Department of Mathematics,

Northwestern University,

Evansten, Illinois, 66201
January 12, 1985

Dear John and Israel,

I think the guestion of associative comultiplications on a
small co-h-space (meaning a two-cell complex localized at an .odd prime p) is~
tied up with the cohomology of the homotopy analyser of an odd dimensional
sphere, which is dafined below, and I come to the oppoesite conclusion to that
expressed in your draft paper.

I cannot ask you to look critically at my arguments while vou have
reascnable doubts sbout the corrasctness of their conclusions. I therefore have
constructed two ad hoc obstruction theory arguments to show that your paper
cannot be correct. These form the first two parts of this five part letter.

The first part considars [X,X v X1, where X is a small co~h-space: let x,y
mean the classas of the inclusions,
twice the identity map, and D(x,y) a variation in the comultiplication which can
be uniguely identified with glements of a homctopy group of the bouguet of two
spheres. Then changing the cemultiplication by D will change P hy

D(2x,2y) - 2D(x,y).
Thus the part Dipl of D involving Whitehead products of weight p will change the
corrasponding part of P by
(2°p - 2)DIp1,

where the coefficient is always divisible by F. This means that if certain
kinds of elements invelving products of weight p occur in the obstruction P,
they cannot be eliminatad by changing the cemultiplication.

P{x,y) the ocbstructiocn to primitivity of

Of course, it is conceivahle that no such awkward obstructiops arise. The
second part deduces from Bergtein’s Theorem that certain 5paces SL@ﬁfP have no
associative comultiplication a similar result for many spaceséﬂguwe“‘ where the
attaching map faciors through the previous one. The argument can be used {o-
discuss the lack of primitivity in the same way. - The process first considers
comultiplications on the second space for

which there is & co-h map onto the
first. For technical reasons we first use a co-h-map between co~h-spaces in a

category of triples, using the mapping cylinder rather than the mapping cone.
In this way we can obtain the obstructions for the second space as compesitions
with the obstructions for the first space. A calculation for Berstein’s space
shows that certain types of obstruction must he present, and a further
calculation for the second space then shows that the obstruction cannot be
removed by changing the comultiplication, whan p=3.

These primitive methods of attack conceal, in My opinion, what is really
invelved. In the third part I show that the chstruction to associativity of a
small co-h-space is a 3-cocycle in the homotopy analyser of & sphere. The
(Lazard) analyser of a functor T can be defined as the raesult of applying T to
the dual Hom(K,Z) of a simplicial free abelian group K(Z,1). For a covariant
functor this is a cosimplicial ahelian group, and the (Larard) cohomoleogy of T
is the cohomology of the resulting co-complex (it is actually the dual of the
homotopy of a simplicial ahelian group). To obtain the homotopy analyser of a
sphere we construct T by first constructing a furctor from free
{and homomorphisms) to the homotopy category so that a group of
bougquet of n sphares each of dimension mi this is then followed
homotopy group functor. The Lie analyzer is simpler:
functor from free abelian groups to free Lie algebras.
cohomology of the homoﬁopy analy

abslian groups
rank n goes to a
by the graded
one just uses the ohvious
It is a theorem that tha
ser of a sphere of odd dimensicn is obtained in
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an easy way from that of the cohomology of the Lie analz er wi o) ients in
the hogotopy groups of spheres and the p~th Hepf Invariant (for the P=primgry

part). I showed 20 years ago that the third cohomology of the Lie analyser

Yo
consisted only of torsion, and the only p-torsion is a cyclic group of order p
involving products of welght p.

Furthermore, changing comultiplications changes the associator cocycle by a
coboundary. Indesd, for every analyser there is a deformation retract which I
call the reduced analyser, and therea is a 1-1 correspondance betwesen the reduced
3-cocycles in the cohomology class of an ohstruection to associativity and the
obstructions that arise by changing comultiplications.

The role of Chan's theorem is this. If the spectral sequence of an
inclusion is constructed for the inclusion of a sphere in a ball, the E*1 term
is the homotopy analyser of the suspension of the sphere,the groups of the E*2
term are those of the cohomology of this homotapy analyser, and the E"® tarms
are the graded groups of a certain filtration of the homotopy of ithe original
sphere. Thus every nonsuspension-element on the higher dimensional sphere is
mapped nontrivially by some differential. For all known slements in the
P-primary part of the homotopy of a sphere of odd dimension either the first or
second differantial is nonzero. The first differential is tha obstruction to
primitivity, the sascond to the existence of an associative comultiplication on
the mapping cone.

Thus far the analysis shows the existence of non-associative small
co-h-spaces. But (and this is the subject of ths fourth part of the letter) we
have alsoc a very tight hold on the possible natures of these obstruction
cocycles, enabling us to discuss the existence of inverses. The theorem is that
if there is an associative comultiplication, it can be chosen ‘to give an abelian
cogroup siructure {localized at p), and if not the comultiplication can be
chosen to have nones or one, but not tws, of the properties: right inverses
gxists left inverses exist: the p-localization is commutative. This should be
5een against the background of the theorem I proved in an earlier letter that a
simply-connected co-h-complex of finite dimension always has the unique
divisibility preperty, and that for each odd prime p there is a comultiplication
whose p-localization is commutative,

Unfortunately these sharp results reguire knowledge of the p~iorsion in the
fourth cohomology of the Lie analyser, which the universal coefficient theorem
tells us is involved in the third cohomology of the homotopy analyser. Bill
Richter and I will be publishing this computation: there is one nontrivial
group. However, it turns out to ba irrelevant to our problem: the existence of
commutative comuliiplications implies that the obstruction to associativity
cannot lie wholly in this extra summand, and the detailed brnowledge of its
generator enables us to show that it cannot affect the existence of inverses.

Finally, at least for this introduction, I mention the Lie finalyser
Conjecture, which is that.the only non-zero groups are those already known.
This is, as far as I have calculated, compatible with the p-primary part of the
homotopy groups of spheres. It implies that the desuspension spectral S58QUENce
referred to convarges at E*3, and it also would prove exactly the opposite of
the theorem in your paper, that the only small p-local cogroups are s5Uspensions

Ever yours

7



FIRST PART (Reu.1>
Letters~ Barratt to Berstein/arper

The following theorem will for completeness he proved in an appendix to this
part. in order that a generalization can he proved in the SECOND PART.

THEQREM 1 (a) If X is a simply-connected co-h-complex of finite
dimension, then for any space A and elements a.,b of
[X.Al, the eguations
cax = b = ya
have unigue solutions
x = a\b., v = bh/a.

(b) For each odd prime p the p-localization of X has a

homotopy commutative comultiplication.

Let p denote a fixed odd primes and & the mapping cone of a primitive
p-primary map e of S°g to § = S*"m, where m is edd, m > 1 and g >

m. Such a
space A will be called a small co-h-space.

LEMMA 2 The pinching map = from A to $*(g+1) is always a co-h
mapi the homomorphism z+ from 1., (B) to [A.B] has kernel the
image (ELe)*TQHA(B), and the elements of the image of =+
commute with, and associate with. the elements of [A,BI.

This also is proved in the appendix.

let B = A v A, and let 6 denote the subaroup of TG+ (B} which is the
intersection of the kernels of both retractions of B to A; let 6' denote the
similarly defined subgroup of Tqet {5 v 8). By the Hilton-Milnor theorem 6 and
&’ are generated by Whitehead preoducts, and for dimensional reasons the
inclusion maps 6’ isomorphically on 6. 6 and 6° will be identified.
is 2-primary for both & and B, and e
both [A_A]1 and [A,B].

Since
1s p-~primary, z+# is a monomorphism for

‘Let f denote the homotopy class of the comultiplication: the class f' of
another comultiplication is a product fz*g, where g is in G. Since m is odd the
p-localization of Whitehead products on § are zero: hence products in the
p-localization of [A.Al are the same faor all comultiplications. For similar
reasons, the p-localization of [A,A] is associative (the obstruction to
associativity involves Whitehead products on §). By Theorem 1{(a) the
p-localization of [A,A] is a aroup. so that for each integer k the k-th power
(not iterate) "k of any p-localized element x of LA,A] is uniguely defined and
independent of the comultiplication. It follows that the k-th power vk of any
class vy in [A.Y], localized at p. is uniguely defined,
the k—th power of the class of the identity map of & with
the same for all comultiplications.

as the composition of
Y. and the result is

[continued]
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Let a.b denocte the homotopy classes of the inclusions of A in B, localized
at n. Let P(k) be the element of 6 be defined by
z¥P (k) = ((ab)"kI\({a"k)(h"k)).
P(k) is the ohbstruction to primitivity of the k-th power of the identity map of
fi. using the comultiplications in f, everything being p-local. If the
comultiplications in f’ were used, the new value of ab would be (ab)z#g; since
z*g commutes with all elements, the new value of (ah)*k would he
({ab) k)z*tkg),
where products are defined by the original comultiplication.
Since a"k and b"k map S by maps of degree k on the two retracts S of § v §
in B, it follows that the new value of {a”k Xb"k) is
({a”k ) (bk))z*h g,
where h is k times the identity map of S v §.
Therefore the new value of P(k) is
PCk) + h g - kg.

Let P(k)[d] and gfd] denote the parts of P(k) and q. respectively, that
involve Whitehead products of weight d. Then the new value of P(k)[d] is
P{k)ldl + (k*d - klaldl.

In particular, by Fermat’s theorem, the alteration
in P(k)Ipl is always divisible by p.

Of course, this does not prove that the obstruction to primitivity cannot be
killed by changing the comultiplication: it might be that P(k)Ipl, for example
is divisible by p. This is not the case in Berstein’s examples

{(m=3, g=2p) and, I will show in the next part for k = 2 ‘and p = 3, other cases
where m=3 as well. The point of this is that a simply-connected co~h-space that
has an associative comultiplication has a comultiplication that gives a

commutative co-group structure, for which all powers of the identity map are
primitive.

.



SECOMND PaRrRT €1 3 ‘Reu.3>
Letter:- Barratt to Berstein/Harper

I will use the notations of the FIRST PART. Implicitly all Spaces and maps are
localised at p. For any space Y let Y{(n) mean the bouquet of n copies of Y,
and let a,b,c stand for the classes of the three inclusions of & in A(3). Let
G{n’ denote the subgroup of Taer (AND)) which is the intersection of all the
retractions cn filtn-1); for the reasons given before this is isomorphic to the

similarly defined subgroup Qf'ﬂ1+‘(5(n)), where 8 = 5w, and these groups are to
be identified. filso, as before, z+ is a monomorphism of 4%*‘(ﬁ(n)) into
[A,Aa(n)].
The universal associator of the comultiplication
on A is the element of 5{(3) defined by
z*{ = {({ableN(albe)).

This is the obstruction to associativity of the comultiplication.

Let u be a primitive map 8"r to §"g, and let &' be the composition
e " u. Let A' be the mapping cone of &' and let P'(k), ' be the obstructions
to primitivity and associativity {respectively) for A'. I will prove in the
second chapter of this part

THEOREM 3  Suppose u is a suspension. For each comultiplication on
fi there is a comultiplication on A’ and s co~h-map U from A°
to A extending the identity map of 5.
Moreover, the obstructions to primitivity and associativity
for this comultiplication on A’ are the compositions of the
ohstructions for A with the suspension of Zu, module the

images of (e v e)%?QH(S"q(E)) and (e v & v &), T, (5°gq{3))
respectively.

For technical reasons I have to prove this theorem first for certain co-h-spaces
in a category of triples. This is a device to force the obstructions to remain
(more or less) in the homotopy of S8(2) and S(3); the stated thecrem then follows
quickly. The indeterminacy (which will not affect the next theorem) arises from
the delicate argument not being guite delicate enough: it will follow from the
THIRD PART that the result is true without the indeterminacy. Theorem 3 is
proved in the second chapter.

I now specialise to the case where m = 3, q =

2p, and e is a generator of
the p-component of1§r(8“3);

u is to be any suspension element in the p-component
of .(8"2p). Berstein proved that A is a co~h-space without an associative

-

comultiplication. Let p = 3.

THEOREM 4 It the suspension of u is not divisible by p then the
co-h-spaces A,A" cannot have associative comultiplications,

arnd in both cases the square of the identity map is never
primitive.

The first interesting case comes by taking u to be the agpropriate suspension of
e. The restriction to p =23 is to simplify the computation: the theorem will

be proved true for all odd primes as part of a stronger result in the THIRD
PART.

{continued]
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Theorem 4 will be deduced from Theorem 3 and Berstein's Theorem. The
latter implies that the obstruction to associativity for & is never zero
modulo 3.  Next, the existence of a commutative comultiplication is used to
express P(Z2) in terms of the obstruction to associativity, and hence to prove
that it too is never zero modulo 3. Theorem 3 is then invoked to show that
thssé obstructions are non-zero for A' with the compatible comultiplications.
Finally it is deduced that no comultiplication on A" has non-z

ero obstructions
for associativity or primitivity of the squaring map.

With p = 3 and q = 6, the group 6(3) is generated by triple Whitehead
products in a,b,c, and in particular by
= la,lb,c]l, y = [c,[a,bl].
Here, and subsequently, I use a,b,c in Whitehead products to mean their
restrictions to S.
Thus @ must be some linear combination
o} = kx + k'y
for some integers k,k'. Also G(2) 1is generated by triple products in a.,b
(the product [a,hl is composed with a coefficient from a group with no p-primary
part, and so vanishes on localiration at P). A variation in the
comultiplication is defined hy any element
gla,b) = dla,la,bl]l + d'lb,lb,all,
where d,d’' are integers.
Obviously changing the comultiplication by z#*gla,b) will change albec) io
- {albe))z#*{ gla,bc) + gth,c) )
and will change (ablc to
((ablclz+( gla,b) + glab,c) ).
Here the products are computed in the original comultiplication. In addition,
the homotopy groups have been written both multiplicatively and additively,
which will now be corrected to additive notation. The effect is that the
obstruction [ 1o asscciativity has been modified by the addition of
g{b,c) - oglatb,c) + gl(a,b+c) - g{a,b).
Using linearity and anticommutativity of Whitehead products, and the Jacobi
relation, we obtain for this expression

—d{ [a,lb,cll+lb,[a,c]1] ) + d’( [b,lc,all+lc,lb,al]

= -d{ 2x + y ) - d'( 2y + x ),
The new obstruction to associativity is therefore
(b - 2d - d7 )% + (k' -~ d - 2d")y.

It follows that the congruence class (mod.3) of &k + k' is the same for all
comultiplications. Since we can choose d = k' . d" =@ we can suppose that
k' was initially zero; to preserve this state we must have d = -2d* , which
will change k to k + 3d'. Hence &k (and so  k+k' ) can be changed by any
multiple of 33 since k.,k’ cannot be made simultaneously zero it follows that

k + k' must be congruent to 1 or -t modulo 3. This proves that the

obstruction to associativity is non-zero modulo 3.

Ccontinued]
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ficcording to Theorem 1{b) in the FIRST PART, there is g comultiplication
whose 3—-localization is commutative, On writing the universal associator as a
function of the three arguments a,b,c we have

{a"23(b"2) = (((a“E)b)b)z*ﬁ(Za,b,b),
where

((a"2)b)b = (bB(a"2))h = (((ba)a)b)z*ﬁ(b,a,a),
in which :

({balda)h = bhialha)) = ({ba)"2)z+{(b ,a,a+h).

This proves that P(2) can be expressed as the sum
H(2a,b,b) + H(b,a,a) + {{(b,a,a+th),
which reduces to

—(k + k’)[b,[b,al] - 2k’La,la,bl].
It is not necessary to discuss at this point what k,k' can be for a
commutative comultiplication: it is sufficient to observe that the first term

—

is non-zero modulo 3, and by the FIRST PART this will be true for all
comultiplications, since that part of the obstruction consisting of triple
products can he changed only hy elements which are divisible by 3.

The indeterminacies described in Theorem 3 produce elements which factor
through Whitehead products of maps which are then composed with e, and s0 by an
expansion theorem of Barcus and Barratt a Whitehead product of weight n will
factor through (suspensions of} the n=th iterate of e, because the primitivity
of e implies the vanishing of all its Hopf invariants. The second iterate of

e 1is zero on the S-sphere, because, as Hilton and I showed, it is of order
dividing 2 on the E~sphere and hence zero there, while suspension of the
p-cemponent on 5°5 is a monomorphism.

Hence all the indeterminacy is zero in
this application.

By Theorem 3, the obstructions P'(2) and g
compatible with comultiplications on A will have non-zero Whitehead products of
weight 3 which are not divisible by 3, provided the suspension of u is not
divisible by 3. By the FIRST PART, such terms in P?(2) can only be changed by
an element divisible by 3, and so cannot he made zero. The argument that {
cannot be made zero by & change in the comultiplication
observation that only triple Whitehead products in the change g need hbe
considered, and for these we have the same calculation as was made for A, where
d,d’ are now drawn from some homotopy group. The result is the same, that the

sum of the coefficients of x and y can only be changed by elements divisible by
3, and so [§' is never zero.

for comultiplications on &’

Thus Theorem 4 is true if Theorem 3 is true.



SECOND FarT [21 (Reu.2> Proof of Theorem 3
Letter:- Barratt to Berstein/Harper

Consider the categories J of pointed topological spaces K, J?
(K,L), and J" of triples (KiL,L’) where L.L* ‘are in K and contain the bhase
paoint *. J will be embedded in J° by sending K 1{o (K.,*), and J° will bhe
embedded in J" hy sending (K.,L) to (KiL,*). Clearly, the

pinching functor which sends (L ,L*)Y o (KZL5L/7L7 ,#)  retracts J°

on J’. Likewise, J' is retracted on J by the _foraeiful functor

which ignores the restrictions on maps of the subspace L.

of pairs

The n-fold bouguet Y(n) of any triple Y = (K;L,L')
(Kin)sL{n),L7°(n)). Thus a co-h-triple is a triple Y
comultiplications in [Y,Y{2)1. The followin
needs, although it can be generalized.

is
and a class of
g theorem is sharp enaugh for our

THEOREM 5 The conclusions of Theorem 1 apply to co~h~triples
(KsL,L*) where L ,L° are simply-connected subcomplexes of a
simply-connected CW complex K of finite dimension, and the
intersection of L,L' consists enly of the base-point.

The proof starts by applying Theorem 1 to L and to
the case when K is the union of L and L*'. Then the proof of Theorem | is

followed mechanically except that the skeleta of K have L and L added at
each stage of the induction.

L?, which proves it for

Suppose P,Q are simply-connected pointed CW complexes of finite
dimension. The cone functor. € and the mapping cylinder functor M are both
to be reduced and so parametrised by the real variable -t that t=0 in CP
identified with the base-point and, for a map e of P to Q, Me is the
union of 0 and P x I with (y,1) identified with ely). The subsets 1t = |

will be called the bottom of the cone or the bottom of the mapping cylinder. It

is convenient to identify P with the top of Me. Clearly § is a deformation
retract of Me.

is

Consider the triple Te = (Me;Q,P), where e maps P to Q, and of
course P,Q also mean the top and bottom of Me. Let Te/Q be the triple
(Me/Qs;* P), and let z bhe the identification map of Te to Te/Q: Me/Q is
naturally homeomorphic to CP by the map which reverses the direction of the
parameter t. Thus [Te/Q,(K:L,L")1 is isomerphic to LCCP,PY (K,L" )1, which
is a relative hometopy group of {(K.,L") when P is a sphere.

Suppose s5'.s are comultiplications on P,Q with respect to which e is
primitive. Thus there is a homotopy H connecting s * e and (e v oa)

o

57

Such a map induces a map R of Te to Te(2), extending s’ on P and s
on @, by the formulae
R{y) = s(y) if vy is in Q,
Rly,t) = (s'iy),2t) if v is in P and t <= /2,
Ry, 1) = H(y,2t-1) if v is in P and t = {/2.

[continued]
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LEMMA B The homeotopy H can be chosen se that R is a comultiplication.

The cylinder P x I is eguipped with two commuting operations on maps: one is
the cvlinder on the comultiplication s', and the other uses the parameter t.
Let these be written +° and + respectively. Let R<1} and R{2} denote the

composition of the identification map of P x I into Me . followed by the map
R and the projection of Me(2) on the first and second copies of Me
respectively. There are homotopies F{1} ,6F{2} from the identity map 1 of P
to the sums 1+°Q, 0+'1 of I and the constant map @ of P to the

base—point #, respectively. Let F’'{i} denote F{itr
reversed. A variant of H is defined by the formula

(LY +7 F{2¥) + (R{1} +° RI2YD)  + ((F'{1} +' F*'{2}) + H),
where the additions + are based on dividing the interval I
It is an easy exercise to show that the new map R
followed by either projection of Me(2) to Me
whence R is a comultiplication.

with the parameter ¢

into four parts.
defined by this new homotopy
is homotopic to the identity,

REMARK  This construction of a comultiplication will b

e referred to again in
the proof of Chan's Theorem in the THIRD PART.

By applying the pinching functor we obtain also a

comultiplication on the pair (A ,Q), where A is the mapping cone of e. By
applying the forgetful functor we obtain in turn a comultiplication
en the mapping cone A. These functors turn the map =z for Te to the map =

for A. It follows that, when P.Q are spheres, the ohstructions to
associativity and primitivity of the squaring map for Te

will be mapped hy
these functors to the corresponding ohstructions f

or the mapping cone A.

From here onwards, Q = § = §*n and P = S§*q.

The values of the obstructions to associativity and primitivity of the

square of the identity map lie in g relative homotopy group of (Me(n),P(n)y,
where n = 3 or 2, for the case Te

i in the other cases they lie in an absolute
homotopy aroup of A(n). However ,

locking at the exact homotopy sequence for
the pair (Me(n),P(n)) we find that the (g+1)~dimensional homotopy group of

P{in) is 2~primary, and the obstructions map under the boundary homomorphism to
the corresponding obstructions for the sphere P, and so to zero. Hence an
obstructions for Te is the image of a unique element in a homotopy group of
Mel(n), which is isomorphic to the corresponding homotopy group of  Q(n) under
the deformation retraction. In fact, we can suppose the obstruction lies in

6(n), which is mapped isomorphically by the pinching and forgetful functors., In
brief, the obstructions are the same for Te, (A,8) and A.

[continued]
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Suppose now that P’ is another sphere 5%+ and that u mapping. P' +to
F is a suspension. Thus we can suppose u  is a sirict co-h-map and that the
functions F'{i} "for P’ and F{i} for P commute with u. in the obvious
sense. Let e’ be the composition e u, and for this construct a homotopy
H' by composing H with the cylinder on the map u. Let U he the obvious
map of Te' to Te (it is the identity on Q@ and u on P'), and let R’
mapping Te’ to Te'{(2) bhe constructed from H’ as R

was constructed from
H. Obviously

R U = (U v Uy ° R".

Now modify the homotopy H’ by the process described above for H, and at
the same time modify H again. This will create comultiplications R on Te
and R’ on Te' which still satisfy

R " U = {(Uv Uy * R”.

Hence U 1is a co-h-map. flso, from the definition of U, the composition
of z with U, mapping Te' to Te/Q, is the composition C'u ° z, where ('
is the cone functor with reversed parametrisation. This proves that the
obstructions for Te', whose values lie in relative homotopy oroups of
(Te’(n),P"(n)) for n =3 or 2, are obtained from those for Te by composition
with  C'u, for they lie in the image of the homotopy of Te'(n) which, like
Te(n), has Q(n) as a deformation retract. The only complicating factor is
that after composing with C'u the elements in the relative homotopy groups may
no longer pull back to unique elements of the absolute homotepy groups. The
kernel is the image of the (r+i)-st homotopy group of Pln): on following the
inclusion of  Pin) into Te(n) with the deformation retraction on Qi(n)
find that this map is the bouquet of n copies of e.
indeterminacy stated in the theorem.

we
This gives the

Having identified the obstructions for Te' we complete the proof by
applying first the pinching functor, which converts the map C'u to the
suspension of u {(perhaps with sign reversed), and then the forgetful functor.

fit this point attention can be drawn to the need to use triples to limit
the indeterminacy, for composition of the obstructions for A with the
suspension of wuw often produces zera in the homotopy of Al(n).



THIRD PART [ @1 {Reu.1? Introduction
Letter:- Barratt to Berstein/Harper

The concept of analyser was invented by Michel Lazard for algebraic

functors and (in ignorance of his work) by me for the hemotopy functor. The
spectral sequence of a desuspension is a special case of my spectral sequence of
an inclusion, recently re-discoversed and generalired by Mike Hopkins. "The E*{
term of the former is the homatopy analyser, and the E*2 term is the cohomology
of the homotopy analyser. There is a spectral sequence whose E*Q term is the
homotopy analyser which converges to its cohomology. The E*i term of this
intermediate spectral sequence is the cohomolopy of the Lia analyser with
coefficients in homotopy groups of spheres, in the case of the homotopy analyser
of a sphere of odd dimension. In an old paper I calculated the first threas
cohomology groups of the Lie analyser. This is enough to show that the
intermediate spectral sequence has only ones more differential, for the p-primary
part, determined by the p-th Hopf invariant. A recent caleculation, provoked by
the current problem and to be published with Bill Richter, of the fourth
cohomology group of the Lie finalyser is relevant to the analysis in the FOURTH
PART: of more general interest is the conjecture that the other cohomology of
the Lie analysar is Zero, which has striking implications for the p-primary part
of the homotopy groups of spheres, described in the fifth chapter belaw.

The connection with small co-h-spaces. (and this can be generalised) is the
fact that the universal associator for a comultiplication is a {reduced)
J-cocycle in the homotopy analyser of the sphere S, and changes in the
comultiplication change this cocyele by any (reduced) coboundary. Thus the
cohomology class of the associator is an invariant of the underlying space. It
turns ocut that the cohomology group has two summands , one being a homotopy group
of a certain sphere, reduced.mod p; the other can be proved from the existence
of commutative comultiplications o be irrelevant.

Chan’s theorem, proved in his Manchester thesis and reproved here,
identifies the cohomology class of the associator with the second differential
in the desuspension spectral sequence. The Lie analyser conjecture mentioned
above implies that the desuspension spectral geguence converges at E°3, and this
would imply that a small co-group is a suspension. In any case, all known
elements in the p-primary homotopy of a sphere of odd dimension {through

appro<imately the 2p"3 stem) that are trivial under the first two differentials
are suspensions.

This THIRD PART is divided into chapters. The first revises the definition
of analyser and explains the term reduced analyser (dual to reduced chains in
homolegy theory). The second chapter describes from published work what was
known about the cohomology of the Lie analyser. The third defines the homotopy
analyser and, using the previous chapter, analyses its cohomology in the casae of
a sphere of odd dimension. The fourth chapter defines the associator, proving
it to be a reduced 3-cocycle whose cohomology class is independant of the
comultiplication. The fifth chapter defines the desuspension spectral
sequence. The sixth chapter proves Chan’s thecorem, and the last chapter applies
the analysis to prove various small co-h-spaces to be incapable of carrying a
co-group structure. A more detailed analysis of what properties they can hava
is the subject of the FOURTH PART.
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HOTATION Superscripts will be indicated by a caret ", and
subscripts by a pair of braces {}. The symbol @ will mean tensor product.

Let K denote a simplicial free ahbelian group K(Z,1), and let K+ denote the
cosimplicial free abelian group Hom(K ,Z). The (Lazard) analvser of a
functor T from the category of free abelian groups to a category of
abelian groups is TK*. If T (as will here he assumed) is covariant, TK# is a
cosimplicial abelian group. The (Lazard) cohomology of the analyzer
of T is the cohomolegy of the cochain complex whose n-th group is
TK#{n} with coboundary P* the alternating sum of the coface operators d#{i},

This. is in fact the dual of the homotopy of a simplicial abelian group, and
could have been called the cohomotopy of the analyzer.

A convenient version of K* makes Kx{n} a free abelian group on n generators x{i} for i =1 ta n.
0D = x{i41} for all 4,
de{n30edid) = x{id} for all i,
IO = )Y i 1 (K, = kY ¢ ek} if Q= k, =xlislhif 1 )k, for k =1 tan,
kML = xlid if i Ckel, = 0ifi=kel, = xi1}if i) k2,  for k=0 to n-l

For the connection with the desuspension spectral sequence it is convenient to use an alternate basis: let y{i} ba the sun

of the generators x{j} for j } i-1. bviously, d*{1} for i < n+] is the monctone map which omits y{i+1} from the image
values, while d#{n*1} naps yij} to p{i} - vlne1} for all j.

The aperators on K¥{n} are

Dne exanple of a suitable functor T is the tensor algebra functor, which is also known as the free associative algebra functor when
restricted to free abelian groups. If the irage of 1 is made a graded group, graded by the degree (or ueight) of products, the

cohonology of the analyser is also graded. Lazard proved that the cohorolagy is a polynomial algebra on one generator, so that all
the bigraded groups are zero, except for Rin,n} = 7 for all o )= 1,

The reduced analdser is defined to be the

sub-cosimplicial complex chtained by taking the intersection of all the kernels
of the codegeneracy operators in each dimension.

THEOREM 3.1.1

The reduced analyser is a sub-cosimplicial abelian
group of the analyser; the inclusion of the reduced

analyser in the analyser of a covariant functor T is a
cochain eguivalencsa.

This; first ohserved by Lazard (private communication), is the dual of the
theorem that projection on reduced chains is a chain equivalence, and is proved
in a similar way, by applying to TK#{n} the cochain deformation operator
[I—D*s*{w}—s*{w}ﬂ*][1+ﬂ*5*{1}+s*{1}O*]...[1+((-1)“n)(D*s*{n—l}+s*{n—l}9*)],
where D* denctes the coboundary cperator. As the contents of each brace,
beginning on the right, are applied in turn, the complex is mapped into the
intersection of tha kernels of an increasing number of operators 5¥{i}, ending
with s*{@}. The computational details are omitted.
In the analysers of interest the reduced analyser has a complementary
summand consisting of the submodule spanned by the images of all d+{i}TK*{n} for
all i < n*! and all n. This is the kernel of the above cochain deformation. It
is possible, therafore, to formulate the theorem in terms of the guotient by
this subcomplex rathar than the reduced analyser; the coboundary then reduces to

the last coface operator. This is of relevance for the spectral segquence of a
desuspension.
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The Lie algebra functor turns a free module of rank n into the free Lie algehra
en n generators. The Lie algebra is emhedded as a module in the tensor algebra
of the original module (its enveloping algebra). Thus the Lie algebra can be
made into a graded algebra using the grading by weight (or degree or number of
tensor products). Then the Lie analyser is a cosimplicial free graded abelian
group, and its cohomology is a bigraded group. I will use L*n for the

cohomology group defined using products in n variables, and L*(n k) for the part
using products of weight k.

The reduced Lie analyser consists of the intersection of the kernels of the
codegeneracy operators; using the penerators x{i} described in the previous
chapter, s*{i} sets =x{i} to zero. It follows that the reduced analyser is
spanned by those Lie monomials which invelve all the availahble generators; I
will use LC*(n,k) for the reduced cochain group which has products of weight k

in the maximum number n of variabhles. Since LC"(n,k) must be zero if k < n, it
follows that L"(n.,k) is also zero for k < n.

The cohomology for weights 1 and 2 are easily computed, for the only
nonzero reduced cochain groups are LC*C1,1), genarated by ={1}, and LC"(2,2),

penerated by [x{1},x{2}1.

LEMMA 3.2.1  All the groups L*{n k) are torsion aroups excep
Loy, 1) = Z, L*¢2,2) = Z.

That the stated groups are cyclic follows from the previous remarks. The
easiest proof that the others are zero when tensored with the rationals comes
from the connection with the homotopy groups of spheres (whose rational valuas
are known) and will be given in a later chapter. It can be deduced from results

of Lazard [Annales de E.N.S.(E)?E(1955)pp299—4@@], with & rather disagreeable
argument for the case n = k.

There is a useful Frobenius or p-th power operator in this cohomology. It
is well known that if p is prime and the sum of a number of elements a{i} in a
Lie algebra is zero, then in the enveloping algebra the sum of thair p-th pow
a{i¥"p is a sum o + Pv where u is again in the Lie algebra.
in LC*(n,k) defines a unigue (mod.
the formula

ars
Hence any cochain o
pi-cochain fc of weight pk in n+! variahles by

fo = D*{cp) — {(Bec)™p {modulo p),
where B* is the coboundary in either the Lie or associative algebra analyser.
Since D#fc = —D*((D*C)“p)'(mod.p), this operator f carries (mod.pl)-cocycles to
(mod.p)-cocycles; since '

fih*c) = Dx((D*c)Hi™p) = —Pxfe {modulo py,
f carries (mod.p)-cohoundaries to (mod.p)-coboundaries. Suppose a.,b are
(mod.pl)-cocycles: there is a Lie glement w congruent (mod.p) to
(atb)"p - a’p - b"p, so that

flath)y = fa + fb + Dryu {modulo p).

This proves that f induces a homomorphism F between (mod.pJ)~cohomology groups ,
which increases dimension by 1 and multiplies the weight by p. I will use the
same symbol F for the map of integral groups which precedes F by reduction

(mod.p) and R for the Bochstein homomorphism from (mod.

p)-cohomology to integral
cohomology in one higher dimension.

[continued]
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THEOREM 3.2.2 The groups L*(2.k) are all zero for k > 2.
The groups L"(3,k) have no p-torsion except for

Lo(3.,p) = BFL™(1,1) = Z/pZ.

I proved this in 1960 [Quarterly Journal of Mathematics,(OxfoPd)(B)11,pp275~88],
except for the reference to RFL"(1,1), which can be verified most most easily by
embedding the Lie algsbras in their envelopes. Lazard proved the envelope has
no cohomology in the relevant dimensions, so all Lie cocyles must be
coboundaries in the envelope. In particular the (mod.p) . generator of
L*(2,p)(Z/pZ) can only be the coboundary of ={1}*p, so this group is FL*C1,1).

This theorem is crucial for our problem, as for the understanding of Hopf
Invariants on a sphere of odd dimension. I will therefore provide a cleaned-up

proof in the FIFTH PART, together with proofs of the following more recent
results.

THEOREM 3.2.3 The compositions FF and FRF are trivial in the
{mod.p)~cohomology of the Lie analyser.

These come about by contemplating the cohoundary of ¢*{p"2): the details will
be given with the proof of the previous theorem.

THEOREM 3.7.4 The groups L°(4 k) have no p-torsion except for
L4 2p) = BFL"(2.,2) = £/pl.

This will be published with Bill Richter. The proof (for at least k < P 2) will
be given in the FIFTH PART.

These results and the evidence of the p-primary homotopy groups of spheres
suggests the

LIE ANALYSER CONJECTURE

All the groups L"n are zero for n * 4. Thus the only
non-zero groups are those described above.

This has remarkahble implica{ions for the homot

opy groups of spheres, as well as
for the present problem.
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Let A denote an abelian cogroup with a base point, and A(n) the bouquet of n
copies of A. Then A(n) is also an abelian cogroup with the chbvious
comultiplication. For conveniasnce, the groups [A(n),Y] will be written
additively in this chapter. Because [A,A(2)] is abelian and associative,
inverses exist and all multiples of the class of the identity map of A are
primitive and therefore co-h-maps.

Therefore there is a homomorphism of the Z-module of integral n-by-m
matrices to [A{m),A(n)] such that the generating matrix e{i,j} is sent to the
map which first projects A(n) on the j-th factor A{j}, and then maps this
identically on the i-th factor A{i} of A(n). Obviously this sends products of
matrices to compositions of homotopy classes: hence

LEMMA 5.35.1 There is a functor from the category of free abelian
groups on sets, and all homomorphisms, which sends a group

of rank n to the bouquet A(n) and identity maps to identity
maps.

If we apply this functor to K¥ = Hom(K(Z,1),Z) with an arbitrarily chosen basis
in each dimension we obiain a cosimplicial space whose homotopy type ‘is

independant of the choices of hases. This homotopy type thus merits the name
the topological analvser of A.

REMARK I have not had time to work out all the details of a proposed
construction of a funcior from the category of free abelian groups in the case
that. A is 5"2, and hence for any double suspension. I am indebted to Jeff Smith

for raising the guestion of the existence of such a functor, and hope he will
plug the ideological gap first.

The graded homotopy group functor assigns to any pointed space the
collection of its homotopy groups: the g—-th homotopy group is to have grade q.
The _homoctopy analvser of A is for the moment to be the result £ of
applying the graded homotopy group functor to the image of the previously
defined bouguet functor using the basis elements x{i} described in chapter 1.
Using any other basis will produce isomorphic groups, the isomorphisms being
induced by the matrices which express the change of basis. In fact, we will bhe

interested later on in using the alternate basis elements y{i} described in
chapter 1.

In future, A will be & sphere 5"m of odd dimension, localised at an odd
prime p.

By inveking Hilton's thecrem, which implies that the ng-th homotopy group of
Aln) is a direct sum of homotopy groups of spheres embedded by composition with
Whitehead products, we obtain a filtration of this group by weight of Whitehead
product. If v,w are Whitehead products of the same weight, the difference of a
composition (vtw)'g and v'g + w'g is a sum of Whitehead products of greater
weight composed with Hilton-Hopf invariants of qg.
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The homotopy analyser £ of S°m has been filtered by the weight of Whitehead
products, and, by the last observation of [3.11, in the associated graded

cosimplicial group composition with homotopy elements is distributive over
addition.

LEMMA 3.3.2 E"Q0£"(n,q,k) is isomorphic to the group of (n,k)-cochains
of the Lie apmalyser, tensored with the g-th homotopy group of
a sphere of odd dimension M{k) = T+k{m—-1).

This easily follows, of course, from the same observation that pouwered the
theorem of Hilton's cited in the previous section of this chapter.

The filtration of the analyser gives a spectral saquence starting at E"0%f
and converging to the associated graded group of the cohomology of the

analyser. Obviously the first differential is induced by the coboundary in the
Lie analyser, whence

-

LEMMA 3.3.3 E“1£“(n1q,k) = L“(n,h)(ﬂ%(S"M{k})).

(=]

Now £°(1,q) is just the g-th homotopy group of S°m and the coboundary maps
*x{1}>°g to
{2 g - (x{12+x{23)°g + ={2}°g,
where x{i} has become thes identity map on the i-th sphere in a bouguet. This
means that the higher differentials in the spectral sequence are measuring the
obstruction to distributivity of composition, and so are determined by the
Hilton-Hopf invariants of 9. Since m is odd the first Hopf invariant is zerqg on
the p-primary component. By 3.3.3 and theorem 3.2.7 (recording a published
result) all the groups E"1E€°(2,0,k) for k + 2 are zero except for
E"1£°(2,q,p) = L“(E,p)(ﬂR(S“M{k}) = Torﬁﬁi(S"M{k}),Z/p).

This praoves saveral things. Firstly, the first non-vanishing Hopf invariants
are those associated with basic products of weight p, and are fixed multiples of
a single alement, the coefficient of fud{l} = De(x{132"p), which we will call the
p-th Hopf invariant H{p}. Secondly, this invariant has order dividing p.
Thirdly, that all higher Hopf invariants are determined by the p-th (it is clear
that they are zero if H{p} is, and formulae can be given for them), Fourthly,
Since all the higher derivatives in our spectral sequence arise from the
distributivity formula, the only réemaining differential in our spectral sequence
is the p-th. Lastly, we can compute this differential in terms of the p-th Hopf

invariant H{p} and the modular operation F in the cohomelogy of the Lie
analyser. This proves

Lcontinued]
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THEOREM 5.3.4 The cohomology of the homotopy analyser of §5°m,
filtered by weight of Whitehead products, has associated

graded aroup the cohomology of L,k Y0 (§"M{k} )} with
respect to the derivative F @ H{p).

Here the tensor product is indicated as usual by @.

On putting Theorems 3.2.2 and 3.2.3 with this last theorem we find some of
the cohomology explicitly. The first cohomology group of the homotopy analyser

of S"m is the kernel of H{p}, that is, the primitive elements in the homotopy of
5"m.

The second cohomology group has two summands. The first is the kernel of
H{p} applied to the homotopy groups of S"(2m-1); it is associated with products
of weight 2. The second is the cokernel of H{p} applied to the homotopy groups

of 5"m; it is associated with products of weight p. This second summand happens
to be zero when m=3,

0f more interest for the present guestion is the third cohomology group.
There is a summand obtained from the group L°(3.p), which for grade 0 is the

g-th homotopy group of §°{i+p{m-1)) tensored with Z/p. This is associated with
products of weight p, of course.

However , there is more: it also contains elements derived from torsion in
L*4. If we now assume Theorem 3.2.4 of the previous chapter we see that this is
a summand, associated with products of weight 2p, isomorphic to the cokernel of
H{p} applied to the hemotopy groups of S {2m-1)

The truth of Lie Analyser Conjecture would imply that there is no other
cohomology in the homotopy analyser of a sphere of odd dimension.

Incidentally, the cohomology of the homotopy analyser of a sphere of even
dimension has precisely fwo nen-zero graded groups, being the kernel of the
usual Hopf invariant applied to homotopy groups of S*m, associated with the

product of weight 1, and its cokernel , associated with products of weight 2

The former is the first, and the latter is the second, cohomology aroup; all
other groups are zero.

[Here the underlying algebras {(in the ring-stack sense) are the Twisted Lie
algebras with Z coefficients where the symmetric groups act on Z through the
sign of a permutation. The Lie algsbras arise in a similar way except that the
permutation groups act trivially on Z in this case. The current knowledge of
the cohomology of the Twisted Lie filgebra analyser is an analogue of
Theorem 3.2.2 with the prime p being replaced, for weight &k, by the ideal
spanned by all twisted hinomial coefficients (r,k=r) for 2<r<k. The
Dynkyn-Specht-Wever element of “weight" k annihilates this ideal. This is
ralevant to the analyser of a general double suspension.]
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Even localised at an odd prime p, the compasition of maps into S$*m with maps af
S°m is not distributive in the second factor except when this is a self-map of
8%m.  Luckily the distributivity law (which is quite complicated for general
spaces) has an elegant form for these spheres of odd dimension. Since this is
relevant to choosing representative cocycles, T will give the analysis here.

Let LA and AA denote the Lie Algebra and Associative Algebra functors
respectively. AA is also called the Tensor Ailgebra functor; both functors will
here be applied only to - the free abelian groups K*"n, and their images will be
written LAn and AA*n respectively. There is a natural transformation from LA
to AA which assigns each Lie algebra to its envelope: this embeds LA®n as a
module on a summand of AA“n. Let AA"(n,k) denote the sub-module of AA*n spanned
by homogeneous monomials of weight k, and let LA™(n k) denote its intersection
with LAn. Let m be a fixed odd integer greater than 1, and let
M{k¥ = 1+k{(m—-1), an odd integer, for each positive integer k. Let g be a fixed
positive integer and let G{k} denote the g~th homotopy group of S"M{k}: G{k} is
nen—zero for only a finite number of values of k.

Let AAH"n denote the direct sum of all the tensor products AR™(n kHBG{k},

and let LAH"n denote the summand which is the direct sum -of all LA™(n k)BG{k?}
for each positive n.

7

The Hilfon—Hopf invariant H{p} (which actually is, up to sign, the p-th
James invariant) is a homomorphism of G{k} to 6{pk}. Let H{p,r} dencte the r—-th

iterate of H{p}. For any (homogeneous) element a of AA"(n,k) and any g of G{k}
define
1

aig = alg + (a"p)BH{p}(g) + (a"(p"2))@eH{p,2} +

= alg + (a*p)iH{p}(g).
Since H{p¥(g) has order dividing p and t"p is congruent io t modulo o,
(ta)ig = ai{tg). Obviously, aig is linear in g: it is not, however, linear in
a, and I now construct a formula describing the deviation from linearity in a in
terms of the Lie bracket [a,bl = ab - ha.

Suppose af{l¥y,...,a{s} are in AA"(n,k) and have zeroc sum.

There is a Lie
polynomial f{1} in the a{i} such that

al{lr"p +...+a{s}'p = $£"{1} moduleo p,
and Lie polynomials f{r} in the a{i} defined recursively by
f{r) = adt¥ (p*r) oot alsr (ptr) - FLI (P (r=1)) -, . .~ ftH{r=1¥"p mod. p.

Thus f{r} is unique meodulo p,

and hence f{r}!H{p,r}(g) is uniguely defined for
each positive r.

LEMMA 3.3.5 The sum of al{id!g for i=| to s is
{a) the sum of a{iY"p!H{p3(g) for i=1 to s,
(h) the sum of f{rX!H{p,r}(g) for all r > 0.

[continued]
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PROOF: The eqguality (a) follows at once from the second form of the definition
of alg since the sum of the a{i}’s is zero. The equality (b) then follows

iterating (a), using the definition of f{r} and the fact that H{p,t} is rero
when t is sufficiantly large.

I now construct a map of the analyser of LAH to the homotopy analyser £.
For sach (n,k) select an additive basis of monomials for LA"(n,k) and for each
hasic monomial a and every g in G{k} map alg to the composition a'g, where the
Lie monomial is interpreted as a Whitehead product.

THEOREM 3.3.6

This maps aig to a’g for every homogeneous element a,
and hence if a collection of Whitehead products a{i} of
weight k has zero sum, the sum of all a{i}’g is egual to
the sum of all f{r}°H{p,r}(g).

PROOF: 1t is sufficient to prove this for k=1, for the general result will
follow by naturality. It is also sufficient to prove that if aig =

= a’g for
a=x{1} ,x{2} then it is also true for a = (x{12+x{2}); the general result will

then feollow, by induction and naturality, for any sum of basic monomials. It isg
not difficult to see that the coboundary Bx(x{1¥ig) is mapped to a cocycle. Now
Dx(x{13°g) is also a cocycle and, by definition, is f{1}°H{p}(g) modulo products
of weight greater than p. Therefora the difference of D*(x{1}ig) and D(x{13"°g)
is a cocycle in the homotopy analyser, with filtration greater than p. &Since
the cohomology aroup is zero for filtration greater than P, this cocycle is a
coboundarys; since the homotopy analyser is zero in dimension | and filtration

greater than 1, this difference cocycle must be zero. This completes the
proof.

REMARK = Suppose w is a homogeneous Lie cocycle of weight &

wand g is in
6{k}. There will be cocycles in the homotopy analyser congruent to ¢'g modulo
filtration k+1.

The elements of higher filtration may he required hacause
composition with g is not distributive. The analysis of the distributivity law

given above implies that these extra terms can he chosen to have weights kp™r,
for r=1,2,.
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I will use the notations of the FIRST and SECOND PARTS. The universal
associator [ was defined in the SECOND PART for a small co~h-space. In fact
there is a generalisation to the cass of a central co-h-extension of one ahbelian
co-group by ancther; many of the ohbservations made here apply to this more

general situation, byt for simplicity of expression we will stick to small
co—h-spaces.

By definition, Y is a (3,g+1)-cochain in the homotopy analyser of §%m.
Since it is zero when any of its arguments are trivial, it is a reduced
cochain.

LEMMA 3.4.1 The associator §§ is a reduced cocvycle.

PROOF: Let a,b,c,d be the inclusions of A in A(4), The equations
alb{ed)) = Calibe)d Nz*lf(h ,c,d),

at{becid) = ((a(bc))d)z*ﬁ(a,b+c,d),

{albe))d = (((ab)c)d)z*ﬁ(a,b,c),
coupled with the equations

albled)) = ((ab)(cd))z*ﬁ(a,b,c+d),

{abi(cd) = (((ab)c)d)z*ﬁ(a+b,c,d),

show that the difference between al(bicd)) and {((able)d is the image under the
monomorphism z* of either side of the equation

b ,o,dy + Hla,b+c,d) + dta,b,c) = f{lath,c,d) + [(a,b,c+d).
However , the left-hand-side minus the right-hand-side is the coboundary of {,
proving that § is a cocycle.

A change in the comultiplication is the result of multiplying the original
comultiplication by z*g, where g = gla,b) is a (2.g+1)-cochain in the homotopy
analyser of S°m. In order that the new map be a cdmultiplication, g must vanish

when either of its arguments is trivial, Thus g can range over all the reduced
{(2,9+1)-cochains.

[t was shown in the SECOND PART that the effect of changing the
comultiplication. by g changed 3 by
glb,c) - gla+h,q) + gla,b+c) - gla,h),
which is the coboundary of g. This proves

THEOREM 3.4.2 The set of all associators Y is all the reduced
(3,9+1 )-cocyeles in a cohomology class in the cohomology
of the homatopy analyser of 8*m. Thus the cohomology

class of §§ is an invariant of the homotopy type of the
underlying space.

We have saen that, localised at an odd prime p, there is always a commutative
comultiplication. This limits the possible values for Y, hecause

Lcontinued]
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THEOREM 35.4.3 If a comultiplication is commutative the associator 4
satisfies

Hla,b,c) + HWe,b,a) = o,
Qla,b,e)+i(b ,ca)+i(c,a,b) = 0.
Proef. The iwo eguations
(chla = albe) = ((abic)lz#li{a,b,c),
(ab)e = clba) = ({(chraldz#{{c,b,a),

imply the first relation. The second is implied by the sequence
(bcla = albe) = ((able)dz*{(a,b c),
(ab)e = clab) ({calblz+lil{c,a,b),
(calb b(ca) ((beladz+{(h ,c,a).

It
1l

I have not written out the detsiled proof but I think the generalised
version of the next theorem can be used to prove that any simply-connected
co-group, localised at an odd prime p, admits an abelian co—group structure. (I
think this is the real interest of the theorem, for I helieve that the only
small co-groups are suspensions, and hence double suspensions. )

THEOREM 3.4.4 A small cd—h—space that admits an asscciative
comultiplication admits an abelian co-group structure (in
which all powers of the identity are primitive).

PROOF: Let a.,b,c denote the three inclusions of A in AC3); no confusion will
arise from using a,b also for the two inclusions of & in A(Z). The first step
is to reprove Theorem 1(b), that localisation at an odd prime p allows A to have
a commutative comultiplication.

There is a reduced (2,g9+1)-cochain g{@}(a,b) such that

ba = (ab)z#g{@}(a b)
and clearly g{®X(b,a) = -g{@}a,b). Hence changing the comultiplication by
040 will produce a commutative comultiplication. Any further change by a
symmetric (Z,g9+1)-cochain will produce other commutative comultiplications.

Let 4 be the associator of a commutative comultiplication. Since there is
an associative comultiplication, { is a coboundary D*g. We can suppose that
gla,b) is asymmeiric in a,b, for otherwise we will change the comultiplication
by the cochain -%( g(a,b)+g(b,a) ), which will produce ancther commutative
comultiplication for which the associator is the coboundary of the asymmetric
cochain £( gta,b) - g(b,a)). Since

Hla,b,e) = glb,c) - glath,c) + gla,b+c) - gla,b),
the asymmetry of g implies that l(c,b,a) = brg = fla,b,e). Therefore the first
relation in Theorem 3.4.3 implies that 4 is zero, so that the commutative
comultiplication is associative.

The technique just described can be used to clean up the associator in
neneral. For the raest of this chapter I will assume Theorem 3.2.4, that the
enly p-torsion in the fourth cohomology group of the Lie analyser is L"(4 2p).
The interest of the next theorem is that this cannot be involved in an
associator, which eventually has implications

for the desuspension spectral
sequence of 5%m.

[continued]
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THEOREM 3.4.5 A small co-h-space has a
for which the associator
whose weights are powers

PROOF: The only non-zero cohomology of
derives from L*(3,p) and L*(4,2p). Let
comultiplication. Then { is the sum g
of products whose weights are powers of
follows from the analysis at the end of
and {{" have similar properties to o
" are cocycles,

and " respactively.
and furthermore each satsfies the equations in Theoren 3.4.3.

commutative comultiplication
invelves only Whitehead products
of n.

the homotopy analyser in dimension 3

i be the associator of & commutative

+ 8" of cochains where ' consists only
p, and " is free of such products. It
chapter 3 that the coboundaries of {1°
Therefore both {' and

We will allow ourselves to change the comultiplication by symmetric cochains

which do not include a product whose weight is

only " and leave [’ unaltered.

we can make 3" zero in this manner.

a power of p; this will change

Te prove the Theorem it suffices to show that

We now express " as the sum of a coboundary f#*g and a carefully chosen

representative u of its cohomology class:
Tor{L"(4,2p) ,6{2p}) and so is determined hy
the (g+1)-st homotopy group of S™1+2ptm=-1)).

Lie genarators {13 ,ud2) {3},

the mod. p class Dx{fa bl p).
p to D#(a"p), as is hi(b,a).

that h is symmetric.

Drita,bl"p) =

= h'(a,b,c),

Equally easy to prove is that the right

permutation which exchanges a and o

degree).

There is

We now use the isomorphism of

explained at the end of the previous chapter to define u as
Thus u is congruent to ihe composition of h°

[a,bl1"piR.
of higher filtration.

By replacing h with 3¢ hia,b¥+h(b,a))
fn esasy calculation shows that
hila,cl,[b,cl)

{since h is a homogensous pclynomial

this class must lie in
an element B of order p in G{Zp},
For convenience, let a,b,c he the

The generator of L*(4 2p) is the Bochstein of

a Lie polynomial h{a,b) congruent modulo
‘We can ensurea

= h{la,cl,la,bl)
say.
hand side is invariant undar the

modulo p,

of odd
AAH
the coboundary of
with B, modulo elements

the analyser with that of LAH in

‘As in the proof of the previous theorem we can suppose that the Z-cochain

gla,b) is asymmetric, for otherwise we can

symmetric cochain —%( gla,bl+gib,a) ),
Since u + D#g satisfies tha first equat
proof of that Theorem) that
ula,b,e) + wuth,c,a) +
This proves firstly that D#g is zero in
suppese that g itself has filtration at
weight exactly 2p we see that
elements of higher filtration.

commutative comultiplication),

which replaces g by
ion in Theorem 3.4.3, we find (as in the

20%q

change the comultiplication by the
{ gla,b)-gth,a)),

Y

=@,
filtrations less than 2p, 50 we can
least 2p. Secondly, looking at terms of

2k’ composed with f is a coboundary modulo

This implies that B and so also u is zero.
Thirdly, since u is zero so also is Dxg,

Thus " is zero (for this corrected

and the theorem is proved.

REMARK = This shows that the cohomology class af the associator O lies
entirely in the part of the cohomology of the homotopy analyser stemming from

L*(3,p). This is of interest

2

»
oM.

in the spectral sequence of the desuspension of



THIRD PAaRT [5S3 The Desuspension Spectral Sequence
Letter:-Barratt to Berstein/Harper

Let P he ths suspension of a simply-connected space B. The

desuspension spectral sequence of P to be described here starts with
E“l1-term the (reduced) graded homotopy of the bouquets P(n) and converges to the
graded homotopy of B. Here the reduced homotopy of a bouguet P(n) means the
intersection of the kernels of the n obvious retractions on P{n=13. In the case
that B is itself a suspension, so that P is an abelian cogroup, the E*1-tarm is
the reduced homotopy analyser of P and the E*Z2~term is the cohomology of this
analyser, as will be proved below. This desuspension spectral sequence is a
special case of the spectral sequence of an inclusion that I

described in the notes published by Aarhus on their 1962 conference. It is the
case of the inclusion of B into the cone on B.

Let C mean the reduced cone functor and, for n»1, CBInl the (¢
total space is the result of identifying with B the bases of n disjeoint cones
CBL1Y,...,CB{n}, and whose n subspaces are.the results of making similar
constructions omitting each of the cones in turn. CBInl is an e<cisive (n+1)-ad

and hence by a thecrem of Toda's it will be (nr+i)-connected if if B is
(r~1)-connected.

ntl)-ad whose

Let CB’Inl be the result of adding an extra cone CB{n+i} to each of the
subspaces of CBInl. The total space of this (n+i)-ad is that of CBIn+t]l, and
its subspaces are the first n subspaces of that (n+2)-ad. One of the exact
sequences of the (n+2)-ad connects the homotopy groups of CBIn+11, CBInl and
CB'I[nl.

In addition, CBI11 is to be the pair (CB{1},B), CB'[11 is the result of
adding a cone CB{2} on B to both the total space and subspace of CBI11, CBIO] is
B, and CB'[@1 is CB{1}. Thus ws may add two more exact sequences to the
previous collection, the last being the exact sequence of the pair CBI[11].

This collection of exact sequences defines an exact couple in the sense of
Blakers and Massey. The associated spectral sequence is the Desuspension
Spectral Sequence of P. The reasons for the name are that firstly the spectral
sequence converges to the homotopy of B, and secondly the homotopy tvpe of
CB'Inl is that of PInl whose total space is the bouguet P(n) of n copies of P,
with subspaces the n copies of P(n-1) in which each of the factors P{i} ara
omitted in turn. (This is easily seen by pinching the common contractible
subspace CB{n+1} to a point.) It is well-known that the g-th homotopy group of
the (n+l)-ad Plnl is isomorphic to the quotient of the g-th hometopy group of
the bouguet P(n) hy the subgroup generated by images of the homotopy group of
P{n-1) under the n inclusion maps. This is isomorphic to the summand which is
the intersection of the kernels of the n retractions of P(n) on P(n-1).

[continued]
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We now turn to the homotopy analyser of P. We take the alternate model of
the cosimplicial complex K* using the generators y{i} mentioned in the first
chapter. The homotopy analyser defined in this way is equivalent to the one
previously defined by the maps induced by the isomorphism of cosimplicial
complexes which on K+*p maps x{n} to v{n} and for every i<n maps ={i} to
yii} = v(i+1}. The reduced analyser is isomerphic to the quotient cosimplicial
group obtained by dividing out by the subgroup which is generated by the images
of all the coface operators except the last. In the case of the homotopy
analyser of P this means dividing out by the images of the homotopy of all
Pln=1) in P(n), so the groups of the reduced homotopy analyser of P can he

identified with the homotopy groups of the (nt1)-ad Plnl in dimension n. This
proves the first part of

THEOREM Z.5.1 Let P pe the suspension of a simply-connected
Suspension B. Then the E"1 term of the desuspension
spectral sequence of P is isomorphic to the reduced
homotopy analyser of P.
Moreover, the E*2? term of the desuspension spectral

Sequence is isomorphic to the cohomology of the homotopy
analyser of P.

PROOF: One advantage of dealing with the reduced analyser as a quotient of the
analyser is that, having factored out the images of all except the last face
operator, the differential reduces to that last face operator, which is inducad
by the map which on K#*n sends each y{iY to y{i} - y{n+1>. In the desuspension
spectral sequence the first differential can he described by means of the mapg of
the total space of CB’Inl to that of PILn+1] which pinches the common subspace B
to a point. The i-th factor of Pln} corrasponds in CB’Inl to the union of the
cone CB{i} with the extra cone CB{n+1}, and the map pinéhing the common base B
to a point maps this tao the bouquet of P{i} and P{nt1} through the
comultiplication map followed by the identity map onto P{i} and the identity
onto P{n+i} with suspension parameter reversed, which therefore is the
topological realisation of the map sending y{i} to y{i} - y{ntl}, This
establishes ihe identification of the differential in the homotopy analyser with

the first differential in the desuspension spectral sequence, and completes the
proof of 3.5.1.

[continued]
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The Desuspension Spectral Sequence for a sphere of odd dimension m,
localised at an odd prime p, has E*"2 term governed by the cohomology of the Lis
analyser. The LIE ANALYSER CONJECTURE would imply that there are no groups in
E"Z in dimensions above 4, and the. spectral sequence has to converge at E~4.
fact, the last result of the previous chapter and Chan's Theorem in the rext
will enable us to draw a much stronger inference, described at the end of the
next chapter.

However, by using the spectral sequence to compute the rational homotopy of
even dimensional spheres, which is known, we can prove that the Lie A
no rational cohomology except for L*(1,1) and L*(2.,2y. The argument uses the
fact that the same cohomology appears in the spectral sequence for all odd
spheres, and the idea is to select the first unexpected class in an appropriate
ordering, and then select a sufficiently large value of m 50 that this class
must create unexpected rational homotopy on Sm-11, creating a contradiction.
I omit the details for the moment .,

In

nalyser has

The desuspension spectral sequence for a sphere of even dimension, or any
sphere localised at 2, for similar reasons must reduce to the EHP seQuence.
This is evidence that the Lie Analyser cohomology localised at 2, and the graded
Lie Algebra cohomology where the generators have odd dimension, consists only of
the cyclic groups at (1,1 and (2,2). It would be nice to have an algebraic
proof of these algebraic facts.

The Desuspension Spectral Seguence has recently been re~discovered and
generalised by Mike Hopkins, who has ohserved that it is the dual of the
Milnar—Moore~Rothenburg—Steenrod spectral sequence, which gives grounds for hope
that it will converge at a finite term if B has finite co—category. He adds.
that this would predict that for a sphere of even dimension, localised at an odd
prime, it should converge at E"2, which is true: for a sphere of odd dimension
convergence should be at E*3, which (as we shall see) is indead implied by the
Lie finalyser conjecture. In fact, I believe we can show that the Lie finalyser
conjecture must be true if the spectral sequence for 5"3 converges at E~3.
Convergence at E*3 will produce with Chan's Theorem a corollary that a small
co~h-space localised at an odd prime must be a suspension if it admits an
associative comultiplication.



