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Higher Order Suspension Maps for Non-additive Functors
by Aldridge K. Bousfield
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for the degree of Doctor of Philosophy.

ABSTRACT

Let R -be a commutative ring with identity, let
T: R-modules —> R-modules be a covariant functor with
T(0) = 0, and let. X be a semi-simplicial R-module.
Higher order versions of the Dold-Puppe suspension map
0: myIX —> 7, ,,TSX are defined and studied in this

thesis. These higher order suspension maps are obtained

by viewing = T, TS?X as a bigraded module over a bi-
m,n>0 m
graded algebra, 3= Hm(R,n;R) » formed from the homology

m,n>0
of Eilenberg-MacLaﬁé—spaces. The general theory of these
operations 1s discussed. Then the properties of those
arising from H,(Z,2) and H*(Zp,lg are presented in
detail.
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§1. Introduction.

Let R Dbe a commutative ring with identity, and let
T: R-modules —> R-modules

be a covariant functor with T(0) = 0 . Dold and Puppe [3]

have defined the suspension map

0: 7, TX —> T +1TSX s

where X is a semi-simplicial (abbreviated "s.s!') R-module.
Our purpose is to define and study certain higher order sus-

pension maps, which we shall call pensions.

More precisely we shall give = _ mes“x a left
m,n>0
module structure over an algebra P(R) = = Hm(R,n;R)
m,n>0

formed from homology of Eilenberg-MacLane spaces. An element
@ ¢ H (R,n;R) then gives rise by left multiplication to a
rension

G: TeTX —> v¥+ﬁTSn .

We remark that there is.also a stable theory of pensions,
and that the stable version of P(Z%) 1s isomorphic to the
dual of the mod-p Steenrod algebra.

In §2 we present the basic (unstable) theory of pensions.
Then in §3 and §4 we discuss at length the properties of
those pensions which arise from H,(2,2) and H*(Zp,l) .
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We do not propose in this thesis to present any applications
of pensions to the study of T«IX for specific functors T .
However, such applications are plentiful.

The author wishes to thank Professor Daniel M. Kan

for his guidance and his useful suggestions.



§2. The Pensions.

2.1. Preliminaries. Let R and T be as in §1.

For a set K with basepoint * , let AK denote the free
R-module generated by K with the relation ¥* = . If M

and N are R-modules, there is a natural R-linear map

E: AM @y TN —> T(M @y N) .
We define E as the composition
G
M@, T™N —> T(AM®, N) je®1), (M@, N) .

For m € M the restriction of the "pull-through" map G
to 1.m@ TN ™S TN is induced by the map N —> AM @R N
sending n—> (l.m)® n . The map Jj: AM —> M sends

l.m-=>m.

. Now let Sn be the standard s.s. n-sphere; and observe

that m,AAS = H,(R,n) , where H, denotes reduced homology

with coefficients in R . If X '1is an s.s. R-module then
the map

E: AAS, @ TX —> T(Asn®R X)

induces

Ey: Hy(R,n)®p m,TX —> 7,T8"X ,

where S™X 1is the n-fold suspension (see [3]) of X . It
is desirable to medify E, so that it will give rise to a



stable pairing. Thus, we let

EL: H,(R,n) ®, T,TX —> 7,18™X

be the map such that

Ei(ae B) = (-1)(“““)1E*(a0 B)
for a e Hm(R,n) and B e T TX .

2.2. Basic notions. The pension algebra P(R) is

the bigraded R-algebra with

P(R) = = H (R,n) = = T_AAS
m,n>0 mt m,n>0 mon

and with multiplication given by

1, _
Ey: myAAS @R w*AASq > TyuAAS +wq
This palring Ei is as above with T =A and X = Asq . We

note that a moré "topologilcal' definition of P(R) i1s sug-
gested by 2.7. The pension algebra P(R) i1is associative

with an identity 1-[1] € HO(R,O) = A(R) . Furthermore,

b 7 TS?X is a module over P(R) with multiplication
m,n>0 m

given by the péirings
Ey: Hy(R,n) @ mT8'Xx —> m,2s™x .
To each element a ¢ Hm(R,n) there corresponds a

pension

a: mTX —> 7, TS'X
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g

which 1s simply left multiplication by « . This pension
& 1s saild to be of order n .

Certain pensions are well known.

Example 2.3. For 1.[r] ¢ Hb(,R,O) = AR the pension
1.[r): 7,7 = 7, TX 1s induced by the multiplication map
r: X '—> x .

Example 2.4. Let &, e H (R,n) = m AAS_ ~ be the

canonical element corresponding to the non-degenerate n-

simplex of § . Then (. : mTX —> m, TS"X is the

n-fold Dold-Puppe suspension o" .

Proof. Since o¢: Ty TX —> w¥+1TSX 1s induced by the
"pull-through" G: AS, @ TX —> T(AS, @, X) , 2.4 easily
follows for n =1 . Hence for a € Hr(R,s) the product
l,-a in P(R) equals o(a) € Hr_i_l(R,s-i-l) . Therefore

tn
proved from the case n=1 .

= on'l(Ll) = (Ll)n in P(R) , so the general case is

We shall discuss other less familiar pensions in §3

and §4; but we now continue with generalities.

2.5. The pension algebra P(R) 1is anti-commutative

in the following sense. Let LE H . (R,n) and pe Hp+q(R,Q)-
Then
a.p = (-1)™(-u)".p.a

where pn = 1.[-1] € HO(R,O) . Thus i1f nq 1s even then



a.p = (-1)"p.a .

For B e H , (R,q) the product p.p need not equal

p+q
-B (see 4.13) . However pedy = -ll for the element
Ll e Hy(R,1) . Hence in the above statement of anti-
commutativity, if either a@ or B is the suspension of

another element then a.B = (-l)mpa-a .

2.6, For any ¥ ¢ Hm(R,n) the pension
Vi T, TX —> w¥+mTSnX is stable in the sense that
Yo 6=0 e ¥ and both equal the pension o(¥y) ¢ Hm+1(R,n+l) .

The following lemma 1s useful in computing the multi-
Plication in the pension algebra P(R) .

Lemma 2.7. For m,n > 1 1let f: ASm A ASn -> ASm+n

be a map of set complexes such that

re: HUO(AS,, GR) —> HP(AS A AS_;R)

m+n?

L m+n

maps the fundamental class to the cohomology product

M A Ln « Then
£yt Hy(AS ) @p Hy(AS)) —> H,(As . )
equals the map E_, .

Proof. It is clear from definitions that E, 1is
induced by the map g:'ASm A ASn -> ASmQDR ASn with

g(xA y) =x®y for each x ¢ (ASm)i s Y € (ASn)1 .



The diagram
A(g)
ARS; @ AAS  ————> A(AS QR AS )
AS @y AS,

commutes, where Jj: AM —> M denotes the R-linear map
Sending l.m —> m . Applying Hom(.,R) to the diagram

and passing to cohomology, we see that
g*(gmn) = (,m A Ln € Hm-Fn(ASm A ASn;R)'

where

min m-+n . _ N .
L g H (Asm+n,R) = H (ASmQR ASn,R)

- This cohomology property determines g up to homotopy;

and since f also has thils property, f also induces Ey «

Remark 2.8. 1In view of 2.7 , the multiplication in

P(Zp) s P prime, may be computed using the Steenrod algebra.

2.9. Pensions for functors of finite degree.

Recall that
T: R-modules —> R-modules

is of degree { r if its r+l-fold cross-effect functor

1s zero. For functors of finite degree, we shall show in



2.10 that certain pensions are trivial for dimensibnal

reasons. We do.this by appropriately factoring

E: AM@R ™N —> ‘I‘(M®R N) , where M and N are R-modules.
Let 1: M—> AM be the fﬁnction with 1i(m) = 1.m .

For my,...,m e M let 1(m11--'--rmk) denote the k'P

deviation of i ([4], p. 75). Thus

i(mi-r mz) = 1-(ml + m2) -1l.m - 1.m, , ete..

For r > 1 , the universal functor of degree r, AT »
is given by letting A™M Dbe the quotient of AM by the sub-
module generated by elements i(mlq--o--nmr}l) i'for

ml,...,mr+1 8 M [ ]

Then
Ar: R-modules ——> R-modules

is indeed a functor of degree < r . If T 4is of degree
£ r , there exists a unique map

ET: ArMQR N —> T(M@ N)

such that
AM@p TN ———> T(M @ N)
J Q\ /
AM@ TN

commutes, where jr 1s the natura}wjgimorphism.



Proposition 2.10. Let T be of degree { r, X an

S.8. R-module, and & & H (R,n) . If m > rn then

& T, TX —> W*+mTSnX is zero.

-Proof. in view of the above diagram, it suffices to
show that whAr(ASn) =0 for m> rn . This follows by
a result of [3] since AT 1s of degree < r and the:
normalization N(AS ) of AS_ is trivial above dimension
n.

Remark 2.11. For T additive all pension maps are

trivial except for multiples of iterated suspension maps.

Remark 2.12. In proving more specific vanishing

results than 2.10 , the following analysis of the functors

AT is often useful.

Let R=2 and let K be a set complex with base
point. If SPkAK is the k-fold symmetric tensor’ product
of AK , then there is a homomorphism

[+]
h: & SPXAK —> AAK
k=1

with h(l.x;@...@1:x,) = 1(l.x;r ~eerlex ) for
1-xle...®l-xlc e SPXAK . In fact by [3], h 1is a group
homotopy equivalence if K connected. For any K the
composition

bt K
e h: = SPXAK —> AT(AK)

k=1
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[+
1s an epimorphism with kernel S  SP¥AK .
k=r+l
Let R = Zp s P prime, and let K be as above.

k

Let SPI;AK be the quotient of SPXAK by the relation

xlg cee @X, =0 if X = .--=xp where xl,...,xkeAK
with k > p . Then the map '

Kk

(-]
h: = SPpAK —> AAK

k=1

defined as above is an isomorphism. The composition

[+
3¥e h : = SPXAK —> AT(AK)

k=1 P

[+ ]
is an epimorphism with kernel =  SPXaK .
‘ k=p+l1 P
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§3. The Integral Pensions of Second Order.

'Throughout this section we shall work over the ring
Z of integers. The integral pensions of orders O and
1, i.e., those arising from H,(Z,0) and H,(Z,1) ,
were identified in 2.3 and 2.4 . We now turn to the

second. order pensions.

Notation 3.1. For r > 1 1let €, ¢ Hy (2,2) =2

denote the element dual to the cohomology power
(3)T ¢ H2T(z,2) .

Let T: Abelian groupé —> Abelian groups be a covar-
iant. functor with T(0) =.0 ; and let X be an s.s.
abelian group. We shall now present the properties of

the pensions

. 2

Propositlon 3.2.

(1) If aeP(2) and r> 1, then a - €.=€, - a

(11) € =0

(111) o - €,=0 unless r = pd s J >0, p prime,

(iv) po - ¢ y = O for J>1, p prime.
b ,

Proof. These results are obvious from §2 and from

well-known homology suspensions [1] .
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Let U(Xl,...,xr) be a covariant functor from
abelian groups to abelian groups, and suppose U(Xl,...,xr) =0
if any Xi =0, Let X be an s.s. abelian group.

Proposition 3.3. The pension

Es T, ..., x) —> 7, 5 U(s%k,...,5%K)

is zero for t < r , and E} equals the composition

o2 2
'IT*U(X,...,X) '—> 1T*+2U(x,...,s X) —> e oo
2
2 2,y © 2 2
LA ——> 1r*+2r-2U(X,S x,.ooo,s X) _> 1r*+2rU(S X’OO.'JS x)

of double suspensions in each variable. Thus if U 1is

additive, then E; is an isomorphism.
Proof. The map E: AAS, ® U(X,eee,X) = U(Asaex,...,Aszex)

equals the composition

A(A)®1
—r QrAASQQU(X,...,X)

AASan(x, oo e ,X)
185, Q" laAS,8U(X, .., AS,®X) —> ++

LR £'> U(ASaex,coo’Asaex)

where A,: AS;, —> AS,A *++AAS, with Ar(y) = yAseeAy for
Yy € A82 « The first part of 3.3 follows from the fact that

Bt H*(Asz,-z) —_> H*(Asa;z)@---eﬂ*(Asa;z)
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maps Ar:*(et) =0 for t < r and Ar*(cr) =€,® 0 Gl .
The final statement follows from the fact [3] that o is

an lisomorphism for additive functors in one variable.
Now let T and X be as before.

Proposition 3.4. If T 1s of degree < r and 8 > r,

TS®X 1s the zero map.

then Es: W*TX —_ T et-2s

Proof. See 2.10.

The 8.s. abelian group "X 1s trivial above n. if X

is group homotopy equivalent to an s.s. abelian group Y
such that (NY)i =0 for 1> n, where NY 1s the normal-
ization of Y .

Theorem 3.5. Let T be of degree { r and X be

trivial above n . Then €_: 7,TX T82X is an

pf T4 = Ty op
isomorphism for i > n(r-l1) + 1 and a monomorphism for

i

n

n(r-1) + 1 . However, € . need not be monic for

i=n(r-1) .
Proof. The final statement is obvious. For example,
. r-1 ___ r-1
€.: n(r-l)Gb A, —> Tn(r-1)+2r ® ASp 2

1s the zero map by 3.4, where ®F1 1s the pr-1 rfold.
tensor power functor.

The proof of the main result is by induction on n .

Case n = 0. By [3], TX is trivial above O and
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TSzx i1s trivial above 2r . Hence r is an i1somorphism

for 1>1 .

Inductive step. Given that 3.5 is true for n = k-1 ,

we now show that 1t 1s true for n =k . Let X be trivial
above k . We may suppose that '(Nx)i =0 for 1>k.

There exists a dimensionwise splittable short‘exact sequence
O=>Y'->Y—->X-=>0 of S.s. Jabelian groups with Y and
¥Y' +¢rivial above k-1 . Using the cross-effect exact sequence
of Kan anq Whitehead one obtalns exact sequences of s.s.

abelian groups
(1)
cee —> ASQTQTS(Y',...,Y’)-I- ASQPOTS+1(Y,Y',...,Y') —> see
er —> AS, @ T(Y')+AS, @Ty(Y,Y!')
—> ASErQT(Y) —> AS, . ®TX —> 0
(1I)
cee —> Ts(AsaoY',...,Asan')+Ts+1(A820Y,A826Y',...,AsaoY) —~> e
cee —> T(AsaeY')-(-Tz(ASQOY, Aszey')

—_> T(Asaoy) —> T(AS,@X) —> 0 .
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We construct a map F: (I) —> (II) as follows.
Let ir: Aser —> AA52 be an s.s. abelian map such that

8.8, abellan groups,let fs denote the composition

ireil
ASerTS(Yl,OOC,YS) > AASa@TS(Yl,OOO,YS) —_—D

Ts (AS, @Y ,...,A5,®Y,)

where the second map 1s the obvious generalization of E . '

The map F: (I) —> (II) 41is built from the maps £q -

To prove'the inductive step it suffices to show
£, wi(Asare TX) —> T, T(AS,® X)

is iso for 1 > 2r + k(r-1) + 1 and mono for
1=2r +k(r-1) +1 . Using F: (I) —> (II) , this follows

by a spectral sequence argument from the facts:.

(1) The.functor Ty 1s zero for s > r , since T of

degree <r.

(11) £ ¢ m(AS, @ T, (Y',...,Y")) = Ty T (AS,@Y', ..., AS,@ Y')

is 1iso, since Tra is additive and we may apply 3.3.
(111) For s> 1,
£o,° 1:-1(11\321,9Ts (Y'yeoerY')) = wiTB(ASZQY',..-.,AseoY')

and
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fout T1(BS5 ®T(Y,Y',...,¥Y")) => 7, T5(AS, @Y, AS,®Y',...,

AS,® Y')

are iso for 1 > 2r + (k-1)(r-1) + 1 and mono for
1 =2r + (k-1)(r-1) + 1 . This follows from the inductive
hypothesis applied to the functor T -and the complexes

Y'" 4e+e+ Y' and Y + Y' 4eeet+ Y! .

Remark 3.6. Under the conditions of 3.5, Dold and

Puppe [3] have shown that TX is trivial above nr, so
that wiTx =0 for i1 > nr . Proposition 3.5 describes a
stabillity phenomenon in a range below these trivial groups.

Under the conditions of 3.5, the sequence

€
r 2, &r 4

stabilizes for each 1 .
The pensions €, satisfy a "Cartan formula" when
applied to homotopy products arising from tensor products

of functors. In particular, let
T, T': Abelian groups —> Abellian groups

" be covariant functors with T(0) = T'(0) = 0, and let
X be a semi-simplicial abelian group. We consider the
Ellenberg-Zilber product

™, TX @ WJT'X —> 1ri+J(T & T')X
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Proposition 3.7. If a ¢ 1riTX and B ¢ wj'r'x then
€ (a:B) =0 and for r > 2
£ T e
Ja-B) = € (a) - € (B) .
k=1 .
Proof. Clearly the diagram
AAS,® TX@T'X E > T(AS,®X)®T'(AS,®X)
Aa)®1 ' E® E

ABS,® AAS,@TX@T'X 1@1T®1l, ABS,® TX® AAS2 @ T'X

commutes, where A: AS, —> AS,AAS, with A(Y) = YA Y
for y e AS, , and where T 1s the twisting map. The map
Ay : H,(2,2) —> H,(2,2) ® H,(Z,2) gives

r-1

A,(Er) = 2 €

®€
k=1 r

k k

as can be seen by passing to cohomology. Thus 3.7 follows

from the diagram.

Remark 3.8. The following consequence of 3.4 and 3.7

1s often applicable. Let {T'% r>] De a set of functors
with TT of degree < r and with given pairings
™ @ 1% — 7™ forall r, s 21 . Then

oo [
z g Z'rr*Trx———>

> 2
r=1 T p=1 r=

'S

1 Te+2r X
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preserves the induced multiplication.

We shall now study the action of the er on homotopy
Products arising from compositions of functors. Let
T, T', and X, be as in 3.7. Then for m, }J 2 0 the

composition product

T, T'X X WJT(ASm) —> WJ@ o T'X)
is defined. We note for this product that
(1) B o (01 + 02) =P e @ + P ea,
(11) (B, + By) » oa = B, o oG + B, o va

(111) o(B e a) = 0B » oga .

The action of the er, on composition products 1s somewhat

complicated, and we shall devote the rest of §3 to its study.

Theorem 3.9. If PewT'X, ace wJ_lT(ASm_l) , and
8 21, then

5. .
P = Q‘ ...ﬁ
€s(p o (oa)) ril §1+--'+1r=s € (P) ( 1 1r(aa))

where the second sum ranges over all (il,...,ir) with
10500051, 21 and 1) 4o+ i =38 .
Proof. The map
E: AAS,e(T o T'X)—> T o T'(AS, ® X)

equals the composition
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AAS, (T o 71x) & T(AAS, ® T'X) Z(E), 1 T'(AS, ® X)

where G is the "pull-through" map.

For r 21 1let 1.: AS; —> AAS, and
Jr: AA82 —_> AS2r be abelian s.s. maps such that
1.(l5,) =€, in wy AAS, and J_ (€.) = ¢,, in w, AS, . .
Denote the composition of
T(1,J,.®1)

a8,@(T o T'X)E> (AN, ® T'X) > T(AAS, @ T'X)

Z(E), p o T (AS, ® X)
by F., . There are induced maps
2
Ey, F, ¢ TxA05, @ T o T'X)—> mff o 7'(s%x)).
It is not hard to show that

S
E,-*(\'-:s ®( o (va)) =r§l ;?rf(es@(ﬁ o (ca)) .

As a step toward analyzing the maps F,, we let

kr: A82 —_— AS2r

' be the set complex map with k.(y) = . (1-y) for ye as,.

Also consider ‘

AI’ gr ' hr
ASy —E> ASy A vc0 A AS, —E> AS, @ - @ AS, I AS,,

e VP nnant™® ™™ e
r times r times

where Ar(y) =yAc***Ay for ye AS, , where
gr(y]_/} -~-Ayr) =y,0° @y, for y;,...,¥, € AS, , and where



T(h,® 1v)
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hr is a group homotopy equivalence of the canonical
homotopy class. Wevciaim that kr and h, o g, b, are .
homotopic. Observe that Ikt: HoT(AS, ;2) —> HET(AS,;Z) | y
maps k;(ter) = (La)r . This follows because the composition

A(k.) ;-
AAS, rs AAS,, ——J—>AA82r equals J, , where J 18 the

linear map with j(1+x) =x for x ¢ AS,., . Using the
proof of 2.7 it 1is clear that

*, 2 o, r
(hrogrOAr):(l Py = (L5) , so k, and h,e8,el,
are homotopic as clalimed.
We claim that

F: AAS, ®(T ¢ T'X)—> ToT'(AS,® X)

is group homotoplec to the composition

AAS, @(T e T'x)A(AI')> @7 (ans,) ®(T o T'X)MT(QI'(ASQ)O T1X)

(1,.® 1

T )
> T(AsarQ T'X) > T(AAS, ® T'X) ?(i)xr o T'(AS,® X)

where Ee-+.+c°coE refers to the composition

@7 (a8s,) @ Te T'x 22 E07 1 (nps,,) @ T(4S, & TIX) —> -

o —> NS, ® T(®@"71(AS,) ® T'X) E-> T(@T(aS,) @ T'X) .
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This 1s straightforward to prove in view of the fact that

T™(J,® 1)°G =Ee (A(kr)O 1): AAS,® (TeT'X) —> T(Asaro'r'x)

and the fact that A(k,): AAS, —> AAS,. 1s group homotopic
to A(ho g_.e Ar) . '

The map
A_.: Hy(AS,;2) ——>a"}1*(Asa;z)

gives

A_(e) == E ®--®€
S T e 1 i

It therefore follows from the above paragraph thét

F_ (£ ®(Bo(ca))) == AON '(eil...ei (va))

il+’ ° ’+ir=8 r

[4

Now 3.9 follows since

: s
E,-.(é‘s & (pe (0a))) =z Fu& ®(Be(ca))) .

Corollary 3.10. Let P e ﬂhT'X and «a € ”jTASm .
Then for p prime and s > O

s g pk
Eps(oﬁo oa) =k§0 gpk(cﬁ)o (( ps-k) (oa)) .

Proof. This follows from 3.9 using 3.2.
The following theorem is a corollary of 3.9 if a is
a suspension.

Theorem 3.1l. Suppose that T' 1is of degree £ k and

T 1s of degree < h . If PBem T'X and ace 'n'JT(ASm)
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then
€58 » a) = £,.(8) * ((€,) (a)).

Proof. We claim that the compositions
Ee (1, ® 1), F o (1, ®1): ASy, @ (T o T'X)—> AAS,® (T » T'X)
—> T o T'(As2ox)

are group homotopic, where Fk and 1hk are as in proof 3.9.

We now prove this claim. Let f denote the composition

1 h
“hk, AAS,, A1), AdAS, o> APaas

ASopk 2 s

where 1: AS, —> AAS, maps 1(x) = 1.x for x & AS, and

h

where J is the epimorphism of 2.9. It is easy to show

<

that E o (1,, ® 1) equals the composition

h, .k
f @1, ,h A(J") &1, ,h,k
ASahkO(T 9'I‘"X)—@—> AARS,® (T » T'X) ©1y Al AS,@(T*T'X)

o

K
2NN T(AkA82 o rx) ZE) 1, T (AS, ® X)

where E° 1s as in 2.9. Since AY and A are of degree

<h and <K respectively, it is not hard to show that

(%) o £: asy,, —> AMA¥as,

is group homotopic to the compsoition ¥ of

h
A1, 0 Jd,) he.k
£ . .h k°J)  n A h.k
ASppy ——> A"AAS, > ATABS, A (7)), ghy AS, .
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The proof of this uses the following elementary fact.

Suppose V 1is a functor of degreeag r and xl,...,xm

are 8.8. abellan groups such that X; 1s trivial above

n, with n, <...<n_ . Then the cross-effect V (X;,...,X )
is trivial above n + (r-m)n, where n = ny +eeet

Our initial claim now follows since Fk' (ink@ 1) equals

the composition
¥, hk I T(EX)
ASpp® (T« T'X) > A7A A820(T0T'X)——> T(AAS, @ T'X) >
T o T'(AS, ® X)
Using the analysis of
Fp .AA829(T e T'X)—> ToT'(AS, ® x)

glven in the proof 3.9, it follows from our initlial claim
that '

Cni(B * @) = §1+. « ++1,=hk Ek(ﬁ-) ¢ (611. . ?E:lk(a)) "

In view of 3.4 this reduces to

€ (8 oa) = §(8)e ((8) (a).

We prove one other unstable composition result. As in

3.91et T and T' be of arbltrary degree.

Proposition 3.12.. Let P ¢ 7,T'X and a e T TAS,,

Suppose for some integer s > 2 that Et(ﬁ) = 0 whenever
1 <t<s. Then
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(B o a) = € (B) o ((€;)%(a))+ €, (B)> €_(a) .

Proof. Let pB: ASm —> T!'X represent B ¢ wh?'x .
composition
AS,  ® TAS —————> AAS,@ (T e T'X)—=> ToT! (As, ® X)
equals

1,01 a
AS,  ® TAS_ > AAS, ® TAS ——> T(AAS, ® Asm_)

(1 @ B), T(AAS, © T'X) Z(E), n oT'(AS,® X) .

In view of our hypotheses this 1is group homotopic to

1, ®1(B) +F

F
AS, @ TAS, E———> aAS, @ (T o T'X)2—5> TeTI(AS, @ X) .

Now 3.12 follows from the analysis of Fr given in proof
3.9.

The
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§4. The Mod-p Pensions of First Order.

Let p be a prime. A homomorphism of pension algebras

P(z) — P(Zp) is induced by the natural map 2Z —> Zp

The results of §3 for the pensions €, ¢ P(Z) translate
into results for the image pensions €. € P(Zp) . No new

proof's are required since a functor

T: Zp-modules —_— Zp-modules

may be extended to a functor of the same degree

T: Abelian groups ——> Abelian groups

by setting T(M) = (M @ zp) .

Maﬂ& of the simplest mod-p pensions, however, do not
arise from integral pensions. We shall discuss the first
order pensions, that is, those from the groups
Hr(zp,l; Zp) = Zp R
in 4,1 - 4,11, then with the case p odd in 4.12 - 4,19,

r>1 . We deal with the case p = 2

Notation 4.1, For r > 1 let o, denote the mon-

trivial element of H;(Za,l) = Z, .

The pensilon 0. 1s essentially a mod-2 refinement of

Proposition 4.2. If r > 1 then c,e0,=6, in

Har(za’a) .
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Proof. Observe that c,* O is the image of Oon

r
under the composition

A* f* ‘
H,(AS;) —> H,(AS; A AS;) —> H,(AS,)

where f 1is as in 2.7 and A(x) = xA x for x € AS, .

This follows since

« O

froBy(o,,) = £,(2 r

o, ADT,) =3 G, » G, =0
_ i+j=2r 1 J 1 J T

i+j=2r
2

Clearly A* o £%(¢2) = () 1in H(AS;) . Now

H*(ASQ) is a p61m0m1a1 algebra generated by 1,2 , SqJ’(_2 R

Sq28q1¢,2 s Lﬁq?Sqlga seee s All of these generators except ‘,2

g0 to zero under A% o f* ., Since ©., 1s the dual to

2,¢ _2r ; ’ ’
(L°) eH (ASa) with respect to the obvious basis, it

follows by dualizing that f, e 8,(0,,) =6, .

Let
T: 2Z,-modules —> Za-modules

be a covariant functor with T(0) = 0, and let X be an
.8 8. 22 -mOdule . .

Proposition 4.3.

(1) The algebra P(Za) 1s commutative

(11) 0, =0

(111) o - 0, =0 unless r=2) , 3> 0.

Proof. See proof 3.2.
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Let U(xl,...,xr) be a covariant fﬁnctor from 22'
modules to Z,-modules with U(xl;...,xr) = 0 1if any

Xi =0, Let X be an s.s. Za-module.

Proposition 4.4, The pension

at: W*U(x, oo .,X) —_— ‘JT*_'_tU(Sx, o Q,SX)
18 zero for t < r, and o, equals the composition

g
W,U(X,...,X) "q"'> w*+1U(x,o-o’SX) —'> LA —> 'ﬂ'*+r-1U(x,Sx,.oo,SX)

g

"'> U(Sx,o QQ,SX)

Tatr
of suspensions in each variable. Thus if U 1is additive,
then O is an isomorphism.

Proof. See proof 3.3.

Proposition 4.5. If T is of degree { r and 8 > r ,

then Ogt TeTX —> o, TSX 1s the zero map.

Proof. See proof 3.4.

Theorem 4.6. If T 1s of_degrée £r and X 1s

trivial above n , then o, 7,TX —> 7, TSX 4s an isomor-

.phism for 1 > n(r-1) + 1 and monomorphism for i = n(r-1) + 1 .
Proof. See proof 3.5.

Now let v
T, T': Z,-modules —> za;modules
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be covariant functors with T(0) = T'(0) = O ; and let
X be an s.s. Za-module.

For the Eilenberg-Zilder product we have

Proposition 4.7. If & ¢ T,TX and B e 'u'JT'X then

d(a - B) =0 and for r > 2

r-1
or(a . B) = 2 ak(a) ¢ or_k(ﬂ)
Proof. See proofA3;7.

For the composition product we have the following

results.

Theorem 4.8. If B ¢ me'x ;s G E wJ_lT(ASm_l) ,
and s > 1 then |

as(B o (ca)) =2 =
. : i

Z o:r(ﬁ) o (011- . °1r(°“))

oot =S

Proof. See proof 3.9.

' Corollary 4.9. If BemT'X, Ge 7 TS, , and
8 > 0 then

g. ;(op o oa) —-Zs: 0., (0p) '((o )'ak(oa))
I c

Proof. This follows from 4.8 using 4.3.

Theorem 4,10. Suppose degree T' < k and degree

T<h. If BerT'X and ace 7, TAS, then
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0,1 (B o @) = 0, (8) e ((5,)%(a) .

Proof. See proof 3.11.

Now let T and T' again be of arbitrary degree.

Proposition 4.11. Let B ¢ me'X and a € WJTASm .

Suppose for some integer 8 > 2 that ot(ﬁ) = 0 whenever
1<t<s . Then

os(B o Q&) = 68(3) o 0°(a) + o(B) @ cs(a)

Proof. See proof 3.12.

We turn now to the case p odd.

The cohomology ring H*(Zp,l; Zp) is the tensor
product of the extérior algebra generated by (¢ with the
polynomlal algebra generated by Bockstein [1 « This pres-
entation determines a basis.

Notation 4.12, For r > 1 1let n, € Hr(Zp,l; zp) = 7

Let w=1- [-1] e Hy(Z,,0) as in 2.4. We say that
an element a ¢ P(Zp) is p-even if pa = a and p-odd if
u-a=-ao |

Proposition 4,13, For r > 1 the elements N5, and

n2r-1 are u-even if r 1s even and are u-odd if r 1is
odd.’

P
denote the dual to the cohomology generator indicated above.
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Proof. Pass to cohomology and use the description
K 1in 2.3,

The commutativity relations M, * Mg =xng * N, are
determined by 2.5 and 4.13. It is clear that many products

M, *+ ng are zero, since a product in P(Zp) of a p-even

r
element with a p-odd element is zero.

Proposition 4.14, If 1 < r,s < 2p then M, " Mg = 0.
If 8 > 2 then M * Mg =0 nNg = O unless 8 = 2pJ, J20.

Proof. The second statement follows from familiar
homology suspensions (1] . The first statement is easily
proved by the method 2.8 using [5] . |

We suppose henceforth that

T, T': Zp-modules —_— Zp-modules

are covariant functors with T(0) = T'(0) = 0 , and that X

is an s.s. Zp-module.

Remark 4.15, If r > 1 and degree T < pr - 1

Nop = 08 TTX —> Tyt 2ploX o
If degree T £ pr then
These facts are proved'from 2.12 using the following, which

we state without proof. The groups vingAsl avre all zero
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except for

prl o _ |
TonSPp  AS; =2, , T 20,

and for
r
"2rSP§-Asl

Il
N
.
X
lv
-]

We now consider the action of the ng on an Ellenberg-
Zilber product.

Proposition 4.16. Let « e 7,TX and B e FJT'X so
that a « B ¢ 1r1+J(T® T')X . Then 'ql(a.-B) = ny(ap) = 0.
If r> 2 then

. = 3 i .
Nop (9 B) h+kérn2h(a) uPR(:)

If r>1 then

Mo (3°8) = §+k___2r+1(-1>h%h(a) © e (B) .

Proof. The proof 3.7 1s easily modified to give 4.16.
One uses that |

A n,,(zp,l) s H*(Zp,l)Q H*(Zp,l)
nepe L oo )
Be(np,) == n, @M
f 2r h+k=p 2h 2k

and

'ﬂhQ'ﬂk ’

Ba(Mory) = §+k=2r+l
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where A: AS; —> AS; A AS; maps A(X) =X A X for X ¢ As, .
One also must takg account of the signs introduced by'the

twisting map of proof 3.7 and the pairing E} of 2.1.

"Finally we consider the action of the Ng o©n composition

products.
Theorem 4.17. If PB.e T,T'X and a e WJ-ITASm-l
then for s > 1
, J-m+sJ
ng(Be(oa)) =2 = = (~1) Nop(Blefy *++§ (oa))
2<2r<s 21,4+ 421 =s 1 r
Lp+Sp
+ 3 b (~1) ¢

Mopy (Blo(ny 8 * € (oa)
1421415 1421 4+ 421 =5 o771 o 18,775 )

Proof. The proof 1s a modification of proof 3.9. For

r>1 let 1r: ASr — AASl and Jr:'AAS —_> ASr be 8.8,

1
Zp-module maps such that ir*(Lr) =1, in 7 AAS; and

Jw(p) = L, in 7,AS . Denote the composition

. T(i_ 0. ©1)
ass @ (Te T &> T(Ans, ® T'X) —EF

> T(AAS; ®@T'X)
2(E), T o T'(AS, § X)
by .Fr « There are lnduced maps
Eys Fo,: T,AAS; @ T @ T'J‘C)——>‘ Lo T (sx)) |

It 1s not hard to show that

-—

Ee(1;8 (8 0 (aa) = 2 F,, (1,@ (8 o (ca)) .
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We now analyse the maps Fo, for r2>1 . Let

k,,: AS, —> AS

2r 1 2r

be the set complex map with k, (¥) = J,.(1:¥) for ¥ e As, .
Then k2 P 1s homotopic to the composition

h

AS. &5 s f£> AS.A +< AAS. STy aS A--- AAS Iy as
1 2 <2 _an 2 ~2__A~——B 2r
r times r times

where © 1s such that o¥%: H*(Zp,e) —> H*(Zp,l) maps
0*(:.2) = Bockstein (% ; and where L., & r; and h, are
as in proof 3.9. It follows that F,, 1s group homotopic
to the composition

A(Ar- 0)e1l

Ans; @(T « T'X) > @ AAS, @l «T'X) 5‘—-—"—-% (@S, @ T'X)

T(hra 1) T(12r® 1)

> T(ASarOT'X) > T(AAsleT'x) -T-@l> T .T'(Aslex)

We next analyse Fongpg for r 2> 0. TLet

k : AS

opt1’ ASy —> ASy 4

be given by k2r+1(y) = 32r+1(1-Y) for y e AS; . Then
Koril ~1s homotopic to the composition

A _
AS, _Ttly 45 A e AAS

1 lA‘Oa-HAO) AS

1 lAAsaA."AAsa

h

£ AS) ® AS; @ ** ® AS, > as, o
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where g(yllx'“/\yHI)=Y1®“'®yr+l, and h 1s the
group homotopy equlvalence of canonical homotopy class. It

follows that Fon,y 18 group homotopic to the composition

ABS ®(T o px)Ale-) @1, ARS, © @TAAS, efr o TiX)E 22 E

T(AS; ® ®"A3, ®T'X)

(i, . ®1)
(hel), T(AS, ., @ T'X) —2ZH 5 1(Ans, @ T'X) Z(E),

T o T'(AS; ® X)

The map ©: AS1 _— A82 has the property that
0*: H*(Zp,l) —_> H;(ZP,Q) maps O*(nas) = & for 520
and 6,(ny..4) =0 for s > O . One verifies this using
cohomology. It follows that

(8,0 6)y: H,,,,(Zp,l) —-—>®I'H*(Zp,2)

maps
(4.0 0)u(n,.) == € ©°°"®F
‘r *tes 11+...+1 =8 11 1r
. T
and
(Ar° 9)*(“2s+1) =0.
Also

((1a0AcccAQ)en .),: Hy(Z,,1) —> He(2,1) ® @rﬂ,(zp,a) |

maps
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((LAQA--AQ)oA )(n)-z M, Q@E © *++® €
T+l7%*"08 1+2il+---+21 =8 i 1l 1r

It follows from the above that

Fyo, (0,8(8 o (0a)) =§11+m+21 (-1)™,,.(8) ofE, & 08 (aa))

"')'

These expressions take into account signs introduced by E}
of 2.1.
Now 4,17 follows from the fact that

8
Ex(ng®(B o (0a)) = Z, Fre(ng®( « {oa))

Corollary 4,18. If B e T,T'X, ace vJTASm , and
r > 0, then

“2pr(°5 ega) = 7, (0B)e ngpr(oa)

-m I k
+ (-1)? mkio ﬂapk(ﬁﬁ)"((apr-k)p (oa)).

- Proof. This follows from 4.17 using 3.2 and 4.14%.

We conclude with an unstable composition result.

Proposition 4.19. Let B ¢ T,T'X and ae T TAS,,

Suppose for some 1nteger 8 > 2 that nt(ﬂ) = 0 whenever
l1<t<s8. Then
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ng(Bea) = o(B)e n (a) + (1) (8- VUM (5, (¢5)8(a))

Proof. Let PB: ASm —> T'X represent B € wh?'x .
As in proof 3.12 one shows that the composition
1, @ T(p) E
ASg @ TAS, ————> AAS; @ (T e T'X)—=> TerT! (As, & X)
1s group homotopic to

1. @ T(B) . F.+F
AS; @ TAS, —=——> MAS @ (T T'X)1-5, TeT'(AS; ® X)

where we use the notation of proof 4,17. Now 4.19 foilows

by the analysis of the F_, 4n proof 4.17.
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