Hormander’s Topological Paley—Wiener Theorem
(Informal class notes, S. Helgason)

The space D = D(R"™) = C°(R") is given the inductive limit topology

of the spaces DT(O) of functions ¢ € D with support in the ball B;(0) =
J

{x € R™ = |z| < 1}. This topology can be characterized by the following

result of Schwartz (Distributions, p. 67).

Theorem 1. Given two monotonic sequences
{e} €0, €1,... € — 0
{N}:.Nb,ﬁh,.” AG—%CD

let V({e}{n}) denote the set of functions ¢ € D satisfying for each j > 0
the conditions:

(1) |Dp(x)| < € for o] < Nj, |z|>].

Then the sets V({e}, {IN}) form a fundamental system of neighborhoods of
0 in D.

Let A > 0 and D4 the space Dm topologized by the seminorms

(2) Ifllm =D sup [(D*f)(x)].

jal<m 1#1<4

Also let Ha = HA(C™) denote the space of holomorphic functions of expo-
nential type A, that is the space of holomorphic functions ¢ such that for
each N € Z*

(3) llellln = sup (1+[¢HNe ™ ()] < oo
¢ecn
Im ¢ denoting the imaginary part of (. We topologize H 4 with the semi-
norms ||| |||~-
Theorem 2. The Fourier transform f — f where
O = [ t@e 9, cecr
Rn

18 a homeomorphism of D onto H 4.



Proof:
The Paley—Wiener theorem states that

5 A =Ha.
The continuity statements follow easily from the formulas
) F(Q) = (D)) da
R”
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Proof:
Let W ({6}, {M}) denote the set of u € D satisfying (6). Given k € ZT

the set
1

T+ 1D
is by Theorem 2 a neighborhood of 0 in Dm and is clearly contained in
W({0}{M}). If V is a convex set containing W ({d}, {M}) then VN Dy,
contains the neighborhood Wy, of 0 in Dm so by the definition of inductive
limit V' is a neighborhood of 0 in D.

Proving the converse amounts to proving that given V' ({e},{N}) there
exist sequences {0} {M} such that

W{IHM}) C V({e}, {N}).

For this we shift the path of integration in

= {u € Dy gy : [ilQ)] < !

(7) u(z) = (2m)" / ()= de

Rn

to another one, in which the two weight factors in (3) are comparable. We
write

=(21,...,2n), @ =(T1,...,Tp_1)
< (Ch "7<TL)7 </:(<17"'7Cn—1)
62(517”‘7§n)7 5/:(617"'7571—1)
¢=¢&+in &neR.
Then
(8) / U(€)e' 8 de = / e ) dg! / i &) dé

R” Rn—1 R
In the last integral we shift from R to the contour in C given by
(9) Ym : Cn = &n +iMm IOg(Q + [|£/|2 + 57%]1/2) )

m being arbitrary. We claim that, by Cauchy’s theorem

(10) / nngi(¢l 6, dEy = / (€ C) dC

R Ym



Y

mlog(1 + [€'))

For this we must estimate the right integrand in the “strip” between the
&n-axis and the curve 7,,.
The function ¢, — u(&’, (,) satisfies

eA| Im (n|

(141NN

for some A, all N, the constant C'y depending only on N . On the vertical
line joining (&, 0) to (&, mn), w(E', ) (with £ fixed) decays faster than any
power of |¢,|~!. Secondly,

(11) (', )l < Cn

|ezxn<n| é e‘anﬁnl ,

which is bounded by a polynomial in |(,|. Also on ~,,

dGn 1 o¢l)
. 2T 1E o6 <1l+m (m>0)

thus (10) follows from Cauchy’s theorem in one variable. Putting

(12 |

:‘1+im

Ty ={CeC"¢ e R, (o € Y}
and d¢ = d&; ... d&,—1 d¢, we thus have for each m > 0
(13) u(z) = (27)" / Al g .
T

Now suppose the sequences {e}, {N} and V({e},{N}) are given as in
Theorem 1. We have to construct sequences {6} {M} such that (6) implies



(1). By rotational invariance we may assume = = (0,...,0,z,) with 2, > 0.
For each n-tuple a we have

(14) (D*u)(z) = (27) " / Q) ) ) de |

T'm

Starting with positive sequences {d}, { M} we shall modify them succes-
sively such that (6) = (1). Note that for ¢ € ',

(15) M el < (24 [¢))bm
(16) ¢ < [¢lll < (€1 + m® (log(2 + [¢]))*]/2)e!.
For (1) with j = 0 we take =, = |z| > 0, |a| < Ny so
(17) /@0 | = e~@mcd <1 for ¢ eT,,.
Thus if u satisfies (6) we have by (12), (15), (16)

(18)  [(D%u)(x)]

<3 b [ (L 7+ m log(2+ |12 %0 M2 g1+ m) .
0 Rn

We can choose sequences {0}, {M} (all §x, My > 0) such that this expression
is < €. This then verifies (1) for j = 0. We now fix dp and My. Next we
want to prove (1) for j = 1 by shrinking the terms in d1, 2, . . . and increasing
the terms in My, Mo, ... (89, My having been fixed).

Now we have x,, = |z| > 1 so (17) is replaced by

(19) |50 | = el S < (24 [¢]) 7™ for ¢ € Ty

so in the integrals in (18) the factor (24 |€[)*™ is replaced by (2+ |¢])*—1m,

In the sum we separate out the term with £ = 0. Here M has been fixed
but now we have the factor (2 + |£]) ™™ which assures that this & = 0 term
is < % for a sufficiently large m which we now fix. In the remaining terms
n (18) (for £ > 0) we can now increase 1/d; and M}, such that the sum is
< €1/2. Thus (1) holds for j = 1 and it will remain valid for j = 0. We now
fix this choice of §; and M;.

Now the inductive process is clear. We assume g, 01, . .., d;—1 and My, M,
..., M;_1 having been fixed by this shrinking of the ¢; and enlarging of the
M;.



We wish to prove (1) for this j by increasing 1/dy, My for k > j. Now
we have x,, = |z| > j and (19) is replaced by

(20) 0] = emtIm O < (24 |¢))=Im
and since |a] < Nj, (18) is replaced by
(21) [(Df) ()]

<5 S [ (4 0 + 2 log(2 + I~ 2+ ) <1+ m) dg
k=0 Rn

#3700 [ (1 (1P + mP(og(2 + €))7k (2 + ) <-Im(1 4 m) ..
k>3 Rn

In the first sum the M}, have been fixed but the factor (2+ |¢])¥=)™ decays
exponentially. Thus we can fix m such that the first sum is < %’

In the latter sum the 1/0; and the M} can be increased so that the total
sum is < . This implies the validity of (1) for this particular j and it
remains valid for 0,1,...5 — 1. Now we fix ¢; and M;.

This completes the induction. With this construction of {6}, {M} we
have proved that W({o},{M}) C V({€},{N}). This proves Theorem 3.

Differential Operators with Constant Coefficients

The description of the topology of D in terms of the range D given in The-
orem 3 has important consequences for solvability of differential equations
on R™ with constant coefficients.

Theorem 4. Let D # 0 be a differential operator on R™ with constant

coefficients. Then the mapping f — Df is a homeomorphism of D onto
DD.

Proof: 'This proof was shown to me by Hérmander in 1972. A related proof
appears in Ehrenpries, loc. cit.

It is clear from Theorem 2 that the mapping f — Df is injective on D.
The continuity is also obvious.

For the continuity of the inverse we need the following simple lemma.

Lemma 5. Let P # 0 be a polynomial of degree m, F' an entire function on
C" and G = PF. Then

[F(Q)] < C‘S?<I>1|G(Z+C)|, (eC",

where C is a constant.



Proof:  Suppose first n = 1 and that P(z) = > 0 agz*(am # 0). Let
Q(2) = 2™ > ' @xz~*. Then, by the maximum principle,

(22)  lanF ()] = [QOIF(0)] < max Q)P ()] = max| P(2)F (2)].

For general n let A be an n x n complex matrix, mapping the ball |(| < 1
in C” into itself and such that

m—1

P(AQ) = a¢{" + ) PulGa,- -, Ga)CT, a#0.
0

Let
Fi1(¢) = F(AQ), G1(¢) = G(AQ), Pi(¢) = P(AQ).
Then

GI(CI +z7C27"'7<n) = FI(CI +Z7<27"'7CH)P1(41 +z7C27"'aCn)
and the polynomial
z—>P1(C1+Z7"'aCn)
has leading coefficient a. Thus by (22)
laF1(C)| < max GG+ 2, G2y, G| < max |G (¢ + 2)]
|2<1

Hence by the choice of A
[aF(C)| < sup [G(C + 2)]

proving the lemma.
For Theorem 4 it remains to prove that if V is a convex neighborhood
of 0 in D then there exists a convex neighborhood W of 0 in D such that

(23) feD,DfeW=feV.
We take V' as the neighborhood W ({d},{M}). We shall show that if W =
W ({e},{M}) (same {M}) then (26) holds provided the €; in {e} are small

enough. We write u = D f so u(¢) = P(¢) f({) where P is a polynomial. By
Lemma 5

(24) fOr<c sup (¢ +2)]-
But |z| <1 implies
L+ lz+ )™ <2 @+ )™, [Im (2 + ()| < [Im ¢ +1,
so if C2Miele; < §; then (23) holds.
Q.e.d.



Corollary 6. Let D # 0 be a differential operator on R™ with constant
(complex) coefficients. Then

(25) DD =DD.

In particular, there exists a distribution T on R™ such that

(26) DT =9.

Definition A distribution 7" satisfying (26) is called a fundamental solution

for D.

To verify (25) let L € D' and consider the functional D*u — L(u) on
D*D (x denoting adjoint). Because of Theorem 2 this functional is well
defined and by Theorem 4 it is continuous. By the Hahn-Banach theorem
it extends to a distribution S € D’. Thus S(D*u) = Lu so DS = L, as
claimed.

Corollary 7. Given f € D there exists a smooth function u on R™ such
that
Du=f.

In fact, if 7" is a fundamental solution one can put u = f * T



