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MICHAEL ATIYAH’S WORK IN ALGEBRAIC TOPOLOGY
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Abstract. In 1960 algebraic topology was at the centre of the mathematical
stage, but Michael Atiyah burst into the field and changed its focus and its
language. I describe his work of the following decade and its influence, keeping
to the themes of K-theory and generalized cohomology to minimise the overlap
with Dan Freed’s account of Atiyah’s work on index theory, which also appears
in this issue.

In a number of talks and interviews (e.g., [Min]) Michael Atiyah spoke thought-
fully about his way of doing mathematics. He explained that he had rarely set
out to solve a specific problem: rather he would be intrigued by some aspect of
the mathematical landscape and feel driven to find out how it worked and get to
the bottom of it. His work in algebraic topology exemplifies this very well. In the
1960s, by inventing K-theory and the idea of a generalized cohomology theory, he
changed the complexion of algebraic topology in the world, and, even after all his
later work, I would say that the perspective of algebraic topology remained central
in his mathematics. In his own eyes, however, he was a more general kind of ge-
ometer, who used the ideas of algebraic topology when they were needed. He felt
the main stream of algebraic topology was too inward-looking, and held himself a
little apart from it; but in the second half of his career he was always eager to apply
his topologist’s expertise in areas of mathematics which were new to him.

He began research in 1952 as an algebraic geometer. Though he was attracted
by work in the older ‘Italian’ style, he wisely chose Hodge—the most ‘modern’
geometer in Cambridge—as his supervisor. Hodge had been deeply influenced by
Lefschetz, who was at once the greatest exponent of topological ideas in algebraic
geometry and the creator of much of modern algebraic topology. But Hodge’s
approach to topology was different from Lefschetz’s. It focussed on the differential
forms on algebraic varieties, and their integrals, combining de Rham’s theorem with
Chern’s differential-geometric construction of characteristic classes. There are many
parallels between Hodge’s career and Michael’s, and one of them is that Hodge’s
greatest triumph—the proof that every cohomology class (with real coefficients) of
a closed smooth manifold has a unique harmonic form representative—is essentially
a theorem of analysis, a field in which Hodge was not an expert and needed help
from others.

Until 1959 Michael’s work was in algebraic geometry, and though he expressed
it in the modern language of topology, treating ruled surfaces as fibre bundles
and speaking of ‘vector bundles’ rather than ‘linear systems’, his methods were
algebraic. His thesis, submitted in 1955, on algebraic differential forms, displayed
a command of spectral sequences and of the cohomology theory of sheaves.
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One paper from this period stands out for illustrating so well his knack, through-
out his career, of being the first to put his finger on an essential point. In [AtCl] he
shows that the characteristic classes of a holomorphic vector bundle E on a com-
plex manifold X all come from one basic class At(E) ∈ H1(X; Ω1(End(E)))—now
called the Atiyah class—which describes the extension of sheaves (or of holomorphic
vector bundles)1 on X

Ω1(E) → J1(E) → E.

The class At(E) is the holomorphic analogue of the curvature KE ∈ Ω2(End(E))
defined in the differentiable context for a bundle with a connection. The character-
istic classes of E, in the Dolbeault cohomology H∗(X; Ω∗), are obtained from At(E)
as P (At(E)) ∈ Hp(X; Ωp), where P : End(Cn) → C is a polynomial of degree p
invariant under conjugation by GLn(C), just as the Chern–Weil description of the
corresponding classes in de Rham cohomology is P ( 1

2πKE) ∈ H2p(X;R).
The best-known of Michael’s early papers, however, is his study [EllCve] of the

moduli space of holomorphic bundles on an elliptic curve, which foreshadows his
later interest in gauge theory. It is described in Simon Donaldson’s contribution to
this volume [Do].

Immediately after finishing his thesis, Michael spent the year 1955–56 at the
Institute for Advanced Study (IAS) in Princeton. He often wrote of the enormous
stimulation he got from meeting the young stars Serre, Milnor, Hirzebruch, Bott,
and Singer, as well as the older mathematicians Kodaira and Spencer. The 1950s
were a decade of spectacular flowering of algebraic topology, and for anyone inter-
ested in geometry it must have seemed the most exciting thing on the mathematical
stage. Among the main developments—all being worked on in Princeton, and all
to prove relevant to Michael’s work—were

• the reformulation of the subject in the language of category theory;
• the homotopy-theoretic understanding of fibre bundles and their classifying
spaces and characteristic classes;

• Thom’s invention of the cobordism ring , and the reduction of its calculation
to homotopy theory;

• the use of cohomology operations, and especially the Steenrod algebra,
to calculate the cobordism ring, the development of the Adams spectral
sequence, and the solution of the Hopf invariant problem;

• Bott’s application of Morse theory to the topology of Lie groups, culminat-
ing in his periodicity theorem;

• Milnor’s discovery of exotic smooth structures on spheres, and his work with
Kervaire relating differential topology to the homotopy theory of spheres
and Grassmannians.

1. The beginnings of K-theory

Of the mathematicians Michael met in Princeton, Hirzebruch (who had corre-
sponded with Todd and given the Todd classes their name) was the nearest to him in
mathematical background and became his close collaborator for the next few years.

1Here the bundle E is identified with its sheaf of holomorphic sections, while Ω1(E) is the sheaf
of holomorphic 1-forms with values in E, and J1(E) is the sheaf of 1-jets of holomorphic sections
of E. We observe that the sheaf of homomorphisms from E to Ω1(E), whose first cohomology is
the home of the extension-class, can be identified with Ω1(End(E))
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A little older than Michael, he was already a considerable figure in the mathemat-
ical world. He was an expert in algebraic topology, as well as in sheaf-theoretic
methods in complex analysis. He had developed a very practical calculus for en-
coding the multiplicative characteristic classes of vector bundles as formal power
series, which enabled him to read off a formula for the signature of a compact ori-
ented smooth manifold—or indeed for any multiplicative cobordism invariant—in
terms of the Pontryagin classes of the tangent bundle. But he was most famous for
his ‘higher-dimensional Riemann–Roch’ theorem, which, for a holomorphic vector
bundle E on a compact complex manifold M , expresses the Euler number

χ(M ;E) =
∑

(−1)q dimHq(M ;E)

in terms of the Chern classes of E and of the tangent bundle TM of M . (Here
Hq(M ;E) is the cohomology of M with coefficients in the sheaf of holomorphic
sections of E.)

Hirzebruch’s calculus of characteristic classes. As Hirzebruch’s calculus of
characteristic classes is so central in Michael’s work, I shall interpolate here a brief
account of it. A characteristic class Φ for complex vector bundles, with coefficients
in a commutative ring A, assigns to a bundle E on a space X a cohomology class
Φ(E) ∈ H∗(X;A). Because an n-dimensional bundle E can be described by a map
fE—unique up to homotopy—from X to the classifying space or Grassmannian
BUn, we can describe Φ by a sequence of classes Φn ∈ H∗(BUn;A) such that
Φ(E) = f∗

EΦn. The characteristic class is called additive if Φ(E⊕F ) = Φ(E)+Φ(F )
and multiplicative if Φ(E ⊕ F ) = Φ(E).Φ(F ).

Because the direct-sum map

BU1 × · · · ×BU1 → BUn

induces an injection in cohomology, any characteristic class is determined by its
values on sums of line bundles, and a multiplicative class Φ is determined by the
single power-series Φ1 ∈ H∗(BU1;A) = A[[t]]. In fact H∗(BUn;A) is just the
subring of elements in

H∗(BU1 × · · · ×BU1;A) = A[[t1, . . . , tn]],

which are symmetric under permuting t1, . . . , tn, so any choice of Φ1 gives rise to
the multiplicative class with Φn =

∏
i Φ1(ti), and we can rewrite this as a function

of the elementary symmetric functions c1, . . . , cn of t1, . . . , tn, which are the Chern
classes of the bundle.

A multiplicative class Φ is stable, i.e., Φ(E) does not change if a trivial bundle is
added to E, if and only if the power-series Φ1 has constant term 1. In this case we
can think of Φ as an element of the cohomology of the stabilized classifying space
BU =

⋃
n BUn, and Φ defines a ring-homomorphism H∗(BU ;Z) → A.

The picture for multiplicative characteristic classes of real vector bundles is little
different, as long as the bundles are orientable and we use a coefficient ring A in
which 2 is invertible. We must replace BUn by BSOn, but the upshot is just that
stable multiplicative classes correspond to the even power-series A[[t2]] ⊂ A[[t]].

Finally, multiplicative characteristic classes in rational cohomology are essen-
tially the same thing as rational-valued genera Θ, i.e., ring-homomorphisms

Θ : ΩSO
∗ → Q
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from Thom’s ring ΩSO
∗ of cobordism classes of oriented manifolds. For there is a

ring-homomorphism

ΩSO
∗ → H∗(BSO;Z)

which associates to a closed oriented n-manifold M the image of its fundamental
homology class [M ] ∈ Hn(M) under the classifying map M → BSOn → BSO of
its tangent bundle, and Thom proved that this map becomes an isomorphism when
tensored with Q.

The multiplicative characteristic classes that will come into this account are

• the total Chern class 1 + c1 + c2 + · · · , corresponding to the series 1 + t;
• Hirzebruch’s L-class for real bundles, corresponding to the series t coth t,
which gives his formula for the signature;

• the Todd class, corresponding to the series t/(1− e−t);

• the Â-class for real bundles, corresponding to the series (t/2)/ sinh(t/2);
• the Euler class of an oriented even-dimensional real bundle, which is mul-
tiplicative but not stable—it vanishes if the bundle has a nonvanishing
section—and corresponds to the element t ∈ H2(BSO2;Z).

Apart from these multiplicative classes, a central role is played by the Chern
character ch, given by the symmetric function∑

i

eti ∈ H∗(BU1 × · · · ×BU1;Q).

It has the properties

ch(E ⊕ F ) = ch(E) + ch(F ),

ch(E ⊗ F ) = ch(E). ch(F ).

Returning to our story, we can now state the Riemann–Roch formula:

χ(M ;E) = 〈ch(E) Todd(TM ), [M ]〉.

Hirzebruch saw that the formula implies that the Euler number χ(M ;E), which
prima facie depends on the very rigid holomorphic structure ofM and E, is actually
a purely topological invariant of the topological space M and the two complex
vector bundles E and TM . Because χ(M ;E) is an integer, while the Riemann–
Roch expression for it is a polynomial with rational coefficients in the Chern classes,
the theorem implies a rich array of congruences between the topologically defined
characteristic numbers of the manifold. These look like strong constraints on its
topology. It was natural to ask whether they hold for all smooth manifolds, or at
least for a larger class than just smooth algebraic varieties.

When their active collaboration began, Atiyah and Hirzebruch were both think-
ing about two of the important developments of 1957–58: Grothendieck’s gener-
alization of Hirzebruch’s theorem, and Bott’s periodicity theorem, which gave an
explicit homotopy equivalence

Z×BU → Ω2(Z×BU)

between the stabilized classifying space Z×BU of the unitary groups and its two-
fold loop-space. The two results were not obviously related.
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Grothendieck’s theorem concerned a proper map f : X → Y of smooth algebraic
varieties, and it was stated in terms of Grothendieck groups. For any category C in
which there is a notion of short exact sequence,

0 → E′ → E → E′′ → 0,

the Grothendieck group of C is the abelian group generated by the isomorphism
classes [E] of objects of C, subject to the relations [E] = [E′] + [E′′] for every
exact sequence. Grothendieck applied this construction to the category of coherent
sheaves on a variety X to define his K-group Kalg(X), and observed that for a
smooth variety over the complex numbers it is related to the cohomology of X as
a topological space by the Chern character map

ch : Kalg(X) →
⊕
k

H2k(X;Q).

Coherent sheaves can be pushed forward by proper maps, and Grothendieck showed
that a proper map f : X → Y induces a homomorphism2

f! : Kalg(X) → Kalg(Y )

closely related to the Gysin homomorphism f∗ : H∗(X;Q) → H∗(Y ;Q), which is
the map induced by f on homology regarded as a map of cohomology by using the
Poincaré duality isomorphisms of both X and Y . Grothendieck’s theorem asserts
that the diagram

Kalg(X)
f!−→ Kalg(Y )

ch ↓ ch ↓
H∗(X;Q)

f∗−→ H∗(Y ;Q)

does not quite commute, but commutes if the Chern character maps on the left
and right are multiplied by the invertible elements Todd(TX) and Todd(TY ) of the
respective cohomology rings. Hirzebruch’s Riemann–Roch theorem is contained in
Grothendieck’s as the case when Y is a point, for a coherent sheaf on a point is
simply a finite-dimensional vector space, whose Chern character is its dimension,
and f!(E) is the alternating sum of the cohomology groups Hi(X;E).

The strategy of Grothendieck’s proof was to have a lasting influence on Michael’s
work. If the theorem holds for maps f : X → Y and g : Y → Z, then it obviously
holds for g ◦ f . But a projective variety X has an embedding i : X → Pm in
projective space, so f : X → Y can be factorized

X → Y × Pm → Y,

where the first map is f×i and the second is the projection. It is enough, therefore,
to prove the theorem for an embedding and for the projection of a product with
Pm. In the differentiable category, because a closed manifold can be embedded in
a sphere, the analogous factorization of a map f : X → Y of smooth manifolds is
X → Y ×S2m → Y , and Michael had the idea that the natural way to push vector
bundles forward under the projection Y × S2m → Y is by Bott periodicity. This
was a very new angle on Bott’s theorem, which in the topological world was mainly
seen in the light of Milnor’s immediate recognition [BoM] of it as the crucial fact of

2It is not, however, simply the push-forward f∗ of sheaves which induces Grothendieck’s map

f! on Kalg. Because f∗ is not an exact functor, f! must be defined as the alternating sum of the

right-derived functors of f∗.
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homotopy theory needed to prove the nonparallelizability of spheres of dimension
greater than 7.

Atiyah and Hirzebruch put Grothendieck’s theorem together with Bott periodic-
ity and obtained a differentiable Riemann–Roch theorem3 [DiffRR] which answered
many of the questions about the integrality of characteristic numbers mentioned
above. It also put in the foreground the relevance of a spin structure on the
manifold—a ‘higher’ kind of orientability—for integrality properties, and (using
the version for real vector bundles which was part of the announcement) it gave
a new proof of Rokhlin’s theorem that the signature of a 4-manifold is divisible
by 16 if it has a spin structure. Nevertheless, in its first incarnation the differ-
entiable theorem was not very geometrical or illuminating. It conjectured—and,
sufficiently for most applications, established—that if a map f : X → Y of differ-
entiable manifolds satisfies a certain spin-orientability condition, one can associate
to it a map f! : K(X) → K(Y ) of Grothendieck groups of vector bundles which
can be calculated cohomologically by the same formula which Grothendieck found
in the algebraic case. But the announcement gave no reason for the existence of
f!—indeed it asserted discouragingly that in the differentiable case there is no ana-
logue of the holomorphic (or algebraic) operation of pushing forward a coherent
sheaf. This pessimism perhaps came from defining f! differently for embeddings
and projections: it would have been more accurate to say that in the differentiable
context there was no analogue of coherent sheaves. Understanding the situation
better was to be the goal of much of Michael’s work for more than ten years, and
it led him into index theory, which, as he later remarked, is “really the same thing
as K-theory”.

In formulating their theorem, Atiyah and Hirzebruch invented the ‘K-theory’ of
algebraic topology, and with it the idea of a generalized cohomology theory. Both
ideas immediately took hold in algebraic topology, and it is worth reflecting on the
reasons. After Grothendieck’s work it cannot have been such a step to consider
the Grothendieck group K(X) of vector bundles on a compact space X, and it was
known that this could be identified with [X;Z×BU ], the homotopy classes of maps
fromX to Z×BU . Puppe had recently published his semi-infinite exact sequence [P]
for any such functor, and Bott’s theorem immediately extended this to the doubly
infinite sequence which is the defining property of a generalized cohomology theory.
Furthermore, Barratt [B] and others had—without using the words—already shown
that the stable homotopy classes of maps from a varying compact space into any
given fixed space do indeed form a generalized cohomology theory. So in some sense
the crucial point was a matter of language: the new concepts were ideally suited to
formulate the ideas then at the forefront of algebraic topology. It certainly helped
that both Atiyah and Hirzebruch were superb and charismatic lecturers.

That, though, is the perspective of hindsight. In his own commentaries Michael
wrote that “introducing the odd-dimensional K-groups seemed at the time a daring
generalization”. We should remember, too, that nothing about Grothendieck’s
group K(X) suggested it could be just one component of a Z-graded group: its
elements already included the classes of algebraic cycles of all dimensions in X.
Indeed the splitting of K(X) into its cohomological components as eigenspaces of
the Adams operations, with the topological dimension arising as an eigenvalue,

3The first announcement was Hirzebruch’s Bourbaki seminar in February 1959.
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seems to me one of the enduring mysteries of the subject. We shall return to this
in §3 and §7.

Of course the new theory would not have had such impact without the applica-
tions that came with it. Probably the most striking early application was made by
Frank Adams, Michael’s rival from undergraduate days at Trinity College, Cam-
bridge, who in 1961 used K-theory to prove the long-conjectured theorem that the
maximum number of linearly independent tangent vector fields on a sphere Sn−1 is
the Radon–Hurwitz number cn. (Clifford algebras and spinors appeared here once
again in connection with K-theory, for cn is the largest number k such that the
Clifford algebra with k generators4 acts on the vector space Rn.) Adams, with the
invention of the Adams spectral sequence and the solution of the Hopf invariant
problem in 1958, was already established as a leader in algebraic topology, but with
hindsight it seems fair to say that the vector fields theorem was a fruit ready to be
plucked in 1961. The question is to determine for which k there is a cross-section
of the forgetful map

SOn/SOn−k−1 → SOn/SOn−1 = Sn−1

from the Stiefel manifold of orthonormal (k+1)-tuples of vectors in Rn to the unit
sphere. Ioan James [J] had made a crucial reduction of the problem to one about the
“stunted projective spaces” Pn/Pn−k−1, and Michael had reworked this in [ThCpl]
into a convenient language of Thom complexes, and in his paper [At-Todd] with
Todd had solved the analogous but simpler problem for the unitary groups.

Michael’s paper [ThCpl] on Thom complexes is perhaps the one where he writes
most like an orthodox algebraic topologist. It is worth dwelling on because, without
proving any deep new theorem, it was influential in steering the evolution of the
subject towards the Atiyah perspective. The Thom space XE of a real vector
bundle E on a compact space X is the one-point compactification of the space E,
and [ThCpl] develops the idea of XE as a twisted suspension of X. (If E is the
trivial bundle X×Rm, then XE is the m-fold suspension of X.) It goes on to show
that in the stable homotopy category XE is well-defined even when E is replaced
by a virtual bundle, i.e., the formal difference E1−E2 of two vector bundles. Most
importantly, it shows that in the stable homotopy category (which is an additive
category), the dual object to a closed n-manifold X is the Thom space X−TX ,
where TX is the tangent bundle of X. If X is embedded in Rn+k, the dual of X
is therefore the (n + k)-fold desuspension of the Thom space XNX of the normal
bundle NX . Thus Hn−i(X) ∼= Hk+i(XNX ), and if X is orientable, the fundamental
class [X] ∈ Hn(X) corresponds to the Thom class θNX

∈ Hk(XNX ).
The Thom space XE of a real vector bundle E can also be described as the

mapping cone of E◦ → X, where E◦ is the complement of the zero-section in E, and
is a spherical fibration onX, i.e., a bundle whose fibres are homotopy-spheres. Thus
a Thom space can be defined for any spherical fibration, and its stable homotopy
type depends only on the stable fibre-homotopy type of the spherical fibration.
Michael pointed out the invariance of XE under fibre-homotopy equivalences of E◦

(I shall return to this when discussing operations in K-theory below) but stopped
short of discovering the Spivak normal fibration.5 When a compact space X is
embedded in Rm as a neighbourhood deformation retract of an open subset UX ,

4This means that we have anticommuting skew n×n matrices e1, . . . , ek such that e21 = · · · =
e2k = −1. If ξ ∈ Rn is a point of Sn−1 this gives us k tangent vectors eiξ at ξ.

5This is described in Spivak’s 1964 thesis, and is attributed there to his advisor Milnor.
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the dual of X in the stable homotopy category is the one-point compactification
U+
X , and the complement UX \ X is a spherical fibration—the Spivak fibration of

X—if and only if X satisfies Poincaré duality. (The proof of this striking example
of a global condition implying a property that looks local is almost obvious if X
is simply-connected, but depends on defining carefully what is meant by Poincaré
duality when there is a fundamental group.)

Generalized cohomology theories are not mentioned in [ThCpl], though it was
submitted only two weeks before his paper [BordCob] on bordism theories. Looking
at [ThCpl] now, I wondered why it fails to point out that it effectively contains
a simple proof of the differentiable Riemann–Roch theorem, which was left in a
somewhat unsatisfactory state in the preceding papers [DiffRR] and [Tucs]. I shall
give the argument and then speculate about Michael’s lack of enthusiasm for it.

An h∗-orientation of a rank k real vector bundle π : E → X, for any multiplica-
tive cohomology theory h∗, is a choice of a Thom class θE ∈ hk(XE ,∞) = hk

cpt(E),

i.e., a class which restricts to a generator of hk
cpt(Ex) ∼= h0(point) for each fibre

of E. (Here I have used the idea of cohomology with compact supports, which, for
a locally compact space Y , is defined by h∗

cpt(Y ) = h∗(Y +,∞).) The reason for

the terminology is that the two generators of Hk
cpt(R

k;Z) ∼= Z correspond to the

orientations of Rk. Because h∗
cpt(Y ) is a module over the ring h∗(Y ), a Thom class

θE defines an isomorphism ξ → π∗(ξ).θE from h∗(X) to h∗+k
cpt (E).

When we have a map of closed manifolds f : X → Y , we can embed Y in some
Rm, and then, if m is large compared with the dimension of X, an arbitrarily small
deformation of f will be an embedding of X—and hence of its tubular neighbour-
hood NX—inside the tubular neighbourhood NY ⊂ Rm of Y . Because one-point
compactification is a contravariant functor for open embeddings, this means that
f induces a canonical map

f̌ : Y NY → XNX

in the stable homotopy category. If NX and NY are h∗-oriented, then combining f̌
with the Thom isomorphisms gives us the desired map

f! : h
∗(X) → h∗(Y ).

In fact, if the Thom classes θE are multiplicative for direct sums of bundles, as is
usually the case, then we need only the virtual bundle TX − TY = NY −NX to be
h∗-oriented.

Finally, if we have two multiplicative theories k∗ and h∗ and a multiplicative
transformation Ψ : k∗ → h∗, then we get a multiplicative characteristic class E →
Ψ̂(E) with values in h∗, defined on the class of bundles oriented for both theories,
by6

Ψ(θ
(k)
E ) = Ψ̂(−E).θ

(h)
E .

This gives us an abstract Riemann–Roch theorem (which Atiyah and Hirzebruch
were to apply to multiplicative automorphisms of classical cohomology in [CohOps],

6The reason for the minus sign before E is that we want Ψ̂(TX) to be associated to the Thom
isomorphism for the normal bundle of X.
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cf. §7 below) asserting that the diagram

k∗(X)
f!−→ k∗(Y )

Ψ ↓ Ψ ↓
h∗(X)

f!−→ h∗(Y )

commutes when the vertical maps are multiplied by Ψ̂(TX) and Ψ̂(TY ).
The extensive work [BorH] on characteristic classes by Borel and Hirzebruch had

implicitly established that a real vector bundle E is orientable for the theory K∗

only when it has a spinC-structure, or, equivalently, when the Stiefel–Whitney class
w2(E) lifts to an integral class. Indeed their work associates a specific Thom class

θ
(K)
E to a spinC-structure, and it has the property that

ch θ
(K)
E = Â(−E).θ

(H)
E ,

where θ
(H)
E is the unique classical Thom class defined by the orientation of E.

So the abstract theorem gives a complete proof of the differentiable Riemann–
Roch theorem, adequate for all the applications that had been made of it, e.g., in
Michael’s paper [ImmEmb] on immersions and embedding of manifolds.

Michael would not have liked the way this account treated K-theory as just one
among a class of cohomology theories. He saw K-theory as a very special theory
with a deep basis in analysis related to Bott periodicity. He was convinced that
it was simpler and more natural than classical cohomology. A K-theory class, he
felt, represents a natural geometric object—a vector bundle—whereas a classical
cohomology class involves an elaborate algebraic structure. He wanted to see the
K-theory Gysin maps, too, as natural geometric operations, which would imply,
rather than follow from, the cohomological calculations of [BorH].

He developed these ideas in a series of papers in the 1960s, and in his pedagog-
ical book [KTh], which completely avoids using classical cohomology. By nature
he was impatient of foundational material, and these works present not so much
foundations as a point of view. I shall review a number of its strands in turn:

(§2) calculating the K-theory of geometrically important spaces and showing
how it reflects and illuminates the geometry;

(§3–§5) elaborating the nature of K-theory classes and their relation to the dual
K-homology classes, and especially the relation of the Gysin map to Bott
periodicity;

(§6) equivariant K-theory;
(§7) the natural operations in K-theory;
(§8) the K-theory of real vector bundles and the role of Clifford algebras.

2. Calculations

The first systematic account [Tucs] of K-theory was written in early 1960. It
defines K(X) = K0(X) for a finite CW-complex X as the Grothendieck group of
vector bundles on X, and points out that the tensor product of bundles makes
K(X) a commutative ring. Then K−i(X) is defined for i > 0 as the (reduced)
K0 of the i-fold suspension of X. The Bott periodicity theorem can be stated as
K−i(X) ∼= K−i−2(X), and this is used to define the groups for all i ∈ Z. The
axioms of a cohomology theory are verified by using the Puppe sequence already
mentioned. The paper continues by establishing the Atiyah–Hirzebruch spectral
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sequence, which shows how close K-theory is to classical integral cohomology. In
particular, for a compact space X the Chern character of a vector bundle induces
an isomorphism

K∗(X)⊗Q → H∗(X;Q).

Thus, as an additive group, K∗(X) differs from H∗(X;Z) only by torsion. The
spectral sequence is related to the natural decreasing filtration

K∗(X) ⊃ K∗
(1)(X) ⊃ K∗

(2)(X) ⊃ · · · ,

where K∗
(p)(X) consists of the elements which vanish when pulled back to any

space of dimension less than p. If, for example, the cohomology has no torsion, or
if Hi(X;Z) vanishes when i is odd, the spectral sequence shows that the associated
graded group of the natural filtration of Ki(X) is⊕

k∈Z

Hi+2k(X;Z).

The next topic in [Tucs] is the Gysin map f! : K
∗(X) → K∗(Y ) induced by a map

f : X → Y of compact smooth manifolds which satisfies a spin-orientability condi-
tion. The treatment of this essential ingredient in the differentiable Riemann–Roch
theorem of [DiffRR], however, is still confessedly provisional and unsatisfactory,
and was soon to be superseded by the viewpoint of [ThCpl] discussed above.

After this foundational material the paper turns to its main objective, the calcu-
lation of the K-theory of some geometrically interesting spaces. The foundational
part is written very much in the language of the homotopy theory of the time, and
is less directly geometrical than Michael would have made it a few years later: it
does not mention that every vector bundle E on a compact space has a complemen-
tary bundle F such that E ⊕ F is trivial, and it does not use the difference-bundle
description of a relative class in K(X,Y ), which I shall discuss in the next section.

The first space considered in [Tucs] is the classifying space BG of a compact
connected Lie group G. The cohomology of BG had been studied throughout the
1950s, most intensively by Borel and Hirzebruch [BorH]. The results were compli-
cated: even for BSOn it is not so easy to describe the integral cohomology ring
explicitly, and the result for B Spinn was unknown until Quillen’s work [Q1]. For
K-theory the situation is very different. Every finite-dimensional complex represen-
tation V of G defines a vector bundle EV on BG, and the assignment V → EV in-
duces a ring-homomorphism R(G) → K0(BG) from the representation-ring R(G),
the Grothendieck group of the category of finite-dimensional representations, i.e.,
the free abelian group generated by the classes of irreducible representations. It
turns out that R(G) → K0(BG) is close to being an isomorphism: this is easy to
prove when G is connected, because if T is a maximal torus in G, then R(G) and
K0(BG) restrict injectively into the explicitly known groups R(T ) and K0(BT ),
the image in each case being the subgroup invariant under the conjugation-action
of the Weyl group of G on T . The only problem is that the space BG is not com-
pact, and so one cannot expect every element of its K-theory to be represented by
the difference between two finite-dimensional vector bundles. For a noncompact
space X the correct definition of K0(X) is as [X;Z × BU ], but when X = BG
this is equivalent to another plausible definition as the inverse-limit of a system
{K0(BnG)}, where {BnG} is any expanding family of compact subspaces whose
union is BG. The paper uses the inverse-limit definition, which makes it obvious

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MICHAEL ATIYAH’S WORK IN ALGEBRAIC TOPOLOGY 491

that K0(BG) is complete in the topology induced by its natural filtration, and this
motivates the theorem that

R(G)∧ ∼= K0(BG),

where R(G)∧ is the completion of the representation ring in a topology which we
shall return to in §7. The other K-group K1(BG) vanishes.

From BG the paper turns to the homogeneous spaces G/H, where G is a con-
nected and simply-connected compact Lie group and H is a subgroup of maximal
rank, i.e., one which contains a maximal torus T of G. This is the class of spaces
typified by the projective spaces, Grassmannians, and flag manifolds long familiar
in algebraic geometry. They are complex projective algebraic varieties with natural
decompositions into Schubert cells, each of which is a complex affine space. Thus
their integral cohomology is all in even dimensions, and is a free abelian group with
a canonical basis.

Every finite-dimensional complex representation V of H defines a holomorphic
vector bundle EV = G×H V on G/H, and the bundles so arising are called homo-
geneous. This gives us a ring-homomorphism

R(H) → K0(G/H),

which corresponds to the map induced in K-theory by the classifying map G/H →
BH of the principal H-bundle G → G/H. If the action of H on V extends to a
representation of G, then the bundle EV = G×H V ∼= (G/H)×V is a trivial bundle
of the dimension of V . So the preceding ring-homomorphism factorizes

R(H) → R(H)⊗R(G) Z → K0(G/H),

where R(G) acts on R(H) by restriction, and on Z by the augmentation-homomor-
phism which takes a representation to its dimension. The paper conjectures, cor-
rectly, that the second map is an isomorphism, and proves it in many cases. Once
again, nothing remotely so simple is true for the classical cohomology rings of the
spaces G/H. (This theorem had a back-influence in algebra too, leading Steinberg
to his elegant proof [S] that R(H) is a free module over R(G) with an explicit
basis indexed by the Schubert cells in G/H: when H is the maximal torus T , for
instance, the basis element corresponding to a cell C is just the determinant of the
representation of T on the tangent space to C.)

After calculating the K-theory of BG for a connected compact group G, it was
natural to ask about other groups, and Michael proved the same result R(G)∧ ∼=
K0(BG) for all finite groups G in his paper [FiniteG], which was written almost
simultaneously with [Tucs]. The finite-group case was much harder to prove, and
used quite different ideas. Michael sought for a more illuminating proof, and a few
years later this was found with the invention of equivariant K-theory described in
§6. One new feature of the finite group case especially attracted his attention: for
a finite group the completion R(G) → R(G)∧ loses information. An element of
R(G) is determined by its character, and indeed R(G) ⊗ C can be identified with
the conjugation-invariant complex-valued functions on G; but in the completion all
that is retained is the values of the characters on the elements of prime-power order
in G. In more modern language: the space BG breaks up as a product

∏
p B(p)G

over the primes p, where B(p)G is a space constructed entirely from the lattice
of p-subgroups of G. This means that the classifying space BG does not see all
the subtlety of the interaction between elements of G whose orders are powers of
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different primes. The hope of doing better than this, and of being able to prove
significant theorems about finite groups by K-theory, was one of the incentives in
developing equivariant K-theory.

We have been considering the K-theory of spaces related to a compact Lie group
G, but so far not K∗(G) itself. This too has a simple description, as least when
G is connected and simply-connected. A finite-dimensional complex representation
defines not only a vector bundle on BG but also its transgression, an element of
K−1(G), for the suspension of G is naturally a subspace of BG. (Or, more simply,
a homomorphism G → Un gives a way of attaching, base-to-base, two copies of the
trivial bundle CG×Cn on the cone CG on G to form a bundle on the suspension of
G). WhenG is simply-connected, R(G) is the polynomial ring generated by r ‘basic’
irreducible representations ρ1, . . . , ρr, where r is the rank of G, and identifying the
ρi with classes in K−1(G) gives us a ring-homomorphism

(1)
∧
Z

(ρ1, . . . , ρr) → K∗(G).

In 1962 Michael’s student Luke Hodgkin [Ho] proved that this map is an isomor-
phism. The proof was complicated, using the classification of Lie groups, the dif-
ficult part being to prove that K∗(G) has no torsion. In 1965 Michael published
an ingenious and elegant short proof that the map (1) is an isomorphism onto
K∗(G)/(torsion). For a long time no easy way was found to rule out the existence
of torsion, but, more than fifty years later, at the age of 85, Michael eagerly told me
of a paper of Baraglia and Hekmati [BarH] which gave a completely new proof of
the theorem by observing that if G is regarded as a torus bundle over G/T , then the
fibrewise Fourier–Mukai transformation maps K∗(G) isomorphically to the twisted
K-theory of T∧ × (G/T ), where T∧ is the dual torus to T . The twisted K-theory
is quite easily calculated, and seen to be torsion-free, using the freeness of R(T )
as a module over R(G), which I have already mentioned. In fact Michael’s papers
[TwK1] and [TwK2] on twisted K-theory, written in 2003, were to be his last works
in algebraic topology.

The calculations in [Tucs] provide abundant support for one of Michael’s firmest
convictions. When he invented K-theory, he could equally well have chosen to
fix on what is now called connective K-theory k∗, which has the property that
ki(X) = Ki(X) when i ≤ 0, while ki(point) = 0 for i > 0. He always asserted
that only the periodic theory is ‘geometrical’, and certainly none of the calculations
above have simple analogues in connective K-theory.

3. The concept of a K-theory class

After the foundational paper [Tucs] Michael’s next work with Hirzebruch was the
pair of papers [AnalEmb] and [AnalCyc] concerned with the relation of their new
topological K-theory to Grothendieck’s original K-groups for algebraic varieties.

In fact Grothendieck had associated two groups to a variety X. The first was
the Grothendieck group Kcoh(X) of the abelian category of coherent sheaves on X,
and the second was the Grothendieck group Kvb(X) of the subcategory of vector
bundles, i.e., locally free coherent sheaves. The two groups are isomorphic if X is
projective and smooth (i.e., nonsingular), for then any coherent sheaf F has a finite
resolution—an exact sequence

(2) 0 → Em → · · · → E1 → E0 → F → 0
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in which E0, E1, . . . , Em are vector bundles—and this expresses [F ] as
∑

i(−1)i[Ei]
in Kvb(X).

Vector bundles can be pulled back by maps, so Kvb(X) is contravariant in X,
while a coherent sheaf can be pushed forward by a map f (and remains coherent
if f is proper). Though it is not said explicitly in [BorS], the analogy of the two
Grothendieck groups with homology and cohomology, and, when X is smooth, the
interpretation of the resolution of coherent sheaves by vector bundles as Poincaré
duality, must surely have been in Grothendieck’s mind. The analogy is strengthened
because Kvb(X) is a commutative ring under the tensor product, and Kcoh(X) is a
module over Kvb(X), but is not itself a ring (unless X is smooth) because tensoring
coherent sheaves with a vector bundle is an exact functor, but tensoring with a
coherent sheaf is not.

Considerations of this kind became much clearer in the language of generalized
cohomology theories. Though he invented the name, Michael wrote little about
generalized theories beyond recognizing bordism and cobordism in [BordCob] as a
third kind of generalized cohomology (after classical cohomology and K-theory).
But he was well aware that each theory comes in a homological as well as a cohomo-
logical version. He noticed that cobordism arises naturally only in its homological
version while K-theory is naturally cohomological; much of his subsequent work
can be understood as attempts to understand K-homology and the Gysin map in
K-cohomology.

In algebraic geometry the archetypal coherent sheaf on a variety X is the sheaf
OZ of regular functions on an algebraic cycle Z in X. Indeed Serre’s interpretation
of the intersection multiplicity 〈[Z], [Z ′]〉 of two cycles Z,Z ′ in terms of the derived
tensor product of sheaves by his formula

〈[Z], [Z ′]〉 =
∑
i

(−1)i dim(TorOX
i (OZ ,OZ′))

was one of the reasons for the centrality of coherent sheaves in algebraic geome-
try. The topological substitute for the resolution (2) which associates to OZ—or to
any other coherent sheaf supported on Z—an element of the Grothendieck group
Kvb(X) is the Thom isomorphism, as Atiyah and Hirzebruch quickly came to real-
ize.

If Z is a closed submanifold of complex codimension m in a compact complex
manifoldX, then the class corresponding to the cycle [Z] in the classical cohomology
H2m(X) is the image of 1 ∈ H0(X) under the composition

H∗(Z) → H∗+2m(N,N − Z) ∼= H∗+2m(X,X − Z) → H∗+2m(X),

where N is the normal bundle of Z in X, and in the middle we have an excision iso-
morphism. The left-hand map is the Thom isomorphism—notice that, by excision
and homotopy invariance, H∗(N,N − Z) is the same as H∗

cpt(N) = H∗(ZN ,∞).
The papers [AnalEmb] and [AnalCyc] study the corresponding sequence in K-

theory. The key tool is the understanding of a relative class in K0(X,Y ) as a
difference-bundle

(E,F ;α : E|Y ∼= F |Y ) ∈ K0(X,Y ),

where E and F are vector bundles on X identified by α on the subspace Y of
X. There are several variants of this idea. Because of the flexibility of continuous
sections, it is easy to see that the bundle-homomorphism α can be assumed to be
defined over all of X, while being required to be an isomorphism only over Y . A
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further step shows that an element of K0(X,Y ) can be defined by a complex of
vector bundles

(3) 0 −→ E0
d0−→ E1

d1−→ · · · dm−1−→ Em −→ 0

on X which is exact when restricted to Y . Conversely, by introducing fibrewise
inner-products on the bundles, it is also easy to see that the K-theory element
defined by the complex (3) can equally be defined by the difference-construction

⊕
k

E2k

⊕(d2k+d∗
2k+1)−→

⊕
k

E2k+1.

In algebraic geometry the map K(Z) → K(N,N−Z), where N is a complex vector
bundle on Z, can be defined by the Koszul resolution of a vector bundle E on Z:

· · · →
3∧
(N̂∗)⊗ E →

2∧
(N̂∗)⊗ Ê → N̂∗ ⊗ Ê → Ê → E.

Here Ê and N̂ denote the bundles E and N pulled back to the space N , and
E is regarded as a coherent sheaf on N supported on the zero-section Z. The
maps in the sequence are given, at a point ξ ∈ N , by the inner-product operation

iξ :
∧i(N̂∗) →

∧i−1(N̂∗) on the exterior algebra of the dual of N̂ , and the sequence
(with E omitted) is exact when ξ does not belong to the zero-section Z in N . This
construction can be transferred directly from algebraic geometry to the topological
context. When E is the trivial one-dimensional bundle, it gives a natural Thom

class θK,C
N for any complex vector bundle N → Z, and the ratio of ch θK,C

N to the
Thom class in classical cohomology is the Todd class of the relative tangent bundle
−N = TZ − (TX)|Z of the map Z → X.

In the paper [AnalEmb] this procedure is carefully carried out. Because the
idea of “excision” is not so simple in algebraic geometry, and because one must be
more careful relating the neighbourhood of a submanifold to its normal bundle, it is
necessary to invoke deep theorems about the relation between sheaves of algebraic,
holomorphic, real-analytic, and smooth functions on a complex variety. The final
result is a generalization of the Grothendieck Riemann–Roch theorem to embed-
dings of compact complex manifolds. The form of the statement is noteworthy. It
states that two diagrams commute. The first is the diagram

Kalg(X)
f!−→ Kalg(Y )

↓ ↓
K∗(X)

f!−→ K∗(Y )

relating the pushforward of coherent sheaves to the Gysin map in K-theory—this
is the first appearance of the formulation

analytic index = topological index

which was to become a hallmark of Michael’s work. The second diagram is the
purely topological one relating the Gysin maps in K-theory and in rational coho-
mology via the Chern character multiplied by the Todd class. This is the original
differentiable Riemann–Roch theorem, which he now saw as a less-interesting com-
putational appendage.

The companion paper [AnalCyc] treats the same situation, but allows the alge-
braic cycle Z to be singular. On the smooth projective variety X the structural
sheaf OZ of the cycle is still coherent, and so has a finite resolution by algebraic
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vector bundles on X. These bundles can be transferred directly to topological
K-theory, and so a class [Z]K ∈ K0(X) is associated to the cycle Z. (One must
check, of course that it is independent of the chosen resolution.) Michael regarded
this as a very interesting result, not only the fact that a singular cycle represents
a K-theory class, but also because the K-theory class [Z]K is a refinement of the
classical cohomology class [Z] of the cycle, which is only the leading term of the
Chern character of [Z]K . If we think of [Z] as a class in the E2-term of the Atiyah–
Hirzebruch spectral sequence, it must be annihilated by every differential. Hodge
had conjectured that a 2p-dimensional cohomology class of an algebraic variety can
be represented by an algebraic cycle if it is of type (p, p) when represented by a
complex differential form, but the theorem of [AnalCyc] showed that this could not
be true for an integral class which did not survive in the spectral sequence. The pa-
per gave an explicit example of such a class—it was the first (and perhaps the only)
occasion when Michael made concrete use of a differential in the spectral sequence.
The conclusion was that Hodge’s conjecture can at best be true rationally.

The ideas coming from the difference-bundle construction, which had proved so
clarifying for the Thom isomorphism, led in other directions too. A K-theory class
on a compact space X is represented by a virtual vector bundle E0 − E1. Because
of the existence of complementary bundles, it can even be represented by a stable
bundle: a stable bundle is an equivalence class of pairs (E,m), where E is a bundle
and m ∈ Z, and (E,m) is equivalent to (E ⊕ (X × Ck),m+ k). Just as the space
of all n-dimensional vector spaces has the homotopy type of BUn, in the sense that
an n-dimensional vector bundle on a space X can be pulled back from a universal
bundle on BUn, so the space of all stable vector spaces is Z × BU . But stable
vector spaces do not have a good notion of direct sum: the sum is defined only
up to noncanonical isomorphism. This is reflected in the fact that (though it can
be done) it is not completely obvious how to define a ‘direct sum’ composition-law
on Z×BU which is coherently homotopy-commutative.7 Representing a K-theory
class by a map E0 → E1, or by a complex of bundles, even when not thinking of
a relative class, brings the advantages of a category with a much better direct sum
(and, in the case of complexes, a natural tensor product too).

Fredholm operators. At some point on the road from K-theory to index theory,
Michael realized that the space of Fredholm operators8 in a fixed Hilbert space H—
with the norm topology—is an excellent model of the topological category of virtual
vector spaces, better than the usual model Z×BU of the same homotopy type: a
Fredholm operator F : H → H consists of two finite-dimensional subspaces ker(F )
and coker(F ) = im(F )⊥ of H together with an isomorphism H/ker(F) → im(F ),
but the choices of the isomorphism form a contractible space in view of Kuiper’s
theorem that that the general linear group of Hilbert space is contractible in the
norm topology. When we move from a Fredholm operator F to a nearby one F ′, the
dimension of the kernel and cokernel may drop, but the change in the virtual vector
space, which is their difference, changes continuously, as F ′ induces an isomorphism
ker(F )/ ker(F ′) → coker(F )/coker(F ′). This is the starting point of index theory.

7The need for care here can be seen from the very similar case when “K-theory with mod n
coefficients” is defined by considering equivalence classes of vector bundles under the relation that
two bundles are equivalent if they become isomorphic after adding bundles of the form E ⊗ Cn.
For real vector bundles it turns out unexpectedly that KO0(point;Z/2) ∼= Z/4.

8The result first appeared explicitly in the thesis of Hirzebruch’s student Jänich.
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4. Bott periodicity

Michael saw Bott periodicity as the active ingredient in K-theory, and he kept
trying to pin down its essence. Bott’s original proof had been by Morse theory, and
subsequently a very ungeometric proof was given by Moore [M] (cf. also [DL]) by
explicitly calculating H∗(BU) and H∗(ΩU), and the map between them induced
by Bott’s map BU → ΩU . Michael devised a number of analytic proofs of the
theorem, which I shall describe in this section.

A feature of all the analytic proofs is that they carry over without change to
equivariant K-theory, in the sense that for every finite-dimensional complex repre-
sentation V of a compact Lie group G, we have K∗

G(X) ∼= K∗
G,cpt(X × V ). This

was crucial in setting up the equivariant theory, where, when V is irreducible, one
cannot use induction on the dimension of V .

From the first, Michael’s preferred statement of Bott’s theorem had been as the
product formula K(X × S2) ∼= K(X)⊗K(S2), or, equivalently, thinking of S2 as
the Riemann sphere,

K(X) ∼= K(X)⊗K(S2,∞) ∼= K(X × S2, X ×∞).

The group K(S2,∞) ∼= Z is generated by the difference element (L − 1), where L
is the line bundle whose first Chern class generates π2(BU1), and 1 is the trivial
line bundle. The Bott map

β : K(X) → K(X × S2, X ×∞) ⊂ K(X × S2)

is the Gysin map i! for the inclusion i : X = X × 0 ⊂ X × S2, which is given by
i!(E) = E ⊗ (L− 1). After some time, Michael realized with surprise that to prove
the theorem it is enough to define a Gysin map

p! : K
∗(X × S2) → K∗(X)

which is functorial in X and such that p! ◦ i! is the identity. The reason for this is
that p! can be interpreted as a transformation of cohomology theories Kq−2(X) →
Kq(X), while the Bott map i! : K

q(X) → Kq−2(X) is multiplication by an element
of K∗(point). In this formulation it is clear that i! and and p! commute, so that
i! ◦ p! = id follows from p! ◦ i! = id.

To define the Gysin map p! it is natural to begin from the algebro-geometric
situation. If E is a bundle on X × S2 whose restriction Ex to each subspace
S2
x = p−1(x) happens to be holomorphic, then we would expect p!(E) to be the

virtual bundle whose fibre at x is the virtual vector space H0(S2
x;Ex)−H1(S2

x;Ex).
But the dimensions of the two cohomology groups may jump as x changes—even
if X is a complex manifold and E is globally holomorphic—and so it is clearly
better to think of the family of ∂̄-operators Ω0(S2

x;Ex) → Ω0,1(S2
x;Ex), which, in

the holomorphic case at least, is a smooth family of Fredholm operators. At this
point, however, we can pass directly to the topological situation, for the set of
isomorphism classes of bundles E on X × S2 does not change if the bundles are
required to have a smooth structure on each S2

x (as can be seen by comparing the
spaces of classifying maps of such bundles), and for a bundle which is smooth on
each fibre, all we need to define a fibrewise ∂̄-operator is the choice—another choice
from a contractible space—of a smooth connection along each fibre. This is all
explained very carefully in the paper [PerIndex].

Michael had a hand in inventing at least two other proofs of Bott’s theorem.
The idea of the earliest, joint with Bott [ABPer], was to categorify the winding
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number of a loop f in the unitary group Un (i.e., its class in π1(Un) ∼= Z) as a
vector space, thereby defining a map ΩUn → Z×BU . If the loop f is parametrized
by the complex numbers z of modulus 1, we can approximate it by a finite Laurent
series f(z) =

∑
akz

k whose coefficients ak are n× n matrices. Multiplying f by a
power of z simply moves us from one component of ΩBUn to another, so we may
as well assume f is actually a polynomial. If f were scalar-valued, i.e., if n = 1,
the winding number would be the number of roots of f inside the unit circle, i.e.,
the sum of the residues of f ′/f . In general, f defines a multiplication operator
on the space H+ of holomorphic Cn-valued functions on the closed unit disc in C,
and the winding number is the dimension of the quotient space Ef = H+/fH+.
This vector space is a module over the polynomial ring C[z], and it has a primary
decomposition Ef =

⊕
ζ Ef,ζ into pieces corresponding to the roots ζ of f inside

the disc. The dimension of Ef,ζ is the multiplicity of the root ζ, i.e., the residue of
f ′/f at ζ. We think of Ef,ζ as the categorification of the multiplicity. As f varies,
the spaces Ef form a vector bundle on the space ΩUn, defining a map

ΩUn → Z×BU.

This is clearly left-inverse to the Bott map

Gr(Cn) → ΩUn

from the Grassmannian of Cn, which takes a subspace V of Cn to the loop whose
value at z is z ⊕ 1 wih respect to the decomposition Cn = V ⊕ V ⊥.

In the paper [ABPer] the main work is devoted to proving that the map f →
{Ef} is also right-inverse to the Bott map, but as Michael later realized, this is
unnecessary.

The last of Michael’s proofs can be thought of as the categorification of spectral
flow. It is essentially the argument used in the paper [SkFred] with Singer on skew-
adjoint Fredholm operators, to which I shall return in §8. The idea is extremely
simple. If M2n denotes the contractible space of 2n×2n Hermitian matrices A with
||A|| ≤ 1 (i.e., the eigenvalues of A are in the interval [−1, 1]), let us consider the
map

E2n : M2n → U2n

which takes A to − exp(iπA). This is surjective, but not a bijection, because when
u has the eigenvalue 1, there is an ambiguity in choosing the logarithm ±iπ of −1.
In fact the inverse image of a unitary matrix u is the Grassmannian Gr(ker(u−1)).
The map E2n is not a fibration, though if we stratify U2n by the dimension of
ker(u − 1), then E2n is a fibration over each stratum. If we now embed M2n in
M2n+2 by A → 1⊕A⊕−1, and U2n in U2n+2 by u → 1⊕u⊕ 1, and take the union
as n → ∞, then we get a map E : M → U all of whose fibres are isomorphic to⋃
Gr(C2n), which is a natural model of Z×BU . The map E is not a fibration, but

it is a quasifibration, and that is enough to show that the fibre is the loop space of
the base.

To explain why I have called this the spectral flow argument, let us consider
the space of self-adjoint Fredholm operators A in a fixed complex Hilbert space H.
We give this space the operator-norm topology. The spectral theorem gives us a
canonical decomposition of A as A+ + A−, where A+ is a positive operator and
A− is negative, and the space of these operators has three connected components,
according as either or both of A± has infinite rank. Let F denote the component
where both have infinite rank. By multiplying A by a positive number, we can
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ensure that A± each have at most a finite number of eigenvalues in the open interval
(−1, 1), and we shall tacitly restrict to the subspace of such operators, which does
not change the homotopy type of F . Thus we assume that any A ∈ F has a
canonical decomposition

A = A+ +A0 +A−,

where the components have spectra in [1,∞), (−1, 1), (−∞,−1], respectively.
After all these preliminaries we have the easy

Theorem. The map A → eiπA0 is a homotopy equivalence F → Û , where Û is the
space of unitary operators u in H such that u− 1 has finite rank.

It is easy to see that Û has the homotopy type of the usual stabilized unitary
group that we have denoted U . The theorem is proved by showing that the map
F → Û is a quasifibration with contractible fibres: a point of the fibre consists of
a decomposition of (im(u− 1))⊥ as the orthogonal sum of two infinite-dimensional
subspaces together with a positive-definite operator in each.

The fundamental group of U is Z, detected by the winding-number of the deter-
minant of a loop ut, or equivalently by the number of times (counted with signs)
an eigenvalue of ut crosses a chosen point on the unit circle. This can be called the
spectral flow of the loop ut, and, when we have a loop of self-adjoint Fredholm op-
erators, the theorem identifies it with the flow through the origin of the eigenvalues
of the operator.

An equivalent incarnation of the homotopy-fibration

Z×BU → {point} → U

often arises in quantum field theory (cf. [PS, Chap. 6]). A self-adjoint operator A ∈
F defines a polarization ofH, i.e., an equivalence class of orthogonal decompositions
H = H+ ⊕ H−, and hence a restricted general linear group GLres(H) consisting
of those g ∈ GL(H) which preserve the polarization. Now GLres(H) is homotopy
equivalent to the space of Fredholm operators in H+, and hence to Z × BU , by
associating to g its H+ → H+ component. In fact F is homotopy equivalent to the
space of polarizations of H. Thus we have a homotopy-fibration

GLres(H) → GL(H) → F .

5. K-homology

Michael was well aware that for any multiplicative generalized cohomology theory
h∗, the homology h∗(X) can be defined as the group of natural transformations
h∗(X×Y ) → h∗(Y ) of functors of Y , and he saw his construction of the Gysin map
for a projection X×Y → Y as the definition of an element of K∗(X). But of course
that ‘definition’ is not directly illuminating. For a compact space X which can be
embedded in Rn as a deformation-retract of an open neighbourhood UX ⊂ Rn he
also knew the definition h∗(X) = hn−∗

cpt (UX), which becomes hn−∗
cpt (NX) when X is

a smooth manifold with normal bundle NX . He did not find that a satisfactory
definition either, although, for a manifold X with tangent bundle TX , because the
sum of two copies of any real vector bundle has a complex structure and hence a
natural K-theory Thom class, he liked to identify the K-theory of the Thom spaces
X−TX and XTX , and so he did like to think of K∗(X) as K∗

cpt(TX), or better,
identifying TX with the cotangent bundle T ∗

X by means of a Riemannian metric,
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as K∗
cpt(T

∗
X), which he was soon to regard as the home of the symbols of elliptic

pseudodifferential operators on X.
Recognizing elliptic differential operators on X as natural elements of K0(X),

in the case of a smooth manifold, led Michael to his most serious attempt [EllX]
to define K0(X) for a general compact space X. He modelled an elliptic pseudo-
differential operator on X by a triple (H0, H1;D), where H0 and H1 are Hilbert
spaces equipped with the additional structure of being modules over the Banach
algebra C(X) of continuous complex-valued functions on X, and D : H0 → H1 is a
Fredholm operator which is required to commute with multiplication by a function
f ∈ C(X) up to a compact operator (i.e., the commutator [f,D] is compact). The
motivation is that for an actual pseudodifferential operator D acting as a Fredholm
operator between Sobolev spaces H0, H1 of sections of vector bundles on a smooth
manifold, the commutator [f,D] with a smooth function f is a pseudodifferential
operator of lower order thanD, and so is compact as an operatorH0 → H1. Michael
denoted the semigroup of isomorphism classes of triples under direct sum by Ell(X).
It is a covariant functor on the category of compact spaces and continuous maps,
and a triple (H0, H1;D) is easily seen to define an element of K0(X). Indeed it is
not much harder to see that Ell(X) → K0(X) is surjective.

Michael did not develop the theory of Ell(X) very far: he did not even conjecture
what equivalence relation should be put on the triples to get K-homology. I suspect
that one reason for this was that he could not see how to use Ell(X) in the way he
at first hoped, which was to find a new approach to recent discoveries of Sullivan
in geometric topology. It is worth digressing to give a brief account of this.

In 1970 the study of the topology of manifolds was focussed on the relations
between smooth, piecewise-linear, and topological structures. In 1956 Thom had
shown how to construct rational Pontrjagin classes for a piecewise-linear manifold,
beginning from the obsevation that in the rational cohomology of a smooth mani-
fold X, the total Pontryagin class and the total L-class of X determine each other
by Hirzebruch’s algebraic calculus. For smooth X the L-class can be determined by
applying Hirzebruch’s signature formula in reverse to all submanifolds of X with
trivial normal bundle, i.e., to the inverse images of regular values of smooth maps
from X to a sphere. Thom saw that, using a piecewise-linear analogue of transver-
sality, the same procedure works in the PL-category. Subsequently, Novikov proved
that the total rational Pontryagin class was invariant under general homeomor-
phisms of the manifold, and went on to make an important conjecture about the
rigidity of the signature of a non-simply-connected manifold. Then, towards the
end of the 1960s, after the work of Kirby and Siebenmann determined the small
difference between topological and piecewise-linear manifolds, Sullivan synthesized
and sharpened much of this work into the following K-theoretical statement, which
immediately attracted Michael’s attention.

Although a smooth manifold needs a spin structure to be orientable for the
theory KO∗, nevertheless for any oriented smooth manifold X there is a canonical
element [X]sig ∈ KOn(X) whose Chern character is the Poincaré dual of the L-class
of X. It is a generator of KO∗(X) as a KO∗(X)-module if we ignore the prime
2, i.e., it is an orientation of X for the theory KO∗[1/2] = KO∗ ⊗ Z[1/2]. (The
reason for this is best seen in terms of index theory: the symbol of the signature
operator is obtained from that of the Dirac operator by tensoring with a vector
bundle—in fact with another copy of the spin bundle—whose rank is a power of
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2.) By systematically using these signature orientations, we can introduce Gysin
maps fsig : KO∗(X)[1/2] → KO∗(Y )[1/2] for all maps f : X → Y of oriented
smooth manifolds, with the property, of course, that when Y is a point fsig(1) is
the signature of X.

Sullivan proved that any oriented topological manifold X has a canonical
KO∗[1/2]-orientation which is [X]sig when X is smooth. Furthermore, if X is
given simply as a space satisfying Poincaré duality, then the possible topological
manifold structures it possesses (providing dim(X) > 4) correspond precisely to h∗-
orientations of X for a multiplicative cohomology theory h∗ which coincides with
KO∗ away from the prime 2. Sullivan’s methods were far from index theory, and
completely alien to Michael, who immediately began to hope that a good descrip-
tion of KO-homology might make it possible to find a direct geometric definition
of [X]sig for a topological manifold. He did not make progress himself with this
idea, but his hope was justified when, a few years later, Sullivan and Teleman [ST]
carried it through precisely, combining Sullivan’s proof that a topological manifold
of dimension �= 4 has a unique Lipschitz structure, with Teleman’s development
of Hodge theory for Lipschitz manifolds (which rested in turn on earlier work of
Whitney). Meanwhile, Michael had supervised the thesis of his student Lusztig
[L], which was an important contribution to the index-theoretical understanding of
the signature class, and gave a quite new proof of the simplest case of Novikov’s
conjecture.

At this time Michael became very interested in the K-theory of C∗-algebras and
von Neumann algebras,9 and in particular in the ideas of Brown, Douglas, and
Fillmore [BDF]. Although Michael did not pursue his definition of Ell(X), it was
the beginning of a great deal of work by others. Because X entered only through the
C∗-algebra C(X), the definition applied to an arbitrary C∗-algebra just as well as
to C(X). Connes [C] built up an extensive theory which assigned cyclic cohomology
classes to a version of Michael’s Fredholm triples, and they were the starting point
of his important spectral triple definition of a noncommutative manifold [CM]. But
it was Kasparov [K] who completed the task of defining K-homology along the lines
of Michael’s suggestion, and went further to develop a bivariant theory defined for
pairs of C∗-algebras, which, for two commutative algebras C(X) and C(Y ), reduces
to the group of morphisms Y+ → X+ ∧K in the stable homotopy category, where
K is the spectrum representing K-theory, and X+ and Y+ denote X and Y with
an additional disjoint basepoint adjoined.

6. Equivariant K-theory

The idea of equivariant K-theory arose out of the relation of K∗(BG) to the
representation ring R(G) of a compact Lie group G. When G acts on a compact
space X, an equivariant vector bundle E on X—one where G acts on the total
space E by bundle maps which cover its action on X—is a natural interpolation
between a vector bundle and a representation of G. In the more modern language
of stacks, an equivariant bundle is a bundle on the quotient stack of X by G, i.e.,
it is a representation of the topological groupoid X//G whose space of objects is
X and space of morphisms is G ×X, with (g, x) being a morphism from x to gx.
If the action of G is free, then E/G is a vector bundle on X/G, and equivariant
bundles on X need not be distinguished from bundles on X/G, but in general an

9Cf. Dan Freed’s accompanying account in [Fr].
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equivariant bundle E carries more information, in the form of a representation of
the isotropy group Gx of x on the fibre Ex at each point x ∈ X.

The groupoid X//G has its ‘realization’ |X//G|, which is the space XG = X×G

EG fibred over the classifying space BG with fibre X. In other language, this is the
homotopy quotient of X by the action of G; it is also called the Borel construction
from its use [Bor] in the study of transformation groups. In exactly the way that
a representation V of G defines a vector bundle EV on BG, an equivariant bundle
E on X defines a vector bundle EG on XG.

An equivariant generalized cohomology theoryK∗
G can be defined on the category

of compact G-spaces in exact analogy to the definition of nonequivariant K-theory.
Apart from an equivariant version of Bott periodicity, already mentioned in §4
above, the one new fact needed to get started is that an equivariant bundle E on
a compact G-space X always has a complementary bundle F such that E ⊕ F is
trivial in the sense that it is a product X × V , where V is a representation of G.
(Michael said Dixmier had explained to him how this follows from the Peter–Weyl
theorem.)

When evaluated on a point, K∗
G clearly gives the representation ring R(G) in

degree 0, and vanishes in degree 1. Two other basic properties should be mentioned.
First, when G acts freely on the space X, the remark above about equivariant
bundles gives us K∗

G(X) ∼= K∗(X/G). Then, if H is a subgroup of G, a similar
elementary equivalence between bundles shows that

K∗
H(X) ∼= K∗

G(G×H X).

An important particular case is the isomorphism K∗
G(G/H) ∼= R(H). If H is the

maximal torus T of a connected group G, then G/T is a complex manifold, and we
can associate a Gysin map p! : R(T ) → R(G) to the projection p : G/T → (point).
This is the subject of the Borel–Weil–Bott theorem as set forth in Bott’s paper [Bo],
which had a great influence on Michael’s thinking. The basis elements of R(T ) are

the lattice T̂ of weights of the group G. A weight λ ∈ T̂ is dominant if it defines
a positive line-bundle Lλ on G/T , and then the cohomology Hi(G/T ;Lλ) vanishes
when i > 0, while the space of holomorphic sections H0(G/T ;Lλ) is the irreducible
representation Vλ of G with highest weight λ—the representation holomorphically
induced from the representation λ of T . We shall see in a moment how Weyl’s
formula for its character appears naturally from equivariant K-theory.

With the aid of equivariant K-theory the proof [Cpln] that R(G)∧ ∼= K∗(BG)
for a general compact Lie group G melted away into a dévissage that could almost
have been a parody of Grothendieck’s style. First, because G can be embedded
in a unitary group Un, and K∗

G(X) ∼= K∗
Un

(Un ×G X), we find it is enough to
prove the result when G = Un. But then, if Tn is the maximum torus of Un, the
map K∗

Un
(X)∧ → K∗(XUn

) is obtained from K∗
Tn(X)∧ → K∗(XTn) as the part

invariant under the action of the nth symmetric group Σn on Tn. That, in turn,
reduces by induction to the case n = 1, when the theorem is simply the inverse
limit (as m → ∞) of the K∗

T exact sequence for the pair (D2m, S2m−1) consisting
of the unit disc in Cm and its boundary sphere, regarded as T-spaces by complex
multiplication.

The argument of this proof of the completion theorem was very soon used by
Quillen [Q2] to prove the Atiyah–Swan conjecture10 that the Krull dimension of the

10Made in [FiniteG], and independently by Swan.
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mod p cohomology ring H∗(BG;Fp) of a finite group G is the maximum rank of
an elementary p-subgroup of G. (Quillen pointed out to me in wondering admira-
tion that when he told Michael of his proof—at the IAS in 1969—Michael showed
nothing but delight.)

More important than the completion theorem, however, is the fact that classes in
K∗

G(X) can be localized at the fixed points of elements or subgroups of G. The most
obvious statement is that if Y is a closed G-invariant subspace of X outside which
an element g of G has no fixed points, then the restriction map of R(G)-modules
K∗

G(X) → K∗
G(Y ) becomes an isomorphism if we invert all the elements of R(G)

which do not belong to the ideal pg of characters which vanish at g. This can be seen
from the equivariant analogue of the Atiyah–Hirzebruch spectral sequence which
converges to K∗

G(X), whose E2-term is H∗(X/G; {R(Gx)}). (Here the cohomology
has coefficients in a sheaf on X/G whose stalk at the orbit Gx ∈ X/G is the
representation ring of the stabilizer Gx of x, i.e., K∗

G(Gx).) All the groups in the
spectral sequence are R(G)-modules, so we can localize it at the ideal pg. If g is
not conjugate to an element of a subgroup H, then we can find a character χ with
χ(g) �= 0 which vanishes on H, and so the localization R(Gx)pg

vanishes if x does
not belong to Y .

That is not the optimal statement, however. Localization in equivariant K-
theory is primarily a way of obtaining K-theory analogues of the Lefschetz fixed-
point formula of classical cohomology theory. Suppose, for example, that X is
a smooth closed G-manifold, and we wish to calculate p!(ξ) ∈ R(G), where ξ ∈
K∗

G(X) and p is the map from X to a point. It is enough to calculate the character
χ of p!(ξ) at each g ∈ G. For a chosen g, we may as well replace the group G by
the closed subgroup H ⊂ G generated by g.

Let i : Y → X be the inclusion of the submanifold of fixed points of g, and
let N be the normal bundle of Y in X. Then the endomorphism i∗i! of K

∗
H(Y ) is

multiplication by the Euler class eN of N , which, by definition, is the restriction
of the Thom class of N to its zero section Y . Thus

eN = λ−1(N) =:
∑
k

(−1)i ∧k (N).

The essential observation is that eN becomes invertible when we localize at g (i.e.,
at the ideal pg) because, when we restrict it to any point y ∈ Y , its character at g
is
∏
(1− ζ), where ζ runs through the eigenvalues of the action of g on the fibre Ny

of the normal bundle, none of which can be 1. Working in K∗
H(Y )pg

, we then have

p!(ξ) = (p ◦ i)!(i∗i!)−1i∗(ξ) = (p ◦ i)!
(
i∗(ξ)

eN

)
,

which gives a formula for p!(ξ) purely in terms of data on Y .
This argument, based on the invertibility of the Euler class of a normal bundle,

was to recur very often in Michael’s work, often in studying moduli spaces or
localizing path integrals, contexts far from its first use in equivariant K-theory. But
the first striking application was to the Gysin map p! : R(T ) = K∗

G(G/T ) → R(G)
mentioned above, which expresses the holomorphic induction of representations
from a maximal torus T of a connected Lie group G. If ξ ∈ R(T ), then it is enough
to calculate the value of the character of the induced representation p!(ξ) of G at a
generic conjugacy class in G, and thus at an element t ∈ T whose powers are dense
in T . But the fixed manifold Y of t on G/T is the finite set of elements of the Weyl
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group W = N(T )/T , where N(T ) is the normalizer of T . The normal space Nw

at a point w ∈ W , as a representation of T , has the character t → (g/t)(w−1tw)
in terms of the adjoint representations of the Lie algebras. This gives us the Weyl
character formula

p!(ξ) =
∑
w∈W

w.{ξ/λ−1(g/t)}.

Looking at the character formula in this way was probably the first step towards
Michael’s interest in the representation theory of semisimple Lie groups, which
culminated in his work with Schmid on the construction of the discrete series by
means of the Dirac operator.

A serious limitation of equivariant K-theory is that it applies only to compact
groupsG. It is essentially a hybrid theory, in which the spaces are treated homotopi-
cally but the groups are not. It was very well adapted to the kinds of applications
Michael at first envisaged. (For some time, for example, he had in his sights the
Feit–Thompson theorem that finite groups of odd order are soluble. This can be
restated as a fixed-point theorem: a linear action of a group of odd order on a
complex projective space always has a fixed point—and the odd order of the group
might perhaps have been crucial for the existence of an equivariant spin structure.)
But geometric topology is most often concerned with actions of noncompact groups,
especially with the action of the fundamental group of a manifold on its universal
cover. When Michael’s focus changed from algebraic topology to index theory, he
and Bott proved a Lefschetz fixed-point theorem for a map which was not required
to belong to a compact group of transformations, but I shall leave that and other
techniques he developed for going beyond the realm of equivariant K-theory to Dan
Freed’s accompanying account [Fr].

It seems appropriate, nevertheless, to say something about the paper [Sig] on the
multiplicativity of the signature when a compact oriented manifold M is fibred over
another oriented manifold by a map p : M → X with fibre Y . Let us assume all
three manifolds are even dimensional. As was mentioned in §5, by systematically
using the signature orientation, we can associate a Gysin map fsig in real or complex
K-theory (with the prime 2 inverted) to any map f of oriented manifolds. If
q : X → (point), then the signature of M is given by

(4) (q ◦ p)sig(1) = qsig(psig(1)).

In a sense, the paper [Sig] is about how this factorization should be interpreted,
but that is not made altogether explicit, as the main thrust is the use of classi-
cal algebraic geometry to construct examples where sig(M) �= sig(X). sig(Y ). To
understand the factorization (4) we must recognize that the cohomology along the
fibres of p : M → X is a vector bundle on X equipped with a nondegenerate bilinear
form—symmetric or skew according as dim(Y ) is divisible by 4 or not. In either
case such a bundle defines an element psig(1) ∈ K(X). The bundle is canonically
flat, but in general the flat structure is not compatible with any unitary structure.
Its Chern character, therefore, cannot be obtained from the curvature in the usual
Chern–Weil way, and need not be trivial. When we apply qsig to psig(1), the result
is the signature of the bilinear form on the twisted cohomology H∗(X; psig(1)) with
coefficients in the flat bundle. This is the index of the signature operator tensored
with the bundle psig(1), and the nontriviality of psig(1) accounts for the difference
between sig(M) and sig(X) sig(Y ). It can be calculated by the index theorem,
though it is not a case of Hirzebruch’s original signature theorem.
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The paper [Sig] was the starting point for Lusztig’s thesis [L], already mentioned
in §5, which clarified the situation considerably. The point which emerges is that
the signature of a closed n-manifold should not really be regarded as an element of
KO−n(point): its natural home is not K-theory but L-theory, a different cohomol-
ogy theory constructed from modules with nondegenerate quadratic forms by using
the relation of Witt equivalence, which makes hyperbolic forms trivial. An element
of L−n(point) can be represented by a cochain complex satisfying Poincaré duality
in dimension n. The Gysin maps psig and qsig are really those of L-theory. When
the prime 2 is inverted, the L-theory spectrum coincides with the KO-theory spec-
trum, but, analytically, interpreting the signature as an ‘index’ is not completely
natural, because it involves choosing a Hodge ∗-operator depending on a Riemann-
ian structure which cannot be chosen invariantly under diffeomorphisms of the
manifold.

We can think of these invariants of non-simply-connected Poincaré spaces X
in terms of π-equivariant theories, where π = π1(X). It is natural to map the
orientation class [X]sig ∈ Ln(X) into Ln(Bπ) by the classifying map X → Bπ.
There is then a further map from L∗(Bπ) to the L-theory of the group-ring Z[π]: it
is called the assembly map and corresponds to the K-theory map K∗(BG) → R(G)
which is the homological version of the map R(G) → K(BG) for a compact group
G. But as it is needed here for the discrete, usually noncompact, group π, it must
be treated by methods very different from equivariant K-theory. (When π is finite,
however, the thesis [W] of George Wilson, which followed up a suggestion Michael
made at this time, showed how equivariant K-theory could be successfully applied.)

In the later period of Michael’s mathematical life, when he was mainly concerned
with the topology of moduli spaces arising in gauge theory, and with the localization
of the infinite-dimensional path-integrals of quantum field theory, equivariant coho-
mology continued to play a prominent role in his work, though then it was mostly
classical equivariant cohomology rather than equivariant K-theory. A variety of
examples are described in Simon Donaldson’s account in this volume [Do].

Classical equivariant cohomology H∗
G(X;A) is usually defined as the ordinary co-

homology H∗(XG;A) of the homotopy-quotient XG, though there are other equiv-
alent definitions (e.g., when G is finite, one can use a free resolution of the cochain
complex of X over the group ring of G, and for a Lie group G there is an equivariant
version of the de Rham complex which calculates H∗

G(X;A) when X is a manifold
and A = R or C). Because it is defined in terms of the classifying space BG,
classical equivariant cohomology has no need to restrict itself to compact groups.

But, more obviously than in the nonequivariant case, an equivariant vector bun-
dle is a much more ‘natural’ object than any version of a classical equivariant class.
A striking example of this—the subject of the next section—arises in the construc-
tion of cohomology operations. A bundle E has its external nth power E�n, which
is a bundle on Xn equivariant under the nth symmetric group, which acts by per-
muting the factors. All the operations in K-theory are easily constructed from
these powers, and we shall see that in a sense they contain as much information as
the more complicated Steenrod operations in classical cohomology.

7. Operations in K-theory

Michael’s systematic interest in operations inK-theory began comparatively late.
As soon as K-theory had been invented, Adams defined the Adams operations
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(though they were known earlier to Grothendieck) and used them brilliantly to
solve the problem of the vector fields on spheres [Ad3]. Subsequently, Michael used
the Adams operations to give a one-page K-theory solution [Ad-At] of the Hopf
invariant problem, replacing Adams’s very long and difficult proof [Ad1], which
used secondary operations in classical cohomology. The new idea used little more
than that the Adams operations commute with each other. Michael was immensely
proud of it, for it vindicated his conviction that K-theory was superior to classical
cohomology for solving geometric problems. The argument goes as follows.

Given a map f : S4n−1 → S2n, we can use it to attach a 4n-cell to the sphere
S2n to form a space Xf which fits into a cofibration S2n → Xf → S4n. Its reduced
K-theory is Z ⊕ Z, generated by x and y corresponding to S2n and S4n. Then
x2 = hfy, where hf ∈ Z is the Hopf invariant of f . We want to show that if n > 4,
then hf must be even.

Because the operation ψk acts on S2r by multiplication by kr, we must have
ψk(x) = knx+ ak y for some integer ak, and then

ψm(ψk(x)) = kn(mnx+ am y) + akm
2n y,

from which, using ψkψm = ψmψk, we obtain

ak m
n(mn − 1) = am kn(kn − 1).

Taking m = 2, we find that if a2 is odd, then kn ≡ 1 (mod 2n) for all odd k. This
is impossible if n > 4, for the multiplicative group of residues mod 2n contains an
element of order 2n−2, which is greater than n. Finally, a2 ≡ hf (mod 2), because
ψ2(x) ≡ x2 (mod 2), so the proof is complete.

The paper [Ad-At] was submitted a year or so before Michael wrote on K-theory
operations for their own sake. Meanwhile he and Hirzebruch had written one of
the most beautiful papers [CohOps] of their collaboration—little noticed, perhaps
because it is in German—about classical cohomology operations in connection with
characteristic classes. That work, as we shall see, led him to think about another
important work [Ad2] of Adams.

The link between characteristic classes and cohomology operations was known
even before the 1950s, especially from Wu’s work relating the mod 2 Steenrod
operations to Stiefel–Whitney classes.11 Hirzebruch had a great fund of knowlege
on this subject before he began collaborating with Michael (cf. [H]). In particular,
he had calculated the denominator mk of the kth Todd class—a number that we
shall see plays an important role in the structure of the space BU—and, more
importantly, he had seen how the integrality properties of the Todd class at each
prime p connect with the Frobenius pth power operation. The essential observation
is the following. Let us pass to the p-adic completion of the rational numbers,
and regard the generating series Todd(t) = t/(1 − e−t) for the Todd classes as an
element of Qp[[t]]. Then, if we adjoin to Qp an element ρ = p1/(p−1), the series
Todd(ρt) has all its coefficients in the subring A = Zp[ρ] of Qp[ρ]. The quotient
ring A/ρA is the finite field Fp. So the series Todd(ρt) can be reduced modulo ρ to
give a series in Fp[[t]], and we find12

(5) Todd(ρt) = t/(t− tp + tp
2 − tp

3

+ · · · ).

11Cf. [MS], where Milnor uses the Steenrod operations to define the Stiefel–Whitney classes.
12The Todd series, the L-series, and the Â-series all give rise to exactly the same series when

reduced in this way modulo an odd prime p.
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The paper [CohOps] treats the relations between classical cohomology operations
and characteristic classes from a Riemann–Roch perspective. It begins by deter-
mining the group Gp of multiplicative automorphisms of classical cohomology with
mod p coefficients, where p is a prime. The natural examples of such operations
are the total Steenrod square Sq =

∑
i≥0 Sq

i when p = 2 and the total power

P =
∑

i≥0 Pi when p is odd. (The automorphisms are not required to preserve the

grading: we have Sqi : H∗ → H∗+i and Pi : H∗ → H∗+i(2p−2).)
It turns out that elements Φ of the group Gp are determined by their action on

H∗(Bμp;Fp), where μp is the group of complex pth roots of unity. In fact Φ is
determined by the power series

Φ(x) ∈ Fp[[x]] ⊂ H∗(Bμp;Fp),

where x is the generator ofH1(Bμ2;F2) if p = 2, and is the generator ofH2(Bμp;Fp)
for odd p. The operation Sq corresponds to the series x + x2, and P corresponds
to x+xp. Because it is a natural transformation of theories, any operation Φ must
preserve the coproduct—the formal group law—in Fp[[x]] coming from the product
on the space Bμp coming from addition in μp. This forces the series Φ(x) to be of
the form

(6) x+ a1x
p + a2x

p2

+ a3x
p3

+ · · · ,
and Gp is the group of all formal power series of this form. Composition in Gp is the
substitution of one series in another: the inverse of the operation P, for example,
is given by the series

t− tp + tp
2 − tp

3

+ · · · ,
which we met in equation (5). The fact that all series of the form (6) arise as
operations is deduced in [CohOps] from Milnor’s description of the mod p Steenrod
algebra13 A as a cocommutative Hopf algebra, but the two statements are equiv-
alent: the graded commutative Hopf algebra A∗ dual to A can be defined by the
property that

Homrings(A∗;R) ∼= G(R),

for any graded commutative Fp-algebra R, where G(R) is the group of series of the
form (6), with coefficients in R, under substitution.

Atiyah and Hirzebruch define the Wu class as the multiplicative characteristic
class corresponding to the transformation P−1 of cohomology theories (i.e., the
inverse of the total Steenrod operation). They show that when p = 2, its value on
the tangent bundle of a manifold is the class defined much earlier by Wu, and they
put Hirzebruch’s early results [H] in context by showing that the Wu class coincides
with the mod p reduction of the Todd class (or equally well of the L-class) given
by the series Todd(ρt) described above.

The most important theorem in [CohOps], however, relates the Riemann–Roch
result for the Steenrod operations to the differentiable Riemann–Roch theorem. In
studying the relation of K∗(X) to H∗(X;Z), Atiyah and Hirzebruch focussed on
the case when H∗(X;Z) has no torsion. Then the Chern character embeds K∗(X)
as a lattice in H∗(X;Q), and the task is to compare this lattice with the lattice
H∗(X;Z). Oversimplifying rather crudely, one can say that, modulo a prime p, one
lattice is obtained from the other by shifting it by the total Steenrod operation. (In

13When p is odd we mean here the subalgebra of the Steenrod algebra generated by the powers
Pi: i.e., omitting the Bockstein operations.
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string theory this question became topical when D-branes were invented: in a string
background X the D-branes have charges inH∗(X;R), and physicists were surprised
to discover that the charges were not the classes of submanifolds of X where the
branes were located, but rather belonged to the K-theory lattice.) In comparing
the two Riemann–Roch statements, Atiyah and Hirzebruch had to appeal to the
important paper [Ad2]14 in which Adams gave the definitive description of the
homotopy type of the space BU . This short paper influenced Michael’s thinking
for some time.

Adams describes BU in terms of its Postnikov tower : for any connected space
X there is a ‘tower’

X = X〈1〉 ← X〈2〉 ← X〈3〉 ← · · · ,

of spaces, functorial in X up to homotopy, such that πi(X〈n〉)
∼=→ πi(X) for i ≥ n,

but πi(X〈n〉) = 0 for i < n.
In the case of BU we have the Bott equivalences BU〈2m − 2〉 → Ω2BU〈2m〉,

and the Postnikov tower amounts to the fibrations

(7) BU〈2m+ 2〉 → BU〈2m〉 → H2m,

where H2m is the Eilenberg–Maclane space K(Z, 2m).
The tower {BU〈2m〉} is essentially the spectrum representing connective K-

theory15 k∗, in the sense that

k2m(X) = [X;BU〈2m〉]
when m ≥ 0. Recall that the Atiyah–Hirzebruch spectral sequence for K-theory is
associated to the descending filtration {K(2m)(X)} of K(X) where K(2m)(X) con-
sists of the elements which vanish on subspaces on dimension < 2m, or equivalently
of the maps X → BU which lift to BU〈2m〉. In other words, the connective theory
k2m(X) is a ‘representable’ version of the filtration

K(2m)(X) = βmk2m(X) ⊂ k0(X) = K0(X),

where β is the Bott element in k−2(point). The fibration (7) gives us a long exact
sequence

· · · → Hi−1(X;Z)
δ→ ki+2(X)

×β→ ki(X)
ε→ Hi(X;Z) → · · · .

Such a so-called exact couple gives us a spectral sequence. All its groups are Z[β]-
modules, and it is easily seen to become the usual Atiyah–Hirzebruch spectral
sequence when the element β is inverted. This formulation shows that the differen-
tial d2r+3 of the spectral sequence is the not-everywhere-defined map ε◦(×β−r)◦δ.
(The even differentials, of course, vanish.)

Adams determined the precise integrality properties of the Chern character
ch =

∑
chi, with chi ∈ H2i(BU ;Q). Bott periodicity implies that chi becomes

an integral class when pulled back to BU〈2i〉, and Adams defined canonical classes
chi,r ∈ H2i+2r(BU〈2i〉;Z) which are pullbacks of mr chi+r, where mr is the num-
ber mentioned above which Hirzebruch had found to be the denominator of the rth
Todd polynomial. Furthermore, when reduced modulo a prime p Adams showed

14This was written at about the same time as Michael’s paper [At-Todd]—each refers to the
other, and acknowledges stimulating conversations.

15This is the multiplicative cohomology theory such that ki(X) = Ki(X) when i ≤ 0, while
ki(point) = 0 when i > 0.
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that the classes chi,r for fixed i are all determined from those with r < p− 1 by ap-
plying the Steenrod automorphism P−1. The existence of the integral classes chi,r
with these properties is enough to fix the complete Postnikov structure of BU .

The importance of this result, which Adams proved using detailed knowledge of
the Steenrod algebra, spurred Michael to develop a simple direct account [PowerOps]
of the operations in K-theory, obtaining most of Adams’s results in a more concep-
tual way. He began by showing that all operations—not just the additive ones—in
K-theory are obtained from the tensor power operations P̂n : K(X) → KΣn

(Xn)
which were mentioned at the end of §6. (Here Σn is the nth symmetric group.)

The total power operation P̂ =
∑

P̂n is exponential when multiplication is
defined in

∏
KΣn

(Xn) by the transfer maps

KΣm
(Xm)×KΣn

(Xn) → KΣm+n
(Xm+n),

and the same is true when we restrict from Xn to its diagonal subspace to obtain

Pn : K(X) → KΣn
(X) = R(Σn)⊗K(X).

(It is a basic principle that division by n! in the usual exponential series
∑

xn/n!
is replaced, when we categorify, by keeping track of the Σn-equivariance of the nth
tensor power.)

Each element of the group R∗(Σn) of additive maps R(Σn) → Z evidently
gives rise to an operation on K(X). Thus the map λn which counts the mul-
tiplicity of the sign representation in a representation of Σn gives the operation
λn : K(X) → K(X) which takes a vector bundle to its nth exterior power, and
the Adams operation ψn corresponds to the map R(Σn) → Z which evaluates a
character on an n-cycle. Michael uses Weyl’s correspondence between the rep-
resentations of the symmetric and unitary groups to show that all operations in
K-theory can be obtained in this way. The tensor power (Ck)⊗n defines an element
of R(Σn)⊗R(Uk), and hence a homomorphism

R∗(Σn) → R(Uk) → K(BUk),

and by passing to the limit as k → ∞, Weyl’s correspondence can be reformulated as
an embedding of

⊕
R∗(Σn) in the group K(BU) of all operations in K-theory. The

image is dense with respect to the filtration topology ofK-theory. In fact
⊕

R∗(Σn)
is a ring, with its multiplication coming from the transpose of the restriction maps
R(Σm+n) → R(Σm) ⊗ R(Σn), and it is a subring of K(BU), where the natural
multiplication corresponds to multiplying the values of operations.

Up to this point Michael was roughly following Grothendieck, who when defin-
ing his ring Kalg(X) for an algebraic variety X had emphasized what he called its
λ-ring structure, i.e., the ring of natural operations generated by the exterior power
maps λi : Kalg(X) → Kalg(X). These maps are not additive: Grothendieck ex-
pressed their algebraic properties by introducing a formal indeterminate t and the
generating function λt =

∑
i≥0 λ

iti, and he defined a λ-structure on a commutative
ring A as a map

λt : A → 1 + tA[[t]],

which is a homomorphism from the additive group A to the multiplicative group of
formal power series with constant term 1 in the power-series ring A[[t]], and, more
than that, it is a ring-homomorphism for an exotic multiplication ∗ defined on the
multiplicative group of power-series, uniquely characterized by naturality in A and
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the property
(1 + at) ∗ (1 + bt) = 1 + abt.

Grothendieck made a number of observations about the structure of λ-rings which
have since become important in the study of algebraic cycles. He considered λ-rings
which, like the K-theory of a connected space, are augmented by a dimension-
function A → Z whose kernel is a nilpotent ideal. For these λ-rings he defined
the γ-filtration, a canonical descending filtration of A by ideals A(i) such that
A(i).A(j) ⊂ A(i+j). This is an algebraic substitute for the topologically defined
filtration {K(2i)} of K(X), which we have mentioned several times. For A = K(X)
we have A(i) ⊂ K(2i)(X), and the two filtrations coincide rationally, and even
coincide exactly if H∗(X;Z) is torsion-free.

Grothendieck defined the Adams operations ψk : A → A by the formula∑
ψk(ξ)tk =

d

dt
{log λ−t(ξ)} ,

which shows they are additive. The operations ψk commute with each other. They
preserve the γ-filtration, and ψk acts on A(n)/A(n+1) simply by multiplication by

kn. This means that AQ = A ⊗ Q is graded by the eigenspaces of the ψk, and we
get a purely algebraic Chern character A → grAQ. In fact if A is an algebra over
Q, then a λ-structure on A is simply a grading by the natural numbers N, while if
A is torsion-free as an abelian group, a λ-structure is the same as an action of the
monoid N× on A by operations ψk such that for each prime p we have ψp(a) ≡ ap

mod p. (This is a theorem of Wilkerson [Wilk].)
In Michael’s treatment too the Adams operations are central and have the preced-

ing properties with respect to the topological filtration. The new viewpoint makes
their additivity more conceptual. For although Pn(a + b) =

∑
P i(a)Pn−i(b), the

terms with 0 < i < n drop out when we apply ψn ∈ R∗(Σn), for evaluating a char-
acter on the cyclic permutation g = (12 · · ·n) annihilates the image of the transfer
from Σi × Σn−i to Σn because g is not conjugate to any element of Σi × Σn−i.

Indeed we obtain the stronger theorem that ψn defines a transformation of co-
homology theories when we invert the integer n. For if we apply Pn to the element
ξ � σ1 ∈ Kcpt(X × R), where the generator σ1 ∈ Kcpt(R) can be thought of as the
Thom class, we get16

Pn(ξ)� σ1 ⊗ en ∈ Kcpt(X × R)⊗R(Σn),

where en = λ−1(N) ∈ R(Σn) is the Euler class of the normal space to the diagonal
R in the n-fold product Rn. Consequently, if we identify K2m(X) with K(X) by
Bott periodicity, we obtain a transformation of theories

Pn : K∗(X) → K∗(X)⊗R(Σn)[e
−1
n ] = K∗(X)[1/n]

by defining Pn on K2m(X) as the operation (en)
−mPn on K(X). The last equality

here comes from the fact that the character of the virtual representation en vanishes
on all classes in Σn except for the cyclic permutation (12 · · ·n), on which its value is
n: thus inverting en not only makes the power operation additive, but also reduces
Pn to the Adams operation ψn.

Michael investigated how the total operation P̂n interacts with the filtration of
KΣn

(Xn), or equivalently of K((Xn)Σn
). He observed that the associated graded

16The reason is that the external power P̂n(σ1) is the equivariant Thom class in KΣn,cpt(R
n),

whose restriction to the diagonal R is σ1 ⊗ en.
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group of the latter is the cellular cochain complex of (Xn)Σn
, and thereby related P̂n

to the operation Hm(X) → Hnm((Xn)Σn
) in classical cohomology from which the

Steenrod powers are derived. But his main result was to refine the basic property
ψp(ξ) ≡ ξp mod p in terms of the filtration of K(X)—at least in the case of a
torsion-free space whose cohomology can be identified with the graded group of
its K-theory. If ξ ∈ K(2r)(X), so that ξp ∈ K(2pr)(X), then we can find elements
ξi ∈ K(2r+2i(p−1)) for 0 ≤ i ≤ r such that ξ0 = ξ and ξr = ξp and

(8) ψp(ξ) = prξ0 + pr−1ξ1 + · · ·+ ξr.

Furthermore, each ξi defines an element of H2r+2i(p−1)(X;Z), and when these are
reduced modulo p, the resulting classes ξ̄i are uniquely determined by ξ, and ξ̄i =
Pi(ξ̄), where Pi is the usual Steenrod operation. Thus—for a torsion-free space—
the Steenrod operations are just the ‘components’ of the Adams operation ψp.

In this way Michael obtained the essential results of Adams’s paper [Ad2], except
for the restriction to torsion-free spaces. One important outcome of [PowerOps] was
to inspire Quillen’s paper [Q3] which used power operations in general complex-
orientable theories to determine the structure of the complex cobordism ring, by a
method in which a generalization of (8) was a crucial step.

Michael made another foray into the theory of λ-rings in the paper [At-Tall]
written with his student David Tall. This was partly a general exposition of λ-
rings and partly a reworking of Adams’s series of papers [Ad4], whose aim was
to determine the J-homomorphism—the map of homotopy groups πi induced by
the inclusion J : On → Gn of the orthogonal group in the group of homotopy
equivalences of the sphere Sn−1, when n � i. The groups πi(On) are known for
large n by Bott periodicity, while πi(Gn) = πi+n(S

n) is the ith homotopy group
of the sphere spectrum S. The strategy of [Ad4] was to interpret the induced map
BO → BG (in the limit as n → ∞) as taking vector bundles to the associated
spherical fibrations, up to stable fibre-homotopy equivalence. I shall not say much
about this subject, but the ultimate result was that the space BG—and the co-
homology theory it defines—splits as a product B(im J) × B(cokerJ), where imJ
is the fixed-point spectrum of the action of the Adams operations on BO. Adams
succeeded in proving this only modulo his conjecture that the Adams operations
do not change the stable fibre-homotopy type of a vector bundle—more precisely,
because ψk does not exist as a stable operation until k is inverted, that the map
Jk : BO → BG[1/k] is homotopic to Jk ◦ ψk.

The work with Tall addressed only a very special particular case of the larger
project. They considered the equivalence relation ∼ on complex representations V
of a finite p-group P for which V ∼ V ′ if there is a P -equivariant map S(V ) → S(V ′)
between the unit spheres of degree prime to p. This relation defines a quotient
group J(P ) of the representation ring R(P ). But R(P ) can be identified with the
representation ring of P over the cyclotomic field F got by adjoining the |P |-th
roots of unity to Q, and the action of the Adams operations coincides with the
action on R(P ) of the Galois group Γ of F . The paper [At-Tall] established by
simple algebraic arguments an isomorphism between J(P ) and the coinvariants of
the action of Γ on R(P ).

At the time, the Adams conjecture was regarded as a formidably difficult prob-
lem, but in 1969 it was proved independently by Quillen and by Sullivan. Both used
étale cohomology, though in rather different ways. But both methods depended on
interpreting the Adams operations as Galois actions on algebraic varieties. In that
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sense the approach of [At-Tall] was prescient. But a few years later a much more
elementary proof of the Adams conjecture was found by Becker and Gottlieb [BG].
A great deal of lastingly important mathematics was created in the quest to prove
Adams’s conjecture, and it is amusing to speculate how the subject might have
evolved if so many experts had not overlooked the following simple argument of
[BG].

If a bundle E on X is a sum L1 ⊕ · · · ⊕ Lm of line bundles, then ψk(E) =

L⊗k
1 ⊕ · · · ⊕L⊗k

m , and the conjecture is true for E because there is an obvious map
from E to ψk(E) of degree a power of k on each fibre. But the same is true if E
is only locally a sum of line bundles, and this can be ensured by lifting E to the
bundle Y on X whose fibre is the space Z = Um/Nm of decompositions of Cm as
a sum of lines. (Here Nm is the normalizer of the maximal torus of Um.) So to
prove the Adams conjecture, all one needs is a left-inverse to the map p : Y → X in
the stable-homotopy category. But in any cohomology theory h∗—such as stable
cohomotopy—there is a Gysin-type map p∗ : h∗(Y ) → h∗(X) such that p∗ ◦ p∗ is
multiplication by the Euler number of the fibre, which in the case of Z is 1. (If h∗

is K-theory, for example, p∗ is given for any bundle of manifolds p : Y → X by
taking the de Rham complex along the fibres.)

Michael was certainly aware of the existence of this map p∗ and even that it works
universally for any cohomology theory. Furthermore, the argument of [At-Tall]
depends on the fact that any representation of P is induced from a one-dimensional
representation of a subgroup of P , and this is the same as saying that the action of
P is contained in Nm.

8. Real K-theory and Clifford algebras

Alongside K(X) there is the analogous ring KO(X) defined using real rather
than complex vector bundles. To make it into a cohomology theory, we need the
analogue of Bott periodicity for its representing space Z×BO. For the orthogonal
groups the period is 8 rather than 2: using Morse theory, Bott had found that the
successive loop spaces of Z×BO are

(9) O,O/U,U/Sp,Z×BSp, Sp, Sp/U, U/O,Z×BO.

Michael’s paper [ABS] with Bott and Shapiro explains how this sequence of spaces
can be understood systematically in terms of Clifford algebras. For a finite-dimen-
sional real vector space V with an inner product, the Clifford algebra C(V ) is the
algebra generated by V with the relations v2 = 〈v, v〉. It is an algebra with a mod
2 grading, in which the elements of V have degree 1. The grading is important to
ensure the relation

C(V ⊕W ) ∼= C(V )⊗ C(W ),

where multiplication in the tensor product algebra is defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(b)deg(a
′)(aa′ ⊗ bb′).

If the inner product of V is positive or negative definite, then a graded C(V )-module
E defines an element θE ∈ KOcpt(V ) by the difference construction (E0, E1; γV ),
where Ei means the trivial bundle V × Ei on V , and γV denotes the Clifford
multiplication (v, ξ) → (v, vξ). All elements of KOcpt(V ) can be obtained in this
way, though the module E may not be uniquely determined by the KO-theory
class. Let us write Cn for the algebra C(Rn) when Rn is given the negative of the
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usual inner product, so that Cn is generated by anticommuting elements γ1, . . . , γn
such that γ2

i = −1. If a graded Cn-module E admits an extra endomorphism
γn+1 making it a graded Cn+1-module, then the difference element (E0, E1; γRn) ∈
KOcpt(R

n) vanishes, for the multiplication map by v ∈ Rn can be deformed to the
everywhere-invertible multiplication by v+ γn+1. In fact it turns out that we have
an exact sequence

(10) Mn+1 → Mn → KOcpt(R
n) → 0,

where Mn denotes the Grothendieck group of graded Cn-modules, and the first
map is the restriction from Cn+1 to Cn.

In [ABS] the aim is to develop a new systematic account of the spaces (9), and
the exactness of (10) is proved by using Bott’s earlier work. The successive algebras
Cn, for n ≥ 0, are easily found to be

R,C,H,H⊕H,H(2),C(4),R(8),R(8)⊕ R(8),R(16), . . . ,

where H denotes the quaternions, and A(r) is the algebra of r × r-matrices over
an algebra A. Bearing in mind that the category of graded Cn-modules is equiv-
alent to the category of ungraded Cn−1-modules, and also that for any algebra A
the categories of A-modules and of A(r)-modules are equivalent, we see that the
classifying spaces for the successive categories of graded Cn-modules are

(Z×BO)2,Z×BO,Z×BU,Z×BSp, . . . ,

while the successive fibres of the forgetful maps from each of these spaces to its
predecessor are precisely the sequence (9), e.g., O is the fibre of Z × BO →
(Z×BO)2, while O/U is the fibre of Z×BU → Z×BO, etc.

The Clifford algebra viewpoint makes it easy to understand the multiplicative
properties of KO∗(point). The representations of the graded algebras C1 and C2

are just sums of copies of their regular representations. We write η for the regular
representation of C1. Because C1 ⊕ C1 admits an action of C2, we have 2η =
0 ∈ KO−1(point). The regular representation of C2 is η2 and is the generator of
KO−2(point). On the other hand, the C3-module η3 admits an action17 of C4, so
η3 = 0 in KO−3(point). And so on . . . .

Another advantage of the Clifford viewpoint is that it gives us a very natural
definition of a spin structure on a Riemannian manifold X as a spinor bundle S on
X, i.e., a bundle of graded modules for the bundle of graded Clifford algebras C(TX)
whose fibre Sx at x ∈ X is an irreducible C(Tx)-module. The choice of a connection
in a spinor bundle S gives one a real Dirac operator on X. The connection, and
hence the Dirac operator, is unique up to homotopy.

The treatment of real K-theory in [ABS] still depends on Bott’s Morse theory,
but not much later Michael thought of a more ingenious approach which provided
a self-contained proof of orthogonal periodicity. The new idea came from algebraic
geometry, where a real algebraic variety XR can be regarded as the fixed points of
complex conjugation on the complexification of XR, a complex variety X which is
“defined over the real numbers”. A real vector bundle on XR is then the same as
a complex bundle on X equipped with an antilinear conjugation map covering the
complex conjugation in X.

17Equivalently, an ungraded C2-module admits an ungraded action of C3, because when γ1
and γ2 are given, we can define γ3 = γ1γ2.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MICHAEL ATIYAH’S WORK IN ALGEBRAIC TOPOLOGY 513

This led Michael to define KR(X), for any compact space X with an involution,
as the Grothendieck group of complex vector bundles E on X equipped with an
antilinear involution covering that of X. If the involution of X is trivial this is
simply the usual group KO(X). The great virtue of the new definition is that the
analytic proofs of complex Bott periodicity carry over without change to prove

(11) KR(X) ∼= KRcpt(X × C)

when X has an arbitrary involution and C has its usual complex conjugation. The
next step is to define a bigraded group KRp,q(X) = KRcpt(X×Rp,q), where Rp,q is
the subspace iRp×Rq of Cp+q with its induced conjugation. The periodicity result
(11) then shows that KRp,q(X) ∼= KRp+1,q+1(X), so that KRp,q(X) depends only
on p − q. It can therefore be defined for all p, q, and, crucially, has the exact
sequences of a cohomology theory.

The theory KR∗,∗ appears naturally in many contexts in analysis, especially

because the Fourier transform takes a real-valued function f on R to a function f̂

on iR with the property that f̂(z̄) is the complex-conjugate of f̂(z). In particular,
the symbol of a real elliptic pseudodifferential operator on a manifold X is an
element of KR(T ∗X), where the involution on the cotangent bundle is given by
multiplication by ±1 on each fibre.

Michael showed how the 8-fold periodicity of KO-theory arises in the framework
of KR. His ingenious argument has three steps.

(i) If SH is the 3-sphere with the antipodal involution, then the theory X →
KR∗,∗(X × SH) is 8-fold periodic in p− q. This follows from

KR∗,∗+4(X × SH) ∼= KR∗+4,∗(X × SH),

which holds because quaternionic multiplication—thinking of SH as the unit quater-
nions—gives us an isomorphism of spaces with involution

SH × R0,4 → SH × R4,0.

(ii) There is a natural exact sequence

0 → KR∗,∗(X) → KR∗,∗(X × SH) → KR∗−4,∗+1(X) → 0.

This is part of the exact sequence for the pair of spaces formed by the unit disc and
unit sphere in R4,0. The group on the right is the relative group for the pair, i.e.,

KR
∗,∗+1
cpt (X × R4,0) ∼= KR

∗,∗+5
cpt (X × R4,4) ∼= KR∗−4,∗+1(X).

The long exact sequence becomes a short exact sequence because the map
KR∗−4,∗(X) → KR∗,∗(X) is multiplication by the restriction to R0,4 of the Thom
class in KRcpt(R

4,4). This is just the fourth power of the restriction to R0,1 of the
Bott element in KRcpt(R

1,1), i.e., it is η4 = 0, where η ∈ KRcpt(R) = Z/2 is the
standard generator mentioned above.

(iii) The final step is to prove the commutativity of the diagram

0 → KR∗,∗(X) → KR∗,∗(X × SH) → KR∗−4,∗+1(X) → 0
↓ ↓ ↓

0 → KR∗,∗−8(X) → KR∗,∗−8(X × SH) → KR∗−4,∗−7(X) → 0,

where the outside vertical maps are multiplication by the generator of
KR−8(point) and the vertical map in the middle is the 8-fold periodicity estab-
lished in the first step of the proof. Given the commutativity, the bijectivity of the
outside vertical maps follows from that of the middle map. The commutativity is
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checked by an explicit examination of the Clifford algebra modules, which I shall
omit.

It seems a little clumsy that the shifted theory KO∗−q should appear as the
relative theory of the restriction from the K-theory of Cq+1-modules to that of
Cq-modules. The situation looks much more elegant and natural when we think
in terms of Fredholm operators. Recall (from the end of §3) that the space of
Fredholm operators in a real or complex Hilbert space is a model for the space of
virtual vector spaces and, hence, is a representing space for real or complex K-
theory. Let us now take a mod 2 graded real Hilbert space Hq which is a graded
Cq-module on which the generators γi act by skew-adjoint operators of degree 1—
for definiteness, let us assume Hq = Cq ⊗H, where H is a fixed graded real Hilbert
space with infinite-dimensional even and odd components but no Cq-action.

Let Fq denote the space of skew-adjoint operators of degree 1 in Hq which
are maps of Cq-modules, i.e., which anticommute with each γi. Notice that, by
the Morita equivalence between Cq-modules and Cq+8-modules, the spaces Fq and
Fq+8 are identical. Atiyah and Singer [SkFred] proved

Theorem. The space Fq is a representing space for KO−q.

If we accept the result (10), then this theorem is fairly obvious. The essential
point is that if A ∈ Fq is invertible, then B = −A2 is a positive-definite self-adjoint
operator of degree 0 in Hq which commutes with the Cq-action, and so we can

extend the Cq-action on Hq to a Cq+1-action by defining γq+1 = B−1/2A. Just
as an ordinary Fredholm operator is, up to homotopy, a pair (E0, E1) of finite-
dimensional vector spaces which, when the Fredholm operator moves, can jump to
(E0 ⊕ F,E1 ⊕ F ), so the elements of Fq model pairs (E0, E1) of finite-dimensional
Cq-modules which can jump by the addition of a Cq+1-module F .

The natural examples of elements of Fq are Dirac operators with various ad-
ditional symmetries. For example, F1 is homeomorphic to the space of real skew
Fredholm operators (with no grading), and F7—slightly more complicatedly—to
the space of real self-adjoint Fredholm operators. But this is part of index theory,
and I shall leave it to Dan Freed’s accompanying account [Fr].

More relevant here is that Atiyah and Singer proved directly that there is a
homotopy equivalence between Fq+1 and the loop space of Fq given by the map

A → {θ → γq+1 cos θ +A sin θ}.

This gave a completely new proof of Bott periodicity, in both the real and the
complex cases. It is essentially the third of the analytic proofs discussed in §4,
described there as the categorification of spectral flow.
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