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§1. i troduction

Dold and Puppe have geireralized {5] the classical theory

of derived functors [2] to the case of non-additive functors

between abelian categories.  Such derived functors have
various applications ({i] and {5]} in algebraic topology, but
are typically quite difficu’t to compute. However, most of
the common non-&dditive funrtors on abelian categories may
be decomgosed as sums of hguogenecous {3.1) functors, whose
derived functiors are more arzessible and have special proper-
ties {§5 and §9). Under mil3 restrictions, this approach
permits a simple determination {§9} of derived functors for
functors from the category of abelian groups to vector spaces
over the rationals, This rainforces the principle that most
problems concerning derived functors are easlly solved
modulo torsion,

Wle give special attention to three functors on abelian

groups:



{1)  the symmetric algebra functor (3.5)

CiEEIIRIIR  oaze.

{11} the exterior alrzbra functor (3.6)

ANw s AT
=)

a

{113) the gemma functor (2,1)

[o+]
P = 5

re=d)

We prove {§7) that the homu:zeneons funciors SPr, /\r, and T
all have the szme derived inctors except Tor shifts in degree,

In a future article, 'z will define an algebra of opera-
tors‘on derived functors and will use the theory of homogeneous
functors to determine the u:2{ion of these operators in certain
exampleas.

The author is indebte to Professor D.M. Kan for his

useful suggestions.,



§2. The ‘femms Functor

The gamma functor of Filenberg-MacLane (6, §i8] is needed

for the definition of a homogeneous functor.

2.1, Definition of thz gawme functor. Let M be an

abelian group. Then PQE is the commutative ring with identity

which has generators Vr(x) for each x€M and integer r > 0,

and has relations:
{1) Vo(x) = 1
3 -y -, — i ."Ls Y
(11) v (=) ve(x) = () v, (%)

(114) v (xty) = = v (%) v (V)

TrrSwt

{iv) vr(ux) = n’ vp{") for each integer n.

ir 7r(x) is assigned degree r, then

g r
M= 3 'M
r=0

where I''M is additively rcen-rated by products of total degree

r. Thus PO(M) = 2 and Pi(M) = M, Eilenberg-MacLane have shown

[6, §18]:
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(1) If r > 1 then I"(2) = Z with generator vy _(1).

-

(i) If r > 1 and n > 2 then Fr(Zn) is cyclic of order
n{r,nm} with generator vr{i), where (r,n”) denotes
the common vealue of the greatest common divisor

(r,n%) for large e.

2,2, A natural pairing. Let M and N be abelian groups

and r > 1. Define a pairing
p: M a 'N - (M 2 N)

. . r
as follows, If u = ysi(mi)c ovshlmh)er (M) and v = wti(ni)pﬂg
v, (n_}eFrN, then let

Ty K

lu,(u EV:) =3 I =

toa,g (1,5 (men

)
where f ranges over the h 'by k matrices in non-negative

integers such that

s, = 2 f{i,J)

i
b= 3 £{1,d)

~iis



The pairing u is associative and commutative in the obvious

sense,

2.3. The category. e, Let U be a preadditive

category, i.e., 2 satisfies the axioms for an additive cate-
gory except for the existence of finite direct sums. ' For
i > 1 define another preadditive category Pri{ by the condi-

tions:
(i) 7% has the same objects as %
(1ii) For objects X and ¥

), -y I' M
Homrrz( (X,¥) = ["Hom, (X,¥)

(111) For objects X, ¥, and Z, the composition in T U

is given by
r'y X,¥)slT AR et X,¥)oH 7,2
omz<( L, E)m HomZ{(Y,arw ( omz{( :¥)a om?{( 22))
r
"y Hom?((X,QQ

where the second map is indured by composition in U .

-

e )=



(iv} The identity map for an object X in I'M % is Vr(ix)

where 1_ is the identity for X in 2(.

2.4, If 2 is a preadditive category and r > 1, define

a funector -
r

e 20— ¥ U

where ¥* sends each objeet tn itself and sends each map

. r «p
feHomﬁt(X,Y) to v (f)eT Hgmqé§X,s)°



§3. Homogeneous Functors

All functors will be ansumed covariant unless otherwise

specified. Let W and ¥V be preadditive categories and r>1.

Definition 3.1, A funcihor T: U — ¥ is r-homogeneous

if there exists an additive functor ¢: I'" 2¢ -7 such that

T = ¢ovr° Such a functor ¢ i1s an r-homogeneous structure

for T,

Example 3.2. If T: % -V 1is additive, then T is

1-homogeneous,

A functor T: & - V is quadratic [6,§9] if

0 = T(£) 4040, )-T(F,+f }-T(L,#E) ~T(£, 4T ) 4T £, ) +T(£,) +T( £

o) 3)

for eny maps fi,fz,f3eHomQ((X,Y)o

Example 3.3. If T: U -~ V is quadratic and T(f) =

T(-f) for each map f in Y, then T is 2-homogenecus.



Let A denote the category of abelian groups.

Example 3.4. The r-fold tensor power functor

E‘L:L;( ”'.,/?

is r-homogencous (see 3.9).

Example 3.5. The symmetric algebra functor

SP == e’y 4 - A

t ™8

r=0

is formed by defining SP(X) as the quotient of the tensor
(o]
algebra B{X) = 2 @r(x) by the two-sided ideal with gene-

_ r=0
rators x@ay - y a x for x,y€X. For r > 1 the functor

14

is r-homogeneous (see 4.6},

IExample 3.6. The exterior algebra functor

/\ = ozo /"\r:‘/{ "'-’4

- r=0



is formed_by defining A(X) as the quotient of the tensor
algebra B{X) by the two-sidsd ideal with generators x m X

for x€X. For r> 1 the functor
AT 4 A

is r-homogencous {see 4,6),

Example 3.7. The gamme. funcior

1"r: 2T - A

is r-homogencous. Its homog:neous structure is determined

by the map
rTHom(X,¥} - Hom(I'X,I"¥)

adjoint ‘to the composition

T

r r, W riy
MHom{X,¥) w I"X - " {Hom{X,¥) @ X) "~

e r
) Ty
where e is the evaluation manu,

Further examples of homogeneous functors may be con-

structed using the following propositiodé,




\,\ R

Let U, ¥, and & be preadditive categories.

¥roposition 3.8, Ir Ve U =V is r-homogéneous and

We V' = 1s s-homogeneous, then the composed functor

WoV: 2¢ =™ 1s rs-homogeneous,

Proof. For Me/ let h: FtM-ﬂ ﬁtM be the homomorphism

. m————n

sucin that

(v, (m;)eo.v. (m)) = Z m, 3.,.8m
Tl Tk (1500051,) i e

where {i,,...,1, ) ranges ove:r those integral t-tuples in
1hg s 22y &

which n appears r. times for 4 < n ¢ k. Now let rFSy -

PSPrM'be the unique natural homomorphism such that the

diagram
IJ’ FSPrM
M B R M

commutes, where the vertical maps are induced by h and the

lower map "inserts parenineses”, An rs-homogeneous structure

for WoV is Induced by

10-



rs N s.r. N

PHon,, (£,%) = TMMHon, (5,3 () rHon_ (vx,vy)
¢/
* Hom (WVX,HVY)

U4
where ¢ and ¢ are homogensous structures for V and W,

Proposition 3,9. Let Wi:Qc -~ ¥; be an r; -homogeneous

functor for 1 ¢ i ¢ n; and let W( ,...,*): ¥ =/ be an

additive funcior gg n varia})leso Then the functor'P:Z(\—*Zé’

with T(X) = H(V,(X),...,V (X)) is ry%e..+r homogeneous.

Proof. For Mes# let

T, rao0odl r r
a: r * "= ‘Ms...or M
be the unique natural homomorphism such that the diagram

r 4’099'}1‘ d r r
rl l P A

T deootl or i r
g L Mot Yyer, . e(E ")

comnutes, where the vertica! mups are induced by h (see 3.8)
and the lower map "inserts rarentheses". An TyteoodT -

homogeneous struecture for T is induced by the compositlon

-341-



Tyheoodr, a Tq r
r Homu (X,%) — 1 Hom%(}{,‘ﬁ’)m,,.mr Homu(x,'{}

¢1m,.°m¢
—_—— Hom%,(Vix,vif)m,o,aHomma(VnX,VnY)

W . \
= Hom, (W{V,;X, ...,V X),"(V,¥,...,V ¥)) = Hom, (TX,TY)

where ¢1 is an ri-nomogeneous structure for Vi°

Proposition 3,10, If T,Tl: U — V' are r-homogeneous

where 9/ is 2n additive category, then T+T1°: 2% — V is

r-homogeneous.

The proof is trivial,

1oL
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§4. Cross-effects fur Homogeneous Functors

Let % and ¥ be sbellan categories and T: % — ¥ be

a functor with T{0)

0. Eilenberg-MacLane have defined
(6,59} cross-effect functors for T, which are functors

Tk(Xi,ana,Xk) from U to ¥ tor k > 1, If Xi,oeu,xneZ(, then

S T (X

k', 1

;ovt,xi ) = T(X +oon+xn)

ks
where the sum ranges over all (ii,ooo,ik) with 1 <k < n and
1< li oo ol i L n,

How suppose T: 2¢ — ¥ is an r-homogeneous functor with

homogeneous structure ¢. The cross-effect functors of T

p——1

_ decompose into direct sums, and these finer cross-effects

will be used repeatedly in the study of homogeneous functors,

For Xi,oau,XKGZC 1etv

pi: X1+°a°+xk-ﬁ X1+..,+X

be the projection onto the suwmand X C XytoootX For

KO

Tyteeetr, =1, ry >0, and k > 1, let

TgoeeesTy

T {FpacossXy)

- 13-



denote the image of

¢(7r1(91).°.7r (By) bt T oo 4K, ) = (X 4o 4X

£

K

Definition 4.1. The homogeneous cross-effect functors
TyseeesT)
of (T,$) are the functors T (Xi,.“,xk)°

Proposition 4.2, For X¢;u"o:xn§u; there is a natural

isomorphism

1,0.-,1‘Ii :\\:l (x x
s .S e
(Xi soes s Xy ) T ge et n)

1 k

r
T

where the sum ranges over all (fgseeesTys 1gs0ea,1) with

tooodr, =r, r, >0, k > 2. and 1 11<°‘°<ik < n. The

Tq K i

isomorphism is induced by inclusion maps

ri,.oao’r}’ _
T (xi’,,,a,xi Y (C T(Xi +.c.+xi ) C T(x1+,,,+xn).

i k 1 k

Proof. The image of th~ map

¢(7 (p )a.c'}' (p )): 'I‘(X -5-'°°+X )-—) T(X +°°°+x )
Tl e & n 1 n

r ’onﬂ:r
equals T * KX, Luou X,
li i

C T(Xq*teo.+X ). Let F be the

set



~y “ \5’ . N Lo — . .
{¢(Yr (pi )non.r (pi R ER s P S A ii<"'°<ik5n}
1 1 L N
cf meps T(X1+.n.+xn} - T{X, --%& ). How I.2 follows from:

~
ad
s,
&
=y
I
|

fep
(11) fof = f for e¥
(iii) fog =0 for  .geF distinct,

Remark 4,3, The cross--—Ffect functors of T decorpose as

S 6 i ! k s
)-l i. (xﬂ._’oo ,xi(} ~ Tk(xi,ooa;xk)

“]here l.‘!.;e S0 rangag cver (7_3_! (I‘i: ceos 1"1{) {’Iith r1+o o e +z‘ic = r

and r,-> 0. In paréicular, ' 1s of degree <r [6, p.86],

i
iaeo: Tk<xi,uoa,xlc} = 0 —L‘Or ]r > ro

Example 4.4, Tor the tensor power functor (3.4)

T &= ﬁr: g4 - A

the homogeneous cross-effects are

r

. 12° 'y . , -1 k
‘(Ai,ooe,hk):x‘{@ X, )\ . u(H X )

L

sum of f‘!/ry,!'--r;e! c_opies c:@ Tlu's.




As an application of hornogeneous croés~effects, We prove
a lemma which will be used t~ impose homogeneocus structures on
sP¥ and AT, Let T: U — 7 nave r-homogeneous structure ¢;
and let U C T'be 2 subfunctor. Suppose for any Xi,.,g,xne?t

that the inclusion
U( xi':"o oo ‘:’)‘.’.Il) ‘:t T(xﬂ"'o ° o’:'xn)

is compatible with the decompusition 4.2 of T(X1+.°°+Xn),
i.e., tbat,U(Xi+,..+Xn) is generated by its intersections

with the summands., Then:

Lemma 4.5, The r-homogeneous structure of T.induces

=

r-homogeneous structures for

U, /U U Y

Proof. It suffices to show for any v (fi)...v, (fk)eFrHomz¢(X,Vr
1 Kk

that

d)(vri(fi).“vr RERTER S

I

restricts to a map UX — U¥. +his is easily proved from the



fact that ¢(W} (fi)OODY (£, )) equals the composition
i re k ‘

"'f‘_gcooprk‘
A ripooopr 1

Tx_.qT | k "'lisoooglx) 1'1305991"(

(XgoaonX)_" - R ] T (Ypoovf?f)

v
- TY
where A is the composition

S - r,oou;r
x T9128:) pry, | uxy BTO4, ot ki, ...,%)
\._\/_/ .
k-times

and where V is the compositicn

T,500e,) ..
1° °Tk ind.

T (K,,,,,X:ﬁ —y 1(x,:_°.°+x) T{codiag.
LV_J

) X

Example 4.6, By 395 and 3,6 the functors SPT and AT
are quotiénts of the r-homogeneous functor B, Uéing L4
and 4.5 one obtains r-homogerzous structures for SP¥ and AT.
Then the homogeneous cross-effects for T = SPT are

rl’oﬂﬂ’rk r rk

1
T (x1’°°°’xk) ~ (SP Xi)maooﬂ{SP X

k)
and for T = ]\r are

r

ri,ono,rl{ I’i. k
(xi,voo,xk) i~ (/\ }Li)muooﬁ( /\ xk)o

T

-17-



§5. Derived Functors of Homogeneous Iunctors

2.1. Dold-Puppe derived functors. The Dold-Puppe theory

[5] of derived functors uses semi-simplicial (abbr, "s.s.")

objects where the classical iheory {2] uses chain complexes,

If X is an s.s. object over =n abelian category U, let 7, X

denote the homotopy groups o X, defined by #,X = H_(NX)

where NX is the normalized chain complex [7, p. 236] of X,
Let U and ¥ be abelian categories such that 2% has

enough projectives, A {non-sdditive} functor
T: 20— V°

with T{0) = 0 has derived functors [5,84]

LT(*,n): 2 = v
for a,n > 0. Thus for Ge %
LqT(G,n)=¥ ﬂqTK(G,n)

where K{G,n) is a dimensionwise projective s.s. object over

U with

. 18-



,~G for 1 = n
7 K{G,n) = i
-0 otherwise

and where TK(G,n) is the s.s. object formed from K(G,n) by

dimensionwise application of T,

Dold-Puppe have defined (5, 5.9] the suspension homo-

morgnism

a: LqT(°,n) T(-,n+1})

L
g+l

which is an isomorphism for o < 2n and an epimorphism for

qQ = 2n, The stable derived Tunctors of T are defined as the

limits under o

S m .t °
L°, T = lim ), T
n-o

n)

-
M

The functors LSKT are additive and (LSKT} is an exact connected

sequence of funcfors [4]. ZIndeed if T is additive then o is
always én isomorphism and {LskT} are the classical left
derived functors of T,

e will be chiefly concerned with derived functors of

homogeneous functors.

-iQ-



Proposition 5,2, If T: ¢ ”'?/'gg r-homogeneous, then

——

vee

B8O is LqT(°,n): 2 -7 for c.n > 0,

Progzq Let ¢ be an r-hoiogeneous structure for T and

detine
Y Prﬂomz (G,G7) — lIom,/(L T{&,n),L T(G',n))

as follows. Let v, (f ¥°°,w 4f )CI Hom, (G G') and choose
8.8, maps'?i,,.,,ft. ¥{G,n}) - V(G ,n} which induce fl"““’fx

in homotcpy. Then ¢ sends 7V _ (t;)e.y (£} to
r. rK Kk

dlv, (£0ce0v,, (f (Hot T PR(G.n) = m TK(G",n)
1

Clearly”E is well defined and gives an r-homogeneous struc-

ture for LqT(c,n)u

Corollary 5.3. Xf T:% =~ % 1is r-humogeneons and Geuc

is annihilated by the positive integer m, then LqT(G,n} is

annihilated by m{r,m”j,

Proof. By 2.1 the element yr(i}eFrHom{GbG) is of crder

"~ comaec

m(r,m*), Hence by 5.2 tihe id=2ntity map on LqT(G,n} ls of.

order m{r,m™},



Example 5.4, For ri,ep’ s A —F a straightforward

-

conputation shows that
LI {G,0) =~ I'(G)
which implies {see T7.2) that
LQTSPr(G,E) =~ r7(6)

These show that 5.3 is best passible,

Proposition 5.5, Let T: # — J# be an r-homogeneous

functor which preserves direct limits. If Ge# and n > 0,

then LqT(G,n) is a torsion group for g # rn,

Proof. We need:

-(i) ' Let T: 5 — 5 be any functor with T(0) = 0
and let s > 1. Then LqT(o,n) is of degree

< 8-1 for q < sn by {5, 6.10].

(i1) If T: # — s 18 r-pomogeneous and of degree
< r-1, then T(C) 1is annihilated by r! for Ge /.

This holds since the composition of diagonal

-71-



(11i)

{1v)

(v)

and codiagonal ips
A v
Tm)*%mﬂeﬁ)ﬂﬂm
is multiplication by r!.

It T: # — # is of degree < r and G is free

abelian, then L ¥"(&,n) = 0 for g > rn by {5, 4.23].

If T: # - 4 iz r-homogeneous and T(M) = 0 for
each free abelien M, then T(G) is a torsion

group for & finiely generated. This holds

since mGt =:O for some m, where Gt is the tor-
sion subgroup oi G. Thus there are homomorphisms
¢ G/Gt 4G with Jo1 = m, and hence T(G) is

annihlilated by mro

if T: ¥ - # preserves direct limits and
T{0} = 0, then ench LqT(v,n) preserves direct

limits.

Now 5.5 follows for q < rn by 5.2, (1), and {ii), and

follows for g > rn by (4iiil), {iv), and (v).

-2



Remark 5.6. If T did nc% preserve direct limits then

5.5 would hold for g < ra but might fail for q > rn, For

example, if we define
T{G} = Hom(0,G o {Q/2))

where Q is the group of rationals, then for 1 > 0
Ly, 7(G,1) = Hom(Q,G,)

where Gt is the torsion subgroup of G.

It T £ = 4 is r-homoganeous, one can prove various
restrictions on the order of ~lements in the torsion groups
LqT(G,n) for q <vm° Roughly speaking, as q increases elements

of higher order are permitted. A result in this direction is:

S s

Proppsition 5.7, Let T: # — 4 be r-homogeneous with

r=m 4+ m1p+",,+mkpk where p is prime and 0 < m; < p. ?hen

for Ge 5, LqT(G,n}~nas trivisl p-primary component for gq < mn

wherg m ‘= mo+°,,< Kk°

Prcof. By 5.2 and 5.5 (!}, it suffices to show that if

U: # — # is r-homogeneous and of degree < m~-1, then U(G) has



trivial p-primary component for Ge Z. Consider a decomposi-
tion r = r1+.,a+rm in which =ach pi appears as a summand my

times, The composition
m v
(Gy0...,G) ~U(q)

is both zero afhd multiplication by ri/ryt...r !, Since
rz/rizooormz is not divisibl: by p, U{G) has trivial p-

primary component,

‘Example 5.8, For the functor

K

with K > 1 and p prime, a comeutation using 6.1 shows

Ik
Y 1 pA
LO {(Gyn} > G w p

for n > 1., 4hls easily implics that 5.7 is best possible,
We now show that certain of the Dold-Puppe results [5]
on the suspensjon homomorphisa can be sharpened when the

functors are homogeneous,

L.



Iheorem 5.9, Let T: A = & be r-homogenecous with r > 1,

and conglder

Gt qu(G,n)‘ﬂ LQ+1T(G,n+1s

4

if r is not & prime power, then o = . If r = pJ with p

cume

Prime ihen:

(1) po =0

{is) For q < pn, o restricts to an isomorphism of the

- NAT S omponLants,
p-primary components

{1i1) For q = pn the Image of ¢ is the p-primary com-

&.&Sﬁi uo—-i-: Lpn.{.g_rtv ’: GJ n+1) °

Prcof., The image functor of

G LqT(»,n} - Lq+lT(°,n+i)

is additive {5, 5.25] and r-homogeneous by 5.2 and 4.5, If

U: 4 - 4 i3 additive and r-homogeneous for r > 1, then:

{1) ¥ w0 if r i3 noi a prime power,

(11) pUd = 0 if r = p  with p prime,

. 25.



‘This follows since the composition
A 1’ r-1i v
U(Ge) ~ v (G,G) — u(a)

is both zero and multiplication by (;) for 0 <i<¢r.
it remains to prove 5.9 {ii) and (iii), so suppose
o= pJ, Let X be an s.s. ab~lion group which is trivial below

S,r~

n 5, 6.8]. For 1 ¢ s < r consider T S(x,X), Suppose

S s ﬂo + Eip+,o.+ﬂhph with 0 < fi < p and r-s = mo+mi_p+“,+mkpk
with 0 ¢ m, <-p. If g < (£O+,u°+£h * M t...m )n then
ﬂqTS’r"S(X,X) is & torsion group with trivial p-primary com-
ponent, as is shown by modliring proof 5.7 and using [5, 6.10].
Thus for q < pn, ang{X,X} is a torsion group with trivial
p~primary component. The arrument generalizes to show that
ﬁqTi(X,ooa,K) is such & torsion group for q < pn and i > 2,
Using the Dold-Puppe spectral sequence [5, 6.7] one now shows

that the suspension homomorpi:ism

is such that both {kernel o) for g < pn and {cokernel g) for
q < pn are torsion groups with trivial p-primary component,

Taking X = K(G,n) this completes the proof.



Example 5.10. Consider the suspension map

ot LF2(G,1] - L3F3(G,2)
One shows that

i Pin )
LG} =6e taz, + Tor(G,Z3)

LBFB(G,Q)T: Tor(6,2,)
and ¢ js the projection map ~ato Tor(G,2

3}

A stable consequence of 5,9 is:

Corollary 5.11. Let T: 4 — 4 be r-homogeneous with

r > 1i.,- Then

i L, T(G) = 0 1f 1 is not a prime power,
. # s - -

J

(i1)  L®,T(G) is & zmodule if r = p* with p prime,

27



§6. Stable Derived Functors

We here supplement 5.1% with some observations on more
general stable derived functors. A ecrucial result is Dold's
universal coefficient theorem {4], Using a different proof,
we give a version of this theorem which eliminates certain
restrictions on splittability.

If U: # = A is an additive functor and Ge# let
¥: G n 2z} - u{a)
be the homomorphism such th-t
He o x) = (U(1,))(x)
for geG and xeY{Z), where ig: Z = G is the hompmorphism with

i i\ &2 °
g( i &

fheorem 6.1, (Dolad) L2t T: # — # be a functor with

T(0) = 0 which preserves divect limits. There is a splittable

short exact sequence

v
0 ~as L% T{2) - L 7w - Tor{G,1°, ,T(2)) - 0

~28-



Proof. If X is a set vith basepoint s, let AKe# denote

the free abelian group gener~ted by the elements of K with

the relation 1{#] = 0. For e/ let
E: AK @ TC ~ T(AK @ G)

be the homomorphism sucih thet E{i{u]} @ v) = (1{£,)) (v} for
uek and veTG, where fu: G~ AK a G is the homomorpnism with

fu(g) = 1fu}] m g for geG. Uow prolong E to a map
E: AK m TK({Z,n} -~ T{AK = K{Z,n))

wihere K is any s.s. set with basepoint, and K{Z,n) is as in

5,1, We claim that
B, ﬁq(AK a TX(Z,n}} ﬂdT(AK 8 K(Z,n))

is an isomorphism for q ¢ 2n One first verifles the case
where K is a set rather thar an s.s. set. The general case
then follows from the theory [5] of s.s. double objects,

using the map

of s.s., double objects which E induces, and applying a simple

spectral sequence argument.



For Ge4 1let M{G,2) be a Moore space of type (G,2); and
let the s.s., set M{G,2) be ihe singular complex of M(G,2).

For ¢ < 2n we obtain an isororphism
Ey: m (AM(6,2) & TR(Z,n)) ~ @ _T(AF{G,2) = K(Z,n))

Applying the Eilenberg-Zilber theorem and the Kunneth formula
to the left side of this iscirorphism, we obtain a splittable

exact sequence
0~Gam Lq_QT(Z,n) - LqP(G,n+2)-* Tor(G,Lq"BT(Z,n))-ﬂ 0

for g < 2n. Since n cen be ~rbltrarily large, it follows
that for i > 0 there is a srlittable exact sequence
3 Ve 3 5
0~ Gnm L°1T(z)- L7, 7i8) - Tor(G,L 1.4T(2)) -0
which is natvral in G. If G = 2 then ¥' gives an isomorphism

S, L7 Sl
e: L iP(é) - L 11(2)

and the diagram

\/
¢ w1® 1z % 1% ()

1me 1
6wz Y oL® (e

30-



commutes by a naturality arg ment. Thus we can replace !

by ¥ in the above exact seguunce.

Remark 6.2. In practice there is a strong tendency for

s G o & .
the groups L iT(Z) with 1 > U to decompose as sums of Zp-
modules for various primes p. This is true for homogeneous
functors (5.11}, and we now investigate this phenomenon for
other functors.
T: 4 —4 be such that

PfOﬁOoitLOn 6.3, Por v > 1 le

— e

s

e et

T(nf) = n T( ) for all maps 7e# and all neZ. Then LS%T(Z}

oz e

as £ 2 —nqgules for primes p such that p-1 divides r-1i,

e emeiea — e T r—

Im

Proof. The map

L®,™{n): L3, 1(2) - L°,17(2)
equals multiplication by n &nd also by n*., Let
-~ 3 2 X i
0(r) = G.C.1. {n -n|neZ)

Elementary number theory shoss that e{r} is the product of
those primes p such thet p-7 divides r-1. Clearly 9(r)

annihilates LS*T{_Z}o

3%«



Remark 0.4, The hypoth-'ses of 6.3 are satisfied by sub-

functors and quotient functo:rs of homogeneous functors, which
need not themselves be homogineous. For example, if Ges¥

end r > 2, let T(G) be the subgroup of ﬁr(G) generated by

g B...3 g for geG. Since LSﬁT(Z) = Ze(r}, wiere O(r} is as
in probf 6.3, it follows using 5,41 that T is non-homogeneous

for r # 29,

Proposition 6,5. If T:.¥—_# is a functor of finite

a
degree, ihen L”jT(Z) is a torsion group for 1 > 0.

This will follow from Q 2,

-

Remark 6.6, If T were of infinite degree, then 6.5

might fail, For Ge€4 let T(%) be the cokernel of the mono-

morphism
d: A{G) - A{G) m A{G)

with d(1{g]) = 1lg] = 1{gl, here A(G) is as in proof 6.1.

Then LsiT{Z) = Z,



e ; ; - 8
Remark 6.7. Under the hypotheses of 6.5 I,

Rengek 6.7 j.T(Z} is
usually a sum of various Z'»madules for 1 > 0. However,

for r > 2 we shall define T}f st - s of degree ¢ r such that
(2) = Zé(r}’ where ¢{r) is the least common multiple of

{1,2,...,7r}. If Ge4 then #n associative multiplication on

A(G)
v: A(G) » A{G) - A(G)
is defined by

viilg] & 1{h}) = g+h} - 2{g)} - 1[h]

et}

For v > 1 lek AP(G} denote 'he cokernel of the r+i-fold multi-

plication map
T‘:':]. -y 3\
AT (A{e)) — A(G)

induced by v. For r»2 let 7 (&) be the cokernel of the homo-

morphism
e: AT(G) - £ He) w al(a

induced by the map d in 6.6,



o . v r r
§7. Derived Functore of SP, A", and T

The r-homogensous functeis

have essentially the same derived functors.

Theorem 7.1. There is & natural iscmorphism

+sti m——

- r . ~ T a r 4
Lq/\ (G,n} = L e P (G,n+1)

forq >0, r >1, n > 0.

Toneorem 7.2. There is a natural isomorpghism

r r
LqF (G,n) = Lq, fSP (G,n+2)

+2:

fer a0, r >3, i > Q.

Remark 7.3. Much is known about the functors LqSPr{G,n)

because of their connection {5, p. 2314) with the homology of

Eilenberg-MacLane spaces. Fuvthermore, the functors Lq/\e(G,n)

have been completely determin=4 [3].

-3



7.4. Hatural homomorphirms., To prove 7.1 and 7.2 we

Trarcrres e

need the following.

fm,...m ) = 3=
= I 3
ages{r}

~
. P T
for m,....,m €M . SP M, where S(r) is the symmetric
i

1

group on r elemcnts,
(i1)  Define g: AM.~ B'M by

glmgocom } = 3
S

oesir}

1
for mi,ﬁuc:mrem = N\"M,

(1ii) Let h: I''M ~ "M te as in 3.8.

(iv} For ry+..stry = v, v, >0, let
T p it e g B i r
& <. P™% ~ 8P M u...m SP MM

sign(c}mo(i)mob.m mo(r)

be the unique na‘ural homomorphism such that



sl
ES

l" - I - - - ] )
5 &° ke T T

N o L = i *
SP M ey SP M m...m SP M
.-IF." i'n(‘ © ﬂﬂf

e T r

sl P
B My (8 K. . 2B l‘"

commutes, where the lower map "inserts parentheses",

.'“\" . 1 l", g
{v) Let n: ATMa N N8P (M » ¥} be the unigue
natural homeomorphism such that

AMa ATE L 5P a n)

OYS A
A =
;e T i
(M) » (BN Léﬁrgn n H}

A((mima,nmmr) & fnim,,umnr)}s{mimni)a,.,m(mranr)

¥ oo 8P — 3P (HM @ H) be the unigue

natural homomorpiism such that

' = -—.n k. 3
"M a 8PN — o 8P {M o I

% .'.:b_



The following lemma ls proved by the method of {5).

Lemna,

(1)

LY

f s =
(ii)
(134}

(iv)

B

1§8Pr{231} =0 for r > 1,

ke

. c T
f,+ L,8P (2,2 - L,B (2,2)
is an isomorphisn,

For I ':"ouo":f‘r = ¥ E‘J:}",th I’i > 0’

K

i ,009-1" I

is an isomorvhisn,

T s e s  ——

For r > 1

vt 2 .

& : L, NT{2,1) — LB (2,1)

PSR, S A

r
(SP “m...sSP %)(z,2)



7.8, Proof of T.1. It =learly suffices to show that

o

for any s.s. free abelian group X

Myt T{ ATX 8 ATK{Z.3)) =7 8P (X B K(Z,1))

is an isomorphism. For this Lt suffices by the theory of

2.8, double objects [5] to surpose X is merely a frze abelian

group. Choose an ordered bhasis (b,,b

!_‘4

o
z

4.6 and 7.5 (i), SP (X o K(Z.')) &

-

.t.

[

tractible complex and the comriexes {hi n H(Z,i))@,.nm(bl BK(Z,1))
¥

1
for 1,<...<i . Also ATX m ANTK(2Z,1) is

b i b -lqr.’r'
complexes {b, ...b, } & A'K{",3} for Lol o
i

i, i

(b, ...b, } @ A'K{Z.1) > (b, = K{Z,1}) 2...5 (b, 8 K(Z,1))

-‘.h.‘.Ch ‘--re— eq.lll.'u.,..i \_llc tO
t‘_,- b( "J’ & ‘\‘ 3 )

Tims by 7.5 (iv}, 7, is an isomorphism,

«we) fOE K

Then by

i@ direct sum of a con-

th2 direct sum of

The map 7

r

T.T. Proof of 7.2, It suffices to sheow that for any

1

8.8, tree abelian group (

38



Ver Ty(TVX m 8PTK{Z.2)) - w,SPT(X 2 K(Z,2))

is an isomorphism. TFor this it again suffices to assume X
is a free abellan growp. ©Chonse an ordered basis (b,.nn,,.,}

for X, Then by 4.6 SPT(K m I'{Z,2}} is the direct sum of
7‘"1 ri'
complexes SP “(b, m K(Z,2}) v...m 5P ‘(bi m K(Z,2)) for
4 k X

1,<:00.<4,_and r,+...+r,_ = r with each r, > 0. Also
1 k i

Tl s A . ; . .
"4 » BP'K(Z,2) is the direct sum of corresponding complexes

(v (g dooey, (b,L )} m 8PTK({”,2}. The map v then restricts
1" =i

to maps
(v, (b, Y...v_ (b, }) = sP'K(Z,2) —
Fi 11 rk l,
r
1 r
S b 5 K(2,2)) v...m sP N(b, = K(Z,2))
1 = iK
Tysncesly
which are equivalent to [ "o Thus by 7.5 (iii), v,

is an isomorphism,

-Q-



88, Ration~l Functors

Let T: A4 — (l,be a funchtor of finite degree < r, where @
is the category of vector spaces over the rational numbers Q.
As a step toward determining dzrived functors of T, we prove

the following.

Proposition 8.1. There =xists a unique decomposition

s .

r i . ;
T= & T(L) sucn that T{A):«ﬂ7 - @ is i-homogeneous.

meacowe e ormomoTYas

i=1 r
- ol 3 (1)
Furtbarmore, suppose U = 5 U 7/: 4 — Q. where U is
i=1
i-hcmogeneous. If f: T— WU is o natural transformation,

¥ i 3 . 2
r i f ]
then £ = 5 £t%) where #30, pli)  yld)

T
oy

Procf. The symmetric group S{r} operates on the cross-
effect T (X,...,X} C T(X+...41} for Xe-f by permuting the
(
copies of X. Let T*r}(X} be the quotient of Tr(x,,,,,X) by

the relations t ~ g

FEm

t) for te? {X,...,X) and ceS(r). The
functor T(r}:24 - (. is r-hovogeneous. Define o: Ttr)'* Gy

by the condition that the comrositlion

T (X, ee0,X} " plr)x & px

L



equals the codiagonal map, whe:e J is the quotient map., Let

a: T ~>T(r) be the composition
A .
TX T (X0, X) 3 o{rly

where A is the diagonal map. "hen the ccmposition

is nmultiplication by r{. Hence
T = (Image ¢} + {Kernel d)
Clearly {Image c)= T(r) is r-iomogeneous and (Kernel d) is

r
of degree ¢ r-1. The desired “ecomposition T = 2 T(i) can
i=l

thus be constructed inductively,

To comgléte'tne proof of ©.1 it suffices %o show that
if U,V: A .= - are respectively i,j-homogeneous with i # j,
then any natural transformation f: U — V is zero. Consider

the doubling mep 2:X — X in 4. Since
foV(2) == V(2)of: U(X) — V(X)

it follows that Eif = 23f so f = 0,

4.



The following notlion wil' be useful in §9.

8.2. Antifunctors. If T: A~ & is r-homogensous, we
e & TS & P

- e el i "
shall define its antifunctor 7 "': ¥ — (O wyhich is r-homogeneous

“and such that T'Z'Tdd. Consider Tr(x,u,,:x} es an S{r)-module;

and let TU(X) be the quotient of T _(X,...,X) by the relation
o{t) ~ (sign o)t for oeS{r) ang tGTT(X,...,X). Then T A4 — O
ls the antifunctor of T

o

Exemple 8.3, A pailr of entifunctors is

= ..



§90

Derived Tunctors of Rational Functors

Ir T: ¥ ~ Q is a functor with T(0)} = 0, then an

Tad{G} = T(G)/{Inage V), where

codlagonal,

r!r'|
associated additive functor T ': AL— Q. is defined by

v: T(G,6) ~ T{G) is the

Proposition 9.1, Let T: + — (- be of rinite degree and

j: T~ 1% be the guotient mep. Then J,: L°,T —~ L

an isomorphlsm,

Proof, By 8.1 there is &

vihere Tﬂi) is i-homogenecus,
equivalent to the projection

{
L‘s)*T{i) = (0 for i > 2.

Remark 9.2,

m— e

T: A4 - QL equal the classleal

However, this does not hold fo:

(see 6.6), If U: £ — ¢ is o

By 9.1 the s&!

s _ad
T 1s
'r ,
decomposgition T = & T(;)
| gt
and the map j: T— T is

A Tii)° By 5.5 and 5.6,

able derived functors of
; ad
left derived functors of T
functors of infinite degree

functor with {0} =~ 0, then

430



g0 6.5 follows from 9.1,
To determine unstable devived functors, one combines

i ot i

8.1 with the following.

Theorem 9.3. If T: & — (Q is an r-homogeneous functor

which preserves direct Llimits, then:

(1) LqT{°,n) = 0 for q # rn
(ii) LrnT(v,n};g T for n gven
. s T d
(iii) L"nT‘°,n);: T° for n odd, where T is the anti-
" 204 _ &8 LiE

functor (8.2) of T.

Proof. Part (1) follows from 5.5.

We construct a natural equivalence G: LOT(ﬂ,O) = P,
Let K(G,0) be as in 5.1, let ik{G) be the s.s. abelian gfoup
censisting of G in each dimension with s.s. operators equal
to the identity, and let h: K{#,0} — k{G) be an s.s. homo-

morphism inducing the identit: map on homotopy groups. Then

Al



T{h) 4 ﬂOTK{Gfo) “’WOTK(G)
gives
Gs LOT(GJH)'“ T{G)

which is clearly an isomorphism for G free abelian. Using
the gquotient map G — G/Gt, where Gt is the torsicn suﬁgroup 7
of G, it is easily shown that @ is an isomorphism for G
finitely generated. Bj a direet limit arguﬁent this implies
that 0 is a natural equivalence,

It now sufflces to show rhat Lr(n+1)T(°,n+i) is the

antifunctor of LrnT(u,n} for n > 0, Let

ot M (K(G,n),...,K(G,0)) = m,, T (K({G,n+l),...,K(G,n+1))

be the composition of suspens!on homomorphisms 1ln successive
variables from right to left. Then o, is an isomorphism
since Tr is additive in each variable, Furthermore for TeS(r)

the diagram

o]
T, T {K{G,n},...,K{G,n)) wr'nﬁ+rTr{K(G,n+i},“,J,K(G,n+i))

Ty Ty

v a N

Ty T, (K(G,n) oo, K(G,n) ) =T, T (K(G,040), ., K(6,neL) )

..-".5..



commutes for 7T even and auticommutes for T odd, Clearly
(LﬁT(e,n))r(G,a.,,G}z:*ruTr(K(G,n),,,.,K(G,n)}

For any r-homogeneous functor U: fg—ﬁ'Cl, U{G) is the quotient

of ¥ _{G,,..,G} by the action of S{r), These facts easily

n+-

imply that Lr( 1}T(",n+ﬂ} is the antifunctor of L_ T{°,n).

rn

Example 9.4, By 8.3 an’ 9.3

0 @ SPY(G) for n even

Q® (L SP'(G,n)) { }
o Lo o A(G) for n odd

AT(@,n)}

0 n AT(G) for n even
Q alL

rn o » 8P'(G) for n odd

since for any functor U: s¥—- A4 with ¥(0) = 0

Q® (L,U(G,n)} = L,{Qn U){G,n).

Corollary 9.5. ¥f T: A - A4 is of finite degree and

preserves direct limlis, toen LqT(G,n) is a torsion group

unless g is divisible by n.

Proof. Apply-8.2 and 9.% to the functor Q= Ty A — B

-e-
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