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These notes are for the seccnd teim of a first year gradu-
_até algebra course, which presupposed an undergraduate course
of some sort. The first term consisted of a "review“ of group
theory, then field theory (galois theory)-and Wedderburn theory
and some material on representaticons of finite groups. Lang's
book was used as a text. The second term is devoted entirely to
commutative ring theory.

I think the choice of material was fairly good, i.e., I
would not change it baslcally. However, I would make the follow-
ing two changes in the ordering:

(1) The students didn't like to accept without proof a
naive description of the spectrum of a polynocmial ring, etc. in
Section 1. I encountered very strong resistance to this, and
of course they are absolutely right. Therefore, I would move
Section 8, in which the material was presented, to the begin-
ning. |

(ii) I would do the flat descent early, before the sheaf
theory on the spectrum. It is true that they will not fully
understand the maﬁerial, especially the proof, right away.

That is why I postponed it in the course. However, I found
that they couldn't follow the proof of the sheaf axiom

(pp. 3.7-3.9) anyway, hence why not do it right, if at all.
That way, the descent theory can be used to prove the sheaf
axiom, and so it has some application. I would soften the pre-
sentation somewhat, and suppress Section 9 entirely, introduc-

ing as a section of 10 what 1s explicitly needed.



The arrangement, with these changes, would be roughly as

follows:
Section 1
2 A, B, C
6 A, B

8 except the last section, somewhat
expanded.

10 (+ essential part of 9), softened up.
end of 2 and 3

L, 5

rest of 6, and last section of 8

7

Sectioﬁ 7 could be put anywhere, actually, e.g. between 8 and

10. Perhaps that is more natural.
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THE SPECTRUM OF A COMMUTATIVE RING

We will work in the category of'commutative rings
having a multiplicative unit element 1. Homomorphisms

are assumed to send 1 to 1.

A. Ideals. |
Let R be a ring. Recall that an ideal I of R

is a subset which is a subgroup for the additive law

in R and such that x € I , a € R=> ax.€ I. An

ideal p # R 1is a prime ideal if it has the additional

property
(1) ab €Ep=>a€p or b €p.

This is equivalent with saying that the residue classes R/p
form an integral domain (= ring without zéro divisors and
with 1 # 0). PFor, if we denote by X the residue class

of an element x then the above property reads
ab=0=>a=0 or b=0,

and the condition p # R insures that 1 0 in R/p.

An ideal m of R 1is maximal‘if ms¥ R and if there.
is no ideal # R which is larger than m. It follows from
Zorn's lemma that every ideal ¥ R 1is contained in a

- maximal ideal.
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A maximal ideal is prime. For, let I Dbe any ideal
which is not prime, so that there are elements a,b € R
not in I but with ab € I. Then the ideal (a) + I
generated by a, 1 'is strictly larger than I. But 1 1is

not in (a) + I, =since from

1

Il

ra + X r €R, x €1l
we get

b rab + sx € I,

a contradiction., Thus (a) + I ¥ R, and so I is not a

maximal ideal.

B. The spectrum.

Definition 1: The spectrum of a ring R, denoted Spec R,

is the set of prime ideals of R.

Let X = Spec R. Then an element x €X 1is a
prime ideal of R. However, we usually want to think of x
as a "point" of X, and when we want to consider the prime

ideal, we will write it as p,» Mmeaning the "

prime.ideal
corresponding to the point x € X". We leave it to the
reader to arrange the logical absurdity thus introduced to
his liking. |

Leé x € X. The residue class ring R/pX is an
integral domain, and hence has a field of fractions which we
will denote by k(x). If a is an element of R, its

residue modulo p, determines an element of k(x) which we

will denote by a(x),” and will call the value of a at

the point x. Thus we can view a as a sort of function
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1.3
on X = Spec R, associating with x the element
a(x) " of the field k(x) (to be thought of as a "number").
Of course, the field k(x) in which the values are taken
varies with Xx.
In particular, we know what it means for a to be

zero at the point x € X. This just means that a(x) = 0,

which is the same thing as saying that a 1is an element of

C. The Zariski Topology.

Let S. be a subset of R. The variety of S, or

locus of zeros of S 1is

(1) v(s)

It

[x € X|Ss < p,}

{x € X| every element of S 1is zero at x}.

Let I Dbe the ideal generated by &. Clearly any
ideal Py which contains S also contains I, and

conversely. Hence

(2) v(s) = Vv(I).

The following relations are trivial:
(3) So 8 =>V(S) « V(8').

X
g

v(0)

i

(*)  v(9)
V(R)

“

it
1l

V(1)

n V(S,) for a family of sets S..
i . ‘ i

(6)  v(Q I;)
i
Less obvious is the following fact: If I and J are

N V(Ii) for a family of ideals I,.

ideals then

Py
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(7) V(I nJ)=V(I) y V(J).

This follows immediately from

Lemma 8: If a prime ideal p contains I n J, where I

and J are ideals, then p > I or p o J.

proof: Suppose that p contains neither I nor J, and
let a €I, b € J be elements not in p. Then ab € InJ,
hence ab € p. Since p 1is prime, either a or b 1is

in p, a contradiction.

Recall that a topology on a set is a collection of
subsets, called closed subsets which is closed under arbitrary
intersections and finite unions. Relations (2), (4)-(7) above
show that the set of subsets of X = Spec R which are of
the form V(S) for some S form a topology on Spec R.

This topology is known as the Zariski topology.

Proposition 9: Spec R 1s qguasi-compact for the Zariski
topology, i.e., if it is covered by a set of open sets then
finitely many cover it. Equivalently, if the intersection

of a set of closed sets is empty, then there is a finite number

of the closed sets whose intersection is empty.

proof: ] =-n V(Si) means @ = V(U Si)’
i i
which means no prime ideal contains Si’
i

Since every -proper ideal is contained in a maximal ideal,

this means that the ideal generated by U Si is the whole
i

ring, i.e., 1 1is a linear combination of some elements of

some Y S;. Thus a finite number of the S; &enerate the
{ Vi
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whole ring, and so the intersection of the varieties

of this finite set is empty.

Let f:R - R' be a homomorphism of rings, and
let p' be a prime ideal of R!'. The ihverse image
p = f’l(p') = {a € R|f(a) € p'} is a prime ideal, as is

easlly verified. Hence one obtains a map backwards

(10) Spec R < ¢ Spec R!

by associating with a prime ideal p' of R' the prime

ideal £ I(p') of R.

Proposition 11: The map ¢ is continuous for the -Zariski

topology.

proof: Let C « Spec R be a closed set. We need to show

that @'l(C) is closed. Write C = V(S). Then

¢~t(c)

It

{x!' € Spec RP]f“l(pX,) o S}

= x| p,, >2(s))

il

V(f(S)), which is a closed set of Spec R'.

Thus we have proved the formula

V(£(s)).

(12) ¢t (v(s))

Suppose that f: R > R 1is the canonical map of R
to the residue class ring R = R/I for some ideal I of R.
As is well known, the ideals of R are in one to one

correspondence with those ideals of R which contain I,
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the correspondence being given by J Gem~> f'l(j) = J.

Clearly prime ideals correspond under this rule, whence

Corollary 13: Let R = R/I, and let ¢: Spec R —> Spec R
be the map induced by the canonical map f: R —> R. Then

®» 1is a one to one map of Spec R onto V(I).

It is easy to show that the Zariski topology on Spec R
is actually induced by the Zariski topology on Spec R by
this map. Thus Spec R is naturally homeomorphic to the
closed subspace V(I) of Spec R, and one frequently

identifies the two spaces.

D. The radical of an ideal.

Each closed subset of X = Spec R is of the form V(I)
for some ideal I of R. However the ideal I 1is in
general not uniquely determined by its variety. A natural
problem is to determine the ideals whose variety is a

given closed subset, and we propose to study this question now.

Let Y 'be a subset of X, and let @ (Y) =(/—\\ D,
X €Y

<4 (Y) 1is clearly an ideal of R, and we have

V{ Q (Y)) oY for any Y ~ X
L (V(s)) o8 for any S ~ R.
The radical of an ideal I of R is

n

(1) rad I = fa € R| a” €I for some n}.

Proposition 2: rad I =(/ﬁ\\ p 1s the intersection of prime

p oI
ideals p containing I.
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proof: Using the correspondence of prime ideals of R

containing I and prime ideals of R/i, it is easy to

- reduce the problem to the corrésponding one for fhe ring R/L

and the ideal (O), i.e., to the case that I 1s the zero
ideal. Now the radical of the zero ideal is just the set
of nilpotent elements of the ring. This ideal is called

the nilradical of R. We need therefore to show that the

intersection of all prime ideals of R 1s the set of

nilpotent elements of R, 1i.e., that an element of R 1is in

every prime ideal, iff it is nilpotent. Since 0 1is in
any prime ideal p, it is clear that p contains every
nilpotent .

Let x be an element off R which ié not nilpotent,
and let g be the set of all ideals I # R such that
X% & I for each integer n. A is not empty since (0)
has the required property. If 48 is ordered by inclusion,
it is easily seen to be an induétive set, hence by Zorn's
lemma has a maximal element, say p.

I claim that p 1s a prime ideal. To see this, note
first that the ideal gq = {b|x"b € p, some n} does not
contain xn; hence is in %? s hence since it contains p
must be equal to p. Now if ab € p but a £ p, then the
ideal (a) + p 1is strictly larger than p, but unequal to
(since a maximal ideal is prime). Hence X' is in
(2) + p for some n. But

X = Tra + Yy ,'r €R, y €p

yields

b
o
il

‘rab + yb € p,

R
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hence b € p, Thus p is a prime ideal. This completes

the proof of the proposition.

Corollary 3: QQ‘(V(I)) =rad I , and

v ((Q (Y)) = closure of Y.

The first assertion is trivial from the proposition. For
the second, note that V({ (¥)) 1is closed, hence contains
the closure Y of Y, and v ( EQ\(Y)) = V( KQ.(Y))5

Sey Y =7V(I). Then V(\{ (¥)) = v({ (V(1))) = V(rad I) =
v(I) = Y.

Qgggllary_&i Two ideals: I, J of R have the same

variety iff. rad I = rad J.

E. Products of rings,

_and decompositions of spectra.

If a topological space X 1is the union of two disjoint

closed sets Xl and Xg, one calls Xl,X2 a decomposition

of X .and writes X = Xy ﬂ-xe. In the category of

topological spaces, X 1is actually a coproduct of the

spaces X X2. In particular, X 1is said to be connected

1)
if there is no such decomposition with Xl_ and X2 non-empty.

Theorem 1: There is a one to one correspondence between

decompositions X = Xl i X2 of X = Spec R and decompositions
R = Rl X R2 of R into a product of rings, such that the
canonical map f,:R > Ri' identifies Spec R, with the closed

subset X.l of X..



e L

1.9
proof: Suppose first that R ='Rl x Ry, and let I, -be
the kernel of the map R = Ri‘ Then ;l B 12 are comaximal
ideals whose intersection is (0). Therefore if we set
X; = V(I;), the closed sets X; and X, are disjoint
and their union is X (ef. C.h4).

Suppose now that X = X; 4 X5, and write X =V(Ii).
Since V(Il + 12) =X, 0 X = g, we have I, + I,=R
(otherwise I, + I, would be in a maximal ideal). Moreover,
since V(I;.n I,) = X, U X, = X, it follows that
rad(Il N 12) = rad (0), i.e., that every element of I; n I,

is nilpotent.

n=o

Write 1= a; +a, with a; € I;. Then (aqa5)
for large enough n since a,85 € I1 A IE' Now the ideals
(ai) and '@in) have the same radical, hence

Via,) = V(ain). Thus V(ain) n V(agﬁ) = ¢, because

(al + a2) = R. Now clearly V(ain) > X;. Hence V(ain) = X,
Replacing I, by (ain), we are reduced to the

situation where I, + I, =R and I;I, = (0). Now for

comaximal ideals, I; n I, = I;I,. Therefore I, n I = (0),

and so R = R/Il X R/Ig. Thus R 1is decomposed into a

product. We. leave the rest of the verification to you.

Corollary 2: X is connected if and only if R has no

idempotents other than 0 and 1.
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F. ggyggucg§g§L5}9§ed sets,

A nonempty closed subset of a topological space is

called irreducible if it is not the union of two proper

closed subsets. The closure of a point is clearly irreducible.
Let X = 8Spec R, and x € X. The closure of x 1is just

the irreducible set

(1) x=1lyex|p 2p1="vp,).

Suppose that C < X 1is an irreducible set. Then L) is

a prime ideal. For, if ab € éQ(C) then
V(a) U V(b) > C, hence
C= (V(a) nC) uy (V(b) n C).

Since € is irreducible,

V(a) o C or V(b) ©C, whence
a € Q) or ve ().

Corollary 2: The irreducible closed subsets of X = Spec R

£

are just the closures of points of X, i.e., there is one

corresponding to each prime ideal of R.

In particular, the whole space X 1is irreducible iff.
rad (0) 1is a prime ideal, i.e., iff. R/N (N = nilradical)
is an integral domain.

(3) Note that a point x is closed, i.e., its own closure,
iff, Py contains no other prime ideal, i.e., iff.- Py is

a maximal ideé;.
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G. Examples.

(1). The spectrum of the zero fing is empty, and no

other ring has an empty spectrum, since it will contain a
maximal ideal.

(2) A primary ring R 1is one with only one prime ideal p.
"Then p = rad (0) (D.2), hence every element of p 1is
nilpotent. Spec R consists of one point. Any field is an
example of such a ring, as is k[x]/(xe), k' a field.

(3) A ring R with dcc is a product R = Ry X.».x R~ of
primary rings. Thus (cf. E.1) Spec R .is the discrete space
of n points.

(%) Consider the ring k[[t]] of formal power series

with coefficients in a field k. It is an integral domain,

hence (O) is a prime ideal. Now any power series

n n+1
a t’ +oa gt o (a, # 0)

with a, @as its first non-zero coefficient is a product of

1

t7 with a unit

a, ta 4t ...

(why is this a unit?). Thus an ideal I which is not zero
contains some power of t, and so the only non-zero ideals

are the ideals (%), (tg), ... 5, and (t) 1is the only

prime ideal other than (0). Hence Spec k[[t]] contains

the two points x corresponding to (O) and X corresponding

to  (t). X, = V(t) , and hence is closed, while the closure

of x 1is the whole spectrum.
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(5) The polynomial ring k[t] has a prime ideal
corresponding to each prime monic polynomial of positive
degree. The zero ideal is the only other prime ideal (why?).
Each prime poly. p(t) corresponds to a closed point
= v(p(t)) of Spec k[t], and the closure of the point
corresponding to { 0) 4is the whole spectrum.

Note that if k 1s algebraically closed, the prime
monic polynomials are just the linear polynomials
i.e., ones of the form t - a for some a € k. Thus
Spec k[t] contains a closed point for every "number" a € X.
The value of a polynomial f(t) at this point (cf. B.)
is canonically identified with f(a) (how?).

If k 1is not algebraically closed, there is still a
closed point for every element of k, but there are also
some others.

It is customary to draw Spec k[t] as a line.

(6) The polynomial ring k[x,y] contains, besides (0),

the prime ideals generated by monic prime polynomials.

There is also a prime ideal corresponding to each pair (a,b)
of elements of k. This is the kernel of the map klx,y] = k
given by f(x,&) ~r~> f(a,b), and such a point is closed
(why?). If k 1is algebraically closed, these are the only
prime ideals. I(We will see later why this is so.) Otherwise,
there are some more.

Spec k[x,y] should be drawn as a plane. The point
corresponding to the pair (é,b) should be drawn as usual.
If p(x,y) 1is a prime polynomial, the variety W(p(x,y))

will contain the point corresponding to the ideal (p(x,y))
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and also some closed points. The point (a,b) is in
V(p(x,y)) iff. p(a,b) = 0 (why?). V(p(x,y)) should
be drawn as a curve, to represént the "zeros of p(x,y)".
(7T) Spec Z has a point corresponding to each prime
number, and one corresponding to the zero ideal. The
ones corresponding to the primes are the closed points.

This is a "picture" of Spec Z:

-~ F— L - v

2 3 5 7 11 13

The picture is supposedhmerely to convey the infofmation
the Spec Z has closed points corresponding to 2,3,...

on it. It is drawn as a line to indicate that it has
dimension 1 in & sense that will be made precise later.
The peint corresponding to (0) is not drawn. I think of
it as being nearly anywhere, since its closure is all of

Spec ZZ. It is a "general point".
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LOCALIZATION

A. Rings of Fractions.

Let R be a ring and S a subset of R . We
want to discuss the possibility of introducing formally
in R the multiplicative inverses of elements of S .
The problem can be stated as follows:
(1) Pind a ring SR and a homomorphism f:R - S™IR
- such that the image f(s) of every element s € S has

1

an inverse in S8 "R, and such that any map

g : R~ R'

with g(s) invertible for each s € S factors uniquely

1

through S "R .

The last phrase means that there is a unique homomorphism

R = R' such that g = gf . As always, such a

g : S

universal property characterizes the pair (S'lR,f) up

to unique isomorphism, because there are unique maps both

ways between two pairs having the precperty. Moreover, it

is clear that this problem has the following solution:
Let U ='{us | s € 8} be a set of "variables"

-1

indexed by the set S, and put S "R = R[U]/I where

R[U] is the polynomial ring in the variables {us} and

I 1is the ideal generated by the set of polynomials
(2) su_, -1 s €8S.

We leave the trivial verification to the reader.
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Note that if a set S of elements has inverses, so
does any product of the elements of S . One sees
immediately from the universal property that therefore
S'lR depends (up to unique isomorphism) only on the
multiplicative sub-semigroup S' of R " consisting of
1 and of all finite products of -elements of S, A
subset like S' which is closed under finite products

and contains 1 is called a multiplicative system.

Actually, the construction depends on even less than
the multiplicative system S' generated by S . For
instance, if S is a finite set 8 = {sl,...,sn} s
then adjoining inverses of all the elements of S. amounts
to the same thing as adjoining the inverse of the one
element s = s;...s,  , the product of the s, (why?).

The case that S consists of one element s 1is particularly
agreeable. Ve obtain s™Ir just by adjoining a variable
u with the relation su = 1.

Iet us denote by a ~  the image under f of an

element of R . Then the usual calculations of sums and

products of fractions show that the set of elements X

of ‘S—lR which can be written in the form
_--l p—
(3) X =85 a a € R, s € S' = products from S
-1 -1
form a subring of S "R . ¥We think of s & &s the
“fraction" &a/s . Since f has its image in this

subring, and since every element s < S has an invertible

image there, the universal property shows
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1

that this subring is all of S "R . Thus every element

of S”"R can be written (not uniquely;in the form (3)
1

For thls reason, the ring S "R 1is called the ring of
fractions of R with respect to 8 .

The map f 1s not injective in general. For
instance, if we were silly enough to include O in S R

we would get in the above notation,

-1l =0u, -1€1,

0

1

hence I = R[U] , hence SR = the zero ring.

In general, the result is the following:

Proposition 4%: The kernel of f : R -» 8 TR is the set

of elements a €'R such that as = 0 for some g € S!

(i.e. for some finite products of elements of S ).

proof: If as = 0 , then f(a) =a=(as)s =0s =0 .
Conversely, suppose a = O . Then with the above notation,
the constant polynomial a is in I, i.e., is a

linear combination of the polynomials (2) . Now only a
finite number of the u, appear in this linear combination.

1

Therefore the image of a 1is already zero in S; R for

some finite subset SO of S . Hence we may assume
S = {51,1..,sn} is finite. Hence we may assume S
censists only of the element s = 8,...58. . Then the

_ 1 n
fact that a is in I -reads (ecf. 2)

2= (su - 1) p()
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for some polynomial p(u) € Rlu] . Write

2

_— = : ) n
plu) = b, + bju + byu” + ..+ bu .

Then

a=—b 3 Sbo:bl, LI ’Sbn—J_:bn’ Sbn=0o

Therefore sn+l a = 0, which completes the proof.

Corollary 5: If S contains no zero divisors, for
instance if R 1s an integral domain and 0 £ 8, then
f:R-8TR is injective.

R is a subring of the field of

In this case, 8
fractions of R , which is obtained by adjoining
inverses of all the non-zero elements of R . In
particular, S"lR is an integral domain. We leave the

verification of this fact to tne reader.

B. The spectrum of the ring of fractions.

ILet R be a ring and S a subset of R . The map

f: R - 8IR yields a map Spec R « Spec s™ir .

Proposition 1:

The map J "~ £ (J) from ideals of S IR to

ideals of R 1is injective.

proof: With any ideal I of R , we can associate the
ideal (£(I)) of S™'R generated by the set f£(I) of
images of‘the elements of I . This gives a map from

1

ideals of R to ideals of S "R, and it suffices to

show that the composition of the two maps is the identity,
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ie., (£(£71(3))) =J . Tt is immediate that
(£(£™*(J))) © J . To show the other inclusion, let

x € J . It suffices to show that the product of x by
some unit is in  (£(£71(J))) . But by (A.3) , «x
differs by a unit factor from an image éf an element

of R, i.e. from an element of (f(f"l(J))) , qed.

1

Proposition 2: The map Spec R ~ Spec SR 1is an

injection, and its image 1s the set of those x € X = Spec R
such that p, N S = a3 .

proof: The map is an injection because of proposition 1

1

Moreover, if J 1is an ideal of S "R , not the whole

ring, then J contains no unit, and hence f'l(J) ns=¢.
Thus a prime ideal in the image of Spec SR can not

meet S . It remains to prove that every p such that
PpnNS=g is in the image.

Let I Dbe any ideal of R , and consider the
following problem: Find a ring R and a map g : R - R
such that the kernel of g contains I , such that the
image in R of every element of S 1is invertible, and
such that (R,g) is theiniversal solution, in the usual
sense. We can solve this in two ways: First adjoin
inverses of elements of S , then divide out by the
ideal nécessary; or, first divide out by I , then
adjoin the necessary inverses. The first construction
gives s™Ir / (£(I)) . 'For the second, let R = R/I ,

and S = the residues of the elements of 8 in R .
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Then the second construction is just § R . Thus
: ~1
the two rings S'lR/(f(I)) and 8§ R are naturally

isomorphic.
Now let” I = p where p.-is a prime ideal not

meeting S . Then S does not contain O , hence the
map R - §_l§ is injective by (A.5) ,‘sincé F is an
'integral domain. Therefore the kernel of the %omposed
map R~ R - §Tl§ is just p . Therefore the kernel

of the composed map R - ST'R - 87IR/(£(I)) is also b ,
i.e., p=°2Y(£(I)) . Since f£(I) is a prime ideal
1

(because § R is an integral domain), this completes

the proof.

Proposition 3: The topology on Spec S"lR is induced

from that of Spec R, 1.e., every closed set of

1

Spec SR is the inverse image of a closed set of

Spec R .

proof: If x € S'lR s then V(x) does not change if

X is multiplied by a unit factor. Thus by A.(2) ,

V(x) = v(a) for some a € R, But V(a) = {p' [ a €p'}
= {p' | a E‘f-l(p’)} , 1i.e., V(a) is the inverse
image in Spec s™IR  of the locus. V(a) in Spec R .
Since every closed set is an intersection of sets V(x) ,
and since inverse image commutes with'intersection,

this proves the proposition.

Notation 4: If S consists of the single element s ,

we will write s™IR = R, , and if Spec R = X, we will



frequently use the notation Spec Rs - Xs

Corollary 5: For s € S, the spectrunm XS = Spec RS

i1s homeomorphic to the open subset X - V(sj of X .

These open sets form a base for the topology of X .
The first assertion is an immediate consequence of

propositions 2 and 3 . - In view of this, it is usual to

identify X_ with the open subset X - V(s) of X,

i
i
H
<
S
0
-
o]

is a union of sets of the form XS

fact, 1f U 1is an open set, say U = X - V(S) for

some closed set V(S) , then

)

V(S) =~ g8 V<SA) )

hence

5\

SES s

This is an important point. Remember also that a

finite intersection of open sets of the form XS is

again of that form, namely

(6) X, Nn..nX_, =X_, where s = s
. 8, s
1 n

Do the exercise of proving this.

C. Local Rings.

A local ring R is a ring with exactly one maximal

ideal "M . Let R be such a ring. If atR is an

element not in M , then (a) 1s not contained in a
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maximal ideal, hence (a) = R, i.e., a is a unit.
Thus M consists of all non-units of R . Conversely,
it is clear that any ring R in which the non-units
form an ideal is a local ring.: The spectrum X of R
contains only one closed point, and this property again
characterizes local rings (cf. 1.F.3). x

Now let R be any ring and p & prime ideal of
R . The set of elements R - p of R not in p is
stable under multiplication, since p is a prime

ideal, hence forms a multiplicative system S . It is

1

customary to denote by Rp the ring of fractions S "R .

Since p N 8 =g , there is a prime ideal of Rp whose
inverse image in R 1is p (3.2), call it Mp . It is
the ideal generated by the image of p (cf. B.1).

By (A.3), every element 1 € Rp can be written as
= Eﬁ a with a € R, s € 8. Now either a € 8 , in
which case r is a unit, or a € p , whence a € Mp s
and sO0 r € Mp . Thus Mb is the set of non-units of

R_ , which is therefore a local ring. It is called the

localization of R at p . If x € X = Spec R is the

point corresponding to p , the ring Rp is also called

the local ring of Spec R at the point x . It is

obtained by adjoining inverses of all the elements

a € R which are not zero at x (i.e., s.t. a £p

\

(cf. 1.B)).
' The field R /M is canonically identified with

the residue field k(x) (1.B) of the point x& Spec R
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corresponding to 'p . For, the two fields are just
solutions in two ways of the problem of inverting S
and killing p universally (cf. proof of B.2),

By (B.2), the sﬁectrum of Rp is in one to one
correspondence with the set of those prime ideals g

of R which do not meet S , i.e., those prime ideals

which are contained in p . This set of prime ideals is

not in general an open subset of Spec R . It is
obtained by leaving out from Spec R all closed subsets
which do not contain the point x corresponding to p ,

i.e., 1t is the intersection of all open neighborhoods of

X . For, 1if I 1is an ideal of R not contained in p ,
then no prime ideal containing I ‘is inp , i.e., V(I)

’ contains no point of Spec R in the image of Spec R .
Conversely, if a point y is not in the image, so that

p.. 1s not contained in p , then all of V(py) can be

iy
left out, as above,

Example 1: Consider the local ring of X = 3pec kl[x,y]
(ef. 1.G6.6) at the origin (0,0) . It is just the ring of
those rational functions in x , y which can be written

as a fraction
£ (x,y)/g{x,y)

of polynomials with g(0,0) # 0 . The maximal ideal
consists of those functlons such that when they are

written as above, one has f(O,b) = 0 . The spectrum
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of this local ring corresponds in a one-one way with
- the set of prime ideals contained in the prime corresponding
to the origin (it is generated by x and y ). There
is one point for each prime polynomial p(x,y) such that
p(0,0) = 0, vesides the points corresponding to the
zero ideal and to the maximal ideal. It is ob?ained
from Spec k[x,y] by leaving out all curves gi(x,y) = 0}
not passing thqough the origin. |

On the other hand, let x be the "general point"
of Spec k[x,y] B i.e., the point corresponding to the
zefo ideal. The local ring is obtained by inverting all
non-zero elements of k[x,y] , i.e., is the field of
rational functions in x and vy . Its spectrum consists
of one point, and is obtained from the "plane" Spec k[x,y]

by leaving out all of the curves.

D. Local determination of an element of R .

As was hinted in (l.B) s we want to view elements
of a ring R as something like functions on Spec R = X ,
While it is not easy to get an exact description of the
elements as functions, they do have e property which is
analogous to. the following obvious property of functions

(it says that a function is determined when you know it

locally):
(1) a). Let X be a topological space, and -{Ui} ,
i €I a family of open sets which cover X . If

f,f' : X » Y are two continuous maps (Y another




topological spece) such that the restrictions of f
and f' to Ui are equal for each i , then f = f!

b) Suppose £, 0~ X (i € I) are continuous

i

maps and suppose that the restrictions of f.l and fj

to Ui ' Uj are equal for each pair 1i,J € I . Then
there is a continuous map f : X - Y (unique by a).)
whose restriction to U, is £, (i ¢ I)

In order not to overload the notation, we will use
the following terminology when dealing with several rings

of fractions:

Terminology 2: ILet R be a ring end S © R . We will

say that two elements a, a' of R are egual in s™ir
if their images under the canonical map R - s™IR  are
- equal. Similarly, if a € R and a' € ST'R, the

assertion a = a' in 5"'R means that the image of &

in S™*R is a' . This allows us to suppress the

in a lot of the previous notations. Thus (A.3) reads

1

"Every element x € S "R 1is of the form

1

X = 8 ~a in S R

for some a € R and s € 8' ." Also to be noted is
(A.4) , which now reads  “An element a € R is zero in

S—l

R if and only if sa = 0 in R for some s € S'., "
We can now state the assertion for rings analogous

tc (1)
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Proposition 3: Let R be a ring and S = {si [ 1 € I}

a subset of R . Suppose that the ideal generated by
S is the "unit ideal™ R ;, i.e , that the open sets
_XSi cover X = Spec R . Put 'Ry = RSi B Rij =_Rs.s
There are canonical maps R - Ri s and- Ri = Rij Yy
R. = R, .

J 1J
a) If a , a' € R are elements such that a = a' in

R, for each i €I, then a = &'

i
b) Let ay € Ri , 1 € I be elements and suppose that
a; = ay in Rij for each pair i, j € I (i.e., that
the images in Rij under the canonical maps are equal).

Then there is a (unique) element a € R such that

a=a, in R.
i i

proof: a) Let b = a-a' . The assertion is just that
if b is zerc in Ri for each i, then b =0 in R .

Now b =0 1in Ri' iff. si = b =0 in R for some

ng (A.4) . Since S generates the unit ideal, R,
n,

i s s s
so does the set S4 . This is seen by raising an

equation
1= z;r.s.
i71
to a large power. Hence, we can write

1= Z Ci sini
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b) First of all, we may assume that $ 1is a finite
set. For, since S generates the unit ideal R = (1) ,

so does a finite subset §_ = {sl,...,sm] . If the

result is proved when S 1is finite, then we can restrict
the data given to the finite subset SO and use it to
construct an element a of R . Then for a € I

arbitrary, 8y = &4 in Ria for 1 =1,...,m . Since

o = a; in Ri s hence a = as . in Ria for 1 =1,...,m ,
ve have a = a, 1in Ria . Now Ria is the ring cbtained

from Ra by inverting the element Sy s and S ERRENE
generate the unit ideal in R , therefore in R
Hehce by part a) , it follows that a = a, 1in R, .
So the sclution for the subset SO "is also a solution

for all of S . Thus we may assume that & = S, 1is a

finite set.

. Write
= a ~n
ay Sy bi in Rl
for some bi € R and some integer n . Since S is
assumed finite, one n will work for all i . Now by
assumption
-n _ _ _ -n
S5 bl = a; = aJ = Sj bJ in RlJ R
hence
n _ n
sJ bl = By 'bj in RlJ



-
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By (‘a.1),
(s.s )N(s Dy, - s.®p.) =0 Hin R
i3 J i 1 7J
for some large N . Replacing bi by siN bi cand n

by ni+N 1in the above formulas, we are reduced to the

case that actually

for all i and

Now {sl,,..,sm} generates the unit ideal, hence
n
- }

. n .
so does {sl s5ees,8 So we can write

for some ri € R . Put

a = 2;r1 by
i
Then
n _ N n _ ' n _
Sj a = erlsj bl = Zris:L bJ = bj in R,
i i
hence '
-Nn
a = 8 b, = a, in R
J J J J’

i.e., a is the required element. This completes the

proof.
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. The structure sheaf.

Definition 1@ Let X ©be a topological space. A

presheaf of sets F on X consists of
(1) A set F(U) for each open U c X
(11) For each pair V ¢ U of open sets a map

F(U) - F(V) called the restriction map frem V to U

The sets and maps are reguired to satisfy the following

axiom of transitivity of restriction:

If W c¥V CU then the diagram of restriction maps

F(U) —— F(V)

. // commutes,
F(Wﬁ

Moreover, the map F(U) —> F(U) associated to the identity

map on U is the identity.

The elements of F(U) are called the sections of

F on- U . We will use the following terminology:
Suppose V , U1 ’ U2 are open sets with V < Ui . If
a; € F(Ui) (i=1;2) , we will say

if the images in F(V) of the elements a; under the

restriction maps F(Ui) - F(V) are equal.

Definition 2: A presheaf F 1is called a sheaf 1f the

following sheaf axiom holds:

Suppose {Vi} are 6pen subsets of an open set

U < X which cover U .
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a) If a, a' € F(U) satisfy a = a' on Vv, for all
i, then a=a on U.

b) If a; € F(Vi) are elements such that a; = a; on

Vi NV, forell 1,j, then there is an & € F(U)

with a = ai on Vi for each 1 .

A (pre)sheaf of groups (rings) is a (pre)sheaf in

which each F(U) 1is given with a group (ring) law such

that the restriction maps are homomorphisms.

Example 3: Let X , Y be topological spaces. For U
open in X , -let F(U) be the set of continuous maps
U=—-Y. If VcU 1let F(U) - F(V) be obtained by
restricting the domain of a function from U to "V .,
Then F 1is a sheaf. The sheaf axiom is Jjust asserticu
(D.1).

Now let R be a ring and X = Spec R . Suppose
s;t € R are elements such that X = X, (B.4), i.e.,
V(s) <V(t) . Then s is nowhere zero on Spec R, = X, ,
i.e., the image of s in Rt is in no prime ideal,

i.e., s is a unit in R_ . Therefore (A.1) there

is a unicue map RS - Rt making the triangle

v
Rt
commute. In particular, if Xs = Xt , then RS and

R are canonically isomorphic, so that the ring 1is

t
determined up to canonical isomorphism by the open set.
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Clearly, this means that we get a presheaf of rings
i P — ——m—— ——eamr e S

K on X by setting ﬁ(XS) = R, , and letting the
restriction map be the>canonical one above when

X, DX, (the reader should verify the transitivity of
restriction if X o5 X, > X, ). Moreover, (D.3) just
asserts that R is actually a sheaf. It is worded so
as to give the sheaf axiom (2) in the case U = X ,

but this is only a question of terminology.

There 1s however one trouble, namely that not every
open subset U of X is of the form XS . Hence the
sections of K on U have not been defined for all U .
But this is not a serious problem. Since every U is
a union of sets of the form X (B.5), we can define
R(U) 4in the only way which will give a sheaf, namely as
follows:

Choose a covering {Xs.} of U by such opens, and
let ER(U) contain one elemént for each collection of

elements

such that

a. = a. in R for each 1i,j
i i i sisj fo ach 54

It is now necessary to verify that this is independent of

the chosen covering fX_ ] and that it gives a sheaf of
Ci

rings in a natural way. This 1s not an interesting point,

gso we omit the proof.

Definiticn 4 The sheaf of rings ® on X = Spec R

defined above is called the structure sheaf of Spec R .
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“assume that the s, are all equal, say tc s . Let

B ® a

LOCALIZATION OF MODULES

A, Module of fractions.

Let R be aring, SCR, and M an R -module.
If we want to get an S-lR ~-module in a functorial way

from M , the obvious choice is to take the tensor product

1 1

S™lR® M (we will use the notation S *M = S"IR®_M),

R R
where S 'R is viewed as an R -~algebra via f ‘R —> s™1R

(2.A.1)} We want to describe the module explicitly: Any

element m ¢ S™TM will be of the form
= -1
Z=in®mi for some. X,3€ SR, my¢ M.
Write (2.A.3) x. = s, *a, in S'R (a,¢ R, s,€ S'=
S 1 =81 8y 1 € s 8y -

products from S). Changing ay if necessary, we may

. o N
denote the image in s“'R . We have x; & m, = s §i®|ni =
-1 i .

m

i

i Put m -:Z aimi . Then

g -5 !
(1) z=5 &@m=3s (1®m).
- Suppose we adopt the following terminology: There
is a natural R -homomorphism M —> s , namely it
sends m ~A~>1l ®m . We will extend (2.D.2) by saying,

1

given m €M, m'€ S "M, then

(2) m=m' in S'M

if 1 ®m=m', and we will use the same symbol m for
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the image 1 ®m in S "M . Then (1) just reads

D

(3) Every =z £ s™'M can be written in the form

z = gt m in S"lM

for some s¢ S' and some m<& M,

For this reason, st 1s called the module of frac%icns,

~1

Proposition 4: The kernel of the map M —> S™°M 1is the

set of meg M such that sm = 0 for some ¢ € S

pyroof':  The proof is analogous to that of (2.A.4). It is

easy to see that S may be assumed finite, hence that

03}

= {sf consists cof one element, Then we have maps

R Rfiu] by R{ul/I = S'lR

: ] -1 . . .
where T = (su-1) ., Thus S8 ™M is obtained by extension

of scalars by a and then by b, i.e., (ef. T.P.,D)

sy = R[u]®RM / I(R[u] ®RM)

Now an element of R[u] ®RM can pbe written uniquely in

i
E:Ll © my my € M

(this is easy to see). Hence if m £ I(R[u] ®RM) , we have

the form

1®m

i

(su - 1) ;ﬁu. ®m , il.e.,

1@ m = -1 @ m ;

i-1 . .1 .
su(u ® mi—l) =u @ smy o= u e@m fori=1l,...,n

su(u’ © mn) =" e sm =0,
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Thus , un+l'® sn+lm = 0 ,

whence sn+1m = 0 . This completes the proof.

-From the proposition we can deduce the following rule:

-1 _ -1 . -1
(5) 8 T mp = 8, 7 my, in 8°°M
iff. there is an s € S' such that
s(szml - Blmg)-= 0 in M.

We leave it 25 an exercilse. This mezns that we could have
Gefined 57'M as the set of equivalences of "fractions"

s™tm  for the equivalence relation (5).

B. The sheaf associated to a module.

If 5= {s} , we will use the notation M  for S™'H

(ef.(2.B.4)), Ths assertion analogous to (2.D.3) is

Proposition 1: Let R be a ring and S = {sili ¢ Ij a

subset of R . Suppose that the ideal generated by S

is the unit ideal R, i.e., that the open sets X,
i

ccver X = Spec R, Put Mi = Ms b MiJ = Msisj . There

_ _ S
are canonical maps M — Mi I Mi —_— Mij s M, —> Mij

v
(a) If m, m'€ M are elements such that = = m' in

Mi for each i1, then m=m' in M.

(b) Let mi € My (i € I) be elements and suppose that

m, = mJ in Mij for each pair i,j € I . Then there is

a{unique) element m € M such that m = my in Ry oyl

each 1 .
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Since the proof is the same as that of (2.D.3), we

omit it.

As in (2.E), we can define a sheaf M in Spec R = X
associated to M by setting M(XS) = Ms . This definition
is extended to arbitrary operns U as follows: Choose a
covering {Xsi,? of U Dby opens of the form XS » and let

m(U) contain one element for every collection of elements

ai € Ms such that a, = a in Ms

i i J s, for each 1i,]

177
It follows from Proposition 1 that this gives a sheaf M
on X . We omlt the proof.

Note that M(U) has in an obvious way the structure

of a module over the ring R(U) . This means that M is

a sheaf of R -modules in the following sense:

DEFINITION 2: Let X be a topological space and < a

sheaf of rings on X . A sheaf of & -modules M7 is

a sheaf of abelian groups together with a law of composition

R (U) x m(u) —> £ (V)

for each open U of X making %% (U) into an % (U)-

module, such that if V C U +the diagram

R(U) x (V) —> 5 (V)

R (V) X $7 (V) —> % (v)

E

commutes, where the vertical arrows are induced by the

restriction maps.
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Definition 3:+ A map f: F —> G- of sheaves of sets on

a space X consists of a map
£(U): F(U) —> G(U)

for each open U C X compatible with the restriction

maps, i.e,, such that for V C U the diagram

r(u) S0 6(v)

! (%)

F(V) _f(l)_} G
commutes, where the vertical arrows are the restrictions.
If F, @ are sheaves of groups (modules over a given

sheaf of rings), then f is called a homomorphism if

in addition each f(U) is a homomorphism of the structure
in question. The set of such homomorphisms is denoted by

Hom(F,G) .

Proposition 4: Let M, N be R -modules. There is a

natural 1-1 correspondence between R -homomorphisms

f+ M—> N and E ~homomorphisms @: ﬁ —> N , 1l.e.,

HomR(M,N) ~ Homﬁ(M,N)

~

proof: A homomorphism b: M —> N includes an R-homomor-
phism $(X): M —> N since M = M(X) ete. Conversely,
since localization of modules is a functor, an R-homomorphism

f: M—> N induces an RS ~homomorphism fs: Ms—-> NS



sy

3.6
for each s € R, Clearly the compatiﬁility conditions
are satisfied so that one obtailns a homomorphism
T: M — 7 pf R -modules in this way. It is naturally
given on opens XS 5 and extends in an obvious way to
arbltrary opens. I claim these two correspondences are
inverses of each other:

Trivially, the module homomorphism M —> N associated

to T 1is again £ . What has to be shown is that if

b: M —> N is any R -homomorphism, and f = PX): M—> N,
then § =% , 1.e., for every s ¢ R, the two maps

o(x) , fg from M, to N, are equal. But the diagrams

S
Mt N MLy
\[' 4)(){8) l \,/ fS . \L
M N M >N

both commute. Hence b(XS) and f_ are equal on the
elements of MS which are images of elements of M .
Since these images generate Ms as Rs ~-module, it follows

that @(XS) = £, . This completes the proof.

Definition 5: Let R be a ring and X = Spec R . A

sheaf of R-modules ‘%ﬁ is called quasi-coherent 1ff. %77

is isomorphic to M for gome. R -module M .

Of course,. an isomorphism %b? > M 1is an isomorphism
ﬁﬁ(U) Ly ﬁ(U) for each open U C X compatible with the

restriction maps- (cf. Defn. 3).
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An important fact 1s that the property of being

quasl-coherent 1s determined "locally" on X :

Theorem 6: Let R be a ring, X = Spec R, and é%q a

sheaf of R -modules. Then %7/ is quasi-coherent iff.

there is a set S = {Silié'l} C R which generates the

unit ideal, such that the restriction %ﬂ?]XS of ?ﬁ to
1

XS is quasl-coherent for each 1 .
1 .

By restriction FIU of a sheaf F to an open sub-
set U of X , we just mean the obvious sheaf on U ,
hamely 1f V C U 1is open, then V 1s open in X ;, and
we take F(V) as sectionsof F|U on V.

It is clear that if the sheafl $37 is quasimcoherént,
so is fh?[Xsa for each i . 1In fact, if ‘%Q = M , then
7ﬁ*IXSi = M:i = the sheaf associated to the Rsi—module
M . We need to prove the c¢onverse.

S
1

To begin with, the natural candidate for a module M
such that My 77 is the R -module //(X) . Denote it
by M. For any ¢t ¢ R , the restriction map is a map
M = 7ﬁ(x) —> ?ﬁ(Xt) , and it is immediately seen to be
a map of R -modules.(where the R -module 7W(Xt) is
viewed as an R -module by restriction of scalars).
Therefore (T.P.,D.1) there is a unique Rt-homomorphism
Mt -——é-?ﬁ(Xt) sucﬁ that the diagram of maps

M—3 N

f L

W7 (X) =TT (%)

t
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commutes. Thus it i1s clear that 772 is quasi-coherent
iff. the map M, ——9-ﬁﬁ(xt) is an isomorphism for each
t£€ R .
Now suppose that ﬁﬁ?IXS is quasi-cocherent for each
i, 1.e., that @W|X = M, where M, is the R. -module
sy 4 3 Sy
@%{XS ) . We may suppose S = {sl,...,sn} finite (1.€.9).

j_ .
We want to show that the map

1s bijectlve for any t ¢ R .

injectivity: Say t77

m 1s mapped to zero in 0%7(Xt)
This is equivalent with saying that m = 0 in ‘%7(Xt) 5

where m € M = %,{X) . Then

m =0 in ‘70(Xsit) for each i
e o~ ,
Slnce XSit C Xsi , and ﬁ[XSi = Mi s We have
Tr(X t) = (Mi)t . Hence (A.4) there is an n such that
i .
n —
tT m=20 in Mi .
One n will do for all 1 . Since the XS cover X ,
i
the sheaf axiom for fb? implies
t" m=0 in 97(x) = M .
Hence (A.4)
m= 0 in Mt 3
S0
t7  m=0 in M_ , too.
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surjectivity: Tet z € ?ZKXt) . Conslder the image of

1

z 1n cfﬁ(xsit) = (Mi)t . Ve may write it as a "fraction'
in (Mi)t

for some ay in Mi and for some n (one will work for

each 1). Then

n _ _ &
t7 2z = a; = ay in- (X 4 £)
i7J
and
X = (M,
ﬁp( Sisjt) ( 1J)t
where
Moo= (M), = (M) =T, ).
i3 i'sj J'sy . sisJ
Hence
m _ .
t a; = t aj in MiJ
for some m . Replacing ay by tmai » we are reduced
to the case that
a; = a in My = ”)N(xsisj)

Hence the sheaf axiom implies that there exists a £ M

such that a = a; in 7N(Xsi) = M, for each 1 . Then

-1 -Nn . !
t a==¢t ai = Z ) in %(Xsit)

for each 1 , hence
t™Pa=z in Mx,) .

Since t™M a € M, , this completes the proof.
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C. Glulng of Sheaves,

In defining the structure sheaf R (2,E) and the
sheaf W associated_fo a module M (B) » We had to extend
the definition which was given naturally for opens of the
form XS to arbitrary opens. The preclse assertion

Justifying this procedure is the following:

Proposition 1: TLet X be a topological space and J/~ a

collection of open sets of X which form a base for the
topology, and which is closed under finite intersections.
Suppose given a set F(U) for each UE B and a re-
striction map F(U) —> F(V) for VCU in B , satis-
fying the transitivity of restriction (2.E.1) wherever
applicable. Suppose finally that the sheaf axiom (2.E,2)

holds when U , {Vi} are in (8 . Then there is a

sheaf F on X , unique up to unique isomorphism, whose

set of sections ona UE @ 1is F(UY) and whose re-

striction maps are the given ones when V C U are in d?
F will have the structure of a sheaf of groups (or modules
over a given sheaf of rings) 1f the restriction to @3

does, in the obvious sense,

The sheaf F 1s constructed as follows: For U
open in X , choose a covering of U by opens {Vi; in
CB s> Which is possible since @3 1s a base for the

topology, and let F(U) contain one element for each
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collection of elements gai ¢ F(Vi)} -which satisfies
2y = a, in F(Vi n VJ) for each 1,J (note that v, n Vj
is in @B).

The readér should now be ready to verify that this
depends up to canonical isomorphism only on U , and that

one gets a sheaf in this way, thus proving the propcsition.

It follows from the proposition that a sheaf can be
reconstructed if its restriction to Ui' is known for a
set {Ui} of opens covering X . For, we need only to
know its sections on a base closed under intersections,
and the. set of open sets V which are.contained in at
least one of the Ui form such a set. Therefore-we can
also construct a sheaf on X when sheaves Fi are given
on Ui , provided we have a method of identifying compatibly
the restrictions FilUiJ and Fleij (Uij = U, N UJ) s

= > F.|U,. . Thus
jhi

i.e., an isomorphism gij? FifU.. ]

iJ

Proposition 2: Let {Ui% be an open cover of X , and

call Uij = Ui N Uj s Uijk = U1 n UJ n Uk . Let Fi

be a sheaf of sets (groups, modules) on U, and let

gluing data as follows be given: An isomorphism

(3) Qij: F, —> FJ on Uij

between the restrictions of Fi’ Fj to UiJ for each

i,J such that for each triple i,j,k *the restrictions

of the isomorphisms to UiJk ' satisfy the compatibility
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condition

(4) gij ij = 6y on Uijk .

Then there is a sheaf of sets (groups, modules) F and

an lsomorphism

(5) q‘)i: F —> F, on U,
of 1ts restriction to Ui such that
(6) gij bi = ¢)J., on Ui,j

for each 1i,J . The collection fF, bq} is determined up

to unique isomorphism by the gluing data.

In fact, condition (4) is Jjust designed so that we

can identify F with F on U,, via the isomorphism

1 J ij
gij without contradictory identifications on the triple

intersections.

Corollary 6: In the above proposition, let X = Spec R .

Ir Ui = X for some s, , and if each F
Sy i
coherent sheaf of R

1 is a quasi-

+modules on X_, then F 13 a
i . Sy ‘
quasi-coherent sheaf of R -modules on X .

Thls follows from (B.6).
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D. Locally free modules,

Definition 1: Let R be a ring and M an R -module.

M 1is called locally free of rank n 1f there is a set

S of elements of R which generates the unit ideal,
such that MS is a free ,RS -module -of rank n for each

s € 8S.

This notion is analogous to that of vector bundle in
topology. We want to use the results of the previous
sections to classify locally free modules.

Fiz a set 8 = {sl,...,sn? which generates the unit
ideal R, and let M be an R -module such that’

M, =M is free of rank n over R, =R for each 1 .

3 S. S
1 1 + €

Denote by Fi the free module over Ri with basis

{Vl,...,vn} . We use the same symbols {VV} for each 1
The assertlon that 'Mi 1s free of rank n 1is Jjust

that there is an isomorphism of Ri -modules, corresponding

to the choice of a basis 1in Mi 5

fi: Fi'~——> Mi .

-Denote as usual by ~  the sheaf associated to a module.

Since MiIX g 2 the isomorphisms fi give

= Mjlhsl ]

Sisj
isomorphisms
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1.4

The ©,. satisfy the compatibility condition {C./) so

as to be glulng data foir a sheaf, and it is immediatelv
<& F B

seen that the sheaf obtained by the gluing is canonically

=~

isomorphic to the sheaf M associated to the module M.,
Now ¥, and @ restricted to U,, are both just
i J iJ
the sheaf associated to the free Rijmmodule Fﬁj with
R ¢ 7 o o
basis zvl"”’vnj . Hence @ij comes from an auto-~
morphism @ij of Fij (B.4). An endomorphism of a free

module is given by an rXnemabrix (a,.) , and 1t is an

VL
sutomorphlsm 1ff. the matrix is invertible, i.e., iff.

det(avm) is a unit in R .

- >

Definition 2: We dencte by Gln(R) the group of invertible

nxn-matrices with entries taken from R » and by Gln the
sheaf of groups on X = Spec R whose group of sectlons
Gln(U) on an open set U C X is the group of invertible

nXn-matrices with entries in R(U) .

It 1s immediately seen that Gln 1s a sheaf since

R 1is. Ve have shown the following:

Corollary 3: With the above notation, an R ~module M ,

together with a choice of a basis of Ri , l.e., an lso-
morpnhism fi: Fi —— Mi , for each 1 corresponds

canonically to a cocycle © with values in Gln , 1L.e.,

to a collection of invertible matrices

913_5 Gln(Rij)
such that

©15%% = %1k in @1 (R 500 .
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This does not yet determine the set of lsomorphism
classes of modules M sucb that Mi.:is a free Ri—module
of rank n for each 1 , because there was an arbitrary

choice of basis for each Mi . Let

o B ~

be the 1somorphism corresponding to another choilce of

basis. Then

is an automorphism of Fi s, given by some invertible

matrix in Gln(Ri) which we denote by the same letter.

Call g'ij = fé”l fi the corresponding cocycle. Then

(4) 0y, = 8.9, .8, in el (R, ;)

Thus two cocycles @ , @f with values in Gln are obtained
from the same module M by different choices of bases for
M, iff. there 1s a collection {gi € Gln(Ri)} such that
(%) holds for each i,J . Clearly two isomorphic modules
give rise to the same sets of cocycles, and conversely,

Hence

Corollary 5: There is a 1-1 correspondence between

isomorphism classes of R -modules M such that Mi

is a free Ri ~-module of rank n for each 1 and eqgui-

valence classes of cocycles with values in Gln , Where
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. 7 e o £y 1 py.m T N ] T S I
two cocyelaes 8, 8V are edulvalent 1fF. there is 2

. . g e g 3 . v ) o
collection ggi ¢ ihk(ﬁi}? of invertible matrices such
[ Il R -~

that (%) holds for each pair 1,j .

Remark 6:

The above corollary ig a special case of a

very general principal. Of special interest is the case

n =1 . The modules are locally free of rank one. An
invertible 1X1 -matrix is just a anit of R , and Gl

A

is frequently denoted R¥ = sheaf of invertible elements

~

of % .
B, H- .

Definition 1: Let X Dbe a topological space, {U, t a

i 3

covering by open sets, and F a sheaf of groups on X .

A 1l ~cocycle "a on Uy uilth values in F 1is a collection

of elements

24 4 € F(Ui n UJ)

such that for each L,I’iple i_,J,k:
a =8 1 P{ i 1
Uilj (J.jk: ﬂil{ in F\Ui Uj U] ) >

Two 1 -cocycles a , a' are called cohomolozous is there

1s a collection of elements
. -
oy £ L(Ui)

such that .

e,

&

jl

in F(U, N U,) for each
1 EC
i,
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This is clearly an equivalence relation, and the set of

equivalence classes is denoted by
l .
H ({Ui§,F) s

and is called the 1 -cohomology of F on the‘covering Ui .

!

Thus corollary 5 asserts that isomorphismiclasses of
R -modules M such that Mi is a free Ri -module of

rank n are in 1-1 correspondence with elements of
1 -
B ({usf,61.) .

If {Vv} is another covering of X , and if each Vv

is contained in some U; , i.e., EVV} is a refinement

of the covering {1%_? > then there is a natural injective

map

(2) H({U,3,F) —> BN ({V, },F)

given as follows: Say Vv is contained in Ui(v) . Let
a be a 1 -cocycle of {Lg”} with values in F , and

define a 1 -cocycle a of {Vv} with values in F by

EVu = restr. to V, n Vu of 23 (v)4 (1) € F(Ui(v) n Ui(u))

There is a choice of the element Ui(v) of Ui con-
taining a given Vv involved in this description, and an

important fact is that the map (2) does not depend on

these choilces.
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Thus we can view h“i}U;‘sW) 48 & ol
a4 -
X _
H"L 7 (‘"T ? ™ 9 . o oy oy gy T b o R N U T ¢ Y = [ ey £} =y
SV, 0 in a natural way whenesver v ig a refine-
7 v e 0 Y
{ V4 .

ment of U.t. The union of these sets, as v ranzes
y i 3 ] 4/ (]

over coveringas of X , is denoted by

(3) (X, F)

and 1s called the 1 =-cohomology of F on X .

Ve are not going Lo prove the injectivity of (2), or

its

fta

ndependence of the choice of Ui(v) . These facts
can be found in any text treating cohomclogy of sheaves.
Nofice however that for the sheaf Gln , both assertlons
are clear. For, the map (2) 1s just the inclusion of the
set {isom. claages of modules M which are free on each

U f in the set Jiscm. classes of modules M which are

L

ee on each 'V} . Since any locally free module of rank

w

i
fr

n will appear in some such set, we get

Corollary 4: The set of isomorphism clagses of locally

free R -modules of rank n 1is in 1-1 correspondence

with H™ (X, alL,) .

i 3 \
Remark 5: If F 1s a sheaf of abellan groups, H*(iUig,F)
) L, o . . :
(and therefore also H (X,I") ) can be glven the structure

of an abelian group. For, the 1 ~cocyecles then form an

abelian group, and the cohomology relation is obtained by

dividing this group by the group of 1 -coboundaries which
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are the 1 -cocycles which can be written in the form

(multiplicative notation) .

b, b, %

3 Py in F(Ui n UJ)

for some collection {bi.€ F(Ui)} . We leave the veri-

fication, which is essentially immediate, to you.

For instance the set of lsom. classes of loc. free
sheaves of rank 1 on X = Spec. R forms an abelian
group Hl(X,ﬁ*) (cf. Remark D.6). This group is often

called the Picard group of X , and is denoted

(6) Pic X = HN(X,R*) .

For abellan group sheaves, one can also define
higher cohomology groups H(X,F) (q > 1). There is
however no natural group structure on Hl(X,F) i F
1s non-abelian, and no definition of higher cochomology
1s known in that case except for q = 2 , and that is

guite complicated.
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STALKS AND EXACT SEQUENCES

A, Direct limits.

Definition 1: A filtering set I 1is a set together witn

a partial ordering < such that for any two elements

i,it &« I there is a J&€ I with 1 £J and 1' < ]

Definition 2: A directed system of sets (or directed set)

indexed by a filtering set I consists of
(i) A set S; for each 1 €1,

(i1) A map S; —> S, foreach 1< j in I,

J

such that if 1 < J £ k the resulting diagram

Si —_— Sj

>.
Sy
commutes.

A directed system of groups (rings) is a directed system

of sets together with a group (ring) structure on each Sy

such that the maps Si — Sj are homomorphisms., Given a

directed system -{Ri} of rings, a directed system {W&_}
of modules over {Ri} is a directed system of sets together
with an Ri module structure for each Mi such that the
maps Mi —— MJ are additive group homomorphisms and the

induced diagrams
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Rix Mi —~—> M

| |

RJX MJ — Mj

commute, when 1 < j .

i

Definition 3: Let S = 5812 be a directed system of

sets, Its direct limit, denoted by

= e

iel

is the set obtained by dividing out in k\,/) S

1€1 1

following equilvalence relation:

12 aizesir'

there 1s a J with 1 < J and i < J such that the

Let ai-E S Then ay ™ a4, irfe,

images In S of Ai and a;, are equal, or, as one

J
5ays, such that

This relation is clearly symmetric and reflexive, It

has to be shown to be transitlve: Let ay € Si s
,ai,‘e Si' s By € Sin . Suppose
(*) a; = a;, in Sj

for some J (1<

WA
&
-

e
A
Ce
S
o)
o]
[+ %
m
1
n
(o)

by the
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for some j' (i' < J' , 1" < J'). Choose k such that

k>3, k2 J'. Then by (*) and the commutativity of
(2),
8y = 84, in Sk .
Similarly,
ayr1 = 8y in Sk s
hence
a, = ayw in Sk

which proves the transitivity.

Remark 4: It is clear from the construction that 1im 8,
does not change if the index set I 4is replaced by any
subset J which éontains arbltrarily large elements,
l.e., such that any 1 € I is £ J for some J<&€J.

Such a subset is called final (or cofinal).

Proposition 5: If S = {§,} 1s a directed system of

groups (rings, modules over a given ring), then

lim S, = S dinherits this structure from the S, .
- 1 — : 1

proof: We will treat the case of a group. Let 2a,b € g‘,

and let ai’bi & Si represent a,b respectively. Since

any two indices are less than a third, b can be so

o

=X
represented (same 1). Try to define ab = (class of aibi) .

The whole point is to show that this is independent of the

choice of the representatives ‘ai’bi « Then since three
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b b

elements a,b,c can be represented in one Si s the
associativity of multiplication in i, follows from the

associativity in the SI . So.does the exlistence of an

identity and of inverses.
Well, suppose a,b are also represented by ai"bi'

S Then ay =»ai, in SJ for some j ., and simi-

larly bi = bi’ in Sj' for some J . ©One J will

work for both a,b . Let aj'bj be the. common images

in S

Then since S, —> S, 1s a group homomorphism,

in S i j

J *
aibi ~ ajbj o~ ai'bi' .
Hence class(aibi) = class(a; by ) , which completes the

proof.

Proposition 6: (universal property) Let 8 = {Si} be a

directed system of sets (groups, rings, modules) and let

S =1in 3, . There are (obvious) canonical maps
B .

J

5, —21 55 such that for 1 ¢ j the diagram

Si 'f———> SJ

N

_}

commutes, and §. is the universal object for such a
family of maps, i.e., glven a set (group, ring, module )

T and a collection of maps fi: Si —3> T such that for
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1 ¢ J the diagram

Si ——— S
(*) fi\\ %‘J
' T

commutes, there is a unique map ;; §i—~—9-T such that

J

ﬁi = g ﬂi for each 41 .,
proof: Of course 31 is given from the inclusion of Si
in U S'j . Since the Si together map onto g , 1t is
J =

clear that a map g. will be uniquely determined by a col-
lection %fi%. Let ;fi} be given, and define _g: E.“> T
by

where S; Tepresents s . Because of (*) this is indepen-

dent of the choice, and thué defines a map f;.

B. Stalks,

Let X be a topologilcal space, F a sheaf on X,
and x a point of X . The set of open neighborhoods
of x (opens in X contalning x) 1is clearly filtering
when ordeyed by inclusion, i.e., when U < V means
(unfortunétely) Uov.,

The stalk Fx of F at x 1is the direct limit

over this filtering set of the sets of sections F(U):
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COIN 7 = Ly 7(U) .

Thus (A.5) F, 1s & group (ring, module) if F 1is a
sheaf of groups (rings, moduleé). The stalk 1s clearly
a functor of F, i.e., amap f: F —> G of sheaves
induces a map fx: FX  ar GX of stalks in an obvious
way. We leave it to the reader to make the map explicit.
Note that if U 1is an open containing x , then we

have a canonical map (A.5)

(2) | 7(U) > F -

Hence we can use terminology of the following type: Let

a,a' € p(U) be sections.

(8) a = a' at x or in F

means that the imagés in FX are equal. This means they

represent the same element of F, = ii% F(U) : By the

definition of 1i§ , it is clear that

(4) a =a' at x Aff. there is a V G U containing

X such that a = a' in F(V)

Moreover, any element of FX is represented by an element

of F(V) for some neighborhood V of x .

Proposition 5: (1) Let F be a sheaf. Two sections

a,a' € F(U) are ecual iff. they represent the same element
of the stalk F, for every point x of U .

(11) A map f: F —> G of sheaves 1s an 150morphism.iff.
for every x € X +the map of stalks fX: Fx - GX is

bijective.
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proof: (1) If a = a' at x , then a =a' on V for
some neighborhood V of x . Hence 1f a = a' at x
for each x€ U, then a = a' on a set of open sets
which covers U . Hence (2.E.2a) a = a!
(11) Clearly, f an isomorphism implies £ bljective.
Conversely, suppose fx s bijective for each x . We
need (3.B.3) to show that f(U): F(U) —> G(U) 1s bi-
Jective for each U . Since fx is injective, 1t follows
that two sections a,a' € F{U) whose images in G(U)
are equal are equal at x for every x & U , hence are
equal, by (1). Thus f£(U) 1is injective.

Let b € G(U) . Then for every x € U , there is
an element a, < FX whose image in Gx is equal to that
of b . Let a, & F(Vk) be a representative of a, in
some neilghborhood Vx of x . The image of a, in
G(Vx) is equal to b at x . Therefore, if we replace
V, by a smaller neighborhood, we may assume f(ax) =D

in G(Vk) .  (We have written f 1instead of f(Vk) ,

as a shorthand.) Let V., be some of the V_'s which

i X

cover U , an& ai the corresponding elements. Then
fla,) = b = f(a.) in (v, N vj)

Since f 1is inJective,
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hence by the sheaf axiom (2.E.2) there is an element

a € F{U) such that a = a; 1in F(Vi) for each 1 .
Then the image of a in G(U)‘ is equal to b on each
G(Vi) , hence equals b . This shows that

£(U): F(U) — G(U) 1is surjective, and completes the

proof,

Proposition 6: Let R be a ring, x € X = Spec R .

(1) The stalk R_ of R at x is the local ring R,
X

where Py is the prime ideal corresponding to x .

(11) Let M be an R -module. The stalk Mx of M at

X 1s the module M
px

Here we have extended the notation of (2.C) in the
1

obvious way to modules, i.e., if S = R-p , then 8 U

i1s denoted by Mb.

proof: In the limit (1), 1t suffices (A.4) to take
neighborhoods U of x which are of the form Xs
(2.B.5), where s €S = X = p, . By the universal property

for rings of fractions, we have a map

R(XS) = Ry
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Since every element of Rp ig of the form swlr for
X
s€S, r€R (3 is a multiplicative system (2.C)),
it is clear that this map is surjective. To show injec-

tivity, suppose
z € lig Ry

has image zero in. Rp . Represent 2z by an element
X

Z in RS for some s , and write

Then 2

O in R iff. r =0 in R 1ff. there

is a t TS such that tr = 0 in R (2.A.4). Then

z =0 in Ry (2.A.4),

and since the image of 2z in RSt also represents 2z ,
it follows that z = O .

The proof for an R module-goes the same way.

C. Exact sequences.

The notion of stalk of a sheaf allows us to define
injectivity or surjectivity of maps of sheaves. A map

|
f: F —> G is said to be injective (surjective) iff.

the induced map of stalks fx: Fx —> Gx 1s inJjective
(surjective) for each X € X . By (B.5(i1)), a map which

is both surjective and inJectlve is an isomorphism. It
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happens that a map f 1s injective iff. F(U) —> G(U)
is injective for each U .- This folles from (B.5(i)).
The same is not true for surjective maps. A surjective
map of sheaves does in general not have the property that
F(U) — G(U) 1is surjective. See however (C.3) below.
Let A —> B —>C be maps of sheaves of abelian
groups. The sequence 1s sald to be exact if for each
x € X the induced sequence of stalks. Ax —_— Bx — CX
is exact, i.e., the image of the first map. is equal to

the kernel of the second.

Proposition 2: (left exactness of sections) Let
O———> A —> B —>» C Dbe an exact sequence of sheaves of

abelian groups on X . For every open U C X the sequence

0 > A(U) ——> B(U) ——> c(ﬁ)

is exact,

proof: Recall that the exactness of O —> A —> B

just means that the map A —> B is Injective. It was
seen above that then . A(U) —> B(U) is also injective.

We need to show the exactness of the seguence at B(U)

Let b € B(U) have image zerc in C(U). For each

x C© X, the image b of b in B, (B.2) is mapped to
zero in Cx s hence 1s the image of some a & Ax , Since
the sequence of stalks 1s exact. Let a € A(V) represent

a on some neighborhood V of x . Then the lmage of a
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in B(V) 1s equal to b in By, hence is equal to b
in some smaller neighborhood of x , which we may suppose
equal to V . This is true for each x , hence there is

a covering of U by such neighborhoods, say V with

i.’
= b 1n B(Vi)

clements a, € A(Vi), such that a,
Then a, = a; in 'B(Vij) , hence a, ;

because A —> B is injectlve. Thus there exists an

= a, in A(Vij)

a € A(U) such that a = a; on V, . Then a=5b in
B(Vi) for each 1, hence a =b in B(U) , which shows
that b 1is in the image of A(U) . The converse is

clear, so this completes the proof,

As a substitute for surjectivity of sections, one
has an exact cohomology sequence, It is very useful for

calculating H (cf. exerc. No. 2,6,7):

Proposition 3: Let O > A > B > C > 0 be an

exact sequence of sheaves of abelian groups on X .
There 1s an exact sequence

0 = A(X) = B(X) = C(X) —>> HY(X,A) = H(X,B) = HL(X,C)

Note: The sequence has analogues in the case of non-abelian
groups, énd for abelian groups it continues with the

higher cohomology groups.

We will sketch the proof: The sequence is exact at A(X),
B(X), by (C.2). Consider C(X): Let ¢ € ¢(X) . Since
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B —> C 1is surjective, ¢ ({or rather, its image) 1s

in the image of Bx in every stalk Cx' Hence there is
a neighborhood U of x and a section b € B(U) whose
image 1s equal to ¢ in CX. . Therefore thé image of Db
is equal to ¢ 1in C(V) for some neighborhood V C U
of x . Since x 1s any point of X , we may?cover X
by opens V, such that there is an element biiE B(Vi)
whose image in C(Vi) is ¢ . Then by - Dy (additive

notation!) has imége zero in C(Vij)' Hence (identifying

A(V,) with a subset of B(V,))

by - by =234 € AV

ij)

Clearly {aij} is a 1 -cocycle of A with values 1in
A , hence represents an element of Hl({Vi?, A) , hence
of HY(X,4) . This element is defined to be the image
8{c) of ¢ . It has to be shown to be well defined.
Then & 1s obviously a homomorphism;

Now &(c) = O 4iff, 3 aij% is a coboundary (3.E.5).

This means that

a = 0, - O, on ViJ

1] i J

for some a, € A(Vi) . Put 61 = b, - a . Then the
image of B, in C(Vi) is still c¢ , since a, has

image zero. But

51 - B, =0 on V
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Hence there is a B & B(X) with § = B, on V, (2.E.2).

Since the image of B in C(X) is equal to c¢ on each
vV, , it 1s ¢ . FHence §(c) = 0 4iff. ¢ 1is in the
image of B(X) . This proves exactness at C(X)
exactness at Hl(X,A): A 1 -~-cocycle {ai3§ on
V., with values in A represents zero in Hl(X,B) iff,

there are sections b, € B(Vi) with by - bj = ayy in

b p)
B(Vij) Let ¢, be the image of b, in C(Vi) . Then
- = 1
¢y cj 0 on ]ij
Hence there is a ¢ € C(X) with ¢ = c; on V,

Clearly 6(c) is the cohomology class represented by
2 o N ] . 1 .
{aijS’ Thus §aij i represents zero in H (X,B) iff.
its cohomology class 1s in the image of & , which is

what was to be proved.

We leave the exactness at Hl(X,B) as an exercise.

D. Exactness of sections of guasi-coherent sheaves.

Proposition 1: (right exactness of tensor product)

Let R be a ring, M an R -module, and

A

> B ——> € ——> 0
an exact sequence of R -modules. Then the sequence
M ERA ——> M QRB —— M ERC — 0

is exact.
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proof: Recall (TP, C.7) that the map M@ A —> M& B
is the unique one sending & tensor mﬁan~9-m3b where
the image of a in B 1is b .

exactness at M®& C : The tensors .m@c generate
M& ¢ (TP, C.1). Since every x 1s image of some
b &B, the module M® B .maps onto a set which generates
M® C, hence onto M®& C . ,

exactness at M ® B : This 1s essentially (TP, C.8).
Let K CB be the image of A in B , which is the
kernel of B —> C . Applying (TP,C.8) with suitable

relabeling to the modules

OCM, KCB

we get

M8 C=M&B/W

where W is the submodule generated by'tensors of the
form xBk , k€K and x € M. Since K is the image
of A in B , the module N is just the image of M & A

in M® B . This completes the proof.

It is not true in general that if A —> B 1s
injective then MR A —> M & B is also injective. A
module M which has this property (for all injections
A —> B) is called a flat module.

However, if R 1s a ring, S C R , then s™Ir  is

flat as R -~module:
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Proposition 2: (exactness of localization) Let R be

a ring and S CR . Let
A > B e
be an exact sequence of R -modules. Then

-1

sy > g7t

B —— S"lc

is also exact.

proof: First of all, if A — B 1is injective, so0 is

sty —> 57 . Por, let z € 87ia , say (3.A.3)

Z =8 "a where s € 38', a€ A . Then
-1
Zz ~~s 0 in S B
iff.
-1 c o-1
a n~> 0 in S B (since s 1is a unit in 8
1P, (3.A.%4)
s'a ~ 0 in B for some s!' C 8!
1ff.
s'a =0 in A
iff. i
z = 0 in 87ta |

Moreéver, localization is right exact by (D.1),

because S-lA_= s71r g4 , etc. These two facts imply

R
the proposition:

Suppose A —> B —> C exact. Let C' = im(B —> C)
Then C!' —> ¢ 1is injective, hence

1

s7tor —— 5 g~

C i1s injective,

B)
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Also, A ~—> B —> C' —> 0 1is exact, hence (D.1)

sl ——> 5718 >, 87t —> 0
is exact. Therefore,
im(s™1a —> SIB) = ker(s™'B —> s7icv)
= ker(s™*B —> s7%C)

which is what was to be proved.

Proposition 3: Let R be a ring and X = Spec R . A

sequence

1 > B > C

of quasi-coherent sheaves on X 1s exact iff. the

associated sequence (3.B.4) of R -modules

A —> B —> C

is exact.

proof: Suppose A —> B —> C 1is exact. Then since

(B.6) for x € X the stelk A, is the localized module
A 2
- ¥X
is exact for each Xx , hence that A —> B—>C 1is exact.

etc. it follows from Proposition 2 that AX—~> BX——> CX

Conversely, suppose that A—>B—TC 1is exact,
and consider the associated sequence A —> B —> C .
Let a € A, The image of a in C is zero in C, for

each x (since A ~> C, 1is zero). Hence (B.5(i)) the
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image of a din C 1is zero. Therefore
im(A —> B) = I CK = ker(B—> C)
Because of Proposition 2, one sees lmmediately that

)

K = ker(BX — cx) and I_ = 1m(Ax —> B

X X e

Hence since AX-—> BX "“é'cx is exact, we have

for each x C X , and we want to show that I = K .

But the exact sequence

> I

> K/I ——> 0

ylelds exact gequences of stalks for each x € X by
(D.2). Since I, = K, the stalk of K/I at x is
zero, thus X/I has all stalks zero, and hence 1g zero

by (B.5(i1)), i.e., I = K .

Remark: The ahbove fact is also reflected in the vanishing
of Hl(X,E) for a quasi-coherent sheaf A (cf. C.3

and problem 4 of exerc. 2).

Corollary 4: Let R be a ring and S = {si} a set of

elements of R which generates the unit ideal. A se-
guence of modules

A—>B—>C

is exact 1ff. for éach 1 +the sequence

is exact,
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PROJECTIVE MODULES

A. The serpent diagram.

With every map f: M —>.N of R-modules 1is associated
its kernel and cokernel (=M/im f)'. This associlation is
functorial in the following sense: If f': M' — N' 1is
another map, and if f, £' are embedded in a commutative
square

i I\I/IE—>N
Voo "

M!'—> N'

(which should be called a "morphism of maps”), then there are
canonically induced maps
ker f —> ker f'

coker £ —> coker f!

In fact, ker £ 1s a submodule of M and 1its image 1n M' 1is
obviously in ker f' . This gives the map of kerﬁels. For

the cokernels, we have a map N —> N' , hence a map

N —> (N'/im £') = (coker f') . To factor this map through

N —> (N/im f) , it 1s enough by the universal mapping prop-
erty of quotient modules to show that the image of (im £)

in (coker f') is zero. This just means -that M 1is mapped

to zero in (N/im f) , which is clear, since its image is in
(im £') . Note that the induced maps are such that the dia-

gram
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commutes, where the K's and C's are kernels and cokernels,

and this property characterizes the induced maps uniguely.

Proposition 1: (left exactness of kernel) Let

0 —> M! > M —> M"
|
{f' {f £

! v
Q0 —> N! > N > NV

be a commutative diagram wlth exact rows. Then the induced

sequence

0 —> ker ! —> ker £ —> ker "

is exact.

Proposition 2: (right exactness of cokernel) Let

M! > M > M —> 0
! f £
Y
N! > N > N" —> 0

be a commutative dilagram with exact rows. Then the induced

gequence

coker f' —> coker £ —> coker f" —> 0

is exact.
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Proposition 3: (serpent diagram) Let

M! —> M ——> M" ——> 0

b e

O —e—=> N! ——=> N —> N"

1
be a commutative diagram with exact rows. There is a canon-

ical map ker f" L% coker £' such that the induced sequence

-

ker £f' —> ker £ —> ker f" 4§> cok f! —> cok f —> cok "

is exact.

Note that by propositions 1, 2, we can add zeros %o
the appropriate end of the sequence if M' —> M 1s injec-
tive, or if N —> N" 1s surjective.

We omit the proofs of these propositions.

B. Finiteness conditions on modules.

Definition 1: An R-module M 1s said to be of finite type,

or to be finitely generated if there is a finite subset of

M , say { ml,...,mn}; such that every element of M can be
written as a linear combination of the elements my i.e.,

in the form

2 r.m,
1 il

for suitable ry; e R This is the same as saying that if

FO is the free module on the set {Xl""’xn:} then the map

Fo—> M sending Xy T my is surjective. Hence we can
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say that M 4is of finite type if there 18 a free module of
finite rank FO and an exact sequence

(2) Fo—> M —> 0,
Let { F, be the kernel of this map, so that

(3) 0 —>R —> 7 > M ——> 0

0

is exact. In the above notation, {R 1s called the module of
relations among the f mig . This expresses the fact that

G? consists of those linear combinations

such that

Ir 62 1s again a module of finite type, then M 1s said to

be of finite presentation. This means that there 1s a free

module of finite rank Fl and a surjectilve map F1 — 0{ .
Hence M 1s of finite presentation 1if there 1s an exact

sequence

(4) F, —> F > M > 0,

1 0

where Fl s FO are free modules of finite rank. Such an
exact sequence 1s called finite presentation of M ., The

generators of F map to certaln relations in F, , and any

1
other relation 1s a linear combination of these.

0

One could define higher order notions by introducing the
module 6%1 = ker(Fl.——>'FO) of "relations among the
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relations', etc...

"In order to justify our terminology, we should really
show that the question of whether or not 6%. is of finite
type doesn't depend on the choice of (2) . This is done in

(iv) of the following proposition:

Proposition 5: (i) Let M be of finite type. Then any set

ﬁma} which generates M containg a finite.subset which
already generates M . » |

(11) Let A —> B —> C —> O be an exact sequence of
modules, If B is of finite type, so is C . If A and C
are of finite type, so is B .

(11i) Let 0 —> A —> B—> C —>.0 be an exact sequence.
If C has a finite presentation and B is of finite type.
then A is of finite type.

(iv) If M has a finite presentation F; —> Fy—> M —> O
and if F{ —> M —> 0 1is a map corresponding to another

finlte set of generators for M , then the module of relations

R' = ker(Fy —> M) is finitely generated.

Proof: (i). Let say !u B0 00 be any finlte set of gener-
{1 n :

ators of M . Write each {_ui% as a finite linear combination

of some mu's s say

u, = 2 a, m
1 j_id'i

Then with only a finitely many m, , we can express all the

%ui§ , hence since Eui} generateS M , so does this finite set.



(ii). Clearly, if {bﬁ} ig a sget of generators for B ,
then the images of the elenents bi in C generate C .

Hence if B is of finite type, so is C .
Suppose that A , C are of finite type. Let
{51’°‘°’5ﬁ} be the images in B of a set {ai} of generators

be representatives on B of a

=

or A , and let bl,...,bo
set {cl,..,,cs} of generators of C . Then I claim that
the set {Ei,bj} generates B ., In fact, if x € B 1is

arbitrary, then its image x € C is a linear combination,

J7d
lence the element

X - 5 r.b,
%3

Tn -

of B has image zero in C , i.e., is in ker(B —> ¢) , hznce

in im(A —> B) . Say it is the image of & rla, . Then

- 15 -
.A by riai + fjbj

is a linear combination of the elements {Ei’bj} , Which 1is

what was to be shown,.

(1ii). Let 0—>® —> Fy—> ¢ —> 0 be a finite pre-
sentation of C . ©Since FO is free, a map of this module
to any module is given by assigning the image of a basis.
Hence it is clear. that there is a map FO —> B making the
triangle

commute, Replace it by the square
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B ————> C .

There 1s an induced map of kernels (¢ —> A  (cf. A) , hence

a diagram
K! K 0
0 —>R —> Fy—>c—> 0
oy I
0 > A > B > C > 0

D' D 0

where we have placed the kernels and cokernels arocund the
periphery. Applying the serpent diagram, we'get an exact

sequence
C—-—-—>K' —> K—> 0 —> D" —> D —> 0
Hence D' > D . Since FO is of finite type, so is C ,

hence D' (by (1)) . By assumption, (R is of finilte type

too. Therefore (1) and the exact sequence
R —> a—>Dp'—> 0
imply that A 1s of finite type.

(iv). Apply (iii) .

Proposition 6: If R —> R' 1s a homomorphism and M is

an R-module of finite type (resp. of finite presentation),

then R'Q@R M is again of finite type (resp. of finite
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presentation).

Proof: By (4.D.1) the functor R' G- 1s right exact,
Therefore, an exact sequence Foy—> M—> 0 yilelds an
exact sequence R'C@% Fo —> R'ﬁ@R M —> 0 , showing that irf
M is of finite type, so is R'(Qh M ., The case of finite

Presentation is gimilar,

Proposition 7: A module M is of finite type (resp. finite
Presentation) if and only 1if there 1is a set fsig of elements
of R which generates the unit ldeal, such that MSi is of
finite type (resp. finite presentation) as Rgq-module for

each 1 ,

Proof: The fact that if M 1s of finite type (reSp.) then
MSi 1s too, follows from Prop. 6, and the fact (3.8) that

localization is a tensor product. Conversely, suppose that

'Msi is of finite type for each 1 . We may assume { Sy f

a finlte set. Let ym..% . C M be a finite set of elements
G 51
which generate the module. Each mij is of the form
-n

Si mij for sultable mij £ R . Since 8y is a unit in

ng s the elements Emijzj for the wvarious modules are all
i : _

in R . Then I claim that the set {mijfij generates N .

Thls means that the map from the free module F' on the set

[ ‘l AR ] 3
ixijfij to M sending xij > mij 1s surjective, To check

this, 1t suffices (4.D.3) to do so locally, hence to do so

for each Méi . But the elements grmij? clearly generate
MS » and so we are done.
i ' .
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Ir Ms is of finite presentation for each 1 , then
i . .
we already know that M is finitely generated, hence that

there is an exact sequence FO —> M —> 0 with FO free
and of finite rank. We want to show that the module (2 of
relatlions is of finite type. But to show this 1t suffices
to show that the module 6251 1s of finite type_for each. 1,

which follows immediately from the fact that Mg 1s finitely
i

presented, and from (5(iii)) .

C. Localization of homomorphisms.

Let R —> R!' be a ring homomorphism, and M, N
R-modules. If f: M —> N -is a homomorphism, then since

R'® . 1is a functor, there is induced a homomorphism
(1) R"® f =f': R'&M —> R'@N .

It is given by the formula
£ ({r'®@m) = »'@f(m)

Remember that HomR(M,N) is an R-module under addition and
scalar multiplication of homomorphisms. It is easy to see

that the map (given by (1))
(2) HomR(M,N)A——-> Homy, (R'® M, R'®N)

is R-linear, i.e., a homomorphism of modules, where the
term on the right, which is naturally an R'-module, is viewed
as an R-module by restriction of scalars. By the character-

1stic property (TP. D.1) of & , (2) induces a map



(3) R'Q@R(Homl(M,N))'—~> Hom

; RYEM, R'@N)

o

It sends a tensor r'&@f to the homomorphism

(4) [r'&f]: R'"®M —> R'® N

given by

(%) [r'®£}(t'@m) = (r't")®C(n)
1

Suppose now that R' = S "R for some subset S of R .

Then following our notation (2.D.2)
Y

» We can write an ele-

ment of §~ HomR(M,N)) in the form s~ Yf . The map (%)
(5) [s7te): 57w —> 57

of localized modules is just given by

(5) CIsTI(E ™) = (st)TH(e(m))

In general, (3) is neither injective nor surjective, but

we have the following:

Proposition 7: Let R be a ring and S CR . Let M, N be

R-modules, and suppose that M is finitely presented. Then

the map (3)

5™+ (Hom, (M,N)) —> Hom o, (s7Mm, 87t

S "R

N)

is an isomorphism.
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Proof: injectivity. Suppose that for some element

sTif & S"l(HomR(M,N)) the associated homomorph;sm [s'lf]
is zero. This means (5)

1

[sYe](m) = e™2(e(m)) = 0 in 87N

for each m e M . Hence (2.8.4)

(8) sif(m) = O in N

for some s' € S' . Since M is of finite type, one s'
will do in (8)  for each of a finite set of generators of
M , hence for every element of M . Thus. there is an s' g S'

such that (8) holds for each element of M . This. means

s'f =0 in HomR(M,N) )

whence
\ -1 |
f=0 in S (HomR(M,N))

Hence also s'lf

0 , which proves the injectivity.

surjectivity. Let

b: s7im —> s7tw

be an S'lR-homomorphism, It suffices to show that there 1s
some element s € S' ‘such that the map sb comes from a
homomorphism f: M —> N . Choose a set of generators my

for M, so as to get an exact sequence

0 —> (X —> Fo —> M —> 0
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Multiplying b througn by some 8 & S' to clear denominators,
-1
we may assume that b(mi) = ny In S "N for some elements

ni e N . Then we can define a map

(/N FO -=> N
be sending the basis xiﬂww% my . We would like to extend
this map to a dlagram

Fo > M

N
(9) w \\_1

f
W
N

If this is done, we will have f(mi) = n; and it then will
follow easily that [f] =0 .

Now by the universal mapping property for the quotient
module M R Fo/ﬁl , the map f exists 1ff. the image of R

in N under { 1is zero. But we have a diagram

~1 -1
S FO — 5 TM
~
N
S
s7Hy

Hence the image of. s1®  in sy is zero, at any

rate, and this means that for any 2z € ﬁ? ~

Hence

sy(z) = 0 in N

for some s € S' . Since M 1s finitely presented, R s
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of finite type, and so one s will do for all z.s R
(since one will kill ¢(z) for =z .any one of a finite set
of generators).

Now we can still multiply the map p by s, and then
if we also replace by sy , we do get ¥({L) = 0, and hence

f exists. Thils completes the proof.

D. The sheaf Hom.

Let F, G be sheaves of abelian groups, or of modules
over a given sheaf of rings on a topological space X . Put
H(U) = Hom(F|U, G|U) (mb. this means maps (3,B.3) of the

sheaf F|U to G|U, znd is not to be confused with

Hom(F(U), G(U)) = maps from the group of sections F(U) to
G(U) !). Given a map F|U —> G|U , we can restrict it to a
smaller open set V C J . Hence H thus defined 1s a pre-
sheaf., It is actually a sheaf. This is because, to give a
map F —> G , it suffices to do so locally, i.e., on each
open set Ui of a covering ofi X , with compatibﬁlity on Uij
This is clear from the discussion of (3.0) .

We will denote this sheaf by Hom(F,G)
(1) Hom(F,G)[U] = Hom(F|U, G|U) .

If M, N are R-modules and X = Spec R , we will write

(1) as
Homﬁ(ﬁ,ﬁ) .

As a consequence of (C.7) , we get
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(M, 1)

Covollary 2: Let @M, N be R-modules, and let HomR
denote the sheaf associated to the R-module HomR(MﬁN) .
There 1s a natural map

M,N) ——> Hom (1,%)

Hom ;ﬁé

a(
and if M 1s finitely presented, 1t is an isomorphism.
Translating the map above for an open set of the form

X

g 1t reads

(Homp (1,21) ), —> Hom (M| X, W[x,)

By (3.B.4) , the term on the right is Homy (MS,NS) . Thus
S

the map 1s the one given by (C.3) . It extends to arbitrary

opens as usual (3.C.1) , and the bijectivity if M is fin-

itely presented is the assertion of (C.7)

E. Projective modules.

Definitlon 1: An R-module P 1s projective if, given a

diagram P
¥

B > C > 0 , the row exact,

there 1s a map P —> B such that the triangle

commutes.
This can algo be stated as follows: If
B —> C

is surjective, so is the Induced map
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(p,C)

HomR(P,B) —> Homg(

To appreciate the meaning of this, note

Proposition 2: (left exactness of Hom in the second variable)

Let 0 -> A —-> B —> C be an exact sequence, and M any

R-module. The induced sequence 1

i

O~0HMM&A)—OHmﬂMB)eOHmM&C)

is exact.

We leave the proof as an exercise.

Therefore, we can express the fact that P 1s projective
by saying that
HomR(P,.)

is an exact functor. For, (left exactness) + (preserves

surjections) = (exactness) .

An analogous discussion could be made by reversing all
arrows (Hom 1s right exact in the first variable). The

resulting notion is that of injective module.

Elementary facts.

(3) R 1s projective as a module over itself.
For, _HQmR(R,M) 8 M, i.e., HomR(R,g) is the identity
functor, hence certainly exact.

(4) A direct sum of projectives 1s projective.

For, to map a direct sum to B , it suffices to map each

summanhd to B , hence the conditlion of the definition 1is
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trivially satisfiled for the direct sum if it is for each

summand .
(5) A free module is projective.
Combine (3) and (4) .

(6) Let O0-> A ~>B->C—> 0 he exact.
If C 1s projective, the sequence splits, i.e., BXI A C .

More precisely, there is a map C —> B (necesgsarily
injective) which, when composed with the map B —> C above
glves the ldentity on C . We just put P =B in definition 1.
Then if we denote by C also its image in B , we have
clearly AN C=(0), and A+ C =B, hence B=A&C.
Note, however, that the sDlitting B % A + ¢ 1s not canonical.

It Jdepends on the choice of the map C —> B .

(7) Let P be a projective module, If P 1s of finite

type, it is also of finite presentation.
For, we get (B.3) an exact sequence

0 —> R —> Fy—> P> 0

with FO of finite type, and we have to show that 62 is of
finite type. Bubt by (6) , Fo & R@pP, nence R 1s a

quotient of the flnitely generated module F hence i1tself

O £
finitely generated (B.5(1)).

(8) Let P be a projective R-module. Then s7lp 15 a

projective s R -module for any S CR.



5.17

For, let

BT > C! > 0

be a diagram of San -modules to test projectivity. Combin-

1

ing with the canonical map P —> S P , we get an R-linear

map P -—> C' , hence an R-linear map P —> B' making a

commutative triangle, since P 1s projective. Hence by the

1

characteristic property (TP.D.1) , there is a S "R -linear

1

map S “P —> B! induced by this map, and one sees lmmedlately

that it has the required property.

Proposition 9: (projective i1s a local notion)

Let . P Dbe a module of finite presentation. Then P 1s pro-
jective iff. there is a subset S C R which generates the
unit ideal such that PS is a projective Rs—module for each

S g S

Proof: This follows from (D.2) . To show as 1n the definition

that
HomR(P,B) —_ HomR(P,C)

15 surjectlve, it suffices by (3.B.4) , (4.D.3) , (D.2) to

show that the map of guasl-coherent sheaves

Homﬁ(ﬁ,ﬁ)'———> Homﬁ(ﬁ,ﬁ)

is surjective, and this is a local question. Note the elegance

of this method of proof {due to Serre, I believe), in which
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resuits about modules are applied to the module Hom .

The converse 1s contained in (8) .
Corollary 10: A locally free module of finite rank 1s pro-
jective,

For, it 1s finitely presented by (B.7) since 1t 1s

locally free. ©Now apply (5) , and the above proposition.

F. _Nekayama Lemma.

This is a very important tool:

Theorem (1): (Nakayama Lemma) Let R be a ring, and (il

an ideal contained in every maximal ideal of R (for instance,
R local and A% 1ts maximal ideal). Let M be an R-module
of finite type. If OlM =M, 1.e. (ef. TP.D.2) if

(R/0T) @M = M/0?7M = {0) , then M = (0) .

Proof: Let gml,...,mﬂ% generate M . Since Ol M =M, we

can wrilte my as contained in J!M , i.e., in the form
= (1
m, ? ayms a; € .

Solving for my o

iMs
)

(1 - ay)m =

4
1

2

But since O] is in every maximal ideal, 1 - a; 1s in no
maximal ideal, hence in no prime ideal, and therefore 1is a

unit, because of (1}A) . Thus we can express m, as a linear



5.19

combination of the other . mi's , and so ml' 1s not needed to
generate "M . By induction, ncthing 1is needed to'generate

M, hence M = (0) .
Rerapl*: The assumption that M is of finite ftype is essential.
Here are some variations on this theme:

Corollary 2: Let R, (Ol be as above, and A —> B a map

of R-modules, with B of finite type. If A/0z A —> B/l B

is surjectlve, so is A —> B .

Let C be the cokernel of A -—> B , so that the
sequence A —> B —> C —> 0 1is exact. By right exactness
of tensor product (4.D.1) ,
A/ O'A —> B/ OB —> ¢/ OiC —> 0 1s again exact. Thus 1f
A/ A —> B/(JB 1is surjective, then ¢/ (lC = (0) . Since
B is of finite type, so is C (B.5(1i)) , hence ¢ = (0)

by the Nakayama lemma.

Corollary 3: If B 1s a module of finite type, and if
bl,...,bn are elements of B whose residues (modulo (J7 B)
generate B/ (IB , then ©by,...,b, generate B .

For, we want to show that the map F —> B of the free
module F on a set Xl""’xn sending Xi/Lv> bi is surjec-
tive, and the assumption implies that r/]F —> B/ (B 1is
surjective, hence we may apply (2) .

We remark that also in thils corollary, it is essentlal

to know beforehand that B 1is of finite type.
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o e P TV ey s e R [ At a1 N L P Pl R SR R = N . . 5
A o corollory, w2 obbtain the foet that {iniltely generated

brojectives over a local ring are (ree:

Proposition 4: Let R be a local ring, and P a finitely
generated projective module over R . Then P is a free

module.

Proof. Denote by R the fileld R/:y ( A% 1is the maximal ideal),

and by P the R-vector space PAP . Let X,,...,%. Dbe

1 n

elements of P such that their residues il""’xn in P
form a basis for that vector space. I claiﬁ that XyseeerX
Is a basis for P : By corollary 3, the elements % Ki?
generate P , at any rate. Hence we get an exact sequence

(B.3)

0->{H > Fy~>P->0 ,

and we need to show that R = (0) . But R 1is of finite

type. Thus it suffices (1) to show that 2= R/WR = (-0) .
We know that ﬁO‘:~> P , since that elements Ei are a basis.
Now because tensor product is only right exact, we can't yet
conclude that @ = (0) ! We need to use the projectivity of
P . Using that, the sequence above splits (E.6) , and since
tensor product does commute with direct sums (TP,C.M) R

we get

_“FO:: ROBF=RIP .

Since ﬁOC:;> P , this shows that éi‘ = (0) , and completes

the proof.



§;> Characterization of projectives of finite type.
The result is the following:

Theorem 1: Let R be a ring and M an R-module.

The followlng are equivalent:

(1) M 4is a projective of finite type.
(1i) M 1s locally free of finite rank.
(iii) M d4s finitely presented and for every ©p € Spec R ,

Mp is a free Rp—module.

Proof: (i1) => (i) and (1) => (11i) are done ((E.10) and
(E.8) + (F.4)). We need only show (1ii) => (ii) . This is
an example of a standard kind of reasoning: What we need to

show is the following:

Lemma 2: If M i1s an R-module which is finitely presented,

and such that Mp is a free Rp—module for some prime p of

R , then there is an s & R-p such that Ms is a free

Rs-module.

For, applying this to every p e Spec R , we find that-
M is locally free.
To show lemma 2, choose elements XyseoesXy which form

a basis for Mp . Clearing denominators, we may assume

X, e M. Then we get a corresponding map

i
F—>M

of a free module to M , and we know Fp == Mp . Hence we



are reduced to the following lemma:

Lgpma_ii Let f: M —> N be a map of R-modules, and assume
M 1is of finite type and N 1s of finite presentatlion.

Suppose that fp: Mp — Np is an isomorphism for some

P e Spec R . Then there is an s & R-p such that fs: Ms _ NS

is an isomorphism.

We first settle the special case N = (0):

Lemma 4: Let M be an R-module of finite type. If Mp = (0)

for some p € Spec R, then there is an element s & R-p

(o) .

i

such that Ms

Proof of (4): Let {ml,...,mn} generate M . Since each my

is zero in’ Mp , there 1s an s & R-p such that
smy; = o .

One s will do for all my - Then also sx = 0 for any

X & M, hence M = (0) .

Proof of lemma (3): Let C be the cokernel of f . C is

of finite type (B.5(ii)), and C_ = (0) . Hence c, = (0)

p
for some s , by lemma 4. Localizing everything with respect

to this s , we may assume that the map f: M —> N 1is

already surjective. The finiteness conditions on M, N are
preserved (B.6) . Then ker f = K is of finite type (B.5(iii)},
and K_ = (0) , hence Ky = (0) for some s e R-p , again by

p
lemma 4. This completes the proof of Lemma 3, and of theorem 1.
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CLASSICAL IDEAL. THEORY

The main discussion starts in section C. In the first
two sections, we introduce some notions which will be needed,

and which we will study in more detail later.

A. Noetherian rings and modules.

Definition 1: A module M 1s noetherian if every submodule

of M 1s of finite type (5.B.1). (In particular, M
itself 1s of finite type, but this is in general not suffi-

cient.) A ring R 1is noetherian if it is noetherian as a

module over 1tself, which means that every ideal has a finite

set of generators.

Equivalent conditions:

(2) Every lncreasing sequence of submodules

N, CN

1.__ 2_C-I\I o s b

3

of M becomes constant, eventually.
(3) Every set S £ # of submodules of M contains a

maximal element.

For a ring, you just replace the word submodule by the

word ideal.

To prove the equivalence of (1), (2), (3) is an easy

exerclse: If M 1s noetherlan, then the union N = Lz)Ni
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of an increasing sequence of submodules (which is again a
submodule ) 1s_generated by finitely many elements, and these
are therefore in some Ni and so Ni = N . Thus the se-
quence is constant after that point. This shows that

(1) =(2). If (2) holds and S is a non-empty set of
submodules, choose any one, and call 1t N1 . If 1t 1s maxi-
mal, (3) is proved{ If not, there is a larger submodule in

S , call it Né , etc.. By (2), the process stops, showing
that S contains a maximal element, i.e., that (3) holds.
Finally, suppose that (3) holds. Let N be any submodule,
and let S be the set of finltely generated submodules of

N , which 1s non-empty because it contains (0) . Clearly,
the only possible.maximal element of S 1is N 1tself, since
we could always add a generator to any smaller module, and

the result would again be finitely generated. Thus N must

be in 8§ , which proves (1).

Elementary properties:

(4) A submodule or a quotient module of a noetherian module

1s again noetherian,
|

For éubmodules, this is trivial from the definitilon.
\
For a quotient module M/N , where M 1s noetherian, recall
that submodules of M/N are in one-one correspondence with

submodules of M which contain N . Now condition (2)

implies that M/N is noetherian.
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(5) Let A —> B—> C be an exact Seéuence, If A and

C are noetherian, so is B .

This 1s essentially the converse of . (4). We may by
(4) replace A by its image in B and C by the image

of B—> C, s0 as to get an exact sequence
.O——é-A-—-%B—-é-C——%-O..
Let N be a submodule of B_. Then the seguence
o-;—> ANN-—N— N/AQNN —> 0

1s exact (n-th isom. thm.), and we want to show that N
is finitely generated. Now ANN C A and N/ANNZ C ,

hence these two are finitely generated, and so we are through

by (5.B.5(i1)).
(6) A finite direct sum of noetherian modules is noetherian.

(7) Let R be a noetherian ring, and I an ideal of R .

Then R = R/I 1is noetherian.

To see thils, note that any ideal of R may be viewed
as an R -submodule of R by letting R act through the
map R—>R . By (%), R 1is a noetherian R -module, from

which the result follows immediately.

(8) Let R be a noetherian ring. Then the following con-

ditions on an R -module M .are equivalent:
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(1) M 1s noetherian.
(11) M 1s of finite type.

(111) ¥ 4is finitely presented.

By (6), a free module of finite rank 1s noetherian.

Hence by (4), an exact sequence 0O —> R — F, —> M —> 0

with Fo free and of finlte rank implies M and G%
noetherian, and so 6{ of finite type, hence M finitely
presented. This shows that (i11) implies (1) and (ii1i).
(111) == (i1) and (i) == (ii) are trivial.

(9) Tet M be a noetherien R -module. Then S™'M 1s a

noetherian .S—l

S™1R 15 noetherian if R 1is.

R -module for any S C R . In particular,

1,

Let N' be any submodule of S "M , and denote by

P M > s™IM the map. Then (this is similar to 2.B.1)

the submodule of 8 M generated by @(b-l(N')) is again
N' . For, it is clearly in N', and if x & N' is any
element, then x = s lm for some s &S', m<M, hence
sx =m 1s in b(b‘l(N')) . But s 1is a unit, and so the
submodule generated by sx contains x . Now @nl(N') is
a submodule of M , hence is finitely generated. The 1mages
of these generators generate N' , which shows N finitely

/7

generated.

The geometry of the spectrum of a noetherian ring has

the following agreeable propertles:
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Proposition 10: Let R be noethérian, and X = Spec R .

(1) Every descending chain ¥, DY, D ... of closed

subsets of X becomes constant; eventually.

(11) Every non-empty set S of closed subsets of X

has a minimal element.

(111) Every closed set Y 1is a finite union of irreducible .
closed sets (cf. (1.F)).

Assertions (1), (i1i) are just immediate consequences
of (2), (3) applied to the ideals tJZ(Y) (ef. 1.D). To
prove (iii), let S Dbe the set of closed subsets for which
the assertion is false. If S were not empty, 1t would con-
tain a minimal element Y , by (ii). Y cannot be irreducible,
hence is a union of two proper c¢losed subsets, Siﬁce Y is
minimal, each of these subsets is a finite union of irredue:
¢ible subsets, hence Y is too; a contradiction. Thus 8

is empty.

B. Integral ring extensions.

Definition 1: Let R —> A be a ring homomorphism, so that

A 1is a (commutative) R -algebra. An element a € A 1is

' sald to be integral over R if it is a root of an equation

of the fofm

n n-1 —
(2) X' +a 4% + ..+t a;x+a =0
with a.&€ R .

b |
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The important thing is that the equation is monic.
Note that when we substitute a in (2), we (naturally)

replace the coefficients a by thelr images in A , 1l.e.,

i
we view them as scalars for the structure of R -algebra on

A .

Theorem 3: Let R —> A Dbe as above, and a¢ & A . The

following are equivalent:
(1) @ satisfies an .equation (2).

(11) The subalgebra R{a] of A generated by o 1is of

finite type as an R -module.

(111) There is an R[a] -module M which is falthful, and

which 1s of finite type as an R -module (by restr. of scalars)

A module M!' over a ring R' i1s called faithful 1if no
element of R' other than zero annihilates all of M! . For

instance, R' 1tself 1is falthful.

proof: Suppose (i} holds. Now R[o] is generated as a
2

module by the powers 1, @, a-, ... of a , 1n any case.
But when the equation
o + a Lt +a,a+a_ =20
n-1 HE | o

holds, we can use it repeatedly to express any power as 2

linear combination of the powers 1, O, ..., &t . Thus

R[a] is generated by these powers, and hence is of finite
type.

If (1i) holds, then we can take for M the module
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R[a] 1n (1i1), hence (iii) holds.

' Suppose that (111) holds, We are to prove (i): Let
m,...,m generate M as R -module (hence as R[a]-module).
Since M 1s an R{a] -module, we can express the element
am, as linear combinations of mj with coefficients in

i
R . Say

i =z -
i ; aijmj .aiJCR .

In matrix notatlon, we get by bringing everything to one

8lde of the equation

! 0
(%) (oI - (ag;)) | - :
my 0 ’

- o

where I denotes the identity matrix. (You have to read

the matrix (ol - (aij)) as in A , replacing the elements
. ' - - =

aij by their images!) Put: (bij) = (aI (aij)) and let

(Bij) be the adjoint matrix of (bij) , 80 that

(Bij)(bij) = det(bij) I.

Multiplying (4) on the left by (Bij) , we get

m, |

. 0
d b,.)'I . =, :
et( iJ) o o s
n

i.e., det (bj,) m = O for each 1 . Thus det(by ;) M= (0),
hence since M 1s a faithful R[c] -module, det(bij) = 0-,



6- 8¢

But by definition of (bijﬁ , this just expresses the fact
that a 1s a root of the characteristic polynomial of the
matrix (aij)’ which is a monic equation of the form (2)

having coefficients in R . This completes the proof.

Definitlon 5: A commutative R -algebra A 1is called

integggl over R 1if every element of A is integral.

Corollary 6: ILet R -—> A —> B be ring homomorphisms.

If A is integral over R and B 1is integral over A ,

then B is integral over R .

For, let P E B, and let

5n + o Bn—l

-1 + .. F alﬁ +a =20

o)

be a monlc equation for P over A (ai(g A). Since each

ai is integral over R , it is easlly seen that the subalgebra
R[Gi,ﬁ] of B generated by g.ﬁ,qi} (strictly speaking, re- f
place the a, by thelr images in B) i1is a finite type

R ~module, I leave the verification to you. But R[a, ,B]
is an R[P] - ‘module, and is clearly faithful as such, since

1t contains R[B] . Hence B 1s integral over R by (3(iii)).

Corollary¥7: Let R —> A be a ring homomorphism. The set

of elements of A which are integral over R forms a subring.

For, if «,B are iﬂtegral over R , then the subalgebra

R{a,B] of A these elements génerate 1s a finite R -module,.
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It is faithful as an R[u] -module, since it contalns this
ring, where u is any polynomial in ,B with coefficients

in R . Thus u is integral by (3(1i11)).

Suppose now that R 1s an integral ﬁomain, and let K
be its field of fractions. It may happen that K contains

elements integral over R , but not in R :

Example 8: ILet R = k[x,y]/(yz—x3)‘. ‘Then the element
t = y/x satisfies the monic equation t%- x = 0 s but
t£R.

Similarly, let R = Z[x]/(xe- 8) . The element x/2 = t

satisfies the equation t°- 2 = 0 , but 1s not in the ring,

Definition 9: Let R be an integral domain with field of

fractions K . The set R of elements of K which are

integral over R is called the integral closure of R

in K . It is a ring because of (7). R is said to be

integrally closed, or normal, if R = § .

In the above example, the integral closure of R is

actually k[t] (resp. %[t]/(te-e)).

Proposition 10: Let R be an integral domain. Then if R

1s integrally closed, so 1s S 1R for any S €.R-{O}. Con-
versely, if for each prime p of R the local ring Rp

is Integrally closed, so is R .
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proof: If R 1is integrally closed, let a Dbe an element

of the field of fractions X which is integral over s™Ir ,

say

_ ~1
a’ + a0 + ..o a0 +a, =0, ay € SR .

-1

Write (2.4.3) a, = s by (one denominator s for all 1).

i
Then P = as 1s integral over R since it satilsfies the

equation

n n-1 n-2 n-1 _
B + bn_lﬁ + oeo + 8 "byp+ 8 by =0

with coefficlents in R . Thus B 1is in R , whence
a=s"'p is in SR .

Now drop the assumption that R 1s 1ntegrally
Let R be i1%s integral closure, whlech 1s an R -modulse,
and we have an inclusion map R C R . By (4.D.3) 1t is an
isomorphism iff the assoclated map of sheaves R —> % is
one. This 1s a question of their stalks. But if the stalk
R, 1s integrally closed, then it must be isomorphic to ﬁé s
since this latter is obviously an integral extension. This

proves the second assertion.

C. Discrete valuation rings.

Let R be an integral domain wlth maximal ideal M £ 0O,

and suppose that ## , (0) are the only two points of
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Spec R. Thus R 1is a local ring, and Spec R has one
closed point and one "general point". An example 1is

R = k[[t]] (1.E.Y4). Suppose dlso that the ideal

i1s finitely generated, say 444 = (ml,...,mn) .

If (U 1s any proper ideal of R (1.e.,ione dif-
ferent from (0), R), its radieal rad Ol (1.D) has
no choice but to be /M . Thus for each 1 ,

s ,
my € (Ot
for some integer s . .Because there are only finltely

many mi's s 1t follows that any monomial in the my of

sufficlently large degree 1s in (J7 , and so
(1) ,omN Cc Ol for sufficiently large N .

If we apply this fact to the ideal (x) generated

by a non-zero element x €4 , we find
(2) /M1N C (x) for sufficiently large N .

Proposition 3: Under the above hypotheses, the inter-

section of the powers Aﬂin of the maximal ideals is (O)':

Q/wn = (0) .

Remark: This is actually true for any noetherian local
ring. It is an important theorem of Krull. One can show

that in our situation, R is in fact noetherian.
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proof: Suppose x # O 1is in every AMT . Then it follows
N
from (2) that MY < (x) € M , t.e.,

(x) = A41N if N 1is large.

The same 1s true 1f x 1s replaced by the element x2 .

Thus x 1s a mulfiple of x2

X = r X r € R .

Cancelling x ,

i.e., x 1is a unit, a contradlction.

Theorem 5: Let R be an integrally closed (B.9) domain

in which there is only one prime ideal 4/ # (0) , and
suppose ## finitely denerated. Then A#  1s generated

by a single element.

This is not a trivial fact. It is the key result of
"olassical ideal theory". The assumption that 44 be

finitely generated 1s essential.

proof: Let K be the field of fractions of R , and let

z = y/x be an element of K not in R . Such an element
exists since 4 # (0) . Ve have x € A . By (2), any
element of AU N is divisible by x if N 1is gsufficiently
large, i.e., any monomial' w in a set %Imi} of generators

of 4 of sufficiently large degree 1s divisible by X,
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and so wz € R for such a monomial. Now i1f we replace z
by mz for a cautiously chosen monomial m in § mi? s

we can get into the situation where
(65 m;z & R i=1,...,n
but z &R, i.e,,

M oz C‘ R,

where A1 z ;-{'mz[ m C:AWV? Now it is immediatély seen that

Mz 1is an ideal of R .

case 1: AMfz =R . Then mz =1 for some meM, 1.e.,

z =1/m . Because of (6), m divides each m; and hence

AA 1s generated by the single element m .

case 2: Mz C A7 , Let R' be the ring R[z] . The

assumptlon implies tﬁat AN is closed under multiplica-
tion by all powers of z , hence by all elements of ﬁ' ,
l.e., A is an R' -module. It 1s of finite type as an
R -module and faithful as R' -module (easy to see)., There-
fore R' 1is integral over R by (B.3(i1i)). This 1is a

contradiction, since R was assumed integrally closed.

Definition 7: A ring R satisfying the hypotheses of (5)

is called a discrete valuation ring.

Thus a discrete valuation ring is a local integral

domain, and it has the following properties (by 5 and 3):
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(8) (1) The maximal ideal 447/ of R 1s generated by one

element x .

(11) (N ™ = (0) .
n

Note that by (i) any non-unit a € R 1is divisible by some
power of x . By (ii), a 1s not divisible by arbitrarily
large powers of x , unless a = 0 . Hence we may write

any non-zero element a € R 1n the form
e
(9) a = ux

for some unlt u € R and some integer e 2 0 .
If a 1s any non-zero element of the field of fractions

K of R, then a = r/s for some r,s €R . Using the

fact that r,s can be written in the form {9), one finds
that also

e
(10) a = ux

for some unit uw € R and some integer e , which may now
however be negative. }
It is easily seen that the exponent e 1s uniguely
\
determined by a . The unit u 15 also uniquely deter-
mined, once the generator x of A% is chosen. e 1is

called the order of zero of a (or, =-e 1s called the

order of pole of a). The "valuation" of the discrete

valuation ring is the rule assigning to each a € K the
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exponent e . There is an obvious exact sequence
(11) 0 —> R¥ —> K¥ -—> & —> 0

where R* 1is the grougs of unlts of R, K¥ is the
multiplicative groups of non-zero elements of K s, and
the additive group of integers Z represents the order of

zero of the elements of K*

Corollary 12: The only ideals of R other than (0)

are the powers 41" = (x) of 44

For, any'non—zero ideal Cﬂ' contalns a power of x
because of (9), and the smallest such power clearly generateg
a .

Since this discussion was based only on properties

8,(1),(11), we see also that

Corollary 13: Any local integral domain having properties

(8)(1),(11) 4is a discrete valuation ring.

For, the only prime ideals are (x) , (0) , by (12).
We need furthermore to check that such a ring is integrally
closed. Thils is clear from (10): ‘If we write an integral
dependence relation for an element a € K over R in the

form

where b 1s a polynomial in a of lower degree than n ,
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we obtain from (10)

where b = Vv xf . Hence en =f . But since b has lower

degree in a , this is not possible unless e 2 0 .

D. Dedekind domains.

Definition 1: A noetherian integral domaln R 1s called

a dedekind domain if 1t satlsfles one of the followlng

equivalent conditions:
(1) for every prime ideal p # (0) , the local ring R
is a discrete valuation ring.

(11) R is integrally clesed, and evary prime ideal

“Hee

p #£(0) iz maximal.

Examples: Z is a dedekind domain. A discrete valuation

ring 1s a dedekind domain,

Let us verify the equivalence of (i) and (ii): If
(11) holds, then it is clear that the local rings Ry
have only two prime ideals. By (B.10), they are integrally
closed, hence by (C.5) are dlscrete valuation rings. Con-
versely, if (1) holds, then every prime p # (0) 1is maxi-
mal, For, if (0) GPga, then the ring R, must contain
three prime ideals (E.C),'contradicting the assumption that

it 1s a dilscrete valuatlon ring. Again, R 1s integrally

closed by (B.10).
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Notice that because of (1) and (A.9), S™R 1s a
dedekind domain if R is. -

Let (JU# (0) be an ideal of R, Then (] 1is
contained in only finitely many prime 1deals of. R . For,
suppose the contrary. Let. é?‘ ‘be a maximal element among
the 1deals contained in infinitely many prime ideals, and
let {§? be the set of prime ideals-contéining o . I
claim (g is prime, which will contradict (1.(ii)), since
(O)%O“(;z:p for some pe():': If ab € (7 then ‘ab€p
for each p € (? . Since (P 1is infinite, elther a or
b 1s in infinitely many members of [/ , say a is. Then
the ideal (07 + (a) 1is in infinitely many primes, hence
is equal to (7 since (] was maximal. Thus a is in
(X which is therefore a prime ideal. This completes the

proof of our assertion.

For each prime p # (0) of R , we can express a
non-zero element a of R 1in the form (C.9) in the local
ring Rp . More generally, if a is any non-zero element
of the field of fractions K of R , we can express a
in the form (C.10) in R_. The exponent e i1s called the

p
order of zero of a at p (or, -e is called the order

of pole of a at p).
Because an element a # 0 of R is in only finitely

many prime ideals (by the above reasoning, with (7 = (a) ),
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"1t follows that a has only finitely many zeros. Since
any a € K is a fraction a = r/s of such elements, it
is also true that a non-zero element a & K has only

finitely many zeros and poles.
The main theorem of classlcal ideal theory i1s

Theorem 2: (unique factorization of ideals) Let R be

a dedekind domain. Any non-zero ideal (Ol of R 1is

(uniquely) expressible as a finite product of prime ideals

- e e e
= i . 1 n
A = i] Py~ = Py ... Dy . (eg >0)

proof: The term on the right 1s meant as the usual product
of ideals., Now (j? is contained in only finitely many
prime 1deals Pys...,D, (pi # (0)), PFor each 1, let

e, Dbe the minlmal order of zero of a at p, among all

elements a € Ol . Then
e
gl 1
Ol Py .
Hence we have the incluslons

e () piei 5 11 piej‘
1 1

among the three i1deals, and I claim these incluslons are

equalities:



6.19

This is of course a question which can be expressed in
terms of exact sequences (an inclusion A C B 1s an equality
iff. the sequence A —> B —> 0 .is exact).,

Hence we may apply the theory of (4.D). Proposition 3 of
(4.D) says that 1t suffices to show the inclusi?n maps among

the associated sheaves are eﬁualities, and this%is a ques-
tion of their stalks (4.B.5(ii) and 4.C)., By (4.3.6), the
stalk of M at a prime ideal q is the localized module
M_, and when you localize an ideal I C R » you get the

q

ideal Iq of R_ generated by the image of I . Thus we

q
have to show that for each q the ideals in Rq generated
by the three ideals in question are equal., This is really
easy from (C.11), and we leave the verification to the

reader,

Corollary 3: Every non-zero ideal ¥, of R 1s a locally

free R -module of rank 1 .

Apply (5.G.1) to reduce to the case of a discrete
valuation ring (or the field K). For such a ring, it is
clear from .(C.12), since a non-zero principal ideal in an
integral domain is free of rank 1 . in fact, it is clear
that an ideal (Ol of a ring R 1is a free R -module of
rank 1 4iff. (! can be generated by one element a

which is not a zero divisor in R .
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E. Fractional ideals.

Definition 1: Let R Dbe an integral domaln with field of

fractions K . A fractional ideal Cﬂ of R 1s an
R -submodule of K which is of finite type as an R -module,
i.e., an additive subgroup of K closed under multiplication

by @lements of R and finitely generated.

In particular, an ideal of R 1s a fractional ideal.
In general however, a fractional ideal will not be a subset
of R . Any element a& X generates a fractional ideal
(a) = éAral rE;R‘}.

Given two fractional ideals (!, %j we can define

thelr product

- - 1
E { '
(,?71‘6 = ) xe k| x :Zaib. for some 31607 5 bé?)j .

Let R be a dedekind domain, and p # (0) a prime

ideal. Define a fractional i1deal

p-—l :}aélilvaxé.ﬁ, all x & p((

This is clearly an R -module, To show it 1s of finite

type is a local problem (5.B.7). Therefore we may assume P
generated by one element x in R (D.3). Then a ¢ p—1
iff, a = b/x for some b € R , hence p-l is generated

by 1/x .
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It is clear how to define fractional ideals p = and

hence, setting p° = R, all powers of .p are defined.
They satisfy the usual rules of multiplication, which are
trivially verified since the problem is always local and is
obvious when p = (x) 1is generated by one element.

More generally, we have products of powers

€1
- int rs.
]J by ei intege

An element a £ 0 of K is in -T—Tpiei iff the order of
zero of a at pi is at least ey (ér order of pole is
at least -ei), and 1f the order of zero at ¢ 1s 2 0
for all other non-zero primes q , i.e., a & Rq for all

other q . This assertion 1s verified locally as for (D,2).

Theorem 2: Every non-zero fractional ideal (/ 1s uniquely

expressible as a product of prime powers

e e

e .
Al = li I Py = =8 Py 1. P, e e, # 0.

proof: Let a ..,gﬂé.Kﬁ be generators for (J! and for

1°°
each non-zero prime p of R define an integer

e = min %order of zero of a, at p}
v

Since each ay hés only finitely many zeros and péles,

e = 0 for all but a finite number of p , say DyseeesPy o
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Then I claim

N -TT p, %

1 1

and the verification is the same as that of (D.2).

Corollary 3: The non-zero fractional ideals form a group

D under multiplication, and the group is isomorphilec to

the direct sum of copiles of the add, group % of integers,

one copy for each non-zero prime p4€ Spec R @

v = ) s (0 # (0)) .

pC Spec R

The isomorphism i3 of course the one which assoclates to

Ol the exponent e in the pi—?h copy of % , in the

i
above situation. Sometimes an element D 1s wrltten

multiplicatively, as above, in (2), and sometimes additively

=

as e.p. = a linear comhination of primes wilth integer

1~

coefficients. D is also sometimes called the group of

divisors (whence the D).

it bt mran et e
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F. The ideal class group,

As in (D.3), we see that any non-zero fractional ideal

Ol of a dedekind domain R is a locally free R -module

of rank 1 . 1Indeed, this is reduced by (S;B.T) to a state-
ment ébout the fractional i1deal of a local ringE Rp s Which
1s a discrete valuation ring (or the field K),Eand it is
clear from (C.10) that every non-zero fractional ideal of
a discrete valuation ring is principal, and.generated by
sSome power % (possibly negative) of the generator for
the maximal ideal, hence is free of rank 1 .

The ideal (1 1is a free module iff. it 1s principal,
l.e., generated by one element a € K . Now, we can associate

with an element a # 0 of K the fractional ideal (a)

1t generates (cf. E.1) and hence get a map
(1) K¥ —> D

where K¥ = K -{'O? and D 1is the group of non-zero frac-
tional ideals (ef. E.3). 1If we write (a) =7—Tbiei by
(E.2), then it is clear from the discussion of (E) that ey
is Just the order of zero of a at p; . Therefore, (1)
is a homomorphism of the multiplicative group K*¥ to D .
Its kernel 1s the group of elements a € K* whiéh have no

zeros or poles, i.e., the grup of units R*¥ of R (why

is this so0?). Thus we have an exact sequence
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PN

o)
e ."
ro
I

(2) " 0 —» R¥ —> K¥ —> D

(compare with (¢.11)). The image of K* in D 1s the
subgroup of principal ideals, i.e., those which~are free
modules. The cokernel of K#* —3> D 1is called the ideal

class group:

(3) (ideal class group) = (fract. 1deals)/(principal ones) .

Proposition 4: The ideal class group 1s naturally lsomorphlc
to the group Hl(Xjﬁ*) of all localiy free rank 1 modules
(3.E.6), in particulér, every such module 1is isomorphic to

a Practional ideal. More precigely, (2) can be completed

to an exact sequence

0 > R¥ —> K# > D —-> H(X,E¢) -+ 0.

proof: The exact sequence 1is just an exact cohomology
sequence obtalned from the following exact sequence of

sheaves: Let B# Dbe defined as in (3.D.6). Define T
£o be the ”constént sheaf' whose value on any nonmempty.

Ucx 4s X»(U) = K* . This is clearly a sheaf. Finally,

joN
&)
L—j
=)
]
W
jay]
[4]
=
(U]
a5}
L]
(wi

by

™
,/Z

e

D(U) =

A

o]
m

where P runs over non-zero primes contained in U . When
V C U one gets the homomorphism P(u) —> D(V) by dropping

the summands 7% corresponding to those primes p 1in U
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but not in V . I leave to you.the easy verification that
this is a sheaf. Now we have a-naturai_inclusion .

Re(U) c ¥*(U) = K* for each U'#£ # , hence a map

B —3 B | Also, for any a € K#(U) = K* , we can assoclate
té a . iés orders of zero at thosé primes. p in U, and
thus get a map ¥*(U) —> D(U) . I claim that the sequence

(5) 0 —> R —> B — D — 0

is exact. To check this, note that the stalks at p € X

(p # (0)) are

B*) = R* : (%*) = . (D) =

-where Z represents that copy corresponding to the prime
P 1in the various neighborhoods U of p . Thus the exact-
ness is just (C.11). For the stalk at the point (0) , we

get

~

(ﬁf)(o) = Kf"= (R*)(O) H (D)(O) =0.

Having the exact sequence (5), the proposition will
follow from the exact cohomology sequence (4.C.3) once we

verify that
1 ~
(6) H (X,K*) = 0,
which is a consequence of the fact that ¥K* 1s a constant

sheaf; It is an easy and dull verification with cocycles,

which we omit.



18.732 Notes No. 7
STRUCTURE THEORY FOR MODULES OVER NOETHEhIAN RINGS

A._ Support of a module.
et R be a ring and X = Spec R .

Definition 1: Let M be an R -module. The support
of M , written supp M , is the set of polnts D ¢ X
such that the localized module Mp £ 0, i.e., such that

the stalk of the sheaf M at p 1s not zero.

Thus the support answers the crudest possible question
aboﬁf M . It is not without interest, however., One often
uses locutions of the type "M 1is zero outside of y" oif
v is a subset of X contalning supp M . Note that M= 0
iff., supp M = @ . Also, the support of a localized module

s 1y is obviously (supp M) N (Spec s"lR) (ef. 2.B).

Suppose that M 18 generated by one element m , and
let (Ol = (annihilator of M) = % r%ERI o= 0 } . Then
M  RAn as an R -module (via the map sending T AN T,

and I claim

(2) supp(R/C1) = V(CN) ,

(in particular, supp R = Spec R). In fact, V{(C¥) didenti-

fies naturally with the spectrum of the ring R/CK. (1.C.13),



iﬁ\

T.2

and one sees immediately that the stalk (R/Zﬂ)p is just
the local ring of R/(\ at'the prime (p/O1 p) of R/Oh
if O\ Ccp, and is zero otherwise.

One can also look at it this way: Suppose é mi}
generates M . Then the images of the me in Mpv generate
this ARp -module. This is clear. Thus M, £ 0 1iff some
m, 1is not zero at p . This last 1s true iff (3.A.4)

i
sm, #0 for all s€ R-p, il.e., iff ann(mi) Cp . Thus

3) supp M =
( | v
where Cﬁi = (annihilator of mi) .

Corollary 4: If M 1s of finite type, then supp M is

a closed subset of Spec R .

Proposition 5: (i) If {’Ni} C M is a family of submodules

= ={
and Z N; = M, then supp M &mj supp N, .

(11) If 00— A —>B — C —> 0 1is exact, then
(supp B) = (supp A) U (supp C) .
Both assertions are clear.

Example 6: Let A be a finite abelian group, i.e., a

finite Z -module. The support of A is the set of primes
p which divide the order of A . You should verify this.
Supp A 1is therefore a finite set of closed peints of

Spec Z .
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. The first structure theorem for finite abelian groups
asserts that an abelian group is isomorphic to a direct
product of its p -sylow subgroups, each‘having support at
only one point. There is an analogous result for modules
over an arbltrary ring R , but because the geometry of
Spec R is usually more complicated that that of Spec Z ,

the result 1s less powerful. It is closely related to

(1.E.1).

Theorem 7: Let M be an R -module. Suppose

C.,...,C_ C X = Spec R are disjoint closed subsets and that
1 n - I
supp M [\/} ¢y -
i

Then M is canonically isomorphic to a product

= i

of modules Mi with supp M, . C.

proof: Clearly, it suffilces to treat the case of two closed
subsets Cl,c2 . Construct the sheaf 7771 associated to

the module Ml , first locally, as follows: Let p € X be

any point.
case 1: p ¢ C; . Then p & X-C; . Choose an open nelghbor-

hood of p of the form X_ (s € R) contained 1n X-C,.
This exists by (2.B.5). Let the sheaf 1%51] X, be the

Zzeyo sheaf,
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ACase 2: pE Cl . Then p& X—02 . Choose an open neigh-
borhood of p of the form Xs contained in X-02 s and let
Zﬁilxs be the sheaf ﬁs assoqiated to the module MS )
/‘ ~ .
Thus 77,1X, = M[X, 1n this case.

I claim that if p,q are any two points, and tpe chosen
neighborhoods are XS,X,c resp., then the above definitions
give canonicall§ isomorphic sheaves when restricted to

X =X, NX If both p,q £ C; , then the sheaves

st t
defined are both zero., If both p,q 6:01 » they are
M!Xst = Mst . Finally, .if say pg/ Cl and q & C1 s then
the first sheaf is zero, and so we need to show the second
1s zero too. Note that by construction we have

XSt C x-(cl U 02) . Thus we are reduced to the following

Lemma 8: If X, (u € R) 1is an affine open which does not

meet C1 U 02 s then Mu =0 .

But (supp Mu) = (supp M) N Xﬁ =g, so M, = O as desired.

It is clear that the above isomorphisms satisfy the
compatibllity conditions (3.C) so as to give gluing data
for a sheaf AZG_ . The sheaf so constructed 1s locally
quasi-coherent, hence quasi-coherent (3.B.6), and so

ZVI . ﬁl where My = ZZE(X) . The module M, 1s obtained

similarly.



R,

7.5

To give a map M —> M it sufflces to do so locally

i E
(subject to the usual compatibility). Locally, a map 1s
evidently glven by the above construction. Hence we obtain

a map

To show that it is an isomorphism, is again a local problem,

and is also clear from the construction - locally, one of

ﬁi will be zero, and the other will be isomorphic to M.

B. - Associated primes.

If one wants to.get more detailed 1nformatlon about
R -modules M , it is reasonable to regard modules of the
form R/p (p a prime ideal) as lknown'". They are just
free rank one modules, but "over a different ring', which
is in fact an integral domain., A good question to ask about
a module M 1s for which p the module contains a sub-
module lgsomorphic to R/p . (It is not very informative

to know that M contains a quotient module isomorphic to

R/p.)

Definition 1: A prime p € Spec R 1s an assoclated prime

of M if M econtains a submodule isomorphic to R/p

This is clearly the éase iff there is an element

m€ M whose annihilator is the ideal p (m corresponds
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to the residue of 1 in the submodule R/p .)
The set of all assoclated primes is denoted by

ass M .~

Here 1s a result which shows that the notion is a

good one: &

Proposition 2: (Let R be a noetherian ring. If a module

-

M is not zero, then ass M %\¢ .

proof: Let S be the set of ideals different from R
which are annihilators of elements of M , and let (1 be
a maximal element of S (6,4.3). I claim O] 1is prime,
which will prove the proposition. Say O = (annihilator
of m) . If ab & O7 but b €01, then bm £ O .
Clearly any element of (Ol annihilates bm . Hence
(annihilator of bm) > (1 , thus is equal to (3! because
was a maximal element of S8 and 1 (annihilator of bm).

But a annihilates bm . Therefore a &€ (! , which com-

pletes the proof,

Elementary properties:

(3) The annihilator of any non-zero element of R/p is

P , whence any non-zero submodule M C R/p has p as its

only associated prime.

(4) If NCM, then (ass N) C (ass M) .
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() If O0~> A —>B—>C—> 0 1is exact, then
(ass B) C (ass A) U (ass C)

(equality does not usually hold), For, let M C B be a
submodule lsomorphic to R/p . If M N A =0, then M

1s isomorphic to its image in C =B/A . If M N A £ 0,
then A contains a non-zero submodule of M , which has

p as assoclated prime by (3).

(6) ass(h @ ¢) = (ass A) U (ass C) .

Apply (5) and (6).

The fcllowlng result may be considered the second

structure theorem for modules over noetherian ringa:

Proposition 7: Let R be a noetherian ring and M an

R -module of finlte type. There exlsts a chain of gubmodules

\

O=MO - Ml C ... C Mn=M

such that for each 1 , the module Mi/Mi~l is isomorphic

to R/pi for a suitable prime p; of R .

This proposition is reminiscent of the Jordan-H8lder
theorem, for groups, but unfortunately there is no possibility
of asserting unigueness of tThe factors Mi/Mi—l . For
instance, the abelian group % has the decomposition given

by the submodules O CZ , which yields one factor Z , and
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also has the decomposition given by the submodules

0C quz CQpZ CpZCZ , which has factors isomorphic

respectively to Z , %Z/p , Z/a°, Z/p .

‘The proof is a standard noetherian argument: Consider
the family S of submodules of M for which the theorem
is true, and let N Dbe a maximal one (6.A.3), so that we

have a chain of submodules - .

O=NO - Nl cC ... C Nr=N , ete...

If N # M, then M/N has an associated prime by (2),
hence a submodule N' isomorphic to R/p for some P .
This submodule corresponds toia submodule N' of M con-
taining N, and N'/N ® R/p . Hence the sequence of sub-

modules

— 1
O—NO - N1 c... C Nr CN

shows that the theorem is true for N' , which contradicts

the maximality of N . Thus N =M,

Corollary 8: If R is noetherian and M 1s of finite

type, then ass M 1is a finite set of primes.

This follows from (6) by induction on the length of

the chain Mo cC ... C Mn . PFor, we have the exact sequence

0 —> M _ — M, —> R/p, —> 03

1

and ass(R/pn) = {ph} .
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C. Relation with the support.

We suppose throughout this section that R 1s a
noetherian ring.

By (A.2) and (A.5(41)), it is clear that every
assgoclated prime of M 1s in the suppert of M (this doesn't

depaend on the noetherian hypothesis):
(1) ass M C suppM .

However, they are not usually the same. If M 1s of finite

A

type, then supp M 4is closed. Hence (1.F) 1f p ¢ supp M,
and q 1s aﬁy prime containing p , aiso g € supp M .
Therefore supp M will 1n general have to be infinite,
while by (B.8), ass M is finite. However, the closure

of ass M d1s 8ll of supp M :

Preposition 2: The minimal primes of ass M and of

supp M are the same.

By a minimal prime of a subset S C X = Spec R , we
mean of coursé a prime which contains no other primes of
S . Recall (1.F) that the closure of a prime p in X
is the irreducible cloged set consisting of all primes ¢
which contain p . Thus if S is a closed set, then the
minimal primes of S are the generic polnts of the irredu-

cible components of S (which are finite in number by
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(6.4.10); 1in particular, a non-empty closed S contains

some minimal primes:

(minimal primes) <—> (largest closure) .

Hence proposition 2 is just the assertion that the closure

of ass M is supp M , when M“is of finite type.

Proof of (2): It is a slight refinement of the proof of
(B.2): Let q be in supp M , so that Mq # 0 . What
we need to do is to find an associated prime p which is
contained in q . Let S be the set of annihilators

(Ol of elements m such that (J7 Cq . This is the same
as saying that m #£ 0 in Mq , by (3.4.4). Since Mq £ 0,
the set is non-empty. Let (¢ = (annih. of m) be maximal
in S . It suffices to show that (X is prime:

Say ab € Ol ., If bm#£ O in My the (annih. of

bm) contains (U and a , hence is equal to (! since

Ot was maximal: fhus a ¢ O] . If on the other hand
bm = 0 in Mq , then (3.2.4) there is an element c¢ € q
such that c¢bm =0 in M, But ¢ 1s a unit in Mq s
hence cm # 0 in Mq . Since (annih. of cm) contains

Ol and b, and ] was meximal, b € O/ . This

completes the proof. .
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Proposition 3: Let M be an R -module.

(1) An element r € R is in no associated prime iff,

r annihilates no non-zero element m € M,
(ii) An element r € R 1s in every associated prime
iff it is in every prime of supp M iff every m ¢ M

is annihilated by some power of I .

Proof: (i). Clearly, r cannot be in an assoclated prime
of M unless rm =0 for some m# 0 . Conversely, if
mm = 0 , then r annihilates every element of the sub-’
module Rm of M generated by m , hence 1s in any

agsociated prime of Rm .

(ii) Tt follows from (2) that r is in every assoclated
prime iff. r 1s in every prime of supp M . Moreover,

if a prime p = (aanih., of m), and 1f some power of I
annihilates m , then r € p . Hence 1r 1is in every
associated prime if every element of M 1is annihilated

by a power of 1 . Conversely, suppose T is in every
prime of supp M , and let m e M, Ve want to show that
m o= 0 for some n , and by (A.5(ii)), we may replace M
by the submc&ule Rm generated by m , which is isomorphic
to BR/O7 . (¢{ = (annih, of m)). Then R operates through
the guotient ring R/07 , and one reduces easily, using
(1.C.13), to the case that R = R/O7 , l.e., that M is
the ring R itself, viewed as an R -module, Now supp R =
Spee R (A.2). Thus the assertion is that if r 1s in
every prime ideal then rn-l =.O for some n , i.€.,, T

is nilpotent., This is (1.D.2).
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Corollary 4: An R -module M has p as its only

assoclated prime iff.
(1) For r%p , ho non-zero .m& M is annihilated by

r , and

(11) Por rC p, every mE M is annihilated by some

bower of =»r .

D. Primary decomposition.

The ring R is assumed noetherian throughout.

Definition 1: A module M 1s p -coprimary (p a prime of

R) iff

asg M = 5 P ]
15
A submodule QC M is p - primary iff M/Q is p -coprimary.

When dealing with p -coprimary modules, we can use

the result (C.4). Note that by (B.3)
(2) a non-zero submodule of a coprimary module is coprimary.

Remark: In this context, the notion of coprimary module
seems the more natural one, Historically, the concept

of primary ideal (= primary submodule of R) was first

developed. An ideal I CR is p -primary if R/I is

P -coprimary. This means that
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(3) An ideal I 1is p-primary iff.
(1) rx eI and r £p=>x¢e I, and

(ii) the radical (rad I) of I 1is p .

This is just a restatement of (C.4), applied to the
module R/I
An ideal I is p-primary for some prime ideal p

iff
(%) ab eI and a £I => b® eI for some n .

In fact, if (4) holds, then (rad I) = p is a prime ideal

since

ab € D => a™™ ¢ I for some m s

mn .
e I for some n , i.e.;

hence by (4) , a™ eI or b
a or b is in p . Moreover, (4) is clearly equivalent
to (3)(i). Each asserts

ab eI => ael or bep.

Here is the main result on coprimary modules:

Theorem 5: A finitely generated module M 1is igsomorphic
to a submodule of a finite product of coprimary modules, i.e.,

there is an injective map

M—> { i Ni with each Ni coprimary
i
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Example 7: A finitely generated coprimary abelian group

is either
(a) a torsion free abellan group ((C)-coprimary)
or

(b) a finite group of p -power order ((p)-coprimary) .

Thus any flnitely generated. abelian group A is iso-
morphic to a direct product of coprimary.Ones, and the
structure theory continues, to classify these as direct
sums of cyclic groups. For finite groups,‘(6) is just a
weak version of (A.7). '

It is not true, however, that a module is isomorphic
To a direct sum of coprimary ones when the geometry of
Spec R 1s more complicated, The simplest type of prob-
lem which arises is caused by an intersection of irreducible
closed sets corresponding to two associated primes:

Let R = k(x,y] (cf. 1.G.6), and M = R/(xy) . The
support of M 1s the union of the two loeci V(x) U V(y)

(the y and x axes). One has an injectlon

M > (B/(x))x(R/(y))

which 1s not surjective. The elements of M satisfy

an extra condition at the point (0,0) (ef. Ex. 1, No. 5).

Variants: Stated in terms of primary submodules of M , (6)

reads
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(8) Every finitely generated module M contains a finite

set Ql,...,Qn of primary submodules with

Mo, -o .
i

For, if (8) holds, put N, = M/Q, . Then M —> I !Ni

is Injective because the intersection of the Qi is zero,
Conversely, 1f M ——>7trNi is injective, let Qi be the
kernel of the map M ——> N, . We may omlt those factors
N, for which Q =M (1.e., M — N, 1s the zero map).
Then M/Qi is a submodule of N, hence is coprimary (2).
Let R be a ring and I an ideal of R . Then (8)

applied to R/I asserts

(9) Every proper ideal I of R is an intersection of

finitely many primary l1ldeals.
That 1s the c¢lassical assertion.

proof of 6: The argument 1s a particularly elegant example
of the use of noetherian induction: For varying submodules,
M' C M, we try to prove (6) for the quotient module M/M' .
We wlll be interegted in the case M' = 0 . Let S be the
set of submodules M' such that (5) is false for M/M!

We want to show S empty. Suppose not. Then there 1ls a
maximal element, M' . Thus (5) is false for M/M' but

is true for M/N if N is larger than M' ., We may replace
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M by M/M' and M!' by O, i.e., we are reduced to the
case that (5) is false for M , but true for M/N whenever

N # 0. 1In the form of assertion (8), this says that there

exists no finlte set of primary submodules Qi of M with

' intersection O , but for any submodule N # O , there

\
exists a set with intersection N . To show the impossibility

of this, it clearly suffices to find any two noﬁ-zero sub-~

modules A,B of M such that AN B=0. Now M 1s not
1ltself coprimary, 6r we are done. Hence M has at least
two associated primes p, q . Let A,B Dbe submodules
isomorphic to R/p , R/d respectively., Then AN B =20,
For, 1f m# O is in A N B, then (annih. of m) =p = q
by (B.3), a contradiction. This completes the proof.

Notice how the proof makes use of the existence of

submodules isomorphic to R/p to conclude the existence

of certain quotient modules.

E. Questions of uniqueness.

We assume R noetherian and M of finite type.
Let M C—>TTNi be a submodule of a product of coprimary

modules N, (i =1,...,n) as in (D.6), and let p, De

i
the prime ideal associated to N, . We may be able to sim-
plify the expression slightly: First of all, if pi = pj
for two lndices, then Ni.x Nj is again Py ~-coprimary

(B.6). Therefore we can shorten the product. Also, we
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can replace Nj by the image of the map M —> Nj 1f that
is smaller, and we can eliminate any Nj 1f the 1image is
zZero.

For the primery submodules Q; as in (D.8), this
amounts to replacing Qi’Qj by Qi n Qj if both are

primary for the same p , and leaving out a @ if

J
M Q = 0.
1#£]

When this is done, the primary decomposition 1s saild

to be reduced,

l\

Proposition 1: The set of primes {pif assoclated to
P

the members gQi} of a reduced primary decomposition

is ass M .

proof: It is clear from (B.%4) that ass WM Q.Spi? , because
591} = ass (] M/Qi) by (B.6). Conversely, to show Py »
say, 1 an associated prime, consider the submodule

N = g:z Qi . We have N ¥ 0 since the decomposition 1is

reduced. Clearly N 1is isomorphic to a non-zero submodule

of IVI/Q:.L , hence (B.3) ass N = gpi% C ass M .

Proposition 1 shows that the primes associated to a
reduced primary decomposition are uniquely determined; it
is unfortunately not true that the submcdules Qi (resp.

s

the quotients M/Qi) are unique:
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Example 2: Let M Dbe the abelian group Z @ Z/2 . Put

Q] = (2z)e(0) , Q4 = (0)ez/2 .

Then Qi n Qé = 0 . But the natural choice is

Q =% e (0), Q, = (0) & z/2.

However, the minimal primes of ass M correspond to
uniquely determined primary submodules Qi . It i1s only
for the non-minimal ones that a problem may arise. Let
Ci be the irreducible closed subset of X = Spec R cor-
responding to pi , then for a prime pi which is not mini-
mal, Ci 18 contained in some other CJ . Such a Ci is
called an embedded component of supp M , and it is these

that give the trouble.

Proposition 3: Let p1 be a minimal prime of ass M .

Then the submodule Ql associated to Py in a reduced

primary decomposition is uniquely determined.

proof: Since P4 is a minimal prime, 1t contalns no other

Py » hence p, ? i;& Py (1.C.8). . Thus there is an element

a which is in p, for. 1 > 1 but not in p, ; put
RS | 1

Kn= imf m J%==O? .

Then Kn is an increasing sequence of submodules of M ,
which becomes constant for large n . Let K be this con-
stant value. I claim K = Q - This will show that Q

is unique.
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Now the map

is injectlve, since
(anQE) n...n (anQn) = 0 .

Therefore ass Ql C {pz,...,;§¥?. Since a 41is in each of

these primes, and Q; 1s finltely generated (6.A.1), some

power a” of a annihilates Q, (C.3(11)). Consider the
diagram

K K K"

n n n

0 —> Qi — M M/Q1 —> 0

\L b ‘@L

0 — Q —-—>-M——->M/Q1m>~o

where the vertical arrows are multiplication by 2" R

(1.e., zw~pa® x). Since a ¢ Py multiplication by a
is injective in M/Q1 (¢.3(1)), whence the kernel K" is
zero. DBy assumption, the map Ql —— Q1 is zero, hence

Kt = Ql . By left exactness of kernel, the sequence

0 > Ql > K > 0

1s exact, which proves the assertion.
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THECRY OF POLYNOMIAL RINGS

In this part, we study finitely generated rings R over
a field k , i.e., ones which are generated as a k-algebra
by finitely many elements, or, equivalently, are qyotients
of a polynomial ring in finitely many variables ovér k .

The notation 'k[xl,...,xn] will stand for an algebra
which is generated by some elements xl,...,xg over k . Ve
do not assume, unless we so state, that the xi's are '"inde-

pendent'", i.e., that the ring is the polynomial ring in var-

lables XpseersXy o In general, it will be a quotient of the

polynomigl ring.

A, The Hilbert basls theorem.

It is

Theorem 1: A finitely generated (commutative) algebra A

over a noetherian ring R 1s noetherian. In other words,
if A 1s a quotient of a polynomial ring R[xl,...,xn] over

R, and if R 1s noetherian, then A 1s, too.

Proof: By (6.A.7) , a quotient of a noetherian ring is
noetherian. Hence it suffices to treat the case of a poly-
nomial ring. Since R[x;,...,x, ] = R{xl,...,xn_l][xn] i

it suffices by induction to treat the case n =1, il.e.,

A = R[x] .

Let I be an ideal of R[x] , and consider the leading

coefficients of polynomlals of I . .(a1 is the leading



£

coefficlent of

_ i
£x) = a;x" + ...+ a;X + ag a, e R ,)

Let Cﬂi be the set of leading coefficlents ay of polynom-
ials of I of degree i . It is immedlately seen that Cni
is an ideal in R , and that

o clic....

Since R 1s noetherian, thils sequence of 1ldeals becomes con-

stant, say an= Ozn+l = aeee s

Let g'aiij be a finite set of generators for Cﬁi s

i<n, and let fij be a polynomial in I of degree 1

with leading coefficient aij . Then I claim that I 1s
enerated by the set ff

& 7 SRS

Let g e I , say
g(x) = b X + ... + DbyX + by .

i

Case 1: m > n . Since Cﬂn = <Z7m , the leading coefficient

Then

_ Jmen
h = x (.§ rjfnj)

is of degree m and has leading coefficient b, . Hence

g-h has lower degree.
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Case 2: mS<n . Then b_ is in Cﬂnl, hence

m
b =2 r.a_. . R :
e ; rJ mj rJ € 5
and so
h=2%2r.1
j Jj mJ

is of degree m and has leading coefficient bm . Again
g-h has lower degree.

Proceed by induction.

B. Cohen-Seldenberg.

This theorem 1s an important application of the Nakayama

Lemma (5.F.1):

Theorem 1: Let R be a ring and let R T A be a finitely

generated integral ring extension. Then the map

Spec A —> Spec R 1is surjectilve.

(Note that we assume the map f: R —> A injective.)

Proof: Recall (1.C.10) that the map Spec A —> Spec R
carries a prime ideal P of A to f'l(P) , which in this

case is just P N R . Thus the assertion of the theorem is:

(2) Let p be a prime of R . There 1s a prime P of A

such that PN R =p .

Consider first the case that R 1s a local ring and
that p = A4 is its maximal 1deal. Since A 1s finitely

generated and integral, it is an R-module of finite type
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(6.B.3). Thus we may apply the Nakeyama lemma (5.F.1) ,
and we conclude that

MDA £ A

In thils situation, 4 A =§Zmiailmi e A{{ and a; € A} is
just the ideal of A generated by A4 . Therefore this

ideal is contained in a maximal ideal M , and we have

A CcMNRCR.

Since 1 £ M, it follows that M N R # R . Hence #4/ =M N R,

which is what was to be proved.

Now to treat the general case, consider the dilagram

of rings
R > R
F p
U
A > A
p

where Ap is the ring obtained by localizing A with respect
to R-p (it is the stalk of the sheaf of R-modules A at
p ). Clearly, A, 1s a finite lntegral extension of R ..
Thus if we let M = p R, ‘be the maximal ideal of R, , we
can apply the above reasoning to conclude that there is a
maximal ideal M of A, such that M0 R, = AU . Let P
be its inverse image in A . Then P N R = (inv. im. of - M
in R) = (inv. im. of M 15 R) = p (pby (2.B.2) , for

instance). Thus P is the required prime of A .
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To understand the geometric nature of integral extensions

one should combine (1) with the following observation:

Proposition 2: Let f: R—> A be a finltely generated

integral extension. Then the map Spec A —> Spec R 18

finite-to-one.

Proof: Let p e Spec R , and let { Pi} be the set of primes
of A whose image f—l(Pi) in Spec R 1s p . Then no
image in A of an element 8 & R-p 1lies in any Pi . Hence

(2.B.2) the P, generate distinct prime ideals 1n A and

p
they lie over the maximal ideal of Rp'. Thus 1t suffices
to treat the case R 1locel and p = AY 1ts maximal ideal.
Now for any prime P of A such that P N R = #/ -,-we

have #/ A c P . Hence (1.C.13) P corresponds to a prime

ideal of A/ A4 A , which is a finite dimensional vector space

“over k = R/44/ , and thus has only finitely many prime

ideals.

For reference, we also include the following two

propositions:

Proposition 4: Let R be an integral domain with field of

fractions XK and let o be an element of an extension field

L/K which 1s algebraic over K .

(1) There is a non-zero element r é R such that ro

is integral over R .
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(11) -If R 1is integrally closed, and if - o 1s integral
over R , then the irreducible monic equaﬁion for a over K

has 1ts coefficients in R .
Proof: (i) Let

b'd + eee o clx + CO =0 ci e K

be the irreducible monic equation for o over K . Clearing

denomlnators, we get an equation for & of the form

n n-1 .
a F + a, X +oens +agX + ag = 0 a; ¢ R .
The element ana therefore satlsfies the equation
" + (a_ ,a )xn"l + +ev + (a2 n-Lyy 4 (2.2 f) = 0
o n-1"n 1™n 0'n ’

and hence is integral over R .

(i1) Each of the conjugates Q,...,a, of a ina
splitting field is also integral, since it satisfies the same
equation. By (7) , the symmetric functlons in o, are also
integral, and they are in K , hence in R . Since the coef-

ficients of the irreducible equation for « over K are

symmetric functions, this equation has coefficients in R .

Proposition 5: A unique factorization domain is integrally

closed.

Proof: Let 2z ¢ K bé an element which is integral over R ,
and write =z = x/y where X,y € R are elements with greatest

common divisor 1 . Write the monlc equation
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in the form

(x/7)" = b/y"7t b e R

by putting the terms of degree < n in 2z on the other side,
We get
' _ x/y =b e R,

n

hence y divides x . Since ged(x,y) =1 , 1t follows

It

|
!

f vthat y 1is a unit, i.e., 2z ¢ R .

9; The Noether normalization théorem.

When combined with (B.1) , this is a powerful tool:

Theorem 1: Let R be a finiltely generated integral domain

over a field k , and suppose that the transcendence degree
of R/%x (= tr. deg. K/k , if K is the field of fractions
of .P) 18 8 . There is a set of elements }yl,...,ysk CR
(nécessarily algebralcally independent over k) such that R

is a finite integral extension of the subring k[yl,...,ys]

Proof: (Nagata). Say R 1is generated by_{ xl,...,xn},
el R = k[xl,...,xn] . If the elements xi are algebraically
independent, there is nothing to prove. Suppose not. Then

there 1s a non-trivial relatlon among them, of the form

(2y = a(j)x(j) = = ajl;'.jn Xq see X = 0
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wlth coefficients a(j) in k . Put

Yy = %1 7 %

(3) Xy =y + X 1 , i=2,...,n.

Then R = klxy,...,x ] = kly,¥,,..,,¥,] . Substituting (3)
into (2) . The result is

yl ) J m_J
N BT A T
One sees by expandiné a term of this out, that the highest

power of Xq occuring is of the type

(jl+m232+;.'+mnjn)
a(j) Xl .

Therefore, 1f m,,...,m, are carefully chosen (so that the
coefficients a(j) don't cancel out), then (4) is a poly-
nomial in x

1 With coefficients in k[yz,...,y ] whose high-

n
est coefficient is constant, whence xl' is integral over
k[y2,...,yn]\. Since integral dependence is transitive
(6.B.6) , we'are reduced to proving the theorem for

k[yg,...,yn] , hénce are through by induction on n .

D. The Hilbert Nullstellensatz.

We will state various closely related forms of this

fundamental result:
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Theorem 1: (Zariski's form). If a finitely generated exten-

sion k[xl,...,xn] is a field K ,.then all the x, are

algebraic over k .
0f course, the converse is also true, and is elementary.

Example 2: The field of rational functions k(x) in one
variable over k  1is not finitely generated as-a k-algebra.
You need to adjoin to k[x] the infinitely many inverses

1/p(x) , p(x) an irreducible polynomial.

Proof of (1): A polynomial ring in at least one variable is
not a field (convince yourself as you like). Thus 1t contains
a prime ideal other than (0) , and so by (B.1l) , an integral
extension has more than one prime ideal, and so i1s not a

field. Thus 1t follows from the Noether normalization theorem
that if k[xl,...,xn] is a field K , then tr. deg. XK/k = 0 ,-

which is what was to be proved.

Theorem 2: Let R = k[xl,...,xn] be a non-zero finitely

generated algebra over k . There is a k-homomorphism
f: R —> k
where k 1is the algebraic closure of k .

Proof: Let A%/ be a maximal ideal of R . The map R —> R/
is a k-homomorphism, if R/#¥ 1s given the obvious struc-
ture of k-algebra, and R/// is generated by the residues

of X PP hence is finitely generated. Thus 1t suffices

10
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to prove the theorem for the fileld R/4@7 , 1.e., in the case
R is a field. Then by (1) , R 1is an algebralc extension

of k , which can indeed be embedded in k .

Theorem 3: Let X = Spec R, where R 1s a finitely generated

algebra over k , and let CC X be a closed set. Then the

closed points of C are dense in C .

Proof: Let R’ = R/J(C) . Then C = Spec B (1.C.13) .
Since R 1is again finitely generated, we may as well assume
C=X.

Suppose the points are not dense, and let Y ? X Dbe
their closure. Since VY = v(<2(Y)) (1.D.3) , it is lmmed-

iately seen that there 1is an element s € R such that

X ? v(a) DY .

Then Spec Rg = X-V(s) # # , hence Ry = R[1/s] # O , and so
R, has a maximal ideal #4 . But the ring R, 1s again
finitely generated over k , and so RS/ZWZ is a finite
algebralc extension of k , by (1) . Therefore, the image
of R 1is RSAaﬂ is a field (being an integral domain and a
finite k-module), which implies that the prime ideal A n R

of R 1is a maximal ideal of R corresponding to a closed

point of X-V(s) C X-Y , a contradiction.

Theorem 4: (the classical form). Let Ol be an ideal of the

polynomial ring k[xi,...{xn] , and let f € k[xl,,..,xn] .

If V(f) contains every closed point of v(Q7) , i.e., if
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/

£ e M{ for every maximal ideal 4Z7 containing (77 s then

% ¢ (7 for some n .

Proof: Since V(f) is closed, and the closed points of V(UJ?7)
are dense by (3) , we have V(f) D V() . Hence by (1.D.3) ,
rad (f) € rad ((7) , i.e., % (0 for some n

\

E. Geometric points..

Fix a field k . Let R be an algebra generated over

k Dby elements xp,...,x% and let #M{ be a maximal ideal of

n ’
R . Since R/# =K is a finitely generated field over k ,
(D.1) asserts that it is algebraic, i.e., a finite field ex-
tension of k . Thus it can be embedded in an algebraic

closure k of k , which, as we saw (D.2) , yields a

k-homomorphism f: R —> k .

Choose such an embedding of K 1in k , and let

Apseeesy be the images of the generators Xy These
images determine £ since the Xy generate R . Conversely,
any choice of elements Byseees@y e kK gives rise to a homo-

morphism f: R —> k by substitution of a; for x; , if

R = k{xy,...,x ] 1is the polynomial ring.

Now in general, R = k{x],...,xn]/I where I 1s some
finitely generated (8.4.1) ideal, say
(1) s SPIS J k[xl,.,.,xn]

generate I , so that (1.C.13) Spec R identifies with the
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variety V(I) = v(fq) n...n v(f,) in "affine space’

Spec k[xl,...,xn] . Then it is clear from the universal
‘ s )

property of quotient rings that the substitutions g Xy = aif

give a homomorphism R —> k if and only if

i.e., if and only if (al,...,an) is a solution of the “

equations fl = eee = fr =0 .,

Such a homomorphism f: R —> k (equivalently, such an

“n-tuple (al,...,an)) will be called a geometric point of

Spec R , or a polnt with values in %k . This last phrase \

expresses the fact that the n-tuple (al,...,an) is what we
think of as an ordinary point of n-space, but 1t has cuordi-
nates in the fleld % . One introduces similarly the notion
of point with values in any fleld extension L/k , meaning an /

n-tuple (al,..x,an) with a, e L , and sstisfying (2) .

Ir (al,...,an) has coordinates a; & k , then it is |
clear that the homomorphism f: R —> k 1is obtained by divid-
ing R by the ideal generated by the elemeﬁts ' |

k
(3) \ X, -a X_-a a, € k
1781 s *p78y 1
of R . Thus the elements (3) generate ## , in the above
situation, and the residue field 1s K =k . It is called a

rational‘point = point with values in k . These points are |

the familiar ones. If for instance k 1is algebraically closed,
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so that k = K = k , then every geometric point is rationeal,

hence

(4) 1If x is algebraically closed, every maximal ldeal
of R is of the familiar type, i.e., generated by some
linear functions (3) . The maximal ideals and the geometric

points are thus in one-to-one correspondence in this case.

However, when k 1s not algebraically cosed, there is
not a one-one correspondence between geometric points of

Spec R and maximal ideals, i.e., closed points of Spec R

Of course, a geometric point f: R —> k gives a maximal
ideal; it is the image of Spec kK —> R, i.e., the kernel
of f . But to obtain the map f: R —> k from a maximal
ideal A4 , we have to embed R/4#% = K in the algebraic
closure Xk , and the number of ways this can be done is the

~separable degree of K over k :

(5) - Given a maximal ideal A4 of R , there are [K:k]S

distinct geometric points whose image is 4% e Spec R , where
E = R/
This is somewhat confusing at first, and you should

think it through.

Example 6: Let k =R Dbe the fleld of real numbers, and

R = k[x] . The two geometric points x =1, x = -1

(= points with values in &) form a "pair of conjugate points'.

They correspond to the same maximal ideal of Rix] , namély
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to the kernel of the map f: R[x] —> T sending =x~> i

(resp. x~~ -i) . The kernel is-generated by the polynomial

x° 4+ 1

E; Dimension theory.

There are two reasonable definitions of dimenslon for a
finitely generated algebra over a field k , and it turns out

that they are equivalent.

Definition 1: ILet X be a topological space. Its Krull

dimensilon is the length n of the longest chain
C - C
(8#) Gy 7 Cp 7 7 Cp (cx)

of irreducible closed subsets (1.F) of X, or is o 1if
there 18 no maximal length. Note that the chain starts with

Cq - Similarly, the Krull dimenson of a ring R 1s the

length n of the longest chain
2 D D
(R#£) PoZP1 7 " ZPn (2(0))

of prime 1deals of R , or is « 1f there is no maximal

length.

Thus by (1.5.2) , Krull dim(R) = Krull dim(Spec R) .

/

This notlon of dimenslon 1s reasonable only for the kind
of topological spaces which arise as spectra. It has no con-

nection with the usual notion of dimension of a 'nice" space.
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Examples 2: A field, or more generally a ring with dcc ,

has Krull dimension zero. Thus in (1.G) , examples 2, 3
have Krull dimension zero. Numbers &4, 5, 7 have Krull

dimension 1 . We shall see that 6 has Krull dimension 2 .
By (ex. 1, No. %) , the ring k[x,y]/(yz-x3) has also dim-

ension 1
A restatement of (6.D.1(1i)) 1is

Corollary 3: A dedekind domain 1s an integrally closed

noetherian domain of Krull dimension 1

Recall (6.A.10(ii1)) that any closed subset
Y C X = Spec R (R noetherian) is a finite union of irreducible
élosed subsets Y = C1 u... U Cn . If we leave out those
Ci which are contained in some other CJ,, then it is

easily seen that the remaining C's are uniquely determined.

They are called the irreducible components of Y . Let Py

be the prime ideal corresponding to Cj (1L.F.2) . Then the

p, are just the minimal primes containing xQ(Y) , i.e.,
(1.D.2) ,

H(¥) = np,

When Y = X , the components are the irreducible components

of Spec R , and they correspond to the (finite set of ) mini-
mal prime ideals of R . Clearly, the Krull dimension of

Spec R 1s the maximum of the Krull dimensions of the irreduc;

ible components of Spec R .
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For finitely generated algebras R over a fleld k ,
there i1s another candidate for diménsion: If R 1s an integral
domain, we can take its transcedence degree over k
(= tr. deg. K/k , K the fleld of fractions of R) . The
Nullstellensatz (D.l) says that this agrees with the Krull
dimension when either.of the two 1s zero. More generally, for
any R finitely generated over k , we can take the maximum
value of tr. deg. (R/p) over k for the minimal primes p
of R (which correspond by the above discussion to the irre-

ducible components of Spec R:)., ILet us call this number
(%) | td(R) .

To begin with, note that td d1is not a very sensitive

notion:

Proposition 5: Let R be a finitely generated algebra over

k L |

bl

(1) td(R) = td(R/N) , where N is thkenilradical (1.D) 'of

R, 1.e., the intersection of the minimal primes of R . '
(11) td(R) 2 td(R/I) for any ideal I of R .

(i11) 1If Iy5.-+,I, are tdeals of R with intersection
zero, then . ,

 td(R) = nax 5td(R/Iv)g i

(iv) td(R) = td(RS) if s 1s an element of R which is /

not in any minimal prime ideal.
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(v) td(R) = td(R') 1f R C-R' 1is a finite integral extension.
Proof: (i) 4is trivial,.

(11). If § is a minimal prime of R/I , then the cor-
responding prime q of R 1is contained in some minimal one
P . One sees immediately that therefore 1t 1s enough to prove
the inequality when R , R/I are replaced by- R/p , R/q
respectively. Thus wé may assume both are integral domains.
Now ir KyseeesX, € R/p have algebraically independent resi-
dues in R/q , then they are certainly themselves algebraically
independent. We can find algebraically independent elements
Ei,...,ih e R/I , where n = td(R/I) (you just choose them

in the fraction field and clear denominators), and they have

representatives in R . Hence +td(R) 2 td(R/I) .

(1ii). For, any minimal prime p of R contalns one
of the I (1.B.7) and thus corresponds to a minimal prime of
R/I . Hence td(R) £ max {td(R/IV)} . The other inequality

follows from (ii) .

(iv). By (2.B.2) , each minimal prime p generates
a prime ideal of R_ , and clearly (R/p)_S~ = RS/pRS , if 8
is the residue of s (mod p) (cf. proof of (2.B.2)). Thus
Wwe are reduced by the definition to the case R = R/p LEERCY:
R an integral domain, and s # O . But in this case, the

definition depends only on the field of fractlons hence we are

done.
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(v). By (i) , we may replace R by R/N and R' by
R'/N' (N' = nilradical of R'). It is immediately seen that
the map R —> R' remains injective. Let pi,...,p; be the
minimal primes of R' , and py = pi N R . Then since R'
has no nilradical, npi = (0) (1.D) , and so also Npy = (o) .
Applying (1i1) , we see that it suffices to show that
td(R/pi) = td(R'/pi) for each 1 . Thus we are reduced to
the case that R and R' are integral domains. In this case,
the field of fractions K' 1s algebraic over the fleld of
fractions K of R, hence tr. deg. K'/k = tr. deg. K/k as
desired.

The maln result is the following, obviously fundamental,
fact:

Theorem 6: Let R be a finitely generated integral domain

over k , with td(R) =n . Let f # O be a non-unit of R .

Then td(R/(f)) = n-1 . More precisely, for every minimal

prime p of R = R/(f) , td(R/p) = n-1.

~ Proof: This arrangement is taken from Lang's Intr. to Alg.

feom., and is due to Tate:

We treat first the essentially obvious case R = k[yl,...,yn]
of a polynomial ring. Any prime i1deal p contalning £ con-
taing an irreducible factor of £ . Since R 1is a UFD ,
the irreducible factérs generate prime 1ldeals, and so these
are the minimal primes containing - £ , and correspond to the

minimal primes of R/(f) . Thus the assertion of the theorem
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is just that if £ 1s an irreduclble polynomizl, then
td(R/(f)) = n-1 .

Write

(7) r =2 a(5) y(j) = 0 in R/(f)

and say 1t involves the variable Yy Then gf &also in-
volves In for any g # O . Thus there is no polynomial in
TiseeesVpyq congruent zero (mod f) , and so the residues of
Yyseoes¥,q if R/(f) are algebraically independent. Since
the residue of y_ 1s algebralc over k(yl,...,yn_l) vy (7)

this shows that td(R/(f)) = n-1 .

In the general case, we may assume that Spec R/(f)
has only one minimal prime. For, let pl,,..,pr be the
minimal primes containing f . Choose an element s £ Py
which is in each of the p, (i>1) . Since Py & p, » also

p, & n p, (1.€.7) and so this is possible. Then if &
17 g5 1

is the residue of s (mod pl) , we have
(R/pl)-s- = ‘(Rs/les) s

and by (4 (iv)), td(R/pl) = td(RS/leS) . But since s € Py
(i>1) . The ring R, has only the one minimal prime piRg

containing £ (2.B.2) . This proves our assertion.

We want to use the Noether normalization theorem (C.1)
and (5 (v)) to complete the proof: Let k[yys..57,] CR
be a subring over which R 1is integral, and let’Cﬂ be the

‘kernel of the map
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k[yys..syy] —> R/(E) .

Then R/(f) 1is an integral extension of its subring
k{y]1/0?7 . Hence by (5 (v)) , 1t suffices to show that
td(k[y1/07 ) = n-1

Recall the notion of norm in a finite fleld extension
L/K . For x e L , its norm N{x) € K is defined as follows:
Let bi: L — X (i=1,...,8) be thke distinct embeddings of

L into an algebraic closure K of KX s and let pe = [L:K]i

be the inseparable degree. Put

S e
N(X) =TT (bi(x)p
i=1

Then N(x) 1is a function from L to K satisfying
N(xy) = N(x)N(y) .

The element N(x) is just a certain power of the coef-
1
ficient of the irreducible monic equation for x over K

(proofs may be found in any book on field theory). V

Now let L Dbe the field of fractions of R , and

K=1dyy..uyn). Put
F = N(f) .
By (B.%(11),5) , F is in klyy,...,y,) since f 1is integral

over this ring, and since the norm is a power of a coef-

flecient of the irreducible equation.
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I claim that the varietles of F and (O 1in
Spec kly,,...,y,] are equal, 1.e.; V(F) = v((n) , L.e.
(1.D.4) that rad F = rad Ol ., Since we have scitled the
case of one equation in Spec k[y] , and since one seeg immed-
lately that F is not zero or a unit (because it banishes
where f does) this will complete the proof.

It is clear that F e ! . For, F 1s a power of the

constant term a, of an irreducible monic equatlon

(which has eoefficients in R (B.4(ii)) , hence F 1is divis-
ible by £ in R . Conversely, let g e(/ . Then f

divides g in R

whence

N(g) = N(f)N(h) .

The three terms in this expression are in kl[y] , again by
(B.4(11)). But since g ¢ k[y] , N(g) 1s Just a certain

power of g . Thus

Flg"

for some m , which completes the proof.

Theorem 8: Let R be a finitely generated algebra over k .

Then
Krull dim R = td(R) .



8.22

If R 1is an integral domain, then any chain of prime ideals

Py D eee D p, can be extended to a maximal chaln having length

td(R) .

Proof: Induction on n = td(R) . It is true if n=0 .
Since both numbers are obtalned by maximizing over R/p for
the various minimal primes p of R , we may assume R to

be an integral domain, and that td(R) =n . Let

(9) pOD.‘.DpI‘—ler‘=(O)

be a chain of primes of R . Put ¢ then q con-

Proa
tains some non-zero element £ . By (6) , td(R/(f)) = n-1
hence td{(R/q) £ n-1 . Since primes of R/q correspond to
primes of R contalning q , it follows by induction that
the length 1r of the chain (9) 1is at most n . Moreover,
if (9) can not be extended, i.e., if no prime can be
inserted in this chain, then clearly q is a minimal prime

containing (f) , hence td(R/q) = n-1 by (6) , and so by

induction, r=n .

Example 10: Let R = k[x,y] be the polynomial ring 1in two

variables. Any maximal chailn of prime ideals has length 2 ,

i.e., 1s of the form
M o p D (0)

where /f/ is a maximal ideal. We have seen in (E) how
these look. The i1deal p contains a non-zero polynomlal,

hence an irreducible one £(x,y)} which generates a prime

2
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ideal since R is a UFD . -Thus p . (f) 1s a principal
prime ideal. Spec R/p = V(f) has dimension 1 . It is an

(irred.) '"plane curve'.

‘For R = k[x,y,z] , the maximal length is 3:
|

M > q 2p D (0)

/?ﬁ is maximal, and p 1is principal as above. Spec R/p is
of dimension 2 -~ a 'surface". Spec R/q 1s of dimension

1, -- a "space curve'. etec...

Remark 11: If p is a prime of R , its height h 1is the

length of the longest chaln of prime ideals

p=py2 - 2p, (2(0)

beginning with p . It is clear from (8) that (6) dimplies

the following assertilon:

Let £ #£ 0 be a non-unit of R . Then the height of a min-

imal prime p containing f 1is 1

This says that the locus of zeros of a single f & R can not
be too small. A rather delicate fact is that this is true
for any noetherian integral domain R . It is known as
Krull's principal ideal theorem, and is the basic result of
dimension theory in general noetherian rings.

3

G. The plane curve y2 = X” 4+ ax + b

As an example, we are goling to examine in some detail



the i1deal class group

curve, i.e., of the ring

(1) R = k[x,y]/(f)

where

(2) £ =y° - (x5 + ax + b)

We will not carry out

We assume the field k to be

Lemma 3:

k[x,y] which vanish at the origin
f = ax + by + (higher
g = ¢x + dy + (higher

Suppose that ad-bc #£ O . Then in

ki{x,y] at the origin, the maximal

by £ and g .

Proof:

8.24

(6.F) Hl(X,ﬁ*) of a certain cubic

all details of proof.

algebraically closed.

Let f, g be polynomials in two varilables in

(0,0) . Write

terms)

terms)

the local ring A of

ideal M 1is generated
1

\

View # as an A-module. 4@2 is finitely generated,

since it is clear that x, y generate 4%? . Thus we can‘}«

(5.F.3)!
and g

apply the Nakayama lemma
the residues £, g. of f
generate A /M E
A/ =

a vector space over k of

It suffices to show that
modulo A4 M = M 2 ‘_,/

. But one sees easily that /M 2 4s

dimension 2 , and that

- /
the condition ad-be £ 0 1s just that F, g form a basis’

for this space.
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Corollary 4: Let f £ k[x,y] be a polynomial vanishing at
ar

the point (o,B) . If ai(a,ﬁ) s %%(a,ﬁ) are not both zero,

then the local ring Rp of R = kl[x,y1/(f) at the prime

P: x = 0a, ¥y =a 1is a discrete valuation ring.

Such a peoint is called a simple point, or a smooth point

of the curve f = 0 .

' Proof: By making a substitution x=x'+0a, y =y' + B,

(0,0) . Writing

il

one reduces to the case that (a,B)
f = ax + by + (higher terms) ,

we have

ar arf
a—}—:'(0,0) = a , '&S}'(O:O) =Db .

Hence if, say, a is not zero, then by (3) the elements
f and y generate the maximal ideal in the local ring A
Hence the maximal ideal of R, , which 1s just A/(E) .

is generated by the residue of y . 8ince R (hence Rp)

has Krull dimensicn 1 by (G.10) , this completes the proof.

Corollary 5: Let f e k[(x,y] Dbe an irreducible polynomial,

and suppose not all of the polynomials f , %% R %% vanish

at any point (a,B) . Then R = k[x,y]/(f) 1is a dedekind

domain.

Proof: By (E.4) , every maximal ideal of klx,y] comes
from a point (@,B) since k 1is algebraically closed. Thus
for every closed point p of V(f) = Spec R , the ring Rp

is a discrete valuation ring by (2) . Since Krull dim (R) =

1
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py (F.10) , we are done (F.3) .

.From now on, we let f Dbe thé irreducible polynomial

(2) , and we assume that the hypotheses of (5) hold for f ,
so that R is a dedekind domain. It 1s not hard to see that
this implies that the field %k 1s of characteristic differ-
‘ent from 2 . You may think of k as the field of complex
numbers, if you like. 4

This is a picture of X = Spec R , and some lines, in -
the plane (the real locus of the cubic often has two parts):

Lo

Figure 6



The line Ll is given by some linear eguation
gl('K:y) = 0 .

It meets X in at most 3 points. (For, if we change coor-
dinates in the plane, so that Ll becomes the - x-axis

(y=0) , then the équation £ (still a cubic) gives an equa-
tion of degree € 3 when v 1is set equal to O , and the solu-
tions bf that equation are the intersection points of X and
Li .) 'If p is an intersection point, and if the intersection
at p is transversal, then the residue g, of g in R

generates the maximal ideal in R (The phrase "transversal

P
intersection" is expressed in an obvious way in terms of the
values of the partial derivatives of f and gl at p , and
our asgertion fellows immediately from Lemma 1 after a change
of coordinates to move p to the origin.). If X, L, have
a simple tangency at p , then the residue El generates the
sgudre of the maximal dideal in Rp , etc... (The proof of any
Such assertion can be carried out in a way similar to that of
(1).)

Now R 1is a dedekind domain (5) , hence every non-zero
fractional ideal is a product of prime powers. From the above
discussion, 1t is clear that if L1 meets X 1in 3 points
Pys Pp, p3 (necessarily tragsversally if there are three
intersecticns), then the ideal of R generated by the residue

gl is Just
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(if there 1s a tangency at one point, then the ideal becomes

of the form p2q , ete.).

Now note that a vertical line L2 meets X in just two
points transversally, of one point with a simple tangency.
This follows from the form of the equation (2) . Thus if
8y = 0 1s a linear equation for the line L2 situated as
in the figure (6) , the ideal geﬁerated by the residue of

-1
8y, 8 1s
—_1 -1
(8, 81) = DPoPy
provided Ll’ L_2 both meet transversally at p3

If we multiply any non-zero fractional ideal Cl of R
by this principal ideal, the effect is to change the exponent
e of the.primes P15 Pps Py by 1,1 , -1 respectively. I%

follows easily that if we start with any ideal

_ 1 . n
= py P, =

we can change it, by multiplylng by a sequence of princiﬁal

ideals of the above form, into a prime ideal. '

Thus the map from the closed points of X to the i1deal

class group )

(7) . p "M~ (its ideal class)

maps onto every non-zero class.

Now it can be shown that the rule

(py.Pp) "> by
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(notation as in figure (6)) makes the set of closed pointe

of X dinto a group except that O 1s missing (it is the
point at o of the curve). There are some extreme cases to
be described, e.g. if Py = Do s which I leave to you.

Hence one could expect that the map (7) above is actually
one-one as well, and a group homomorphism (taking into account
the 0). This is indeed the case, but we are not in a posi-
tion to prove it so easily here. You have to show that no

prime p by 1tself can bhe a principal ideal in R .

Here 1s an outline of a methed of proof which can be
pushed through for the case k=% : If p were principal,
p = (u) , then the element u & R would have only one zero
and one pole (at o). This would imply that the map
X —> Spec Ef{u] given by the element u e R would have to
be one-cne everywhere, not just at The points Ps ® . Bﬁt
1t is easily seen that the varilety X , viewed as a closed
subspace of complex 2-space with the usual topology, is a
torusd (minus the point at ). In fact, this follows from
the fact that the equation (2) represents X as a double
covering of the complex =x-plane branched at three points

2 ¢ ax + b) plus e« . This contradicts

(the three roots of x
the existence of a one-one continuous map to the. u-plane.

One final remark: Notice that we were able to reduce
an arbitrary fractional ideal to a nice form by using only

linear functions from the plane. This was very lucky, and

the method does not work for higher degree curves. One needs
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more subtle technlques to treat them; they are provided by
what is known as the Riemann-Roch theorem for curves, which
assures the existence of elements of the ring having zeros

at prescribed points.
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FLATNESS

g e .

A. Flat modules.

Definitionl: An R-module M is called flat if the functor

M& - is exact, i.e., 1f for every exact sequence
A—>B—>C
of R-modules, the sequence

M@A —> M®B —> MKC

is again exact.

Since M®& « 1s always right exact (4.D.1) , this 1s

equivalent with the assertlon that
(2) If A B, then M®AC>NEB .

Elementary properties:

(3) A& direct sum of flat modules is flat.
This follows immediately from (2) and the distribu-~
tivity of tensor product (T.P.C.%) .

(4) A free module is flat.

(5) M and N flat = M®N flat.

This follows from the assoclativity of tensor product:

(MEN)® A = MG (N®A4)
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(6) If M is a flat R-module and R —> R' 1s a ring

homomorphism, then M' = MEgR' 1s a flat R'-module.

For, recall that there is a canonical isomorphism, for

any R'-module A' ,
(7) m@A = (MR A = M Qp A"

where A' 1s viewed as an R-module for the tensor product on
the left side by restrictlon of scalars. Both sides are R'-
modules (multiply on the right), and this is an isomorphilsm

of R'-modules.

Now if O —> A' —> B! 1s an exact sequence of R'-

modules, (7) clearly implies that O —> M'@p,A' —> M'@R,B"{

1s exact.

(8) Flatness is a local notion, i.e., M is flat iff.
there 1s a set S of elements of R which generates the

unit 1deal such that Ms is flat over Rs for each s & S .

To see this, first note that from (7) it follows that

for any two R—mgdules M, N there are canonical isomorphisms
(9) MQN' » M'®R,N' % M' &N » R' Qg (MEN)

where N' = R'@@RN etc.. Since localization 1s a tensor
product, one has canonical isomorphisms (second = fourth
above)

(10) (M&N) = MS®RN

5 *
8

!
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This jJust says that the sheaf associlated to the tensor

product modules is what we would expect:
N ~ e
(10) MEN & W Ol

where the sheaf on the right is defined to be the one whose
sections on an open X  are MS@RSNS. Now (8) is trivial,
since the condition for a sequence to be exact is expressed

by the asscciated sheaves (4.D.3) .

i

Proposgition 11: A module of finite presenbtation is flat

1ff, it is locally free iff., it 1is projective.

Proof: By (5.G.1} the last two statements are equi#alent.
Moredver, a locally free module is flat because of (%) , (8).
Thus 1t remalns to show that if M 1s finltely presented

and flat, then it is locally free. Moreover, it suffices by
(6) and (5.G.1) to treat the case of a local ring R ,

and to show that then M 1is free. Let R be the field

Rﬂﬂ%. s and let MysevesMy be elements of M whose resgsidues
form a basis of the module W = M/ M . By the Nakayama

e r
lemma (5.F.3) , the set ! m !

if generates M , so that we get

an exact sequence (5.B.3)
Q —3>& —> F —> M —> 0,
where PF 18 the free module on the set. We want to show

that 52 is zero, and by the -Nakayama lemma, 1t suffices to

show that & = R /4R 1s zero (becausé [R 1s of finite type
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since M 1is finitely presented). If we tensor the above

sequence with the exact sequence

0 —>M—>R—~—>FE —>0,

we get a diagram {using (4.D.1))
0

J

MR —> R —>F —>0

\ d
MEF ~—> \% —>F —> 0 .
! | J
O —>UQY M —> M —> T —> 0
| ! \
0 0 0

where the bottom row is exact because M 1is flat. If we
apply the serpent diagram (5.A.3) to the left hand pair of

columns, we get an exact sequence of kernels and cokernels
0 —=>@ => F —> W —> 0,

Since F & M, this shows that ® = 0 , and completes the

proof.

Definition 12: An R-module M d1s faithfully flat if the

following condition holds:
A sequénce
(*) A—>B—>C
is exact 1ff. the induced sequence
(*#) M®A —> M®B —> MEOC

is exact.
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This 1s equivalent with saying that

(13) M 4is flat, and for any R-module A , MEA =0

implies A = O .

For, note that A = 0 means O —> A —~> 0 18 exact.
Thus (12) => (13) . Conversely, suppose that (13) holds:
Since M -1s flat, (%) exact implies (%¥%) exact. Suppose
(%%) exact. Becauae‘ M 1s flat, it is iﬁmediately seen
that M@im(A —> C) = im(MEL —> MEC) . Hence A& —> C
is the zero map, i.e., ker(B —> C) D im(A —> B) . To say
these two are equal means that the cokefnelgof the exact
sequence

0 —> im{A —> B) —> ker(B ~—> C) —=> g —~> O

is zero. Now using the flatness of M , one finds that
M&@e ts the cokernel of the corresponding map obtained from

(##)} , hence is zero, whence by (13) , &= 0.

Note that clearly

(14) If M 4is faithfully flat over 'R and if f: R —> R'
is arbitrary, then M' = R‘@QRM 1s faithfully flat over R' .
For, M' is flat by (6) . Suppose M'@DR,A' =0 .
Then since (7) 'M'QQR,A* = M@gA' , it follows from (13)

that A' = 0, which shows that M' 1is faithfully flat.

B, Flat ring extensions.

Definition 1: An R-algebra A is flat (or falthfully flat)
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if it is flat (f. flat) as an R-module.

1

For example, for any S € R, S8 ~R is flat, by (4.D.2).

Let A be a flat R-algebra, and I an ideal of R .
Put K = R/I . Then R®A = A/IA (TP.D.2) . But since A

1s flat,

0 —> I®A —> A —> B8 —> 0
is exact. Therefore the natural map

(2) 1A —> IA

Xa > xa is bijective.

For a general ring extension, 1t would only be surjective.

For any R-module M , there is a natural map

(3) M ~—> AN

m > 1®m
and if A 1is a faithfully flat R-algebra, thils map 1s
injective. For, to prove this, it suffices to show that Fhe

map obtained from (3) by tensoring with A 1is injective,
and this map is

ADM —> A@ADN

a®m > a®l®n

There is a map backwards, sendlng

abm <~ a®bPHnm ,
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and the composition of the twe is the identity on AKRM ,
herice the first map is injective, as was to be proved. In

particular, setting M =R in (3) , we obtain
(4) R—> A is injective,

if A 1s faithfully flat over R .

Propogition 5: If f: R —> A 4is a faithfully flat R-algebra,

,then for every ideal I of R,
I=r"%(18) .
-if we identify R with a subring of A via (4) , this just
reads I =RnDIA.
proof: Consider the map (3) applied to the exact sequence

0—>I—>R-—>R—> 0 (R = R/I)

We get by (2)

O0—> I —>R-——> K —> 0

Vol

0 —> IA —> A& ~—> A/IA —> 0 ,

and by (3) the last vertical arrow is injective. Therefore
an element  x € R which is mapped to zero in A/IA is already
zero In R, 1.e., I 1is the kernel of the map R —> A/IA ,

which proves what we want.
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Proposition 6: #n R-algebra A 1s faithfully flat if and

only if it 1s flat and the induced map

Spec A —> Spec R
is surjectilve.

proof: Suppose A faithfully flat, and let p Spec R .
The algebra A

= PR
M = PR,
hence ff A, 1s not the unit ideal. Thus 4%’Ap is contained

is faithfully flat over R_ (A.6) . Let

p p
be the maximel ideal. Then Ry OAW'Ap =4 vy (5),

in a2 maximal ideal M of Ap , and clearly M N Rp =,%ﬁ
As in the proof of (8.B.1) ;, one sees that if P 1is the in-
verse image of M in A , then PN R =p . Thus

Spec A —> Spec R 1s surjective.

Conversely, suppose Spec A —> Spec R surjective, and
A flat. We need to show that if M is a non-zero R-module,
then M®A # 0 . Erch finitely generated non-zero submodule

My C M has the property that MOQDA C M A, since A is

flat. Therefore it suffices to show M ®A #£ 0, whence we

|

0
are reduced to that case M of finite type.

Since M # O , there i1s a p e Spec R such that M, £ 0 .
Since Spec A —> Spec R 1s surjective, the ring A = Ap/%é'Ap
1s not the zero ring |
(noﬁation as above). For, it contains a prime ideal. By the
Nakayama lemma, M = Mp/AM Mp is a non-zero vector space
over the field R = Rpﬁﬁﬂ-, hence is free. Therefore it is
clear that -°1\71®R-7\' is also non-zero. But we have a commuba+s

tive diagram of rings
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A ———n A
?~ l:‘\
R —— R

and M = MﬁéRﬁ . Hence NWzA = MQE%A(X%E , and so M®@yA

is also non-zero.

Proposition 7: Let f: R —> R' be a faithfully flat ring

extenslon; M an Re-module, and M' = R’QpRM . Then M 1is

of finite type, or finitely presented, or flat 1f and only if
|

M' is.

roof:> The only if part has been proved (5.B.6), (A.6).
cuppose M' of finite type. Since 1t 1s clearly genecratved
by the images 1%m of the elements m of M, a finite
number ? 1@§mi} generate M' (5.B.5) . Consider the map
P —> M of the free module I on Xi R sending xiwa> mi
We have F' —> M' —> 0O exact. Hence F —-> M —-> 0 1s exact,
i1.e.; M dis of finite type.

If M' is finitely presented} we already know that M
is of finite type, and we have to show that a certain module
of relations § (5.B.3) is of finite type. But since R' 1is
flat; one sees immediately that @Z’ = R'QQRél is the cor-
responding module of relaions for M' , hence is of finite
type. Therelore 52 is of finite type, too.

. Suppose M' flat. If

A—>R—> C

is an exact sequence of R-modules, we have



exact. But

Hénce

is exact since

the proof.

M@ oA —> N'® B —> M'@RC

M'@gh & R'@p (M®A) , ete..

M (A —> MEB —> M@Rc

R —> R!

is falthfully flat.

9.10

Thls completes
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FLAT DESCENT

The theory of descent which we treat here 1s due to
Grothendieck; although special cases were known before
(cf. Sem. Bourb. #190, and SG4 '60, Exposé VIII)
A. Descent.

Let R be a ring, and f: R —> A an R-algebra. We

assume throughout the discussion that A 1s falthfully flat

(9.B.1) over R . VWhen no indication is made, a tensor

product is meant to be taken over R .

We are going to study the following question:

Given an A-mo dqu M , when does there exlst an

ettt

e e

R-module N such that M=% A 8B N ? DNore precisely, what

—— s rerm——

additiocnal structure on the module M will insure the exist-

1
i
|

ence and unigueness of N 7

For instance, if M were free over A4 , with a gilven
basis, we would know how to construct N canonically -~
namely as the free Re-module with the same basis.

Note that the restriction of scalars is ﬁoé what we are
looking for, since M % A R M in general.

It is a good idea for the reader to keep the example
of localization (ef. 3), which 1s given in the next sectilon,
in mind throughout the discussion. |

Among the various tensor products of A with 1tselfl

there are many maps. In particular, we have the maps
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dg dg
(1) A > AEA 3, > ARARA
1
>
> 3,
>
S
s 0 <.__.Q__
G 84
<.___.__--

where d; 1s the "face" operator which inserts 1 1in the
1-th position of a tensor (we start the numbering of the

positions with O ). Thus for instance

d.(a®b) = aklxb

1 (

It is customary to use the same symbol d; for the varlous
maps. The map 8; (the "degeneracy") is the one which mul-

tiplies the i-th and (i+4l)-th entries in a tensor. Thus

sl(aﬁbmc) = ak(bec) .

These maps are all homomorphisms of R-algebras, and they

satisfy certaln ldentities such as

(2) sgdg = 874, = identity,

d-.s~ =

0 SldO' s etec...

0]

which are easy to see. We leave the verifilcation of such
things to the reader. The 1dentities make (1) into what is
called a "co-simplicial algebra'. This one 1s known as the

Amitsur complex. We willl need just as much as 1s depicted

explicitly in (1) , and a few identities of the type (2) .
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A standard lilst of identities could be found in a treatment

of simplicial theory (but the arrows usually go the other

way) .

Suppose now that N 1s an R-module. Then we can extend
Scalars in N to any R-algebra A4 . We will often denote
the result of this operation by -NA . Thus NA is an A-

module which is caﬁonically isomorphic to either of the modules

NRA @~ NA = ARN

\and for notational reasons, it is convenient to avoid choosing

one or the other.

If A —> B is a homomorphism of R-algebras, then
there is of course an induced map NA — NB_, which 1s in
fact A-linear. Applying this fact to diagram (l) , we get

a bunch of maps

dg O >
1 S-S, ¥ d
1

(3). w, 49 o Yama 7 Namama

o 2

>
S
SO <& SO

gy e L

by tensoring with N , which satisfy the same identities (2)

as (1) .

Notation 5: We will call a diagram

u
X —>Y "7 7
T)
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of abellan groups an exact sequence 1f the sequence

u-v

0O —> X —>Y > Z

is exact. This means that X 1s mapped (injectively) onto
the subset of those elements of Y which are carried to the
same element by u and by v . The group X 1s called the

kernel of the pair of maps (u,v) . This is a notational con-

venlence, and it provides a definition of kernel for maps of

sets.

The descent theory 1s based on the following observation:

Proposition 6: Let N be an R-module. Consilder the

sSequence

A e NAEA

where the first map is, say, n ~> n¥l 1f we 1ldentlfy NA

with N ® A . This sequence 1s exact. In particular, the

sequence (obtained by setting N = R)
do S
(61) R —> A S ARA
4
' is exact.

proof: We saw in (9.B.3) that the first arrow is injective.
Since A 1s faithfully flat, 1t suffices to prove that the
sequence obtained from (6) by tensoring with A 1s exact.
If we tensor by A ,:say on the right, to fix the numbering

of the positions, we get the sequence
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a

dg s
Ny > Nogp > Yppama
dy

Let x be an element of the middle module such that
(%) dgt = di% .
I claim that in the notation of (1) ,
X = dosox R

whence x 1s in the image of do » which will complete the

proof. We have

dpsp¥ = s5ydX (cf. (2), and check it!)
= 51d;X by (%)
= X by (2) P

ged.

Now let M be an A-module. Extending scalars in M

by the two structures of A-algebra on ARA (given by

dps dy of (1)), we obtain two ABA-modules, which we will

write as

(ARA) B,M X ARM
(7) (canon. isoms.)

M EA(AmA)

3
5
T

where 1n the top. line, the operation of A on AHA is
understood to be via. do » and in the bottom via dl . The

operation of ARA on MEA , ABM is the obvious one.

If M were obtained from an R-module N by extension

of scalars (i.e., M = N,) , then the two ARA-modules (7)
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Wwould be canonically isomorphic, namely to N This 1is

ARA °
just "transitivity of extension of scalars", since the struc-

ture of R-algebra on ARA 1s obtained by the single homo-

morphism d f = d;f from R fto ARA (cf. (6')). How-

ever, in general, they will not be isomorphlc at all. It 1s

easy to glve such examples.® Of course, there is the symmetry
of the tensor product, but it does not preserve the structure
of A¥A-module. Thus since our problem 1is to determine those
M which are obtained by extension of scalars, we can put an
extra structure on the module by insisting that there be an
isomorphism © Dbetween the ARA-modules (7) , more precisely,

by assigning such an isomorphism:

Definition 8: Let M be an A-module. Descent data for M

relat’ve to the algebra structure R —> A consists of an

lsomorphism of ARA-modules
0: MRA —> ARM

satisfying the compatibility condition that

9092 = 91 5 \
i.e., that the diagram
*For instance, let R = k be a field and A = k[x] . Then
ARA k[xo,xl] If -M 1s an A-module with support at the
point x =0, eg. M= A/(x) , then ARM has the =x,-axis

0
as support, while supp (MEA) 1s the xl—axis. 7
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o
MEARA —— 2>  AEMZA
¥ S p /
91?\\\ " 9
Y wd "
S~ el -
AR ATM

~commute,

is the map obtained from © by tensoring with the

identity map on A in the i-th position, viz.,

The map @l

tensor with

ea(mmamb) = [e(mBa) ]=b -
@O(aﬁmﬂb) = ak[o(mBb)] .

is unpleasant to write out, since you have to

A in the middle. It can be written

o, (mBa®b) = (1Ra@l) - dl(G(mEb))

1

where the dot indicates scalar multiplication in the

ARARA-module

Theorem 10:

ARARM .

Given an A-module M together with descent

data © (8) , there i1s an R-module N and an A-isomor-

phism

b: NA —> M

Ssuch that the diagram of ARA-modules and maps

"N

commutes.

brA
N,BA —> MRA
=~ A

pEA lé

St .
BEN ), — g ARM

The pair (N,@) is determined up to unique isomor-

phism, in an obvious sense. It will be called the descended

module.
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Proof: We have the diagram

d
———>  ARM

(11) \\\& ,//;79

This is a non-commutative triangle of (at least R—linear) maps.

Thus we obtaln a palr of maps

dg

M > AmM
o

1

Following the clue of (6) , let K be the kernel of this

pair, so that
e

(12) K —> M ATM

@dl

is exact. Since do 5 le are homomorphisms of R-modules,

K 1is an R-module. The inclusion of K 1in M induces a

~correspondence map of A-modules

D: KRA -> M (kB1 A k)

and our problem 1s essentially to show that it is bijective.
Now if we tensor (11, 12) on the right by A , we get

a diagram of A-modules

KR4 —> MRA — AEMEA

N

MEAEA

VV

the bottom triangle being commutative, where we let A operate
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on the right. The row is exact, since A 1is flat over R .

By (6) , we also have an exact sequence
d

_% .
M ——> AR ATARM

—_—

dq

obtained by viewing M as an R-module. If we let A operate

on the right again, this is & sequence of A-modules.

The square of A-homomorphisms (operation on the right)

d
S ol
M2A ABMREA
| TeE, T
2%1 |
(13) Ule ZJ o
AT ARATM
e
S5f

commutes 1f we take the top horizontal arrows. Since the

compatlbility condition (9) holds, we have

0g9d; = ©d; = 49 ,

the last equality being clear. Thus (13) again commutes
if we take the bottom horizontal arrows, and so © 1nduces

a bijective map of the kernels

e’
KRA —————> M .

Since © carries a tensor k¥l to ©(k®l) = 18k (k & K) ,

this is just the map b .
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From (13) , we get a commutative square of A-modules

%A >-MEA
|
i P b
v
M > AXM .

Recall that the right hand members are viewed as A-modules
via do , 1.e., A operates on the right. Thus we obtain
the corresponding diagram of AXRA-mcdules

KAEA ——— ﬂKA

:
V&@EA \?
(ARA)R, M 7= pEM

and it is clear from the fact that the top horizontal arrow
is induced by (12) +that it is ¢®A . This shows the com-
mutativity required by the theorem, and proves the exilstence
of (N,d) = (X,9) .

It remains to prove uniqueness: Suppose that (K,b) and

(N,w) are two solutions, and consider the isomorphism

e = ¢ I

£
Ka , /> Ny
®\\\§$ ﬁ// 4
M
We obtain two maps Kagp — Npgs » by the two structures
of A-algebra dg, dy on ABA , which we may write as

e®A and ARe . The resulting diagram
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cBA
/ _ - \\\ _
] //;grmmA N
TN &
/s~ T pmAN
Koy ol T~ N
, ARA . TARA
\\Ambxxwhx l//f”AE¢ A
\\ \;\AE\I{I < 4
N i
e e
ARie
commutes, hence
(%) ABe = A

Thus we are reduced to proving the following proposition:

Proposition 14: Let X, Y be R-modules. The functorial

property of extension of scalars induces from (6') a

sequence

>

Homp (X,¥) ——> Hom,(X,,Y,) S Hompp (Xpmas¥pms)

R
This seguence 1s exact.

For, by (14) , the equality (¥*) implies that the
isomorphism & 1s induced by extension of scalars from a
unique map (necessarily an isomorphism) K BCENEY , and

éA = ¢ has the property that
&

K, _ A,y
AN
AN ﬂ////w
M

A
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commutes, which 1is clearly what shall be meant by an isomorphism

(K,0) = (N,9) .

Proof of 14: ILet u: X —> Y be a map. The extension of

scalars is such that the squares of the following diagram

commute, where the rows are (6) :

—_—
L —> TA —> Xama
u EN YARA
W \l’ S W
Y—> %, 5 Yama

Since Y —> YA 1s injective, 1t 1is clear that Uy determines

u . Suppose now that v: X, —> YA is a map such that the

A
two induced maps vVvRA and A¥v from XAEA to ¥

ARA  BTC

equal. Let us view X as a subset of XA and Y as a sub-
set of YA for the moment. Then to show that v 1nduces a
map from .X to Y , it suffices to show that v carries X
into Y . The induced map will be obviously R-linear. Now
because of (6) applied to the module Y , we need only show

i
that for x € X , the element v(x) has the property that

\

But

[o 3
<
—~
o
i
—~
=Y
=
<
~—
O
o
—~
™
i

(vEA)dO(x) (by assumption)

/

i

(vEA)@l(x) (since x & X)

dlv(x) P
qed.
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B. The case of localizatlon.

Let gsi? C R be a finite subset which generates the

13

unit ideal. We can interpret the discussion of gluing of
modules (3.C) 1in the context of descent by the following
trick:

Let A be the product A = ]i[_R.

N (Ri=Rs.) . Then by

: 1
(9.B.6) the ring A is a faithfully flat R-algebra. For,

Spec A 1s the dlsjoint union of the spectra Xi = Spec Ri

(1.E.1) , which maps onto X = Spec R because {Sil generates

the unit ideal, and since R, 1s flat (4.D.2) , so is A
(9.4.3) . To give an A-module M just amounts to giving a

module M, over each R, (why? cf. (7.8.7)).

Now Ri.m Rj is immedlately seen to be canonically
identified with the ring Rij = Rsisj
over products, we have an isomorphism

. Since ® distributes

ABA = ( iFRijE(T;ThJ) %1, 5l Rag

Thus (A.1) 1is seen to be equivglent with a diagram
0

dq L) 0>
e > ' 1 T
AR S '1,3’ f15 4, ; s, 5,6 Bigx
(1)
S
0
é:il_. 4i51
<=

where for instance the operator do carries an element

(...,ri,...)e Ii( R; to the element (""aij"") e(i,leij

such that = r. . The operator s, carries (""aij"")

N B
ij J
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to the element (...,ri,...) where r, = a,; , etc... The

i i
reader should write down explicitly the induced maps of the

apectra.

An A-module M (the "collection of R,-modules Mi")

induces two modules over AKA , as in (A.7) . Such a
module corresponds to giving a collection of modules, one for

each Rij , and one sees immedilately that the module over

R,. yilelding ABM 1is just R

13 ] Mj = (Mj)s while the Oée

iJ 1

giving MDA 4is M, B R.,. = (M) . Hence an isomorphism
1 1] i s'j

©: ‘MRA ——> AZM

just means an l1lsomorphism for each 1, J

913‘ (Mi)SJ —_— (Mj)si

and the compatibility condition (C.9) reads

e in R

k%13 = Sk 13k

@
Thus descent data for M is just the same as gluing data.

\
Note: I seem unfortunately to have written the compatibility

condition (3.C.6) backwards.

C. Descent with extra structure.

In the notation of (A) , let N be an R-module, and
suppose, for example,- that we are given some A-algebra struc-
ture on NA . Recall that such a structure i1s gilven by an

A-linear map : /
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N, &

a &alN

A Ny o

possibly required to be associative, etc..

Let us ask whether this structure is induced from an

R-algebra structure on N .
Now there 1s a canonical lsomorphism

R N, ® (NEN)A .

/ Thus we can apply (A.14) , and if we set X = NEN , and

]Y = N , it tells us that the algebra structure, which is an

element of Hom,((NEN),,N;) , 1s induced by an algebra struc-

ture on N 1ff. the two structures of ARA-algebra on

Nama

structure on N thus determined is unique.

obtained via do, dl are egual, and that the algebra

Let us continue the investigation: Suppose the algebra
structure on NA is induced from N , and that NA is an
associative algebra. The associative law for NA is the

assertion that two maps

NA EAN ®¥N, —> N

A TATA A

(obtained in the usual way from the multiplication) are equal.
Thus, again by (A.14) , the associative law for NA implies
it for N , and conversely. Similarly, NA " 1s commutative
iff. N 1s. Moreover, NA has an identity iff. N does.
For, an identity in N 1is an element e & N such that
en=ne=n for all n & N . It is unique. If there is an

identity e in NA s 1ts two images in NAEA under dO, dl
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are both identities for that algebra, hence are equal, and sO
the element e came from N , by (A.6) . It is immediately
seen that it 1s an identity in N .

This discussion has the following important corollary:

Corollary 1: With notation as in (A.10) , let M be an

A-algebra, and let descent data
©: MRA —> ARM

be given. Assume that © 1s an 1somorphism of ARA-algebras,

between the structures induced from M on the two modules.
Then the descended module (A.10) N has a unique structure
of R-algebra making @ into an algebra isomorphisﬁ. The
structure is associative, or commutative, or with identity,

etec...; iff, NA

is.

For, the isomorphism b: NA —> M induces an A-algebra
structure on NA , which 1s associative etec.. iff. M 1is.

: i

By the above discussion, we need only check that the two
structures of ARA-algebra induced on NAEA via dO’ d1 i are
equal. But this is just the fact that © 1s an algebra iso-
morphism, combined with the commutative diagram of (A.10).

The induced structure on NA is such that the diagram

A
‘

M —————

——> N

(vEw) , = A

A A

(*_*) - b B b

WV
M M

't&:x>
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where the horizontal arrows are the laws of composition.

Extending scalars to A via do, d;, we get a diagram

(HEN) ymp : Npma
/ ‘\ / ) \

AR

: 2 \ ' by v
(#*) (M R, M)EA\ N > MXA &
P ie \ \"-.__\
)

\\\\\\“3; \\Q \\\H“m¥£ A\

| A B(M B, M) > AEM

in which the horizontal arrows are the laws of composifion,

and where we leave it to the reader to label the arrows on

the left. The bottom sguare commutes since € 1is an'algebra
isomorphism. The triangles commute because they are the
diagram of (A.10) for the descent data © K, © and @,
respectively. Tensoring (¥) by A on the left (resp. right)
gives the induced structurelon NAEA , and makes the appropriate

square obtained in (¥¥%) commute. Thus 1t follows that the

two structures are equal.

It is clear that the above discussion would apply equally
well for other types of structure, such as that of co-algebra,

etc.... but we are not going to state a result formally.

D. Twisted forms of a structure,.

Suppose we are given an’' R-module N , let us say with
some extra structure (such as: no extra structure, or the

structure of associative R-algebra, etc...) to which a
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discussion analogous to (c) applies. We will denote the
given structure in a neutrél way by S . Then we can use the
symbol SA to denote the structure over A induced by exten-
sion of scalars, and so on. In the notation of (A) , consider

the following problem:

Determine all structures (of the same type) S' over R,

such that S, 1s Lsomorphic with S, .

Such a structure S!' will be called a twisted form of

8 relative to the extension R —> A .

Using the technique of descent, we can in principal
reduce this problem to a calculation involving the automor-
phisms of the objects involved. The discussion 1s analogous

to that of (3.D) :

Let S' be a twisted form of S . By assumption, there

is an isomorphism

1
us SA -——> SA .

Now 1if A —9—> B is a ring homomorphism, an isomorphism

u: SA —_—D SA induces in an obvious way by extenslon of

" scalars an isomorphism SB'——> Sé . Let us denote 1t by

a%u . Since ARA 1is an A-algebra in two ways, we obtailn

two lsomorphisms
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Put

(1) e = (agru) "t (dyxu)

It is an automorphism of SAEA . Then using the identities

48, = dgdy , ebe. .. (cf. (A.2)) , we find

(2) 0,8, = (dO%Q)(dz*G) = (dl%@) = &) s

i.e., © 1is descent data (A.8) for the structure S, over

A ., For,

(ag%0) (ax0) = [(dgdg)su (apay )aul[{apdy)e T uldpd) )vul

(a )*u'l(dzdl)*u

%o
1
(

I

(dldo)-f;‘u dldl)+:-u

it

(dlfé) .

Clearly, the descended structure (C) obtained from the

descent data © can be none other than (S',u)

To eliminate the choice of the map u , suppose u' 1is

another, yielding descent data €' . Then if we let

1

be the resulting automorphism of S, , so that u' = ug
we find

--(d ﬁu')_l(dl%u1)

O
il

o)

fi

(3) (agve) (agru) ™ (aysu) (d; %) ™

(dgee)ola ve) ™ .
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Corollary 4: The twisted forms of a structure S over R,

relative to the map R —> A , are in one-one correspondence
with equivalence classes of automorphisms € of SA@A
satisfying the condition (2) , two such automorphisms 6, ©'
being equivalent if there 1s an automorphism g of SA such

that

o' = {agxe) © (d,%8)™F .

This is immediate. It 1s not even necessary to make the

(trivial) verification that the relation is an equivalence

relation.

One customarily denotes the set of equivalence classes

introduced above by
(5) H'(A/R, Aut S)
which is to be read as '"l-cohomology of the extension

R —> A with values in Aut S'". To make sense of this, it

has to be understoocd that Aut S is the functor

(6) Aut S: (R-algebras) > (groups)
defined by
(6) 'put S[B] = (group of automs. of the structure SB) .

We can in fact define the 1l-cohomology
ul(a/R,G)

of the extension R —> A. with values in any functor

|
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G: (R-algebras) —>. (groups) .

It 1s just the set of equivalence classes of elements

e & G[ABA]
such that the induced elements d,x© ¢ G[ARABA] (induced by
the map d; because G is a functor) satisfy the identity

‘ = _)4_@) L)
(dO%@)(dz*@) (dy

. where two such elements ©, ©' are called equivalent if there

is a g e G[A] such that
o' = (dwg) © (d #8)7t
0 1° ‘
The set Hl(A/R,G) has a structure of abelian group if G

has 1ts values in abelian groups.

E. Some examples.

Suppose that we ask for twisted forms of a free module

F of rank n over R , relative to the extension R —> A .
The group of automorphisms of a free module of rank n over
a ring B 1s the group Gln[B] of invertible nXn-matrices
with entries in B . The corresponding functor on R-algebras

will be denoted

(1) @ (R-algebras) > (groups)

P e e e
B > Gln[B]

If n=1 , it is the functor



10.22
(2) "mits': B A>T B
which is often denoted by Gm = multiplicative group.
The recipe (D.%,5) tells us that exactly as in (3.D,E)

Corollary 3: The twisted forms of a free module of rank n

relative to R —> A are classified by

at(a/R, G1) .

This example 1s not of too much interest. For, 1t follows
from ((.A.11) and (9.B.7) that such a twisted form is
always locally free. Hence we do not get any more twisted
forms from general faithfully flat extensions than we would

by the process localization discussed in (3.D)

Since every locally free module over a field is free,
there are no twisted forms when R 1is a field. Thus we
obtain a statement which is one version of what 1is known

|
as "Hilbert's theorem 90":

Corollary 4: Let L/K be a field extension. Then \

HY(L/K, G1.) = O .

In particular,

ul(L/K, units) = O .

More generally, let R be a local (or even semi-local

(cf. (exerc. No. 2, Prob. 3d)) ring, and A any falthfully,
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flat extension. Then

H'(A/R, G1 ) = O .

A more interesting example is that of the nxXn-matrix
algebra over R , let us denote it by Mn[R] . Its twisted

forms are classified by
(5)  (8/R, Aut M)
where Aut Mh is the functor

B ~n~> (group of autos. of the matrix algebra Mn[B})

Fortunately, a great deal is known about this functor.
Suppose R = K is a field. Then the Skolem-Noether theorem
asserts that every automorphism of Mh[K] is iggggé i.e.,
is obtained by conjugating with an invertible matrix from K .
Thus Gln[K] maps onto Aut Mn[K] . The kernel of this map
is the group of units of the center of the matrix algebra,
which 1s just K* , identified with the group of diagonal
matrices a-I (é ¢ K¥ and- I the identilty matrix). Thus

we obtain an exact sequence

(6) 0 —> K¥ —> g1 _[K]} —> Aut M _[K] —> O .
== ==

The group gln/(center) is called the projective general linear

group, and is often denoted by PGln s Whence

Aut Mn[K] = PGln[K]
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For a general ring R , the sequence corresponding to
(6) 1is no longer exact. However, it can be shown that the

sequence of sheaves on X = Spec R , defined in an evildent way,

(7) 0 —> R¥ —> Gl —> PGl —> O

is s8till exact, and that PGln = Aut Mn . Thus from the exact
cohomology sequence (%,C,3) , the extent to which exactness
Y

fails is measured by H X,ﬁ*)_: group of locally free rank

one modules over R .

Suppose that R = K 1s a field, and let us apply the
Wedderburn theory of simple rings: Some corollaries of this
theory are that 1f M' 1is a finite dimensional simple algebra
over K with center X , then the algebra M£ induced by
extension of scalars to a field L/K 1is again simple, and it
has center L . Moreover, the only such algebras are the
matrix algebras, when the field is algebraically closed. iI’c
18 not difficult to show that if, conversely, M' 1s a K-
algebra such that Mﬂ is simple and central over L , thén
M' 4s also simple and central over K . This can be sho&n
by arguments of the type which we discussed in (C) ; the
proof is left as an instructive exerclse for the reader.
Therefore, these central, simple algebras over K are just

twisted forms of the matrlix algebra Mn[K] , relative to the

extension K —> ¥ (K an algebraic closure of K):



10.25

Corollary 8: The twisted forms of the matrix algebra Mn[K]

relative to the extension K -—> K are the central, simple

algebras over K of rank ne .

Twisted matrix algebras over other rings are of con-

siderable importance. They are called Azumaya Algebras. The

Interested reader can consult the original papers of Azumaya
(Nagoya M. J. (1951)) and Auslander-Goldman (Transactions
(1960)), or he can profit by working exercises 13-17, Ch. II,

§5 of Bourbaki, Alg. Comm.

n

As a third example, consider the R-algebra R = R X..:X

(n copies), where R operates by scalar multiplication on a
"vector" (al,...,an)e R™ , and the addition and multiplica-~
tion of vectors is component-wise. Suppose to begin with that
R has no non-trivial idempotents (i.e., none other than 0,1).
Then R X...X R has only the idempotents e; = (1,0,...,0) ,
s € = (0,...,0,1) (why?). An R-automorphism ¢ of the

algébra R" must permute these idempotents. Since every

vedtor is of the form

i
™
o

(al,...,an) h (ai e R) ,

we have

(b(al"-':an) ?- ai(b(ei). .

Hence the automorphism @ is determined when the permutation

of is given. Conversely, any permutation of ey

<5

R
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gives rise to an automorphism ¢ .

If R has finitely many idempotents i Evz , S0 that R
is a product of rings R =—rer , In a canonical way
(equivalently, (1.E), Spec R = X 1is a disjoint union of a
finite number of connected components), then it 1s easily seen
that the automorphism { can be described by a permutation

of each of the sets of ldempotents where

€y1-2%yn
eyy = (0,...,5v,0,...) (e, in the i-th position). Thus
the group of automorphisms of the algebra R? is canonlcally

isomorphic to the product

(Sn)c ’

where ¢ = ¢(R) denotes the set of connected components of
Spec R , and (Sn)C is the product of copies of the symmetric

group S, indexed by the elements of c¢(R) .

It féllows that if R —> A 1s an extension (f. flat)
such that A , ARA , ... each have only finitely many idem-
potents (eg. if they are all noetherian rings), then the
twisted forms of the algebra R® relative to the extensfon

\

R —> A are classified by
(9) H(A/R, S,)
where S, 1s the rule
B A~> S [B] = (sn)C(B)

We leave it to the reader to describe how this 1s made into/a

functor.
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Such a twisted form of R" is analogous to a covering

n

space in topology; the spectrum of R is

Spec R = x4 ... £X (n copies)

where X = Spec R, 1.e., is the "trivial n-sheeted covering
of X ". Note the striking fact that the classification (8)
depends only on the sets of conrected components of the spec~

trum of the algebra A and of 1ts tensor powers.

If R =K 1is a field, then any finlite separable field
extension. L/K decomposes completely when tensored with a
‘splitting field L' contalning it. This is because the
polynomials whose roots are adjoined to obtain the extension
L split completely in L' . Thus L 1s an example of a
twisted form of KO , ir [L:K] = n . It is a good exercise
for the reader to prove that the twisted forms of K? (rela-
tive to various extensions) are exactly the separable algebras
(products of separable field extensions) over K of rank n .

(This was a homework problem in 18.731.)

Remark 10: If L/K 1s a galois extension, then ILBL decomposes

into n copiles of L , n=[L:K] . Thus automorphisms of a
structure over 'SLEL will just be n«tup;es of automorphisms
of the corresponding structure SL over L ., Uslng this fact,
one can express the cohomology (F.5)

v (L/K, Aut S)

as the cohomology of the group G(L/K) operating on Aut S[L]



£

We leave it to the reader who 1s familiar with cohomology of

groups to work out this identificatilon.

Some aspects of this discussion have been treated in

detail by Harrison, Chase, Rosenberg (AMS Memoir, No. 52, 1965).
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18.26 suppiémentary Notes III

Tensor Products

A, The universal property of tensor products.

Iet R be a commutative ring with unit, and let X, ¥, Z

be R-modules. A bilinear map
f: XxY > 2

is one satisfying f(x+x',y)

f(x,y) + £{x',y) ,

f(rXJY) = rf(x:Y) f)
(X, y+y') = f£(x,y) + £(x,¥') .
f(x,ry) = rf(x,y) .

We want to relate bilinear maps to linear ones (i.e.,
homoms. of modules)., This will be done by constructing a

certain R-module called the tensor product X ®Y of X and

Y . The tensor product has the following characteristic
property:

"There is a natural 1-1 correspondence between homo-
morphisms of X ® Y _to an R-module 2 and bilinear maps
Xx Y > 2 ,"

More precisely, we will construct not only an R-module

X ®Y but also a bilinear map

t: XxY¥Y > X 2Y ,

denoted by

(Xyy) o> x 0y



-
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(The image element x &y 18 cdlled the tensor product of
ﬁhe elements X, ¥ &) Mhis bilinear map is universal in the
following sense:

Given an R-module Z and an R-homom. ¢: X ® Y > Z ,
\,

we can construct a bilinear map

| £: X xY > 2

by i
' ) _ _ .
~/ £f(x,y) = ¢(x ®y) (verify axioms),
j.e., by composing the maps ¢ and t :
[ :
' XXY > X @ Y
F—f\“
\ ' Z .

\
\

Thus we get a map

n 'nt"
' v HomR (X ® Y,Z) —> Bilin. Maps (Xx'Y,Z) .

The universal property is that this map is bijective, i.e.,
that every bilinear map f: XXY » Z 1is obtained in exactly
one way from such a ¢ .

Notice that the "tensors" x ® y must satisfy (in order

that t be bilinear)

Rules: (x4x') ®y = X @y + X' 2y
(rx) @y = r(xeoy)
X ® (y+y') = x @y +x ay!

x ® (ry) = r(xey) .
These identities are used in the construction. They should
be contrasted with those holding in the direct sum

X®Y~XxY. Ifwe denote the pair (x,y) by x @y,
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then the module stridture on X @ Y yields

(x & y) + (x' ®y')

(x+x') @ (y+y')

(rx) & (ry)

Thus we are looking for a completely different module.

i

r(x @ y) .

Before constructing X ® Y , we will prove its uniqueness:
Prop: ILet T , T' Dbe two constructions having the uni-
versal property of X Y . Then T , T' are naturally iso-
morphic.
proof: By assumption, T , T' are R-modules and we are given
bilinear maps t; t' from XxY to T , T' respectively.
Since t 1is universal there exists a unique homomorphism
¢: T > T' such that t'=¢ o t . Since t' is universal
there exists a unique ¢i: Tt > T such that t = ¢'a t' .
Then t = (¢'o ¢§)«t . Also t = (id)»t . But the universal
property says that a given bilinear f (in this case , f = t)
can be obtained in only one way as ¢t (in this case, ¢
is ¢'o 0 or id). Therefore

¢re¢ = id.

This shows that ¢ , ¢ are isomorphisms.

B. Construction of tensor product.

The construction 1s a "cheat".

Let S be any set., We will first construct an R-module
F(8) = "the free module on the set S ", The elements of
F(S) shall consist of formal linear combinations of elements
of S with coefficlents in R , i.e,, equivalence classes

of expressions of the form
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n : ' i
(*) z:risi r. €R , s, €85 and s, all distinct

i i i

i=1
subject to the "obvious" conditions needed to insure that the
elements {1+s5|s€S} will form a (lin. indep.) basis of F(S) .
To coﬁS%ruct F(S) formally, it is conveniént to view (%)
as associating to the element s; € S ‘a "coefficient" r, €R.
We assoc&ate the coefficient zero to any é € S not appearing
in (*). 'Thus the expression (%) corresponds to a map
8 —> R (8> its coefficient) such that all but a finite

number of elements of S get mapped to zero. Hence

Definition: Let S be a set. The set of maps S -+ R

Maps_(S,R) is an R-module by additicn and scalar multiplica-

tion of functions:

[£+g] (s) f(s) + g(s)

[r£](s) = r(£(s)) .
Let F(S) c Maps (S,R) be the subset consisting of those
maps such that all but a finite number of elements of S get
mapped to zero. F(8) is a submodule of Maps (S,R) , and is

called the free module on the set S .

F(S) has the following universal property:
"Maps from i ﬁo an R-module Z are in 1-1 correspondence
with homomorphisms from F(S) to Z ."
More precisely, there is an injective mép i SKQ F(S) given
by s ~rrr> the map sending s to 1 , all other elements

to zero in R”. (We will denote i(s) Jjust by s .) There-



fore, we get

Homg (F(S), 7) ——> Maps (S,2Z)

by
(bm“‘"-‘)(bui .
This map is bijective, i.,e., every f: S»> Z arises in

exactly one way as £ = ¢<¢i , ¢: F(S) » Z a homom. In

fact, if f: S > Z is any map, define ¢: F(S) > Z Dby
0 (z rvsv) = erf(sv)
Vv v
since {s € S} form a (lin. indep.) basis for F(8) , this
is well defined. Clearly f = ¢o1i , and clearly ¢ is
uniquely determined.
Now to define X < Y , consider the submodule ‘M of

F(XJ(Y) generated by elements of the form

(x+xt,y) = (x,7) - (x',¥)

(rx,y) - r(x,¥)

(x,y+7") - (x¥) - (%)

(x,ry) - r(x,y) with x,x' € X, y,y' € ¥ , r € R
(these are all linear combinations of elts. of XxX ). Set

X @Y =F(XsY)/M, and let t: X»Y > X Y be the composi-

\
tion of i: X*Y » F(XxY) with the canonical map

e: F(X »Y) >FPX=>Y)/M=X@&Y .
Then for X,x' € X , y €Y .
(x+x',y) - (x;¥) - (x",¥y) € M, hence
t(x+x',y) - t(x,y) - t(x',y) =0 , i.e.

t(x4x',y) = t(x,y) + t(x',y) . /
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B

The other axioms for a bilinear map are verified in the same
way. Hence t .is bilineari Now let. f! XxY > Z be any
bilinear map. f 1s a map, hence f = ¢¢ i for some unique
homom. ¢: F(X<Y) -+ 2 . Since f 1is bilinear,

¢[ (X+X'Jy) - (X:Y) - (X':Y)]

O(x+xt,y) - O(x,y) - $(x',y) -

[}

£(x+x',y) - £(x,y) - £(x',y)

=0 . etCe env o

Therefore, M C kernel of ¢ . So by the universal property
of F(XxY)/M , there is a unique map ¢: X ® Y » Z such that

b=Foc . |
Then

f=0i=0¢ei=0qt .
Hence f 1is induced by a homom. 5: X®Y > 2Z . The unique-
ness of § follows immediately from the uniqueness of ¢ .
This shows that X @ Y has the desired universal property,

and completes the construction.,

C. Elementary properties.

1) The tensors of the form x =y generate X ~Y ,
i.e., every element of X @Y 1is of the form ECxi ) yi).

In fact, the images of XxY generate F(XxY) , hence
a fortiori X » Y . However, the tensors x <y are not -

independent, as the rules show.

2) (commutativity)s, X Y and Y » X are canonically

isomoxrphic,
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The isomorphism sends x ®y to y ® x . It can be construct-
ed first as F(XxY) 3 F(YxX) . Another approach is to
notice that the map XxY > Y @ X given by (x,y) ~>y ® x

is bilinear,

3) R®8X<X (X 8R),
Consider the map RxX »> X
(r,x) ~> rx o
It is clearly bilinear, hence is induced by amap R ® X > X ,
On the other hand, there is the linear map
X —> R ®X
X ~> 1 ® X .

These are easily seen to be inverses of each other.

4) (distrioutivity). Let x, x', y, y' be R-modules.

There are natural isomorphisms

\2

(X®Y) o (X1 ®Y) T (X0 X')®Y

and
Xevyeo Xey)3xe(vyey) .

To verify for instance the first, notice that the
bilinear map (X & X'}x ¥ —=> (X 0 X') € ¥ gives
bilinear maps X x¥ —> (X 9 X') ® ¥

and X!X ¥ > (X3 X1) @Y

by

(x,5) »> (X,0) @ ¥
and (x',y) ~> (0,x') &y .
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Hence we get ‘
| X ®Y —> (X6 X') ®Y dendirig x ® ¥y to (x;0) @y
X' ® Y —> (X © X') @ Y sending x' ® y to (0,x') ® ¥
Therefore
(XeY) o (X1 ®Y) —> (X6 X')®Y
Now consider the map '
(X0 X1)xY —> (X ®Y) 6 (X' ®7Y)
given by
((x,x'),y) ~~> (x®y , x! ®y) .
It is clearly bilinear, hence there is a map

(XoXx')ey > (X ®Y) & (X' ®Y)

inducing it, sending
((x,x') ®8y) ~~> (x ®8y , x' 8Y) .
Clearly the two maps are inverses of each other, hence

isomorphisms.

5) Suppose X, Y are free modules with bases {xi}
(i=1,...,m) and {yi} (j = 1,044,n) « Then X ®Y 1is
free with basis {xi ® yj} .

For, let U be a free module with basis {uid}
i= 1,600, 3 j=lyesayn « Let f: XXY > U Dbe the map

sending (% riX; , T r&yj) to £ r.ritu,. . Since {xi} B

173743
{yj} are bases, this is well dz%ined. The map is bilinear,
and so gives a map \
X®Y —> U.
sending

X5 ® yj4mm~> uij .
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Since the {uij] are lin. indep., it follows that {Xi & yj}
are 1lin. indep. They geénerate X ® Y because of (1) and

the rules, hénce form a basisi

6) If U, V are vector spaces over F of dimensions

m, n vrespectively, then U ® V has dimension mn .

7) (functorality). Let X, X', Y, ¥' be R-modules and
a: X > X' , B: Y > Y' be homomorphisms. There is a unique
homom, "o ® B": X ® Y > X! ® Y' mapping X ® y ~> a(x) ® B(&) .
Since X ® Y 1is generated by the tensors, the uniqueness is
cléar. To construct o ® B , one may first construct a map
F(XxY) > F(X'x ¥') . Another way is to note that the map
(a,B): X xY —> X' x Y!

(x,9) ~> (a(x), B(y))

when composed with t': X'x Y' » X' ® Y! gives a bilinear map
XRY ey XU &Y',

hence a homomorphism

X®Y —> Xt @Y!

8) et Mc X, NcY be submodules, and,
X = X/M ', Y= Y/N .
Then there is.a natural isomorphism
(X Y)/W-—->Xe¥Y
where W 1s the submodule of X ® Y generated by tensors of
the form m®y or x8®&n ,- ﬁhere meM, nelN.,
The map X ® Y > X ® Y -given by (7) (it sends x @y

to ¥ ®7F , where ¥ = residue of x and ¥ = residue of y)
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has any tensor m @y or x €@n in the kernél. Hence there
is an induced map ‘
e (X Y)W —>X @Y .
We need to show it is an isomorphism. Consider the map
: TXY —> (X ® Y)W '

given gy i i )
| (X,7) ~~> residue of x @y (mod W)", where
X, ¥ are coset representatives of X, ¥ respectively. If
x', y! ére other coset representatives of X, Y , so that
X' - x €M (say x'-x = m)
y' -y €N (say y'-y = n)
then

X®y -x' 8y = (x-x') ®y + x' ® (y-y')

=me®y +x' ®€n €W .

lTherefore x ®y = x' ®y' (mod W) . This shows the map &
is well defined. It is obviously bilinear, and so induces

amyp XO®YT—~—> (X ®Y)/W which is the inverse of €& . There-

fore € 1is an isomorphism.,

9) Let U, V, U'y V' be vector spaces over F with
bases {ui}, {vj}, {ui}, {vj} respectively . Let
T: g>vV , Tt: y' - V' be linear transformations. Let
A= <aij)’ B = (bi'j') be the matrices for T , T' w.r.t.
the given bases. Then the matrix for T ® T': U &y »>v ey
w.r.t. the bases {u, ®-ui,}','{vj ® vj,} is C = {c(i,i')(j,J'))

where

(1,11),(3,3") = 1irP55
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il.e.,
| TeT(u ®uy,) = L apbyg (vy e vy o
(3,37) -
The matrix C 1is called the KronecMer product of A, B .
To write it in a rectangular array, it is necessary to choose
an ordering for the sets of pairs of indices {(i,i')} and

{j,3'} . The "lexicographic" order is usual.

10) (associativity). If W, X, Y are three R-modules
then there is a unique isomorphism W @ (X ® ¥) ~ (W ® X) @Y ,
carrying - w ® (x ® y) to (w ®x) ®y .

This means that when considering tensor products of several
factors, we can ignore the parentheses. To construct the iso-
morphism, 1t.is best to show that both have the following
universal property (you insert parentheses).

‘The map t: WxXxY —> W ®X @Y
(W, X,) "> W ® x 8y

is trilinear (i.e.,

I

(wiw') 8 x @y =w®@x 8y + w ®x ®Yy etc. eee),
and the map

Homp (W © X @ ¥, 2) ——> Trilin. Maps (WxXxY, Z)
obtained by composing with t 1is bijective. As in Section A,
this universal property characterizes W ® X @Y wup to iso-
morphism.

- In the same way, homomorphisms from a tensor product of

n modules to Z correspond to n-multilinear maps to 2 .

éz_
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D. Extension of ring of operators of a module.
Let R, R!

be commutative rings, and let o: R > R!
be a homomorphism. Recall (supp. notes I) that every R'-

modulé M! can be made into an R-module by

rem = @(rim . \ ,
Iet M be an R-module, and consider the R-modulé Rt ® M

i .

(R' is an R-module, cf, supp. notes IB3). It can be given

' the structure of R'-module as follows:
/

The map R'x R'x M —> R' ® M

/ sending (r',s',m) ~~> r's' ®m
\

is clearly trilinear

(verifyl) . Hence if r' 1is fixed,
the map _ _ '
\
\
1

Rtx M —> R!
i

® M
(s',m) ~> r's! @m

is bilinear, and defines a map

| | Rt ® M —> R' @ M

segding

gt

®m ~~> rtst & m
Hence\letting rt vary again, we get a map

R' x (R* ® M) —> (R' ® M)
which sends

(r',S' ®III) > (I‘"S' ®m) .
I claim this law of composition makes

We need to check the associativity,

R" @ M into an R'-module.
'For instance,

distributivity, etc.
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s ®n) + ry*(s ®m) .

il
a3
2 -
Py

We 1list a few properties:
(1) (Characteristic property). Let M Dbe an R-module
and M' an R'-module. Consider the map €: M ——> R' @ M
given by m ~> lp, ®m . This map is an R-homomorphism. ‘
If ft': R' ® M > M!' is any R'-homomorphism, then f'e: M > M!
is immediately seen to be an R-homomorphism. Thus we get the
map "compose with &'
Homg, (R' ® M, M') ——> Homp(M, M') .
This map 1s bijective.
Thc property says roughly that the operation of viewing
M' as R-module by letting R operate through ¢ (restriction
of scalars), and that of constructing R' ® M (extension of
scalars) are "opposite". One actually says they are adjointh
To prove the bijectivity of the map, let f: M > M' be
an R-homomorphism, and consider the map
Ry M > M?
(rv,m) ~~> rtf(m) .
It is bilinear, hence gives a map
£1: R' ®@ M —> M! /
sending r' ® m ~~> rtef(m) ., . Clearly e&f' = f . Therefore
every f is of the form ef' for some f': R' @ M~ M'\. We

leave the uniqueness of f£! as an exercises. e S
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(2) (domparison‘w;th suppi hotes ID.).. Suppose
Rf = R/T = K where I is an ideal. Then K ® M < M/IM
where IM 1is the submodule of M generated by elements of
the form sm, s € I, m € M, To show this, we refer to pro-
perty 8) of Section C. Replace Y by M, N by {0}, '
X by R, M by I,Y by M, X by K. Then we get

R®MW~EQ®M

where W 1is the submodule generated by elements

s®m or r®0 (=0) , s€I ,m€E€M, r€R, 0c¢€ {0},
i.e., generated by elements s ® m . . By property 3) of
C, R®M ~ M. Clearly this isomorphism (sending r ®m to
rm) identifies W with the submodule IM , giving -

M/IM~ROMW~EKOM .

(3) DNotation: When dealing with several rings, there
is often some confusion about which ring is intended as ring
of scalars in a tensor product M ® N . When this is so, one
writes

MO®N=Me& N
to indicate that M and N are considered as R-modules for

the tensor product.

(4) (Transitivity). If R, R', R" are three rings and
if ¢: R> R, ¢': R' » R" are homomorphisms then we get
¢1¢: R > R" . There is a natural isomorphism

R" & M~R" &, (R" & M),
sending

r" em > r" @ (1' @ m) (various tensors).

(Proof for homework).
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(5) (Extension of scalars in a free module).

If M is a free R-module with basis {xi} , then R' @ M
is a free R'-module with basis {1 ® xi} ;
It is customary to use the symbols Xy also for 1 & X5 e
This property expresses formally what is meant for instance
if, given a vector space. V over R with basis {xi] ,
you consider the vector space over C '"with basis {xi}lﬁ
To make the verification, let M!' be a free module over \
Rt with a basis {xi} having the same index set. Since
{xi} are linearly independent, we can extend the map
{x;3 > {x;] ‘
Xy > X
to an R-homomorphism f: M > M' , By property 1, this corres- \
ponds to a certain R!'-homomorphism f': R' @ M > M' sending
r' ®m ~~> rt<f(m) , hence
1®x; > x; . ‘ f
Since {xi} are lin. independent, so are {1 ® xi} . They
generate (because of property 1) of C), and so {1 ® Xi} ;

is a basis of R' ® M ,



18.26 Supplementary Notes

A. The Tensor Algebra.

Let X be an R-module. We use the notation

BX=X8... 8X (p times).

The elements of this module are called contravariant tensors

= A .
of order p ‘(covariant tensors are elements of % X where
A
X = HomR(X.R) is the dual module, One also consicders mixed

ainns rma s

: . A
tensors = elements of a tensor procuc’ of some Xs , some £s).

3
An element of % X wnich is of the form

X = xl & x2 @ cus B xp xi € X

is called a decomposable tensor,

Because of associativity of tensor prcducis, tnere is

a canonical isomorphism .
: ~ Pt
(% X) ® (@q; X) ——=> P x .

This means there is a bilinear map

B x) x (8 x) —> 76T x

and it sends

- '~ . - 1
(X, @ oau ®xp, X] ® voe ®xq)Mﬁ>xl®... ®xp®xl®... ®

1

This bilinear map is called multiplication of tensors,

We extend the notation % X by setting
@X=R .
Using the isomorphisms R ® Y ~Y~Y®R , muiltiplication
of tensors can still be defined if p or g (or both) are
zero. It is just scalar multiplication, e.g.,

! t ¥ 1
(I‘, Xl®... ®Xq) /\./\’> T(}(:laisso ®Xq) .

q
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Consider the module
R(X) = direct sum of‘% X , p=0,1,2,c00 &
We will write elements of T(X) as finite sums
E:x (x € B X)
p P
P .
with the conventior that

Z!x = z;xi if and only 1if xr~x; = 0 fc¢r all p &
i

. . N\
Since every X is a sun Ns Cecomesable tenscrd of order p o,

every element of T(X) can be written in some way (not uniquely)
as a sum of decomposable tenscrs cf various lengths. Two sums
of decomposable tensors are equal if and only if for each p
the sums of those tensors of order p are cqual.

One can make T(X) into a ring by defining prcdusis via

multiplication of tensors, viz.:

1 1 D
If Z = E:Xp , L' = E;Xb Xp’ Xp e®¥XxX ,
p p
then
!
AVARE X ® X .
L % ® %
Psq
- 1
Th t of 2+7! i X ® .
e part o of order n 1is E: o xq

p+a=n '

The axioms for a ring are easily verified. However, the ring
is not commutative.

T(X) 1is called the tensor algebra of X . It is an

algebra over R . This means that there is a ring homom.

R > T(X) and the images of elements of R commute with arbi-

trary elements of T(X) .
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B. Symmetric tensor product.

! ~Let X be an R-module. Then X-®.X has a universal
Iproperty with respect to bilinear maps
f: XX o> Z
Suppose we are interested only in symmetric bilinear haps i
i.e., ones satisfying (in addition to the bilinear axioms)
f(x,xf) = f(x',x) , all x,x' €X .,
We can get such a map by introducing in X ® X the extra

relations x ® x' - x' ® x =07 Let N&€X ®X be the sub-

/ module generated by elements of the form

X ® X! - x!' ®x |,
2(X) = X ® X/N . Then the map
Q(X)

and put S
\ XxX ——> S
'Eis symmetric and bilinear, and it is easily seen that S2(X)

!has the universal property for symmetric bilinear maps.

Similarly, SP(X) = B x/N
where N 1is the submodule generated by elements of the form
i (X ® e ® xﬁ)—(ﬁg(l) @ o0s @ xc(p)),-
6 a permutation of the integers from 1 to p . SP(X)
has the universal property for symmetric p-multilinear maps
Xz veexX > % . Note that ST(X) XX . We set s°(X) =R .
Let X, € SP(X) denote the residue class of an element
xp € % X . It is easily seen that the multiplication of
tensors induces a bilinear map
sP(x) sd(x) —> sPi(x)
sending

(s Kg) > %78 %9
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A

called multiplication of symmetric tensors. This multiplica-
tion can be used to introduce a ring structure on S(X) =
direct sum of SP(X) , p = 0,1,2,400 S(X) 1is a commutative

ring, called the symmetric algebra of X .

Theorem: (for homework). Suppose X 1s a vector space of -
dimension n over a field F . Let {xl,...,xn} be a basis
for X , and denote by X4 also the corresponding element in
Sl(X) ~ X . Then the symmetric algebra S(X) is isomorphic

to the polynomial ring

F[xl,...,xn] in, n variables over F .,

¢. Exterior Product,

Instead of asking for symmetric bilinear maps, we could

have asked for alternating ones: A bilinear map

f: XxX —> 2

is alternating (= skew symmetric) iff.

£f(x,x) = 0 all x € X .
More generally, an n-multilineaX map
Sfr XAXX e v X —> 4

is called alternating iff. '

£(Xyse00,%,) = O
whenever two of the x; § are equal. Notice that for an
alternating map,
£(eessBranasDyans) = f(aeesDranns@rane)
as is seen by expansion of

f(...,a+b,...’,a+b,..-) (=O) .
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p Y
1Let N ©®X be the submodule generated by the tensors
!

Xq R vee ® X, having two (or more) x; 5 equal, and set

1

f

Rx=%xm .

>Denote the residue of a tensor Xq ® sas ® xp by Xl,A ses A xp .
R X 1is called the pth exterior power oflthe module KX « The
rmap  A:r X¥ eee ¥ X ——>!R X sending '(xi,.,.,xp) AP Ky A eee A xp
is clearly alternating, and R X has the universal proper%y

!

for alternating maps, viz, .

li

(1) Given an alternating multilinear map

f \ O XX s XX —> 7

there is a unique homomorphism ¢: Rx - Z such that £ = A .

\ (2) In addition to the rules making the function A
\

ﬁ-multilinear, an element Xy N oeee A xp is zero if two X, 8

'%re equal, and if ¢ is a permutation of {l,...,p} , then

Xl A eee A Xp = Sgn(o') Xn(l) AN ees A Xc(p) D)

. (3) Suppose X is generated by elements {xl,...,xn} .
Then R X 1is generated by the elements

xii A ees A xip with il < 12 K eaee £ ip

and l_(_lv'_<_n .

In particular, % X=0 if p>n .
To show this, note first that since the tensor product
% X 1is generated by tensors of the form

X: ® ¢e0 ® X, with 1 j n
Jl Jp : < JV < ’
the exterior power R X 1is generated by the elements

XO A.l. /\X- L
3y Ip
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Now using the rules (2), any such element is either zero,

or is equal to

where il < 12 < ese K ip .

(%) Suppose {xl,...,xn} is a basis for X . Then

the elements

X, N eee A X, i, €15 < vee K 1
i1 lp) 1 2 P

form a basis of R X .

Proof. We need to show that the elements are linearly indep-

endent., Let U be a free module with basis {u(. . )}
ll,ooc,lp

where (il,...,ip) runs over sets of integers with 1< i < n
and il < 12 < wes < ip « If we can construct an alternating

p-multilinear map

f: chc. XX"“"‘> U

i
p

then we are done. For, f = QN for some A: R X->U and A

Sendlng (Xil,.o.,x- ) /\./\/‘*> U,(il (lf il < i2 < a0 < in)

,...,ip)

sends xil A ses A xipfx/v~> u(il’°"’ip) .
are linearly independent, it will follow that {Xi A ees A X }
1 P

Since {u<i)}

are also linearly independent.

Now to construct a p-multilinear map X #+eex X > U it

 suffices to give the images of p-tuples of basis elements

(le,...,xJ ) , and these can be assigned arbitrarily. For,

p
then f is uniquely determined by



.

f(Z riX; s z:ijj r

' = Z (r.S.oo- ooo)f(xi:x-:lOC). .

/ s 1J J
1yJsees
Define f as follows: If two indices are equal in (xJ senesXy
3 / l p
set f(xj yeeosXs ) =0 o If no two indices are equal, there

il Jp
is a unique permutation ¢ of {l,ess,p} such that permuta-

tion of (X, seee,X. ) by o yields (X; seeesXy ) with
h il

Jl Jp D
ll<12 <l...<ip . Set

(xy senerny ) = senle) wliy, L 5p)

1 P .
This definition extends to a p-multilinear map, as above, I

claim it is alternating, and the verification is immediate,

This completes the proof,

(5) Let X Dbe a vector space of dimension n over a

field F . Then R X 1is of dimension (;) s 1<p<n .

_ 1
(6) For any R-module X , A X~ X , One also defines

o}
the o-th exterior power by A X =R .

D. Grassman- - Algebra.

The bilinear map

(% X) x (% X) —> PRt x

sending
(Xl ® 10 ® xp,yl ® s e & yq)

/\/\-"*“9 (xl A eso A xp A yl A eee A yq)
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Lo

(it is obtained from multiplication of tensors by composing
with the map @® X —> A X) clearly annihilates any pair of
tensors with two x's or two y's equal. Hence it induces

a bllinear map called multiplication of exterior powers,

+
> pAq X

q
(R %) x (A X)
The definition is extended as for tensors to the case p or q= 0 .

Using this multiplication, we can make

A X = direct sum of R X, p= 0,1,2,000

into a (non-commutative) ring, called the exterior algebra or

Grassman algebra., (It is an algebra over R .) The construc-

tion and verifications are the same as for the tensor algebra
T(X) o If we want to be efficient about verification, we can
consider the ideal I in T(X) generated by tensors
Xy ® sse O xp having two X; 8 equal. I actually consists
of 8ll elements which are sums of such tensors, i.e., I 1is
the direct sum of the sub-modules ~Np C:% X where
% X/Np = R X (cf. ¢ Yo Therefore

T(X)/I => A X,

and so the ring structure on A X 1is induced by that on T(X) .

E. Tunctorial Behavior.

Let ¢: X > Y be a honomorphism of R-modules » Then we
Y
get (cf., IIT C, 7 ) a map B " & X > % Y sending
Xy ® a0 ® %, to ¢(xl)® ves @ ¢(xp) . Clearly if X;@ ... ®X

P
has two x; s equal, then so does its image. Hence ® ¢

induces a map of exterior products

Ro: Rx—>avy ,
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Sending Xl AN see A Xp ennD ¢(Xl) A oo /\ (b(Xp) o

p
Similarly, ® ¢ induces a map of symmetric powers

sP(¢): SP(x) —> sP(¥) &

Extending these maps to direct sums, we get maps

T(¢ T(X) » T(Y)
S(¢ S(x) ~» 8(¥)

f AMd): AX >AY

These maps are easily seen to be ring homomorphisms.

\

F, Determinants,

Let X be a free module over R with basis {xl,...,xn} g

\ n
\Then A X has a basis consisting of the single . element

i

Xy A ees A Xy (cf. IV C4). In other words, every element
| n
7' of A X can be written in exactly. cne way in the form

(*) Z=1(X) A eas A xX,) r €R .

Let T: X > X be an R-homomorphism (eg. R a field,
T a 1lin., trasf.l). As above, T induces a homomorphism
n n’ n

AT: AX>AX .

in the form (¥*), say

Write [rf\l ']_:'}(Xl N sas A Xn)

n . 9
[A llj(xl/\ ' N /\Xn)= d(XlA '] /\Xn) P) dER .
n
Then for any Z € A X , by (¥) ,[ﬁ ﬁ(z) = rlﬂ ikxl A ees A xn)
= rd(xl A s A Xn)

=d2Z .

n
In other words, A T is just multiplication by the scalar d
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n -
in the module A X . Note d is independent of the choice
of basis {xl,...,xn} .

Let M be the matrix of T w.,r.t. the basis {xl,...,xn} s

i.eo,
T(xi) = E;aij Xy P €R,

and M= (aij) .

Theorem: d = det M

Proof: We calculate:
n
By construction of A T ,

A )
A T(Xl A eee A Xn

It

T(xy) A T(x5) A eue A T(x,)

(%‘ aljl le) A (z: agje sz) A ese A (%: anjn xjn) .
1 Jo n

We can expand this expression out according to the rules. We

get to begin with a big sum

= z: (Bgq eee s Xy A eoe A X, ) .
(‘jl""’dn) 'jl an ‘jl Jn
Now if two jv s are equal, the term x A ase AN X, is

Jl In
zero. Hence the summation need only be extended over those

indices (jl,...,jn) (where 1< jv < n) such that no integer
occurs twice, i.e., we need sum only over those indices
(jl,...,jn) which are permutations ¢ of the set (1,..4,0)

Thus the sum may be written as

z (.alc(l)o..anc(n))(.xo(l) A vee A XO’(n-)) 3 (0 € Sn) .

=T .
Now Xc(l) A sse A Xo(n) = = X Aaes NXE the =sign being
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/
sgn(o) . Hence

z (sgn g)alc(l) cos ano(n) (Xl A eee A xn)
8]

it

(det M) x; A oo A X © Q.E.D.

G. Duality in tensor products.

A
Let 'X, Y be R-modules and u € X , v € ¢
A
(X = HomR(X,R)) . If we map
1 Xx¥ —> R
by (x,¥) ~~> (x)u + (y)v  (writing transforma-
tions on the right)

we get a homomorphism

X@Y —> R .
If however, we map
XXY —> R
by (%,5) ~n> (x)ue (y)v

we get e bilinear map, and hence a homomorphism
¢: X ® Y —> R

sending x ® y ~~> (x)u*(y)v .

Therefore we have described a map-

‘/\

A A ~
XxY —> X ® Y = Hom, (X ® Y, R) ,

R(
A A

namely,the pair (u,v) € XxY 1is sent to ¢ . Since the symbol

(x)u is linear in u (as well as in x ) , it is clear

that this map is bilineaf, and hence gives rise to a homomorphism

A A N

sending u ® v to the map (¢ above.
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Proposition: SﬁppoSe X 1is a free module with basis

A
{xl,...,xm} , Y 1is free wi:h basis {yl,...,yn} . Let {xi}
be the dual basis of Q s {yi} the dual basis of Q , So that
<Xi’ﬁj> = <yi}9j> = 513 ¢
Then the map

A A AN
€: X ®Y —> X ®Y

is an isomorphism,and the image of {Qi ® 93} is the basis

N
of X ®Y dual to {xi ® yj} .

A
Proof: Let ¢, be the image of R, = Y, in X @Y. Then

by the construction above,
A
W¥5 = Buibyy

(x, @ v )by = (xu)Qi « (y

is zero if (Ww,v) #+ (i,3) , 1 if (w,v) = (i,J) . Hence
2 @ 9.} form a dual basis to {x, ® y.} .
1 JA A 1 J

This means a basis of X ® Y 1is mapped to a basis of X @Y

the images of

and shows that € i1is an isomorphism,
' A
The proposition allows us to identify ¢ e Y with the

dual module to X ® Y where we are dealing with free modules.

A
Thus if u ¢ ﬁ , V€Y we view u ® v as a linear functional

on X ®Y , defined by

(x)us (y)v .

It

(x ® y)(u ® v)
In the same way, the dual of a tensor product of p factors

may be identified with the tensor product of the duals.

H. Duality in Exterior Products.

Let X be a free R-module with basis [xl,...,xn} . Not

: P ,
all elements of % ﬁ induce linear mgps A X > R. In order to
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Aﬂo so, the element must annihilate all tensors Xy Q@ eoe ® Xp

with two terms equal. However, we can. easily find some ele-

Aents of (R X) as follows:
Consider the map!
(X% ees xX) x ()Qx... x)’?) —> R (i; of each kind)
sending (we use the inner product notation < , >) |

1

((xl,...,xp); (ul,...,up)) A det(<xiiuj>) ,

‘fo!'r x; € X, uy e X .

Since < , > 1is linear in the first variable, and since det
ﬁs @ linear function of each row, the map is p-multilinear in
(xl,...,xp) . Since < , > 1is linear in the second variable
and det 1is a linear function of columns, the map is p-multi-
iinear in (ul,...,up) « Moreover, det(<xi,uj>) vanishes
if‘two X; § or two wu, s are equal. It is .easily seen that

J
|
therefore there is an induced bilinear form

A
A xR i) — B
which sends

(xl A ees A xp s U A e A up) > det((xi,uj>) .

Such a form induces a homomorphism
D 2
E:Aﬁ———)IID\X »

Proposition: Let X be a free module with basis {xl,...,xn} .

A A
Let {x.} Dbe the duval basis of X . The map
1 AN

E:I/J\}Q-——->RX

is bijective, and the image of the elements



Liuu

A
e A wee AR (1, < eon < 1)
i ip 1 ho)

form the dual basis to the basis

Xi 'A sees A Xi (il < e e < ip)

1 P

Proof: By construction of € , if ¢ = E(Qi A ess A Qi )
1 P
then
(XJ A ess A XJ )Q = det(<xj s Qi >) (V,u == l,ooo,p)
1 1) ! v .
Now
<X s Q. > = 8§, .
Ju v duity

and since jl < ses < ju this can be 1 only for a single
index u , if v is given, Thus each column contains at
most one 1 , the rest O . Hence we get zero fcr the deter-

minant unless for each v , iv = j

Jl < oo < jp and il < see K ip

this can occur only if jv = iv for all v . Then the matrix

e some W . Since

(<X ] Q >)
J i
v v

is the identity, hence the determinant is 1 . Thus

N oo N = . i d.
(xal A A XJP)¢ 6(31""’3 Vo (1eyenesi) 2 require

- oo X3
This shows € maps a basis of A X to a basis of , and

thus is an isomorphism,
A A
This proposition allows us to 1dent1fy R X and R X .

Thus we view an element uq A ese A up € R X as a linear function
on R X , acting by (1nnerprpduct notation)

<Xl A s 08 A Xp ) ul A LR 2 ] A up> = det((xi,uj>)
Elements of R X are often called p-vectors, and elements of

R ﬁ are called p-forms.
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(¢} Let g = 0 define another curve D , also padsiug through

tr» origin. OCne says that € meets D gransversaliy il Zheir .

ot
[¥¥]

zagent directions are distinct. Otherwise they have a fangency.

o
()

¢32rlbe a conditlon on the ideal generated by £ and g which

a

sarmines whether or not the curves are transversal at the
oz izin,
(e} Practlce drawing a few plane cuwrves,

. 2 i ! ——— .

L. The plane curve v° = x3 ‘has an algebraic peramayrization
-3

X = t2

i : -T2
{a} This yields a map Spee k(%] ——> Speciklx V}/ay“q333 ) .

1S Y

{z° The map is a homeomorphizm of topologizal spaces.

5. fa) Let A c kix! x klx] [the product of %he rirg k
w.. ch ;tself} be the gubriug consisting of pairz (f,z; of
pozynomials having the property that f{a) = g{b) , where a

ann! b are chosen elements of k . Ivaw Spez2 A , and dzsaribs
th: map from Spec {k[x] x klx]} %o Spec;, 4 . Find axpiielt
generators and relations for the ring .

{b  What if A 418 the subring of pairs (f,g} " such that

Plo) = g(b) and f'{a} = g'{b) {the values of %the dazrivatives
are equal)?

{¢  How should one draw the spectrum of the subzing of klx]

of functions £ such that £1(0) = 0 ¢

6. Let Reokxkxkxkzx ... {the ring of sequences of

elements of k) be the subring consisting of those seqQuences

8y:8p5 000 which become constant for suffilelently iarge n, i.e.,



P
S e T
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-y i

fo?u#;ﬂthat a =a_ 'Tor n and m large enough. The regquired

b33 m

'f}ié?ggnéss is allowed to vary with She sequence., Draw Spec R .

- T.-(a}) anw Spec ZZIx] ., You should view i% as a plane, letéing

“'sgy the horizontal axis represent the "direction of Spee ",

and-the vertical axis the "x direction” in a rather vague way.

Fo:» each of the closed points of Spee Z2 , given by the prime

nunbers (= prime ideals) 2,3,....Pr... let the vertical line

above the point p 'represent the locus V{p) in Sp2ec Z[x] .

‘It corresponds to Spec % [x]/{p) = Spec Fix] where F iz the
field Z2/(p) , i.e. to a "iire" . Thls line has ocn 1% the poinis

given by X = 0;1;.005D-1 & Draw them in for primes lass than

\
\

or aqual 7 .

(b A locus V{£) , where f 15 a polynomial {in x with
inegral coefficients) should be drawn as a curve., Thiz 18 a
pu-=ly schematic drawing, and you should no’ worry abont where
the curves go, eicept that when they pass through one of the poiris
you have drawn, you should draw them as passing through. Toy

to figure out, when two curves meszt, whether the intersesebion
ghculd be consldered as transversal or not, and draw azcordingly
(¢.23.{b)). How draw the loel =x=0, X=1, X=8, .c0os Z=7 .

(c; How does the locus x“=2 {i.e.,, the cuvve ?{xngE ] meet
the vertlcal “"line" V{2) ? The line V(7) ? The line ?(3) ?
Draw 1t .

(d: How should the locus x> = 8 be drawn ?
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18.732 Exercises No., 2

1. Let R be a ring, Ml’ M2 two maximal ideals ot R ,
and Xys Xg € X = Spec R the corresponding points. Let

¢ k(x,) :'k(xe) be an ;somorphism between the residue
fields k(xi) = R/Mi . Let R, =R be the subring of
elements a € R such that w(a(xl)) = a(x,) (notation of

(1.B)). Describe Spec R, .

2. (a) Show that the rank of a free module is uniquely N
determined, i.e., that a module can not be free of rank n
énd free of rank m {n#m)} at the same time.
(b) Suppose that R contains no idempotents other than
O, 1. Show that if a module M over R is locally free
then it has a well defined rank. |
3. (a) Describe leccalization with respect to an element in
a ring R with dcc. Describe all modules over R . Describe
the sheaf assoclated to an R-module, and show that every
locally free rark n R-module is free.
(b) Let R be a local ring with maximal ideal m , o
k = R/m its residue field. Let F be a free R-module with
basis {xl,...,xn} . Denote by 2z the residue of an element
z € F in the k-vector space F = F/mF . Show that a set
{yl,...,yn} < F is a basis of F iff. {?l,...,sr‘n} is a
basis of F . (Hint: consider the determinant of the matrix -
of the endomorphism of .F sending Xy to ¥i ) .
(c) A locally free module-over a local ring is free. o
(d) A semi-local ring R 1is one having only finitely

many maximal ideals. Show that every locally free module



18.732 Exercises =08 No. 2

of rank n over R 1is free. (Use the Chinese Remainder
‘Theorem and (b)).
4. Prove that if a finite set § cR generates the unit
ideal, then the 1l-cohomology of a quasi-coherent sheaf F
on the covering {Xsfs € S} of X 1is zero. Do the case
that S consists of two elements first.
5. Let f : R = R' be a ring homomorphism. We get a map
v : X « X' Dbetween the spectra. The fibre of the map o
at a point x € X 1is defined to be Spec(R'@;k) where
k = k(x) is the residue field at x (cf. (1.B)). If x
is a closed point, the fibre is a closed subspace of X!
(why?).
Spec R[ti""’tn] is called affine n-space over

X = Spec R . It maps naturally to. X , and the fibres are
of the form Spec k[tl,...;tn] (k = k(x)) .

(a) Let M be a free R-module with basis Vs eesv,)

The symmetric algebra - SI{M) is isomorphic with R[Vl""’vn]

(cf. T.P.). Prove this.

‘ (b) A section of a map of sets o.: X' » X is a map

¥y ¢ X ~ X' - such that the composition ¢¢ = identity. When
dealing with specfra, it is usual to consider only those
sections which come from ring homomorphisms g : R - R' such
that gf = identity. In this sense, the sections of
Sbec S(M) over Spec R are/;n 1-1 corregpondence with

it
elements of the dual module( M= HomR(M,R)
‘\/
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18.732 Exercises -3~ No. 2

5. (c) Generalize (b) to the case of an arbitrary R-module
M.

(d) Interpret geometrically (in analogy with vector
bundles) in case M is locally free of rank n . Justify
your assertions.

6. (a) Every locally free module over a PID 1s free. hat
theorem does this follow from, and why?

(b) Using problem 4 of No. 1, we can identify the .
spec%ra X c¢f the rings R = k[t] and R = k[x,y}/(y2 - x3)
Show that thers is an exact sequence of sheaves: of additive

groups on X .

0% ~F-ec=0

where ¢ ig a sheaf "concentrated at the point p : t = 0"

whose sections on an open U < X are zero if D ZU , and
e(U) mk if p €U .

(c) Show that the sheaves of units form an exact seguence

" of multiplicative groups

0-~R-K*-35-0

where 6 1is isomorphic to 'é via a map =z A»w> l+é

(d) Use the exact cohomology sequence obtained from (c)
to célculate the isomorphism classes of locally free rank 1
modules on Spec lc[x,y]/(jy'2 —_x3) .
7. In a similar way, calculate the group of isomorphism

classes of locally free rank 1 sheaves on Spec Z[x)/(x2 - 8)

(cf. problem 7 (c), (a) of To. 1).
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