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GROUP REPRESENTATIONS 

AND SYMMETRIC SPACES 

by Sigurdur HELGASON 

1. Introduction. 

In this lecture I shall discuss some special instances of the following three 
general problems concerning a homogeneous space G/H, H being a closed subgroup 
of a Lie group G. 

(A) Determine the algebra D(G/H) of all differential operators on G /H which 
are invariant under G. 

(B) Determine the functions on G/H which are eigenfunctions of each 
DeD(G/H). 

(C) For each joint eigenspace for the operators in D(G/H) study the natural 
representation of G on this eigenspace ; in particular, when is it irreducible and 
what representations of G are so obtained ? 

Here we shall deal with the case of a symmetric space X of the noncompact 
type and with the case of the space IS of horocycles in X. We refer to [6] for 
proofs of most of the results reported here. 

2. The eigenfunctions of the Laplacian on the non-Euclidean disk. 

Let X denote the open unit disk in the plane equipped with the Riemannian 
metric 

, _ dx2 + dy2 

[l-(x2+y2)]2 ' 

The corresponding Laplace-Beltrami operator is given by 

A = n-(*2 + ^ Ä + £ ) bx2 by2 

We shall begin by stating some recent results about the eigenfunctions of A. 
Let B denote the boundary of X and P(z, b) the Poisson kernel 

p(z » h) = 7 1 — T V Z G X> bEB 
1 -\z\2 

\z-b\2 

It is then easily verified that if p E C then Az(P(z, b)ß) = 4p(p - l)P(z, bY so 

for any measure m on B the function z -+ I P(z , b)ß dm(b) is an eigenfunction 

of A. If u E R and m > 0 this gives all the positive eigenfunctions of A (cf. [ 1 ], 
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[7]). More generally one can take m to be a distribution on B and even more 
generally, an analytic functional on B, that is a continuous linear functional 
on the space of analytic functions on the boundary B with the customary topology. 

THEOREM 1. — The eigenfunctions of the Laplace-Beltrami operator on the 
non-Euclidean disk are precisely the functions 

(1) / (*)= /P(z ,b fdT(b) 

where p E C and T is an analytic functional on B. 
The functional T is related to the boundary behaviour of / . Assuming, as 

we can, that p in (1) satisfies Reu > 1/2 we have as \z\ -> 1 

(2) cM(l - \z\2f~l f(z) -» T cß = V(p)2lT(2p - 1) 

in the sense that the Fourier series of the left hand side converge formally for 
|z| -> 1 to the Fourier series of T. (For Re u = 1/2 a minor modification of (2) 
is necessary). 

The case jut = 1 in Theorem 1 is closely related to Köthe's Cauchy kernel 
representation of holomorphic functions by analytic functionals, [9]. For Eisenstein 
series a result analogous to (2) was proved by John Lewis in his thesis. 

It is well known that the eigenspaces of the Laplacian on a sphere are irreducible 
under the action of the rotation group. The analogous statement for X is in general 
false : The largest connected group G of isometries of X does not act irreducibly 
on the space of harmonic functions (p — 1). In fact, the constants form an inva
riant subspace. However we have the following result. 

THEOREM 2. — For u E C let Vß denote the space of eigenfunctions of A for 
the eigenvalue 4p(p — 1) with the topology induced by that of C°°(X). Then G 
acts irreducibly on V^ if and only if p is not an integer. 

3. The Fourier transform on a symmetric space X. Spherical functions. 

In order to motivate the definition I restate the Fourier inversion formula 
for R" in a suggestive form. I £ / £ L1 (R") and ( , ) denotes the inner product 
on Rn the Fourier transform / is defined by 

7(Xœ) = f f(x) e-iKix^ dx X > 0 , |co| = 1 , 

and if for example / E C~(Rn) we have 

(3) f(x) = (2 7r)"M ff f(Xœ) eiKix'w) Xn~l dX du 
R + x S " - 1 

where R+ denotes the set of nonnegative reals and dco is the surface element 
on S""1 . 

Now consider a symmetric space X of the noncompact type, that is a coset 
space X = G/K where G is a connected semisimple Lie group with finite center 
and K a maximal compact subgroup. We fix an Iwasawa decomposition G = KAN 



GROUP REPRESENTATIONS AND SYMMETRIC SPACES 315 

of G, A and N being abelian and nilpotent, respectively. The horocycles in X 
are the orbits in X of the subgroups of G conjugate to N ; the group G permutes 
the horocycles transitively and the set E of all horocycles is naturally identified 
with the coset space G/MN where M is the centralizer of A in K, Let 9 , I, a, 
rt, m denote the respective Lie algebras of the groups introduced and log the 
inverse of the map exp : a -• A. It is clear from the above that each £ E E can 
be written £ = kaMN, where kM E K/M and a E A are unique. Here the coset 
kM is called the normal to £ and a the complex distance from the origin o in X 
to £. If x Ê I , bEB(= K/M) there exists exactly one horocycle, denoted %(x, b), 
through x with normal b. Let a(x, b)£A denote the complex distance from o 
to %(x, b) and put A(x, b) = logaC*, b). This element of a is the symmetric 
space analog of the inner product (x, co) in R". Denoting by a* the dual space 
of a and defining pG a* by p(H) = Vi Tr(ad/7| n), where ad is adjoint repre
sentation and I restriction, we can define the Fourier transform f of a function 
fEC?(X)by 

(4) f(X,b)= f f(x)e(-a+p)(A(x'b)) dx, X E a * , f c E 5 , 
°x 

dx denoting the volume element on X, suitably normalized. The inversion formula 
for this Fourier transtorm is 

(5) /(*) = w-1/ f 7(X, b) c0*+'>C*e*.»>) |c(X)|"2 dXdb , 
a* "B 

where w is the order of the Weyl group W of X, db the normalized /^-invariant 
measure on B and c(X) Harish-Chandra's function which can be expressed explicitly 
in terms of T-functions as we shall explain later in more detail. 

A spherical function on X is by definition a ^-invariant eigenfunction <p of 
each (7-invariant differential operator on X, normalized by y>(o) = 1. By a simple 
reformulation of a theorem of Harish-Chandra the spherical functions are just 
the functions 

(6) < (̂x) = fe«K+p)W>b))db 

X being arbitrary in the complex dual a* ; also <px = ^ if and only if X = su for 
some s E W. The c-function arises in Harish-Chandra's work from a study of 
the behaviour of tpK(x) for large x ; roughly speaking, < \̂(a) behaves for large 
a in the Weyl chamber A+ as XseW c(sX) e(

is*-<>> <to* fl> if XG a*. 

If / in (4) is AT-invariant, then / is independent of b and by use of (6) for
mula (5) reduces to Harish-Chandra's inversion formula for the spherical Fourier 
transform. On the other hand the general formula (5) can be derived quite easily 
from this special case, [5]. 

It is of course of interest to characterize the images of various function spaces 
on X under the Fourier transform f-+f. In this regard we have the following 
result (where aj denotes the positive Weyl chamber in a*). 

THEOREM 3. - The Fourier transform f-+f extends to an isometry of L2(X) 
onto L2(a* x B) (with the measure |c(X)|~2 dXdb). 

A point x E X is called regular if the geodesic (ox) has stabilizer of minimum 
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dimension. Since (K/M) x A+ is by the "polar coordinate representation" iden
tified with the set X' of all regular points in X, Theorem 3 shows that "X is 
self-dual under the Fourier transform". The c-function is given by 

C(X) = Co n+ { x r«/x,«0»2-^-°°> 

where c0 is a constant. Here P+ is the set of positive roots which are not integral 
multiples of other positive roots, ma and m2a are the multiplicities, < , > the 
inner product on a* and a0 = a/ (a ,CL) . This formula was proved by Harish-
Chandra and Bhanu-Murthy in special cases and by Gindikin and Karpeleviö [2] 
in general. Every detail in this formula has turned out to be conceptually signi
ficant : the location of the singularities for the Paley-Wiener theorem, the asymp
totic behaviour for the Fourier transform of rapidly decreasing functions, the 
Radon transform on X is inverted by a differential operator (not just a pseudo-
differential operator) if and only if c - 1 is a polynomial ; using the formula for c 
one shows [6] that this happens exactly when all Cartan subgroups of G are 
conjugate. Finally, we shall now see that the numerator and the denominator have 
their individual importance. We have in fact the following generalization of Theo
rem 2. 

Let X have rank 1, i.e. dim A = 1, let A denote the Laplace-Beltrami operator 
on X and for X E a * cx E C the eigenvalue given by A<px = c1^pK. Let &x be 
the eigenspace of A for the eigenvalue cK, this space taken with the topology 
induced by the usual topology of C°°(X). 

THEOREM 4. — Let e(X)"1 denote the denominator in the expression for 
c(X). Then the natural representation of G on ë^ is irreducible if and only if 

e(X) e ( - X) ^ 0 . 

4. The conical distribution on H. 

The spaces x = G/K K = G/MN 

have many analogies reminiscent of the duality between points and hyperplanes 
in Rn. For example, we have the following natural identifications for the orbit 
spaces of K on X, MN on S, 

(7) K\G/K = A/W, MN\G/MN = AxW . 

In the spirit of this analogy we define the counterparts to the spherical functions. 

DEFINITION. — A distribution on S is called a conical distribution if it is an 
MAMnvariant eigendistribution of each G-invariant differential operator on S. 

Since by (6) the set of spherical functions is parametrized by a*/W, the iden
tifications (7) suggest that the set of conical distributions should somehow be 
parametrized by a* x W. We shall now explain how this turns out to be essentially 
so. The Bruhat decomposition for G implies that S decomposes into finitely 
many disjoint orbits under MNA 
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S = U S IS = MNA • t 

There is a natural measure dv on the orbit %s and if X E a* we consider the 
functional 

*M : * - £ *(*) e<"x**} (I°g a(t)) * ( 0 . *> e C(S), 

where a(£) denotes the ^-component of £EB J t Since EÄ is not in general closed 
there is no guarantee of convergence. However one does have absolute convergence 
for all </>EC"(S) if and only if R e « / X , a » > 0 for all 

aEP* O s~*P~ (P~ =-P+) . 

If this is the case, <ï\ , is a conical distribution. One would now like to obtain 
a meromorphic continuation of the distribution-valued function X -* $ x because 
then all the values and "residues" of this extension would still be conical distri
butions. Remarkably enough it turns out that the singularities are the same as 
those in the numerator for the c-function except that one restricts the product 
to P+ n 5_1P~. Thus we have 

THEOREM 5. - Let sEW, ot0 = a/(a,a), dJX) = . 1 1 , _ r « / X , a0>). 

Then the mapping 

K>s âs(X) * M 

extends to an entire function on a*. 
The residues of 4>x s, that is the values of VXs at the removable singularities 

X0, have the following geometric interpretation. The closure of Es in B is 
a union of B, and some other orbits E ,̂. Then the residue Resx=x 3>x s is a linear 
combination of certain transversal derivatives of the various ^K s, constructed 
from the other orbits in the closure. 

We have now to each (X, s) E a* x W associated a conical distribution ^,s-
One can now prove ([6], Ch. Ill) that essentially all the conical distributions 
arise in this manner. This is done by transferring the differential equations for the 
conical distributions to differential equations on X by means of the dual to 
the Radon transform. Under this transform a conical distribution is sent into 
a C°° function so the differential equations become easier to handle. Thus our 
preliminary guess that the set of conical distributions can be parametrized by 
a* x W is essentially verified. 

5. Eigenspaces of invariant differential operators on B. 

Let D(B) denote the algebra of all G-invariant differential operators on B. For 
XEa* let the eigenvalue yK(D) be determined by D^Ks = yK(D) WXs for all 
DED(B). As indicated by the notation, the eigenvalue is independent of s E W. 
Let Ö)'(B) denote the set of all distributions on S and put 

(DK={*e(D'(S)\DV = <yx(D)* for Z)ED(B)}. 
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Each eigendistribution of the operators in D(B) lies in one of the spaces (Dx. 
Let rx denote the natural representation of G on the distribution space (Dx (strong 
distribution topology). 

w THEOREM 6. — The representation TX is irreducible if and only ife(X) e(— X) =£ 0. 

This is proved by relating the representation rx to the Hilbert space represen
tation 7TX of G induced by the one-dimensional representation man -> e'A<log a> 
of MAN. According to Harish-Chandra [3], Theorem 5, irreducibility of nx is 
equivalent to the (algebraic) irreducibility of the representation dirx of g on 
the space of Ä'-finite vectors in the Hilbert space and a criterion for the algebraic 
irreducibility of dirx is given by Kostant [8], p. 63. For X of rank one an entirely 
different proof of Theorem 6 is given in [6]. 

The distributions ^Xs all belong to (D'K and play the role of extreme weight 
vectors for the infinite-dimensional representation TX. 

If the irreducibility condition for TX is satisfied the representations 7\ and 
TSX are equivalent for each s E W. The intertwining operator realizing this equi
valence is a kind of a convolution operator by means of the conical distribution 
%\ s-1 • More precisely, the map S -> M> given by 

*(*>)= f (f eiiX+p) (log a) v(kaMN) da) dS(kM) 
K/M X A ' 

is a bijection of w (B) onto <3)x, thus TX can be regarded as a representation of 
G on (D'(B). If SsKs_1E(D'(B) corresponds to ^sXs-i then the convolution 
operator S -> S x S^ s_j sets up the equivalence between TX and TS . The relations
hip of these results with the work of Knapp, Kunze, Schiffmann, Stein and 
Zhelobenko on intertwining operators is explained in [6], Ch. Ill, § 6. 

For X E a* the intertwining operator is very simply described in terms of 
the Fourier transform f(X,b). In fact, the space ,Jf(X , . ) I / E C * (X)} is dense 
in L2(B) as well as in ®'(B) and the operator J(X,.)-» J(sX,.) extends to 
an isometry of L2(B) onto itself and induces the operator which intertwines 
rx and TSX. 

REFERENCES 

[1] FURSTENBERG. — Translation-invarient cones of functions on semisimple Lie 
groups, Bull. Amer. Math. Soc, 71, 1965, p. 271-326. 

[2] GINDIKIN S.G. and KARPELEVIC F.I. — Plancherel measure of Riemannian symme
tric spaces of nonpositive curvature, Soviet Math., 3, 1962, p. 962-965. 

[3] HARISH-CHANDRA. — Representations of a semisimple Lie group on a Banach 
space I, Trans. Amer. Math. Soc, 75, 1953, p. 185-243. 

[4] HARISH-CHANDRA. — Spherical functions on a semisimple Lie group I, II, Amer. J. 
Math., 80, 1958, p. 241-310, p. 553-613. 

[5] HELGASON S. — Lie groups and symmetric spaces, Battelle Rencontres, 1967, 1-11. 
W.A. Benjamin, New York, 1968. 



GROUP REPRESENTATIONS AND SYMMETRIC SPACES 319 

[6] HELGASON S. — A duality for symmetric spaces with applications to group repre
sentations, Advances in Math,, 5, 1970, p. 1-154. 

[7] KARPELEVIC, — The geometry of geodesies and the eigenfunctions of the Beltrami-
Laplace operator on symmetric spaces, Trans. Moscow Math. Soc, 14, 1965, 
p. 48-185. 

[8] KOSTANT B. — On the existence and irreducibility of certain series of representa
tions, Bull. Amer. Math. Soc, 75, 1969, p. 627-642. 

[9] KòTHE G, — Die Randverteilungen analytischer Funktionen, Math. Zeitschr., 
57, 1952, p. 13-33. 

Massachusetts Institute of Technology 
Dept. of Mathematics 2-182 

Cambridge 
Massachusetts 02 139 (USA) 




