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~ ‘§1., Introduction

In their generalization of the classical theory [4] of derived functors, Dold
and Puppe have used semi-simplicial methods to define [7] derived functors for non-
additive functors between abelian categories. Such derived functors have been
computed in a few cases of topological interest ([3] and [7]), and in these computa-
tions the suspension map [7] has played a central role. We éﬁall show that the
suspensionvmap belongs to a large family of operations which we call pensiops° The
pensions will be used to compute various derived functors and elucidate their
structure. As one application we determiné (functorially) the mod-p homology of
the symmetric products of any polyhedron (§8).

We consider only covariant functors on the category of R-modules, where R is-

a fixed commutative ring with identity. Such a functor T has derived functors (7]
LqT(o,n) for q,n > 0. To each homology element a e'ﬁi(R,J;R) there corresponds a

pension (§2)
Qs LqT(o,n)-*'Lq+iT(°,n+J),

and these operations form an algebra under composition. One such pension is the

suspension map
gs LqT(o,n)-*'Lq+1T(°,n+1)

which is an isomorphism [7] for q < 2n, To illustrate the higher pensions, let SPr,

be the r-fold symmetric tensor product functor on abelian groups. There is a pensior

(§3)

r r
€.: LqSP (°,n)'ﬂ'Lq+2rSP (°sn+2)
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whichris a monomorphism (4.3) for n > 2, q > 0, and is an isomorphism (3.2) for
qQ > r(n¥l) - n,
Using the stability property of the suspension map, Dold has constructed [6]

_stable derived functors LsnT, n‘Z'O, which are equivalent to classical left derived

functors when T is additive., We construct a theory of stable pensions (§9) which
‘describes.the natural operators on stable derived functors,

We conside{ particularly the case of a functor T on the category of Zp-modules°
The stable pensions give g LsnT(Zp) the structure of a graded module over the
algebra A,(p) dual to then:gd-p Steenrod algebra, If ToT! is the composition of twc
functors on Zp-modules, there is an isomorphism (10.3) of A (p)-modules
$ 1 (TeT')(2.) = ( $ 1S ™(z_)) B, ( s LT (2 )),
n=0 n P n=0 n P p  n=0 n P -

The mod-p symmetr%c algebra functor (5.5), SP, haé a composition map
SP o SP —* SP

which gives g LSnSP(Zp) the structure of an algebra ovér the Hopf algebra A,(p).
We compute (gzg) thls stable algebra and other related ones, We remark that
another example of such a stable algebra is given by the E* term of the Adams
spectral sequence constructed in [3]. |

The paper is divided into two parts dealing respectively with unstable and
:stable derived functors. The stable case 1s perhaps of mowe intrinsic interest than
the unstable, and much of the material in the first part has been ‘included because
of 1ts relevance to the stable case, |

The unstable persion operations were introduced in the author's thesis [1],

and he wishes to thank D.M, Kan who served as his thesis advisor and contributed

useful ideas,

-D-



r : Part I. Unstable Derived Functors
§2. The Pensions

Let JLR be the category of R-modules, where R is a commutative ring with
identity, For Mea*h let RM denote the free R-module generated by the elements of

M with the relation 1[0] = 0., If

T:d@rl"d4§

is a covariant functor with T(0) = 0, there is a homomorphism for M,N€J£R

E: RMs TN ~ T(MapN)
defined as follows, The restriction of E to 1[m]mTN =~ TN is given by
T(ms-): TN — T(MaN).
If X is a semi-simplicial (abbreviated "s.s.") R-module, we prolong E to
E: RK(R,n)mRTX‘* T(K(R,n)mRX),

where K(R,n) is the unique s.s. R-module whose normalization [12, p. 236]
NK(R,n) satisfies

Rfori=n
'(NK(Rsn))i =
0 for i # n,

In view of the Eilenberg-Zilber theorem [12, p, 238], E inducek a pairing
E,: n*RK(R,n)nR w*TX'"'j*T(K(R,n)mRX),
where the homotopy functor m, 18 defined for an s.s., R-module Y by

W*Y = H*( NY) °



In particular note that
w,RK(R,n) = H,(R,n3R).
For convenience‘we replace E, by a pairing
Ey': Hy(R,n;R)my m,IX = m,T8"X

where SnX is the n-fold suspension [7, 5.3] of X and E,' is defined as follows,

For u € 'ffm(R,n;R) and v € 7, TX let

B, (usv) = (1) (B (n(y) oE,) (uav)
where

Vs K(R,n)mRX - g%

is the homotopy equivalence of s.s. R-modules defined as in [7, 5.32].

2,1, The pension algebra, The pension algebra P(R) consists of the R-module

1

with multiplication given by

E,': 'i{'p(R,i;R)mR anKgR,J) -+1rp+qRK(R,1+J)

where we have taken T(+) = R(°) and X = K(R,J). Thus P(R) is an associative

bigraded.R-a.lgebra. with identity; and P(R) is anti-commutative in the sense that
a.p = (-1)"P(-u)"B.q

for a ¢ Hm+n(R,n;R) and B ¢ Hp+q(R,q;R), where p = 1[-1] € Ho(R,03R) = R(R). A
ring homomorphism R = R' induces a homomorphism of algebras P(R) — P(R')., We shall
use the same notation for an element & € P(Z) and its image @ € P(R) under the map

induced by Z < R,
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. 2.2, The pensions, If X is an s.s. R-module then

P insqx
pP,a>0

is a module over P(R) with multiplication given by the pairing
. T o Ay - n+q
Ey': Hm(R,n,R)xR 1rpTS X "m-pTS X,
Each element & € Hm(R,n;R) determines a pension

Q: . TX 7w TSnX
P p+m

defined as multiplication by @, If X is taken as an s‘.s. projective resoclution

[7, 4,1] of (G,q) for G € J_, then we obtain the pension
CH LpT(G,q) - Lp +nT(Gsa+n)

acting on derived functors [7, 4.6] of T,
by

2.3. The suspension map., Let ';in G'ﬁn(R,n;R) be the canonical element, and

let o denote L,. Then t, = (cr)n in P(R) and the pension

s no -
Ly = (0)7 m TX ﬂq+nTSnX

equals the n-fold suspension map of [7, 5.9]. If either a € H (Ryn3R) or

m+n

B & Hp+q(R,q;R) is a homology suspension, then 2,1 implies

a.p = (-1)"PB.q

in P(R), since g.u = -0 in P(R). In particular, for any & € H (Ryn;R)

m+n

Qog = gof}

in P(R), and thus each pension commutes with the suspension map,
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. Remark 2.4, The pension algebra P(R) can also be constructed topologically

from the canonical pairing (K(R), K(R)) = K(R) of the Eilenberg-MacLane spectrum

K(R) (see [14, §6]).
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v : §3. The Pensions €.

For r > 1 let

o~
e, €W, (2,2;2) ™ 2z

denote the generator dual to the rth power'_of the fundamental cohomology class, If
R is a commutative ring with identity, then €. € P(R) and clearly € = 02, We shall
show that the pensions €, satisfy a stability theorem,

A functor

T: 'AR-’ A’R

is of degree < r [9, p. 83] if its r+1-fold cross-effect functor is zero,

An s.s., R-module X is trivial above n if X is homotopy equivalent (in the

category of s.s. R-modules) to some Y whose normalization NY has (NY)i =0 fori>n

Theorem 3,1, Let T: 'A'R -'-A'R be of degree < r, and let X be an s.s. R-module

trivial above n. If r >1 and n > 0 then

2
€.: 11'1TX -4w1+2rTS X

is an isomorphism for i > n(r-1) + 1 and a monomorphism for i = n(r-1) + 1.

Corollary 3.2. If T 'AR "A’R 1s of degree < r and G'G’JA'R is of projective

dimension d, then

€_: LiT(G,n)-—>L T(G,n+2)

r i+2r

is an isomorphism for i > (n+d)(r-1) + 1 and monomorphism for i = (n+d)(r-1) + 1,

Remark 3.3, Under the hypotheses of 3.1, m,TX = 0 for i > rn [7]; however, for
€ € €
4

1 < rn the sequence 7, TX - rTsax - 1r1+4rTS X _,r oo Btabilizes to groups which

i i+2
-7-
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are frequently non-trivial, For exa.mplé, let

r
sp: A, —'Az
be the r-fold symmetric tensor product functor (see §1-l) .. The sequence
rz.0) 5 rga) S
LO-isP (z,0) L2r-1SP—( »2)
is
r 1 1
Z =Z—=Z—,..

for r >1, i = 0; and is the 0 sequence for r >1, i =1, The sequence
! € €
r I T N 5
Lr-isP (z,1) L3r-1SP (Z2,3)

is the 0 sequence for r 21, 1 = 0; and is the sequence
2 2 e 0 O
for r ? 1, 1 =1,

These fgpts follow by 3.2 and [T7].
We devote the rest of §3 to proving 3.1.

Let U(Mi,...;Mr) be a functor from J«R to A _ such that U(Ml,...,M

R y) =

i

Lemma 3.4, If X is an s.s. R-module, then

€ : MU(X,e00,X) = 2

r X)

2
waop (5K, 0,8

equals the composition

TGU(Xyeee,X) =7y U(X,een,5X) = ...

S '\l"“h‘%?&r’ - 42

U(X,8%X,...,5%%) = 2

" —p
fee "*+2r-2

of double suspensions in each variable,

u(s?x,...,s

#42r X)

Proof. Let A: K(R,2) = K(R,2) A ... A K(R,2) be the diagonal map to the

r-fold smash product. Then
-8-



C R(4),: 7, RK(R,2) = 7 B RK(R,2)
gives R(A),(er) = e(eina..nei) where
¢&: ®'m,RK(R,2) = w8 RK(R,2)
1s induced by the Eilenberg-Zilber map., The lemma now follows since
E: RK(R,2)mU(X,...,X) = U(K(R,2)8X,...,K(R,2)BX)
equals the composition

R(A)=1

RK(R,2)8U(X,...,X) '@ RK(R,2)8U(X,...,X)

2225 g™ 1RK(R, 2)  $U(X, ... ,K(R,2)EX) = ... = U(K(R,2)8X, ... ,K(R,2)8X).

An immediate consequence of 3.4 is:

Lemma 3.5. If U is additive in each variable and X is an s.s. R-module, then

2 2
€r= W*U(x’ooo,X) —.1r*+2rU(s X,ooogs x)

is an isomorphism,

To prove 3.1 we shall need the cross-effect exact sequence [11, 16,1],

Lemma 3.6. (Kan-Whitehead). Let V: A& "J*R be a functor with V(0) = 0 and

R

(*) O*M'_‘T’M'E’M"-'O

be a splittable exact'seqﬁence EE*JLR' Then there is an exact sequence

) d 3 o
1+1 ' , A 2 A0 Ve
[-2x- -1 Vi(M ,OOO,M )+V1+1(M’M".°.,M') o 00 - VM'+V2(M,M') VM - VM - 0

which is natural in (¥) and where the restriction of 9, to VM' is V(J).




3,7. Proof of 3,1, The proof is by induction on n, The case n = 0 is trivial,

SC sSuppose n 2 1., We may assume (NX)i = 0 for'i > n, There then exists a dimension-
wise splittable short exact sequence of s.s. R-modules

0= Yt=Y—=X"0
with Y' and Y trivial above n-1, Using 3.6 we obtain exact sequences of s.s,

R-modules:

(1)
...'"'K(R,2r)nTs(Y',...,Y') + K(R,2r)nTs+1(Y,Y',...,Y')'* oo

.+ = K(R,2r)8TY + K(R,2r)aT,(¥,¥') = K(R,2r)sTY = K(R,2r)8IX = 0

(11)
ceo = Ty (K(R,2)BY", ooo K(R,2)BY') 4T, o (K(R,2) WY £i8e2) Y, K(B,205E1) = ..

.eo = T(K(R,2)8Y)+T,(K(R,2)8Y,K(R,2)8Y") = T(K(R,2)sY) =~ T(K(R,2)sX) = 0.

We construct a map F: (I) = (II) as follows. Let e : K(R,2r) = RK(R,2) be an
s.5, R-module map representing €, € ngrRK(R,Q); If s >1 and Y,,...,Y  are s.s.
R-modules, let f_ denote the composition
e _ml
K(R,2r)BT (Y, ,...,¥) —— RK(R,2)BT(Y,,...,Y,) = T (K(R,2)8Y,,...,K(R,2)8Y,)
where the second mep is the obvious generalization of E, The map F: (I) = (II) is
built from such maps fs.

For 3.1 we must show
fyut ﬂi(K(R,2r)mTX)'*'wiT(K(R,Q)mX)

is iso for i > 2r + n(r-1) + 1 and mono for i = 2r + n(r-1) + 1, This is proved by

applying the following facts to F: (I) = (II).
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(1) Ts(',...,') =0 for 8 > r.

(i1) fr,: w*(K(R,Qr)mTr(Y',...,Y')‘*’W,Tr(K(R,Q)mY',...,K(R,Q)EY') is iso

by 3.5, since ‘1‘r is additive,
(iii) For s > 1, 5

fow! ﬂi(K(R,2r)xTS(Y1,...,Ys)) "ﬂiTS(K(R,2)ﬂY1,...,K(R,Q)EYS) is iso for
i>2r + (n-1)(r-1) + 1 and mono for i = 2r + (n-1)(r-1) + 1 where Yi,...,Ys are

S.S., R-modules trivial above n-i1, This follows from the inductive hypothesis.



§4. An Application of the Pensions €.

For special functors, the pensions er frequently satisfy a monomorphism theorern

in addition to the stability theorem (3.1). This will be shown for the following.

(A) The symmetric algebra functor

sp= = SP A—Z -»)‘cz
r=0

[ -]

where SP(M) is the quotient of the tensor algebra B(M) = 2 nr(M) by the two sided
r=0

ideal with generators xmy - y®x for x,yé€M,

(B) The exterior algebra functor

-]
A== /\r:.A:Z “’J4z
r=0
where l\(M) is the quotient of B(M) by the two sided ideal with generators xmx

for x€M.,

(C) The gamma functor

o
r
P=ZF..A’Z-’¢A'Z

r=0
where I'(M) is ghe commutative algebra with divided power operations described in

[9, §18]. We shall use the notation of [2, 2.1].

Remark 4.1, It was shown in [2, §7] that if X is an s.s. free abelian group,

there are natural isomorphisms

a: m, N7(X) = m,  SP"(8X)

Br my IT(X) = m,, , SP(5%K),

-12-
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‘I:he gfoups ﬂ,SPrX are of special interest since they determine [5] the homology of

symmetric products of polyhedra,

Theorem 4,2, Let X be an s.s, free abelian group and r > 1. Then the maps

r r, o2
(1)  e.: mSPTX=m, , SPT(S°X)

r T, o2
(i1) e: 1r*/\x—’7r*+2rl\(s X)
r¥(s%x)

r
(ii1) €.8 Ty "X — Th oy

are monomorphisms onto direct summands provided in (1) that nox = 0 and m,X free

abelian, and in (ii) that T

X free abelian.,

Corollary 4,3. If G(-.A-Z and r > 1, then the maps

(1)  e,: L,SP"(G,n) SP*(G,n+2)

—y
L*+2r

(11) €3 L, AT(G,n) = L, ,_ A'(G,n+2)

r r
(1i1) €.: Ly "' (G,n) I (G,n+2)

Y
L*+2r

‘are monomorphisms onto direct summands provided in (i) that n > 2, in (ii) that

n >1, and in (1iii) that n > 0.

4.4, Proof of 4,2. It suffices to prove 4.2 (ii) since the isomorphisms a

and B of 4,1 are compatible with pensions, i.e,, for mef'p(Z,m;Z)

gow = (-1)(PB) Tgpq, my NTX .,,"*+r+pspr( Py

Bow = weB: m,ITX = 1r,+2r+pSPr( Sm+2X) .

-13-
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Since AT is r-homogeneous [2, 4.6] there is a natural map
h: T"Mm AN = AT(MzN)
adjoint to the composition

r : ¢
M T (L) rHon(N,MaN) = Hom( AN, N'(MzN))

where i: M — Hom(N,MzN) is adjoint to 1: MeN — MmN and where ¢ is the r-homo-

geneous structure [2, 3.1] of AT. The map
E: 2Mz AN = AT(MzN)

equals the composition

h
zMs AN 225 rMe ATN = AT(MmN)

where

r

Ye ZM —~ I''M

is the homomorphism with Y({m]) = v (m). We claim that
~ r
Vui T, ZK(Z,2) = m, [TK(Z,2)

maps € to a generétor of wszrK(Z,z)au Z, This is easily verified from the

commutative diagram

Y r B r
Top2K(2,2) = 7, I"K(Z,2) 2 ™), SPK(Z,4)

A

B
™, 2K(2,0) ~ m, IK(2,0) g 7, SPK(Z,2)

0 2

by using 3.3 and 4,1, Let

r

a: SP'M = I''Mm

be the homomorphism with a(mi...mr) = Yi(mi)...vi(mr). It is easily shown that

r r
ay: T, SP K(Z,2) "ﬂQrP K(Z,2)

is an isomorphism,
-14-



To prove 4.2 (ii) it now suffices to show that the composition
r r.. (aml), r ry, Dy r
Te(SPK(Z,2)8 N X) ‘emet* 7, (I7K(Z,2)m AN X) " 7, A" (K(Z,2)8X)

"is a monomorphism onto a direct summand, where X is an s.s. free abelian group
with ﬂOX free abelian, We may assume X = ZK where K is an s,s, set with base-

point. Consider the double ¢.s, abelian group [7, §2]
B = A'(K(Z,2)8ZK).
We construct two subobjects of B, Let
Bl = (sP'K(Z,2))& Nzk
with the containment Bi(z B induced by the transformation
he(aml): SP'Mm A'N — AT(MaN)

which is monic for M and N free abelian, Let B2<: B be the subobject such that

32 1s generated by the subgroups

psad

r r — .
A (K(Z,2)paZL) C N (K(Z,2)meKq) = Bp,q

where L ranges over the subsets of Kq involving the basepoint and at most r-1

other elements, By [7, §2] it now suffices to prove that the containment

Bi & 32(: B induces a homology isomorphism for the associated total complexes,

For this it suffices to show that the containment of s.s. abelian groups

gt e8° CB induces homotopy isomorphisms for each q, and this is
*,9 #,4 %54

straightforward to prove,
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§5. Derived Functors of Quadratic Functors

Using mod-2 pensions we shall compute derived functors for quadratic functors

on the category of Z,-modules,

2
For r > 1 let

op € H(2,,132,) = Z,

denote the non-zero element. Thus oy = 0. It is not hard to show 1n P(Zz) that

cr.or = er; and the pension 0. has properties very similar to € In particular:

Theorem 5.1. Let T: .Aze —»Jﬂ'ze be of degree < r, and let X be an s,s.
Z_-module trivial above n, If r >1 and n > 0 then

2 =L r2iiagnan

o -
cr, ﬂiTX ﬂi+rTSX

is an isomorphism for i > n(r-1) + 1 and a monomorphism for i = n(r-1) + 1,

The proof is essentially the same as for 3.1.

Now let T:.}*Z —'J¥Z be a guadratic functor, i.e., T is of degree < 2,
2 2

Proposition 5.2. (1) LqT(Zz,n) =0 for g > 2n.

(11i) The suspension

o: LqT(ZQ,n)'*'L T(Ze,n+1)

a+l

is an isomorphism for q < 2n and epimorphism for q = 2n.

(iii) The pension

0pt LyT(Zy,n) < L

5t T(Z,,n+1)

q+2

is an isomorphism for q > n+l and a monomorphism for q = n+i.

-16-



This follows from [7] and 5.1.

We now compute all LqT(Zz,n) from a knowledge of the cross-effect diagonal
and codiagonal maps [7, 5.23]:
A T(Zg) = Tp(25,2p)
\ 2R T2(22,22) - T(Ze)’

Since VoA = (0 we can define:

Gy = T(Z,)
G, = T(2,)/image V¥
G2 = kernel V

G, = kernelV /image(A°o V)

G, = kernel(AoV)

(%]
]

kernel(AeV )/image(AoV )

Combined with 5,2 the following proposition determines all groups LqT(ZQ,n)

and their behavior under o and 02.

Proposition 5.3. There are canonical isomorphisms:

(1) L,T(2,,0) &~
(11) L,T(Z,,1) ~ G
(111) L,T(Z,,1) =~ G
(1v)  L3T(Z,,2) = G

(vi) LN(Z,,3) = G,
-17-



Furthermore:

(a) For i =0, 1, and 2, the suspension

g L21T(Zz,i) -'L21+1T(22,i+1)
is given by the gquotient map Gog ™ Goyyqe
(b) For i =0 and 1, the pension
Oyt LiT(Ze,i) i+2T(Z s141)

is given by the map Gi""Gi+2 induced by

A T(Ze) = kernel ¥ C T2(22’22)'

(c) For i =1 and 2, the pensioﬁ

g,¢ L T(Z i) =~ L

2} Lipa T(22,1+1)

i+3

is given by the map Gi+1‘* Gi+3 induced by the inclusion

kernelV C kernel(4oV),
The proof of 5,3 is a straightforward application of Lemma 5,4,
The pension
O, wiTZ(K(Zz,q),K(Zz,q))-*'ni+2T2(K(Z2,q+1),K(Z2,q+1))

is an isomorphism for all i,q > 0 by the mod-2 analogue of 3,5. Let o denote

the composition
-1
A* (02)
7o (K(Zp,a41)) = m T (K(Z,,a+1),K(Z,,a41)) —— m T(K(Z,,q) ,K(Z,,a))

where A is the diagonal.

Lemma 5.4, (Dold-Puppe) There is a long exact sequence

-18-



g o)
oso "wi_l_i'l'K(Za,q) -»7r1+2TK(22,q+1) -*wiTQ(K(ZQ,q),K(Za,q))

YV % g
- wiTK(Zz,q.) g

where vV is the codiagonal,

For proof see [7, 6.6].
We shall consider examples based on the following functors,
5.5. Let p be any prime,

(A) The mod-p symmetric algebra functor

may be defined as the'restriction of the symmetric algebra functor (§4) to

A, C A,
p

(B) The mod-p truncated symmetric algebra functor

[» -]
sp = = sP A, =A
P r0 P75 Zy

is defined by letting SPp(M) be the quotient of the algebra SP(M) by the ideal

with generators xP for XéM = SP”M°

(C) The mod-p gamma functor

o Pz z
r= P P

is defined by letting I"p(M) = anzl"(M) for Méﬂ'z where ' is the gamma functor

Y
(§4). Thus l"p(M) is a commutative algebra with divided power operations.,

-19-



For MG.}#Z there are natural algebra homomorphisms:
P

SP(M) = SP (M)-w r (M)
determined uniquely by the condition that they restrict to the identity maps on
spi(m) = sel (w) = r‘p(m) = M.

We now compute derived functors for the quadratic functors

spe, sp2 , re . A A,

Proposition 5.6. A Z,-basis for

Z L, T 2(22,n)
n=0

is given by the elements (0)9(0,)%(%) for 1, > 0, where agL I (2,,0) = z, is

o)

the non-zero element. The map

@ 2 g 2
g : 2 L,SP 2(Z2,n) = 3 LT 2(Ze,n)
n=0 n=0

is a monomorphism with image generated by 02(0) under the action of o, o,. The

map
&yoly: 3 L,SP (Z ,n) = s L*PQE(Z sn)
- n=1 n=1

is a monomorphism with image generated by (o 2(a) under the action of o, o

2'

)

This is a simple application of 5,2 and 5.3.

For future reference we observe:

Proposition 5.7. Iif T: J* J*' is gquadratic and X is an s.s, z,

2-module,

then o, = 0: m, X~ TSX fori>2

i

w4
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2 .

Proof, As in 4,4 the map (§2)

E: 22

MzyTN — T( MzN)
factors as a composition

il
7 MaTN — 12

h
5 METN = T(MuN) .

, 2 .
Clearly v, = 0: wiZQK(Za,i) —»@1r 2K(Za,i) for i > 2 since (5.6)

2
wiP 2K(Z2,1) =0 for 1 > 2.
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§6. Derived Functors of p-Homogeneous Functors

Let p be an odd prime. It is not hard to show that a functor T:uﬁ-z —n)@z
Y

is p-homogeneous (2, 3.1] if and only if T is of degree < p and T(nf) =

in(f) for each nezp and map f 1n.)¥z . Thus SPp, SPpp, and Ppp (5.5) are

p
p-homogeneous,

Let

T:gftz ")42

P P

be a p-homogeneous functor. We shall show that the groups L,T(Zp,n) are determined

for all n when they are known for n < 2,

Proposition 6.1, (1) LqT(Zp,n) = 0 for q > pn.

(ii) The suspension

a: LqT(Zp,n)'*'L T(Zp,n+1)

Q+l

is an ‘isomorphism for q < pn and an epimofphism for q = pn,

(ii1) The pension

e, LyT(Z,,n) =L

T(Z,_,n+2
o pT(Z,s1+2)

q+2

is an isomorphism for q > n+l and a monomorphigm for @ = n+l,

Proof. Part (i) follows by [7, 4.23], Part (1i) follows by the mod-p
version of [2, 5.9]. For (iii) observe that
qur(K(Zp,n),...,K(Zp,n)) =0

for r > 2 and q # pn, since Tr(X,...,X) is equal to a sum of direct summands of

Tp(x, ] oo,x) .
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\
Furthermore for r >» 2

€or T (K(Z ,0), 0. K(Z,,n) =

P pnr ' p(n+2)Tr(K(zp,n+2),o--,,K(Zp,n+2))

is an isomorphism, Thus (%ii) follows by a simple modification of 3.7.

Now let I denote the image of the codliagonal
i T L) z - Z
v P(Zp’ s p) T( p)
and let K denote the kernel of the diagonal
D: (Z ) T (Z y00.,2
. ( P) P( p’ ?

p)'

Proposition 6.2. There are natural exact sequences

o
(1) 0= TI-LyT(Z,0) = L,T(2,,1) =0
€

(11) 0= K= LyT(Z,0) -1, oT(2,,2)

(111) 0~ I/ITA K~ Ly (2 2) LppygT(Zp3) ™0
€

(1v) 0= 1L,1(2,1) o’ (2,,3) = In K= 0.

2 +2

Proof, Part (i) follows by [7, 6.11] since I equals the image of

Tg(Zp,Zp)-* T(Zp). For part (ii) consider the commutative diagram

Aty
mopTK(Z,2) = My T(K(Z,,2),00 ,K(Z,,2))

]

,[ep . Ie“p
Ax

™o TK(2,,0) = Ty T (K(Z,0),..,K(Z,0))

where A' is the diagonal A, and e'p is the pension €5 Using (7, 6.7] one shows
A', is a monomorphism. Since e'p is an isomorphism, part (ii) follows. For

parts (iii) and (iv) consider the commutative diagram
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V .

wepTQ(K(Zp,2),K(Zp,2)) ""2pTK(Zp’2)
Teip WGP
V
T 'I"a(K(:Zp,O) ,K(Zp,O)) Ly TK(ZP’O)
where y' is the codiagonal v, and e'p is the pension ep. Then
I/Tn K s<Image9',

INnK (Kernel V',)/e'p(Kernel V)

since e'p is an isomorphism, since (Kernel ep) = K, and since (Image V ,) = I.

Now (ii) and (1iii) follow using [7, 6.7) and a modification of 3.7.

Remark 6.3. The groups L*T(Zp,n) for n < 2 are usually easy to compute

ad hoc, and for n > 3 they are determined by 6.1 and 6.2,

Before giving examples, we introduce additional mod-p pensions. Recall
that the cohomology ring H*(Zp,l;zp) is the tensor product of the exterior
algebra generated by LleHi(Zp,i;Zp) with the polynomial algebra generated by

BtieHZ(Zp,i;Zp), where B is the Bockstein operator,

Notation 6.4. For r > 1 let o ¢ff, 1(Z55152) be dual to (1) (B11)* 1, ana

~ r
let ?reizr(zp,i;zp) be dual to (Bti) .

In describing L*T(Zp,n) we shall use the pensions o, ep, and ¢,.

Lemma 6.5. In P(Zp) the elements o, ep, and ¢1 commute with each other,

and ¢,¢¢, = 0.

-24-



* Proof. Use the commutativity formula in 2,1, In particular

80 ¢1’ ¢1 = 0.

The pension

¢, L,T(zp,n) ~ L, oT(Z,,n+)

10
may be computed in special examples with the aid of the Bockstein operator which

we now describe.

Suppose that:

(1) U: J*z -'JQZ is a p-homogeneous functor [2] with U(M) free abelian

for M free abelian,

(11) g T(meM)-* meU(M) is a natural map for MGJ*Z, which is an iso-
morphism for M free abelian.

Then the coefficient sequence

O—v - 7 -+ 7 —00
T2 %

induces a Bockstein operator
B ﬂq(meUK(Z,n)) -’ﬂqri(anUK(Z,n))
which is equivalent under j to an operator
B: LqT(Zp,n)-* Lq_iT(Zp,n).

For convenience we use the operator

_Bg.LqT(Zp,n)'*'Lq_iT(Zp,n)

defined by B(u) = (éi)qB(u).
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Lemma 6.6, gg‘uéLqT(Zp,n), then
(1) Bo(u) = cE(u)
(11)  Be(w) = € Blu)

(111) Be,(u) + ¢,B(u) = o(u).

Proof. Parts (i) and (ii) are straightforward. For (ii1) let I'': A —~A

as in §4. For any r > 1 and MEJQZ the homomorphism
t: 2 MM = 2 al"(Z &M
P p= (Zp8M)
induced by M'*'meM is an isomorphism. Let k denote the composition
-1
Z (2 _mM) = Z ®Z(Z _mM) . &Y (Z_mM) 2z &y
pt'p Y T Tp VP P P P
where ¥ is as in 4,4,
For M,N¢sk, there is a commutative diagram
Z_(Z_mM)T(Z_aN) — T(Z EMzN
"o M) E ( o™N) ( D \»)
lkni ld
( prI‘pM) B(Z 8U(N) }-2 8U( MaN)
where the bottom map is induced by the map
h: TPMeUN = U(MzN)

defined as in 4.4 from the p-homogeneous structure of U, A straightforward com-

putation shows that
kyt myZ K(Z,1) = vr*(anf‘pK(Z,i))
gives BK,(¢1) = k,(0). A simple argument taking M = K(Z2,1) and N = K(Z,n) in

the above diagram then proves part (iii).
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As an application we now compute derived functors of the p-homogeneous

functors (5.5)

P P P,
spP, sP, T Q.A—Zp "’A’Zp

and describe their behavior under the maps (5.5)

f «pP &P
spP & sp? &P
P P 0

Proposition 6,7. A Zp-basis for

I ™M8

L, P (2
10 * p( p,n)
is given by the elements (¢1)&(c)3(ep)i(v) for i >0, J >0, and 0 < k < 1, where

L. I'? (2 ,0) =P (2
veLETT (2,,0) o(Zp)

is the element corresponding to Vp(l)GFpp(Zp). The map

¢+ 2 LS -2 - > LI Z ,n
g* n=o * P p( p' n) n=0 * p( p’ )

is a monomorphism with image generated by ¢1(v) and ep(v) under the action of

1) ep, and o. The map

1’

gyofy: = L,SP (Zp,n)-» g LT p(Zp,n)
n=1 n=1

1s a monomorphism with image generated by ep(v) under the action of ¢,, €5 and o,

Proof. For Mea4z there are natural exact sequences
P

0—M— sPP(M) & SPP (M) — 0

0 — SPpp(M) g I"pp(M) - M- 0,

By [7] L*SPp(Zp,:L) =0, L pspp(zp,e) ~Z, and Lispp(zp,z) =0 for 1 # 2p. The

2
above exact sequences then imply
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Z for i=1,2
L, (2 ,1) = P
N 0 otherwise

Z for i=2, 3, 2p
L,r® (z ,2) =
PP 0 otherwise,

By 6.2 (1) the element G(v)eLinp(Zp,i) is a generator, Since Fpp(zpmM)zs

anFp(M) for MeJt,, 6.6 applies to show B¢1(v) = o(v). Hence ¢1(v)6L1Fpp(Zp,1)
is a generator. For the functor Fpp, I =0and K =0 in 6,2, so the first part
of 6,7 follows from 6,2 and 6.1, The remainder of 6.7 then follows easily from

the above exact sequences,

For future reference we observe:

Proposition 6.8. If T:‘)%Z “’J42 is p-homogeneous and X is an s.s.
‘ o o :

Zp-mgdu{g, then

]

(1) € =0:mTX—m, . TS°X for 1 <1< p and i >p,

*+21

(i1) e, = 0: n*TX-»w*+2i_1TSX for 1 > 1,
(1i1) ¢i = 0: myIX 7, TSX for 1 > 1,

The proof is the same as 5.7, using 6.7 in place of 5,6.
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§7. Composition Products and Their Pensions

In order to compute 7,SPX where X is an s,s, Zp-module, we introduce com-
position products and describe their behavior under pensions.

Let R be a commutative ring with identity and
T,T':J&Ii"JQR
be functors with T(0) = T'(0) = 0. If X is an s.s. R-module we shall define a map

c: LiT(R,,j)x "JT'X"" TeT'X

i

where ToT' is the composed functor, For u ¢ LiT(R,J) and v e'nJT'X let

c(u,v) = T(V)4(u)
where

v: K(R,J) = T'X
represents v. We denote c(u,v) by
WV € wiToT'X

and call it the composition product of u and v,

Lemma 7.1, Let t,u ¢ LiT(R,J), v,W € WJT'X, and x €& Li_iT(R,j-l). Then
(1) (t+u)ov = tev + wov
(i1) (ox)o(v+w) = (ox)ov + (OxX)ow

(iii) o(uov) = (cu)e(ov),.

The proof is straightforward.
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Thus composition products are compatible with suspensions. For the pen-

sions € (§3), o, (§5), and & (6,4), the results are more complicated,

Theorem 7.2, 1If x € L, ,T(R,Jj-1) and v ¢é WJT'X, then for s > 1

S
€_((ox)ev) = = 2 (e +..€_(0x))o(€_v)
s r=1 m1+, . .+mr=s ml mr r

where the second sum ranges over all (mi,...,mr) with Myyoee,m, 2 1 and

m,+.,,.+tm _=s,
r

1

Theorem 7.3. If R =2,, x ¢ Li_iT(ZQ,J-i), and v € ﬂJT'X, then for s > 1

os((ox)ov) = X (om L (Ox))o(drv).

e 00 1 r
r=1 m1+ +mr=s

W Mo

Theorem 7.4, If R = Zp’ p an odd prime, x .€ Li_iT(Zp,J-i) and

v € ﬂjT'x, then for s > 1

. s
o,((ox)ov) = (-1 = 3 (€ ++e€p (9%))o(_V)
r=1 m,+,,.+m =8 1 T
1 r
s-1
+ 2 = (3€p ++ €y (9X))0(O0, 4V)-
r=0 m+m, +. . . +m =8 1 r

Before proving these formulae, we show how they simplify when v is a

suspension.

Lemma 7.5. (1) In P(R), o«€ =0 unless r is a prime power, and

peCe € 3 = 0 for p prime and j > 1,

P
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(11) In P(Z,), 0+0, = 0 unless r = 2 with J 2 0.

(iii) In P(Zp) with p an odd prime, 0.9} =0 forr >0,

0°¢r = 0 unless r = pJ with j > 0, and ¢ro¢r = 0 for r positive and odd.

The proof uses standard facts concerning the homology of Eilenberg-

MacLane spaces,

In 7.2, 7.3, and 7.4 assume X

1

SY and v = oy for y G‘NJ 1T'Y. Then these

theorems respectively imply:

Corollary 7.6. For p prime and 8 > 0

—

Mm

r
e s((ox)o(0y)) = = ((€,8-7)° (9x))o (€ r(0y)).

r=0

]

Corollary 7,7. For s >0

s r
628((0x)o(0y)) = 20 ((ozs-r)2 (ox))o(oer(oy)).
r=

Corollary 7.8. For s > 0

i-3 B p¥ 2
¢ps((cx)o(oy)) = (-1) 3 ((eps-r) (ox))o(¢pr(cy)) + (¢ps(ox))o(o y).
r=0

Remark 7.9. These results stabilize to formulae involving the diagonal in

the dual to the Steenrod algebraea fact which will be exploited in Part II.

We devote the rest of §7 to proving 7,2, 7,3, and 7.4,

Let
T,T':c}¥R-*uﬂ*R
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as above and let X be an s.s, R-module, The composition of
RoRK(R, q)nToT'X"E‘:“ T(RK(R,q)mT'X) "E ToT!(K(R,q)8X) ——'-(i) o (%)
(where ¥ and E are as in §2) induces in homotopy a map
G: m,ReRK(R,q)Em,ToT'X = m,To T (SX).

For M ¢ U#R let

d: R(M) — (ReR)(M)
be the homomorphism such that

d(4(m)) = 1[4[m]]

for m € M., Thus

m4RK(R,q) = m4RoRK(R,q),

Lemma 7,10, Let y € m,RK(R,p), z € WpRK(R,Q), u € m TK(R,J) and

vV € wJT'X. Then

(1) a(uov) = (-1)(P~V¥g((q z)n(vev)) in 7 Terr(s%K).

p+k

(11)  6((yoz)m(uov)) = ((-1) 2 PVoy(w))o((-2) (P~ z(v)) n my  om(sTK).,

(1ii) If & ¢ m,ReRK(R,q) lies in the image of the qodiagonal

Vet ”*RQ(RK(R:Q):RK(R:Q)) — n,R(RK(R,q))

and w € ﬂk_lTK(R,J-l), then

G(6 m ((ow)ev)) =0

Proof. Part (1) follows since the map

E: RMeTeT'N = TeT'(MzN)



equals the composition

dm1 E T(E
RMSToT'N = RoRMsTeT'N — T(RMmT'N) (), ToT'(MsN),

Part (ii) follows from the commutative diagram

RK(R,p)nTK(R,J)-Eg?lgzgzl'RoRK(R,q)nToT'X

! |
T(Z&V)

B
T(K(R,p)8K(R, j) —— T(RK(R,q)sT'X)

where z: K(R,p) — RK(R,q) represents z and v: K(R,Jj) — T'X represents v.
To prove (iii) consider the commutative diagram

v Rl E
R,(M, M) BTN —+ RMsTN — T(MzN)

linéx ];
E2

R(M+M) BT (N, N) —= T,(MaN, MsN)

where 1: Rg(M,M)(: R(M+M) 1is the cross-effect inclusion, and E, is the obvious

generalization of E, Since
Ay 7 ,TK(R, J) "ﬂ*Te(K(R,J),K(R,J))

gives A,(ow) = 0, a simple argument using the above diagram with M = RK(R,Qq)

and N = K(R,J) proves part (iii).
Clearly 7.2 follows from 7.10 using

Lemma 7,11, The map

dy: m,RK(R,2) = m,RoRK(R,2)

-33-



gives

S
du(e ) =6+ =2 = (e ...€ )oe

for s > 1, where & lies in the image of

V4i TyR,(RK(R,2),RK(R,2) = m,R(RK(R,2)),

Proof. It suffices to suppose R = 2, For r > 1 let

1.: K(Z,2r) = ZK(Z,2)

J. ZK(Z2,2) — K(Z,2r)
be s.s. homomorphisms such that ir represents €. and Jroir = 1, Then d,(es)

equals the image of € uynder

d«» bx
m,ZK(2,2) = m,2ZK(Z,2) - m,ZZK(Z,2)
where
s
h = Z( bR ifDJr).
r=1
Hence

)

where 6 is in the image of the codiagonal v,, and where u, is the image of €

under
d* Z(irOJr)*

m42K(Z2,2) — m,Z2ZK(Z2,2) —— m,22K(Z,2).

Hence u ¢ wgs(ZoZ)K(z,z) is a composition product w, = v o€ where v 1s the

image of eS under
d«» 2( Jr)*
W*ZK(Z,Z)*"ﬂ}ZZK(Z,Z) = 1 .2K(Z,2r).
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Thus V. is the image of € under
Z(kr)*: m.2K(Z,2) = 7,2ZK(Z,2r)

where

k_: K(2,2) = K(Z,2r)

is given by k (¥) = j (1ly]) for y € K(Z,2), But k_ is homotopic as a map of
8.8, sets to

A W o r 14
K(Z,2) = K(2,2)A...AK(Z,2) = B'K(Z,2) = K(Z,2r)

where A is the diagonal to the r-fold smash product, where w(yiﬁ...ayr) =
Yy BeeoBY , and where ¥ is as in §2. Hence v. € szZK(Z,Qr) is the image of €_

under

A Z(w Z(y
7 ,ZK( 3, 2) 20 n B 2K(2,2) 2wy n,28 K(Z,2) 2y m,ZK(Z,2r) .

It follows that

v, = 2 €  ,,.€

r m

’ m
DO = 1
m1+ +mr S r

in P(Z). Since
s
d*(es) =0 + 2 v o€,
r=1

the lemma follows,

Clearly 7.3 follows from 7.10 using

Lemma 7,12, The map

dy: TyZ K(Z,,1) = m42,0Z2,K(Z,,1)
gives

8

m )°°r
r=1 m1+,..+mr=s 1 r
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1

for s > 1, where 6 lies in the image of the codiagonal V..

The proof is similar to 7.11.

Clearly 7.4 follows from 7.10 using

Lemma 7.13, The ma.p

dyi TyZK(Z,1) = W2 2 K(Z,,1)

gives
S
r=1 m1+. . +mr=s
s-1
+ = s (¢m-em

r=0 m+m +...+mr=s

1

for s > 1, where 6 lies in the image of the codiagonal V,.

The proof is similar to 7.11,
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§8. The mod-p Homology of Symmetric Products

As an application of pensions we compute functorially the mod-p homology of

symmetric products of polyhedra,

8.1. Symmetric smash products and symmetric products, If K is an s.s. set

with basepoint, the r-fold symmetric shgsh product of K, SPi K, is formed from

the r-fold smash product of K, Ka...AK, by identifying y,A...aY¥. with
LN Oo
yT(i)A...uy+(r) for each permutation 7 on r elements where Yqo 3V € Kn, n >
Clearly
2 r r
Hy(SP, K;Zp) 2z m,SP (ZpK)
where

sp¥; 'A'Z ".A'z

P p

is as in 5.5, It is well known (see [5]) that

~ r L e i

Hy(SP" _K;Z ) & = H*(SPA K;Z )
X P i=1 P

' wnit

where SPer is r-fold symmetric product of K. We shall compute ﬂ*SPrX func-
torially in terms of w, X, where X is an 8.8, Zp-module. This will therefore

).

determine the groups ﬁ;(SPer;Zp) in terms of'ﬁ;(K;Zp

8.2. Semi-simplicial commutative Zp-algebras. Let C:p denote the category

of s.s. objects over the category of assoclative commutative Zp-algebras
(without 1), For example, if X is an s,8, Zp-module, then

s sPPxeC

F
r=1 P



I B & (ip then B is an associative, anticommutative, graded Zpaglggggg

(without 1), Furthermore if u € ﬂnB, n > 0, then u2 = 0 when n odd, and WP =0

when n even, The multiplication in w,B is induced by the composition

B B = BEB) % B
™y Bam ﬂi+J( BB) Tirg
where € is the Eilenberg-Zilber map and

m: BB — B

is the multiplication map of B.

We now suppose p = 2 and will defer the case p odd to 8.8.

8.3. Homotopy operators on C:2° Each element

r
y € L;SP (Z,,n)
determines by composition a natural homotopy operator
y: 'nnB wiB, B € Cz,

and all primary homotopy operators on C12 arise in this way.
For 2 < t < n let

%y ! 7TnB_’”"n+tB’ B € (:2

be the operator given by the non-zero element (see 5.6)

2
@ € L SP(Z,,n) w Z,.

Theorem 8.4, Let B € sz.
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'(i) If u,v € WnB, then

() %ﬁt(u) +a.,(v) for 2t <n
a (utv) =

a(u) +a(v) +uwvfor2<t=n,

s

(ii) If u € ﬂiB, v € ﬂJB, and 2 < t < 14§, then

0 for i, > O
a (u'v) =
t ue-at(v) for 1 = 0.

(iil) If u € mB, 2 +m+nk, and m,n > 0, then

n
0="2 " (3) %, omsi(®oumers (W)
1+J=n
0=2 (y) o (a,.  (w).
i+j=n = 3+2m+it 2+m+J

This will be proved in 8.13.

If u € ﬂnB and I = (i i k >0, let

1,"', k))

u for k =0
Q(U)=
I o, (...(e,.(u))...) for k >0
1 Kk

when the right hand side is defined.

Call T admissible if k = 0 or if k > 0, ik > 2, and is_1 > 21S when
2 < s <k,
For I admissible let
0 for k=0
excess(I) = 1, for k =1

i,-1y-...-1 for k > 2,
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A

Remark 8.5, By 8.4, for u e‘nnB any well defined aI(u) may be expressed as

a sum of products of terms aJ(u) where J is admissible with excess (J) < n.

If X is any s.s. Z,-module consider

o
o0
> SP'X ¢ C2
r=1

and identify m,X with w*SP1X.

Theorem 8,6, .Let ta}ae% be a Z,-basis for m,X with a ¢ ﬂd(a)x. Then

2

00

b w*SPrX is the associative, commutative, graded Z,-algebra (without 1) with
r=1 ‘ ‘

generators

[aI(a)IaeA, I admissible, excess(I) < d(a)]}

and with relations (9 (a))” = 0 when d(a) > 1.
A - -

This will be proved in 8,14,

Remark 8,7. In 8.6

k

aI(a) é wi+d(a)SP2’(X)

where I = (i,,...,1,) and 1 = i,+...+i . Thus 8.6 determines the individual

groups quprx. This determination is functorial in w,X in view of 8.4,

We now turn to the case of p an odd prime,

8.8. Homotbpy operators on C:p' For B ¢ (ip we define homotopy -operators

v,: ™ B

——
£' ™ "n+2t(p-1)B for 2 <2t < n

nt: T B
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corresponding to the generators

=2+ 1 B P
o €o = v, € Ln+2t(p-1)SP (Zp,n),, Zp

Ey n-2t-1 + P
¢ T 6(’ =", € Ln+1+2t(p-1)SP (zp,n) ~ 2,

given by the basis for L*SPP(Zp,n) described in 6,7.

Theorem 8,9.

Let B € Cp

o
(a)
(v)
(c)

CEOERR
(a)
(b)

(vag) . TEw

()

v € ﬂnB then:

1]

N, (u+v)

&

|

Vt(u+v)

Vt(u+v) =

é-niB and

nt(u'v) =

v

1l

L(urv)

ng(w) + n.(v) for 3 < 2t+1 < n, Z
B [ it

ve(u) + v (v) for 2 < 2t < n, ////
-1 T e

ve(u) + vt(v) + Z vi(u)-vt_i(vzjfor o

i=1

vV & ﬂJB then:

%0_{‘_0_53521:+1_<_1+J_a_ngi,.j>0

wPen (v) for 3 ¢ 2t+1 < i+J and i = 0,

—_— — —_—

Eo for 2 < 2t < i+j and i,J > 0

uPev (v) for 2 ¢ 2t ¢ i+J and i = 0,

< wKB then:

For m,n >

0= 2
i+Jj=n

For m,n >

0 = 3
i+j=n

0, 1 <r<p, and k > 2+2m+2n
n

(i) vr+pm+i(v1+m+3(u))'

0 and k > 4+2m+2n

(?) vp+pm+i(v2+m+,j(u))'

=1

n

(-t
\/

‘f (FL)

n,



(¢) Form,n >0, 1 <rp, and k > 3+2m+2n

0= 3

n
i4j=n (1) vr+pm+i(n1+m+3(“))'

(d) Form,n >0, 1 < r<p, and k > 2+2m+2n

0 = X

n
i+J=n (i) nr+9m+1(vl+m+J(u))'

(e) For m,n > 0 and k > 5+2m+2n

(2) np+pm+i(v2+m+,j(u))

0= 2
i+J=n

+

n
i+J=n (1) vP+Pm+i(n2+m+J(u))a

(£) _F_‘_qg_m,n} 0, 1 <r<op, gr_lgk@3+2m+2n

-— v —

n

0= (]

i+j=n ) nr+pm*1(n1+m+3(u))'

For k >0 let I = (6 6ps Bpsaeesdy, Sk) be a 2k-£riple of integers

1+ 845 Ops
> 1 and 61 = 0,1, For u € ﬂnB let

u for k=20
QI(L\) =

oy e (eaa(® , o (u)).,.) for k >0
84" 84 b Sk

with each si

when the right side is defined, where ao,s = Vg and ai,s = Mg

Call I admissible if K =0 or if k > 0 and 8 + 6, when 2 < 1 < Kk,

1.1 2 P8y T 04

For I admissible let
f0 for k = 0

excess(I) = $28 +6, for k =1

1
k
281+61 - 1i2 (Esi(p-1)+éi) for k > 2,
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Remark 8,10, By 8,9 if u ¢ m B, any well defined aI(u) may be expressed

as & sum of products of terms aj(u) where J 1s admissible with excess (J) < n,

If X is any 8,sS, Zp-module, consider

o0
5 sPPx e C
r=1 . P

and identify muX with W*SPix.

Theorem 8,11, Let [a}aGA be a Zp-basis for m,X with a € Wd(a)x' Then

o0

S mu«SP'X is the associative, anticommutative, graded z,-algebra (without 1)
r=1 ‘

with generators

(a (2)|a€r, I admissible, and excess(I) < d(a))

and with relations (aI(a))2 = 0 when degree aI(a) is odd and (aI(a))p = 0 when

degree aI(a) is positive even,

This will be proved in 8,14 and 8,17,

Remark 8,12, 1In 8,11

k
e (a) € "s+d(a)spp (X)

where I = (61,51,...,6 and

k8K
k
8 = 121 (61 + 231(9-1)).

Thus 8.11 determines the individual groups quPr(X), and this determination is

functorial in w,X in view of 8,9,
We devote the rest of §8 to proofs,
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A

8,13, Proof of 8,4, Part (1) is proved by a straightforward argument with

the universal example

"
B= % SPr(K(Za,n) + K(Z4,n)).
r=i

For part (1i) the universal example is
o r
B= % 8P (K(Za,i) + K(Za,J))
r=1 ‘
and the case 1 =0, J > 0 follows easily, Now suppose i,J > 0, For M,N 6«)42

2
consider the homomorphism

h; SPZ(MaN) = SPMmSPON -
with h((m,em,)+(m zn,)) = (miome)m(nlene). Form the induced map
he: meSPP(K(Z,,1)8K(Z,,d)) = Ta( SPPK(Z,, 1) BSPK(Z,, J)).
We claim hy, = 0. For a fun;tor in two variables pensions may be applied indivi-

dually to the left and right variables, 8ince hy, =0 for i = J = 1, we simply

apply o and o0, to individual variables to prove inductively that hy, = 0 using

2
5.6, Now part (11) follows from the universal example since the composition of

m

74 SPP(K(2,,1) BK(Z,, ) ) % o(5P2K( 01 1) BSPOK(2,,8)) — T4SP (K(Zp, 1) +K(2p, 3))

is.zefo.
For part (1ii) consider the generators (see 5,6)

b ¢ L,SP%(2,,2) % 2,
0o(b) € LgBPY(2,,4) » 2,

2
00,(b) € L,SP™(Z,,4) = Z,.



The natural composition map q: SPao SP2 - SP“ induces composition products (§7)

au((00 (b))ob) € LSP(Z,,2)

L" Ly
a4((99,4(b)Job) € L, SP(2,,2)
which are zero since by (7, 12.22] LqSPu(ZQ,Q) =~ 0 for q # 8, For

2

x € L, ,SP°(2,,J-1) and v € L SP°(Z,,n), 5.7 and 7.3 imply

J

o((ax)ev) = (9(0x))e(av)

a((0x)ev) = (05(0x)e(av) + (go(ox))o(o,v)

0)((ox)ev) = (0,0,(0%))e(a,V),

The relations qu((co(b))eb) = 0 and q,((ooa(b))ob) = 0 thus generate new relations

for composition products, and these imply 8,4 (iii).

8,14, Proof of 8,6, For M g .A—Z and r > 1, let
5 ‘

t: SP'M — 8'M
be the homomorphism
t(miv ¢ Omr) = f m.r( 1)E' (] 0m.r( r)

where T ranges over the permutations on r elements,
For r,s > 1 let

d: SPT®M — sPT(sP®M)
e: SP**8M = sp™MasPM

be the unique natural homomorphisms such that the diagrams

45



d

sPTM = sP¥ (SR M)
t tot

BYoM -~ mF(5°)

e
spT ey = sP MrSPeM

A

EN'SM - mrMEESM

commute, where the lower maps "insert parentheses',

If J > 2 the map Qed

1 g

J J
S sp?(sp® M) 2 opu

sp® M — SP?(SR

is an isomorphism where q is the natural composition map,

If r # 2d for any J, the map moe

k K o
MaSP* "2 M = SPTM

e
SPtMr* SP2
is an isomorphism where k is the largest integer such that 2K divides r, and m
is the multiplication map in the symmetric algebra,
If X is an s,s8,. Z2—module

J-1 J
Qy: THSP2(SP®  X) = m,SP° X

k k
my: m,(8P% XsSP*"2 X) = m,8P7X

are thus epimorphisms, This easily implies that

e r
I mWLSPX
r=4

is generated by muX = W*SPix under the action of the operators &, ,t > 2, and of

the algebra multiplication and addition,



It then follows by 8,4 and 8,5 that the desired Zeabasis for £ m,SP'X
r=1
at least generates, Now 8.6 follows for X = K(Z,,n) by a counting argument

using the fact [7, 4.16] that

o
r .
rii ™ SP K(Z,n) w2 ?rq(z,n,ze)

for n > 1, For general X, 8,6 follows since X is homotopy equivalent to a sum

of complexes K(Za,n), n >0, and

00 r 00 T 00 r
(= SPM)8,...8 % SPM)m~ = SP(Me.,.eM)
=1 1 (rai K r=i 1 K

fOI‘ Mj_, LI ,MK 6 ‘Azg'

8.15, Proof of 8,9. Parts (i) and (ii) follow as in 8,14, For part (iii)

let q: I‘ppe rpp __"szp be the natural composition map, We claim that
(1) ax((5®v)e (e v)) = 0.
() au((%v))e(#,¥)) = 0.
(3) q*((oap"grep"v)o(epv)) =0 for L < r < p,
(4) q*((c,z’p-er-iqsie; vjele V)= 0 for 1 < r < p

using the notation of 6.7, To prove (1) and (2) consider the commutative diagram

2
SP® M dgpP

P Y
ls J's
v, 2
rPy Brf u
p p

for M e,j+z s Where the monomorphism g 18 as in 5.5, vp is the pth divided power
p
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operator, and j 1s the restriction of the function Wp. Clearly for

y € ﬂtrppK(Zp,n), q*((ctv)oy) is the image of y under

2
3 p L d p
vp*. wt%,qK(Zp,n) thP K(Zp,n).

Thus (1) and (2) follow from the diagram using 6,7, since the method of 8.14

shows
p2
Top T K(Zpe?) =0
p2
ﬂe SPP yK(Zp’i) = {,

2

The analogues (see (6,7) of (3) and (4) for the composition map q: sp% spP — spP

are easily proved as in 8,13, and these analogues imply (3) and (4) using the

map (5.5) gofﬁ spT - Ppr, The relations (1)-(4) imply new relatiodns using 6.8,

2
7.2, and 7.4, Using 8,16 one then deduces relations for q: SPQ,SPP'* spP

which imply 8,9 (1ii).

Lemma 8,16, The map

Tuou: "*SPrK(Zp:n) ~'w*Fer(zp,n)

is a monomorphism for r,n > 1,

Proof, For SPr,Fr;~}QZ 'hJQZ consider the mép (4.4) a: sp¥ = r¥, The

composition

&%

r r B T
"T*SP K(Z’n) - ."-*1" K(Z3n) -'ﬂ*,i, rSP K(Z’n+2)

e
equals the pension €. where B is the isomorphism of 4,1, Thus (4,2) a, is a

monomorphism onto a direct summand, which implies 8,16,

8,17, The proof of 8,11 is a mod-p version of 8,14,
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Part II, Stable Derived Functors

§9. Stable Pensions for Stable Derived Functors

9,1, Stable derived functors,

Let T:;f@R'“wqu be a covariant functor with T(0) = 0, where R is a commuta-

tive ring with identity. For n > 0, T has gtable derived functors

s >
1® 1 AR J4—R

which are additive functors defined [6, 6.7] as the limit

S
L 1(G) = Ln L, +qF(Gs)

taken with respect to the suspension map

o: L G,q) L

neqraT(G0+1) .

ntq

The following are basic properties (see [6]) of stable derived functors.

(1) If0—T'—T—T"—0 is an exact sequence of functors g%k'*uA}V

there is a natural homomorphism (see 9,2)

Y, 15 mit e 78 '
o, L T"=L° T, n>1
such that - -
d 3 .
”.*Lmﬂ" *LHT*LnT*Lﬂ"*.“*LOT*L&”*O
is exact,
(2) If0—*G'—G—G" =0 is exact in JLR, there is & natural homo-

morphism (see 9,2)

X . 8 Ny wep T8

o L7 T(G") = L° T(G')
such that
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3 S

s n+l g S s ,
oo =L G = L7 (G~ L T(G) ~ LT TG ...
vor = L5 T(C) = LSOT(G") ~ 0
is exact.
(3) Under the hypotheses of (1) and (2) the diagram
S nean antl» 5 mi(an
L’ ,4T"(6") L’ T'(G")
On+1 lan
on
t®  T(a') = L% . T'(G')
n n-1
anticommutes,
(4) If T: J¢R'“Nf¥R is additive, then LSnT equals the classical [4] nth

left derived functor of T,

(5) 1f U(-,): S x oA b with U(X,Y) = 0 when either X = 0 or

Y = 0 and (X) = U(X,X), then L° T = 0 for n > 0.

9.2. The boundary operator in 9.1 (1) arises as follows. If K(G,q) is an

s.s. projective resolution (7, 4.1] of type (G,q), then the homotopy exact
sequence for

0o~ TfK(G,q)'* TK(G,q) = T"K(G,q) —* 0
has a boundary operator

Ot MhagT'K(G,Q) = m T'K(G,q).

n n-1+q

We replace an by
9, = (-1)% 3
which commutes with the suspension map, This operator an stabilizes to give the

boundary operator in (1).
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For 9.1 (2) let
i
0 — K(G',q) = K(G,q) > K(6",a) = 0

be a short exact sequence of s.s, projective resolutions representing
0—=G'—~GaG—G"—0.

The short exact sequence

T(J) ’
0 = (Kernel T(J)) —* TK(G,q) = TK(G",q) = 0

gives a boundary map

a, " -
n' n_"qTK(G ,Q) =

The map T(1i) induces an isomorphism

n- 1+q(Kernel T(J)).

T(1) e wn_1+qTK(G',q) *’ﬂn_1+q(Kernel T(J))
for n < q, as shown by the cross-effect exact sequence (3,6) and the connectivity

property of cross-effects [7, 6,10). Thus for n < q

0 ¢ m . T(G",q) =

!
n' n+q T(G',q),

n-1+q
and the operator

P a
an = (-1) an

then stabilizes to the boundary operator in (2).

9.3. Stable pensions. The stable pension algebra P°(R) is the graded

R-algebra with

P%(R),, = Lin H +4h a;R)

taken with respect to the suspension map and with multiplication in PS(R) induced
by that in P(R). The algebra P°(R) is anticommutative by 2.1, i.e,, if

a € P°(R), and B € P°(R)_, then
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‘ ' ap = (-1)™ B-.a.

The action of pensions on derived functors (2.2) stabilizes, so that for each

element ™ € PS(R)m there is a stable pension

R
as L nT L m+nT.

For G € J4R the stable pensions give

s 5
2 L nT(G)
n=0

the structure of a graded module over PS(R).

The stable pensions commute with boundary maps. Thus for a ¢ PS(R)m the

diagram 3

LS T" .wﬂ*’ri L T|

n

la J o
s am+

m

L
Om+n

T(G") ~—— L° T(G')

m+n m+n-1

commutes under the hypotheses of 9.1 (2).

9.4. Stable operators. We shall give an alternative description of PS(R)

as an algebra of operators. Let op(R)m be the set consisting of the (possibly

non-additive) operators

¢: 1° T(R) = L°  _T(R)

n-+m
defined for each n > 0 and each T:¢f¥R'*-)4h with T(0) = 0, such that ¢ is

natural in T and the diagram 52



commutes for each exact sequence

0= T' = T—T"—0,

Then addition and scalar multiplication of operators make op(R)m into an

R-module. If

op(R) = 2 op(R),
m

there is a homomorphism

P°(R) = op(R)

sending elements of PS(R) to the associated pensions. This map carries a product

in PS(R) to a composition in op(R).

Theorem 9.5. The map P°(R) = op(R) is an isomorphism,

Proof. For T:°ALR.%‘)£R there is an exact sequence of functors

v
o~0T-T2d~*T~Tad—*o

where Ted(x) = TZ(X,X), V is the cross-effect codiagonal, OT = Kernel V¥ , and

ad ad

7% = Cokernel ¥ . The functor T is additive so L°, T*%(R) = 0 for 1 > 0 by

9.1 (4); and LsiTzd(R) =0 for 1 > 0 by 9.1 (5). Thus for each j there is a map

T(R)

s - 1S
e: L% O(R) =15,

such that e commutes with operators in op(R) and is an isomorphism for j > 0.

Let Q¥T = T and O = OUDn"iT) forn>1, Forn >0 and ¢ € op(R)m the diagram
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' ) n
. e
L® OOnT(R) = 1° T(R)

l? l@
en s
8 N
L® 'N(R) = L° L T(R)

commutes., Thus for &, &' ¢ op(R) & necessary and sufficient condition that

® = o' is that

{

8 s
o = o', L°gT(R) = L° T(R)

for each functor T,

Now consider the free R-module functor
. . ——p
R(+): A = o
For any functor T there is an isomorphism
Hom(R(*),T(*)) = T(R)

sending each f: R(+) —* T(*) to the image of 1[1] under f: R(R) — T(R). We note
that the inverse of this isomorphism sénds u € T(R) to
E(-mu): R(X) = T(X)
where
E: R(X)&T(R) —* T(X=sR) = T(X)
is as in §2.

Now consider the epimorphism
o
o: T(R) = LyT(R,0) = L,T(R,1) = L° T(R).

For the functor R(-), let 1 € LSOR(R) denote o(1[1]). It follows from the above

that for any u € L°,T(R) there is a map f: R(+) = T(+) such that
fy: L°R(R) = L° T(R)

gives f, (1) = u, Hence for 9, o' € op(R) a necessary and sufficient condition
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that ® = ¢! is that

2,8': L°R(R) = L° R(R)

satisfy ®(1) = ®'(1),

By definition L° R(R) = P°(R), for i > 0, and for a € P°(R)  the pension

8 s
a: L"oR(R) = L° R(R)

gives a(1) = a, This easily implies the theorem,
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’ ' §10. Stable Pensions mod-p
Let p be a prime.

10.1. The algebra P°(Z.).

From the presentation of the Steenrod algebra in [8], it is easily seen that
there is an algebra isomorphism PS(Zp)ss A.(p) where A, (p) is the dual to the
mod-p Steenrod algebra.

Recall [13] that A,(2) is the Zg-polynomial algebra on generators &i of
degree 2'.1 for 1 > 1. For i > 1 the element (§5) 0,1 6'321(22,1;22) stabilizes
to an element [021] € Ps(Zg) and the isomorphism PS(Zg)cs.A*(2) carries [021]
to ﬁi.

For p odd recall that A,(p) is the tensor product of: (i) the Zp-polynomial
algebra on generators &i of degree 2pi-2 for i > 1 and (ii) the Zp-exterior
algebra on generators Ty of degree 2p1—1 for 1 > 0. For i > 1 the element

~ s

e 1€ H, i(Z_,2;Z stabilizes to an element € i P (2 - and the
(83) e 1 € Wy 12,252 n e 1] € P°(2))
isomorphism PS(ZP) ~A,(p) carries [epi] to &,. For i > 0 the element (6.4)
¢ i €H, i(Z ,1;Z ) stabilizes to an element [¢_i] € P3(Z ) and the iso-

P 2p " "p* 7p P p’
morphism Ps(Zp)ﬁs A,(p) carries [¢pi] to 7.
We henceforth identify the algebras Ps(Zp) and A,(p) for p prime.

10.2. Composed functors. Let

T,T':./%é “’J42

P P
be covariant functors with T(0) = T'(0) = 0, and consider the composed functor
Tort: A, ~JA .

P P
-56-



The composition products (§7)

T'(Z,,n) = L (ToT')(2,,n)

L T(Zp,J+n) x Lj+n i+j+n

i+j+n

stabilize to give pairings

L8 T(2,)8y L% T4 (2)) = L7y 4(TeT') (2))

i+
b J

which induce a homomorphism

c:( 2 L° T(Z ))m ( z L° T'(Z )) — z L® (ToT')(Z ).
i=0 p Jj=0 n=0
As we have seen (9.,3), the stable pensions give s LS T(Z ) the structure of a
‘ i=0
module over A,(p). Since A (p) is a Hopf algebra, both sides of the above

homomorphism are modules over A,(p).

Theorem 10.3. The map

e:( 2 L 1 2(2,))8, ( z L

—p pa 5 '
Z T'(2))) = £ L° (TeT')(2))

J P n=0

is a homomorphism of modules over A,(p). Furthermore, c is an isomorphism

provided either (i) T commutes with direct limits over directed systems or (ii)

if G € J¢é is finitely generated then so is T'(G).

Proof, First let p = 2. For u € L°,T(2,) and v € LSJT'(Zz), the formula

7.7 stabilizes to show for n > 1
n 2K
Cple(umn)) = Eo((8, )" (v)mE(v)
where &0 = 1, Thus c¢ is an A,(2)-homomorphism.
Now let p be odd. For u € LsiT(Zp) and v € LSJT'(ZP) the formulas 7.6 and

7.8 stabilize to show for n > 1 and m > 0 that
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n k
u(c(uam)) = 2 c((&,,)° (v) B & (V)

m k
m (c(usv)) = (-1)* z c((&, )P (W) B T (V) + (T (w)av).

Thus ¢ is an A(p)-homomorphism for p odd,

The final statement of 10,3 follows since T'K(Zp,q) is homotopy equivalent
toasumY = E?B K(Zp,d(ﬁ)), where B is a basis for w*T'K(Zp,q) with
-} G‘Nd(ﬁ)T'K(Zp,q) for P€B. By (ij or (ii), TY can be analyzed using cross-

effects and the desired isomorphism is easily proved.
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’ | §11. Functor Algebras

The theory of stable derived functors is particularly interesting when

applied to functor algebras.

Let A pe any category,

Definition 11,1. A functor algebra over A consists of:
(1) A covariant functor T: Ao A

(i1) A natural transformation m: TeT — T such that the diagram

mol
TeToeT = ToT

commutes,

(111) A natural transformation i: I = T where I: ¢ — A is the identity

functor and such that the composed maps
iel m
T = IeT =~ ToT — T

loi m
T = ToeIl =~ ToeT — T

are the identity,

11.2, The functor algebra of adjoint functors. Let A and B be arbitrary

categories; let

F: J4'-' 13
G: 13 - oAr
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[} v

be covariant functors such that F is the left adjoint [10] of G; and let

O: Idy““GOF

¢: FoG — Lﬁ

be the adjunction morphisms, where I, and Ig are the indicated identity functors,

A functor algebra is now constructed as follows:

(1) Let T = GoF: A — i

lodol
(11) Let m: ToT = T be the map GoFoGoeF — GoI‘B° F = GoF

(1i1) Let 1 =@®: Iy ™ GoF =T,

It is straightforward to verify that (T,m,i) is a functor algebra.

Example 11,3, The mod-p symmetric algebra functor (5.5)

o0
spt = = sPT: A, —k,
r=1 p

P

has the structure of a functor algebra, Let B ve the category of commutative

analgebras without unit, Thén the functor SP+:‘)+Z -'13 is left adjoint to

P + oot
the forgetful functor B -*J+Z . Now 11.2 gives the usual maps m: SP ¢SP -+ SP

P

-+

and i: I — Sp'.

Example 11,4, The mod-p truncated symmetric algebra functor (5.5)

st = 3 st A A
Prar PG %p

has the structure of a functor algebra, Let'13 be the category whose obJjects
MéB are commutative Zp-algebras without unit and with mP? = 0 for m € M. Then

the functor sp+p: A. =B is lert adjoint to the forgetful functor 43 — ‘A'z .

p Y

Z
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Now 11.2 gives the usual maps m: SP+poSP+p - SP'*'p and Ls I—-)SP+P.

Example 11,5  The mod-p gamma functor (5.5)

r'+ = g Pr:-A'Z "".A’Z
r=1 P p p

nas the structure of a functor algebra. Let B be the category whose objects
M GB are commutative Zp-a.lgebras without unit and with divided powers, 1i.e.,

for m € M and r > 1 there are defined elements ‘Yr(m) € M such that:
(1) Y,(m) =m for m € M

(11) Y (m)-¥,(m) = (r,5) 7, (m) for m €M and 1,8 > 1

t-1
V(m) + Y (n) + 2 Vr(m)°'}'t_r(n) for m,n € M and t > 1.

(1ii) Vt(m-!-n)
r=1

(1v) ¥ (men) =r! Vr(m)"Vr(n') for myn € M and r > 1

(v) Yg(Y(m)) = k(s,r) Vrs(m) for m € M and ;r,s > 1

where (r,s) denotes the bincmial coefficient (r-;s) and k(s,r):(;r,r-i)(.?r,r-i)

ces((8=-1)r, r-1), Then the functor l"+pz ‘A'Z — B is left adjoint to the for-
‘ P

getful functor -B - AZ . Now 11',"2 gives a functor algebra structure to

P
+ '
r Jq'z _,,AZP.

p

11.6. Stable algebras of mod-p functor algebras, Let (T,m,i) be a functor

= ‘

algebra over .)4'2 with T(0) = 0. Then Z LSnT(Zp) is an algebra over the Hopf
p n=0

algebra Ay(p), and is called the stable algebra of (T,m,i). Multiplication is

glven by the associative pairing

(2 L°T(z))m, (£ L°T(2)) > £ 15 (TeT)(z.)— = L° 7(2)
B o
n=0 nop Zp n=0 n-p n=0 n p n=0 n-p



A} et

where ¢ is the A, (p)-module map of §10., The identity functor I:.f$Z -*)Lé
P %

satisfies zp for n = 0

s
L nI(Zp) =
0 forn >0,

et 1 € LSOT(Zp) be the image of the canonical generator 1 & LSOI(Zp) under the

map
s S
1y L pI(2,) = L7 T(Z,).

00*"
Then 1 € LSOT(zp) 18 the identity in the algebra = LsnT(Zp).
n=0
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§12. Examples of Stable Algebras

+

Stable algebras of the functor algebras (§11) SP+, SP b’ and P+p will now

e determined,

The natural maps (5,5)
£: spt — sp+p

----r["+

are maps of functor algebras. Thus

] + S +
: SP (2 ) — SP (Z

(z) = 15,7 (2)

S +
LS. sp
Bui D owSY o4y p'“p

are homomorphisms of algebras over A,(p). We will show that f, and g, are mono-
morphisms and will compute the images of LS*SP+(Zp) and LS,SP+p(Zp) in

8§ nt
L, r Z).

Lemma 12,1, If r» > 1 and r # pJ for any J, then Li SPr(Zp) = 0,

S opl 8 pr
L, SP p(Z =0, and L', T p(zp) = 0,

o)

r

Proof. SincelSPr, SP p? and Prp are r-homogeneous [2], this follows by the

mod-p version of [2, 5,11], It can also be proved by constructing maps (see 8,14)

7~ plgTT "t = of

whose composition is an isomorphism, where - SPi, SPip, or Tip. Since

L5, (T%T7"%) = 0 by 9.1 (5), the lemma follows.

By 12.1 we may view

J
s nt 5 ~p
LW (2) = = L° T (Z)
¥ p'p ng ° PP



] z

as a bigraded algebra,
Now let p = 2,
For 1 > 0 define

S p2
a; € L7, T5(2,)

i s p2
by &, = (61) @,, where a, € L" '",(2,)# Z, is the non-zero element,

2

Lemma 12,2, The elements & i >0, are a Z -basis for LS*FQQ(Za). If

i 2

=0 for k > 2,

1 >0 then §,a, =a, , and & a,

Proof. This is a stable consequence of 5.6 and 5.7.

Theorem 12,3. The algebra LS,P+2(22) is given by the generators &, for

1> 0 and the relations:

= = n
(i) 0 t3gen (i) a2m+iq1+m+J for myn > 0
n
(i1) 0 = iiJ=n (i) q1+2m+iq1+m+J for m,n > 0,

Furthermore the image of the monomorphism

s + S Rt
gx: L »SP 2(22) = L7 4T 2(22)

is the subalgebra generated by @, for i > 1; and the image of the monomorphism

i

s ot s nt
gsofy: L 4SP (22) - L *P 2(22)

is the subalgebra generated by a

for 1 > 2.

i

Remark 12,4, The A, (2)-module structure of LS*F+2(ZQ) is determined by

12.2. 1In particular the action of A (2) on the relations a4,@, =0 and a,a, =0
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+
gives all the other relations. A consequence of 12,3 is that LS,F 2(22) has

as a Ze-basis the element 1 € Lsoflz(zz) together with products
k
s p2
“ii...ﬂiké L7, T 2(22) where k > 1, 1,,..0,1
We shall prove 12,3 in 12,8,

K 2 0, and 13_1‘2 QiJ for all j.

Now let p be an odd prime,

Let v, € L® Fp (Z ) be the stabilization of v (see 6.7). For i > 0 define

vy €L 21(9-1)P p(zp)

by v

1i

(ei)ivo, and for 1 > 0 define

Ny 3 L® 2i(p- 1)+1 p(z )

]
)
<

by 1

Lemma 12,5, The elements v, for 1 > 0 and N

1410 54N = My
=0 for k > 1, and Tkni = (0 for k > 0.

for 1 > 0 are a Zp-basis for

1 i

S rP '
r =
L, p(zp)° If 1 > 0 then Eivi \Y

vy =0 for k > 2,

gkni =0 for k >2, T v, =1

o¥1 = M40 TxY4

Proof. This is a stable consequence of 6.7 and 6.8,

| s ot ,
Theorem 12,6, The algebra L ,T p(zp) is given by the generators v, and Ny

for 1 > 0 and by the relations:

(1) 0 = in (?) r+pmd 1+m+j for 0 < r < p and m,n > 0.
+J=n

(i1) 0= % (2) v;ny forn >0,
i+j=n

n

(111) 0= = () v r+pm+i M4m+j 22E

 i+J=n

for 1 < r < p and my,n > 0.



(iv) 0= =
i+Jj=n

n
(1) (npm+i v1+-m.-l-.j * vpm+i TI1+m+J) for m,n 2> 0.

(v) 0= 3 for 1 < r < p and m,n > 0,

(D"
i+j=n i r+pm+i 1+m+J

o
]

n >
(vi) z (i) NNy for nZ 0,

i+j=n

(vii) 0= 2
i+Jj=n

(i) Mripmti Mombg FE L LT LP and mn 20

Furthermore the image of the monomorphism

s + 8 nt
S ] Z2)Y—=L, " (Z
8yt L 4SP p( p) » p( p)

1s the subalgebra generated by v

5 for i > 1 and nJ for J > 0; and the image of

the monomorphism

2,0T LS,SP+(ZP)'* LS,P+p(zp)

1is the subalgebra generated by vy for i >1 and nJ for § > 1.

Remark 12.7. The A,(p)-module structure of LS,P+p(Zp) is determined by

12,5, In particular the action of A,(p) on the relations Volg = 05 Vpvy = 0
for 0 < r < p, and LV, = 0 for 1 < r < p, gives all the other relations, For

1, >0 call v and nivJ admissible if 1 > pJj; for i,J > 0 call,vinj and

1V
ninJ admissible if i > pj+l., Call a product Wy o0ty admissible if k > 1, each

factor wh equals some vi

is admissible, By 12,6, Ls,r+p(zp) has as a Z_-basis the elements

on n, for 1 > 0, and each pair of successive factors

“h®ht
1€ Fip(Zp) together with all admissible products. The proof of 12,6 is dis-

cussed in 12,9,
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12.8, Proof_of 12,3. An argument similar to 8,14 shows the algebra

LS*P+2(ZE) is generated by a, for i > 0. The relation a.a, = 0 is proved in

i 01

the same way as 8,15 (2). The relation aiqi = 0 follows from the corresponding

relation in LS,SP+2(22), which is proved using L SP42(22,1) = 0. Under the

3
action of A,(2), these two relations give all the desired relations in 12,3,

But 4.1 implies for r > 1

r r r r
qu" 2(Za,n) v,gvrq(z2ml" K(Z,n))em (2,mSP"K(Z,n+2)) qu_'_grSP (Z2,n+2)

g+2r

8O

S
o) Ly o0 o

L® ¥ (2 SP™(2,)
for 1 >0, r > 1. A counting argument using 8.6 implies that LS*F+2(22) is as
claimed.

The argument of 8.14 shows that the algebraé'Ls,SP+(22) and Ls*SP+2(Zz)
are generated respectively by LS*SPz(Zz) and LS*SP22(22). Thus 5.6 implies
that the ;mages of g, and g,of, are as stated in 12.3. The maps g, and g,of,
are monomorphisms by a counting argument using the known dimension (see §8)

of 1° qSP+(Zz) and the fact that

+ ~
LoSP" 5(2,0) meH (2,,052,)

q

80 LS*SP+2(Z2)¢u A,(2) as Z,-modules.

12.,9. Proof of 12,6, The proof is essentially the same as 12,8, using

mod-p results, We note that the needed relations (see 12,7) in LS,F+p(Zp)

are stable consequences of 8,15 (1)-(4).
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