Hörmander's Topological Paley-Wiener Theorem

(Informal class notes, S. Helgason)

The space $\mathcal{D} = \mathcal{D}(\mathbf{R}^n) = \mathcal{C}_c^{\infty}(\mathbf{R}^n)$ is given the inductive limit topology of the spaces $\mathcal{D}_{\overline{B_j(0)}}$ of functions $\varphi \in \mathcal{D}$ with support in the ball $\overline{B_j(0)} = \{x \in \mathbf{R}^n = |x| \leq 1\}$. This topology can be characterized by the following result of Schwartz (Distributions, p. 67).

Theorem 1. Given two monotonic sequences

$$\{\epsilon\}: \epsilon_0, \epsilon_1, \dots \qquad \epsilon_i \to 0$$

 $\{N\}: N_0, N_1, \dots \qquad N_i \to \infty$

let $V(\{\epsilon\}\{n\})$ denote the set of functions $\varphi \in \mathcal{D}$ satisfying for each $j \geq 0$ the conditions:

(1)
$$|D^{\alpha}\varphi(x)| \leq \epsilon_i \text{ for } |\alpha| \leq N_i, \quad |x| \geq j.$$

Then the sets $V(\{\epsilon\}, \{N\})$ form a fundamental system of neighborhoods of 0 in \mathcal{D} .

Let $A \geq 0$ and \mathcal{D}_A the space $\mathcal{D}_{\overline{B_A(0)}}$ topologized by the seminorms

(2)
$$||f||_m = \sum_{|\alpha| \le m} \sup_{|x| < A} |(D^{\alpha}f)(x)|.$$

Also let $\mathcal{H}_A = \mathcal{H}_A(\mathbf{C}^n)$ denote the space of holomorphic functions of exponential type A, that is the space of holomorphic functions φ such that for each $N \in \mathbf{Z}^+$

(3)
$$|||\varphi|||_N = \sup_{\zeta \in \mathbf{C}^n} (1 + |\zeta|)^N e^{-A|\operatorname{Im} \zeta|} |\varphi(\zeta)| < \infty.$$

Im ζ denoting the imaginary part of ζ . We topologize \mathcal{H}_A with the seminorms $||| \quad |||_N$.

Theorem 2. The Fourier transform $f \to \widetilde{f}$ where

$$\widetilde{f}(\zeta) = \int_{\mathbf{R}^n} f(x)e^{-i\langle x,\zeta\rangle} dx, \quad \zeta \in \mathbf{C}^n$$

is a homeomorphism of \mathcal{D}_A onto \mathcal{H}_A .

Proof:

The Paley–Wiener theorem states that

$$\widetilde{\mathcal{D}}_A = \mathcal{H}_A$$
.

The continuity statements follow easily from the formulas

(4)
$$i^{|\beta|} \zeta^{\beta} \widetilde{f}(\zeta) = \int_{\mathbf{R}^n} (D^{\beta} f)(x) e^{-i\langle x, \zeta \rangle} dx$$

and the inversion

(5)
$$(\mathcal{D}^{\alpha} f)(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} (i\zeta)^{\alpha} \widetilde{f}(\zeta) e^{i\langle x,\zeta\rangle} d\zeta.$$

The space \mathcal{D}_A is complete. If \widetilde{f}_i is a Cauchy sequence in \mathcal{H}_A , replacing f in (5) by $f_i - f_j$ we see

Proof:

Let $W(\{\delta\}, \{M\})$ denote the set of $u \in \mathcal{D}$ satisfying (6). Given $k \in \mathbf{Z}^+$ the set

$$W_k = \{ u \in \mathcal{D}_{\overline{B_k(0)}} : |\widetilde{u}(\zeta)| \le \delta_k \frac{1}{(1+|\zeta|)^{M_k}} e^{k|\operatorname{Im}|} \}$$

is by Theorem 2 a neighborhood of 0 in $\mathcal{D}_{\overline{B_k(0)}}$ and is clearly contained in $W(\{0\}\{M\})$. If V is a convex set containing $W(\{\delta\}, \{M\})$ then $V \cap \mathcal{D}_{\overline{B_k(0)}}$ contains the neighborhood W_k of 0 in $\mathcal{D}_{\overline{B_k(0)}}$ so by the definition of inductive limit V is a neighborhood of 0 in \mathcal{D} .

Proving the converse amounts to proving that given $V(\{\epsilon\}, \{N\})$ there exist sequences $\{\delta\}$ $\{M\}$ such that

$$W(\{\delta\}\{M\}) \subset V(\{\epsilon\},\{N\})$$
.

For this we shift the path of integration in

(7)
$$u(x) = (2\pi)^{-n} \int_{\mathbf{R}^n} \widetilde{u}(\xi) e^{i\langle x,\xi\rangle} d\xi$$

to another one, in which the two weight factors in (3) are comparable. We write

$$x = (x_1, \dots, x_n), \quad x' = (x_1, \dots, x_{n-1})$$

$$\zeta = (\zeta_1, \dots, \zeta_n), \quad \zeta' = (\zeta_1, \dots, \zeta_{n-1})$$

$$\xi = (\xi_1, \dots, \xi_n), \quad \xi' = (\xi_1, \dots, \xi_{n-1})$$

$$\zeta = \xi + i\eta \qquad \xi, \eta \in \mathbf{R}^n.$$

Then

(8)
$$\int_{\mathbf{R}^n} \widetilde{u}(\xi) e^{i\langle x,\xi\rangle} d\xi = \int_{\mathbf{R}^{n-1}} e^{i\langle x',\xi'\rangle} d\xi' \int_{\mathbf{R}} e^{ix_n\xi_n} \widetilde{u}(\xi',\xi_n) d\xi_n.$$

In the last integral we shift from \mathbf{R} to the contour in \mathbf{C} given by

(9)
$$\gamma_m : \zeta_n = \xi_n + im \log(2 + [|\xi'|^2 + \xi_n^2]^{1/2}),$$

m being arbitrary. We claim that, by Cauchy's theorem

(10)
$$\int_{\mathbf{R}} e^{ix_n \xi_n} \widetilde{u}(\xi', \xi_n) d\xi_n = \int_{\gamma_m} e^{ix_n \zeta_n} \widetilde{u}(\xi', \zeta_n) d\zeta_n.$$

For this we must estimate the right integrand in the "strip" between the ξ_n -axis and the curve γ_m .

The function $\zeta_n \to \widetilde{u}(\xi', \zeta_n)$ satisfies

(11)
$$|\widetilde{u}(\xi',\zeta_n)| \le C_N \frac{e^{A|\operatorname{Im}\zeta_n|}}{(1+|\zeta_n|)^N}$$

for some A, all N, the constant C_N depending only on N. On the vertical line joining $(\xi_n,0)$ to (ξ_n,η_n) , $\widetilde{u}(\xi',\zeta_n)$ (with ξ' fixed) decays faster than any power of $|\zeta_n|^{-1}$. Secondly,

$$|e^{ix_n\zeta_n}| \le e^{|x_n||\eta_n|},$$

which is bounded by a polynomial in $|\zeta_n|$. Also on γ_m

(12)
$$\left| \frac{d\zeta_n}{d\xi_n} \right| = \left| 1 + im \frac{1}{2 + |\xi|} \frac{\partial(|\xi|)}{\partial \xi_n} \right| \le 1 + m \quad (m > 0)$$

thus (10) follows from Cauchy's theorem in one variable. Putting

$$\Gamma_m = \{ \zeta \in \mathbf{C}^n | \zeta' \in \mathbf{R}^{n-1}, \, \zeta_n \in \gamma_m \}$$

and $d\zeta = d\xi_1 \dots d\xi_{n-1} d\zeta_n$ we thus have for each m > 0

(13)
$$u(x) = (2\pi)^{-n} \int_{\Gamma_m} \widetilde{u}(\zeta) e^{i\langle x,\zeta\rangle} d\zeta.$$

Now suppose the sequences $\{\epsilon\}$, $\{N\}$ and $V(\{\epsilon\}, \{N\})$ are given as in Theorem 1. We have to construct sequences $\{\delta\}$ $\{M\}$ such that (6) implies

(1). By rotational invariance we may assume $x = (0, ..., 0, x_n)$ with $x_n > 0$. For each *n*-tuple α we have

(14)
$$(D^{\alpha}u)(x) = (2\pi)^{-n} \int_{\Gamma_m} \widetilde{u}(\zeta)(i\zeta)^{\alpha} e^{i\langle x,\zeta\rangle} d\zeta.$$

Starting with positive sequences $\{\delta\}$, $\{M\}$ we shall modify them successively such that $(6) \Rightarrow (1)$. Note that for $\zeta \in \Gamma_m$

(15)
$$e^{k|\operatorname{Im}\zeta|} \le (2+|\xi|)^{km}$$

(16)
$$|\zeta^{\alpha}| \le |\zeta|^{|\alpha|} \le ([|\xi|^2 + m^2(\log(2+|\xi|))^2]^{1/2})^{|\alpha|}.$$

For (1) with j=0 we take $x_n=|x|\geq 0, |\alpha|\leq N_0$ so

(17)
$$|e^{i\langle x,\zeta\rangle}| = e^{-\langle x,\operatorname{Im}\zeta|} \le 1 \quad \text{for } \zeta \in \Gamma_m.$$

Thus if u satisfies (6) we have by (12), (15), (16)

$$(18) \quad |(D^{\alpha}u)(x)|$$

$$\leq \sum_{0}^{\infty} \delta_{k} \int_{\mathbf{R}^{n}} (1 + [|\xi|^{2} + m^{2}(\log(2 + |\xi|))^{2}]^{1/2})^{N_{0} - M_{k}} (2 + |\xi|)^{km} (1 + m) d\xi.$$

We can choose sequences $\{\delta\}$, $\{M\}$ (all δ_k , $M_k > 0$) such that this expression is $\leq \epsilon_0$. This then verifies (1) for j = 0. We now fix δ_0 and M_0 . Next we want to prove (1) for j = 1 by shrinking the terms in $\delta_1, \delta_2, \ldots$ and increasing the terms in M_1, M_2, \ldots (δ_0, M_0 having been fixed).

Now we have $x_n = |x| \ge 1$ so (17) is replaced by

(19)
$$|e^{i\langle x,\zeta\rangle}| = e^{-\langle x,\operatorname{Im}\zeta\rangle} \le (2+|\xi|)^{-m} \text{ for } \zeta \in \Gamma_m$$

so in the integrals in (18) the factor $(2+|\xi|)^{km}$ is replaced by $(2+|\xi|)^{(k-1)m}$.

In the sum we separate out the term with k=0. Here M_0 has been fixed but now we have the factor $(2+|\xi|)^{-m}$ which assures that this k=0 term is $<\frac{\epsilon_1}{2}$ for a sufficiently large m which we now fix. In the remaining terms in (18) (for k>0) we can now increase $1/\delta_k$ and M_k such that the sum is $<\epsilon_1/2$. Thus (1) holds for j=1 and it will remain valid for j=0. We now fix this choice of δ_1 and M_1 .

Now the inductive process is clear. We assume $\delta_0, \delta_1, \ldots, \delta_{j-1}$ and $M_0, M_1, \ldots, M_{j-1}$ having been fixed by this shrinking of the δ_i and enlarging of the M_i .

We wish to prove (1) for this j by increasing $1/\delta_k$, M_k for $k \geq j$. Now we have $x_n = |x| \geq j$ and (19) is replaced by

(20)
$$|e^{i\langle x,\zeta\rangle}| = e^{-\langle x,\operatorname{Im}\zeta\rangle} \le (2+|\xi|)^{-jm}$$

and since $|\alpha| \leq N_j$, (18) is replaced by

$$(21) \qquad |(D^{\alpha}f)(x)|$$

$$\leq \sum_{k=0}^{j-1} \delta_k \int_{\mathbf{R}^n} (1 + [|\xi|^2 + m^2(\log(2 + |\xi|))^2]^{1/2})^{N_j - M_k} (2 + |\xi|)^{(k-j)m} (1 + m) d\xi$$

$$+ \sum_{k \geq j} \delta_k \int_{\mathbf{R}^n} (1 + [|\xi|^2 + m^2(\log(2 + |\xi|))^2]^{1/2})^{N_j - M_k} (2 + |\xi|)^{(k-j)m} (1 + m) d\xi.$$

In the first sum the M_k have been fixed but the factor $(2+|\xi|)^{(k-j)m}$ decays exponentially. Thus we can fix m such that the first sum is $<\frac{\epsilon_j}{2}$.

In the latter sum the $1/\delta_k$ and the M_k can be increased so that the total sum is $<\frac{\epsilon_j}{2}$. This implies the validity of (1) for this particular j and it remains valid for $0, 1, \ldots j - 1$. Now we fix δ_j and M_j .

This completes the induction. With this construction of $\{\delta\}$, $\{M\}$ we have proved that $W(\{\delta\}, \{M\}) \subset V(\{\epsilon\}, \{N\})$. This proves Theorem 3.

Differential Operators with Constant Coefficients

The description of the topology of \mathcal{D} in terms of the range \mathcal{D} given in Theorem 3 has important consequences for solvability of differential equations on \mathbb{R}^n with constant coefficients.

Theorem 4. Let $D \neq 0$ be a differential operator on \mathbb{R}^n with constant coefficients. Then the mapping $f \to \mathcal{D}f$ is a homeomorphism of \mathcal{D} onto $D\mathcal{D}$.

Proof: This proof was shown to me by Hörmander in 1972. A related proof appears in Ehrenpries, *loc. cit.*

It is clear from Theorem 2 that the mapping $f \to Df$ is injective on \mathcal{D} . The continuity is also obvious.

For the continuity of the inverse we need the following simple lemma.

Lemma 5. Let $P \neq 0$ be a polynomial of degree m, F an entire function on \mathbb{C}^n and G = PF. Then

$$|F(\zeta)| \le C \sup_{|z| \le 1} |G(z+\zeta)|, \quad \zeta \in \mathbf{C}^n,$$

where C is a constant.

Proof: Suppose first n=1 and that $P(z)=\sum_0^m a_k z^k (a_m\neq 0)$. Let $Q(z)=z^m\sum_0^m \overline{a}_k z^{-k}$. Then, by the maximum principle,

(22)
$$|a_m F(0)| = |Q(0)F(0)| \le \max_{|z|=1} |Q(z)F(z)| = \max_{|z|=1} |P(z)F(z)|.$$

For general n let A be an $n \times n$ complex matrix, mapping the ball $|\zeta| < 1$ in \mathbb{C}^n into itself and such that

$$P(A\zeta) = a\zeta_1^m + \sum_{n=0}^{m-1} P_k(\zeta_2, \dots, \zeta_n)\zeta_1^k, \quad a \neq 0.$$

Let

$$F_1(\zeta) = F(A\zeta), \quad G_1(\zeta) = G(A\zeta), \quad P_1(\zeta) = P(A\zeta).$$

Then

$$G_1(\zeta_1 + z, \zeta_2, \dots, \zeta_n) = F_1(\zeta_1 + z, \zeta_2, \dots, \zeta_n) P_1(\zeta_1 + z, \zeta_2, \dots, \zeta_n)$$

and the polynomial

$$z \to P_1(\zeta_1 + z, \dots, \zeta_n)$$

has leading coefficient a. Thus by (22)

$$|aF_1(\zeta)| \le \max_{|z|=1} |G_1(\zeta_1+z,\zeta_2,\ldots,\zeta_n)| \le \max_{\substack{z \in \mathbf{C}^n \\ |z| \le 1}} |G_1(\zeta+z)|.$$

Hence by the choice of A

$$|aF(\zeta)| \le \sup_{\substack{z \in \mathbf{C}^n \\ |z| \le 1}} |G(\zeta + z)|$$

proving the lemma.

For Theorem 4 it remains to prove that if V is a convex neighborhood of 0 in \mathcal{D} then there exists a convex neighborhood W of 0 in \mathcal{D} such that

$$(23) f \in \mathcal{D}, Df \in W \Rightarrow f \in V.$$

We take V as the neighborhood $W(\{\delta\}, \{M\})$. We shall show that if $W = W(\{\epsilon\}, \{M\})$ (same $\{M\}$) then (26) holds provided the ϵ_j in $\{\epsilon\}$ are small enough. We write u = Df so $\widetilde{u}(\zeta) = P(\zeta)\widetilde{f}(\zeta)$ where P is a polynomial. By Lemma 5

(24)
$$|\widetilde{f}(\zeta)| \le C \sup_{|z| \le 1} |\widetilde{u}(\zeta + z)|.$$

But $|z| \leq 1$ implies

$$(1+|z+\zeta|)^{-M_j} \le 2^{M_j} (1+|\zeta|)^{-M_j}, \quad |\operatorname{Im}(z+\zeta)| \le |\operatorname{Im}\zeta| + 1,$$
 so if $C2^{M_j}e^j\epsilon_j \le \delta_j$ then (23) holds.

Q.e.d.

Corollary 6. Let $D \neq 0$ be a differential operator on \mathbb{R}^n with constant (complex) coefficients. Then

$$(25) D \mathcal{D}' = \mathcal{D}'.$$

In particular, there exists a distribution T on \mathbb{R}^n such that

$$DT = \delta.$$

Definition A distribution T satisfying (26) is called a fundamental solution for D.

To verify (25) let $L \in \mathcal{D}'$ and consider the functional $D^*u \to L(u)$ on $D^*\mathcal{D}$ (* denoting adjoint). Because of Theorem 2 this functional is well defined and by Theorem 4 it is continuous. By the Hahn-Banach theorem it extends to a distribution $S \in \mathcal{D}'$. Thus $S(D^*u) = Lu$ so DS = L, as claimed.

Corollary 7. Given $f \in \mathcal{D}$ there exists a smooth function u on \mathbb{R}^n such that

$$Du = f$$
.

In fact, if T is a fundamental solution one can put u = f *T.