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1. Introduction

We are going to explain Sections 2 and 4 of [10]. The rough plan is as follows:

(1) Introduce formal nearby cycles in the sense of Berkovich

(2) Discuss deformation spaces of divisible formal modules

(3) Use the formal nearby cycles to construct test functions

(4) Show certain test functions are associated

2. Formal Nearby Cycles

In this section, we adopt the following notations.

k a discretely valued field

Ok the ring of integers of k

k̃ the residue field of k.

K an extension field of k

FSchOk
the category of formal schemes locally of finite type over Spf Ok

Remark 2.1. We use k for the base field (instead of the apparently better choice K) simply

because Berkovich does so in [2]. Let me change everything toK later.

Remark 2.2. In [2], Berkovich considers a wider class of formal schemes, called special formal
schemes, whose category S FSchOk

contains as a full subcategory. But we will only need to

consider the smaller class of formal schemes. So we do not bother ourselves introducing new

notions.

Definition 2.3. A morphism φ : Y → X in FSchOk
is étale if for any ideal of definition I

of X the morphism of schemes (Y ,OY /φ∗I ) → (X,OX /I ) is étale.

Example 2.4. Let π : Y → X be an étale morphism of schemes locally of finite type over

Ok. Write Z for the special fiber of X . Denote X̂ the completion of X along Z and Ŷ along

π−1(Z). Then the induced map Ŷ → X̂ is étale.
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In [3], Berkovich introduces the notion of quasi-étalemorphisms of Berkovich analytic spaces.

We cite the main properties of quasi-étale morphisms that we are going to use in the follow-

ing proposition.

Proposition 2.5.

(1) The assignmentY 7→ Ys induces an equivalence between the category of formal schemes
étale over X and the category of schemes étale over Xs.

(2) If φ : Y → X is étale, then φη(Yη) = π−1(φs(Ys))

Yη Ys

Xη Xs

π

φsφη

π

In particular, φη(Yη) is a closed analytic domain in Xη.
(3) If φ : Y → X is an étale morphism, then the induced morphism φη : Yη → Xη of

k-analytic spaces is quasi-étale.
(4) If φ : Y → X is an étale morphism, then the induced morphism φη : Yη → X of

k-analytic spaces is quasi-étale.

Let’s fix a quasi-inverse of the reduction functor Y 7→ Ys. The composition of functors

Ys 7→ Y 7→ Yη

induces a morphism of sites

ν : XηK ,qet → XsK ,et

Let µ be the morphism of sites

µ : XηK ,qet → XηK ,et

We get a left exact functor

θK = ν∗µ
∗ : Sh(XηK ,et) → Sh(XηK ,qet) → Sh(XsK ,et)

Remark 2.6. I think everything done in [2] can be rewritten in terms of adic spaces. But I

don’t know how to do that.

Proposition 2.7 ([2] Proposition 2.2). Let F be an etale sheaf on XηK .

(1) If Ys is etale over XsK , then θK(F)(Ys) = F (Ys).
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(2) If F is an abelian sheaf, then RqθK(F ) is the sheafification of the presheaf

Ys 7→ Hq(Yη,F)

(3) If F is a soft abelian sheaf, then the sheaf θK(F) is flasque.

Denote by θK the functor

θK : Sh(Xη,et) → Sh(XsK ,et)

F 7→ θK(FK)

whereFK is the pullback ofF toXηK IfF is soft, thenFK is also soft. So there is a canonical

isomorphism

RqθK(F)
∼−→ RqθK(FK), ∀q ≥ 0

We define the nearby cycle functor as

θ = θk : Sh(Xη,et) → Sh(Xs,et)

and the functor Ψη, also called the nearby cycle functor, as

Ψη : θKs : Sh(Xη,et) → Sh(Xs,et)

As for the nearby cycle functors for schemes, the formal nearby cycle sheaves can be com-

pared to the cohomology of the generic fiber in "nice cases".

Theorem 2.8 ([2] Corollary 2.5). Let X ∈ FSchOk
Assume all irreducible components of Xs

are proper. Then there is a canonical isomorphism

RΓc(Xs,RΦF•)
∼−→ RΓc(Xη,F•)

If the formal scheme X is the formal completion of a scheme X , then the formal nearby

cycle sheaves can be compared to the corresponding nearby cycle sheaves on X . Let X be

a scheme locally of finite type over S = Spec Ok, and Y ⊆ Xs a closed subscheme. Denote

by X̂/Y the formal completion of X along Y , and by X̂ the formal completion of X along

the special fiber Xs. For an étale sheaf F on Xη, write F̂ (resp. F̂/Y ) for the its pullback to

X̂ (resp. X̂/Y ).

Theorem2.9 (Comparison Theorem, [2] Theorem 3.1). LetF be an étale abelian constructible
sheaf onXη with torsion order prime to char k̃. Then for any q ≥ 0, there are canonical isomor-
phisms

(RqθF) |Y
∼−→ Rqθ(F̂/Y )
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and
(RqΨF) |Y

∼−→ RqΨ(F̂/Y )

3. ϖ-divisible O-modules

In this section, we adopt the following notations.

F |Qp a finite extension F̆ maximal unramified extension

O ring of integers of F Ŏ ring of integers of F̆

ϖ a uniformizer of F σ arithmetic Frobenius of Fr over F

κ residue field of F σ0 arithmetic Frobenius ofW (κr) over Zp

Fr|F unramified extension of degree r Frob fixed geometric Frobenius in WF

Or ring of integers of Fr

κr residue field of Fr

We first recall the definition of ϖ-divisible O-module.

Definition 3.1. Let S be an O-scheme on which p is locally nilpotent. A ϖ-divisible O-

module H over S is a p-divisible group together with an action ι : O → End(H) such that

the two induced actions of O on the Lie algebra of H agree.

Example 3.2. Recall the Lubin-Tate formal group LTF is a formal O-module over O . So its

base changeLTF,S to anyO-scheme onwhich p is locally nilpotent is aϖ-divisibleO-module

over S. But we can also add étale parts to LTF . For example, LTF × (F/O)j base-changed

to S is again ϖ-divisible O-module over S.

Now we consider the Diedonné theory (i.e. classification) of ϖ-divisible O-modules. The

following is essentially a verbatim reproduction of paragraphs in [10]. LetH be aϖ-divisible

O-module over a perfect field k of characteristic p, which is given the structure of a O-

algebra, via a map κ → k. Then the usual Dieudonné module (M0, F0, V0) of H carries an

action of

O ⊗W (k) =
∏
κ→k

WO(k),

where WO(k) is the completion of the unramified extension of O with residue field k. Let

M be the component of M0 corresponding to the given map κ → k, which is a free WO(k)-

module. Assume that κ ∼= Fpj for some j. ThenM carries a σ-semilinear action of F j
0 , which

we denote by F in this context. One can check that M also admits a σ−1
-semilinear operator

V satisfying

FV = V F = ϖ.
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The structure (M,F, V ) is functorial inH and is called the relative Dieudonné module ofH .

It is an easy exercise to see that all of Dieudonné theory goes through in this context.

In particular, to any β ∈ GLn(Or)diag(ϖ, 1, . . . , 1)GLn(Or), one can associate a one-

dimensional ϖ-divisible O-module Hβ of height n over κr, by taking F = βσ. Conversely,

any one-dimensional ϖ-divisible O-module of height n over κr is associated to a unique

GLn(Or)-σ-conjugacy class of such β.

Consider the deformation functor

Defβ : NilpOr
→ Sets, R 7→ {(G, ι)}

where G is aϖ-divisible O-module over R and ι : G⊗R R/ϖ
∼−→ H ⊗κr R/ϖ is an isomor-

phism. By [6], or well-known theory, Defβ is pro-presented by a ring Rβ with a universal

deformationHβ . Similarly, we have the deformation functionDefβ,m with Drinfeld level-m-

structure. It is pro-represented by a ring Rβ,m.

Proposition 3.3 ([10] Proposition 2.3).

(1) The ring Rβ is a formally smooth complete noetherian local Or-algebra, abstractly iso-
morphic to Or[[T1, . . . , Tn−1]].

(2) The covering Rβ,m/Rβ is a finite Galois covering with Galois group GLn(O /ϖm O),
étale in the generic fibre.

(3) The ring Rβ,m is regular.

Proof. All parts follow from [6] Proposition 4.3 and Proposition 4.5. Notice that [6] actually

considers Our
-modules. But we can use Galois descent to deduce the statements here. □

Remark 3.4. The orginal proof of the proposition reduces the problem to the Lubin-Tate case

by using [10] Proposition 5.1. But I think the statements already follow fromDrinfeld’s paper

[6].

In order to compare formal nearby cycles and schematic nearby cycles, we need algebraiza-

tions of the deformation spaces Spf Rβ,m

Theorem 3.5 ([10] Theorem 2.4). Associated to any double coset

β̄ ∈ (1 +ϖmMn(O))\GLn(Or)diag(ϖ, 1, . . . , 1)GLn(Or)/(1 +ϖmMn(O))

there is a flat scheme Spec Rβ,m of finite type over Or with smooth generic fiber equipped with
an action ofGLn(O /ϖm), and a finite scheme Z ⊂ Spec Rβ,m⊗Or κr stable under this action
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such that the completion Spec Rβ,m at Z isGLn(O)-equivariantly isomorphic toRβ,m for any
β ∈ β̄.

Proof. Faltings [7] shows the functorH 7→ H[ϖm] fromϖ-divisibleO-modules tom-truncated

ϖ-divisible O-modules is formally smooth. So Spf Rβ is also a versal deformation space

of Hβ[ϖ
m]. Now Artin’s algebraization theorem shows there is a separated scheme Rβ̄ of

finite type over Or together with an m-truncated ϖ-divisible O-module Hβ̄ and a point

x ∈ Rβ̄(kr) such that the completion ofRβ̄ at xwithHβ̄ restricted to the formal completion

is isomorphic to Spf Rβ with Hβ[ϖ
m] for all β ∈ β̄. Recall the universal deformation ring

Rβ itself is normal and flat over Or. So by shrinking the scheme Rβ̄ and normalizing, we

can assume Rβ̄ = Spec Rβ,m is affine, normal, and flat over Or with smooth geneic fiber.

Now letRβ,m be the normalization ofRβ,m in the covering of the generic fibre parametrizing

trivializations ofHβ̄ . Let Z be the preimage of x inRβ,m.

□

Consider the formal nearby cycles

RΨβ := lim−→
m

H0(RΨSpf Rβ,m
,Qℓ)

and the object

[RΨβ] :=
∑
i

(−1)i lim−→
m

H0(RiΨSpf Rβ,m
,Qℓ)

in the Grothendieck group of representations ofWFr ×GLn(O).

Following the methods of [8], we want to study the representations given by the formal

nearby cycle sheaves on Spf Rβ,m. However, in order to have nice representations, we at least

need to show [RΨβ] has continuousWFr-action and smooth admissible GLn(O)-action.

Theorem 3.6 ([10] Theorem 2.5). The spaceH0(RiΨSpf Rβ,m
Qℓ) is a finite dimensional contin-

uous representation ofWFr ×GLn(O /ϖm), which vanishes outside the range of 0 ≤ i ≤ n−1.

Proof. By Theorem 3.5, and the Comparison Theorem 2.9 of formal nearby cycles,

RiΨSpf Rβ,m
Qℓ = RiΨSpec Rβ,m

Qℓ|Z⊗κr k̄

Now Spec Rβ,m is affine of relative dimensionn−1 over Spec O . Thus,RiΨSpec Rβ,m
Qℓ|Z⊗κr k̄

vanishes if i is not in the range [0, n − 1]. By a result by Deligne ([5] SGA 41
2
Chapitre

7 Theorem 3.2), RiΨSpec Rβ,m
Qℓ is a constructible Qℓ-sheaf on the geometric special fiber

(Spec Rβ,m)s̄. Thus, by finiteness results of étale cohomology, the space

H0(RiΨSpec Rβ,m
Qℓ|Z⊗κr k̄

)
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is a finite dimensional Qℓ-vector space. The action ofWFr ×GLn(O /ϖm) on

H0(RiΨSpec Rβ,m
Qℓ|Z⊗κr k̄

)

comes from the group action on the formal scheme Spf Rβ,m. The continuity of the repre-

sentation is clear. □

For any τ ∈ Frobr IF ⊂ WFr and h ∈ C∞
c (GLn(O),Q), we define a function ϕτ,h on

GLn(Fr) by

ϕτ,h(β) = tr(τ × h∨|[RΨβ])

where h∨
is defined by

h∨(g) = h(tg−1)

Theorem 3.7 ([10] Theorem 2.6). ϕτ,h ∈ C∞
c (GLn(Fr),Q) independent of ℓ.

Proof. By Theorem 3.6, ϕτ,h is locally constant in β. The independence of ℓ follows from a

result by Mieda [9]. □

Finally, we let fτ,h ∈ C∞
c (GLn(F )) be associated to ϕτ,h. Recall this means the following:

Oγ(f) =

±TOδ,σ(ϕ) if γ is conjugate to Nδ for some δ

0 else

for all semisimple γ ∈ GL2(Qp). Here, the sign is + except if Nδ is a central element, but δ

is not σ-conjugate to a central element, when it is −. In this situation, we also say ϕ and f

have matching (twisted) orbital integrals. The existence of fτ,h follows from [1] Proposition

3.1 and [4] Proposition 7.2.

Remark 3.8. There is also a variant of "being associated", which we may call "being regularly
associated" or "having regular matching (twisted) orbital integrals". This variant appears in

[1].

4. Associated Test Functions

We are going to define functions h and ϕh in two contexts

(1) D-group H for a semisimple algebra over Qp

(2) one-dimensional formal O-module of height n

In case (1),
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h ∈ C∞
c (O×

D) invariant under conjugation

ϕh ∈ C∞
c ((OD ⊗Zp Zpr)

×), ϕh := h(Nβ)

In case (2),

h ∈ C∞
c (Dr) which is invariant under O×

D-conjugation

ϕh ∈ C∞
c (Br), ϕh := h(Nβ)

We want to show

Proposition 4.1 ([10] Proposition 4.3, Corollary 4.5 Proposition 4.7, Corollary 4.8). In both
cases, h and ϕh are associated. Thus,

• in case (1), ∫
(OD ⊗Zp Zpr )×

ϕh(β)dβ =

∫
O×

D

h(γ)dγ

• in case (2), ∫
Br

ϕh(β)dβ =

∫
Dr

h(γ)dγ

Let’s first explain some of the notations. Let D be a semisimple algebra over Qp with a

maximal order OD, and let D be the central divisor algebra over F with invariant 1/n with

ring of integers OD. There is a natural valuation v : D× → Z, taking ϖ ∈ F ⊂ D to n. Let

Br be the set of basic elements in GLn(Or)diag(ϖ, 1, . . . , 1)GLn(Or), by which we mean

those elements that are basic as elements of GLn(F̆ ). Also, we let Dr be the set of elements

of D×
whose valuation is r.

Definition 4.2. Let S be scheme on which p is locally nilpotent. A D-group over S is an

étale p-divisible group H over S together with an action

ι : Oop
D → End(H)

such that H[p] is free of rank 1 over Oop
D /p.

The main tool we use is the two parametrizations of ϖ-divisible O-modules over Fpr :

Dieudonné and Galois parametrizations.

Dieudonné parametrization. LetH be aϖ-divisibleO-module overFpr , and letM be the con-

travariant Dieudonné module of H . Then M ∼= OD ⊗Zp Zpr as an Oop
D -module. The Frobe-

nius endomorphism F on M can be written as F = β−1σ0 for some β ∈ (OD ⊗Zp Zpr)
×
.

The element β is well-defined up to σ0-conjugation by elements of (OD ⊗Zp Zpr)
×
. This es-

tablishes a natural bijection between the set of isomorphism classes of H over Fpr and the

set of σ0-conjugacy classes in (OD ⊗Zp Zpr)
×
.
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Galois parametrization. Over the algebraic closure F̄p, there is a unique D-group H̃ (up to

isomorphism). So parametrizing D-groups H over Fpr is equivalent to adding a descent

datum to Fpr , i.e., an isomorphism

α : Frob∗ H̃ ∼= H̃

Let

F : F̄p → F̄p

be the p-th power map. Then there is the natural Frobenius isogeny F : H̃ → H̃ defined

for any p-divisible group, which is an isomorphism in the case of étale p-divisible groups.

Then giving a descent datum α is equivalent to giving γ = α ◦ F−r : H̃ → H̃ , which is an

Oop
D -linear automorphism. Since EndOop

D
(H̃) = OD, it follows that giving a descent datum

is equivalent to giving an element γ ∈ O×
D. One easily checks that γ is well-defined up to

O×
D-conjugation.

The following proposition is clear.

Proposition 4.3. The two parametrizations define a bijection{
σ0-conjugacy clasees
in (OD ⊗Zp Zpr)

×

}
−→

{
conjugacy clasees in
O×

D

}
β 7−→ Nβ

Now we give a proof of Proposition 4.1 in Case (1).

Proof of Proposition 4.1: Case (1). Since every conjugacy class in O×
D is matched with a σ0-

conjugacy class in (OD ⊗Zp Zpr)
×
, we only need to show for any β ∈ (OD ⊗Zp Zpr)

×
,

TOβσ0(ϕh) = ONβ(h)

LetH be theD-group over Fpr associated to β. Consider the setX ofD-groupsH ′
over Fpr

together with an Oop
D -linear quasi-isogeny α : H ′ → H . On this setX , we have an action of

Γ = (End(H)⊗Zp Qp)
×
by composition.

It is easy to see that for any x ∈ X , the stabilizer Γx ⊂ Γ is a maximal compact subgroup.

This shows that all Γx have the same volume. We may normalize the Haar measure by

requiring that these subgroups have volume 1.

We can define a Γ-invariant function h̃ on X by requiring h̃(H ′, α) = h(γ(H)), where



10 XINYU ZHOU

γ(H ′) is the element in O×
D associated to H ′

as in the Galois parametrization. We want to

show the following equality

TOβσ0(ϕh) = ONβ(h) =
∑

x∈X/Γ

h̃(x).

Now on the one hand, Dieudonné theory gives an isomorphism between Γ and the twisted

centralizer of g, i.e.,

Γ = {g ∈ (D ⊗Qp
Qpr)

× | g−1βgσ = β} =: Ggσ

and an identification of X with

{g ∈ (D ⊗Qp
Qpr)

× | g−1βgσ ∈ O×
D}/(OD ⊗Zp Zpr)

×

by sending g to theD-groupH ′
given by the lattice gM ⊂ M⊗M⊗ZpQp and the correspond-

ing quasi-isogeny α : H ′ → H . Also h̃(H ′, α) = ϕh(g
−1βgσ) under this correspondence.

We may regard the function ϕh ∈ C∞
c ((OD ⊗Zp Zpr)

×) as a function on (D⊗Qp
Qpr)

×
by

setting ϕh(g) if g /∈ (OD ⊗Zp Zpr)
×
. Write W = {g ∈ (D ⊗Qp

Qpr)
× | g−1βgσ ∈ O×

D} and

W = X × (OD ⊗Zp Zpr)
×
. Then the twisted orbital integral TOβσ0(ϕh) is

TOβσ0(ϕh) =

∫
Ggσ\(D⊗QpQpr )

×
ϕh(g

−1βgσ)dg

=

∫
(X×(OD ⊗Zp Zpr )×)/Γ

ϕh(g
−1βgσ)dg

=

∫
X/Γ

∫
(OD ⊗Zp Zpr )×/Γ

h̃(x)dαdx

=

∫
X/Γ

h̃(x)dx

=
∑

x∈X/Γ

h̃(x)

where the second last equality is given by the normalization of the Haar measure.

The other equality, ONβ(h) =
∑

x∈X/Γ h̃(x) is given by applying similar arguments to the

Galois parametrization.

Now since ϕh and h are associated, the equality∫
(OD ⊗Zp Zpr )×

ϕh(β)dβ =

∫
O×

D

h(γ)dγ

follows from the Weyl integration formula. □
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Remark 4.4. There are still some problems with the calculation of the twisted orbital integral.

They will be fixed later.
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