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GROUP REPRESENTATIONS 

AND SYMMETRIC SPACES 

by Sigurdur HELGASON 

1. Introduction. 

In this lecture I shall discuss some special instances of the following three 
general problems concerning a homogeneous space G/H, H being a closed subgroup 
of a Lie group G. 

(A) Determine the algebra D(G/H) of all differential operators on G /H which 
are invariant under G. 

(B) Determine the functions on G/H which are eigenfunctions of each 
DeD(G/H). 

(C) For each joint eigenspace for the operators in D(G/H) study the natural 
representation of G on this eigenspace ; in particular, when is it irreducible and 
what representations of G are so obtained ? 

Here we shall deal with the case of a symmetric space X of the noncompact 
type and with the case of the space IS of horocycles in X. We refer to [6] for 
proofs of most of the results reported here. 

2. The eigenfunctions of the Laplacian on the non-Euclidean disk. 

Let X denote the open unit disk in the plane equipped with the Riemannian 
metric 

, _ dx2 + dy2 

[l-(x2+y2)]2 ' 

The corresponding Laplace-Beltrami operator is given by 

A = n-(*2 + ^ Ä + £ ) bx2 by2 

We shall begin by stating some recent results about the eigenfunctions of A. 
Let B denote the boundary of X and P(z, b) the Poisson kernel 

p(z » h) = 7 1 — T V Z G X> bEB 
1 -\z\2 

\z-b\2 

It is then easily verified that if p E C then Az(P(z, b)ß) = 4p(p - l)P(z, bY so 

for any measure m on B the function z -+ I P(z , b)ß dm(b) is an eigenfunction 

of A. If u E R and m > 0 this gives all the positive eigenfunctions of A (cf. [ 1 ], 
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[7]). More generally one can take m to be a distribution on B and even more 
generally, an analytic functional on B, that is a continuous linear functional 
on the space of analytic functions on the boundary B with the customary topology. 

THEOREM 1. — The eigenfunctions of the Laplace-Beltrami operator on the 
non-Euclidean disk are precisely the functions 

(1) / (*)= /P(z ,b fdT(b) 

where p E C and T is an analytic functional on B. 
The functional T is related to the boundary behaviour of / . Assuming, as 

we can, that p in (1) satisfies Reu > 1/2 we have as \z\ -> 1 

(2) cM(l - \z\2f~l f(z) -» T cß = V(p)2lT(2p - 1) 

in the sense that the Fourier series of the left hand side converge formally for 
|z| -> 1 to the Fourier series of T. (For Re u = 1/2 a minor modification of (2) 
is necessary). 

The case jut = 1 in Theorem 1 is closely related to Köthe's Cauchy kernel 
representation of holomorphic functions by analytic functionals, [9]. For Eisenstein 
series a result analogous to (2) was proved by John Lewis in his thesis. 

It is well known that the eigenspaces of the Laplacian on a sphere are irreducible 
under the action of the rotation group. The analogous statement for X is in general 
false : The largest connected group G of isometries of X does not act irreducibly 
on the space of harmonic functions (p — 1). In fact, the constants form an inva­
riant subspace. However we have the following result. 

THEOREM 2. — For u E C let Vß denote the space of eigenfunctions of A for 
the eigenvalue 4p(p — 1) with the topology induced by that of C°°(X). Then G 
acts irreducibly on V^ if and only if p is not an integer. 

3. The Fourier transform on a symmetric space X. Spherical functions. 

In order to motivate the definition I restate the Fourier inversion formula 
for R" in a suggestive form. I £ / £ L1 (R") and ( , ) denotes the inner product 
on Rn the Fourier transform / is defined by 

7(Xœ) = f f(x) e-iKix^ dx X > 0 , |co| = 1 , 

and if for example / E C~(Rn) we have 

(3) f(x) = (2 7r)"M ff f(Xœ) eiKix'w) Xn~l dX du 
R + x S " - 1 

where R+ denotes the set of nonnegative reals and dco is the surface element 
on S""1 . 

Now consider a symmetric space X of the noncompact type, that is a coset 
space X = G/K where G is a connected semisimple Lie group with finite center 
and K a maximal compact subgroup. We fix an Iwasawa decomposition G = KAN 
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of G, A and N being abelian and nilpotent, respectively. The horocycles in X 
are the orbits in X of the subgroups of G conjugate to N ; the group G permutes 
the horocycles transitively and the set E of all horocycles is naturally identified 
with the coset space G/MN where M is the centralizer of A in K, Let 9 , I, a, 
rt, m denote the respective Lie algebras of the groups introduced and log the 
inverse of the map exp : a -• A. It is clear from the above that each £ E E can 
be written £ = kaMN, where kM E K/M and a E A are unique. Here the coset 
kM is called the normal to £ and a the complex distance from the origin o in X 
to £. If x Ê I , bEB(= K/M) there exists exactly one horocycle, denoted %(x, b), 
through x with normal b. Let a(x, b)£A denote the complex distance from o 
to %(x, b) and put A(x, b) = logaC*, b). This element of a is the symmetric 
space analog of the inner product (x, co) in R". Denoting by a* the dual space 
of a and defining pG a* by p(H) = Vi Tr(ad/7| n), where ad is adjoint repre­
sentation and I restriction, we can define the Fourier transform f of a function 
fEC?(X)by 

(4) f(X,b)= f f(x)e(-a+p)(A(x'b)) dx, X E a * , f c E 5 , 
°x 

dx denoting the volume element on X, suitably normalized. The inversion formula 
for this Fourier transtorm is 

(5) /(*) = w-1/ f 7(X, b) c0*+'>C*e*.»>) |c(X)|"2 dXdb , 
a* "B 

where w is the order of the Weyl group W of X, db the normalized /^-invariant 
measure on B and c(X) Harish-Chandra's function which can be expressed explicitly 
in terms of T-functions as we shall explain later in more detail. 

A spherical function on X is by definition a ^-invariant eigenfunction <p of 
each (7-invariant differential operator on X, normalized by y>(o) = 1. By a simple 
reformulation of a theorem of Harish-Chandra the spherical functions are just 
the functions 

(6) < (̂x) = fe«K+p)W>b))db 

X being arbitrary in the complex dual a* ; also <px = ^ if and only if X = su for 
some s E W. The c-function arises in Harish-Chandra's work from a study of 
the behaviour of tpK(x) for large x ; roughly speaking, < \̂(a) behaves for large 
a in the Weyl chamber A+ as XseW c(sX) e(

is*-<>> <to* fl> if XG a*. 

If / in (4) is AT-invariant, then / is independent of b and by use of (6) for­
mula (5) reduces to Harish-Chandra's inversion formula for the spherical Fourier 
transform. On the other hand the general formula (5) can be derived quite easily 
from this special case, [5]. 

It is of course of interest to characterize the images of various function spaces 
on X under the Fourier transform f-+f. In this regard we have the following 
result (where aj denotes the positive Weyl chamber in a*). 

THEOREM 3. - The Fourier transform f-+f extends to an isometry of L2(X) 
onto L2(a* x B) (with the measure |c(X)|~2 dXdb). 

A point x E X is called regular if the geodesic (ox) has stabilizer of minimum 
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dimension. Since (K/M) x A+ is by the "polar coordinate representation" iden­
tified with the set X' of all regular points in X, Theorem 3 shows that "X is 
self-dual under the Fourier transform". The c-function is given by 

C(X) = Co n+ { x r«/x,«0»2-^-°°> 

where c0 is a constant. Here P+ is the set of positive roots which are not integral 
multiples of other positive roots, ma and m2a are the multiplicities, < , > the 
inner product on a* and a0 = a/ (a ,CL) . This formula was proved by Harish-
Chandra and Bhanu-Murthy in special cases and by Gindikin and Karpeleviö [2] 
in general. Every detail in this formula has turned out to be conceptually signi­
ficant : the location of the singularities for the Paley-Wiener theorem, the asymp­
totic behaviour for the Fourier transform of rapidly decreasing functions, the 
Radon transform on X is inverted by a differential operator (not just a pseudo-
differential operator) if and only if c - 1 is a polynomial ; using the formula for c 
one shows [6] that this happens exactly when all Cartan subgroups of G are 
conjugate. Finally, we shall now see that the numerator and the denominator have 
their individual importance. We have in fact the following generalization of Theo­
rem 2. 

Let X have rank 1, i.e. dim A = 1, let A denote the Laplace-Beltrami operator 
on X and for X E a * cx E C the eigenvalue given by A<px = c1^pK. Let &x be 
the eigenspace of A for the eigenvalue cK, this space taken with the topology 
induced by the usual topology of C°°(X). 

THEOREM 4. — Let e(X)"1 denote the denominator in the expression for 
c(X). Then the natural representation of G on ë^ is irreducible if and only if 

e(X) e ( - X) ^ 0 . 

4. The conical distribution on H. 

The spaces x = G/K K = G/MN 

have many analogies reminiscent of the duality between points and hyperplanes 
in Rn. For example, we have the following natural identifications for the orbit 
spaces of K on X, MN on S, 

(7) K\G/K = A/W, MN\G/MN = AxW . 

In the spirit of this analogy we define the counterparts to the spherical functions. 

DEFINITION. — A distribution on S is called a conical distribution if it is an 
MAMnvariant eigendistribution of each G-invariant differential operator on S. 

Since by (6) the set of spherical functions is parametrized by a*/W, the iden­
tifications (7) suggest that the set of conical distributions should somehow be 
parametrized by a* x W. We shall now explain how this turns out to be essentially 
so. The Bruhat decomposition for G implies that S decomposes into finitely 
many disjoint orbits under MNA 
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S = U S IS = MNA • t 

There is a natural measure dv on the orbit %s and if X E a* we consider the 
functional 

*M : * - £ *(*) e<"x**} (I°g a(t)) * ( 0 . *> e C(S), 

where a(£) denotes the ^-component of £EB J t Since EÄ is not in general closed 
there is no guarantee of convergence. However one does have absolute convergence 
for all </>EC"(S) if and only if R e « / X , a » > 0 for all 

aEP* O s~*P~ (P~ =-P+) . 

If this is the case, <ï\ , is a conical distribution. One would now like to obtain 
a meromorphic continuation of the distribution-valued function X -* $ x because 
then all the values and "residues" of this extension would still be conical distri­
butions. Remarkably enough it turns out that the singularities are the same as 
those in the numerator for the c-function except that one restricts the product 
to P+ n 5_1P~. Thus we have 

THEOREM 5. - Let sEW, ot0 = a/(a,a), dJX) = . 1 1 , _ r « / X , a0>). 

Then the mapping 

K>s âs(X) * M 

extends to an entire function on a*. 
The residues of 4>x s, that is the values of VXs at the removable singularities 

X0, have the following geometric interpretation. The closure of Es in B is 
a union of B, and some other orbits E ,̂. Then the residue Resx=x 3>x s is a linear 
combination of certain transversal derivatives of the various ^K s, constructed 
from the other orbits in the closure. 

We have now to each (X, s) E a* x W associated a conical distribution ^,s-
One can now prove ([6], Ch. Ill) that essentially all the conical distributions 
arise in this manner. This is done by transferring the differential equations for the 
conical distributions to differential equations on X by means of the dual to 
the Radon transform. Under this transform a conical distribution is sent into 
a C°° function so the differential equations become easier to handle. Thus our 
preliminary guess that the set of conical distributions can be parametrized by 
a* x W is essentially verified. 

5. Eigenspaces of invariant differential operators on B. 

Let D(B) denote the algebra of all G-invariant differential operators on B. For 
XEa* let the eigenvalue yK(D) be determined by D^Ks = yK(D) WXs for all 
DED(B). As indicated by the notation, the eigenvalue is independent of s E W. 
Let Ö)'(B) denote the set of all distributions on S and put 

(DK={*e(D'(S)\DV = <yx(D)* for Z)ED(B)}. 
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Each eigendistribution of the operators in D(B) lies in one of the spaces (Dx. 
Let rx denote the natural representation of G on the distribution space (Dx (strong 
distribution topology). 

w THEOREM 6. — The representation TX is irreducible if and only ife(X) e(— X) =£ 0. 

This is proved by relating the representation rx to the Hilbert space represen­
tation 7TX of G induced by the one-dimensional representation man -> e'A<log a> 
of MAN. According to Harish-Chandra [3], Theorem 5, irreducibility of nx is 
equivalent to the (algebraic) irreducibility of the representation dirx of g on 
the space of Ä'-finite vectors in the Hilbert space and a criterion for the algebraic 
irreducibility of dirx is given by Kostant [8], p. 63. For X of rank one an entirely 
different proof of Theorem 6 is given in [6]. 

The distributions ^Xs all belong to (D'K and play the role of extreme weight 
vectors for the infinite-dimensional representation TX. 

If the irreducibility condition for TX is satisfied the representations 7\ and 
TSX are equivalent for each s E W. The intertwining operator realizing this equi­
valence is a kind of a convolution operator by means of the conical distribution 
%\ s-1 • More precisely, the map S -> M> given by 

*(*>)= f (f eiiX+p) (log a) v(kaMN) da) dS(kM) 
K/M X A ' 

is a bijection of w (B) onto <3)x, thus TX can be regarded as a representation of 
G on (D'(B). If SsKs_1E(D'(B) corresponds to ^sXs-i then the convolution 
operator S -> S x S^ s_j sets up the equivalence between TX and TS . The relations­
hip of these results with the work of Knapp, Kunze, Schiffmann, Stein and 
Zhelobenko on intertwining operators is explained in [6], Ch. Ill, § 6. 

For X E a* the intertwining operator is very simply described in terms of 
the Fourier transform f(X,b). In fact, the space ,Jf(X , . ) I / E C * (X)} is dense 
in L2(B) as well as in ®'(B) and the operator J(X,.)-» J(sX,.) extends to 
an isometry of L2(B) onto itself and induces the operator which intertwines 
rx and TSX. 
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