
' g - b A F ey 2 s 1 g €0
i@bi} is a basis for R(T). Also N(T) = R(T)™ = {¢1§ = hl Vi .
If some r, = 0 then there is a first n such that M 0, In
this case T P ¥, = Irn| = 0, so that VhC N(T), whereas ¢, =
5 ¢ 5 i
T(¢i)/ri_€ R(T) for i< n, so that 1¢1""’¢n-1 }C RAT) €. NIE) "
Since V = {gbl,...,cpn_l} € Vv, it follows that V_= N(T) and

n-1
19;¢

51 = R(T).
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§5., Equicontinuity

- Let. A and .B be metric spaces, A subset: ‘;{PC BA is eqdicontinuous

at pp & A <==> (VE>0(Fd>0)VpC ANV EC F)plps pp)< 6 =
p (£(p)y f(po)) <:€), That is all the functions in ‘# are continubus at pgs
and the same 0 works for them all. q“‘is-'uﬁiformly 'equicontinum;s on A
<=> (V.€>0(36>00(Vp,q € ANV £C F)lplpra) < & =~
plf(p), £(q)) < €). _ » |

Theorem & , If A and ‘B are totally bounded metric spaces :

“and 1£ ? is a umformly equ1cont1nuous subfamlly of B‘AL then ';F

is totally bounded m the umform metric.

v .

Proof Gwer; € >0, choose 0 so that for all f C - and all .
Py po A, plpp p;_) < 6 = p(f(pl). f(pz)) < €/4. Let D bea
‘ fm1te aubset of A which 13 6 dense in A and let E be a finite subset
of B which is 6/4-dense in B. Let F be the set ED of all functions
on D into E, F is of course finite ; in fact, #F =0 where m = #D
and n=#E, If £ CF and p € D then by the definition of E there
exists q C E such that p(q, f(p)) < €/4. If we choose sucha q C E
for each pC D we have constructed a function g = F such that
p(f(p), g(p)) < €/4 for every pC D, For each gC F choose one £g€ e
if there is one such that p(g, fg) < € /4 on D ,and let ’;FO be the
subset of # so chosen. Clearly, # ?:0 < #F =n™ . We claim that
‘-‘FO is C-dense in ‘T, _To see this take any fC A and construct
gC F as above such that p(g, f) < €/4 on D. Then fg exists, and

we claim that p (f, fg) <€ , Since plg, fg) < €/4 on D and
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p(f, g) < €/4 on D it follows that p (f(p), fg(p)) < €/2 for each
p & D. Then for any p' C A we have only to choose pC D such that
p(p's p) < O and have p{f(p’), £,(p") S p(£(p"), £(p)) + p(f(p), £,(p)) +

Pl (p), £.(P")) S €/4 +€/2 +€/2 =€,



- 86, The Sturm-Liouville Problem .

In our theory of linear differential equations we considered a
function F : W x I —> W which was continuous and linear in the first
variable for each fixed value of t C I. More generally, for the n-th
order case, we had G : W%« I —> W such that G(aI, sees Qs t) =
G (a, t) is a linear in the n-tuple variable o =<a;, «o0y @2 for each
fixed t,

We now consider the special case W = R, For each fixed t, G
is now a linear map of R"” into R ", i, €s , an element of (IRn)'* , and its
coordinate set with respect to the standard basis is an n-tuple
k= <k1, ooy kn> (its image in R" under tE:e natural isomorphism),
Since the linear map varies continuously with t the n-tuple k varies
cortinuously with t. Thus, when we take t into account we have an
n-tuple k(t) = <k1(t), o~ kn(l:)> of continuous real-valued functions on I
such that

<o
s ) = ki(t) X o

G(xl, ooy X )

n

As in our earlier general discussion the solution space N of the n=~th

order differential equation

n
"d—?(:“ = G(Q’ ? onvoeyp dn‘-la /dtn-l
dt

» t)

is just the null space of the linear transformation T : f.'::. n(I : R) — G.O(I, R)
defined by
(1)) = £e) -k 0P ey - vn -1y (0 (D)
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If we shift indices to coincide with the order of the derivative and let
f(n) also have a coefficient function, our n=~th order linear differential

operator T appears as
= (n) |
Tf = cn(t)f t4 pee + cof(t) ~

In what is called the regular case the function cn(t) is never zéro, and
so can be divided out to give the form we have studied. We shall also
restrict our attention to a closed interval [a, b] C 1, so that we can
consider initial conditions at the endpoints if we wish,
Our present study of T will be By means of the scalar product
b ‘
€ 0 = § Hew a.

a

The general problem is the usual one of solving Tf =g by finding
a right inverse S of T, And, also as usual, we find S by finding
a complement M of N(T), Now, however, it turns out that if T is
""formally self-adjoint' then suitable choices of M will make the

associated right inverses S self-adjoint and compact, andthe eigen-

vectors of S, computed as these solutions of the homogeneous equation
Tf - rf =0 which lie in M, then allow the same (relatiyely) easy handling
of S by virtue of 64 that they gave us earlier in the finite dimensional
situation (8 2 ),

We first consider the notion of 'formal adjoint' for a differential

operator T. The ordinary formula for integration by parts,



b . B L B

S f'g = fg] - ng" ’

3 Tal &
allows the derivatives of f occurring in the scalar product (Tf,.g) to
be shifted one at a timeto g. At the end, f is undifferentiated and g is
acted on by a certain n-th order linear differential operator R, The

b

endpoint evaluations, like the above fg] , that accumulate step by

a

step can be described as

b. 5 : . ) ‘ ‘b
B(, 0l - > kg |

& ogitj<n | a
where the coefficient functions kij(x) are linear ‘combinations of the

coefficient functions c.(x) and their derivatives. Thus '
3 oin

(Tf, g) = (£, ‘Rg) + B(f, g)l 6
i . . a

The operator R is czlled the formal adjoint of T and if R=T we
saythat T is formally self-idjoint,

Every application of the integration by parts formula:introduces a
;éign change, and the reader may be able to see that the leading coefficient
" of R is ('-I}ncn{th Assuming this, we see 'that a necessary condition
for formal self-adjointness is that n be even, so that R and T have
the same first terms.

From now on we are going to consider only the second order case.

However, almost everything that we are going to do works perfectly
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well for the general case, the price of generality being only additional
notational complexity.,
We now compute the formal adjoint of the second order operator

. b DI b
Tf = czf” + clf'+ cof « We have (ff, g) = S‘ czf”g + S' cl’f‘g+ S coie s

a a a
b .
b b
cflg = c,fg - f(c,g)!
1 1 ] 18
a

a

b b b
S. cf''g = czf'g:l - S f'(c,g)!
a ., a

I

b b
[czi‘g - f(czg)' ] + S‘ £(czg) ", giving
a a

(£, Rg) = Sf((czg) - (Clg)' b (cog)r and

B(f, g) = c,(f'g -g'f) + (c) - c})fg.

Thus R.g = czg” + (Zc'Z - cl)g‘ + (C'Z‘: - c:'1 + co)g, and R =L <==>
2cy - q =c¢; (and ch ~ ¢y =0) w==p c,=c; . Thus T is formally

self-adjoint if and only if

Tf = czf" + cif' + cdf = (czf')' + cyfs in which case B(f, g) =
cz(f'g - g'f).

Frem now on we shall suppose that T is formally self-adjoint,
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' Supposing that we have found a solution of the inhomogeneous equation

Tf = g in the form of a complement M of N(T) in Gr-“-({a, 'b]), wenext
enquire as to the self-adjointness of the inverse operator S E'C‘L'o —> M
('considered as an element of Hom (% 0). For any u, v Y et

f=Su and g = Sv, so that f{, gCM and u = Tf, v-Tg. Then

(u, Sv) = (Tf, g) = (f, Tg) + B(f, gl:[ - (8u, v) + B(fs g)] . Thus
S is self-adjoint if and only if f, g & M => B(f, g)} 0, Of course

we must also show that S is bounded, but in the present case it will -

actually turn out to be compact,



The only kind of complement we know about so far is the ''single
point' subspace Mto = {f E > : f(to) = f'(to) =0 —(). It is clear,
however, that if f and g satisfy only two such conditions at a single
point, then in general B(f, g)] , involving as it does the values of f
and g and their first derivati‘:res at both a and b, will not be zero,
We therefore try for a subspace M defined by two conditions which
involve both endpoints, Each condition will be the requirement that
a linear functional ¢ on {jzﬁ, whose vaiue ¢ (f) depends on the
values of f and f' at a and b, be zero, Such a functional ¢ will
be the composition of the linear mapping f —><f{(a), f'(a), £(b), f'(b)>
of (2% into RY with aa element of (E{4')* » and therefore will be of
the form X (f) = kf(a) + kyf'(a) + k,f(b) + k,f'(b). Thus
M = -{f € & 2' : k"l(f) =0 and .k["z(f) = 0} where )'/1 and ,"{’2 are
both of the above form, The boundary condition n’fl(f) = ,!<'z(f) =0
is called a self-adjoint if f, g C M => B({, g)]:= cz(f'\g - g‘f]: = 0,
We know then that the right inverse S definedby M (if M is a
complement of N) is self-adjoint,

Instead of trying to find out what self-~adjointness implies about an
otherwise arbitrary pair f(l and ’ZZ » we shall confine ourselves
to a few special boundary conditions that obviously are self-adjoint, We
list them below,

I, £fC M <==>f(a) = £(b) = 0 (i.e., ¥y(6) = £(a) and I, (f) = £(b)).

2, fC M <=>f"a) = {'(b) =0,

3. More generally, f'(a) = klf(a*), f'(b) = k,f(b), (Infact } cad

be any A that depends on values at a only, and - .2. any A depending



.only on b, Then f.(f) = '.<’1(g) =0=>1L {<f(a).f'(a)> : <g(z'=1),g'(at)>,}1

has dimansion £ 1 => f'g - g'f| = 0, and similarly for }(z and b,

so that this spllt pair of endpomt conditions makes B({, g)] = 0 by

makmg the values of B at a and at. b sepa:ately D.) ‘ B
4, If cz(a) = ¢ ,(b) then take f C M <> f(a) = f(b) and

£1(a) = £'(b). |

Lemma b « Suppose that M is defined by one of the self-adjoint

boundary conditions 1, 2, or 4 above, that c,(t) Z m>0 on [a, bland Fhat
h o= cO"oo+ lf Then

(T =06 0] 2 migrnd + nan’

for all £ C M., , . ;

Proof, We have ((A - T)f, f) = S (c f')' f + g (\ - <:0)f2

b
= - czf‘f] + S‘ cz'(f' g (N - cg)f” « Under any of the conditions
a

b
1, 2 or 4, czf'f:] -= 0, and the two integral terms are clearly bounded
below by mllf! Hz and Hfll; respectively.
Remark, By using the Schwarz inequality somewbat as in tbe next

theorem we can show that for any c¢ > 0 there exists k>0 such that

2. < gl 2
Hfilw o chH2 + k£,

for any f G Ce 1([a, b]). Taking c = m/2 in the above situation and
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'k. = I cOIIQ'0 + k+ 1 we can get the lexﬁ;’na also for the omitted case 3,
but with m replaced by m/2,

i ‘Cjorol.larxl. In each of the cases 1, 2and 4 M is a complement of
N(T - \) and therefore determines a right inverse S to T = \.

Proof, The inequality of the lemma shows that T - \ is injective
on M. Now M is the nullspace of the mapping f {—> < i"fl(f)'; A"."z(f) >
of ,;_Z 6nto IR‘2 « Since M n N = {0_’,; » this mapping is injecti%re on
the two-dimensional space - N = N(T -'X) and therefore is an isomorphism
o N. For any f C 4’12(‘[a, b]) we can thus find g © N such that
< A (g)y Zy(g)> = < {|{f), %,(f)>. Then f-g € M, and f=g+(f-g),
showing that @2 =N+ M, q.e,d. .

We come now to our main theorem, It B?yé that the right inverse S
of T -\ determined by the subspacé M aboveis a compact self-adjoint
mapping of 'the‘"preHil-Be’rt space C;,o'(-['a, b]) into itself, and is therefore
endowed with all the rich eigen-value structures of §4 . First,

some classical terminology. A Sturm-Liouville system on [a, b] is

a formally self-adjoint second order differential operator Tf = (czf')' +c0£
defined over the closed interval [a, b] , together with a self-adjoint
boundary condition ..’x;ll(f) = JZZ(f) = 0 for that interval, If c,(t)

is never zero on ta., b] the system is called regula;. If ._cz(a) or cz{b)
is zero, or if the interval [a, b] is replaced by an infinite interval

such as [a, o) , then the system is called singular,

Theorem 9 , K. T fl, fa_is a regular Sturm -Liouille

system on [a, b] , with cz(t) >0 there, then the subspace

K
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M= [£C GHa, b]; 40 = 40 =0/ isa complement of N(T-)
if \ is taken sufficiently large, and the right inverse of T -\ thus
determined by M is a compact self-adjoint mapping of the preHilbert
space (L—lo([a, b]) into itself,

Proof, The proof depends on the inequality of the above lemma,
Since we have proved this inequality only for the boundary conditions
1, 2 and 4 our proof will be complete only for those caees.

Set g= (T -\, Since ligl, llfll, 2 [((T - N\, )| by the
Schwarz inequality, we see from the lemma first that I flfg S gllzllfH2 '
so that IIfHZ = ligli, , and then that mll f' llg 5} hgl, !!f!lz e Hgl!z ’
sothat N£'ll, £ ligh,/Nm .

We have already checked that the right inverse S of the formally
self-adjoint T=A defined by M is self-adjoi‘nt, and there remains
to be shown that the set S[U] = \Lf : Ilgflz i 1,(’ has compact cloguire,
| We h.ive, first, by Schwarz, that

Ly 2
Nm

uA

|£(y) - f(x)| = §Y|f'| S e, ]ynx[l/z

Thus S[U] is equicontinuous, Taking y and x where |f| assumes
its maximum and minimumvalues, we have |l fllm -~ min |f| <

e} 2N, Slace 12 lgh, 2 €, 2 (min 1£])b-2)172 , we bave

fl_ & C, where C = 1/b-2)2 + (b-a) 2w .

Thus S[U] is a set of equicontinueus functions mapping the compact
set [a,b] into the compact set [-C, C] and is therefore totally-bounded

in the uniform norm by 85 . Since gj is complete in the t%mfori:n horm,
every sequence in S U] has subsequence uzuformly converging to some

fe ¥o, Since ”f” -a) ”f |, this subsequence alse converges
te f in the 2-nerm and tlns is equivalent to the desired compactness.
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Corollary . There exists an orthonormal sequence ~§¢n[r

consisting entirely of eigen~vectors of T and forming a basis for M,
Moreover the Fourier expansion of any f C M with respect to the basis

{‘% : converges uniformly to f (as \i#éll as in the 2-norm),

" Proof, By 84 there exists an eigenbasis for S on the range of S,

which is’ M, Since S5¢ = rn¢n » we have (T - )\)(r-nqbn) = ¢, and

e (@+ hrn)/rn)‘tpn”. The unifbrmitybf the series convergence

comes out of the following genéral counsideration,

Lemma 7 « Suppose in 84 that the self-adjoint operator T is

compact from the scalar product norm p to another norm q omn V,

and suppose that p S cq for some ¢, Then T is compact (from p to p)

and the eigen-{basis. expansion an¢n‘ of an element B € R(T)
converges to f m béth norms, . .
Proof. Let U be the unit sphere of V in the scalar product
norm, By the hypothesis of the lemma, T[U] has compact q-=closure and
therefore compact p-closure } » We thus have the eigen-basis theorem,
. Now letl B= _Th%) have the Fourier serieé Zbi ¢i s Where
T(p;) = =9, . 'i‘hgn b:. =r.a, wht-efe'u {ai}; "are the Fourier coefficients

: . ) ; : —1
of a. Since the sequence of partial sums Z_,l ai¢'i is p=bounded

; = 7 ey Y —n )
(Bessel’s inequal_lity), the sequence {Z J bitpi }: {‘I‘( Z i ai¢i) } is

q-totally-bounded . Any subsequence of it therefore has a subsubsequence

'g-converging to some element ¥y c v, Sinc;e it then p-converges to 7,

v must be  B;  Thup every subsequence has a subsubsequence g=con-

3

~verging-to B and se¢ Z b.¢. [ itself q-converges to [3, q.e.ds
s TS g o s
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§7., Fourier Series

There are not many regular Sturm-Liouville systems whose
associated orthonormal eigen-bases have proved to be important in
actual calculations, Mdst orthonormal bases that are used, such as those
due to Bessel, Legendre, Hermite and Laguerr‘e, arise from singular
Sturm-Liouville systems and are therefore beyond the limitations we
have set for this discussion, Howevér, the best known example of all,
Fourier series, is available to us,

We shall consider the constant coefficient operator Tf = sz,
which is clearly both formally self-adjoint and regular, and either the
boundary conditions f(0) = f(7) =0 en [0, 7] (type 1) or the periodic
boundary condition f(-7) = f(7), f'(-7) = f'(7) on [-m, 7] (type 4).

To solve the first problem we have to find the solutions of f'" -~ A\f =0

which satisfy £(0) = f(r) =0, If A >0 then we know that the two-
kl/z

X
.

: ; 5 i ' % 2 -rx
dimensional solution space is spanned by (e *, e j where r =

But if c,e’*+ Cze-rx is 0 at both 0 and 7 then c, =¢, = 0 (because

N
" rm_-raT . o
the pairs <1, 1> and <e y € > are independent). Therefore there

are no solutions satisfying the boundary conditions when X\ > 0. If
A=0 then f(x) = cyx+ ¢ and again cp=¢y= 0.

If N <0 then the solution space is spanned by isin rx, cos rxJ
where r = (—)\2_1/2. Now if clsin rx + c,cos rx is 0 at x=0 and

x =7 we get, first, that cy = 0, and second that r7 = n7 for seme

integer n, Thus the eigen-functions for the first system form the set
' 27 o
B L]

{sin nx}co and the corresponding eigen~values of Dz are Ln ;
-1



" "We therefore have the following corollary of the Sturm-Liouville

theorem and the 2-norm densit yi of M in 'Cf-,o;

7 Q0
Theorem + The sequence {sin nx'g N “is an orthogonal basis

for the preHilbert space (. °([0, 7]). If £C (.%([0, 7]) and £(0) = £(x} = 0
then the Fourier series for f convei'ges uniformly to f£,

We now consider the second boundary problem. The computations

rx -r'x
le + cze

and if f(-7) = f(7) and f'[-7) = £'(7) then f =0, For now we have

-7 rmw T -7 P : i =TT rT
- + = - 3 . i=mC -
le + cze &= cle cze s Elving, Cl' (‘:z ? and ‘clre care =

are now a little more complicated, but again, if f(x) =c¢

clrer”- czre-”‘, giving, cl(erﬂ— e-rﬂ) =0 and so ¢, =0. Again
f(x) = cyx+ ¢, is ruled out, Finally, if f(x) = c¢;sin rx+ c,cos rx,

our boundary conditions become

8

chsin r7=0 and Zrcz sinrm = 0,

2

so that again r = n, but this tim e the full solution space of (D +n2')£ =0

satisfies the boundary condition,

;

Theorem . The set {sin nx}c'lD L j\_cos nxt ® forms an
orthogonal basis for the preHilbert space "10([-”, w]). If
£ C G-, 7)) and £(-7) = £(x), £'(~T) = £}(7) then the Fourier series
fer f converges to f uniformly on [-7, 7],
Remaining proof, This theorem fellows from our general Sturm=-
Liouville discussion except for the orthogonality of sin nx and cos nx.
T 1 C7
We have (sin nx, cos nx) = S 8in nt cos ntdt = > S.sin 2ntdt =
-7 -7

s
- -413 cos 2ux ] = 0. Or we can simply remark that the first integrand
-7



is an odd function and therefore its integral over any symmetric interval
[-a, a] is necessarily zero,
The orthogonality of eigen~vectors baving different eigen~values

fellows of couvee ag in the proof of the theorem in 82,



