AN

Simplicial and semisimplicial complexes

M. G. Barratt , 20 xii 1956.

Introduction.

The realizsgtion IBI of a €8S (= complete semisimplicial)
complex B ([1] ,'; notation as in [7]}has been defined in [3,k4,6].
The definition in [6], where degeneracies are taken into account ;

is followed here.

Theorem 1. ']Bl hag a simplicial subdivision.

If dééeﬁeracies are not taken into account p .\IIS‘dE Bl is,
,0bviously simplicial (Sd is defined in (2.3))« Such re),aliz'a.‘tidns;
have disadvantages; ‘e.g.’ |A| * IBI # |A x Bl.

Let. R: (RB & |B|, Rf = lfl) (IB,, ,fl as in [6]‘;&be

the realization functor. |

Definition.  A-division functor on a (sub)category of CSS com_pl_exes“

and maps to the category of CSS complexes and maps is a functor D

admitting naturel transformations®

At Do, a3 RD - R,

% That is, if f; B - C, then there are commutative diagrams

"5

DB ————> B |DB| > |B]
lDf -}\c if ; llDfl o, l l£] .
DC - >C _IDCI > ICI

—--—----—-—-———_..--———-_.--—-

"']"'Ih'e author was partially suppurtedby Mr Force Contract AF 18(600)-149k

durdng the period when the work on this Pbaper was being done,



such that ay: |DB] -» |B| 1s & homeomorphism, and o = |n],
there being a homotopy A such that A ( || XT)=|7] 1

o ( |s)<=|7|, (ceDB, * €B; |t| = closure of the reslization
of t). Such functors include the barycentric subdivision functor
84 ((2.3) below) and the reverse nerve functor 'NAh(§2) restricted

to the image of 8d. . Therefore Theorem 11s contained in the more

explicit

Theorem 2 NZXSd is a division functor from the category of (S8

complexes to the subcategory of gimpliclal complexes.

The proof that Sd i1s a dlvision functor is (fairly)straightforward.
The key to Theorem 1 lies in showing that the closed cells of |SdB|
are elements. NA BdB 1s isomorphic to the complex obtained by
starring the cells of ISdBl from internal points, in order of in-
creasing dimension.

The author 1s indebted to helpful discussions with John Milnor,

who discovered Theorem 1 independently.,

Nerve and Star PFunctors.

The nerve functors apply‘ the formal process of pubdivision of
simplicial complexes (see, for example,[5] ) to CSg complexes; the

star functors originate in Alexander's starring operation.

Definition. The nerve functor N (reverse nerve functor l\IA )

‘assigns a simplicial complex NB (NAB) to a €8S complex B; the

vertices are the nondegenerate simplices of B, and the p-simplices



(p = 0,1,2,...) are sequences (o(o),..., Q(P)) such that

1] L+ <o o > a0 > g

(0) £ S 9(p)» (o) 2+ 2 51y
vhere ¢ < T means that ¢ 18 & face of 7 . A map fi B - C
Anduces a transformation f of the nondegenerate simplices of B
to the nondegenerate simplices of € such that fo = Tg or &

degeneracy of To . Then Nf (stf) is the map such that

(_0(9);0-.: U(P)) > (—IFU(O),...,FU(F)) ((g(o),-l”_, U(p)) GNB’Eor NA B).

Clearly, 1f B is a simplicial complex, NB is isomorphilc to the

usual barycentric. subdivision of B (e,f. [(51).
Remark.  There are (in general, not very useful) maps

(2.1) N NB — B, N 2B B

_ defined on the vertices (o) by A(o) = last vertex of 0} A2 (o) = first
vertex of o, and such that A(U( ,...,u(p)) A (o(o),...,o(P))
are in the least subcomplexes of B containing 0( ) (o)’
respectively,

The face and degeneracy operators in (S8 complexes form a
multiplicative system (abstract category) ® of operators ¢ such that
that certain values of q (depending on ¢ ), ¢ o is defined and is

(for some p) & p-simplex of a C85 complex X for any q-simplex



Definition ¢ = {¢} 1is a multiplicative system generated by objects

l,ai,s i(:L > 0), subject to the relations

%1% = 0Pyt 20 eymym ey s,1 <05 14 - = g

aisi = ai+151 =1 ; aisd.—.sd_lai ifi<gy, = sjai-_l if 1> j41 .

Let (Dn,P be the set of ¢ such that tpun is defined and
- *
c$ o eBp for any o, eBn. Let @ 'be an anti-isomorphic copy of
® , and let ¢* correspond to ¢ in the anti-isomorphism (so that
(§u)* = ‘l‘*‘i* ). AMlso let @* - be the image of o in the
n,p n,p

anti-1somorphism, ‘

Suppose M = {M‘)} 1s & collection of (CSS complexes Mn, n >0,
(with M usually consisting of one vertex and its degeneracies), and
suppose that. ¢* is made to operate on M as a collection of C38 maps
in such a way that if Z]i*e‘tb: 0’ then 4*: M LMY, (For example,
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B;- : M == M for each n > i) Then define the star-functor . M* by

Definition M*B i1s a (88 complex whose g-simplices are classes of palrs

(Tq, o) (quMI_l, 0, €8 ) subject to the identifications

(2.21) (4" r0,) = (1g59,) (g ¥, § es0, ).

The face and degeneracy operatlons in M¥R, are glven by

(2.22) @(Tq,ﬁn) = (474, o).



-

If £1 B -»C, then Mxf: M*B — M%*C 1is given by
(2.23) M*f(rq,an) = (-;_q,fcn).

' [Remark. (2.22),(2.23) are consistent with (2.21) since 4)* is a

CS8 map, for any $*eo¥,]

(f.'[he realization functor can be similarly defined; M is

there a geometric n-simplex, fp* & simplicial map, (2.31) a set of
1dentifications),

If gt M = M 1s a collection of CSS maps gt M - M2 which
commute with the maps of <I>*(<p*gp-. ghq* 1r c}*e <I>: ‘p)'" there
j y)

1s a netural transformation g1 M* o M*, guch that

— n
(2.214-) ‘ g,B.(Tq’Un) = (g 'rq,an) (Tq,un)eM.*B.

‘Examples of star_funcfors. Conical functor; M" = Join of the
stdndard‘n-—sim_plex A" yith a fixed vertex; suspension functors
M = Join: of A" with two fixed vertices; barycentric division
functor: defined below.

Let A" pe the (abstract) n-simplex (XK [n] tn [2] ) with
vertices 0,...,n. 'The order:-;preaerving inclusion [, ., s0-1]<[0,...,n]
(image omitting 1), and the order-preserving pro,jectlion |
[0,...,n1]500,...,n] (1,141 > 1) 1induce, respectively, simplicial

maps

BI:AD"]' - A% B;e:An-:l A",



This induces an operation of d)* on A= (A", Let Sda= {(Na™)

(N = nerve functor), and let ¢* operate on SdA by

0% = (M%) : AP o g a° ($* e «ip).

Similerly 8a°A can be defined for any r, ag (N'A) with

operators N q;*

(2.3) Definition 8a7B = ga®a * B 3 8a'f = sa"A % gy >0 .

Here 83°A =4 .

Lemma, There are natural isomorphisms B ~ SdoB, Sdr+lB =~ Sd(SdrB).

Proof, In the first case ; let e, e be the nondegenerate n-gimplex,
Then any, 'rqun can be expressed uniquely as cp* ep for some p .and
some ¢¥e Qz’i). Hence ('rq, dn») =(<i>*ep ,(In) = (ep,cp o,) € 8a°8, ana
the map (ep,qion) - ¢ 0, 18 the desired isomorphism, In the
second case, notlce that NA = gq An, - and that M'*M"x = M*  if
M= MM o any star functors M's, M"%. Identify
B, 54°B; and gd(sa’B), SI™™B by these 1somorphisms.

The maps A": NA' o AR (2.1) (such that A o) = last vertex
of o and, being g gimplicial map, is uniquely described by this)

g
Induce A: BdA - A and so ((2.34)) induce

(2.4) Ngt 83B - B, %X;:84 — 8g°

2

since 8dB = S4A%¥B, B =A¥B = 5a°3p .



3. 84 as a division functor,

Theorem 3 8d 1is a division functor

The transformation X3 84 — 1 1is defined by (2.4), and is clearly
natural., The definition of Oyt [8dB| - [B| requires a little
care, since the obvious homeomorphism ]Sdlfll = LAn1 is not com-.

*
patible with identification maps |sds}|, |s o=

In each face e% of |a%|, select a point A%, at present

arbitrary. Cover lAnl by a simplicial comiilex isomorphic to

t t
increasing dimension 4. [That is to 8ay, when all cells of dimension

.SdAn‘ (=1\IAn) by starring each cell %2 from Aq, in order of

less than ¢ have been triangulated, join each simplex on the boundary
of e% to »A%, t=0,1,...(q) 1. Then there is & natural barycentric
map B |Sd Anl — |A'| defined by means of this triangulation, in

P D
which [(el)| -. AL

For each cne B’n s select [Aﬁ} as follows. If the face o of

p,t
b = &P - :
0, corresponding to - €t (1.e. e, = ) ¢cn = Up,t for some ¢ ed )
1s non-degenerate, then Al,z is the barycentre (= centroid). If for
* P . .
some g =d0 then ¢, - €% i3 a simplicial
e D,t ¢ @;u’ (t) e'b u' .o D
map.  For each vertex vV, of e&, let Gi be the, centroid of the
vertices of ei’ in 4*'1(\[1) , and let Af_j be the centroid of the
Gi's (1=0,1,...,q). This set of choices defines & triangulation of

lAnl and 80 a map
Blo ): |sa o - |a°].

These maps, for all simplices of B, are easlly shown to have the property



Lemma 3.1  If for some $e "‘»n:,m’ g, =¢0,, then the diagram

B(a,)

|sa 47| S
l lsa ¢¥| l |¢¥|
e — P | A%
Commutes‘.

(It. suffices to consider ¢ = s b= Bi only).

The (unique) CSS map [o,] : A" - B which maps e on g

has a realization

;t‘(an)‘: ]Anl - |B[;
 while 8a [0,] : 844" 5 8dB similarly defines
g(a,) + |saa®| - |saB|

Tt follows from the definition of |B|, |SdB| as identification spaces
‘that the map

Gyl (elo))[8aa™]) = 2(q).¢p(q,) ea(a)™

is single valued and so continuous ([8]), 1-1 and so a homeo-
morphism (IB[ 18 Hausdorff, g(a )ISdA | is compact).,  Also, under
the hypotheses of (3. 1), g(a )e ]Bdrp | = g(u RIEICHL ]1; | = f(o

and hence by (3.1), '073, defined piecewlse over |8dB|, 1is &



homeomorphism, '(aB 1s continuous, since |8dB| ‘1s & CW complex,
x

and[ha.s & continuous inverse similarly constructed).

Now EBE ]XBI; for, with the triangulation of |&] under
np n '

B(e,), define h(a): |&' - [&%]  such that b (o.) =1, ht(qn)lA'-;‘
is & linear map of Ag-XI on the segment Jjoining Al.; to the last
vertex of e.‘: , and ht(cn) 1s & linear extension of this. Thege

homotopies define H, [B] —-> [B] vy
-Ht](f(an) &%) = f(an)o ht(on)o f(cn)'l.

Then it 1s clear that B, Qp =0y B op=[X;]. Tis completes

the proof of Theorem Sic

Regular Complexes

Definition A CS8 complex is regular if each non-degenerste %,
‘has g verteic such that no face of 0, contalning this

vertex 1s degenerste.

Definition A CW complex is regular 1f the closure of each n-cell

is an n-element, and 1f. ®),8, are two cells, then

for some cell €3 S N\€y = &y (or = 4).

Theorem 4. The reslization of a regular CSS complex is a regular CW

complex, and go can be triangulated by starring each cell

in order of Iincreasing dimension.
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Notice that;

Lemma 4.1  §4B is regular, for any CSS complex B,
(In fact » no face of & nondegenerste 9, € 8dB , containing the last
vertex of 0,s can be degenerate).
It 1s clear tha?vif B 18 regular, and [0 | 1s an n-element
for each nondegenerste o, € B, then |B| 1is regular. (For any two
| cells meet in ¢ or a cormon face). Also, if.,qn 1s nondegenerate
-and hes degenerate faces, then there'ié a unique degenerate face of

maximal dimension. Hence, by an inductive srgument., there is a

sequence of faces

o >0 > > ree >0 >
n” py” %y Py~ °

such that or is 8 dégeneracy of odi, and is the maximal degenerste

face of nondegenerate cqi_l, where q0'= n and Oqg is nondegenerate,

All degeneracies of faces of @, 8re consequences of these degeneracies.
Ten [5] s the image of |A"| under an identification mep

in which certain faces ]Apil are identified with ,[AFi] by

simplicial retractions |¢Il + Split these retractlons, for convenience,

 into sequences
S o 8 e o T L Y,

and remumber the faces so that there is a sequence

W

B>B >4 2Ry > a2t 2e >,



where 9 = pi.—_l, and, for each.i, there is specified a
simplicial retraction fiz[Api] -~ ]Aqil . Perform the identi-
fications by stages, beglnning with £, let F, lAn'[ be the
ddentification space defined by (fl sees ,_:E‘i), and suppose
Lemma 4.2 If £ [AP | = lAp'll is & simplicial retraction, there
15 an extension f£: |A%| - |A%|  which maps
IAnl = IAP.I homeomorphically on IAnI S [Ap'll.
The proof of this is given in §6.
Then, with p=np., ?1Ffl t B |27 —; |&%|  1s single valued and so
continuous, 1~1, and so a homeomorphism, and, since .fl is a re-
traction, maps [Apl_l.l =B [Apl~l| ‘idéntically on itself, Hence,
by iteration, there 1s a homeomorphism of b |a%  on 2% for
every 1; din particular, Ft|An.l is an n-element » &nd Theorem 4

follows.

NA a8 8 division functor,

Theorem 5 NA is & division functor on the image of g84.

Triengulate |5d B | as in Theorem 4; |8dB| is now covered by a
gimplicial complex isomorphic to NéSd.B ; for g suij:a.ble ordering of
the vertices. Therefore there is & simplicial map inducing a homeo-
morphiem |N“8aB| - |84B|.  In order that this showld be ol

(vhich has t6 be natural), the trisngulation of |84B| has to be

achieved canonically,

)x.% : ¥ 8dB o 8dB is the map referred to in (2.1), and

sends (o) to the first vertex of o3 it is unlquely described by this
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; A
and the condition that }‘B(U(o)""’o(p)) 1s to be c(o) or

a8 face of c<°) i (0(0)’""0(13)) is nondegenerate. '.Ehfo:l;s is clearly
natural, and IA.% | 1s shown to be homotopic to aﬁ‘ (fa.ny construction
as in the previous paragraph) by the method at the end of §3,

The construction of B( un) in §3, but for 10, €84B , .18 now used™

to triangulate |84B| canonically. TLet A{’ ‘be as before,

£(o,) s |a" - [saB]

the identificatiqn map. l?nl will now be starred from the pointsg
P AP D
X f(on)_At f(cp,t)_A .

The O-section of |8dB| is triangulated. Suppose the
(n-l)-section is triangulated » using the points constructed above,

It 1s necessary to describe how X' 1s Joined to a simplex { on

the boundary of |G |. Iet

- -l.p
C:i) = centroid f(an) Xi 3

if { has vertices XIt), X%, e ,XWB, take the relctilinea.r simplex
in |AP| with vertices An,cf;’,c%, o c*; and map this into

I?fn[ by fl(on). Bince :f‘(c;n) CE =.X1,:, etc., this defines a cone
on { with vertex Xn, and the construction, carried out for all . ¢
on l'c?nlo » clearly extends the triangulation over IEnl. This
construction, repeated on all cells of ISdBI . in order of increas-
ing dimension, defines the canonical triangulation of lSdBI ; ‘the
a]? defined with reépect to this 1s then ‘natural.

Theorem 2, and hence Theorem 1 » follow from Theorems 3,5, since



§é.
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the composite of a division functor i1s ggain a division functor,

(Rema.rk. The reverse nerve functor 'NA is required to construct

a .CSS map }».% « Alternatively, & reverse barycentric functor SdA

using {NA Ar.l) followed by N can be used).

Proof of (k.2)
E* 1is Euclidean space of polnts (xl,..-.,xn) 3 E_r: the half-space
_ = n .
x >0; Eq. the subspace O = Xopl = 0t =X = E w ()  the

compactification, ILet A® defota & geometric k-simplex throughout
this section. Choose a face AR “1oaP 1y A", and embed A1

i B g0 that APcr, APl L aig g0 that the edge of AP

collapsed to a vertex in AP = by £ lies on & line orthogonal to

Pl men £ AP APt extends to the orthogomal projection

L, Extend the embedding APt ™1 4o & homeomorphism

h: A" E:C"ﬁn-

Let g: B° 5 AP gend x ¢E™ to the nearest point of AP~L,
This is single valued and continucus (AP’ &t 1s compact and convex).
Also g can be factored through the orthogonal projection K- - EP™l

followed by gIEP'..l j-hence g- extends f. In the usual metric, let

a(x,y) = |x~ yl“ , and define

‘ 8(x) = a(x,4°)/a(x,g(x)) all xe EP. AL
(6.1) F(x) = g(x) + 8(x) (x-a(x))

F(x) = x xe (E"-2%)y APl
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Then F will be shown to have the properties

(1) T is continuous and extends £,
) ‘ =0 =1 -1
(6.2) (11) ¥ 1s & homeomorphism of T2 . A on ER- AP 3

$441) T maps 'E':': and its complement on themselves,

Therefore Th (A?) =‘E’+n= h(An) , and h™¥ Toh = ¢ 18 the required

map.,.
_NOW g(x)'e AP-J-CAP and is the nearest point of AP"‘l to x.
Hence
0 2 a(x,0°) / afx,e(x)) <1
0 < a(x,a(x)) = a(x,4%) < dtam AP,

and so
1) ~F0) < llet) -e@)]) + Jx-y]
for all x,yeE*- AP, This is also satisfied 1if one, or both,

X,y eaPL, Therefore T 1s contimuous on E, since g 1s. Also
| x -F(x) | < diam AP

8O tﬁat ¥ 15 contimious on a nelghborhood of (w), Thig proves
(6.2(1)).

- &(x) has the property that if x,Y,&8(x) or y,x,g(x) are
colinear and in order, then g(x) = g(y). -For, 1f y separates

x,&(x), then

d(x:S(y)) < d(x:y) + d(y,g(y)) < d(xJY) + d(Y:E("-)) = d(x,g(x));
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hence g(y) = g(x). If x separates y,g(x), let T E® o E®
be the similarity transformation

(z) = g(x) + w(z- g(x))

vhere 1 >1 1g chosen so that Tx = ¥y Since AP 'lc paP-L 3

d(x',s(X) ) =a(mx, Tg(x) )= a(m, mpgl)ﬁdﬂflmJAP-;) = d(Y;Ap-l) = d(y:S(Y) )

80 g(x) = g(y) agatn,

Let L Dbe the half line ending at g(x), containing x.
Then g(y) = g(x) for all y.on L. Then d(y,A’) is strictly
monotone for yeL - AP, for, since g(y) = g(x), we may suppose that

YsX,8(x) are in order, and take T as before; slnce 7> 1,
©4(y,2°) > a(y, ™) = a(x,TAP) = ta(x, AP ) > d(x,aP ),

provided x ¢ A%,  Bub then,if xeE- APl

E(x) -g(x) | = || x-g(x) | 8(x) = a(x,aP),

and hence g maps I, - AP homeomorphically on L - g(x), and
(6.2(11)) follows at once.

Princeton University
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