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AN EXPOSITION OF CARLSSON'S PROOF
J.F. Adams

This will be an expository paper about Carlsson's proof of
Segal's Burnside Ring Conjecture. First I should explain what the
conjecture says.

Let me begin with a theorem of Atiyah and Segal about equivar-
iant K-theory [4]. Let G be a finite group, with universal
bundle EG —> BG . Let X be a suitable space on which G acts,
for example, a finite G-CW-complex. Then one has a projection map

EG x X —> X .
Here I must warn you of a well-known danger; this map is an
ordinary homotopy equivalence, but it is not a G-homotopy-equiv-
alence. Still, it gives an induced map
Kg(X) ——> K (EG x X) .
This map is not yet an isomorphism, but it becomes an isomorphism
if you pass to a suitable completion

A
o4

~

A
(X) > KG(EG % X

KG
In particular, one can take X to be a point P ; on the left

KG(P) gives the representation ring R(G) , and on the right

KG(EG) gives the ordinary K-group K(BG) ; thus one recovers the

theorem that the map

A

BiEy " -~

> K(BG)

is an isomorphism.
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Segal suggested that one should take the result of Atiyah and
Segal, and replace equivariant K-theory by equivariant cohomotopy.
So I should next explain about equivariant cohomotopy. (For
readers who want more details than seem appropriate here, I have
tried to provide an exposition of the prerequisites in [1]; I hope
it may be convenient if I give references to it, provided it is
understood that the referencesrgiven in [1] have priority.)

Let G be a finite group. Let X and Y be suitable spaces
on which G acts; for definiteness, let us say that they are
finite G-CW-complexes with base-points. We define

x, v1°
to be the set of G-homotopy-classes of G-maps from X to Y ,
where maps and homotopies preserve the base-points.

We now introduce suspension. In equivariant homotopy theory,
you must say how your group G is to act on the suspension coord-
inates you introduce. So we suppose given a representation of G
on a finite-dimensional inner-product space V . We define Sv
to be the one-point compactification of V , with base-point at
infinity. Thus we get a suspension function

\Y

sV. rx, v1°© G

> 18 &%, 8° & ¥I1°

it carries a G-map f: X —> Y to 1 A £ . It can be shown
[1 583, §84] that [SV A X, Sv A YlG attains a common value for all
sufficiently large V ; this common value gives us the stable group
x, v1¢ .

We can now define (reduced) equivariant cohomotopy groups by
setting

ng(x) = {X, Sq}G "

At least, this is the definition if q is a non-negative integer;

if g is negative we modify the definition in an obvious way. For

consistency, it will be best if all cohomotopy groups in what
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follows are reduced groups applied to G-spaces with base-point.
Notice also that my gradings q will run over integers only.

Next we want to complete. For the purpose of proving the
Segal conjecture, it is sufficient to consider the special case in
which G is a p-group [9]. So I will fix on a prime p , and
suppose that G is a p-group. I define %E(X) to be the p-adic
completion of W%(X) . Since ng(x) is a finitely—generafed
abelian group [1 §41, ?g(X) is a compact Hausdorff (abelian)
group. In the category of compact Hausdorff groups, inverse limits
preserve exactness; so as long as we stay in the category of
compact Hausdorff groups, we may use inverse limits freely. For
any infinite G-CW-complex X we define

Talx] = <£%E TR
where Xa runs over the finite G-CW-subcomplexes of X

I will now discuss different but equivalent forms of the

Segal conjecture. The discussion that follows is based on contrib-

utions by J.P. May, and I am grateful for his help.

THEOREM 1. The following statements are equivalent.
(1) The map
TX(X) —> TX((EGW P) A X)
G G
is an isomorphism (for all X) .

(ii) The map

A A
* . * *
£ mEY) > ﬂG(X}
is an isomorphism whenever f: X —> Y 1is a G-map which is also
an ordinary homotopy equivalence.
(iii) We have
A
* =
15(2) 0

whenever Z 1is a G-space which is contractible (though not neces-

sarily G-contractible).
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Of these, (i) is the formulation usually considered; the
product (EGuU P) A X appears instead of EG x X because this is
the version for reduced cohomotopy of G-spaces with base-point.

All three formulations avoid any finiteness assumption on the
G-spaces X, Y, 2 ,considered; this is possible because our com-

pletion process is fairly crude.

PROOF that (i) implies (ii). Consider the following diagram.

~

%E(X) S %é((EG L P) A X)
f* (1L A £)*
T (v) SN TA((EG 4 P) A ¥)

It is sufficient to show that

1 A £f: (EGU P) A X > (EGU P) A Y

is a G-homotopy-equivalence; and for this it is sufficient [1 §2]
to show that it induces ordinary equivalences of the fixed-point

sets. These fixed-point sets reduce to the base-point except for

the subgroup H = 1 , and for that the map

1 A f: (EGuP) A X

> (EGuU P) A Y

is an ordinary homotopy eguivalence.

PROOF that (ii) implies (iii). Take X =2 , Y =P (or vice

versa) .

PROOF that (iii) implies (i). Let us form a cofibering
4 M
EGup —1 5 gf > EG

N
Here J 1is an ordinary homotopy equivalence and therefore EG is
contractible. Taking the smash product with X , we get a cofiber-
ing

~

(EGu P) A X -3 Al > X > EG A X

~
in which EG A X 1is contractible. By (iii) we have

A T
nE(EG A X) =0,
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and so the exact sequence of the cofibering yields (i).

THEOREM 2 [5, 6] The statements given as equivalent in

Theorem 1 are all true.

This is Segal'!s conjecture, as proved by Carlsson (5, 6]. I
will use the discussion above to explain one of the ingredients in
Carlsson's proof.

Segal's interests always led him to consider "localisation so
as to invert the Euler class", that is, to take a direct limit under
multiplication by the Euler class. Carlsson's analysis of what is
relevant leads him to consider an inverse limit under multiplicat-
ion by the Euler class. I shall suggest that most of the inverse

limits in Carlsson's proof can best be interpreted as the cohomot-

opy of infinite complexes. In this case, the relevant infinite
complex is as follows. Let V be a representation of G 7 let
SmV be the union l_J SkV (under the obvious inclusions). Let

k=0
X be a G-CW-complex with base-point.

THEOREM 3. If V # 0 , then

oV

%E(s AX) =0 .

It is clear that this is a special case of the results to be

oV v
proved; since V # 0 the space S is contractible, so s™' A X

woV

is contractible and %E(S A X) =0 by formulation (iii).

Let me now explain the approach to Carlsson's proof which I
shall suggest. It seems that Carlsson found his proof by translat-
ing the problems from cohomotopy into homotopy. Now that he has
found the proof, I suggest that we can follow it better by trans-
lating all his statements back from homotopy into cohomotopy, so
that we get a proof stated as far as possible in terms of cohomot-

OpY. In particular, I suggest that we take all the statements
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about "convergence of skeletal filtrations" in [5] or "convergence
of singular filtrations" in [6], and interpret them as instances
of the Segal conjecture, in one of the forms stated in Theorem 1.
Similarly, I suggest that we take all the statements about *con-
vergence of representational filtrations" in [5] or [6], and
interpret them as instances of Theorem 3.

With this in mind, we can study the organisation of Cérlsson's
proof. His proof is inductive; we may assume as our inductive
hypothesis that Theorem 2 is true for p-groups G' with
|G'| < |6] . The inductive step falls into three parts.

(a) Proof (from the inductive hypothesis) that ?E(va) = 0
for one particular V . It is essential to the programme that the
representation V chosen should have two properties: VG = 0 and
VH >0 for H < G . No other property of V is needed. There
is an easy choice of a representation with these properties: take
the reduced regular representation.

(b) Proof (from (a)) that %E(SWV A X) =0 (for the same V ,
but for a general X) .

(c) Proof (from (b) plus the inductive hypothesis). of
Theorem 2, the Segal conjecture for G .

Of these parts, (a) is by far the most substantial, and I will
leave it to last; the other two are comparatively easy. I begin

with a lemma which is easily proved by standard methods of general-

ised cohomology theory.

LEMMA 4. We may infer %a(w A X) = 0 provided we know
%ﬁ(W) = 0 whenever X has a G-cell (other than the base-point)

of type G/H x g® ;, G/H x Sn_l .

PROOF. First we remark that

%Cé(w A (G/Hu P) as™) = %g'“(m .
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o

(If W is a finite complex see [1 §5]; otherwise pass to the limit
from finite subcomplexes.) So the result would follow by the Five
Lemma if X were built up from the base-point by a finite number
of cofibrations

¢/H A 8P > X!

> X" .

Unfortunately, it is one of the standard snags of the subject that
not every finite G-CW-complex can be built up in this way.l How-
ever, there is a standard way of overcoming this snag, for which
see [1, end of §5]; this works and proves the result when X is

finite. The general case follows by passing to limits.
PROOF of step (b). We apply Lemma 4 with W = va . For

H =G we have %a(smv) = 0 by assumption. For H < G we have

v + 0 ; so the map

SkV 5 S(k+l)V

is H-nullhomotopic, and for the limit we have
A
m

*
H
(s®V A x)

Il
o

So Lemma 4 gives #é

PROOF of step (c). We prove the Segal conjecture in form
(iii). Let 2z be a G-space which is contractible. Take the co-
fibering

0 oV

s > s°V /g0

and form the smash product with 2 ; we get a cofibering

\Y

% — G s B >sVss®) Az .

In its exact cohomotopy sequence, we have

fas™ A z) =0

because we are assuming the conclusion of step (b). We prove

1>

2((s™Vss% A 2) =0

by applying Lemma 4 with W replaced by 2, X replaced by

oV SO

S5 . We have VG =0, so X = SmV/S0 has no G-cells of the
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form G/G x B® , B/6 » 871 (s¢he¥ than the base-point). Thus we

only need to know
%ﬁ(Z)=o for H < G,

and this follows from the inductive hypothesis which we assume.

The exact sequence now gives %E(Z) =0 .

In step'(c), I have derived both the statement and the proof
from those of Proposition 5, p.16 of [5] (compare Proposition II.5
of [6]) by a process of eliminating inessentials ("wring the water
out"). I suggest that it is just as easy to take this step in co-

homotopy as in homotopy.

We can now turn to step (a). Carlsson's method rests on

. A g
catching n*(Swv} in an exact sequence

G
(5) ... ——> B* Yy

> (C* >

>1’1\ré(sm e .
This is the "fundamental exact sequence" of [5 p.27], [6 section
IIT]. 1In this exact sequence, the group C* is calculated by
exploiting the inductive hypothesis, while the group B* is cal-
culated by reduction to ordinary homotopy theory plus the Adams
spectral sequence. This subdivides step (a) into two major parts.
The behaviour of the "fundamental exact sequence" (5) depends
on whether G 1is an elementary abelian p-group or not. If G is
not an elementary abelian p-group then both B* and C* turn out
to be zero, so we have %é(smv) =0 . If G is an elementary
abelian p-group then both B* and C* turn out to be non-zero;
so further argument is needed. Carlsson's original approach was
to cite [2] to show that if G is an elementary abelian p-group
then the Segal conjecture is true in its non-equivariant form, and
[8, 9] to show that this implies the equivariant form. For various

reasons, I think it better to show that the boundary map in the

"fundamental exact seguence" (5) is an isomorphism; see [10].
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We will next construct the "fundamental exact sequence" (5).

We begin with a cofibering which was used in the proof of Theorem

l, that is

0 ~

EG . P > EG =P v CEG

> S

But now we use it in a different way; we form the following exact

sequence.

sV, (e p) A s9)¢ s {s¥V, 136 (s®V, E€ A sT® .

Of course, this involves us in considering {X, Y}G when Y is
no longer a finite G-CW-complex but a G-CW-complex with finite
skeletons; still, this causes no trouble. The sequence makes
sense even if g 1is negative, by an obvious modification of the
definitions. The groups are finitely-generated abelian groups
[1 §4]. It follows [3 p.108] that we may pass to p-adic complet-

ions and obtain an exact segquence

—> "s*Y, Beu P96 5 M(kV, 50396, kY pxiaG

of compact Hausdorff groups. We can now pass to an inverse limit

over k and obtain the following exact seguence.

S 7 . A{Skv, EG i P}qG >
> <Lim AgkV g0ya6
ey il ARV oy E6 L
This gives the required exact sequence
e iy B > %g(smv) T . G A
We will first consider the calculation of C* . If X is a

G-CW-complex, let us define the "singular set" or non-free part of

X by
Sing(X) = U XH
H>1
It is easy to show that the restriction map

-

[X, Y]G > [Sing X, Sing Y]G

is a (1-1) correspondence if the space Y is contractible; this is a
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remark of tom Dieck [7]). 1In particular, we have

[ A 87, SW A EE’A Sq]G

= kv W " Sq]G

< > [Sing(SW AST), s

We may pass to an attained limit over W , and find

(s®V, 8¢ » s9)6
.. Lviqm> (sing(s” » sXY), sW A 595G .
Introducing the remaining limits, we find
(6) c? = <L—}i{3—n " %I—“o [sing(s" A sXV), W A g99C |

(At least, this is the formula if q20; if g < 0 we modify

the formula accordingly.)

It is reasonable to suppose that we should obtain a spectral
sequence convergent to C* by filtering the construction Sing(X)
appropriately. When we examine matters more closely, we find that
we have to "thicken up" the construction Sing(X) , replacing it
by an equivalent but larger construction, before we can have the
right sub-constructions inside it. This can be shown by examples;
one sees what to do by studying particular groups G such as the
cyclic group ZB » the elementary abelian group 2. x 2 and the

2 2
dihedral group D8 - I will omit this and get on with the work.

I shall need a construction due to Quillen [{12]. From our
p-group G we can construct a simplicial complex Q(G) . It has
one vertex v(H) for each subgroup H > 1 in G . It has an
r-simplex o(HO, Hl' —— Hr) for each chain of subgroups

1l < HO < Hl X emm % Hr c G ;
the vertices of this r-simplex are
v(HO), v(Hl), 55 7 v(Hr) :

The r-simplexes o(HO, Hl’ ey Hr) with Hr < G form a sub-

complex 5(G) c Q(G) , which we may think of as the "reduced

Q(G) ". The whole complex Q(G) is then the cone G(G) x Vv(G) .
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G acts on the set of subgroups H by conjugation; g sends

H to gHg_l . Therefore G acts on Q(G) and 6(G) , which

become G-spaces.
I define the "thickened singular set"
; Thing(X) < Q(G) x X

to be the union of
_ I-Ir
G(HO, Hl' e Hr) x X
over all simplexes of Q(G) . Using the projection

0(6) % X ——s ¥

we get a G-map

Thing(X) S Sing(X)

PROPOSITION 7. The map
Thing(X) ——> Sing(X)

is a G-homotopy-equivalence.

SKETCH PROOF. Consider first the pair
G/H x E®, G/H x s 1 |

In this case the pair
Thing(G/H x E"), Thing(G/H x s 1)

becomes

b, P if m=1,

or

G x. (Q(H) x E"), G x. (Q(H) x s™°1

H H

if H = 1 .

Here Q(H) 1is a cone OQ(H) = v(H) , so the projection

1 n n-1

n > E®, s

Q(H) x E", Q(H) x s"~

is an H-equivalence, and the result follows in this case.
Any finite G-CW-complex X can be built up by induction,

using pushouts
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G/H » E° ————3

T T

G/H x ™1 > X'

Both Thing and Sing preserve such pushouts; so tﬁe result
follpws by induction when X is a finite G-CW-complex. Then it
follows when X is general by limits.

We may now replace Sing by Thing and write
Lim A Lim

: W
= _ﬁ-> [Thing(S" A S

(8) gd B kV) gW A 5976 |

I shall assume, without a proper discussion, that we can obtain a
spectral sequence convergent to C* by filtering the construction
"Thing". In fact, I shall filter it according to the skeletons of
QG .

Spectral sequences are usually computed by determing suitable
relative groups, that is, the groups corresponding to "one skeleton
mod the next". 1In this case it seems better to begin by determin-
ing suitable absolute groups.

Take an r-simplex

O(HO, Hl' die W Hr) .
The subgroup of G which preserves this simplex is
N = N(HO) n N(Hl) n ... n N(Hr) .
The G-orbit of this r-simplex consists of the simplexes
o(gﬂog-l. ngg_l, e gﬂrg-l)
where g runs over G/N . Corresponding to this part of Q(G)

we have an absolute group, namely

(9) p = ZIE A MM, gV, gkY), sW 5956
where T 1is the construction -
- - - gH g
T(X) = \v/ (o(gH g l, gH,g 1, cvsy GH G l)LJ Yy oy T .
0 1 r
geG/N

LEMMA 10. The group p? s
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(i) ¥9s% g H =6
(ii) 0 if H < G .
r

Maps induced by inclusions between the groups (i) are iso.

PROOF. We have

; ; H
p? = LB AL, e ey AL Y A skVH, gV x g94©
k W N
where H = H_ . This gives
o f ] . H ol H
pd - <L}tm A Lvlqm> LU , sV A g99N/(HaN) .
Since WH can be arbitrarily large among representations of

N/(H n N) , this gives

pd _ Lim A {SkV’ Sq}N/(HnN)

= <%
Lim aAq kVH
% "w/(unn) S )

VH

%g/(HnN)(s“ -
Now we have to distinguish two cases.

(i) If H = G then VH = 0 and we get ﬁq(so) i

(ii) If H <G then V¥ >0 ; also HnNo>1 (H nN con-
tains at least the centre of Hy ) and so IN/(H n N)| < |G| ;

thus we can apply the inductive hypothesis and get

Aq (vaH

"N/ (HnN) ) = 0.

I shall assume without proper discussion that we can proceed
from this input to the final answer, along the lines of the
Eilenberg-Steenrod uniqueness proof, using Mayer-Vietoris sequences
Oor introducing relative groups as we prefer. The outcome seems

predictable.

LEMMA 11. The E2 term of our spectral sequence is

H* (Q(G), 0(G); M*(s%))
G G

A*(Q(e); %) .
G

~

Q(G)

If G 1is an elementary abelian group then the complex G
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is the "Tits building”; it has cohomology only in the top dimens-
ion, where we get the "Steinberg module" [15]. (The top dimension

is n - 2 , where n 1is the rank of ¢ ‘)

LEMMA 12. If G 1is not an elementary abelian group then
Q(a)

G is contractiﬁle.

PROOF (after [12]). Let ‘¢ be the Fitting subgroup of G ’
that is, in this case [16 p.141], the kernel of the projection
from G to its maximal elementary abelian guotient. By assumpt-
ion we have ¢ > 1 . The crucial properties of ¢ are
(i) ¢ is normal,
(ii) 4if H < G then <%, H> < G , where <¢, H> is the
subgroup generated by ¢ and H [16 p.52].
We will define a G-homotopy
h: I x Q(G) —> Q(G)
of the identity map. We subdivide I x a(G) into a finite simp-
lical complex in the usual way, so that we have one simplex with
vertices
0 x v(HO), 0 x v(Hl), cwwy 0 X V(Hi), 1l x v(Hi), T v(Hr)
for each chain
1 < H0 < Hl L Hr < G

and each i . We define h to be the simplicial map which carries

0 x v(H) to v(H)

1l x v(H) to v(<d, H>) .

Clearly this is a G-map, and passes to the quotient to give a
deformation retraction from G(G)/G to Y/G , where Y 1is the

subcomplex of Q(G) consisting of simplexes c(HO, Hiv «eny Hr)

with ¢ < HO . Clearly Y 1is a G-cone v(®¢) * Z , and Y/G is a

cone Vv(¢) * (2/G)
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This proof would still work if we replaced ¢ by any non-
trivial subgroup K c ¢ normal in G ; this would give the first
homotopy less work and the second one more. With the details
chosen, the action of G on Y is actually trivial‘(every sub-

group H with @, H ¢ G is normal); so Y/G =Y .

Since a(G)/G is contractible, its reduced cohomology is
zero, and the spectral sequence shows that C* = 0 . This com-

pletes my exposition of this part of the argument.

The reader will have noticed that I have not given complete
details. Before doing work to write a careful and detailed version
of such a proof, I would prefer to give thought to the statement
of the conclusions; what do we really want from this argument?

Two more points are in order. First, the argument involves
manipulations with unstable groups before one passes to a limit

over suspension; the world of possible suspensions is not the same

for N/(H n N) as for G . Secondly, we have not used much about
s*V i so far it could be replaced by any G-CW-complex Y such
that YG = S0 and YH is contractible for H < G . The precise

choice of va will become relevant in what follows.

Let us turn to the calculation of the group B* . Since we

have already dealt with the "non-free part™ of our problem, we may
hope that we have only to deal with problems about G-free G-CW-
complexes, for which the reduction to ordinary homotopy theory is

understood.

We wish to determine

59 Lim A {Skv'

k

Let Yu run over the finite G-CW-subcomplexes of EG .y P ; then

EG u P}qG e

we have

T T
Lim L:m> {Skv' YO}qG .

=
BY = <
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Here the limit over o is attained; and in fact, in what follows,
all the limits over o which matter will be attained in each

degree. We thus obtain

gd - <le le> A {SkV, v }qG ]
k a o

By G-S-duality [1 §8] the G-free object Y, has a G-S-dual

DGYa ; it is important that DGYQ is also a G-free object, and

that this duality is an n-duality, where the dimension n is an

ordinary integer and not an element of RO(G) . We thus obtain
qg _ _Lim Lim_ A kv n,qG
B = s Ot {s A DY r S ‘

Now we actually can reduce to ordinary cohomotopy; by a theorem on

changing groups [1 §5] we get
kV q
_ Lim Lins_(s " Dg¥q Sn}
k o G ! :

We have an Adams spectral sequence for computing the ordinary co-

B4

homotopy group {X, s i in our case it involves the ordinary

homology group kv

. S ADGYB‘F>
* G r p .

Here we have a Thom isomorphism
DGYa_ =
H, g ! “p/-

(SkVADY )
G a, F
T e
p
Of course, this does not commute with Steenrod operations. How-

e

H

¥ G

ever, we can write
kv

. S ADGYQ.F L H(DGYQIF)
* G £ ptT Tk O* G ' p

where we are supposed to know how to write a(¢kh) in the form
¢kh' . We have

DY

G a _

e D(YG/G)

by a result on G-S-duality, Theorem 8.5 of [1]. So

DY L
H . = Hx y .
*( GGa, Fp} H (YG/G, Fp)

Passing to a limit over a which is attained in each degree, I

get a convergent Adams spectral sequence



CARLSSON'S PROOF 17

* % * .
Ext} (qbkﬂ (BG; F), F)

A kv *

Lim {‘S A DGYa k}

—_—> > _ = &, 8
o. G

Since we work in the category of compact Hausdorff (abelian) group
groups, inverse limits preserve exactness; the inverse limit of an
exact couple is an exact couple, and the inverse limit of converg-
ent Adams spectral sequences is a convergent spectral sequence.
Extﬁ* carries direct limits of the first variable into inverse
limits. So we get a convergent spectral sequence

* %k i * .
Ext¥ (L]1{m> gﬁkn (BG; F), F)

A kv
e <Lim Lim> = % DGYG gh
— g & :

Il
to
*

It remains to identify Lim>(ﬁkH*(BG; Fp) .
k

Here I think I shall resume my previous lazy ways; like the axiom-
atic method, the method of omitting details has many advantages,
and they are the same as the advantages of theft over honest toil.
Anyway, you can all guess the answer; E%@> SﬁkH*(BG; Fp) must
surely be the result of localising H* (BG; Fp) so as to invert

the Euler class of V .

LEMMA 13. If G is not an elementary abelian pP-group then

the Euler class e(V) is nilpotent.

PROOF. If H is a proper subgroup of G then VI £ 0 ; in
other words, the restriction of V to H is the direct sum of
the trivial representation 1 and something else. So the restrict-
ion of e(V) to H is zero. By assumption, any elementary
abelian p-subgroup E is proper, so the restriction of e(V) to

E 1s zero. Then e(V) 1is nilpotent by the theorem of Quillen

11, 13].
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Carlsson obtains the same conclusion using the work of Serre

[l4]l

We now conclude that if G 1is not elementary abelian, then
the relevant localisation of H* (BG; Fp) is zero. Therefore its

Ext groups are zefo, and the spectral sequence gives B* = 0

If G 1is an elementary abelian p-group, then we reach an

Ext group which is calculated in [2].
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