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ABSTRACT

In order to classify and construct relations in the Steenrod algebra
and Dyef—Lashof algebra, we consider some general notions concerning
divided sequences and divided systems in cocommutative coalgebras. We develop
the idea of a test map on a coaglgebra C and use it to classify divided
sequencesg in C. It is coﬁvenient-to use families of power series for this
purpose. If C is cofree with test map we can construct divided sequences
corresponding to every possible f;mily of power series; thus we have a
complete deséfiption of JSCC), the set of divided sequences‘in C. We say
C is component cofree if it is a direct sum of cofree coalgebras. If
is component cofree and has a multiplication, then {3(C) is a monoid and
the group law for C describes the multiplication on &7(C) 4n terms of
the corrésponding power series.ﬁwkf C is graded it is natural to consider
33gr(c) the monoid of graded divided sequences in C.

We apply these methods to coalgebras. of operations onla monoidal funec-
tor, and give general conditions for a coalgebra of operationms to generate
a bialgebra of operations. We consider in detail the Steenrod algebra Q. ,
the Dyer-Lashof algebra\FL, and the algebra generated by K and Clopp
which we call the Nishida ;lgebra N, G is cofree, and K is isomorphic

o
to Z R 2] with each RKR{2] cofree. Then N is isomorphic to

©  p=0

IN[2] and we define a coalgebra basis | H(S’R) H E'N£ R eYN(m}} for
£=0

MN{2L] in terms of the natural coalgebra basis for R and (. Thus &Y is
also component cofree. Since.?{[ﬂ] is not of finite type, and is positively
and negatively graded, we introduce a topology and consider two-way divided

sequences in the completion JN{.

ey




Among our results, we show that the group gﬁgr(cx) 'is isomorphic to

]

(£) € zZ[w] : £() = 1} under multiplication. Similarly SR ~

1 and £ has degree < f£}. Thus graded divided

{£(w) € 2P[W] : £(0)
sequences in the two bialgebras multiply in much the same way. For

example ) (-1)3pl.p] z< %O L T nighg 2( 1)P(0>2)

1,j iij
both corresponding to (1 + w)(l - w) = 1 ~ w2. We show how to express the
Adem relations and the Nishida relations in termslof divided sequences with

power series as generating functions for the usual binomial coefficients.
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INTRODUCTION -

The Steenrod algebra A and the Dyer—Lashdf algebra 124 are actually
bialgebras whose structure as cocommutative coalgebras is fairly simple.
In order to make use of this fact in classifying and constructing relations
in 0. and JQ,, we consider the set of graded divided sequences (and more
generally, of graded divided systems) in 0. and &{. We also form the

bialgebra N generated by £ and Clopp’ and apply similar ideas to

study 1it.

o

A sequence (cn)n=0 in a coalgeba C is called a divided sequence

1

if efc ) = 1 and glc ) = 2 cy ® c.. This notion arises naturally
i+j=n

in the theory of cocommutative coalgebras over a field k. 1In a connected

bialgebra for instance, if %k has characteristic 0 we can construct a

divided sequence over any primitive clement: the fact that this methed of

construction fails if k has éharacteristic p# 0 1is a major distinguishing

feature of the characteristic p case (see [Sweedler, 1967] and

[Dieudonné, ;973, Foreword]). Divided sequences are closely related to

the notion of curves in an formal group (see [Lazard, 1975]).

In algebraic topology divided sequenceé'appear in several ways. For
instance multiplicative characteristic classes are precisely divided se~
quences; for the algebraic ideas behind this see [Husemoller, 1971]. 1In
a quite different setting, Steenrod's reduced power construction [Steenrod,
1957] produces a sequence of operations .(Pn)(};___0 on the Zp cohomology
of any space. By the Cartan formula the P} npaturally form a divided
sequence; and this determines the cocommutative coalgebra structure of the
Steenrod algebra Cle generated by the Pn. [Kudo and Araki, 1956] (for
P=2) .and [Dyer and Lashof, 1962] (for p any prime) used an analog

of the reduced power construction to produce a sequence of operations
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(Qniw . on the ZP homology of any {nfinite loop space. The Q“ also
n=

satisfy a Carﬁan‘formula and so naturally form a divided sequence; this
determines the cocommutative coalgebra structure of the Dyer-Lashof algebra
jQF generated by the Qn. Note that for P % 2 we omit the Bockstein
operations in forming CL? and ’JK?, which are thus evenly graded sub-
bialgebras of the standard Steenrod and Dyer-Lashof algebras. Since no
divided sequence in 4, or JQJ can involve Bocksteins, we are justified

in this gimplification. |

Milnor [1958] showed that 0.° has a basis {P(R) : R e!ﬂﬁph

that ¢P(R) - - P(R') o P(R")_
° R‘ +R"=R

such

We call such a basis a coalgebra basis;

and if a coalgebra has such a basis we sa&y it is cofree. May [1976] and
Madsen [1975] pointed out that asa coalgebra RE  is isomorphic to the

. ot e e . )
direct sum ) R [£]1 where R.°{£] 1is spanned by the monomials of length

£=0 '

£ in Jke. In coalgebra terminology, each ‘EL?[K] 4ig a connected component.
Each J{e[ﬂ] js a cofree coalgebra, so we say that J{F is component
cofree. We define a preferred coalgebra basis {Q(S) : S e NZ} for each

e
R,

In the Zp homology of any infinite loop spaces we have both the
Qperations Qn and the transposed operations Pt which we consider as
elements of CLEPP. We form the bialgebra generated by the Qn and P:,
and call it the Nishida algebra \PSe, since Nishida [1968] found the com—

, ] n _m . . a _b
mutation relation expressing Pt-Q in terms of operatlons Q .Pt' We
show that JYE is again a component cofree coalgebra. &GE is isomorphic

«©

to z J(e[ﬂl as coalgebra and we define the natural coalgebra basis
=0
{H(S’R) : S € N!', R € N(P),} for each ‘,N'e[-?,]. Unlike Q,e and .F\.e,
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J{e is not of finite type, and is positively and negatively graded. There-

fore we introduce a natural topology for homogeneous Sums and consider two-

~

way divided sequences in the completion JNE,

Certain basic 1ldeas are suggested by the algebraic topology and we
develop them in the general setting of. cocommutative coalgebras. We degine
the idea of a test map on a coalgebra C and use it to classify divided
sequences in C. It is convenient to use families of power series for this

purpose. If C is cofree with test map we can construct divided sequences

corresponding to every possible family of powef'series; thus we have a

tepaiesy ik
s 1

g
i

complete description of &(C) the set of divided sequences in C. If C

—

{s a component cofree bialgebra then £(c) is a monoid and the group law

T WO
R T o )

for C describes the multiplication on J3(C) in terms of the corresponding
power series. If C is graded, JﬁgF(C) denotesthe monoid of graded
divided sequences in C. If C is a bialgebra with antipode map, i.e. a
topf algebra, then vJS(C) is a group. For instance, (L is a Hopf algebra
but J{ is not, and cgsgr(J{) doeé not have inverses.

In Chapter 1 we develop the algebraic preliminaries. Section 1.1.
contains the basic background definitions and results. Many of the ideas
come from [Heyneman and Sweedler, 1969]. A divided system 1s a divided
sequence in severai parameters. We define the set JSI(C) of divided sys-
tems in a coalgébra ¢ for any index set I. If C has a test map, to
each elemept of &SI(C) we associate a family of power series in k[tiBI.
Ye prove the following classifying result; if two divided systems have the
same associated faﬁily of power series, then the divided systems are equal,
term by term.

In ‘section 1.2 we deseribe the cofree construction in the category of

connected coalgebras. The approach is based on that in [Husemoller, 1971].
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E Given 2 coalgebra C and a map o, we give necessary and sﬁfficient condi-
E tions for C -to be cofree with test map G.

i In Sectiom 2.3 we show how to comstruct all divided systems in a coO-

% free coalgebra C. We then prove that there is a bijective correspondence
& petween &31(0) and families of power series. If Q is a component cofree
E pialgebra, the group law for the multiplication in ¢ describes the multi-

plication on JjI(C) in terms of the corresponding power series.

In Chapter 2 we apply these methods to algebraic topology. Im

1 skt

Section 2.1 we develop the idea of a coalgebra of operations on a monoidal

functor. We give general conditions for such a coalgebra to generate a

R Lk o SR L

!
i
1
!
{
1.
i
t
i
!E . .
‘ bialgebra of operations on the functor. In Section 2.2 we use our condition
E of Section 1.2 to show that o’ ig cofree. One major result is Theorem
% 2.2.50: £5%r((1?) is isomorphic as a -group Lo Ugr(ZPEG,tiﬂI), where
3
3 ~
! Zpﬁw,tiﬂI has a skew multiplication. As a special case we have Theorem
L g.2.52: HE (D = . £(0) = .
| 2.2.52: (0°5) = {£f(w) « Zpﬁwﬁ . £(0) = 1} as groups. The correspondence
can be expressed as follows: for (en):=0 € ﬁﬁgr(cxe); z en(x) = f(w)(x).
e n=0
where x is the polynomial generator in H (P ;Zp) (real or complex projective
space according as P % 2 or p # 2) and wk(x) = ¥ . For example, it
follows easily that 2 (—l)JPl'PJ = 2 (—l)nP(O’n),‘since both sides

correspond to (1 + Ww@a-w =1- w2. We show how to express the Adem

relations in terms of divided sequences, with power series considered as

generating functions.

g R R

In Section 2.3 we develop the coalgeb¥a basis for j{?. The group law
is more complicated, SO £ %r(j{?) is not so easy to describe. But the
. complications disappear when we consider only the divided sequences. Then
| we have Theorem 2.3.54: B (REL]) & (FG) € 2w 2 £(0) = 1 and

degree f£(w) 5_2}. Thus graded divided sequences multiply much the same way
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in (. and in R we again have the relation ) (--l)JQl'QJ = ) »(-l)nQ(O’n).
i,] n=0
; i
! In Section 2.4 we develop the proper notion of excess in the Nishida
1 i
[ i algebra; each | ¢ N has an associated excess interval -é-(ﬂ Y. We show
& that excess and the Nishida relations generate all the relations in the
Nishida algebra. We define the natural coalgebra basis { ﬁ(S’R)
i
' + .
{ S e [Nz R ¢ N“P)} for N °[g], where ﬂ(S’R) = Q(S & AD-PE_R). We give
£ A
%7 some examples to show the necessity of introducing infinite homogeneous sums
{ and topological ijdeas. We define eﬁ_'_(.sr\vf)_ the set of graded two way divided
§ sequences. Each element §* of 5+($r) is -associated with a unique family
¥ of constants (ui,vk) in Zp (see 2.4.48). We consider the way in which
_properties ofy-ﬁ* depend on some properties of the associated constants.
We show how to express the Nishida relations in terms of graded divided
g i sequences, and give a simple consequence: for any n > 0
0 if n >0
e S
] [PQ™ = 1 [ o) 4f n=0-
i=0 3=0
t
i
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Section 2.4. The Nishida Algebra

Recall that the Steenrod algebra (.8 4is the bialgebra of operations

%
on the functor H @ Yop, Lin generated by the set of operations

{Pn : n > 0},

Definition 2.4.1: For any linear natural transformation 08 on the func~

o

3
tor H ¢ Top, ¥ f.in, let et denote the transpose 1ipear natural trans-

formation on the functor Hg ¢ Top, > Lin; i.e. for every X € ToPgs
% * I
g + H (X) ~ 1 (X), and et : H*(X) - H*(X) is the transpose of 6. In

. . . : n : PG o B
particular, consider the operations {Pt T 3_0}. Then each . Pt lowers

degree by d-(pml)¥n,and satisfiesthe following excess conditvion.

Proposition 2.4.2: Let X e Topg and let V denote the shift map on the

e . n v if degree x = d'pn
coalgebra H*(X), then ?t(x) a i degree x < depn

proof: Let m = degree of X and consider Pt Hp~d(p~l)n(x) > Hm(X).

if m = dpn then m = a(p-1)n = dn, and on Hdn Pn is the pEE- pover map

dpnn ] :
o that on H P Pt = ¥, since for any coalgebra V 18 transpose to the

t
pﬂb~ power map on the duzl algebra (see 1.1). if m < dpn then

m - d(p-1)u < d'np SO on H?—d(P—l)n Pn is the zero map, and therefore

Pz is the zero map on Hm(X). 0

The suspension map S @ H*(X) - H*_I(X); and the Pz obey the Cartan

formula: For X € H*(X), Yy € H*(Y), and x ®y € H*(X ® Y), we have

n . i

Pt(x 8 y) = l Pt(x) @ Pi(y). Therefore, as for CLe, the Pz generate
i+j=n

a bialgebra of operations om H, Y Topx~ Lin.

Definition 2.4.3: Let Qipp denote this bialgebra. Then:

e —
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Proposition 2.4.4: as -+ (lipp T 8> Gt is-an isomorphism of coalgebras

il

i

and an antiisomorphism of algebras. (I

S G b A R

n .
In particular, we can consider each Pt as an operation on the func-

tor H*:Loop + Lin..

Proposition 2.4.5: Clipp is the bialgebra of-operatiqns on the functor

B, : Goop » Lin generated by the P:.

Proof: We need only show that if et is the zero operation on every

[ -
. Yor any m, the sequence

opP

{Km+n tn> 0} = km “is an object in Eoop. Suppose et(z)

X € Loop, then et =0 in

L]

0 for every

m > 0, every z ¢ H*(Km); then <e(1m),z> ='<1§,et(z)> = 0, so 6(1m) =0

. e ; g €
-~ for every m. Therefore 6 =0 in (7, so et = 0 in CLOPP' 0O

Recall that the Dyer—Lashof algébra JBF is the bialgebra of cpevations
on the functor H, : Loop + f.in generated by the set of operations

{Qn :n > 0}.

Definition 2.4.6: Let N denote the bialgebra of operations on the
functor H, : Loop -+ Lin generated by the operations {PE :n >0} and
{Qm tm i_O}. We call j§e the Nighida algebra. Nishida [1968] showed

: n m ., . . s
how to compute -PtéQ ; it can be expressed as a linear combination of |

3

i
terms Q 'Pt.

We will discuss the precise formula, called the Nishida

relations, later.

]

Notation 2.4.7: We will write @, QOPP’R LI 40 place of Q°F, Gspp

JLE, &Se. For & «¢N  we say [A] =n if § raises degree by d'n, and

similarly for 6 ¢ (L and Q ¢ R .

Since CLOPP' and J& act faithfully on the functor H_ : Loop - Lin

we have Cprp“"‘? J€ and J%.“4*9 N inclusions of bialgebras. Then




112

the multiplication (composition of operations) in N gives
Re &opp -> N@N . >N; since m 1s a coalgebra map,ﬁ\, @O.opp +J\§ . |

Qo B't > Qoet is a coalgebra map.

A SRR MMMWWWQ

Proposition 2.4.8: (P\, o QA aon -+ N is a surjective coalgebra map.

Proof: N is spanned by words in the symbols' P: and Qm. ‘But each occur-

ance of P:-Qm can be replaced by a linear combination of words with all

Qm's preceding all Pz's. f

. By Proposition 2.3.14, gR, can be described as the collection of linear

operations on the functor M : Lins > Lin that commute with suspension. 1Imn

—

general an .operation in J does not operate oa the functor M : Lin -+ Lin.

S

‘Proposition 2.4.%: Each operation in LN can be considered as an operation

i on the functor MoH : Top, = Lin.

Proof: TFor X € Top,, consider ﬁ*(X) k= H*(_QX). N operates on H_(QX),

Sy

and we need only show that NS 'ﬁ*(X) c M(—ﬁ* (X)) = ,F",'—ﬁ*(}{). But by
Proposition 2.4.7, we need only note that Q'et'.ﬁ* X) c Q'ﬁ*(x) c 8, '-ﬁ* (X)

or every Q ¢ . and every o, Co"opp O |

Recall that 8, is a component coa).gebra;d:’ & ZJQ,[K] as coalgebras
' L >0
where R [£] is the connected component of the grouplike element Q .

O'opp is a comnected coalgebra, with 1 its unique grouplike element.

0
Proposition 2.4.10: N is a compoment coalgebra with {Q £ : £ > 0} as

its set of grouplikeV elements.

- 0 .
Proof: In degree O, [Jk!']0 has basis {Q £ : £ > 0}; 2.3.3 and 1.1.16. il

. A

i i s o e b e TR B W ROy
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"Then N = ZN[E] as coalgebras.

113

0
Definition 2.4.11: Let JN[£] denote the connected. component of Q £ inN .

£>0

Corollary 2.4.12: 1) For £ 20, R, [£] 1is a subcoalgebra of N2y,
2) ;N [0] is a subbialgebra of N and &opp C——>J\f[oj as bialgebras.
Proof: .1) The coalgebra map LQ, =~ J§ must breserve components; see l.l.

0 .
2) Q A 1 and the component of 1 1is always a subbialgebra. The

coalgebra map a’o e N preserves components. 0

PP
Multiplication in N isa coalgebra map taking J\f[ﬂl] ® J\S[zz] .
Ng, + 4,). consider R{£) © G +N12] €101 o> 3(18]

Qo6 > Q0.

Proposition 2.4.13: R 1L e Q,OPP«*N[K] is a surjective coalgebra map.

Proocf: (R,.Gs Ocopp is the component coalgebra zgod'{{ﬂ] ® C)”opp’ and
LZO&[Z] ® aopp .+ zZON[Z] is a surjection with R 2] ® G’opp ~N[el. O

We will describe the kernel of this map in terms of excess.

Recall the definition of excess in ¢ and in & .

Definition 2.4.14: TFor 6 € a, we Say excess 8 = e(9) = d°'n if e'Hm(X) = (0 |
%

: < qe . ; .

for every m < d'n every X ¢ Top, but e(ldn) #0 in H (I\dn). For

any admissible sequence I = (il,...,ik), e(PI) = e(I)-‘-’»d'(p-il - [11),

k
where [T} = (p-1)" } ij and for any multiindex R N(P) R e(P(R)) =

d-|R| where IRI Zrk. Recall that {8 ¢ G : e(8) > d-n} = {0 eC
e

m '
. = < N i . =2
e H 0 when m < d°n} is the left ideal {6 ¢ Q.: ® (ld-(n—l)) 0%}.

Definition 2.4.15: For Q (R , we say excess Q = e(Q) = d'n if Q'Hm(}_{_)

=0 for every m > d'n ‘every X e Loop, but e(y"l) # 0 in M ;
: n
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then for any vy ¢ “é.n(Y), Y e Top,, Q(y) # 0 in H*(QY). For any allow-
able sequence I, e(QI) = e(I); and for any multiindex R € Ni,"e(Q(R)) =

£

d'n(R) where m(R) dis the last entry, i.e. w(R) =1, for R e NC.

£
Recall fhat Qe : e(® <d'mn} = {Qef : Q'%m(Loop) = 0 when

m > d-n} 1is the two-sided ideal and subcoalgebra {Q ef. ¢ Q(yn+1) = 0}.

The appropriate idea of excess in the Nishida algebra is that of an

excess interval.

Definition 2.4.16: For any interval [a,b] clN, we say 8 ¢ has
excess interval ‘E(H ) ¢ [a,b] if ﬁ'Hm(E) =0, for m ¢ [a,b] and
X € Loop. If [a,b] is the minimal interval with this proéerty, we say

e(8) = [a,b].

-Proposition 2.4.17: For 8 # O in @, consider et e O c‘ﬁ(; then

opp
€0,) = [e(8) + d-[0],®) = [e(8) —d-[0, ];m).

Proof: 0_ : H X—~H X dis tramspose to 6 : Hn~d'[e]X + H'X which is
t o~ n-d:[8]— 3 S

0 if e(®) > n - d[8]. Therefore et'Hn =0 for n < e(d) + d.[6], i.e.

— *

e(et) < [e(®) + d[6],=). Let m > e(d), so G(Im) #0 in H (Km); then

et(z) # 0 for some z ¢ Hm+d'[e]5m since otherwise <6(1m),z> = <1m,6t(z)>

= (0, so that e(xm) = 0 a contradiction. Therefore E(et) = [e(8) +

d-[8],=). O
Proposition 2.4.18: For Q # 1 in‘FLc‘hﬁ EKQ) = [0,e(Q)].

Proof: Q'%n(moop) =0 for m> e(Q), so E{Q) c [0,e(Q)]. Let
0 <m < e(Q); then for any vy ¢ ﬁg(Y) Y ¢ Top,, Q(y) # 0 in H, (QY).

So e(Q) = [0,e(Q)]. O

BT AT T AR AT TS IR B PR TR BT R T MR SR T T TR N, s e I ey e s e
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Proposition 2.4.19: For ﬂl and flz e N, _é_(ﬂi'ﬂz) g-e—(ﬂ?_) n (g(ﬁl) -

L a18,D).

Proof: Let X ¢ Hn(_}g_). If n ¢ —é-(ﬂz) n (E(ﬂi) - d'[ﬂz]) then either

n ¢ 2(92). whence }12(){) 0_; or n ¢ E(ﬂl) - d-[ﬂzl, i.e. .n + d-[ﬂz] ¢

—é_cgll)- whence ﬂl(ﬂz(x)) = 0 since 5{2(x) € Hn+d-[£12] x. 0

Since for A eJ\Y ,A=0 in N iff e@) = ¢, we have:

Proposition 2.4.20: For Q e H and 6 ¢ @, Q'Gt =0 in N if

e(8) > e(Q).

A

Proof: By Proposition 2.4.18 E(Q'Gt) _c_—é(e‘_) n (e(qQ) - d'[Gt]) =
B [

[e(B) - d'[et],w} n ([0,e(Q)] - d'[et]) by Propositions 2.4.16 and 2.4.17.

Therefore, e(8) > e(Q) im.pliesmz(q-et) =¢. O

Thus for each £ > 0, span{Q ® et : e(8) > e(Q), Qe R{LI} <

Rer (. [L] ® 0"opp + W [2]). We will show they are equal.

Definition 2.4.21: TFor n # 0 we define élements %;R € §*<Kd'n) for
%
|R| < n as follows: recall that O'elldn cH (Kd'n) ‘has basis
{P(R)(1 ) ¢ IRl < n}. Since H*(K )y = V(O..e.1 ) ® E as algebras, where
: dn - dn dn !
V denotes the restricted enveloping algebra and E 1is an exterior algebra
present for p # 2, we can extend the set {P(R)(xdn) : \R[ < n} naturall);
to a basis of V( Q,e-1dn). Then there are naturally defined elements
{E;R : |R| £ n} in H*(Kdn) orthogonal to E and dual to the elements

{P(_R)(‘dn) : |} < n}.

Definition 2.4.22: Consider 4.n
1

H*(K ) —dn_ g i<, L,z s
dn P ' dn

*
e H (Kdn) as the Zp—linem. map

T
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Proposition 2.4.23: TFor R,R' ¢ N(@) with |R| € n, consider (R )(E; ) €
= 'dn (R )
H*(Kdn). Then H*(Kdn) —_— Zp takes (E ) to GR,R"

W (R ) _ _o@®" R, _
?roof. <1dn (E )> = <P (1dn),§ > = GR,R" O
Definition 2.4.24: Consider M(H*(Kdn)) =&'H*(Kdn) c H*(QKdn). By
R

Proposition 2.4.9, M(ﬁ*Kdn) is an JN-module, and we consider the & as
elements of it for |R| < n. Let n : M(E*Kdn). - Mn denote the [R.-linear
1 n” .

dn

map induced by E*Kdﬁ s Zp ~ Zp'{yn}.

Proposition 2.4.25: For any Q ¢ & and R,R' ¢ tN( )

with |R| £ n, con-
sider QPER‘) e N . Then QP(R )(F, ) € M(H K ) and n(QP(R )(g )) =

Sp,rr Q) e M . U

Theorem 2.4.26: For Qe & and 6 ¢ O, Ekq-et) = [e(8),e(@] ~ d-[8 ]

= [e(8),e(Q)] + d-[e].

Proof: We have containment by Proposition 2.4.18. We will show that for

anj dn e [e(®),e(Q)] + d-[8] - there is an element of degree d'n on which

1]
Q'Gt is nonzero. Let © vRP(R) + z v P(R ) where VR # 0 and e(8) =
d-|R] < d*|R'|. Then d-'ne [d*|R], e(Q]) + d*[R]; let m =mn - [R], then
N . R = —
d'm ¢ [d-|R], e(Q)]. Therefore we can consider £ ¢ H*(Kdm) c M(H*Kdm)
since IRI < m, and ER has degree d'm + d-[R}] = d-n. Consider

n(Qet(ER)) = VR'Q(ym) in Mm; since d'm < e(Q) this is nonzero, so

Qet(gR) #0. O

Recall that O has coalgebra basis {P(‘R) :

(s)

:t Re IN([P)} , and that
for £ > 0, ‘R.[ﬂ] has coalgebra basis {Q S € Nﬂ}. Also, by 2.4.19
we have Q(S)PER) = 0 by excess if lR‘ >n(8), where w(5) = Sp the last

entry in S. .

S S—— - = T NS LAY, L T T R M SR N YT IO B e Sy

A |

EDe e A RO A
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Theorem 2.4.27: For £ > 0, the set {Q(S)'PER)_ : S € Nz, R € N(,E) s

|R] <m(S)} is linearly independent in NMNIL].

Proof: ‘Suppose 4= ZuSRQ(S)PER) = 0. We will show that Hop = 0 4if
R —

[R| £ w(8). Pick an R, let n = |R| Consider £ ¢ H*Kd'n; then

n(ﬁ(gR)) = guSRQ(S) (yn). in Mn' But {Q(S) (.yn) : m(8) > n} 4is linearly

independent in Mn. Therefore Mg = 0 for every S such that n(s) > |R| 0

Corollary 2.4.28: TFor £ > 0, span{Q ® et H é(e) > e(Q)} is the kernel of
RMLl » a9pp - N[2].

Proof: J3,[£] @ aopp = span{Q(S) ® PER): 7(S) > |R[} @ span{Q @ o, ¢

e(8) > e(Q)} and the map is injective on the first summand by 2.4.27 and

is zero on the second summand. 0

We can now see that J‘S is a component cofree coalgebra.

Definition 2.4.29: For S,R ¢ )Ng x'N(P) , let Q(S’R) denote

Q(S*'|R|'A£)-péR). Then by 2.4.25, =(AS®) < ap|r|,m(s) + [R]] + a*[R], =

d-(|r] + [R ]a'+ [0,7(S)]), where |R| = Zrk and [R]a? Z(pk——l)rk, so that
. P 2
[R] + Rl, = ipr

p kK

Theorem 2.4.30: (A(S"R) : S,R ¢ lex N(P)) is a divided system in JN[2].

‘ : summed over R' + R" =

"R'" and T'+7T" =8+ |R|-A£. If #(T') < [R'| or o(T") < [R"| the term

is zero and caun be ignored. For each nonzero term let §' = T' - R |'A£
and 8" = T" - ]R','l ‘Ag; then §' + 8" = S, and the sum can be written
3 QIR L&Y o smHIR"ap,
§'48"=8 ¢ .
RI+RI|=R
R R .
Since -{ﬂ(s’ ) ! S,R ¢ N x lNcP)} = {Q(T)'PER) : (D) S lR[} is a

[T e 5
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basis for /N [£] by Theorem 2.4.26, we have:

Theorem 2.4.31: For £ > 0 N[2] is a cofree coalgebra with coalgebra

g Q(S,R)

basis : S,R € !Nz x N(E)}. 0

For each £, N[£] is a graded cofree coalgebra, indexed by £ s P

with weighting d'(di,ek : i¢ £,k ¢ P) where di = pz—l(pl—l) and
e, = (15Z - 1) - (pk~l) = p£ - pk; thus e, = 0 and ek <0 for k> 4.
(8,2:8,) (8,L:5,)
We have [ A ] = di and [ A ] = e and for £ = 0,
(8,R) sty
[g>1=1A4 1 for every n, so that there are infinitely

many basis elements of the same degree.

Example 2.4.32: Consider an: - ‘Q(O,n) in N[1]. Each QnP: has
“degree 0. —e-( Q(O,n)) = [d-n,d:nv] + d+(p~1)n = {d'p'n} € W; so for any
X ¢ Loop and any m ¢ N, QnPE(Hm(z)) = 0 unless m = dpn. By Proposition

2.4.2, on H n(z) QnPt = woV, where V is the shift map and w the

dp

restriction map on the bicommutative bialgebra H*(g), since Pg(x) =

V(x) e Hd'n so that Qn(Pz(x)) = w(V(x)) = V(x)P. Thus for each

X € H*(g), Z QnP:(x) has only one non-zero term, which is equal to
n=0

woV(x), so that z Qan is a well defined operation on H*(E), taking x
n=0 -
to woV(x).
We define a filtration on JY[£] in éach degree so as to be able to

consider summable homogeneous series.

Definition 2.4.33: Let ' = Ed,[N m') ={AedN :A.Hd_[o )

for every X € Loop}. Then {f&N};=O is a decreasing filtration with

(X)) =0

3:0 = N and NEOT}N = Q, For each £ and each degree d'nm we consider
the restriction of this filtration to [Jf[ﬂ]]n . and form the completion

[53[3]]n. For each £, N[2] & J&iﬁj as a graded subspace. In particular

et

oo
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N[0} = ﬁf[O] since JN[0] 4is finite dimensional in each degree. Let
‘J:( = Zﬁf[f.], so that we have J\f‘"‘*—>dq' A homogeneous family {ﬁi'} in

N[2] ‘is summable in 3'\?[?.] iff for every N ﬂi e F =€ for

N de[N,=)
all but finitely many di.
N I{Z] has coalgebra basis { A(S’R) : SR € fN[' x N( B 1.
Proposition 2Z.4.34: %N =€.d.[N ) has basis {ﬂ(S’R) : S,R ¢ [Ng'x [N(P)
and |R| + [R], = [Z’Pkrk > N}.
proof: S AP = 4 (10,71 + [R] + [m),), s0 A& e g, T

g

N < |r| + [R]¢= ZPkrk.

P

Theorem 2.4.35: For each £ and n every homogeneous family {uSRﬂ(S’R)}

-

in [‘N[ﬂ]]n is summable.

Proof: For any N, Zpkrk < N for only finitely many R ¢ N( e) . For each
o (S,R)
such R there are only finitely many S ¢ IN’E such that [ 47’7/ = q,

since ] = [S]R + lRl'(pz-l) - [R]G, so that [S].R, is bounded

above by n + [R]Q - |R| (pf’-l). Thus for any N, all but finitely many

uSRﬂ(S’R) are in ?N' O

Corollary 2.4.36: Every element in (¥[£] can be expressed uniquely as a
homogeneous infinite sum ZpSRﬂ(S’R).

We have a similar result for the allowable/admissible basis.

Theorem 2.4.37: X [£] has a basis {QJ-Pi : J allowable, £(J) = £, I ad-
missible, and e(J) > e(I)}. Every homogeneous family {uIJQJPi} in

[N[tj ]n is summable.

Proof: E(QJPi) = [e(I),e(d)] + d-[I] © [e(I) +d.[1],), and e(I) + d:[I] =

d+pelead(I). For any N there are only finitely many admissible sequences I
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with d-p-lead(I) < N. For each such I “there are only finitely many

L R SRS 20l

A oz

allowable sequences J such that [QJPtI:] = n, since [QJP:] = [J] - [1]
so that [J] 4is bounded above by n + [I]. Thus for any N, all but finitely !

QJPE are in F . 0O

many N

Mg

Bt R L

Not every naturally occurring homogeneous family is summable.

Example 2.4.38: We will show (2.4.78) that for any n the homogeneous

n+i+j

family {X<P3)t’P2'Q : 1,5 > 0} 1is not summable where X 1is the

e aa T T

antipode map in &4, by using the fact that a summable family can be evaluated

on any x ¢ H,(X) to give a finite sum. If we apply 2.4.19, we get

_ i n+i+j Fi+]
((dy PR ot ], Q) = ey« dp-Dim,d(mtit)]. But
e(P v(PJ)) # «; in fact given N we can find i,j > ¥ such that

i 1 oe(r XPJ) =1, Take i = pk and (p-1)*'j = p -l for k sufficiently large;
. o (a) I , :
i “then X(PJ) = - Z _-[-_P(R) has P k =P k as a term, so pP 'X(PJ)
[R]=(p~1)] ’
kI I

PP .p k k+1

I
=P as a term and e(P ktl

has ) = 1. Thus e(P -y (pl)) = 1.

Definition 2.4.39: Give NN the tensor product filtration:

,}N(N&N ) z '3- (N) ¥ '3 (J\f) For each degree n and each 2z,
F l+J"N

i

let [[[e] éﬁ:[z]]n denote the completion of [{§[£] ® W[L]]_ with

respect to this filtration. Let &Q’; = Zf\'f[ﬂ] ® \1'\7'[,@].
£

e g ~.’=-‘$'.'d"‘.\h

Proposition 2.4.40: v N > ol carries ?N(‘N') into g‘N( N'&N)

and therefore induces ¢ +£{® N.

Proof: {'q(S’R) : IRI + [R] > N} is a basis for 5" (u'\r), and wﬂ(s R) .
, ATED 0 KD here GRrp T )+ (Rl 4 ) ) -
S‘R'+S"R"=SR

|R| + [R] 2 N.  Thus there exists i and J such that 1+ j =N and

AR g6 ana 4G Fwh. o |

&
e e
3
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Proposition 2.4.41: For each £ and n, every homogeneous family

{uRis|RuSn /%(S"R‘) 8’: ﬂ(S“’R")} in [N[£] ®N[l’_]]n is summable.

Proof: The same as the proof of Theorem 2.4.35. ([

Example 2.2;.'42: For .any i consider {Qn+lP:_= ﬂ(l’n)}:=0. This is a
homogenous summable family in J\?[l], of degree (p-1)-i; 1let }Nai =

T Q™™ ¢ K011, Then vA, = J A. ® A, , i (A7 isa
b t i PR S | i i"i=0
n=0 1l+12—1 1 2

graded divided sequence of we.igut;i: &;(p-l) in d:f"[l].

We want to consider graded di;rided sequences in {N[L] (or A:J[E]) for
each £; sincef*_N has weight d-(p-1), we consider a collection of elements
(;:n)m62 to be graded if i£ has weight d-(p-1), i.e. [En] = d*(p-1)n for
every ' n. The graded coalgebra inclusion & [£] & N[L] gives
Jf)gr(&[ﬂ]) Fon> q?)gr(J\f [£]). Ve also have the coalgebra inclusion
O'opp E——N[0] giving @gr( Ouopp) c“‘">o6gr(N[O]) . (L. is antiisomorphic
to aopp as Hopf algebras, so ‘ﬁgr(Qopp) is antiisomorphic to g;-gr(c«,)
as groups, but an element of g)gr( a’c;pp) ‘is negatively graded when con-
sidered in N [0]; if 6] =n ind, then [(8) ] =-n inN[0]. Thus

in ', some simple examples are positively graded and some are negatively

- graded. We want to consider both positively and negatively graded divided

sequences in N » and to retain the convolution product so far as is possible.

Suppose (ﬂ;):=0 is a positively graded divided sequence in N and

(‘ﬂm)m=0

-~y

let ﬂn be the homogeneous sum of the family {3;';13' : 1,5 =20,

is a negatively graded divided sequence inN . For each n ¢ 7

[Ri'ﬂgl = (p~1)n}. This is defined since we have:

Proposition 2.4.43: For each n this infinite family is summable.

T M Y R SRR, N, T T




A Bt A Ak o if o s ST ST

LT i) ‘« St T T
1§~ .

122
Proof: Consider ef ﬁr‘ﬁ_i‘ﬁ};) < e ﬂ;) n (E(g};-i-i) - d'[ﬂ’i']) c d+{p-1)[i,»)

' - g A v, 4u
since [ﬂi] +(p~1)i. Therefore, for fixed n, ﬂn+i ’qi € Sd[ for

N,e)
all but finitely many 1. |

Proposition 2.4.44: TFor fixed n e Z, the family (ALx :':)n ® (ﬂ;*ﬁ;)n :
: 1
ny -+ n, = n, nl,-n2 € 72} is summable in J:i" ® ﬁ , and w((ﬁ;*ﬁ%;‘)n) =
1 ! ¢
I (BAD e (AxRD .
nl+n2=n 1 2

nl,n2 A

Proof: 'By the proof of 2.4‘.4'3, the family is summable. We will show in

Proposition 2.4,52 below that the comultiplication acts as stated. []

Example 2.4.45: Consider {QnﬁPEO’m) ' n,m > 0}. Collecting the terms of

like degree we have a collection of summable families in ﬁ[l]. Let

~ ’ (03m) . . .
, = Z Q"p in [N[£]] . for i e Z. Then
A1 i=n- (p+L)m t (p-1)1
1b§j B Z ,ﬁ'i e ’ai where :'L1 and i2 range over g.
) i1+iz=i 1 2

=l ~
Definition 2.4.46: We say a collection of elements ('ﬂn)nEZ’ in N is a

graded two-way divided sequence if [Fln] = _(pj-l')'n and \b,qn =

Z ’an ® ﬂn » Wwhere we think of gf as a completed coalgebra with com-
n,+n.=n 1 2

172

npamyel

pleted comultiplication ¥ : &N > ;N ® & Then 2.4.44 states that a two-way
divided sequence (§n)z results from the "convolution" of a positively and
a negatively graded divided sequence. Let ¢33+(N) denote the set of all

(gréded) two-way divided sequence. Let 06_*_(&;) and cﬁ}_(\N’) denote the

- sets of positively and negatively graded divided sequences. We can consider

‘5+(&~i)‘:—~>£5+(dtf) as those collections (ﬁn)z such that § = (0 for

n
n < 0. Similarly & (K)S— ,b_*_,(.j:{) as those collection (;’{n).z such that

g

~

Y

K}

TR

e
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] uS"‘l‘S",R"‘l‘R" = uis!.uSHRll for every S‘,S",R',R". Let ].li =

~

ﬂn= 0 for n > 0. Let é(ﬁ) denote {ﬁ € [JT(]O : q);l =4 e ;i};
then we can consider .G(dti') C—-——>£5+(Jt3') as those collections (an)z with

;n =0 for =a# 0. Note that G(J:f) properly contains G({N).

n_n . >
P

Example 2.4.47% Consider ﬁ = ZQ Then P8 = ;‘ & A, so ﬁ € G@\?).
. 4 n=0

Rather than extend our theory for coalgebras and divided sequences to

"completed coalgebras' and two-way divided sequences, we handle the situation

directly.

Theorem 2.4.48: Any ,'15* € ,ﬁ_;_(d':{[ﬂ]) can be written as

J=(p-1)*n

’qn
» Summing over S,R ¢ !Nﬂ X N(P) s for a unique

["’q(S,R)

flamily of constants ul,...,u‘a and (Vk)_lP in Zp.

Proof: For each n, ﬁne [..{'\37[[_!]1‘1 so 4 = XUSR}?;(S’R) for unique

n
~
Hop € ZP such that [ﬂ(s.’R)] = n., Then Zﬁn = 7 Mep Q(S’R) in each
4 S,R :
(8',R") (S8",R")

o A

]

S '+'S" ,R."+R"

- (8',R") (8",R")
= ZUS‘R‘ ﬂ ® zusan ‘p‘

degree. So wz L Z pstp ﬂ(S’R) e Xp
V4 3,R

N2l eFlel. me yJ5 = [A e [H.

z z oz 9

48R o (SR

= zuRl g! 'URnSn in -1\7 [p] @ ﬁ [£2). Therefore

u and
Aif,,%

vk=u « Then yu

fl
=
<
(B

SR

Corollary 2.4,49: There is a bijective correspondence between é;’i')_l_(ﬁ[ﬂ])

and families (ui,v i€ Z,-ke P) in Zp. O

k

Definition 2.4.50: Consider ﬁ; eﬁ_*_(;([ﬂl]) and ﬁ; €§’+(4:([£2]), and
consider the family {ﬁii; tdi4+j=n, 41,3 €¢ 2} in J\?[Zl +£2]. If

this family is summable we say that the convolution of ﬂ?;‘ and ,ﬁ;‘ is
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defined and that §;€?'= N;,: =ﬁ.* where ’%n = ): : ﬁ % .
i+j=n 1 3
Examples 2.4.51: 1f ﬁ'; and ﬁ: € XS_‘_ then the convolution is defined
since the sums involved are finite. Similarly for ﬁ; and’ ;?; 606_
By Proposition' 2.4.43, 1f ;1'; € <§5+ and ;‘; e _ the convolution is

defined.

-~

Proposition 2.4.52: If the convolution ,ﬁ* is defined, then

8, B NI 2D

Proof: Consider z;;n'= (2%1)(2'5;3,). Then ‘JJ(Zﬁ%) = q;(Egi)- w(z’qj) =
N :

A4y 014, )08 o 18;) = QA - JREIERSIRL SN ° A - O

i Qn-i-i) ®

X . el d o AN ] o
Example 2.4.53: Consider (x (P )t)j'-=0 € ‘ﬁ_(N[O]) and (iZOPt =0

5 e i _
&, @D, since {x @) 2 Q™) 4 not summable (2.4.38), the con-

volution is not defined.

Theorem 2.4.54: 1If ﬁ'* € 53+(ﬁ [81) corresponds to (“i’“k),% P where

(vk)ﬂ? has the property {k e P : v-k # 0} Vis bounded, then the convolution

~

of g and &' is defined for any &' € 53+(£r).

Proof: Let m be large enough that v 0 for k > m. By 2.4.48 we

k
have ZQH = EuSvRﬂ(s,’R) summing over S € NZ and R e N°. Similarly

] t S'R’ ]
Xﬂr'l = ZU'S V'qu( ’ )summing over S'R' € INZ x N(p) . Then we need to show
] t ] t ] !
" {uszu.s o'} ﬁ(S,R) g(S'R) [S(S,R), ﬂ(s R )] - n} is summeble
o '
for each n. We will show that { S(S’R)' ﬂ(s R : S,R ¢ (N£ X Nm,
L' (P) )
S',R" e N7 x N all in degree n} is summable. Let N be given,

"e_( H(S,R). S‘(S',R') S_E( H(S"R')) a (’E( Q(S:R)) - d'[ Q(S‘QR')]) <

g fmax (0] + (&) 5 R+ )R] - (85D, ve have

e i e e AT R T 4



N and [‘Q(S’R)' Q(S"R')] = n. Therefore ,Q(S’R). ﬁ(s"R') ¢ &

) 125
AR e - AP a s 51 - IRIGED - RIg, so IR+ [R], -
[ﬂ(S’R )] = p£'|R| + [S]R - n. There are only finitely many (S,R) ¢ INz X
Nm such that p£'|R| + [S]& - n £ N. Since |R‘| + [R']a_= Zpkr there

P

k
(P)

are only finitely many R' ¢ N such that |R'l + [R‘]Q < N, so for any

fixed (S,R) there are only finitely many (S',R') such that |[R'| + [R'] <
d*[N,=)
for all but finitely many (S,R),(S8',R"). O

Prbposition 2.4.55: 1If ﬁ* € ﬁ+(d':3 [£1), and ﬁ* corresponds to (ui,,vk)2 P>

then My = 0 for k > £. Thus we get Proposition 2.4.43 as a corollary.

_ (84858,
Proof: 1If uk% 0 for some k > £ then Z‘Rn has a term My &

which has negative degree. 0

Theorem 2.4.56: 1If ﬁ* € m_*_(d% [£]) corresponds to (“i’vk)f,P with
—— - ,L

uz# 0, then 335* can be expressed as Q**(e*)t for some Q. € ﬁgr(ﬁ,[ﬂ)
and 8, € @gr(a,). 1f Hp = 0, then S'%v* can only be expressed as such a

convolution if ;,i* e@gr Rien.

Proof: Assume that u # 0. For each S,Rﬁ(S’R) = Q(S+|R!A2)P£R). 1f

1 | r‘ ?
§' = § + IRlAZ’ then uS = us°u!!'R|, so uS\.vR = uS m("k/“z) K_"" us \)'R

where vl‘c = »vk/u . Then Zﬂni ZUSVRQ(S+‘R.]A£)PI(:R)___ (g'us Q(s ))'(g\"RPER))’

since

Q(S')P(R) =0 unless S' =5+ |R|A, for some S. Then g, =Q.x*(,),
t Z * % * * ¢
~ | 1 !

If &, = Q**(B*)t, let Q, = Zus Q(S ) and 6, = X \)'Pﬁ’(R). Then by the :

i

above argument we have E* = Z uS\)R ﬂ(S,R) where and the
S,R ’

= ‘.
k Yk Me 1

are unchanged. Thus if u, = 0 for ﬁ , €very v must be zero, SO
£ * k

F, = 15 e B Ruen. 0
S

Example 2.4.57: z QnP: = z ﬂ(O,n) in .ﬂ“[l] 1s not the convolution of
n=0 n=0

s

10

o SR e YT Sy 3y e T RS Sy 3 ST T R
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an R and an aopp divided sequence, since it corresponds to (u, = 0,

vl== 1).

H, can be considered as a monoidal functor Loop ~+ f-Mod. For any
object X e Loop H,X is a bicommutative Hopf algebra over & , 1.e. the
product and coproduct and antipode map X are maps in R-Mod. Recall
the terminology in 2.3.57. Since X[g]l =— X in Top, each H/X[g]l is
a coalgebra over Cl,opp. Since HX dis a Hopf algebra, we have
H*X[gl] = H*X[gz] as coalgebras for any g):8, € G, via multiplication
by 8, - 8 gzx(gl) in C. Since this multiplication is induced by a

map in Top we have H).__X[gl] R H*X[gz] as Q,Opp-modules.

Proposition 2.4.58: 1) If A eN (£] then g H . X{gl ~ H*X[p'e-g].
~ o . -~
2) Each £, e§)+(d\f) gives a multiplicative transformation

A~ =
HX » HX : xt—> Zgﬂn(x).

3) 1f (xR)N(_I_) is a graded divided system in HX, then (};1;1,R)IN><N('I)

s o d . 1 —-a
is a divided system in HX where *n R A n-R] (%) -

Proof: 1A = EL“SRQ(S’R) vhere SASR o Q(S")-PER) with S' e o
SelN '

her AC®  takes H,xlg] » BXIg] > B[P -gl.

2) For x e HX, each gn(x) is a well-defined element of H_, . X.

Then 2;’1 n(x) = 2 an(x) which is summable in the graded completion of
4 d«n=-n

[ ~ ~ ~ ~
HX, Since Y4 s Y3 ;@ zgj , 8, is multiplicative,

3) xx‘n g 1is the m-component: of the coefficient of & in

n}:Rﬁ n(xR) ¢®.  Since ‘D(Egn(xR)tR) = zgi(xR.)tR‘ﬁb Z;%J.(XR..) tR", this is

a divided system. U

Pl
For a positively graded divided sequence, the map H, -~ H, always ex~

N

)
tends to H, -~ H, and thus composition, which equals convolution, 1s possible.
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N
If negatively graded parts are present, though, the map H, ~H, need not

extend.

Fa .
Definition 2.4.59: Recall that H, and H, have the grading filtration

o ' ~
H[N’m) and H[N’co)' A nonhomogeneous linear map A , @ H, » H, is said to
be continuous if for every N there exists M such that

A

Aty o) Wy e

.Example 2.4.60: Consider (XPIE)::O- in AQ} (N[O]) We will show (Theorem

2.4.61) that it is not continuous. For example }: X(P ), camnot be
i
evaluated on 2;; N in 1—1 (K ), since in chomology [ z x (P )](x =

=0

e (D) n
Ip ok (. _ . : 5
P . . =—Fa. [

Theorem 2.4.61: 1If ﬁ* € ;5_‘_(&:'3 [21) corresponds to (pi’vk)ﬂii” then ﬁ .

is continuous iff {k e P : v, # 0} is bounded.

over

Proof: &==): Suppose v, = 0 for k > m. Then ;\n = XuSvR Q(S’R)

m A . "
SR € Ne x N, We need only consider terms of negative degree, since terms
that raise degree are automatically continuous; therefore we assume m > £,

since otherwise all occurring terms have positive degree. Given N we

will find M such that [,Q(S=R)] < ~M implies N - [;,(S,R)

] < [R]a'-i- ‘R]

Since e( Q(S R)) < d: [ir] + [RL&) this implies that takes H

into H,, [N,)" Since (S,R)e lNZ' x N© there are only finitely many Q(S R)

*

with -M < [ﬂcs R)] < 0, so ﬂ* is continuous. Let M= N- (p -p )/p and E*

= R) = [8]ln + 2(p£' -p )rk. Then M + p ]R] < Zp Ty

suppose -M > [ &
p R, so N(pm—p )/p’ =M< (p-p9) |R|, t.e. W< .pﬂ-lle Then
N - [ﬂ(S’R)] =N - [S]lp - plel + zpkrk < zpkfk = |R| + [R], since

[S]JL 2 0.0 _
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(=>) Assume Vi # 0' for infinitely many k. We will show that for
* z a A
N > d*p*™ there does noz exist any M such that [Zﬁn ]H[M,oo) & H[N’m).
For any k consider &£ kKem k(@K ). Let n be such that [,a ] =
d-p d 0y
(0,4,) B (0,4,)
N ]. Then S = 'vkﬂ N -+ ZuSvR ﬂ(S’R) for other S,R of the
. nk
~ B 8 o '
same degree. Thus ﬂnk(g ) has a term v °Q (¢7) in Hd.pz(g_Kd). Given

[ A

k

any M we can choose k such that d-pk 2 M and v # 0. Then
B N Ay .(Aﬂﬂ) 0
E € H[M,«',) (ng) and [Zﬁn](t‘, ) has a nonzero term ka (£ ¢

H[N_,w) (_QKd) . Thus ;;1 n is: not .‘caantinu'ous. d

Corollary 2.4.62: 1If ,a* is continuous, then the convolution ;Ff**?%; is

o

defined for évery ﬁN; € ,b_f(d%). 0 by Theorem 2.4.54.

Example 2.4.63: Let ﬁits(ﬁ) ‘denote the set of two way divided sequences

that are continuous. cBg‘r(.R,) c;> ﬁits(ﬁr) since ﬁ_'_(s?:{') o cﬁ‘itS,@ .

By Theorem 2.4.61, 8, € ".ﬁgr(a_) gives 0, € Aﬁits(‘.g{) iff 8, corre-
t —

sponds to f£(w) € U(Zpl[w]j) where £(w) 1is a polynomial. From Theorem

2.3.75 we see that this is equivalent to e(en) »> o, and to the condition
n > ©

that ) en(x) always give a finite sum in cohomology.
n=0

. , . BT, A . cts, ~ '
Corollary 2.4.64: For e*eﬁ) (&), either G*teﬁi () or X(G*)t

eﬁita)z‘)_Both are in o :ts(ﬁ) iff e, = 1.

Proof: TFor f£f(w) ¢ U(Zp[w]), either f(w) or f(w)_:L is polynomial. Both

are polynomial iff f(w) = 1. 0O .

t ~
Theorem 2.4.65: @i S@) 1is a monoid of multiplicative operations on the

A :
functor H*( Loop) ; the convolution product agrees with the composition of

operations.

&2
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. ~ = A :
Proof: A, e &its(\,'\f)' iff 4, : HX » H,X is continuous for every X, i.e.

~ ~ A
iff 5{* extends to H*E -> H*z(_ for every X. Thus composition is defined,

and by Proposition 2.4.62 convolution is defined. [

By Theorem. 2.4.48 each ;Ql* € Jﬁ_{_(ﬁ[ﬂ]) corresponds to a unique family
(n.sv,) in Z_ such that 5":_,_ = ¥ uSvRﬂ(S’R). Since each N [£] has

i’kL,P P * s
3

a preferred coalgebra basis, there is a preferred test map N~ P(N). Since
for each £ P(_Ja.r [£]) Thas finite type, this extends to a map .jh\'{‘ — PN, We
want a more natural description of this test map. The primitives of KN
group into two classes, those contained in R and those associated with

. i -
a'opp' We give two partial test maps o g and a, on . If

S e &i(d\( [£]) corresponds to (ui’vk)ﬂ,i?’ then Y determines (ui)ﬁ an@

o determines (vk)P. -
‘Consider the left J¥ ~module My with y, e M,. Then N > My
ﬂi—-—-—->,9;(y0) is a left N -1linear map. Recall that MO can be considered as
= 0 .0 .
2 Yo © H*(_Q_S ) with Yo € HO(S ). Then MO is a sub

coalgebra of H*(QSO), and N M  is a map of coalgebras; restricted to

0
R, it is an isomorphism of coalgebras &~ MO : Qt—> Q(yo).

Proposition 2.4.66: TKer(J{N - MO) has basis {H(S’R) : R # AO}.

Proof: If R # Ao then ﬂ(S’R) (yo) = Q(S')(PER) (yo) = 0) since [yo] = 0,

{H(S’Ae) (YO) = Q(s) (yo)} is linearly independent. []

Definition 2.4.67: Following Madsen [1975] and May [1976]}, we can use the
isomorphism R, ® MO and the actior; of N on MO to define an action of
N onR. 1In particular this gives an action of a,o-pp c N on R such
that JJ, is a coalgebra over CLOPP satisfyiné the excess relations 2.4.2.

We have the left {N-linear map N >R : 8 +—> 48 (1); restricted to R, this

is the identity map.

aldliAmt o ke by B
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Definition 2.4.68: Let ajg denote the map JN + MO > Eb, or equivalently
the map SN > R

NN 'HO where o :J4 -+ ﬁo t Q+—> Q(by) 1is the test
map for \R, .  Then oQ, is the composition of a left JN-linear map with a map

which is onlytﬂ--linear. Thus all calculations involving elements of Ouopp

must be done in J, ‘;:; MO before applying «.

£-i - -
Proposition 2.4.69: a&(ﬁ(S’R)) = 4p by 1f 5= Aiz and R =4,
0 otherwise

If ﬁ* corresponds to (u sV ),E P then a&(ﬂ ) = pﬂ(bo) 4+

£ ]
Zuipz—l(bi). Then the coalgebra map JN + R takes ,q* to Q, € ﬁgr R,
1 .
where Q. corresponds to (ul,. .',uﬂ).
Proof: rﬁ(S’R) € Rer (N - M ) unless R = Ao. If R = AO, then
ﬁ(s_’R) = Q(S) and Q«R( (S)) (Q(S)). If }T = ZUS\)qu(S’R) then
(S,R) . (Aoﬂ’Ao) 2 (Ai}l’Ao)
&(ﬁ ) = zu \) o (‘3 ) = onR( S ) + Zui'a‘R( A ). Since
1

a(a;) = aR@*), Q, corresponds to (ul,...,pﬂ). 0

Consider the graded divided system (ZP?SH) (Zthm) = z Pn "s™t™  dn
n,m
N1}l with [s] = -(p~-1), [t] = (p-1). Since Pn'Qm = 0 by excess for

. . n_m- n n+ r
n > m, this can be rewritten as z P Q (st) t n Z P i _
m>n n,r

where

u = st, so [u] = 0. Dropping the variable t we have a graded divided

" system determined as the r+(p~1) component of the coefficient of u"

in z Pn n+r n

u . As a special case of the Nishida relations [May, 1976] we

have

Proposition 2.4.70: As a graded lelded system in N [1], u.g,( z Pn n+run)

n,r
= pl(b ) + b (l—u)p . The image under N + R is a graded divided system
0 1
(Pn(Qn+r e &I (R[1]) which is completely determined by
n,r {u,t}

n+r

¢ (TET @ = plb) + b, (1P
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Proof: The action of Pz on elements of J [1] 1is given by the Nishida

relations as PE(QIHT) = (_l)r(n(g—-l))qn. Thus af z PE(Qn+r)\1n) =
n,r

0@ +a@) - EDTEH = oty * b am0Pll D
' r

Definition 2.4.71: Consider the left N -module M(-ﬁ*(Kd)). For ket
A

denote £ s € Ed.pk(l(d) c M@ k(Kd)), and let g, denote
dep

the formal sum Egk'wk. Then any A ¢ N can be evaluated on g, to
P

give the formal sum S(g,) = Zﬁ(&k)'wk. There is a left R -linear (but
P

let Ek

. X = = R
not Clopp—lmear) map n. H M(H*(Kd)) - M Pt(: )(gk) p——> § ¢ where

| 1 R;Ak
c = —I in ﬁl' Recall that b_'fl has basis {mz(c) : £ > 1} and
2 . -
Q(S) (c) = w (e) 1if S A££° Let “a assign to each A e N the formal
0 other

stm (S (,)) = zn(ﬁ(gk)_);wk. Thus %, s the composition of a left
J{~linear map withPa map which is omnly R.—linear, so all calculations
involving elements of O:'opp must be done in the &N -module M(—H-*(Kd)) c
H, (QK,).

Proposition 2.4.72: aa(,q(S,R)) =
- 0 other

If A, -eﬁi(.i:f[!i]) corresponds to (“i"’k)ii,P then a , @, = ot o)

k
Ov, 'w ).
Loy

Proof: For k ¢ P and S ¢ NG, n(,q(S’R)(gk)) = n(Q(S“L‘RI'AﬂZ)P(R) () =

t
(5+[R]1,0) (5+8,0)
Q (c), and Q (c) =
k

(P (R)

(S+]R!A££)
; e

Q (Ek)) = aR,A

2 .
wc) 1if S = A2 -
0 Then o« ,(8,) = XuSvRaq’ ( ﬂ(S’R))' N

0 other a

(Aoﬂ,A )

k
Z\)ka al

) = z\’kv'mz(c‘.)?wk. O
P P '

{wz(c)'wk if § = AOI, and R = Dys keP
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As a special case of the Nishida relations we have P?-Qn =

Ql'Pt if n=p-i
Then we can calculate %n of the divided system

0 other
in 2.4.70.
wl(c)'w if r=p, n =20
+ .
Proposition 2.4.73: « (Pn Qn r) = s SO
0 other
+
( z Pn ntr n) = e v
Proof: First we show that jf r % 0 then o (Pn n+r) = 0. P:Qn+r can
X . +
be written as zu,Qr!-rPt, and aa(Ql Tp : ,q(r l) =0 if r # 0. For

r =0, da(Pan) (Q P .9(0 1)) if n=p-i. So (PnQn)
unless n = p+1l. [}

Theérem 2.4.74:  The graded divided system inéa{ t}(if[l]) represented

+ D=
an L s uniquely determined by og! ZPn n+r n p(bo) + bl'(l--u)p 1
and o (XPn e n) = g*(wu). In particular in terms of the coalgebra basis
+ = - ;
of N [1], we have an " = ) ,Q(a’b)(l—u)(p‘l)aub = ZQanPb(l @ l)aub_

a,b

Proof: 1f JPRQTG® = JA M) then ) 22 ey =
o(by) + b "£(u) and a'a({g(a’R)f(u)ag(u)R) - w.(gwkgk(u)). So

-1 if =
f(u? N (1~u)P and gk(u) = {3 2th:r * - U

Example 2.4.75: We can recover the Nishida relations from 2.4.73 as follows.

PnQn+r is the 1r-(p-1) component of the coefficient of ' in
+ < (p- . -
_z Qa bPb(l )a (p 1)ub. Let a = r. Then (l—u)r(p l)ub =
o (p- {4 .
Z(—l)i(r ip 1))u1 b, so the ccefficient of u' is (- l)n b(rnfg l)) and
i
+
ve have PnQn ro_ z( l)n b r (p l))Qr+b b

t

£

giae 4

&
a
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Consider P ¢ F5_()101) and Q" ¢ &, WSM11). Since ﬁ6£§3

* % :
(J{[O]),Iby 2.4.62 the convolution Pt*Q. is defined, giving an element

of J;‘j+(j~i[11).

x % = e
Theorem 2.4.76: Pt* z Pn B Z QbPE in G(XN[1]). 1In particular,
b=0 ;
i n n+r "
P - i .
for any r # 0, Zo e Q 0 in [y‘[l]](p—l)er

ZPn n+r n _ XQa+b b )a(p-l)ub

Proof: If we let u =1 P_(1-t we get

(1- u)a(p 1)

the stated result, since > 0 unless a = 0. Q0

o0
Note that by 2.4.32, X QbPz : x /> Vow(x) = woV(x) as a multiplica-

. tive operation on H*(Loop). Thus

Corollary 2.4.77: For any x € ﬁ;tg), ¥ P QM (x) = Vow(x) = woV(x). [
- n=0_

nt+it+j .
Ty is not

Theorem 2.4.78: For any n the family {x(Pi)t'Pi-Q

summable in [&}[l]]n.

Proof: If it were summable, then for any x ¢ H, (X) we would have

Zx(P ). (ZPJ ¥ gy = JC T xe ) PJ)Qn+m( ). But by 2.4.77, in
. m i+j=m

; so the left

the left side XPiQ(n-*‘l)-l—J (X) {V°W(X) if n-= 0, i=20

A 0 Other
J
side equals e 1? =0 since Y X(P ) PJ =( ) PJ'X(Pl))
0 other
i+j=m i+j=m

1 if m=0 . . n ) _
{0 other » the right side equals’ Q (x). Even if n = 0, we can

find x € H*(z) such that Qo(x) # Vow(x): Jjust take x to be of

positive degree with Vow(x) nonzero. Contradiction. [
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