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Some relotions between Homotopy Theory ond Differential Geometry

Submitted in portial fulfilment of the requirements for the degree of Doctor of
Philosophy at the University of Oxford, by Martin A. Guest, Wolfson College,
Trinity Term 1981. ) :

The purpose of the thesis is to obtaoin topological informotion on a spoce X

(ond related spoces), by solving the differentiol geometric problem of caoleuloting
the critical points of a real volued functional on the itercted loop space aitx.,
This is motivoted by Morse theory. There are two ways of obtaining information -
either from the criticol points themselves, or by considering whole collections of
critical points (usuolly critical points will not be isolated) .

In part | we give first o Clifford olgebra version of some well known results on
"distonce functions® on X , where X is o clossicol compoct symmetric spoce
embedded in some euclideon spoce. To the Clifford algebra Cu we ossociote

o symmetric space E,. ,ond embed this in the tongent spoce to E, ., (af
the basepoint) in o natural way. Second, we exomine the critical point theory of
chorocters of representations of Lie groups, this being on obvious generalisation

of the preceding problem.

In the main port of this thesis, part Il , we discuss functionolson SIY*X for i>1,
where X is o clossical compocthomogeneousspaceWe give two different exomples
(in choptenlV ond V) , where the absolute minima con be calculoted. We find
they form o monifold Y, ond that the inclusion Y—> X induces
on isomorphism .. W3 Y—T; S X for certain volues of j . The first example
uses o Dirichlet functionalon SL'Ey ; here Y=E.i . The second example
uses the energy functional on  $X*X, where X is o complex flag monifold.
This time Y consists of minimum energy harmonic maps, which turn out to be
precisely the holomorphic maps. =

W Mallen
May$t




Acknowledgements

| om greotly indebted to Dr. Brion Steer, First of oll for atiracting my interest
to mony of the problems discussed in this thesis, ond then for sustaining it by ;

his constont help and encouragement.

| om olso extremely groteful to Dr. Graeme Segal for his atlention and for
|}

many very helpful suggestions.

For financicl ossistence | wish to acknowledge the Science Reseorch Council,

the Deutscher Akodemischer Austauchdienst, ond the SFB 40 of the University

of Bonn.

[y



Introduction

There ore several connections between Algebraic Topology ond Different?ol
Geometry, which, so fa; os they have been developed, are well understood.
When one restricts ottention to specific monifolds —even very f;miliar ones,
such o the clossical mofrix.'groups-problems orise which (os suggested by the -

fact thot they remain unsolved) are often interesting ond difficult. We shall .

discuss severol ospects of one such problem.

The underlying principle will be the consideration of the critical points of

real-valued functionols on the itergted loop space SU'X of o compoct
P sp P

~ homogeneous spoce X, For i > 1 the situation is olready complicoted ond

no general theory exists, despite ottempts (especially during the 1960's) to
extend the original work (in the 1930’s) of M. Morse,on the space of paths. Our
oim is to present a number of concrete results, some new ond some merely new

versions of old results; which indicate that the problem is interesting and far from .

hopeless.

A functional on S X will have verious critical points, whose calculation
is bosicolly o problem in Differentiol Geometry, and the properties of these
critical points will then give topological information. The case i =0 will be
interpreted os the study of functionals on thehomogeneous spoceX itself. There

are two main ways of oi:fo?n?ng topological information; the first is by considering




the properties of the individual critical points (for example one may regard
critical maps as cononical representatives of their homotopy closses) , and the
second is by looking at the space of all critical points in relation to the whole
space (for example as in Morse theory) . The device of admitting the case

i =0 may seem to be somewhat artificial, ond in view of this the first two
chapters are labelled PART | , and the remaining three PAR7 Il . However the
two parts are not really independent (for example, Chapter IV will rely heavily

on results proved in Chapter | ).

PART |

Chapter | discusses Morse functions on classical compact symmetric spaces. All

the functions considered arise os "distance functions® for certain embedaings in
euclidean spoce.. These have been dealt with already by several authors, ur;d our
purpose has beep fo condense the results in o single general formulation based on
Clifford algebras. We begin with a specific example,namely the real part of the
frace finction on Uh) , ond fhen.go on fo point out some relations between'

: élifford algebr;:s and symmefric sp;aces for which no coherent account seems to
exist. It is then possible to give very elementary proofs of some well known’

results conceming Morse ﬁnctior;s' on these spaces. We give many details os these
are required later in chapter IV . The classical compact symmetric spoces can

be described as homogeneous spaces of groups of unitary elements in Clifford

algebras (unitary with respect to some suitable involution); E, denotes the
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quotient of the unitary elements in C, by those in C ., ", There is then o
noturcl embedding of E. in the tongent space £, of the next space E,., .
This is very convenient for describing certain properties of symmefric spaces, eg
compkx structures, to-folly geodesic submonifolds, stoble homotopy groups etc.,
whereas the usuol Lie-algebraic or matrix-theoretic descriptions are not. In

chopter | we put o number of well known results in this framework.

Chopter |l digresses to consider a natural question arising from the discussion of
Morse functiors in chapter | . For the Lie groups O() , U(n) , Sp(n) , the Morse

functions of chapter | all arise from the stondard representation of these groups

(i.e. the trace function may be viewed as the character of the standord representation).

One may then osk whether other representations give interesting Morse functions
on compact Lie groups. It tums out that representations do not necessarily give
nondegenerate functions, and even when they do, the critical point theory is not

particularly straightforward. We moke some conjectures and give some examples,

mainly for Lie groups of low rank.

PART Il

In chopter 111 we l:nake some remarks on the study of functionals on the iterated
loop space st x (with i > 0), before proceeding to the main results of the
thesis in chopters IV and V. We consider an element of SU'X tobea map -
s'—>x ; the precise résf'ricﬁon‘s on the map will be quite importont. The

prototype result, which we wish to generalise, is that of Bott [5]. In the



notation of chapter 1, this says that the absolute minima for the length functional
on the space of paths SLE, form a space homeomorphic to E,., , ond that
the inclusion E,i—> S E, induces on isomorphism T.E,,—> W, S E, for
i up to some dimension. In each of chapters IV and V we prove a generalisation

of this to the iterated loop space SU X . In both cases we find that

(o) the absolute minima of some functional on ST X form a
finite dimensional monifold Y , ond
(b) the inclusion X —>SUX induces on isomorphism in homotopy groups up

fo some dimension .

In Bott's work [5] , (b) is deduced from (a) by Morse theory. For i> 1 ,n0

svitable generalisation of Morse theory exists, so we must resort to other methods.

Chapter 1V is the more elementary; we use the "ith order energy functional” on

S E« ., ond find that the absolute minima are totally geodesfc maps forming o
space homeomorphic to E,.; . Bott period%ciiy arisesin this way becouse of the

- periodicity of the symmetric spaces E, . me topological information obtained

| here is of course not new, rather, the interest ;lies in being able to colculat9

criti;:ol points of a functional on a space of maps. The methods is to impose
carefully chosen "boundary conditions® on the maps involved, which permits the
reduction of the problem to the caose i=1. The explicit description of the critical
points is of independent interest; they provide totally geodesic spheres in: the

spaces E. , ond the Bott periodicity map is seen to be induced by taking a
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“generalised Samelson product” with such spheres. Finolly, there is @ connection
between these i-spheres in E, ond moximal tori in Eu.i. o which is related

to the well known isomorphism KO(S™ ) =RO Spin(8n)/RO Spin(Bn +1) [2] .

In chopter V we toke i=2 ond X o complex flag monifold U(K) / U(K, )X..o xU(Ka) ,
K, +...+K, =K . For appropriate componenfs' of maps S$*—> X, the minimal |
energy maps fum out fo be precisely the holomorphic maps. To prove (a) ond (b)

cbove it is therefore necessary to exazi;ine in detail the space of holomorphic maps
$'—>X , and 50 the methods are very different to those in chapter IV . The cose

X =P.C wos declt with by G. Segal [21] , ond we exfen'd this fo certain flag
monifolds. The results give information on the topology of the space of holomorphic
maps S —>X. | |



Contents
Acknowledgements
Introduction
PART |
Chapter | ‘Morse functions on clossical symmetric spaces

Chopter 1l Morse theory for characters of Lie groups

PART i
Chapter 11l Eunctionals on the iterated loop space sttx
Chapter V' Maps of a sphere into o classical symmetric space

Chapter V Mops of S* into o complex _f_iog manifold

Referenées

41

65
80
96

134



SN R N L K gl

Chapter |

tn this chapter (see §3, §4) we give o new description of a number of results -
mony of them well known - concerning the application of Morse theory to
compact Lie groups-and symmetric spaces. Section §1 contains a motivating
exomple, ond §2 ond 63 describe a general way of ;btaining Morse functions.
Here we condense thé material of o lorge number of recent papers which
describe various special cases of this procedure. ln section $4 we give simple

algebraic proofs of some of the results of §2, ond make some remarks which will

be generalised in chapters 11l ond V.

§1. A Morse function on the unitary group Up) ..
§2. Distonce functions and embeddings.
§3. Symmetric spaces, geometric trcmsfonn'uﬂon groups, ond Clifford algebras.

§4. An algebraic version of §2 .



§1. A Morse function on the unitary group U(n)

N

T motivate much of what follows, we shall investigate the information

provided on the group U(n) of unitary nxn malrices by the function f,
f: Un—R X+—>Re (trace X).

First, f has been shown fo be a “Morse-Bott® function (Frankel (121), ie the
critical pointsof f form a collection of nondegenerate critical submanifolds.
(We shall use the terminology of Morse theory from now on without further

reference; see [18], {5 ) We shall begin by giving this simple calculation.

Let T be the stondard moximal torus of U(n), ie the diagonal matrices

{diog (e® ;e )] . The following lemma shows that we only need consider

the function flT :

Lemma 1.1 : 1) Any critical point of § isconjugate fo a critical point lying

in T.

S 2) grad f s tangent fo T (grad is defined using the bi-invariant
7, [
(F kel ) .

L [V

inner product (A,B) = trA B* on T_U(n) =skew hermitian

matrices).

Proof: 1) isclearas f isa class function.

2) is true when grad f s evaluated at a regular element, since grad f

is orthogonal to the orbit (under coniugutioc{) of the element, and it is known that
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such orbits cut fori orthogonolly. But the regular elements ore dense.

The function f is diag(e'®,...,.e *©n) ,-—)icos g; , so its critical points are
=1

given by sinG =0 ,ie o=

+ 1. Two such points ore conjugate iffthey have
the same numbers of +1 and -1, so we have, in U(n) ,n+1 connected

critical submanifolds, the (-)th being home omorphic fo the complex grassmannion

U(n) / U(i) x U(n=i) .

Nondegeneracy follows from the next proposition:

/-‘,qgjr‘ﬁg"j:—l%ﬁg

Proposition 12: For the critical point © =diag (1,..1.=1,..0=1)  (with the

element 1 repected i times), the closure of the unstable manifold (ie
the set of flow lines of grad f which move out of & )is o UM)xI

( € U(n)) . The closure of fhe/stabl.e manifold is o . IxU(n=i) .= 1"\5"\"‘“\)

Proof: First we show that the two submanifolds quoted above are invariant under

the flow of grud f . We must show thct grad f is tangential fo each monifold.
61 of Frowde £

We know’ grod f is tongential ioA‘ff‘U(l) x U(n-i) , so take a curve in this manifold

which is orthogonal to . @}U(i) xI , ond consider the derivative of f in the

direction of this curve. We must show that this derivative is zero. Let such a

curve be t +—— 0. Ixa(t), where a(t) isacurve in U(n-i) . We have:
f(Lx —a(t) ) =Re tr I - Re tr a(t) sidf/dr il S0 Re r a(0) =0

(Note that the mafrix a (0) is skew symmetric.) The cose of o.Ix U(n=i)




is similor. Thus, both the manifolds o.U(n) xI ond o:IxU(n =i) are

invariont under the flow.

Next we show that the restriction of f has o nondegenerate absolute maximum
(respectively, a nondegenerate absolute minimum) at & . This will show our

manifold has the same tongent space as the unstable (respectively, stable) manifold,
and from invariance under the flow we can conclude that the former contains the

lotter. To see that no "extra® flow lines hove been included, one con look ot the

intersection with o maximal torus where this is easy to check.

Toke o= U(i) xI. We show that the second derivative of f in the direction
of any curve o ©(t) xI is strictly negotive ot o . For the purpose of computing
this derivative, we may assume that © is @ 1 -parcmeter subgroup of. U(i) . So

we take ©Oft) ,='.diag (e*t ,...,e%%), ond hence:

f( o (t) )F-(é.cos a;t) - -1) ond £l = - %.; <0

The case of o.Ix U(n -i) is proved similc;ly. '

Summarising, we have :

Theorem 1.3 (Fronkel [12 ]): The function f: U(ni-> R | has n +1 nondegenerate

critical submanifolds, the (.i - 1)th being of index i* , ond homeomorphic to

U(n)/U(i)xU(n -i) .

From this theorem one con derive well known facts conceming the homology of U(n);

for example one can show that it has no torsion. We shall

-l
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not be concerned here with such well documented results; instead we shall

investigate further :

a) the negotive bundles

b) the flow lines -

a) Negative bundles

The critical submonifold contoining c , ie Mg = U(n)/U(i) xU(n - i) ,

hos o vécbr bundle of real fibre dimension i* associated fo it, called the

negative bundle,. whose fibre over m ( = XoX™ for some Xe U(n)) is the

subspace of T M, sponned by the negative eigenvolues of the Hession bilinear form.

The closure of the unstoble manifold at o is on embed;Ied U(i), on which the

subgroup U(i) .of U(n) octs by conjugation. Hence the negative bundle is

the homogeneous vector bundle associated to the homogeneous space

U(n)/U(i) x U(n=i) by the representotion ‘ (Ad’, Trivial): - U(i) x U(n -i) — Aut Ll

where u(‘Q-ELJ(i)’(so if A denotes the stmda;d representation of U(i), then the

' complexificﬁtion of the negative bundle is the bundle induced by (A7, trwid) ).

-

b) Flow lines of grad f

The proof of propositiontadove does not imply that the flow lines forming the

unsigble ﬁmmifo\d o. U(i) xI are the 1-porometer subgroups of U(i) . We shl|

colculate the flow lines in this section.




Lemmg 14: If one identifies T, U(n)wh ol elements X.S where S e T:U(n)
is a skew symmetric mafrix, then:

grad f (X) = X. £(X'=-X )

Proof: Let grad f (X)= X. ¢(X) . Then by definition {X. ®(X), X.V) = df(X.V),

for all Ve Ty U(n), so:

(D(X), V) Ret.r X.V

I (XV+VEXY)= Lir(XV + X*VF*)

= $(X*- X,V) forall Ve Tz U(n)
So we must have ¢ (X) = ;'.(X" = X) , as required.

(Observe that the critical points are given by the zeros of grad, ie the points X

for which X* =X ond X'=X',ie the square rootsof I in U(n).)

By lemma 1.1, we only need to compute the flow lines in the torus T of the function

fL. let © beacurvein T:
Z{0
eo
e:t+—> | -

*
-

(X 3)

This is a flow line (> the point t=0) iff
| o'(t) = grad B (1)
ie £{(t) = sinf (1) forall 1.
The solutions fo this are: -

.

{




) ) =kT, kel
C2) Fil)="2tcn™ (Avet) where Ai> 0.

Observe thot this gives us a flow line through the point with = 0 , whichis

’ never o critical point, and the the flow line "starts® ond “ends” (ie for = —co
ond t=0°0) on critical points. |

It is now clear thot @ flow line con be ”ré-pﬁromat rised” to giv'e a 1-parameter

subgroup precisely when the following condition holds: -1A{l" s independent

‘of i . In this cose, the corresponding geodesics are:

LU — - € ond its conjugates. .

(The geodesics passing through I _ore obtained by taking such curves with

no constant terms =1 on the diogonal.) We use "re-paromet ri sotion” in ifs

widest sense here, ie we are only interested in the underlying set of poinfs.-~ '

nw . /e . - .
Therefore, we are only concerned with "prime” geodesics. We summorise this

result:

Proposition 15: For the function f: U(n) —> R,

lGeodes?cs] A {Flow lines} = {Paths u —> Kcosv + Esinu}

where K, EeU(i) ond K*=1, E2 = -i , and where U(i) is included in U(n)

by a stondard homomorphism.




The prime geodesics occuring here will be of ;pecia| significance later; those with

i=n we call planar geodesics (they are intersections of plones in M.(C) with

U(n) ) , and those with i<n sub-planor geodesics. (Any prime geodesic of the form

U(n)n(Plane in M.C) s clearly of the form X([cos u + E sin v) where

X e U(n) and E2=-T.) It isof interest to note the following relation between

the index ond the number of geodesic flow lines in the unstoble manifold:

Proposiﬂc;n %: For the function f: U(n) —> R, the number of geodesic flow

lines in the intersection of a maximal torus with the unstable manifold of the

critical point of index Y s 3 — 1 (there are-1+4(i + 1)(i +2) conjugacy classes

Proof: Clear from the caleulation above.

~

¢
E
E
of flow lines) . |
;

i

;

:

I

l

I
|
|
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§2. Distonce functions ond embeddings

The function f of §) con be interpreted os a "distonce function”. There is

a hermition form (AB) = trA B* on M,C, with associated norm 11,ond

we have:

2
f(x) = 8 X+I;L - 20 for XeU(n)E M.C
So f hos the some critical points ond underlying flow curves os the function:

dy (X)= 1X+I I'= (distonceof X from <"

It is not surprising that this excmple generalises to include o) all classical symmetric

_spaces and b) ol distonce functions on these spoces with respect to some natural

embedding in euclidean space. To do this, toke o compact riemonnian globally
symmetric spoce' G/K , with Carton decomposition g = k@ m ,ondlet X= Ad(K.‘)(E)
be the orbit of E € m under the adjoint action of K on m- The tongent |
space m hos on Ad-invariont metric, so forany P € m one has the distance

function d, : X—* R,
do: x —> (dis.tcnce of P from x)".

Theorem 2.1 (Bott): 1) Forall nonsingular points P,dp isa Morse function

(ie it has isolated nondegenerate critical points) .

2) The critical points are X h, where h is the unique

Cartan subalgebra of m  which contains P.




* Proof: See chopter Il of [6] for delails. The critical points are given by nommals -

.

from P to the orbit X , ond we know thot Corton subclgebras cut orbits
orthogenally. Given anormal, it must cut the orbit of P itself o:thc;gonally,sn

the normal lies in the Carten subalgebra through P, and conversely.

Theorem22: 1) Forall P, dp is a Morse-Bott function
A (ie it hos nondegenerate critical monifolds) ' o

2) The critical poinscre X N (U "') .
‘ e Corton subalyebrn
o 2P

Proof: The some proof as for thearem 1.1 extends to this cose.

-

Example: For the situation of §l, we have G =U(2n) , K=U(n) x U(n) , -

Tm= M.C , E=I, the Ad action is given by AD(X,Y)(E) = XEYy? , ;::nd N

f is essenticlly the function dy ’, as pointed out above. A typical Cartan

. subglgabra containing -I 1is v = {diagonal matrices in M.R}), ond the othesrs .

are obtained by coniugu.ﬁr;g v by elements of U(n) . (NB: -I doesnot ;:omnwtg _

withall elementsof m=Ma€ in the sense of the Lie bracket?) . .
" Theorems2.l and2.2 are particularly useful bec‘c':use of the following foct: -

Theorem 2.3: ‘All compact classical irreducible symmetric spaces -

. can be obloined as Ad orbits of other such spaces.
Proof: By inspection .

The embeddings of classical symmetric spaces into euclidean spoces which orise in

o W O WE D NG OB PRON NS AR

.
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this woy hove the following speciol property:

Theorem 2.4: (Koboyoshi ond Tokeuchi [17]): The embeddings of

symmetric spoces o8 Ad orbits described cbove ore minimol in the sense of

hoving minimol totol curvoture (see below). In porticulor, every compoct
irreducible clossicol symmetric spoce odmits o minimal embedding into

euclideon spoce.

Recall thot the fotal curvoture of on immersion of o monifold $:M—> R s
defined os follows. There is o cononicol mop ¥, from the sphere bundle B of
the normol bundle of ¢ (M), to the unit sphere s*" in R' . Llet. do be

the volume element of S*"' . Then the tolal curvoture T is defined by:

'T:(M: ¢ R" ).= (l/vds"7 j\)"‘(dg‘)
. B

Define the Morse number of o monifold M to be the least number of critical pomts
which o Morse function on M con hove. Then one haos the following interesting

relotion between minimol embeddings ond Morse Jheon;f:

. -

Proposition 2.5 (Koboyashi ond Tokeuchi [177): If ¢ is on

embeddingof M into R", then ¢ is minimol iff the Morse number of M

js equal to the number of critical points of the function

X+—>{x,V) foralmostall V e R .

The distonce functions described obove for symmelric spoces, which correspond 1:1 fo




* these embeddings. Observe thot BeCcuse the

12

~

regulor points of the tangent spoce,do in foct give Morse functions which hove the

minimum number of critical poinfs. .We shll give one more geometricol property of

Ad oction is by isometries, eoch of

our symmetric spoces sembedded in o sphere in the oppropriote euclideon space. In

¢: M—>5 N-' () of o monifold in o sphere of

-

general, for on embedding

rodius r in euclideon spoce, q) is soid to be minimal (in the sense of mean

curvoture) if the following "mean curvoture normols” :
curvoture,

E. = S aleg,e;) s (where is the second fundamental form)
(ond (e, ,.--s€a) isa basis for T.M )

=1

vonish for oll points m in M. (The second fundomental form o of the embedding

¢ gives o bilinea
.of m.)

Theorem 2.6 (Kobayashi and Tokeuchi [ 17 ]): The embeddings of _ -

symmetric spoces described cbove are all minimal in the

sense of mean curvature.

Just as we gove

we have the following description of minimality in the sease of mean curvature. .

- &

Proposition 2.7 (Kobayshi ond Tokeuchf [(17]): Llet ¢:M —_ s

. be an isometric immersiom, with coordinote functions obtained

by taking the c.omposiﬂon M—> s —— R" denoled Yi o

4 =1,...,N.. Then (P is minimal in the sense of meon curvature

if Ay = ~(n/r2 )y, where A is the Loplocian for- M .

rmop O, :T.Mx T,,;M —> N_, , where N is the normal space

-

on equivclent definition of minimal fotal curvature in proposition 25,

(r=1ETD

A' “ - : | ml

4
z
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In 4 of this chapter we $hwll put the cbove theorems in a more general fromework,

which will help to explain why they are true. We remork here that 0 number of

outhors have exomined vorious special cases of these theorems, and for convenience

we give c_bibliogrobhy os on appendix to this section.

The lost section of this bibliography ([A15] o [A 2] J) deals with Morse functions
(primarily on grossmennions, ond in particular on projective space) whose cri tical

points have been calculated by direct calculation in local coordinates. For exomple,

one has the function of Milnor [ 18]:

RC—> R lrierx) —> T AT A e R

[N -]

This is o case of theorem 22 ; we tcke PC embeddedin T, (U(n +1) ) os the

Ad orbitof X, ond then consider the function d; where :

() e (%)

Alternatively, one could embed P.C in U(n) by the quadratic embedding induced

s (-'-.,_')xf-..,_;)g--

ond then conii'ée} the restriction of the function ‘X —> Re tr (RX) .

by . -
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§3. Symmetric spoces, Geometric tronsformation groups, ona Clifford olgebras

This section is quite elementary but we shall estoblish some notation. There is o
sense,to be exploined, in which Clifford olgebros clossify symmetric spoces; fo
the Clifford olgebra C« we sholl ossociate o symmetric spoce Ex . Our
viewpoint in the remoinder of this chapter, ond especiolly in chapter IV, will be
that os for os clossical speces ore concerned, there is'no loss of generality in
working with the spoces Ex . The des.cripﬁonsof these spoces are sufficiently -
specific, however, o reveal certain features not easily obtained by the usual
motrix- theoretic methods. In this chopter we shall look ot Morse functions ond
embeddings, for exomple, ond in chapter IV we shall consider the iterated loop

| spoces .Qj E, . Before introducing the spaces Ey , we make a few

remarks on symmetric spoces ond their tronsformation groups.

Symmetric spaces:

We begin with some general remarks - the reference is [16]. A riemannion

© symmetric spoce M haos o "symmetry® s (reflection in the orig'm. o), which

is on isometry ond satisfies s* =] . If G is the identity component of the

group of isometries, ond M is compact, then G-

Let the isofropy ot o be H , so that Me G/H . Note thot s isnot

necessarily in G ; the action of s on G/H isgivenby s(gH) = (sgs)H .

-

To classify such spaces up to conne cted components ond coverings one converts

is compact ond acts transitively.
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to a Lie olgebra problem, and to do this one must first replace the pair (M,s) by
the pair (G, 0°) where o is the gutomorphism of G definedby g+—>sgs.
(One must avoid mentioning s , as it is not necessary that s € G.) We have
lfixed pt;ints of c)2H 2 {idenmy component of fixed points of ) ,so that
(G,0) determines only the simply connected cover of M . In table | (poges33})
we give a list of the compact irreducible symmetric spaces of classical type,
together with the involution o= ; for notational convenience we do not always

take a simply connected or even a connected representative.

Observe that in most cases o is conjugation by on element of G, whose square
is I or -I. In the remaining cases one con embed G in another compact group
G' o that & is conjugation by on element of G'.‘ (There are fives cases:

0(n) x 0(n)< 0(2n) ond o is conjugation by (%.l.%) , aond similarly for

U(n) x U(n) , Sp(n) x Sp(n) ; next U(n)< Sp(n) ond G : X—>X s
conjugation by j ; and finally U(2n)S 0(4n) ond o is conjugation by an
elementof 0(4n) .) H actson M EG/H ; call this the AD action. By
differentigtion, H acts on the tangent space m at o ; this is the Ad action.-
Observe that ony orbit of either action is again a symmetric space; we pointed
out above (theorem 23) that ony of the classical spaces arises in this way as on
orbit of Ad , ond one con see this by inspecting Table I . The converse
procedure, ie how o find a symmetric space for which a given space is on orbit

of Ad, can also be described directly, in terms of geometric tranformation groups.
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Geometric tronsformation groups:

It is possible that o symmetric spoce M admits the oction of a tronsitive Lie
group which is larger than the group of isometries. If L is such o group
(connected), ond K is the isotropy at o , then L/K is anew preséntoﬁon of

M which may be ottributed to o 'heometric structure®.on M. (L is the
mironsformation group” of this structure.) For exomple, the standard way of demon=
strating that the complex grassmonnion U(n) / U(p) x U(q) has a complex

structure is to observe thot it admits o tronsitive action of Gi(n,C).

Nagono [19] has clossified poirs (L,M) of this form, ond in particular one hos

the following theorem:

Theorem 3.1 (Negono [19): Suppose a compact irreducible symmetric

spoce M admits the action of a tronsformation group L, which is irreducible,

hos o centre of dimension £ 1, ond is larger than the isometry group of M. Then

the involutive isomorphism o of-G exten;is to L,ond L/G ison irreducible
symmetric spoce of noncompact type; G is o maximal compact subgroup of L.
Moreover, the centre of the isotropy of L. on M (ot o) is nondiscrete, onci contains
on element Z such that M is embedded in L/G os the AD orbitof Z. (At

the Lie algebra level, there is an element z in the Lie algebra 1 of L such

thot the Ad orbit of z giyes an embedding of M in P, the tongent spoce to M

ot 0.) The lineor transformation Ad(z) hos eiéenVolues +1,-1 (on g )ond O (on P-

1/9).) _Converse]y, M con be recovered from the tiple (L,G,2) .
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To see that this is the converse to the procedure exhibited in toble | , we must

consider the compact form L' of the non compact group L. This L' is obtained

as follows:

1 = qOp is the decomposition associated with /G

1, 1@l is the complexification of 1 .

Then L' is the group with Lie algebra g@il . L' |G is a compact symmetric

' = goip. The Adorbitof iz

spoce with the associated decomposition

for the space L'/G is the spoce M, ond the involutive isomorphism o for

M is AD(Z) where - Z' =exp(iz) is the symmetry s ; this is the involution

O appearing in table | .

We see that it is‘only possible to have the symmetry in G if there exists on element

F of G such the AD{2) = AD(Z) , ie when there exists an element ¢ in the

centre of L' such that ‘¢.2' ¢ G . By inspection of table I , this occurs for

five of the ten spaces; These are precisely the spaces GIH for which : 4 is of

maximal renk (altematively, those of strictly positive Euler characteristic). We

s‘mll see later‘(proposiﬂon 3.5) that the "geometric structures” possessed by these

spaces have a simple description. In foct we shall show that a classical space G/M

con always be identified with an Ad orbit of some other classical space /G,

regardless of its geometric structure.
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Clifford olgebros:

C. denotes the Clifford olgebro with generators  €y,..c/€x satisfying the usuol
relations e, =1, eve; +e; e, =0 (i #); these elements generate a reol
vector space R*c C, ond are orthonormal vectors in the unit sphere s“'¢ R

with respect to-the usual metric. CS is the complexification over R of Cy.

Toble ligives o list of the C, ond the C5 in terms of classical matrix olgébrcs,
for example we have: sz =M2"C), Con = M(2" C)® M2, C) . Letus
see how to moke on explicit identification in this case. The olgebra Cox

octs on itself by multiplication on the right; let Ry denote the action of x .

Define:
_ x
A,', = Q {(-1) - eigenspoce for R'lezj-.e,._"}
Then A, is a complex 2* ~dimensional left Cy -mosiule. Our explicit identification
is given b; xif-—) Ry. The mop. (I C:.‘-!——% Cs ,euvr—eceq, iéenﬁfies
Co, With ‘.'(Cr' ). Thus C 5 octs on A,. via .‘ qb,.,, and under this |

oction A_= Dol © A a1 (this is the decomposition into the even ond odd

ports,.respecﬂ\iely')' This provudes on expli¢it ndenhfncohon C M2+, C)® M ,0) .

Next, ¢;,¢m= C;'x_,:——é Cm‘ , LV —>€ €, ollows Cu_.,_ to octon Au,
octs on each of 'A';h and A, but the two octions are equivalent (to see this, conjugote

by e, ). This identifies Cg., with M(ZK—' ,€) , and we have the map:

. ¢n: 4>n-i: M(zu-' tc)"% M(ztlc) X ’__) (_)E_\_O_)
Oo\X
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2 .
We sholl denote this map by ¢ (ie we drop the suffices). This map restricts fo
the correspondirg unitary groups, ond in general we have ¢J”: U(Z'-J )—UE2").
These explicit descriptions will be used later, but for the moment we shall just

need the definition of Cx in terms of its generators.

Definition: The standord involution o on Cy is obtained by

extending the mop 2 :R*—> R* givenby e r—> -e. toon involution ; the

stondard onti-involution o" on Cy s obtained by extending L fo on onti-involution.

Note that ¢ and o depend on the choice of the subspace R* . We shall of

course choose o ond & so that there is consistency with respect to the inclusion

M'
o [

¢ , but it should be pointed out that if one is dealing with a particular  Cy then

the matrix calculations involved cre sometimes simplified by moking a different

(ie non-standard) choice of o, o*.

Definition: Dy = Unitary elements of Cq with re#pect to o*

Ek =-Dk/ ¢(Dl-|) -

(Similarly for D , EL )

Proposition 32: E, ond Ec are compact symmetric spaces of classical

type, ond they are irreducible except for E., k=1,5(8) and for Ey, k=1(2) (whenj

isotropy representation contains a trivial summond) .

Proof: This is clear from a comparison of tablesl and 11 . Note that

t‘.‘. is connected, and E, is connected except when kz6,7(8)

(when it has two components).
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We con identify &, (the tongent space.of E. ot o)ond ¥, (the Lie clgebra

of D, ) with subsets of C, os follows:
dk = {xe C.‘&‘x=-x}' &, ?-{xevlg‘ ox =-x] ‘

This is consistent with the usual decomposition % = 8,00 , ie the decompasition

“into eigenspaces of do (=0) . Observe that we have identified <, with

the space of even elements of d, ,ond &, with the odd ones. With this - -

identification we have e, ..., e, € & -

A great advontageof the Clifford algebra formulation is that one can deal both with

symmelric spoces / Lie groups ond with their tangent spaces ot the same time, by -

. considering suitoble embeddings in some Cy . Having done the tangent spoces

in the last paragraph, we shall now look at the symmetric spaces themselves. First:
‘observe that (p (Dk-+ ) consists of the even elementsof Dy (bem'use ¢ (C.-)

consists of the eyen elementsof C, , ond ¢(o*)= a*) . We now have the

embeddings:

Ay, € % € C, $(Du-, ) Dx €C

The confinuation of this procedure has a simple description. The space  Wy-o IS

P =bs LN
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embedded os the even elements of <y (in Cy.y ),ieos the fixed points of the
involution (of C,.,) definedby e;+> -e. , i= l,e0.s k =1 . On composing with
¢ :Coa—>Cy , the defining relations for the involution become e, e, > e e,
i=1,..k =1, which is clearly the same os conjugation by ex . By induction we

obtain:
d‘_.’ = {x ed,, lx commutes with e, ,...,e,‘_-a.,] &€ Cy (j>2)

Similarly, $(Dia) is the set of even elements of Dws , ond on composing with
$:Co.>Ce - @'(Dx-2) is identified with those elementsof ¢ (De— ) (in Cu )

which commute with e, . In general one has:
®'(Dey ) = (xe€De-i) | x commutes with e /..., eya) € Cx (j22)

" Definition: Let o denot; the automorphism of Dy defining the

symmetric space Ex.

It is now clear that the avtomorphism Oy ok ¢(D w— ), ond its derivative

‘do,, on 9., . arebothgiven by conjugation by e .

Propdsition 3.3: For the Ad action of the symmetric space Ex . the

orbitof e.¢ & is Ey,. .

Proof: We only need to show that the isotropy subgroup of e, under the
action of ¢ (De-y) Gy conjugation) is Dw.a . The isotropy subgroup consists of

those elements of ¢(Dg-|) which commute with e, , ond this is qJ'(D -2)
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by the remork 9bove.

>

Proposition 3.4: E, s embedded in Cun ©8 componenls of

5 {#,(D.)nd,.. . { Note that Duundl,, is the set of squore roots of -] in Dyas o -

Proof: Cerloin‘y E, CeHOINGear. For the tangent spaces. ot €. "

&..VL N duoo. = ( X € &c.du ‘ X Cua 2t = CuuX }

~

= "Cw &«

Hence the result, 8S Ey js a homogeneous space.

Exomple: The jongent spoce ot the bose point to U(2n)/U(n) x U(n) con be

The Ad action of Uln) x Ulp) on M(n,C) is given
in M(n,C)

;dentified with M({n,C) .
by (X.Y). v=XVY™? ,ond ihe stondord embedding of U(n)

arises os the orbit under this oction of the element 1.

With E, embedded in C,« in this way, it is cleor thot the ’ocﬁon of ¢1(D k=1 )

by conjugotion gives the Ad oction of "Ex - (One hos h(ge_., P )h" =.

(hs)(e...)(hg) where he§(D.r) . 9€

this time of "Ex 10 D, , with g similor proper!y

$(D. ) .) There is onother well known embeddmg,

-’

Definition: The quodrotic e;nbeading Q:E,—>D, s the mop induced

fiom tbé rr;op D.‘ -90. given by x |——‘> ofx) x* .

-

One hos Q(E, )-— exp (E.) ’ ‘where exp: d,-’ D« (ond J 4.4@& ) .
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N Proposition 3.5: Q(E, ) is embedded in G, os -components of

D« N {Fixed poinl‘s of oot}

Proof: If x isin D, ,s0cre O(x) ond o(x)x' . Apply o™ to |

g(x)x’; 6( o)X ) =(c(x)x™")™ = xo(x)" ; nowapply o to obtain o(x)x -

again. So Q(Ex ) isa subset of D N {Fixed points of agot*}, in foct

- " on orbit of the action of D, by conjugation. Since & is the fixed point set of oco*

ond,, Q(E) mustconsist of componentof the fixed points of og*on Dy .

Remark: . We obtain a number of clossical embeddings in this way. For

example, U(n)/0(n) can be considered os the symmetric matrices in U(n) .

In order to compare the quadratic embedding, ond the embedding as on Ad orbit, we
shall cons?de;r the composite map ¢oQ:E,—> C.,, . From prc;posiﬂoﬁ 3.3, we see
thaot the invo.luﬁon O, of Q(Di) defining the symmetric space Ex is the restricﬁoﬁ
of on involution (also to be colled a, ) of D.... (ié coniugoﬁon by 'e..., ),os
predicted by;ﬂ:leorem 3.1_. (Caution: The fnvo-luﬁons . and o should not .be |
confused %) "The relation between Ey (embedded in _e;,, as the Ad orlﬁl' of

Cxay

ond PoQE, ) S Cuu is given by the next proposition.

Pfopositfon 36: ¢ (QIE,))=e.o! Ew .

Proof: The embedding ‘ $-Q 'is induced by the map .(p(D.‘ ) = Cres

.given by:
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d —> Q(d) d-‘ S Cuem d e:l. d
This is the result of premultiplying the map inducing the Ad embedding of E, , by er) .

Proposition 3.7: 1) The oction of ¢(D,, Yon E, = considering

¢ (Dy) os o group of isometries of the symmetric space E, = ®D.)/ ¢*(Du-y)
- is given by conjugation by e,,, d el . (dedD )
2) The AD oction of ¢"(D., Jon E, is given by
conjugation in Cyy ,ond the Ad oction of ¢'(D,., )on £, isgiven by

conjugation in Cuay -
Proof: Trivial.

The point of this proposition is thot the operations on the space E, are described
naturally in terms of its Ad embedding in  Cyxer . We consider ‘&, to be the
“tangent space at the base point fo the quadratic embedding® ; if e ¢ E, then

ep, isfobe thought of as the tongent space fo the Ad embedding of E, ot the point

Exomple: E:M;’c &% ., is the usual embe‘dding of the nxn ;nitary matrices in
M({n,C) . Thé sl;e»hermitian matrices in M(n,C) represent the tangent space o

U(n) at the basepoint 1, and the tangent space at any other point is represented
by the tronslate (multiplicatively) of the skew-hermition matrices by thot point. We
have I= e, , ond ¢ is the map X+—>X . . (NB: The usual multiplica;ion in

Un) is not induced from the Clifford algebra C:_.,,, 1) (n=2)
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We now have both E., ond its tangent space at the poi.nt ew. (i.e.

e 2 ) embedded in &, . In foct we have a whole sequence of embeddings:

Proposition 3.8: 1) e, &, is the subspace of 2,,, consisting of

elements which anticommute with e, s-c@ins i=1,...k).

2) E; can be embedded in  &.., o3 the Ad orbit
of the point ei., for the space Eiay  (i.e. the orbit of ei., under the oction
of ¢"“"(D-‘) by conjugation). Ey s then embedded in Ey oS

componentof the set of elements which onticommute with ey, reees€iaz (i = ,.k=1).

Proof: Recall that E, is embedded in &,. & Cuosthe Ad orbit

of the point e,, for the space E.., - The tongent space fo E. of €y
e e, &, ,is embedded in &,., ostheset of elements onticommuting with
e, - (T see.this, first recall the decomposition Jew = B ®di -
By the remork on page 24 the decomposition d = &« ® iy consists of the

+1 eigenspaces of the involutionon  * 9k~ € Yxw given by conjugation

bY LIPS .')

We have so far dealt with the first stepof the procedure, i.e. the embeddings of

E, ond e, B in &, a. Now we must consider E, ond el &y -

Recoll that i is embedded in d, as the elements commuting with €xy re-erClez
(¢ k=1), ond by the same argument as that used in the first step above, &4

is the subspace of | consisting of those elements which anticommute with eln -




On multiplying by e.,, « weobloin the first ossertion of the proposition.

For the second ossertion, it is cleor thot ‘El is isomorphic to the Ad orbit of
€., ond thot the symmetry on E; is olso given by conjugotion by e;,,. We know

E; consists of components of e., $(D)N 9., (using proposition

3.4), so the assertion now follows,

This proposition will be very useful in chopter IV. To summorise, we hove the
following sequence of symmetric spoces, together with o correspondin§ :

sequence of the fongent spoces at their respective bosepoints:
E€...sEEC .CE &, eb(.. ce, & C... ce & ¢ B,

Observe that - e,...,e; are contained in both E; ond e, .&: ,ond that
e isin E, .

We pause here to mention how the “"geometric structures® of the clossical symmetric

spoces can be described in terms of tbé spaces E, . Ftom toble 11 we observe

that precisely fi f‘ve of the ten series of spoces ore of the form G/H with -

ronk(G) =raenk (H) , i.e. the spoces 0(2n)/U(n) ,” Sp(n)/ U(n) , ond the three
gtossmmmons. It is well known that’ these spoces ore choroc}ensed os being those

of positive Euler chaorocteristic, i.e. those for which the symmetry is on inner outo-

.-

‘morphism ( ond therefore is octuclly conjugation by;n elementof H). If Z. ,

-~

Z, ‘ore the centres of G, H respectively, then Z,, / Z, iseither Z,




or S' ,ond H is the identity component of the centraliserin G of Zu
(see [4]). The latter case gives those spaces which admit homogeneous complex
structures (in foct they also possess compatible hermitian metrics ond become
Kihler manifolds); these are the spaces of the form G/C(T) ( C(T) denotes
the centraliserof the forus T), i.e. the spaces 0(2n) / U(n) , Sp(n) / U(n) ond

U(@2n) / Up) x U(n) .

In terms of the spaces E, , those of the foom G/H with ronk (G) =rank (H)
are given by the condition k =0(@2) , as one con see by inspecﬁon"n. In this case,
® (D~ ) ¢ D contains the elements t e, ...e, (= ¥ é (e, ... ex..) ) in

its centre. If we now embed E, ,D. in Ciy as usual, the symmetry of Ex

is given by conjugation by e... ,ond this is the some as conjugation by

() v ®ues Jeun, » G5 €, oce €uy, is in the centre of Du., . The element

+(e, Crn)eun, s tle uep), 50t actually lies in§{D,) (ond in fact in
@' (Dx-+ ) ). This demonstrates directly that the symmetry of E. is on inner

automorphism when k =0(2) (compare olso'fhe remarks following theorem 3.1) .
When k =1(2) , this procedure brecks down as e, ...e., isno longer central

in Deey & We con go further ond describe the "geometric structures” in the

case k=0(2) .

Proposition 3.9 : 1) If k =2(4) , multiplication by e, ... e,

endows E, with on almost complex structure (i.e. multiplication by e, ..e.

preserves e,, &, ond (e, ...e, )‘=-| ).




2) If k =0(4) , multiplication by e, ... e, endows
E, withon olmost product structure (ie multiplication by e,...e, preserves

e, &, ond (e ..e, y=1).

Proof: Recoll that the tongent spoce to E, ot the basepoint e...,

is identified with the subspace e..&, of &, consisting of elements which
onﬁcommute with e,. (the oction of the symmetry (do. = o, )on the
tangent space is seen o be -1). If k= 0(2) , multiplication by e, ... e,

‘preserves Uk , o5 . consists of the even elements of <Qww . Since By

, these are also preserved.

ond <, ore the eigenspaces of conjugation by e..,

Hence e,.&. is preserved. By homogeneity, Ex receives on endomorphism

of its tangent bundle, which, by direct calculation, hos square =1 or +1

depending on the pority of k/2 . This completes the proof.

Next we shall look at the Lie algebra structure of d..., ond its various subspaces.

There is o natural inner product on Yw , - invariont under Ad and unique up .

to o scalar multiple. This is given by a multiple of the Killing form B = -

B(X.Y) = tr( 0dX s odY)

{X,Y) = -tr (XY)

(A clossicol Lie algebro has o trace funcﬁon,;nd tr XY is o multiple of the

troce of the linear transformation adXeodY J

In foct, the inner producton ke is the restriction of the symmetric bilineor

form  (X,Y) =H(Xo*(¥)) on Cu .
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Example: Eg., = 0(8.16%) € e = M(B.16%, R) . Here, {(X,Y) =trXY* .

The Lie algebra <u. hos its bracket given by: [X,Y]=XY =YX, i.e.

ordinary commutation in the Clifford olgebra. This induces a Lie bracket on

each of the spaces <, ,..., dv (i.e. these become subalgebras) . Restricted to £ ,
this bracket maps into. <;, (it maps elements which anticommute with e;,,

to elements which commute with e;,, ) ,ond érecisely the same is true on
restricting o e;u &, (because elements of &, anticommute with e., ).

The last fact is il:nportcmf, because . end; ¢ &, saonditison &, that we

wish to do calculations.

Exomple: Take En,, asabove; if X,Y & 0(8.16") then [X,Y] (which is
not to be considered in b,., = M@B8.16" R)!) is XY' -YX* ,ondon
restricting 1o ep. gy =skew-symmetric 8.16" x8.16" * matrices we obtain

[X,Y]= YX -XY.

There is a topological property of the spaces Ey which will be important in

chapter IV , namely the existence of stable homotopy groups.

_ Definition: If k € IN, define Ca (k) =C. @g Mk, R) ond denote
the outomorphism and anticutomorphism induced respectively by ¢ ond o*,
by o k) ond G*() . Similarly, P, denotes the inclusion C o (k) —> C a.i ()

induced by ¢*:Ca —> Casi .
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Definition: D, (k) = Unitary elements of C, (k) "with respect to 0*(x),

Enlk) = Du(k)/ ¢N(D aer ().

One con moke similior definitions for cik,D i(k) , Ec(k) , of course. Observe

that
1) E.(1)=E.
2) E.(16")=Enyn .

Definition: The stability map s:E. (i) —E.(i +1) is the map induced ’

by the inclusion M(i,R) —>M(i +1, R) givenby X+—> (l‘-l.) .

We sholl use the some convention with s} os with ¢ , i.e. we shll drop suffices
when the context is clear. Note that the two maps s ,¢ :E,—>E,, ore not

the same.

Proposition 3.10 :  The induced map s, : V. E.() —> WE.(j+1) is

on fsomorphism for i< jo(n) =1, where § (n) is given by the following table:

n I 8k+1 Bk+2 Bk+3 Bk+4 8k+5 Bk+6 Bk+7 Bk+8

P(n)' 165 216 416" 416" B.16" 816 816" 816"

Proof: Direct computation, using the known stability ranges for the

classical groups. (NB: In some cases, S, may well be an isom. for higher values of i.)

Remctk: The function p(n) is already fomiliar; the sphere S™ has n linearly

independent vector fields.




Table | : Classical symmetric spaces and their defining involutions

O(n)*O(n) -

U(n)xW(n)
Sp(n)xSp(n)
O(n)

Un)

Sp(n)
O(2n)

Sp(n)
SU(n)
SU(2n)

In the right hand column, standard inclusions are being tacitly assumed. For example,

O(n)

U(n)

Sp(n)
O(p)xO(q)
U(p)x U(q)
Sp(p)* Sp(q)
U(n)

U(n)
SO(n)

Sp(n)

S(X,Y) = (Y,X)

T I T w

o(X,Y) = (Y,X)
o(X,Y) = (¥,X)

m

O'(X) = D X D.' P D =di°g(‘,ooo,l,-]'-o-,-,

o(X) =D X D" , D =diag(l,...,1,=1,.c0,
O(X) = D X D-. r} D =di°g("0.o'l'-l'...,

ax) = ()X

o(X) = iXi

oX) = X

>

G(X) = D x D-. r D =diu9(A’...’A,-A'o|.p-

E
|
|

where A = (92

in the last line, we have Sp(n) ¢ U(2n) & O(4n) . Thematrix D isin O(4n), E

but it is not in the image of U(2n) .
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Toble ll: Ca ,D. ond E.

« lex  Bx+1  Bk+2  Bx+3  Bk+h  Bk+5  Bk+6  Bk+7
M(n,n) 2 Y y M(8rn. R M(8n,R)
G IM(n,R) M(n,c) M(a,E) M(g:li) M(2n,H) ~ M(4n,c) M(8r,R) M(ES R)
I, o(n) U(n) sp(n) Sp(n)xsp(n) Sp(2n) " u(kn) o(8n) 0(8n)x0(8n)
- 0{11) Uing_ Sp(n , sp(2n) U(4n) 0(8n "
E 0(-3-)10(%) o(n U(n) sp(n) Sp n)acSp n) S{2n) U(4n) O(Bn)
rank E, nf2 n n n n 2n 2n hn
2(p,)| 2. ) oz, 2. x2z, 22 vl z, L.x 2,
dim A, n  an kn 4n 8n 8n 8n 8n

Here n = 16% , Z(Dy ) denotes the centre.of Dy ,ond dimby denotes

the real dimension of the irreducible C, -module (s) .

The complex version of this table is very ;i-mple o Ciy = M(h,ﬂ:) , (n=2%,"

Ci. =Mh,0)O Mn,C), s we shall omit it.




§4, An clgebraic version of §2.

We discuss, initially in terms of the spaces E, E:’ the following points:

4

a) Classification of symmetric spaces via Clifford olgebras.

b) Distonce functions on symmetric spaces (cr'ifiCol points and flow lines) .

c) Embeddings of symmetric spaces (minimality properties) .

[ 4

N MW R e e

a) Classificotion of symmetric spaces: We formalise in the following proposition

on observation made in $3:

Proposition 4.1: The 10 sequences of spaces Es(n)

(x=1,2), Ew«(n) (k=1,...,8), gi.ve rise to 10 sequences of
compact connected irreducible symmetric spaces (on s;electing
the identity component of Ex(n) for kz6,7(8), and discarding

a factor S' from Ex(n) for kz1(2) and from E«(n) for k=z1,5(8) ).

These are subsequences of ‘the 10 sequences of compact irreduciblé_ .
symmetric spaces of classical type -listed in [16]. ' |

: - . > .
Recall that the graded Brauer group GB(k) of a field k (of characteristic zero ' -
here) is the space qf graded central simple algebras over k under graded tensor
product, with the equ_i-volence relation f Af*AQM(n,k) . (See [22]. A groded

central simple algebra over k isa k=clgebra A= A, ® A, of finite dimension,

with no proper graded ideals, and such that A, N\ centre (A) =k )
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Proposition 4.2: (Wall [22]): GB(€)=Z, , GB(R)=Zs ond the

equivalence classes of C:,,., » Couu (respectively)give generators.

Proof: [22],

An olgebra A=A.® A, gives rise to a symmefric space by taking G to be
the group of unitary elements of A with raspect fo the involution of A whichis 1
on A, and -] on A,. Conversely, o symmetric space (G,o) with G classical

gives a graded olgebr; (i.e. the algebra of matrices containing G, graded by © ).

(b) Distance functions on symmetric spaces: We con toke “distance functions’

with respect to the embedding E.—> &,.,, using the metric introduced in §3 . For

P e &,, ,consider the function:
£, :E,—>R M +—> (MP)

By theorems 2.1 ond 2.2 of §2 we know that the critical points ore those M

sctisfying [M,P1=0 i.e. MP=PM (Clifford algebra multiplication induced from

Cysy ). Wecon nowgive on elementary proof of this fo;:t, entirely avoiding Morse

theory and properties of Carton subalgebras, by calculating the gradent of f, .

First we consider the function F, : Dy—>R defined by f,(?t) = O(,P} =Re'tr X

We shall colculate grad(F, )(X) € X.d, . By definition we have:

o*(P) .




(grad(Fp)(X) , XV) =Fp(XV) forall V € du
=Re tr XVo'P

=Re tr o¥PXV
= -(o*PX,V)

ie.  (XHgrad(Fp)XV) = -@'PXV),

Here { ,)  defines an inner product on <y ond henceon X.dy by left
invariance. Observing that (o™*XP - O’xPX)I 2 is the projection of = a*pX
onto the subspace <Jx of Cy (recall that d, is the -1 eigenspace of T *), we

deduce:

Ayp _ X
XA, grad(F, )X = TP P

o*XP'= 6*PX . We shall use this to recover Bott's result on the critical points of fp .

Theorem 4.3: The critical points of f, : E,—>R cre those points

Me E, satisfying MP=PM .

Proof: ~ Consider $(QEc)) € (D« ) € Cuar »

We claim that grad(F, ) is tangent to G (QE. ) ) , where Fp s the function on
¢ (D, ) described above and R = =eoy P,Pe &, . Toshow this, we only need

prove that Fg is invariont utnder § (co™*) , ond then use the fact (proposition 3. '5)

that ¢(Q(E.) ) is embedded in ¢(Dk ) as a component of the fixed points of

£
E
k
£
The critical pointsof F, on D, are thedfore those points X satisfying g
i
:
;
i
[
E
!
!

'E
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¢ (00”) . In the following calculation, we take X € b (D ) ond omit the map 4)

for clarity.

F, (00*X) = Re tr(coc*Xo*R)
= Re tr(C"XR) (@sRetrd =Retr)
= Re tle,, Xel R) (o5 O(0)X =e., Xes )
= Re fr(e), XP) |

Re tr(XPe,.., )
Re tr(Xc*R) ) s o'l P=Pe, )
= F R (X)

The criticol points of Fg on O (Q(Ex )) or;: therefore given by the condition
o*XR = 6*RX . By proposition 3.6 , the critical points M of f, on
E. ¢ &, are pn.ecisel)" those points for which e... M iscritical for Fg -on
¢ (Q(E,)) . This means the condition fo be satisfied by M s o*e ), Meo,) P=
c*(e ::‘ Pess, M, i.e. 0*(M)P = oc*PM. But MP ¢ B,,50 C*M=-M

ond O*P=-P. Hence- the condition is MP =PM, os required.




Flow lines: We can now show that some of the flow lines of grad f,  have the same

underlying curves as geodesics in E;, , as we did in the special case discussed in 61.

Let S(e, ,...,c; ) be the sphere in E, consisting of points Z Aje; with

[3

27‘: =1. Let S denote the unit sphere'in &¢. . Then we have S(e,,...,.e...) €
Joy

E. < S. If we extend the definition of f, to the whole of S, the critical points
and flow lines of the restrictions of f, to the spheres give critical points and flow

linesin E, (on taking the intersection with Ex ).

Toke P=ey., - The critical points of the functions on the spheres cre just ey, ,
and the flow lines are the great circles possing through these points. These points and
flow lines lie in E¢x . So we obtain in E ﬂ::e critical points +e,., ,ond fhe‘ .
flow lines between them, i.e. the curves of the form O —> e..,cosO +e sin@

(reparametrised) ‘where ee S(ey seeerer) -

The flow lines obtained in this way are precisely the minimal geodesics from ey,
to -e.., . We shall take up this point in cfnupter Il and mgke a generalisation in
~ chapter IV . The main feature of these flow lines/geodesics is the following. There is

' -amcp:

.

B: [Carfan subalgebras of &,] —)‘ {submunifolds of minimal geodesics in E,}
between TP Qnd € ’

To define this map, take a Carton subalgebra of &, , and write it in the form d (W4,

element ew+y ex - The corresponding set of geodesics is the collection of

where d € $(Dy ) ond b is a fixed Carton subalgebra of &, containing the é
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geodesics of the form e, ,cos6+de, d”sing .

Proposition 4.4: 1) Any minimol geodesic between +e,., arises in this

way (for some Carton subalgebra) .

2) The set of all Corton subalgebras which give rise to
collections of geodesics containing the geodesic e, cos6 + e, sin® is in 1:1

correspondence with the set of oll Corton subalgebras of &,., .

Proof: 1) Toke o geodesic e, cos8 +esin@ . Then there exists a

Corton subalgebra of &, containing e x4y €/ ond the image under B of this will

clearly contain the geodesic.

~ 2) Those Corton subalgebras which give rise to e ,, cosb + e, sin®

" are precisely the conjugates of a fixed Carton subalgebra of &, by elements of

¢*(Dv- ) whi;:h commute with e, , i.e. by elements of d)'(D.‘-,_ ) . This

corresponds to the collection of Cartan subalgebras of By, -

It is this proposition which we shall generalise in chopter IV .

(c) Embeddings of symmetric spaces (minimality properties): By using the Morse

functions f, for regular P and the (known) Betti numbers of the spaces E,
it is easy to check that the embeddings E—> &, OT€ minimal in the sense of

wotal obsolute curvature (using proposition 2.5 ).

Let S denote the unit sphere in  £,,, as usual. To show that the embeddings




L ]

E.—> S are minimal in the sense of mean curvature, it is sufficient to do the case
k =7(8) and then use the fact that E; is embedded in E, o a totally
geodesic submanifold for j<k . It is sufficient therefore to show that the embedding

of 0(n) in the unit sphere in M(n,R) is minimal for all n, ond this is easy

(see [17]) .

E
3
ki
3
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Chopter 1}

-

In chopter | we begon with the critical point theory of the func.ﬁon Re(tr) on

U(n) ond then extended this to the cose of a distance function on eny classical
symmetric space. Although the results are bosic.:o“y well known, our opproach

\;io Clifford algebras provided new insight (ond will be required' loter in chopter IV
in o different context). In this chopter.we sholl just consider Lie groups, but we shall
use new real-valued ﬁmct_ions, namely those of the form Re(X) , where X fs any
chufacfer. For most X , this problem is ésenﬁa"y different from ﬂ;te case considered
in chapter | ('X =c i'ni:roct_er of stondard represéniotion), as the funcﬁoﬁs involved

are in general not “lineor", ond have not previously been investigated.
P ) 4

We do not know whether there are simple necessary ond sufficient conditions for
these functions fo be Morse functions, and we sholl give excmples ond counterexamples
fo a number of conjech:te related to this question. In fact most of this chapter will -

be concerned with examples, general results being available only for the groups .

SO@) , SOW@) , Spin(3) , Spin(4),UR) .

* After moking some general remaiks in  §1 , we sholl exomine in dgtui.l. the 9;0 ups of . | : .
l;dlk 1 (.in éZ)ﬂond runké (in §3). In §4 we shall moke meg: coniécfures "
tegordin.Q groups.of Bi:gher rank. o -

&

§2: -Compact Lie groups of rank 1°

The critical points of Re (X)

$3: Corﬁpa'cf Lie groups of ronk 2

§4: Some conjecfures
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$1. The critical points of Re (X)

Let G be o compact Lie group, let p be on n-dimensional unitary representation
of G, andlet X=trp be the character of P - Then we shall examine the

critical point theory of the function f=Re’X .

Lemma 1.1 of chapter | applies to this situation as f is g class function, i.e. the
critical points of f come in G-orbits (G ccﬁ on itself by conjugation), and if
T is o fixed maximal torus of G , the critical points of f which liein T are just

the critical points'of f|. . We may therefore restrict attention to the torus T .

We shall be particularly interested in the following two conditionson f :

1) f hos isolated critical pointson T

. ll) § is a nondegenerate function on G (i.e. it has only nondegenerate critical

manifolds) .

It is not knownfor which characters the properties | ond Il hold. We shall give many
.. examples later, but when they do hold one has a critical monifold M, for each

. critical point P € T ,and this is on embedded symmetric space 'isomorphic fo

- G/ C(T') whére T' isthe subtorus generated by P . The bundle G| "o
splitsas T(Mp )® N.® N_ , \;lhere N, ond N_ are the positive and
negative bundles respectively. These bundles are clearly homogeneous, i.e. they

are induced from the principle bundle G —> G/ C(T') by representations .,

of C(T'),aond we have Ad(G)| =Ad(G/C(T"))® ,©e . (The tangent
- o
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bundle of o homogeneous space G/K is induced from the principd bundle G —> G/K
by the represen;aﬂon of K obtained by restricting the adjointaction Ad(G) of G

fo its subgroup K ; we denote this by Ad(G/K).) The representations R, £

con often be identified in practice, as their sum i.e. Ad( C(f)) is usually known.

For example, if C(T') is o semisimple group, then one of R. £, must be zero .

A the other extreme, if P is o regular point, tl'?en C(M=T, ond Y B

are sums of trivial representations. |

To decide condition | for classical groups is in principle a struightforword caleulation |

on the torus, ond the same is true of condition Il by the following lemma:

Lemma 1.1 : If o representation satisfies condition | , and f l_'_ is

nondegenerate, then f is nondegenerate (using the obove notation) .

Proof: If f|T has o nondegemerate isolated critical pointot se T,

then there exist subspaces t, ,t. - of the-tongent spoce t to T at the
identity, such that t =1, © t ond the Hession of f. is positive definite on s.t,
ond negotive definite on s.t_ (identifying the tongent'spoce to T at s with s..f ).
let T,,T_ be the corresponding tori in T. Let G(T_ ) G(T_) denote the largest

connected subgroup of G g:ontalnlng T, T_ respechvely as maxamal tori . We -

PYd
-

.bove dim G(T, ) +dim G(T_) =dim C(s),

We cloim thot the Hession of f is positive definite in the direction of s.G(T,) at
s , ond negative definite in the direction of s.G(1-). To see this, toke a geodesic
at s fangent fo s.G(.T.;) ond conjugate it by an element of C(s) to bring it

inside s.T, . Since f is invariant under conjugation, the Hession in the direction



of either geodesic is positive definite, The same argument app."es to s.G(T.).
But dim (s.G(T,)) +dim (s. G(T_)) +dim (G/C(s)) =dim G , 0 this completes the

proof.
The following observations are clear:

a) The set of critical points is invariant under the action of the Weyl group W. -
b) The identity element of G is always a point for which f takes its absolute

maximum.

As f is the composite of the two functions P ond Re fr , it is convenient to make

the following definition:

Definition: A critical point P of f is of type | if there is a critical
point o of Re l'ro.n U(n) such that p(P) =0 . Otherwise P isof type Il
(i.e. gradRe tr (P(P)) # O but grod Re ir (P(P) € kerd ).

Let us now establish some notation ond some formulae for the critical pointsof f.
-The representation P has weights N,....M; these are linear functionals on the
(Sﬁefei) diogrdn‘?f G (i.e. the taﬁgent space to T), and some of them may be
zero. They are -obtained by simultaneously diagonalising the matrices p(©) for

B =(0.,ees ©y) in T, 50 that:

ple) = . (1= rank G )
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By meons of o bi-invariont inner producton TG we shall identify oll weights
(in porticulor the weights A ,...,An  of f’ , ond theroots 1, ,...,r, of G)

with vectors in the dicgrom.

When TG is finite, we sholl also identify the tangent space to the appropriote
moximal torus T of the universal cover G of G with the diagrom. (The root
vectorsof G, G ore identified; the plones of the diagrom determine the integer
lattice once.. the centre is known. The integer lattice determines the lottice of
weight vectors using the fixed inner product. With these conventions, the projection
C—>G does not "commute® with exp.) If G is semisimple, the weight lottice of
G (which contains that of G) is generated by L basic weights w, ,...,wy .
We define B =w.+..+wy . Insections 62 ond §3 we shall exhibit diagroms of

several groups, ond so we fix the following notaotion:

e  denotes on integer lattice pointof G
® denotes on integer lattice point of G
— ——-> denotes a root vector (as explained above)

_____9 denotes o basic weight vector of (] (when G is semuslmple)

-"

At least for groups of low rank, the critical points of f are easily calculated

directly. The point (6,,..., € is critical if grod f(6) € ker dp(8) ie if:

z'_ 5%(/\.) sin (N)=0 for j=1,.,2 (i)

b-.

e ison irreducible representation, it has o unique positive highest weight A =

N




say, ond its character is given by the formula of Weyl:
X (8)= wa .exp(A+B) / Ew w.exp@) (ii)

Here, w .exp(p ) denotes * exp(w .p) , where W actson the weights in

the usual way, and the sign is chosen according fo the parity of w . The critical
points of f are then given by differentiating the real part of this expression. In
general, neither (i) nor (ii) is easy to deal with, but we shall begin in the next

two sections with groups of low rank, where some calculations are possible.

4
«®
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$ 2. Compoct Lie groups of ronk 1

Let G =S0(3); G=s° (ie the unit quaternions) is the only simply connected

simple group of ronk 1. The diagrom of SO(3) (using the notation of §1 ) is:

S

- & Py (= 0 -
. - = r 2 g 1\
-3 -2 - ° 3

A fundomental domain for the maximol torus of SO(3) under consideration is

[-1,11, ond o fundamental domain for the torusof * §°  is [-2,2]. The

irreducible representations of $* orein 1:1 correspondence with the weights
in o fixed Weyl chamber, say {n/2 l neZ,n2 0} ,ond the choracter of

the representation . with maximal weight n/2 is:

.'('zﬁeg) P WA 3 I W 2% =exp (Tid) ,de [-2,2]

(The covering map of maximal tori F—>T isgivenby +z "’:.—9 z.) The weights
of pu ;are +n/2 ,+0/2-1), +(n/2-2) ,. ;the dimension of g, is
n+l. - . .
- - The representations of SO(3) ore gi\;en by even volues of n; the
“spin representation® is given by n=1, ond fhé_ odjoint repres;enjo‘ﬁo.n is Q?ven by

n=2. All the representotions of S ~end SO(3) ore self conjugate, hence their

-

characters ore real-volued.



Theorem 2.1 :  The nontrivial irreducible representations of $* ond

SO(3) satisfy | ond 1l of 81 , ie their characters are Morse-Bott functions

whose nondegenerate critical manifolds intersect the maximal torus in a finite
number of points. Moreover:

a) For X(@) on s?, the points *1 gare always critical. There are

2(n - 1) other critical points on the torus, all of which are regular points, giving

i

n =1 critical monifolds $3/S' = §* .

b) For X(.) on SO(3) (n even), the points I and (‘-|_‘) are always

o
critical; I is an isolated maximum ond ( —|~l)gives a critical manifold P, R

There are n -2 other critical points on the torus, all of which are regular points

. giving % (n -2) critical menifolds SO(3)/ s' ¥ st

BT

‘For (a) the negative bundles are trivial, and for (b) the negative bundles are
trivial except that over P,R , which is either the Hopf line bundle or the zero

dimensional bundle (depending on whether the indexis 1 or 0) .

Proof: We shall deal with S? as the results for SO(3) follow éosily.

First, it is clear that 1 ond -1 are obsolute maxima or minima for all characters.

We shall prove they are nondegenerate after treating the regular critical points.

The Weyl character formula gives. Re X( @ )(d) =sin ((1+n)Wd/2)/sin (Td/2).
We shall assume the denominator of this expression is nonzero, os we have just

excluded the corresponding points (d =0,2). The critical points are therefore

given by:

‘
t
E
.
t

k




.., (1 +n)tonTd/2 = ton ((] +n)TTd/2) |

. This shows that there ore 2(n = 1) critical points on the torus besides +1. We

shdll colculate X"(.)(d) ot o regulor critical point. Write o =sin((l +n) T 6/2},

b=5inTWd/2; ot o criticol point we have o'b=b'o :

X" = b2 (ob" +a'b' ~ blo’ - bo") - 26" (ab = bo) ) /ot
= (7/2)* (/b)) - (1 +n)?) (os e"=~(T/2)"q,
| | "= (1+0) (1/2%)
m/2)2(1 - (1 +a)2 )X () (@)

Since the riéht hond side is ‘never zero when .7( *=0 (by g trivial calculotion),

this shows thot oll regular critical points are nondegenerate for the resh'.icﬁo_n P, l gt -
At o regulor poinl’,.fhe tongent spaces to the torus ond orbit through the point are.
compleméntory, so these points are in fact nondegenerate for X . Sofar \n;e have not
needed fo use lemma 1.1 . To check nondeg;enerocy of +I we ;halluse lemmo 1.1 *
ond just deol with X |s| . By continuity, the above formula for X" holds

even ot 1, hence X l o is nondegenerote. The negotive bundleson S%* -
ore frivial, elther becouse they are vector bundles of fibre dimension < 1 :over

st ,orby the remorks cf §l The some argument gives the result for Pz , 3

one nofes thot the one dimeps?oncﬂ negaﬁve bundle connot be orientable. This

completes the proof.

Observe that one only has the leost number of critical points consistent with the




Morse inequbliﬂes for n=1on S ,ond for n=2 on 50(3) . (The Z,

Morse inequalities have to be used for SO(3) .)

Examples of degenerate reducible representations are easy to produce, for example

the k-th power of the spin representation for k> 1.

a’
.

50
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6 3. Compoct Lie groups of ronk 2

The simply connected simple groups of rank 2 ore SU(3), Sp(2) ,and G, ;

" Spin (5) is isomorphic to Sp(2) . We sholl also deal with the groups Spin 4)

(not simple), SO(4) ond SO(S) (whose double covers are Spin {4), Spin (5)

respectively), ond U(2) (not semisimple).

The group U(2)

e ° [ ﬂr."d‘ -
The diagonal motrices diag (2,24 ) form o moximal torus; if we write z=e Y (j=42)

ond exp(d, ,d,)=diag (z,,2,), the roots are % (8, -d, ). The diagrom is
the (d,,d,)-plane shown below, with o fundomental domain for the torus shaded.
The integer points form the integer lattice ond usiné the standord inner product

{(d, ,d, )(d} ,d5)) = didl + d, di the integer lattice is identified with

the weight lottice. :
. X . /
\
. \‘

'lhere-ore n‘o'bosic.weilghls (os. de.fined in §1), although the irreéucible
representations s’f’;ll correspond fo the weightsin the fundomental chamber (e

(m, ,my ) with m, ,mye Z ond m,;> m,), ond the Weyl character formula
applies with B=(1,0). Let 2 : UR)—> U(®) denote the standard representation,

with moximal weight (1,0) . Then M2 hos maximal weight (1,1), ond the



3
N

complex representation ring of U(2) is generated by the representations A,

AA ond NN . The chorocler of the representotion with moximol weight (m, , m, )

-\dl\d

i given by [ \/tz.-z,.) (z,22) @™ ™42, ™22 L),

The dual of this representation has moxlmo! weight (m,, -m, ), so the self- co'n]ugol'e
representotions have moximal weights of the form (m , -m) . . These give precisely the
irreducible self-conjugote representotions of SU(2) , on restriction. The irreducible
representation S” A has maximal weight (m 0) and this gives the irreducible

represenl’ahon Rm of SU(2) on restriction ((m, m) , (2m, 0) huve the same restriction.

Theorem 3.1 : The irreducible self-conjugate representotions of U(2) give
- Morse - Bott functions. |
For m> O, the representoﬁon (m,~m) has 2m nondegenercte critical
momfolds, one being the cenh'e s (moxnmum points) cnd the others isomorphic to

S' xS* . The negohve l:undles are aoll mvngl, ond all the critical mumfo|ds are of

index 0 or 1.

Proof: This ft.allows eosil)( from theorem 2.1 becouse the character of

(m,-m) is given by siniﬁ' @m +1){d, -dz )/sin®(d, -dz). All critical seﬁ

are tronslates of conjugating (by U(2)) the sub-tforus z,= 2z, ,so (except for h

‘pm PR R

the trivial franslote, S') they are cop?és of S' x S* . Nondegeneracy in the
Fs

directions orthogonal to the centre follows from theorem 2.1 ; ond in the direction

of the centre there is nothing fo check, as the function is constant on the centre
¢ - . :

(hence this direction is tangent to the criticol monifold) . The negative bundle

.
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over $' xS is trivial, because its restriction o S is trivial, hoving fibre

dimension € 1, ond the rest of the bundle is given by multiplication

by the centre S' (note that S°N S'=¥ in UR)).

A, N2A: Fronkel [12] examined A (see chopter 1, §1 ) ; the choracter of
A*A  gives the function f(d, ,d,) = cosAd, coslxd, - sin27d, sin2vd; on the
torus. lts critical points are given by d, + d, € Z, so condition | of §l
is not sotisfied here, ie the critical paints-are not isolated on the torus. The
critical monifolds are two obpies of SU(2) (the stondard embedding gives absolute
maxima and ifs tronslate by i gives absoluk minima) . The function is nondegenerate;
it suffices to check this for the manifold of maxima, and to do this one need only -
colculate the Hessian in the direction of the centre. |
The negative bundle over the minima must be trivial, being a line bundle on s3,;
Morse theory then shows that U(2) is homeomorphic to S' x §* . The Morse-
Bott polyriomial is (1 +12)+#(1+t2) and the Poincaré pol'.ynomiul of U(2) is

(1+t)1+1t3) (over Z),s0 f isin fact a "minimal” Morse -Bott function. ‘

One can in foct regard the Wey!l character formula os the product of characters of

irreducible representations of 53* and §' :

X = ( (z", [z ™™ 4 (2, / 2a )km.z-!'. wt(z/ Zz-)h--q) Tz

m,, My

Ad(U(@2)): Thisis not irreducible; in fact its charocteris 1+ (-g—; +1+4 -;':") ’
ond the function f s %co0s 2T (d, =d, )+ 2 . Its critical point theory is the some

os that of the representation with maximal weight (1, -1), which hos been dealt with



by theorem 2.1 .

It is clear that the nondiscrete centre of U(2) is responsible for the failure of
property | ; we shdll therefore not consider any more representations of U(2) ,

ond proceed to the semisimple groups.

The group SU(3)

The diagonal matrices diag(z, ,z,,2z3) with z,2,z, =1 form a maximal torus;

if we write z; =¢¥% ond exp (d, ,da,ds ) =diag(z, ,22,24) with d,+d,+d, =0,
the roots are +(d -da), +(dL-d, ).+(d, -=d3). Thediagram is the plane
d, +d, + d3 =0 shown in fig. 1 , with a fundamental domain for the torus shaded.
It is not possible to choose a bi-invariant inner product in such a way that ' '.

the integer lattice is identified with the lattice of weights, so we choose

the integer points‘to represent the integer la.tl'ice (this has been done in the formula
above for exp ) and obtain the weight lattice using the inner product

{(dy dyds)ldi 'de'ds' )> = did,' +dds +dad3 induced from that of U(3) .
The basic weights in.fhe fundamental chomber are (-4, 3 ,7%) "ond (¥,%,3)
ond these are the maximal weights of the irreducible representations A , ANA

( A denotes the stondard representation A : SU(3) —> U@B) as usual) .

A, NA: These both give the same function f, ie cosad, + codid, +cos(id, d. )
(using di +d; +d; =0). Its critical points are indicated by crosses in fig.2 . By
lemma 1.1 of $1,nondegeneracy may be checked by evaluating the Hessian of f

at the critical points. The determinant of the Hession tums out to be

LT Y
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47 codid, cosldy + (cos™(d, +dy ). (cosd, +cosid, ) )}, which is nonzero ot the

critical points, So f satisfies lond Il of §1. There ore 4 pointsof type |
(see §1) ond 2 pointsof type Il , the latter being the nontrivial elements of

the cenfre.

A R NA : Asimple calculation shows that this gives 24 criticol points

on the torus, os shown in fig. 3 . Again appecling to lemma 1.1 , o calculation

of the Hessian on the torus shows that the function is nondegenerate.
(Remark: A (X A7 generates the self-conjugate representations)

Ad( SU(3) ): Tnis gives o function with the same critical point theory as AQ N*A ;

in foct the representations are the same, os Ad(SU(3)):= A® 3\)0 ond A =NA .

It is cleor tht noneof the functions obove give "minimal” Morse-Bott functions. The
functions satisfy | ond Il of §1; we do not know of any characters which do not

have this property , for SU(3) .

The groups SO(4) , Spin(4)

The matrices exp(d, ,d, ) =diag (‘R. Re ), where R; denotes the 2 x2 matrix
representing rotation through an onéle Zv d; , form a maximal forus Aof SO(@4) ; thg
roots are +(d, 2d, ). The diagrom is the (d, ,d, )-plane shown in fig. 4,
with fundomental domains for the maximal tori of SO(4) and Spin (4) shaded.

The roots and basic weights are portrayed according to .the scheme given in §1.

Using the natural bi-invariant inner product  {(d,, d, ),(d,'d.’ )) =d,d,' +d,d;



the weights of SO(4) ore identified with the integer lattice of SO(4) , ie the integral

The centre of SO(4) is Z, ond thatof Spin(4) is Z. xZa2 (MSO(4)=2Z, ).

Although Spin(4) is not simple, the usual results for representations of a simply
connected simple group hold; the representation ring is polynomial on two
generators A* , A™ (the spin representations). Let A :SO(4)—>U(4) be the
stondard representation of SO(4) and A the corresponding one of Spin (4).

The maximal weights of &%, &~ are the basic weights
(%,%),(x,-%) ond A (A) has maximai weight (1,0) . The adjoint representation
is reducible ond in fact KA = A'@A ( KX = X*® X ) where AY,A°
have moximal weights (1,1), (1 ,—l) . Finally, the third exterior power NA

is isomorphic o A .

The Weyl charater formula gives the character of the representation with highest

weight (mtlmz) (m, > ma , 2m, , 2m, € Z ) as:

X(d, ,d2) = coT( (1+m)d +(ma)da) - cost ((ma)dy +(m+1)de) -

cosTr d, = cosdT d»

The dimension of this representation is (1 +m, )= (me )" . ( As usual, we are

referring fo unitary representations, but of course all the representations of SO(4)

ond Spin(4) ére real. )

Ifp isa representation of 50(4) ' and F the correspondfng one of Spin(4) ,

_ the critical point theory of the function f is related to that of ¥t in an obvious

i

points. The weights of Spin(4) are the points (m, , m, ) where 2m, 2m, ¢ Z, m+mec L. E

]
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way. We shll therefore deal only with representations of SO(4) when this is

possible.

_'L; This was exomined by Frankel [12]; we exhibit the critical points in fig. 5 .

The function -f is a Morse-Bott function with isoloted maxima ond minima ot 1 , 1
(respectively) , or;d a monifold of critical points isomorphic fo SO(4) /S' x §'x Z, -

(ie homeomorphic to S* xP2 R)ofindex 1. .The Z, " Morse-Bott polynomial is
14t(1+tH* +1+t*)+1© ondthe Z, Poincaré polynomial is (1+1)(1+12)(1 +#32)

so the function f is "minimal®.

Ad(SO(4)) = A : This is not irreducible; its character is (142, z3+2z,™ z7 ')+

(142, 27 +27'z, ) whichgives f(d, d, )=2+2 codli(d, +d, ) +2 cosTn(d, ~dz ).
The critical points are shown in fig. 6 . On the forus there are 4 points of type | and

4 points of type 1l , so there are two isolated points in SO(4) (maxima) , one

manifold SO(4) /.S' x S' x Z, (minima) , and one manifold SO(4) / U(2)' (index 3 ).

These indices are obtained by o simple calculation on the torus, os is the fact that the

- critical monifolds are oll nondegenerate (the determinant of the Hessian is

zevcosT(d, +d, ) cosT(dy ~da ) ). Of course, lemma 1.1 is used here. The
Z, Morse-Bott polynomial is (141 +2t* + 17+ 1%)+1>(1+17)+ 24 b 50 fis

not "minimal®.

AT, " : The critical pointsfon the torus)of f are not isoloted; they ore

given respectively by sinT(d,+d.)=0, sinT(d, - d2) =0 . An orgument similar

L4

to thot used for the representation A2 of U(2) shows that there are two criticol
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monifolds, both isomorphic to Spin(3) , ond these ore nondegenerate with o trivial
negative bundle over the minima. We see by Morse theory that Spin(4) is

homeomorphic to $3 x Spin(3) (e S3xS3).

A*, AT : The critical point theory here is similar to the lost exomple; the
function f is respectively 1 +2codf(di +d,), 1 +%cosT(d, - d.) . Both functions

give the homeomorphism SO(4) = SO(3) x s3.
In foct one can deal with the irreducible representations quite generally:

" Theorem 3.2 : All irreducible representations of SO(4) and Spin(4)
satisfy condition | , ie they give nondegeneratefunctions. Those with maximal weights
(m, , m,) satisfying m, ;‘m,_, m, # -m, also satisfy condifion Il , ie they give

isolated critical points on the torus.

Proof: The Weyl character formula can be written:

X (d, d3) = - sin(r(1+m, +ma.)(ds +d2) ) ; sin (w(1+m,-m.)(d, -d+)

sinW(d, +d2) sinT(d, -dg) -

X asealPr) ¢ K ®2)

where b, = d, + d,_. ,b,=d,~d, and A, denotes the character of the irreducible

representation @, of $3 with moximal weight n/2 .

The criﬁcd.poinl’s are given by Xab) =0, K/ e s (P2) =0 ond by .

X mtma (b.)=6, ' 'X“;_Mt(b,_)=0 . From theorem 2.1 of §2 itis clear
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that when m, =m, or m, = -m, the critical poinis given by the first pair
of equations are nondegenerate (although they ore not isolated on the forus).
The second pair of equations controdicts the ossumption m, =m, or m=—m,

so it gives no critical points.

If m #m, ond m, # -m, , then again oppealing to theorem 2.1 for the

points given by the first pair of equations, and by straightforward calculation

for the others, we see that the critical points are isolated on the torus. To obtain

nondegeneracy in this case, we must use lemma 1.1 ond calculate the Hessian

on the torus (with respect fo the variable b, , b, , of course). This tums out o

be (v )H(1- (V4m, +m, )1 - (1 +m -my )?) X7 0b1) Xanfba)
for the first kind of eritical points, ond - 'X',..‘:,\'_(b, )y X’ :'.,..‘-t(b,_) for the
second kind (using the colculation given in the proof of theorem 2.1 ); this is

never zero as a simple calculation shows thot one can never hove X = '],(= 0.

This completes the proof.

The groups _SO(5) , Spin(5) , Sp(2)

The matrices exp(d, , d5) =diog R,,R,, 1), where Rjis the 2 x 2 matrix
representing rotation through on ongle ZW,d , form o maximal forus of SO(5);

the roots gre + (d, +d,), td,, td, . The diagram is the (d,,d,)-plone

shown in fig. 7, with fundomental domains for the maximal tori of SO(5) ond

Spin(5) shoded. Using the some inner product os for the diogram of SO(4) , the

weights of SO(5) ore identified with the integer lattice of SO(5) , ie the integral .




adjoint representation is KA for SO(5) , ond NA for Spin(5).
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points. The weights of Spin(5) are the points (m, , m;) where 2m, ,2m, € Z  mam, eZ,

The centre of SO(5) is 0, and that of Spin(5) is Z: (T,SO() = Z, ).

The groups Spin(5) and Sp(2) are isomorphic; a maximal torus for Sp(2) ns.
given by the matrices explb, , b, ) =diag (z,, 2;) , with 2 = b . ‘The
diogram of Sp(2) is the ®, , b,_)-plgne shovm in fig. 8; aon explicit isomorphism
of the diogroms of Spir; (5) ond S?(Z) may bz oblained by writing b= d, +d; ,
b, =d, - dy . In view of this, we shll decl with. Spln(S) instead of Sp(2) from

nowon.,

The group Spin(5) is simply connected and simple; irs representation ring is
polynomial on the generators A , & , where 2 | denotes the representction
corresponding to the standard representation A : SO(5) —> U(5) of SO(5), ond
A denotes the spin rep.reSen%oﬁon. Their maxiﬁol weighl's are the basi.c
weights (1,0) ond (%, %) respectively. (In terms of Sp(2) , they are the
standard tebresentotion ond its second exierior power.) The representation

ring of SO(5) is also a polynomial olgebra, on generarbrs A, NA, The

The Weyl character formulg gives the charocter of the represeniation with

iﬁghest weight (m, ,m, ) as:

X(d,d,) = lrfd\'(m. +2)d, ).-m(ﬂ\’(n.. £)dh) - sinr (m, +1)d. Jsinfr (m. +3d:)
sin3Td;  sinWd;; - sinWidy sindld;




7. : See Frankel [12]; the criticol points ore shown in fig. 9 . There ore

isoloted maximum ond minimum points (I ond -] respecﬁve‘y) ond one
manifold of points isomorphic to SO(5) /S(O(2) x 0(3) ) (of index 3) . The

funclion f Iso "minimq! » Morse_—Boﬂ' function.

Ad(SO(5) ) = RA: Thisis irreducible; the critical points ore.a shown in fig. 10 .

There ore 4 points of type | on the torus, ond on orbit of 4 . points of

type 1l giving o critical monifold so(s) / U(2) %I . Itis easily chécked that

f is nondegenerate using lemma 1.1 .

g

A : Thisgives the function f(d, ,8,) = 2 cos V(d, + d.) +2 cosW(d, -d;)

on the maxima! torus of Spin(S), (See fig. 11,)
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§ 4. Some conjectures

(a) Conditions | ond Il of 61

In view of the examples of §2 ond $3 one is lead to make the conjecture :

Preliminary conjecture: If G is a simple semisimple compact Lie

groupand P isan irreducible representation, the function f satisfies 1,11,

The conditions are necessary; for a non-semisimple group condition | may

fail (eg N"A of U(2) ), for anon-simple group condition | may fail (eg

AY, AT for SO(4) or At A~ for Spin(4) ), gnd for a reducible representation
Il may fail (eg many excmples for $3). For the groups SO(5) , Spin(S) an
examination of the Weyl character formula suggests that the conjecture is true.
However, for Spin(2n +1) aond n> 2, the spin representation (which has
character 2" cosTd, cosTd, ...cosTda ) gives non-isolated critical points

on the forus with some degenerate critical manifolds. So we modify the

conjecture as follows:

Conjecture: For G =Sp(n) , SO(n) , (h>4) , SU(n) the preliminary

conjecture holds.

It is feasible to do some simple calculations for groups such as SU(3) and SU@4),

eg with the representations A, KA , which confirm the conjecture in these cases.

E
k
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() Llocation of critical points

We have seen that even for a group as simple os S3 , the locations of the
critical points of the function f associoted with the general irreducible
representation are not of porticular interest (ie solutions of on equation of
the form k ton x = tan kx). It seems best therefore to concentrate attention

on those representationsof particular geometrical significance, eg Ad(G)

-

ond the representations NA .

For the representation A of U(n) , it is of interest to note that the critical

irreducible representations 1,2, N'A,..., KA (ie the points ,...,0) , (1,0,...,0),

wees(V,ecel) ). These representations generate the representation ring of U(n)

(although one must use the inverse of N'A ), and on the other hond the

choracteristic classes of the bundle associated fo the classifying bundle EU(n) —> BU(n)

points in the diagram correspond precisely to the maximal weight vectors of the
g by the representation A generate the cohomology ring H* BU(n) . .

in general, one would hope for a relation between the weights of a representation

ond the critical points of the associated function f, via characteristic classes

(of the associated vector bundle) and Morse theory (of the function f).

In particular, one would expect o relation between the weights and the location -

5 ) of critical points. In this direction, one hos the following result:
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Proposition 4.1 : If G is o semisimple compact Lie group, the centre

Z is critical for the function f associated with ony character of G .

Proof: First, lemma 1.1 of chopter | shows that grad f is tongent not

only to the fixed maximal to}us but also fo the circles in the torus given by the
lines of the diagram through the origin. Here we use the fact that G has rank (G)
simple roots, in order to obtain such lines. (This would be true for any class
function F.) This means that such circles are flow lines in the sense of chapter |,
ie away from critical points they can be reparamet rised to give flow lines.

Since points of the centre are precisely the points where all such circles intersect,

they must be critical points, at least when ronk (G) > 2. However, we have

already dealt with the groups of rank 1 anyway.
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Chopter IlI

In this chopter we tum our attention to "G for k>0, The case k=1

~is well known from the work of Bott [5] and we state the main result in §1.

In §2 we point out various applicat ions of this result, mostly well known, but
expressed in terms of Clifford algebros, It is with generalisations of 1 and §2 that
we shall be concerned in chopter IV . In 3 we point out some difficulties
which have prevented a generalisation of Bott's result to the cose k > 1.

The bosic problem is that there does not exist o wrse theory for the spoce

S2*G  (ky1) which would relate the critical points of a functional to o cellular |

decomposition of the space of maps. Our contribution to this area will consist

of two examples, discussed in chapters IV ond V ‘respectively, which give

definite partial results. We calculate the space of obsolute minima (normally

the calculation of critical points is o difficult matter) , and show that the inclusion
of the minima in the whole space induces an isomorphism of homotopy groups in the

first few dimensions.

§1. The energy functional on the loop space X G .

§2. Applications. -

§3. Functionals on the iterated loop space SL* G : harmonic maps.




$1. The energy functional on the loop space SL G

Notation: SUG = |Continuous bosepoint preserving maps ' —> G]

, (S?.G)P’e.= { Continuous maps [0,1] —> G such that 0P, 1—>Q}

These two spaces are homotopic; the first is the usual loop space of homotopy theory,
while the second will be more useful for geometrical purposes. When we do not

-wish to be specific, we shall just write ST . Thus, §lx denotes the + component
of SL , SSL denotes the smooth maps in§! ,and PSSL denotes the piecewise

smooth maps in SU . Asusual, G is a compact Lie group.
We shall now fix P =identity, ond denote ( St G),q by (SG)q . We have:

Theorem 1.1 (Bott [517): Consider the energy functional E:(PS Q.Gh—) R,

te E:f > Bdfl%. Then E isa Morse-Bott functional, and;
1) The critical pointsof E are the geodesics in G from I to Q.

2) The connected critical monifold containing a geodesic s is obtained by

coniugotiné s by elementsof G which fix Q, and is therefore a finite-

- dimensional homogeneous manifold.
3) The connected critical manifolds are indexed by Ae/W, where Ay is the
“sublattice (in the diagram of G) of the lattice exp '(Q) corresponding to the
component Sla of SU, ond where W is the Weyl group of G . For a lattice
point Q' , the critical manifold is homeomorphic to the Adjoint orbit (for G ) of

a generic point on the line joining Q' fto the origin 0. (s is the image under

=D T omm o Ee BB O ER PR ED ER O ED BB

ww wwm ER O PTS PR I OPD W



exp of the line segment 0Q' .)
4) The index of the critical manifold containing s is twice the number of planes
of the diagram which lie in the interior of the sggment 0Q' .

5) The Morse-Bott inequalities are equations, by the "lacunary principle®.

The energy functional on SU is so amenable to investigation becouse its critical
points have a choracterisation in terms of known objects, ie geodesics. We shall -
see that the absolute minima (token with suitable basepoints) are of particular
interest; they are the planar geodesics discussed in chapter | . We shall
generalise this fact in chapter IV. Observe thot geodesics are automatically
smooth maps, lso the precise differentiability requirements on Sl are not very

importont.

If, in the ti:eoren;, we toke Q to be a regular point, then W does not act on

Ax , so E haos isolated critical points corresponding to the points of the
lottice Ay . At the other extreme, if Q is the most singular type of point, ie
Q isin th:é centre of the group, we obtain o Morse-Bott functional with the
largest possible critical manifolds. The critical monifolds correspond to the po‘inl's

in o fundomental Weyl chomber which are in the oppropriate sublattice.

There are various advantages in toking Q to be an element in the centre, but not

67

equal to 1. First, each geodesic has a unique paramet risation,whereas in (SLG),

the geodesics y(t) ond y(-t) would in general be distinct. Second, the O-component

of (SLG); clearly has on isolated minimum, whereas it will tum out to be more
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interesting to have lorger monifolds of minima. It is always possible fo choose such
a Qeg Q=-I) for the groups D, , D (butnot for any clossical group, eg

O(h) with n odd) .



$2 . Applicotions

As motivation for chapter IV , we indicate below how theorem 1.1 is used to prove

the penodncvl’y theorem, Theorem 1.1 extends word for word o compoct symmetric

spaces, except that in (4) the mdex is just the number of plcnes crossed (instecd

of twice the number) , and so (5) no longer follows immediately (although it is

still true) .

Theorem 2.1 Consder E: PS Ly (Eh)e... —>R where Ex s the
space of $3, chopter . The obsolute minima of E ore the conjugotes of the
geodesic O r—> e, cosB+e, sind by elementsof ¢ (D-1 ) , ond so they form

o monifold diffeomorphic to  Ex+y -

Proof: Toke P=e,., , @=-e,,, in the symmelric space version

of theorem 1.1 . By the theorem, it will be sufficient to find just one minimal

geodesic between tew, the others will be obtoined by conjugeting by ©¢*(Dy-)-

It is clear that the poth 8 —> e,,,c0s8 "+ ex sine  is o minimal geodesic, being

port of o greei‘ circle in the sphere S in  &uu (i.n which Ex s emiaedded) -

see the discussion in 84 of chapter I .

Pid

Cero"arx 22 : '“;_;R E, S WEy, for Oci<n.~1 where ny is

the lowest index of cny non-minimo! geodesic in PS ST (E. )c’w’_b“ .

_Proof: .By-Morse theory (see [187, PSSUEL)e.. e, ©dMils @

decomposition consisting of the spoce of minimo Eyx—; with cells of dimension = n,
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attached. Hence the result, E
Theorem 2.3 (The Periodicity Theorem, Bott [5]): g
TE (@ = TyEx () g
TE (@)= ThnEf() ’
Froof: Recall the definitions of the stabilised spoces Ey(n) from é
- §3, chopter | . A simple calculation (see [5]) shows that for each space E, g
the index n, hos the property that n. = © os k = @ . We therefore have: g
Tivg Eo) = lim ooy Ec(167) £
= |im “Ti.ﬂ Exegn (by page 33 )
o0 y
= !‘l_r’n_ TWExrgn-3 " (by 2.2, repected 8 times) E

lim TLE , (16 n-t)

“lE [ ()

n

The argument for ES is similar.

E Recall that the critical pomts of the "distance function” fg . on E, (see £4,

chapter 1) were characterised as being the square roots of I (wﬂh Q(E, )< Dy ,

ie using the quadratic embedding). Remarkably, there is a snm||ar characfensohon of

the critical points of the energy functional on S E.:

_ Pl’ojOSlflOl‘l 2 4 : The minimal geodesncs in (LE¢)e.. -e., S9N be identified wi

components of the square roots of -I in Ey ( considering Q(E«)<Dx os usual) .




\

.

_ with yr =X . Then ewnixe€uy = X =x ,%

. Remork:
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Proof: Toking embeddings in C,., , we hove P(Q(E.) ) =ewnn E.-.

The mlmmol. geodesic 6 —> €,,co50 + x sind become; e —> -(I éOSG - €ue,X5in0 )
ond we |denhfy the geodesic with its m-dpomt y =euwn %, 50 thot the spoce o of
mmlmul geodesu:s is identified wnth LT Note that x is in the

S

¢‘(D ) orbit of e, , so it hos squore -] ond it onticommutes with ey., -

we hove e Eu & VN e E-: Conversely, toke y = e..x € e..."E;

x anticommutes with e,.,

hence the result by proposition 3.8.

When k=1,5(8), D contains on element in its centre of square =1

(ie €...€.),5%0 JI ond J-I ore isomorphic (os collections of symmetric spoces).

In general, however, /I and /T ore not related.

Remork: R. Wood [24] has given an lntereshng proof of the penodicity theorem,

entirely ovoiding the use of Morse theory, essentiolly by proving directly thot
T & lecaiEu) () = m( /Anewn El=)

if X < E. ﬂ-len X(=) denotes the

for olli (the no%ahon here is obvious; i

corresponding subset of E,(c) ). -
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§ 3. Functionals on the iterated loop space SL*G : harmonic maps

If M ond N are compact riemannian manifolds with their Levi-Civita connections,
ond P is on oppropriately differentiable mop from M to N, we con consider dg
os a section of the bundle T'(M)®¢*TN , and the second fundamental form of : ¢
is the covariont derivative ¥ (d9) el(S ‘T*(M) ® ¢*TN ). Themap ¢ is totally

geodesic iff V(dg) =0, (ie ¢ preserves geodesics).

Definition: The map ¢ is harmonic iff the “tension field”

v{}) = tr V(d$) vanishes. (ir denotes contraction on the first two factors here).

Clearly, a totally geodesic map is harmonic, and the converse holds when M is

1-dimensional, ie when @ isapathin N. '

If h denotes the ;neftic on N (so h is asection of SLT‘N) R ¢'h is the first
fundomental form, ond the energy density e($) is defined to be ir ¢*h . We

have e ($)0) = 21.dp(x)12.

Definition: The energy of the map is E(Cb') = fe(q‘.:)(x) dx .
. M

Theofem 3.1 : (Eells ond Sampson): The map ¢ is harmonic iff it is

on extremum of E . ("Appropriately differentiable” here shall be "C* " .)

For more information on this result, and on harmonic maps in general , see the sun:vey
article [9]. We shall be interested in the case M = $" and N =compact

riemannion symmetric space, both of these spaces having natural riemannian metrics




-

- Of course, the Hopf fibrations occur in this way.
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from their structures os homogeneous spaces. Unfortunately, most known results
on harmonic maps do not give information in this case, os both manifolds have
nonnegotive sectional curvatures; indeed, even the question of existence of

harmonic maps is o difficult one.

Exomple 1: Hormonic maps from spheres to spheres

This is o case of evident interest for topologists, but harmonic representatives of
homotopy classes are known fo exist in only a few special coses. First, the Hopf
fibrations S*"—> s¢ ,d=1,3,7 ore harmonic. More generally, ar;n orthogonal
map R™ x R"—R", (x,y)—> f(x,y) gives by the Hopf constructgon a map s —>s"

which is harmonic.

Polynomial maps ere a good source of examples. If f:R"—>R" is o polynomial
map which restricts fo o map $""'—>s"", ond if the components of f are
harmonic functions (ie satisfy A f.-, =0 ), then the restriction of f is o harmonic

mop. (The components of :f are eigenfunctions of the Loplacion of the sphere s

’

A theorem of R.T. Smith (see section 8.7 of [9]) gives conditions for the join of
two l"nomotopy classes to have a harmonic representative, given that each of the two
classes have such a representative, Using this, one obtoins_ hamonic representatives
of all elgments of the groups T,.S"for n< 7 . (One takes the join of the iaenli_ty'

map sP—>5s?,witha map S'—> S' of orbitrary degree; the conditions of the



74

theorem only give harmonic representativesif p & 5.) Similérly one obtgins @
harmonic representative of the generator of TanS" for 3¢n<8 . These maps are
not necessarily polynomial maps however; for example, a theorem of R ., Wood [23]

asserfs that all polynomial maps s*—»S3 are constant.

The Morse indices of several of these examples have been calculated [9]. For
example, the index of the identity map‘ S"—>S™ iszero if m=1or 2, but if

m > 2 the index i§ m + 1 (ie the identity mop is "non-minimal” ). The

situgtion for m =1or 2 is quite straightforward; for m =1 the critical points

are the geodesics and the Videnfity map gives the essentially unique minimal
geodesic, cmd~For m =2 the critical points are the rational functions (considering
$2 as CUo )and these all tum out to be absolute minima (see [9], ond also
chapter V), including'fhe identity map. For more information on the case m> 2,
see section 3.11 of [9]. It is known that the energ} functional hos infimum zero

in this case, so in particular E never tokgs its "minimum value” except on the null-

homotopic component.

- Example 2: Holomorphic maps

A map between almost-K&hler monifolds which is holomorphic or anti-holomorphic
(* + holomorphic® ) is known to be harmonic (see [9] section 9." ), ond if the
domain is compact such a map must also be an absolute minimum of the energy.

Under certain conditions the converse is frue - we shall discuss in detail an example

of this in chapter V .,

e g TR o gm em g o g T M E> WM




Exomple 3 : Totally geodesic maps

W | . el 'E SRR Gl

A toblly geodesic map is hormonic, os has already been pointed out. Moreover,
the composite fog of o harmonic g followed by o totally geodesic map f is also
harmonic. (see [9] section 4.2) . In chopter IV we shall discuss examples of
totally geodesic maps from spheres into compact symmetric spaces; these maps may

then be combined with the maps of example 1 above fo give new hormonic maps.

In view of the remarks following example 1, it is not surprising that ottempts

to generalise thé theorem of Bott described in 61 have in general met with
little success. One requires a "Morse theory“ for the spac? of maps from

M to N, The work of Bott, which involved approxfmatior; methods due fo Morse
[18], hos been rewritten by R. Palais ond S. Smale in a monner suitable for
generolisat'ion, m that they moke o direct assault on the space of maps
considered as a Hilbert manifold [20]. One obtains a cell dgcomposition of this
space providing (a) the functional under consideration is nondegenerate, and

(®) the functional satisifies “condition (C) #, the latter requirement being a
substitution fof the noncompactness of the space of maps. Wnen M=S',ond
;he functional s the energy funct.ioncl , these conditions are satisfied (eg

Morse's procedure of approximating the space of paths by finite dimensional

compact monifolds ensures (b) holds).

It is by now reluctantly admitted that the energy functional does not in

general satisfy condition (C) , and moreover even the calculation of the criticol
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points is a difficult problem. One may proceed in two ways:

1) Replace the energy functional by a different functional.

2) Alter the space of maps under consideration.

Even if o complete extrapolation of Morse theory is not possible, one may still
attempt to prove some partial results. We shall do this in chopters IV and v,
where we prove (for certain spaces of maps ) a version of the following result

of "ordinary " Morse theory:

Proposition 3.2: If M is o compact manifold, ond f:M —>R is

a function whose critical manifolds are nondegenerate, then
'IT;_ME" ; {minima of f} for igN -2
where any non-minimal criticol point of f has Morse index > N.

Proof: M is homeomorphic to a space obtained by attaching cells

of dimension 2 N to the manifold of minimum points [18], hence the result.

We shall also rpcke alterations of the kinds (1) and (2) described above; we
shall replace E by the “k-th order energy functional®, Ew , or by the
ovolume functional” , V, (see below for the'definiﬁons), and we shall impose

significont basepoint conditions on the spaces of maps involved.

If ¢:M —> N is a map, its volume is defined by the formula:

om =

P,"T-“"—&



S
3

.

V() = j Jier(e7m1 dx

i, |

where os usugl h denctes the metricon N ond § is ossumed sufficiently

smooth for the integral to exist. The significont properly of V is thot it is

“porametric” , ie its value is independent of repcromet risation of the domain

M.

Exomgle' lf m =1,V is the length funchono! on poths. By a well known result
in dlfferenhol geometry, o poth of minimol length con be tepcrcmornsed to guve
a geodesic (the choice of porameter is unique up to lineor tronsformgtions) . |
Conversely, o poﬂ'; which minimises E is eosily seen to be a geodesic (see §12

of [18] or the discussion below) . In foct, the critical poinis of E are precisely

the geodesics.

It is often possible to use geometrical considerations fo colculate some of the

critical points of \'

~ this is o clossical problem. For m > 2 however, the -

relotion between” V ond E ond their critical points becomes obscure. One

method is to ;Jse the following éenero‘ (ond Kriviol) result end we shall do this in _

chopter IV .

a’
.

Ptopésiﬂon 33:

If F "is o functionol on the spcce of sufficientiy

smooth mops from M to N, ondif

l) V(,‘,u) < F(®) for ollmaps &

2) There emstsomop f , minimol for V, such that V(f) =F(f) ;

then o minimum for F is o minimum for V ..
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Proof: Let @ be a minimum for F . Then :

V($) < F(p) by condition (1)
& F(F) since ¢ is @ minimum for F
= V(f) by condition (2)
< V(P) by condition (2)

Hence V(p)=V(f),ie ¢ is a minimum for V.

As the energy functional does not in general satisfy condition (1) , we shall

replace it by the k-th order energy (for some suitable k), which is defined

by the formula:
. Em(_t.ﬁ) = I(I trké*h l)‘,zdx - (#ﬁl d¢lk dx

When k=m, Couchy’.s inequality :‘I':I".xi & ( :% xi/m ) shows that

V($) < E“((ﬁ) , with equality iff ¢ is w;éokly conformal (ie iff there is a
nonneggative function A on M such that ¢;'11 = Ag, where h,g are

the metrics on "N,M respectively) . In chapter IV we shall show that under
certain cifcun;stmces the (absolute) minima of V and of Es coincide (upto
parameter). This will be g direct generalisation of the example above. In the
example, one may apply proposition 3.3 with F= JE to show that a minimum

of E is'a minimumof L; fo prove the converse one must appeal to the well known

characterisation of minima of L . In chapter IV we toke F=E, and use




proposition 3.3 to show o minimum of E,,is o minimum of V; for the converse we

need o choracterisotion of the minimo of V which is proved essentiolly by

induction on m , thus reducing the problem to the cose of geodesics.

- We hove exploined ot the seginriing of this chopter how Morse = theoretical results can

be obtained in the case m =1, ond pointed out thet when m > 1 this is in general

no longer possible. It is well known that V does not satisfy condition (Q,ondin
. genel'o.l neither does E,y. ln.chapters I\/ ond V we'shall discuss two ve;y
different exomples where it is nevertheléss possibl'e to prove the ona!ogue of

proposition 32. ln chopter V we sholltoke m =2, ond the mops f Sohsfymg

condition (2) of pro;:osmon 3.3 will be the holonorphnc mops. In chapter IV

we shall take m>2 and the mops f wnll ba cartain linear embeddings of spheres

into symmefric spaces. ‘We discuss the latter Tirst,os this is more elementory enda

direct generalisotion of the case m =1 describzd in this chopter.

Sy

fau
-

s’
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- The colculation itself is very simple, being essentiolly o rewording of Bott's

Chopter IV 80

=

We beg\g with the colculotion of the obsolute minimo of Eg, X —>R

in o well known situction, ie when X is o classical symmetric space and k

is in the stable ronge. In general the higher index (ie non-minimal) critical points
are not known, but the minima have asimple choracterisation. We find that the '
minima form o submanifold, prov ided thot an appropriate

“boundary condition” on the elements of U'X is imposed.

original proof by Morse theory of the periodicity theorem [5]. Boft olways

discussed geodesics, but it has been observed by A. T. Fomenko [11] thot one

moy describe the Bott isomorphism as induced by @ map of the form U(n) —> SU*U(2n), .

or, in the real case, O(n) = S O(16n), by "omalgamating® the geodesics to

form spheres.  In §1 we describe o generalisation of Fomenko's work, “which

hopefully makes his proof clearer, Moreover, we discuss the spoces S?.." E

entirely in terms of Clifford olgebros, using the notation developed in chapter 1,

ond we thereby avoid on unsightly computdtion with motrices. ln §2 we show
thot the l_nclus:on of the minima into the whole space of mops- mduces the penoducuty

isomorphism. The minimum energy maps themselves are of some fopological interest,

os they repres';,;ﬂ (in oppropriate dimensions) generators of the stable homotopy _

groups of the symmetric spocé Ex ; this ogrees with the well known description of

representatives of these generators os being the symbols of the Dirac operators.

Finally, §4 describes o Lie—olgebraic interpretation of the minima, in the

spmt of chapter I . This provides a new inlerpretaﬁon of the isomorphisms 4

RSpin (2n)/ RSpm(Zn +1) = K(5%), RO%in (Bn)/ ROSpm (8n + l ) KO(SQ")
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of Atiych, Bott ond Shapiro [2].

$1. The minimaof Eg & X—>R
$2. Bott peridocity for the classical symmetric spaces
§3. Representatives of the stable generators

§4. A Lie-algebraic characterisation of the minima

1. The minimaof Ew: X —>R

Let us first recall that Bott's result on geodesics described in Chapter HI

(theorem 2.1) has the following description in terms of the spaces Ey :

Proposition: - Consider paths in Ex from ew, 10 =€xvy » and
restrict attention to that component which contains the polhs of shortest length.

Then the minimal geodesics are -precise‘y,ﬂ"e conjugotes uvader f(D -y ) of the
®standard geodesicf' 0 —> ey, cosO +e,sind .

Corollary:  The space of minimol geodesic:'. is homeomorphic to Ex—y ~
~ We shall now generalise this to the case of maps sd —> E,, where j= 0,1_,;..,k .

Define the stondard i-sphere in Exto be the mop:
Lot

Y; : SE DBy (X poeer Xt0r ) > 2 XiCren-i
tat

For example, the standard O-sphere in E is the pair of points +exel ond

the s'tondord 1-sphere is the "sfondaf.d geodesic” © > ey, cosO + ex 5ind .







2adiill | sl | T

(-1

82

We sholl be interested in the following two spoces of maps (which ore obviously

homotopic spoces, since y;., s confractible):

U’ E = Continuous bosepoint preserving mops Sj->E, ("% =V > €00)
S8 E.= Maps £:D} -—> E,, where Dj denotes the hemisphere "x,20 *

in 54 , sotisfying the condlhons

1) f | Lo (%™ is the equator “x,= 0" of sd)

2) f is “sufficiently smooth® (so that Eg)(f) exists)

Recall the definitions of the volume functional V and the nth order energy -

" function . E'W- from chaopter 11l ; we toke n = j . - During this

chapter we shall always deal with Eg, ond never with E.

Proposition 1.1 : Any minimumof V is gwen by the mtersechon with

S (the unit sphere’in £,,)) of o (jd)dlrnenswnol holf plcne through the origin of £,,,.

Proof:  First, it is clear thot oll such holf planes give minima, since a

holf plone whose boundury is the plone sponned by €rat seerBijan  MUSt
a) be minimal ond b) be such thot its miersechon with S ||es completely in E,‘ . .

We claim a'minimumof V on SL" E, must also be o minimum of the volume

functional on the following spoce: E
{mops f: Di—->S | f ‘ 3 =S(en.¢| gooep Cu-"‘u) < s ]

Thot the solutions fo this problem are holf plones is ensured by theorem 45, page

397 ,of (7). To prove the claim, let f£: :p'—>E, be of minimal volume







intersection of fhe half plone containing e secer € nj+1

(with f‘s-,,,fixed as above). Then V(f) & V(¥) where X-—-]J-‘D;.lf m:Ds—>Elis

any map, wg denote by @ the map obtained by composition with E.—> S . Since

E,—>S is an isometric embedding, V(m) = V(B). We therefore have V(HHC V(3)

By the remarks above [7] we must have VISV , so V@) = V() and T is

of minimal volume (subject toF| Shfixed as usual) as required.

Proposition 1.2: On the space A E,, the minimaof Egond V

ore the some (up to reparametrisation of the disc D3 ).

* Proof: Consider f=v; |5 - This mop embeds the disc D' os the

with the unit sphere

S in &, We clearly have 1) f is a minimum of V on S Ew

2) V() = E‘f) (since f:D" —>M is isometric,
and in particular conformal, os remarked in the proof of 1.1 cbove). Hence,

by proposition 3.3 of chapter 11l , any minimum of Eg isa minimum for V.

Conversely, proposition 1.1 above shows that a minimum of V - with the

" obvious parametrisation = is a minimum of Egy -

After all this preparation (c/f chapter | )' it is now easy fo state and prove the "

main theorem concerning the space fi’E, . Let ﬁ:Ekbe the component of

& E, which contains the map 7 ‘ e
. oi

Theorem 1.3 : Consider the functional Eyy .SaE_——) R. The

absolute minima are the map™ 7; |oi ond ifs conjugates by the group ¢:"(D k) -

‘ ond its coniugétes are given by the intersections

Proof: The map 7,

oy m , Fﬂﬁ‘. m i m m:

e






of holf plones in &,,, with the sphere S € ..., so they are certainly minima for

E(y) » o3 wos remarked in the proof of proposition 12 gbove.

Conversely, let f: D:‘ —> E, be o minimum for E;) ; by

propositions 1.1, 1.2 it is o minimum of V and therefore given by a holf

1

d

i

g plane in &., . The plone must contain the vecfors €,., s-.osr €x-jea because

' of the boundary condition; call the unit vector in the direction perpendicular to
I'he-se elements x . Observe that x con be considered os the mid-point of o planar

% geodesic in E, Possing through teyjea - Another such geodesic is

€ujea €SO+ €y sind , so we know by theorem 2.1 of chapter Il that x is

conjugote fo ewj4y by an element of Dy (ie .-¢5" D.‘._") . Since the action

of Dij preserves the plane sponned by €wsy seeer e,‘_‘-’u',' the whole disc

£ (D1 ) con be conjugated by this glement of D to the “standard disc” y;, o

This ct.;mpletes the proof.

i

Corollary 1.4 :  The space of obsolute minima is homeomorphic fo Ex-j .

o e

We thus obtain an inclusion 6 :E,,,..:,,.ﬁ SUE, (>~ .SL:',‘EK); if it were possible -

S
fo extpolate the Morse theory from

o

the case k=1 to the cose k>1 R

3
-

we would be oble to deduce a homotopy equivalence T Eij = T(,;E.up to some
dimension (depending on the index of the next critical point in :S_Zi E,).
While such on extrapolation does not ot the moment exist, it is nevertheless

possible to show that the inclusion does induce the well known periodicity

tsomorphism as described by Bott, This we shall do in §2.







$2. Bott Periodicity

In this short section we verify that the map induced in homotopy by the

inclusion © :Ew -—>.$-'Z‘;'. E, is an isomorphism when j =0 (8) , by showing that

it induces the same map as the appropriate composite of maps obtained from the
"one-stage” inclusions of the form Ep —> Sy Egni. The laﬂer'are known fo
be isomorphisms, by Morse theory [5] . It would be interesting fo prove that © .
induces on isomorphism without appealing to Bott's origingl proof, for example by

generalising the method of R. Wood [24] (see the remarks following 2.4 of

chapter 111) .

We shall write down an explicit formula for the map of loop spaces induced by

0,ie amap S“E,->SUE, . First, let us note that © can be written

expiicifly as follows:

efE..j-éde‘ X —> [(s,_,...,sj)._ag(s, ehv|-°)* S) i(x)]

=
where i 2 Egy—>Eyis the inclusian described in proposition 3.8 of chapter I .
(NB: *We have not previously given a num;; to this inclusion i . It is not the”
—adS '
Definition: @t S E.;=> L, is the map obtained by faking
f: St—>Euy , ond defining O(F) :S'3—>E,  by: | |
1) On St xDF : (rs)—> B(FEDE)

.2) On D™ x$* :(r,s) —> Yj$8)

i
F
Y




Eepa
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Here we consider D" s the hemisphere Fin> 0 of S™' (il =1) , 50 that

S* is given by £, =0. Similorly DY is the hemisphere - 520 of s! (@su=1),
od S s givenby & =0. Wehave S xD' € D*'x D' (ie o =0, 5 20)
nd D" xSHC D*' xDY (ie 1> 0, & =0} ond then S* x DY A D' x ¥
Sty S (ie i =0, 8 =0). Thewnion S*xD'U D' §3°' s the boundary

of ™ x D! ond is homeomorphic to a sphere s'Y  (this is the standard foral

- decomposition of st ),

The map ©f(f) is well defined since both parts of the definition agree on their

intersection. As the formula. (2) is independent of r, we may choose coordinates

t for §4Y.gs follows:

S i = o'...,j - l .
t, =

SFicj 1= Jreeur 1 +j+1

Note that ¥, 4. = 0,sinceoneof s, Mo is always zero (so we consider

sV ¢ DY ¢ SF"&*' in the usual way, with S ;“f' given by Wtll=1). As

:bosepoints we toke s,=1 in S, =1 in s ,ond ey, in Ej . With

these choices, ®(F) is Bosepoiht preserving when f is. '

.

arity with the Somelson product construction, which is

* This formulo hos sotﬁe .simil

opparent when the following altemative description is used.
Observe that © is the map induced on E.y =Dey / Dy, by the map

n,--,—>§,i's. x —> $0) ¥ ()]
. o!







The mop ¢ heris from D.j to D.s, ,ond its image commutes with the elements

Crv ,...,e,._:‘,, of DnQ| ﬂnd hence wiﬂ’l the restriction of Y} ¢ Dj —_— E. fo ifs

boundary ST = S(eys ses € xojez) - Given a mop st—> E,; » we obtain an
induced map S x D3 which is independent of the first variable when

restricted o 9 p’ , ond hence a map of st

Remark: If y; were actually constant on 3 D’ (instead of being the map e )

this construction would give a map in the homotopy class { [f], [7j 1 )

(Somelson product). The class of Q(f) is therefore a type of generalised Somelson

product of the classes of f and of Y -

Exaomple: take ES =U(1) , E: =U(2) . Themap :U(1)—>UR) is z+—> (.,_ o

ond 8 :U(1) = ST U(2) is given by

zZ — [(301 3|031)’—)5934+3| ey t+sy i(z)]

fe, toking e, = (69) & =(33) e=(e) & =(e) -
z —> [(s..:..s.)»—-)(_’,‘;_;"'. o )] :

Note that we'do have e = =I and e; e = -eje; (i ;‘j ) ; the multiplication
is that of the Clifford algebra C: ond is induced via the embedding E;-—)C:

given by X—> ( 3to

Writing 5, =sin® fr® e [0, W], w =s,+is, / I s, +is, 0, we have:

(-3
g.
T
&
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s . G b

[f : s"——>U(1)] :———>'[e(f) : 5" U(2).J o(f)(e,w) = ;-:;:ne ﬂ::: ) '

(Of course f is nullhomotopic except when =1, but the formula illustrates that

which holds in higher dimensions.)

Lemma 2.0 : With 8: R E,—> S Euywe have [ @)1= Dy J-

Proof: Triviol (using the tronsformation to the t-coordinates for s*4J .

os described ab'ove). Two such transformations give:

rd

Proposition 22: With" ®;:. st Ex—> S Evej s

O 1 SVE—> STVE G, ohd B Y By —> SUE g we hove:
(ONC @j s @jil .

Corollory 2.3: ®; induces the Bott periodicity isomorphism in the

stable ronge.

Proof: Eoch of the maps @, wos shown fo induce on isomorphism in the

stable fonge by Bott [5],ond by 22 we hove @ = @e...e® (8 fimes)

PY N






§3. Representatives of the stable genergtors

.the Dirac operator D = Z e (¥ox) -

The minimal maps in "X con be thought of os “canonical ” representatives of their
homotopy classes ; for example if k =1 one obtains geodesic loops. The maps
described in &1 do indeed have such an interpretation; in Q E, the map v,

is obviously contractible unless i =k , but in the latter case we have:

Proposition 31:  The sphere S(ey ..., € ax.) represents a generator

of  TWanBama (= TuaUR*)= Z).

Proof: When k =0 this is obviously true, as ES=U(1) =S(e, , e, ) .

The ger'leral.case now follows by induction, because:
a) [0]: T,.E:,.—.—% T.E<., is on isomorphism, by the proposition of 62,

b) [ @)1= [72xy ] by.the lenma of §2 .

The map  Yau ¢ s™*L_3 EZ., hes an altemative interpretation, as the symbol of

WL

2%+ . w2 ~C
R . (Here we consider R™ < Cauna

as usual, ‘and  S(ey , ..., :;..:,) is the unit s'phere in R™?* ) Recall from chopter |

that A%, and V... denote the two basic ungraded modules for the algebra S S
(considered as'embedded in Cf.,q ); each element of S(e, su.r€auy) gives
by Clifford mulfipli;:ati:;n an isomorphism. of O, with 45, ,ond this map
Su;'f——> Isom ( AL‘, B,,) is the symbol of D ("1som® denotes unitary isomorphism

here) . We can now identify lsom ( A, AL with ESver -

Remark: It is proved in [2] that the vector bundle over s¥** with clutching function

o e

e T . D it
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given by S(e, se.er€unia) — lsom( A%.., Bas) gives the element 1€ K(5*™)

(2 T).

With the identificotion ES., = kom( A%.,/5.) the periodicity map SEES, > S Erenn

hos the following description.

8

We have: NLF Q:@ Ne 2}:@ N,
H,= A: ® KNelp® N - (because of the "periodicity” C:,=CLB8C;)

ndif f:5' —> bom(A%,A) we have f:S' —> kom G b . The
periodicity mop now hos the form:

IV | t®I

f —
-Fel lmx:

This construction has been described by Atiyah [1], ond is ecsily seen to be a

4
3
i

special cose of the construction f+—> O(f) described in §2.

One con obtain a fotally geodesic representative of the generator of the groups

u@*) by composmg the generator of - '“’,_.,.,U(Z") described obove with the

Ql.ﬂ

+ stability map ’s:UQ" )—9 UR") . In this way we obtain the generotor of

M, UR*) for i= 0,1,...k .

Remark: By composi'ng the obove generators with other maps one obtains multiples

of the genergtors, For example, using the map ¢ :U( 2 )—->U(2 ) one

obtains fotally geodesic representatives of the elements 12,2 ,..., 2** in

"






N

Teiny U(Z" ) . By using homomorphismsof the form X+ Jo'g(x,..x,b-,‘) one obtains all

elements between 1 ond 2", The totally geodesic maps aoppearing in this way

are not in any way a complete list; for example any element of TUR") hosa

totally geodesic representative.

A similar procedure works in the case of the real Clifford algebras. One

should observe however that the group T E, is only stable for k > 8, although
for k£ 8 | the grc;ups all hu\'re. the stable value (ie Z) except for k =7 . In
this cose we hcn.re E, =0(8). ,and T,08)=Z®Z. The sphere S(e, ,....es )
is one of the generators, and on applying the maps ® ond s we obtain the

usual st&ble generators,
Example: The real orthogonal group 0(8.16%) = Egwa .

The stable homotopy groups are T, 0=T,0=2Z, , T;0= '“'70 =7Z,ond
totally geodesic (hence harmonic) representatives of some of these can be

Sbtained in the following way.

The generator of g,y 0(8.16.") (i =1,2,....k) is obtained by stabilising

fhe sphere S(&, PR )S Ej = 0(8.]61) (8i +7 =j) . By composing
with maps of the form X&dhg(xr)l,l,-ﬂone obtains totally geodesic representatives

of the elements 1,2,;..,16“_1- in 17;;,.70(8.16" ).

The elements [,2],..s 16"*] (j=1,2) of Tgirs 0(8.16") are obtained by

composing representatives of the elements 1,2,...,16‘4' of Te,.35(16 )

-y

- Em






T ol

with either of the two noturol homomorphisms sp(16%) —> 0(8.16").. (The

clements 1,2,...06" = of Ty, Sp(16* ) = WyiyEauy ore constucted as for

Tﬂiw E L (17 9)

Observe thot in both these coses the elements in question all come from generators
of WS =TE; ) ond T,0(8) (=TLE, ) by application of the mops C)
ond vorious natural homomorphisms of groups. To obtoin representatives of the

nonzero elements of  Tlgia 0(8.16%) ond Tei 0(8.16"*) one uses the

same procedure on the generators of T, s°(= "_ T.Eoc ") ond T S'(=VE).

PYd
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§4. A Lie-algebraic characterisation of the minima

The mop B of chapter | admits the following generalisation:

B: {Carton subalgebras of E‘.‘.:l H] __){submanifolds of minimal j-spheres

in E. with equator S(e..,,---:e;-jn)

Here, 9,,:',,33 embedded in &, in the usual way, ond we select a fixed Carton
subalgebra Y, of & which contains the element eujaexjn € E'*.'l" . Given

on arbitrary Car.tcn subalgebra h of &.__3,. , B(h) is obtained as follows. There‘
exists (a collection of ) elements de Dej with d h.d" = b. ThenB(h) consists

of the spheres dy d™ where d raonges over all possibilities satisfying d h.d”" =h.
The following analogue of proposition 4.4 of chapter | holds:

Proposition 4.1 : 1) Gi\;en any minimal j-sphere in E. with equator

Yiar ¢ there exists some Carton subalgebra of & whose image under B contains the

sphere,
2) - The set of Carton subalgebros of  &4y,, whose
image under B contains the standord sphere y; is in 1:1 correspondence with

o’

the set of all Carton subalgebras of &, .

Proof: 1) Given the sphere S(ey, soces €u-jsas® ) ,One can just take
any Cartan subalgebra of E.‘:J-., containing e.ex_jv (note that @ € enjie Lu-ja )
2) If B)a ¥ o then h=dhod”, where de.jud™ = ey -

As de P(Du-j), the condition de.j,d'=e.j. means that in fact d € P(Dui) .
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This should be compored with the following theorem of Aﬁy;:h, Bott, and Shapiro

(see [2], theorem 11.5), in which M(Cy ) denotes the algebro of finite-

dimensional  Cx -modules:

Theorem 42: The mgp a :M(Ck) —> KO(S" ), defined by toking
the induced bundle from the principd bundle Spin(k) —>Spinkk +1)—> s*,

\

hos the properties:

vcziy R Be.. w0 B ol AR B

1) a is o surjective homomorphism

2) kera® M(Cust) -

Of course, there are results corresponding fo 4.1 and 42 in the complex case.

Let us note the following special cose of 42, where ROG denotes the real

1

representation sing of the group G :

Corollary 4.3:  There is an isomorphism

- e

ROSpin(j + 1)/ ROSpin(j +2) & Tj E, ,k=7(8)

In viewof 4.1 ond 4.3, one expeds g relat ion between

[}
o

a) Carton subolgebras of &) n

and b) Cjn modules.

For example, when j=k=8L +7 we have Cin = M( 16" ,R ) ond

" ciil | TN wee

there is a basic Clifford module Aj« of dimension 6. This corresponds fo

the unique Corton subolgebra of €, =R (and they both correspond to the totally






égodesic sphere s*¢ E, SC:n ) ..

We describe briefly such o relation, which shows thot the mops @ ond B are

essenticlly the some. For simplicity we treat the case of complex Clifford algebras,

since we have already written down on explii:it description of the modules in - §3

of chopter | . We assume k=j = =1(2) . We have A9 A <2 Dy

where D is the irreducible (ungraded) cs module (for i -even). 'lhe mod’ule

A ......j.'- is embedded in C:_:' (see §3 of Chapter | )os

32 . _
N ‘ (-1) -elgenspace of R el } .

=)

Consider now the vector subspace V of Ci3n sponned by elements of the form

ewjmx » Where x isa product (possubly the empty product) of elements of

the form e,,-_,e,,. (r=12,..., k- ])/2) Then V& e E:r, as V& (C;.u) anc!

every v-€V anticommutes with LY But V is cleoﬂy commu?otwe,

" so it is contuinedma Cartan subalgébra - of eyyn &i_:‘ o . For dimensional

reasons, it must be equal to this Cartan subalgebra.

This establ sshes o dlrect construction of o Carton subo!gebrc of - Qy.jn—~ from .

the Clifford module Ay. It is clear thot the imoge under ﬁ of this Cortan |

subglgebra contans the s!’andcrd j-.'.phere Slewe ,.,.,e v.-JO') ’

contoins the element ew_j4v -

since the subclgebra
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