
18.031 Problem Set 1

Due in class Friday, Jan. 22.

We encourage collaboration on homework in this course. However, if you do your homework
in a group, be sure it works to your advantage rather than against you. Good grades for
homework you have not thought through translate to poor grades on exams. You must
turn in your own writeups of all problems, and, if you do collaborate, you must
write on the front of your solution sheet the names of the students you worked
with.

Because the solutions will be available immediately after the problem sets are due, no
extensions will be possible.

Problems in both parts are keyed closely to the lectures, and numbered to match them. Try
the problems as soon as you can after the indicated lecture. Most problem sets correspond
to four lectures, through the Monday or Wednesday before the set is due. Each problem
set is graded out of 100 points.

0. (18.03) (a) Write down the general solution of the homogeneous linear constant coefficient
ordinary differential equation

ẍ+ 4ẋ+ 5x = 0 .

(b) Write a phrase describing each of the six underlined terms on (a).

(c) Express z = 1 +
√

3i in “polar form,” z = |z|eiθ. Use this to write Re
(
(1 +

√
3i)e2it

)
in

the form a cos(ωt) + b sin(ωt) and in the form A cos(ωt− φ) where a, b, A, φ, and ω are real
with the last three positive.

(d) Suppose x(t) is any nonzero sinusoidal function of angular frequency ω. What’s the
phase lag of ẋ(t) relative to x(t)? What’s the relationship between the amplitude of ẋ(t)
and the amplitude of x(t)?

1. (Tue 19 Jan) Open http://mathlets.org/mathlets/amplitude-and-phase-2nd-order.
You may have seen this in 18.03. You can see how this system is analyzed in the “Theory”
tab. The input signal is the position of the blue block at the end of the plunger, y; the
system response is the position of the yellow mass, x. These two measurements are arranged
so that when x = y the spring is relaxed. The graphs of these two functions are shown in
blue and yellow.

Set the damping constant b = 0.50, the spring constant k = 4.0, and the input frequency
ω = 2.0.

(a) By rolling over the graphing window, measure the amplitude of the system response.
What value does this give for the gain of this system?

(b) The time lag t0 is indicated by a small red bar on the graphing window. Its value is
read out at the bottom of the Mathlet. What value of the phase lag (relative to the input
signal) does this give?

(c) Now verify your findings. Begin by replacing the sinusoidal input signal with a complex
exponential one. The differential equation is of the form p(D)x = q(D)y where y is the
input signal and x is the system response. What are the characteristic polynomials p(s) and
q(s)? Use the Exponential Response Formula to determine the complex gain G(iω). Write
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down the exponential system response if the input signal is e2it. Then use the complex gain
to determine the gain and the tangent of the phase lag relative to the input signal. Using
a calculator, check that the Mathlet’s estimate of the phase lag isn’t far off.

(e) What would the gain and phase lag be if the input signal were 5 sin(2t) instead of
cos(2t)?

(f) Explain in any way you like why this system, with input signal cos(ωt), is modeled by
the differential equation displayed in yellow at the top of the screen. In particular, why is
the right hand side k cos(ωt) and not just cos(ωt)? What would the right hand side be if
the input signal were 5 sin(ωt) instead of cos(ωt)?

(g) What are the transients of this system? If we demand “rest” initial conditions, so that
x(0) = 0 and ẋ(0) = 0, what transient should be added to the sinusoidal solution? Is this
system stable?

(h) (Independent of this Mathlet) Consider the population model ẋ− kx = −ax, where k
is the growth rate of some population and a is a harvest rate (measured as a fraction of the
current total population). For what values of a is this system stable? Is there a value of a
that leads to what a biologist would call a “stable” population – that is, one that neither
blows up nor dies off to zero? Is the system stable (in our sense) for that value of a (or
those values of a, if any such exist)?

2. (Wed 20 Jan) Continue with the same applet. Select the [Bode plot]. You can see the
graphs of the gain g(ω) and of the phase gain relative to the input signal, −φ(ω), both as
a function of ω.

(a) Still with b = 0.5 and k = 4.0, you can see that ω = 2.0 is pretty close to a resonant
peak. What is the exact resonant frequency ωr (for which g(ω) is maximal)? Calculate this
by writing down g(ω) and setting the derivative to zero.

(b) Determine the frequency ωπ/2 at which φ(ωπ/2) = π/2. Hint: if φ = π/2, what is
Re(G(ω))?

(c) The transfer or system function of this system isG(s) = k/p(s), displayed on the Mathlet
if you select [Nyquist plot]. Where are the poles of G(s)? Suppose that the dashpot is made
weaker, so b becomes smaller. What happens to the poles? Where are they when b = 0?
Please comment on limitations of the mathematical model in this case.

(d) A certain two-spring system has transfer function given by

G(s) =
128

(s2 + b1s+ 2)(s2 + b2s+ 64)
.

Suppose first that b1 = 2 and b2 = 20. Sketch the pole diagram.

(e) Write down a differential equation in “input/output standard form” p(D)x = q(D)y for
which this W (s) is the transfer function (still with b1 = 2 and b2 = 20).

(f) Now suppose that b1 and b2 are both small (on the order of 0.1 say). Make a rough
sketch of the new pole diagram. Also make a rough sketch of the graph of the gain |G(iω)|
as a function of ω in the range ω = 0 up to ω = 10. Explain the relationship between these
two sketches.

(g) In class we determined the equation p(D)x = q(D)y controlling a series RLC circuit,
choosing the impressed voltage V as input signal and the voltage drop across the resistor,



18.031 Problem Set 1 3

VR, as system response. Now work out the corresponding equations if if we continue to take
V as the input signal but now choose the current I or the voltage drops VC or VL as system
response. In each of these three cases, work out the complex gain G(iω). For each case, the
gain |G(iω)| behaves, for ω large, like a constant times some power of ω: aωk. Work out
what a and k are for each of the four choices of system response (I, VC , VR, VL).

3. (Thu 21 Jan) This problem will use the table of Laplace transforms posted on the class
website. It will also use the Mathlet http://mathlets.org/mathlets/poles-and-vibrations.

(a) Let p(D) = D+2I. Assuming rest initial conditions, use the Laplace transform to solve
p(D)x = et. Identify in your solution the exponential solution and the transient.

(b) Solve ẍ + 2ẋ + 2x = cos(2t) with initial condition x(0) = 1, ẋ(0) = 1, using Laplace
transform. Again, in your solution identify the sinusoidal solution and the transient. What
if you had had a different initial condition – would the sinusoidal part change?

(c) (i) Compute L(eat cos(bt)) and L(eat sin(bt)) using the s-shift law (see the Laplace table).

(ii) Compute the same Laplace transforms by writing eat cos(bt) and eat sin(bt) as a linear
combination of complex exponentials.

(d) (i) Where are the poles of each of the following Laplace transforms?

L(eat), L(eat cos(bt)), L(eat sin(bt)).

(ii) Let p(D) = (D+2I)2+I and q(D) = D. Where are the poles of the transfer functions
of the systems controlled by each of the following systems differential equations? (In both
systems we consider f(t) to be the input and x(t) the system response.)

p(D)x = f , p(D)x = q(D)f .

http://math.mit.edu/~hrm/18.031/laptable.pdf
http://mathlets.org/mathlets/poles-and-vibrations

