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Introduction

Recently, there has been a great deal of activity in understanding
the Adams-Novikov spectral sequence for the sphere spectrum, especially
making use of the Brown-Peterson spectra. In this paper, we make some
observations on the analogues for PPk where F = (¢ (the,complex
numbers) or IM (the quaternions). Some of our results will be used
in a joint paper with N. Ray and F. Clarke on WEBU and thus can be
viewed as the first steps in a larger programme of computations in NEBU.

All notation will hopefully be well known to workers in this field
and corresponds to that of [Ad] and [Sw].

I wish to thank Francis Clarke (to whom my understanding of FnK
and introduction to the type of calculations in §1 is due) and Nigel Ray
for much help and encouragement; also, Memorial University of Newfoundland
for a Post-Doctoral Fellowship in the period 1980-81, especially Renzo
Piccinini for many sympathetic discussions. Finally, many thanks to

Sandra Crane for her nearly flawless typing of two totally different

versions of this paper.



In 81, we describe the coaction primitives in- Zc*ﬁvw. Rather than
simply use the method of [Sel], we project into z*ﬁxun and use some
properties of Stirling numbers. We also make use of a consequence of

the Hattori-Stong Theorem that wZC*wa = wz*éww.

In 82, we consider the exact sequences of Ext-groups induced by the
cellular decomposition ... n“%wWIH C %wrﬁ ... C TP, Unfortunately,
we are unable to prove algebraically a result of [Sel] on

s 4k+2 . . .
tmw+ux € ﬁmw+wev - this would then avoid the use of high degree

differentials in the classical Adams spectral sequence. We also give a

new proof of a result of [Sn] on the torsion in ﬁmews

In 83, we use Novikov's calculation of T,MSU to show that half of

the generators of wzc*a~w8 are not infinite cycles; also, we calculate
mem*H:ww.

o0
In §4, we use the generators of PK,IFP  to determine the e-invariants

of the elements in the image of the transfer maps

S S
ﬁno* : ﬁ*ﬁwthu+v > T,



§1 We begin by establishing certain notations.
H,MU = N?H. WN“ .«.], where b, € m.m.=2c is the canonical generator
as in [Ad]. ‘
z:*eww is the free MU, module on generators ms € MU sevx

2
(n <k < «), dual to nmpsv. again as in {Ad]; we also use this to denote

the image under h : MU, (-) —+ (~aMU), (-).

Similarly, qa, € zcaiung will denote the canonical generator, dual

to %Mwsu together with mhnbv. Actually, q, comes from zmwasHva.
e standad o
b(t) = M @Wﬁw M?% ox A\nﬂuu MF .wr.:
0<k Q\N ﬂ k
b(t) = § T:ws%w. = b(-t)
0<k

We will use the symbol [f(t)] to denote the coefficient of t" in the
n

power series f(t).

flows o2

1.1 Definition. T_ = n! ) mcnﬂvuu . B. € (HaMU) ﬁvw kﬁgﬁcw>whs
———= n : n-j °j 2n
1<j<n
g W@B. M [b(t) b(t) wms-wu. q; € EZMSNEHEV X
’ 1sicm 53

More wabwsd chne wodd e ayslan
(lfere 1 <n < k < ©),

1.2 wH01omHHW&w.

(a) ﬂ:..m: are primitive under the MU-coaction

el
Yo (HAMU) X > (HAMU) MU ® (HAMU) X X C hou—



k _ k
(b) r, € ch:ew c mz\/zcumzem
= k ok . .
E € zc»:wﬁv c ﬁm\/zcunnHmw and are coaction primitive therein.
() T  and E, are indivisible in zc*eww and z:*Hmww. Tespectively.
Proof, (a) is proved as in [Se2]. ‘(b) and (c) are consequences of the

following which we present as an alternative to the proof in [Se2].

1.3 Lemma. The K-theory orientation map T : MU »> K induces an

isomorphism T : PMU,X ~ PK,X whenever X has torsion free homology.

(Here, PE,X denotes the primitive subgroup of E_X under the E-theory

coaction,)

. K . k
1.4 Proposition. Let ﬁb = H.ﬂs € m:\/wumsev
X _ = . k
,5|HJHmE>C§Ev.
K ~ K :
(a) ﬁ: and S, are primitive under the K-coaction.
K .. k . k
(b) ﬂ:, € rmnev C mz‘,rumsﬁw
- K . k . k
E) mrﬁﬂﬁE < E>r§bEw.
K ~k SR e . . kK k .
{(c) ﬂ: and =~ are indivisible in K, CP™ and K»Hmw » Tespectively.
Proof of (1.4). (a2) is obvious since T is a map of ring spectra, hence,

preserves coactions. To see (b) and (c), we need to explicitly describe

these elements.



Recall that H.K = Qu, cnwu

m,K = Z[u, cnpu where h : 7, K< HK is the hurewicz

homomorphism.
We need to describe explicitly the homomorphism of rings
Ty ¢ HMU > H.K. This is a result given in [Sw]:

n

. u
Tuby = (mn+ 1)!

Hence, T,b(t) = cnuﬁupmmﬁﬁ - 1)

,h(t) = —ule et Dy

Let
n K
a*m: =u m:
T - ch K
4, a,
ut : .
K e - 1.1 j K
T =nl § [—57] . s,
Ko lomr 'ucﬁﬁmcﬁ _ vauu 2 X
= Z(2n)! e Er— s uq .
n 2 1<5<n ut 2n-2j j

Now, recall the Stirling Numbers (of the second kind) [Ri]:

S, @ == ] (1IIGP

We will use the notation

A(p, 9) = q!S(p, q).

It is well known that:



1.6 (- = ] Ala8) o,
q<] )
Hence, T Kon Y A(n, uumm
’ 1in k
- K 2n 1 r.r 2u N ¢
E"=u ¥ ) G C A - 1, 25)q. .
1<j<n 0<r<2n-2j J

Note that

1.7 S(p,q) 1is always an integer, and A(p, 2s) = (2s) 1S(p, 2s)

W>ﬁ@v.mmv is an integer.

Hence, since the mux and ﬁwu form bases over K.» we can see that
{b) holds.
1.8 A(n, 1) =1

A(r, 2) = 2¥ _ 2 (by an easy induction). Therefore, the coefficient
of c=mM in ﬁ:x is 1, and that of chm?H in mM is

) enTEhET - -
2<r<2n

So (¢) also holds true.

1.9 Corollary. wxmseww has generator

xlz . z
o= 1A, 98"

1<j<n
PK ugwx has generator
4n
- K 2n 1 r.r 2n .y K
B, o=u Lo FEDTTENAER - r, 25)q 5
I<j<n 0<r<2n-2j



R

Proof of (1.3). Recall that if E = MU, K, then

PE,X = Ext™ (8,, E,X).
E,E

The unit map mu : mo + MU gives rise to a natural homomorphism

0% 0=
mu, : mxﬁz*xmw*ﬁxxxv¢ mxﬂx*ﬁx*. K, (XA MU))

1\

and, hence, a homomorphism

0 ., 0=+ . .
® : mxﬁx*xmr*u K. X) - mxﬁzc*zcnzc*v PK, (XA MU))
where mxﬁZC MU is taken in the category of right MUMU comodules, as
*

in [C1].
A reformulation of the Hattori-Stong theorem is provided by [Sm]:

1.10 The unit ku : mo -+ K induces an isomorphism

ku : w, (Xa MU) > PK_(XAMU)

if X has torsion free homology.
Hence, we obtain an isomorphism

.,o* 0= ,
SH : wxﬁzc*zcﬁzc*. T(XAM)) > wxﬁzc*zcﬁzc*v PK, (X~ MI)).

I claim the following is a commutative diagram;

0= LA | .
1.11 mxﬂzc*zchzawﬂﬂume;,Zcuunllzwﬁxﬁw*zhr*u K, X)
@
SH
. 3 0=

mxﬂzc*zc (MU,PK_ (XA MU))



Here, T is the '"change of theories" homomorphism induced by T.

To see that this claim is true, we observe that we are actually

investigating the commutativity of the diagram below on the subgroup

PMU, X ¢ T (XA MU).

0 Cx 0
T, (XAS A MU) — T, (X AMU A S™)
(1amunal}, (Lalamu),
ﬁHsLC;Hvx T, (X~ MU nMU) ﬁu\,h.\, T:vx

(IatTaAl),

Y T, (XA KaMI) <

(Here, ¢ denotes the switch map.)

The definition of primitivity ensures that the top triangle commutes

on PMU,X, and the fact that T * mu = ku completes the verification.

We can now use (1.11) and the facts that SM is an isomorphism and
T an injection, to deduce the result (1.3) for X

with torsion free
homology.

1.12 Note: In fact, the homonorphism @ is the edge homomorphism of

a spectral sequence with mmuﬂows of form



- B

EPYY = ExtP™ o, Ext®* (K., K, (XaMU)))
2 MU, MU *3 K K2 7 .
converging to mxﬁﬁ+@*ﬁz » K,X). The details generalize those in [Cl
s K K 0 P ]

and also show that & is monic for all X

As corollaries of our result (1.9), we can relatively easily show

that

1.13  Proposition.. Under the tensor product map te” x g > P

2

we have mﬁpus =T

n and Haﬁ: = F . Similarly for T .

m+n n

The proof is achieved in m*aws. and uses the well-known result that
as a Pontrjagin ring K.CP = {£(x) € Q[x]|f@) < Z} with

o
mM o SE R Ll (X S0 l) . In fact, Ko . Xt

n! n

il

co
1.14 Corollary. wzc*ﬁﬁv+u

Z[r, ]

zir *].

, [o¢]
PK, (CP))

We will use this result in a later section.



§2. In this section, we make some observations on the Adams-Novikov

k k

spectral sequences for ﬁwev and ﬁwg:v (1 £k <®), Recall that

*%
there is a natural spectral sequence ﬁmH (x), an
1<x

converging to

:*mxv and with

,E|B , ,
EXI(X) = Extyg yy(Mas MULX) [A1]

(Here, X 1is a connective spectrum or a space.)

ocwmpmsmsﬁw ﬁs m:m m: mﬂmvom,ooﬁwmmuwuﬁwm mwuﬁmwsm for
X = evw or X = H:vw. In fact, it is easily seen that ﬁu is an

infinite cycle - for if x € ﬁmmewr is represented by the inclusion of

the bottom cell, then mux = ﬁwu and so mmmxzu = ﬂzv by (1.13).

. e * %
2.1  Proposition. [Mo]. ﬁmﬁev+u\ﬂoamwoz = Z[x] and in E_ memwuu
each ﬁ:ﬁ: < k) is an infinite cycle.

The analogous technique fails for u*ws. since there is no product

o
on IHP . However, there is a map

ho: p” > mpk

for r = 2k, 2k + 1, which classifies the canonical Sp(l) structure on
y - cp* (the Hopf bundle). It is well known that h :Aﬁewﬂ - :aﬁd*vw
is then an isomorphism, and since the relevant >Qw‘m:-:wwwmcwcnr spectral

sequences collapse,

:*mN: =q (higher filtration terms).



k

2.2 Proposition. For each n < k, ﬁwrumw contains an element which
%%k
is represented by Nmn in E_ ﬁuﬁwwu - so this is an infinite cycle.

Note that :»ﬁwn+p = 0; in fact, r*hxms+pu must be an element of

filtration at least 2.

Now recall that if Y = X v mm is such that

0 > MUX » MUY + MU, + ¢

is short exact, then there is a long exact sequence for each r:

2.3 0+ EX 0 + B () » 8% (sY) —o BT
2 2 2 .6 2
Take X = avw|yv Y = ﬁvw. Let i : ¥l cpX be the inclusion
k 2k

and p : CP" > § the projection.

2.4  Proposition. In the sequence (2.3), we have

1 2k, k-1
mequ € mm (|
is an element of order k!, which detects f € ﬂww|wemw|w. the attaching
map of the top cell of ewxw in fact, wo non-zero multiple of f is of
filtration greater than 1. , T g
d

(Here, Qa € anm is the canonical generator.)

Proof. wwsm%MHv note that p.I, = =_qmwv and then recall the "Geometric

Boundary Theorem" of [J - M - W - Z].

Nheeel %m : T. Lppen lod me N 0%%



A corollary of this is that
ker[i, : E3*(eP"h) y.mw*ﬁemwvu = 2/ (1){8(0,) ).

Theorem (1.2) of [Sel] can be interpreted in our context as saying:

2.5 Theorem. Let Q#=+H € mw b+Nmmou denote the 2-torsion element

. \ = L
detecting Adams Mgne1 (see [Rav]). Then o r. = Nﬁa: + 2)18(o

dn+1"1 m:iu

in the sequence (2.3) with k = 4n + 2.

. [ 4n+l
Equivalently, tm=+yx m ﬁm:+wew 1s non-zero, but
_ 1 Te A S 4n+2 w
Mgne1X = 5(4n + 2)1f = 0 as an element of Mo 5P . eu

Unfortunately, we have not been able to give a direct proof of this

result in our present setting. Such a proof would avoid the need to use

differentials of high order as in [Sel]. However, we can prove Theorem

(1.1) of [Sel] as a corollary of (2.5).

Repeating all of the above for X mgmw|w Y = ﬁ*wwu with

jo: HmezH.L.Hmww the inclusion, q : szw.+ mpw the projection, we have

2.7 Proposition. In the sequence of (2.3),

1 4k, . k-1
8(0,,) € Ey (WP )

k-1 .

is an element of order WAwwu_b detecting g € ﬂmrupu*v ) the attaching

map of the top cell of u¢vwh in fact, g has order a divisor of (2k)!

The proof uses details already mentioned and is analogous to that

of (2.4).

ok o
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Now consider the following commutative diagram

2.9 | awhs+w ||Jﬂ|¢ evhs+m IIMW|+ mm:+a
h h Id
ﬁ*vmz u m*wN:+H mm:+g
q

This induces a commutative diagram with exact rows:

s . in+1 s . 4n+2 s 8n+4 S 4dn+1
Ten+4%P 1, Menaat? . "gnsdS TF, " TgnestP

h, h, id h,

s 2n [ 2n+1 s 8n+4 s 2n
Ten+q TP 3. Tenss P T Tgnaa® g, MgnastP

Now notice that he(ug .1 =0, since h,x = 0. Hence, by (2.5),
.W.QE + 2)1h,£ =0 and so 2(4n + 2)lh,g = 0

We, therefore, have some element of ﬁm:+AHmvN:+H hitting

1 . S +1 DU R
mﬁab + Nu.am=+b € ﬁmﬂ+aw¢ﬁﬂ%ﬁﬁ4 - but it .is easy to see that this is
0 8n+4_ _  2n+1

represented by E € E HHP. . :
p Y Sonel 2 ( ) ﬁﬁyéigwﬁf%,.
*% ok . o n g
2.11  Theoren. In E, (IHP"), each mN:+H 1s an infinite cycle

k . .
ﬁwmwz.TH m\ﬂﬂ x:oﬁom»ﬁromﬁﬁmorw:msmvomnwm ﬁOﬁomHHom .H:wms+H

is WAA: + 2)!, and no non-zero 55w~vam has filtration greater than 1

Similarly, each NmN: is an Hsﬁwwwwm.n%npm. but mw: supports a

non-zero differential - hence, the top cell of u*vN: has attaching map ﬁ

of order (4n)! and WAhsu_w has filtration greater than 1.
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(We leave the proof of the last part until the next section - see

(3.2).)

2.12 Note: Explicit formulae for mﬁQqu and amqawu in the above can

be found fromthe definition of & as

§(o

il
<=
w

o

i
—

&g
w0

2%
§(o

1)

) =YY - 1 €aq

We end this section with the following result, which is obtained in [Sn]

by very different means.

>

2.13  Theorem. Let y € ﬁwemb be a torsion element. Then for some k
%xw = 0.

Equivalently, :whev+u~xxpu = Z[x, xluu.

Proof. Let mo : eww > K be the stable map obtained by including
o

P in BUX {1}« BUXxZ = Kp- This is actually a map of ring spectra,
if eww is interpreted as a suspension spectrum.

Arguments similar to those in [Ad] show that uo* : ZC*mawwu + MU,K

is injective and

. = n, _ .0
uc*ﬂ: B uc*ﬁﬁw )=V

where V € chmm is the element mm.:w for u € ﬂmx the usual generator.

There is a commutative diagram



j
2.14 MU, (€P) 0% MU, K

Mo, @) [, 1)

where uo is the unique algebra extension of uo*. Notice that J

o 1S
actually an isomorphism, by arguments as in [Ad].
We can now obtain a commutative diagram
* % o) * % )
mﬁzc*_éﬁzct M@Sﬁé o > mﬁzfzc (MU,, MU,K)
A1
s .
/..f. \\\.\ .H
fa....f \‘..\. O*
~ -
* % © e -1
mxﬂzc»ZCAZC*» Zc*ﬁew+vﬁﬂp D

in which again uo* is an isomorphism. Also, the Conner-Floyd Theorem

tells us that

MUMUG K = MUK

and so MUK is an extended MU,MU-comodule - therefore,

*%

E O
mxﬁzc*z_cﬁzﬁ , MU, K)

Exty sy (MUs» MULK)

= Z[V, <-:

R

m,.K.
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Finally, note that since wpuu is primitive,

*%

o0 -1
mxﬁzc*zcﬁzc*v Zc*ﬁam+uth 1N

L k% o0 -2
mxdzc*z:ﬁzc*“ MU, (P )) [T ]

Z[L, T, 71

rok
So, for any <Y € Ext (MU, , Zc*ﬁewsuu which is torsion , for some
MU MU™ " * +

power k of ﬁuu

2

So, if Yy 1is an infinite cycle representing a homotopy element y

k

. < =
then yx" is of filtration greater than r . But all elements of JA»ownJ‘v

Wve  finite filtration.
It might be possible to prove Snaith's result that a spectrum
vmevsu obtained by using the _;cﬂﬂ construction on mw x P - TP is
equivalent to K in this fashion if the convergence problems can be

overcome (neither wﬁemsu nor K is connective). See [Sn].
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§3. In this section, we will use the Adams-Novikov spectral sequences

for ﬂmHmney T,MSp and TW,MSU to show that:

L3 - - 8 » . -
3.1  Proposition. Eon € ZcAdeﬁ is killed by mw in
L m

E, ﬁuawau => ﬁ*Hmw8w more generally, if oms»H € Zcmsname is given by

] - 8 - -
DN:IH = uH*UN:u “where jy ¢ IHP = MSp(1) —~ M»me is the usual inclusion,
*%
then om=|H is killed by mm in E, (MSp) = w MSp.
If Dwn = up*mmb+pu then oms is an infinite cycle representing an

indivisible, indecomposable element in m.MSp.

*.
3.2 Corollary. 5, € MU, HP" (2n <1) is killed by d, in E, (mHP")

(thus, the remainder of the proof of (2.t1) follows).

3.3 Corollary. The coaction primitives in mehzugwx ﬁ:mwmsu

contain an infinite cyclic summand generated by an element @:. where

under the orientation ¢ : MSp » MU, we have

%0

n ™

, if n odd

1
\Y]
[x]

» if n even.

In fact, under the hurewicz homomorphism

h : MSp,IHPX > (HA MSp), IHP,

we have
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H u .
:@:Awsu_thﬁﬁuu_.@_.,pmsoaaw
—n 2 1<j<n n-j j

(2n)! ¥ mwﬁﬁuuus 3 Q.uv if n even.
1<j<n B

mmHm“wﬁﬂuu M w ﬁHv where B € H, MSp is the canonical generator,
0<r T T 4r

and @m_m MSp, mpK

(or m\,zmwuhH Hmwxv is the canonical generator.

Proof of (3.1). Recall that under T : MU + K, we have

- 2n K 2n ; .
=, =W 9y * ... . Hence, we see that HD: =u o+ ... in 7A=me.
&

where we write u’ € wame for the image of u' € WNHAmOV under the

inclusion induced by the unit mo — MSp. So if o: represents an

element of m MSp, a representing Sp-manifold has "Todd genus" equal to
But it is a well-known result that every (8k+4)-dimensional SU-manifold
has even Todd genus - essentially because its K-theory orientation class

comes from KO - see [St].

Now let p : MSp - MSU denote the forgetful map, and consider the

map

0,% . 0,
Pyt Ey)’" (Msp) ~ ED* (usu).

* %
In [Novikov], the structure of E, (MSU) is well documented, and it is
shown that the spectral sequence wm/@mmmmmwmmm at the mw:~m<m~. We have
3
B3 (PuQp01) = 09PuQyy 7 0

by the above remark and Novikov's calculations.
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So me+w must also support a non-trivial mwu and

3
d5Qysp = NQy * -

([Nov], Lemma (7.2)).

LR = —_ . Ov* o0
Similarly, we must also kill Eopsp ID mw (IHP ) by a
differential of form
d. = = an +
372k+2 172k+1 et

The rest follows from (2.2).
Proof of (3.3). [Se2] actually defines primitives

. , X N

= - ] .

e: M mﬁﬁwumzumu @@ € (Ha Zmﬁuazu*v which, of course, generate a

Hmbms
cyclic subgroup. The problem is to decide when a multiple is in the

image of zmwﬁEmw in (Ha MSp) A:va. We take

©
i

w@ié:. if n odd;

mmﬁu_e:v if n even,

Clearly, by Segal's definition,

4]
It
-
@

-

if n odd;

[
i1
n
o

©

if n even.

. . S...Kk k
For any n, we have that 0: 1s 1in the image of msp : T IHPT - me#zwmw

by (2.2). So, if n 1is odd, we have
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k

PMSp, IHP wNﬁ@sy. _

If n is even, then the only way that .Wmf. can be in mewsamww

is by supporting a non-zero differential in the MSp-Adams-Novikov spectral

sequence

* %
B, (mPY) = Smp¥,

A=
I1:2

*%
infinite cycle in 'E, (MSp), because it is well known that

However, under MH*. we would then get that ®:v would be an

k %

k*
"By (M5p) = Extyc wsp
*

(MSp, MSp MSp)

is zero if 1 <k - hence, the spectral sequence collapses. But by
; . . 1 _ ; .
(3.1), we cannot have this, since mup*.mﬁwm = ozup. which is not an

* %
infinite cycle in E_ (MSp).



UV
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84, In this mmOdwoz. we derive formulae for the e-invariants of elements

in the image of the transfer maps

S

.S
ﬂHm* : ﬂ*ﬁwmﬁwu+v M edol

where G=U, d=2, or G = Sp, d = 4. This makes good use of our

formulae for ﬁMv =K ommw.

n

First, recall that a stable normal G-manifold ﬁzsw au together with

a (U(1)) vector bundle X\ » M" determines a singular G-manifold

mZ=m aw A) in BG(l). We thus have a well defined bordism class
M 9, Mg € MG (BG(1) ).

Denote by H%m the following composite

4.1 MG, (BG(1),) —5> MG MG(1) ——> MG__ BG —— MG,

+d i, . BG —> Zm=+ MG

d Y d

Here, we use the following notations:

¢ : MG (BG(1),) » MG, ,(DG(1); SG(1)) = MG__ MG(1)

n+d

is the Thom isomorphism with

~ *\4\
4.2 oM ; Mg = [0 8% q U5 A,

where q : DA ~ M®  is the projection of the disc bundle, and

$(DA; SA; @xdu ~ (DG(1); SG(1)) 1is the unique Thom complexification of the

classifying map of A - M. b
P
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i : MG(1) = BG(1) — BG denotes the standard inclusion. X : BG » BG

is the Whitney sum inverse map. If we write

MG, BG(1)

ZQ*ANHM Zys ...} (i.e. free on Nw.mu

MG, (BG, )

MG, [Z), Z,, ... ]

then i,z =2 . Also, if Z(t) = § 2z %, then ,2(t) = 2(t)"}.
n - n 0<r r

4.2 XuZ, = HNﬁﬁv-ng.

Finally, MG = Zo\mou the cofibre of the unit SO —» MG, and ¥ denotes
the reduced Thom isomorphism.

Suppose now that hZ:h fr; A) 1is a framed singular manifold in
BG(1); we can consider the framing as a (trivial) G-structure mw.
Hence, the framed bordism class

v S B
M fr; Mg, €T BG(1),)

has mg[M'; fr; A, = [M'; fr; A]. € MG (BG(1) ) where

et s ? fr B ’ G n +

mg : ﬂmﬁuu + MG, (-) denotes the hurewicz homomorphism.

Recall next that the transfer tr. associated to the principal
00
universal G(1) bundle S = BG(l) is a stable map ﬁHm : anuﬁwmmyu+u1|wmo.
{Be - mmg. This has the well-known property that:

. . = . * - *Vf m
4.4 ﬁH.m*_“Zﬂu fr; vf“_”mH. Mmyu q fr q U_WH € .=.d+&lu,.

Here, q*fr - q*) is a framing since q*A is manifestly trivial,

An analogous formula applies for G-bordism.
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There is a canonical G-bordism Adams resolution for mov which ends in
4.5 I e R T R

It is easily seen that under the usual relative bordism interpretation

of M 4 E MG =m MG,
) . V7
[DA; SA; q™fr - q*A] ﬁm“mw.u_m T+ M6
0_ S
. * - * =
has boundary [SX; gq*fr - q >umw € Moed-15 Moeg-1- Hence, an

mwuaomﬁomo:ﬂwﬁw<n for [SA; q*fr - m*yumw. is provided by

mg[DA; SA; @wmﬂ - n*yuﬁm.mwu in the G-bordism Adams spectral sequence

for the homotopy of moo but this is precisely

n, —
ewmﬁzsm £r; Al € MG, MG,

So a representative in the E_-term is

2

{1r M £r; MGhe mxﬂmmmmmﬁzo*, MG,).

4.6 wwomwwwﬁwoz. The G-bordism e-invariant of

e 2%, » s
tro, M fr; Mg, = S q*fr - "l e

1 s 1 n+d
. . P T \ . ne \ ) hY k .
:w:ﬁ?%.mﬁ ﬁmw.xﬁEQEMMmf :dmeQJEEEOBf MG,)

We could now take any orientation o0 : MG > E and deduce
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4.7  Proposition. The E-theory e-invariant of ﬁHm*Hz:w mww4>_ma is

1 .+m
Mg} € Bxt; 278, E,)

:- . — :. .
{c Tr, mg[M; fr; Mgy fj = S_H.m G[M"; fr; E,
where © : MG,MG + E.E is the map induced from 0, and

o ﬂmﬁuu * E,(-) 1is the hurewicz map; emn denotes the composite

4.8 E (BG(1),) —5* E__ . MG(1) T Eqea BO
IWAH.Y W_5+Q BG al@..v md...Q MG uHu.v m3+n_. E

where all symbols are the same as in (4.1), except o©,, which is the
homomorphism induced by o : MG ~ E.

‘We will now perform these calculations with G = U, Sp, and E = K.
We can, in fact, reduce the calculation to that of aamﬁﬂsmu and

Haxmmsxu and then apply the results to the homotopy elements of (2.1)

and (2.11).
First, take G = U, E = K. Then the orientation T : MU - K gives
o oK,
T = e T A, 5) 8
1<j<n
n+l . K -1
= T(u I Am DB
HMumb
K K, r . K -
Here, b (t) = M vwﬁ , With UH the usual generator for rowcﬁbmw.
0<r

Recall from [Sw] that 7T : MU,MU » K, K gives
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) Ww-Dw-2) ... -1 ﬁw
0<r (r + 1)1

(b (1))

il

a+ ¥
wt

as formal power geries where (1 + t)* =1+t + ww - 1)

51 t + ... . Here,
w=vuleg K K ([Ad], [Sw]). Thus,
4.9 Te () = u™ ¥ A, :H IIM
1<j<n (1 + ﬁv 341
Put
wt
=14+ ) o&ﬁ
1+ -1 0k RSS!
and use the change of variable t = e~ - 1. Then
ENEN = N.N + 2 M Qw+HmEVmoN - Huw.
e -1 e“ -1 0<k
Comparing coefficients of powers of z gives
T N N N Y SN
: (n + 1) N 0%k n! k+1
. th .
where B is the r ™ Bernoulli number.

T

Together with (1.6), we obtain from this

w :+H

4,11 ﬂ&mﬁﬂ u e Hv ﬁ< - ).



4.12 Proposition. Let e aw:ﬁwcmpu+u be as in (2.1). Then

: B
n _ n+l n+l n+1 1 2n+2

mnﬁﬁﬂc*ﬁx )) = ﬁu T (v -u )}le mxﬁw*x (K> K,).
Next, take G = Sp. From §1,

=K 1 2n+2 -jt, t 2j k. -1

o] = 1 -

Try (E) = 5(2n)! u S I ChIEAS O Rk PR ¢ 15542
HMumz

K K 2 K .

where q (t) = ) q.t, for q. € momeh the canonical generator.

0<r

Here, we take o : MSp + K to be the obvious composite of orientations
MSp -+ MU — K.

According to [Sw],

a(qf) =2 + oww mwlwlmﬂ_ W - 13 L w? - eBye?T,
Put mh@mmﬁuxwu =1 + omw <W+Hm€uﬁmw+m. From szu. page 215 (28), we
learn that :
4.13 wEN N m:EN -2 4 OMH NMM!WIMMM.ENAEN N HNu o mem . Hmuﬁma+m.
Therefore, by changing variable by t = mu\m - oxw\NV we obtain:
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4 S 2..2/2  -z/272
4.14 a(qN(e?? - ¥y sﬁﬁwN =)

e +e - 2)

Algebra gives:

QEN SN NN mNNN 2 M )
4.15 — = + z Y, W) e (e - 1)°N,
2 -1)% (2 - ? o<k K*1

. +
The coefficient of Nms : w:

1 £ e® dz _ -l (2n+1)z dz
2mi g NN5+HﬁmN _ Hum 2Ti Nmn+w =

(e - 1)

by the Residue Theorem and Integration by Parts. This is equal to

.
2n+2
RN R T
Hence,
wN:+m 2n+2 -kt t 2k
4.16 -Ss,,:ﬁlwslﬂlsl_ﬁe -1 = ) [e (et - DY
! 0%k
41 I e B 2n+2,
. Hmmry " (Zn + 2) (v -u 7).
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4.18  Proposition. Let y €, (IHP) be such that

_ X . .
wk@:u = E if n odd;
= NmM if n even (see (2.4)).
Then
e (tre. (v.)) = { Bonez  2ns2 N=+N: " dd-
e sp«n?) T g e oy OV i itonoodd;
-B
_ 2n+2 2n+2 2n+2 .
= mi (v -u )} if n even.
Note that for n odd, IHP gives a factor of ' 2 more of |V \Cbl
im J m _ than " . i
(im . umbkm < Teneg than ) Yo waan .

-1 -1
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