p-DIVISIBLE GROUPS AND FORMAL NEARBY CYCLES

XINYU ZHOU

1. INTRODUCTION

We are going to explain Sections 2 and 4 of [10]. The rough plan is as follows:

- (1) Introduce formal nearby cycles in the sense of Berkovich
- (2) Discuss deformation spaces of divisible formal modules
- (3) Use the formal nearby cycles to construct test functions
- (4) Show certain test functions are associated

2. Formal Nearby Cycles

In this section, we adopt the following notations.

k	a discretely valued field
	the ring of integers of k
	the residue field of k .
K	an extension field of k
$\mathrm{FSch}_{\mathscr{O}_k}$	the category of formal schemes locally of finite type over ${\rm Spf}\mathscr{O}_k$

Remark 2.1. We use k for the base field (instead of the apparently better choice K) simply because Berkovich does so in [2]. Let me change everything to K later.

Remark 2.2. In [2], Berkovich considers a wider class of formal schemes, called *special formal schemes*, whose category $\mathscr{S}FSch_{\mathscr{O}_k}$ contains as a full subcategory. But we will only need to consider the smaller class of formal schemes. So we do not bother ourselves introducing new notions.

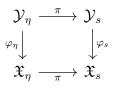
Definition 2.3. A morphism $\varphi : \mathcal{Y} \to \mathfrak{X}$ in $\operatorname{FSch}_{\mathscr{O}_k}$ is *étale* if for any ideal of definition \mathscr{I} of \mathfrak{X} the morphism of schemes $(\mathcal{Y}, \mathcal{O}_{\mathcal{Y}} / \varphi^* \mathscr{I}) \to (\mathfrak{X}, \mathcal{O}_{\mathfrak{X}} / \mathscr{I})$ is étale.

Example 2.4. Let $\pi : Y \to X$ be an étale morphism of schemes locally of finite type over \mathscr{O}_k . Write Z for the special fiber of X. Denote \hat{X} the completion of X along Z and \hat{Y} along $\pi^{-1}(Z)$. Then the induced map $\hat{Y} \to \hat{X}$ is étale.

In [3], Berkovich introduces the notion of quasi-étale morphisms of Berkovich analytic spaces. We cite the main properties of quasi-étale morphisms that we are going to use in the following proposition.

Proposition 2.5.

- (1) The assignment $\mathcal{Y} \mapsto \mathcal{Y}_s$ induces an equivalence between the category of formal schemes étale over \mathfrak{X} and the category of schemes étale over \mathfrak{X}_s .
- (2) If $\varphi : \mathcal{Y} \to \mathfrak{X}$ is étale, then $\varphi_{\eta}(\mathcal{Y}_{\eta}) = \pi^{-1}(\varphi_s(\mathcal{Y}_s))$



In particular, $\varphi_{\eta}(\mathcal{Y}_{\eta})$ is a closed analytic domain in \mathfrak{X}_{η} .

- (3) If $\varphi : \mathcal{Y} \to \mathfrak{X}$ is an étale morphism, then the induced morphism $\varphi_{\eta} : \mathcal{Y}_{\eta} \to \mathfrak{X}_{\eta}$ of *k*-analytic spaces is quasi-étale.
- (4) If $\varphi : \mathcal{Y} \to \mathfrak{X}$ is an étale morphism, then the induced morphism $\varphi_{\eta} : \mathcal{Y}_{\eta} \to \mathfrak{X}$ of k-analytic spaces is quasi-étale.

Let's fix a quasi-inverse of the reduction functor $\mathcal{Y}\mapsto\mathcal{Y}_s.$ The composition of functors

$${\mathcal Y}_s\mapsto {\mathcal Y}\mapsto {\mathcal Y}_\eta$$

induces a morphism of sites

$$\nu:\mathfrak{X}_{\eta_K,\mathrm{qet}}\to\mathfrak{X}_{s_K,\mathrm{et}}$$

Let μ be the morphism of sites

$$\mu:\mathfrak{X}_{\eta_K,\mathrm{qet}}\to\mathfrak{X}_{\eta_K,\mathrm{et}}$$

We get a left exact functor

$$\theta^{K} = \nu_{*}\mu^{*} : \operatorname{Sh}(\mathfrak{X}_{\eta_{K}, \operatorname{et}}) \to \operatorname{Sh}(\mathfrak{X}_{\eta_{K}, \operatorname{qet}}) \to \operatorname{Sh}(\mathfrak{X}_{s_{K}, \operatorname{et}})$$

Remark 2.6. I think everything done in [2] can be rewritten in terms of adic spaces. But I don't know how to do that.

Proposition 2.7 ([2] Proposition 2.2). Let \mathcal{F} be an etale sheaf on \mathfrak{X}_{η_K} .

(1) If \mathcal{Y}_s is etale over \mathfrak{X}_{s_K} , then $\theta^K(\mathcal{F})(\mathcal{Y}_s) = F(\mathcal{Y}_s)$.

(2) If \mathcal{F} is an abelian sheaf, then $\mathbb{R}^q \theta^K(F)$ is the sheafification of the presheaf

 $\mathcal{Y}_s \mapsto \mathrm{H}^q(\mathcal{Y}_\eta, \mathcal{F})$

(3) If \mathcal{F} is a soft abelian sheaf, then the sheaf $\theta^{K}(\mathcal{F})$ is flasque.

Denote by θ_K the functor

$$heta_K : \operatorname{Sh}(\mathfrak{X}_{\eta, \operatorname{et}}) \to \operatorname{Sh}(\mathfrak{X}_{s_K, \operatorname{et}})$$
 $\mathcal{F} \mapsto heta^K(\mathcal{F}_K)$

where \mathcal{F}_K is the pullback of \mathcal{F} to \mathfrak{X}_{η_K} If \mathcal{F} is soft, then \mathcal{F}_K is also soft. So there is a canonical isomorphism

$$\mathrm{R}^{q}\theta_{K}(\mathcal{F}) \xrightarrow{\sim} \mathrm{R}^{q}\theta^{K}(\mathcal{F}_{K}), \qquad \forall q \geq 0$$

We define the nearby cycle functor as

$$\theta = \theta_k : \operatorname{Sh}(\mathfrak{X}_{\eta, \operatorname{et}}) \to \operatorname{Sh}(\mathfrak{X}_{s, \operatorname{et}})$$

and the functor Ψ_{η} , also called the *nearby cycle functor*, as

$$\Psi_{\eta}: \theta_{K^s}: \operatorname{Sh}(\mathfrak{X}_{\eta, \operatorname{et}}) \to \operatorname{Sh}(\mathfrak{X}_{s, \operatorname{et}})$$

As for the nearby cycle functors for schemes, the formal nearby cycle sheaves can be compared to the cohomology of the generic fiber in "nice cases".

Theorem 2.8 ([2] Corollary 2.5). Let $\mathfrak{X} \in \mathrm{FSch}_{\mathscr{O}_k}$ Assume all irreducible components of \mathfrak{X}_s are proper. Then there is a canonical isomorphism

$$\mathrm{R}\Gamma_c(\mathfrak{X}_s, \mathrm{R}\Phi \,\mathcal{F}^{\bullet}) \xrightarrow{\sim} \mathrm{R}\Gamma_c(\mathfrak{X}_\eta, \mathcal{F}^{\bullet})$$

If the formal scheme \mathfrak{X} is the formal completion of a scheme X, then the formal nearby cycle sheaves can be compared to the corresponding nearby cycle sheaves on X. Let X be a scheme locally of finite type over $S = \text{Spec } \mathcal{O}_k$, and $Y \subseteq X_s$ a closed subscheme. Denote by $\hat{X}_{/Y}$ the formal completion of X along Y, and by \hat{X} the formal completion of X along the special fiber X_s . For an étale sheaf \mathcal{F} on \mathfrak{X}_{η} , write $\hat{\mathcal{F}}$ (resp. $\hat{\mathcal{F}}_{/Y}$) for the its pullback to \hat{X} (resp. $\hat{X}_{/Y}$).

Theorem 2.9 (Comparison Theorem, [2] Theorem 3.1). Let \mathcal{F} be an étale abelian constructible sheaf on X_{η} with torsion order prime to char \tilde{k} . Then for any $q \ge 0$, there are canonical isomorphisms

$$(\mathrm{R}^q \theta \,\mathcal{F}) \mid_Y \xrightarrow{\sim} \mathrm{R}^q \theta(\hat{\mathcal{F}}_{/Y})$$

and

4

$$(\mathrm{R}^{q}\Psi\mathcal{F})|_{Y} \xrightarrow{\sim} \mathrm{R}^{q}\Psi(\hat{\mathcal{F}}_{/Y})$$

3. ϖ -divisible \mathscr{O} -modules

In this section, we adopt the following notations.

$F \mathbb{Q}_p$	a finite extension	Ĕ	maximal unramified extension
\mathscr{O}	ring of integers of F	Ŏ	ring of integers of \breve{F}
ϖ	a uniformizer of F	σ	arithmetic Frobenius of ${\cal F}_r$ over ${\cal F}$
κ	residue field of F	σ_0	arithmetic Frobenius of $W(\kappa_r)$ over \mathbb{Z}_p
$F_r F$	unramified extension of degree \boldsymbol{r}	Frob	fixed geometric Frobenius in W_F
\mathcal{O}_r	ring of integers of F_r		
κ_r	residue field of F_r		

We first recall the definition of $\varpi\text{-divisible }\mathscr{O}\text{-module}.$

Definition 3.1. Let S be an \mathcal{O} -scheme on which p is locally nilpotent. A ϖ -divisible \mathcal{O} module H over S is a p-divisible group together with an action $\iota : \mathcal{O} \to \operatorname{End}(H)$ such that the two induced actions of \mathcal{O} on the Lie algebra of H agree.

Example 3.2. Recall the Lubin-Tate formal group LT_F is a formal \mathscr{O} -module over \mathscr{O} . So its base change $LT_{F,S}$ to any \mathscr{O} -scheme on which p is locally nilpotent is a ϖ -divisible \mathscr{O} -module over S. But we can also add étale parts to LT_F . For example, $LT_F \times (F/\mathscr{O})^j$ base-changed to S is again ϖ -divisible \mathscr{O} -module over S.

Now we consider the Diedonné theory (i.e. classification) of ϖ -divisible \mathscr{O} -modules. The following is essentially a verbatim reproduction of paragraphs in [10]. Let H be a ϖ -divisible \mathscr{O} -module over a perfect field k of characteristic p, which is given the structure of a \mathscr{O} -algebra, via a map $\kappa \to k$. Then the usual Dieudonné module (M_0, F_0, V_0) of H carries an action of

$$\mathscr{O} \otimes W(k) = \prod_{\kappa \to k} W_{\mathscr{O}}(k),$$

where $W_{\mathscr{O}}(k)$ is the completion of the unramified extension of \mathscr{O} with residue field k. Let M be the component of M_0 corresponding to the given map $\kappa \to k$, which is a free $W_{\mathscr{O}}(k)$ -module. Assume that $\kappa \cong \mathbb{F}_{p^j}$ for some j. Then M carries a σ -semilinear action of F_0^j , which we denote by F in this context. One can check that M also admits a σ^{-1} -semilinear operator V satisfying

$$FV = VF = \varpi.$$

The structure (M, F, V) is functorial in H and is called the relative Dieudonné module of H. It is an easy exercise to see that all of Dieudonné theory goes through in this context. In particular, to any $\beta \in \operatorname{GL}_n(\mathscr{O}_r)\operatorname{diag}(\varpi, 1, \ldots, 1)\operatorname{GL}_n(\mathscr{O}_r)$, one can associate a onedimensional ϖ -divisible \mathscr{O} -module \overline{H}_β of height n over κ_r , by taking $F = \beta \sigma$. Conversely, any one-dimensional ϖ -divisible \mathscr{O} -module of height n over κ_r is associated to a unique $\operatorname{GL}_n(\mathscr{O}_r)$ - σ -conjugacy class of such β .

Consider the deformation functor

$$\operatorname{Def}_{\beta} : \operatorname{Nilp}_{\mathscr{O}_r} \to \operatorname{Sets}, R \mapsto \{(G, \iota)\}$$

where G is a ϖ -divisible \mathscr{O} -module over R and $\iota : G \otimes_R R/\varpi \xrightarrow{\sim} H \otimes_{\kappa_r} R/\varpi$ is an isomorphism. By [6], or well-known theory, $\operatorname{Def}_{\beta}$ is pro-presented by a ring R_{β} with a universal deformation H_{β} . Similarly, we have the deformation function $\operatorname{Def}_{\beta,m}$ with Drinfeld level-m-structure. It is pro-represented by a ring $R_{\beta,m}$.

Proposition 3.3 ([10] Proposition 2.3).

- (1) The ring R_{β} is a formally smooth complete noetherian local \mathcal{O}_r -algebra, abstractly isomorphic to $\mathcal{O}_r[[T_1, \ldots, T_{n-1}]]$.
- (2) The covering $R_{\beta,m}/R_{\beta}$ is a finite Galois covering with Galois group $\operatorname{GL}_n(\mathcal{O}/\varpi^m \mathcal{O})$, étale in the generic fibre.
- (3) The ring $R_{\beta,m}$ is regular.

Proof. All parts follow from [6] Proposition 4.3 and Proposition 4.5. Notice that [6] actually considers \mathscr{O}^{ur} -modules. But we can use Galois descent to deduce the statements here.

Remark 3.4. The orginal proof of the proposition reduces the problem to the Lubin-Tate case by using [10] Proposition 5.1. But I think the statements already follow from Drinfeld's paper [6].

In order to compare formal nearby cycles and schematic nearby cycles, we need algebraizations of the deformation spaces Spf $R_{\beta,m}$

Theorem 3.5 ([10] Theorem 2.4). Associated to any double coset

$$\bar{\beta} \in (1 + \varpi^m M_n(\mathscr{O})) \setminus \operatorname{GL}_n(\mathscr{O}_r) \operatorname{diag}(\varpi, 1, \dots, 1) \operatorname{GL}_n(\mathscr{O}_r) / (1 + \varpi^m M_n(\mathscr{O}))$$

there is a flat scheme Spec $\mathcal{R}_{\beta,m}$ of finite type over \mathscr{O}_r with smooth generic fiber equipped with an action of $\operatorname{GL}_n(\mathscr{O}/\varpi^m)$, and a finite scheme $Z \subset \operatorname{Spec} \mathcal{R}_{\beta,m} \otimes_{\mathscr{O}_r} \kappa_r$ stable under this action

such that the completion Spec $\mathcal{R}_{\beta,m}$ at Z is $\operatorname{GL}_n(\mathscr{O})$ -equivariantly isomorphic to $R_{\beta,m}$ for any $\beta \in \overline{\beta}$.

Proof. Faltings [7] shows the functor $H \mapsto H[\varpi^m]$ from ϖ -divisible \mathscr{O} -modules to m-truncated ϖ -divisible \mathscr{O} -modules is formally smooth. So $\operatorname{Spf} R_{\beta}$ is also a versal deformation space of $H_{\beta}[\varpi^m]$. Now Artin's algebraization theorem shows there is a separated scheme $\mathfrak{R}_{\overline{\beta}}$ of finite type over \mathscr{O}_r together with an m-truncated ϖ -divisible \mathscr{O} -module $\mathcal{H}_{\overline{\beta}}$ and a point $x \in \mathfrak{R}_{\overline{\beta}}(k_r)$ such that the completion of $\mathfrak{R}_{\overline{\beta}}$ at x with $\mathcal{H}_{\overline{\beta}}$ restricted to the formal completion is isomorphic to $\operatorname{Spf} R_{\beta}$ with $H_{\beta}[\varpi^m]$ for all $\beta \in \overline{\beta}$. Recall the universal deformation ring R_{β} itself is normal and flat over \mathscr{O}_r . So by shrinking the scheme $\mathfrak{R}_{\overline{\beta}}$ and normalizing, we can assume $\mathfrak{R}_{\overline{\beta}} = \operatorname{Spec} \mathcal{R}_{\beta,m}$ is affine, normal, and flat over \mathscr{O}_r with smooth geneic fiber. Now let $\mathcal{R}_{\beta,m}$ be the normalization of $\mathcal{R}_{\beta,m}$ in the covering of the generic fibre parametrizing trivializations of $\mathcal{H}_{\overline{\beta}}$. Let Z be the preimage of x in $\mathcal{R}_{\beta,m}$.

Consider the formal nearby cycles

$$\mathrm{R}\Psi_{\beta} := \varinjlim_{m} \mathrm{H}^{0}(\mathrm{R}\Psi_{\mathrm{Spf}\,R_{\beta,m}}, \overline{\mathbb{Q}}_{\ell})$$

and the object

$$[\mathrm{R}\Psi_{\beta}] := \sum_{i} (-1)^{i} \varinjlim_{m} \mathrm{H}^{0}(\mathrm{R}^{i}\Psi_{\mathrm{Spf}\,R_{\beta,m}}, \overline{\mathbb{Q}}_{\ell})$$

in the Grothendieck group of representations of $W_{F_r} \times \operatorname{GL}_n(\mathscr{O})$.

Following the methods of [8], we want to study the representations given by the formal nearby cycle sheaves on Spf $R_{\beta,m}$. However, in order to have nice representations, we at least need to show $[\mathbb{R}\Psi_{\beta}]$ has continuous W_{F_r} -action and smooth admissible $\mathrm{GL}_n(\mathscr{O})$ -action.

Theorem 3.6 ([10] Theorem 2.5). The space $\mathrm{H}^{0}(\mathbb{R}^{i}\Psi_{\mathrm{Spf}\,R_{\beta,m}}\overline{\mathbb{Q}}_{\ell})$ is a finite dimensional continuous representation of $W_{F_{r}} \times \mathrm{GL}_{n}(\mathscr{O}/\varpi^{m})$, which vanishes outside the range of $0 \leq i \leq n-1$.

Proof. By Theorem 3.5, and the Comparison Theorem 2.9 of formal nearby cycles,

$$\mathrm{R}^{i}\Psi_{\mathrm{Spf}\,R_{\beta,m}}\overline{\mathbb{Q}}_{\ell}=\mathrm{R}^{i}\Psi_{\mathrm{Spec}\,\mathcal{R}_{\beta,m}}\overline{\mathbb{Q}}_{\ell}|_{Z\otimes_{\kappa_{r}}\bar{k}}$$

Now Spec $\mathcal{R}_{\beta,m}$ is affine of relative dimension n-1 over Spec \mathscr{O} . Thus, $\mathbb{R}^i \Psi_{\text{Spec }\mathcal{R}_{\beta,m}} \overline{\mathbb{Q}}_{\ell}|_{Z \otimes_{\kappa_r} \bar{k}}$ vanishes if i is not in the range [0, n-1]. By a result by Deligne ([5] SGA $4\frac{1}{2}$ Chapitre 7 Theorem 3.2), $\mathbb{R}^i \Psi_{\text{Spec }\mathcal{R}_{\beta,m}} \overline{\mathbb{Q}}_{\ell}$ is a constructible $\overline{\mathbb{Q}}_{\ell}$ -sheaf on the geometric special fiber (Spec $\mathcal{R}_{\beta,m})_{\bar{s}}$. Thus, by finiteness results of étale cohomology, the space

$$\mathrm{H}^{0}(\mathrm{R}^{i}\Psi_{\mathrm{Spec}}\,_{\mathcal{R}_{\beta,m}}\mathbb{Q}_{\ell}|_{Z\otimes_{\kappa_{r}}\bar{k}})$$

is a finite dimensional $\overline{\mathbb{Q}}_{\ell}$ -vector space. The action of $W_{F_r} \times \operatorname{GL}_n(\mathscr{O}/\varpi^m)$ on

$$\mathrm{H}^{0}(\mathrm{R}^{i}\Psi_{\mathrm{Spec}} \mathcal{R}_{\beta,m}\overline{\mathbb{Q}}_{\ell}|_{Z\otimes_{\kappa_{r}}\bar{k}})$$

comes from the group action on the formal scheme $\operatorname{Spf} R_{\beta,m}$. The continuity of the representation is clear.

For any $\tau \in \operatorname{Frob}^{r} I_{F} \subset W_{F_{r}}$ and $h \in C_{c}^{\infty}(\operatorname{GL}_{n}(\mathscr{O}), \mathbb{Q})$, we define a function $\phi_{\tau,h}$ on $\operatorname{GL}_{n}(F_{r})$ by

$$\phi_{\tau,h}(\beta) = \operatorname{tr}(\tau \times h^{\vee} | [\mathrm{R}\Psi_{\beta}])$$

where h^{\vee} is defined by

$$h^{\vee}(g) = h({}^tg^{-1})$$

Theorem 3.7 ([10] Theorem 2.6). $\phi_{\tau,h} \in C_c^{\infty}(\mathrm{GL}_n(F_r), \mathbb{Q})$ independent of ℓ .

Proof. By Theorem 3.6, $\phi_{\tau,h}$ is locally constant in β . The independence of ℓ follows from a result by Mieda [9].

Finally, we let $f_{\tau,h} \in C_c^{\infty}(\mathrm{GL}_n(F))$ be associated to $\phi_{\tau,h}$. Recall this means the following:

$$O_{\gamma}(f) = \begin{cases} \pm TO_{\delta,\sigma}(\phi) & \text{if } \gamma \text{ is conjugate to } N\delta \text{ for some } \delta \\ 0 & \text{else} \end{cases}$$

for all semisimple $\gamma \in \text{GL}_2(\mathbb{Q}_p)$. Here, the sign is + except if $N\delta$ is a central element, but δ is not σ -conjugate to a central element, when it is -. In this situation, we also say ϕ and f have *matching (twisted) orbital integrals*. The existence of $f_{\tau,h}$ follows from [1] Proposition 3.1 and [4] Proposition 7.2.

Remark 3.8. There is also a variant of "being associated", which we may call "being *regularly* associated" or "having *regular* matching (twisted) orbital integrals". This variant appears in [1].

4. Associated Test Functions

We are going to define functions h and ϕ_h in two contexts

- (1) *D*-group *H* for a semisimple algebra over \mathbb{Q}_p
- (2) one-dimensional formal \mathscr{O} -module of height n

$$h \in C_c^{\infty}(\mathscr{O}_D^{\times}) \text{ invariant under conjugation}$$

$$\phi_h \in C_c^{\infty}((\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}), \phi_h := h(N\beta)$$

In case (2),

$$h \in C_c^{\infty}(\mathcal{D}_r)$$
 which is invariant under $\mathscr{O}_{\mathcal{D}}^{\times}$ -conjugation
 $\phi_h \in C_c^{\infty}(B_r), \phi_h := h(N\beta)$

We want to show

Proposition 4.1 ([10] Proposition 4.3, Corollary 4.5 Proposition 4.7, Corollary 4.8). In both cases, h and ϕ_h are associated. Thus,

• in case (1),

• in case (2),

$$\int_{(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}} \phi_h(\beta) d\beta = \int_{\mathscr{O}_D^{\times}} h(\gamma) d\gamma$$
$$\int_{B_r} \phi_h(\beta) d\beta = \int_{\mathcal{D}_r} h(\gamma) d\gamma$$

Let's first explain some of the notations. Let D be a semisimple algebra over \mathbb{Q}_p with a maximal order \mathscr{O}_D , and let \mathcal{D} be the central divisor algebra over F with invariant 1/n with ring of integers \mathscr{O}_D . There is a natural valuation $v : \mathcal{D}^{\times} \to \mathbb{Z}$, taking $\varpi \in F \subset \mathcal{D}$ to n. Let B_r be the set of basic elements in $\operatorname{GL}_n(\mathscr{O}_r)\operatorname{diag}(\varpi, 1, \ldots, 1)\operatorname{GL}_n(\mathscr{O}_r)$, by which we mean those elements that are basic as elements of $\operatorname{GL}_n(\check{F})$. Also, we let \mathcal{D}_r be the set of elements of \mathcal{D}^{\times} whose valuation is r.

Definition 4.2. Let S be scheme on which p is locally nilpotent. A D-group over S is an étale p-divisible group H over S together with an action

 $\iota: \mathscr{O}_D^{\mathrm{op}} \to \mathrm{End}(H)$

such that H[p] is free of rank 1 over $\mathscr{O}_D^{\text{op}}/p$.

The main tool we use is the two parametrizations of ϖ -divisible \mathscr{O} -modules over \mathbb{F}_{p^r} : Dieudonné and Galois parametrizations.

Dieudonné parametrization. Let H be a ϖ -divisible \mathscr{O} -module over \mathbb{F}_{p^r} , and let M be the contravariant Dieudonné module of H. Then $M \cong \mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r}$ as an $\mathscr{O}_D^{\mathrm{op}}$ -module. The Frobenius endomorphism F on M can be written as $F = \beta^{-1}\sigma_0$ for some $\beta \in (\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$. The element β is well-defined up to σ_0 -conjugation by elements of $(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$. This establishes a natural bijection between the set of isomorphism classes of H over \mathbb{F}_{p^r} and the set of σ_0 -conjugacy classes in $(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$. Galois parametrization. Over the algebraic closure $\overline{\mathbb{F}}_p$, there is a unique *D*-group H (up to isomorphism). So parametrizing *D*-groups *H* over \mathbb{F}_{p^r} is equivalent to adding a descent datum to \mathbb{F}_{p^r} , i.e., an isomorphism

$$\alpha: \operatorname{Frob}^* H \cong H$$

Let

$$F: \overline{\mathbb{F}}_p \to \overline{\mathbb{F}}_p$$

be the *p*-th power map. Then there is the natural Frobenius isogeny $F : \tilde{H} \to \tilde{H}$ defined for any *p*-divisible group, which is an isomorphism in the case of étale *p*-divisible groups. Then giving a descent datum α is equivalent to giving $\gamma = \alpha \circ F^{-r} : \tilde{H} \to \tilde{H}$, which is an $\mathscr{O}_D^{\mathrm{op}}$ -linear automorphism. Since $\mathrm{End}_{\mathscr{O}_D^{\mathrm{op}}}(\tilde{H}) = \mathscr{O}_D$, it follows that giving a descent datum is equivalent to giving an element $\gamma \in \mathscr{O}_D^{\times}$. One easily checks that γ is well-defined up to \mathscr{O}_D^{\times} -conjugation.

The following proposition is clear.

Proposition 4.3. The two parametrizations define a bijection

$$\begin{cases} \sigma_0 \text{-conjugacy clasees} \\ \text{in} \left(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r} \right)^{\times} \\ \beta \longmapsto N\beta \end{cases} \longrightarrow \begin{cases} \text{conjugacy clasees in} \\ \mathscr{O}_D^{\times} \\ \end{cases}$$

Now we give a proof of Proposition 4.1 in Case (1).

Proof of Proposition 4.1: Case (1). Since every conjugacy class in \mathscr{O}_D^{\times} is matched with a σ_0 conjugacy class in $(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$, we only need to show for any $\beta \in (\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$,

$$TO_{\beta\sigma_0}(\phi_h) = O_{N\beta}(h)$$

Let H be the D-group over \mathbb{F}_{p^r} associated to β . Consider the set X of D-groups H' over \mathbb{F}_{p^r} together with an $\mathscr{O}_D^{\mathrm{op}}$ -linear quasi-isogeny $\alpha : H' \to H$. On this set X, we have an action of $\Gamma = (\operatorname{End}(H) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\times}$ by composition.

It is easy to see that for any $x \in X$, the stabilizer $\Gamma_x \subset \Gamma$ is a maximal compact subgroup. This shows that all Γ_x have the same volume. We may normalize the Haar measure by requiring that these subgroups have volume 1.

We can define a Γ -invariant function \tilde{h} on X by requiring $\tilde{h}(H', \alpha) = h(\gamma(H))$, where

 $\gamma(H')$ is the element in \mathscr{O}_D^{\times} associated to H' as in the Galois parametrization. We want to show the following equality

$$TO_{\beta\sigma_0}(\phi_h) = O_{N\beta}(h) = \sum_{x \in X/\Gamma} \tilde{h}(x).$$

Now on the one hand, Dieudonné theory gives an isomorphism between Γ and the twisted centralizer of g, i.e.,

$$\Gamma = \{g \in (D \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^r})^{\times} \mid g^{-1}\beta g^{\sigma} = \beta\} =: G_{g\sigma}$$

and an identification of X with

$$\{g \in (D \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^r})^{\times} \mid g^{-1}\beta g^{\sigma} \in \mathscr{O}_D^{\times}\}/(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$$

by sending g to the D-group H' given by the lattice $gM \subset M \otimes M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ and the corresponding quasi-isogeny $\alpha : H' \to H$. Also $\tilde{h}(H', \alpha) = \phi_h(g^{-1}\beta g^{\sigma})$ under this correspondence.

We may regard the function $\phi_h \in C_c^{\infty}((\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times})$ as a function on $(D \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^r})^{\times}$ by setting $\phi_h(g)$ if $g \notin (\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$. Write $W = \{g \in (D \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^r})^{\times} \mid g^{-1}\beta g^{\sigma} \in \mathscr{O}_D^{\times}\}$ and $W = X \times (\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}$. Then the twisted orbital integral $TO_{\beta\sigma_0}(\phi_h)$ is

$$TO_{\beta\sigma_0}(\phi_h) = \int_{G_{g\sigma} \setminus (D \otimes_{\mathbb{Q}_p} \mathbb{Q}_{p^r})^{\times}} \phi_h(g^{-1}\beta g^{\sigma}) dg$$

$$= \int_{(X \times (\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times})/\Gamma} \phi_h(g^{-1}\beta g^{\sigma}) dg$$

$$= \int_{X/\Gamma} \int_{(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}/\Gamma} \tilde{h}(x) d\alpha dx$$

$$= \int_{X/\Gamma} \tilde{h}(x) dx$$

$$= \sum_{x \in X/\Gamma} \tilde{h}(x)$$

where the second last equality is given by the normalization of the Haar measure.

The other equality, $O_{N\beta}(h) = \sum_{x \in X/\Gamma} \tilde{h}(x)$ is given by applying similar arguments to the Galois parametrization.

Now since ϕ_h and h are associated, the equality

$$\int_{(\mathscr{O}_D \otimes_{\mathbb{Z}_p} \mathbb{Z}_{p^r})^{\times}} \phi_h(\beta) d\beta = \int_{\mathscr{O}_D^{\times}} h(\gamma) d\gamma$$

follows from the Weyl integration formula.

$p\mbox{-}DIVISIBLE$ GROUPS AND FORMAL NEARBY CYCLES

Remark 4.4. There are still some problems with the calculation of the twisted orbital integral. They will be fixed later.

References

- Arthur, J., & Clozel, L. (1989). Simple algebras, base change, and the advanced theory of the trace formula. Princeton University Press.
- [2] Berkovich, V. G. (1996). Vanishing cycles for formal schemes. II. Inventiones Mathematicae, 125(2), 367-390.
- [3] Berkovich, V. G. (1994). Vanishing cycles for formal schemes. Inventiones Mathematicae, 115(1), 539-571.
- [4] Clozel, L. (1990). The fundamental lemma for stable base change. Duke Mathematical Journal, 61(1).
- [5] Deligne, P. (1977). Cohomologie Etale: Séminaire de Géométrie Algébrique du Bois-Marie SGA $4\frac{1}{2}$. Springer.
- [6] Drinfeld, V. G. (1974). Elliptic Modules. Mathematics of the USSR-Sbornik, 23(4), 561-592.
- [7] Faltings, G. (2002). Group Schemes with Strict O-action. Moscow Mathematical Journal, 2(2), 249-279.
- [8] Harris, M., & Taylor, R. L. (2001). The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151). Princeton University Press.
- [9] Mieda, Y. (2007). On *l*-independence for the étale cohomology of rigid spaces over local fields. *Compositio Mathematica*, 143(02), 393-422.
- [10] Scholze, P. (2013). The Local Langlands Correspondence for GL_n over *p*-adic fields. *Inventiones Mathematicae*, 192(3), 663-715.