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GROUP REPRESENTATIONS
AND SYMMETRIC SPACES

by Sigurdur HELGASON

1. Introduction.

In this lecture I shall discuss some special instances of the following three
general problems concerning a homogeneous space G /H, H being a closed subgroup
of a Lie group G.

(A) Determine the algebra D(G/H) of all differential operators on G /H which
are invariant under G.

(B) Determine the functions on G/H which are eigenfunctions of each
D €D(G/H).

(C) For each joint eigenspace for the operators in D(G/H) study the natural
representation of G on this eigenspace ; in particular, when is it irreducible and
what representations of G are so obtained ?

Here we shall deal with the case of a symmetric space X of the noncompact
type and with the case of the space = of horocycles in X. We refer to [6] for
proofs of most of the results reported here.

2. The eigenfunctions of the Laplacian on the non-Euclidean disk.

Let X denote the open unit disk in the plane equipped with the Riemannian

metric
dx? + dy?
ds* = 2 < 2312
[1—(* + y*)]
The corresponding Laplace-Beltrami operator is given by
a2 82
= 2 212 ( ).
A=11-62 4y (57 + ay,)
We shall begin by stating some recent results about the eigenfunctions of A.
Let B denote the boundary of X and P(z, b) the Poisson kernel
1 — |z
lz - b

It is then easily verified that if 4 €C then A,(P(z, b)) = 4uu — 1) P(z, b)* so
for any measure m on B the function z » f P(z, b)* dm(b) is an eigenfunction
B

P(z,b) = z€eX, bEB .

of A. If p€R and m > 0 this gives all the positive eigenfunctions of A (cf. [1],
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[7]). More generally one can take m to be a distribution on B and even more
generally, an analytic functional on B, that is a continuous linear functional
on the space of analytic functions on the boundary B with the customary topology.

THEOREM 1. — The -eigenfunctions of the Laplace-Beltrami operator on the
non-Euclidean disk are precisely the functions

) fz) = £ Pz, b)* dT(b)

where pn€C and T is an analytic functional on B.

The functional T is related to the boundary behaviour of f. Assuming, as
we can, that p in (1) satisfies Re p = 1/2 we have as |z] > 1

) e, (1 — 1z f&) T ¢, =T@TQu— 1)

in the sense that the Fourier series of the left hand side converge formally for
lz] = 1 to the Fourier series of T. (For Re # = 1/2 a minor modification of (2)
is necessary).

The case u =1 in Theorem 1 is closely related to Kothe’s Cauchy kernel
representation of holomorphic functions by analytic functionals, [9]. For Eisenstein
series a result analogous to (2) was proved by John Lewis in his thesis.

It is well known that the eigenspaces of the Laplacian on a sphere are irreducible
under the action of the rotation group. The analogous statement for X is in general
false : The largest connected group G of isometries of X does not act irreducibly
on the space of harmonic functions (u = 1). In fact, the constants form an inva-
riant subspace. However we have the following result.

THEOREM 2. — For n€C let V, denote the space of eigenfunctions of A for
the eigenvalue 4u(u — 1) with the topology induced by that of C™(X). Then G
acts irreducibly on V, if and only if p is not an integer.

3. The Fourier transform on a symmetric space X. Spherical functions.

In order to motivate the definition I restate the Fourier inversion formula
for R” in a suggestive form. IL fELY(R™ and ( , ) denotes the inner product
on R” the Fourier transform f is defined by

fow) = -/.;" f(x) e M9 gy A>0,|lwl=1,

and if for example f€ C, (R") we have

3) fey=2m™" jf FOw) *& 9 N1 gade
R*xs"—!
where R* denotes the set of nonnegative reals and dew is the surface element
on §"1,
Now consider a symmetric space X of the noncompact type, that is a coset

space X = G/K where G is a connected semisimple Lie group with finite center
and K a maximal compact subgroup. We fix an Iwasawa decomposition G = KAN
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of G, A and N being abelian and nilpotent, respectively. The horocycles in X
are the orbits in X of the subgroups of G conjugate to N ; the group G permutes
the horocycles transitively and the set = of all horocycles is naturally identified
with the coset space G/MN where M is the centralizer of 4 in K, Let g, £, a,
n, m denote the respective Lie algebras of the groups introduced and log the
inverse of the map exp : a = A. It is clear from the above that each § €E can
be written & = kaMN, where kM € K/M and a € A are unique. Here the coset
kM is called the normal to & and a the complex distance from the origin o in X
to £ If x €X, b € B(= K/M) there exists exactly one horocycle, denoted £(x , b),
through x with normal 4. Let a(x, b)) €A denote the complex distance from o
to £(x, b) and put A(x, b) = loga(x, b). This element of o« is the symmetric
space analog of the inner product (x, w) in R", Denoting by «* the dual space
of o and defining p € a* by p(H) = % Tr(ad H| n), where ad is adjoint repre-
sentation and | restriction, we can define the Fourier transform 7 of a function
fEC(X) by

@ Tob= [rweMnuEm g \ear, bep,

dx denoting the volume element on X, suitably normalized. The inversion formula
for this Fourier transtorm is

) e =wtf /; FOn, by eMPYAED) [0y "2 dNdb
a*

where w is the order of the Weyl group W of X, db the normalized K-invariant
measure on B and c¢(\) Harish-Chandra’s function which can be expressed explicitly
in terms of I’-functions as we shall explain later in more detail.

A spherical function on X is by definition a K-invariant eigenfunction ¢ of
each G-invariant differential operator on X, normalized by p(0) = 1. By a simple
reformulation of a theorem of Harish-Chandra the spherical functions are just
the functions

6) 0, (x) = f £MP) (AGB)) gp
B

\ being arbitrary in the complex dual o ; also ¢, = ¢, if and only if XA = su for
some s € W. The c-function arises in Harish-Chandra’s work from a study of
the behaviour of ¢, (x) for large x ; roughly speaking, ¢, (a) behaves for large
a in the Weyl chamber A* as ., c(s)) edsr—P) (o @) if \ € %,

If fin (4) is K-invariant, then 7 is independent of b and by use of (6) for-
mula (5) reduces to Harish-Chandra’s inversion formula for the spherical Fourier
transform. On the other hand the general formula (5) can be derived quite easily
from this special case, [5].

It is of course of interest to characterize the images of various function spaces
on X under the Fourier transform f— f. In this regard we have the following
result (where a¥ denotes the positive Weyl chamber in a*).

THEOREM 3. — The Fourier transform f— 'f extends to an isometry of L*(X)
onto L*(a* x B) (with the measure |c(\)|™* d\ db).

A point x €X is called regular if the geodesic (ox) has stabilizer of minimum
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dimension. Since (K/M) x A is by the “polar coordinate representation” iden-
tified with the set X' of all regular points in X, Theorem 3 shows that “X is
self-dual under the Fourier transform”. The c-function is given by

. —i (A, ag)
o) = ¢, I N'<iN,0,>)2

aer” r(% (% met 1+ (X, )) l"(-;—(%ma+m2d+ (i, )

where ¢, is a constant. Here P* is the set of positive roots which are not integral
multiples of other positive roots, m, and m,, are the multiplicities, ( , ) the
inner product on o) and o, = o/{ a, ). This formula was proved by Harish-
Chandra and Bhanu-Murthy in special cases and by Gindikin and Karpelevi& [2]
in general. Every detail in this formula has turned out to be conceptually signi-
ficant : the location of the singularities for the Paley-Wiener theorem, the asymp-
totic behaviour for the Fourier transform of rapidly decreasing functions, the
Radon transform on X is inverted by a differential operator (not just a pseudo-
differential operator) if and only if ¢! is a polynomial ; using the formula for ¢
one shows [6] that this happens exactly when all Cartan subgroups of G are
conjugate. Finally, we shall now see that the numerator and the denominator have
their individual importance. We have in fact the following generalization of Theo-
rem 2.

Let X have rank 1, i.e. dim 4 = 1, let A denote the Laplace-Beltrami operator
on X and for A€ a¥ ¢, €C the eigenvalue given by Ag, = c,¢,. Let &, be
the eigenspace of A for the eigenvalue c,, this space taken with the topology
induced by the usual topology of C”(X).

THEOREM 4. — Let e(N)™' denote the demominator in the expression for
c¢(N). Then the natural representation of G on 6,\ is irreducible if and only if

e(MNe(—N)#0.
4. The conical distribution on =.

The spaces X=G/K, E=G/MN

have many analogies reminiscent of the duality between points and hyperplanes
in R". For example, we have the following natural identifications for the orbit
spaces of K on X, MN on E,

@) K\G/K=A/W, MN\G/MN=A x W.
In the spirit of this analogy we define the counterparts to the spherical functions.

DEFINITION. — A distribution on E is called a conical distribution if it is an
MN-invariant eigendistribution of each G-invariant differential operator on =,

Since by (6) the set of spherical functions is parametrized by a,:,‘/ W, the iden-
tifications (7) suggest that the set of conical distributions should somehow be
parametrized by of x W. We shall now explain how this turns out to be essentially
so. The Bruhat decomposition for G implies that = decomposes into finitely
many disjoint orbits under MNA
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—__ b=
= U &,
€ s

E,=MNA - & .
There is a natural measure dv on the orbit &, and if A€ o} we consider the
functional

Bpiv [ 0@ O g, pecim,
s

where a(£) denotes the A-component of ¢ €. Since &, is not in general closed
there is no guarantee of convergence. However one does have absolute convergence
for all p €EC,(E) if and only if Re({i\,a))>0 for all

aEP Ns P~ (P~ =—P".

If this is the case, ®, , is a conical distribution. One would now like to obtain
a meromorphic continuation of the distribution-valued function A - ®, . because
then all the values and ‘“‘residues™ of this extension would still be conical distri-
butions. Remarkably enough it turns out that the singularities are the same as
those in the numerator for the c-function except that one restricts the product
to P* N s~1P~, Thus we have

THEOREM 5. — Let SEW, oy = af{a,a), d,(N) = a.eP+n

TLy - TN, a)).

Then the mapping
1

A - ‘I,)\,S = d (R) <D)\,&’
s

extends to an entire function on a%,.

The residues of @, ,, that is the values of ¥, ; at the removable smgulantles
A,, have the following geometric interpretation. The closure of Z g, in B is
a union of Z, and some other orbits =.. Then the residue Res,\_,\o ®, , is alinear

combination of certain transversal derivatives of the various ¥, .. constructed
from the other orbits in the closure.

We have now to each (X, 5) € a%, x W associated a conical distribution ¥, .
One can now prove ([6], Ch. III) that essentially all the conical distributions
arise in this manner. This is done by transferring the differential equations for the
conical distributions to differential equations on X by means of the dual to
the Radon transform. Under this transform a conical distribution is sent into
a C” function so the differential equations become easier to handle. Thus our
preliminary guess that the set of conical distributions can be parametrized by
o* x W is essentially verified.

5. Eigenspaces of invariant differential operators on =

Let D(E) denote the algebra of all G-invariant differential operators on . For
AEaj let the eigenvalue v,(D) be determined by DW, ;= % (D) ¥, , for all
DED(E). As indicated by the notation, the eigenvalue is independent of s € W.
Let @'(E) denote the set of all distributions on = and put

@, ={ve®'(=)| DY = v,(D)¥ for DED(E))}.
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Each eigendistribution of the operators in D(Z) lies in one of the spaces @;.
Let 7, denote the natural representation of G" on the distribution space d);\ (strong
distribution topology).

. THEOREM 6. — The representation T, is irreducible if and only if e(\) e(— \) # 0.

This is proved by relating the representation 7, to the Hilbert space represen-
tation m, of G induced by the one-dimensional representation man - e*(°8 @
of MAN. According to Harish-Chandra [3], Theorem 5, irreducibility of m, is
equivalent to the (algebraic) irreducibility of the representation dm, of g on
the space of K-finite vectors in the Hilbert space and a criterion for the algebraic
irreducibility of dm, is given by Kostant [8], p. 63. For X of rank one an entirely
different proof of Theorem 6 is given in [6].

The distributions ¥, ; all belong to @, and play the role of extreme weight
vectors for the infinite-dimensional representation 7,.

If the irreducibility condition for 7, is satisfied the representations 7, and
g, are equivalent for each s € W. The intertwining operator realizing this equi-
valence is a kind of a convolution operator by means of the conical distribution
¥ . _;. More precisely, the map S > ¥ given by

A, 8

¥(p) = _/;/M (f e0A+0) (08 0) (K aMN) da) dS (kM)

is a bijection of @'B) onto Qm Thus 7 7, can be regarded as a representation of
G on @' (B). If S _IGCD(B) corresponds to ‘11“_1 then the convolution
operator § > S x S s ", sets up the equivalence between 7, and o The relations-

hip of these results with the work of Knapp, Kunze, Schiffmann, Stein and
Zhelobenko on intertwining operators is explained in [6], Ch. III, § 6.

For A€ a* the intertwining operator is very simply described in terms of
the Fourier transform f(A, b). In fact, the space L\, DIfECT(X)} is dense
in L2(B) as well as in ®'(B) and the operator f A,)—~> 7(s7\ .) extends to
an isometry of L2(B) onto itself and induces the operator which intertwines
7, and 7,
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