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Half exact functors and cohomology

by Albrecht Dold

The theory of half exact functors generalizes and simplifies
the theory of general cohomology. Further generalizations are pos-
sible and useful (see section 8) although it is not clear just how

far they should go.

1. Half exact functors of spaces
Let W be the category whose objects are finite CW-complexes
and whose morphisms are homotopy classes of maps. Let A be an
abelian category. A (contravariant) functor t: W= 4 1is called
half exact if the sequence
(1.1) t(X/4) > tX > tA
is exact for every X € ¥ and subcomplex A< X ,
The objects t(S1), where S' denotes the i-sphere i = 0,1,2,...

are called the coefficients of t ,

If we apply 1.1 to X = A = a point we find t(a point) = 0 ,
If we apply it to X = AVB (wedge) we find t(AvB) = tA @ tB ;

more generally

(1.2) tk ’g._.]_AiJ: :g:lt(AJ)

I.e., t takes sums into products. There is, of course, no difference
between (finite) sums and products in A ; we chose to write the .pro-
duct sign in 1.2 because this is the adequate form if one wants to

deal with infinite complexes, Indeed, everything that follows holds

for half exact functors on infinite CW-complexes (of finite dimension)

provided the "infinite analogon' of 1.2 is satisfied,
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If XelW 1is arbitrary and A c X contains exactly one point
in every component of X then X/A is connected and 1.1, 1.2 imply
(1.3) tX = t(X/A) @ tA , & natural splitting.

Moreover, A =R§So , tA = 'Hﬁt(s°) . We shall therefore look at con-
nected Cl-complexes only, having a single O-cell, and shall consider
it as obvious from 1.3 how to deal with the general case.

Another simplifying remark concerns base points. One could con-

sider half evact functors which are defined on homotopy classes with

base points, However, it turns out thut these are the same as those

defined on free homotopy classes, the reascn being that we assume an

edditive domaine cabegory. For set valued functors (compare [2] )
the situation would be quite different.
Examples (1.4) Let H be a homotopy-associative, homotopy-commuta~
tive H-space (e.g. H =ﬂ?Y). Then tX = [X,H]/'moH (honmotopy classes
modulo those of constant maps) is half exact. If A 1is the category
of abelian groups then every half exact t with countable coefficients
is of this form ([2]).

(1,5) Let L be a fired space (or a spectrum) and put
tX = {k,LB = limi[EiX,EiL] = group of stable homotopy classes,

(1.6) Put X = group of stable vector bundles (real or complex)
over X , i.,e., t = ﬁé resp., KC .

(1.7) It h is a cohomology theory on pairs (X,A) with values
in A (satisfying the Eilenberg-Steenrod axioms except possibly the

dimension axiom) then +X = Coker th(point}é h%) = 13X = reduced

g~th cohemology of X is half exact, Examples can be found in [1],
(4] et al.
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(1.8) If T+ A=»A' is an exact functor or &: W= W a functor which
takes cofibrations into cofibrations then composition 7Tt resp. t&
with every half exact t 1s again half exact. Examples for & are:
the suspension functor & , the ¥-product with a fixed space, the
passage to the n-dual in the sense of Spanier-Whitehead (the last works

in the stable category only).

2. Comparing half exact fuanctors

2.1 Proposition. ILet ®: t = t' be a natural transformation of half

exact functors. If ?(Sl): t(Sl) E’t'(Sl) is an equivalence for all

i<n them ¢: tX ¥ t'X for all X of dimension < n .,
P;oof. The Puppe sequence [5] i

Adpactonas B~ ..,
is defined for every continuous map f , and every term is (up to homo-
topy equivalence) the cofibre of the preceeding map. Applying any half
exact t therefore gives an exact sequence
(2l ) th & tB & tCf & tIA &« tIB « .

Every CW-complex is obtained by successively attaching wedges of
cells; let ¥(X) denote the number of such operations which are re-
quired to construct X ., For instance, W(X)< 1 if and only if X
is a wedge of spheres ; further V(IX)<WX) . The proposition is
proved by induction on v . We can then assume X = Cf where
f: AR and ¥(A) =1 =V(ZR) , V(B)<¥(X) hence V(IB)<V(X) .

We apply §  to the exact sequence 2.2 and get X T tX' by the

five lemma, qed,
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ppplication. A contravariant functor t: W > A 1is called stable if

there is a natural factorization

(X,7] ~—> Hom(tY,tX)

Lo
-

S 4
&1 -

where s 1is the passage to stable homotopy classes (s.1.5); the examples
1.5, 1.5, 1.7 are stable. If t is half exact then T is a homo-
morphism of abelian groups (see 3.3), and is therefore adjoint to a
morphism

(2.3) e(X,Y,1): {X,YI®tY - ¢X.

In particular we have a natural transformation

(2.4) E(X,t) = {e(X,Si.t)\j' : @i{}{,sj}%si > X ,

the 'Hurewicz-map' .

2.5 Proposition. If ®tst

(a) 1is an exact functor (i,e. tS% is flat),

(b) kills finite groups

then the morphism 2.4 is an isomorphism,

Proof. (a) implies by 1.8 that u(¥) =€E§{k,51}ﬁbt81 is half exact.
It therefore suffices to show that E(Sj,t) is isomorphic for all j.
1z j#1 then {89,5"} is finite, hence {sj,si}&;si _0 by (),
hence u(gd) = {sj,sj‘levtsj > ¢85, qed.

More generally we have

2.6* Proposition. Assume t is as in 2.5 and t' is an arbitrary half

exact (additive suffices) stable functor, If gt tst > t'st is a

¥ A more elaborate argument shows that 2.6 holds also for non-'
stable t,t' .
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sequence of morphisms then there is a unique natural transformation

§: t> %' such that P(Si) = Qi :

Proof. ¢ is the unique filler 0f- the following diagram

. . Biaeg? - -
J J J ]
@ {x,s} @ ts > Eswts
¥|p E'
0 ~-~- L _ 5 gy , qed.

2.7 Example If tX = K,X@Q then 459 = g for even j >0, and is

zero otherwise = Heven(SJ,Q) where HEVER _ 53H2u . There is a gnique

P: - Heven(-,Q), the Chern-character, which extends the identity on

spheres, and it is an equivalence by 2.1.

3. Lemmas on homotopy groups

3.1 Lemma. Assume g diagram

Vjsn Topsopr — CL'/B' = \/js’“"l= 258"y n> 0

is given where g: Cf-> Cf' is such 8(B) ©B', and § is the induced

Dap on quotients; the 2nd and Brd Square are then commutative.

g' has been so chosen that Ig'~ g.

Conclusion: The two elements (£'g'], [(g!B)qu;nnB' differ only by a
sum of elements of the form x - Yx where x:enhB', YenlB‘.

i.e., the first square in 3.2 may not be commutative (it isn't,
in general) but the defect is not too bad, The proof relies on the fact

that the kernel of the Hurewics map nn+l(Cf',B') - Hn+l(Cf',B') is
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generated by elements of the form x - Yx with x€n ,(Cf',B") and

YeHF.

3,3 Lemma, If t: W—> A 1is half exact then the map

(3.4) R X > Hom(tX,t8%), [£]w-tf

is_a homomorphism of abelian groups. More generally, if Y is an

H'~-space . then

(%,4)) [Y,X] > Hom(tX,tY), [f]~>tf

is a homomorphism,

This holds because addition on both sides of 3.4' is based on the
diagram
Y-> YWY Ivi-> X.

5.5 Corollary, If X = st and £: 5" > 8" has degree r then

tf: £ > ts® is multiplication by r.

3.6 Corollary. Under the assumptions of lemma 3.1 the diagram

1 |
T
6(//;8") €—1B"

is commutative, i.e., t(g')t(f') = t(£)t(g'B).
This holds because x and Yx are freely homotopic, hence
t(x - YX) = Ou

3.7 Corollary. Let X be a CW-complex, X° its n-skeleton,

¥ VESD - %% an attaching map for the (n+l)-cells (hence C9-= Xn+l).

Then c(X) = t( Vgsn) is a functor on cellular maps, and
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9 (™) > #( VﬁSn) is a natural transformation. I.e., although the

attaching map © is not unique, £ is,

This follows from lemma 3.1 and Corollary 3.6.

4, Cochains C(X,tS"), cohomology H*(X;tsn)
A slight generalization of a result of Lllenberg and Watts shows:
I7 Kei then there is a unique contravariant functor from finitely
gencrated abelian groups to A which (a) is left exact, (b) takes
7 into K. I% is denoted by hom(-,K) (P. Freyd calls it the
"symbolic hom-functor'). This extends to arbitrary abelian groups
provided one requires hom( @&?\,’K) -‘".:—’Hhom(&MK) whenever all Gn=2Z.
It is in fact obvious how to construct)’hom(L,K) from a free resolution
of L.

If now

C:‘“e Cq_l é—" Cq (——- c % LR

q+l

is a chain complex of abelian groups then

hon(C,K) : = hom(Cq_l,K) > hom(Cq,K) - hom(0q+l,K) > e

is a cochain complex in A whose homology is denoted by H*(C,K).
Applying this to cellular chains C of a Cli-pair (X,A) defines
c4(%,A3K) and H(X,4:K).

4,1 Proposition. Let (X,A) be a CW-pair, 1 the n-skeleton of X,

? :E?i: Vssﬂ-> 'V A an attaching map for the (n+l)-cells of X-A.

There are natural (with respect to cellular maps) isomorphisms

(4,2) R, Ase8Y) & s(Puy/Biun)

J n+1 Lealy o n
(4.3) ¢ (X, A587) F 1( Vjs )
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which take the coboundary J': Cn - Cn+l into the composite

t(XnvA/Xn-l\.aA) ~> t(XnuA) ‘-—t-(-?—)—-)» t( Vjsn) ;
Proof. 4.2 is clear because X%ua/k®L 4 - L&Sn, with one sphere for
each n-cell in X-A, Further, 4.3 follows from Corollary 3.,7. The
last statement is true because the incidence coefficients of ¢ are

the various degrees of the composite
Vis® s wa <t - Vs

and because of 3.5,
2. The obstruction sequence

2.1 Proposition. There exists a natural (with respect to (X,A) and

t) exact sequence

n+l . -
(5:2) STV IRy p(rP-Lugy ] % B, at87)
In words: the map ¢ associates with every "element" x of t(Xn_%;A)
which admits an extension to ¥* g an obstruction f?(x)eHn+l(X,A:tSn),

and #(x)=0 if and only if x extends to x2*L,

Proof, If ¢ p%sn~é‘xqfﬁ is an attaching map for the (n+l)-cells
of X-A then we have an exact sequence

t(x™*1a) - t(xA) t(VJ.Sn) = C™ (%, hit5Y) |

Dividing by the image of X = t(XquA/Xn'qu) w2 get an exact sequence

B*LA) o3 60 A)/in(K) — e Lex, 45 £8%)/1n(x)
hence by the exactness of t(XquA/Xn_%lA)-—é t(KnuA)-9 t(Xn—{jA) and

by proposition 4.1, the exact sequence

= &
6 4) s Tal(x%ua) — 50 )] S ol gael
where B denotes coboundaries., It remains to show that g maps into

cocycles, i.e., that §ot O . This amounts to showing that the com-
site
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£(xVA) —tﬁi—)-a ™ l(y, 4,87 45 one2

is zeros
" /02 3, .
Let Y =‘v&e X be the characteristic map for the (n+2)-cells
of X-A, where en+2 is the standard (n+2)-cell; note that the n-

skeleton Y% consists of 2 single point. Naturality gives a commutative
diagram

s(xva) 2y ™ ex,n) % ¢™2(x,4)

T
0= t(Th) —> ™) —> My |

which proves the gssertion.

n+l

2.5 GCorollary If H (X,A;tsn) = 0 for all n then tX-=tA-30

1s exact

~ Dbecause all obstructions vanish.

5.4 Corollary. If H(Y,t3") =0 for all n then tY = 0 .

Proof. Take A =Y, X = CA = cone over A , remark that Hn+l(X,A;tSn)
HY(Y,t8™) = 0, apply 5.5 , and use +X = tCA = O .

2.5 Corollary. If f: A= X is a continuous map such that for all n

ey Hl(X,tSn)~% Hl(A,tSn) is_epimorphic for i = n-1, isomorphic.for

1 =n, and monomorphic for i = n+l then +tf: tX ¥ t4A . In particular,

this applies if ordinary integral homology is mapped isomorphically
because the universal coefficient theorem then implies the assumption.
froof. We can assume f is an inclusion. The assumptions then mean
Hn(X,A;tSn) = d, Hn+l(X,A;tSn) = 0 for all n, Therefore tX - tA is
monomorphic by 5.4 and epimorphic by 5.3 .

0.6 Proposition., If tS' = 0 for i<n then there exists a natural

transformation §: tA - B (a,ts™) such that §(s™) - id

Proof. For every X Corollaries 5.5 and 5.3 give
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Im[t(KQJA)~9 t(Xn’%JA)J = t(Xn-%JA) € tA , so the obstruction map
vecomes  @": tA= BN, 4;65"). Putting y - CA this is tA-> o+l
(CA,A;tSn) =4 Hn(ﬂ,tsn) , &S required,
>-7 Corollary (Hopf-Whitmey). If t5* =0 for icn and  dim(4)<n
then

tA ¥ HY(A;t8™) .
2.8 Corollarz (Uniqueness of half exact functors satisfying a dimen-
sion axiom) If t§' =0 for idn then A = H'(A;88") for all 4
Both Corollaries follow from 2.6 and 2,1 ,
Another typical application of 5.1 gives a result of F, Peterson,

as follows,

2.9 Proposition Assume H2n+l(X,A;Z) has no torsion dividing (n-1)!

Then a stable bundle '1E:Ktﬂ which extends to Xen-%/ﬂ has an ex-

Bk 35 and ity 14 B0 = 0 where ¢ - n-tn

tension to ¥

thern class. and §* - coboundary homomorphism.

5.10 Corollary. If E™™(X 4;2) nas no torsion dividing (i-1)!, i =

5y%y.v. , then a stable bundle ’7EE%A extends to X if and only if

J&(ﬁ) = 0, where ¢ = total Chern class,

>.11 Corollary. If H'M(A,Z) has no torsion dividing (i-1)!, i = 3.4

Y

then we KA is the trivial bundle if apg only if c(y) = 1,

This follows from 5.10 by taking X = CA = cone over A,

Proof of 5.9 It ig clear that the condition 1s necessary: if'z extends

to xo+l A& then Cn(Y) extends to X, hence Jgn = D
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Tor the converse, put € = e , and let 'ﬁ-:t(}(aIl -1 Vi) an ex-

C
tension of Vz The exact sequence t("gn L)~ t(xgn‘ \;A)gt(vs&l -1 -0

shows |
Y1 'e Im[t(X - t(x wA)] , so we can use the obstruction sequence

5.2 . We map it into the corresponding sequence for t' = Han(-,Z) via

the Chern class c¢ @ U= t' . As remarked in the proof of 5.6 we have
H2n(

Il (x28A) > ¢ (k25 1ua)] = t'a = HN(A,Z)

so we get a commutative diagram

ralE(ERA) - 5(xTA) 1> > 12y as5570)

l;n 1?“ = (n-1)!

§*

HEH(A,Z) AN H2n4 (‘{,A,t““zn) :

hence &(7') = 0 & (n—l)iGKY') =0 &> J\cnfy) =0 , qed,
6. Spectral sequences

For every P we have the Puppe sequence

L eSS P el &Pl P 4—\/3?
where ¢ 1is an attaching map for (p+l)—cells. Hence an exact sequence

LS S0 (P /xP) > 5P > 3P 3 t(VjSp)

(in case p = 0 we can replace t(VJSp) by O because t§=0).
This looks like an exact couple except that 1t stops on the right.
There are several ways around this difficulty of which we describe one,
Recall first that t(\/sp) Cp+l(X tsp), and 5(t§ = 0 (see proof
of 5.1), so we can replace the last term by cocycles Zp+l(X t3 )

Then we can extend the sequence as follows to get an exact couple
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(6.1) Ap+la'P*2 AP,-P-l Cp+l,—p—l Ap+l,—p-1 Ap,-p

1 I I i [

i P
25 Gt R AR e W S W N

Phx, ety L9 @coker(gV) _PROd- Coker(g”)>0+0> .,
PR s Poaer(s) 2y ) coren(e”

I I I (
cP+1y-Dp AP+, =P AP»-P+1 cP+ly-p+l

This leads to

6.2 Proposition There exists a natural (with respect to ¥ and t)

spectral sequence

E(t,X) = a,: qu-i Eg—r,q+r—l such that

Ega"q ” HP(X,tSq) for p-q < ¥1 4 qu =0 for p-gl

)

and which converges to

gP7d . Fptzq'pX/Fp_ltEq'pX for p-q<0

gPr-p+l _ Hp+l(X,tSp)/Im(ﬁ) i 874 g for p-q>1.

Here FptEmX = Ker[tz"Y - thXp"l] , and ¢~ denotes the obstruction

norphism of Proposition 5.1

For the proof one has only to mcall (4.2) that t(Epr/EmXp"l) =

cP(x, 8Pty Elf"P"m and that the composite t(Z™XP/t™P1y & ¢(£lyP)a

t(Em'IXP+1/Zm'lXp) agrees with the coboundary d ; furthermore, an

easy verification has to be made on the right edge terms Ap,-p+l

Prop. 6.2 contains, of course, earlier results like 2,1 or 5.5.
For example, under the assumptions of 5.5 we have a morphism of spectral

sequences E (f): E(X) - E(A) such that Eé“n (f) is epimorphic for

1 = n-1, isomorphic for i = n, monomorphic for i = n+l , This implies

the same with lower index 2 replaced by 3,4,... , in particular

EZ;‘“(X) = B)7(4), which inmediately gives X = tA .
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The exact couples 6.1 for t and tZ obviously agree except for
a shift of indices and except for values p,q 1in the neighborhood of
P-q = 0 (at the right end). Even there we have a map of BE(tZ,X)
into E{t,X), and we get

6.3 Proposition (suspension isomorphism) There are natural isomorphisms

£79(55,%) = B2} (4,x) for p-q<0 and all r

1

Eg’"p+l(tE,X) - Eg’"p(t,x)

which commute with the differentials dr

In particular, if h = {ﬁm}- is a cohomology theory (1.7) then
HE = hm'l , and 6.% allows to paste together the sequence of spectral
sequences E(h") to a single convergent spectral sequence E(h,X)

such that

59 = #P(x,B%s%)) , P - PR BPT (comp-are (1D) .

Y. Pairings of half exact functors

Let A, A', A" be abelian categories and F: AXA' = A" an additive
right-exact covariant functor, i.e., F(A,A') is covariant right-exact
in each variable, We write AXA' instead of F(A,A').

If t,t',t" are half exact functors with values in 4,A',A" then
a pairing is a natural transformation

for BCOXE(Y) = £ (KRY)

7.1 Proposition Every pairing y induces a pairing of spectral
sequences

pe B XER Y (8, Y) - PP sy, r2l

with the following properties
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! ! 1 !
(1) py B(X,583p<P (1,6'9%") > H2*P (ay, 55040 ")
is the ordianry exterior w-product associated with the coefficient pair-

1 1 !
ing tSth ! Sq > H( Sq%gq ) =t 1" Sq+q L]

(ii) d, is a derivation, i,e. the following diagram is commutative

p+p',a+q’
DGy D' Q" foy N E
ED>ED >
_1)P+4;
(a,X4,(-1)P*iaxq ) d,
v :
g Moy M

Eg+r,q-r+lep q @ Egongur,q'-ml (Hog o) N E£+p'+r,q+q’—r+l

(iii) Pp,1 18 induced by au. o, 121 [1°]
(iv) Mo s induced by .

Sketch of proof. It does not seem enough to look at the exact couple

6.1 ; one has to use terms like +t(¥P*T/¥P) for all possible values of
p,r (not just r =1 or o ), I.e., one has to use a system
H(p+r,p) as in [2], Chap. [?] .

We first note the following equalities
gPHT /P % Yp'+r/Yp' : Xp+r)ﬂ p'+r/Xp+rﬁYpbxpmp'+r =

= Xp+r7!§$Yp‘+ru(XiZ~Y)p+p'+r+l/(X;¥YpUXP#Y) /] numerator 3

in the last expression there appear more cells in the numerator than in

the second expression, but they are divided out.

By composition we now get & pairing

[?] inserted by reader,

[1?] inserted by reader : Uy iS induced by M, and iS
“compatible" with r+s, forevery Fr=1 (?)
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£ (P /Pyt (YD T YR -/L—a g (XPHT /P f YR YRy L
t{%p+§§Yp[+rU(XﬁY)p+pl+r+l/(X%Ypi/Kp£Y)/lnumeratorlk NS
o {(K%Y)p+pl +l+r/(X§*Y)p+p!+1 }
Since Im[t(Xp+r/Xp)—?-t(Xp+1/XP)] = Z§+l’_p-1 there results

(replacing p+l by p)

Dy-porD' y-p' _ M wD+p',=p-p' |
2 meas S

b
similarly
BE,~15<.21;'.-p' /"E ”B§+p',—p-p‘

hence by right exactness

o Ep,-px.gg',-p' SN ,.Elg+p'.-p-p'

This defines /% if p+g = 0, p'+q' = 0. The general case
p+a<0, p'+q'<0 reduces to this via the suspension isomorphism 6.3 and
the-pairing

§EX xt 0 > £ (5 #50T) = £ By
It remains to define f%r if p+q = 0, p'+q' = 1, or vice versa .

' i@ ' '
Let ([/iep*l,l/isp)—g (xP* 1Py pesp, (Ve +1,VJ.SP ) > (Y2 P

denote characteristic maps for the (p+l)- resp, (p'+l)-cells of X
resp, Y ., In X# we can then get characteristic maps by taking

W~products, Consider the maps

O (VP Vi ™) = Ve V@ PRV, 2
(V/; €21/ % Vjsp')v(visp " Vjep'd/sp') Cxid) v (idge)

e SEBVUAS ScasrithY

N4
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Apply t" .

t1l(xp+l/xp )‘{( VJSPI) @ t”( VISP }% YP’+1/YP') -é t”( l/é“j(ep'l‘l)y%‘ +l) =
.E§+p’+2, p-p'-1,

Finally compose with

t(Xp+l/Xp) X t'( VJSPI) _—E9 t"(Xp+l/XP %VJSP')

to get

41, sps] '41,-p' +p'+2,-p-p'-1
%:Egjp xtEg !pﬁ? ITEEP S 5

Parts (iii) and (iv) of proposition 7.1 are now easily checked. Part
(1) follows by looking at El—terms and the pairing py+ We have

E§*'P = t(xPxP-1y . t(\/jsp) = 'HStsP = CP(X,5P),  and vy restricting
b, Yo single factors tSP of Cp(X,tSp) we see that B is the
ordinary exterior product of cellular cochains associated with the
specified coefficient pairing. Since ks 15 induced by L, this

proves (i).

Part (ii) requires a little more work. We consider the case

g% «py ' = wp! onlys the general case ig similar, and it can be
reduced to our case by the suspension isomorphism 6.3. The sign
(-1)P* 4¢ (ii) comes in under the form t(w) where w is the

1 1
mapping of PtA+P +q (XKY)  into itself which brings the

Suspension operator § = S%% into the first position.

(p+q+l)-st
As a homotopy
class w ig (-1)p+qid, hence t(w) = (-1774

id by lemma 3.3,
. pPtl,=p-1 _ _p+lsr -D-r
Now dr' Er ? Er ’

is induced (passage to quotients)
by the torphism
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BT /AP) > tP*T =y 5V P = PR, ueP ),

where i ranges over the (p+r+l)-cells of X. It is therefore

enough to show that the following diagram is commutative

S(PTAR)x b (1 TPy s g () PHR L () PP

t(Xp+r)><t‘(Yp‘+l/Yp') @t(Xp+l/Xp)><t'(yp|+r)
t( \/isp+r)><t| (Yp‘ +1/Yp') @ t(xp'i'l/xp)xt '( vi|8p| +I‘) _E?tt‘(V:'L"Sp+q1+r+l)

where the horizontal maps are induced by W as explained above (see
p. 15 for the first line and p. 16 for the third). It is enough to
show that the diagram becomes commutative after projecting the lower
right corner onto any one of its factors tSp+p'+r+l' Now this sphere
is the boundary of a cell eij@j of X#Y where i+j = p+p'+r+l.

The characteristic maps ei-é-X, ej~?”Y induce a map of the above
diagram into the corresponding one for ei, ej, and on the lower
right we get precisely the projection onto ¢ (eiﬂbj) = tsp+p'+r+l.

By naturality it suffices therefore to prove commutativity in case

X = ei, Y = ej, i+] = p+p'+r+2.

el then Xp+r/}(p is contractible (hence

s(x®*T /xP) = 0) wunless i = p+l or i

If X

il

p+r+l; 1.e., we have only to

study the two (symmetric) cases (i,j) = (p+l,p'+r+l) or

(1,3) = (p+r+l,p'+l). Consider the first, then XP*T = el
+T ' "+ j-1
PP gt P gl

b

, and the diagram reduces to
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g5t ¢ grgdL Sy t”g(el#e‘]) = ggiti?

id

v
gst x prgdvt id
tgt x\/t'sj'l > ggiti-l

qed.

8. Generalizations

One can generalize the preceding results to functors t: W >4
where A is not necessarily abelian. For instance, one can take
A = ENS, ¢the category of sets, provided we replace half-exactness
by the Meyer-Vietoris condition (e) of Brown [2]. Also for most
results we then have either to restrict ourselves to simply connected
Ci-complexes X or we have to assume that t 1is pn-simple for all
n; this means: t(«) = t(yo«) for all o€ nnX, ye an, and all
X+ Generalizing both abelian categories and ENS one can probably
take for A any category such that the category of abelian group
objects of A is an abelian category.

On the other hand W can be replaced by more general categories.
As e guiding model consider the following: Let u: W=> 4 be half
exact, let mn: E->B be a fibration, and for every a: X B let
L Ea—ﬁ-x be the induced fibration. For every o: X->B and
YcX put t(X,Y,a) = u(Ea/EaIY)' This is a functor on triples
(X,Y,a) (i.e. on the category of pairs of spaces over B) to which
the preceding results generalize. For instance, one has a spectral

sequence such that Eg"q Eﬁp(B,g(SqXF/*XF)) for p-q <1,
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Eg‘_q -0 for p-qg> 1, and Eg;‘q, for p-q < 0, is the graded
object associated with a filtration of uS%P(E/F). Here

B = n'l(*) is the fibre, * = base point and u indicates a local
coefficient system (the group m,B operates on

u(88<F/*<F) = usdr@us?). This spectral sequence has multiplica-
tive properties as in 7.1. The proofs are very similar, and it is not
hard to axiomatize the whole situation.

Other possibilities for W are the category of spectra, or the
category of (free) chain complexes over a fixed ring. Dual to section
1, one could consider half-coexact functors t*, i.e., functors
which are exact on fibrations (instead of cofibrations). Guided by
these examples one is lead to axiomatize W, too, probably (following
a suggestion of 5. Eilenberg) by distinguishing in W a certain class
of morphisms X'->X->X" as '"short exact sequences", which the

functor would have to carry into exact sequences.
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