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Preface
What is this? : At first, this is a note containing subtle or important materials I encoun-
tered while studying. I started this project in the fall of my third undergraduate year(October
2019) in Peking University, noticing that I have a poor memory and consistently forget what I
thought I have already learned. So it came to me that I can compile all the proofs of theorems
I cannot recall that is hard and subtle yet appearing over and over again. But gradually it
turns out I want to make it as comprehensive as possible.

I constantly add stuff to this note, and I regularly put them online. You can find the
newest version released at https://math.mit.edu/~hao_peng/skyscraper.pdf. Don’t be
surprised to find many sections containing only titles, and the symbol “?” means “further
work required here”. If you find errors or have suggestions, please feel free to email me.

Constitutions: The following are principles of the structure of this note, but the current
version is far from it. They serve as ultimate goals.

• This note should be self-contained.
• Notations should be consistent throughout the whole note.
• Propositions should be put in the (sub)section of the most advanced term appeared in

the statement, or as a corollary.
• Logical order is not necessary, but vicious circles are intolerable. Although it should also

be properly ordered logically in the sense that if every notion appearing is referred to its
definition, the ordering has the least number of reverse cross-references(i.e. referring to
definitions after it) under admissible permutation, where admissible permutation means
a permutation that preserves the tree structure of this note(i.e. the tree of chapter-
section-subsection-· · · ordering).

• Theories should be stated at the most generality. There’s no need to give proofs for the
special case but clarify the deduction from the general case, unless it is needed in the
proof of the general case, then state it as a lemma.

• When facing multiple proofs, only the most elegant and essential proof should be
recorded.

• References should be traced to the original author and his specific paper.
• Each section should contain less than 30 pages. Each chapter should contain less than

20 sections.

Writing Styles: The following are writing standards of this note. Main references are
[CMOS] and [Poo]. Notice some rules of [Poo] remain to be discussed.

• Use less words and more math symbols and equations, and use plain English, so that
even those who don’t speak English can understand without much effort.

• Use proper cases for names of people.
• A proposition is a proven mathematical sentence.
• A theorem is a proposition of notable importance.

https://math.mit.edu/~hao_peng/skyscraper.pdf


• A lemma is a proposition whose importance is derived from the theorem or proposition
it aims to prove.

• A corollary is a proposition whose proof readily follows from its corresponding proposition
or theorem.

• A conjecture is a proposition whose proof(or disproof/proof of independence) is unknown
yet.

• The naming of lemmas/propositions/theorems/conjectures by multiple authors follows
the lexicographical order, except for historical followup works. Authors of the same
paper is connected by “-” symbol, and authors of different papers are separated by a “/”
symbol.

Tips: This is hardly a readable note. I use it as a dictionary. It only contains materials that
I’m interested in and many proofs are still missing. Hopefully I can complete them all as time
goes by. The main reason why I have to latex all these materials together is that I need tons
of cross-references. So I believe it’s the best way to read this book digitally, and it’s good
to know how to go forwards and backwards between hyper-references on your computer. For
example, on a MacOS system, the default shortcuts are + [ , + ] for Preview and

+ , + for Foxit Reader. Foxit Reader is stable when handling a large file.

Acknowledgement: Sincere thanks to Yi Tian(⽥翊) for answering my questions when
I was learning algebraic geometry and p-adic geometry in year 2020 when I was in Peking
University. His help is fundamental. Thanks to Zhiyu Zhang(张志宇) for giving me directions
on mathematical study and advices on mathematical life in year 2022 when I was in MIT.

There is already a great online book [Sta] maintained by de Jong that covers considerably
much of the Algebraic Geometry part of this note. I haven’t finish reading it but I reordered
the materials that I learnt and kept track of it in my own way. I sometimes used different
paths to optimize the proof. The idea to compile this note was inspired by [Sta]. One different
feature of this note compared to [Sta] is that I want to make every proof as optimal and as
general as possible(See Constitutions above). Any suggestion to optimize proofs or generalize
statements is strongly encouraged.

The writing style of this note is imitating and influenced by various literature, including
beautiful writings of J. S. Milne, especially [Mil17][Mil17d] and [Mil08], monographs of J.
Lurie, especially [Lur09] and [Lur11], and also de Jong’s magnificent [Sta].

Copyright Issue: It should be made clear that I took proofs from many different places,
so only a tiny fraction of this note should be considered originated from me. I am currently
too busy being a graduate student, so many references are still missing. Tell me if you think
I should cite you or somebody’s work. Nevertheless, I hope this note can contribute to my
study and help anyone who read it. But it comes with no warranty, please use at your own
risk.



“And they said, Go to, let us build us a city and a tower, whose top may reach unto heaven;
and let us make us a name, lest we be scattered abroad upon the face of the whole earth.”

–Genesis 11:1-9
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1 | Mathematical Logic and Foundations

1.1 Mathematical Logic
Cf.[Logic for mathematicians, Hamilton], [Axiomatic Set Theory] and [Mathematical Logic,

Mendelson].

1 Philosophical Issue
Following [The World as Will and representation, Schopenhauer], the world is a representation

of my thought(Vorstellung) of will(Wille). Even this book is just a representation of my thoughts at
certain moment.

One representation of will is the ability to reason.
Logic is the analysis of methods of reasoning. It is interested in the form rather than the content

of the argument.
The systematic formalization and cataloguing of valid methods of reasoning are a main task of

logicians.
Another representation of will is the ability to express and comprehend. I will assume that
The goal of mathematics is to express logic in a comprehensible way.
If the work used mathematical techniques or if it is primarily denoted to the study of mathematical

reasoning, then it may be called mathematical logic.
We will assume the will have some ability to write this book:
• The will can discern lexicographical order.

2 Peano’s Postulates for Natural Numbers
After settling Philosophical Issue, I can start expressing now. In fact, I already started when I

am explaining philosophical issue to you.

the Primordial Systems

Def.(1.1.2.1)[the Primordial Languages].The primordial language L0 consists of
• free variable symbols a, b, c, d,m, n.
• bound variable symbols x, y, z, w.
• constant variable symbol 0.
• function symbols S,+, ·,
• predicate symbols =.
• punctuations symbols “(”, “…”. “)”.
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• connective symbols ¬ and =⇒ .
• quantifier symbol ∀.

Def.(1.1.2.2) [the (Blank)Peano Arithmetic system].The (blank)Peano arithmetic system
PA consists of the following data:

• the primordial language L(1.1.2.1).
• A procedure called a grammer to specify which thing are called well-formed formulas or

wffs:
– There is a procedure to specify which things are called terms:

* 0 and free variable symbols are terms.
* If t, s are terms, then S(t), (t+ s), t · s are terms.

– There is a procedure to specify which things are called atomic formulas: If t, s are terms,
then t = s is an atomic formula.

– The procedure to determine wffs:
* Atomic formulas are wffs.
* if φ,ψ are wffs and x is a bound variable not appearing in φ, then ¬φ, (φ =⇒
ψ), (∀x)φ(x/a) are wffs, where φ(x/a) is obtained from φ by replacing each occurrence
of some free variable a by a bound variable x that doesn’t appear in φ.

• A procedure to specify which well-formed formulas are called axioms: The following are ax-
ioms:
– Logical Axioms: If φ,ψ, η are wffs,

* (φ =⇒ (ψ =⇒ φ)).
* ((φ =⇒ (ψ =⇒ η)) =⇒ ((φ =⇒ ψ) =⇒ (φ =⇒ η))).
* ((¬φ =⇒ ¬ψ) =⇒ (ψ =⇒ φ)).
* (φ =⇒ (ψ =⇒ φ)).
* (φ =⇒ (ψ =⇒ η)) =⇒ ((φ =⇒ ψ) =⇒ (φ =⇒ η)).
* ((¬φ =⇒ ¬ψ) =⇒ (ψ =⇒ φ)).
* ((∀x)φ =⇒ φ(a/x)) where φ(a/x) is obtained from φ by replacing each occurrence
of the bound variable x in φ(x) by the free variable a.

* ((∀x)(φ =⇒ ψ) =⇒ (φ =⇒ (∀x)ψ)), if the free variable a in φ which are
quantifying with x doesn’t appear.

* (Modus Ponuns or MP)φ ∧ (φ =⇒ ψ)→ ψ.
* (Generalizations)φ → (∀x)φ(x/a), where x is a bound variable symbol that doesn’t
appear in φ, and φ(a/x) is obtained from φ by replacing each occurrence of some free
variable a by x.

– Non-Logical Axioms: If a, b, c are any free variables, x, y, z are any bound variables and
φ a wff., then
* (a = b) =⇒ ((a = c) =⇒ (b = c)).
* (a = b) =⇒ (S(a) = S(b)).
* ¬(0 = S(a)).
* (S(a) = S(b)) =⇒ (a = b).
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* (a+ 0) = a.
* a+ S(b) = S(a+ b).
* a · 0 = 0.
* a · S(b) = a · b+ b.
* (Principle of mathematical induction) φ(0/a) =⇒ ((∀x)(φ(x/a) =⇒
φ(S(x)/a)) =⇒ (∀x)φ(x)).

terms in the Peano arithmetic system will be called natural numbers.

Remark(1.1.2.3)[Metaphysical Issue].
• From now any definition/proposition/rem we make should be regarded as wffs in a formal

sufficiently high order system containing the blank PA system(1.1.2.2) and the class system to
be defined in(1.1.3.2) and we can quantify over any other systems. In other words, I assume
will can comprehend everything in this book. Such a language is called a metasystem for it.
The symbols in this metalanguage is called a metavariable.

• I assume it has an axiom which is a stronger form of the mathematical induction(1.1.2.2)(i.e.
Induction can apply to properties of classes).

• If you don’t agree with the axioms and assumptions I made so far, you should close this file
and leave right now.

Meta Def.(1.1.2.4)[Abbreviations].An abbreviation is the introduction of a new term.
In a metasystem, we use a symbol φ ≜ ψ to mean “we enlarge the original system to include the

term φ and include the axiom (φ ⇐⇒ ψ). in fact, this metasystem is a conservative extension.?
A definition is an introduction of a new symbol or new abbreviation.
Whenever we substitute abbreviates, we will use subst⇐⇒ .

Remark(1.1.2.5).Notice abbreviations is a metasymbol, and they are introduced to save space. It
should be clear that all statements or proofs in the extended system can be converted back to its
‘primitive form’, and the appearance of abbreviations are be totally removed.

Remark(1.1.2.6) [Logical Issue].Pedantically, by our construction of our mathematical system,
in order for propositions to be defined in a lower order system, we should have defined symbols
exclusively each time we enlarge the system, and never say something like “let n be a natural number,
n + 1 > 0”, because this is not a wff. In stead, we should write (∀n)(n + 1 > 0), because this is a
wff. in Peano’s system PA, and n is born to be representing a natural number, i.e. a symbol in the
system PA.

But in practice, it is annoying to do so, so we will be more tolerant on this kind of usage. Just
remember always this kind of sentence can be formalized.

3 Class System(ZF)
Def.(1.1.3.1). In fact this theory is a theory that lies between ZF and NBG. I think it is better to
just change everything to NBG?

Def.(1.1.3.2)[Class System].The class system ZF is a formal system(1.1.4.2) with
• Language: A first order language(1.1.6.1) with

– Free variable symbols:
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* 0, a0 are free variable symbols.
* For any natural number n, if an is a free variable symbol, then an+1 is also a free
variable symbol.

– Bound variable symbols:
* x(0) is a bound variable symbol.
* For any natural number n, if xn is a bound variable symbol, then xn+1 is also a bound
variable symbol.

– Predicate symbol: ∈,=.
– Punctuation symbols: “(”, “)”, “. . .”, “,” and “{”, “}”, “|”, “:”.
– Connective symbols: ¬ and →.
– Quantifier symbol: ∀.

• Grammar:
– A procedure to specify wffs:

* If a, b are free variable, then a ∈ b is a wff..
* If φ,ψ are wffs, a, b are free variables and x is a bound variable, then

(a ∈ {x|ψ(x/a)}), ({x|ψ(x/a)} ∈ b), ({x|φ(x/a)} ∈ {x|ψ(x/b)})

are wffs, where ψ(x/a)(resp. φ(x/b)) is obtained from ψ(resp. φ) by replacing a free
variable a(resp. b) by a bound variable x that doesn’t appear in ψ(resp. φ).

* If φ,ψ are wffs, then ¬φ and φ→ ψ are wffs.
* If φ is a wff. and x is a bound variable, then (∀x)φ(x/a) is a wff.

– A procedure to specify terms:
* Variables are terms.
* If φ is a wff., then {x|φ} is a term, called a class.

• Axioms:
– Logical Axioms: If φ,ψ, η are wffs,

* (φ =⇒ (ψ =⇒ φ)).
* ((φ =⇒ (ψ =⇒ η)) =⇒ ((φ =⇒ ψ) =⇒ (φ =⇒ η))).
* ((¬φ =⇒ ¬ψ) =⇒ (ψ =⇒ φ)).
* ((∀x)φ =⇒ φ(a/x)) where φ(a/x) is obtained from φ by replacing each occurrence
of the bound variable x in φ(x) by the free variable a.

* ((∀x)(φ =⇒ ψ) =⇒ (φ =⇒ (∀x)ψ)), if the free variable a in φ which are
quantifying with x doesn’t appear.

* (Modus Ponuns or MP)φ ∧ (φ =⇒ ψ)→ ψ.
* (Generalizations)φ → (∀x)φ(x/a), where x is a bound variable symbol that doesn’t
appear in φ, and φ(a/x) is obtained from φ by replacing each occurrence of some free
variable a by x.

– Non-logical axioms: If φ,ψ are wffs, then
C1: (a ∈ {x|φ}) ⇐⇒ φ(a/x), where φ(a/x) is φ with all occurrence of x replaced by a.
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C2: ({x|φ(x)} ∈ a) ⇐⇒ ((∃y)((y ∈ a) ∧ (∀z)((z ∈ y) ⇐⇒ φ(z/x)))), where φ(z/x) is φ
with all occurrence of x replaced by z.

C3: ({x|φ(x)} ∈ {x|ψ}) ⇐⇒ ((∃y)(ψ(y/x) ∧ (∀z)((z ∈ y) ⇐⇒ φ(z/x)))), where φ(z/x)
is φ with all occurrence of x replaced by z and ψ(y/x) is ψ with all occurrence of x
replaced by y.

C4: (Equality)(a = b) ⇐⇒ (∀x)((x ∈ a) ⇐⇒ (x ∈ b)).

C5: (Axiom of Extensionality)(1.1.3.3).

C6: (Axiom of Pairing)(1.1.3.20).

C7: (Axiom of Union)(1.1.3.26).

C8: (Axiom of Power Set)(1.1.3.30).

C9: (Axiom Schema of Replacement)(1.1.3.31).

C10: (Axiom of Regularity/Foundation)(1.1.3.40).

C11: (Axiom of Infinity)?.

Equalities

Axiom(1.1.3.3)[Axiom of Extensionality]. ((a = b) ∧ (a ∈ c))→ (b ∈ c)).

Meta Thm.(1.1.3.4)[Reduce Class to Sets].For any wff φ in the class system, there exists a wff
φ∗ in the set system s.t. φ is deducible from φ∗ and φ∗ is deducible from φ.(1.1.5.1)?
Proof: Use induction.? □

Remark(1.1.3.5).This tells us that the extension from set system to class system is conservative.?
Def.(1.1.3.6).

• If φ is a wffs, define {x : φ} ≜ {x|φ}.
• If A,B are classes, then define A /∈ B ≜ ¬(A ∈ B).
• If A is a class and φ is a wff., define (∀x ∈ a)φ ≜ (∀x)(x ∈ a)(∧φ)

Meta Thm.(1.1.3.7).The set system?? is a subsystem(1.1.5.4) of the class system(1.1.3.2). Moreover,
every term in set system is a term in the class system.

Def.(1.1.3.8)[Equality between Classes]. If A,B are classes, then

A = B ≜ (∀x)((x ∈ A) ⇐⇒ (x ∈ B)), A ̸= B ≜ ¬(A = B)

Meta Thm.(1.1.3.9). If A,B,C are classes, then
• (A = B) ⇐⇒ (∃x)((x = A) ∧ (x ∈ B)).
• (A = A).
• (A = B)→ (B = A).
• (A = B) ∧ (B = C)→ (A = C).
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Proof: Cf.[Axiomatic Set Theory]P13. □

Meta Thm.(1.1.3.10). (a = b) → (φ(a/x) ⇐⇒ φ(b/x)), where φ(a/x) is constructed from φ by
replacing every free occurrence of x by a.

Proof: Cf.[Axiomatic Set Theory, P8]. The proof used induction on the number of logical symbols
in φ.? □

Thm.(1.1.3.11)[Every Set is a Class]. a = {x|x ∈ a}.

Proof: This follows from axiom (C2) and the fact (∀x)((x ∈ a) ⇐⇒ (x ∈ a)). □

Def.(1.1.3.12)[Set Predicate]. If A is a class, M (A) ≜ (∃x)(x = A).

Prop.(1.1.3.13).M (a).

Proof: a = a. □

Meta Thm.(1.1.3.14). If A is a class, then (A ∈ {x|φ(x)}) ⇐⇒ (M (A) ∧ φ(A)).

Proof: Use induction on A? □

Thm.(1.1.3.15)[Russell’s Paradox].Define Ru ≜ {x|x /∈ x}. Then ¬M (Ru).

Proof: By considering the wff. φ : x /∈ x, it follows from(1.1.3.14) that

(M (Ru) ∧ (Ru /∈ Ru))→ (Ru ∈ {x|x /∈ x}) subst⇐⇒ (Ru ∈ Ru)

so
M (Ru)→ ((Ru /∈ Ru)→ (Ru ∈ Ru)).

so
M (Ru)→ (Ru ∈ Ru).

Then by axiom (C3),

(Ru ∈ Ru)→ ((∃y)(ψ(y/x) ∧ (∀z)((z ∈ y) ⇐⇒ z /∈ z)))

which is false. So ¬M (Ru). □

Def.(1.1.3.16) [Definable Sets]. If φ is a wff., then we say that {x|φ(x)} is a definable set if
M ({x|φ(x)}).

Properties of Classes

Def.(1.1.3.17)[Pairs and Ordered Pairs].
• {a, b} ≜ {x|(x = a) ∨ (x = b)}.
• {a} ≜ {a, a}.
• (a, b) ≜ {x|(x = {a}) ∨ (x = {a, b})}.
• an ≜ (a, n).(notice n is a natural number).

Meta Def.(1.1.3.18)[MultiPairs].For any free variable a0 and a natural number n, define a term
{a1, . . . , an}. For any bound variable x0, define a bound term {x1, . . . , xn}.
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Prop.(1.1.3.19).
• (c ∈ {a, b}) ⇐⇒ ((c = a) ∨ (c = b)).
• (c ∈ {a}) ⇐⇒ (c = a).
• (c ∈ (a, b)) ⇐⇒ ((c = {a}) ∨ (c = {a, b})).
• ({a} = {b}) ⇐⇒ (a = b).
• ({a} = {b, c}) ⇐⇒ ((a = b) ∧ (b = c)).
• ((a, b) = (c, d)) ⇐⇒ ((a = c) ∧ (b = d)).
• ((∀x)((a ∈ x)→ (b ∈ x)))→ (a = b).

Axiom(1.1.3.20)[Axiom of Pairing].M ({a, b}).

Cor.(1.1.3.21).M ((a, b)).

Meta Thm.(1.1.3.22)[Objects of Classes are Sets].For classes A,B, (A ∈ B)→M (A).

Def.(1.1.3.23)[Unions].For classes A,B, define
• A ∪B ≜ {x|(x ∈ A) ∨ (x ∈ B)}.
• A ∩B ≜ {x|(x ∈ A) ∧ (x ∈ B)}.
• For a class A, define ∪(A) ≜ {x|(∃y)((x ∈ y) ∧ (y ∈ A))}.

Prop.(1.1.3.24). (a ∪ b) = ∪({a, b}).

Proof: Cf.[Axiomatic Set Theory, P16]. □

Prop.(1.1.3.25).
• (a ∈ (b ∪ {b})) ⇐⇒ (a ∈ b) ∨ (a = b).
• A ∪B = B ∪B.
• A ∩B = B ∩A.
• (A ∪B) ∪ C = A ∪ (B ∪ C).
• (A ∩B) ∩ C = A ∩ (B ∩ C).
• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
• A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof: □

Axiom(1.1.3.26)[Axioms of Union].M (∪(a)).

Cor.(1.1.3.27).M (a ∪ b).

Proof: □

Def.(1.1.3.28)[Subclasses].For classes A,B, define
• A ⊂ B ≜ (∀x)((x ∈ A)→ (x ∈ B)).
• A ⊊ B ≜ ((A ⊂ B) ∧ (A ̸= B)).

Def.(1.1.3.29)[Power Sets].P(a) ≜ {x|x ⊂ a}, called the power set of a.
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Axiom(1.1.3.30)[Axiom of Power Set].M (P(a)).

Axiom(1.1.3.31)[Axiom Schema of Replacement].For each wffs φ, there is an axiom

((∀x)(∀y)(∀z)((φ(x/a, y/b) ∧ φ(x/a, z/b))→ (y = z))→M ({y|(∃x ∈ a)φ(x/a, y/b)})).

Meta Cor.(1.1.3.32).For any class A, M (a ∩A).

Proof: Cf.[Axiomatic Set Theory, P20]. □

Def.(1.1.3.33)[Setminus].For classes A,B, define A \B ≜ {x|(x ∈ A) ∧ (x /∈ B)}.

Meta Thm.(1.1.3.34). If A is a class, then M (a \A).

Proof: M (a \A) subst⇐⇒ M ({x ∈ a|x /∈ A}) is a theorem by(1.1.3.32). □

Def.(1.1.3.35)[Empty Class]. 0 ≜ {x|x /∈ x}.

Prop.(1.1.3.36). a \ a = 0.

Proof: a \ a subst⇐⇒ {x|(x ∈ a) ∧ (x /∈ a)} = {x|x /∈ x}? □

Cor.(1.1.3.37)[Empty Set].M (0).

Prop.(1.1.3.38).
• (∀x)(x /∈ 0).
• (a ̸= 0) ⇐⇒ (∃x)(x ∈ a).

Proof: 1: (∀x)(x = x).
2: By axiom (Equality),

(a ̸= 0) ⇐⇒ (∃x)((x ∈ 0) ∧ (x /∈ a)) ∨ ((x ∈ a) ∧ (x /∈ 0)).

Then it follows from item1 that (a ̸= 0) ⇐⇒ (∃x)(x ∈ a). □

Meta Def.(1.1.3.39).We define {a1 ∈ a2 ∈ . . . ∈ an} as in(1.1.5.3).?
Axiom(1.1.3.40)[Axiom of Regularity(Foundation)]. (a ̸= 0)→ (∃x ∈ a)((x ∩ a) = 0).

Cor.(1.1.3.41). (a /∈ a).

Proof: If (a ∈ a), then {a} ̸= 0 by(1.1.3.38), and unwinding the definition?,

(∀x)((x ∈ {a})→ (x ∩ {a}) ̸= 0),

contradicting axiom of regularity(1.1.3.40). □

Meta Cor.(1.1.3.42).For any natural number n > 0, ¬(a1 ∈ a2 ∈ . . . ∈ an ∈ a1).

Proof: If (a1 ∈ a2 ∈ . . . ∈ an ∈ a1), then {a1, . . . , an} ̸= 0 by(1.1.3.38), and

(∀x)((x ∈ {a1, . . . , an})→ (x ∩ {a1, . . . , an}) ̸= 0),

contradicting axiom of regularity(1.1.3.40). □
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Prop.(1.1.3.43) [von.Neumann Universe].Define V ≜ {x|x = x}, then ¬M (V ). And in fact
V = Ru(1.1.3.15).

Proof: Since V = V , if M (V ), then V ∈ V , by(1.1.3.14), then this together with M (V ) contra-
dicts(1.1.3.41) after unwinding definition?. (Notice that metathm(1.1.3.14) is a wff. when restricted
to V ).

For the last assertion,? □

Meta Thm.(1.1.3.44).For classes A,B,
• 0 ⊂ A.
• A ⊂ V .
• (∀x)(x /∈ A)→ (A = 0).
• (A ⊂ a)→M (A).
• M (A)→M (A ∩B).
• A /∈ A.

Meta Thm.(1.1.3.45) [Strong Regularity].The axiom of regularity(1.1.3.40) implies a stronger
form of regularity: For any class A,

(A ̸= 0)→ (∃x ∈ A)((x ∩ a) = 0).

Proof: Cf.[Axiomatic Set Theory]P80. □

Meta Cor.(1.1.3.46).For any class A,

(∀x)(x ⊂ A)→ (x ∈ A))→ (A = V )

(In words, if every set a has a property(a wff. φ) whenever every element of a has this property, then
every set has this property.)

Proof: If (∀x)(x ⊂ A)→ (x ∈ A)), denote B = V \A, if B ̸= 0, then by strong regularity(1.1.3.45),

(∃a)((a ∈ B) ∧ (a ∩B) = 0).

So
(∀y)((y ∈ a)→ (y /∈ B)).

But y ∈ V , so
(∀y)((y ∈ a)→ (y /∈ A)).

And then a ⊂ A, and the hypothesis on A implies a ∈ A, contradicting the fact a ∈ B. So A = V ,
by(1.1.3.44). □

Meta Cor.(1.1.3.47)[Inclusion Induction].There are no infinite descending ∈-chains of sets.

Proof: The property P of not having infinite descending ∈-chain is a wff., so A = {x|P(x)} is a
class. And it can be shown (a ⊂ A) → (a ∈ A). Thus by(1.1.3.46), A = Ru, so every set has no
infinite descending ∈-chains. □
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4 Languages
Def.(1.1.4.1)[Languages].A language L is a set of symbols. There may be subsets of symbols such
as free symbols, bound symbols, function symbols, logical symbols, etc..

Remark(1.1.4.2)[Formal System].A formal system L consists of the following data:
• A language L(1.1.4.1), or equivalently, a set of symbols.
• A set of well-formed formulas or wffs.
• A set of axioms.

Remark(1.1.4.3)[Class System as a Metasystem].Notice for any language or system, the class
system is a metasystem of it. So we can formalize talking about everything about this system in the
class system, like consistency, completeness...

Given a formal system L, we will typically use metavariables a, b, c, x, y, z whose domain is the
collection of symbols in L, and use metavariables φ,ψ, η to describe wffs in L.

Meta Thm.(1.1.4.4).The primordial language L0(1.1.2.1) is a language(1.1.4.1). In fact a first order
language to be defined in(1.1.6.1). The class system LC is a formal system(1.1.4.2). (i.e. they are
sets).

Remark(1.1.4.5).Until now I settled all the logical issues, but remember I made several assumptions
that is metaphysical and cannot be settled by logic or math:

• There is a representation of will called the primordial language(1.1.2.1),
• There is a “talking system” that is a representation of will that can describe all other systems

can enables the presence of this book(1.1.2.3).

5 Formal Propositional Calculus
Meta Def.(1.1.5.1)[Deductions].Let L be a formal system(1.1.4.2), a proof is a finite sequence of
wffs s.t. every wffs appearing is either an axiom or a wedge of two wffs before it.

A theorem in L is a wffs that is deducible from an axiom η of L. A proof(resp. theorem/defi)
in the metasystem is called a metaproof(resp. metatheorem/defi).

Meta Def.(1.1.5.2)[Multiple Deduction].Let L be a formal system and ψ a wff. in L, then for
any natural number n > 0 and any {η1, . . . , ηn}(1.1.3.18), then introduce metaterms

{η1} ⊢L ψ, {η1, η2} ⊢L ψ, {η1, . . . , ηn} ⊢L ψ

and metaaxioms:
{η1} ⊢L ψ ≜⊢L (η1 → ψ).

{η1, . . . , ηn+1} ⊢L ψ ≜ {η1, . . . , ηn} ⊢L (ηn+1 → ψ)

It reads: ψ is deducible form η1 to ηn.

Remark(1.1.5.3).This definition of multiple deduction shows that we have the ability to handle
multiple definition involving “ . . . ”. But due to limit of space, we will not do so again, and leave it
to the future to formalize it.?

Meta Def.(1.1.5.4)[Subsystem].A formal system L is called a subsystem of another formal system
L′ or L′ is an extension system of L if:
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• There is a procedure to assign a wff. in L′ for each wff. in L such that
– Every proof in L is assigned to a proof in L′.
– Every axiom in L is a theorem in L′.

Propositional Calculus

Def.(1.1.5.5)[Formal System of Propositional Calculus].The formal system(1.1.4.2) of propo-
sitional calculus L is defined by the following:

• Symbols:
– A procedure to specify which things are variable symbols.
– punctuation symbols “(”, “)”.
– connective symbols: ¬, =⇒ .

• Grammer:
– Symbols are wffs.
– If φ,ψ are wffs, then ¬φ and (φ =⇒ ψ) are wffs.

• Axioms: If φ,ψ, η are wffs, then the following are axioms:
L1: (φ =⇒ (ψ =⇒ φ)).
L2: ((φ =⇒ (ψ =⇒ η)) =⇒ ((φ =⇒ ψ) =⇒ (φ =⇒ η))).
L3: ((¬φ =⇒ ¬ψ) =⇒ (ψ =⇒ φ)).
L4: (Modus Ponuns or MP)If φ,ψ are wffs, then φ ∧ (φ→ ψ)→ ψ.

From now on, this system is the foundation of the book, and every language follows will contain L .

Def.(1.1.5.6)[Logical Abbreviations].For wffs φ,ψ,
• (φ ∨ ψ) ≜ (¬φ =⇒ ψ),
• (φ ∧ ψ) ≜ ¬(φ =⇒ ¬ψ),
• (φ ⇐⇒ ψ) ≜ ¬((φ =⇒ ψ) =⇒ ¬(ψ =⇒ φ)),
• [≜ {,
• ] ≜}.

Meta Thm.(1.1.5.7). let L be a language and φ,ψ, η be wffs in L
• Axioms of L are theorems in L.
• {(φ =⇒ ψ), (ψ =⇒ η)} ⊢L (φ =⇒ ψ).
• ⊢L (¬ψ =⇒ (ψ =⇒ φ)).
• ⊢L ((¬φ =⇒ φ) =⇒ φ).

Proof: Cf.[Hamilton, Chap2]. □

Meta Thm.(1.1.5.8)[Deduction Theorem].Let φ,ψ be wffs in L,
• If Γ ∪ {φ} ⊢L ψ, then Γ ⊢L (φ =⇒ ψ).
• If Γ ⊢L (φ =⇒ ψ), then Γ ∪ {φ} ⊢L ψ.

Proof: Cf.[Hamilton, P32].? □
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Adequacy Theorem for L

6 First Order Systems

Formal Predicate Calculus

Def.(1.1.6.1)[First Order Languages].A first order language L is a language(1.1.4.1) with
• a set of bound variable symbols.
• a set of free variable symbols.
• a set of constant symbols.
• a set of predicate(relation) symbols.
• a set of functions symbols.
• the punctuations symbols “(”, “)” and “,”.
• the connective symbols ¬ and =⇒ .
• the quantifier symbol ∀.

Def.(1.1.6.2)[Formal System of Predicate Calculus].Given a first order language L(1.1.6.1), we
can define a formal system(1.1.4.2) of predicate calculus KL as follows:

• Symbols: symbols in L.
• Grammar:

– There is a countable set of terms:
* Constant symbols and free variable symbols are terms.
* For any natural number n, If fn is a function symbol, and for any m < n, tm is a
term, then f(t1, . . . , tnf ) is a term.

– There is a set of atomic formulas: If Rk is a predicate symbol and t1, . . . , tk are terms,
then Rk(t1, . . . , tk) are atomic formulas.

– There is a countable set of wffs:
* Atomic formulas are wffs.
* if φ,ψ are wffs and x is a bound variable not appearing in φ, then ¬φ, (φ =⇒
ψ), (∀x)φ(x/a) are wffs, where φ(x/a) is obtained from φ by replacing each occurrence
of some free variable a by a bound variable x that doesn’t appear in φ.

• Axioms: If φ,ψ, η are wffs in KL and x is a variable, then There the following countably many
axioms:
K1: (φ =⇒ (ψ =⇒ φ)).
K2: ((φ =⇒ (ψ =⇒ η)) =⇒ ((φ =⇒ ψ) =⇒ (φ =⇒ η))).
K3: ((¬φ =⇒ ¬ψ) =⇒ (ψ =⇒ φ)).
K4: ((∀x)φ =⇒ φ(a/x)) where φ(a/x) is obtained from φ by replacing each occurrence of

the bound variable x in φ(x) by the free variable a.
K5: ((∀x)(φ =⇒ ψ) =⇒ (φ =⇒ (∀x)ψ)), if the free variable a in φ which are quantifying

with x doesn’t appear.
K6: (Modus Ponuns or MP)φ ∧ (φ =⇒ ψ)→ ψ.
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K7: (Generalizations)φ→ (∀x)φ(x/a), where x is a bound variable symbol that doesn’t appear
in φ, and φ(a/x) is obtained from φ by replacing each occurrence of some free variable a
by x.

Meta Def.(1.1.6.3).A sentence is a formula without free variables.
A theory is a set of sentences in a language L.

Meta Thm.(1.1.6.4) [Tautologies are Theorems]. if φ is a wff. in a language L and it is a
tautology?, then φ is a theorem(1.1.5.1) of KL(1.1.6.2).

Proof: Cf.[Hamilton]P72. □

Meta Thm.(1.1.6.5)[Soundness Theorem for KL]. If φ is a wff. in a language L and ⊢KL
φ, then

φ is locally valid?,

Proof: Cf.[Hamilton]P74. □

Meta Cor.(1.1.6.6)[Consistence for KL].KL is consistent.

Proof: Cf.[Hamilton]P74. □

Meta Cor.(1.1.6.7).For any wffs φ,ψ, η of L,

{(φ =⇒ ψ), (ψ =⇒ η)} ⊢KL
(φ =⇒ η)

Proof: Cf.[Hamilton]P76. □

Adequacy Theorem for KL

Def.(1.1.6.8).

Satisfaction and Truth

See[Hamilton].

7 Models and Examples of Systems
Def.(1.1.7.1) [(Mathematical) Languages].A mathematical language L is a first order lan-
guage(1.1.6.1) given by the following data:

• A set F of function symbols.
• A set R of relations symbols.
• A set C of constant symbols.

Function symbols, relations symbols, constant symbols consists of all symbols in L. For simplicity,
we call a mathematical language simply a language.

Def.(1.1.7.2)[Languages].
• Lr is defined to be the language of rings.
• Lor is defined to be the language of ordered rings.

Def.(1.1.7.3)[Theories].
• ACF is defined to be the theory of alg.closed fields, w.r.t Lr.
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• ACFp is defined to be the theory of alg.closed fields of charp.
• DAG is defined to be the theory of non-trivial torsion-free divisible Abelian groups, w.r.t. Lr.
• DLO is the theory of dense linear orders without endpoints.
• ODAG is the theory of nontrivial divisible Abelian groups.
• RCF is the theory of real closed fields w.r.t Lor.

8 Computability
Prop.(1.1.8.1)[Turing Machine].For the ring structure of N, there is a L-formula φ(e, x, s) that
N |= T (e, x, s) iff the Turing machine coded with e halts on input x within s steps. So the set of
halting computation is definable by the formula: ∃sφ(e, x, s).

Proof: Cf.[Models of Peano Arithmetic Kaye]. □

Def.(1.1.8.2)[Recursively Enumerable Sets].A subset S ⊂ N is called recursively enumerable
iff there is an algorithm that the set of input numbers that halts is exactly S. Equivalently, a
recursively enumerable set is a set that there is an algorithm that ‘enumerates’ the members of S.

Prop.(1.1.8.3) [Hilbert’s 10-th Problem].For any recursively enumerable set(1.1.8.2) A ⊂ Nn,
there is a polynomial P (Xn, Y m) that

A = {X ∈ Nn : N |= ∃y1∃y2 . . . , ∃ymp(X,Y ) = 0}

Proof: Cf.[M. Davis, J. Matijaseviˇc, and J. Robinson, Hilbert’s 10th Problem. Diophantine
equations: Positive aspects of a negative solution, in Mathematical Developments from Hilbert’s
Problems, F. Browder, ed., American Mathematical Societ, Providence, RI, 1976.] □
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1.2 Set Theory
Main references are [?], [Model Theory Marker], [Axiomatic Set Theory], [Hamilton],

Notation(1.2.0.1).
• Use notations from Mathematical Logic.
• We build theories based on the class system(1.1.3.2).
• As in(1.1.2.3), all propositions are regarded as theorems in a system that is an extension

of all other systems defined in this book, in particular it is an extension of the blank PA
system(1.1.2.2) and the class system LC(1.1.3.2).

• We will rebuild PA system and NBG/ZF set theory, so the logic section will no longer be cited
other than this section.?

1 Von.Neumann-Bernays-Gödel Set Theory(NBG)
Def.(1.2.1.1)[Inductive Sets].A set I is called inductive if 0 = ∅ ∈ I and if n ∈ I, then n+ 1 ∈ I,
where n+ 1 = S(n) the successor.

Axiom(1.2.1.2)[Axiom of infinity].An inductive set(1.2.1.1) exists.

Def.(1.2.1.3)[Set of Natural Numbers].The set of natural numbers N is defined to be

N = {x ∈ I0|x ∈ I for all inductive set I},

where I0 is an inductive set given by(1.2.1.2). Elements of N are called natural numbers.

Cor.(1.2.1.4) [Inductive Principle]. If P (x) is a property that P (0), and P (n) implies P (n + 1),
then P (n) for each natural number n.

Proof: By definition B = {n ∈ N|P (n)} is an inductive set, so N ⊂ B. □

Prop.(1.2.1.5).N(1.2.1.3) is a linearly ordered set.

Proof: Cf.[Set Theory Jech P43]. □

Cor.(1.2.1.6) [Inductive Principle Second Version]. If P (x) is a property that P (0), and P (k)
holds for all k < n implies P (n), then P (n) for each natural number n.

Proof: Use induction principle(1.2.1.4) for the property Q(n) : P (k) for all k < n. Then Q(n)
implies Q(n+ 1). □

2 Relations and Functions
Def.(1.2.2.1)[Products].For classes A,B, A×B is the class

{x|(∃y ∈ A)(∃z ∈ B)(x = (y, z))},

called the product of A and B.

Prop.(1.2.2.2).M (a× b).
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Proof: Cf.[Axiomatic Set theory]P23. □

Def.(1.2.2.3). Inductively define? class terms
• A1 ≜ A,

• An+1 ≜ An ×A,

• A−1 ≜ {(x, y)|(y, x) ∈ A}.
And define

Def.(1.2.2.4)[Relations and Functions].Define the following predicates:
• Rel(A) ≜ A ⊂ V 2.

•

Def.(1.2.2.5)[Bijections].

Def.(1.2.2.6)[Finite and Infinite Sets].For n ∈ N and a set X, we say X has n elements iff there
is a bijection from n to X. We say X is finite if it has n elements for some n ∈ N, and infinite
otherwise.

3 Orderings

Def.(1.2.3.1) [Ordering].A partial ordering on a set A is a relation < on A, or equivalently a
subset C ⊂ A×A that

• For no x ∈ A, x < x holds.

• If x < y and y < z, then x < z.
It is called a total ordering if moreover it satisfies

• For every x, y ∈ A that x ̸= y, either x < y or y < x.
A poset is just a partially ordered set.

Def.(1.2.3.2)[Reverse Ordering].The reverse ordering Aop of an ordered set A is the same set
A with the ordering reversed.

Def.(1.2.3.3) [Cofinality].The cofinality of or a poset (i.e partially ordered set) α is the is the
smallest cardinality δ of a cofinal subset of α.

Def.(1.2.3.4) [κ-Filtered Poset].For a cardinal κ, a poset is called κ-filtered if for any subset
unbounded from above has cardinality≥ κ.

Def.(1.2.3.5)[Directed Set].A directed set is a poset that 3-filtered and non-empty.

Def.(1.2.3.6). In a poset P , two element p, q are called compatible if there is an r ∈ P that r <
p, r < q.

Def.(1.2.3.7)[κ-Chain Condition].For a cardinal κ, a poset P is said to satisfy the κ-chain con-
dition if for any subset A ⊂ P that elements of A are pairwise incompatible(1.2.3.6), then |A| ≤ κ.
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Total Ordering

Def.(1.2.3.8)[Well-Ordering].A linear ordering is just a total ordering.
A linear ordering is called a well-ordering if every nonempty subset has a minimal element.

Def.(1.2.3.9) [Lexicographical Ordering]. If given a family of linearly ordered set Ai indexed by
a well-ordered set I, then there is a linear ordering on ∏I Ai, where (fi) < (gi) iff (fi) ̸= (gi) and
for the minimal i0(well-ordering used) that fi0 ̸= gi0 , fi0 < gi0 . It is called the lexicographical
ordering.

Def.(1.2.3.10).An ordered set X is called dense iff for each a < b, there is a x that a < x < b.

Def.(1.2.3.11) [Least Upper Bound].An ordered set A is said to have the least upper bound
property if any subset A0 ⊂ A bounded above has a least upper bound. It is said to satisfy the
greatest lower bound property if Aop satisfies the least upper bound property.

Prop.(1.2.3.12) [Cantor].Any two ordered set that is countable, dense and has no endpoints are
isomorphic. In particular, any of these is isomorphic to the set of rational numbers Q.

Proof: We will built the isomorphism by extending partial embeddings. Let a0, . . . , an, . . . be an
ordering of A, b0, . . . , bn, . . . be an ordering of B, and we can alternatively extend mapping on an
and bn, as A,B are complete without endpoints. Then we get an isomorphism of A and B. □

Cor.(1.2.3.13).Any countable linearly ordered set can be mapped isomorphically into Q.

Def.(1.2.3.14).A initial segment of an ordered set W is the ordered set W [a] = {x ∈W |x < a}.

Lemma(1.2.3.15). If W is a well-ordered set, then any increasing function f : W → W satisfies
f(x) ≥ x.

Proof: If the set {x|f(x) < x} is not empty, then it has a minimal element a, then f(f(a)) < f(a),
contradiction. □

Cor.(1.2.3.16).A well-ordered set cannot be isomorphic to an initial segment of itself, and an auto-
morphism of a well-ordered set must be identity.

Proof: Use the above lemma(1.2.3.15), if it is isomorphic to W [a], then f(a) < a, contradiction.
For any automorphism, f(x) ≥ x, f−(x) ≥ x, so f(x) = x. □

Prop.(1.2.3.17)[Comparison of Well-Orderings].A cut of a well-ordered set is well-ordered. And
for any two well-ordered sets W1,W2, either they are isomorphic, or one of them is isomorphic to a
initial segment of another.

Proof: The three cases are mutually exclusive by(1.2.3.16), So it suffices to show one of them holds.
Define a set f = {(x, y) ∈W ×W |W1[x] ∼= W2[y]}. (1.2.3.16) shows f is injective and monotone

in both coordinates. Now we want to prove that if the domain of f is not all W1, then it is an initial
segment, and the image is all W2, this will finish the proof.

It is clearly an initial segment W1[a] because it is well-ordered and if h : W1[x] ∼= W2[y] and
x′ < x, then h : W1[x′] ∼= W2[h(y)]. If the image is not all of W2, then similarly the image of f is an
initial segment of W2, = W2[b]. But this means W1[a] ∼= W2[b], so a, b is also in the domain(image),
which is a contradiction. □
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Complete Linear Ordering

Def.(1.2.3.18)[Complete Ordering].A cut of an ordered set X consists of two disjoint nonempty
subsets A ∪B = X that a < b for any a ∈ A, b ∈ B.

It is called a Dedekind cut if A doesn’t has a maximal element. It is called a gap if A doesn’t
have a maximal element and B doesn’t have a minimal element.

An ordered set is called complete if there are no gaps.

Prop.(1.2.3.19).Any complete ordered set R has the least upper bound property and greatest lower
bound property.

Proof: Consider the cut A = {x|x < a for some element in T}, B = R−A, if T is bounded above,
B is not empty, so this is truly a cut, and A doesn’t has a maximal element, because if x < a ∈ R,
then x < x+a

2 < a. So by completeness of R, B has a minimal element, that is, the supremum of A
exists. Similarly for the case A bounded from below. □

Prop.(1.2.3.20)[Completion of Ordering].There is an obvious ordering on the set C of all Dedekind
cuts of X, and X embeds into C by b 7→ {x|x < b} ∪ {x|x ≥ b}.

C is complete and has no endpoints, P is dense in C, which is called a completion of P .

Proof: Cf.[Set Theory Jech P88]. □

Prop.(1.2.3.21) [Real Numbers].Q has a unique completion ordering R, called the set of real
numbers. R is not countable.

Proof: R is a dense linear ordering without endpoints, so by(1.2.3.12) if it is countable then it is
isomorphic to Q, but this is not possible because Q is not complete. □

Prop.(1.2.3.22). |P (N)| = |2N| = |R|, which is denoted by 2ℵ0 . By(1.2.3.21), ℵ0 < 2ℵ0 .

Proof: The first equality is by(1.2.7.4). Now by the construction of R, it can be embedded into
P (N), so |R| ≤ |P (Q)| = |P (N)|. Conversely, |2N| ≤ |R| by decimal representation, so they are equal
by bernstein(1.2.6.1). □

4 Ordinals
Def.(1.2.4.1)[Ordinal Numbers].A set is called transitive iff each element of T is a subset of T .
A set α is called a ordinal number iff α is transitive and well-ordered by inclusion.

Prop.(1.2.4.2). If α is an ordinal, then S(α) = α∪{α} is also an ordinal, obviously. Thus any natural
number is an ordinal by definition.

An ordinal is called a successor ordinal iff α = S(β) for some β, and a limit ordinal otherwise.

Lemma(1.2.4.3).
1. If α is an ordinal, then α /∈ α.
2. Every element of an ordinal is an ordinal.
3. If ordinals α ⊊ β, then α ∈ β. That is, for ordinals, ⊊ is the same as ∈.

Proof:
1. If α ∈ α, then contradiction to the fact ∈ is a ordering(1.2.4.1).
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2. To show x ∈ α is transitive, it suffices to show that if u ∈ v ∈ x, then u ∈ x, because then v is a
subset of x. But this follows from the fact ∈ is an ordering. And because x ⊂ α, the inclusion
of x is the restriction of inclusion in α, so it is a well-ordering.

3. Consider β − α, it has a minimal element γ. Notice γ ⊂ α, because otherwise there is an
element of β − α smaller than γ, by definition(1.2.4.1).
Now we show γ = α, then it will follow that α ∈ β. For this, if δ ∈ α and δ /∈ γ, then γ ∈ δ
or γ = δ. But then this implies that δ ∈ α because α is an ordinal, contradicting the fact
γ ∈ β − α.

□

Prop.(1.2.4.4)[Ordinal is Well-Ordered].Define the ordering of ordinal by α < β iff α ∈ β. The
ordering of ordinals is a total ordering and is a well-ordering.

Proof: If αβ ∈ γ, then α ∈ γ because γ is transitive. If α ∈ β ∈ α, then α ∈ α, contradict-
ing(1.2.4.3).

Given any two ordinals, α ∩ β is also an ordinal by definition. If α ∩ β = β or α, then α ⊂ β,
hence α ∈ β by(1.2.4.3). If α ∩ β ⊊ α and α ∩ β ⊊ β, then α ∩ β ∈ α ∩ β, contradiction.

Well-ordering: Given a set of ordinals, take α ∈ A and consider the set α∩A. If α∩A = ∅, then
α is minimal in A, because otherwise some β ∈ α ∩ A. If α ∩ A ̸= ∅, then it has a minimal element
β in the inclusion because α is an ordinal. Then β is the minimal element of A. □

Cor.(1.2.4.5)[Supremum Ordinal].Any set of ordinals has a supremum ordinal, it is just ∪α∈Xα.

Proof: Firstly ∪α∈Xα is transitive and it is well-ordered(for each subset A ⊂ X, choose an α ∈ X
that α ∩ A ̸= 0, then the minimal element of α ∩ A is just the minimal element of A.) so it is an
ordinal.

Now if α ∈ X, then α ⊂ ∪X, so α ≤ ∪X by(1.2.4.3). And if α ∈ γ for some ordinal γ, then
∪X ⊂ γ. So ∪X is truly the supremum. □

Cor.(1.2.4.6).For any set X of ordinals, there is an ordinal α that is not in X, just choose S(∪X).

Prop.(1.2.4.7).Every well-ordered set is isomorphic to a unique ordinal.
So we can regard an ordinal as an equivalence class of isomorphic well-ordered sets.

Proof: Cf.[Set Theory Jech P111]. □

Cor.(1.2.4.8)[Cardinal as Initial Ordinal].The axiom of choice together with(1.2.4.4) asserts that
every cardinal has a unique smallest ordinal, called the initial ordinal. So we can identify cardinal
number α as an ordinal that is the initial ordinal ωα of α. Anyway, cardinal number is fewer than
ordinal numbers.

The first infinite cardinal number(or the first initial ordinal) is denoted by ω or ℵ0.

Prop.(1.2.4.9) [Transfinite Induction/Recursion]. If a property defined for the set of ordinals
satisfies:

1. P (0).
2. P (α+ 1) if P (α).
3. P (λ) if P (β) for all β < λ.

then P is true for all ordinals.
Transfinite recursion:

Proof: □
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Ordinal Arithmetic

Cf.[Set Theory Jech Chap5.5].

Def.(1.2.4.10).We use infinite recursion to define addition of ordinals as
• β + 0 = β

• β + (α+ 1) = (β + α) + 1, where α+ 1 is the successor of α.
• β + α = sup{β + γ|γ < α} for a limit ordinal α.

The multiplication of ordinals and exponentiation of ordinals are defined similarly.

Remark(1.2.4.11) [Cardinal and Ordinal Arithmetics].Note that the ordinal arithmetics may
be smaller than the ordinal sum of the corresponding initial ordinal(1.2.4.8), because operations of
initial ordinals may not be initial, the deeper reason is that the cardinal case, we can rearrange the
order to get a smaller ordinal.

Prop.(1.2.4.12).The addition and multiplication of ordinals are of the order type of α⨿β in adjunc-
tion order and α× β in lexicographical order respectively, Cf.[Set Theory Jech P120,122]

Cantor Normal Form

Prop.(1.2.4.13) [Cantor Normal Form].Any ordinal α can be expressed uniquely as the form
α =

∑
i<n ω

βi , where β0 ≥ β1 ≥ . . . βn−1 are ordinals.

Proof: Cf.[Jech Set Theory P124]. □

Prop.(1.2.4.14)[Goodstein Sequence].The weak Goodstein sequence is a sequence that m2 is
any positive integer, mk+1 is mk written in k-basis and replacing the base by k + 1, and then minus
1.

The Goodstein sequence is a is a sequence that m2 is any positive integer, mk+1 is mk written
in k-basis and even the exponents in k-basis and and replacing the base by k+ 1, and then minus 1.

Then for each Goodstein sequence and weak Goodstein sequence, it reaches 1 in a finite number
of times.

Proof: Let mk =
∑
kaibi, then let the ordinal αk =

∑
ωaibi. Then it is clear that α2 > α3 > . . ..

But if the weak Goodstein sequence doesn’t terminate, we constructed a descending sequence of
ordinals that doesn’t terminate, contradiction(choose a minimal element).

Similarly for Goodstein sequences, just replace every base k by ω. □

5 The Axiom of Choice
Def.(1.2.5.1)[Choice Functions].Let S be a system of sets, a function g defined on S is called a
choice function iff g(X) ∈ X for each X ∈ S.

Axiom(1.2.5.2)[the Axiom of Choice, Zermelo1904].Any system of sets has a choice function.

Thm.(1.2.5.3)[Zermelo1904].The following are equivalent:
1. the axiom of choice.
2. (the well-ordering principle)Every set can be well-ordered.
3. (Zorn’s lemma)If every chain in a partially ordered sets has a upper bound, then the partially

ordered set has a maximal element.
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Proof: 2 → 1: If A is well-ordered, then P (A) clearly has a choice function, that is the minimal
element of a set.

1→ 2: Use transfinite recursion, Cf.[Set Theory Jech P137].
2→ 3, 3→ 2: Cf.[Set Theory Jech P142]. □

Prop.(1.2.5.4).Every infinite set X has a countable subset, if the axiom of choice holds.

Proof: Choose a well-ordering of it(1.2.5.3), then it is an infinite ordinal. Then the initial segment
of the first ordinal X[ω] is a countable subset. □

Prop.(1.2.5.5).For every infinite set S, there exists a unique aleph ℵα that |S| = ℵα.

Proof: choose a well-ordering of S(1.2.5.3), then it is an infinite ordinal, and it has the same
cardinality as an initial cardinal by(1.2.4.8), thus the result. □

Cor.(1.2.5.6).For any sets A and B, either |A| ≤ |B| or |B| ≤ |A|.

Proof: Because the ordinal is totally ordered(1.2.4.4). □

6 Cardinals
Thm.(1.2.6.1)[Cantor-Schröder-Bernstein]. If there is an injection from A to B and an injection
from B to A, then there is a bijection from A to B. Thus the ordering of the cardinal is well-defined.

So we can denote #A ≤ #B iff there is an injection from A to B. Then if #A ≤ #B and
#B ≤ #A, then #A = #B. In particular, this is a well-defined order relation.

Proof: It f : A → B, g : B → A be injection, then use the above lemma(1.2.6.2) for g ◦ f(A) ⊂
g(B) ⊂ A. □

Lemma(1.2.6.2). If A1 ⊂ B ⊂ A with #A = #A1, then #A = #B.

Proof: Let f be a bijection from A to A1. Define inductively An+1 = f(An), Bn+1 = f(Bn). Then
An+1 ⊂ Bn ⊂ An. Let Cn = An −Bn, C = ∪Cn, then f(Cn) = Cn+1, so f(C) = ∪i>0Ci.

Now define g : A→ B = f(x) on C and x on A\C, then it is a bijection from A to B. □

Def.(1.2.6.3)[Cardinal Numbers].A cardinal number is an equivalence class of sets, where equiv-
alence is given by bijections. it is used to describe the ‘size’ of a set.

It is by the axiom of choice that any two cardinal number can be compared.?
Denote ℵ0 = #N(1.2.1.3).

Peano Arithmetics

Countable and Uncountable Sets

Def.(1.2.6.4)[Countable Sets].A set is called countable iff it has the cardinality of ℵ0(1.2.6.3). It
is called a finite set if it has the cardinality of n for some natural number n ∈ N. It is called an
uncountable set iff it is not countable or finite. It is called an at most countable set if it is finite
or countable.

Prop.(1.2.6.5).The subset or image of an at most countable set is at most countable.

Proof: □
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Prop.(1.2.6.6).The product of two at most countable sets is at most countable. (Use diagonal
enumerating).

Proof: □

Prop.(1.2.6.7).A countable union of almost countable subsets is almost countable.

Proof: It suffices to prove the countable case, the rest follows from(1.2.6.5). For this, choose an
enumerating an(k) for each An, the ∪An is the image of N×N : (n, k) 7→ an(k). Then it is countable
by(1.2.6.6). □

Prop.(1.2.6.8).The set of finite sequences and hence the set of finite subsets of a countable set is
countable.

Proof: The desired set equals ∪kAk, which is countable by(1.2.6.6) and(1.2.6.7). □

7 Cardinal Arithmetics
Def.(1.2.7.1).The sum, multiplication and exponentiation of two ordinal is the cardinality of
the set A⨿B, A×B or AB respectively.

It is easily verified to be associative and commutative, just as usual operations.

Prop.(1.2.7.2).ℵ0 × ℵ0 = ℵ0 by(1.2.6.6). And κ × κ = κ for any infinite cardinal, if one uses the
axiom of choice by(1.2.8.3).

Prop.(1.2.7.3).The image of a set X has cardinals no more than X, if axiom of choice holds.

Proof: Use axiom of choice to choose an element from each inverse image f−1({x}), then it is an
injection from f(X) to X. □

Prop.(1.2.7.4)[Cantor].#P (X) = 2#X , and #X < #P(X).

Proof: The first is obvious, for the second, the function x → {x} is an injection of X into P (X).
And there are no mapping from X onto P (X), because if f is one, the consider S = {x|x /∈ f(x)},
then S is not in the range of f , because if f(z) = S, then z ∈ S iff z /∈ S, contradiction. □

Prop.(1.2.7.5) [Cardinality Arithmetic of ℵ0].For cardinality arithmetics involving ℵ0, Cf.[Set
Theory Jech P98].

Proof: □

Prop.(1.2.7.6). if |B| = 2ℵ0 and |A| ≤ ℵ0, then |B−A| = 2ℵ0 . In fact, |B−A| = |B| for any |A| < |B|,
if one uses the axiom of choice.

Proof: By(1.2.7.5), we can assume B = R×R, then project A onto the coordinate axis, then π(A)
has cardinality≤ ℵ0, so there is a x0 /∈ π(A), so x0 ×R ⊂ B −A, so |B −A| = 2ℵ.

For the general case, ? □

Conj.(1.2.7.7)[The Continuum Hypothesis, Cantor1878].There is no cardinal κ that ℵ0 < κ <
2ℵ0 .

Notice 2ℵ0 ≥ ℵ1 by Cantor’s theorem(1.2.7.4), and this hypothesis is equivalent to 2ℵ0 = ℵ1.

Proof: □
For Infinite operation of Cardinal Arithmetics, Cf.[?]Chap9.
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8 Alephs
Prop.(1.2.8.1).For any set A, there is a least ordinal that is not equipotent to any subset of A, called
the Hartogs number of A. This is clearly an initial ordinal.

Proof: By axiom schema of replacement, any well-ordered subsets of A is equipotent to an or-
dinal, and also by axiom schema of replacement, there is a set H that for any well-ordering of
subsets of A in P (A × A), this ordered sets is equipotent to a α ∈ H. Then use(1.2.4.6) to find
a minimal ordinal that is not equipotent to any subset of A. In fact, this is just h(A) = {α ∈
H|α equipotent to some subset of A}. □

Def.(1.2.8.2)[Aleph].The alephs for ordinal numbers are defined recursively: ℵ0 = ω, ℵα+1 = h(ℵα),
and ℵα = sup{ℵβ|β < α} for a limit ordinal α. By definition αα < ℵβ when α < β.

Then ℵα are all infinite initial ordinal numbers, and any infinite ordinal number is of the form
ℵα for some ordinal α. So natural numbers together with alephs are just all the cardinal numbers.

Notice: to avoid confusion, when do arithmetic of ordinal numbers, ℵα is written as ωα.

Proof: Use transfinite induction on α. The only nontrivial case is when α is a limit ordinal, where
if γ < ℵα and |γ| = |ℵα|, then there is a β < α that γ ≤ ℵβ by definition, so |ℵα| < |γ| ≤ |ℵβ| < |ℵα|
as ℵβ is an initial ordinal.

To prove that any infinite initial ordinal is an aleph, first notice that α < ℵα by a simple transfinite
induction. So we may use transfinite induction on the following assertion for α: if Ω < ℵα, then
there is a γ < α that Ω = ℵγ . For this, α = 0 is trivially true, if α = β + 1, then Ω < h(ℵα) implies
that |Ω| < |ℵα| by definition. Because Ω is initial, Ω = ℵβ or Ω < ℵβ, so by induction hypothesis it
is true. If α is a limit ordinal, then Ω < ωβ for some β < α, so also by induction hypothesis it is
true. □

Aleph Arithmetics

Prop.(1.2.8.3).ℵα · ℵα = ℵα.

Proof: Cf.[Set Theory Jech P134]. □

Cor.(1.2.8.4).ℵα · ℵβ = ℵβ for α ≤ β, and n · ℵβ = ℵβ.
So ℵα + ℵβ = ℵβ for α ≤ β, and n+ ℵβ = ℵβ.

9 Natural Numbers and Real Numbers
Prop.(1.2.9.1).R is the unique ordered field in which every non=empty bounded set has a least upper
bound.

Proof: □

Prop.(1.2.9.2). (N, <)(1.2.1.5) is a well-ordered set.

Proof: □

Example(1.2.9.3)[Examples of Countable Sets].
• Z.
• Q.
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Arithmetic of Real numbers

Prop.(1.2.9.4).The set of real numbers R(1.2.3.21) can be endowed with a field structure, making it
an ordered field.

Proof: Cf.[Set Theory Jech P175]. □

Prop.(1.2.9.5).R satisfies the least upper bound hypothesis.

Proof: □

10 Filters and Ultrafilters
Def.(1.2.10.1)[Filter].For a poset P , a filter on P is a subset F that

• If p < q and p ∈ F , then q ∈ F .
• If p, q ∈ F , then there is an r ∈ F that r < p, r < q.

Def.(1.2.10.2)[Filter on Sets].Let S be a non-empty set, a filter on S is a filter F on P(S) that
∅ /∈ F .

an ideal on S is a collection F of subsets of S that:
• ∅ ∈ F and S /∈ F .
• If X,Y ∈ F , then X ∪ Y ∈ F .
• If X ∈ F,X ⊃ Y , then Y ∈ F .
An ideal is just the dual(complement) of a filter.

Def.(1.2.10.3)[Finite intersection property].A family of subsets of a set is said to have the finite
intersection property if any finite collection of elements of this family is non-empty.

Lemma(1.2.10.4). let G be a collection of subsets of S that has the finite intersection prop-
erty(1.2.10.3), then there is a smallest filter F that G ⊂ F . It is just the collection of subsets
of S that contain some finite intersection set of elements of G.

Def.(1.2.10.5)[Ultrafilter].An ultrafilter is a filter F that for every subset X, X ∈ F iff S−X /∈ F .
A prime ideal is an ideal that for every subset X, X ∈ F iff S −X /∈ F .

A ultrafilter is equivalent to a maximal filter. And it is equivalent to a {0, 1}-valued finitely
additive measure on S.

Proof: If F is an ultrafilter, then it is maximal, because any larger filter will have some X,S −X,
thus has ∅, contradiction.

Conversely, if F is maximal filter but not ultra, then there is a X that X /∈ F , S −X /∈ F . Let
G = F ∪ {X}, then any finite intersection of elements of G is not empty: X1 ∩ . . . ∩ Xn ∩ X ̸= 0
otherwise S −X ∈ F . So there is a filter containing G by(1.2.10.4), contradiction. □

Prop.(1.2.10.6) [Pushforward of Filters]. If F is a(n) (ultra)filter on X and f : X → Y is a
function, then f∗(F) = {A ⊂ Y |f−1(A) ∈ F} is a(n) (ultra)filter on X, called the pushforward
filter of F .

Prop.(1.2.10.7).For an ultrafilter F on X , if Ui /∈ F , then
∑n
i=1 Ui /∈ F .

Proof: As X − Ui ∈ F , there intersection are in F , so its complement is not in F . □
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Prop.(1.2.10.8).Any filter can be extended to an ultrafilter(maximal filter), if the axiom of choice is
used.

Proof: Use Zorn’s lemma(1.2.5.3). It suffices to prove that a union of a chain of filters is a filter,
which is trvial. □

Cor.(1.2.10.9).Non-principal ultrafilter exists on any infinite set. And in fact, any non-principal
ultrafilter contains all the cofinite sets.

For any non-principle ultrafilter, it cannot contains a single pt {x}, so it contains every cofinite
set.

Proof: Consider any ultrafilter containing the filter of cofinite sets of S, then it is non-principal. □

Def.(1.2.10.10) [κ-Completeness].Let κ be an uncountable cardinal, then a field F on a set S is
called κ-complete if for every cardinal λ < κ, if Xα ∈ F for every α < λ, then ∩α<λXα ∈ F .

An ℵ1-complete filter is also called a σ-complete filter.

Closed unbounded and Stationary Set

Silver’s Theorem

11 Models
Cf.[Axiomatic Set Theory]P12.

Def.(1.2.11.1).

Absoluteness

12 Large Cardinals
Def.(1.2.12.1)[Abstract Measures].Let S be a non-empty set, then an abstract measure on S
is a non-trivial probabilistic measure µ on the measurable space (S,P(S)) that µ({a}) = 0 for any
a ∈ S.

Def.(1.2.12.2)[Regular Cardinal].A cardinal is called regular if it is not a sum of λ cardinals κi
that λ < κ and κi < κ.

Def.(1.2.12.3)[Strong Limit].A cardinal κ is called a strong limit if 2λ < κ for any λ < κ(1.2.12.3).

Def.(1.2.12.4)[Strongly Inaccessible Cardinal].A cardinal κ is called strongly inaccessible(SI)
if it is regular(1.2.12.2) and is a strongly limit.

Def.(1.2.12.5)[Weakly Inaccessible Cardinal].A cardinal κ is called weakly inaccessible if it is
regular and is a limit cardinal.

Prop.(1.2.12.6)[Measure and CH]. If there exists an abstract measure on 2ℵ0 , then the Continuum
Hypothesis(1.2.7.7) fails.

Proof: Cf.[?]P242. □

Prop.(1.2.12.7). If there is a measure on a set S, then some cardinal κ ≤ |S| is weakly inaccessible.

Proof: Cf.[?]P243. □
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Prop.(1.2.12.8).Let µ be a {0, 1}-valued measure on S, then U = {X ⊂ S|µ(X) = 1} is a non-
principal σ-complete ultrafilter of S

Prop.(1.2.12.9)[Stanislaw-Ulam Dichotomy]. If there exists a measure on some set, then either
there exists a {0, 1}-valued measure on some set, or there exists a measure on 2ℵ0 .

Proof: Cf.[?]P245. □

Def.(1.2.12.10)[Measurable Cardinals].A measurable cardinal is an uncountable cardinal κ on
which there exists a non-principal κ-complete ultrafilter.

Prop.(1.2.12.11).A measurable cardinal is strongly inaccessible.

Proof: Cf.[?]P247. □

13 Gödel Model
14 Silver Machine
15 Forcing

Def.(1.2.15.1)[Dense Subset]. In a poset P , a subset D ⊂ P is called dense if for any p ∈ P , there
is a q ∈ D that q < p. If D is a collection of dense subsets of P , a filter G ⊂ P is called D-generic
if D ∩G ̸= ∅ for all D ⊂ D.

Prop.(1.2.15.2). If D is a countable collection of dense subsets of P , then there is a D-generic filter
G.

Proof: Let D = {D1, . . . , Dn, . . .}. Choose p0 ∈ P , and consecutively choose pn ≤ pn−1 that
pn ∈ Dn, and define G = {q|q ≥ pn for some n}. □

Axiom(1.2.15.3) [Martin’s Axiom]. If P is a partially ordered set satisfying the countable chain
condition(1.2.3.7), andD is a collection of dense subsets of P with |D| < 2ℵ0 , then there is aD-generic
filter on P .

16 Determinacy
17 Stationary Set
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1.3 Combinatorial Set Theory
Def.(1.3.0.1) [Notations].For a set S, let [S]r be the set of subsets of S of order r. Let κ, λ be
cardinals, we write κ → (λ)rs as a shorthand for: for any set S with |S| = κ and every partition of
[S]r into s classes, there exists a subset H ⊂ S that [H]r is in the same class, and |H| ≥ λ.

Prop.(1.3.0.2)[Ramsey’s Theorem].For any positive natural number r, s if we color the r-subsets
of a set with cardinality ℵ0 into s families, then there is a subset of cardinal ℵ0 that all its r-subsets
are colored the same.

Cor.(1.3.0.3).Every infinite linearly ordered set contains a subset isomorphic to (N, <) or (N, >).

Proof: Choose a well ordering of it. Then consider this new ordering and the original ordering.
Then there is an infinite set that is compatible with the original ordering, or converse. Then its
initial segment of order type ω0 satisfies the requirement. □

Def.(1.3.0.4) [Weakly Compact Cardinals].An weakly compact cardinal is an uncountable
cardinal κ that κ→ (κ)rs(1.3.0.1) for any r, s ∈ Z+.

Prop.(1.3.0.5).Weakly compact cardinals are strongly inaccessible.

Proof: Cf.[?]P224. □

Trees

Def.(1.3.0.6).A tree is a partial ordered set T that there is a minimal element r and for each x,
{y ∈ T |y < x} is finite and linearly ordered.

A tree is called of finite branched for each x, there is a finite set {y1, . . . , yr} is T that yi > x
and if z > x, then z ≥ yi for some i.

Def.(1.3.0.7)[Height].For any node x, {y ∈ T |y < x} is a well-ordered set, which is isomorphic to
an ordinal by(1.2.4.7), it is called the height of x. Tα denotes the set of all nodes of T of order α.
The least α that Tα ̸= ∅ is called the height of T .

A branch is a maximal chain in T , its length is its ordinal. The length is always smaller than
the height of the tree. If it equals the height of the tree, it is called cofinal.

Def.(1.3.0.8).A subtree is a subset T ′ of T that if x ∈ T ′, y < x, then x ∈ T ′.
An antichain of a tree T is a subset A ⊂ T that any two elements in A are incomparable.

Def.(1.3.0.9).A path through T is a morphism of ordering from ω to T .

Lemma(1.3.0.10) [König’s Lemma]. If T is an infinite finite branching tree, then there is a path
through T .

Proof: Use recursion to choose for each n an element that has infinite successors. □

Def.(1.3.0.11).An Aronszajn tree is a tree of height κ and all its level sets are at most countable,
but has no branches of length κ.

Prop.(1.3.0.12).An Aronszajn tree of height ω1 exists.

Proof: Cf.[Set Theory Jech P228]. □
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1 Finite Sets
Thm.(1.3.1.1)[Dirichlet’s Box Principle].

Proof: □

Ramsey’s Theory

Prop.(1.3.1.2)[Finite Ramsey’s Theorem].For any α, k, n1, . . . , nk ∈ Z+, ni ≥ α, there exists a
minimal R(α, k;ni) ∈ Z+ s.t. if we divide the α-subsets of a set with cardinality R(α, k;ni) into k
groups C1, . . . , Ck, then there is some 1 ≤ i ≤ k and a subset S of cardinality ni s.t. all the α-subset
of S is in Ci. Moreover,

R(α, k;ni) ≤ R(α− 1, k;mj = R(α, k;n1, . . . , nj−1, nj − 1, nj+1, . . . , nk)) + 1.

Proof: We use double induction on (α, k) in lexicographical order. If α = 1, clearly R(1, k;ni) =∑k
i=1(ni − 1) + 1. And if k = 1, then R(α, 1;n1) = n1.
Suppose α > 1, k > 1, if some ni = α, then R(α, k;ni) = R(α, k − 1;n1, . . . , n̂i, . . . , nk), thus we

are reduced to smaller k. So we can assume that ni > α for each i. In this case, we prove that

R(α, k;ni) ≤ R(α− 1, k;mj = R(α, k;n1, . . . , nj−1, nj − 1, nj+1, . . . , nk)) + 1.

And this will finish the induction process.
To prove this, notice that if we have a set X with cardinality equal to the RHS, and let x ∈ X,

then we can divide the (α− 1) subsets of X \ {x} into k groups C ′
1, . . . , C

′
k s.t. an (α− 1)-set S has

cardinality α− 1 belongs to C ′
i iff S ∪ {x} belongs to Ci. Then by definition, there exists some i and

some subset Y of X \{x} of cardinality R(α, k;n1, . . . , ni−1, ni−1, ni+1, . . . , nk) s.t. all (α−1)-subset
of Y belongs to C ′

i. Then by definition, there either exists some j ̸= i and some subset Z1 of Y of
cardinality nj s.t. all the α-subset of Z1 is in Cj , in which case the assertion is satisfied; or exists
some subset Z2 of Y of cardinality ni − 1 s.t. all the α-subset of Z2 is in Ci. Then Z2 ∪ {x} satisfies
the assertion. □

Prop.(1.3.1.3)[Szekeres].For any a, b ∈ Z≥2, R(2; a, b) ≤
(a+b−2
a−1

)
.

Proof: Use induction on a+ b: If a = 2 or b = 2, this is easy. And for a, b ≥ 3, by(1.3.1.2),

R(2; a, b) ≤ R(2; a− 1, b) +R(2; a, b− 1) ≤
(
a+ b− 3
a− 2

)
+
(
a+ b− 3
a− 1

)
=
(
a+ b− 2
a− 1

)
□

Prop.(1.3.1.4)[Erdös].For k ∈ Z≥3,

2k/2 < R(2; k, k) ≤
(

2k − 2
k − 1

)
< 4k−1.

Proof: If N < 2k/2, then the number of different graphs of N vertices equals 2N(N−2)/2, and the
number of different graphs containing a complete k-graph is less than(

N

k

)
2N(N−1)/2−k(k−1)/2 <

Nk

k!
2N(N−1)/2−k(k−1)/2 <

2N(N−1)/2

2
,

because 2
k
2 +1 < k! for k ≥ 3. So there exists a graph G that neither G and its complement graph G′

contains a complete k-graph. Thus 2k/2 < R(2; k, k).
The second inequality follows form(1.3.1.3). □
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Intersection Theorems

Prop.(1.3.1.5) [Sperner].For n ∈ Z+, any system {S1, . . . , Sv} of subsets of [n]+ s.t. no set Si
contains another Sj , then v ≤

( m
⌊m/2⌋

)
.

Proof: □

Prop.(1.3.1.6)[Erdös-Ko-Rado].For k, n ∈ Z+, n ≥ 2k, any system S = {S1, . . . , Sv} of subsets of
[n]+ s.t. #Si = k for each i, and Si ∩ Sj ̸= ∅ for any 1 ≤ i, j ≤ v, then v ≤

(n−1
k−1
)
. The equality can

be achieved when all Si contains 1.

Proof: Use counting by twice method: For any permutation σ of [n]+, let Aσs = {σ(s), σ(s +
1), . . . , σ(s+ k− 1)}(where addition is modulo n), then it can be seen easily that among the subsets
{Aσ1 , . . . , Aσn}, at most k of them are contained in S. Thus by counting twice,

#S(n
k

) ≤ k

n
,

which implies #S ≤ k
n

(n
k

)
=
(n−1
k−1
)
. □
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1.4 Homotopy Type Theory
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1.5 Model Theory
References are [Model Theory Marker]. The exercises of [Model Theory Marker] are important.

Notation(1.5.0.1).
• Use notations defined in Set Theory.
• All propositions from now are wffs in class theory(or with choice or large cardinal), so there

are no metatheorems.

1 Set Models

Basics

Def.(1.5.1.1)[Structures].Given a mathematical language L(1.1.7.1), an L-structure on a set M
is an assignment for each constant symbol c an element cM ∈M , for each function symbol f of arity
n a function fM : Mn →M , and for each relation symbol R of arity m a subset RM ⊂Mm. These
cM , fM , RM are called interpretations of L.

And there is a natural definition of morphisms of L-structures, and an injective morphism of
L-structures is called an embedding or a structure extension.

Def.(1.5.1.2)[Satisfaction].Let φ be a formula with free variables v = (vi1 . . . . , vim), then we induc-
tively defineM |= φ(a) as follows:

• If φ is t1 = t2 where t1, t2 are terms, thenM |= φ(a) if ⊔M
1 (a) = tM2 (a).

• If φ is R(t1, . . . , tn), thenM |= φ(a) if (tM1 (a), . . . , tMn (a)) ∈ RM.
• If φ is ¬ψ, thenM |= φ(a) ifM ⊭ ψ(a).
• If φ is ψ ∧ θ, thenM |= φ(a) ifM |= ψ(a) andM |= θ(a).
• If φ is ∃vjψ(v, vj), thenM |= φ(a) is there is a b ∈M thatM |= ψ(a, b).

and we say M satisfies φ(a), or φ(a) is true in M . Notice if there is no free variables, φ(a) just
writes φ.

Def.(1.5.1.3) [Mathematical L-Theory].Let L be a mathematical language, then a (mathemati-
cal)L-theory is a consistent extension of KL(1.1.6.2).

Def.(1.5.1.4) [Models]. If T is an L-theory and M a set with L-structure satisfying all theorems
φ ∈ T , then M is called a model of T , and writes M |= T .

A theory T is called satisfiable iff there is a modelM for T .
A set of L-structures K is called an elementary class iff there is an L-theory T that K =

{M|M |= T}.
Given a L-structure on M , the theory of M is the set of all sentences true in M .
Two L-structures M and N are called elementary equivalent, denoted by M ≡ N , if for all

L-sentences φ,M |= φ ⇐⇒ N |= φ.

Prop.(1.5.1.5). If T is a mathematical L-theory given by axioms, and every axiom of M is a set with
L-structure satisfying every axiom, thenM is a model of T .

Proof: This follows from induction on the length of the proof of a theorem. □

Prop.(1.5.1.6).A mathematical L-theory is consistent iff it has a model.
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Proof: Cf.[Hamilton]P91+98.? □

Prop.(1.5.1.7)[Quantifier-Free Formulae]. SupposeM is a substructure of N and a is a tuple in
M. If φ(v) is a quantifier-free formula, thenM |= φ(a) iff N |= φ(a).

Proof: Cf.[Model Theory P11]. □

Prop.(1.5.1.8). If L-structuresM∼= N , thenM is elementarily equivalent to N .

Proof: This seemingly trivial proposition still needs proof, and the proof uses induction, just as
that of(1.5.1.7). □

Def.(1.5.1.9)[Logical Consequence].Let T be an L-theory and φ an L-sentence, then φ is called a
logical consequence of T , writes T |= φ, if for any L-structureM thatM |= T ,M |= φ.

Definable Sets and Interpretability

Def.(1.5.1.10).Let M be an L-structure, a subset X of Mn is called definable iff there is an L-
formula φ(v1, . . . , vn, w1, . . . , wm) and a tuple b ∈Mm that X = {a ∈Mn :M |= φ(a, b)}. Moreover
if A ⊂M , X is called A-definable iff yi ∈ A.

Prop.(1.5.1.11)[Examples of Definable Sets].The definability of some sets are often nontrivial,
using many number theories. For example, Cf.[Marker P20].

Prop.(1.5.1.12).There is an inductive characterization of definable sets, Cf.[Marker P22].

Prop.(1.5.1.13). IfM is an L-structure, If X ⊂Mn is A-definable, then very L-automorphism ofM
that fixes A pointwise will fixes X setwise.

Proof: For an automorphism τ ofM,M |= φ(b, a) iffM |= φ(τ(b), τ(a)) = φ(τ(b), a). □

Cor.(1.5.1.14).R is not definable in C.

Proof: If R is definable, it is definable over a finite set A ⊂ C, Let r, s be algebraically independent
over A and r ∈ R, s /∈ R. This can be done, otherwise C or R is finite transcendental over Q, then
|C| = |Q|(2.2.6.3), which is impossible by(1.2.3.21). Then there is an automorphism σ of C fixing A
that σ(r) = s, so R is not definable by(1.5.1.13). □

Def.(1.5.1.15)[Definably Interpretability].An L0-structure N is called definably interpreted
in an L-structureM if there is a definable set X ⊂Mn that we can interpret the symbols of L0 as
definable subsets and functions of X and the resulting L0-structure is isomorphic to N .

The usual example is that the group structure of GL2(K) is definably interpreted in the ring
structure of a field.

Def.(1.5.1.16) [Interpretability and Quotient Construction].An L0-structure N is called in-
terpretable in an L-structure M iff there is a definable set X ∈ Mn and a definable equivalence
relation E on X, that we can interpret the symbols of L0 as definable subsets and functions of X/E
and the resulting L0-structure is isomorphic to N .

The usual example is that the set structure of a projective space is interpretable in the ring
structure of a field.

Prop.(1.5.1.17).Any structure for a countable language can be interpreted in a graph.

Proof:
□
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2 Basic Techniques
Def.(1.5.2.1) [Definitions for Theories].A theory T is said to have the witness property iff
whenever φ(v) is an L-formula with one free variable v, there is a constant symbol c that T |=
(∃vφ(v)→ φ(c)).

A theory T is called maximal iff for any L-sentence, either φ ∈ T or ¬φ ∈ T .
A theory T is called complete iff for any L-sentence, either T |= φ or T |= ¬φ.

Def.(1.5.2.2)[Consistent Theory].A theory T is called inconsistent if there is a sentence φ that
T ⊢ φ ∧ ¬φ, otherwise it is called consistent.

Def.(1.5.2.3)[Recursiveness and Decidablility].A language L is called recursive iff there is an
algorithm that decides whether a sequence of symbols is an L-formula.

An L-theory T is called recursive iff there is an algorithm that decides whether a given L-sentence
is in T .

An L-theory T is called decidable iff there is an algorithm that decides whether a given φ satisfies
T |= φ.

Prop.(1.5.2.4). If L is a recursive language and T is a recursive L-structure, then {φ|T ⊢ φ} is
recursively enumerable.

Proof: There is a computable listing σ1, . . . , σn . . . of all the finite sequences of L-formulas, because
L is recursive. Then we can check at each stage iff σi is a proof of φ. This involves checking if each
formula is in T (checkable because T is recursive) or it is a simple consequences of formulae before
it, and finally check the last formula is φ. If σi is a proof of φ, then halt, otherwise go on to check
σi+1. □

Prop.(1.5.2.5).The halting computation set is not computable.

Proof: Cf.[Mathematical Logic Shoenfield]?. □
Cor.(1.5.2.6).The full theory Th(N) of the ring structure of N is undecidable.

Proof: If such an algorithm exists, then we can use it to compute whether the sentence

φ(e, x) = ∃sT (1 + . . .+ 1︸ ︷︷ ︸
e−times

, 1 + . . .+ 1︸ ︷︷ ︸
x−times

, s)

is computable. Then this will contradicts the fact that halting computation set is not com-
putable(1.5.2.5). □

Prop.(1.5.2.7)[Gödel’s Completeness Theorem].Let T be an L-theory and φ is an L-sentence,
then T |= φ iff T ⊢ φ.

Proof: ? □
Cor.(1.5.2.8)[Consistent and Satisfiable].A theory T is consistent iff it is satisfiable.

Proof: If T is satisfiable, then it is clearly consistent, and if T is not satisfiable, then there are no
models for T , so T |= φ ∧ ¬φ by definition, so T ⊢ φ ∧ ¬φ by Gödel’s completeness theorem. □

Cor.(1.5.2.9)[Lemma on Constants]. Suppose T ⊢ φ(c) and c is a tuple of constants not appearing
in T , then T ⊢ ∀xφ(x).

Proof: We use the Gödel’s completeness theorem(1.5.2.7), and notice this theorem is obviously
true for ⊢ replaced by |=. Notice we can add the constants to L, thus φ(c) has no free variables. □
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Ultraproducts of Theories

Def.(1.5.2.10)[Ultraproducts of Theories]. If Mi, i ∈ I is a collection of L-structures and F is an
ultrafilter on I, then the ultraproduct ∏IMi/F of Mi is a L-structure defined as:

• The underlying set M =
∏
Mi/ ∼, where (ai) ∼ (bi) iff {i ∈ I|ai = bi} ∈ F , which is an

equivalent relation.

• If c is a constant symbol, then cM = (cMi).

• If f is a function symbol, then fM ([ai1], . . . , [ain]) = [fMi(ai1, . . . , ain)].

• If R is a relation symbol, then ([ai1], . . . , [ain]) ∈ RM iff {i ∈ I|(ai1, . . . , ain) ∈ RMi} ∈ F .

Prop.(1.5.2.11) [Los Theorem].Let Mi, i ∈ I be L-structures and F be an ultrafilter on I. Let
φ(x) be a first-order logic formula in the free variables x, and let [(ai)] be a tuple of elements from∏
IMi/F , then ∏

I

Mi/F |= φ([(ai)]) ⇐⇒ {i ∈ I|Mi |= φi(ai)} ∈ F .

Proof: The proof is by induction, which is routine, Cf.[Model Theory for Algebra and Algebraic
Geometry, P22]. □

Cor.(1.5.2.12).An ultraproduct of models for a theory T is also a model for T .

Cor.(1.5.2.13)[Non-Standard Model for Th(R)].Consider R in the language Lr, where Lr is the
language of rings, (i.e., the ring structure), let F be a non-principle ultrafilter on N(1.2.10.9), and
consider the ultraproduct R =

∏
i∈NR/F , which is called an ultrapower of R.

Notice each factor satisfies Th(R), so R also satisfies Th(R).

Cor.(1.5.2.14).Using ultraproduct construction, we can find a field of characteristic 0 that has exactly
one algebraic extension in each degree.

Proof: Just use the field model Fp for all p and construct their ultraproduct w.r.t. a non-principal
ultrafilter. □

Prop.(1.5.2.15)[Keiler-Shelah Theorem].Two L-structuresM and N are elementary equivalent
iff there is an index set I and an ultrafilter F on I that ∏IM/F ∼=

∏
I N/F .

Proof: Cf.[C. C. Chang and H. J. Keisler, Model Theory 6.1.15]. □

Compactness Theorem and Henkin Construction

Lemma(1.5.2.16). Suppose T is a maximal and finitely satisfiable L-theory with the witness property,
then T is satisfiable. In fact, T has κ constant symbols, then there is a modelM |= T that |M| ≤ κ.

Proof: Cf.[Marker, P35]. □

Lemma(1.5.2.17).Let L be a finitely satisfiable L-theory, then there is a language L ⊂ L∗ and a
T ⊂ T ∗ a finitely satisfiable L∗-theory that any L∗-theory extending T ∗ has the witness property.
And we can choose |L∗| = |L|+ ℵ0.
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Proof: We first show there is a language L ⊂ L1 and a finitely satisfiable L1-theory T ⊂ T1 that
witnesses all L-formulae: We add a constant symbol cφ for each L-formula φ, and add sentences
(∃vφ(v))→ φ(cφ) to T , then this T1 is finitely satisfiable, because for any finite subset ∆ of T1, only
f.m. constant symbols appear, and we have a model M for ∆ ∩ T , thus we can interpret cφ as the
element a thatM |= φ(a), ifM |= ∃vφ(v). Now we can inductively define Ln, Tn, and consider their
union, then this satisfies the desired conditions. And the cardinality is also clear. □

Lemma(1.5.2.18). If T is a finitely satisfiable L-theory, then there is a maximal(1.5.2.1) finitely
satisfiable L-theory L ⊂ L′.

Proof: it is easy to construct a maximal satisfiable L-theory, and it is truly maximal in sense
of(1.5.2.1): for any sentence φ, if T ∪ φ is not finitely satisfiable, then there is a finite set ∆ ⊂ T
that ∆ |= ¬φ. Then we claim T ∪ ¬ is finitely satisfiable: for another finite set Σ, because ∆ ∪ Σ is
finitely satisfiable and ∆ |= ¬φ, Σ ∪ ¬φ is satisfiable. □

Prop.(1.5.2.19)[Strong Compactness Theorem]. If T is a finitely satisfiable L-theory and κ is an
infinite cardinal that κ > |L|, then there is a model of T of cardinality at most κ.

Proof: By(1.5.2.17), we get a desired language L∗ of cardinality≤ κ, and a theory T ∗, and
by(1.5.2.18), we can assume T ∗ is maximal and finitely satisfiable, and it has the witness property.
Then(1.5.2.16) says there is a model of cardinality≤ κ. □

Cor.(1.5.2.20) [Compactness Theorem].A theory T is satisfiable iff every finite subset of T is
satisfiable.

Remark(1.5.2.21).Notice the compactness theorem is also a consequence of the completeness the-
orem(1.5.2.7): if T is not satisfiable, then it is not consistent by(1.5.2.8). Let σ be a proof of a
contradiction in T , then σ consists of f.m. sentences in T , which consists of a finite unsatisfiable
subset T0 of T .

It is clear provable using ultrafilters: If there is a family of structures {M∆} indexed by the
collection of all finite subsets of T , with M∆ |= ∆ for all ∆ ∈ I where I is the set of all finite subsets
of T .

Then we want to find an ultrafilter F on I that for all φ ∈ T , {∆|M∆ |= φ} ∈ F , then we can
use Leo’s theorem(1.5.2.11) to show that ∏IM∆/F is a model for all φ ∈ T . Now in fact we make
pick a ultrafilter over the filter generated by all the Aφ = {∆|φ ∈ ∆}, because M∆ |= ∆. In fact,
this is the case because Aφ has the finite intersection property trivially.

Cor.(1.5.2.22). If T |= φ, then ∆ |= φ for some finite ∆ ⊂ T .

Proof: If not, then ∆ ∪ {¬φ} is satisfiable for all finite ∆ ⊂ T , so T ∪ {¬φ} is finitely satisfiable,
thus satisfiable by compactness theorem, but this cannot be true because T |= φ. □

Cor.(1.5.2.23)[Torsion Elements].Let L be a language containing {·, e}, the language of groups,
and T is a theory extending the theory of groups, let φ(v) be an L-formula. If for any n there is a
Gn |= T and Gn has an element of finite order greater than n, then there is an L-structure G that
G |= T and G has an element of infinite order.

In particular, there is no formula that defines the torsion elements in any models for T .

Proof: Consider a new language L∗ = L ∪ {c}, and T ∗ an L∗-theory that

T ∗ = T ∪ {φ(c)} ∪ {¬(c · · · c . . . c︸ ︷︷ ︸
n−times

= e)},
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then the theory T ∗ is finitely satisfiable by hypothesis, so T ∗ is satisfiable by compactness theorem.
□

Cor.(1.5.2.24)[Element Larger than All Natural Number].Consider L the language of ordered
rings, let Th(N) be the theory of N, then there is an L-structureM thatM |= Th(N) andM has
an element that is larger than every natural number.

Proof: The same proof as that of(1.5.2.23), but use

T ∗ = Th(N) ∪ {1 + . . .+ 1︸ ︷︷ ︸
n−times

< c}

□

Prop.(1.5.2.25)[Model of a Given Cardinality]. If T is an L-theory with infinite models, then if
κ is an infinite cardinal that κ ≥ |L|, then there is a model of T of cardinality κ.

Proof: Let L∗ = L ∪ {cα : α < κ}, where cα are pairwise different new constants, and T ∗ be the
L∗ theory T ∪ {cα ̸= cβ, α < β < κ}, then any model for T ∗ must has cardinality≥ κ. But then we
use strong compactness theore(1.5.2.19), it suffices to show T ∗ is finitely satisfiable: for any finite
∆ ⊂ T ∗, there are only f.m. new constant symbols, thus we can use the infinite modelM to interpret
the constant symbols randomly, thus we are done. □

Complete Theories

Def.(1.5.2.26).Let κ be an infinite cardinal and T is a theory with models of size κ. T is called
κ-categorical iff any two models of T of cardinality κ are isomorphic.

Prop.(1.5.2.27).The theory of torsion-free divisible Abelian groups is κ-categorical for all κ > ℵ0.

Proof: A torsion-free Abelian group is just a vector space over Q. Thus the conclusion is trivial,
just notice for a cardinal κ > ℵ0, a vector space of dimension κ has cardinality κ. □

Prop.(1.5.2.28) [Vaught’s Test].Let T be a satisfiable theory with no finite models, if L is κ-
categorical for some κ ≥ |L|, then T is complete.

Proof: If there is a sentence φ that T ⊭ φ and T ⊭ ¬φ, so T0 = T ∪ {φ} and T1 = T ∪ {¬φ} is
satisfiable. They both have infinite models by hypothesis, so by(1.5.2.25) there are models of cardinal
κ for T0 and T1, but they cannot be isomorphic, contradiction. So T is complete. □

Prop.(1.5.2.29)[Recurve Complete Satisfiable is Decidable]. If T is a recursive complete satis-
fiable theory in a recursive language L, then T is decidable.

Proof: Because T is satisfiable, The set of all φ that M |= φ and the set of all φ that M |= ¬φ
are disjoint, and their sum is the set of all sentences by completeness. By Gödel’s completeness
theorem, this is equivalent toM ⊢ φ orM ⊢ ¬φ. Then by(1.5.2.4), they are both enumerable, so it
is decidable by definition. □
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Up and Down(of Cardinality)

Def.(1.5.2.30) [Elementary Embedding].An L-structure embedding j : M → N is called an
elementary embedding, denoted byM≺ N , if for any L-formula φ,

M |= φ(a) ⇐⇒ N |= φ(j(a)).

Notice that one way implication is sufficient, because we can use negation.
Isomorphisms are elementary embeddings by(1.5.1.8).

Def.(1.5.2.31) [Diagrams].Let M be an L-structure, then we can add to L constant symbols for
each element of M , and the class Diag(M) of atomic diagrams of M is sentences of the form
φ(m1, . . . ,mn), where φ is an atomic L-formula or the negation of an atomic L-formula, andM |=
φ(m1, . . . ,mn). And the class Diagel(M) of elementary diagrams of M is sentences of the form
φ(m1, . . . ,mn) where φ is an L-formula thatM |= φ(m1, . . . ,mn).

Prop.(1.5.2.32)[Diagrams and Embedding].The diagram and elementary diagram is very impor-
tant in constructing embeddings of theories: Let N be an LM -structure, then:

• If N |= Diag(M), there is an L-embeddingM⊂ N .
• If N |= Diagel(M), there is an elementary L-embeddingM≺ N .

Prop.(1.5.2.33)[Upward Löwenheim-Skolem Theorem].Let M be an infinite L-structure and
κ be an infinite cardinal that κ ≥ |M|+ |L|, then there is an L-structure N of cardinality κ thatM
embeds into N .

Proof: Diagel(M) is clearly satisfiable, so by(1.5.2.25), there is an L∗-model N of cardinality κ
that N |= Diagel(M). Then clearlyM≺ N . □

Prop.(1.5.2.34) [Tarski-Vaught Test].A substructure M of a structure N is an elementary sub-
structure iff for any formula φ(v, w) and a ∈ M , if there is b ∈ N that N |= φ(b, a), then there is a
c ∈M that N |= φ(c, a).

Proof: Cf.[Marker P45].? □

Prop.(1.5.2.35)[(Downward)Löwenheim-Skolem Theorem]. Suppose M is an L-structure and
X ⊂M, then there is a elementary submodel N that X ⊂ N and |N | ≤ |X|+ |L|+ ℵ0.

Proof: Cf.[Marker P46]. □

Def.(1.5.2.36) [Universal Sentences].A universal sentence is a sentence of the form ∀vφ(v),
where φ is quantifier-free.

For a theory T , denote by T∀ the set of all of the universal sentences φ that T |= φ.
A L-theory T is said to have a universal aximatization iff there is a set of universal L-sentences

Γ thatM |= T iffM |= Γ.

Prop.(1.5.2.37)[Universal Axiomation].An L-theory T has a universal axiomatization iff for any
N ⊂M, ifM |= T , then N |= T .

Proof: Cf.[Marker P47]. □

Prop.(1.5.2.38)[Universal Consequences]. If T is an L-theory, then A |= T∀ iff there is anM |= T
that A ⊂M.
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Proof: If A ⊂M, then A |= T∀, by(1.5.2.37). Conversely, if A |= T∀, then consider Diag(A), then
it suffices to show Diag(A) is satisfiable. If it is not, then by compactness theorem(1.5.2.20) there
is a finite set that is not satisfiable, and the part coming from diagrams of M can be expressed by a
single formula χ(a), where χ is quantifier-free, a ∈M ,M |= χ(a), and we are saying that T ∪{χ(a)}
is not satisfiable, then T |= ¬χ(a).

Now T |= ∀x¬φ(x) as L-theory because a can be designated arbitrarily, but this sentence is in
T∀, thusM |= ∀x¬φ(x), in particular,M |= ¬φ(a), contradiction. □

Prop.(1.5.2.39)[Elementary Chain]. IfMi is a chain of L-structures thatMi ≺Mj for any i < j,
then we can define there unionM = ∪Mi. ThenM is an elementary extension of eachMi.
Proof: Use induction on formulas to show that

Mi |= φ(ai) ⇐⇒ M |= φ(ai),

for all L-formulas φ. This is true for quantifier-free formula by(1.5.1.7), and if this is true for φ,ψ,
then this is true for ¬φ and φ∧ψ. For the sentence φ = ∃vψ(v, w), ifMi |= ψ(b, a) for some b, then
so doesM. Conversely, ifM |= ψ(b, a) for some b, then b ∈ Mj for some j, thenMj |= φ, by the
condition,Mi |= φ also. □

Back and Forth Argument

Cf.[Marker Chap2.4]. Some deep ideas are involved.
Prop.(1.5.2.40)[Cantor].The theory DLO(1.1.7.3) is ℵ0-categorical and complete.

Proof: It is ℵ0-categorical by(1.2.3.12), and it is complete, by Vaught’s test(1.5.2.28), as it has no
finite models. □

3 Quantifier Elimination
Def.(1.5.3.1)[Quantifier Elimination].A theory is said to have quantifier elimination if for each
formula φ(v), there is a quantifier free ψ that T |= ∀v(φ(v)↔ ψ(v)).

Lemma(1.5.3.2). Suppose L contains a constant symbol c, T is an L-theory, and φ(a) is an L-formula,
then the following are equivalent:

• There is a quantifier-free L-formula ψ(v) that T |= ∀v(φ(v)↔ ψ(v)).
• If M,N are models of T , and A is an L-structure that A ⊂ M ∩ N , then for all a ∈ A,
N |= φ(a) ⇐⇒ M |= φ(a).

Proof: 1 → 2 is clear, because a quantifier-free formula ψ(a) is preserved under substructure
by(1.5.1.7).

2→ 1, Cf.[Marker, P74].? □
Lemma(1.5.3.3).Let T be an L-theory that for any quantifier-free L-formula θ(v, w), there is a
quantifier-free formula ψ(v) that T |= ∀v(∃wθ(v, w)↔ ψ(v)), then T has quantifier elimination.
Proof: We want to show for each formula φ(a), there is a quantifier-free formula ψ(a) that T |=
∀v(φ(a)↔ ψ(v)), and we use induction on the complexity of φ.

If φ is quantifier-free, this is trivial. If φ = ¬θ0 or φ = θ0 ∧ θ1, then we are easily done. If
ψ(v) = ∃wθ(v, w), and T |= ∀v(θ(v, w) ↔ ψ0(v, w)), then T |= ∀v(φ(v) ↔ ∃wψ0(v, w)). But
the assumption shows there is a quantifier-free ψ that T |= ∀v(∃wψ0(v, w) ↔ ψ(v)), and then
T |= ∀v(φ(v)↔ ψ(v)). □
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Prop.(1.5.3.4) [Criterion for Quantifier Elimination].Combining(1.5.3.2) and(1.5.3.3), we get:
If T is an L-theory that for all quantifier-free formula φ(v, w) and models M,N |= T , and A ⊂
M ∩N, a ∈ A, and if there is b ∈ M thatM |= φ(a, b) will implie there is c ∈ N that N |= φ(a, c),
then T is quantifier-free.

Def.(1.5.3.5) [Algebraically Prime Models].A theory T is said to have algebraically prime
models if for any A |= T∀(1.5.2.36), there is a M |= T and an embedding i : A ⊂ M that for any
other N |= T , any embedding j : A → N factors through i.

Def.(1.5.3.6) [Simply Closed Model]. If M,N are models of T , and M ⊂ N , then M is called
simply closed in N , denoted byM ≺s N , iff for any quantifier-free formula φ(a,w) and a ∈ Mn,
if N |= ∃wφ(a,w), then so doesM.

Prop.(1.5.3.7) [Quantifier Elimination Test]. If T is an L-theory that has algebraically prime
models, and any inclusion of models for T is simply closed, then T has quantifier elimination.

Proof: This is an immediate consequence of(1.5.3.4). □

Def.(1.5.3.8)[Model Complete].An L-theory T is called model complete if M ≺ N whenever
M⊂ N . A complete theoy is clearly model complete.

Prop.(1.5.3.9). If T has quantifier elimination, then T is model complete.

Proof: If M ⊂ N , let φ(a) be an L-formula, and a ∈ M, then there is a quantifier-free formula
ψ(v) that T |= ∀v(φ(v)↔ ψ(v)). By(1.5.1.7), the formula ψ(a) passes betweenM and N , so

M |= φ(a) ⇐⇒ M |= ψ(a) ⇐⇒ N |= ψ(a) ⇐⇒ N |= φ(a).

□

Prop.(1.5.3.10)[Minimal Model and Completeness]. If T is model-complete and there is a mini-
mal modelM0 thatM0 embeds into every model of T , then T is complete.

Proof: Clearly any model is elementary equivalent toM0, thus clearly T is complete. □

Prop.(1.5.3.11)[Eliminating Algorithm].Let T be a decidable theory with quantifier elimination,
then there is an algorithm to find the elimination ψ of a given formula φ.

Proof: We just need to find a quantifier-free ψ that T |= ∀v(φ(v)↔ ψ(v)). This an effective search
because T is decidable, and we can eventually find ψ because T has quantifier elimination. □

Examples of Quantifier Elimination

Prop.(1.5.3.12).The theory DLO(1.1.7.3) has quantifier elimination.

Proof: Cf.[Marker P72]. □

Lemma(1.5.3.13).DAG(1.1.7.3) has algebraically prime models.

Proof: This is just the alg.closure of the quotient field of an integral domain. □

Prop.(1.5.3.14).DAG has quantifier elimination.
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Proof: We use(1.5.3.7) By?? DAG has algebraically prime models, thus it suffices to show any
inclusion of models for DAG(1.1.7.3) is simply closed: For any torsion-free divisible Abelian groups
H ⊂ G, φ(a,w) quantifier-free, a ∈ H, b ∈ G that G |= φ(a,w). Then φ is a disjunction of
conjunctions of atomic or negated atomic formulas, and we need to prove H |= φ(a,w).

So we may assume φ is conjunction of atomic formulas and negated atomic formuals:

φ(a,w)↔
∧

(gi +miw = 0) ∧
∧

(hi +m′
iw ̸= 0).

If any mi ̸= 0, then b ∈ H. If all mi = 0, then there are only f.m. constraints, and there is b′ ∈ H
that H |= φ(a, b′) because H is infinite. □

Cor.(1.5.3.15).The theory DAG is complete, by(1.5.3.10), as (Q,+, 0) embeds in every model of
DAG, and(1.5.3.14)(1.5.3.9).

Prop.(1.5.3.16).The theory ODAG is a complete theory with quantifier elimination. In particular,
any ordered divisible Abelian group is elementarily equivalent to (Q,+, <), by completeness.

Proof: Cf.[Marker, P80]. □

Prop.(1.5.3.17) [Presburger Arithmetic].Presburger arithmetic is a complete decidable theory
with quantifier elimination in the language L∗.

Proof: Cf.[Marker, P84]?. □

Strongly Minimal Theory

Def.(1.5.3.18) [Strongly Minimal Theory].A theory T is called strongly minimal iff for any
M |= T , every definable subset ofM is either finite or cofinite.

Prop.(1.5.3.19).DAG(1.1.7.3) is strongly minimal.

Proof: Cf.[Marker P78]. □

4 Alg.Closed Fields
Lemma(1.5.4.1).ACFp(1.1.7.3) is κ-categorical for all uncountable cardinal κ.

Proof: Because two alg.closed field of the same transcendental degree over the base field is iso-
morphic??. The conclusion follows as an alg.closed field of transcendence degree κ has cardinality
κ+ ℵ0. □

Prop.(1.5.4.2).The theory ACFp is complete, by(1.5.4.1) and(1.5.2.28).

Cor.(1.5.4.3).ACFp is decidable, in particular, Th(C), the first-order theory of the fields of complex
numbers, is decidable.

Proof: ACFp is complete by(1.5.4.1) and(1.5.2.28), it is clearly recursive, and it is clearly satisfiable,
so use(1.5.2.29). □

Prop.(1.5.4.4)[First order Lefschetz Principle].Let φ be a sentence in the language of rings, the
following are equivalent:

1. φ is true in C.
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2. φ is true in every(some) alg.closed field of char 0.
3. For p large/there exists arbitrary large p, φ is true in any alg.closed field of char p.

Proof: 1, 2 are equivalent because ACFp is complete(1.5.4.2) and use Gödel’s completeness theorem.
If 2 is true, then ACT0 |= φ, so by(1.5.2.22), then some ∆ |= φ. So for p sufficiently large, ACFp |= ∆,
so ACFp |= φ for p large.

If ACF0 ⊭ φ, then ACF0 |= ¬φ by completeness(1.5.4.2), so by above argument, ACFp |= ¬φ for
p large, contradiction. □

Cor.(1.5.4.5)[Ax].Any injective polynomial map from Cn to Cn is surjective.

Proof: By Lefschetz principle(1.5.4.4), it suffices to show this for (Fp)alg for p large. If this is not
true, then choose the coefficients of the coordinate map of f , and the coordinates of an element that
is not in the image, then the subfield k they generated is algebraic over Fp, so it is finite, and clearly
f is also surjective on kn, contradiction. □

Cor.(1.5.4.6).Let K ⊂ L be alg.closed fields, and V,W be varieties defined over K, and f is a
polynomial isomorphism of V and W over L, then there is a polynomial isomorphism of V and W
over K.

Proof: Let f have degree d. Then we can write a formula Ψ saying that there is an embedding of
K intoM and there is a polynomial bijection of V and W overM, then L |= Ψ, and because ACF
is complete(1.5.4.2), K |= Ψ, too. Thus there is also an isomorphism over K. □

Prop.(1.5.4.7).ACF∀ is the theory of integral domains.

Proof: Clearly a ring is a subring of an alg.closed field iff it is an integral domain, so the result
follows from(1.5.2.38). □

Prop.(1.5.4.8).ACF has qualifier elimination.

Proof: Use(1.5.3.5), clearly it has algebraically prime models(1.5.4.7), and we need to check simply
closedness.

For this, If K ⊂ L, notice that a quantifier-free formula φ is just a conjunction of some polynomial
functions and negation of polynomial functions, with their coefficients in K. If there are some
polynomial, then the solution b of φ in L is algebraic over K, thus in K because K is alg.closed.
Now if it is just negations of polynomials, then clearly φ is true in K for some c ∈ K, because K is
alg.closed thus infinite. □

Cor.(1.5.4.9).ACF is model-complete, by(1.5.3.9).

Lemma(1.5.4.10).Let K be a field, then the subsets of Kn defined by atomic formulas are exactly
Zariski closed subsets. And a subset of Kn that is quantifier-definable iff it is a Boolean combination
of Zariski closed subsets(constructible). (Clear).

Prop.(1.5.4.11).ACF is strongly minimal.

Proof: Because by quantifier elimination(1.5.4.8), every definable set is a finite Boolean combina-
tion of sets of the form V (p) = 0, where p ∈ K[X], but V (p) is either finite or all of K. □
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Elimination of Imaginaries in Alg.Closed Fields

Def.(1.5.4.12)[Algebraicity].Let M be an L-structure and A ⊂ M , then for b ∈ M , b ∈ acl(A) if
there is a formula φ(x, y) and a ∈ A thatM |= φ(b, a), and {x ∈M |M |= φ(x, a)} is finite.

Def.(1.5.4.13)[Algebraicity over Equivalence Class].LetM be an L-structure and E a definable
equivalence relation on Mn, then we say a element c ∈M is algebraic over a/E, b1, . . . , bm if there is
a formula φ(c, y, z) that

• M |= φ(c, a, b).
• If aEa′, thenM |= φ(c, a, b)↔ φ(c, a′, b).
• {x|M |= φ(x, a, b)} is finite.

And a sequence c is called algebraic over a/E, b1, . . . , bm iff each coordinate is.

Lemma(1.5.4.14). Suppose c is algebraic over a/E, d, b, and b is algebraic over a/E, d, then c is also
algebraic over a/E, d.

Proof: Cf.[Marker, P92]. □

Lemma(1.5.4.15). Suppose K is an alg.closed field and E is a definable equivalence relation on Kn,
and ψ(x, y, d) defines E. If a ∈ Kn, then there is a c ∈ Kn algebraic over a/E, d s.t. cEa.

Proof: Cf.[Marker, P92].? □

Prop.(1.5.4.16)[Elimination of Imaginaries].Let K be an alg.closed field, A ⊂ K, and E is an
A-definable equivalence relation on Kn, then for some l there is an A-definable function f : Kn → K l

that xEy iff f(x) = f(y).

Proof: Cf.[Marker, P92]. □

5 Real-Closed Fields
Prop.(1.5.5.1).The class of real-closed fields is an elementary class(1.5.1.4) of Lr-structures.

Proof: The real-closed fields are axiomatized by:
• Axioms for fields.
• For each n ≥ 1, the sentence ∀x1 . . . ∀xn(x2

1 + . . .+ x2
n + 1 ̸= 0).

• ∀x∃y(y2 = x ∨ y2 + x = 0).

• For each n ≥ 0, the sentence ∀x1 . . . ∀xn∃y(y2n+1 +
∑2n
i=0 xiy

i = 0).
These truly axiomatize real-closed fields, by(2.2.9.7). □

Prop.(1.5.5.2).Let F be a real-closed field, then the definable sets in Fn w.r.t the Lor is also definable
w.r.t. Lr.

Proof: Because we can replace all instances ti < tj by ∃v(v ̸= 0 ∧ ti + v2 = tj). □

Prop.(1.5.5.3).RCF∀ is the theory of ordered integral domains(easy).

Cor.(1.5.5.4).RCF has algebraically prime models.
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Proof: Let D be an ordered domain, and let R be a real closure of the fraction field of D compatible
with the ordering of D. Let F be another real-closed field extension of D, then let K be the algebraic
closure of the fraction field of D in F , then K is a real-closed field by(2.2.9.7), then by(2.2.9.12)
there is an isomorphism of R ∼= K extending D → K, thus embeds R into F extending D → F . □

Prop.(1.5.5.5).RCF has quantifier elimination (w.r.t. Lor).

Proof: Use(1.5.3.5), it has algebraically prime models by(1.5.5.4), and we need to check simply
closedness: Let F ⊂ K be RCFs, φ(v, w) be a quantifier-free formula and let a ∈ F, b ∈ K that
K |= φ(b, a). Then there are polynomials that

φ(v, a)↔ (
∧
pi(v) = 0 ∧

∧
qi(v) > 0).

If any pi ̸= 0, then b is algebraic over F , but then b ∈ F because F is real-closed. So we may
assume φ(v, a) ↔ ∧qi(v) > 0. Then because qi(b) > 0 and qi has f.m. zeros, by intermediate
property(2.2.9.9), we can find a nbhd of b that is interval with endpoints in F that qi > 0, and
because F is dense(char0), there is an element b′ that F |= φ(b′, a). □

Cor.(1.5.5.6).RCF is complete and decidable. Thus it is just the theory of (R,+, ·, <), and it is
decidable.

Proof: It is model-complete by(1.5.3.9), and it has a minimal model that is the field Ralg of
algebraic numbers in R, then it is complete by(1.5.3.10). It is decidable by(1.5.2.29). □

Prop.(1.5.5.7)[RCF is o-Minimal].The theory RCF (1.1.7.3) is o-minimal.

Proof: Because RCF has quantifier elimination, every definable set of a real-closed field R is
semialgebraic, thus it is clearly a disjoint union of intervals and points. □

Semialgebraic Sets

Def.(1.5.5.8) [Semialgebraic Sets].Let F be an ordered field, then X ⊂ Fm is called semi-
algebraic if there it is a Boolean combination of sets of the form {x|p(x) > 0}, where p(X) ⊂ F [X].

Prop.(1.5.5.9)[Tarski-Seidenberg Theorem]. If F is a real-closed field, the semialgebriac sets are
closed under projection.

Proof: This is because quantifier elimination(1.5.5.5) implies semialgebraic sets are just definable
sets, and the projection of a definable set is also definable. □

Cor.(1.5.5.10).The composite of two semialgebraic functions are semialgebraic.

Prop.(1.5.5.11) [Closure of Semialgerbaic Sets].Let F be a real-closed field and A ⊂ Fn be
semialgebraic, then the closure of A in the Euclidean topology is also semialgebraic.

Proof: The closure of A is defined by

{x|∀ε > 0,∃y ∈ A, d(x, y) < ε}.

Thus it is definable, and thus semialgebraic by quantifier elimination(1.5.5.5). □

Prop.(1.5.5.12).Let F be a real-closed field and X ⊂ Fn be closed and bounded, f be a continuous
semialgebraic function, then f(X) is closed and bounded.
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Proof: If F is R, then this follows from(3.3.5.2) that X is compact hence the image is also compact
hence closed and bounded. As we can formulate a sentence asserting the conclusion. Thus the
theorem follows as RCF is complete(1.5.5.6). □

Lemma(1.5.5.13).For R a real-closed field and f : R → R semialgebraic, then for any interval U
there is an element x that f is continuous at x.
Proof: It suffices to prove for R = R by completeness of RCF . If there is an interval that f has
finite range, then the inverse image of some point b is infinite, but also definable, so by o-minimality
contains an interval that f is constant, hence continuous.

Otherwise, we inductively choose a chain of intervals: V0 = U , and the image of Vn is definable
thus contains an interval of length at most 1/n, by o-minimality and our assumption. Now for the
same reason the inverse image of this interval contains an interval, called Vn+1, s.t. Vn+1 ⊂ Vn, then
∩Vn = ∩V n ̸= φ because R is locally compact. For any x ∈ V , it is easy to see f is continuous at x.
□

Prop.(1.5.5.14).For R a real-closed field and f : R→ R semialgebraic, then f is discontinuous only
at f.m. points.
Proof: The discontinuous points of f is definable by

D = {x|F |= ∃ε > 0∀δ > 0∃y|x− y| < δ ∧ |f(x)− f(y)| > ε},
thus it is a finite union of intervals and points, by o-minimality(1.5.5.7), but it must be f.m. points,
by(1.5.5.13). □

Def.(1.5.5.15).We can naturally define the notion of definably connected and definably arcwise
connected sets in Rn.

Def.(1.5.5.16)[Cells].For an real-closed field F , we inductively define n-cells:
• X ⊂ Fn is a 0-cell if it is a single point.
• If X ⊂ Fm is an n-cell and f : X → F is a continuous definable function, then Y =
{(x, f(x))|x ∈ X} is an n-cell.

• If X ⊂ Fm is an n-cell and f, g are either continuous functions from X to F or constants ±∞,
then Y = {(x, y)|x ∈ X ∧ f(x) < y < g(x)} is an n+ 1-cell.

Prop.(1.5.5.17) [Uniform Bounding].Let X ⊂ Fm+1 be semialgebraic, then there is a natural
number N that if a ∈ Fn and Xa = {y|(a, y) ∈ X} is finite, then |Xa| < N .
Proof: First notice Xa is definable, thus by o-minimality, {a||Xa| <∞} is definable, thus we may
assume these are all of X.

Now let Γ be the theory
RCF +Diag(F ) + {∃y1, y2, . . . , ym[

∧
i<j

yi ̸= yj ∧
∧
yi ∈ Xc]}

where m ∈ N, and c1, . . . , cn are new constants. (Notice yi ∈ Xc is a sentence).
Then Γ is not satisfiable, because otherwise there is an embedding F ⊂ K, and by model com-

pleteness F ≺ K, thus there is no a that Xa is infinite, because it is definable, contradiction.
Then by compactness theorem, there is some f.m. sentences of Γ that is unsatisfiable, thus the

conclusion follows. □
Prop.(1.5.5.18) [Cell Decomposition].Let F be a real-closed field, then any semialgebraic set
X ⊂ Fm is a finite disjoint union of cells.
Proof: Cf.[Marker, P103]. □
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6 O-Minimal Structures
Cf.[O-Minimal Structures].

Def.(1.5.6.1)[O-Minimal Structure].An ordered structure is called o-minimal if any definable set
is a finite union of intervals with endpoints in M ∪ {±∞} and points.

Def.(1.5.6.2)[General O-Minimal Expansions].A structure expanding the real-closed field R is a
collection S = (Sn), where Sn is a family of subsets of Rn, that

• Algebraic subsets are in S.
• Each Sn is a Boolean subalgebra of the powerset of Rn.
• S is stable under Cartesian product and projection.

And Sn are called the definable subsets of Rn. And this structure is called o-minimal if moreover
each subset in S1 is a finite unions of intervals and points.
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2 | Algebras

2.1 Group Theory

Main References are [Finite Groups, Issac], [Lan05] and [代数学引论，丁⽯孙].

1 Notations
Notation(2.1.1.1).

• Use notations defined in ??.

2 Magmas
Def.(2.1.2.1)[Binary Operators].A binary operator on a set X is a map ◦ : X ×X → X.

Def.(2.1.2.2)[Unital Operator].A unital binary operator on a set X is a map ◦ : X ×X → X
that has a left and right identity element 1◦.

Prop.(2.1.2.3) [Associative Operators].An associative operator on a set X is an operator ◦ :
X ×X → X s.t. (x ◦ y) ◦ z = x ◦ (y ◦ z) for any x, y, z ∈ X.

Def.(2.1.2.4) [Magma].A magma is a set X with a binary operator ◦ : X × X → X. A unital
magma is a magma that the operator is unital. It is called Abelian if x◦y = y ◦x for any x, y ∈ X.

Prop.(2.1.2.5)[Eckmann-Hilton argument]. If ◦ and ⊗ are two unital binary operators on a set
that commute with each other: (a ⊗ b) ◦ (c ⊗ d) = (a ◦ c) ⊗ (b ◦ d), then they are equal and in fact
commutative and associative.

Proof: Firstly the units coincide, because

1◦ = 1◦ ◦ 1◦ = (1⊗ ⊗ 1◦) ◦ (1◦ ⊗ 1⊗) = (1⊗ ◦ 1◦)⊗ (1◦ ◦ 1⊗) = 1⊗ ⊗ 1⊗ = 1⊗.

Next

a ◦ b = (1⊗ a) ◦ (b⊗ 1) = (1 ◦ b)⊗ (a ◦ 1) = b⊗ a = (b ◦ 1)⊗ (1 ◦ a) = (b⊗ 1) ◦ (1⊗ a) = b ◦ a.

Thus ◦ and ⊗ coincide and are commutative. Finally for associativity:

(a⊗ b)⊗ c = (a⊗ b)⊗ (1⊗ c) = (a⊗ 1)⊗ (b⊗ c) = a⊗ (b⊗ c).

□

Def.(2.1.2.6)[Monoid].A monoid is an associative unital magma (X, ◦).
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3 Groups

Def.(2.1.3.1)[Groups, Cayley1854].?, The category of Groups is denoted by Grp.

Def.(2.1.3.2)[Generators].Let G ∈ Grp and S ⊂ G, then S is said to be a set of generator for G
if the only subgroup of G containing S is G.

Def.(2.1.3.3) [Normal Subgroups].A normal subgroup of a group G is a subgroup N that if
x ∈ G, then x−1Nx = N .

Def.(2.1.3.4)[Simple Groups].A simple group is a group that has no normal subgroups.

Def.(2.1.3.5)[Finitely Generated Group].A group G is called finitely generated if there is a finite
subset S that the only subgroup containing S is G itself.

Def.(2.1.3.6)[Product Subgroups].Let G be a group and N,H be subgroups such that N is normal
in G, then NH = {x ∈ G|x = nh, n ∈ N,h ∈ H} is a subgroup of G, called the product subgroup.

Def.(2.1.3.7)[Coset].Let G be a group and H a subgroup. Consider the equivalence relation on G
s.t. x ∼ y iff x = yh for some h ∈ H, then the equivalence classes is denoted by G/H, called the
right coset of H in G. And G acts on this set by left translation.

Similarly we can define left coset H\G of H in G.
Moreover, if H is normal in G, then this set is a group with structure given by τH · σH =

τσH, called the quotient group structure. It satisfies the universal property that any group
homomorphism φ : G→ G′ s.t. φ(H) = e factors through G/H uniquely.

Prop.(2.1.3.8)[Fundamental Isomorphisms].Let G be a group and N,H be subgroups such that
N is normal in G, then

• there is a natural isomorphism G/NH ∼= (G/N)/(H/H ∩N) as sets, and if H is also normal,
this is an isomorphism of groups.

• there is a natural isomorphism of groups: H/N ∩H ∼= NH/N .

Proof: 1:
2: Consider the natural isomorphism N 7→ NH/H : n 7→ nH, then it is a group homomorphism,

and the kernel is N ∩H, thus we are done. □

Cor.(2.1.3.9). if H1,H2 are subgroups of a group G that has finite indexes, then H1 ∩ H2 also has
finite index in G.

Proof: By fundamental isomorphism(2.1.3.8), H1/H1 ∩H2 ∼= H1H2/H2 ⊂ G/H2, so H1 ∩H2 has
finite index in H1, so by transitivity of indexes, H1 ∩H2 has finite index in G. □

Def.(2.1.3.10)[Index of Subgroup].The index of a subgroup H in a group G is defined to be the
number of the left coset G/H, if it is finite. Now if H has finite index in G, then |G/H| = |H\G|.

Proof: Because for any system of representative ai for the left coset G/H, a−1
i is a representative

for the right coset H\G, and vise versa. □

Prop.(2.1.3.11). If a finite group G has an automorphism α that α2 = id and α has no fixed point
other than e, then G is an Abelian group of odd order.
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Proof: G is clearly of odd order. Consider the map g 7→ α(g)g−1, then it is injective, hence it is
also surjective, and consider α(α(g)g−1) = gα(g)−1 = (α(g)g−1)−1, thus α(h) = h−1 for all h ∈ G,
thus clearly G is Abelian. □

Prop.(2.1.3.12). If H is a subgroup of a finite group G, then G ̸= ∪g−1Hg.

Proof: There are at most |G/H| different summands in the right hand side, so it doesn’t have
enough elements. □

Prop.(2.1.3.13). If G is a f.g. group(2.1.3.5) and H is a group of finite index in G, then H is f.g.

Proof: Suppose G has generators gi, we may add their inverses to it, and let Ht1, . . . , Htm are all
the right cosets with t1 = 1, then there are hij that tigj = hijtkij , then we claim H is generated by
hij .

For this, consider any h =
∏
gir , then g1 = h1ir tk1ir , and we can do this from left to right. Now

h =
∏
hisjsto, then to must by 1, and we are done. □

Prop.(2.1.3.14).Let φ : G → H be a map of sets between groups s.t. # Im(φ) = ∞, and for each
g ∈ G, there is a set S(g) ∈ H that φ(h)φ(g) = φ(hg) for any h s.t. φ(h) /∈ S(g), then φ is a
homomorphism.

Proof: For g, h ∈ G, take f s.t. φ(f) /∈ S(g) ∪ φ(g)−1S(h) ∪ {φ(gh)}. Then

φ(f)φ(g)φ(h) = φ(fg)φ(h) = φ(fgh) = φ(f)φ(gh),

thus φ(g)φ(h) = φ(gh). □

4 Abelian Groups

Remark(2.1.4.1).An Abelian group is the same as a module over Z. Thus the theory of commutative
algebra applies in this case. The category of Abelian groups is denoted by Ab. The category of finite
Abelian groups are denoted by Abfin.

Prop.(2.1.4.2)[Abelianization].There is a functor from the category of Abelian semi-groups to the
category of Abelian groups that is left adjoint to the forgetful functor, called the Abelianization.

Proof: Define A′ to be the quotient⊕
(a,b)∈A2

Z→
⊕
x∈A

Z→ A′ → 0,

where 1(a,b) is mapped to 1a+ 1b−1a+b. Then it can be seen this satisfies the universal property and
it is functorial in A. □

Prop.(2.1.4.3)[Classifying F.g. Abelian Groups].Any finitely generated Abelian group is of the
form

Zr
⊕

pi primes
⊕j≤niZ/(p

ai,j
i )

Proof: As Z is PID, the classifying theorem follows immediately from(2.2.4.21): □
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Prop.(2.1.4.4)[Baer-Specker Group].The group ∏NZ is called the Baer-Specker group. Then
the natural homomorphism

Hom(
N∏

Z,Z)→
N∏

Z

is injective with image ⊕NZ.. In particular, by countability argument, ∏NZ is not a free
group(4.3.1.5). Moreover, any infinite direct product of Z is not free, because otherwise the sub-
group ∏NZ would be free.

Proof: The natural homomorphism is the composite?

Hom(
N∏

Z, Z) ε∗
−→ Hom(#NZ,Z) η−→

N∏
Z.

Thus the assertion follows from(2.1.6.6) and(2.1.6.5). □

Remark(2.1.4.5).This can be proven in other ways, like using condensed mathematics.?.

Forms on Abelian Groups

Def.(2.1.4.6)[Quadratic Forms].For A ∈ Ab, a function d : A→ R is called a quadratic form if
• d(α) = d(−α) for any α ∈ A.
• The form Bd : A×A→ R: (α, β) 7→ [d(α+ β)− d(α)− d(β)]/2 is bilinear.

It is called positive semi-definite if moreover d(α) ≥ 0. And positive-definite if moreover
d(α) = 0 ⇐⇒ α = 0.

Prop.(2.1.4.7) [Cauchy-Schwartz].Let A be an Abelian group and d a positive semi-definite
quadratic form over A, then

|d(α− β)− d(α)− d(β)| ≤ 2
√
d(α)d(β).

Proof: Consider the bilinear form Bd, then

0 ≤ d(mα− nβ) = m2d(α) + n2d(β)− 2mnBd(α, β).

This is true for any m,n ∈ Z, thus the discriminant Bd(α, β)2 ≤ d(α)d(β). □

Prop.(2.1.4.8). If M,N are Abelian groups and d is a quadratic form on M × N s.t. d(0 × N) =
d(M × 0) = 0, then d is bilinear in both M and N .

Proof: The bilinear form associated to d satisfies Bd((a, 0), (0, b)) = d(a, b), thus it is clear d is
bilinear in M and N . □

Def.(2.1.4.9)[Polarization].Let Γ be an Abelian group and h : Γ → R is a function, then the r-th
polarization function Pr(h) : Γr → R is defined to be

Pr(h)(x1, . . . , xr) = 1
r!

∑
I⊂{1,...,r}

(−1)r−#I(
∑
i∈I

xi).

Lemma(2.1.4.10).
• Let τa(h)(x) = h(a+ x)− h(x), then τaτb = τa+b − τa − τb.
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• Pr(h)(x1, . . . , xr) = τx1τx2 . . . τxr(h)(0) = τx2 . . . τxr(h)(x1).
• If Ar ∈ Symr Γ∨, let ∆Ar : Γ : R : ∆Ar(x) = 1

r!Ar(x, . . . , x), then τa∆Ar(x) =
∑

1≤s<r ∆As,
where As ∈ Syms Γ∨, and Ar−1(x1, . . . , xr−1) = Ar(x1, . . . , xr−1, a).

• If Ar ∈ Symr Γ∨, Pr(∆Ar)(x1, . . . , xn) = Ar(x1, . . . , xr) and Ps(∆Ar) = 0 for s > r.

Prop.(2.1.4.11).There is a natural isomorphism of additive groups

r−1⊕
j=0

Symj Γ∨ ∼= {h : Γ→ R|Pr(h) = 0} : (A0, . . . , Ar−1) 7→
r−1∑
i=0

∆Ai.

Proof: This is an injective map by(2.1.4.10), and for any h that Pr(h) = 0, By(2.1.4.10) item1, this
means Ar−1 = Pr−1(h) ∈ Symr−1 Γr. Let h′ = h−∆Ar−1, then(2.1.4.10) item4 shows Pr−1(h′) = 0,
thus we can use induction to show h′ =

∑r−2
i=1 ∆Ai, thus h =

∑r−1
i=1 ∆Ai. □

Prop.(2.1.4.12).Let Γ be an Abelian group, for functions h1, h2 : Γ→ R, let h1 = h2 +O(1) denote
the fact that |h1 − h2| is bounded on Γ. Then there is a natural isomorphism of additive groups:

r−1⊕
j=0

Symj Γ∨ ∼= {h : Γ→ R|Pr(h) = O(1)}/O(1) : (A0, . . . , Ar−1) 7→ h(x) = A0+A1(x)+. . . Ar−1(x, . . . , x).

Proof: The map is injective by(2.1.4.11). To show surjectivity:
By hypothesis and(2.1.4.10), there exists C > 0 s.t.

|Pr−1h(x0 + x1, x2, . . . , xr−1)− Pr−1h(x0, x2, . . . , xr−1)− Pr−1h(x1, x2, . . . , xr−1)| ≤ C.

So
|Pr−1h(2Nx1, x2, . . . , xr−1)− 2Pr−1h(2N−1x1, x2, . . . , xr−1)| ≤ C

for any N , and by iterating,

|Pr−1h(2Nx1, 2Nx2, . . . , xr−1)− 2r−1Pr−1h(2N−1x1, 2N−1x2, . . . , 2N−1xr−1)| ≤ (2r−1 − 1)C.

|Pr−1h(2Nx1, 2Nx2, . . . , xr−1)
2N(r−1) − Pr−1h(2N−1x1, 2N−1x2, . . . , 2N−1xr−1)

2(N−1)(r−1) | ≤ 2r−1 − 1
2N(r−1) C.

Thus
Ar−1(x1, . . . , xr−1) = lim

N→∞

Pr−1h(2Nx1, 2Nx2, . . . , xr−1)
2N(r−1)

exists, and it is clear that Ar−1 ∈ Symr−1 Γ∨ and Ar−1(x1, . . . , xr−1)−Pr−1h(x1, . . . , xr−1) ≤ 2r−1C.
Let h′ = h − ∆Ar−1, then Pr−1h

′ = Pr−1h − Ar−1 = O(1), thus we can use induction to show
h′ =

∑r−2
i=1 ∆Ai +O(1), thus h =

∑r−1
i=1 ∆Ai +O(1). □

Cor.(2.1.4.13).Let Γ be an Abelian group and h : Γ→ R be a function on an Abelian group Γ that

h(
3∑
i=1

xi) =
∑

1≤i<j≤3
h(xi + xj)−

3∑
i=1

h(xi) +O(1),

then there exists a unique symmetric bilinear pairing b on Γ and l a homomorphism Γ→ R, that

h(x) = 1
2
b(x, x) + l(x) +O(1).
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Prop.(2.1.4.14).Let M be an Abelian group and b : M ×M → R is a bilinear form on M that
rad(B) = 0, so b defines a bilinear form on BR : M ⊗Z R. Then bR is positive-definite iff for any f.g.
subgroup M ′ of M and C > 0, {x ∈M ′|B(x, x) ≤ C} is finite.

Proof: We may assume M is f.g.. As M/Mtor is torsion-free, it is a lattice in MR(12.2.3.32).
Assume bR is positive-definite, then it defines a topology on MR, then {x ∈ M ′|bR(x, x) ≤ C} is
finite because it is a compact discrete set.

Conversely, if {x ∈ M ′|b(x, x) ≤ C} is finite and bR is not positive-definite, then it is at least
semi-positive definite. If bR(y, y) = 0, then by Cauchy-Schwartz inequality(2.1.4.7), y is in the radical
of bR. By hypothesis y /∈MQ.

Now choose a basis e1, . . . , en of M , for any n > 1, there is a yn ∈ M s.t. yn − ny ∈ S =
{
∑
αiei|0 ≤ α ≤ 1}, and

bR(yn, yn) = bR(yn − ny, yn − ny)

is bounded by the maximal value of bR on S. These yn are all different because y /∈ MQ, thus
contradicting the hypothesis. □

Prop.(2.1.4.15).Let M ∈ Ab s.t. #M/nM <∞ for some n ≥ 2 and there is a positive semi-definite
symmetric bilinear form B on M s.t. {x ∈M |B(x, x) ≤ C} is finite for any C > 0, then M is f.g..

Proof: Choose a set of generators {xi} for M/nM . Now there is a constant C that whenever
(x, x) ≥ C,

(x− xi, x− xi) < 2(x, x),∀i,

because by Cauchy-Schwartz inequality(2.1.4.7), (x − xi, x − xi) is similar to (x, x) when (x, x) is
large.

Now let Γ = {x1, . . . , xs} ∪ {x ∈ Γ|(x, x) < C}. Then Γ is finite by hypothesis. We prove Γ
generates M : Consider the infimum C0 of (x, x) that x is not generated by M , then there is a x that
C0 ≤ (x, x) < 2C0. Obviously C0 ≥ C. Let x = xi + ny for some xi ∈ Γ, y ∈M , then

(y, y) = 1
n2 (x− xi, x− xi) <

2
n2 (x, x) ≤ 1

2
(x, x) < C0.

Thus by minimality of C0, y ∈ Γ, thus x ∈ Γ. □

Def.(2.1.4.16)[Lagrangian Decomposition].Let A be a f.g. Abelian group and Γ : A×A→ Q/Z
is a bilinear alternating non-degenerate pairing, then a Lagrangian decomposition of A is an
Abelian subgroup B ⊂ A s.t. Γ|B = 0, called an isotropic subgroup of A, such that A ∼= B ⊕ B̂,
and Γ is given by

Γ((x, χ), (y, ψ)) = χ(y)ψ(x)−1.

Prop.(2.1.4.17).Let A be a f.g. Abelian group and Γ : A × A → Q/Z is a bilinear alternating
non-degenerate pairing, then A admits a Lagrangian decomposition.

In particular, if #A <∞, then #A ∈ (Z+)2.

Proof: Because A is f.g., take x, y in A s.t. Γ(x, y) has the maximal denominator, then it is easy to
see that for any z ∈ A, z − ax− by ∈ span(x, y)⊥ for some a, b ∈ Z, so A = span(a, b)⊕ span(a, b)⊥,
and we can use induction. □
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Finite Abelian Groups

Prop.(2.1.4.18)[Characterizing Finite Cyclic Groups].Let G ∈ Abfin that #{x ∈ G|xd = 1} ≤ d
for any d ≥ 1, then G is cyclic.

Proof: Consider the subset Gd of elements of order d, if it is non-empty, choose y ∈ Gd, then #⟨y⟩ =
d, thus ⟨y⟩ = {x ∈ G|xd = 1}, which means #Gd ≤ φ(d). Then |G| =

∑
d|n #Gd ≤

∑
d|n φ(d) = n.

Thus Gn ̸= ∅, which means G is cyclic. □

Cor.(2.1.4.19).For k ∈ Field, any finite subgroup of k× is cyclic.

Cor.(2.1.4.20)[Primitive roots modulo q].For p ∈ P and q ∈ pZ+ , F×
q is cyclic, i.e. F×

q
∼= ⟨σ⟩.

Any such generator σ is called a primitive root modulo p.

5 Automorphism Groups

Def.(2.1.5.1) [Automorphisms Groups].Let G ∈ Grp, the set of automorphism of G is a group,
denoted by Aut(G).

Then for any g ∈ G, there is an automorphism Cg ∈ Aut(G) = Hom(G,G) : x 7→ gxg−1. And the
mapping G→ Aut(G) : g 7→ Cg is a group homomorphism. All automorphisms of G of the form are
called inner automorphisms of G. The group of inner automorphisms of G is denoted by Inn(G).
Automorphisms that are not inner are called outer automorphisms.

Prop.(2.1.5.2).Any group of order> 2 have at least 2 automorphisms.

Proof: Assume the contrary, consider its inner automorphism, then it is Abelian, and then multi-
plying by p for p large prime is not identity, Then #G|(p − 1) for such G. Now it is clear |G| = 2,
because otherwise we can choose p ≡ 2(mod #G). □

Def.(2.1.5.3)[Automorphic Complete Groups].An automorphic-complete group is a group
whose automorphisms are all inner.

Prop.(2.1.5.4).Sn is the automorphism group of An for n = 5 or n ≥ 7.

Proof: □

Prop.(2.1.5.5). If G is a non-Abelian simple group, then Aut(G) is a complete group.

Prop.(2.1.5.6).Sn are complete groups except for S6.

Proof: Sn is the automorphism group of An for n = 5 or n ≥ 7 by(2.1.5.4), thus it is complete
by(2.1.5.5). □

Prop.(2.1.5.7)[Wielandt]. If G is a finite group with trivial center, then the sequence

G < Aut(G) < Aut(Aut(G)) < . . .

must terminate in finite steps.

Proof: □
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6 Free Groups and Presentations
Def.(2.1.6.1)[Free Groups].There is a free group functor F : Set→ Grp that is left adjoint to the
forgetful functor.

The image of the set [n− 1] is denoted by Fn.

Proof: For the existence of F, Cf.[Lan05]P66.? □

Prop.(2.1.6.2) [Nielsen-Schreier].A subgroup H of a free group G is a free group. Moreover, a
subgroup H of finite index m in Fn is isomorphic to F1+m(n−1).

Proof: A free group is the fundamental group of a graph X which is a wedge sum of circles, and
there is a covering XH → X the π1(XH) = H by(3.14.1.28). And if H is of index m in a free group
G, XH → X has degree m by(23.1.1.5). Now (23.1.1.5) shows H = π1(XH) is a free group, and the
final assertion follows by comparing two ways of counting Euler number χ. □

Prop.(2.1.6.3).Use the same method as in(2.1.6.2), we can determine all the subgroups of index 2 in
F2.

Proof: ? □

Def.(2.1.6.4)[Earring Group].For any n ∈ Z+, there are group homomorphisms Fn → Fn−1 corre-
sponding to the map of sets

[n− 1]→ Fn−1 : i 7→
{

[i] , i ≤ n− 2
1 , i = n− 1

.

The Earring group #NZ is defined to be the subgroup of

lim←−
n∈N

Fn

consisting of elements (w0, w1, . . . , wn, . . .) s.t. if each wn is a reduced word, then for any k ∈ Z+,
the number of [k]± appearing in wn stablizes.

Prop.(2.1.6.5).The natural homomorphism

η : Hom(#NZ,Z)→
N∏

Z

is injective with image ⊕NZ.

Proof: Cf.https://wildtopology.com/2014/05/09/the-hawaiian-earring-group-is-not-free-part-i/.
□

Prop.(2.1.6.6).There is a natural group homomorphism ε : #NZ→
∏NZ that is surjective.

Proof: The k-th coordinate of this map is given by omitting all the elements that is not [k]. It is
clearly surjective. □

Prop.(2.1.6.7)[Smith].#NZ is not a free group.

Proof: Cf.https://wildtopology.com/2014/05/09/the-hawaiian-earring-group-is-not-free-part-i/.
□

https://wildtopology.com/2014/05/09/the-hawaiian-earring-group-is-not-free-part-i/
https://wildtopology.com/2014/05/09/the-hawaiian-earring-group-is-not-free-part-i/
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List of Presentations of Important Groups

Prop.(2.1.6.8).Let F be a field, then SL(2, F ) has a representation as:

⟨t(y), n(z), w1⟩, y ∈ F ∗, z ∈ F

quotient the relations:

t(y1)t(y2) = t(y1y2), n(z1)n(z2) = n(z1 + z2), t(y)n(z)t(y)−1 = n(y2z), w1t(y)w1 = t(−y−1).

w1n(z)w1 = t(−z−1)n(−z)w1n(−z−1), z ∈ F ∗,

And the isomorphism is given by Φ:

t(y) 7→
[
y

y−1

]
, n(z) 7→

[
1 z

1

]
, w1 7→

[
1

−1

]
.

Proof: The map vanishes on the relations is direct calculation. An inverse of Φ is constructed by

Ψ(
[
a b
c d

]
) =

{
n(a/c)t(−c−1)w1n(d/c) c ̸= 0
t(a)n(b/a) c = 0

The verification of the inverse is verified by direct calculation. □

Prop.(2.1.6.9).Let F be a field, then SL(2, F ) is generated byN(F ) and any element in SL(F )\N(F ).

Proof: Take this element in G(F )\B(F ), left and right multiplying by elements in N(F ), we

see it contains some
[
−a−1

a

]
, then it contains

[
−a−1

a

]−1

N(F )
[
−a−1

a

]
=
[
1
∗ 1

]
. Then

it contains N(F )
[
−a−1

a

]
=
[
∗ −a−1

a

]
. Left multiplying by

[
1
∗ 1

]
and right multiplying by

N(F ), we see it contains all diagonal matrices in SL(2, F ). So it contains
[
−1

1

]
, thus contains

SL(2, F ), by Bruhat decomposition. □

Prop.(2.1.6.10).SL(2,Z) is generated by S =
[
−1

1

]
, T =

[
1 1

1

]
with relations

S4 = 1, (ST )3 = S2

.

Proof: [Serre, Trees, P81]. □

Cor.(2.1.6.11) [Modular Group].PSL2(Z) = SL2(Z)/{±1} is generated by S =
[
−1

1

]
, T =[

1 1
1

]
with relations

S2 = 1, (ST )3 = 1.
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Prop.(2.1.6.12) [Braid Group].The Braid group Bn, defined by Bn = π1(Cn\
⊕
{zi = zj}/Sn)

has a presentation by bi, i = 1, . . . , n− 1 and relations
• if |i− j| ≥ 2, then bibj = bjbi.
• bibi+1bi = bi+1bibi+1.

Proof: □

Cor.(2.1.6.13) [Pure braids].Due to the covering map Cn\
⊕
{zi = zj} → Cn\

⊕
{zi = zj}/Sn

with fiber Sn, there is a map Bn → Sn which is easily seen to be surjective and with kernel Pn =
π1(Cn\

⊕
{zi = zj}), called the group of pure braids.

Prop.(2.1.6.14).There is a group homomorphism B3 → PSL2(Z) that maps a = σ1σ2σ1 to S and
b = σ1σ2 to T . The kernel of this map is the group generated by c = a2 = b3.

7 Sylow Theory
Prop.(2.1.7.1)[Class Equation].For a finite group G, if Gx = C((x)), then

|G| = |C(G)|+
∑
|G|/|Gx|

where the summation is over non-trivial conjugate classes of G.

Proof: Consider the left action of G on itself, and calculate elements. □

Cor.(2.1.7.2)[p-Groups are Solvable]. if G is a p-group, then G has a non-trivial center. In partic-
ular, any p-group is solvable.

Cor.(2.1.7.3). If p||G|, then G has an element of order p.

Proof: Follows from Sylow theory and any p-group has a non-trivial center. □

Lemma(2.1.7.4).For any p-group G acting on a finite set X, |X| ≡ XG mod p.(trivial).

Prop.(2.1.7.5)[Sylow Theorem, Sylow1872].For a finite group of order |G| = pkm.
• There is a Sylow p-group.
• For a Sylow p-subgroup, any p-subgroup is contained in a conjugate of P. In particular, any

two Sylow p-subgroups are conjugate.
• the number of Sylow p-groups np satisfies: np|m,np ≡ 1 mod p.

Proof: 1: Use induction, let Z = C(G), if p||Z|, then Z contains a cyclic group of order p. Choose
a p-Sylow subgroup of G/C, then its inverse image in G is a p-Sylow subgroup. If Z is prime to
p, consider the conjugate action of G on G − Z, then some conjugacy class has order prime to p,
by(2.1.7.4), then the stablizer H of this class satisfies [G : H] is prime to p. Thus H contains a
p-Sylow subgroup by induction.

2: If Q is a p-subgroup, then Q acts on G/P by left translation, so it has a fixed element
by(2.1.7.4), QxP = xP for some x, thus Q ⊂ xPx−1.

3: np|m by considering the conjugate action of P on the set of conjugates of P , then as in the
proof of item2, P is the only fixed element, so np ≡ 1 mod p by(2.1.7.4). □

Lemma(2.1.7.6). If G has a sylow subgroup H that |G/H|! is not divisible by |G|, then G is not
simple.
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Proof: Consider the conjugate action of G on the conjugacy classes of H, then it is a group
homomorphism of G into a subgroup of S|G/H|, but the hypothesis shows that it is not injective, thus
the kernel is non-trivial normal. □

Prop.(2.1.7.7)[Frattini Argument]. If G is a finite subgroup, N is normal in G and P is a Sylow
subgroup of N , then NNG(P ) = G.

Proof: For any element g ∈ G, consider g−1Pg ⊂ N is a Sylow subgroup of N , thus by Sylow
theorem(2.1.7.5), there is a n ∈ N that g−1Pg = n−1Pn, thus gn−1 ∈ NG(P ), thus g ∈ NNG(P ). □

8 Split Extension

Prop.(2.1.8.1)[Cyclic Central Extension Split]. If there is an exact sequence 0→ Z → G→ C →
0 where Z ⊂ C(G) and C is cyclic, then G is Abelian.

Proof: This is because we can choose an inverse image of a generator of C. □

Prop.(2.1.8.2)[Schur-Zassenhaus].An exact sequence of finite groups 0→ A→ E → G→ 0 must
split when |A| and |G| are relatively prime.

Proof: □

Prop.(2.1.8.3).Let α, β : G→ Aut(H) be two actions of G on H, then theirs semiproduct sequences

1→ H → G⋉H → G→ 1

are isomorphic iff α, β are equivalent modulo Inn(H).

9 Subnormality

Def.(2.1.9.1)[Normal Series].A subnormal series of a group G is a descending chain of groups:

G = G0 ▷ G1 ▷ . . . ▷ Gr = {e}

that Gk+1 is normal in Gk. It is called a composite series iff each Gk/Gk+1 is simple.

Lemma(2.1.9.2) [Butterfly Lemma].Let H1,H2 be subgroups of a group G, N1, N2 are normal
subgroups of H1 and H2, then there is a canonical isomorphism of groups:

N1(H1 ∩H2)/N1(H1 ∩N2) ∼= N2(H2 ∩H1)/N2(H2 ∩N1).

Proof: Cf.[Lan05]P20. □

Prop.(2.1.9.3)[Schreier].Any two subnormal series of a group G have a common refinement.

Proof: □

Cor.(2.1.9.4) [Jordan-Hölder].For any two composition series G = G0 ▷ G1 ▷ . . . ▷ Gr = {e},
G = G′

0 ▷ G′
1 ▷ . . . ▷ G′

r′ = {e}, there r = r′, and there exists a permutation σ ∈ Sr−1 s.t.
Gi/Gi+1 ∼= G′

σ(i)/G
′
σ(i)+1.



58 CHAPTER 2. ALGEBRAS

Def.(2.1.9.5)[Central Series].A central series of a group G is an ascending chain of groups:

{e} = Z0 < G1 < . . . < Gr = G

that Zk+1/Zk is in the center of G/Zk.

Prop.(2.1.9.6).A group is
• solvable iff it has a normal series that Gi/Gi+1 is Abelian.
• nilpotent iff it has an upper central series.

Proof: □
Def.(2.1.9.7) [Supersolvable Groups].A group G is called a supersolvable group iff it has a
normal series that Gi/Gi+1 is cyclic.

If G is finite, this notion is equivalent to solvable.

Lemma(2.1.9.8)[p-Group is Nilpotent].Any p-group is nilpotent.

Proof: Using induction by(2.1.7.2), we see it has a central series, thus nilpotent(2.1.9.6). □
Prop.(2.1.9.9)[Nilpotent Finite Groups]. If G is a finite group, then the following are equivalent:

• G is nilpotent.
• NG(H) > H for every proper subgroup H < G.
• Every maximal subgroup of G is normal.
• Every Sylow subgroup of G is normal.
• G is a direct product of its non-trivial Sylow subgroups.

Proof: 1→ 2: Choose a central series Zn, let Zn ⊂ H and Zn+1 ⊈ H, then [Zn+1,H] ⊂ [Zn+1, G] ⊂
Zn ⊂ H, thus Zn+1 ⊂ NG(H).

2→ 3, 4→ 5: trivial.
3 → 4 For any p-Sylow subgroup G, if NG(P ) is proper subgroup, then it is contained in some

maximal subgroup M , and M is normal, thus by Frattini argument(2.1.7.7), G = NG(P )M = M ,
contradiction.

5→ 1: By lemma(2.1.9.8). □
Prop.(2.1.9.10)[Jordan-Horder].For a finite group G, any two of its composite series has the same
length, then the quotient groups Gk/Gk+1 are in bijection with each other as sets.

Proof: Cf.[代数学引论 P89]. □
Prop.(2.1.9.11)[Minimal Normal Subgroup].The minimal normal subgroup N of a finite group
G is a direct product of simple groups Ln.

Proof: Let N1 be a maximal normal subgroup of N , then N/N1 is simple, and let Ni be the
conjugates of N1 in G, then they are all maximal normal subgroup of N . the simple groups N/Ni

are mutually isomorphic, and ∩Ni = 1 by the minimality of N .
Now we use induction to prove N/N1 ∩ . . . ∩Ni is isomorphic to a product of N/N1, which will

finish the proof.
Now assume N1 ∩ . . . ∩Ni−1 ⊈ Ni, then (N1 ∩ . . . ∩Ni−1)Ni = N , and notice

N/N1 ∩ . . . ∩Ni
∼= N1 ∩ . . . ∩Ni−1/N1 ∩ . . . ∩Ni ×Ni/N1 ∩ . . . ∩Ni

∼= N/Ni ×N/N1 ∩ . . . ∩Ni−1.

□
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Prop.(2.1.9.12). If a finite group |G| =
∏
pi, where pi are different primes that ∏ pi and

∏
(pi − 1)

are coprime, then G is cyclic.

Proof: We prove all the Sylow groups are normal. Choose the maximal Sylow group An, then
it is normal by Sylow theorem, and other Sylow groups act by conjugation is trivial(consider the
center(2.1.7.2), then the center of the quotient, and so on), hence An is in the center. Now consider
the quotient, by induction it is cyclic, hence this is a central extension of a cyclic group, hence G is
Abelian(2.1.8.1), so cyclic. □

Prop.(2.1.9.13). If G is a finite group and p is the minimal prime number of |G|, then all subgroups
N of G of index p is normal.

Proof: Consider the left action of G on G/H, then the kernel is ∩a−1Ha, which is the maximal
normal subgroup contained in H. Now this is group homomorphism of G into Sp, thus it has kernel
at lest |G|/p, so the kernel equals H, showing H is normal. □

Prop.(2.1.9.14) [Burnside’s Theorem]. If p, q are primes, then any finite groups of order paqb is
solvable.

Proof: Cf.[Serre Linear representations of finite groups, P65]. □

Prop.(2.1.9.15)[Thompson].A finite group is not solvable iff there exist non-trivial elements x, y, z
of coprime orders a, b, c that xy = z.

Prop.(2.1.9.16)[Feit-Thompson].All finite groups that has odd order is solvable.

Proof: □

10 Commutators

Def.(2.1.10.1)[Notation].
• [a, b] = a−1b−1ab.
• xy = y−1xy.

Prop.(2.1.10.2)[Commutator relations]. .

Def.(2.1.10.3)[Metabelian Groups].A metabelian group is a group G that G′ is Abelian.

Prop.(2.1.10.4). If G = AB where A,B are Abelian, then [G,G] = [A,B] and G is metabelian.

Proof: The first one is easy to verify, the second because if we let ba1 = a2b2, ab1 = b3a3, then

[a, b]a1b1 = [a, ba1 ]b1 = [a, b2]b1 = [ab1 , b2] = [a3, b2]

and similarly, [a, b]b1a1 = [a3, b2], so we have [a, b] commutes with [b−1
1 , a−1

1 ], which shows [A,B] is
Abelian. □

Prop.(2.1.10.5). If G is a metabelian finite group, then the transfer of V er : G→ G′ is trivial map.
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11 Transfer
12 Permutation Groups

Lemma(2.1.12.1). If n ≥ 3, then any proper normal subgroup of An has index divisible by 3.

Proof: Otherwise consider n = |G/H|, then every p-power is in H. But then an element c of order
3 is in H, because c = c3k+1 = (c−1)3k+2 for any k. But An is generated by 3-Cycles. □

Lemma(2.1.12.2).A5 is simple.

Proof: By(2.1.12.1), any proper normal subgroup H has order dividing 20. H cannot contain a
5-cycle, because a 5-cycle has □

Prop.(2.1.12.3).An is simple for n ≥ 5.

Proof: Cf.[代数学引论 P66]. □

13 Classification of Finite Groups
Thm.(2.1.13.1)[Classification of Finite Simple Groups].Every finite simple group is one of the
following:

• Z/(p).
• An.
• 16 infinite family of finite groups of Lie type.
• 26 exceptional groups, called sporadic simple groups.

Proof: A full list is inhttps://brauer.maths.qmul.ac.uk/Atlas/v3/? □

Prop.(2.1.13.2)[Monster Group].The largest sporadic simple group is called the Monster group
M.

#M = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71.

Proof: □

Prop.(2.1.13.3) [Happy Family].There are 20 sporadic groups appearing as a subquotient of M,
and they form a set called the happy family. The remaining 6 groups are known as the pariah
groups, including the Lyons group, Janko groups J1, J3, J4, Rudvalis group and the O’Nan
group ON.

Prop.(2.1.13.4) [Baby Monster Group].The second largest sporadic simple group is called the
baby Monster group B.

Def.(2.1.13.5)[O’Nan Group].

Prop.(2.1.13.6).The O’Nan group has size

#ON = 29 · 34 · 5 · 73 · 11 · 19 · 31.

Prop.(2.1.13.7)[Classification of Small Groups].
1. A group G of prime order p or order p2 is Abelian.

https://brauer.maths.qmul.ac.uk/Atlas/v3/
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2. A group G of order paqb that it has qb p-Sylow subgroups, then its q-Sylow subgroup is normal
thus it is not simple.

3. A non-Abelian group G of order 6 is isomorphic to S3.
4. Any non-Abelian group of order 8 is isomorphic to D4 or quadratic numbers Q.
5. A group of order smaller than 60 is solvable.
6. Any simple group G of order 60 is isomorphic to A5.
7. A group of order 148 is not simple, by(2.1.7.6) applied to the 37-Sylow subgroup.
8. A group of order 150 is not simple, by(2.1.7.6) applied to the 5-Sylow subgroup.

Proof:
1. Because G has non-trivial center Z by(2.1.7.2), if Z = G, then it is Abelian, otherwise the
|Z| = p, and the quotient G/Z is cyclic, thus G is Abelian by(2.1.8.1).

2. Calculating elements.
3. Consider its normal 3-Sylow group, then the quotient is cyclic thus G is semi-product which

must by S3 when non-Abelian.
4.
5.
6. Consider G has 6 5-Sylow groups, thus there are 24 elements of order 5.
G has 4 or 10 3-Sylow subgroups, if it have 4 3-Sylow subgroups, then the normalizer contains
a 5-Sylow subgroup, so we have a subgroup of order 15, which must by Z/15, so it contains
a normal 5-Sylow subgroup, which shows there are at most 60/15 = 4 5-Sylow subgroups,
contradiction.
So we have 10 3-Sylow subgroups, which shows there are at most 15 elements of order 2 or 4.
So we have 3 or 5 2-Sylow subgroups. If it is 3, then we can do the same as that for 3-Sylow
to construct a 20-order group and reach contradiction.
So now it have 5 2-Sylow subgroups, and then we consider the conjugate action on Sylow
subgroups, which is transitive, so it has trivial kernel, and G ↪→ S5. Now G = [G,G] ⊂
[S5, S5] = A5.

□

Prop.(2.1.13.8).There is a group that is group that a3 = 1 for any a ∈ G, but is not Abelian. It is
the uni-upper-triangular matrices in M3(F3).

14 Profinite Groups

Basic references are [Neukirch Cohomology of Number Fields], [Serre Galois Cohomology] [Profi-
nite Groups Zalesskii] and [Shatz Profinite Groups, Arithmetic and Geometry].

Def.(2.1.14.1)[Profinite Groups].A profinite group is a topological group that is an inverse limit
of finite discrete groups.

Lemma(2.1.14.2).For a compact totally disconnected group G, any nbhd U of e contains a normal
open subgroup.
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Proof: U contains a precompact nbhd of e, then by(3.11.1.24), U contains an open subgroup V ,
so by(3.11.1.6), there is a nbhd V ′ of e that xV ′x−1 ⊂ V for all x ∈ G, this says ∩x−1V x is open, so
it is an open normal subgroup. □

Prop.(2.1.14.3)[Profinite Compact and Totally Disconnected].A profinite group is the same
thing as a totally disconnected, compact Hausdorff topological group. In particular, G ∼= lim←−G/U
where U runs over all open normal subgroups of G.

Proof: One way is because limGi is a closed subgroup of ∏Gi which by Tychonoff’s theorem is
compact.

Conversely, by(2.1.14.2), G has a basis of e consisting of normal open subgroups, and
by(3.11.1.23), the intersection of open normal subgroups is {e}. For any open normal subgroup
N of G, G/N is compact discrete hence finite, the map G → lim←−G/N is continuous and has dense
image, but G is compact and the right is Hausdorff, so the image is closed, hence it is surjective. It
is injective because ∩N = {e}. Hence G ∼= lim←−G/N . □

Cor.(2.1.14.4).A closed subgroup of a profinite group is profinite, and a quotient group is profinite.
A direct product of profinite groups are profinite, and so the inverse limit profinite groups are

profinite, as it is a closed subgroup of a direct product.

Proof: The closed subgroup is totally disconnected by(3.3.1.26).
To show the quotient group is totally disconnected, by(3.11.1.23), it suffice to prove H is inter-

section of compact open nbhds in G/H. If x /∈ H, then there is an open subgroup U disjoint from
xH by(3.11.1.7), so it is closed hence compact. So UH is a compact nbhd of H in G/H that doesn’t
contains xH, hence the result. □

Cor.(2.1.14.5).A closed subgroup of a profinite group is a intersection of open normal subgroups of
G containing it, as G/H is profinite and as in the proof of(2.1.14.3), H is the intersection of open
normal subgroups of G/H.

Prop.(2.1.14.6).For G ∈ Prof, if Uα is the system of open normal subgroups of G, and H is a closed
subgroup of G, then there is a natural isomorphism of topological groups

H ∼= lim←−H/H ∩ Uα,

and if H is normal, then there is a natural isomorphism of topological groups

G/H ∼= lim←−G/HUα.

Proof: Cf.[Central Simple Algebras]P113.? □

Prop.(2.1.14.7).Any infinite profinite groups is uncountable.

Proof: [Profinite Groups Zalesskii]Prop2.3.1. □

Prop.(2.1.14.8).The category of profinite Abelian groups is Pontryagin dual to the category of torsion
abelian group. (not that hard to verify).

Proof: □
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Pro-p-Groups

Def.(2.1.14.9)[Surnatural Number].To consider indexes of closed subgroups of a profinite group,
the notion of surnatural numbers are needed. A surnatural number is a formal product ∏p p

np ,
np ∈ N ∪ {0,∞}.

For a closed subgroup H of a profinite group G, [G : H] is defined to be the least common
multiple of [G/U : H/H ∩ U ] where U goes over all open normal subgroups of G. This also equals
the least common multiple of [G : V ] for V open containing H(because for any such V , there is an
open normal subgroup U that HU ⊂ V (3.11.1.6)).

Prop.(2.1.14.10).The index is compatible with composition and quotient: [G : K] = [G : H][H : K]
and [G : H] = [G/K : H/K] for K closed normal in G.

[G : H] is finite iff H is open. For a decreasing family of closed subgroups Hi of G, [G : ∩Hi]
equals the least common multiple of [G : Hi].
Proof: [G/U : K/K ∩U ] = [G/U : H/H ∩U ][H/H ∩U : K/K ∩U ]|[G : H][H : K], giving one way
of inequality. For the converse, Cf.[Etale Cohomology Fulei P150]. The quotient case is trivial.

If [G : H] is finite, then For the final assertion, notice for a open subgroup V , G− V is compact,
so ∩Hi ⊂ V iff ∩Hi ⊂ V for some i. □

Def.(2.1.14.11)[Pro-p-Group].A profinite group G is called a pro-p-group iff [G : 1] is a power of
p.

Given a profinite group, a closed subgroup H is called Sylow pro-p-subgroup of G if H is pro-p
and [G : H] is prime to p.
Proof: □

Prop.(2.1.14.12).A profinite group G is a pro-p-group iff it is an inverse limit of finite p-groups. In
particular, any finite quotient of a pro-p-group is a p-group.
Proof: □

Prop.(2.1.14.13)[Sylow Pro-p-Group Exists].
Proof:

□
Prop.(2.1.14.14).Any pro-p subgroup H of G is contained in a Sylow p-subgroup of G, and any two
Sylow p-subgroups are conjugate. And a surjective morphism of profinite groups maps a pro-p group
to a pro-p group.
Proof: For any open normal subgroup U of G, let IU be the sets of all Sylow groups of G/U
containing H/H ∩ U , then the map G/V G/U maps IV to IU , and IU is finite nonempty by Sylow
theory. So the inverse limit of IU is nonempty, and let (PU ) be such an element, and P = lim←−U PU ,
then P is a pro-p subgroup of G, and [G : P ] equals the least common multiple of [G/U : PU ], which
is prime to p, so it is a Sylow p-group. Similarly, for two Sylow-p subgroup, we consider AU the set
of all x ∈ G/U that x−1(PU/U)x = P ′U/U , then there is a inverse element x, and x−1Px = P ′.

If G′ = G/N , then [G/N : PN/N ] = [G : PN ]|[G : P ] is prime to p, and [PN/N : 1] = [P :
P ∩N ]|[P : 1] is a power of p, so PN/N is Sylow-p in G′. □

Prop.(2.1.14.15).For a pro-p group G, any nonzero simple p-torsion G-module is isomorphic to Z/pZ
with trivial G-action.
Proof: The action of G on A factors through a finite quotient group which is a p-group, by??,
AG ̸= 0, so A = AG, then A must be Z/pZ. □
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2.2 Abstract Algebra
References are [Lan05], [Rom07] and [Finite Groups Issac].
This section differs from sections on Commutative Algebras because it contains more basic, but

maybe non-commutative properties. This section differs from sections on Group Theory because it
concerns objects with more structure than a group.

Notation(2.2.0.1).
• Use notations defined in Group Theory.

1 Rings

Basics

Def.(2.2.1.1)[Rings].A ring is an Abelian group (R,+) together with a multiplication map

× : R×R→ R

s.t.
• (R,×) is a monoid.
• For any x, y, z ∈ R,

x(y + z) = xy + xz, z(x+ y) = zx+ zy

A commutative ring is a ring that the multiplication is commutative. The category of rings is
denoted by Ring, the category of commutative rings is denoted by CRing.

Def.(2.2.1.2).R ∈ Ring is called
• a simple ring iff it has no non-trivial two-sided ideals.
• a domain or an integral ring iff whenever ab = 0, a = 0 or b = 0.
• reduced iff it has no non-zero nilpotent element.
• Dedekind-finite iff for any a, b ∈ R, ab = 1⇒ ba = 1.

Def.(2.2.1.3)[Fields].A field is a commutative ring that every non-zero element has an inverse. The
category of fields is denoted by Field.

Prop.(2.2.1.4)[Characteristic].For R ̸= 0 ∈ Ring, there exists at most one p ∈ P s.t. p · 1 = 0 ∈ k.
If such a p exists, denote char k = p, otherwise denote char k = 0.

Prop.(2.2.1.5). If 1− ab is left(right) invertible in a unital ring R, then so is 1− ba, and

(1− ba)−1 = 1 + b(1− ab)−1a.

Proof: Direct Calculation. □

Prop.(2.2.1.6)[Kaplansky]. If a has a right inverse by no left inverse in a ring, then a has infinitely
many right inverses.

Proof: If ab = 1, then in fact b + (1 − ba)an are right inverses for a for any n ≥ 0, and they are
distinct, because if b+(1−ba)an = b+(1−ba)am, then (1−ba)an = (1−ba)am. And by multiplying
b on the right, we get (1− ba)an−m = 1− ba, so ((1− ba)an−m−1 + b)a = 1. □
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Division Rings

Def.(2.2.1.7)[Division Rings].A skew field(or division ring) is a unital ring that every non-zero
element is invertible (but may not be commutative).

Prop.(2.2.1.8)[Wedderburn].A finite division ring D is a field.

Proof: Use the class equation for the invertible elements of D, if it is not isomorphic, consider
the center Z(D) of D, let |Z(D)| = z, then it is a field, and any other centralizer can be seen as a
vector space over Z(D), let it of dimension k, then zn− 1 = z− 1 +

∑ zn−1
zki−1 . But then let Ψn be the

cyclotomic polynomial of degree n, then Ψn(z) divides z − 1. But this is not true, as it is bigger. □

Prop.(2.2.1.9). If D is a f.d. division algebra over R, then it is isomorphic to R,C or H.

Proof: Cf.[Advanced Linear Algebra P466]. □

Prop.(2.2.1.10).Let k ∈ Field, k = k, then any division ring A over k with dimension< #k is
isomorphic to k.

In particular, a division ring A of at most countable dimension over C is isomorphic to C.

Proof: Notice it suffices to find an eigenvalue of φ· : A → A for each φ ∈ A. But {(φ − a)−1}
is a uncountable set of elements of A, so some ∑ ai(φ − ci)−1 = 0, spanning the expression, we see∏
k(φ− µk) = 0, so some φ− µk = 0, contradiction. □

Prop.(2.2.1.11)[Hua Equation]. In a division ring D, if a, b ̸= 0 and ab ̸= 1, then

a− (a−1 + (b−1 − a)−1)−1 = aba

Proof: suffices to show

1 = (1− ab)a(a−1 + (b−1 − a)−1) = (1− ab)(1 + a(b−1 − a)−1).

But this is equal to

(1− ab)(1− (b−1 − a)(b−1 − a)−1 + b−1(b−1 − a)−1) = (1− ab)(1− ab)−1 = 1.

□

Remark(2.2.1.12).For more about division rings, see Finite Semisimple k-Algebras and Brauer-
Grothendieck Groups.

Others

Prop.(2.2.1.13). If R ∈ Ring, #R = p2, then R is commutative.

Proof: Consider the center of R, it is non-trivial because?. □

Prop.(2.2.1.14).Let A,A′ be k-algebras and B,B′ subalgebras of A,A′ with centralizers C,C ′, then
the centralizer of B ⊗k B′ ⊂ A⊗k A′ is C ⊗k C ′.

Proof: It suffices to show that C ⊗k A′ ∩ A⊗k C ′ = C ⊗k C ′, which is clear because they are flat
over k. □
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2 Polynomials

Prop.(2.2.2.1)[Descartes’s Rule of Sign].Let p(x) = a0x
b0 +a1x

b1 +· · ·+anxbn be a real polynomial
with nonzero ai, where A0 < B1 < · · · < bn, then the number of positive roots of p(x) has the same
parity with the number of consecutive changes of signs of (ak)k=0,...,n.

Proof: Lemma: when a0an > 0, the number of positive roots are even and when a0an < 0, it is
odd. This is seen by consider p(0) and p(∞).

Then we consider the derivative p′ and use induction. Denote the number of changing sign by v(p)
and the number of positive roots by z(p), then if z0a1 > 0, then v(p) = v(p′) and z(p) ≡ z(p′) mod 2.
Then we have z(p) ≡ v(p) mod 2 and middle value theorem shows that z(p′) ≤ z(p) − 1, hence by
induction and parity argument, we have v(p) ≥ z(p).

If a0a1 < 0, then the same method shows that v(p) = v(p′) + 1 ≥ z(p′) + 1 ≥ z(p′) and the have
the same parity by the lemma. □

Prop.(2.2.2.2)[Lagrange Interpolation]. if K is a field, ai are n + 1 elements of K, bi are n + 1
elements of K, then there is a unique polynomial f of degree no greater than n that f(ai) = bi.

Proof: The polynomial in search is

f(x) =
∑∏

j ̸=i
bi
x− aj
ai − aj

.

It is a polynomial of degree smaller than n+ 1, and it satisfies the hypothesis. And clearly there is
at most one such polynomial, otherwise their difference has n+ 1 zeros. □

Cor.(2.2.2.3). If f(x) = anx
n + . . .+ a0, then for any n+ 1 different integers a0, . . . , an, there exists

some |f(ai)| ≥ n!
2n |an|.

Proof: Use Lagrange interpolation and consider the leading coefficient. □
Prop.(2.2.2.4). If a degree n polynomial p satisfies p(n) = 2n for n = 0, 1, . . . , n, then p(n + 1) =

2n+1 − 1.

Proof: The polynomial in search is p(x) =
∑n
k=0

(x
k

)
. □

Prop.(2.2.2.5)[Combinatorial Nullstellensatz]. If F is a field and f ∈ F [X1, . . . , Xn] is a polyno-
mial. Let S1, . . . Sn be nonempty finite subsets of F and gi =

∏
s∈Si(xi− s), then if f vanishes at the

common zeros of gi, then there are polynomials hi ∈ F [X1, . . . , Xn] that deg hi ≤ degF − deg gi and
g =

∑
higi.

Proof: The proof is very simple, just replace terms of f by lower degree terms, using equation of
gi, then we get a polynomial that has degree in xi smaller than |Si| and vanish on S1 × . . .× Sn, so
it must be 0, as easily checked. □

Cor.(2.2.2.6)[Combinatorial Nullstellensatz]. If F is a field and f ∈ F [X1, . . . , Xn] is a polynomial
of degree n, if ∏Xti

i is a highest degree term of f and Si are arbitrary subsets of F that |Si| > ti,
then there are some si ∈ Si that f(s1, . . . , sn) ̸= 0.

Proof: May assume |Si| = ti + 1. By combinatorial Nullstellensatz(2.2.2.5), if no such si exist,
then there are hi that f =

∑
hi
∏
s∈Si(xi − s), but the term ∏

Xti
i needs to appear, so it must by

some term of hi times xti+1
i , which is a contradiction. □

Remark(2.2.2.7).For many combinatorial applications of the combinatorial nullstellensatz,
Cf.[Combinatorial Nullstellensatz].
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Irreducibility

Prop.(2.2.2.8). If f = anx
n + . . . + a1x + p ∈ Z[X] satisfies p is a prime and ∑ |ai| < p, then f is

irreducible in p.

Proof: The ideal is that all of its roots has norm bigger than 1, because otherwise p = |
∑
akx

k| ≤∑
|ak| < p, contradiction. So if now f = gh, then g, h all have roots with norm greater than 1, in

particular it has constant coefficients norm greater than 1, which is a contradiction because p is a
prime. □

Resultants

Def.(2.2.2.9)[Resultants].Let R ∈ CRing, the resultant res(A,B) of two polynomials A,B ∈ R[X]
of degree d, e respectively is the determinant of the linear map

We ×Wd →Wd+e : (X,Y ) 7→ AX +BY,

where Wt is the free module of polynomials of degree < t.

Prop.(2.2.2.10).The resultant can be seen as the determinant of the matrix with values the coefficient
of A or B in different places, multiplying X∗s with different degree and add to the last row, we can
get A ·X∗s and B ·X∗s, so: res(A,B) = AC +BD for some C,D.

Now if R ⊂ S and A,B has common roots in S, then res(A,B) = 0.

Cor.(2.2.2.11).Resultant is stable under Euclidean division, so it can be seen as a suitable division
remainder of the two polynomial.

Prop.(2.2.2.12).When R ⊂ L a field and A,B decompose into linear factors in L, let ti be roots of
A and uj be roots of B, then

res(A,B) = vd0w
e
0

d∏
i=1

e∏
j=0

(ti − uj)

Proof: See the resultant as polynomials of the roots of A and B, then we proved that if they
has the same root, then res = 0, so it is divisible by (ti − uj) for all i, j. Then notice the RHS is
homogenous of degree d in uj and homogenous of degree e in ti, so does res. So they are equal. □

Prop.(2.2.2.13).Let k ∈ Field and P ∈ k[X], then x ∈ k is a double root of P iff gcd(P, P ‵)(x) = 0.

Proof: □

Cyclotomic Polynomials

Cf.[Cyclotomic Polynomials in Olympiad Number Theory].

Def.(2.2.2.14)[Cyclotomic Polynomials].For n ∈ Z+, define the cyclotomic polynomial

Ψn(X) =
∏

a∈(Z/(n))∗

(X − e2π i a
n ) ∈ C[X].

Then in fact Ψn(X) ∈ Z[X].

Proof: Its coefficients are algebraic integers, and it is invariant under action of GalQ, so its coeffi-
cients are in Q ∩ O

Q
= Z. □
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Prop.(2.2.2.15) [Cyclotomic Polynomials are Irreducible].For any n ∈ Z+, the cyclotomic
polynomial Ψn(x) is irreducible over Z.
Proof: It suffices to show that for any irreducible factor f |Ψn(x), if ξ is a root of f and (p, n) = 1,
then ξp is also a root of f . Cf.[Lan05].? □

Prop.(2.2.2.16).For a, n ∈ P and (a, n) = 1, Ψn(Xp) =
∏
d|a Ψdn(X).

Proof: This follows from counting. □
Cor.(2.2.2.17).For n ∈ Z+, Xn − 1 =

∏
d|n Ψd(X). Thus by Möbius inversion, Ψn(x) =

∏
d|n(Xd −

1)µ(n/d).
Prop.(2.2.2.18).For n ∈ Z+ and p ∈ P,

Ψnp(X) =

Ψn(Xp) , p|n
Ψn(Xp)
Ψn(X) , p ∤ n

.

Proof: These follows from counting. □
Cor.(2.2.2.19). If n ∈ Z≥3 is odd, then Ψ2n(X) = Ψn(−X).

Proof: It suffices to show that Ψ2n(X2) = Ψn(X)Ψn(−X). And this is because ζ 7→ ζ2 is an
automorphism between primitive n-th roots, and φ(n) is even. □

Prop.(2.2.2.20).For m ̸= n ∈ Z+, Ψm(X) and Ψn(X) are coprime in Q(X). And if m,n ∈ Z+ \ (p),
then Ψm(X) and Ψn(X) are also coprime in Fp[X].
Proof: It suffices to show that Xmn − 1 doesn’t have multiple roots. By(2.2.2.13), it suffices to
notice that

gcd(Xmn − 1,mnXmn−1) = 1,
which is also true in Fp[X] if m,n ∈ Z+ \ (p). □

Cor.(2.2.2.21).For p ∈ P and n ∈ Z+ \ (p), a ∈ Z,

p|Ψn(a) ⇐⇒ p ∤ a & ord(a,F×
p ) = n.

Cor.(2.2.2.22).For p ∈ P and n ∈ Z+ \ (p), p|Ψn(a) for some a ∈ Z iff p ≡ 1(mod n).
Prop.(2.2.2.23). If m ≥ n ∈ Z+, h ∈ Z, and A = gcd(Ψn(h),Ψm(h)) ̸= 1, then there exists p ∈ P s.t.
A ∈ pZ+ , and also m

n ∈ p
Z+ .

Proof: Suppose p|A, and suppose m = pac, n = pbd, p ∤ cd, then by(2.2.2.18),

Ψm(h) ≡ (Ψc(h))pa(mod p), Ψn(h) ≡ (Ψd(h))pb(mod p).

Then it follows from(2.2.2.20) that c = d. Thus m
n ∈ p

Z+ . The assertions follow easily from this. □
Prop.(2.2.2.24).For n ∈ Z+,

Ψn(1) =
{
p , n ∈ pZ+ , p ∈ P
1 , otherwise

Proof: This follows easily from induction and the fact

Xn−1 + . . .+X + 1 =
∏

d|n,d ̸=1
Ψd(X).

□
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Invariant Theory

Prop.(2.2.2.25) [Elementary Symmetric Polynomial].For n indeterminants xi, define the ele-
mentary polynomials

σk =
∑

1≤i1<...<ik≤n
xi1xi2 . . . xik ∈ Z[x1, . . . , xn]

where for k > n this expression means 0. Then any symmetric polynomial is a polynomial of the
fundamental symmetric polynomials.

Proof: Set the first coordinate to 0, then the rest is a polynomial of the fundamental symmetric
polynomials by induction, f(0, x) = h(σ1, . . . , σn), then consider f − h, with h the same expression
but xn is included, we get it is a symmetric polynomial, and it is divisible by x1, thus also divisible
by ∏xi, thus divide it by ∏xi and use induction, we get f is a polynomial of elementary symmetric
polynomials. □

Prop.(2.2.2.26)[Newton Identities].For n indeterminants xi, define

sk =
{∑

xki , k ≥ 0
0 , k < 0

∈ Z[x1, . . . , xn],

then there are Newton Identities:

sk − σ1sk−1 + . . .+ (−1)nσnsk−n = 0.

Proof: The case of k ≥ n is simple. Now if k < n, then we prove by induction on n: If n is already
proven, then the term is 0 if one of them is 0, but this implies that this equation is divisible by∏n+1
i=1 xi, but is has degree k ≤ n, so it must by 0. □

Prop.(2.2.2.27) [Chern Polynomials].By(2.2.2.26) and induction there are polynomials Pk ∈
Z[x1, . . . , xk] s.t. Pk(σ1, . . . , σk) = sk, k ≥ 0, called the Chern polynomials. Then they satisfy:

log(1 + c1 + c2 + . . .+ cn + . . .) =
∑
p≥1

(−1)p−1Pp
p
∈ Q[[c1, . . . , cn, . . .]].

In particular, we can easily calculate via homogeneity that

P1 = c1, P2 = c2
1 − 2c2, P3 = c3

1 − 3c1c2 + 3c3, P4 = c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4.

Proof: We can define elementary power series

σk =
∑

1≤i1<...<ik

xi1xi2 . . . xik ∈ Z[[x1, . . . , xn, . . .]],

and also

sk =
{∑

xki , k ≥ 0
0 , k < 0

∈ Z[[x1, . . . , xn, . . .]].

Then the Newton identities also holds by taking limits. There is an injection

Q[[c1, . . . , cn, . . .]]→ Q[[x1, . . . , xn, . . .]] : ci 7→ σi,
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and the LHS is mapped to

log(
∏
i

(1 + xi)) =
∏
i

log(1 + xi) =
∑
p≥1

(−1)p sp
p

is the image of the RHS. □

Prop.(2.2.2.28)[Todd Polynomials].There are Todd polynomials Qp ∈ Z[σ1, . . . , σp], p ≥ 1 s.t.

Todd(x1, . . . , xn, . . .) =
n∏
i=1

xi
1− e−xi

= 1 +
∑
p≥1

Qp
p!
∈ Q[[x1, x2, . . .]]

for any n ∈ Z+, and

Q1 = c1, , Q2 = c2
1 + c2, Q3 = c1c2, Q4 = −c4

1 + 4c2
1c2 + 3c2

2 + c− 1c3 − c4.

Proof: ? □

Prop.(2.2.2.29) [Conjugate Invariant Polynomials].Any polynomial on the entries of matrixes
Mn(k) that is invariant under conjugation is generated by coefficients of det(λI + X) and can also
be generated by tr(Xk).

Proof: We notice that the matrixes having disjoint eigenvalues is dense in Mn(k), thus the re-
striction of the polynomial on these matrixes is a symmetric polynomial(2.2.2.25) thus identical to a
polynomial described above. Hence they are equal. □

Prop.(2.2.2.30).For any polynomial on the entries of matrixes Mn(k) that f(BA) = f(A) for B ∈
O(n), there is a polynomial F that f(A) = F (A∗A). Cf.[Heat Equation and the Index Theorem
Atiyah P323].

Prop.(2.2.2.31)[Weyl].Any linear map f from (Rm)⊗n to R that is O(m,R)-equivariant is a linear
combinations of maps of the form:

v1 ⊗ v2 ⊗ · · · ⊗ vn 7→ ⟨vi1 , vi2⟩⟨vi3 , vi4⟩ · · · ⟨vn−1, vn⟩.

Where i1, . . . , in is a permutation of 1, 2, · · · , n when n is even and when n is odd, f must be 0.

Proof: Cf,[Heat Equation and the Index Theorem]. □

3 Commutative Rings

Bézout Domain

Def.(2.2.3.1) [Bézout Domains].A Bézout domain is an integral domain that any sum of two
principal domains is also principal.

Prop.(2.2.3.2).The localization of a Bézout domain is Bézout. A local ring is Bézout iff it is a
valuation ring by(10.3.2.8).
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UFDs

Def.(2.2.3.3)[UFDs].A non-zero element x in a domain R is called irreducible iff for any y, z ∈ R
that x = yz, either y or z is a unit.

A non-zero element x in a domain R is called a prime iff (x) is a prime ideal. Every prime is
irreducible.

A domain R is called aUFD iff every non-zero element x ∈ R has a factorization into irreducibles,
unique up to units.

Prop.(2.2.3.4). if R is Noetherian domain, then each element has a decomposition into irreducible.

Proof: Trace the decomposition inductively, if it doesn’t stop, then it contradicts with Noetherian
hypothesis. □

Prop.(2.2.3.5).An integral domain R is a UFD iff each element x factors into irreducibles, and every
irreducible element is a prime. Also this is equivalent to every non-zero element factors into prime
elements.

Proof: If R is a UFD, then if x is irreducible, if ab ∈ (x), ab = xc, then x is one irreducible in the
decomposition of a and b, by UFD, so a ∈ (x) or b ∈ (x), and (x) is a prime ideal.

Conversely, if there are two decompositions ∏ ai =
∏
bj , then some bj ∈ (ai) by primeness of (ai),

so bj = aiu, so u must by units, so by induction, this two decompositions are the same.
If every element factors into prime elements, then an irreducible element is a prime because it

factors as a product of primes, and notice every prime is irreducible(2.2.3.3). □

Prop.(2.2.3.6)[Kaplansky].An integral domain R is UFD iff every non-zero prime ideal contains a
non-zero principle prime ideal. In particular, any prime of height1 is principal.

Proof: If R is a UFD, let p be a non-zero prime ideal, choose a ̸= 0 ∈ p, and write a = π1 . . . πn as
a product of irreducibles. Then πi ∈ p for some i, so p contains the prime ideal (πi)(2.2.3.5).

Conversely, let S be the set of all finite products of prime ideals of R, then S is a multiplicative set
of R. For any non-zero element a ∈ R, if (a)∩S = ∅, then there is a prime ideal P containing (a) and
is maximal among those avoiding elements of S. Then P contains a non-zero prime π, contradiction.
So (a) ∩ S ̸= ∅. Let b ∈ R that ab = π1 . . . πn, then we show a ∈ S by induction on n.

If n = 1, then a is a unit or a prime, so we are done. For general n, if πk|b for some k, then
b = πkc, and ac = π1 . . . πk−1πk+1 . . . πn, then a ∈ S by induction hypothesis. Otherwise πk|a for all
k, thus a = π1 . . . πnc and 1 = bc, thus c is a unit and a ∈ S.

Thus we proved that every non-zero element is a product of prime elements, so R is a UFD
by(2.2.3.5). □

Prop.(2.2.3.7).A polynomial ring over a UFD is a UFD.

Proof: □

Prop.(2.2.3.8).Let k be a field, then the power series k[[X1, . . . , Xn]] is a UFD.

Proof: Cf.[Algebra Lang P209]. □

Remark(2.2.3.9).WARNING: if A is a UFD, A[[X]] may not be a UFD. Cf.[Matsumura, Commuta-
tive Ring Theory, P165].

Prop.(2.2.3.10)[Gauss Lemma].
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Prop.(2.2.3.11)[Nagata]. If A is a Noetherian domain and x ∈ A is a prime element s.t. A[ 1
x ] is a

UFD, then A is a UFD.

Proof: A[ 1
x ] is normal by(4.3.5.2), and A is also normal: If a ∈ Frac(A) is integral over A, then

a = r/xm for some m ∈ Z, r ∈ A\(x). If a /∈ A, then r ∈ x, contradiction.
Then we can use(7.1.2.25) to show that Cl(SpecA) = 0, and then A is a UFD by(7.1.5.6). □

Prop.(2.2.3.12).For a field k of characteristic̸= 2 and n ≥ m ≥ 5, A = k[x1, . . . , xn]/(−x2
1 + x2

2 +
. . .+ x2

m) is a UFD.

Proof: A ∼= k[x1, . . . , xn]/(x1x2 + x2
3 + . . .+ x2

m), and (x2) is a prime ideal of A s.t. A[ 1
x ] is a UFD

by(2.2.3.7), so A is a UFD by Nagata’e lemma(2.2.3.11). □

Prop.(2.2.3.13)[Quadratic Extension of UFDs]. If A ∈ CAlg is an integral domain and Z2−gZ+f
doesn’t have a root in Frac(A), then A[Z]/(Z2 − gZ − f) is integral and normal.

Proof: If (a + bZ)(c + dZ) = 0, then by hypothesis ad + bc + bdg = 0, ac + fbd = 0. Then
b(fd2 − c2 − cdg) = 0, so b = 0 or c = d by hypothesis. If (c, d) ̸= (0, 0), then ac = ad = 0, so
a = b = 0. □

PID

Def.(2.2.3.14)[Euclidean Domain].

Prop.(2.2.3.15)[Euclidean Domain is PID].Euclidean domains(2.2.3.14) are PIDs.

Proof: □

Example(2.2.3.16).
• Z is a PID.

• For k ∈ Field, k[X] is a PID.

Thm.(2.2.3.17)[Chinese Remainder Theorem, S. Tzu300-400].

Proof: □

Prop.(2.2.3.18)[PID Structures]. In a PID,
• An element t is irreducible iff (t) is maximal.

• A PID is UFD hence Noetherian.

• An element t is irreducible iff it is a prime.

•

Proof: 1:
2: By(2.2.3.6).
3: By item2 and(2.2.3.4).

□
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4 Modules

Def.(2.2.4.1) [Modules].For R ∈ Ring, a (left)R-modules is defined to be ?. The category of R-
modules is denoted by ModR.

Left modules are preferred. there are several proposition that is written in favor of right modules,
they should be rectified.

Def.(2.2.4.2)[Finite Modules].For R ∈ Ring, a finite R-module is an R-module M that there is
a surjection Rn →M for some n ≥ 0.

Prop.(2.2.4.3).Let R be a nonzero commutative ring and M be an R-module generated by n − 1
elements, then any R-module map Rn →M has a nonzero kernel.

Proof: Choose a surjection Rn−1 → M , then the map Rn → M can be extended to a map
Rn → Rn−1. It suffices to assume M = Rn−1. This map is represented by a matrix. If some entry
aij = a is not nilpotent, then we can localize R to Ra that a is a unit. We can assume a11 = a,
and apply elementary row and column transformation to make A = diag(1, B), then we finish by
induction. Now if all aij are nilpotent, then I = (aij) is nilpotent, and if m is the maximal integer
that Im ̸= 0, then (Im)⊕n is contained in the kernel of this morphism. □

Cor.(2.2.4.4)[Rank of Free Modules]. If M is a free module over a nonzero commutative ring R,
then any basis of M is of the same cardinality, called the rank of M , and any spanning subset of M
has greater cardinalities. In particular, Rm ̸= Rn as R-modules.

Prop.(2.2.4.5) [Fitting Lemma].For an endomorphism T of a R module M , if we denote p the
minimal integer that R(T p) = R(T p+1) and q the minimal integer that N(T q) = N(T q+1). Then the
morphisms are stable afterward. Then if there is a m,n that R(Tm) ⊕N(Tn) = X for a R-module
endomorphism T ∈ End(M), then p, q < ∞ and they are equal. Moreover, if we know p, q < ∞,
then we have R(T p)⊕N(T q) = M .

Proof: We notice that

T i : N(T i+j)/N(T i)→ R(T i) ∩N(T j), T i : M/(R(T j) +N(T i))→ R(T i)/R(T i+j)

are isomorphisms. Thus R(Tm)⊕N(Tn) = X shows q ≤ m and p ≤ n, thus we have R(T p)⊕N(T q) =
M , which implies p ≥ q and q ≥ p. thus the result. The rest also follows easily from these
isomorphisms. □

Prop.(2.2.4.6)[Nakayama]. If M is a finite A-module, and I ⊂ A is an ideal that IM = M , then
there is a a ∈ 1 + I that aM = 0.

In particular, if I ⊂ rad(A), then a is a unit(4.2.6.2), so M = 0.

Proof: Because M = IM , choose a set of generators {xi} of M , then xi =
∑
aijxj , where aij ∈ I.

Then if the matrix M = (δij −aij), then Mxi = 0. So taking the adjoint matrix, then det(M)xi = 0.
Notice det(M) is a morphism. But the determinant must be element like 1 + k, k ∈ I, so we are
done. □

Cor.(2.2.4.7). If M is a finite A-module, N a submodule and M = rad(A)M +N , then M = N .

Cor.(2.2.4.8). If a finite R-module M satisfies M ⊗R k(p) = 0, then there is a f /∈ p that Mf = 0.

Proof: Because Mp = 0, and the support of M is closed(finiteness used). □
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Cor.(2.2.4.9). If an endomorphism φ of a finite module M over R is surjective, then it is injective.

Proof: This endomorphism makes M a finite module over R[X] by letting X acts by φ. So the
hypothesis shows IM = M where I = (x) ⊂ R[x]. Then Nakayama(2.2.4.6) shows there are some
(1 + f(X)X)M = 0. Thus for any m ∈M that X(m) = 0, m = 0, so φ is injective. □

Prop.(2.2.4.10). If A ∈ Ring /C and α ∈ A is not nilpotent, then there exists a simple A-module M
that a|M ̸= 0.

Proof: First we claim that there is some λ ̸= 0 ∈ C that a− λ is not invertible in A, this is nearly
the same as the proof of(2.2.1.10), noticing that a is not nilpotent. Now we can takeM = A/(a−λ)A,
then a1 = λ ̸= 0. □

Prop.(2.2.4.11)[Jordan-Horder].Cf.(2.1.9.10).

Tensor Module and Hom Module

Def.(2.2.4.12)[Hom Module]. If B is an R-S-bimodule and C is a T -S-bimodule, then HomS(B,C)
is naturally a T −R-module given by the action (tfr)(b) = tf(rb).

Dually, if B is an S −R-bimodule and C is a S − T -bimodule, then HomS(B,C) is naturally an
R− T -bimodule given by the action (rft)(b) = f(br)t.

Def.(2.2.4.13)[Tensor Product].Given a ring R, a T -R-bimodule A and an R-S-bimodule B, their
tensor product is a T -S-bimodule defined by universal properties: A × B → A ⊗R B is a T -S-
bimodule map, and any T -S-bimodule map A × B → C to a T -S-bimodule C factors uniquely
through A⊗R B → C.

The tensor product can be constructed as:
There is an adjoint:

−⊗R B : T ModR T ModS : HomS(B,−) .

In particular, tensoring commutes with colimits.
Similarly, there is an adjoint:

A⊗R − : RModS T ModR : HomT (A,−) .

Proof: We need to give an isomorphism

τ : HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C)).

Given f ∈ HomS(A⊗R B,C), we define

τ(f) : A→ HomS(B,C) : (τ(f)a)(b) = f(a⊗ b).

and conversely, for g ∈ HomR(A,HomS(B,C)),

τ−1(g)(a⊗ b) = (g(a))(b).

The verifications is routine and the isomorphism for left modules is dual. □

Prop.(2.2.4.14)[(Co)Induced Modules].Given a ring homomorphism S → R, then R is a S − R-
bimodule as well as a R-S-bimodule, then we define:
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• f∗ : RMod → S Mod : f∗M = SM = HomR(R,M) = R ⊗R M(2.2.4.12)(2.2.4.13), the
restriction.

• f! : S Mod→ RMod : f!M = R⊗S M is the induced module, it is left adjoint to restriction,
by(2.2.4.13).

• f∗ : S Mod → RMod : f∗M = HomS(R,M) is the coinduced module, it is right adjoint to
restriction, by(2.2.4.13).

Dually for left modules, we define:
• f∗ : ModR → ModS : f∗M = MS = HomR(R,M) = M ⊗R R(2.2.4.12)(2.2.4.13), the restric-

tion.
• f! : ModS → ModR : f!M = M ⊗S R is the induced module, it is left adjoint to restriction,

by(2.2.4.13).
• f∗ : ModS → ModR : f∗M = HomS(R,M) is the coinduced module, it is right adjoint to

restriction, by(2.2.4.13).

Def.(2.2.4.15)[Algebras].For R ∈ CRing, a(n) (commutative/unital/associative)algebra over R is
a (commutative/unital/associative)magma object in the monoidal category (ModR,⊗).

The category of R-algebras is denoted by AlgR. The category of commutative R-algebras is
denoted by CAlgR, the category of commutative unital associative algebra over R is denoted by
CRingR. Notice CRingR ∼= CRing /R.

Torsion-Free Modules

Def.(2.2.4.16)[Torsion-Free Modules].Let R be a ring, an R-module M is called torsion-free iff
there are no non-zero divisor x ∈ R, 0 ̸= f ∈M that xf = 0.

Prop.(2.2.4.17). If 0 → M1 → M2 → M3 and M1,M3 are torsion-free, then M2 is torsion-free.
Torsion-free is a stalk-wise property(4.1.4.2).

Proof: Trivial. □

Prop.(2.2.4.18).Let M be a finite R-module, then M is torsion-free if it is a submodule of a finite
free module.

Proof: One direction is trivial, for the other, if M is torsion-free, then M ⊂M ⊗RK, and M ⊗RK
is a finite K-vector space, with basis ei. Now let xi be a basis of M , let xi =

∑
aij/bijej , then let

e =
∏
ij bij , then M ⊂ Re1/b⊕ . . .⊕Ren/b. □

Prop.(2.2.4.19). If M,N are R-modules that M is torsion-free, then Hom(N,M) is torsion free.

Proof: Choose a surjection ⊕I R→ N → 0, then Hom(N,M) ↪→
∏
IM is torsion free. □

Modules over PIDs or Bézout Domains

Prop.(2.2.4.20)[Modules over a Bézout domain].Let R be a Bézout domain, then
• any finite submodule of a free module over is finite free.
• any f.p. R-moduleM is a summand of a free R-module andMtor, whereMtor = ⊕R/(fi) where
fi ∈ R∗.
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Proof: Cf.[Sta]0ASU.? □

Prop.(2.2.4.21)[Classification of Modules over PID].
1. Every submodule of a free module over a PID is free of smaller rank. Thus a projective module

over a PID is free
2. Every finite torsion-free module over a PID is free.
3. Every finite module over a PID has a primary decomposition M =

⊕
iR/(qi),where (qi) is

primary ideals.
So projective⇐⇒ free ⇐⇒ torsion-free(when f.g.).

Proof: 1: Choose a well ordering on the basis of F , let Fi is the submodule generated by ej , j ≤ i.
Then πi(P ∩ Fi) ⊂ R is a module of the form (ai), thus choose ui ∈ P that pi(ui) = ai. Then ui
is a basis for P : they are linearly independent, because for any finite linear combination that are 0,
the maximal coordinate are 0. It also spans P , because we can choose an element in P −{ui} whose
maximal nonzero coordinate α is minimal among them, by well-orderedness. But we can subtract a
multiple of uα, thus producing a smaller element, contradiction.

2: If it is finite torsion-free, then it is a submodule of a finite free module(2.2.4.18), so it is free
by item1.

3: Follows immediately from(4.2.5.34) and(2.2.3.18). □

Prop.(2.2.4.22)[Primary Cyclic Decomposition].There is a primary cyclic decomposition theo-
rem for a torsion module M over a PID R. Thus the multisets of elementary divisors of M is a
complete set of invariants for M .

Proof: Cf.[Advanced Linear Algebra P153]. □

Cor.(2.2.4.23)[Invariant Factor Decomposition].By reordering the cyclic decomposition, we can
get the invariant factor decomposition of M , there are scalars dm|dm−1| . . . |d1 that are called
the invariant factors of M .

Proof: Cf.[Advanced Linear Algebra P157]. □

Cor.(2.2.4.24)[Elementary Factor Theorem].Let F be a free module over a PID R, and letM be
a f.g. submodule ̸= 0, then there exists a basis B of F , elements e1, . . . , em in this basis, and non-zero
elements a1, . . . , am ∈ R that

• the elements a1e1, . . . , amem forms a basis of M .
• ai|ai+1.

And these ai are uniquely determined up to units.

Transfinite Direct Sum Dévissage of Modules

Def.(2.2.4.25) [Direct Sum Dévissage of Modules].Let M be a module over a ring R, then a
direct sum dévissage is a family of submodules Mα indexed by an ordinal S such that

• M0 = 0.
• if α+ 1 ∈ S, then Mα is a direct sum of Mα+1.
• if α is a limit ordinal, then Mα = ∪β<αMβ.
• ∪α∈SMα = M .
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If moreover, for any α ∈ S, α + 1 ∈ S, Mα+1/Mα is countably generated , then Mα is called a
Kaplansky dévissage of M .

Prop.(2.2.4.26).Let Mα be a direct sum dévissage of M , then M ∼=
⊕

α∈S,α+1∈SMα+1/Mα.

Proof: Cf. [Sta]058V. □

Cor.(2.2.4.27).M is a direct sum of countably generated modules iffM admits a Kaplansky dévissage.

Prop.(2.2.4.28). Suppose M is a direct sum of countably generated modules and P is a direct sum
of M , then P is also a direct sum of countably generated modules.

Proof: Cf.[Sta]058X. □

Prop.(2.2.4.29)[Direct Summand Criterion of Free Modules].LetM be a countably generated
R-module that for any direct summand N ofM and an element x ∈ N , x is contained in a free direct
summand of N , then M is free.

Proof: Let x1, x2, . . . be a countable set of generators for M , then we can use inductions to find
free submodules F1, F2, . . . of M s.t. ⊕ni=1Fi are direct summands of M and contains x1, . . . , xn for
any n, thus M = ⊕Fi is free. □

5 Field Extensions
Prop.(2.2.5.1)[Artin]. If G is a monoid and K is a field, any distinct characters of G in K are linearly
independent over K.

Proof: Consider the minimal length of linear combination that is 0, then we multiply a suitable z
in it, then we can can cancel a character, contradicting the minimality. □

Cor.(2.2.5.2). If αi are different elements in K and there are element ai that
∑
aiα

v
i = 0 for every

v ≥ 0, then ai = 0 for all n. (Seen as characters from Z≥0 → K).

Def.(2.2.5.3)[Composition of Fields Extensions].

Field Extensions

Def.(2.2.5.4) [Distinguished Class of Extensions].A family L of extensions are called distin-
guished iff

• It is closed under base change.
• E/F/K ∈ L iff F/K ∈ L and E/F ∈ L.

Def.(2.2.5.5) [Algebraic Extensions].An algebraic extension is a field extension L/K s.t. for
any element α ∈ L, there exists a nonzero polynomial f(X) ∈ K[X] s.t. f(α) = 0.

Prop.(2.2.5.6).The family of finite extensions form a distinguished class.
The family of algebraic extensions form a distinguished class.
The family of f.g. extensions form a distinguished class.

Proof: Finite case is trivial. For the alg. extensions, for k ⊂ F ⊂ E, for any α ∈ E, α satisfies an
polynomial function with f.m coefficients in F , the coefficients form a subfield F0 of F which is finite
over k, so k ⊂ F0 ⊂ F0(α) is a finite tower, so it is finite, hence algebraic. The base change is easy
to check.

For f.g. extensions, it suffice to check composition:? □



78 CHAPTER 2. ALGEBRAS

Prop.(2.2.5.7).For an alg.extension k ⊂ E, any injective field map E → E over k is an automorphism.
(This is because it induce a permutation of any α with its conjugates in E, so it is surjective).

Lemma(2.2.5.8).Let f ∈ k[X] be a polynomial of degree≥ 1, then there is a field K that f has a
root in K. Hence for any finite set of polynomials, there is a field K that all of them have roots in
K.

Proof: Cf.[Algebra Lang P231]. □

Lemma(2.2.5.9).For any k ∈ Field, there exists K ∈ Field s.t. k ⊂ K,K = K.

Proof: Firstly, we construct a field that every polynomial in k[X] of degree≥ 1 has a root. Consider
the polynomial ring k[Xf ], where there is a indeterminant Xf for each f ∈ k[X] of deg≥ 1. Then
the ideal generated by f(Xf ) is not a unit ideal, which can be seen by constructing a finite field
extension that fi all have a root in it(2.2.5.8).

So if m is a maximal ideal containing all f(Xf ), then the quotient field is a field that all f have
a root(Xf ).

So now if we construct inductively like this, and consider their union, then it is clearly a field and
any polynomial of degree≥ 1 have a root in it. □

Prop.(2.2.5.10)[Algebraic Closure].Assume the axiom of choice, for any K ∈ Field, there exists
uniquely an algebraic field extension K/k s.t. K is alg.closed, up to isomorphism over k. Any such
field K is called an algebraic closure of k, denoted by k.

Proof: Let E be a field that is alg.closed and contains k by(2.2.5.9). Let ka be the union of
subextensions that are algebraic over k. ka is a field, by(2.2.5.6), and ka is alg.closed, because if
f(X) is a polynomial of degree≥ 1 in ka[X], then it has a root α ∈ E, and α is algebraic over ka, so
α ∈ ka. □

Prop.(2.2.5.11)[Finite Algebraic Extensions].Let L/K be a field extension and F/L be a finite
extension, then there is a finite extension F ′/K s.t. F = LF ′.

Proof: Take a generator xi of F/L, then xi are algebraic over L, thus there are polynomials
fi ∈ L[X] s.t. fi(xi) = 0. Let F ′ be the fields over K generated by all the coefficients of fis, then
F = LF ′. □

Prop.(2.2.5.12). If E/F is an algebraic field extension, then for any R that E ⊂ R ⊂ F , R is a field.

Proof: If α ∈ R, then α is algebraic over E, so there is a relation αn + . . . + a0 = 0, so α−1 =
−a−1

0 (a1 + . . . αn−1) ∈ R. □

Normal & Separable Extensions

Def.(2.2.5.13)[Normal Extensions].A field extension K/k in k is called normal extension iff it
satisfied the following equivalent conditions:

• Any embedding of K into k induce an automorphism on K.
• K is the splitting field of a family of polynomials in k[X].
• Every irreducible polynomial in k[X] that has a root in K splits in K.

Proof: Cf.[Algebra Lang P237]. □
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Prop.(2.2.5.14).Normal extension are stable under base change and composition, by the first defini-
tion of(2.2.5.13).

Def.(2.2.5.15)[Normal Closure].For any field extension F/K, there is a field extension E/F that
E/K is normal, called the normal closure of F/K. It is the composite of conjugates of F/K.

Def.(2.2.5.16)[Separable Degree].Define the separable degree [E : k]s of an extension E/k as
the cardinality of embedding of E into k. Separable degree commutes with composition, and when
E/k is finite, [E : k]s ≤ [E : k].

Def.(2.2.5.17) [Separable Polynomials].A finite extension is called a separable extension iff
[E : k]s = [E : k], an algebraic number α over k is called separable over K iff k(α)/k is separable.
A polynomial f ∈ k[X] is called a separable polynomial iff it has no multiple roots in k.

Def.(2.2.5.18)[Separable Extensions].An algebraic extension E/k is called a separable exten-
sion iff it satisfies the following equivalent conditions:

• every f.g. subfield is separable over k,(this is compatible because subfield of a finite separable
extension is separable, by the compatibility of separable degree).

• Every element of E is separable.

• It is generated by a family of separable elements.

Proof: If E/k is separable and k ⊂ k(α) ⊂ E, then by(2.2.5.17), k(α) is separable. And if it is
generated by a family of separable elements {αi}, then any f.g. subfield can are f.g. by elements
{αi}. Now it is a tower of separable extensions, hence separable by the compatibility of separable
degree. □

Prop.(2.2.5.19). Separable extensions form a distinguished class.

Proof: Cf.[Algebra Lang P241]. □

Prop.(2.2.5.20) [Primitive element Theorem].A finite extension E/k is primitive iff there are
only f.m. middle fields. And if E/k is separable, this is satisfied.

Proof: If k is finite, this is simple. Assume k infinite, for any two elements α, β, consider k(α+ciβ),
if there is only finitely many middle fields, there exists two that is equal, so k(α, β) = k(γ). Proceeding
inductively, E is primitive.

Conversely, if k(α) = E, every middle field corresponds to a divisor of the irreducible polynomial
of α. This map is injective, because for any gF , degree of α over F is the same over the degree over
the coefficient field of gF , so it must be equal to F .

If E/k is separable, Let

P (X) =
∏
i ̸=j

(σiα+Xσiβ − σjα−Xσjβ)

for different embedding σi, σj of E(α, β) into kalg. Then it is not identically zero, thus there exists c
that σi(α+ cβ) is all distinct, thus generate K(α, β). □



80 CHAPTER 2. ALGEBRAS

Inseparable Extensions

Prop.(2.2.5.21).Any irreducible polynomial of fields of characteristic 0 is separable and if char= p,
then all roots have the same multiplicity and thus [k(α) : k] = pn[k(α) : k] for some n.

Proof: All roots have the same multiplicity because there are Galois actions. If the multiplicity is
not 1, the derivative f ′ is zero, otherwise f is not irreducible. Then f(X) = g(Xp). We can choose
f(X) = h(Xpn) with h separable, then [k(α) : k(αpn)] = pn, thus the result. □

Def.(2.2.5.22).The inseparable degree [E : k]i is defined as the quotient [E : k]/[E : k]s. An
algebraic element α is called purely inseparable over k iff there is a n that αpn ∈ k.

Def.(2.2.5.23).An extension is called purely inseparable if it satisfies the following equivalent
conditions:

• [E : k]s = 1.
• Every element α of E is purely inseparable over k.
• For every α ∈ E, the irreducible equation of α over k is of type Xpn − a.
• It is generated by a family of purely inseparable elements.

Proof: Cf.[Algebra Lang P249]. □

Cor.(2.2.5.24).A field over Fp is perfect iff there are no purely inseparable extensions of it.

Cor.(2.2.5.25)[Perfect Closure].For any field k of char p, there is a unique purely inseparable field
extension kperf/k that kperf is perfect, called the perfect closure of k. It is generated by adding
all the pn-th roots to k.

Prop.(2.2.5.26).Purely inseparably extensions form a distinguished class.

Proof: Cf.[Algebra Lang P250]. □

Prop.(2.2.5.27). If E/k is algebraic and E0 be the maximal separable extension contained in E, then
E/E0 is purely inseparable. And if E/k is normal, then E0/k is normal, too.

Proof: By the proof of(2.2.5.21), any α has a pn that αpn that αpn is separable, hence it is purely
inseparable over E0 by(2.2.5.23). E0/k is normal because any σ maps E to itself, and E0 to σ(E0) ∈ E
separable, hence σ(E0) ⊂ E0. □

Trace and Norm

Prop.(2.2.5.28)[Trace and Norm].Let L/K be a finite field extension and Σ be the set of embed-
dings σ : L → K, then define the trace map trL/K : L → K : x 7→ [L : K]i

∑
σ∈Σ σ(x) and the

norm map NL/K : L→ K : x 7→ (
∏
σ∈Σ σ(x))[L:K]i .

Prop.(2.2.5.29).Let L/K be a field extension,
• The norm induces a multiplicative homomorphism L∗ → K∗, and the trace induces an additive

homomorphism L→ K.
• If E/F/K are field extensions, then NE/K = NF/K ◦NE/F , and trE/K = trF/K ◦ trE/F .
• If L = K(α) and F = Irr(α, k;X) = Xn − an−1X

n−1 + . . .+ (−1)na0, then

NL/K(α) = a0, trL/K(α) = an−1.
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Proof: Cf.[Lan05]P285. □

Prop.(2.2.5.30)[Calculating Dual Basis].Let L = K(α) be a finite separable extension, let f(X) =
Irr(α,K;X), and

f(X)
(X − α)

= β0 + β1X + . . .+ βn−1X
n−1,

then the dual basis of (1, α, . . . , αn−1) w.r.t. the trace form(2.2.5.32) is

β0
f ′(α)

, . . . ,
βn−1
f ′(α)

.

Proof: Denote the roots of f be αi, then they are pairwise different, and

∑
i

f(X)
X − αi

αri
f ′(αi)

= Xr

for all r by Lagrange interpolation(2.2.2.2). But this is equivalent to

tr( α
rβj

f ′(α)
) = δij

□

Prop.(2.2.5.31).Let L/K be a field extension, then x ∈ L acts on L via multiplication Tx. Then

det(Tx) = NL/K(x), tr(Tx) = trL/K(x).

Proof: Let F = K(x) ⊂ L, and p(X) be the minimal monic polynomial of x, then char(Tx|;X) =
char(Tx|K ;X)[L:K(x)], thus we are done by(2.2.5.29). □

Prop.(2.2.5.32)[Trace Form]. If L/K is a finite extension, consider the pairing

QL/K : L× L→ K : (x, y) 7→ tr(xy)

called the trace form. Then the following are equivalent:
• L/K is separable.
• trL/K ̸= 0.
• QL/K is non-degenerate.

Proof: 2, 3 are equivalent by a minute’s thought. For 1 ⇐⇒ 2:
If L/K is inseparable, then by(2.2.5.29), if we consider L/K ′/K that L/K ′ is purely inseparable

of degree p, then it is generated by some equation xp − a, and the root is α. Then L = K ′(α) and
the minimal polynomial of αi, 0 ≤ i ≤ p− 1 is xp − ai, so tr(αi) = 0, and trL/K = 0.

If L/K is separable, trL/K ̸= 0 by the linear independence of characters(2.2.7.3). □

Def.(2.2.5.33)[Discriminant of a Basis].Let αi be a basis of a separable extension L/K, then the
discriminant of the basis d(α1, . . . , αn) is defined to be det(σi(αj))2. Clearly, d(α1, . . . , αn) is
invariant under the Galois action of L/K, thus it is an element of K.
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Prop.(2.2.5.34).Notice trL/K(αiαj) =
∑
k σk(αi)σi(αj), thus (trL/K(αiαj)) is the product of the

matrices (σkαi)t and (σkαj), thus

d(α1, . . . , αn) = det(trL/K(αiαj)).

So the discriminant of {α1, . . . , αn} is the Gram matrix of the trace norm w.r.t. this basis(2.3.8.24).
In particular, by(2.2.5.32),

d(α1, . . . , αn) ̸= 0.

Prop.(2.2.5.35). If L = K(θ) is a separable field extension of degree d, and θ1 = θ, . . . , θn are the
conjugates of θ, then

d(1, θ, . . . , θd−1) = (det Van(θ1, . . . , θd))2 =
∏
i<j

(θi − θj)2.

6 Transcendental extension
Def.(2.2.6.1)[Transcendental Basis].Let K be an extension of a field k, a transcendental base
is an algebraically independent set that any element is algebraic over it.

Given any algebraically independent set S ⊂ T a set over which K is algebraic, S can be extended
to a transcendental base contained in T , by Zorn’s lemma. In particular, a transcendental basis exists.

Prop.(2.2.6.2).Any two transcendental basis have the same cardinality, called the transcendental
degree of K/k, denoted by tr degk(K).

Proof: If K/k has a finite transcendental basis, then let X = {x1, . . . , xm} transcendental base
of minimal number, S = {w1, . . . , wn} an algebraically independent set. If n > m, we pro-
ceed by changing one element in X a time using induction and prove that K is algebraic over
{w1, . . . , wr, xr+1, . . . , xm}, contradiction.

Because wr+1 is algebraic over {w1, . . . , wr, xr+1, . . . , xn}, we have a minimal polynomial

f =
∑

gj(wr+1, w1, . . . , wr, xr+2, . . . , xm)xjr+1

s.t. f(wr+1, w1, . . . , xm) = 0 (after possibly renumbering xi, this x must exists because S is itself alge-
braically independent). So xr is algebraic over {w1, . . . , wr+1, xr+2, . . . , xm}, hence K is independent
over it, too.

If K/k has an infinite basis B, let B′ be another basis, then for any α ∈ B∗, there is a finite set
Bα ⊂ B that α is algebraic over k(Bα), because algebraic equation involves f.m. generators. Then
we define B∗ = ∪α∈B′ , then it has cardinality smaller than B′. But B∗ = B, because for any β ∈ B,
β is algebraic over B′ which is algebraic over k(B∗), thus β is algebraic over k(B∗), thus β ∈ B∗. □

Prop.(2.2.6.3). If K is of finite transcendental degree over k, then #K = #k.

Proof: We find a purely transcendental L/k that K/L is algebraic, then the element of L are all
polynomials of finite indeterminants of elements of k, so |L| = |k| by(1.2.8.4), and similarly |K| = |L|.
□

Prop.(2.2.6.4). ?? For k ∈ Field, any two alg.closed field extension K1/k,K2/k of the same tran-
scendental degree over k are isomorphic.

Proof: We define a bijection of the transcendental basis, and then extend it to an isomorphism of
fields, by(2.2.5.10). □
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Cor.(2.2.6.5).Any two alg.closed field of the same characteristic and cardinality are isomorphic.

Proof: It suffices to show that their transcendental basis over the base field are of the same
cardinality? □

Prop.(2.2.6.6)[Lüroth].The automorphism group of K(T ) is PGL(2;K).

Proof: Consider θ = σ(x) = f(x)
g(x) , then x is algebraic over K(θ) : θg(x) − f(x) = 0. Now x is

transcendental over K, thus θ is transcendental over K as well. Now the minimal polynomial of x
over K(θ) is just θg(x)− f(x), because it is irreducible, as it is linear over θ. But K(x) = K(θ), thus
the polynomial must have degree 1, so f(x), g(x) is of degree 1. Now the rest is clear. □

Prop.(2.2.6.7) [Lüroth].Any subfield K ⊈ L ⊂ K(T ) is of the form K(u) where u ∈ K(X) is
transcendental over K.

Proof: It is clearly transcendental over K, so this follows from(5.11.1.17) and Riemann-
Hurewitz(5.11.1.32), notice that the field extension is separable by(4.3.9.4): The non-singular com-
plete curve corresponding to L has genus0, and it has a rational point, so isomorphic to P1

k(5.11.8.2).
□

7 Galois Theory

Def.(2.2.7.1)[Galois Extension].A Galois field extension is a field extension that is both normal
and separable.

Def.(2.2.7.2)[Galois Closures].Let F/K be a separable extension, then the normal closure E/K is
also separable, called the Galois closure of F/K.

In particular, the maximal separable extension ksep/k, called the separable closure of k, is
Galois over k, and Gal(ksep/k) is denoted by Galk.

Prop.(2.2.7.3)[Linear Independence of characters, Artin].Let L be a field, G be a monoid and
χi : G→ L be multiplicative maps, then χi are linearly independent over L.

Proof: Let ∑n
i=1 aiχi = 0 and ai ̸= 0 for any i, we use induction to derive contradictions: for all

i. n = 1 is trivial, and for general n, assume a1, a2 ̸= 0, then the two equations χ1(h) ̸= χ2(h), then∑n
i=1 aiχi(hg) = 0 and ∑n

i=1 aiχi(g) = 0 gives us a equation with smaller n, thus we are done. □

Prop.(2.2.7.4)[Algebraic Independence of Automorphisms, Artin].Let K ∈ Field,#K =∞,
and G = {σ1, . . . , σn} be a finite subgroup of automorphisms of K, then {σi} are algebraically
independent over K.

Proof: Cf.[Lang, P311].? □

Prop.(2.2.7.5) [Galois Main Theorem, Artin].Let G be a finite group of automorphisms of K.
Then K/KG is Galois of Galois group G.

Proof: For every element x, set {σ1x, . . . , σrx} be distinct conjugates, then f(X) =
∏r
i = (X−σix)

shows that K is separable and normal over KG. And primitive element theorem shows that [K :
KG] ≤ |G|, so it must equals G. □
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Prop.(2.2.7.6). If L/K is a finite Galois extension, then there is an isomorphism:

L⊗K L ∼= L× L× . . .× L : (a, b) 7→ (ab, aσ1(b), . . . , aσn−1(b))

where σi are Galois elements.

Proof: Choose a primitive element x and its minimal polynomial f(x), then L ∼= K[X]/(f),
and L ⊗K L ∼= L[X]/(f), but f decomposes completely in L[X], thus by Chinese remainder theo-
rem(2.2.3.17), the given map is an isomorphism of rings. □

Prop.(2.2.7.7) [Infinite Galois Theorem].The middle fields correspond to the closed subgp of
G(L/K).

Proof: The highlight is that G(L/LH) = H for a closed subgp H of G(L/K). If σ fixes LH
but is not in H, because for every finite field M , H · G(L/M) corresponds to M/(M ∩ LH), so
σG(L/M) ∩H ̸= ∅. So σ is in the closure of H thus in H. □

Prop.(2.2.7.8)[Normal Basis Theorem].For a finite Galois extension L/K, normal basis exists.

Proof: Finite case: The Galois group is cyclic, and the linear independent of characters shows
that the minimal polynomial of σ is n-dimensional thus equals Xn− 1. Regard L as a K[X] module
thus by (2.2.4.21) is a direct sum of modules of the form K[X]/(f(x)), f(x)|Xn− 1 and the minimal
polynomial for the action of X is Xn − 1. So it must be isomorphic to K(X)/(Xn − 1).

Infinite Case: Let
f({Xσ}) = det(tσi,σj ) ∈ Z[{Xσ}], tσ,τ = Xσ−1τ

then f ̸= 0 by substituting 1 for Xid and 0 otherwise. So it won’t vanish for all x ∈ L if we
substitute Xσ = σ(x) because {(σ(x))σ} are algebraically independent(2.2.7.4). Thus there exists
w ∈ L s.t.

det(σ−1τ(w)) ̸= 0.

Now if ∑
aττ(w) = 0, aσ ∈ K,

act by σ for all σ, we get [σ−1τ(w)]τ,σ[aσ]σ = 0, thus aσ = 0 for each σ ∈ Gal(L/K). So {τ(w)} is a
K-basis of L. □

Prop.(2.2.7.9)[Kummer Theory].Let K be a field and containing the set n-th roots of unity µn
where n ∈ Z∩K∗, a Kummer extension L/K of exponent n is a Galois extension that the Galois
group is Abelian of exponent n.

Then there is an inclusion preserving isomorphism between the lattice of Kummer extensions L
over K and the lattice of subgroups of K× containing (K×)n:

L 7→ ∆ = (L×)n ∩K×, ∆ 7→ K( n
√

∆).

And ∆/(K×)n is isomorphic to Gal(L/K)∨ = Hom(Gal(L/K),Q/Z).

Proof: The Galois cohomology of the Kummer sequence 1→ µn → L× n−→ (L×)n → 0 says

1→ K× n−→ (L×)n ∩K× δ−→ H1(Gal(L/K), µn)→ H1(Gal(L/K), L×) = 1(10.1.3.2)
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And Gal(L/K) acts trivially on µn ⊂ K∗, so

H1(Gal(L/K), µn) = Hom(Gal(L/K),Q/Z)

and
δ : a 7→ χa(σ) = σ( n

√
a)/ n
√
a ∈ µn.

Now let L/K be the maximal Kummer extension of exponent n, then (L×)n = K×. So the
assertion follows form Galois theory on applied to L/K. □

Prop.(2.2.7.10)[Finite Fields].Gal(Fpn/Fp) = Z/(n). and is generated by the Frobenius.

Proof: □

Prop.(2.2.7.11)[Artin-Schreier Theory].Let K be a field of characteristic p > 0 containing Fq,
where q = pk, an Artin-Schreier extension L/K of exponent q is a Galois extension that the
Galois group is Abelian of exponent q.

Then there is an inclusion preserving isomorphism between the lattice of Artin-Schreier exten-
sions L over K of exponent q and the lattice of subgroups of W+

p,k(K) containing (W+
p,k(Frobkp) −

id)(W+
p,k(K)):

L 7→ ∆ = (W+
p,k(Frobkp)− id)(W+

p,k(L)) ∩W+
p,k(K),

∆ 7→ K({bi1, . . . , bik|bi = (bi1, . . . , bik),W+
p,k(Frobkp)(b)− b ∈ ∆}).

And ∆/(W+
p,k(Frobkp)− id)(W+

p,k(K)) is isomorphic to Gal(L/K)∨ = Hom(Gal(L/K),Q/Z).

Proof: The Galois cohomology of this exact sequence

0→W+
p,k(Fq)→W+

p,k(L)
W+
p,k

(Frobkp)−id
−−−−−−−−−−→ (W+

p,k(Frobkp)− id)(W+
p,k(L))→ 0,

says

1→W+
p,k(K)

W+
p,k

(Frobkp)−id
−−−−−−−−−−→ (W+

p,k(Frobkp)− id)(W+
p,k(L)) ∩W+

p,k(K)
δ−→ H1(Gal(L/K),W+

p,k(Fq))→ H1(Gal(L/K),W+
p,k(L)) = 0(10.1.3.3)

And Gal(L/K) acts trivially on W+
p,k(Fq), so by(4.5.3.22),

H1(Gal(L/K),W+
p,k(Fq)) = Hom(Gal(L/K),Q/Z)

and
δ : a 7→ χa(σ) = σ(b)− b ∈W+

p,k(Fq), W+
p,k(Frobkp)(b)− b = a.

Next we prove for any b = (b1, . . . , bk),W+
p,k(Frobkp)(b) − b ∈ W+

p,k(K), K({b1, . . . , bk})/K is
Abelian of exponent q: Let Ki = K({b1, . . . , bi}). By(4.5.3.4),

(bq1, . . . , b
q
k)− (b1, . . . , bk) ∈W+

p,k(K)

implies bqi − bi ∈ Ki−1. Thus Ki/Ki−1 is an Artin-Schreier extension of exponent p. As the Galois
action is always of the form σ(s)− s ∈ Fq for any σ ∈ Gal(Kk/K) and s ∈ Kk, we see Kk/K is also
Artin-Schreier of exponent q = pk.

Now let L/K be the maximal Artin-Schreier extension of exponent q, then (W+
p,k(Frobkp) −

id)(W+
p,k(L)) = W+

p,k(K). So the assertion follows form Galois theory on applied to L/K. □
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Cor.(2.2.7.12)[Artin-Schreier of Exponent p].Let K be a field of characteristic p > 0, then there
is an inclusion preserving isomorphism between the lattice of Artin-Schreier extensions L over K of
exponent p and the lattice of subgroups of K+ containing {xp − x|x ∈ K}:

L 7→ ∆ = {xp − x|x ∈ L} ∩K,

∆ 7→ K({b|bp − b ∈ ∆}).
And ∆/{xp − x|x ∈ K} is isomorphic to Gal(L/K)∨ = Hom(Gal(L/K),Q/Z).

Applications

Thm.(2.2.7.13)[Unsolvability of the Quintic by Radicals, Abel1826-Galois1832].

Proof: □

8 Ordered Rings
Def.(2.2.8.1)[Ordered Rings].An ordered ring is a ring R together with a subset P ⊂ R that R
is a disjoint union P

⨿
{0}

⨿
(−P ), and if x, y ∈ P , then x + y, xy ∈ P . Elements in P are called

positive elements.
An ordered field is an ordered ting that is also a field. An orderable ring/field is a ring/field

that can be given an ordered structure.

Prop.(2.2.8.2).An orderable field has char0, because 0 /∈ P ∪ (−P ).
A square> 0 in an ordered field(trivial).

Def.(2.2.8.3)[Convex Subgroup].Let Γ be an ordered Abelian group(2.2.8.1), then a convex sub-
group of A is a subgroup ∆ that if a < b < c and a, c ∈ ∆, then b ∈ ∆. Notice this is in fact
equivalent to if 0 < c ∈ ∆, then 0 < b < c are also in ∆.

Prop.(2.2.8.4)[Height].The set of all convex subgroups of Γ is well-ordered, and its ordinal is called
the height of Γ.

Proof: If ∆1,∆2 don’t contains each other, let a ∈ ∆1 − ∆2 and b ∈ ∆2 − ∆1, then changing
±a,±b, we may assume 0 < a < b, so a ∈ ∆2, contradiction. □

Prop.(2.2.8.5)[Height 1 Case].Let Γ be an ordered Abelian group, then the following are equivalent:
1. ht(Γ) = 1.
2. for all a, b ∈ Γ that a > 0 and b ≥ 0, there is an integer n that b ≤ na.
3. there exists an injection from Γ to R.

Proof: 3→ 1 is easy.
1→ 2: Consider the convex subgroup generated by a, then it is ∆ by height condition, so b must

by in it, i.e. b ≤ na for some n.
2 → 3: Choose an a > 0, let the injection φ given by φ(b) = sup{nk |na ≤ kb} for b > 0 and

extends to negative elements.
It is easily verified that φ(c) + φ(b) ≤ φ(c + b), and if φ(c) + φ(b) < φ(c + b), choose a rational

approximation of them, and multiply to get integers, then if k(c+b) ≤ φ(c+b)ka > φ(b)a+φ(c)a+a,
then either kc ≥ φ(c)ka+ a or kb ≥ φ(b)ka+ a, contradiction.

So this map is truly a morphism of ordered Abelian groups, and it is injective because if b > 0,
then by 2, there must be an n that a ≤ nb, so φ(b) ≥ 1/n. □
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9 Real Fields
Def.(2.2.9.1)[Real Fields].A field K is called real if −1 is not a sum of squares in K. A field K is
called real closed iff it is real, and any alg.extension that is real must be itself. An ordered field is
clearly a real field by(2.2.8.2), the converse is in fact true, by(2.2.9.11). In particular, a real field is
of characteristic 0.

Prop.(2.2.9.2). If K is real, a ∈ K, a and −a cannot both be sum of squares. If −a is not a sum of
squares in K, then K(

√
a) is real. Hence either K(

√
a) or K(

√
−a) is real.

Proof: Suppose K(
√
a) is not real. If a is a square, then K(

√
a) = K is real. So a is not a square,

−1 =
∑

(bi + ci
√
a)2 =

∑
(b2
i + ac2

i + 2bici
√
a)

Since
√
a /∈ K, −1 =

∑
(b2
i + ac2

i ), so

−a = 1 +
∑
b2
i∑

c2
i

This implies that −a is a sum of squares. □
Prop.(2.2.9.3). If the minimal polynomial f of an α algebraic over a real field K is of odd degree,
then K(α) is real.
Proof: If K(a) is not real, then −1 =

∑
gi(X)2 + h(X)f(X), where gi has degree smaller than n.

This can happen if h(X) has degree odd and ≤ n− 2. Then if β is a root of h, then K(β) is also not
real. So the proof is finished if we use induction. □

Def.(2.2.9.4) [Real Closure Exists].For any real field K, there exists a real closure Ka of K.
That is, it is real closed and algebraic over K.
Proof: This is an easy consequence of Zorn’s lemma. □

Cor.(2.2.9.5) [Real Closed Fields Unique Ordering].There exists a unique ordering on a real
closed field R. The elements> 0 are just the squares in R. Now every real closed field is assumed to
have this ordering tacitly. In particular, any real closed field has char0, so does any real field.
Proof: The set of finite sum of squares in R is closed under addition and multiplication, and all of
them are squares, by(2.2.9.2) and maximality of R. Also by(2.2.9.2) either a is a square or −a is a
square, but not simultaneously. So it is truly an order on R. □

Prop.(2.2.9.6)[Fundamental Theorem of Algebra].For a field R, R is real closed iff R ̸= R[
√
−1]

and R = R(
√
−1).

Proof: One direction is trivial, the other follows from the lemma below(2.2.9.7), it satisfies the
condition by(2.2.9.2) and maximality. □

Lemma(2.2.9.7)[Equivalent Definition of Real Closed Fields]. If R is a real field that: for all
a ∈ R,

√
a ∈ R or

√
−a ∈ R, and any polynomial of odd degree has a root in R, then K = R(i) is

alg.closed.
Proof: For any order of R, the first condition in fact says that any a > 0 in R is a square. Now
a+

√
a2+b2

2 is non-negative, so there is a c2 = a+
√
a2+b2

2 , that is (c+ b
2c i)

2 = a+bi, so K has all squares.
As R is of char0(2.2.9.5)(2.2.8.2), so it suffices to show any Galois extension L/K is trivial. Let

G = G(L/R), and H be its 2-Sylow subgroup, then G = H by condition. Now if G1 = G(L/K),
then G1 is nontrivial, because otherwise there is a subgroup of index 2, then its fixed field is a square
extension of K, which is impossible by what we have proved. So G = G1, that is L = K. □



88 CHAPTER 2. ALGEBRAS

Cor.(2.2.9.8)[Complex Numbers is Alg.Closed, Gauss1799].C = R[i] is alg.closed.
Prop.(2.2.9.9)[Intermediate Property].An ordered field is real closed iff it has the intermediate
property.
Proof: If R is real closed, as R[i] is alg.closed(2.2.9.6), f can be decomposed into factors of degree
1 or 2. For a factor X2 + αX + β, 4β > α2, otherwise it has a root hence not irreducible. So the
change of sign is because of a linear factor, the rest is easy.

Conversely, if it has the intermediate property, then for a > 0, consider p(X) = X2 − a, then
p(0) < 0, p(a+ 1) > 0, so p has a root, that is, a is a square. For a polynomial of odd degree, for M
large enough, f(M) > 0, f(−M) < 0, so f has a root. So by(2.2.9.7) R is real closed. □

Prop.(2.2.9.10)[Artin-Schreier]. If K is separably closed and F is a subfield of finite index in K,
then F = K or F is real closed and K = F (i).
Proof: Cf.[Lan05]P299. □

Real Fields and Order

Prop.(2.2.9.11)[Real Field and Order]. If R is a real field, then it is orderable, in fact, if −a is
not a sum of squares in F , then there is an ordering that a > 0. So a real field is equivalent to an
orderable field.
Proof: By(2.2.9.2), F (

√
a) is real, so it has a real closure(2.2.9.4) and has the induced order(2.2.9.5),

and a > 0 because it is a square(2.2.8.2). □
Prop.(2.2.9.12)[Existence and Uniqueness of Real Closure].For any ordered field F , there is
a unique real closure R of F that every positive element of F is a square in R, thus the ordering is
compatible.
Proof: The existence is by adding all the square roots of elements> 0 to F , the resulting field is
real closed because of(2.2.9.2) and the fact a union of real fields(2.2.9.2) is real.

The uniqueness: because an ordered field is of char0(2.2.8.2), so the primitive element theo-
rem(2.2.5.20) applies that each finite subextension of R0 is of the form F (α), where α is a root of a
irreducible separable polynomial f . Then the roots of f are different so can be ordered α1 < . . . < αn.
Similarly, f has the same number of different roots in R1 β1 < . . . < βn by(2.2.9.14), so there is a
map h : αi → βi, and it is the unique map that a ordered map from F (α) to R1 extending id on F
can be. it is this uniqueness that makes us able to use Zorn’s lemma to show that there is a maximal
ordered map, must be a map from R0 to R1, which is an isomorphism, by primitive element theorem
again. □

Prop.(2.2.9.13)[Sturm’s Algorithm].Cf.[Model Theory Marker P327].
Cor.(2.2.9.14). If F is an ordered field and R0, R1 be two real closure of F that is compatible with
the ordering, then any irreducible polynomial has the same number of roots in R0 and R1.
Proof: Cf.[Model Theory Marker P328]. □

Prop.(2.2.9.15) [Hilbert’s 17th Problem]. If f is a positive semidefinite rational function over a
real closed field F , then f is a sum of squares of rational functions.
Proof: Let f(X1, . . . , Xn) be a positive semidefinite rational function, if f is not a sum of squares
of rational functions, then by(2.2.9.11), there is an ordering on F (X) that f < 0. Let R be a real
closure of F (X), then R |= ∃vF (v) < 0, as F (X) < 0. But RCR is complete, by(1.5.5.6), thus
F |= ∃vF (v) < 0 also, contradiction. □
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2.3 Linear Algebra

Main references are [H-K71], [线性代数 谢启鸿], [Rom07] and [Determinant, ⾼等代数 notes, 安
⾦鹏].

In this section, the category of vector spaces over a field k is studied, without considering any
topology on K or V . More generally, the category of free modules over a commutative unital ring R
is studied.

Def.(2.3.0.1)[Notations].Throughout this section, k denote a field.

1 Basics
Def.(2.3.1.1)[Vector Spaces].

Def.(2.3.1.2)[Linear Operators].A linear operator on a R-module V is an element of the endo-
morphism ring EndR(V )

Def.(2.3.1.3) [Basis].Let R be a field, then the sets S that are linearly independent over R has
maximal objects by Zorn’s lemma, and such a maximal object must span M , called a basis of M .

Prop.(2.3.1.4) [Dimension].All basis of a linear k-vector space V have the same cardinality, this
cardinality is called the dimension dimk(V ) of V . This follows immediately from(2.2.4.4).

Prop.(2.3.1.5)[Canonical way of Writing a Basis].After so many years, I still find it confusing
to write a basis and observing change of basis, so I will write it here:

A vector should always be written vertically, and so a basis should be−→e = (e1, . . . , en)(horizontal),
and a vector with basis −→a (vertical) is in fact −→e −→a .

A change of basis should be written
−→
e′ = ea, with a ∈ GLn, and then if an operator has matrix

A w.r.t. the basis −→e , it then map in the basis
−→
e′ v =

−→
e′ x = −→e ax 7→ −→e Aax =

−→
e′ a−1Aax, so it has

matrix a−1Aa w.r.t the basis
−→
e′ .

Prop.(2.3.1.6)[Extension of Basis].

Proof: □

Prop.(2.3.1.7).Let F is a subfield ofK and U is aK-vector space with a F -subspace U ′. Then if every
finite F -linearly independent subset of U ′ is K-linearly independent, then dimF (U ′) ≤ dimK(U).

Proof: If the converse is true, there is a F -basis u′
j of U ′, then some of u′

j is K-linearly dependent,
contradiction. □

Def.(2.3.1.8)[Matrices].Let R be a commutative ring, the set of matrices of size m×n over R is an
(non-commutative) algebraMm×n(R) over R whose underlying module is R⊕n2 = ⊕1≤i≤m,1≤j≤neijR,
and the algebra structure is given by

eijeij = eik.

An element A =
∑

1≤i≤m,1≤j≤n aijeij ∈Mm×n(R) is denoted by A = (aij).

Prop.(2.3.1.9).A,B are two n× n-matrices, if 1−AB is invertible, then so does 1−BA, and

(1−BA)−1 = 1 +B(1−AB)−1A.
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Proof: Immediate from(2.2.1.5) or(2.3.10.12). □

Cor.(2.3.1.10).AB and BA has the same characteristic polynomials.

Prop.(2.3.1.11).For a ring R, there is an isomorphism of rings

Mn(R)op ∼= Mn(Rop).

The isomorphism is given by A 7→ At.

Def.(2.3.1.12)[Notation for Matrix Group].Let R be a ring, denote
• GL(n,R) be the subgroup of EndR(⊕R⊕n) consisting of invertible matrices.
• SL(n,R) be the subgroup of GL(n,R) consisting of matrices of determinant 1(2.3.10.1).
• Un(R) be the subgroup of GL(n,R) consisting of upper-triangular matrices.
• Pn(R) be the subgroup of GL(n,R) consisting of matrices A = (aij) that ani = 0 for i < n.
• Qn(R) be the subgroup of GL(n,R) consisting of matrices A = (aij) that ani = 0 for i < n and
ann = 1.

Prop.(2.3.1.13).Let K be a topological field, there is a decomposition of spaces

Un(K)\GL(n,K) ∼= GL(1,K)× U2(K)\GL(2,K)× . . .×Qn(K)\GL(n,K)

where GL(n− 1,K) embeds GL(n,K) obviously.

Remark(2.3.1.14).? This is wrong.

Proof: By induction, it suffices to show

Un(K)\GL(n,K)× Un−1(K)\GL(n− 1,K)×Qn(K)×GL(n,K).

Consider the map GL(n− 1,K)×GL(n,K)→ Un(K)\GL(n,K) : (x, y) 7→ xy, then x1y1 = x2y2 iff
x1y1 = ux2y2 for some u ∈ Un(K), iff y1y

−1
2 = x−1

1 ux2. This is possible iff y1y
−1
2 ∈ Qn, and for all

(y1, y2) that y1y
−1
2 ∈ Qn, x1y1 = ux2y2 iff x1 = ux2y2y

−1
1 . □

2 Rank
Prop.(2.3.2.1)[Rank Nullity Theorem].Let T : V → W be a linear map between vector spaces,
then rank(T ) + dimNul(T ) = V .

Proof: This follows from the exact sequence 0→ ker(T )→ V → Im(T )→ 0. □

Prop.(2.3.2.2)[Row Rank equals Column Rank].The row rank of a m× n matrix A is the same
as the column rank.

Proof: Let A be the matrix of a linear map T : V →W , then column rank equals the range of T ,
and the row rank equals the range of T t, so they are equal by(2.3.3.7). □

Prop.(2.3.2.3)[Sylvester’s Inequality].For U a m× n matrix and V a n× k matrix,

Rank(UV ) ≥ Rank(U) + Rank(V )− n
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Proof: This comes from dim ker fg ≤ dim ker f + dim ker g, which is because ker fg = g−1(ker f).
□

Prop.(2.3.2.4) [Finite Field General Linear Group].Over finite field Fpk , |GLn(Fpk)| = (pn −
1)(pn − p) . . . (pn − pn−1).

Proof: This is because choose the rows are equivalent to choosing a basis for V = ⊕ni=1Fpk , and
when choosing n-th row, it suffices to avoid an element in the span of the first n− 1 rows. □

Prop.(2.3.2.5)[Wedge and Rank].Let T : V → V ′ be a linear map, then ∧k(T ) = 0 iff rank(T ) < k.

Proof: If rank(T ) < k, then Im(∧k(T )) ⊂ ∧k Im(T ) = 0. Conversely, if rank(T ) ≥ k, choose
{Te1, . . . , T ek} linearly independent, then T (e1 ∧ . . . ∧ ek) = Te1 ∧ . . . ∧ Tek ̸= 0. □

3 Dual spaces
Def.(2.3.3.1)[Dual Spaces].Let V be a vector space over a field k, the set of linear functionals on
V with value in k form another vector space, which is denoted by V ∗, called the dual space of V .

Def.(2.3.3.2)[Annihilator].Let V be a vector space and W ⊂ V a subspace, then the annihilator
W⊥ is the subspace of W ∗ consisting of linear functionals l on V s.t. l(W ) = 0.

Def.(2.3.3.3)[Dual Basis].Let V ∈ Vectk and (e1, . . . , en) is a basis of V , then there exists unique
elements α1, . . . , αn of V ∗ s.t. (ei, αj) = δij . Any such elements α1, . . . , αn constitute a basis for V ∗,
and is called the dual basis of (e1, . . . , en).

Prop.(2.3.3.4)[Dimension of the Annihilator].Let W ⊂ V be f.d. vector spaces, then dimW +
dimW⊥ = dimV .

Proof: Let {e1, . . . , ek} be a basis of W and extend it to a basis {e1, . . . , ek, ek+1, . . . , en} of V
by(2.3.1.6). Consider the dual space e∗

1, . . . , e
∗
n, then the annihilator of W is just span{e∗

k+1, . . . , e
∗
n}.

Thus k + (n− k) = n = dimV . □

Def.(2.3.3.5)[Transpose].Let T : V → W be a linear map of f.d. vector spaces, then T induces a
map T t : W ∗ → V ∗ given by T t(l) = l ◦ T . This is a linear map, called the transpose of T .

Prop.(2.3.3.6)[Adjoint Map and Transpose].Let T : V →W be a linear map of f.d. vector spaces,
such that w.r.t. a basis {e1, . . . , en} of V and {f1, . . . , fm} ofW , T is given by matrix A = (aij). Then
w.r.t. the dual basis {f∗

1 , . . . , f
∗
m} ofW ∗, {e∗

1, . . . , e
∗
n} of V ∗, the transpose map(2.3.3.5) T t : W ∗ → V ∗

is given by the a matrix At = (bij), where bij = aji. At is called the transpose matrix of A.

Proof: ⟨ej , T t(f∗
i )⟩ = ⟨Tej , f∗

i ⟩ = aji, thus bij = aji. □

Prop.(2.3.3.7)[Tranpose Range Nullity Duality].Let f : V → V ′ be a linear map between f.d.
vector spaces over a field k, then

• rank(T t) = rank(T ).
• The range of T t is the annihilator of the null space of T .

Proof: 1: Notice that T t(g) = 0 iff ⟨g, T (v)⟩ = 0 for any v ∈ V , thus the null space of T t is just
the annihilator of the range of T , which equals dimV ′ − rank(T ) by(2.3.3.4). But this space has
dimension dim ker(T t) = dimV ′ − rank(T ′), so rank(T ) = rank(T t).

2: This follows from the fact that (T t)t = T and the argument above. □
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Cor.(2.3.3.8).A linear map between f.d. vector spaces is surjective iff its transpose is injective.

Prop.(2.3.3.9)[Infinite Dual space]. If dimK V is not finite, then dimK V < dimK V
∗.

Proof: Notice Hom(⊕i∈IKei,K) =
∏
Ke∗

i .
We prove first that if |K| is at most countable, then |V | = |I|. Notice the set Sn(I) of all n-

element subsets of I is of the same cardinality of I(1.2.8.3). And the finite sums of K and ei can be
seen as a subset of Sn(I)×Kn, so it has the same cardinality of I.

Now we can prove if |K| is at most countable, then dimV < dimV ∗. This is because V ∗ equals
the functions from V to K, which is bigger than the functions from V to {0, 1}, which is the power
set of V , so having cardinality 2|V | which is bigger than |V |, by Cantor theorem(1.2.7.4).

Now generally, K is not countable, but it has a base field F , which is countable, so we consider
the F -vector space W = ⊕i∈IFei, then dimF W = dimK V , and dimF W < dimF W

∗. If we can
show dimF W

∗ ≤ dimK V
∗, then we are done.

For this, first consider the natural F -linear mapping W ∗ → V ∗, which is clearly an imbedding.
Now we want to use(2.3.1.7), so we check the conditions, for F -linearly independent φ1, . . . , φn, if∑
ciφ = 0, ci ∈ K, then if we can find wk ∈ W that φi(wj) = δij , then this is a contradiction. But

this is true, by a simple argument, using the F -linearity of F . □

4 Rational Form and Jordan Form
Prop.(2.3.4.1)[Elementary and Invariant Factors].A linear operator in L(V ) is equivalent to a
K[X]-module structure on V , and two operators are similar iff the module structure are isomorphic.

As K[X] is a PID, the elementary factors, invariant factors, cyclic and elementary decomposition
theorems(2.2.4.22) can be applied to the case.

Proof: Cf.[Advanced Linear Algebra P168]. □

Cor.(2.3.4.2)[Jordan Forms].
• For a matrix over an alg.closed field, it is similar to a matrix of blocks λiI +N,Nxi = xi + 1,

called the Jordan form.

• For a real matrix, it is similar to a matrix of blocks of the above form together with
[
a −b
b a

]
on the diagonal and I2×2 on the lower side.

Proof: 1: Over an alg.closed field, the elementary factors are all of the form (x − ci)mij . Now in
the basis v, (T − ci)v, . . . , (T − ci)mi−1v, the matrix is just the Jordan form.

2: Over R, the elementary factors are all of the form (x − ci)mij and ((x − a)2 + b2)mij . Then
complexify it and consider a cyclic vector v, for (T − (a+ bi)I), let vn+1 = (T − (a+ bi)I)vn, and let
vn = Xn + iYn, then it can be verified that T is of the Jordan form given in the basis Xi, Yi. □

Def.(2.3.4.3)[Companion matrix].The companion matrix for a monic polynomial p(x) = xn +
an−1x

n−1 + . . .+ a0 ∈ F [X] is the matrix

Tp(x) =



0 0 · · · 0 −a0
1 0 . . . 0 −a1

0 1
. . .

...
...

...
. . . 0

0 0 . . . 1 −an−1
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Prop.(2.3.4.4)[Companion Matrix is Nonderogatory].An operator is cyclic iff it is similar to a
companion matrix.

A companion matrix is nonderogatory(2.3.5.2). In fact, the minimal polynomial and the maximal
polynomial of the companion matrix of p(X) are both p(X).

Proof: The operator of the companion matrix is an operator A with a basis {v,Av,A2v, . . . , An−1v}
and Anv = −

∑
i<n aiA

iv, which just equivalent to the fact the action of A is cyclic.
The determinant of Tp(X) equals p(X) by(2.3.4.13), and for the minimal polynomial, in the

basis of {v,Av,A2v, . . . , An−1v}, clearly for a polynomial f(X) of degree m < n, f(A)v ̸= 0, and
p(A)v =

∑
i<n aiA

iv +Anv = 0. So the minimal polynomial of A is p(X). □

Prop.(2.3.4.5) [Rational Canonical Form].Every matrix is similar to splint of companion ma-
trixes(2.3.4.3) corresponding to its elementary divisors.

Prop.(2.3.4.6)[Invariant Factor Form].Every matrix is similar to splint of companion matrixes,
corresponding to its invariant factors.

Computing the Invariant Factors

Def.(2.3.4.7)[Elementary Row Operation].An elementary row operation for a matrixM over
an algebra A is one of the following:

• Multiplying one row of M by a non-zero scalar in A.
• plus the r-th row by c-times the s-th row, where c is invariant A.

And an elementary matrix is a matrix obtained by the identity matrix by an elementary row
operation.

Two matrix is called row equivalent iff they can be connected by f.m. elementary row operations,
and this is equivalent to M = PN , where P is a product of f.m. elementary matrices, because left
multiplication by an elementary matrix is equivalent to an elementary row operation.

Similarly we can define elementary column operations.

Lemma(2.3.4.8).The elementary row operation change the determinant only by an invariant element
in A. (Clear).

Prop.(2.3.4.9).Let P be a matrix with entries in F [X], then the following are equivalent:
• P is invertible.
• The determinant is a nonzero scalar.
• P is row equivalent to identity matrix.
• P is a product of elementary matrices.

Proof: The only hard part is 2 → 3: this is because it has determinant in F ∗, thus the greatest
common divisor of the first column is a scalar, thus we can use row operation to make it (1, 0 . . . , 0)t,
and then we can continue to make it a upper triangular matrix with 1 in the diagonal, and also kill
the upper half part. So it is row equivalent to the identity matrix. □

Cor.(2.3.4.10).Let M,N be two matrices with entries in F [X], then they are equivalent iff N = PM
for some P that has determinant in F .

Def.(2.3.4.11).We call M,N equivalent iff M,N are connected by a sequence of elementary row
operations and column operations. This is equivalent to M = PNQ for P,Q invertible matrices in
Mn(F [X]).
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Prop.(2.3.4.12)[Normal Form of Companion Matrix].For a monic polynomial p(X), consider
its companion matrix Tp, then the matrix xI − Tp ∈Mn(F [X]) is equivalent to diag(p(X), 1, . . . , 1).

Proof: Clear, if one reduces the x in the diagonal from the bottom row to the top row one by one.
□

Cor.(2.3.4.13).For a companion matrix A of p, det(xI −A) = p.

Proof: This is from(2.3.4.8), and the fact both the side are monic polynomials. □

Def.(2.3.4.14)[Smith Normal Form].A matrix in Mn(F [X]) is called a Smith normal form iff
it is diagonal and diagonal entries fi ∈ F [X] is monic and satisfies fk divides fk+1.

Prop.(2.3.4.15).Any matrix M with entries in F [X] is equivalent to a unique Smith normal form.

Proof: This is immediate from(11.7.6.7) applied to the PID F [X](2.2.3.16). □

Cor.(2.3.4.16) [Computing Invariant Factors].The diagonal entries of the Smith form of the
matrix xI −M ∈Mn(F [X]) are just the invariant factors of M .

Proof: This is because of the uniqueness of Smith form(2.3.4.15) and the invariant factor(2.3.4.6)
and(2.3.4.12). □

Applications

Prop.(2.3.4.17).For any two matrices A,B ∈Mn×n(K), (AB)n and (BA)n are similar.

Proof: It suffices to show that they have the same elementary factors. Notice that for any ir-
reducible polynomial p, if p ̸= x, then if pk(AB)v = 0, then pk(BA)Bv = 0, if pk(BA)v = 0,
then pk(AB)Av = 0. Thus there are maps B : N(pk(AB)) → N(pk(BA)) and A : N(pk(BA)) →
N(pk(AB)). Now their composition are both injective, thus they have the same dimension.

And for p = x, these two both have nullity as the multiplicity of 0 in the charpoly of
AB,BA(2.3.10.13), thus the same. So they have the same elementary factors, thus similar. □

Prop.(2.3.4.18)[Matrix Similar to Transpose].Any matrix is similar to its transpose.

Proof: This is because the invariant factors can be computed using the greatest common divisors
of minors by(2.3.4.15) and(2.3.4.16), and they are clearly invariant under conjugation. □

5 Minimal and Characteristic Polynomials
Def.(2.3.5.1)[Minimal Polynomials].The minimal polynomial of a matrix A is the polynomial
p of minimal degree that p(A) = 0. It is equivalent to the maximal invariant factor of A, by(2.3.4.1).

Def.(2.3.5.2)[Non-derogatory Operator].An operator is called nonderogatory iff it has only one
invariant factor.

Prop.(2.3.5.3)[Generalized Cayley-Hamilton].The characteristic polynomial of A is the product
of the elementary divisors of A, thus the characteristic polynomial and minimal polynomial(2.3.5.1)
of A have the same set of irreducible factors, but may not with the same multiplicity.

In particular, the characteristic polynomial is divisible the minimal polynomial.
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Proof: Because charpoly and minipoly are both invariant under similarity, assume A is in rational
form(2.3.4.5), so the result follows from(2.3.4.4). □

Prop.(2.3.5.4).The linear functor X → AX −XC is an isomorphism iff the minimal polynomial of
A and C has not common factor.

Proof: Notice if AX = XC, then we have P (A)X = XP (C) for every polynomial P , in, particular
for the minimal polynomials of A and C, thus P (C) is non-invertible and A,C has a characteristic
value in common. Conversely, if they have a characteristic value, then we upper triangularize A to
see clearly that there is a X that AX = XC (X has only the first row). □

Characteristic Polynomial Images

In this subsubsection, we consider the set of characteristic polynomials of elements in a subgroup
of GL(n, k) as a whole.

6 Diagonalization and Triangulation

Prop.(2.3.6.1). If a linear map has matrix form T in a basis (Xi) and there is another basis (Yi)
that (Yi) = (Xi)P , then it has matrix form PTP−1 in the basis (Yi). In particular, if T can be
diagonalized, with eigenvectors (Xi), then T = (Xi)D(Xi)−1.

Prop.(2.3.6.2)[Relation with Minimal Polynomial].
• An n× n-matrix A is upper-triangulable over a field K iff its minimal polynomial is a product

of linear factors.
• An n × n-matrix A is diagonalizable over a field K iff its minimal polynomial is a product of

linear factors with no multiple roots.

Proof: 1: If it is upper-triangulable, its minimal polynomial is a product of factors because its char-
acteristic polynomial does(2.3.5.3). Conversely, we can find an eigenvector for A, then we quotient
this vector and use induction.

2: If it is diagonalizable, then the minimal polynomial is clearly polynomials. Conversely, its
elementary factors are all linear factors, thus its Jordan form is just diagonal(2.3.4.2). □

Cor.(2.3.6.3)[Upper Triangulation Alg.Closed Field]. If K is alg.closed, then any n× n-matrix
A is upper-triangulable over K. Similarly, it is lower-triangulable.

Proof: It suffices to find a flag that is stabilized by A. And for this, it suffices to find an eigenvector
of A. This is clear, as the characteristic polynomial of A has a root in K. □

Prop.(2.3.6.4) [Simultaneously Triangulation]. If Ai is a commutating family of upper-
triangulable n× n-matrices, then they are simultaneously triangulable.

Proof: As in the proof of(2.3.6.3), by induction, it suffices to show there is a common eigenvector.
Now assume there are f.m. matrices in F , we induct on the number of matrices to show there is
an eigenvector. Let λ be an eigenvalue of A1 because it is upper-triangulable, then N(A1 − λI) is
invariant under F , and all the matrices are upper-triangulable on N(A1 − λI), which is seen by
intersecting the flag with N(A1 − λI). So by induction, there is a common eigenvector for F . □
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Prop.(2.3.6.5)[Simultaneously Diagonalizable]. If Ai is a commutating family of diagonalizable
n× n-matrices, then they are simultaneously diagonalizable.

If Ai is a commutating family of real symmetric matrixes, then they are simultaneously orthogo-
nally diagonalizable.
Proof: We may assume there are f.m. matrices and use induction. Consider the diagonal decom-
position Vi of V for A1, then each Vi is invariant under F . Notice then each Ai is diagonalizable
on Vi, thus by induction, F is simultaneously diagonalizable on each Vi, then F is simultaneously
diagonalizable.

For the second, induction on the numbers of matrices. If some matrix is cI, then clear, if some
are not cI, then choose its eigenvalue decomposition, we conclude by induction hypothesis. □

Prop.(2.3.6.6)[Invariance of Field Extension].Let A ∈Mn(F ), and E be the subfield generated
by the entries of A, then the invariant factors of A are polynomials over E. In particular, two matrix
are similar over the smallest field that they are defined.
Proof: Clear, because we know how an irreducible polynomial over E factors through E. □

Prop.(2.3.6.7) [Jordan Decomposition].Let k be a perfect field and A ∈ Mn(k), then there ex-
ists unique matrices As, An that As is semisimple, An is nilpotent, A = As + An, and As, An are
polynomials of A, in particular, As commutes with An.

Moreover, if A is invertible, then there exists unique matrices As, Au that As is semisimple, Au
is unipotent, A = As ·Au, and As, Au are polynomials of A, in particular, As commutes with Au.
Proof: If k is alg.closed, then use(2.3.6.3). And Lagrange interpolation shows As, An are polyno-
mials in A. For the uniqueness, notice that because they are polynomials in A, if there are two sets
of Jordan decompositions A = As + An = A′

s + A′
n, then (As − A′

s) = (A′
n − An), but the sum of

commuting semisimple/nilpotent matrices is semisimple/nilpotent, so it is semisimple and nilpotent,
so it can only be 0, so As = A′

s.
In general, because k is perfect, taking a Galois field extension k′/k containing all eigenvalues of

A, then A = As + An where As, An has entries in k′. But then taking Galois action and using the
uniqueness, As, An has entries in k.

Finally, by the Galois action again, As, An are polynomials in A.
If A is invertible, then As is also invertible, seen by base change to alg.closure. Then A =

As(1 +A−1
s An), where 1 +A−1

s An is unipotent. □
Prop.(2.3.6.8). If T is a diagonalizable operator on a subspace V , then for any invariant subspace V ′,
T |V ′ is also diagonalizable.
Proof: Use the eigenvalue decomposition V = ⊕iVλi , then V ′ = ⊕i(Vλi ∩ V ′), which is because if∑
vi ∈ V ′, where vi are in different eigenspaces, then each vi ∈ V ′. □

7 Positivity(Inner Spaces)
Def.(2.3.7.1)[Inner Spaces].A real inner space is a f.d. real quadratic space that B(v, v) > 0 for
v ̸= 0. It is necessarily non-degenerate.

A complex inner space is a f.d. Hermitian space V that B(v, v) > 0 for v ̸= 0.
Prop.(2.3.7.2).An inner metric on a vector space will induce an inner metric on the dual space, that
is, asserting the dual basis of an orthonormal basis to be orthonormal. On an arbitrary basis, the
matrix on the dual basis is written as A−1. because we can write A = P tP , and the dual basis
transformation is like (P t)−1, so the metric matrix is A−1.
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Prop.(2.3.7.3)[Positivity and Principal Minors].A matrix is positive symmetric(Hermitian) iff
it is symmetric, and all its upper principle minors has positive determinants.

A positive symmetric(Hermitian) matrix is equivalent to a real(complex) inner space.

Proof: Cf.[Hoffman P328]. □

Prop.(2.3.7.4)[Farkas’ Lemma].For a matrix A, and a vector b, exactly one of the following equation
has a solution: {

AX = b,X ≥ 0
Y tA ≤ 0, Y tb > 0

Proof: First notice if both have a solution, then 0 ≥ Y tAX > 0, contradiction. The rest follows
form the Hahn-Banach separation theorem. □

Cor.(2.3.7.5)[Gordan’s Theorem]. exactly one of the following has a solution:{
AX > 0
Y tA = 0, Y ≥ 0, Y ̸= 0

Proof: If both have a solution, then 0 = Y tAX > 0, contradiction. If the first has no solution,
then A′x = e, z ≥ 0, where A′ = [A,−A,−I] has no solution, by Farkas’ lemma, there is a solution
of Y tA′ ≤ 0 and Y tb = 0. Which shows that Y tA = 0 and Y ̸= 0. □

Cor.(2.3.7.6).For any subspace in Rm, either it has an intersection with the open first quadrant, or
its orthogonal complement has an intersection with the closed first quadrant minus 0. (Regard it has
the image of a AX).

8 Bilinear & Hermitian Forms
Prop.(2.3.8.1)[Hermitian Forms].A complex vector space V is equivalent to a real vector space
with an endomorphism J that J2 = −1, by i acting by J .

A Hermitian form on (V, J) is an R-bilinear mapping (−,−) : V × V → C that satisfies

(Ju, v) = i(u, v), (u, v) = (v, u).

If we write (u, v) = φ(u, v)− iψ(u, v), then
• φ is symmetric, φ(Ju, Jv) = φ(u, v).
• ψ is alternating, ψ(Ju, Jv) = ψ(u, v).
• ψ(u, v) = −φ(u, Jv), φ(u, v) = ψ(u, Jv).

Conversely, if φ satisfies this condition, then

(u, v) = φ(u, v) + iφ(u, Jv).

is a Hermitian form. Also (−,−) is positive or non-singular iff φ is.

Lemma(2.3.8.2).Any eigenvalue of a Hermitian(e.g., real symmetric) matrix M is real.

Proof: Consider the bilinear form defined by the matrix M , then if x is an eigenvector with
eigenvalue λ, then λ(x, x) = (Hx, x) = (x,Hx) = λ(x, x), so if λ is not real, x = 0. □
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Prop.(2.3.8.3) [Principal Axis Theorem].A symmetric matrix A is orthogonally diagonalizable.
Similarly, a Hermitian matrix is unitarily diagonalizable.

Proof: Firstly, we can find an eigenvector of A: Only the real case needs proof, and this is because
any eigenvalue of A is real(2.3.8.2).

Let v be an eigenvector of A of length 1, then the orthogonal complement of v is preserved by
A, so we can use induction to find an orthonormal basis consisting of eigenvectors of A, then these
together with v forms an orthonormal basis consisting of eigenvectors of A. □

Prop.(2.3.8.4)[Complex Normal operators].More generally, a normal operator over C is unitarily
diagonalizable using resolution of identity(10.10.4.3) because the spectrum are discrete thus the point
projection is orthogonal.

Prop.(2.3.8.5)[Gram-Schimidt].Any symmetric matrix over fields of characteristic̸= 2 is congruent
to a diagonal matrix.

Proof: Any symmetric matrix defines a bilinear form on V . If B is not identically 0, then there
is a x that xtBx ̸= 0, by polarization identity. Then W = {Kx} is non-degenerate, so we have
W ⊕W⊥ = V by(12.5.1.8). And by induction, we are done. □

Prop.(2.3.8.6) [Antonne-Takagi].For any complex symmetric matrix A, there is unitarily matrix
U that UAU t is a real diagonal matrix with non-negative entries.

Proof: Consider B = A∗A is Hermitian and positive-semi-definite, thus there is a unitary matrix
V that V ∗BV is diagonal with non-negative real entries by(2.3.8.3). Now C = V tAV is complex
symmetric with C∗C real diagonal. If we let C = X + iY , then XY = Y X. So by(2.3.6.5), there
is a real orthogonal matrix W that WXW t and WYW t are diagonal. Now set U = WV t, which is
unitary, UAU t is complex diagonal. And easily we can modify the diagonal entries to be non-negative.
□

Prop.(2.3.8.7)[Skew-Symmetric Forms].For any f.d. skew-symmetric vector space V over a field k
with char k ̸= 2, then there exists a basis {x1, . . . , xr, y1, . . . , yr, z1, . . . , zk} s.t. (xi, yi) = −(yi, xi) = 1,
and the inner product of other pairs in this basis vanish.

In particular, if V is non-degenerate, then dimV is even.

Proof: Use induction on dimV . If dimV = 0, this is clear. For dimV > 0, if there exists a pair
(x, y) ̸= 0, then we can take (x, y) = 1, and we can look at the complement {x, y}⊥ ⊂ V and use
induction. □

Prop.(2.3.8.8).Given a bilinear form on a field, the relation of orthogonality is symmetric iff it is
symmetric or alternating, i.e. B(x, x) = 0.

Proof: Let w = B(x, z)y −B(x, y)z, then B(x,w) = 0, hence we have B(w, x) = 0, that is

B(x, z)B(y, x)−B(x, y)B(z, x) = 0.

Let z = x, then B(x, x)[B(x, y)−B(y, x)] = 0.
If some B(u, v) ̸= B(v, u) and B(w,w) ̸= 0, then B(u, u) = B(v, v) = 0, B(w, v) =

B(v, w), B(w, u) = B(u,w), Let x = u or v se get B(w, v) = B(v, w) = 0 = B(w, u) = B(u,w).
Now B(u,w + v) ̸= B(w + v, u), hence B(w + v, w + v) = 0 = B(w,w), contradiction. □



2.3. LINEAR ALGEBRA 99

Prop.(2.3.8.9). If B is a non-degenerate bilinear form on an associative algebra V , choose a basis xi
of V , then choose a dual basis yi, then

∑
xi ⊗ yi ∈ T (V ) is independent of xi chosen.

Proof: Let V ∨ be the dual of the vector space V . There is an isomorphism V ⊗V ∨ ∼= End(V ) given
by mapping (v, f) to the operator v′ 7→ f(v′)v. The non-degenerate bilinear form induces naturally
an isomorphism β : V ∼= V ∨ : v 7→ (·, v). Then under the isomorphisms

End(V ) ∼= V ⊗ V ′ ∼= V ⊗ V,

where the second isomorphism is (idV , β−1). The identity map idV ∈ End(V ) is send to ∑xi ⊗ yi ∈
T (V ), so ∑xi ⊗ yi is independent of the basis chosen. □

Symmetric Bilinear Forms

For symmetric bilinear forms and more about quadratic forms, see12.5.

Real Spectral Theory

Remark(2.3.8.10).The general spectral theory4 applies to this case.

Prop.(2.3.8.11).For a normal operator N on a real inner product space, Nα = 0 iff N tα = 0. In
particular, N and N t has the same number of eigenvalues and dimension of eigenspaces.

Proof: This is because

(Nα,Nα) = (N tNα,α) = (NN tα, α) = (N tα,N tα).

□

Cor.(2.3.8.12).For a normal operator N on a real inner product space, Im(N) = ker(N)⊥.

Proof: Im(N) = ker(N∗) = ker(N). □

Cor.(2.3.8.13).For a normal operator N on a real inner product space, if N2α = 0, then Nα = 0.

Proof: This is because Nα ∈ ker(N) ∩ Im(N) = ∅. □

Lemma(2.3.8.14). If f, g are relatively prime polynomials and T is a normal operator, f(T )α = 0
and g(T )β = 0, then α is orthogonal to β.

Proof: Choose polynomials a, b that af + bg = 1, then α = b(T )g(T )α, and

(α, β) = (b(T )g(T )α, β) = (b(T )α, g(T )∗β)

Notice g(T ) is also normal, and g(T )β = 0, thus by(2.3.8.11) g(T )∗β = 0. Thus α, β are orthogonal.
□

Lemma(2.3.8.15).Let V be a real inner product space and S an operator that S2 = −1. Suppose
α ∈ V and Sα = −β, then

S∗α = β, S∗β = −α,

α, β are orthogonal, and ||α|| = ||β||.
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Proof: Because

0 = ||Sα+ β||2 + ||Sβ − α||2 = ||Sα||2 + ||β||2 + 2(Sα, β) + ||Sβ||2 + ||α||2 − 2(Sβ, α),

and S is normal, we get

0 = ||S∗α||2 + ||β||2 − 2(S∗α, β) + ||S∗β||2 + ||α||2 + 2(S∗β, α) = ||S∗α− β||2 + ||S∗β + α||2,

which gives the desired equation. And also

(α, β) = (−S∗β, β) = −(β, Sβ) = −(β, α)

which implies (α, β) = 0. □

Prop.(2.3.8.16) [Real Normal Operators].Let A be a normal matrix, then A is orthogonally
congruent to matrixes of the form diag(B1, . . . , Bn), where Bi are 1× 1 or 2× 2 matrices of the form[
a b
−b a

]
.

Proof: Firstly the minimal polynomial of A is a product of different irreducible polynomials p =
p1 . . . pk, by(2.3.8.13). Let fi = p/pi, then f1, . . . , fk are relatively prime, so there are polynomials gi
that 1 =

∑
figi. Then for any v ∈ V , v =

∑
fi(T )gi(T )v, and fi(T )gi(T )v is annihilated by pi(T ).

Let Wi = ker(pi(T )), then V =
∑
Wi, and Wi is orthogonal to Wj by(2.3.8.14).

The restriction of T on Wi has minimal polynomial pi. If pi has degree1, then T is a scalar on
Wi. If pi has degree2, then pi = (x− ai)2 + b2

i for some ai, bi ∈ R, b ̸= 0. Then we choose a maximal
k that there exists subspaces Vj ∈Wi, j ≤ k that

• dimVj = 2.
• Vj are pairwisely orthogonal.

• Vj is invariant under T, T ∗, and T |Vi is orthogonal congruent to
[
ai bi
−bi ai

]
.

Then denote W = ⊕kj=1Vj , we prove that W = V : Suppose not, then W⊥ ̸= 0 is invariant under
T and T ′. Denote S = b−1(T − a), then S2 + 1 = 0. Let α ̸= 0 ∈ W⊥, β = −Sα, then Sβ = α,
α, β ∈W⊥. Since T = aI + bS, we have

Tα = aα− bβ, Tβ = bα+ aβ.

Now lemma(2.3.8.15) implies {α, β} is invariant under S, S∗ thus also T, T ∗, so this gives another
Vk+1, contradiction. □

Cor.(2.3.8.17)[Unitary Equivalence of Normal Operators].Let T, T ′ be real(complex) normal
matrices, then T is orthogonally(unitarily) congruent to T ′ iff T and T ′ have the same characteristic
polynomial.

Proof: This follows from(2.3.8.16)(or (2.3.8.4)). □

Cor.(2.3.8.18)[Complex Structure Form].A real normal matrix J s.t. J2 + 1 = 0 is orthogonal

congruent to ⟨
[
0 −1
1 0

]
⟩n.

In particular, as such J is equivalent to a complex structure onRn, so the set of complex structures
is bijective to O(n)/U(n2 ) thus can be endowed with a structure of a homogenous space.
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Proof: This is because J and ⟨
[
0 −1
1 0

]
⟩n are both normal and they have the same characteristic

polynomial, by(2.3.5.3). □

Def.(2.3.8.19)[Cayley-transformation].For a field k of chark ̸= 2 and a matrix P ∈Mn(k) that has
no eigenvalue −1, there is a Cayley transformation A = 1−P

1+P ,. 1 +A is invertible, and P = 1−A
1+A .

Then A is skew-symmetric iff P is orthogonal.

Proof: If Av = −v, then v − Pv = −v − Pv, so 2v = 0, so v = 0. So A+ 1 is invertible.
If P is orthogonal, then At = 1−P t

1+P t = 1−P−1

1+P−1 = −A. Conversely, if At = −A, then P t = 1+A
1−A =

P−1. □

Prop.(2.3.8.20). If chark ̸= 2 and P is an orthogonal matrix of odd dimension, then detP is an
eigenvalue of P .

Proof: multiplying by −1, we can assume detP = −1. Consider the Cayley transforma-
tion(2.3.8.19), then

detP = det(1−A) det(1 +A)−1 = det(1−A)t det(1 +A)−1 = 1.

Contradiction. □

Hermitian Spaces

Def.(2.3.8.21) [Hermitian Space].Let E be a field, F a Galois extension of E of degree 2 with
involution x 7→ x or E ⊕ E with involution (x, y) = (y, x).

Then a Hermitian space over F/E is a free F -module V with a E-map (·, ·) : V × V → F s.t.
• (cx, y) = (x, cy) = c(x, y) for c ∈ F .
• (x, y) = (y, x).
• the pairing is non-degenerate.

Def.(2.3.8.22)[Hermitian Transpose].Let L : V → W be a map between Hermitian spaces, then
there is a Hermitian transpose F -anti-linear map L∗ : W ∗ → V ∗ that satisfies

(Lu,w) = (u, L∗w).

As the pairing on V is non-degenerate, this is map is uniquely determined.

Def.(2.3.8.23)[Hermitian Matrix].A Hermitian matrix is a matrix A ∈Mn×n(F ) that satisfies
At = A.

Prop.(2.3.8.24) [Gram Matrix].Let V be a n-dimensional vector space with a canonical basis
e1, . . . , en, then a n× n symmetric(Hermitian) matrix M defines a bilinear(sesqui-linear) form B on
V by (x, y) 7→ xtMy(xtMy). Conversely, for any bilinear(sesqui-linear) form B on V , let M = (aij)
where aij = (ei, ej), then M is symmetric(Hermitian) matrix, called the Gram matrix of B.

so we will interchange freely between a symmetric(Hermitian) matrix and a bilinear(sesqui-linear)
form on V .

Proof: Trivial. □
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9 Tensor Algebras
Def.(2.3.9.1) [Tensor Algebras].The tensor product and tensor algebras of modules are defined
in(2.2.4.13) and(4.1.1.20). In this subsection, we focus on tensor algebras of vector spaces.

Def.(2.3.9.2)[Symmetrized Tensors].Let V be a vector field over a field of characteristic 0, for any
n, we define a multilinear map

V n → Tn(V ) : (v1, . . . , vn) 7→ 1
n!

∑
σ∈Sn

vσ(1) ⊗ . . .⊗ vσ(n).

and descends to a linear map σ : Sn(V ) → Tn(V ), called the symmetrizer. Elements in Im(σ) =
S̃n(V ) is called symmetrized tensors.

Then σ2 = σ, and ker(σ) = I ∩ Tn, where I = ker(T (V )→ Sym(V )). In particular,

Tn(V ) = S̃n(V )⊕ (Tn(V ) ∩ I).

Proof: σ2 = σ is easy. So V = Im(σ) ⊕ ker(σ). Now Tn(V ) ∩ I ⊂ ker(σ), and because Im(σ) →
Sn(V ) is surjective, Tn(V ) ∩ I = ker(σ). □

Def.(2.3.9.3)[Anti-Symmetrized Tensors].Let V be a vector field over a field of characteristic 0,
for any n, we define a multilinear map

V n → Tn(V ) : (v1, . . . , vn) 7→ 1
n!

∑
σ∈Sn

sgn(σ)vσ(1) ⊗ . . .⊗ vσ(n).

and descends to a linear map σ : ∧n(V )→ Tn(V ), called the anti-symmetrizer. Elements in Im(τ) =
∧̃n(V ) is called anti-symmetrized tensors.

Then τ2 = τ , and ker(τ) = I ∩ Tn, where I = ker(T (V )→ ∧(V )). In particular,

Tn(V ) = ∧̃n(V )⊕ (Tn(V ) ∩ I).

Proof: σ2 = σ is easy. So V = Im(σ) ⊕ ker(σ). Now Tn(V ) ∩ I ⊂ ker(σ), and because Im(σ) →
Sn(V ) is surjective, Tn(V ) ∩ I = ker(σ). □

10 Determinant and Trace
Def.(2.3.10.1)[Determinant].For a linear operator T ∈ L(V ), as dim∧nV ∗ = 1, the determinant

det(T ) ∈ R is defined by ∧n(T t) = detT · id∧nV ∗ . That is: L(Tα1, . . . , Tαn) = detTL(α1, . . . , αn).
And the determinant of a matrix is defined by the linear operator it associates in a canonical basis.

Prop.(2.3.10.2)[Properties of Determinants].
1. det(idV ) = 1.
2. det(UV ) = detU · detV .
3. T is invertible iff detT is invertible, in which case det(T−1) = (detT )−1.
4. If {α1, . . . , αn} is a basis for V , and fi is its dual basis, then detT = f1∧ . . .∧fn(Tα1, . . . Tαn).

Proof: All these are not hard. □

Cor.(2.3.10.3). det(P−1AP ) = det(A).
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Prop.(2.3.10.4). detT = detT t.

Proof: Use(2.3.10.2), if {α1, . . . , αn} is a basis for V , and fi is its dual basis, then

detT t = α1 ∧ . . . ∧ αn(T tf1, . . . , T
tfn) = f1 ∧ . . . ∧ fn(Tα1, . . . Tαn) = detT

□

Prop.(2.3.10.5)[Expansion of Determinants]. If Ai be the i-th column of A, then

detA = f1 ∧ . . . ∧ fn(Aε1, . . . , Aεn) = f1 ∧ . . . ∧ fn(A1, . . . , An) =
∑
σ∈Sn

sgn(σ)
∏

1≤i≤n
Aσ(i)i.

Prop.(2.3.10.6).For a matrix, the determinant satisfies the following properties:
1. adding a multiple of a column/row to another column/row, the determinant doesn’t change.
2. Multiplying a row or a column with a scalar, then the determinant multiplies with this scalar.
3. Changing two rows or two columns makes the determinant multiply by −1.

Proof: All this follows from 4 of(2.3.10.2). Notice the last one follows from the first two. □

Prop.(2.3.10.7)[Laplacian Expansion Formula].Cf.[Determinant 安⾦鹏 P15].

Prop.(2.3.10.8).Adjunction matrix, Cf.[Determinant 安⾦鹏 P16].

Proof: □

Cor.(2.3.10.9). If AB = 1, then BA = 1.

Prop.(2.3.10.10)[Cramer’s Rule].Cf.[Determinant 安⾦鹏 P16].

Prop.(2.3.10.11)[Binet’s Formula].Let F/E be a Hermitian pair, A ∈Mn×m(F ), then

det(A∗A) =
∑

I∈{0,...,n},#I=m
| det(AI)|2.

Proof: Let L : Fm → Fn be the corresponding map, then ∧n(L∗) ◦ ∧n(L) = ∧n(L∗ ◦ L). In the
canonical basis, the matrices for ∧n(L∗)(resp. ∧n(L)) have only one column(resp. one row) with
entries det(AI) by definition(2.3.10.1), thus the assertion follows by(2.3.10.1) again. □

Prop.(2.3.10.12)[Sylvester’s Determinant Identity]. If A and B are matrices of sizes m× n and
n×m, then

det(Im +AB) = det(In +BA)

Proof: Notice [
1 A
B 1

]
=
[

1 0
B 1

] [
1 0
0 1−BA

] [
1 A
0 1

]

=
[
1 A
0 1

] [
1−BA 0

0 1

] [
1 0
B 1

]

and use(2.3.10.2). □
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Cor.(2.3.10.13).Multiplying by x, we see that the characteristic polynomial of AB and BA are the
same.

Remark(2.3.10.14).There is another proof in case m = n: It suffices to show

det(I + (A+ xI)(B + xI)) = det(I + (B + xI)(A+ xI)).

But notice A+ xI and B + xI are invertible in Mn×n(K(X)), thus

det(I + (A+ xI)(B + xI)) = det((A+ xI)((A+ xI)−1 + (B + xI))) = det(I + (B + xI)(A+ xI)).

Prop.(2.3.10.15).

det
[
A B
C D

]
= det(A) det(D − CA−1B).

Proof: As before, consider det
[
A+ xI B
C D + xI

]
, then A+ xI is invertible, and this equals

det
[
A+ xI B
C D + xI − C(A+ xI)−1B

]
= det(A+ xI) det(D + xI − C(A+ xI)−1B).

Letting x = 0, we get the desired result. □

Prop.(2.3.10.16) [Symplectic Group Determinant].The determinant of a symplectic matrix ∈
Sp(2n,R) has determinant 1.

Proof: A symplectic matrix preserves the symplectic structure thus the symplectic form ω, hence
preserves ωn which is n! times the volume form, so it has determinant 1 by definition(2.3.10.1). □

Prop.(2.3.10.17) [Vandermonde Matrix].The n × n Vandermonde matrix, with the k-th row
(1, xk, . . . , xnk), has determinant ∏i<j(xi − xj). So it is invertible when xi are pairwisely different.

Proof: Eliminate the first row by adding columns. □

Prop.(2.3.10.18)[Pfaffian].There is a polynomial Pf called Pfaffian s.t. detM = Pf(M)2 for a skew-

symmetric matrix. This is because a skew symmetric is equal to At
[

0 1
−1 0

]k
A for A an orthogonal

matrix (2.3.8.3), so it has determinant (detA)2 and A and depends polynomially on the entries of
M .

Cor.(2.3.10.19).
Pf(AtMA) = detA · Pf(M).

Because we only need to consider the sign and it is determined by letting A = id.

Traces

Def.(2.3.10.20)[Trace].For a n×n-matrix A, define its trace tr(A) to be the minus of the coefficient
of xn−1 in det(xI − A). It is clear that tr(A) =

∑n
i=1 aii, and by(2.3.10.3) that traces are invariant

under conjugacy.
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Prop.(2.3.10.21). tr(AB) = tr(BA).

Proof: This is because det(x − AB) = det(x − BA) by Sylvester determinant identity(2.3.10.12).
□

Prop.(2.3.10.22)[Trace Formula].For V ∈ Vect /k, F ∈ End(V ), d ∈ Z+,

t
d

dt
log det(1− FT d)−1 =

∑
i≥1

d tr(F i|V )T i ∈ 1 + Tk[[T ]].

In particular, if char k = 0,

det(1− FT d|V )−1 = exp(
∑
i≥1

tr(F i|V )T
di

i
) ∈ 1 + Tk[[T ]].

Proof: Pass to k and let k1, . . . , kr be the eigenvalues of F . □

11 (Real)Quaternion Algebra
Remark(2.3.11.1).The argument below are largely true for any skew field.

Def.(2.3.11.2) [Real Quaternion Algebra].The real quaternion algebra H is the space
R{1, i, j, k} subjects to the relations

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = −1.

In fact, by(12.5.5.6), any quaternion algebra over R is isomorphic to H.

Prop.(2.3.11.3) [Module of Quaternion Algebras].There is an involution on H that x =
a+ bi+ cj + dk = a− bi− cj − dk. Then we define a the module of x ∈ H as

|x|2 = xx = xx = a2 + b2 + c2 + d2.

Then every non-zero element of H is invertible. In particular, it is a skew field.

Prop.(2.3.11.4).H is isomorphic to subalgebra of matrices in M(2,C) consisting of elements of the
form

{
[
α −β
β α

]
|α, β ∈ C}

Prop.(2.3.11.5).The center of H is R, by(12.5.4.3).

Prop.(2.3.11.6)[Invertible Quaternion Matrices].Denote GL(n,H) the set of invertible matrices
in Mn(H). If A ∈Mn(H), A acts on Hn, and determines a complex matrix A′ in M2n(C).

• If A,B ∈Mn(H) satisfies AB = 1, then BA = 1.
• A ∈M = GL(n,H) iff A′ ∈ GL(2n,C). In particular if we define the determinant of A ∈Mn(H)

as the determinant of A′, then det(A) ̸= 0 iff A is invertible.

Proof: 1: (AB)′ = A′B′, thus Mn(H) is a subalgebra of M2n(C). Thus B′A′ = 1 by(2.3.10.9).
2: If A′ is invertible, then A is a bijection, thus there are vectors v1, . . . , vn that Avi = ei. This

means
(v1, . . . , vn)A = 1.

Thus by item1 A is invertible. □
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Def.(2.3.11.7) [Sesquilinear Form on Hn].Let V = Hn, then a sesquilinear form on Hn is a
bi-additive function (·, ·) : V × V → H such that

(xα, yβ) = α(x, y)β, α, β ∈ H.

Moreover if it is called a Hermitian form iff (x, y) = (y, x), and skew-Hermitian iff (x, y) = −(y, x).

Prop.(2.3.11.8)[Quaternion Hermitian Forms].
• Every non-degenerate Hermitian quaternion form is of the form

(x, y) = x1y1 + . . . xpyp − xp+1yp+1 − . . .− xnyn

in some basis. And p is uniquely determined.

• Every non-degenerate skew-Hermitian quaternion form is of the form

(x, y) = x1jy1 + . . .+ xnjyn

in some basis.

Proof: Firstly, there are some v that (v, v) ̸= 0: If (v, v) = 0 for all v, then (x, y) + (y, x) = 0
for all x, y. If it is skew-Hermitian, this means (x, y) is real, which is impossible, unless (x, y) = 0.
If it is Hermitian, this means (x, y) is imaginary, but (x, yi), (x, yj), (x, yk) are all imaginary, thus
(x, y) = 0.

Then choose this v, and take the orthogonal complement of v, then by induction we can find
v1, . . . , vn that is mutually orthogonal.

If it is Hermitian, then (vi, vi) ∈ R, thus we can find some ti ∈ R that (tvi, tvi) = ±1. 2p is the
multiplicity of the eigenvalue 1 of the eigenspace of to the matrix corresponding to the form, so p is
uniquely defined.

If it is skew-Hermitian, then (vi, vi) is imaginary, thus by(11.7.4.7), there are ui ∈ H that
(uivi, uivi) = ui(vi, vi)ui = j. □

Cor.(2.3.11.9).
• Every non-degenerate Hermitian quaternion form is of the form

(x, y) = B1(x, y) + jB2(x, y)

in some basis, where B1(x, y) is the usual canonical Hermitian form of signature (2p, 2q), and
B2 is the usual canonical skew-symmetric bilinear form. Also B2(x, y) = B1(xj, y).

• Every non-degenerate skew-Hermitian quaternion form is of the form

(x, y) = B1(x, y) + jB2(x, y)

in some basis, where B1(x, y) is the usual canonical skew-Hermitian form that iB1 is Hermitian
of signature (n,−n), and B2 is the usual canonical symmetric bilinear form. Also B2(x, y) =
B1(xj, y). in some basis.
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12 Others

Prop.(2.3.12.1).Let H∗ = ⊕2d
i=0H

i be a graded algebra over a field s.t. dimH i < ∞ for each i.
Assume that for each 0 ≤ i ≤ 2d, there is a perfect pairing

H i ×H2d−i → K

induced from an isomorphism tr : H2d ∼= K, Let φ be a ring endomorphism of H∗ that satisfies
• φ(H i) ⊂ H i,
• φ2d = id

Then each φi is invertible, and φ−1
i = φt2d−i, where φt2d−i is the transpose of φ2d−i w.r.t. the perfect

pairing H i ×H2d−i → K.

Proof: Let a ∈ H i be any element, if a ̸= 0, then because the pairing H i × H2d−i → K is
perfect, there exists some b ∈ H2d−i s.t. ab ̸= 0. Thus φi(a)φ2d−i(b) ̸= 0, thus φi is injective. Now
tr(φ−1

i (a)b = tr(φ2d(φ−1
i (a)b)) = tr(aφ2d−i(b)), thus φ−1

i = φt2d−i. □
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2.4 More on (Non-Commutative)Algebras
Main references are [Noncommutative Rings, T.Y.Lam], [Lan05]Chap17 and [Sta]Chap11.

Notation(2.4.0.1).
• Use notations defined in Abstract Algebra.

1 Semisimplicity
Def.(2.4.1.1).For R ∈ Ring, a simple R-module is a E ∈ ModR that no submodules other than 0
and E. It is called faithful iff there is no nonzero element a ∈ R that ax = 0 for any x ∈ E.

It is called non-degenerate if RE = E.

Prop.(2.4.1.2)[Shur’s lemma].For R ∈ Ring and E a simple R-module, EndR(E) is a division ring,
this is because the kernel and image are all 0 or E.

Cor.(2.4.1.3)[Uniqueness of Decomposition of Modules]. If an R-module E can be written as
a finite direct sum of simple R-modules in multiple ways, then the multiplicity of the irreducible
modules appearing in it is uniquely determined.

Proof: Cf.[Lang, Algebra, P643] □

Def.(2.4.1.4)[Semisimple Modules].For R ∈ Ring, a semisimple R-module is a E ∈ ModR iff
it satisfies the following equivalent conditions:

• It is a sum of simple modules.
• It is a direct sum of simple modules.
• Any submodule F of E has a complement in E.

Proof: 3 → 2: By Zorn’s lemma, it suffices to show any non-zero semisimple module contains a
simple submodule: Take a m ̸= 0 ∈ M , then we may assume M = Rm, and by Zorn’s lemma there
is a maximal submodule N that m /∈ N , and let N ⊕N ′ = M , then we show N ′ is simple. because
any submodule N ′′ satisfies m ∈ N ⊕N ′′ thus N ′′ = N ′.

2→ 1 is immediate, it suffices to show 1→ 3: for any submodule N ⊂M , consider all the simple
modules that intersect N trivially, denote their sum by V , I claim N ⊕V = M , otherwise, let S be a
simple submodule that contained in N +V , then S ∩ (N +V ) = 0, so N ∩ (S+V ) = 0, contradicting
the maximality. □

Cor.(2.4.1.5).For R ∈ Ring, any submodule and quotient module of a semisimple R-module is
semisimple.

Proof: The quotient is clearly a sum of simple modules, and for a submodule, its submodule has
a complement. □

Density Theorems

Def.(2.4.1.6). If E be a semisimple R-module, let R′ = EndR(E), then E is also a R′-module, where
the action is given by (φ, x) 7→ φ(x). Then any element of R defines an element of EndR′(E) by left
multiplication. If we called EndR′(E) the bicommutatant of E over R, then

Lemma(2.4.1.7).For a module E over R, let EndR′(E) be the bicommutant. If f ∈ EndR′(E) and
x ∈ E, then there is an element α ∈ R that αx = f(x).
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Proof: Since E is semisimple, write E = Rx ⊕ F , and let π be the projection unto Rx, then
π ∈ EndR(E), and f(x) = f(π(x)) = πf(x) ∈ Rx. □

Prop.(2.4.1.8)[Jacobson Density Theorem].Let E be semisimple over R and let R′ = EndR(E).
If f ∈ EndR′(E) and x1, . . . , xn ∈ E, then there is an element α ∈ R that αxi = f(xi) for all i.

In particular, if E is f.g. over R′, the natural map R→ EndR′(E) is surjective.

Proof: Consider fn ∈ EndR(En), then it is just a n × n matrix with entries in R′ = EndR(E).
Consider the lemma(2.4.1.7) shows there is an α ∈ R that

(αx1, . . . , αxn) = (f(x1), . . . , f(xn))

which is the result. □

Cor.(2.4.1.9) [Wedderburn Theorem].Let R ∈ Ring and E is a faithful simple R-module. Let
D = EndR(E). If E is of f.g. over D, then R = EndD(E).

Proof: The density theorem(2.4.1.8) and the fact E is f.g. over D shows that R → Endk(E) is
surjective, and also injective because it is faithful, thus R = Endk(E). □

Cor.(2.4.1.10)[Burnside’s Theorem].Let E is an R-module that is f.d over an alg.closed field k
and R is a subalgebra of Endk(E). If E is simple as an R-module, then R = Endk(E).

Proof: It follows from Shur’s lemma(2.4.1.2) and(2.2.1.10) R′ = EndR(E) is just k, so we can use
Wedderburn’s theorem(2.4.1.9). □

Cor.(2.4.1.11)[F.d. Simple Module over Commutative Algebra]. If R is commutative and E
is a simple R-module of f.d. over an alg.closed field k, then E is of 1-dimensional.

Proof: The theorem shows the image of R in Endk(E) is all of Endk(E), but Shur’s lemma(2.4.1.2)
and(2.2.1.10) that the image of R consists of scalars, thus dimk E = 1. □

Prop.(2.4.1.12) [Projection Operators].Let k be a field and R is a k-algebra. If V1, . . . , Vn are
pairwise non-isomorphic simple R-modules of f.d. over k, then there exists elements ei in R that acts
as identity on Vi and 0 on other Vj .

Proof: This is an immediate consequence of Jacobson density theorem(2.4.1.8) applied to the
projection operator on ⊕iVi. □

Prop.(2.4.1.13)[Characters Determine F.D. Representations(Bourbaki)].Let R be an algebra
over a field k of char0, E1, E2 be two f.d. semisimple R-module over k, then if the character χ1 = χ2,
then the R-modules E1, E2 are isomorphic.

Proof: E,F are isomorphic to direct sums of simple R-modules, so it suffices to show the multi-
plicities m,n of any simple module V is the same. We can find an element e that is identity on E
and 0 on other simple modules Vi by(2.4.1.12), thus the trace of e on E,F are mdimk(V ), n dimk(V )
respectively, thus m = n because k is of char0. □

Def.(2.4.1.14)[Matrix Coefficients].For an algebra R and an R-module M over a field k, then a
matrix coefficient of M is a function c : R → k of the form c(r) = L(rx), where L is a linear
functional on M and x ∈M .
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Cor.(2.4.1.15). If R is an algebra over a field k and two simple R-modules that is f.d. over k have a
nonzero matrix coefficient in common, then they are isomorphic.

Proof: Let c(r) = L1(rx1) = L2(rx2). If they are non-isomorphic, then we can find a e ∈ R that
is identity on M1 and 0 on M2 by(2.4.1.12). Let c(u) ̸= 0, then

c(ue) = L1(uex1) = L1(ux1) = c(u) ̸= 0, c(ue) = L2(uex2) = L2(0) = 0

contradiction. □

Prop.(2.4.1.16)[Simple Modules of Tensor Product].Let A,B be algebras over a field Ω, R =
A⊗B, then:

• If P be a simple R-module of f.d. over Ω, then there is a simple A-module M and a simple
B-module N that P is isomorphic to a quotient of M ⊗ N . Also the isomorphism classes of
M,N are uniquely determined.

• If Ω is alg.closed and M,N are simple modules of A,B of f.d. over Ω, then M ⊗N is a simple
module over A⊗B.

Proof: 1: because P is f.d., it contains a simple A-module M . Let N1 = HomA(M,P ), then it
is a B-module as A,B commutes in A ⊗ B. Then we can define a map λ : M ⊗ N1 → P , which is
a A ⊗ B-module morphism. Now N1 is also of f.d., so it contains a simple B-module N , and λ is
clearly non-zero on M ⊗N , thus its image is all of P , as P is simple.

For the uniqueness, let d = dimN , then P is isomorphic to k ≤ d copies of M as an A-module,
so the isomorphism class of M is determined, so does that of N .

2: Consider the map of A,B to EndΩ(M),EndΩ(N) are surjective by(2.4.1.10). Then it suffices
to show thatM⊗N are simple over EndΩ(M)⊗EndΩ(N), but this is just EndΩ(M⊗N), over which
M ⊗N is clearly simple. □

Semisimple Rings and Simple Rings

Def.(2.4.1.17)[Semisimple Ring].A (left)semisimple ring is a ring R s.t. it is a (left)semisimple
module over itself. In(2.4.1.23), we will see a semisimple ring is semisimple in both sides.

Prop.(2.4.1.18).Any semisimple ring is left Artinian and Noetherian.

Proof: Consider the decomposition R = ⊕αAα, where Aα are simple left R-ideals. Then by
considering the decomposition of 1 ∈ R, clearly this is a finite sum. The rest is easy. □

Prop.(2.4.1.19). If R is a semisimple ring, then any R-module is semisimple.

Proof: Any R-module is a quotient of a free R-module, thus semisimple, by(2.4.1.5). □

Prop.(2.4.1.20).R is semisimple iff all R-modules are projective.

Proof: If R is left-semisimple, for any R-module P and an exact sequence

0→ N →M → P → 0

by(2.4.1.19), there is a complement of N in M , thus this sequence splits and P is projective. The
converse is also clear that any submodule of any R-module has a complement. □

Lemma(2.4.1.21).Let D be a division ring and R = Mat(n;D), then
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• R is simple, left semisimple and left Noetherian.
• R has a unique left simple module V , and R acts faithfully on V , with R ∼= nV .
• EndR(V ) ∼= D.

Proof: Cf.[Lam, P31]. □

Prop.(2.4.1.22)[Wedderburn-Artin].Any left semisimple ring is of the form R ∼= Mat(n1, D1) ×
. . .×Mat(nr, Dr), and Dk are uniquely determined division rings. There are exactly r different left
simple R-modules and Di are uniquely determined.

Proof: Consider the decomposition

R ∼= n1V1 ⊕ . . .⊕ nrVr

where Vi are simple leftR-modules. Then we can use Schur’s lemma(2.4.1.2) and(2.4.1.21) to calculate
the endomorphism ring, so

R ∼= End(n1V )× . . .× End(nrVr) ∼= Mat(n1, D1)× . . .×Mat(nr, Dr).

For the uniqueness, we use(2.4.1.21), which shows Di and Vi both can be recovered. □

Cor.(2.4.1.23).R ∈ Ring is left semisimple iff it is right semisimple.((2.3.1.11) is used).

Cor.(2.4.1.24).A semisimple commutative ring is a finite direct product of fields.

Def.(2.4.1.25) [Semisimple Categories].Let k ∈ Field and A a k-linear Abelian category that
End(X) are all finite k-modules for X ∈ A, then A is semisimple iff End(X) is a semisimple k-
algebra for any X.

Proof: If A is semisimple, then any X ∈ A is a direct sum of simple objects, so End(X) is
semisimple.

Conversely, if End(X) is semisimple thus a product of matrix algebras over division algebras, so
X can be indecomposable only if End(X) is a division algebra. Now if f : M → N is a morphism of
indecomposable objects, if there is a map g : N →M that g ◦f ̸= 0, then g ◦f is an automorphism of
M , and (g ◦ f)−1 ◦ g is a right inverse to f , so N is a direct sum of M , and thus f is an isomorphism
because M is indecomposable.

Now it suffices to show any indecomposable object is simple. If M is an indecomposable object
properly contained in another indecomposable object, then[

0 0
Hom(M,N) 0

]
⊂
[

End(M) Hom(N,N)
Hom(M,N) End(N)

]
= End(M ⊕N)

is a two sided nilpotent nonzero ideal, contradicting the fact End(M ⊕N) is semisimple. □

Prop.(2.4.1.26) [Semisimplicity and Base Change]. If A ∈ Algk and A ⊗k K is semisimple for
some field extension K/k, then A is semisimple. Conversely, if A is semisimple, then A ⊗k K is
semisimple for every separable field extension K/k.

Proof: Cf.[Milne, Lie Algebras, Lie Groups and Algebraic Groups]P48. □
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Prop.(2.4.1.27)[Characters Determine F.D. Representations]. If R is a semisimple ring over
a field k of characteristic 0, then its f.d. representations are determined by their characters,
by(2.4.1.13).

Prop.(2.4.1.28)[Simple Artinian Algebras].For a simple ring R(2.2.1.2), the following are equiv-
alent:

• R is left semisimple.
• R is left Artinian.
• R has a minimal left ideal.
• R ∼= Mat(n;D) for some division ring D.

Proof: The equivalence of 1, 4 is by Wedderburn theorem(2.4.1.22) and(2.4.1.21). 2 → 3 is easy,
and for 1 → 2, R is a finite direct sum of minimal ideals by Wedderburn theorem(2.4.1.22), so it is
Artinian.

For 3 → 1, consider all the ideals in R that is isomorphic to the minimal ideal A, then it is also
a right ideal of R, so equals R, hence R is semisimple. □

Cor.(2.4.1.29).And finite simple k-algebra A is of the form Mat(n;D) where D is a finite division
ring over k. This is because A is clearly left Artinian.

Prop.(2.4.1.30)[Double Centralizer Property].Let R be a simple ring and A a nonzero left ideal.
Let D = EndR(A), then the natural map f : R→ End(AD) is an isomorphism.

Proof: since R is simple, f is injective. To show it is surjective, let E = End(AD), then for any
a, r ∈ A and h ∈ E, we have h(ra) = h(r)a, thus

(h · f(r))a = h(ra) = h(r)a = f(h(r))a

which shows f(R) is a left ideal in E. And because AR = R, we have f(R) = f(A)f(R), then

Ef(R) = Ef(A)f(R) ⊂ f(A)f(R) = f(R).

which shows f(R) is a left ideal in E, and it contains 1, so f(R) = E. □

2 Jacobson Radical Theory
Def.(2.4.2.1)[Jacobson Radical].For R ∈ Ring, the Jacobson radical is defined to be the inter-
section of all maximal left ideals in R.

R is called Jacobson semisimple if radR = 0.
R is called semi-local if R = R/ radR is semisimple.
R is called semi-primary if R is semi-local and radR is nilpotent.

Prop.(2.4.2.2)[Characterizing Jacobson Radicals].For y ∈ R, the following are equivalent:
• y ∈ radR.
• 1− xy is left-invertible for any x ∈ R.
• yM = 0 for any simple left R-module M .
• 1− xyz is invertible for any x, z ∈ R.
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Proof: 1 → 2: If 1 − xy is not left invertible, then it is contained in a maximal left ideal m, but
y ∈ m, then 1 ∈ m, contradiction.

2 → 3: If ym ̸= 0, then we must have Rym = M , so xym = m for some x ∈ R, which shows
(1− xy)m = 0, but then m = 0.

3→ 1: Consider the simple left R-module R/m for any maximal left ideal m.
4→ 2 is trivial, for 1 + 2 + 3→ 4: By item3 we know radR is an ideal, so yz ∈ radR and there

is a u that u(1 − xyz) = 1. But then u = 1 + u(xyz) is also left-invertible, so u is invertible and
1− xyz is invertible. □

Cor.(2.4.2.3). radR is the largest ideal A of R that 1 + A are all units. In particular, the left radical
agrees with the right radical.

Def.(2.4.2.4)[Locally Nilpotent Subsets].A subset of a unital ring R is called locally nilpotent
iff every element of it is nilpotent.

Lemma(2.4.2.5). if a left or right ideal A ⊂ R is locally nilpotent, then A ⊂ radR.

Proof: Suppose y ∈ A, then xy ∈ A is nilpotent. So 1 − xy has an inverse, for any x. Then
y ∈ radR, by(2.4.2.2). □

Prop.(2.4.2.6)[Artinian Radical Nilpotent]. In a left Artinian ring, radR is the largest nilpotent
left ideal, and it is also the largest nilpotent right ideal.

Proof: By the above lemma, it suffices to show J = radR is nilpotent. By Artinian property, the
descending chain J ⊃ J2 ⊃ J3 ⊃ . . . is stabilizing, so there exists k s.t. Jk = Jk+1 = I. Then I = 0,
because otherwise we can choose a minimal non-zero left ideal A s.t. IA = 0. Then if a ̸= 0 ∈ A,

I(Ia) = I2a = Ia = 0,

so A = Ia, and a = ya for some y ∈ J , so (1− y)a = 0. But 1− y is a unit by(2.4.2.2), contradiction.
□

Cor.(2.4.2.7). In a left Artinian ring, any 1-sided locally nilpotent ideal is nilpotent. By left Artinian,
there is a k that (radR)k = (radR)k+1 = I. Now if I ̸= 0, then we can choose a minimal left ideal A
that IA ̸= 0 by Artinian property. Now there is an a ∈ A that Ia ̸= 0, so I(Ia) = Ia ̸= 0, so Ia = A
and a = ya for some y ∈ I. But 1− y is invertible, so a = 0, contradiction.

Prop.(2.4.2.8)[Semisimplicity and Jacobson Semisimplicity].For R ∈ Ring, the following are
equivalent:

• R is semisimple.
• R is Jacobson semisimple and left Artinian.
• R is Jacobson semisimple and satisfies DCC on principal left ideals.

Proof: 1→ 2: R is left Artinian by(2.4.1.18), and consider R = radR⊕B, then B is contained in
a maximal left ideal m, which cannot contain radR, unless radR = 0.

3 → 1: 3 implies that ay left ideal A contains a minimal left ideal I(the minimal principal one),
and every minimal left ideal I is a direct summand of RR(by choosing the maximal left ideal m not
containing I, because I ⊕m = R).

Then we can deduce 1: If R is not semisimple, then take a minimal left idealB1, then R = B1⊕A1,
and A1 ̸= 0 otherwise R is semisimple, and we can choose a minimal left ideal B2 ⊂ A1, then
A1 = B2 ⊕ A2. Continuing this way, we get a chain of left ideals A1 ⊃ A2 ⊃ . . ., and they are both
principal because they are direct summands of RR, contradicting item3. □
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Prop.(2.4.2.9) [Hokins-Levitzki Theorem].Let R be a semi-primary ring(2.4.2.1), then for any
R-module M , the following are equivalent:

• M is Noetherian.
• M is Artinian.
• M has a composition series.

In particular, a ring is left Artinian iff it is left Noetherian and semi-primary.

Proof: It suffices to prove if M is Noetherian or Artinian, M has a composition series. Denote
J = radR, then Jn for some n > 0. We consider

0 ⊂ Jn−1M ⊂ . . . ⊂ JM ⊂M,

and the quotient Jk−1M/JkM is Artinian or Noetherian over R = R/ radR which is semisimple, so
it is a direct sum of simple modules, and the sum is finite, so there is a compostion series.

The last assertion: A left Artinian ring is semi-primary, by(2.4.2.6) and(2.4.2.8). So the assertion
follows from the equivalence of item1 and 2. □

Lemma(2.4.2.10).Let x ∈ radR where R is a k-algebra, then x is algebraic over k iff x is nilpotent.

Proof: One direction is trivial. For the other, if xr + a1x
r+1 + . . .+ anx

r+n = 0, then because

1 + a1x
1 + . . .+ anx

n

is invertible, we have xr = 0. □

Prop.(2.4.2.11)[Amitsur]. Suppose k is a field and R is a k-algebra that dimk R < |k|, then radR
is the largest locally nilpotent ideal of R.

Proof: If |k| < ∞, then R is Artinian, so radR is nilpotent by(2.4.2.6), and it is the largest
by(2.4.2.6) again. Suppose now k is infinite. By the lemma above, it suffices to show every r ∈ radR
is algebraic over k. Notice that a − r is invertible for a ∈ k∗, and {(a − r)−1} cannot be k-linearly
independent because dimk R < |k|, so there is a dependence relation

n∑
i=1

bi(ai − r)−1 = 0.

Hence r is algebraic over k. □

Prop.(2.4.2.12)[Amitsur].Let R be a ring and S = R[T ]. Let J = radS and N = R ∩ J , then N is
a locally nilpotent ideal in R, and J = N [T ]. In particular, if R is Jacobson semisimple, then S is
also Jacobson semisimple(2.4.2.5).

Proof: Cf.[Lam, P71]. □

Lemma(2.4.2.13).Let R ∈ Ring /k and K/k is a separable algebraic field extension, then if R is
Jacobson semisimple, so is R⊗k K.

Proof: Cf.[Lam, P76]. □

Prop.(2.4.2.14)[Jacobson Radical Under Base Change of Fields].Let R ∈ Ring /k and K/k a
separable algebraic extension, then rad(R⊗k K) = (radR)⊗k K.

Proof: Cf.[Lam, P76]. □



2.4. MORE ON (NON-COMMUTATIVE)ALGEBRAS 115

3 Finite Semisimple k-Algebras
Reference for this subsection is [Sta]Chap 11.

Def.(2.4.3.1)[Azumaya Algebras].A central k-algebra is an algebra A that the center of A is the
image of k → A.

Def.(2.4.3.2)[Azumaya Algebras].An Azumaya algebra over k is defined to be a finite central
k-algebra. The category of Azumaya algebras over k is denoted by Azk.

Lemma(2.4.3.3).Let D be a division ring with central field k and A ∈ Ring /k, then any two-sided
ideal I of A⊗kD is of the form J ⊗kD for some two-sided ideal J of A. In particular, if A is simple,
then A⊗k D is also simple.

Proof: Cf.[Sta]074C. □

Lemma(2.4.3.4).Let R ∈ Ring and n ∈ Z+, then
• The functors M 7→ M⊕n, N 7→ e11n defines an equivalence of categories between ModR and

ModMat(n,R).
• Any two-sided ideal of Mat(n,R) is of the form Mat(n, I) for some two-sided ideal I of R.
• Then center of Mat(n,R) is the equal to the center of R.

Prop.(2.4.3.5). if A,A′ are two simple k-algebras that A is finite central over k, then A⊗kA′ is simple.

Proof: Let A′ be finite central over k, then by(2.4.1.28), A′ ∼= Mat(n,D) for some finite central
division algebra over k. Then

A⊗k A′ ∼= Mat(n,A⊗D),

which is simple by(2.4.3.3) and(2.4.3.4). □

Cor.(2.4.3.6).The tensor product of two Azumaya k-algebras is an Azumaya k-algebra.

Proof: Combine the proposition with(2.2.1.14). □

Cor.(2.4.3.7) [Base Change]. If k ∈ Field and A ∈ Ring /k, then for any field extension k′/k,
A⊗k k′ ∈ Azk′ iff A ∈ Azk.

Proof: Combine(2.2.1.14) with(2.4.3.5). □

Prop.(2.4.3.8) [Skolem-Noether].Let A be a finite central simple k-algebra and B is a simple k-
algebra that f, g : B → A are two k-algebra homomorphisms. Then there exists an invertible element
x ∈ A that f = x−1gx.

Proof: Choose a simple A-module M , then L = EndA(M) is a skew field, and M has two B⊗k Lop
structures by f and g. The k-algebra B⊗kLop is simple by(2.4.3.5), and also B is finite simple because
there is a k-homomorphism B → A, so B ⊗k Lop is finite simple, thus the two B ⊗k Lop-structures
on M are isomorphic, which means there is a φ : M →M intertwining these two structures. But φ
commutes with L, meaning that φ is justing multiplying by some x ∈ A, so x is what we want. □

Cor.(2.4.3.9).Let A be a finite simple k-algebra, then any automorphism of A is inner.

Proof: Because the center of A is a finite field extension k′ of k that A is central simple over k′,
thus the Skolem-Noether theorem applies. □
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Splitting Fields

Prop.(2.4.3.10)[Centralizer Theorem].Let k ∈ Field and A ∈ Azk, and B a simple sub k-algebra
of A, then

• C = CA(B) is also simple.
• dimk A = dimk B · dimk C.
• CA(C) = B.

Proof: Cf.[Sta]074T.? □

Cor.(2.4.3.11).Let k ∈ Field and B ⊂ A ∈ Azk, then C = CA(B) is also in Azk, and A ∼= B ⊗k C.
In particular, if a division ring D is of f.d. over its center k, then D ∈ Azk, and dimkD is a

square.

Proof: dimk A = dimk(B⊗k C) by(2.4.3.10), and B⊗k C is simple by(2.4.3.5), so the natural map
B ⊗k C → A is an isomorphism, and the center of C is k by(2.4.3.5). □

Prop.(2.4.3.12).For k ∈ Field, A ∈ Azk, If K ⊂ A is a sub k-field, then the following are equivalent:
• dimk A = [K : k]2.
• CA(K) = K.
• K is a maximal commutative subring of A.

Proof: 1, 2 are equivalent by(2.4.3.10), and 2, 3 are clearly equivalent, as CAK is a commutative
subring containing K. □

Cor.(2.4.3.13). If D is a division ring with center k, then every maximal subfield of D satisfies
dimkD = [K : k]2.

Proof: This is because any commutative subring of A is a field. □

Def.(2.4.3.14)[Splitting Fields].For k ∈ Field and B a finite semisimple k-algebra, then B is said
to split if B is isomorphic to a product of matrix algebras over k. A field extension K/k is called a
splitting field of B if BK is split.

Prop.(2.4.3.15). If k ∈ Field, k = k, then any finite semisimple k-algebra is split.

Proof: This follows from(2.4.1.22) and(2.2.1.10). □

Cor.(2.4.3.16)[Central Simple Algebras are of Square Dimensions].Let k ∈ Field, A ∈ Azk,
then dimk A is a square.

Proof: This is true because A⊗k k is a matrix algebra. □

Prop.(2.4.3.17) [Maximal Subfields are Splitting].Let k ∈ Field, A ∈ Azk, k′/k a finite field
extension, then k is a splitting field of A iff there exists a B ∈ Azk similar to A(9.2.1.5) s.t. k′ ⊂ B
and dimk B = [k′ : k]2.

In particular, ifD is a division ring, any maximal subfield ofD is a splitting field ofD, by(2.4.3.12),

Proof: Cf.[Sta]074Z.? □

Cor.(2.4.3.18). If k ∈ Field and D is a central division ring with dimkD = d2, d ∈ Z+ by(2.4.3.16),
then for any splitting field k′/k, d|[k′ : k].
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Proof: By(2.4.3.17), there exists B ∈ Azk similar to D s.t. dimk B = [k′ : k]2. Then it follows
from(9.2.2.1) that B ∼= Mat(n,D) for some n ∈ Z+. Then n2d2 = [k′ : k]2, so d|[k′ : k]. □

Prop.(2.4.3.19)[Galois Splitting Fields, Noether-Köthe]. If k ∈ Field andD is a central division
ring over k, then there exists a maximal subfield K ⊂ D s.t. K/k is finite separable. In particular,
by(9.2.2.1)(2.4.3.17), any central simple algebra has a finite Galois splitting field.

Proof: Notice it suffices to prove that: if D ̸= k, there exists α ∈ D\k s.t. k(α)/k is separable.
This is because if we find such α, then D′ = CD(k(α)) is another simple division algebra with center
k(α), by(2.4.3.10), so we can use induction on D′/k(α).

We may assume k is non-perfect of characteristic p ∈ P, thus an infinite field. Suppose we cannot
find such an element, then every element satisfies an equation of the form T p

r − a = 0, where a ∈ k.
And because dimkD < ∞, there exists an r s.t. xpr ∈ k for any x ∈ D. Then we can use the fact
#k =∞ to show that xpr ∈ k for any x ∈ D⊗k k. But then every pr-th power of D⊗k k ∼= Mat(n, k)
is central, which is not true, as n > 1 and we can take e11. □

Cor.(2.4.3.20).Let k ∈ Field, then for A ∈ Ring /k, A ∈ Azk iff A ⊗k ksep ∼= Mat(n, ksep) for some
n ∈ Z+, by(2.4.3.7).

Def.(2.4.3.21) [Reduced Degree].For k ∈ Field and B a finite semisimple k-algebra, suppose
B =

∏
iBi where Bi are simple k-algebras with center ki, define the reduced degree of B over k

to be
[B : k]red =

∑
i

[Bi : ki]1/2[ki : k],

which is an integer by(2.4.3.16). And for any field extension k′/k,

[Bk′ : k′]red = [B : k]red.

Proof: To show it is invariant, pass to the algebraic closure, then B =
∏
j Mat(nj , k), and [B :

k]red =
∑
nj . □

Def.(2.4.3.22)[Reduced Norms].Let k ∈ Field and B an Azumaya k-algebra. If x ∈ B, let P (T ) be
the characteristic polynomial of r(T ) : B → B, Then by passing to Galois splitting fields(2.4.3.19), we
get P (T ) = Q(T )n where dimk B = n2. Then because there are Galois actions, we get Q(T ) ∈ k[T ],
and this Q(T ) is called the reduced characteristic of x. We can also routinely define reduced
norms and reduced trace, denoted by NmrdB/k and trrdB/k.

Then this reduced characteristic is just the usual one when B ∼= Mat(n; k). And when K is a
splitting field of B containing x, then this equals the characteristic polynomial of x in K/k.

More generally, if B is a simple algebra over k with center L, then we can define NmrdB/k =
NmK/k ◦NmrdB/K and trrdB/k = trK/k ◦ trrdB/K
Proof: For the last assertion, notice B = K ⊕Kx1 ⊕ . . .Kxn as modules over K. □

Prop.(2.4.3.23).For k ∈ Field and B a finite semisimple k-algebra, any maximal étale k-subalgebra
of B has rank [B : k]red over k.

Proof: This follows from(2.4.3.13). □

Prop.(2.4.3.24).For k ∈ Field and B a finite semisimple k-algebra, then for any faithful B-module
M ,

dimkM ≥ [B : k]red.

And the equality holds iff B is split.
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Proof: This is clear from(2.4.1.21). □

Prop.(2.4.3.25). If k ∈ Field and A ∈ Azk, then A⊗k Aop ∼= Mat(n, k), where n = dimk A.

Proof: There is a map A ⊗k Aop → Endk(A) : (a ⊗ a′) 7→ (x 7→ axa′). By(2.4.3.6), A ⊗k Aop
is simple, thus this is an injective map, but both sides have the same dimension, thus this is an
isomorphism. □

Finite Semisimple k-Algebras with Involution

Def.(2.4.3.26) [Involution].Let ∗ be an involution on a semisimple algebra B over a field k. It is
called an involution of first kind if it fixes elements in the center of B. It is called an involution
of second kind otherwise.

Prop.(2.4.3.27)[Decomposition].Let (B, ∗) be a f.d. semisimple k-algebra with an involution, if k
is alg.closed and has characteristic 0, then it decomposes as products of pairs of the following types:

• (A) : Mn(k)×Mn(k), (a, b)∗ = (bt, at).
• (C) : Mn(k), b∗ = bt.

• (BD) : M2n(k), b∗ = JbtJ−1, where J =
[
0 −I
I 0

]
.

Proof: Let B = B1 × . . .×Br be the decomposition into products of simple k-algebras, where B∗

are the minimal two-sided ideals of B. Applying ∗, B = B∗
1 × . . .×B∗

r so B∗
i is a permutation of Bi,

so B is a a product of algebras either simple or product of two simple algebras that ∗ interchanges
them.

If B is simple, then B ∼= Mn(k) as k is alg.closed, so b∗ = ubtu−1 for some u ∈Mn(k) by Skolem-
Noether(2.4.3.8). Then b = b∗∗ = (utu−1)−1butu−1, so utu−1 is in the center, denote it by c, then
ut = cu, u = c2u, so c = ±1, and u is symmetric or skew-symmetric. Up to a congruence, we see the
situation is (C) or (BD).

The other case is also easy. □

4 Idempotented Algebras
Lemma(2.4.4.1).Let R be a ring and e, f be idempotents of R that ef = fe = e, then f = e + e′,
where e′ is an idempotent and M [f ] = M [e]⊕M [e′].

Moreover, if R is an algebra over an alg.closed field k and M [e] is a simple R[e]-module of f.d.
over k, then dim HomR[e](M [e],M [f ]) = 1.

Proof: Let e′ = f − e, then it is easily verified to be an idempotent, and ee′ = e′e = 0, thus
M [f ] = M [e]⊕M [e′] is clear.

For the second, because R[e] acts by 0 in R[e′], HomR[e](M [e],M [f ]) = HomR[e](M [e],M [e]) has
dimension 1, by Shur’s lemma(2.4.1.2) and(2.2.1.10). □

Def.(2.4.4.2)[Idempotented Algebra].An idempotented algebra H is an algebra over a field k
together with a set E of idempotents that if e1, e2 ∈ E, then there exists e0 ∈ E that

e0e1 = e1e0 = e1, e0e2 = e2e0 = e2,

and also for any φ ∈ H, there exists e ∈ E that eφ = φe = φ.
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We can define a partial order on E: e < f iff ef = fe = f , then this order is cofinal.
If e is an idempotent, denote H[e] = eHe, which is a subring of H with unit e. Also if M is an

H-module, we denote M [e] the R[e]-module eM .

Prop.(2.4.4.3). If 0 → M1 → M2 → M3 → 0 is an exact sequence of H-modules, e ∈ E, then
0→M1[e]→M2[e]→M3[e]→ 0 is also exact.

Proof: Because tensoring an idempotent is exact. □

Def.(2.4.4.4) [Smooth Representations of Idempotented Algebras].Let (H,E) be an idem-
potented algebra, a smooth H-module M is an H-module M = ∪e∈EM [e], and an admissible
H-module is a smooth H-module that each M [e] is of f.d. over k.

A smooth H-module is clearly non-degenerate.

Def.(2.4.4.5)[Contragradient Module]. If M be a smooth H-module, then we can define a con-
tragradient M̂ of M , which is the smooth H-module consisting of smooth vectors in M∗, where
the action is defined as ((φ)λ)(m) = λ(ι(φ)m). Notice if M is admissible, then so does M̂ , because
an element in M̂ [e] is determined by its restriction on M [ι(e)], so M̂ [e] is of f.d. if M [ι(e)] does.

Prop.(2.4.4.6) [Simpleness Checked on Idempotents].Let M be a non-zero module over an
idempotented algebra (H,E) over C, E0 be a cofinal subset of E, then M is a simple H-module iff
M [e] is simple H[e]-modules for any e ∈ E0.

Proof: If there exists a proper H-submodule M1 of M , let M/M1 = M2, then M [e]/M1[e] = M2[e]
for all e by(2.4.4.3), Thus we can choose e s.t. M1[e] ̸= 0,M2[e] ̸= 0, thus M [e] is reducible.
Conversely, If W0 ⊂ M [eK ] is a proper non-zero H[eK ]-submodule, then [π(H)W0][e] = W0, thus
π(H)W0 is a proper submodule of M . □

Prop.(2.4.4.7) [Isomorphism Checked on Idempotents].Let V1, V2 be two simple admissible
modules over an idempotented algebra (H,E), if e ∈ E that V1[e] ∼= V2[e] ̸= 0, then V1 ∼= V2.

Proof: Choose an isomorphism j : V1[e]→ V2[e], then the subspace V ′ = {(x, jx)} ⊂ V1[e]⊕V2[e] ⊂
V1⊕V2 is a H[e]-submodule. Let V = π(H)V ′, then V [e] = V ′, so V is not contained or contains any
of V1 or V2, thus V ∩ V1 = V ∩ V2 = 0 as Vi are irreducible. Thus the projections V → V1, V → V2
are isomorphisms as Vi are irreducible, and V1 ∼= V2. □

Prop.(2.4.4.8)[Extension Theorem].Let (H,E) be an idempotented algebra and e ∈ E. If Ve is a
simple H[e]-module, then there is a simple H-module V that V [e] = Ve.

Proof: Let Ve ∼= H[e]/I, where I is a left ideal of Ve. Let E1, E2 be the module generated by I
and H[e] in H by left action of H, then E1[e] = I and E2[e] = H[e], thus (E3 = E1/E2)[e] ∼= Ve
by(2.4.4.3). Now if E′ is a submodule of E3, then either E′[e] = 0 thus (E3/E

′)[e] ∼= L, or E′[e] = L,
thus E′ = E3 by(2.4.4.7). Thus if we choose the proper submodule E′ that E3/E

′ is irreducible
by(15.1.2.8), then E3/E

′[e] = L. □

Prop.(2.4.4.9). If H is an idempotented algebra, thenM(H) has enough projectives.

Proof: For any idempotent e ∈ H, consider the module He, then it is projective, because
HomH(He,X) = eX, thus it is clearly exact. Now any m ∈ V has an idempotent e ∈ H that
ev = v(use definition). Thus by taking the direct sum, we are done. □



120 CHAPTER 2. ALGEBRAS

Spherical Idempotents

Def.(2.4.4.10)[Spherical Idempotents].Let (H,E) be an idempotented algebra over a field Ω. Then
an idempotent e ∈ E is called spherical idempotent if there exists an anti-involution ι : H → H

that ι(x) = x for any x ∈ H[e0]. Notice this implies H[e0] is commutative, as xy = ι(xy) = yx.

Def.(2.4.4.11)[Spherical Vectors].Let e0 be a spherical idempotent of the idempotented algebra
(H,E) and ι is the corresponding involution. If M is an admissible H-module, then a spheri-
cal(unramified) module is a H-module M that M [e0] ̸= 0, and elements in M [e0] are called
spherical vectors.

Then if M is simple and spherical, then M has at most one spherical vector up to scalar, and M̂
is also spherical. Thus the space of spherical vectors is fixed by H[e0], and the action of H[e0] on
that defines a spherical character.

Proof: In fact, M [e0] is a simple H[e0]-module(2.4.4.6), and is of f.d., and H[e0] is commuta-
tive(2.4.4.10), so(2.4.1.11) shows it is of dimension 1. so if m0 ̸= 0 ∈ M [e0], then we can define a
m̂0 ̸= 0 ∈ M̂ [e0] as:

e0m = m̂0(m) ·m0.

□

Prop.(2.4.4.12)[Isomorphism Checked on Spherical Idempotents].Let (H,E) be an idempo-
tented algebra over a field Ω and e0 is a spherical idempotent. IfM,N are simple admissible spherical
H-modules that M [e0] ∼= N [e0] over H[e0], then M ∼= N as H-modules.

Proof: This follows from(2.4.4.7). □

Restricted Tensor Product

Def.(2.4.4.13)[Restricted Tensor Product].Give an infinite number of vector spaces Vv indexed
by a set Σ and elements x0

v ∈ Vv be given for a.e. v, we can define the restricted tensor product⊗′ Vv as the direct limit
lim−→

S⊂Σ finite
⊗v∈SVv.

It can be thought of as the vector spaces spanned by all symbols ⊗vxv where xv = x0
v for a.e. v.

Notice if Vv are idempotented algebras and x0
v ∈ Vv are idempotents for a.e. v, then ∏′ Vv also

has a natural idempotented algebra structure.

Def.(2.4.4.14) [Tensor Product Module of Idempotented Algebras].Given a set of idempo-
tented algebras (Hv,Ev) and specify an idempotent e0

v for a.e. v. Let Mv be Hv-modules over k for
all v, and assume Mv[e0

v] be of dimension 1 a.e. v, and specify a.e. a non-zero element m0
v ∈Mv[e0

v]
Then we can define tensor product(2.4.4.13) ∏′ Hv which is an idempotented algebra and ∏′Mv.

Then we can define an restricted tensor module structure of Mv over ∏′ Hv by the action

(⊗vφv)xv = ⊗v(φv)xv.

Lemma(2.4.4.15) [Simple Module of Tensor Product].Let (H1,E1), (H2,E2) be idempotented
algebras over an alg.closed field Ω, and let (H,E) be the tensor product. If M1,M2 are simple
admissible modules over H1,H2, respectively, then M1 ⊗ M2 are simple admissible modules over
H1 ⊗H2, and any simple admissible module over H comes uniquely from a pair (M1,M2) like this.
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Proof: If M1,M2 are simple admissible over H1,H2 respectively, then if e1 ∈ E1, e2 ∈ E2, then
(M1 ⊗M2)[e1 ⊗ e2] = M1[e1]⊗M2[e2] is simple and of f.d. by(2.4.4.6) and(2.4.1.16), so M1 ⊗M2 is
simple by(2.4.4.6).

Now if M is simple admissible over H1 ⊗H2, then we find an e0
1 ⊗ e0

2 ∈ E that M [e0
1 ⊗ e0

2] ̸= 0.
Let E0

i = {ei ∈ Ei|ei < e0
i }, then E0

i is cofinal in Ei. Then for any ei ∈ E0
i , M [e1⊗ e2] is non-zero thus

simple, thus it is of the form

M [e1 ⊗ e2] = M1(e1, e2)⊗M2(e1, e2)

where Mi(e1, e2) are simple H[ei]-modules by(2.4.1.16).
Now we show that M2(e1, e2) depends only on e1: it suffices to show M2(e1, e2) = M2(f1, e2) for

f1 < e1. For this, notice that for any idempotents g1, g2,

M [g1 ⊗ g2] = M1(g1, g2)⊗M2(g1, g2)

is a finite direct sum of simple modules M2(g1, g2) as an H2[g2]-module. Notice that by(2.4.4.1),
M [e1 ⊗ e2] = M [f1 ⊗ e2] ⊕ M [e′ ⊗ e2] for e′ = f1 − e1, so by(2.4.1.3), M2(f1, e2) = M2(e1, e2).
Similarly we know M1(e1, e2) only depends on e1.

Next we have:
dimk HomH1[e1](M1[e1],M1[f1]) ≥ 1, f1 ≤ e1.

and similar for H2. For this, it suffices to prove that dimk HomH1[e1](M [e1⊗ e2],M [f1⊗ e2]) ≥ 1, by
what we just said, but this is by the decomposition

M [e1 ⊗ e2] = M [f1 ⊗ e2]⊕M [e′ ⊗ e2]

above. But

dimk HomH1[e1]⊗H2[e2](M1(e1)⊗M2(e2),M1(f1)⊗M2(f2)) = 1, f1 ≤ e1, f2 ≤ e2

by(2.4.4.1), so the ≥ above should change to =.
Now we know the homomorphism is of dimension 1, we want to choose a family of maps that is

compatible for g1 ≤ f1 ≤ e1 ≤ e0
1. For this, we can choose the maps λ(e1, e

0
1) arbitrarily, then choose

λ(e1, f1) to be be compatible with λ(e1, e
0
1) and λ(f1, e

0
1), then these are compatible choices. Hence

we can define a direct limit
M1 = lim−→

(E0)op
M(e1).

It is easy to see M1(e1)→M1 are all injective, and M1(e1) = M [e1]. Similarly, we can define an M2
that M2[e2] = M2(e2).

Finally, we have

M [e1 ⊗ e2] = M1[e1]⊗M2[e2] = (M1 ⊗M2)[e1 ⊗ e2]

for all e1 ∈ E0
1 , e2 ∈ E0

2 , thus M ∼= M1 ⊗M2 by(2.4.4.7).
As for the uniqueness of M1,M2, notice the decomposition of M [e1 ⊗ e2] is unique by(2.4.1.16),

so Mi[ei] is uniquely determined, thus by(2.4.4.7) Mi are determined. □
Prop.(2.4.4.16)[Flath Theorem]. let (Hv,Ev) be an indexed family of idempotented k-algebras, and
for a.e. v let e0

v ∈ Ev be a spherical idempotent. Let (H,E) be the restricted tensor product of Hc

w.r.t. e0
v, which is an idempotented algebra. For each v ∈ Ω, there is a simple Hv-module Mv and

for a.e. v we specify a non-zero spherical vector. Let ⊗vMv be the tensor product module, then it is
a simple admissible H-module, and every simple admissible module is of this type, with Mv uniquely
determined.
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Proof: Firstly the tensor product is simple and admissible: For any idempotent e = ⊗ev ∈ E, there
is a finite set S that if v /∈ S, then ev = e0

v, hence for these v dimMv[ev] = 1. Then

M [e] = ⊗v∈SMv[ev].

which is simple of f.d. by(2.4.4.15), so M is simple admissible by(2.4.4.6).
Conversely, for any simple H-module M , we need to show it is a tensor product. If there are only

f.m. indices, then this follows from(2.4.4.15).
Suppose first that e0

v is defined and spherical for all v, and e = ⊗ve0
v, and M [e] ̸= 0. Then

dimM [e] = 1(2.4.4.11). Letm be a spherical vector, then there is a ring homomorphism γ : H[e]→ k
defined by hm = γ(h)m. Because H[e] = ⊗′

vHv[e0
v], we have

γ(⊗vhv) =
∏
v

γv(hv).

Now if we decompose H = Hv ⊗H′
v, then by(2.4.4.15), there exists simple admissible module

Mv over Hv, M ′
v over H′

v respectively, that M = Mv ⊗M ′
v, thus M [e] = Mv[e0

v] ⊗M ′
v[e′

v]. Now
consider Mv for all v, and N = ⊗′

vMv w.r.t. mv, then it is simple admissible H-module, and we have
N [e] = ⊗′

vMv[e0
v] ∼= M [e] as H[e]-modules of dimension 1, which is because they are both simple and

have the same character
γ(⊗vhv) =

∏
v

γv(hv).

Hence M ∼= N , by(2.4.4.12).
Now the general case follows from the two situations above: choose e ∈ E that M [e] ̸= 0, then let

S be large that for v /∈ S, ev = e0
v. Then we decompose H as H =

⊗
v∈S Hv ⊗ (

⊗
v/∈S Hv), then

M =
⊗
v∈S

Mv ⊗M ′ =
⊗
v∈S

Mv ⊗ (
⊗
v/∈S

Mv) = ⊗vMv.

□

5 Miscellaneous
Lemma(2.4.5.1).Let R be a (possibly non-commutative) unital ring of characteristic 0 with the
following properties:

• R has no zero-divisors,
• rankZR ≤ 4,
• R has an involution (−)∧ : R→ Rop,
• For any α ∈ R, αα̂ ∈ N, and αα̂ = 0 iff α = 0.

Then R is isomorphic to exactly one of the following:
• Z.
• a Z-order in an imaginary quadratic extension over Q.
• a Z-order in a definite quaternion algebra over Q.

And the third case won’t happen in characteristic 0, by(13.9.1.24).

Proof: It suffices to show K = R ⊗ Q is either Q, an imaginary quadratic field or a definite
quaternion algebra. For α ∈ K, denote Nα = αα̂, trα = α+ α̂, then trα = 1 +Nα−N(1−α) ∈ Q.
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Assume K ̸= Q, let α ∈ K\Q. We may replace α by α − 1
2 trα to assume trα = 0, then

α2 = −Nα < 0 ∈ Z. So Q(α) is an imaginary quadratic field.
Assume K ̸= Q(α), let β ∈ K\Q(α). We may replace β by β − 1

2 trβ − tr(αβ)
α2 α to assume

tr(β) = tr(αβ) = 0. Hence β2 = −Nβ < 0 ∈ Z, and αβ = −βα. So Q(α, β) is a definite quadratic
extension of Q. Then K = Q(α, β) because they are has rank 4 over Z. □



124 CHAPTER 2. ALGEBRAS

2.5 Lie Algebras
Basic references are [Car05], [Ser87], [Mil13], [Kna96] , [Lie Algebras and Lie Groups Serre],

and[Eti21].
In this section, if not otherwise pointed out, k is assumed to be a field of char0 or just C.

1 Basics
Def.(2.5.1.1) [Lie Algebras].A Lie algebra L is an non-associative algebra over a field k with a
bilinear Lie bracket operation that satisfies:

[x, x] = 0, [x[yz]] = [[xy]z] + [y[xz]](Jacobi Identities).

It is easily deduced that [xy] = −[yx].
Denote adx(y) = [xy], then adx are all derivatives of L.
An element x ∈ g is called nilpotent or semisimple if adx is nilpotent or semisimple.

Prop.(2.5.1.2)[Associative Algebra].For any associative algebra A over k, it can be given naturally
a Lie algebra structure by defining [xy] = xy− yx. In this way, we get a natural functor AssAlgk →
Liek : A 7→ [A].

Prop.(2.5.1.3) [Derivatives form a Lie Algebra].Given a k-algebra A, the set of derivatives
Derk(A) = Derk(A,A) is a Lie algebra under the associative bracket.

Proof:

[D1, D2](ab) =D1(D2(a)b+ aD2(b))−D2(D1(a)b+ aD1(b))
=D1D2(a)b+D2(a)D1(b) +D1(a)D2(b) + aD1D2(b)
− (D2D1(a)b+D1(a)D2(b) +D2(a)D1(b) + aD2D1(b))

=[D1, D2](a)b+ a[D1, D2](b)

□

Prop.(2.5.1.4)[Base Change of Fields].Let a be a subalgebra of a Lie algebra g over k, and k′/k
a field extension, then ak′ is a subalgebra of gk′ , and

Ngk′ (ak′) = Ng(a)k′ .

cgk′ (ak′) = cg(a)k′ .

Proof: This is because the normalizer and centralizer is defined by linear equations with coefficients
in k, thus the vector space is defined over k. □

Prop.(2.5.1.5).Let D be a derivative of a k-algebra A that is nilpotent, then eD is an automorphism
of A(as an algebra).

Proof: Routine calculation. □

Def.(2.5.1.6)[Semidirect Product of Lie Algebras].Let g, h be Lie algebras and τ : g→ Der(h),
then we can define a semi-direct product Lie algebra g⋉ h that is isomorphic to g⊕ h as vector
spaces, and g, h are subalgebras of g ⋉ h, with [g, h] = τ(g)(h). It can be shown that this is truly a
Lie algebra.
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Def.(2.5.1.7)[Elementary Automorphisms].Let g be a Lie algebra, a special automorphism is
an automorphism of g of the form eadg x, where x is in the nilpotent radical(2.5.1.34).

The group of elementary automorphisms is the subgroup of the automorphism group of g
generated by the automorphisms of the form eadg(x) where ad(x) is nilpotent.

Def.(2.5.1.8)[Ideals].A subspace a ⊂ g is called an ideal of g iff [g, a] ⊂ a. If I is an ideal of L, then
L/I can be made into a Lie algebra by defining [I + x, I + y] = I + [xy].

Def.(2.5.1.9)[Center].The center of a Lie algebra g is the elements a that ad a = 0. It is an ideal.

Def.(2.5.1.10)[Simple Lie Algebras].A Lie algebra g is called simple if it is not 1-dimensional and
it has no nontrivial ideal.

Def.(2.5.1.11)[Lie Algebra of Affine Maps].Let V be a f.d. k-vector space. If we regard V as a
commutative algebra, then Derk(V ) = glV . Then V ⋊ glV is a Lie algebra, denoted by af(V ).

Let V ′ = V ⊕k, and let h = {w ∈ glV ′ |w(V ′) ⊂ V }, which is a Lie subalgebra of glV ′ . If we define

η : h→ glV : η(w) = w|V , ζ : h→ V : ζ(w) = w(0, 1),

then (η, ζ) defines a Lie algebra homomorphism from h to af(V ). This map is bijective, with the
inverse given by sending (v, f) ∈ af(V ) to the morphism

(v′, c) 7→ (f(v′) + cv, 0).

Lemma(2.5.1.12).Let λ, µ ∈ k and x, y, z ∈ g, then we have

(ad(x)− λ− µ)m[y, z] =
m∑
i=1

(
m

i

)
[(ad(x)− λ)iy, (ad(x)− µ)m−iz].

Proof:

(ad(x)− λ− µ)m[y, z] =
∑

p+q+r+s=m
(−1)r+s m!

p!q!r!s!
λrµs[(adx)p(y), (adx)q(z)]

=
∑

k+l=m

m!
k!l!

[(ad(x)− λ)ky, (ad(x)− µ)lz]

□

Def.(2.5.1.13)[Killing Form].A bilinear form B on g is called invariant if B([x, y], z)+B(x, [y, z]) =
0.

The Killing form on a Lie algebra g of f.d. is the invariant symmetric bilinear form defined by
B(x, y) = tr(adx ◦ ady).

if a is an ideal of a Lie algebra g, then the Killing form on a is that of the Killing form on a as a
Lie algebra. This is linear algebra.

Prop.(2.5.1.14).Any invariant symmetric bilinear form on a simple Lie algebra g is a multiple of the
Killing form.

Prop.(2.5.1.15).A subalgebra h of a Lie algebra g is commutative if it consists of semisimple elements.
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Proof: For an element x ∈ h, we need to show that adh(x) = 0. If it is not, because ad h(x)
is semisimple by(2.3.6.8), there is a nonzero eigenvector y at least after a base change, so [x, y] =
cy, y ̸= 0 ∈ h. So ad(y)(x) = −cy, and ad(y)2(x) = 0, so ad(y) is non-semisimple on the subspace
{x, y}, which means ad(y) is non-semisimple on g, by(2.3.6.8) again. □

Lemma(2.5.1.16). If g ⊂ gln is a Lie subalgebra, and a ∈ g is a nilpotent matrix, then ad(a) is also
nilpotent.

Proof: This is because ad(a) = l(a) − g(a), where l(a) is left multiplication and r(a) is right
multiplication. The left and right multiplication commutes, so it is clear ad(a)2n = 0 if ad(a)n = 0.
□

Nilpotent and Solvable Lie Algebras

Def.(2.5.1.17)[Nilpotent and Solvable Lie Algebras].Let g be a Lie algebra, the lower central
series of g is the descending sequence of ideals of g defined inductively by C1g = g and Cng =
[g, Cn−1g].

Let g be a Lie algebra, the derived series of g is the descending sequence of ideals of g defined
inductively by D1g = g and Dng = [Dn−1g, Dn−1g].

A Lie algebra is called nilpotent if there is an n that Cng = 0. This is equivalent to
adx1adx2 . . . adxn = 0 for any n element x − 1, . . . , xn. It is called solvable if Dn = 0 for some n.
It is clear that Dn ⊂ Cn, so nilpotent Lie algebra is solvable.

Prop.(2.5.1.18).The lower central series satisfies: [Cng, Cmg] ⊂ Cm+ng.
The operation of taking derived series or lower central series commutes with base change of fields.

Proof: Prove by induction on n: n = 0, 1 is trivial, and if the assertion is true for n ≥ k, then for
n = k + 1, [Cng, Cmg] ⊂ [g, [Cn−1g, Cmg]] + [Cn−1g, Cm+1g] ⊂ Cm+ng. □

Cor.(2.5.1.19).Let g be a Lie algebra over a field k, and k′/k is a field extension, then g is solv-
able/nilpotent iff g⊗k k′ is solvable/nilpotent.

Prop.(2.5.1.20). If g is a nilpotent Lie algebra, then for any subalgebra h ⊊ g, Ng(h) ̸= h.

Proof: Because gn = 0 for some n, take n to be the maximal one that h ⊈ gn, the [gn, h] ⊂ gn+1 ⊂ h,
so gn ⊂ Ng(h), so Ng(h) ̸= h. □

Prop.(2.5.1.21). Subalgebras, quotient algebras and extension algebras of solvable algebras are solv-
able.

Proof: Let h ⊂ g, then Dn(h) ⊂ Dn(g), so if g is solvable, then so is h. Also the quotient is clearly
solvable. For an extension of Lie algebras

0→ h→ g→ r→ 0,

if h, r are both solvable, let Dm(h) = 0, Dn(r) = 0, then the image of Dn(g) is 0 in r, so Dn(g) ⊂ h,
so Dm+n(g) = 0. □

Cor.(2.5.1.22) [Radical]. If a, b are solvable ideals of a Lie algebra g, then the ideal a + b is also
solvable, because 0→ a→ a + b→ b/a ∩ b.

Let r ⊂ g be the sum of all solvable ideals of g, called the radical Rad(g). When g is of f.d., this
is the maximal solvable ideal.
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Def.(2.5.1.23) [Semisimple Lie Algebra].A Lie algebra L is called semisimple if Rad L = 0,
or equivalently g has no solvable ideals or no commutative ideals. Notice L/Rad(L) is semisimple,
by(2.5.1.22).

Prop.(2.5.1.24)[Lie].Let g ⊆ gl(V ) be a solvable lie algebra over an alg.closed field k of char0, then
g is upper triangulable. Equivalently, there exists a vector v ∈ V which is a common eigenvector for
all X ∈ g, and moreover equivalently, any irreducible representation of g is 1-dimensional.

Proof: Idea is to prove by induction on dimension of g.
Produce a codimension 1 ideal h of g. Let g be generated (as a vector space) by h and Y . Being

a subalgebra of solvable algebra g, h is itself a solvable lie algebra. Apply induction step on h and
choose v ∈ V such that v is an eigenvector for all X ∈ h.

The idea is to consider setW all common eigenvectors of elements of h and produce an eigenvector
of Y from this W . Let

W = {v ∈ V |X(v) = λ(X)v ∀ X ∈ h for a fixed λ(X) ∈ C}.

Suppose W is an invariant subspace of Y , we then have restriction map Y : W →W . As we are
in complex vector space (algebraically closed) there exists an eigenvector for Y in W say w0. Thus,
w0 is common eigenvector for all elements of g.

It remains to show that W is an invariant subspace of Y i.e., Y (w) ∈W for all w ∈W i.e., given
X ∈ h, we need to have X(Y (w)) = λ(X)Y (w).

Let w ∈W , we have

X(Y (w)) = Y (X(w)) + [X,Y ](w)
= Y (λ(X)w) + λ ([X,Y ])w
= λ(X)Y (w) + λ ([X,Y ])w

This is almost the same as what we want but with an extra term λ ([X,Y ])w. Suppose we prove
λ ([X,Y ]) = 0 for all X ∈ h then we are done.

Then considers subspace U spanned by elements {w, Y (w), Y 2(w), · · · } and then says that U is
invariant subspace of each element of h and (assuming n is the smallest integer such that Y n+1w is in
the subsapce generated by {w, Y (w), · · · , Y n(w)}) representation of an element Z of h with the basis
{w, Y (w), · · · , Y n(w)} is an upper triangular matrix with λ(Z) in the diagonal. So, tr(Z) = nλ(Z).

So, tr([X,Y ]) = nλ([X,Y ]). As [X,Y ] = XY −Y X, we have tr([X,Y ]) = tr(XY )− tr(Y X) = 0.
Thus, λ([X,Y ]) = 0 and we are done. □

Cor.(2.5.1.25). If g is a solvable algebra over an alg.closed field k of char 0, then all irreducible
representations of g is of dimension 1.

Cor.(2.5.1.26). g is a solvable algebra iff [g, g] is nilpotent.

Proof: If [g, g] is nilpotent, then clearly g is solvable. Conversely, if g is solvable, we need to prove
[g, g] is nilpotent. For this, we can assume k is alg.closed, and then ad(g) ⊂ bg for some basis, thus
ad([g, g]) ⊂ ng is nilpotent, and the kernel of ad is an Abelian subalgebra, so [g, g] is nilpotent. □

Cor.(2.5.1.27). If g is a Lie subalgebra of gln(k) where k is an alg.closed field of char0, then

g is solvable ⇐⇒ tr(xy) = 0, ∀x ∈ g, y ∈ [g, g].
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Proof: Firstly if g is solvable, then by Lie’s theorem, we can assume g ∈ bV the upper-triangular
matrices, so [g, g] ∈ nV is nilpotent, and so xy ∈ nV is also nilpotent, and tr(xy) = 0.

Conversely, if tr(xy) = 0 for all x ∈ g, y ∈ [g, g], we only need to prove [g, g] is solvable, so we
may change g to [g, g] and assume tr(xy) = 0 for all x, y ∈ g.

Now to show g is solvable, it suffices to show [g, g] is nilpotent, or by Engel’s theorem(2.5.1.29)
all x ∈ [g, g] defines a nilpotent endomorphism on V . Choose a basis that x is upper-triangular
by(2.3.6.3), and let xs be the semisimple part of x, then it suffices to show xs = 0, or equivalently
tr(xsx) = 0. To show this, notice x ∈ [g, g], so it suffices to show tr(xs[y, z]) = 0 for any y, z. But
this equals tr([xs, y], z). Finally, this is 0 because of the hypothesis and the fact xs is a polynomial
in x(2.3.6.7) so [xs, y] ∈ g. □

Cor.(2.5.1.28)[Cartan’s Criteria for Solvability].A Lie algebra g over a field of characteristic 0
is solvable if κg(x, y) for any x ∈ g, y ∈ [g, g], where κ is the Killing form.

Proof: By(2.5.1.19), it suffices to show for k alg.closed. Because the kernel of the adjoint map is
the center of g, so g is solvable iff ad(g) is solvable. □

Prop.(2.5.1.29)[Engel]. If (V, ρ) is a representation of a Lie algebra g that ρ(x) is nilpotent for all
x ∈ g, then there is a basis that ρ(g) is contained in nV , in particular g is nilpotent.

Proof: It suffices to show if a sub-Lie algebra of glV consists of nilpotent elements, then there
is a common 0-eigenvector. Use Induction, choose a maximal subalgebra K of L, then notice the
normalizer of K in L is strictly containing K, because we can let K acts by adjoint on L/K, and
notice adx = λx − ρx is nilpotent for x a nilpotent matrix, so by induction hypothesis there is an
x ∈ L that [x,K] ⊂ K. But K is maximal, so it must be of codimension 1, and L = K + Fz.
The 0-eigenvectors for K is a nonzero subspace by induction hypothesis. Now this space is invariant
under z: for any h ∈ K,

h(z(v)) = [h, z](v) + zh(v) = 0.

So now a 0-eigenvector for z in this space will suffice. □

Cor.(2.5.1.30). If all elements of L are ad-nilpotent(i.e. adx = 0), then L is nilpotent. Equivalently,
elements of L has a common 0-eigenvector.

Proof: Consider ad : g → glg, then the image is nilpotent by Engel’s theorem(2.5.1.29), and the
kernel of ad is the center of g, so g is also nilpotent. □

Cor.(2.5.1.31).Let a be an ideal of a Lie algebra g. Then a is nilpotent if adg(a) is nilpotent for any
a ∈ a.

Proof: If adg(a) is nilpotent for any a ∈ a, then also ada(a) is nilpotent, so a is nilpotent by Engel’s
theorem. Conversely, if a is nilpotent, then ada(a) is nilpotent for any a ∈ a. And ad(a)(g) ⊂ a, so
adg(a) is nilpotent. □

Cor.(2.5.1.32).The sum of two nilpotent ideals of g is nilpotent.

Proof: We need to show for any a ∈ a, b ∈ b, adg(a + b) is nilpotent. For this, we need to factor
g as Jordan sequence 0 ⊂ g1 ⊂ g2 ⊂ . . . ⊂ gn = g over itself via the adjoint representation, then I
claim that ad(a)(gk) ⊂ gk−1: Because V = gk/gk−1 is simple, let V ′ ⊂ V consists of vectors v that
a(v) = 0 for any a ∈ a, then it is non-empty by Engel’s theorem, and also it is invariant under action
of g: a(gv) = [a, g](v) + g(av) = 0. So it is all of V .

Then, we have ad(a+ b)(gk) ⊂ gk−1, thus ad(a+ b) is nilpotent. □
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Cor.(2.5.1.33)[Maximal Nilpotent Ideal].For any Lie algebra g, there exists a maximal nilpotent
ideal, denoted by n.

Def.(2.5.1.34)[Nilpotent Radical].The nilpotent radical s = s(g) of a Lie algebra is the inter-
section of the kernels of simple representations of g.

s is nilpotent for any f.d. representation of g, in particular the adjoint representation of g. Thus
it is nilpotent, by(2.5.1.31).

Lemma(2.5.1.35).Let g ⊂ glV be a subalgebra, and let a a commutative ideal of g. If V is simple as
a g-module, then [g, g] ∩ a = 0.

Proof: Cf.[Mil13]P58. □

Prop.(2.5.1.36).Let g be a Lie algebra, and r its radical, s it nilpotent radical, then

s = D(g) ∩ r = [g, r].

In particular, [g, r] is nilpotent(2.5.1.34).

Proof: To show D(g) ∩ r ⊂ s, we need to show that ρ(D(g) ∩ r) = 0 for any simple representation
ρ. Because r is solvable, let r be the smallest integer that ρ(Dr+1(r)) = 0, then a = ρ(Dr(r)) is a
commutative ideal of ρ(g). Hence by(2.5.1.35) D(ρ(g))∩a = 0, so ρ(D(g)∩Dr(r)) = 0. Now if r > 0,
then ρ(Dr(r)) = 0, contradicting the minimality of r, so ρ(D(g) ∩ r) = 0.

To show s ⊂ [g, r], let q = g/[g, r], and f the quotient map. Then because the kernel is solvable,
f(r) is the radical of q(2.5.1.22), but it is also contained in the center of q, so q is reductive, and thus
has a faithful semisimple representation(2.5.4.4), then the kernel of this representation is just [g, r],
showing that s ⊂ [g, r]. □

Def.(2.5.1.37)[Levi Subalgebras].Let g be a Lie algebra and r its radical, then a Lie subalgebra s
is called a Levi subalgebra if g = r⊕ s.

Prop.(2.5.1.38)[Levi-Malcev].Every Lie algebra over a field k of char0 has a Levi subalgebra, and
any two Levi subalgebras of g are conjugate by a special automorphism of g(2.5.1.7).

Proof: If g is reductive, then Levi subalgebra exists uniquely, by(2.5.4.2) and(2.5.4.3).
if r is a minimal ideal of g, then [g, r] = r, and [r, r] = 0 = Z(g). Consider the adjoint action of g

on Endk(g). Also consider the subspaces V,W of Endk(g), where V is the subspace of maps from g
to r that restriction to r is a constant multiple of identity, and W is the subspaces of W consisting
of maps vanishing on r. Both of V,W are invariant under action of g.

Let φ : r→ g be the adjoint action, which is injective and has image P ⊂W . Also P is invariant
under action of g(because r is an ideal).

For x ∈ r, y ∈ g, α ∈ V , (xα)(y) = [x, α(y)] − α([x, y]) = −λ(α)[x, y], so xα = ad(λ(α)x), which
means elements of r map V into P . Thus now r acts trivially on V/P , and W/P is invariant under
the action of g/r, which is a semisimple Lie algebra. Thus by Weyl’s theorem(15.8.1.2), there exists
a g-stable line L that V/P = W/P ⊕ L. But g acts trivially on L by(15.8.1.1).

Let α0 generates L and normalized that λ(α) = 1, then gα0 ∈ P , We consider the map g
g 7→gα0−−−−→

P
φ−1
−−→ r, whose restriction to r is the identity map, so its kernel is a Levi subgroup for r.
Still in this case, let s′ be a second Levi subgroup for r. For each x ∈ s′, there is a unique h(x) ∈ r

that x + h(x) ∈ s. Hence this h satisfies h([x, y]) = [h(x), y] + [x, h(y)]. But then by(15.8.1.3),
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h(x) = [a, x] for some a ∈ r. Then 1 + ad(a) maps s to s′, and ad(a)2 = 0 because r is commutative.
And r = [r, g], so a is in the nilpotent radical of g, thus s, s′ are conjugate by a special automorphism.

For the general case, we can use induction on the dimension of g. After the first two cases, we
can assume that [g, r] ̸= 0 and r contains a proper non-trivial ideal. As [g, r] is nilpotent(2.5.1.36), its
center is non-zero. So we can choose a maximal ideal m contained in the center of [g, r], and m ̸= r.
Now g/m has radical r/m because m is solvable, so we can apply induction to find a Levi subgroup
h′ for g/m in g/m, and let h′′ be its preimage in g. Then h′′ has radical m, and thus by induction
there is a Levi subgroup h for m in h′′, and this h is a Levi subgroup for r in g. Similarly any two
such Levi subgroups are conjugate by a special automorphism.

This has another cohomological proof in [Etingof, Section48].? □

2 Semisimple Lie Algebra
Prop.(2.5.2.1)[Cartan-Killing Criteria for Semisimplicity].A f.d. Lie algebra g is semisimple
iff its Killing form(2.5.1.13) is non-degenerate.

Proof: If g is semisimple, then the adjoint representation is faithful, thus by(2.5.9.6) the Killing
form is non-degenerate. Conversely, if the Killing form is non-degenerate and a is a commutative
ideal of g and a ∈ a, g ∈ g, then (ad a ◦ ad g)2 = 0, so ad a ◦ ad g is nilpotent and has trace 0. so
a ∈ g⊥, which is 0 because the Killing form is non-degenerate. □

Cor.(2.5.2.2).Let a be a semisimple ideal of a Lie algebra g, then the orthogonal space a′ w.r.t the
Killing form is an ideal and is a complement for a in g, and g ∼= a× a′.

Proof: a⊥ is an ideal because the Killing form is invariant. The Killing form of a is the restriction
of the Killing form of g(2.5.1.13), so a ∩ a′ = 0 because κa is non-degenerate. □

Cor.(2.5.2.3).A Lie algebra is semisimple iff it is isomorphic to a product of simple algebras g =
a1 × · · · × ar, and these ai are all its minimal ideals, (Not only up to isomorphism).

Proof: The Killing form of a ∩ a⊥ is 0, thus it is solvable, by(2.5.1.28), and then 0, so we can
continue the decomposition.

For any minimal nonzero ideal a ⊂ g, then [g, a] is an ideal contained in a. which is nonzero
because g has trivial center. Then

a = [g, a] = ⊕i[a, ai]

so a ⊂ [a, ai] ⊂ ai, and then a = ai by simplicity. □

Cor.(2.5.2.4). If g is semisimple, then [g, g] = g.

Cor.(2.5.2.5).Let g be a Lie algebra over a field k and k′/k is a field extension, then g is semisimple
iff g⊗k k′ is semisimple.

Prop.(2.5.2.6)[Examples of Semisimple Lie Algebras].
• The subalgebra sl(V ) of all elements of End(V ) of trace 0 is semisimple.

Prop.(2.5.2.7). If L is semisimple, then every derivative of L is inner.

Proof: This is a special case of(15.8.1.3) applied to the adjoint representation. □

Prop.(2.5.2.8). If g is a semisimple algebra of gln(k) where k is a field of char0, then it contains the
semisimple and nilpotent parts of each of its elements under the Jordan decomposition(2.3.6.7).
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Proof: We may assume k is alg.closed, because the Jordan decomposition is invariant of the field
that contains g, and an element is contained is a vector space can be checked after base change to
a larger field. For any subspace W ⊂ V , let gW = {α ∈ glV |α(W ) ⊂ W, tr(α|W ) = 0}, then if
gW ⊂ W , then g ⊂ gW , because every element of g is a sum of brackets by(2.5.2.4), thus have zero
trace. Now consider

g′ = nglV (g)
∩

gW⊂W
gW .

If x ∈ g′, then so does xs and xn, because they are polynomials in x without constant terms, and
ad(x)s = ad(xs), ad(x)n = ad(xn).

So it suffices to show that g = g′. We claim that g′ = g: As g is a semisimple ideal of g′,
by(2.5.2.2), we have a decomposition

g′ = g⊕ g⊥.

Let α ∈ g⊥ and W a simple g-module of V , then α acts on W as a scalar, which must be 0
because α ∈ gW and k has char 0. As W is a sum of simple g-modules by Weyl’s theorem(15.8.1.2),
we get the desired conclusion. □

Prop.(2.5.2.9)[Abstract Jordan Decomposition].A semisimple/nilpotent element x in a Lie
algebra g is an element that ρ(x) is semisimple/nilpotent for any representation (V, ρ) of g. And x =
xs+xn is called a Jordan decomposition iff ρ(x) = ρ(xs)+ρ(xn) is a Jordan decomposition(2.3.6.7)
for any representation ρ of g.

Every element of a semisimple Lie algebra g over a field of characteristic 0 has a unique Jordan
decomposition, and x = xs + xn is a Jordan decomposition if ρ(x) = ρ(xs) + ρ(xn) is a Jordan
decomposition for one faithful representation ρ of g. In particular, this is holds for the adjoint
representation ad.

Proof: Let x ∈ g and (V, ρ) a faithful representation of g(for example the adjoint representation),
then there is at most one x = xs + xn that ρ(x) = ρ(xs) + ρ(xn) is the Jordan decomposition, which
proves the uniqueness.

Now for any x ∈ g, as(2.5.2.8) shows, there do exist these two elements that ρ(x) = ρ(xs)+ρ(xn).
But then it can be checked directly ad(x) = ad(xs) + ad(xn) is the Jordan decomposition of ad(x) as
an endomorphism of g, by(2.5.1.16). As the adjoint representation is faithful, this shows the Jordan
decomposition is independent of the faithful representation chosen.

Now every representation is a subrepresentation of a faithful representation, so we can prove the
existence. □

Simple Lie Algebras

Main references are [Car05]Chap8 and [Kna96], more data about simple Lie algebras can be found
in [Kna96]P508.

Def.(2.5.2.10)[Lie Algebras of Type An: sl(n+ 1,C)].

Def.(2.5.2.11)[Lie Algebras of Type A1].A1 is also called sl2(C). It has a basis f, h, e with

[he] = 2e, [hf ] = −2f, [ef ] = h.

In matrix form,

h =
[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
.
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It can also be realized by

H =
[
0 −i
i 0

]
, R = 1

2

[
1 i
i −1

]
, L = 1

2

[
1 −i
−i −1

]
.

These two representation differ by a conjugation by the Cayley transformation C = −1+i
2

[
i 1
i −1

]
.

It is simple by?. The subalgebra b generated by X and H is solvable, called the canonical Borel
subalgebra of sl2.

Proof: □

Prop.(2.5.2.12)[Lie Algebras of Type Bn: so(2n+ 1,C)].

Prop.(2.5.2.13)[Lie Algebras of Type Cn: sp(n,C)].

Prop.(2.5.2.14)[Lie Algebras of Type Dn: so(2n,C)].

Prop.(2.5.2.15)[Lie Algebras of Type G2].

Prop.(2.5.2.16)[Lie Algebras of Type F4].

Prop.(2.5.2.17)[Lie Algebras of Type E8].

Prop.(2.5.2.18)[Classification of F.D. Complex Simple Lie Algebras].

Prop.(2.5.2.19)[Group Automorphisms of Simple Lie Algebras].Cf.[Carter, P184].

Prop.(2.5.2.20). sl2(k) is simple if k has characteristic̸= 2.

Def.(2.5.2.21)[Exponent].Let g be a simple Lie algebra,

e =
∑

ei, h = 2ρ∨ =
∑
i

(2ρ∨, ωi)hi, f =
∑
i

(2ρ∨, ωi)fi,

then by definition, [h, e] = 2e, [e, f ] = h, and

[h, f ] =
∑
i

∑
j

(2ρ∨, ωi)α∨
i (αj)(2ρ∨, ωj)fj

=
∑
j

[(
∑
i

(2ρ∨, ωi)α∨
i , αj)](2ρ∨, ωj)fj

=
∑
j

(2ρ∨, αj)(2ρ∨, ωj)fj

= −2f

So {h, e, f} is a sl2-tuple, called the principal sl2-subalgebra of g. The highest weights of subrep-
resentation of the adjoint action of this subalgebra on g is called the exponents of g, counted with
multiplicity.

Equivalently, as h|gα = ht(α) id, if rm is the number of roots of g of height m, the exponents of g
is the numbers m that rm > rm+1.
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Cor.(2.5.2.22).While rm = 0 for m large and r1 = r(g), there are r exponents of g. Since the roots of
height 2 are all αi + αj where i, j are connected by an edge in the Dynkin diagram, thus r2 = r− 1,
thus 1 = m1 ≤ . . . ≤ mr,

∑r
i=1 = |R+|. And g ∼= ⊕rr=1L2mi+1 as a representation of the principal

sl2-subalgebra.

Prop.(2.5.2.23)[Exponents of Simple Lie Algebras].Let g be a Lie algebra, the exponents are.
• An : 1, 2, . . . , n.
• Bn : 1, 3, . . . , 2n− 1.
• Cn : 1, 3, . . . , 2n− 1.
• Dn : 1, 3, . . . , 2n− 3 and n.
• G2 : 1, 5.
• F4 : 1, 5, 7, 11.
• E8 : 1, 7, 11, 13, 17, 19, 23, 29.
• E7 : 1, 5, 7, 9, 11, 13, 17.
• E6 : 1, 4, 5, 7, 8, 11.

3 Cartan Subalgebras
Lie algebras in this subsection are assumed to be of f.d..

Def.(2.5.3.1)[Cartan Subalgebras].A Cartan subalgebra of a Lie algebra g is a nilpotent subal-
gebra h that equals to its own normalizer in g.

Remark(2.5.3.2).As a proper subalgebra of a nilpotent algebra is never its own normalizer(2.5.1.20),
a Cartan subalgebra is a maximal nilpotent subalgebra, but a maximal nilpotent subalgebra may
not be a Cartan subalgebra.

If k′/k is a field extension, then h is a Cartan subalgebra of g iff hk′ is a Cartan subalgebra of gk′ .
This is because being nilpotent and the normalizer is also compatible with base change(2.5.1.4).

Prop.(2.5.3.3) [Diagonal Cartan Algebra].Let g ⊂ glV be a subalgebra containing a diagonal
matrix a = diag(a1, . . . , an) with distinct ai, and let h be the subspace of all diagonal matrices in g,
then h is a Cartan subalgebra of g.

Proof: Firstly h is Abelian, and if b =
∑
bijeij ∈ Ng(h), then [a, b] ∈ h. But

[a, b] =
∑
ij

(aii − ajj)bijeij

is in h iff b is diagonal, or b ∈ h, so h = Ng(h) and h is a Cartan subalgebra. □

Def.(2.5.3.4) [Regular Elements].Let g be a f.d. Lie algebra, for any x ∈ g, let Px(T ) be the
characteristic polynomial of ad(x):

Px(T ) = det(T − ad(x)) = Tm + am−1(x)Tm−1 + . . .+ a0(x).

Then the rank of g is the minimal n that n(x) ̸= 0 for some x ∈ g. A regular element is an
element x ∈ g that an(x) ̸= 0.
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Prop.(2.5.3.5)[Regular Elements and Cartan Subalgebras].For any regular element x ∈ g, the
nilspace g0

x is a Cartan subalgebra of g.

Proof: Let
U1 = {y ∈ g0

x| adg(y)|g0
x
is not nilpotent},

U2 = {y ∈ g0
x| adg(y)|(g/g0

x) is invertible}.
They are both Zariski open subsets of g0

x. According to Engel’s theorem(2.5.1.29), to show g is
nilpotent, it suffices to show that U1 is empty. U2 is non-empty because it contains x, so if U1 is
non-empty, U1 ∩ U2 is non-empty and there is a y ∈ U1 ∩ U2. For this y, n(y) < dim g0

x = n(x),
contradicting the regularity of x.

It remains to show that g0
x is its own normalizer. If z normalizes g0

x, then [z, x] ∈ g0
x, which means

(ad(x))n[z, x] = 0, so ad(x)n+1(z) = 0, thus z ∈ g0
x. □

Cor.(2.5.3.6)[Cartan Subalgebras Exist].Let g be a Lie algebra over an infinity field k contains
some Cartan subalgebra, and when k is alg.closed, all Cartan subalgebras come from some regular
element, by(2.5.3.13).

Proof: Regular elements exist because k is infinite. □

Cor.(2.5.3.7).Every Lie algebra over an infinite field is a sum of Cartan subalgebras.

Proof: This is because the sum of Cartan subalgebras is a vector space thus Zariski closed but it
contains all regular elements, which is a Zariski open subset. □

Cor.(2.5.3.8).Let a be a subalgebra of a Lie algebra g that adg(a) is semisimple for any a ∈ a, then
a is contained in a Cartan subalgebra of g.

Proof: Cf.[Mil13]P81.? □

Prop.(2.5.3.9).Let h be a Cartan subalgebra of g over an alg.closed field k. Consider the generalized
eigenvalue decomposition(2.5.3.12), if x ∈ gα, then ad(x)(gβ) ∈ gα+β(2.5.1.12), and thus ad(x)
is nilpotent. Let E(h) be the subgroup of the group of elementary automorphisms(2.5.1.7) of g
generated by the set of all the automorphisms eadg(x), where x ∈ gα for some α ∈ h∗\0.

Now let h, h′ be two Cartan subalgebras of g, then there exists u ∈ E(h), u′ ∈ E(h′) that u(h) =
u′(h′).

Proof: Number the elements of h∗\0 as α1, . . . , αn, and consider the map

f : gα1 × . . .× gαn × h→ g : (x1, . . . , xn, h) 7→ ead(x1) . . . ead(xn)h.

Given a h0 ∈ h, it can be shown that

(df)|(0,...,0,h0) : (x1, . . . , xn, h) 7→ h+
∑
i

[xi, h0].

Thus if we choose a regular h0 ∈ h, then (df)|(0,...,0,h0) is surjective from g to g. Thus E(h)hr contains
a dense open subset of g?. Similarly, E(h′)h′

r contains a dense open subset of g. So their intersection
is not empty, i.e. u(h) = u′(h′) for some u, u′, h, h′. Now

u(h) = u(g0
h) = g0

u(h) = g0
u′(h′) = u′(g0

h′) = u′(h′)

□
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Cor.(2.5.3.10).All Cartan subalgebras in a Lie algebra have the same dimension, which is the rank
of g(2.5.3.4).

Proof: Because we can take a base change to an alg.closed field, under which a Cartan subalgebra
is also a Cartan subalgebra by(2.5.3.2), then they have the same rank. □

Cor.(2.5.3.11) [Cartan Subalgebras are Conjugate].Any two Cartan subalgebras of a f.d. Lie
algebra over an alg.closed field k are conjugate by an elementary automorphism(2.5.1.7).

Cartan Subalgebra of Semisimple Lie Algebras

Lemma(2.5.3.12)[Decomposition w.r.t. a Cartan Subalgebra].Let h be a Cartan subalgebra
of a semisimple Lie algebra g, and assume that

g = h⊕
⊕

α∈h∨\0
gα.

where R = R(g, h) is called the root system associated to (g, h). This is true, for example, when
k is alg.closed, by(2.5.9.10).(See(2.5.3.21) for when this decomposition is possible).

Cor.(2.5.3.13). If k is alg.closed, the set hr of regular elements h in h that g0
h = h is open and dense

in h in the Zariski topology.

Proof: The condition is equivalent to ∏α∈h∨\0 α(h) ̸= 0, which is an open condition. □

Lemma(2.5.3.14). In the decomposition above, if α+ β ̸= 0, then gα and gβ is orthogonal w.r.t. the
Killing form.

Proof: ad(x) ad(y)gγ ⊂ gα+β+γ , so if α+ β ̸= 0, then ad(x) ad(y) is nilpotent, thus κ(x, y) = 0. □

Prop.(2.5.3.15)[Cartan Subalgebras of Semisimple Lie Algebras].Let h be a Cartan subalgebra
of a semisimple Lie algebra g, then

• Every element of h is semisimple. In particular, h is commutative(2.5.1.15).
• The centralizer of h in g is h.
• The restriction of the Killing form to h is non-degenerate.

Proof: By(2.5.3.2), it suffices to prove this after k is replaced by its alg.closure, so the generalized
eigenvalue decomposition(2.5.3.12) holds. We prove 3 first: by(2.5.3.14), h is orthogonal to all [h, x]
for any x. But if x ∈ gα, we can see that [h, x] = gα, so h is orthogonal to all ⊕ gα, so κ must be
non-degenerate on h.

Because g has trivial center, the adjoint representation realizes h as a subalgebra of glg, and Lie’s
theorem(2.5.1.24) shows there is a basis that h ⊂ bg, hence ad([h, h]) ⊂ ng, and so tr(h, [h, h]) = 0. As
κ is non-degenerate on h, [h, h] = 0, thus h is commutative. Now h ⊂ cg(h) ⊂ Ng(h), thus h = cg(h).

If x ∈ h, and x = xs + xn is the Jordan decomposition(2.5.2.9), then ad(xn) are polynomials of
ad(x) thus lies in h. Now ad(xn) commutes with all ad(y) for y ∈ h, thus ad(y) ad(xn) is nilpotent,
thus κ(y, xn) = 0. Thus xn = 0 as κ is non-degenerate on h. □

Cor.(2.5.3.16)[Cartan Subalgebra Maximal Abelian].The Cartan subalgebras of a semisimple
Lie algebra are the maximal subalgebras consisting of semisimple elements(2.5.2.9), and they are
maximal Abelian subalgebras.

WARNING: maximal Abelian subalgebra may not by Cartan subalgebras, as they may contain
non-semisimple elements.



136 CHAPTER 2. ALGEBRAS

Proof: A subalgebra consisting of semisimple elements is contained in a Cartan subalgebra,
by(2.5.3.8).

Conversely, if h ⊂ h′ and h is a Cartan subalgebra and h′ consists of semisimple elements, then
by(2.5.1.15), h′ is commutative, and thus h′ ⊂ cg(h), so h = h′.

Cartan subalgebras are Abelian by(2.5.3.15), and the are maximal Abelian because they are
self-centralizing. □

Cor.(2.5.3.17).Every regular element is semisimple, because it is contained in a Cartan subalgebra
by(2.5.3.5).

Split Semisimple Lie Algebras

Def.(2.5.3.18)[Split Semisimple Lie Algebras].A split Cartan subalgebra of a semisimple Lie
algebra g over a field k is a Cartan subalgebra that all the eigenvalues of the linear maps ad(h) lies
in k for all h ∈ h. A split semisimple Lie algebra is a pair (g, h) where g is semisimple and h is a
split Cartan subalgebra.

Remark(2.5.3.19).For example, the diagonal matrices in sln is a splitting Cartan subalgebra over
any field.

sl2(R) has a non-split Cartan subalgebra {
[
0 −a
a 0

]
|a ∈ R}.

Prop.(2.5.3.20).Let α be a root of the split semisimple Lie algebra (g, h), then
• The subspaces gα and hα = [gα, g−α] are both 1-dimensional.
• There is a unique element hα ∈ hα such that α(hα) = 2, and (hα, hα) ̸= 0.
• For each nonzero xα ∈ gα, there is a yα ∈ g−α such that

[xα, yα] = hα, [hα, xα] = 2xα, [hα, yα] = −2yα.

i.e. sα = {xα, yα, hα} ∼= sl2.
• kα is a root iff k = 0,±1.

Proof: Define hα = [gα, g−α] ⊂ h. Because the Killing form is non-degenerate on h, we can define
for each α ∈ R a unique element hα ∈ h that α(h) = κ(h, hα) for all h ∈ h. Then hα is the subspace
spanned by hα: This is because for x ∈ gα, y ∈ g−α,

κ(h, [x, y]) = κ([h, x], y) = α(x)κ(x, y)

so [x, y] = κ(x, y)hα. Combine this with the fact κ(gα, g−α) ̸= 0, we get the fact hα = khα is
1-dimensional.

Next, there is a unique element hα ∈ hα that α(hα) = 2. For this, it suffices to show that α doesn’t
vanish on hα: Otherwise let x ∈ gα and y ∈ g−α that [x, y] = h ̸= 0, then [h, x] = α(h)x = 0 = [h, y].
So {x, y, h} spans a solvable subalgebra a of g. As h ∈ [a, a]. By Lie’s theorem, ρ(h) is nilpotent for
any representation ρ of a. But h is in the Cartan subalgebra so adg(h) is semisimple(2.5.3.15), so
h = 0, contradiction.

If (hα, hα) = 0, let hα = [xα, yα] for xα ∈ gα, yα ∈ g−α, then {xα, yα, hα} is solvable, so by Lie’s
theorem, there is a basis of g that the adjoint action is upper-triangular(when pass to the alg.closure).
But then ad(hα) is nilpotent, but it is also semisimple, so hα = 0, contradiction.
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Because xα ̸= 0, there exists a unique yα ∈ g−α that [xα, yα] = hα. Now [hα, xα] = α(hα)xα =
2xα, [hα, yα] = −α(hα)yα = −2yα.

Finally, hα
⊕
⊕k ̸=0∈Zg

kα is a subrepresentation of xα, yα, hα ∼= sl2, so if g2α ̸= 0, then ad(xα)
induces an isomorphism gα ∼= g2α by the representation theory of sl2(15.8.1.11). But gα is generated
by xα, contradiction. So gkα ̸= 0 only for k = 0,±1. □

Prop.(2.5.3.21)[Root Decompositions]. If h is a split Cartan subalgebra, then ad(h) is a commuting
family of semisimple endomorphisms with eigenvalues in k(2.5.3.15). so the decomposition

g = h⊕
⊕
α∈R

gα

holds as in(2.5.3.12). And it is in fact an eigenvalue decomposition, not only generalized eigenvalue
decomposition, by(2.5.3.20).

Then R is a reduced root system(2.7.2.2) in h∨, with sα(β) = β−β(hα)α. In particular, α∨ = hα.

Proof: Firstly R spans h∨: if h ∈ h lies in the center of all α ∈ R, then [h, gα] = 0 for all α ∈ R,
and as [h, h] = 0, this means h is in the center of g, which is trivial, so h = 0. So R spans h∨.

We need to prove that if α, β ∈ R, then β(hα) ∈ Z and β − β(hα)α ∈ R. For this, regard g as
a sα-module(2.5.3.20) under the adjoint action, then the assertion follows from the representation
theory of sl2(15.8.1.11): hα acts on gβ by β(hα), and ynα induces an isomorphism gβ ∼= gβ−nα.

Finally, R is reduced by(2.5.3.20). □

Prop.(2.5.3.22) [Splitting Cartan Subalgebras are Conjugate].The group of elementary au-
tomorphisms of g(2.5.1.7) acts transitively on the set of pairs (b, h) consisting of a Borel subalge-
bra(2.5.4.7) and a splitting Cartan subalgebra of g.

Proof: Cf.[Mil13]P98. □

Prop.(2.5.3.23)[Jacobson-Morozov].Let g be a semisimple Lie algebra and e ∈ g is nilpotent, then
there exists a homomorphism sl2 → g mapping X to e.

Proof: Cf.https://people.math.harvard.edu/~ana/part1.pdf. □

Recovering Split Semisimple Lie Algebras from Dynkin Diagrams

Main references are [Car05]Chap7.

Def.(2.5.3.24) [Cartan Matrix].Let (g, h) be a split semisimple Lie algebra with root system R,
with notations in(2.5.3.20), define the Cartan matrix of g to be the Cartan matrix A of R, A = (aij),
where aij = αj(hαi), where {α1, . . . , αn} is a base S of R.

Prop.(2.5.3.25)[Serre Relations].Let (g, h) be a split semisimple Lie algebra with root system R
and a base S, and Cartan matrix A = (aij). Denote n± = ⊕α∈R±gα, then g = n− ⊕ h ⊕ n+. Take
ei ∈ gαi , fi ∈ g−αi s.t. {ei, fi, hi = [ei, fi]} = si is a sl2-triple(2.5.3.20). Then

• ei, fi, hi generate g.
• (Serre Relations):

[hi, hj ] = 0, [hi, ej ] = aij , [hi, fj ] = −aijfj , [ei, fj ] = δijhi,

(ad(ei))1−aijej = 0, (ad(fi))1−aijfj = 0, i ̸= j

https://people.math.harvard.edu/~ana/part1.pdf
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Proof: 1: Because hi generate h, it suffices to show ei generate n+, then dually fi generate n−.
We prove any gα is in the span by induction on the height of α. If α =

∑
niαi, where ni > 0, then

0 < (α, α) =
∑
ni(α, αi), thus (α, αi) > 0 for some i, thus by(2.7.2.21) α − αi is a root, and the

representation theory of si shows ei induces an isomorphism gα−αi ∼= gα. So we are done.
2: Only the last two assertions need a proof. The irreducible si representation generated by ej

satisfies [fi, ej ] = 0, [hi, ej ] = aij , thus this submodule is isomorphic to Waij , and (ad(ei))1−aijej = 0.
The fi case is similar. □

Prop.(2.5.3.26) [Criterion of Semisimplicity].Let g be a Lie algebra and h a commutative Lie
subalgebra. If

• there is a decomposition
g = h⊕

⊕
α∈R

gα,

where R ∈ h∨ is the finite set of α ∈ h∨\{0} that gα ̸= 0, and dim gα = 1 for all α ∈ R.
• R generates h∨.
• If α ∈ R, then −α ∈ R, and [[gα, g−α], gα] ̸= 0.

Then g is semisimple and h is a split Cartan subalgebra of g with root system R.

Proof: If I is a commutative ideal of g, by action of h, we can assume that gα ⊂ I for some α.
If α ̸= 0, then gα and [g−α, gα] ⊂ I, so [[gα, g−α], gα] = 0, contradiction. If I ⊂ h, then by the
hypothesis some α(I) ̸= 0, so gα = [I, gα] ⊂ gα, contradiction. So I = 0.

h consists of semisimple elements and it is its own centralizer, so it is a Cartan subalgebra
by(2.5.3.16). It is clearly split. □

Cor.(2.5.3.27)[Criterion of Simplicity].Let (g, h) be a split semisimple Lie algebra. A decompo-
sition g = g1 ⊕ g2 of Lie algebras defines a decomposition (g, h) = (g1, h1) ⊕ (g2, h2), and hence a
decomposition of the root system R(g, h).

In particular, if the root system R(g, h) is indecomposable, then g is simple.

Proof: Let
g = h⊕

⊕
α∈R

gα, g1 = h1 ⊕
⊕
α∈R1

gα1 , g2 = h2 ⊕
⊕
α∈R2

gα2

be the eigenvalue decomposition of g, g1, g2 w.r.t. the adjoint action of h, then h = h1 ⊕ h2, and
R = R1

⨿
R2. □

Prop.(2.5.3.28)[Serre Presentations].Let g(R) be the Lie algebra generated by ei, fi, hi with defin-
ing relations as in(2.5.3.25), then

• The Lie subalgebra n+ generated by ei has (ad(ei))1−aij (ej) = 0 as defining relations. The
Lie subalgebra n− generated by fi has (ad(fi))1−aij (fj) = 0 as defining relations. And hi are
linearly independent.

• g(R) is a sum of f.d. modules over every sl2-triple si.
• g(R) is of f.d..
• g(R) is semisimple and has root system R.
• g(R1⊕R2) ∼= g(R1)⊕g(R2). In particular, by(2.5.3.27), g(R) is simple iff R is indecomposable.
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Proof: It suffices to prove for indecomposable root systems. Consider g̃(R) the Lie algebra gener-
ated by elements ei, fi, hi with the defining relations in(2.5.3.25) without the final two Serre relations,
then it is Z-grated, with deg(ei) = 1, deg(fi) = −1,deg(hi) = 0. Thus we have a decomposition

g̃(R) = ñ+ ⊕ h̃⊕ ñ−

by degree, and clearly ñ+ is generated by ei, h̃ is generated by hi and ñ− is generated by fi.
Now I claim that ñ+ is a free Lie algebra on generators ei, ñ− is a free Lie algebra on generators fi

and hi are linearly independent. It suffices to prove for ei, and fi is true with the dual polarization.
For this, let h′ be a vector space with basis h′

i, and consider the Lie algebra a = FLr⋊h′, where FLr
is the free Lie algebra generated by f ′

i , and h′ acts on FLr by [h′
i, f

′
j ] = −aijf ′

j , then U = U(a) =
k⟨f ′

1, . . . , f
′
n⟩⋊ k[h′

1, . . . , h
′
n], and there is an action of g̃(R) on U that is defined on the generators as

follows: if w = f ′
j1 . . . f

′
js is a word in f ′

i of weight α and P ∈ k[h′
1, . . . , h

′
n], then

hi(w ⊗ P ) = w ⊗ (h′
i − α(hi))P

fi(w ⊗ P ) = fw ⊗ P

ei(f ′
j1 . . . f

′
js ⊗ P ) =

∑
k|jk=i

f ′
j1 . . . f̂

′
jk
. . . f ′

js(h
′
i − (αjk+1 + . . .+ αjs)(h′

i))P.

It can be shown that this is truly a representation, and then it induces a map g̃(R)→ U : x 7→ x(1),
and this maps Lie polynomials of fi in ñ+ to Lie polynomials of f ′

i , and hi to h′
i, so the assertions

are true.
1: Now consider the elements S+

ij = (ad ei)1−aijej ∈ ñ+ and S−
ij = (ad fi)1−aijfj ∈ ñ−. Then

[fk, S+
ij ] = 0: If k ̸= i, j, then this is true, and if k = j, then [fj [eiej ]] = [ei[fjej ] = [hjei] = ajiei,

thus [fj(ad ei)r(ej)] = 0 for r ≥ 2. If aij ≥ −1, then this is true, and if aij = 0, then aji = 0
too, so the assertion is also true. If k = i, then we can prove by induction that [fi(ad ei)r(ej)] =
−r(aij + r − 1)(ad ei)r−1(ej). Thus [fi(ad ei)1−aij (ej)] = 0, too.

So by induction we see that the ideals I± ∈ ñ± generated by such S±
ij is ideals I± of g̃(R). Then

the ideal generated by the the Serre relations is the graded ideal I = I+ ⊕ I−, which implies the
assertion.

2: The Serre relations shows that ej generates the representation W−aij of si for j ≥ i, and so
does fj . Also ei, fi, hi generateW2, and hj generatesW0 orW0⊕W2, so g(R) is a sum of f.d. modules
over si, as the module generated by [a, b] is a subquotient of V ⊗W the modules generated by {a}
and {b}.

3: g(R) = ⊕α∈Qgα, where gα is the subspace of g(R) of weight α. Then gα ̸= 0 only if α ∈ Q+ or
Q−, and each gα is of f.d.. Now we show that gR ̸= 0 only if α ∈ R∪{0}, which will suffice. We prove
by induction on the height of α: the height 1 case is trivial, and if α = kei, then the statement is
clear as gkαi = 0 for k ≥ 2, because n+ is generated by ei. If it is not of the form α = kei, (α, αi) > 0
for some i, so by the representation theory of si ∼= sl2, gsiα ̸= 0, where siα = α − α∨

i (α)αi /∈ Q−,
thus siα ∈ Q+, and then by induction hypothesis siα ∈ R, so α ∈ R.

4: g̃(R)
α
is 1-dimensional for any α, so this is also true for g(R)α. Then g(R) is semisimple with

root system R by(2.5.3.26). □

Cor.(2.5.3.29)[Classification of Split Simple Lie Algebras].By2, split simple Lie algebras over
k are in bijection with Dynkin diagrams Al, l ≥ 1, Bl, l ≥ 2, Cl, l ≥ 3, Dl, l ≥ 4 and E6, E7, E8, F4, G2,
by(2.7.3.5).
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Notations for Split Semisimple Lie algebras

Def.(2.5.3.30)[Notations for a Split Semisimple Lie Algebra].Let (g, h) be a split semisimple
Lie algebra, then

• Its (positive/negative) root system is denoted by (R+/R−)R.
• Notation for root system is the same as in(2.7.4.1).
• g has a weight decomposition g = h⊕α∈R gα.
• xα ∈ gα, yα ∈ g−α, where α ∈ R+.
• si = {xi, yi, hi} is a sl2-triple, where xi ∈ gαi , yi ∈ g−αi(2.5.3.20).
• α∨

i = hi(2.5.3.21).

4 Reductive Lie Algebra
Def.(2.5.4.1) [Reductive Lie Algebra].A Lie algebra is called reductive if rad(L) = Z(L), or
equivalently Z(L) ⊂ rad(L).

Prop.(2.5.4.2).The following conditions on a Lie algebra g are equivalent:
• g is reductive.
• The adjoint representation of g is semisimple.
• g is a product of a commutative Lie algebra c and a semisimple Lie algebra b.

Proof: 1→ 2: The adjoint representation factors through the center of g, which is also the radical
of g, so it is a representation of g/ rad(g), which is semisimple(2.5.1.23), so Weyl’s theorem(15.8.1.2)
shows the adjoint representation is semisimple.

2→ 3: If the adjoint representation is semisimple, then g decomposes as a sum of minimal nonzero
ideals ai of g, and then g is a product of these ai. Let c be the product of the one-dimensional ideals,
then c is in the center thus commutative, and b the product of the remaining ideals, then b is
semisimple because it has no solvable ideals.

3→ 1 is trivial. □

Cor.(2.5.4.3).The decomposition of g into a product of commutative Lie algebra and a semisimple
Lie algebra is unique: in fact c is the center of g, and b = [g, g], by(2.5.2.4).

Prop.(2.5.4.4).A Lie algebra g is reductive iff it has a faithful semisimple representation iff it has a
trivial nilpotent radical(2.5.1.34).

Proof: If g has a faithful semisimple representation, then the nilpotent radical s = 0, thus
by(2.5.1.36), r is in the center of g, thus g is reductive.

Conversely, if g is reductive, then we need to show g has a faithful semisimple representation: For
this, we can take the tensor product of the trivial representation of the commutative part and the
adjoint representation of the semisimple part(2.5.2.3).

The last assertion is clear from(2.5.1.36). □

Cor.(2.5.4.5) [Trace Form Criterion for Reductiveness]. If the trace form Bρ(2.5.9.5) is non-
degenerate for some representation (ρ, V ) of g, then g is reductive.

Proof: If x ∈ s, then ρ(x) = 0, thus Bρ(x, y) = 0 for any y, thus x = 0. So s = 0, and g is
reductive. □
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Cor.(2.5.4.6) [Classical Lie Algebras are Reductive].All classical Lie groups over R or C are
reductive.

Proof: Apply(2.5.4.5) their standard representations. □

Def.(2.5.4.7)[Borel Subalgebras].Let g be a split reductive Lie algebra and h a Cartan subalgebra
with a system of positive roots Π, and consider the corresponding triangular decomposition g =
n− ⊕ h ⊕ n+(2.5.3.21). Denote b+ = h ⊕ n+, and call any Lie subalgebra of g conjugate to b+ a
borel subalgebra of g. The definition is independent of the choice of the Cartan subalgebra h,
by(2.5.3.22).

5 Compact Lie Algebras
Main references are [李群讲义, 项武义] and [Kna96].

Def.(2.5.5.1) [Compact Lie Algebras].A compact Lie algebra is Lie algebra that is the Lie
algebra of a compact Lie group.

Prop.(2.5.5.2) [Killing Form of Compact Lie Algberas].The Killing form of a compact Lie
algebra g is negatively semi-definite, with the kernel the center of g.

Proof: Choose an invariant inner product on g w.r.t. the adjoint representation of G by(10.11.4.1).
Take derivative w.r.t the equation (Ad(g)Y,Ad(g)Z) = (Y, Z), we get by(11.7.1.12),

(ad(X)Y, Z) + (Y, ad(X)Z) = 0.

so ad(X) is skew-symmetric w.r.t. this inner product, thus the eigenvalues are all purely imaginary.
Then B(x, x) = tr(ad(x) ad(x)) ≤ 0. □

Cor.(2.5.5.3)[Compact Lie Algebra is Reductive].A compact Lie algebra g is reductive.

Proof: Because of the invariant inner form, any ideal a of g has a complement a⊥, thus the adjoint
representation of g is semisimple, thus g is reductive(2.5.4.2). □

Cor.(2.5.5.4)[Compact Lie algebra Elements Semisimple].For a compact Lie algebra g, every
element is semisimple, and the eigenvalues of any adjoint operator ad(x) is purely imaginary.

Proof: Because the Killing form is negative definite, thus its negation is an inner product on g,
and ad(x) acts by skew-Hermitian matrices, thus has purely imaginary eigenvalues. □

Prop.(2.5.5.5). If g is reductive and the Killing form is negative definite on [g, g], then g is compact.

Proof: For the commutative part we can take the torus (S1)n, so it suffices to prove the semisimple
case: for this, we consider Int(g)0 ⊂ GL(g), it is contained in O(g) with the inner product defined
by the negation of the Killing form, thus it is compact. And the Lie algebra of it is Der(g) =
ad(g)(2.5.2.7). □

Prop.(2.5.5.6)[Representation of Compact Lie Algebras].Let g be a compact Lie algebra that
is the Lie algebra of a simply-connected compact Lie group, then Rep(g) is semisimple.

Proof: □
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6 Singular element

Introduction

Singular element in g is a linear space and is defined by some homogenous ideal in S(g).
The paper [Singular element] of Kostant tells in fact it is defined by some r-homogenous functions

M r in S(g),and further describes the properties of this ideal such as the G-module decomposition
and as span of determinant minors.

Preliminary

Let complex simple Lie algebra g = Lie G,n = l+ 2r.The non-degenerate Killing form B ≜ (x, y)
on g generate a nonsingular pair on S(g) and ∧(g) by

(x1 · · ·xk, y1 · · · yk) =
∑
σ∈Σk

(x1, yσ(1)) · · · (xk, yσ(k))

(x1 ∧ · · · ∧ xk, y1 ∧ · · · yk) =
∑
σ∈Σk

sg(σ)(x1, yσ(1)) · · · (xk, yσ(k))

So g ←→ g′,S(g) ←→ S(g′) ←→ polynomial functions on g; and S(g) and ∧(g) are g thus G
modules extending the adjoint representation.

recall that δ and ∂ are called B-dual if (δx, y) = (x, ∂y).Set antiderivation −d B-dual to the
operator

∂(x1 ∧ · · · ∧ xp) =
∑
i<j

(−1)i+j+1[xi, xj ] ∧ x1 ∧ · · · x̂i ∧ · · · x̂j ∧ · · · ∧ xp

on ∧(g) and antiderivation ι(u) B-dual to the operator ϵ(u)v = u ∧ v on ∧(g).
Element v of S(g) are called invarient iff gv = v, ∀g ∈ G and element u of S(g) are called

harmonic iff (u, v) = 0, ∀v invariant and no constant term.
Denote by J,H respectively the graded subspace of invariant and harmonic elements, then:

Prop.(2.5.6.1)[Separation of Variables (in [Kos63])].S(g) ∼= J ⊗H.

the Ideal of Sing g

In the projection τ : T (g) −→ U(g), PBW theorem asserts that S(g) −→ U(g) is an isomorphism.
Denote:

Γ = τ |−1
S(g) ◦ τ

Γ is a G-map (as a consequence of the next prop).
Denote by Γ2r,2 the subgroup of permutation that preserves the set of unordered pairs

{(1, 2), (3, 4), . . . , (2r−1, 2r)} and let Πr be a left coset representative of Γ2r,2 in Γ2r that sg(Πr) = 1

In [Amitsur-Levitski],Kostant proved:

Prop.(2.5.6.2)[in [Kos81]].
Γ(∧2k(g)) = Rk ∈ Sk(g)

Γ(x1 ∧ · · · ∧ xk) −→
∑
v∈Πk

[xv(1), xv(2)] · · · [xv(2k−1), xv(2k)]
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Prop.(2.5.6.3)[in [Kos81]].
M = Rr ∈ Hr

so it consists of harmonic functions.

Let w ∈ ∧2g of rank k standardized as v1 ∧ v2 + · · ·+ v2k−1 ∧ v2k.Let

Radw = {y ∈ g|ι(y)w = 0} = {y ∈ g|(w, ϵ(y)z) = 0,∀z}

then w of rank 2k ⇐⇒ wk ̸= 0 & wk+1 = 0 ⇐⇒ dimRadw = n− 2k.

Lemma(2.5.6.4).
ι(y)dx = [y, x]

Thus
Raddx = gx, Singg = {x ∈ g|(dx)r = 0}.

Proof: (ι(y)dx, z) = (dx, y ∧ z) = (x,−[y, z]) = ([y, x], z) □
So in order to find the module M ,it’s the best to find the dual of

γ : S(g) −→ ∧eveng : x −→ −dx

Luckily:

Prop.(2.5.6.5)[in [Kos81]]. γ is B dual to Γ,in particular,

(Γ(ζ), x) = (−1)r

r!
(ζ, (dx)r) (∀ζ ∈ ∧2rg and x ∈ g)

So: f(x) = 0,∀f ∈M ⇐⇒ x ∈ Singg.

Cor.(2.5.6.6).Let a be a CSA of g,∆+(a) be the positive roots, then

f |a = Cf ·
∏

β∈∆+(a)
β (∀f ∈M)

Proof: This is because that an element in a CSA is singular iff it commutes with an element outside
this CSA, and taking root decomposition, this is equivalent to annihilated by a root, and by counting
degree, the cor follows. □

By propositions of [[Kos59]] a regular nilpotent element e is uniquely in a nilpotent radical
n of a Borel subalgebra and that ge ∩ [n, n] = (Singg) ∩ ge.So there is a linear function ξ on ge that
ker ξ = (Singg) ∩ ge.Thus:

Cor.(2.5.6.7). f |ge = Cf · ξr (∀f ∈M).

Proof: By counting degree, the same reason as before. □
Now we think of a natural question:Can singular elements be defined be functions of even lower

degree? The answer is NO.

Prop.(2.5.6.8).Assume 0 ̸= f homogenous vanishes on Singg,then deg f ≥ r

Proof: By the last cor, if f has degre less than r then f vanish on any CSA, but semisimple
regular element, thus CSAs are Zariski dense in g (this is because semisimple element are defined by
a polynomial), so f = 0. □

Thus we have established that Singg is an algebraic set defined by a set of harmonic r-homogenous
functions on g and not by functions of degree lower than r.

Next we offer a different formation of M.
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M as minors of determinants

for a B dual basis yi, wj ,define a derivation

dW (f ⊗ u) =
n∑
i

∂yif ⊗ ϵ(wi)u on S(g)⊗ ∧g.

Here ∂∑ aixi
is defined as ∑ ai

∂
∂x1

for a standard basis xi of g. It’s easy to verify that dW is well
defined and is a G-map(Take a different basis Awi and Bzi,then ABt = I,substitute into the formula
of dW ,it doesn’t change).

Chevalley Thm tells us J is a polynomial ring C[p1, . . . , pl], where pi are homogenous polyno-
mials of fixed degree di and

∑l
j=i(dj − 1) = r.So:

dW p1(x) ∧ · · · ∧ dW pl(x) =
∑

1≤i1<...<il≤n
ϕ(yi1 , . . . , yil)(x)wi1 ∧ · · · ∧ wil

Where ϕ(yi1 , . . . , yil) = det ∂yipj is homogenous of degree r.(counting degree).
To see this, notice that f ⊗ u acts as a function from g to ∧g : f ⊗ u(x) = f(x)u.So:

dW pj(x) =
n∑
i=1

∂zipj(x)wi.

Prop.(2.5.6.9). for any CSA h of g and a basis {vi} of h,∀x ∈ h,

dW p1(x) ∧ · · · ∧ dW pl(x) = κ ·
∏

ϕ∈∆+

ϕ(y)v1 ∧ . . . ∧ vl

Lemma(2.5.6.10)[in [Kos63]]. {dW p1(x), · · · , dW pl(x)} is linearly independant iff x ∈ Regg.

Proof: Notice that dW pj is a g-map,ady · dW pj = dW pj([y, x]) so dW pj(x) commutes with gx; so
∈ gx.Then the lm tells us when y is regular, dW pj(y) forms a basis of gy.Considering in gy, x is
regular iff ∏ϕ∈∆+ ϕ(x) ̸= 0,the prop follows. □

Next we give an explicit expression for γr.
It can be verified (taking a zi basis) that dx = 1

2
∑n
i=1wi ∧ [zi, x].

Now x ∈ h,
dx =

∑
ϕ∈∆+

ϕ(x)eϕ ∧ f−ϕ

(just take the basis wi and zi as a standard basis of g consisting of {hi, . . . , hl, eϕ, fϕ})
So

γr(xr) = r!(−1)r
∏

ϕ∈∆+

ϕ(x)eϕ ∧ f−ϕ

Let µ = irv1 ∧ · · · ∧ vl ∧
∏
ϕ∈∆+ eϕ ∧ f−ϕ then (µ, µ) = 1.

Denote v∗ = ι(v)µ for v ∈ ∧g, then

(v1 ∧ · · · ∧ vl)∗ = ir
∏

ϕ∈∆+

eϕ ∧ f−ϕ = Coγr(xr)

(notice that ι(u)ι(v) = ι(v ∧ u) and use lm 1)

Prop.(2.5.6.11). (dW p1(x) ∧ · · · ∧ dW pl(x))∗ = κoγr(x
r

r! ) ̸= 0.
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Proof: For y ∈ h regular, this follows from previous calculations, and notice both side are G-maps,
and semisimple regular elements are Zariski open, conclusion follows. □

Lemma(2.5.6.12). (s, t) = (s∗, t∗),so that −∗ is a B-isomorphism.

Prop.(2.5.6.13).Let {w1, . . . , w2r} be linearly independent and {u1, . . . , ul} be a basis of
{w1, . . . , w2r}⊥,then

Γ(w1 ∧ · · · ∧ w2r) = κ1 det ∂uipj ̸= 0

Thus,M is the span of all the minors det ∂uipj .

Proof: By the preceding props,

det ∂uipj = ϕ(u1, . . . , ul)(x)
= (dW p1(x) ∧ · · · ∧ dW pl(x), u1 ∧ · · · ∧ ul)
= ((dW p1(x) ∧ · · · ∧ dW pl(x))∗, (u1 ∧ · · · ∧ ul)∗)

= κoκ2(ϕr(
xr

r!
), w1 ∧ · · · ∧ w2r)

= κ−1Γ(w1 ∧ · · · ∧ w2r)(x).

□

G-module structure of M

Now we show the G-module structure of M .
Let θ be the derivative that θ(x)(y) = [x, y] on g. Cas =

∑n
i=1 θ(zi)θ(wi).

It’s in fact just the action of the Casimir element in center of U(g).Let ml andMl be the maximal
eigenvalue and eigenspace of Cas.

For a commutative Lie subalgebra c of rank l, denote by [c] the line it defines on ∧lg.The span
of these [c] is denoted Al.Notice that [gy] ⊂ Al for a regular y,and Al is a G-submodule.

Prop.(2.5.6.14)[in [Kos65]].
Al = Ml; ml = l.

An ideal in a Borel subalgebra of g is necessarily spanned by root vectors and a prop of [[K-W09]]
says any ideal of dim l is (denoted by I) in fact abelian.

A prop in [[Kos65]] asserts that for two different ideals Φ1,Φ2,sum of their weight vectors ⟨Φ⟩ is
distinct.

So G[Φi] is an irreducible G-module VΦ with highest weight ⟨Φ⟩ and VΦ are inequivalent G-
modules(because an irreducible representation have only one highest vector).

Prop.(2.5.6.15)[in [Kos65]].
Ml = ⊕Φ∈IVΦ.

Now denote M2r image of Ml under the isomorphism u −→ u∗, then

Prop.(2.5.6.16)[in [K-W09]].Ml is the span of G · [gx] for x regular.

but by precious prop,
[gx] = CdW p1(x) ∧ . . . ∧ pl(x).

thus M2r is the span of G · (γr(x
r

r! )), x regular.
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Prop.(2.5.6.17) [Final].Γ|M2r : M2r −→ M is an isomorphism and M ∼= M2r ∼= Ml = Al as G-
module.

So M is a multiplicity one module with |I| irreducible components.

Proof: Notice that Γ(ζ)(x) = (ζ, γr(x
r

r! )) and M2r is the span of G · (γr(x
r

r! )),the first part follows,
and the rest is a recapitulation of previous props. □

7 Real Lie Algebra
Prop.(2.5.7.1)[Passage from Real to Complex]. If g0 is a Lie algebra over R and g = g0 ⊗ C its
complexification, then g0 is Abelian/nilpotent/solvable/semisimple iff g does.

Def.(2.5.7.2).A compact real form is a real subalgebra l of g s.t. g is the complexification of l and
l is the lie algebra of a compact simply-connected Lie group.

Prop.(2.5.7.3).A real Lie algebra is compact iff there exists an invariant inner product iff the Killing
form is negative definite.

Proof: One direction is easy, just use the average method to find a G-invariant inner product and
then take derivative. For the other direction, the identity shows that a complement of an ideal is an
ideal so g is decomposed into simple lie groups and reduce to the case that g is simple. The ideal is
to show that g ∼= ad(g) is the whole outer derivative group ∂(g)(the following lm). So g equals to
the identity component of Aut(g) which is a closed subgroup thus closed but it is also a subgroup of
the compact group O(g) thus it is compact. □

Lemma(2.5.7.4). If a real semisimple Lie algebra X has an invariant inner product, then every outer
derivative is inner.(In fact, this is true by Cartan Criterion for semisimplicity (2.5.2.7)).

Proof: since ad(X) is skew-symmetric, it’s diagonalizable and its eigenvalue is pure imaginary, so
the Killing form of X is negative definite. Now choose the complement a of ad(X) in ∂(X), then
a∩X = 0. Thus for D ∈ a, ad(D(g)) = [D, ad(g)] = 0 for all g in X, so D = 0, thus ad(X) = ∂(X).
□

Prop.(2.5.7.5). -
1. The complexification of the Lie algebra of a connected compact Lie group is reductive.
2. A complex Lie algebra is semisimple iff it is isomorphic to the complexification of the Lie

algebra of a simply-connected compact Lie group. i.e. every complex semisimple Lie algebra
has a compact real form.

Proof: 1: Because a connected compact Lie group is completely reducible so the does the Lie
algebra and so does the complexification. So it is reductive by (2.5.4.1)4.

2: Cf.[Varadarajan Lie Groups Lie algebras and Their Representations]. The idea is to find a real
form whose corresponding simply-connected group is compact. □

Prop.(2.5.7.6). If g is the Lie algebra of a matrix Lie group G, then:
1. every Cartan subalgebra comes from a maximal commutative subalgebra of a compact real

form and any two Cartan subalgebras are conjugate under the Ad-action of G.
2. any two compact real form is conjugate under the Ad-action of G.
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3. any two maximal commutative subalgebra of a compact real form is conjugate under the Ad-
action of the corresponding compact compact subgroup.

Prop.(2.5.7.7).A real Lie algebra is semisimple iff its complexification is semisimple.
Cf.[Varadarajan].

Cor.(2.5.7.8).The real Lie algebra of a compact simply-connected group is semisimple.

Note: For the classification of real semisimple Lie algebras, Cf.[李群讲义项武义 §6]

Prop.(2.5.7.9). If a complex representation of a Lie group admits an invariant bilinear form, then it
is non-degenerate and unique. In fact, this is equivalent to a G-map from V to V ∗. Thus there is
unique invariant inner product in a compact real form by the preceding proposition.

8 Universal Constructions
In this subsection k can be a field of any characteristics.

Def.(2.5.8.1)[Universal Enveloping Algebra].The universal enveloping algebra of a Lie alge-
bra g is defined to be

U(g) = T (g)/J, T (g) =
∞⊕
n=0

g⊗n

which is a graded algebra T (g) quotients the ideal J = ({x⊗ y − y ⊗ x− [xy]}).
There is a natural linear map σ : g→ U(g).

Prop.(2.5.8.2).The universal enveloping algebra U : g 7→ U(g) defines a functor LieAlg → Algasso

that is left adjoint to the canonical functor Algasso
k → LieAlgk(2.5.1.2).

Proof: For any associative algebra A and a morphism of Lie algebras g→ [A], there is easily seen
a morphism U(g)→ A, and it is unique. □

Cor.(2.5.8.3)[Representation as Modules].A representation of g(2.5.12.4) is he same as a repre-
sentation of U(g).

Prop.(2.5.8.4) [Poincaré-Birkhoff-Witt].Let g be a Lie algebra, define a filtration on U(g) by
assigning FnU(g) = the image of ⊕n

i=0 g
⊗i in U(g). We have [FiU(g), FjU(g)] ⊂ Fi+j−1U(g), thus

grU(g) has a graded commutative ring structure. Thus there is an algebra homomorphism S(g) →
grU(g), and this homomorphism is an isomorphism.

If g has a basis {xi}, i ∈ I and < is an order on I, then U(g) has a basis consisting of elements
{xr1

i1
· · ·xrkik } where i1 < i2 < . . . < ir.

Proof: We assign any monomial ai1 . . . ain in ais a pair (k,N) where k is the number of factors in a
monomial and N is the number of inversions(meaning the number of pairs 1 ≤ r, s ≤ n that ir > is),
pairs (k,N) are lexicographical ordered. Let T (k,N) be the space of T (g) generated by monomials of
index (k,N), T k = ∪∞

N=1T
(k,N), and U (k,N),Uk the space of T (g) the image of T (k,N), T k in U(g).

We will use induction on (k,N). Notice for any k, T k = T (k,N) for N large.
To show that the monomials in (⋆) generates U(g), if we have a monomial ai1ai2 . . . aisais+1 . . . aik

that is > is+1, then

ai1ai2 . . . aisais+1 . . . aik = ai1ai2 . . . (ais+1ais + [ais , ais+1 ]) . . . aik ,
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which is in ∪(k′,N ′)<(k,N)U (k′,N ′). So we can use induction on (k,N) to show that any element of U(g)
is in ∪∞

k=1T
(k,0).

From now on, we write ai1ai2 . . . ain as ai1ai2 . . . ain for simplicity.
To show that the monomials are linearly independent, we first show that there is a linear map

θ : T (g)→ R = C[zi]i∈I

satisfying the following conditions:

θ(ai1 . . . ain) = zi1 . . . zin , if i1 ≤ i2 . . . ≤ in, (⋆⋆)

θ(a1 . . . aikaik+1 . . . ain)

= θ(a1 . . . aik+1aik . . . ain) + θ(a1 . . . [aikaik+1 ] . . . ain). (⋆ ⋆ ⋆)

We construct this map by construction on ∪(k′,N ′)≤(k,N)U (k′,N ′) and use induction on (kN). For
k = 0, let θ(1) = 1. If θ is defined for any monomials of index (k,N) that k < n, define θ on Tn,0 by
θ(ai1 . . . ain) = zi1 . . . zin , then it satisfies (⋆⋆).

And if θ is already defined for any Tn,k that k < i, suppose that the monomial ai1 . . . ain has
index (n, i), then there is a smallest k that ai1 . . . aik+1aik . . . ain has index i− 1. Then we define

θ(ai1 . . . ain) = θ(ai1 . . . aik+1aik . . . ain) + θ(ai1 . . . [aik , aik+1 ] . . . ain).

Now we need to check that this definition satisfies (⋆ ⋆ ⋆):
If there is another k′ that ik′ > ik′+1, then k < k′. Suppose first that k + 1 < k′, let aik =

a, aik+1 = b, aik′ = c, aik′+1 = d, then

θ(. . . ab . . . cd . . .) = θ(. . . ba . . . cd . . .) + θ(. . . [a, b] . . . cd . . .)
= θ(. . . ba . . . dc . . .) + θ(. . . ba . . . [cd] . . .) + θ(. . . [ab] . . . dc . . .) + θ(. . . [ab] . . . [cd] . . .)
= θ(. . . ab . . . dc . . .) + θ(. . . ab . . . [cd] . . .)

where the terms except the first one are all in ∪(k′,N ′)<(k,N)T
(k′,N ′) so the equalities come from

induction hypothesis. So it satisfies (⋆ ⋆ ⋆).
Suppose next that k′ = k + 1, let aik = a, aik+1 = b, aik+2 = c, then

θ(. . . abc . . .) = θ(. . . bac . . .) + θ(. . . [ab]c . . .)
= θ(. . . bca . . .) + θ(. . . b[ac] . . .) + θ(. . . c[ab] . . .) + θ(. . . [[ab]c] . . .)
= θ(. . . cba . . .) + θ(. . . [bc]a . . .) + θ(. . . b[ac] . . .) + θ(. . . c[ab] . . .) + θ(. . . [[ac]b] . . .) + θ(. . . [a[bc]] . . .)
= θ(. . . cab . . .) + θ(. . . [ac]b . . .) + θ(. . . a[bc] . . .)
= θ(. . . acb . . .) + θ(. . . a[bc] . . .)

where the terms except the first one are all in ∪(k′,N ′)<(k,N)T
(k′,N ′) so the equalities come from

induction hypothesis, and in the third equality we used the Jacobi identity. So it satisfies (⋆ ⋆ ⋆).
Now all elements in J is a linear combination of elements of the form

a1 . . . aikaik+1 . . . ain − a1 . . . aik+1aik . . . ain − a1 . . . [aikaik+1 ] . . . ain ,

so the map θ factors through T (g)→ U(g) to a map θ : U(g)→ R, and the elements ai1ai2 . . . aik , i1 ≤
i2 ≤ . . . ≤ ik are mapped to zi1 . . . zin , which are linearly independent in R, so the elements
ai1ai2 . . . aik , i1 ≤ i2 ≤ . . . ≤ ik are also linearly independent in U(g). □
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Cor.(2.5.8.5).The map g→ U(g) is injective.

Cor.(2.5.8.6).U(g) has no zero-divisors.

Proof: We can use the identities x⊗ y − y ⊗ x = [xy] to make any element in their right represen-
tations under the PBW prop(2.5.8.4), so it is clear that the product of two nonzero elements cannot
be 0. □

Cor.(2.5.8.7). If h ⊂ g, then the subalgebra of U(g) generated by h is isomorphic to U(h).

Proof: There is a natural map U(h) → U(g), and the image is just the subgroup generated by h.
The PBW theorem shows this map is injective. □

Cor.(2.5.8.8). If g = a× b, then U(g) = U(a)⊗ U(b).

Def.(2.5.8.9)[Coproduct of U(g)].Let g be a Lie algebra, there is a coproduct ∆ on T (g) defined
by ∆(g) = g ⊗ 1 + 1⊗ g. This coproduct descends to a coproduct ∆ : U(g)→ U(g)⊗ U(g).

Proof: It suffices to check that ∆(J) ⊂ J ⊗ T (g) + T (g)⊗ J , and this is because

∆(x⊗ y − y ⊗ x− [xy]) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)− (y ⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ x)− ([xy]⊗ 1 + 1⊗ [xy])
= (x⊗ y − y ⊗ x− [xy])⊗ 1 + 1⊗ (x⊗ y − y ⊗ x− [xy])

□

Prop.(2.5.8.10)[g-Module Structure].Let g be a Lie algebra, then T (g) is a g-module, and this
action descends to a g-module structure on U(g).

Proof: It suffices to show that gJ ⊂ J and gI ⊂ I:

y(a⊗ b− b⊗ a− [ab]) = [ya]⊗ b+ a⊗ [yb]− [yb]⊗ a− b⊗ [ya]− [y[ab]]
= [ya]⊗ b− b⊗ [ya]− [[ya]b] + a⊗ [yb]− [yb]⊗ a− [a[yb]]

□

Prop.(2.5.8.11) [Transpose].There is an anti-automorphism u 7→ ut of U(g) that Xt = −X for
X ∈ g.

Proof: We first extend this t to an automorphism of T (g), then we compose with the obvious
anti-automorphism T (g) → T (g). Then we check that this map descends to U(g): (X ⊗ Y − Y ⊗
X − [X,Y ])t = Y ⊗X −X ⊗ Y − [Y,X] ∈ J , so J t ∈ J . □

Prop.(2.5.8.12) [Graded Algebra of U(g)].Let L be a Lie algebra, if we let S(L) = T (L)/(x ⊗
y − y ⊗ x) be the universal symmetric algebra of L, then it is a graded algebra. There is a filtered
structure on U(L) given by Ui = {subalgebra generated by a1a2 . . . aj , j ≤ i}, then the associated
graded algebra of U(L) is isomorphic to S(L) by PBW theorem.

Cor.(2.5.8.13). If W is a subspace of Tn(L) that is sent isomorphically onto Sn(L), then the image
of W is a complement of Un(L) complementary to Un−1(L).

Cor.(2.5.8.14) [Symmetrization Map].Over a field of characteristic 0, the symmetrization map
σ : S(g)→ T (g)→ U(g)(2.3.9.2) is an isomorphism of g-modules that

Un(g) = σ(Sn(g))⊕ Un−1(g).
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Proof: It is clearly an isomorphism of vector spaces. It suffices to show the map is compatible with
g-actions: Because

σ(y1 . . . yn) = 1
n!

∑
σ∈Σn

yσ(1) . . . yσ(n),

σ(g(y1 . . . yn)) = σ([gy1] . . . yn + . . .+ y1 . . . [gyn])

= 1
n!

∑
σ∈Σn

([gyσ(1)] . . . yσ(n) + . . .+ yσ(1) . . . [gyσ(n)])

= g( 1
n!

∑
σ∈Σn

yσ(1) . . . yσ(n))

□

Prop.(2.5.8.15). If g is a Lie algebra over a field k of characteristic 0, then the set of primitive
elements(2.9.1.3) are just g.

Proof: If f is primitive, then the leading term f0 of f is also primitive in grU(g) ∼= S(g). Now
consider S(g) ∆−→ S(g)⊗ S(g) µ−→ S(g), then if f is of degree n, then 2nf0 = 2f0, which means n = 1.
So f = c+ f0, and c = 0. □

Prop.(2.5.8.16)[U(g) is Notherian].For a f.d. Lie algebra g, U(g) is left Noetherian.

Proof: This is because the graded stricture on U(g) satisfies grU(g) ∼= S(g) ∼= C[X1, . . . , Xn] is
Noetherian, so U(g) is Noetherian itself. □

Free Lie Algebras

Def.(2.5.8.17)[Free Lie Algebra].Let X be a set, then we define the free Lie algebra FL(X) to
be the intersection of Lie subalgebras in [F (X)] containing σ(X), where F (X) is the free algebra
generated by X.

Then the free Lie algebra FL : X 7→ FL(X) defines a functor Set → LieAlg that is left adjoint
to the forgetful functor.

Proof: We need to show that for any Lie algebra L and a map fo sets θ : X → L, there is a unique
φ completing the upper left triangular diagram:

X FL(X) F (X)

L U(L)

i

θ
φ

φ θ

σ

Notice φ−1(σ(L)) is a Lie algebra containing X thus containing FL(X), so it induces a φ.
And for the uniqueness, if there are two φ1, φ2, then the element that they coincide is a Lie

algebra containing X, thus containing FL(X), so φ1 = φ2. □

Cor.(2.5.8.18).U(FL(X)) ∼= FX for any set X.

Proof: Because U ◦ FL and F are both left adjoint to the forgetful functor AssAlg → Set. □
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Center of U(g)

Prop.(2.5.8.19)[g Action on U(g)]. g acts on T (g) by adjoint(2.5.9.2), and notice

ad(z)(x⊗ y − y ⊗ x− [xy]) = [zx]⊗ y + x⊗ [zy]− [zy]⊗ x− y ⊗ [zx]− [z[xy]] ∈ J,

so the action of g descends to an action on U(g).
In fact, this action is inner: ad(g)(z) = gz − zg for z ∈ U(g). In particular,

Z(U(g)) = U(g)ad(g).

Invariant Polynomials

Prop.(2.5.8.20) [Chevalley].The center of the universal enveloping algebra is isomorphic to the
polynomial ring over C of l elements, where L is a semisimple lie algebra of rank l. In particular,
The center for sl2 is the algebra generated by the Casimir element 1/2h2 + ef + fe.

Proof: Because there is a commutative diagram of isomorphisms of algebras:

S(L)G α−−−−→ P (L)Gyη yϕ
S(H)W β−−−−→ P (H)W

Where P is the polynomial ring∼= S(L∗), the horizontal is Killing isomorphisms and vertical is the
restriction maps. Cf.[Carter prop 13.32]?.

The twisted Harish-Chandra map gives an isomorphism of algebras Z(L) → S(H)W (It just
maps z ∈ Z(L) to its pure H part and transform every indeterminants hi to hi − 1). e.g. z =
h2 + 2h+ 1 + 4fe ∈ Z(sl2) is maped to h2 in S(H). And P (H)W is isomorphic to a polynomial ring
in l generators over C. □

Def.(2.5.8.21) [Casimir Element]. If L is semisimple Lie algebra, by(2.5.2.1) the Killing form is
non-degenerate, thus we choose a basis xi of L and a dual basis yi, then c =

∑
xiyi is independent

of xi chosen by(2.3.8.9), and is called the Casimir element of U(L).

Prop.(2.5.8.22).The Casimir element lies in the center of U(L).

Proof: □

Prop.(2.5.8.23)[Quillen’s lm]. If K is an alg.closed field of char 0 that g is a f.d. Lie algebra over K.
If U = U(g) is its universal enveloping algebra, then for any irreducible U -moduleM , EndU (M) = K.

Miscellaneous

Prop.(2.5.8.24) [Grading on U(sl2(C))].Let H,R,L be a basis of sl2(C)(2.5.2.11), if we define a
grading as degR = 1,degH = 0, degL = −1, then this is descends to a grading on U(g), and the
degree 0 part is the ring R = C[∆,H]. Also, there is a decomposition:

U(g) =
⊕
i≥0

LiR⊕
⊕
i>0

RiR.
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9 Representations
Def.(2.5.9.1)[Representations].A representation of a Lie algebra g over a vector space V is a
Lie homomorphism g→ glV .

Def.(2.5.9.2) [Tensor Product of Representations].Let (V1, π1), (V2, π2) be two representations
of a Lie algebra g, then (V1 ⊗ V2, π1 ⊗ π2) is a representation of g given by

(π1 ⊗ π2)(g)(v1 ⊗ v2) = π1(g)v1 ⊗ v2 + v1 ⊗ π2(g)v2.

Def.(2.5.9.3)[Representation on Tensor Algebras]. If (V, ρ) is a representation of g, then g acts
on T (V ) via(2.5.9.2). Also, the ideals I, J are invariant under action of g, thus the representation
extends to Sym(V ) and ∧(V ). Also it preserves degree, thus it induces representations on Symk(V )
and ∧k(V ).

Proof:
g(a⊗ a) = g(a)⊗ a+ a⊗ g(a) = (a+ g(a))⊗ (a+ g(a))− a⊗ a− g(a)⊗ g(a)

and

g(a⊗ b− b⊗ a) = g(a)⊗ b+ a⊗ g(b)− g(b)⊗ a− b⊗ g(a) = g(a)⊗ b− b⊗ g(a) + a⊗ g(b)− g(b)⊗ a

□

Def.(2.5.9.4)[dual representation]. If (φ, V ) is a representation of g, we define the dual represen-
tation (φ∗, V ∨) as

(φ(g)(v∗), v) = (v∗, φ(g)v).

Def.(2.5.9.5) [Trace Form].The trace form of a representation (V, ρ) of a Lie algebra g is an
invariant symmetric form βρ defined by (x, y) 7→ tr(ρ(x) ◦ ρ(y)).

Proof: It is invariant because

tr(ρ([x, y]) ◦ ρ(z)) = tr(ρ(x)ρ(y)ρ(z))− tr(ρ(y)ρ(x)ρ(z))
= tr(ρ(x)ρ(y)ρ(z))− tr(ρ(x)ρ(z)ρ(y))
= tr(ρ(x)ρ([y, z])).

□

Prop.(2.5.9.6). If ρ is a faithful representation of g and g is semisimple, then βρ is non-degenerate.

Proof: The Cartan’s criteria(2.5.1.27) shows g⊥ is a solvable sub-Lie algebra, so it must be 0 as g
is semisimple(2.5.1.23). □

Prop.(2.5.9.7).Let L be a simple lie algebra, then any two non-degenerate symmetric invariant
bilinear forms on L is proportional. Because any of this form corresponds to a L-morphism from L
to L∗. In particular, when L ⊂ gln, the usual trace is proportional to the Killing form.

Remark(2.5.9.8)[Rep(g)].Let g be a Lie algebra over a field k, let Rep(g) denote the category of
f.d. representations of g.

Prop.(2.5.9.9)[Schur’s Lemma].Let g be a finite Lie algebra, M be an irreducible g-module, then
dimM is countable. In particular, Shur’s lemma holds by(15.1.1.10).
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Proof: It is of countable dimensional because dimU(g) is countable. □

Prop.(2.5.9.10) [Generalized Eigenspace Decomposition for Nilpotent Lie Algebras].As-
sume k is alg.closed, and g is a nilpotent algebra, and (V, ρ) is a representation of g, then there is a
generalized eigenspace decomposition

V = ⊕λ∈g∗V λ,

where V λ are the generalized eigenspaces, and they are stable under action of g.

Proof: We use an induction argument:
If each a ∈ h has only one eigenvalue, then V is the generalized eigenspace Vλ for some function

λ on h. Then it suffices to show that λ is linear. But this is because by Lie’s theorem elements of h
has a common eigenvector.

If for some a0, ad(a0) has two eigenvalues. Now h is nilpotent, so h ⊂ ha0
0 , and hence π(h)V a0

λ ⊂
V a0
λ for any λ by(2.5.1.12).
As k is alg.closed, V can be written as a sum of generalized eigenspaces of a0, and each generalized

eigenspace is a subrepresentation of h, thus we can use induction. □

Def.(2.5.9.11)[Casimir Operator].Let g be a semisimple Lie algebra of dimension n, and β : g×g→
k a non-degenerate invariant bilinear form on g. Let ei be a basis of g and e′

i be the dual basis under
β, then c =

∑
eie

′
i ∈ U(g) is independent of the basis, and lies in the center of U(g).

Now the trace form βV for a faithful representation g → glV of g is non-degenerate and invari-
ant(2.5.9.6), then the corresponding elements cρ is called the Casimir element of (V, ρ), and the
action cV of cρ on V is called the Casimir operator of (V, ρ).

The Casimir operator cV is a g-module homomorphism, and has trace n.

Proof: The independence of basis is by(2.3.8.9). To show it is in the center of U(g),
Cf.[Mil13].P50?.

Casimir operator cV is a g-module homomorphism follows from the fact cρ is in the center of
U(g), and its trace is

tr(cV ) =
∑
i

tr(eie′
i) =

∑
i

(βV (ei, e′
i)) = n

□

Def.(2.5.9.12)[Unimodular Lie Algebras].A f.d Lie algebra g is called unimodular if ∧ ad is a
trivial representation of g.

Prop.(2.5.9.13).
• If g = [g, g], then g is unimodular.
• If g is nilpotent, then g is unimodular.
• If g1, g2 is nilpotent, then g1 ⊕ g2 is unimodular.
• If g is reductive, then g is unimodular.

Lemma(2.5.9.14)[Zassenhaus].Let g be a Lie algebra and g′ an ideal of g. A representation ρ′ of
g′ extends to a representation ρ of g that nρ′(g′) ⊂ nρ(g) if there exists a Lie subalgebra h of g that
g = g′ ⊕ h and [h, g′] ⊂ nρ′(g′). If moreover adg(x)|g′ is nilpotent for all x ∈ h, then ρ can be chosen
that h ⊂ nρ(g).

Proof: Cf.[Mil13]P65. □
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Prop.(2.5.9.15)[Nilpotent Representation Extension].Let g be a Lie algebra, a a nilpotent ideal
of g, and ρ a representation of a that ρ(x) is nilpotent for all x ∈ a. Then ρ extends to a representation
ρ′ of g that ρ′(x) is nilpotent for all x ∈ n the largest nilpotent ideal of g.

Proof: □

Thm.(2.5.9.16) [Ado].Let g be a Lie algebra over a field k of char0, then there exists a faithful
representation ρ of g that ρ(n) consists of nilpotent endomorphisms, where n is the largest nilpotent
radical. If g is of f.d., then this representation can be chosen to be of f.d.. In particular, any finite
dimensional Lie algebra can be embedded in some gl(n, k).

Proof: This is true for any commutative Lie algebras, for example we can use tensor products of

c 7→
[
0 c
0 0

]
. Choose a faithful representation of the center c of g that every element is mapped to a

nilpotent endomorphism, and then extend it to a representation ρ1 of g by(2.5.9.15). Let ρ2 be the
adjoint representation of g, and ρ = ρ1 ⊕ ρ2. Then ker(ρ) = ker(ρ1) ∩ ker(ρ2) = ker(ρ1) ∩ c = 0, so
this is faithful. And it sends an element in n to a nilpotent endomorphism because each ρ1 and ρ2
do. □

Remark(2.5.9.17). In fact, this is true for Lie algebras over a field of char p, too, Cf.[JACOBSON,
N. 1962. Lie algebras.]Chap 6.3.

Semisimple Representations

For representations of a semisimple Lie algebra, See15.8.

10 Lie Algebra Cohomology
Main references are [Wei94] and [Eti21].

Prop.(2.5.10.1)[Chevalley-Eilenberg resolution].

11 Amitsur-Levitski

Preliminary

Notice that in this paper, Kostant considers reductive lie groups. But in the range of this
paper, the abelian part makes no contribution in the alternative part because they commutes with
all elements. So We well just consider a semisimple Lie algebra in order to get a non-degenerate
Killing form.

Prop.(2.5.11.1).
Γ(∧2k(g)) = Rk ∈ Sk(g)

Γ(x1 ∧ · · · ∧ xk) =
∑
v∈Πk

[xv(1), xv(2)] · · · [xv(2k−1), xv(2k)]

Proof: The proof is in fact simple, just notice that for every v ∈ Πk a representative of the
subgroup Σ2k,2 permuting the unordered pairs {(1, 2), (3, 4), . . . , (2k − 1, 2k)},the element in vΣ2k,2
in fact combine in pairs to [xv(2i−1), xv(2i)] and together the k! permutation of them compose a
[xv(1), xv(2)] · · · [xv(2k−1), xv(2k)]. □

Later he finds the dual of Γ,that is:
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Prop.(2.5.11.2). γ is B dual to Γ,

(Γ(ζ), y1 · · · yr) = (−1)r(ζ, dy1 ∧ · · · ∧ dyr) ∀ζ ∈ ∧2rg and yi ∈ g.

In particular,
Γ(ζ)(x) = (−1)r

r!
(ζ, (dx)r) ∀ζ ∈ ∧2rg and x ∈ g.

For the proof just notice that (−dw, xi ∧ xj) = (wi, [xi, xj ]) and

(x1 ⊗ · · · ⊗ xr, y1 ⊗ · · · ⊗ yr) =
∑
σ

(x1, yσ(1)) · · · (xr, yσ(r))

So dim of Rk equals the dim of image of γr,that is, spanned by (dx)k(because they are dual).
We say that a representation of g satisfies m-fold standard identity if the alternating sum of any

m elements of image of g is 0.Obviously, this is equivalent to:

τ(Rk(g)) ⊂ kerπV

Now let o(g) be the maximum rank of dw,w ∈ g,then by the discussion of the first paper, when
g is semisimple,o(g) = r.So the 2r-identity is satisfied by any representation of g.

Furthermore a prop of [Harish-Chandra] assert for any nonzero element u ∈ U(g),there is a
representation such that π(U) ̸= 0.So this is a sharp bound for general representations.

But one might naturally ask:Can we find the specific bound for a particular representation of a
specific g?The answer is YES.

Prop.(2.5.11.3). γ vanishes on the ideal J ′
+ · S(g).

Proof: The proof comes from the observation π is a G-map and by Cartan-Koszul theory,
invariant elements in ∧g are naturally isomorphic to the cohomology of g and γ(w) = −dw is clearly
exact,Thus γ(w1w2 . . . wi) = (−1)idw1 ∧ · · · ∧ dwi is exact too. So γ(w) = 0.

□

Cor.(2.5.11.4).M = Rr ∈ Hr, so it consists of harmonic functions.

Proof: (u,Γ(y)) = (γ(u), y) = 0 ∀u invariant, by Thm; so Rk =Image Γ is harmonic. □

Generalized Amitsur-Levitski

Let Ek ⊂ U(g) be spanned be yk, y nilpotent in g,and Z the center.
in [Kos97] Kostant proved that the PBW isomorphism δ : S(g) −→ U(g) induces δ(J) = Z,δ(H) =

E.
so τ : T (g) −→ U(g) induces

τ(A2k(g)) = δ(Rk(g)) ⊂ Ek.

Define ϵ(π) the minimum integer k that π(y)k = 0,∀y nilpotent in g.Then clearly:

Prop.(2.5.11.5)[Generalized Amitsur-Levitski]. π satisfies the 2ϵ(π)-fold standard identity.

Prop.(2.5.11.6). If π satisfies the m-identity, it satisfies the m + 1-identity(By taking a summation
on a fixed first element σ(1)).
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Prop.(2.5.11.7).
• Let π be the natural representation of gln on Cn then ϵ(π) = n.
• If n even and π the natural representation of skew-symmtric matrixs on Cn then ϵ(π) = n− 1.

From this one derives the classical Amitsur-Levitski prop that GLn(C) satisfies the n-fold stan-
dard identity.

Proof: 1: the abstract Jordan decomposition which assures x is nilpotent in gln if π(x) is
nilpotent.

2: comes from the Lacobson-Morosov Thm that any nilpotent element of g is contained in a
sl2-triple. Thus we only need to show that W is reducible considered as this sl2-triple-module.

But then an irreducible representation of sl2 preserves a non-degenerate bilinear form it must be
odd dimensional cause a non-degenerate bilinear form is equivalent to a g-map from V to V ∗.

And there can be constructed an anti-symmetric form defined on the sl2-representation on
Sym2k[x, y] by(2.5.11.9), so there can’t exist symmetric g-invariant form. So this representation
must be reducible. □

Cor.(2.5.11.8)[Classical Amitsur-Levitski].By(2.5.11.5),

[[x1, x2, . . . , xn]] =
∑
σ

sgn(σ)xσ(1)xσ(2) · · ·xσ(k) = 0 ∀xi ∈ gln

called n-fold standard identity.

Prop.(2.5.11.9).For a construction of the anti-symmetric form, notice

π(g)f(x1, x2) = f(g11x1 + g12x2, g21x1 + g22x2).

Set
vk =

(
m

k

)
xm−k

1 xk2, Ω(vk, vm−k) = (−1)k
(
m

k

)
. Ω(vk, vp) = 0, k + p ̸= m.

One verifies:
Ω(g · u, g · v) = (det g)mΩ(u, v) ∀g ∈ GL(2, C)

So when m = n− 1 is odd, this is a symplectic form preserved by sl2.

A computable Formula

Finally, Kostant gave a computable formula for determining ϵ(π).Clearly we just need to consider
irreducible representation.

Let πλ be the irreducible representation of highest weight λ,then the dual representation πλ′ has
highest weight the negative of the lowest weight of πλ,that is, −wo(γ).

But then λ+λ′ is a sum of simple positive roots.λ+λ′ =
∑n
i=1miαi.Put ϵ(λ) = 1+

∑n
i=1mi.then:

Prop.(2.5.11.10). ϵ(πλ) = ϵ(λ).

Proof: Just choose a sl2-triple {e, x, f} with α(x) = 2 ∀α simple root.Then λ(x) and −λ′(x) are
respectively the maximal and minimal eigenvalues of π(x). (λ + λ

′)(x) = 2(ϵ(λ) − 1). Thus f has
nilpotent degree ϵ(λ).And any nilpotent element action increases the eigenvalue of a eigenvector of
x by at lest 2, the prop follows. □
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Further Work

(cf. [Pro76]) Another different proof of the Amitsur-Levitski theorem is given by Kostant using
techniques related to trace identities. It turns out that method sheds more light. Later is studied
the polynomial of matrices invariant under the conjugation action.

Artin conjectured that all the invariants is polynomials of the Trace polynomial
Tr(A1A2 · · ·An)(Proved)

And further, the relations among these invariant all turned out to be consequences of the prop of
Hamilton-Cayley. All this is made into the Invariant Theory.

Prop.(2.5.11.11)[Interesting results].
1. If an algebra over a field of characteristic 0 satisfies the identity Xn = 0,then it satisfies all the

identities of n× n matrices.
2. The space of multilinear identities of degree m of n× n matrices can be described completely

in terms of Young diagrams.

12 Lie p-Algebras
Remark(2.5.12.1). In this subsection, let k be a field of characteristic p.

Def.(2.5.12.2) [Lie p-Algebras].Let x0, x1 be elements of a Lie algebra over k of characteristic p,
then for 0 < r < p, let sr(x0, x1) denote 1

r times coefficient of tr−1 in the expression of adp−1
tx+y(x).

Then a Lie p-algebra is a Lie algebra g over k equipped with a map x 7→ x[p] : g→ g such that
• (cx)[p] = cpx[p] where c ∈ k.
• ad(x[p]) = (ad(x))p.
• (x+ y)[p] = x[p] + y[p] +

∑p−1
r=1 sr(x, y).

Example(2.5.12.3). If L is an Abelian Lie algebra, then it can be regarded as a Lie p-algebra by
assigning x[p] = 0.

If A is an associative algebra, then it can be given a Lie p-algebra structure by assigning x[p] = xp.

Proof: To show A is a Lie p-algebra, we check ad(x)p(y) = (lx − rx)p(y) = lpx − rpx(y) = ad(xp)(y).
For the third formula, notice

ad(tx+ y)p−1(x) =
p−1∑
i=0

(−i)i
(
p− 1
i

)
(tx+ y)p−1−ix(tx+ y)i

Notice that (−i)i
(p−1
i

)
≡ 1 mod p, so sr(x, y) is equivalent to the sum of words of x, y with r xs. So

the third formula clearly holds. □
Def.(2.5.12.4)[Representations].A representation of a Lie p-algebra g over a k-vector space
V is a homomorphism g→ glV of Lie p-algebras.

Def.(2.5.12.5)[Universal Enveloping p-Algebra].The universal enveloping p-algebra of a Lie
p-algebra g is defined to be

U [p](g) = T (g)/J [p], T (g) =
∞⊕
n=0

g⊗n

which is a graded algebra T (g) quotients the ideal J = ({x⊗ y − y ⊗ x− [xy], x⊗p − x[p]}).
There is a natural linear map σ : g→ U [p](g).



158 CHAPTER 2. ALGEBRAS

Prop.(2.5.12.6).The universal enveloping p-algebra U [p] : g 7→ U [p](g) defines a functor LiepAlg →
AssAlg that is left adjoint to the canonical functor AssAlgk → LiepAlgk(2.5.12.3).

Proof: For any associative algebra A and a morphism of Lie p-algebras g → [A], there is easily
seen a morphism U [p](g)→ A, and it is unique. □

Cor.(2.5.12.7)[Representation as Modules].A representation of g(2.5.12.4) is he same as a rep-
resentation of U [p](g).

Prop.(2.5.12.8).Let ei be a k-vector space basis of g, then the monomials

{eni1i1
e
ni2
i2

. . . e
nir
ir
|i1 < i2 < . . . < ir, 0 < nik < p}

for different r form a basis of U [p](g).

Proof: This is a consequence of PBW theorem(2.5.8.4). □

Cor.(2.5.12.9). If g is of finite dimensional over k, then so does U [p](g), and the map i : g → U [p](g)
is injective.
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2.6 Infinite Dimensional Lie Algebras
References are [What is moonshine?], [Vertex Operator Algebras and the Monster], [Infinite-

Dimensional Lie Algebras, Kac], [Car05].

1 Kac-Moody Algebras
2 Vertex Operator Algebras
3 Moonshine Conjectures

Thm.(2.6.3.1) [Monstrous Moonshine].There is a naturally defined graded infinite dimensional
module, called the Monstrous module V = ⊕n∈ZVn of the monster group M s.t. for any g ∈ M,
the Mckay-Thompson series

Tg(τ) =
∑
n≥−1

tr(g|Vn)e2πinr

is a Hauptmodul for a discrete subgroup Γ ⊂ SL(2,Z) of genus 0 and period r at the cusp.

Proof: Cf.[Borcherds, 1992] □

Prop.(2.6.3.2) [Duncan-Mertens-Ono, 2017].There exists an infinite dimensional module V =
⊕n>0,n≡0,3 mod 4Vn of the O’Nan group(2.1.13.5) ON s.t. for any g ∈ ON, the Mckay-Thompson
series

Fg(τ) = q−4 + 2 +
∑
n>0

tr(g|Vn)e2piinτ

is a meromorphic modular form of weight 3
2 on Γ0(4N), where N is the order of g.

Proof: □
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2.7 Reflection Groups and Coxeter Groups
Main references are [Hum90], [Ser87], [Kna96].

Notation(2.7.0.1).
• Let k ∈ Field, char k = 0, V ∈ Vect /k.

1 Reflection Groups

Def.(2.7.1.1) [Reflections].Let V ∈ Vectd /k, a reflection on V is a linear transformation s ∈
End(V ) that has d− 1 eigenvalues 1 and one eigenvalue −1.

Prop.(2.7.1.2).Let α ∈ V and α∨ ∈ V ∨ that (α, α∨) = 2, then

sα : x 7→ x− (x, α∨)α

is a reflection, and every reflection with vector α is of this form.

Proof: Clearly sα is a reflection, and if s is any reflection, then α∨ is the composition of the quotient
map V → V/H with the map V/H → F sending α+H to 1. □

Lemma(2.7.1.3).Let R ⊂ V be a set s.t. span{R} = V , then for any α ∈ V , there exists at most one
reflection s with vector α that s(R) ⊂ R.

Proof: Let s, s′ be two such reflections, then t = ss′ is an automorphism that is identity on both
Fα and V/Fα. So (t− 1)2 = 0 on V . So the minimal polynomial of T divides (T − 1)2. Also because
R is finite there exists an m that tm = 1 on R thus on V , so t = 1 as the greatest divisor of (T − 1)2

and Tm − 1 is T − 1. □

Lemma(2.7.1.4).Let V be an inner product space, then for any vector α, there exists a unique
reflection sα that respects the inner product, which is

sα(x) = x− 2 (x, α)
(α, α)

α.

Def.(2.7.1.5)[Reflection Groups].Γ ≤ GL(n, k) is called a reflection group if it is generated by
reflections.

Thm.(2.7.1.6) [Shephard-Todd-Chevalley].Let Γ ≤ GL(n, k), then Γ is a reflection group iff
k[X1, . . . , Xn]Γ is a polynomial ring. And in this case,

• There are homogenous alg.ind polynomials p1, . . . , pr, di = deg(pi), d1 ≤ d2 ≤ . . . ≤ dr s.t.
k[X1, . . . , Xn]Γ = k[p1, . . . , pr].

•
1

#Γ
∑
γ∈Γ

tr(γ)
det(1− γT )

=
r∏
i=1

1
1− T di

∈ k(T ).

• (d1, . . . , dr) are determined by Γ.
• #Γ =

∏
i di, and Γ contains ∑i(di − 1) reflections.

• If Γ is an irreducible subgroup of GL(n, k), then it is an abstractly irreducible group, and Z(Γ)
is cyclic of order pgcd(d1, . . . , dr).

Proof: □
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2 Root Systems

Def.(2.7.2.1)[Root System].A subset R of a vector space V over F is called a root system if
• R spans V and doesn’t contain 0.

• For each α ∈ R, there exists a unique reflection sα = id−α∨⊗α with vector α that sα(R) ⊂ R.

• For any α, β ∈ R, sα(β)− β is a multiple of α, or equivalently α∨(β) ∈ Z.
Elements of R are called the roots of R, and dimension of V is called the dimension of the root

system. And the subgroup of GL(V ) generated by all sα is called the Weyl group of R. The Weyl
subgroup is a finite group, as a subgroup of the group of permutations of R.

A root system is called indecomposable iff it cannot be written as a direct sum of two root systems.

Def.(2.7.2.2) [Reduced Root System].Let α, β be roots that are multiples of each other, then
β = cα for some c ∈ F, then 2(β, α∨) = 2c ∈ Z, also 2c−1 ∈ Z, so c ∈ {−1,−1/2, 1/2, 1}. A reduced
root system is a root system that there are no roots α, β that α = 2β.

Prop.(2.7.2.3)[Invariant Quadratic Form].Let R be a root system in V , then there is a positive
bilinear form in V that is invariant under the action of the Weyl group of R.

Notice that for such a bilinear form, the reflection must be of the form given in(2.7.1.4), or in
other words, α∨(β) = ( 2α

(α,α) , β).

Proof: This follows entirely because the Weyl group of R is finite, as we can take the average of
any positive bilinear form under the action of reflections. □

Def.(2.7.2.4)[Dual Root System].Let R be a root system in V , the set of dual vectors α∨ for α ∈ R
is also a root system in V ∨, called the dual system of R. And it has the same Weyl group as R.

Moreover, R∨∨ ∼= R.

Proof: Take an invariant quadratic form on V (2.7.2.3), then it gives an isomorphism V → V ∨.
Then α∨ corresponds to 2α

(α,α) under this isomorphism, and there obviously generates V . If α∨ ∈ R∨,
we can take the corresponding reflection to be sα∨ = 1− α⊗ α∨. Then

sα∨(β∨)(x) = (β∨ − β∨(α)α∨)(x)

= (x, 2β/(β, β))− (α, β)
(β, β)

(x, 2α/(α, α))

= (x, 2(β − α(α, β)/(α, α))
(β, β)

)

= (x, 2sα(β)
(β, β)

) = (sα(β))∨(x).

So sα∨(β∨) = (sα(β))∨ ∈ R∨. In this way, we see α∨∨ = α, and sα∨(β∨) − β∨ = β∨(α)α∨ is an
integral multiple of α∨. Also it can be seen easily from the formula above that the Weyl group is the
same as the Weyl group of R. □

Prop.(2.7.2.5)[Real Root Systems].Let R be a roots system in a vector space V over a field F,
and let V0 be the Q-vector space spanned by R, then R is a root system in V0 and V0 ⊗Q F ∼= V .

So from now on we focus on a real root system.
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Proof: The non-trivial part is that the isomorphism V0⊗QF ∼= V . The natural map i : V0⊗QF→ V
is surjective because R generates V , and consider its transpose

i∗ : V ∨ → V ∨
0 ⊗Q F,

then we can see that this maps α∨ to α∨
0 , and R∨

0 is a root system in V ∨
0 (2.7.2.4), thus α∨

0 generates
V ∨

0 , and i∗ is surjective, showing i is injective. □

Def.(2.7.2.6)[Base].A subset S ⊂ R is called a base of R if the every elements of R can be written
uniquely as a linear integral combination of elements of S with the same sign.

If S is a base of R, then we let R+ denote the set of R that is non-negative integral combinations
of elements of S, called the positive roots of R, and R− the set of R that is non-positive integral
combinations of elements of S, called the negative roots of R. R = R+⨿R−.

Prop.(2.7.2.7) [Base exists].Let t ∈ V ∨ be an element that t(α) ̸= 0 for all α ∈ R. Let R+
t (R−

t )
be the set of all α ∈ R that t(α) > 0(< 0), then R = R+

t ∪ R−
t . An element of R+

t is called
indecomposable if it cannot be written as the sum of two elements in R+

t . Let St be the set of
indecomposable elements of R+

t , then St is a base of R.
In particular, every root system (R, V ) contains a base. And if S is a base and t ∈ V ∨ that

t(S) > 0, then S = St.

Proof: Cf.[Ser87]P38. □

Cor.(2.7.2.8). If t ∈ V ∨ and St is a basis of V contained in R+
t that attains the minimal value of t in

R+
t , then St is a base of R.

Prop.(2.7.2.9).Let S be a base of a root system (R, V ), then every positive root β can be written as

β = α1 + . . .+ αk

in such a way that all the partial sums are roots.

Proof: Cf.[Ser87]P40. □

Prop.(2.7.2.10).Let R be a reduced root system and S a base, then for any α ∈ S,

sα(R+\{α}) = R+\{α}.

In particular if ρ = 1
2(
∑
α∈R+ α), then sαρ = ρ− α.

Proof: If β ∈ R+, then sα(β) = β − cα for some c > 0, Thus sα(β) ∈ R− iff β = α. □

Prop.(2.7.2.11)[Base and Dual System].Let R be a reduced system and S a base, then S∨ is a
base of R∨.

Proof: By the isomorphism between V and V ∨, it suffices to show the vectors {α∨, α ∈ S} is a
base for R∗ = {α∨, α ∈ R}. But it is clear if S is a base corresponding to a vector t ∈ V ∗, then
{α∨, α ∈ S} is the extremal vectors corresponding to t too, so it is a base by(2.7.2.7). □
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Property of the Weyl Group

Prop.(2.7.2.12)[Weyl Group and Bases].Let W be the Weyl group of a reduced root system R
and S a base of R, then

1. For any t ∈ V ∗, there exists w ∈W that (w(t), α) ≥ 0 for all α ∈ S.
2. W acts transitively on the set of bases of R.
3. For each β ∈ R, there exists some w ∈W that w(β) ∈ S.
4. The group W is generated by sα where α ∈ S.
5. W acts simply transitively on the set of bases of R.

Proof: We can in fact prove this for WS the group generated by sα where α ∈ S.
1: Let ρ be defined in(2.7.2.10), and choose an element w ∈ WS that w(t)(ρ) is maximal, then

w(t)(ρ) ≥ w(t)sα(ρ) = w(t)(ρ)− w(t)(α). So (w(t), α) ≥ 0.
2: Let S′ be a base and t′ ∈ V ∨ that t′(S′) > 0(2.7.2.7), Also by 1 we can find w ∈ W that

w(t)(α) ≥ 0 for all α ∈ S. And in fact w(t)(α) > 0 for all α ∈ S. So S = St, S
′ = Sw(t). Thus w

sends S′ to S.
4: Finally we prove that WS = W : because for any β ∈ R, there exists w ∈ WS that w(β) ∈ S,

so sβ = w−1sw(β)w ∈WS .
5: See [Ser87]P70.? □

Def.(2.7.2.13)[Length].Let w ∈W , define the length of w to be the minimal number m that w can
be written as a product of m simple reflections si.

Prop.(2.7.2.14).Let R be a root system with Weyl group W , w ∈W .
• Let n(w) be the number of elements α in R+ that w(α) ∈ R−, then n(w) = l(w).
• There is a unique element w0 ∈W with length |R+|.
• w0(R+) = R−, and w2

0 = id.

Proof: 1: Cf.[Carter, P63]?.
2: By(2.7.2.12) there is a unique element w0 ∈ W mapping S to −S, and it has maximal length

|R+| by item1.
3: w2

0(R+) = R+, thus l(w2
0) = 0 and w2

0 = id. □

Def.(2.7.2.15) [Weyl Chambers].Let (V,R) be a real root system, then a Weyl chamber is a
connected component of V \∪α∈RHα, where Hα is the fixed hyperplane of vectors fixed by sα.

Prop.(2.7.2.16).The Weyl group W acts transitively on the set of Weyl chambers of R.

Proof: To show the action is transitive, if two Weyl chambers C,C ′ are adjacent with a common
face F ⊂ Hα, then clearly sα(C) = C ′. In general, choose two generic vector in C,C ′ and connect
them, then C,C ′ can be connected by adjacent chambers.

If w ∈W satisfies w(C) = C, we may assume C is the fundamental Weyl chamber, then w(S) = S,
so by(2.7.2.14), l(w) = 0, so w = id. □

Def.(2.7.2.17)[Height of Weights].Let α =
∑
niαi ∈ R, then the height of roots α is denoted

by ht(α) =
∑
ni.

Prop.(2.7.2.18)[Highest Root].Let (R, V ) be a root system and S a base. If S is indecomposable,
then there exists a root α̃ =

∑
α∈S nαα that for any other root ∑α∈Smαα, nα ≥ mα.
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Proof: □

Def.(2.7.2.19)[Kostant’s Partition Function].Let R be a root system, the Kostant’s partition
function P is a function on Q(R) that P(α) equals the number of ways to write α as an unordered
sum of positive roots in R+.

Cartan Matrix and Dynkin Diagrams

Prop.(2.7.2.20)[Angles Between Roots].Let α, β be two non-propositional roots in a root system
R, then we can put n(α, β) = α∨(β) = 2(α, β)/(α, α). Then n(α, β) are integers(2.7.2.1), and
n(α, β)n(β, α) = 4 cos2 φα,β, where φα,β is the angle between these two vectors. Then because
4 cos2 φα,β is an integer, it can only take values 0, 1, 2, 3. Then there are only 7 possibilities of the
angles between α, β, and if α, β are not orthogonal, their ration of lengths are determined also by
the angle.

Prop.(2.7.2.21)[String of Roots]. If α, β are not proportional and n(β, α) > 0, then α−β is a root.
In particular, for α, β ∈ S where S is a base of R, n(α, β) ≤ 0.

Proof: (2.7.2.20) shows n(β, α) = 1 or n(α, β) = 1. Now α − β = sβ(α) or −sα(β) is a root of R.
□

Def.(2.7.2.22)[Cartan Matrix].Let R be a root system with a base S. Then the Cartan matrix
is (n(α, β))α,β∈S(2.7.2.20).

Prop.(2.7.2.23).The Cartan matrix depends only on (V,R) and not on S, and if R is reduced, R is
determined by its Cartan matrix up to isomorphisms.

Proof: The first assertion follows from(2.7.2.12) as every two bases are conjugate. The Cartan
matrix determines R because it determined the inner product between roots in a basis of V . □

Prop.(2.7.2.24).Let E be the group of automorphisms of S that leaves that Cartan matrix invariant,
then it can be identified with the set of automorphisms of R that leave the base S invariant. Then
the group Aut(R) is isomorphic to the semi-product E ⋉W .

Proof: Let W is generated by sα so invariant under Aut(R). Now if u ∈ Aut(R), then u(S) is a
base of R, so there exists some w ∈W that w(u(S)) = S, thus u ∈ EW . Also if w ∈W ∩E, then □

Def.(2.7.2.25)[Coxeter graph].A coxeter graph is a finite graph that each pair of distinct vertices
are connected by 0, 1, 2 or 3 vertices.

Def.(2.7.2.26)[Coxeter Graph associated to a Root System].Let (R, V ) be a root system and S
a base of R, then the associated coxeter graph is a graph whose nodes are indexed by the elements
of S, and two distinct nodes α, β are connected by a(β, α)a(α, β) = 4 cos2 φα,β edges(2.7.2.20). This
is independent of the choice of S, by(2.7.2.23).

Prop.(2.7.2.27).R is indecomposable iff the Coxeter graph is connected.

Proof: By the formula in(2.7.1.4), R is decomposable iff R = R1
⨿
R2 where R1, R2 are orthogonal

to each other. Then this is equivalent to φα,β = π/2 for any α ∈ R1, β ∈ R2. □
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3 Simple Root System

Lemma(2.7.3.1) [Listing of Indecomposable Root Systems].The coxeter graphs Γ arising
from indecomposable root systems are exactly the graphs An(n ≥ 1), Bn(n ≥ 2), Dn(n ≥
4), E6, E7, E8, F4, G2. (graphs are given in [Etingod, Lie algebras]P109.)

Proof: The existence is these types are given by(2.7.3.2).
For the converse, notice first that for a graph with vertices vi and vi, vj are connected with Aij

edges, the quadratic form

Q(x1, . . . , xn) =
n∑
i=1

x2
i −

∑
1≤i<j≤n

√
Aijxixj = ||

∑
xivi||2

is positive definite.
Next we show some constraints on the graph:
• Any subgraph of the coxeter graph, it can be shown that the corresponding quadratic form is

also positive definite, in particular non-degenerate.
• : It is a tree: If it contains a circle, consider the subgraph of the circle, then the corresponding

quadratic form vanishes on (1, 1, . . . , 1), contradiction.
• It doesn’t contains subgraphs listed in P77 of[Car05].
Now if Γ contains a triple edge, then it must be G2, otherwise it must contain a Ĝ2. If Γ contains

no triple edges, then it contains at most one double edge, otherwise it contains some Ĉl, l ≥ 2. If it
contains only one double edge, then it contains no branch points, otherwise it contains some B̂l, l ≥ 3,
so it is a chain with an edge added. If the double edge is in one end, then it is Bl for some l ≥ 3,
otherwise it must by F4, in order not to contain F̂4.

Now we assume Γ contains only simple edges. If it contains no branch point, then it is Al for
some l ≥ 1. But Γ contains at most one branch point, and only 3 edges, otherwise it contains some
D̂l, l ≥ 4. If Γ has only one branch point, then the graph is a center with three branches. One of
the branch must be a single vertex, otherwise it contains a Ê6. Then a second branch must has≤ 2
vertices, otherwise it contains a Ê7. If the second branch has a single vertex, then Γ ∼= Dl for some
l ≥ 4. If the second branch has two vertices, then the third branch has≤ 4 vertices, otherwise it
contains some Ê8. So Γ ∼= E6, E7 or E8. □

Prop.(2.7.3.2)[Listing of Indecomposable Root Systems].Let en be the standard basis of Rn

with the standard bilinear form, and let Ln be the subgroup generated by en. Then
• An: Let V be the hyperplane of Rn+1 orthogonal to the vector e1 + . . . + en+1, and R be the

subset of Ln+1 ∩ V consisting of vectors of length
√

2. Then (R, V ) is a root system, and the
Weyl group is the permutation group Sn of e1, . . . , en+1. The polarization with t(ei) = n+1− i
gives a base consisting of {ei − ei+1, i = 1, . . . , n} by(2.7.2.8).

• Bn: Let V = Rn and R be the subset of Ln consisting of vectors of length 1 or
√

2. Then
(R, V ) is a root system, and the Weyl group is the permutation and sign changes of the vectors
ei, isomorphic to Zn2 ⋊ Sn. The polarization with t(ei) = n + 1 − i gives a base consisting of
{e1 − e2, . . . , en−1 − en, en} by(2.7.2.8).

• Cn: Let Cn be the dual system of Bn(2.7.2.4), which by the invariant form isomorphic to the
set of Rn consisting of vectors ±ei± ej ,±2ei. It has the same Weyl group as Bn. It has a base
consisting of {e1 − e2, . . . , en−1 − en, 2en} by(2.7.2.8).
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• Dn: Let V = Rn and R be the set of all vectors of Ln of length
√

2. The Weyl group consists
of permutations and sign changes of an even number of the vectors ei. The polarization with
t(ei) = n− i gives a base consisting of {e1 − e2, . . . , en−1 − en, en−1 + en}.

• G2: Let V = R[ω] and R be the subset of Z[ω] of norm 1 or 3. The Weyl group is isomorphic
to the dihedral group. It clearly has a base consisting of {1, ω − 1}.

• F4: Let V = R4, and let R be the set of vectors {±ei,±ei ± ej , 1
2(±e1 ± e2 ± e3 ± e4)}. It can

be shown this is a root system. The polarization with

t(ε1) = 8, t(ε2) = 3, t(ε3) = 2, t(ε3) = 1,

gives a base consisting of {e2 − e3, e3 − e4, e4,
1
2(e1 − e2 − e3 − e4)}.

• E8: Let V = R8 and

RE8 = {±ei ± ej , i ̸= j} ∪ {1
2

(
8∑
i=1
±ei) with even number of minus signs}.

The polarization with

t(e1) = 23, t(e2) = 6, t(e3) = 5, . . . , t(e8) = 0

gives a base consisting of {e2 − e3, . . . , e7 − e8, e7 + e8,
1
2(e1 − e2 − . . .− e7 + e8)}.

• E7: E7 is the intersection of E8 with the hypersurface ∑xi = 0, so

RE7 = {±(ei − ej), i ̸= j} ∪ {1
2

(
8∑
i=1
±ei) with 4 minus signs}.

The polarization with

t(ε1) = 18, t(ε2) = 7, t(ε3) = 6, . . . , t(ε8) = 1

gives a base consisting of {ε2 − ε3, . . . , ε7 − ε8,
1
2(ε1 − ε2 − ε3 − ε4 − ε5 + ε6 + ε7 + ε8)}.

• E6: E6 is the intersection of E7 with the hypersurface x7 + x8 = 0.

RE6 = {εi−εj |i ̸= j ≤ 6}∪{±(ε7−ε8)}∪{1
2

(±ε1±ε2±. . .±ε7)±1
2

(ε7−ε8) with 3 minus signs before vi, i ≤ 6}.

The polarization

t(ε1) = 11, t(ε2) = 4, t(ε3) = 3, t(ε4) = 2, t(ε5) = 1, t(ε6) = 0, t(ε7) = 4, t(ε8) = 3

gives a base consisting of {ε2 − ε3, . . . , ε5 − ε6, ε7 − ε8,
1
2(ε1 − ε2 − ε3 − ε4 + ε5 + ε6 − ε7 + ε8)}.

A∨
n
∼= An, B

∨
n
∼= Cn, D

∨
n
∼= Dn, G

∨
2
∼= G2, F

∨
4
∼= F4, E

∨
8
∼= E8, E

∨
7
∼= E7, E

∨
6
∼= E6.

Remark(2.7.3.3).The polarizations t are intimately related to the averaged coroot ρ∨(2.7.3.12).

Def.(2.7.3.4)[Dynkin Diagram].The coxeter graph cannot determine the root system up to isomor-
phism, because it cannot distinguish between n(α, β), n(β, α). So there is a Dynkin diagram which
is constructed from the coxeter diagram by adding a vector from the longer vector to the shorter
vector when n(α, β)n(β, α) = 2 or 3.



2.7. REFLECTION GROUPS AND COXETER GROUPS 167

Prop.(2.7.3.5) [Listing of Dynkin Diagrams].The Dynkin diagrams arising from indecom-
posable root systems are exactly the diagrams An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥
4), E6, E7, E8, F4, G2. (graphs are given in [Etingod, Lie algebras]P109.)

Proof: This follows easily from(2.7.3.1) and(2.7.3.2). □

Prop.(2.7.3.6) [Non-Reduced Root Systems].For any n ≥ 1, there is exactly one non-reduced
indecomposable root system of rank n, which is BCn, the union of Bn and Cn in(2.7.3.2).

Cor.(2.7.3.7).Cf.[Kna96]P139.

Weight Lattices

Def.(2.7.3.8)[Weight Lattice].Let (R, V ) be a root system, we can define the root lattice as the
Z-lattice Q(R) generated by R, and also the weight lattice P (R) = {x ∈ V |α∨(x) ∈ Z, ∀α ∈ R}
P (R) has a generator by fundamental weights ωi that (ωi, α∨

j ) = δij . Then Q(R) ⊂ P (R), and
[P (R) : Q(R)] is finite as they are both complete lattices.

Prop.(2.7.3.9).Let ρ = 1/2
∑
i αi, then ρ =

∑
i ωi.

Proof: It follows from(2.7.2.10) that sαρ = ρ − α, so (ρ, α∨
i ) = 1, thus ρ =

∑
i ωi by defini-

tion(2.7.2.10). □

Prop.(2.7.3.10)[Weight Lattices of Indecomposable Root Systems].Let R be a root system,
notation as in(2.7.3.2),

• An: α∨
i = αi for i ≤ n, so ωi = (n+1−i

n+1 , . . . , n+1−i
n+1 , −i

n+1 , . . . ,
−i
n+1)(i terms) for 1 ≤ i ≤ n. Then

P = {(xi) ∈ Rn|xi − xj ∈ Z,
∑
xi = 0}, Q = {(xi) ∈ Zn|

∑
xi = 0}, and P/Q ∼= Z/(n+ 1)Z.

• Bn: α∨
i = αi for i < n and α∨

n = 2en, so ωi = (1, . . . , 1, 0, . . . , 0)(i ones) for 1 ≤ i < n, and
ωn = (1

2 , . . . ,
1
2). Then P = Zn and Q = Zn ∪ [(1

2 , . . . ,
1
2) + Zn], P/Q ∼= Z/2Z.

• Cn: α∨
i = αi for i < n and α∨

n = en, so ωi = (1, . . . , 1, 0, . . . , 0)(i ones) for 1 ≤ i ≤ n. Then
P = {(xi) ∈ Zn|

∑
xi ∈ 2Z} and Q = Zn, P/Q ∼= Z/2Z.

• Dn: α∨
i = αi for i ≤ n, so ωi = (1, . . . , 1, 0, . . . , 0)(i ones) for 1 ≤ i ≤ n − 2, ωn−1 =

(1
2 , . . . ,

1
2), ωn = (1

2 , . . . ,
1
2 ,−

1
2). So P/Q ∼= (Z/2Z)2 for n even and Z/4Z for n odd.

• G2: It is clear ω1 = ω + 1, ω2 = 2ω + 1. Then P = Q = Z[ω].
• F4: ω1 = (1, 1, 0, 0), ω2 = (2, 1, 1, 0), ω3 = (3

2 ,
1
2 ,

1
2 ,

1
2), ω4 = (1, 0, 0, 0). So P = Q = 1

2Z
4.

• E8: ? ω1 = (1, 1, 0, . . . , 0), So P = Q = {(x1, . . . , x8)|xi ∈ Z or xi ∈ 1
2 + Z,

∑
xi ∈ 2Z}.

• E7:?, P/Q ∼= Z/2Z.

• E6: ?, P/Q ∼= Z/3Z.

Proof: □

Prop.(2.7.3.11)[Maximal Roots].For An, the maximal root is θ = e1 − en+1 = α1 + . . . + αn =
ω1 + ωn. For Cn, the maximal root is θ = 2e1 = 2α1 + . . .+ 2αn−1 + αn = 2w1.

But for any other indecomposable root system R, the maximal root θ is a fundamental root:
• Bn: θ = e1 + e2 = α1 + 2α2 + . . .+ 2αn = ω2.
• Dn: θ = e1 + e2 = α1 + 2α2 + . . .+ 2αn−2 + αn−1 + αn = ω2.
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• G2: θ = 2ω + 1 = 3α1 + 2α2 = ω2.
• F4: θ = e1 + e2 = 2α1 + 3α2 + 4α3 + 2α4 = ω1.
• E8: θ = e1 + e2 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4e6 + 3e7 + 2e8 = ω1.
• E7: θ = e1 − e8 = α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7 = ω6.
• E6: θ = ε1 − ε6 = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 = ω4.

Prop.(2.7.3.12)[ρ and ρ∨]. ρ∨ is ρ of the dual system R∨. Under the identification of V and V ∗, If
(R,S) is simply laced, then R ∼= R∨ via α 7→ α∨, so by(2.7.3.10),

• An : ρAn = ρ∨
An

= (n2 ,
n−2

2 , . . . ,−n
2 ) =

∑
i
i(n+1−i)

2 αi.

• Bn : ρBn = ρ∨
Cn

= (2n−1
2 , 2n−3

2 , . . . , 3
2 ,

1
2) =

∑
i
i(2n−i)

2 αi.

• Cn : ρCn = ρ∨
Bn

= (n, n− 1, . . . , 1) =
∑
i≤n−1

i(2n+1−i)
2 αi + n(n+1)

4 αn.

• Dn : ρDn = ρ∨
Dn

= (n− 1, n− 2, . . . , 0) =
∑
i≤n−2

i(2n−1−i)
2 αi + 1

2αn−1 + n(n−1)
4 αn.

• G2 : ρG2 = 3ω + 2 = 5α+ 3β, ρ∨
G2

= 10
3 ω + 8

3 = 6α+ 10
3 β.

• F4 : ρF4 = (11
2 ,

5
2 ,

3
2 ,

1
2), ρ∨

F4
= (8, 3, 2, 1).

• E8 : ρE8 = ρ∨
E8

= (23, 6, 5, 4, 3, 2, 1, 0).

• E7 : ρE7 = ρ∨
E7

= (18, 7, 6, . . . , 1)− (23
4 , . . . ,

23
4 ).

• E6 : ρE6 = ρ∨
E6

= (15
2 ,

1
2 ,−

1
2 ,−

3
2 ,−

5
2 ,−

7
2 ,

1
2 ,−

1
2).

Def.(2.7.3.13)[Coxeter Numbers].Let (R,S) be an indecomposable root system, defined the Cox-
eter root to be hR = (θ, ρ∨) + 1 = ht(θ) + 1, and the dual Coxeter number h∨

R = (ρ, (θ)∨) + 1.
Clearly if (R,S) is simply laced, then R ∼= R∨ via α 7→ α∨, so if θ =

∑
miαi, then θ∨ =

∑
miα

∨
i , so

h∨
R = hR =

∑
mi + 1.

Prop.(2.7.3.14)[Listing of Coxeter Numbers].We can determine the Coxeter numbers and dual
coxeter numbers of indecomposable root systems:

• hAn = h∨
An

= n+ 1.
• hBn = 2n, and θ∨ = e1 + e2 = α∨

1 + 2α∨
2 + . . .+ α∨

n , so h∨
Bn

= 2n− 1.
• hCn = 2n, and θ∨ = e1 = α∨

1 + . . .+ α∨
n , so h∨

Cn
= n+ 1.

• hDn = h∨
Dn

= 2n− 2.
• hG2 = 6, and θ∨ = 2

3(2ω + 3) = α∨
1 + 2α∨

2 , so h∨
G2

= 4.
• hF4 = 12, and θ∨ = e1 + e2 = 2α∨

1 + 3α∨
2 + 2α∨

3 + α∨
4 , so h∨

F4
= 9.

• hE8 = h∨
E8

= 30.
• hE7 = h∨

E7
= 18.

• hE6 = h∨
E6

= 12.

Minuscule Weights

Def.(2.7.3.15)[Minuscule Weights].Let (R,S) be a root system, then a dominant weight ω is called
minuscule if (ω, β∨) ≤ 1 for any positive coroot β∨.
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Prop.(2.7.3.16)[Minuscule and Fundamental Weights].Let θ∨ =
∑
miα

∨
i the maximal coroot,

where mi are positive integers, and mi = (ωi, θ∨). Then any minuscule weight is fundamental, and
a fundamental weight ωi is minuscule iff mi = 1.

Proof: The definition of minuscule weight requires mi ≤ 1, and any other coroot is of the form
β∨ =

∑
niα

∨
i , where ni ≤ mi, so ni = (ωi, β∨) ≤ 1. □

Lemma(2.7.3.17). If ω ∈ Q and |(ω, β∨)| ≤ 1 for any coroot β, then ω = 0.

Proof: If not, choose a counterexample ω =
∑
miαi with

∑
|mi| > 0 minimum, then (ω, ω) =∑

mi(ω, α∨
i ) > 0, so changing ω to −ω if necessary, we can assume mi > 0, (ω, α∨

i ) > 0 for some i,
so (ω, α∨

i ) = 1, and siω = ω − αi is another counterexample with smaller |mi|, contradiction. □

Prop.(2.7.3.18).The following are equivalent for a dominant integral weight ω of a root system:
• ω is minuscule(2.7.3.15).
• If λ is a dominant integral weight and ω − λ ∈ Q+, then λ = ω.

Proof: Cf.[Etingof, P141]?. □

Prop.(2.7.3.19)[Number of Minuscule Roots].Every coset in P/Q contains a unique minuscule
weight. This gives a bijection between the P/Q and the set of minuscule weights. In particular, the
number of minuscule weights equals the determinant of the Cartan matrix.

Proof: For any a ∈ P , let C = a+Q be a coset, let ω ∈ C∩P+ be an element with minimum (ω, ρ),
then for any dominant weight λ < ω ∈ C, (ω − λ, ρ) ≥ 0, so λ = ω. Thus ω is minuscule(2.7.3.18).

Conversely, if ω1 ̸= ω2 ∈ C are minuscule, then by(2.7.3.17), there is a positive coroot β∨ that
|(ω1 − ω2, β)| > 2. But then as ω1, ω2 are both dominant, |(ω1 − ω2, β)| ≤ 1, contradiction. □

Cor.(2.7.3.20)[Listing of Minuscule Weights].By(2.7.3.19) and(2.7.3.2)(2.7.3.10), we can deter-
mine minuscule weights for indecomposable root system (R,S),

• An: P/Q ∼= Z/(n+1)Z, so it has n+1 minuscule weight, which are all the fundamental weights
ωi and 0.

• Bn: P/Q ∼= Z/2Z, so there is exactly one non-zero minuscule weight, which is ωn = (1
2 , . . . ,

1
2),

by(2.7.3.18).
• Cn: P/Q ∼= Z/2Z, so there is exactly one non-zero minuscule weight, which is ωn = (1, 0, . . . , 0),

by(2.7.3.18). The corresponding fundamental representation is the standard representation of
sp2n.

• Dn: |P/Q| = 4, so there are exactly 3 non-zero minuscule weights, which are ω1, ωn−1 and ωn,
with corresponding fundamental representations of dimension 2n, 2n−1, 2n−1. This is because
the maximal coroot β∨ = α∨

1 + 2α∨
2 + . . .+ 2α∨

n−2 + α∨
n−1 + α∨

n .
• G2: |P/Q| = 1, so there are no non-zero minuscule weights.
• F4: There are no non-zero minuscule weights.
• E8: There are no non-zero minuscule weights.
• E7: P/Q ∼= Z/2Z, so there is exactly one non-zero minuscule weight.
• E6: P/Q ∼= Z/3Z, so there are exactly two non-zero minuscule weights.
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Prop.(2.7.3.21)[w0].Notice −w0 is an automorphism of (R,S) that permutes fundamental weights
and simple roots, so it induces an automorphism of the Dynkin diagram of R. So if the Dynkin
diagram of g has no non-trivial automorphism, w0 = −1. This is case for R = A1, Bn, Cn, G2, F4, E7
and E8.

For Dn, if n is even, then −1 ∈ W so w0 = −1. If n is odd, then w0(ei) = −ei for i < n and
w0(en) = en.

Notice also each si acts trivially on P/Q, so −w0 acts by −1 on P/Q. For An, n ≥ 2, P/Q ∼=
Z/(n+ 1)Z, thus −w0 is the flip of the chain. Likewise for E6, P/Q ∼= Z/3Z, thus −w0 flips the two
minuscule weights. But for Dn, P/Q ∼= Z/2Z × Z/2Z for n even and P/Q ∼= Z/4Z for n odd, so
−w0 preserves the minuscule weights or flip wn−1 and wn.

4 Notations for a Root System
Def.(2.7.4.1)[Notations for a Root System].Let (R,S) be a root system, then

• R+/R− is the positive/negative roots w.r.t. S.
• S = {α1, . . . , αr}.
• si is the reflection w.r.t. αi.
• θ is the maximal root.
• θ∨ is the maximal coroot(maximal root of the dual root system).(It may not be dual to θ)
• ρ = 1

2
∑
i αi =

∑
ωi.

• ρ∨ is ρ of the dual system R∨.
• The height of weights is defined as in(2.7.2.17).
• W is the Weyl group.
• w0 ∈W is the unique element with length |R+|(2.7.2.14).
• nij is the Cartan number n(αi, αj).
• Q(R) is the root lattice(2.7.3.8).
• P (R) is the weight lattice, generated by the fundamental weights ωi(2.7.3.8).
• P+(R) is the dominant integral weights.
• P is the Kostant partition function on Q(R).
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2.8 Algebraic K-Theory
Main references are [Algebraic K-Theory of Fields, Suslin, in Proc. ICM 1986, P222-244], [Alge-

braic K-Theory, Olivier Isely] and [G-S17], [nLab]. [Totaro, Milnor K-theory is the Simplest Part of
Algebraic K-Theory, K-theory 6, 177-189, 1992].

1 Milnor K-Groups of Fields
Def.(2.8.1.1) [K0].The Grothendieck group K0(A) for a ring A is the free group generated by f.g.
projective module over A modulo exact sequences. Then we have P ∼ Q iff P ⊕ An ∼= Q ⊕ An for
some n. This is a functor CAlg→ Ab.

Def.(2.8.1.2)[Milnor K-Groups].For k ∈ Field, define the n-thMilnor K-group to be the groups

KMil
0 (k) = Z, KMil

1 (k) = k×, KMil
n (k) = (k×)⊗n/{a1⊗. . .⊗an|∃1 ≤ i < j ≤ n, ai+aj = 1}, n ≥ 2.

The elements in KMil
n (k) are called symbols, and the class of a1⊗ . . .⊗am is denoted by {a1, . . . , an}.

Prop.(2.8.1.3)[Total Milnor K-Groups].For m,n ∈ N, the tensor product (k×)⊗m × (k×)⊗n →
(k×)⊗(m+n) induces a surjective map

KMil
m (k)⊗KMil

m (k)→ KMil
m+n(k),

which induces a graded group structure on

KMil
∗ (k) =

⊕
n∈N

KMil
n (k).

Then KMil
∗ (k) is graded commutative.

Proof: Firstly we show that {x,−x} = 0:

{x,−x}+ {x,−(1− x)x−1} = {x, 1− x} = 0,

so
{x,−x} = −{x, 1− x−1} = {x−1, 1− x−1} = 0.

Thus for any x, y ∈ k×,

0 = {xy,−xy} = {x, y}+ {x,−x}+ {y,−y}+ {y, x}.

The general cases follow by induction. □

Prop.(2.8.1.4)[Finite Fields]. If k ∈ Field,#k <∞, then for any n ≥ 2, KMil
n (k) = 0.

Proof: By(2.8.1.3), it suffices to show that KMil
2 (k) = 0. And if ω is a generator of the cyclic group

k×, then it suffices to show that {ω, ω} = {ω,−1} = 0. If #k = 2m, then

0 = {1, ω} = {ω2m−1, ω} = (2m − 1){ω, ω},

thus we are done. And if char k ̸= 2, then we can find two non-squares in k× s.t. a+ b = 1. Then

0 = {a, b} = {ωl, ωk} = kl{ω, ω},

so {ω, ω} = 0. □
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Def.(2.8.1.5) [Residue Maps and Specialization Mpas].Let (R,K, k) be a DVR, then for any
n ∈ Z+, there exists a unique homomorphism

∂Mil : KMil
n (K)→ KMil

n−1(k)

s.t. for any uniformizer ϖ and units u1, . . . , un−1 ∈ R∗,

∂Mil({ϖ,u1, . . . , un−1}) = {u1, . . . , un−1}.

Moreover, for any uniformizer ϖ and n ∈ Z+, there exists a specialization map

sMil
ϖ : KMil

n (K)→ KMil
n (k)

s.t.
sMil
ϖ ({ϖi1u1, . . . , ϖ

inun}) = {u1, . . . , un}

for any u1, . . . , un ∈ R∗.

Proof: Cf.[Central Simple Algebras]P217.? □

Cor.(2.8.1.6). ∂Mil({a, b}) = (−1)v(a)v(b)a−v(b)bv(a).

Proof: □

Thm.(2.8.1.7)[Berrick-Keating].Let R,S ∈ Ring and U ∈ModR-S , let T =
[
R U

S

]
∈ Ring, then

the map
πi : Ki(T )→ Ki(T )⊕Ki(S)

is an isomorphism for any i ∈ Z.

Proof: [The K-Theory of Triangular Matrix Rings, Berrick-Keating, in Applications of algebraic
K-theory to algebraic geometry and number theory, 1986]. □

2 Bloch-Kato Conjecture
Lemma(2.8.2.1)[Hilbert’s Theorem90 for K2].Let K/k be a cyclic Galois field extension with a
generator σ ∈ Gal(K/k), then the complex

KMil
2 (K) σ−1−−→ KMil

2 (K)
NmK/k−−−−→ KMil

2 (k)

is exact.

Proof: Cf.[Central Simple Algebras]P276.? □

Prop.(2.8.2.2)[Galois Symbols].Let k ∈ Field,m ∈ Z ∩ k×, n ∈ Z+, the boundary map

∂k× → H1(k, µm)

induces a map
∂n : (k×)⊗n → (H1(k, µm))⊗n ∪−→ Hn(k, µ⊗n

m ),

and this map factors through KMil
n (k) and gives a Galois symbol map

hnk,m : KMil
n (k)→ Hn(k, µ⊗n

m ).
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Proof: To show this map factors through KMil
n (k), it suffices to show for n = 2 and ∂2(a⊗(1−a)) =

0. Take an irreducible factorization

xm − a =
∏
l

fl ∈ k[x],

and let αl be a root of fl in ksep, Kl = k(αl), then

(1− a) =
∏
l

NmKl/k(1− αl).

and
∂2(a⊗ (1− a)) =

∑
l

∂2(a⊗NmKl/k(1− αl)).

But

∂2(a⊗NmKl/k(1− αl)) = ∂(a) ∪ ∂(NmKl/k(1− αl)) = ∂(a) ∪ corKlk (1− αl)

= cor(resKlk (∂(a)) ∪ (1− αl)) = cor(∂Kl(a) ∪ (1− αl))

But by definition a ∈ (K×
l )m, so ∂Kl(a) = 0, by(10.1.3.9). Thus ∂2(a⊗ (1− a)) = 0. □

Thm.(2.8.2.3) [Bloch-Kato Conjecture, Voevodsky-Rost/Merkurjev–Suslin]. Situation as
in(2.8.2.2), the Galois symbol(2.8.2.2) induces an isomorphism

KMil
n (k)/mKMil

n (k)
hnk,m,

∼=
−−−−→ Hn(k, µ⊗n

m ).

Proof: The n = 1 case follows from(10.1.3.9).
For the n = 2 case? □
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2.9 Hopf Algebras

Main references are [Quantum Groups, Drinfeld], [A Brief Introduction To Quantum Groups
Pavel Etingof And Mykola Semenyakin].

1 Hopf Algebras

Coalgebras and Bialgebras

Def.(2.9.1.1) [Coalgebras].Let R be a commutative ring, a coalgebra is a monoid object in the
category ModopR .

Remark(2.9.1.2) [Yoneda Interpretation].We do not need to verify all the relations defining a
coalgebra C, whenever we have a functorial monoidal structure on all the set HomR(H,T ), we
immediately recover the maps

• (Comultiplication):µ : C → C ⊗R C as i1 · i2 in HomR(C,C ⊗ C),
• (Counit):ε : C → R as 1 in HomR(C,R) = C∨.

by Yoneda lemma.
C∨ is an monoid by definition, and C is called cocommutative iff C∨ is commutative.

Def.(2.9.1.3) [Primitive Elements].Let H be a coalgebra over R, an element x ∈ H is called
primitive if µ(x) = 1⊗ x+ x⊗ 1. It is called group-like if ∆(x) = x⊗ x.

Def.(2.9.1.4) [Bialgebras].Let R be a commutative ring, a bialgbera is a monoid object in the
category of coalgebras over R. Equivalently, in the Yoneda interpretation, C is an R-algebra that ∆
is a homomorphism of algebras.

Def.(2.9.1.5) [Hopf Algebra].A Hopf algebra over a commutative algebra R is a bialgebra A
together with a R-linear map S : A→ A that satisfies:

m ◦ (id⊗S) ◦ µ = m ◦ (S ⊗ id) ◦ µ = η ◦ ε : A→ A.

If S2 = idA, then A is called an involutive Hopf algebra.

Prop.(2.9.1.6). In a Hopf algebra, S is an anti-homomorphism both for the algebra structure and
coalgebra structure.

Proof: Cf.https://ncatlab.org/nlab/show/Hopf+algebra. □

Example(2.9.1.7)[Group Algebras].Let Γ be a group, the group algebra R[Γ] with the coalgebra
structure

µ : R[Γ]→ R[Γ]×R[Γ] : g 7→ g ⊗ g, ε : R[Γ]→ R :
∑

agg 7→
∑

ag

and
S : R[Γ]→ R[Γ] : g 7→ g

is a Hopf algebra.

Def.(2.9.1.8)[Dual Hoof Algebra].Let H be a Hopf algebra, matrix coefficients. H0.

Prop.(2.9.1.9).Rep(H) = ModH0 .

https://ncatlab.org/nlab/show/Hopf+algebra
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Co-modules

Def.(2.9.1.10)[Co-Module].Ket A be a coalgebra over a field k, then a right co-module is a k-vector
space V together with a k-linear map ρ : V → V ⊗A that satisfies

(idV ⊗µ) ◦ ρ = (ρ⊗ idA) ◦ ρ, (idV ⊗ε) ◦ ρ = idV .

The map ρ is called the co-action, and a k-subspace W ⊂ V that ρ(W ) ⊂ W ⊗ A is called a
sub-comodule of V .

Def.(2.9.1.11)[Tensor Product of Co-modules].

Topologists’ Hopf Algebras

Def.(2.9.1.12) [Topologist’s Hopf Algebra].A topologist’s Hopf algebra over a commutative
ring R is a unital magma object in the dual category of graded algebras with 0-degree term R, given
by maps ∆ : A→ A⊗A, and ε : A→ R the canonical projection map. So in particular, ∆ is of the
form

∆(α) = 1⊗ α+ α⊗ 1 +
∑
i

α′
i ⊗ α′′

i , |α′
i| > 0, |α′′

i | > 0

Prop.(2.9.1.13).The tensor product of two topologists’ Hopf algebra is a topologists’ Hopf algebra.

Prop.(2.9.1.14).Let F be a field, then F[α]/(αn), where α is placed at even dimension or F has
characteristic 2, is a topologists’ Hopf algebra iff F has positive characteristic p and n is a power of
p.

Proof: By definition, it is easy to see that α is primitive, thus

∆(αn) = 0 =
∑

0<i<n

(
n

i

)
αi.

Which then implies that n is a p-power. □

Prop.(2.9.1.15)[Hopf-Borel].Let A be a topologists’ Hopf algebra over a perfect field K, and A is
of f.d. in each degree, then:

• If K has characteristic 0, A is isomorphic as an algebra to the tensor product of an exterior
product of odd-dimensional generators and a polynomial ring of even-dimensional generators.

• If K has characteristic p, then A is isomorphic as an algebra to the tensor product of algebras
of the following types:

– K[α], where α is even-dimensional if p ̸= 2.

– ∧K [α] where α is odd-dimensional.

– K[α]/(αpi), where α is even-dimensional if p ̸= 2.

Proof: We only prove the 0-characteristic case, Cf.[Hat02]P285.? □
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2 Commutative Hopf Algebras

Prop.(2.9.2.1)[Commutative Hopf Algebra].Let R be a commutative ring, a commutative Hopf
algebra is equivalent to a cogroup object in CAlgR. A homomorphism of Hopf algebras is a morphism
of algebras that represents a natural transformation of functors from CAlgR to Grp.

Proof: The critical point is to look at the definition of Hopf algebra. In this case, S is a homomor-
phism of algebras(2.9.1.6), and notice tensor product is just the product in the dual category, and
m : A⊗A→ A is the diagonal in the dual category, thus a cogroup object is a map ∆ : A→ A⊗A
together with a map inv : A→ A that

m ◦ (id⊗inv) ◦∆ = m ◦ (inv ⊗ id) ◦∆ id = id : A→ A,

which is exactly the definition of the Hopf algebra(2.9.1.5). □

Cor.(2.9.2.2)[Yoneda Interpretation].We do not need to verify all the relations defining a Hopf
algebra H, whenever we have a functorial commutative group structure on all the set HomR(H,T ),
we immediately recover the maps:

• (Comultiplication):µ : H → H ⊗R H as i1 · i2 in HomR(H,H ⊗H),
• (Antipode):ι : H → H as inv in HomR(H,H),
• (Counit):ε : H → R as 1 in HomR(H,R) = H∨.

by Yoneda lemma.
For convenience, we denote the structure maps ηH : R→ H,µ : H ×R H → H, (−)−1 : H → H.

Prop.(2.9.2.3) [Group Algebras].Let Γ be a commutative group, then the group algebra
R[Γ](2.9.1.7) represents the group functor that maps a commutative R-algebra S to the commu-
tative group HomGrp(Γ, S).

Cor.(2.9.2.4)[Multiplicative Groups].Gm,R = R[t, t−1] is a Hopf algebra that represents the group
functor of multiplicative groups on CAlgR.

Cor.(2.9.2.5) [Roots of Unity µn,R].Let Γ ∼= Z/nZ, then R[Γ] ∼= R[t]/(tn − 1) is a Hopf algebra
that represents the group functor of multiplicative groups of n-th roots of unity on CAlgR.

Prop.(2.9.2.6) [Additive Groups].R[t] can be given a Hopf algebra structure that represents the
group functor that maps a commutative R-algebra S to the additive group S+.

Def.(2.9.2.7)[G(a,b),R].Given elements a, b ∈ R that ab = 2, for any commutative R-algebra S, the
group G(a,b),R(S) of elements x of S that x2 + ax = 0 is a group under the mapping (m,n) 7→
m + n + bmn. Notice the inverse of m is m itself. Then R[t]/(t2 + at) can be given a Hopf algebra
that represents the functor S 7→ G(a,b),R(S).

Def.(2.9.2.8)[Va].Let V be a vector space over k, then Sym(V ∨) can be given a Hopf algebra structure
representation the functor Va : R 7→ R⊗k V ∼= Homk(V ∨, R).

Def.(2.9.2.9)[Locally Constant Functions].Let Γ be a group, then ΓR =
∏
γ∈ΓR represents the

group functor that maps an R-algebra T to the group of locally constant functions on SpecR with
value in Γ.
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Remark(2.9.2.10).To illustrate the philosophy of(8.1.1.2), we figure out the Hopf structure of the
local constant functions: a map ∏γ∈ΓR → T is equivalent to a set of idempotents eγ of T that∑
eγ = 1. This is equivalent to a locally constant function on SpecT that takes value γ on V (eγ).

Then the product takes values γδ on V (eγ ⊗ eδ) ⊂ SpecT ⊗ T , or equivalently takes values γ on
V (
∑
gg′=γ eg ⊗ eg′), so ∆(eγ) =

∑
gg′=γ eg ⊗ eg′ .

Lemma(2.9.2.11)[Modulo ker(ε)].For a Hopf algebra A over R, the comultiplication and counit are
determined by ker ε:

• R⊕ ker ε→ A : (a, b) 7→ a+ b is an isomorphism of R-modules.
• µ(a) ≡ −ε(a) + a⊗ 1 + 1⊗ a mod ker ε⊗R ker ε.
• ι(a) ≡ −a mod (ker ε)2 for a ∈ ker ε.

Proof: 1: this is because the counit 0→ ker ε→ A→ R→ 0 has an inverse by the R-algebra map
R→ S.

2: item1 allows us to write

A⊗R A = R⊕ (ker ε⊗R R)⊕ (R⊗R ker ε)⊕ (ker ε⊗ ker ε)

so for a ∈ A,
µ(a) = b+ c⊗ 1 + 1⊗ d+ z

where b ∈ R, c, d ∈ ker ε, z ∈ ker ε ⊗R ker ε. Then a = (ε ⊗ idA)(b + c ⊗ 1 + 1 ⊗ d + z) = b + d, and
also a = b+ c. Applying ε shows b = ε(a), and thus

µ(a) = ε(a) + (a− ε(a))⊗ 1 + 1⊗ (a− ε(a)) + z = −ε(a) + a⊗ 1 + 1⊗ a+ z.

3: Let ι(a) = b+ c where b ∈ R, c ∈ ker ε, then

ε(a) = (multi)(ι⊗ id)(−ε(a) + a⊗ 1 + 1⊗ a+ z) = −ε(a) + ι(a) + a+ (multi)(ι⊗ id)(z)

so for a ∈ ker ε, ι(a) ≡ −a mod (ker ε)2, as (multi)(ι⊗ id)(z) ∈ (ker ε)2, because ι commutes with ε.
□

Def.(2.9.2.12)[Hopf Ideal and Quotient Hopf Algebra].Let A be a Hopf algebra, then a quotient
Hopf algebra is a quotient A/I that has a Hopf algebra structure compatible with that of A. In
another words, there are commutative diagrams

A A⊗R A

A/I A/I ⊗R A/I

µ

µ

A R

A/I

ε A A

A/I A/I

ι

ι

In particular, quotient Hopf algebra corresponds to ideals of A that

µ(I) ⊂ ker(A⊗R A→ A/I ⊗R A/I), ε(I) = 0, ι(I) ⊂ I,

called Hopf ideals of A.

Remark(2.9.2.13)[Examples]. If Γ′ is a subgroup of a commutative group Γ, then R[Γ] has a quotient
Hopf algebra R[Γ/Γ′]. In particular, R[t]/(tn − 1) is a quotient Hopf algebra of R[t, t−1].
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Prop.(2.9.2.14)[Hopf Ideals of Additive Groups].Let f =
∑d
i=0 ait

i ∈ R[t] be a monic polyno-
mial ̸= t, then (f) is a Hopf ideal of R[t] iff R is of char p > 0 and the derivative f ′ = 0.

Proof: We check conditions in(2.9.2.12), the first says ∑ ai(t⊗ 1 + 1⊗ t)i vanishes in R[t]/(f)⊗R
R[t]/(f). But f is monic, so this is equivalent to ai

(i
j

)
= 0 for any 0 < j < i ≤ d, But we have

gcd0<j<i{
(i
j

)
= p if i = pr for some r ≥ 1 and 1 otherwise, so ad = 0 unless d is a power of p, and

p = 0 ∈ R because ad = 1. In particular, f =
∑k
i=0 bit

pi , and it automatically satisfies the other two
conditions. □

Cor.(2.9.2.15) [αpr,R].Let R be a commutative ring of char p > 0, then the quotient Hopf algebra
R[t]/(tpr) corresponding to the Hopf ideal (tpr) is denoted by αpr,R.

WARNING: αpr,R is isomorphic to µpr,R as R-algebras, but they are not isomorphic as Hopf
algebras.

Prop.(2.9.2.16)[Irreducibility of Hopf Algebras].Let k be a field, then the following Hopf algebra
contains no proper Hopf ideals:

• Ga,k if charR = 0.
• αp,k if charR = p > 0.

Proof: Any Hopf ideal fo k[t]is principal, thus this proposition follows from(2.9.2.14). □

Def.(2.9.2.17)[Cokernel Hopf Algebra].Let A → B be a homomorphism of Hopf Algebras over
R, then the cokernel Hopf algebra is the algebra B ⊗A R = B/B ⊗A ker(εA), which represents
the functor of kernels of HomR(B, T )→ HomR(A, T ), thus is a Hopf algebra.

Lemma(2.9.2.18).A Hopf algebra over a field k is direct limit of Hopf algebra of f.t. over k.

Def.(2.9.2.19)[Group-Like Elements].Let A be a Hopf algebra, then a group-like element a ∈ A
is an invertible element that satisfies µ(a) = a⊗ a ∈ A⊗A.

If a is a group-like element in a Hopf algebra A, then a = (ε, id)µ(a) = ε(a)a, so ε(a) = 1.

Prop.(2.9.2.20) [Group-Like Elements are Linearly Independent].Let A be a Hopf algebra
over a field k, then the set of group-like elements are linearly independent over k.

Proof: If e =
∑
aiei that e, ei are all group-like elements, then

µ(e) = e⊗ e =
∑

cicjei ⊗ ej =
∑

ciµ(ei) =
∑

ciei ⊗ ei

so c2
i = ci and cicj = 0. Now also notice 1 = ε(e) =

∑
ciε(ei) =

∑
ci(2.9.2.19), contradiction. □

Cor.(2.9.2.21).The set of group-like elements in the Hopf algebra k[Γ](2.9.2.3) are just the set Γ ⊂
k[Γ].

Prop.(2.9.2.22)[Cartier Theorem].A Hopf algebra A over a field k of characteristic 0 is reduced.

Proof: We can base change to the algebraic closure k of k and assume k is alg.closed. Because
reducedness is stalkwise and Hilbert’s Nullstellensatz, it suffices to show As is reduced at each
s ∈ G(k). The translation by g ∈ G(k) acts transitively on G(k), so it suffices to show it vanishes at
the kernel of the counit map ker(ε). Cf.[ Jakob, Stix].

We may assume by taking direct limits that A is f.g. over k. Let m be the kernel of the counit
ε : A→ k, then m/m2 is a f.g. k-vector space with a basis lifting to x1, . . . , xr ∈ m.

We prove that grm(A) is a polynomial ring in xi, Cf.[Shatz]. □
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Prop.(2.9.2.23)[Faithfully Flatness]. If A ⊂ B are f.g. Hopf algebras over a field k, then B is f.f.
over A.

Proof: Cf.[Milne, P73]?. □

Cor.(2.9.2.24). If A ⊂ B are Hopf algebras that B is an integral domain, and let K,L be their fraction
field, then B ∩ L = A. In particular, if K = L, then A = B.

Proof: Since A→ B is f.f. by(2.9.2.23), cB ∩ A = cA for any c ∈ A by(2.9.2.23). Thus if a/c ∈ B
for a, c ∈ A, then a ∈ cB ∩A = cA, so a/c ∈ A. □

3 Quantization
Cf.[Dri85], [Dri86].

4 Quiver Hecke Algebra
Cf.[Bru13].
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3 | Categories and Algebraic Topology

3.1 Categories

Main references are [?], [Bor94], [Coend Calculus, Fosco Loregian].

1 Basics
Def.(3.1.1.1)[Categories, Eilenberg-Mac.Lane1945].A category C consists of the following data:

• A set Ob(C) of objects of C.
• For any x, y ∈ Ob(C) a set Mor(x, y) of morphisms from x to y.
• For any (x, y, z) ∈ Ob(C), a map of sets ◦ : Mor(y, z) × Mor(x, y) → Mor(x, z), called the

composition law of C.
that satisfies:

• (Identity)For any x ∈ Ob(C), there exists an element idx ∈ Mor(x, x) s.t. idx ◦φ = φ,ψ◦idx = ψ
whenever these composition makes sense. It is clear such an element is unique.

• (Associativity)(φ ◦ ψ) ◦ χ = φ ◦ (ψ ◦ χ) whenever these compositions make sense.

Remark(3.1.1.2).Let C be a category, we will sometimes say x ∈ C to mean that x is an element
of Ob(C) and f : x → y ∈ C or f is a morphism in C to mean: x, y ∈ Ob(C) and f ∈ Mor(x, y).
Hopefully this won’t make any confusions.

Def.(3.1.1.3)[Dual Categories].Let C be a category, then the dual category of C is a category Cop

with
• Ob(Cop) = Ob(C).
• For x, y ∈ Ob(Cop) = Ob(C), MorCop(x, y) = MorC(y, x).
• The composition law of Cop is induced from that of C.

Def.(3.1.1.4) [Isomorphisms].Let C be a category, an isomorphism in C is a morphism φ ∈
Mor(x, y) in C s.t. there exists a morphism ψ ∈ Mor(y, x) s.t. φ ◦ ψ = idy and ψ ◦ φ = idx. it
is clear that such a ψ is unique, and if it exists, it is called the inverse morphism of φ.

For x, y ∈ C, if there exists an isomorphism in Mor(x, y), x, y are said to be equivalent objects.

Def.(3.1.1.5)[Functors].Let C,C′ be categories, a functor F from C → C′ consists of the following
data:

• a morphism of sets Ob(C)→ Ob(C′) : x 7→ F (x).
• for any x, y ∈ Ob(C), a morphism of sets Mor(x, y)→ Mor(F (x), F (y)) : f 7→ F (f).

that satisfies:
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• F (idx) = idF (x).
• F (φ ◦ ψ) = F (φ) ◦ F (ψ) whenever φ ◦ ψ is defined.

A contravariant functor from C to C′ is defined to be a functor from Cop to C′.

Def.(3.1.1.6)[Identity Functor idC].For any category C, there exists a trivial functor idC : C→ C.

Def.(3.1.1.7) [Natural Transformations].Let C,C′ be categories and F,G : C → C′ be functors
between categories, then a natural transformation η from F to G consists of an element ηx for
each x ∈ Ob(C) s.t. for any f : x→ y ∈ C, the following diagram is commutative:

F (x) F (y)

G(x) G(y)

F (f)

ηx ηy

G(f)
.

Then for any two categories C,C′, there is a category Fun(C,C′) consisting of the set of functors
from C to C′, and natural transformations as morphisms between functors.

Def.(3.1.1.8) [Final and Initial Objects].An object Z of a category is called a final object if
# Hom(X,Z) = 1 for any object X. It is called weakly final if Hom(X,Z) ̸= ∅ for every object X.

Dually an object is called (weakly)initial if it is (weakly)initial as an object of Cop.

Def.(3.1.1.9)[Filtered Categories].A filtered category is a category I that:
• It is nonempty.
• for any a, b ∈ I, there is some c ∈ I with morphisms a→ c, b→ c

• for any two morphisms a, b : x→ y, there is a morphism c : y → z that c ◦ a = c ◦ b.

Def.(3.1.1.10)[Fully Faithful Functors].A functor of category F : C→ D is called:
• a full/faithful functor if for any x, y ∈ Ob(C), F : Hom(X,Y ) → Hom(F (x), F (y)) is

surjective/injective.
• an essentially surjective functor if any object of D is equivalent to some f(x), where x ∈ C.
• an equivalence if there is a functor G : D→ C that F ◦G ∼= idD and G ◦ F ∼= idC.

Prop.(3.1.1.11) [Category Equivalences].A Functor C → D is an equivalence if and only if it’s
fully faithful and essentially surjective.

Proof: There exist an object G(X) ∈ C and an isomorphism ξX : FG(X) → X for every X ∈
D. Because F is fully faithful, there exists a unique morphism G(f) : G(X) → G(Y ) such that
F (G(f)) = ξ−1

Y ◦f ◦ ξX for every morphism f : X → Y in D. Thus we obtain a functor G : C→ D as
well as a natural isomorphism ξ : F ◦G→ IdD. Moreover, the isomorphism ξF (Z) : FGF (Z)→ F (Z)
decides an isomorphism ηZ : GF (Z) → Z for every Z ∈ C. This yields a natural isomorphism
η : G ◦ F → IdC. □

Def.(3.1.1.12) [Setoids].A setoid is a category that is equivalent to a category that has only the
identity morphisms.

Def.(3.1.1.13)[Groupoids].A groupoid is a category that all morphisms are isomorphisms. The
full subcategory of Cat consisting of groupoids is denoted by Grpd.
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Prop.(3.1.1.14) [Equivalence Relations].An equivalence relation is a groupoid that
# MorC(x, y) ≤ 1 for any x, y ∈ C.

Prop.(3.1.1.15).A category is equivalent to a setoid iff it is an equivalence relation.

Proof:
□

Def.(3.1.1.16)[Subcategories].Let C be a category, a subcategory C′ of C is a category together
with a functor F : C′ → C s.t. F : Ob(C′) → Ob(C) is injective and F is faithful. And it is called a
full subcategory if F is fully fatihful. It is called a strictly full subcategory if for any y ∈ C, y
is equivalent to some F (x), x ∈ Ob(C′) iff y ∈ F (C′).

Def.(3.1.1.17)[Comma Categories].For a category C and an object S, the comma category C/S
is defined to be the category of arrows T → S with the arrows being compatible arrows over S.

Def.(3.1.1.18)[Category of Arrows].For a category C, the category of arrows Arr(C) is a category
whose objects are arrows in C and a morphism f → g is a commutative diagram

A B

A′ B′

f

h

g

k

Def.(3.1.1.19)[Twisted Arrow Category].For a category C, the category of twisted arrows TW (C)
is a category whose objects are arrows in C and a morphism f → g is a diagram

A B

A′ B′

f
h

g

k

Def.(3.1.1.20)[Epimorphisms and Monomorphisms].An epimorphism in a category is a mor-
phism X → Y that the map Hom(Y, Z) → Hom(X,Z) induced by composition is injective. Dually,
an monomorphism is an epimorphism in the dual category.

Def.(3.1.1.21)[Projective and Injective].A projective object X in a category is an object that
for any epimorphism(3.1.1.20) Y → Z, Hom(X,Y )→ Hom(X,Z) is surjective. Dually, an injective
object X is a projective object in the dual category.

Def.(3.1.1.22)[Retract].A morphism f in a category C is called a retract of g if there are morphisms
F,G : f → g in Mor(C)(3.1.1.18) that G ◦ F = idf .

Def.(3.1.1.23)[Equivalence relations].For C ∈ Cat has finite products, X0 ∈ C, an equivalence
relation on X0 is a tuple (X1, u), where X1 ∈ PSh(C) and u ∈ Hom(X1, X0×X0) s.t for any X ∈ C,
the map

X̃1(T ) u−→ X̃0(T )× X̃0(T )

is a bijection of X̃1(T ) onto the graph of an equivalence relation on X̃1(T ). Similarly, we can define
pre-relations on X0, relations on X0 and pre-equivalence relations on X0.

Prop.(3.1.1.24) [Involutions]. Situation as in(3.1.1.23), then there is a morphism σ : F0 → F0,
σ2 = id, u0 ◦ σ = u1, u1 ◦ σ = u0, by the symmetry in the definition of equivalence relations.
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Def.(3.1.1.25) [Categorical Quotients]. Situation as in(3.1.1.23), for an equivalence relation u :
X1 → X0 ×X0, a morphism v : X0 → X is called a categorical quotient if

• u factors through u : X1 → X0 ×X X0, and u : X1 → X0 ×X X0 is an isomorphism.
• For any T ∈ C, there is a cokernel sequence

Mor(X,T )→ Mor(X0, T ) ⇒ Mor(X1, T )

is exact.

Representable Functors

Def.(3.1.1.26) [Presheaves].A presheaf on a category C is defined to be a contravariant functor
from C to Set. The category of presheaves on C is denoted by PSh(C).

Prop.(3.1.1.27) [Representability Criterion].Let C be a complete category, F : C → Set be a
functor. Assume that F commutes with small limits, and the category I of pairs (x, f) where
x ∈ C, f ∈ F (x) has a cofinal family of objects indexed by a set I, then F is representable, i.e. there
is an object x that F (y) = MorC(x, y), functorial in y.
Proof: Because C has small limits, let I′ be the full subcategory of I generated by (xi, fi), set
x = lim←−(xi,fi)∈I′ xi. As F commutes with limits, F (x) = lim←−(xi,fi)∈I

F (xi). Hence there is a universal
element f ∈ F (x) that maps to fi under F (x → xi). f induces a natural transformation ξ :
MorC(x,−)→ F (−).

The assumption shows ξ is surjective. Now let x′ → x be the equalizer of all maps φ : x→ x that
F (φ)f = f , then there is a f ′ ∈ F (x′) mapping to f . then the transformation ξ′ defined by f ′ is also
surjective. Now we also want to show it is injective: if a, b ∈ MorC(x′, y) mapsto the same element,
then we consider the equalizer e′ : x′′ → x′ of a, b, then the assumption and the fact F commutes
with equalizer shows there is a f ′′ ∈ F (x′′) mapping to f ′.

By universality consider a morphism ψ : x→ x′′ that F (ψ)f = f ′′, then e ◦ e′ ◦ ψ is a morphism
x → x that fixes f , thus by construction ee′ψe = e, so e′ψe = id, because e is a monomorphism.
Then e′ is an epimorphism, thus a = b. □

Adjunctions

Def.(3.1.1.28)[Adjunction Pairs].A pair of functors (f, g) where f : C → D, g : D → C ∈ Cat are
called an adjunction pair iff there is natural isomorphism of functors:

Cop ×D→ Set : Hom(f(−),−) ∼= Hom(−, g(−)).

Equivalently this means that for any X1 → X2 ∈ C, Y1 → Y2 ∈ D,

f(X1) Y1

f(X2) Y2

is commutative iff its corresponding map

X1 g(Y1)

X2 g(Y2)
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is commutative.
Denoted an adjunction pair by (f, g) : C −−−⇀↽−−− D.

Prop.(3.1.1.29) [Units and Counits]. If f, g are adjoints, then there are natural transformations
u : id→ gf , and v : fg → id, called the unit/counit maps. They satisfies f u−→ fgf

v−→ f is id, and
g

u−→ gfg
v−→ f is id.

Conversely, if there are natural morphisms u, v satisfying these two identities, then (f, g) is an
adjuntion, by

Hom(fX, Y )→ Hom(gfX, gY )→ Hom(X, gY )→ Hom(fX, fgY )→ Hom(fX, Y ).

Proof:
□

Lemma(3.1.1.30).Let (f, g) be an adjunction pair, then
• If g ◦ f is fully faithful, then f is fully faithful.
• If f ◦ g is fully faithful, then g is fully faithful.

Proof: Cf.[Sta]0FWV. □

Prop.(3.1.1.31).Let (f, g) be an adjunction pair, then
• f is fully faithful iff u : id→ gf is an isomorphism.
• g is fully faithful iff v : fg → id is an isomorphism.

Proof: 1: If id ∼= gf , then gf is fully faithful, so f is fully faithful by(3.1.1.30). If f is fully faithful,
then for any X,Y ,

Hom(X,Y ) u−→ H(X, gfY ) ∼= H(fX, fY ) ∼= H(X,Y )

is a canonical isomorphism, so u is an isomorphism.
2 is dual to 1. □

Cor.(3.1.1.32)[Units and Equivalences].Let (F,G) be an adjunction pair, then the following are
equivalent:

• F,G are both fully faithful.
• the unit and counit are both isomorphisms.
• F,G defines an equivalence of categories.

Proof: 1→ 2→ 3 follow from(3.1.1.31). And 3→ 1 is clear. □

Prop.(3.1.1.33) [Adjunction Preserves (Co)Limits].A right adjoint functor is left exact and it
preserves injectives if its left adjoint is exact.

A left adjoint functor is right exact and it preserves projectives if its right adjoint is exact.

Prop.(3.1.1.34)[Adjoint Functor Theorem].Let G : C → D ∈ Cat, assume C is complete and G
commutes with small limits. Assume for every y ∈ D, the category of pairs (x, f) where x ∈ C and
f ∈ MorD(y,G(x)) has a cofinal family of objects indexed by a set I, then G has a left adjoint.

Similarly the dual statement holds.

Proof: The assumption shows that for any y ∈ D, the functor x 7→ MorD(y,G(x)) satisfies the
condition of(3.1.1.27), thus it is representable by an object denoted by F (y). By Yoneda lemma, F
underlies a functor, and this functor is a left adjoint of G. □
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Prop.(3.1.1.35)[Groupoidification].There is a functor Grpd : Cat → Grpd that is left adjoint to
the inclusion functor, called the groupoidification functor.

Proof: □

Prop.(3.1.1.36)[Examples of Adjunction pairs].
• The valuation at k-th coordinate is left adjoint to the functor k∗(A)(i) =

∏
Hom i,k A and is

exact. So k∗ preserves injectives.
• The sheaf Γ functor is right adjoint to the constant sheaf functor over arbitrary site.
• The inclusion functor is right adjoint to the shifification functor over arbitrary site.
• The forgetful functor is right adjoint to the Shifification functor, and shifification is exact, so

it preserves injectives.
• The stalk functor is left adjoint to the skyscraper sheaf operator.

Limits and Colimits

Prop.(3.1.1.37)[Products and Equalizers Implies Limits]. If a category admits arbitrary(resp.
finite) products and equalizers, then it admits arbitrary(resp. finite) limits. Dually a category that
admits coproducts and coequalizers admits all colimits.

Proof: The limits over a category C is an equalizer of products over the category of arrows in C. □

Def.(3.1.1.38) [Exact Functors].A functor F : C → D is called a left exact functor if it maps
finite limits to finite limits. It is called a right exact functor if it maps finite colimits to finite
colimits. It is called an exact functor if it is both left exact and right exact.

Def.(3.1.1.39) [(Co)Complete Category].A category is called (co)complete if it has all small
(co)limits, i.e. (co)limits over small categories(3.1.2.1).

Def.(3.1.1.40)[Inverse Systems].An inverse system in C is a diagram Z
op
+ → C, where Z+ is the

category of non-negative integers with a unique morphism n→ m iff n ≤ m.

Prop.(3.1.1.41)[Equivalent Inverse System].Two inverse systems {An}, {Bn} are called equivalent
if there are two non-decreasing unbounded maps α, β : Z+ → Z+ and maps α : An → Bα(n), β :
Bn → Aβ(n) that is compatible with the transition maps and for any n, there is a m large that
Am → Aβα(m) → An coincide with the transition map Am → An, and similar for Bn. And similarly
for colimits.

The limit for two inverse systems are the same, and similarly for colimits.

Prop.(3.1.1.42)[Filtered Colimit of Sets].?
Prop.(3.1.1.43)[Cofiltered Limits of Sets].A cofiltered limit of nonempty sets is nonempty.

Proof: Cf.[Sta]086J. □

Def.(3.1.1.44)[Mittag-Leffler]. If (Ai, φji) is a directed inverse system of sets over I, then it is said
to satisfy the Mittag-Leffler condition if φji(Aj) ∈ Ai stabilizes. This is clearly true if φji is
surjective for any i, j.

Prop.(3.1.1.45). If (An) where n ∈ Z is a Mittag-Leffler inverse system of nonempty sets, then limAi
is also nonempty.
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Proof: Let A′
j = ∩j≥iφjiAj , then (A′

j) is a filtered system that the transition maps are all surjective,
and clearly limAj = limA′

j , so it is nonempty by(3.1.1.43). □
Prop.(3.1.1.46). Cat is complete and cocomplete.

Proof: □

Fiber Product

Prop.(3.1.1.47).For a category C, the following are equivalent:
• It has arbitrary limits.
• it has arbitrary products and equalizer.
• it has arbitrary products and fibered products.

Proof: 1 → 2, 1 → 3 is trivial. 3 → 2: The equalizer for f, g : X → Y can be constructed as the
base change of Y → Y ⊗ Y along (f, g) : X → Y × Y . 2 → 1 : for any diagram F : I → C, the
fibered pullback can be constructed as the equalizer of two morphisms:

s, t :
∏

i∈Ob(I)
F (i)→

∏
f :j→k∈Mor(I)

F (k)

where π(f :j→k)s = πk, and π(f :j→k)t = (Ff)πj . □
Prop.(3.1.1.48)[Diagonal Base Change].The diagonal commutes with base change:

X ×Y Z (X ×Y Z)×Z (X ×Y Z)

X X ×Y X

∆

∆

Proof: □
Prop.(3.1.1.49). (X ×E Y )×S (Z ×F W ) = (X ×S Z)×E×SF (Y ×S W ).

Proof: □
Prop.(3.1.1.50).For f : X → T and g : Y → T and h : T → S, X ×T Y = T ×T×ST (X ×S Y ). In
particular, X ×T Y → X ×S Y is a base change of T → T ×S T .
Proof: For any object U ,

Hom(U,X ×T Y ) = {s : U → X, t : U → Y |f ◦ s = g ◦ t},

Hom(U, T×T×ST (X×SY )) = {r : U → T, s : U → X, t : U → Y |h◦f ◦s = h◦g◦t, r = g◦t, r = f ◦s},
so they are functorially isomorphic. Then by Yoneda lemma we have the desired isomorphism. □

Prop.(3.1.1.51).The diagonal map X → X ×Y X is an isomorphism iff X → Y is monomorphism.
(Because this is equivalent to pr1 = pr2).

Def.(3.1.1.52)[Mapping graph].Let f : X → Y be a morphism in a category with fiber products
and finite products, then the mapping graph Γf of f is defined to be the pullback

Γf X × Y

Y Y × Y∆

.

it can be seen that Γf is isomorphic to X.
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Localizations

Def.(3.1.1.53) [Localizing Categories].Let C ∈ Cat and S be a class of morphisms in C, then a
functor F : C → D is called a localizing category of C w.r.t S if it maps morphisms in S to
isomorphisms, and any other functor with this property factors uniquely through F .

Def.(3.1.1.54) [Localizing Systems].A class of morphisms S in a category is called a left(resp.
right) localizing system if:
(LS1): S is closed under composition and contains all the identities.
(LS2): for every s ∈ S and f with the same source(resp. target), there is a t ∈ S and a g, s.t.

t ◦ f = g ◦ s(resp. f ◦ t = s ◦ g).
(LS3): the existence of a t ∈ S s.t. ft = gt implies(resp. is implied by) the existence of a s ∈ S s.t.

sf = sg.
It is called localizing system if it is both left localizing and right localizing.

Def.(3.1.1.55) [Saturated Localizing Systems].Let S be a localizing system, then it is called a
saturated localizing system is moreover it satisfies

• if f, g, h ∈ S and fg, gh ∈ S, then g ∈ S.

Def.(3.1.1.56)[Gabriel-Zisman Localization].Cf.[Sta]04VD.

Cor.(3.1.1.57). If C is a category and S is a left localizing system, then the rule X 7→ X, (f : X →
Y ) 7→ id−1 f is a functor Q : C → S−1C that represents S−1C as a localizing category of C w.r.t
S(3.1.1.53). And Q preserves finite colimits.

The dual is true for a right localizing system S.

Proof: Cf.[Sta]04VG, [Sta]05Q2. □

Cor.(3.1.1.58). If C is a category and S is a localizing system, then the left localizing category and
the right localizing category is canonically isomorphic, by the universal property(3.1.1.53).

Prop.(3.1.1.59)[Saturation]. If S is a localizing system in a category C, then the morphisms in C

that is mapped to an isomorphism in S−1C is the smallest saturated localizing system containing S,
called the saturation of S.

Proof: Cf.[Sta]05Q9. □

Prop.(3.1.1.60)[Full Subcategories of Localized Categories]. If S is a left localizing system in
a category C, C′ is a full subcategory of C and S′ is a left localizing system of C′ that S′ ⊂ S. If for
any s : X → Y ∈ S and X ∈ C′, there is a morphism t : Y → Z that Z ∈ C′ and t ◦ s ∈ S′, then the
natural functor (S′)−1C′ → S−1C is fully faithful. And the dual is true for right localizing systems.

Proof: This is not hard from the Gabriel-Zisman localization description(3.1.1.56). □

Def.(3.1.1.61) [Reflective Localizations].A reflective localization is an adjunction (L,R) :
C −−−⇀↽−−− D s.t. R is fully faithful.

Prop.(3.1.1.62)[Reflective Localizations as Localizations].Let (L,R) : C −−−⇀↽−−− D be a reflec-
tive localization(3.1.1.61), then D is equivalent to the localization C[S−1], where S is the class of
morphisms of C that are sent to isomorphisms by L

Proof: Cf.[Bor94]P190. □
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Def.(3.1.1.63)[S-Local Equivalences].Let C ∈ Cat and S a class of morphisms in C.
• c ∈ C is called S-local if Hom(c2, c)→ Hom(c1, c) is a bijection for any c1 → c2 ∈ S.
• f : c1 → c2 ∈ C is called an S-local equivalence if for any S-local object c ∈ C, Hom(c2, c)→

Hom(c1, c) is a bijection.

Prop.(3.1.1.64).Let (L,R) : C −−−⇀↽−−− D is a reflective localization, and let S be the class of morphisms
in C that is mapped sent to isomorphisms by L, then

• The essential image of R consists precisely of S-local objects.
• The S-local

Group Objects

Def.(3.1.1.65) [Group Object]. In a category C with finite products and a final object e, a(n)
(Abelian)group object is an object G that hG is a functor from C to Grp(resp. Ab). And a
homomorphism of group objects is a natural transformation as a functor from C to Grp.

This is in fact equivalent to a morphism mG : G × G → G and iG : G → G, eG : e → G that
satisfy the desired commuting diagrams.

Def.(3.1.1.66) [Group Action].A (left)action of a group object G on an object X is a map of
presheaves hG × hX → hX that for any U , hG(U) × hX(U) → hX(U) is a group action. This is
equivalent to a morphism µ : G×X → X that satisfies the desired commuting diagrams.

Prop.(3.1.1.67).Let µ : G × X → X be an action of a group object G on an object X, there is a
commutative diagram

G×X G×X

X X

(g,x) 7→gx

(g,x) 7→(g,gx)

π2

id

and the horizontal maps are isomorphisms.

Cor.(3.1.1.68).Considering the action of G on itself, we get

G×G G×G

G G

m

(g,h) 7→(g,gh)

π2

id

and the horizontal maps are isomorphisms.

Prop.(3.1.1.69).A unital magma object G in the category of groups is an Abelian group.

Proof: A unital magma object structure endows G with maps (m̃, ẽ), and m̃(ab, cd) =
m̃(a, c)m̃(b, d), because m̃ is a morphism of groups. So we can use Eckmann-Hilton argument2
to show the category multiplication is the same as the group multiplication. So the commutativity
of m̃ with the inverse i implies that it is Abelian. □
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Prop.(3.1.1.70).A right-lax monoidal functor(3.1.5.11) between Cartesian monoidal structures maps
a unital magma object to a unital magma object.

Def.(3.1.1.71) [Categorical Quotient].Let C be a category with finite products, G be a group
object in C, G×X → X is a left action(3.1.1.66), then a morphism X → Y is called the categorical
quotient of X iff Y is the coequalizer of G × X ρ−−→

pr2
X. It is called the universal categorical

quotient of X iff its product with S is the categorical quotient for each element S ∈ C, in the
category C/S .

2 Presentable Categories
Main references are [Locally presentable and accessible categories].

Def.(3.1.2.1)[Small Categories].Given a regular cardinal κ(1.2.12.2), S ∈ Set is called κ-small if
it has cardinality smaller than κ. C ∈ Cat is called κ-small if Ob(C) is κ-small, and the set of all
morphisms of C is κ-small.

Through out the whole book, we will fix a strongly inaccessible cardinal κ and call a set or
category small if it is κ-small. And a category is called essentially small if it is equivalent to a
small category.

Prop.(3.1.2.2).Any small cocomplete category is a poset.

Proof: [MacLane]P114. □

Def.(3.1.2.3)[Compact Objects].For a regular cardinal κ. Let C ∈ Cat be a category that admits
small colimits, and J be a κ-filtered poset and a diagram {Yα} indexed by J , then for X ∈ C, there
is a natural map

lim−→Hom(X,Yj)→ Hom(X, lim−→Yj).

X is called κ-compact if this is an isomorphism for any κ-filtered diagram J . X is called small if
it is κ-compact for some small(3.1.2.1) regular cardinal κ.

Def.(3.1.2.4) [κ-Accessible Categories].For a regular cardinal κ, a κ-accessible category is a
locally small category(3.1.2.1) nCat that satisfies:

• C admits all κ-filtered colimits.
• C is generated by a κ-small set S consisting of κ-compact objects of C under κ-filtered colimits.

C is called accessible if it is κ-accessible for some small regular cardinal κ. A κ-accessible functor
is a functor F : C → D between κ-cocomplete categories that preserves κ-filtered colimits. And a
functor is called a accessible functor if it is κ-accessible for some small regular cardinal κ.

Def.(3.1.2.5)[Locally Presentable Categories].A locally presentable category is a category
that is both cocomplete and accessible(3.1.2.4).

Prop.(3.1.2.6).Any locally presentable category is complete.

Proof:
□

Example(3.1.2.7)[Locally Presentable Categories].
• Set is locally presentable.



3.1. CATEGORIES 191

• If C is a small category, then PShSet(C) is locally presentable.
• For R ∈ CRing, ModR and Ch(R) are locally presentable.
• If T : C → C is an accessible monad on a locally presentable category, then the category of
T -algebras is locally presentable.

• Every Grothendieck topos is locally presentable.
• If M is a locally presentable symmetric monoidal category, then CatM is locally presentable.
• Top is not locally presentable, but CG is locally presentable.

Proof: □

Cor.(3.1.2.8). Cat is locally presentable.

Prop.(3.1.2.9)[Adjoint Functor Theorem].Let F : C→ D be a functor between locally presentable
categories, then

• F is a left adjoint iff it preserves small colimits.
• F is a right adjoint iff it is accessible and preserves small limits.

Proof: □

Def.(3.1.2.10)[Accessible Reflective Localizations].An accessible reflective localization is a
reflective localization(3.1.1.61) (L,R) : C −−−⇀↽−−− D s.t. R is accessible(3.1.2.4).

Prop.(3.1.2.11)[Classifying Locally Presentable Categories].A category is locally presentable
iff it is equivalent to an accessible reflective localization(3.1.2.10) of PShSet(A) for some small category
A.

Proof: Cf.[Locally presentable and accessible categories]. □

3 Ends and Coends
Def.(3.1.3.1)[Dinatural Transformation].Given categories C,D and functor P,Q : Cop × C → D,
then a dinatural transformation α : P → Q is a family of arrows αC : P (C,C)→ Q(C,C) where
C ∈ C that for any arrow C → C ′ ∈ C, there is a commutative diagram

P (C ′, C) P (C,C) Q(C,C)

P (C ′, C ′) Q(C ′, C ′) Q(C,C ′)

αC

αC′

Def.(3.1.3.2)[Wedge and Cowedge].Let P : Cop × C → D be a functor, then a wedge for P is a
binatural functor ∆D → P , where D is an object of C. Similarly a cowedge is a binatural functor
P → ∆D.

Def.(3.1.3.3)[End and Coend].For a functor P : Cop×C→ D, the wedges and cowedges of P form
categories, and we define end of P is just a terminal wedge, denoted by

∫
C F (C,C), and the coend

of P is the initial cowedge, denoted by
∫ C F (C,C).

Ends and coends are functorial w.r.t natural transformations.
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Prop.(3.1.3.4)[Ends as Colimits].There is a morphism

F 7→ F : Fun(Cop × C,D)→ Fun(Tw(C),D)(3.1.1.19)

where we maps f : C → C ′ to F (C,C ′). Then it can be checked that∫
C
F (C,C) = lim

Tw(C)
F,

∫ C

F (C,C) = colimTW (C) F.

Cor.(3.1.3.5).A functor that preserves (co)limits preserves (co)ends.

Cor.(3.1.3.6).For an object D ∈ D, we have isomorphisms:

Hom(
∫ C

F (C,C), D) ∼=
∫
C

Hom(F (C,C), D),

Hom(D,
∫
C
F (C,C)) ∼=

∫
C

Hom(D,F (C,C)).

Prop.(3.1.3.7)[Fubini].Cf.[Coend Calculus, P20].

Prop.(3.1.3.8)[Natural Transformation as Ends].Let F,G : C → D be functors, then the set of
natural transformations is an coend.

Map(F,G) ∼=
∫
C

HomD(FC,GC)

Kan Extension

Cf.[All Concepts are Kan Extensions].

Def.(3.1.3.9)[Kan Extensions].Given functors F : C→ E and K : C→ D, a left Kan extension of
F along K is a functor LanKF : D→ E together with a natural transformation η : F → LanKF ◦K
that for any other pair (G : D→ E , γ : F → G ◦K), γ factors uniquely through η.

Dually, a right Kan extension of F over K is equivalent to a left Kan extension of F op over
Kop.

Prop.(3.1.3.10)[(Co)Limits as Kan Extensions]. If D is the final category 1, then the left Kan
extension is just the colimit of the diagram defined by F , and the right Kan extension is just the
limit of the diagram defined by F .

Prop.(3.1.3.11) [Yoneda Lemma]. hX : Y 7→ Hom(Y,X) is a presheaf, and Hom(hX ,F) ∼= F(X)
for any presheaf F .

So X → hX is a fully faithful embedding よ : C→ PShSet(C). In particular, if a X → Y induces
isomorphism Hom(W,X)→ Hom(W,Y ) for every W , then X ∼= Y .

So we can regard C as a fully faithful subcategory of PShSet(C).

Proof: The map Hom(hX ,F)→ F(X) maps a u to u(X)(idX). And the inverse map is defined to
be x ∈ F(X) 7→ (s ∈ Hom(Y,X) 7→ s∗(x) ∈ F(Y )) ∈ Hom(hX ,F). □

Cor.(3.1.3.12).A universal object for a presheaf F is a pair (X, ζ) that ζ ∈ F (X) with the property
that for any U and a σ ∈ F(U), there is a unique arrow U → X that Ff(ζ) = σ.

In fact, a universal object is equivalent to an isomorphism hX ∼= F .
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Prop.(3.1.3.13)[Presheaves as Colimits of Presentable Presheaves].For C ∈ Cat, any presheaf
of sets on C is a colimit of presentable presheaves on C. More precisely, there is an isomorphism

F ∼= lim−→
hX→F

hX .

From this we see that any functor PShSet(C) → D compatible with colimits is determined by its
restriction on C.

Proof: For any presheaf G, there is a morphism Hom(F ,G) → Hom(lim−→hX→F hX ,G), i.e. a set of
sections fs ∈ G(X) for every hX s−→ F , that if t ◦ u = s, then u∗(ft) = fs. Conversely, by Yoneda
lemma, this just says that there is a morphism of presheaves F → G : F (X)→ G(X) : s 7→ fs. □

Cor.(3.1.3.14) [Yoneda Extensions].For any C ∈ Cat and a cocomplete category D, then any
functor Q : C→ D extends to a functor | · |Q : PShSet(C)→ D s.t.

D D

PShSet(C)

Q

よ
|·|Q

is commutative. Moreover, there is a functor

SingQ : C→ PShSet(C) : C 7→ (X 7→ HomD(QX,C)).

And there is an adjunction
| · |Q : PShSet(C) −−−⇀↽−−− D : SingQ .

Moreover, this assignment Q 7→ (| · |Q, SingQ) induces an equivalence of categories:

Func(C,D) ∼= Adj(PShSet(C),D).

Proof: Define | · |Q by colimit as in(3.1.3.13), then? □

Cor.(3.1.3.15).Any contravariant functor Q : C→ Set that take colimits to limits is representable.

Proof: Use SingQ as in the last proof, Q is representable by SingQ(pt). □

Def.(3.1.3.16)[I-Free Diagram].For a cocomplete category C and a small category I, let Iδ be the
subcategory of I that has the same objects but only the identity morphisms, then an I-diagram in C

is called I-free iff it is a left Kan extension of some diagram Iδ → C.

4 n-Categories
Remark(3.1.4.1)[2-Categories].For n ∈ N, n-categories are defined as in(3.6.1.28).

Prop.(3.1.4.2)[Cat].There is a 2-category Cat consisting of small categories and functors and natural
transformations.

Def.(3.1.4.3) [(2, 1)-Categories].A (2, 1)-category is a 2-category that all the 2-
morphisms(corresponding to a 2-simplex) are isomorphisms.
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Prop.(3.1.4.4)[Final Objects].An object in a (2, 1)-category is a final object(3.6.3.2) iff for any y
there is a morphism y → x, and any two morphisms y → x are isomorphic by a unique 2-morphism.

Lemma(3.1.4.5)[2-Commutative diagrams].Let C be a 2-category, and g : y → z, f : x → z are
arrows in C, then the diagrams in C:

w x

y z

a

b f
g

together with a 2-morphism from gb to fa, naturally form a 2-category. A diagrams with invertible
2-morphisms are called 2-commutative digram in C.

Def.(3.1.4.6)[2-Fibered Products].Let C be a 2-category, and g : y → z, f : x → z are arrows in
C, a 2-fibered product of f, g is a final object in the (2, 1)-category of 2-commutative diagrams as
defined in(3.1.4.5), and it is denoted by x×z y.

5 Monoidal Categories
Main references are [Tensor Categories, Etingof], [Lur09].

Def.(3.1.5.1) [Monoidal Categories].A monoidal category is a category C with a functor ⊗ :
C× C→ C and a unit object 1 together with isomorphisms

ηA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C), αA : A⊗ 1→ A, βA : 1⊗A→ A

s.t.
• ηA,B,C , αA, βB are functorial in each coordinate.
• (MacLane Pentagon)The following diagram is commutative:

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D) A⊗ (B ⊗ (C ⊗D))

ηA,B,C⊗idD ηA⊗B,C,D

ηA,B⊗C,D ηA,B,C⊗D

idA ⊗ηB,C,D

• The following diagram is commutative:

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B

ηA,1,B

αA⊗idB
idA ⊗βB

Def.(3.1.5.2) [Dual and Opposed Category].Let C be a monoidal category, then the opposed
category Copp is the same category as C with the tensoring switched, which is also a monoidal
category.

The dual category Cop with the same tensoring is also a monoidal category.

Def.(3.1.5.3)[Strict Monoidal Categories].A strict monoidal category is a monoidal category
that the isomorphisms above(3.1.5.1) are all identities.
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Prop.(3.1.5.4) [Mac Lane Coherence]. In a monoidal category, any two morphisms between two
bracketings of a product X1 ⊗ . . . Xn constructed using the isomorphisms ηA,B,C are equal. Also if
some Xi are 1, then we can also use αA and βA.

Prop.(3.1.5.5) [Cartesian Monoidal Categories].For a category with a final object and finite
products, the product makes C a symmetric monoidal category, called the Cartesian monoidal
structure.

Prop.(3.1.5.6).For any category C, the category [C,C] of endofunctors has a natural monoidal struc-
ture.

Def.(3.1.5.7)[Closedness].A monoidal category (C,⊗) is called left-closed if for every A ∈ C, the
functor N 7→ A ⊗N has a right adjoint Y 7→ AY (or denoted by Hom(A, Y ) when C is symmetric).
Dually it is called right-closed if Copp is left-closed. It is called closed if it is both left-closed and
right-closed.

For a Cartesian monoidal category C, C is called Cartesian-closed if it is closed for the Cartesian
monoidal structure.

Prop.(3.1.5.8). Cat is Cartesian closed, and for any A,B,C ∈ Cat, there is an equivalence of categories

Func(A,Func(B,C)) ∼= Func(A×B,C).

Proof: □
Def.(3.1.5.9)[Reflexive Objects].Let (C,⊗) be a symmetric monoidal category that is closed, then
we denote Hom(Y, 1) by Y ∨, then there is a natural map Y → (Y ∨)∨. If such a map is reflexive,
then Y is called a reflexive object.

Prop.(3.1.5.10). If C is closed, then
lim−→AiB ∼= lim←−(AiB) A(lim←−Bi)

∼= lim←−(ABi)

Proof: Because C is closed, left and right tensor A ⊗ − and − ⊗ A are both left adjoints thus
commutes with colimits. Now B 7→ AB is a right adjoint, thus it commutes with limits. And for any
C ∈ C,

Hom(C, lim−→AiB) ∼= Hom(C ⊗ (lim−→Ai), B) ∼= Hom(lim−→C ⊗Ai, B)
∼= lim←−Hom(C ⊗Ai, B) ∼= lim←−Hom(C,AiB) ∼= Hom(C, lim←−(AiB))

so lim−→AiB ∼= lim←−(AiB) by Yoneda lemma. □
Def.(3.1.5.11) [Monoidal Functor].Let (C,⊗), (D,⊗) be monoidal categories, then a right-lax
monoidal functor from C to D is a functor G together with morphisms γA,B : G(A) ⊗ G(B) →
G(A⊗B) for any A,B ∈ C and a morphism e : 1D → G(1C) s.t.

• γA,B is functorial in each coordinate.
• (Hexagon Diagram)The following diagram is commutative:

(G(A)⊗G(B))⊗G(C) G(A)⊗ (G(B)⊗G(C))

G(A⊗B)⊗G(C) G(A)⊗G(B ⊗ C)

G((A⊗B)⊗ C) G(A⊗ (B ⊗ C))

ηG(A),G(B),G(C)

γA,B γB,C

γA⊗B,C γA,B⊗C

G(ηA,B,C)
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• The following diagrams are commutative:

G(A)⊗ 1D G(A)⊗G(idC) G(A⊗ 1C)

G(A)

idG(A) ⊗e

αG(A)

γA,1C

G(αA)

1D ⊗G(B) G(idC)⊗G(B) G(B ⊗ 1C)

G(B)

e⊗idG(B)

αG(B)

γ1C,B

G(βB)

Moreover, it is called a monoidal functor if γA,B and e are all isomorphisms.
A monoidal natural transformation between right-lax monoidal functors is a natural trans-

formation that commutes with the maps γA,B and e.

Def.(3.1.5.12)[Equivalence of Monoidal Categories].An equivalence of monoidal categories is a
map that is an equivalence of categories as well as a monoidal functor.

Prop.(3.1.5.13)[Mac Lane Strictness].Any monoidal category is equivalent to a strict monoidal
category.

Proof: □

Prop.(3.1.5.14)[Examples].For a monoidal category (C,⊗), the functor X 7→ Hom(1, X) is a right-
lax monoidal functor from C→ Set(3.1.5.5).

The morphism π0 : A 7→ π0(A) is a monoidal functor from the category of topological spaces Top
to the category Set because it commutes with products.

Proof: □

Symmetric Monoidal Categories

Def.(3.1.5.15) [Symmetric Monoidal Category].A symmetric monoidal category is a
monoidal category (C,⊗) together with a natural transformation ψ between ⊗ and ⊗◦ ι : C×C→ C

that ψ2 = id and the following commutative hexagon diagram is commutative:
A symmetric monoidal functor between symmetric monoidal categories are required to com-

mutes with the braiding?.

Rigid Monoidal Categories

Def.(3.1.5.16)[Duals].Let C be a monoidal category and V ∈ C, a left dual of V is an element V ∗

together with maps
evV : V ∗ ⊗ V → 1, coevV : 1 7→ V ⊗ V ∗

that satisfies
V → V ⊗ V ∗ ⊗ V → V, V ∗ → V ∗ ⊗ V ⊗ V ∗ → V ∗

are identities.
Similarly we can define right dual. if Y is a left/right dual to X, then X is right/left dual to Y .
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Def.(3.1.5.17)[Dual Morphisms].Let f ;X → Y be a morphism and X∗, Y ∗ the left duals of X and
Y , then there is a natural left dual map: f∗ : Y ∗ → X∗ given by

Y ∗ → Y ∗ ⊗X ⊗X∗ → Y ∗ ⊗ Y ⊗X∗ → X∗.

Prop.(3.1.5.18) [Monoidal Functor Preserves Duals].Let F : C → D be a monoidal func-
tor(3.1.5.11) between monoidal categories, X ∈ C is an object with left dual X∗. Then F (X∗)
is a left dual of F (X) with evaluation and coevaluation maps

evF (X) : F (X∗)⊗ F (X)→ F (X∗ ⊗X)→ F (1C)→ 1D,

coevF (X) : 1D → F (1C)→ F (X ⊗X∗)→ F (X)⊗ F (X∗).

and similarly for right duals.

Prop.(3.1.5.19)[Adjointness].Let C be a monoidal category and V ∈ C with left dual V ∗, then there
are natural adjunction maps

Hom(U ⊗ V,W ) ∼= Hom(U,W ⊗ V ∗), Hom(V ∗ ⊗ U,W ) ∼= Hom(U, V ⊗W ).

Proof: The first adjunction map is given by f 7→ (f ⊗ idV ∗) ◦ (idU ⊗coevV ), and the inverse given
by g 7→ (W ⊗ evV ) ◦ (g ⊗ idV ). The verification and the second one: □

Cor.(3.1.5.20). In particular, we can use Yoneda lemma to show the left/right adjoints are unique if
they exist.

Invertible Objects and Grothendieck Categories

Def.(3.1.5.21)[Invertible Objects].An invertible object in a monoidal category is a rigid object
L that the evaluation maps and coevaluation maps are all isomorphisms.?
6 Tensor Categories

Notation(3.1.6.1).
• Let k ∈ Field.

Def.(3.1.6.2)[Tensor Categories].A tensor category over a field k is an Artinian Abelian category
over k together with a strict monoidal structure that is bilinear and satisfies End(1) = k.

A tensor functor is a functor between tensor categories that is additive and monoidal.

Prop.(3.1.6.3) [End(1)]. If C is a rigid tensor category, then End(1) is a ring that acts on objects
X ∈ C via X ∼= 1 ⊗ X. The action of End(1) commutes with End(X), in particular, End(1) is
commutative and C is End(1)-linear.

Rigid Tensor Categories

Def.(3.1.6.4)[Rigid Tensor Categories].Let C be a monoidal category, an element X ∈ C is called
rigid object if it has left and right duals. A rigid tensor category is a tensor category(3.1.6.2)
s.t. every object is rigid. In particular, by(3.1.5.19), a rigid tensor category is closed.

Prop.(3.1.6.5). If C is a rigid tensor category, then the functor
Equivalence of Cop and Copp.?
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Cor.(3.1.6.6).Any natural transformation of monoidal functors between rigid tensor categories is an
isomorphism.

Proof: Cf.[Milne, Tannakian Categories, P13].? □

Prop.(3.1.6.7)[Trace and Rank].Let C be a symmetric rigid tensor category, we can define a trace
morphism

trX : End(X)→ End(1) : f 7→ 1→ X ⊗X∗ f⊗id−−−→ X ⊗X∗ → X∗ ⊗X → 1

And the dimension of X is defined to be trX(idX) ∈ End(1).

Prop.(3.1.6.8)[Abelian Rigid Tensor Categories Exact]. If C is an Abelian rigid tensor category,
then ⊗ commutes with inverse limits and direct limits in each variable.

Proof: It commutes with direct limits because it is left adjoint to the Hom functor, and it commutes
with inverse limits by considering the opposite category(3.1.6.5). □

Prop.(3.1.6.9). dim(X ⊗ Y ) = dimX · dimY . If there is an exact sequence 0 → X → Z → Y → 0,
then dim(Z) = dim(X) + dim(Y ).

Prop.(3.1.6.10)[Decompositions].Let (C,⊗) be a rigid Abelian tensor category and if U is a sub-
object of 1, then 1 = U ⊕U⊥ where U⊥ = ker(1→ U∨). Consequently, 1 is a simple object iff End(1)
is a field. And any rigid tensor category can be decomposed as rigid Abelian tensor categories CI
with End(1i) being fields.

Proof: Let V = Coker(U → 1), by tensoring 0 → U → 1 → V → 0 with U ↪→ 1, we get exact
sequences

0 U 1 V 0

0 U ⊗ U U V ⊗ U 0

0

thus V ⊗ U = 0 and U ⊗ U = U via 1⊗ 1 ∼= 1.
For the rest, Cf.[Tannakian Categories, Milne, P14]. □

Def.(3.1.6.11)[Associative Algebra in a Symmetric Tensor Category].

Tannakian Categories

Def.(3.1.6.12)[Fiber Functor].Let C be a k-linear tensor category, then a fiber functor on C with
values in a k-algebra R is a k-linear exact faithful tensor functor η : C→ModR that takes values in
the subcategory ProjR.

Def.(3.1.6.13) [Tannakian Category].A Tannakian category is a symmetric rigid tensor cate-
gory(3.1.6.4) C that End(1) = k together with a fiber functor(3.1.6.12) with values in R ∈ CRingk.

Def.(3.1.6.14)[Neutral Tannakian Categories].A neutral Tannakian category is a Tannakian
category that the fiber functor is valued in k. By(15.5.2.9), such a category is equivalent to Repk(G)
for some affine group scheme G, and such G is uniquely defined up to inner automorphisms.

In particular, a Tannakian category can be thought of as an abstract version of the category
of representations of an affine group scheme that has no distinguished “forgetful”functor, just as a
vector space is an abstract version of kn that has no distinguished basis.
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7 Enriched Category
Def.(3.1.7.1)[Enriched Categories].Given a monoidal category (C,⊗), an enriched category D

over C consists of the following data:
• a collection of objects.
• For objects X,Y ∈ D, a mapping object MapD(X,Y ) ⊂ C.
• For objects X,Y, Z ∈ D, a composite map MapD(X,Y )⊗C MapD(Y, Z)→ MapD(X,Z) that is

associative.
• For every X ∈ D, a morphism 1 7→ MapD(X,X) that satisfies the commutative diagrams of

the identity morphism.

Def.(3.1.7.2)[Category of Enriched Categories].We can naturally define morphisms and natural
transformations of categories enriched over a monoidal category C. The resulting category is denoted
by CatC.

Prop.(3.1.7.3)[Completeness and Cocompleteness].Let C be a complete and cocomplete sym-
metric monoidal closed category, then CatC is also complete and cocomplete.

Proof: Cf.[H. Wolff. V-cat and V-graph].? □

Prop.(3.1.7.4) [Transfer of Enriched Structure].Given a right-lax monoidal functor between
monoidal categories F : C → C′ and a category D enriched over C, we may obtain a category
F (D) enriched over C′ by asserting MapF (D)(X,Y ) = F (Map(X,Y )). It is an enriched category just
by the definition of right-lax monoidal functors.

Prop.(3.1.7.5) [Underlying Category].For a category enriched D over C, by(3.1.5.14), we can
transfer the structure via C → Set : X 7→ Hom(1, X), and the resulting category is called the
underlying category of D.

Prop.(3.1.7.6).
• A category enriched in Set is just a usual category.
• A right-closed monoidal category is enriched over itself if we define Map(X,Y ) = Y X .(Check).

Def.(3.1.7.7) [Tensored Category].Let C be a right-closed monoidal category and D a category
enriched over C, then D is called tensored over C if for any C ∈ C and X ∈ D, there is an
isomorphism of functors

η : MapD(X,−)C ∼= MapD(X ⊗ C,−).

for some element X ⊗ C ∈ D.
In particular, this implies HomC(C,Map(X,Y )) ∼= HomD(X ⊗ C, Y ), thus X ⊗ C is determined

up to a unique isomorphism, and the map (X,C) 7→ X ⊗C defines a functor D× C→ D that there
are natural morphisms

X ⊗ (C ⊗D) ∼= (X ⊗ C)⊗D.

Dually, if C is left-closed and there is an object CX that there is an isomorphism of functors

C Map(−, X) ∼= Map(−, CX)

then D is called cotensored over C.
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Proof:
□

Prop.(3.1.7.8). If C is a right-closed monoidal category, then it is naturally tensored over itself, as
defined in(3.1.7.6).

Lifting Property and Small Object Argument

Def.(3.1.7.9)[lifting Properties].Let C be a category and p : A → B, q : X → Y be morphisms,
then p is said to have left lifting property w.r.t q and q is said to have right lifting property

w.r.t p if given any diagram
A X

B Y

p q , there is a dotted arrow completing the diagram.

For a set A of morphisms of C, let l(A) denote the morphisms that have left lifting property w.r.t
A and r(A) the morphisms that have right lifting property w.r.t A.

Def.(3.1.7.10)[Weakly Saturated Class].Let C be a category with all small colimits, then a class
of morphisms of C is called weakly saturated if it satisfies:

• Closed under pushout.
• Closed under transfinite composition: Let α be an ordinal and {Dβ}β<α be a system of objects

in CC/ indexed by α. For β < α, let D<β be the colimit of system {Dγ}γ<β in CC/, then if
each D<β → Dβ is in S, then C → D<α is in S.

• Closed under Retraction: In the category of morphisms of C, if there is a morphism F : f →
g,G : g → f that G ◦ F = id, and g ∈ S, then f ∈ S.

Cor.(3.1.7.11).The second condition implies all isomorphisms are in S, and S is closed under com-
position.

Prop.(3.1.7.12)[Lifting and Retraction].For a diagram
X X

Z Y

i ps

f

represents p as a retraction of

u, as the diagram
X Z X

Y Y Y

i

p

s

f p shows.

Dually a diagram
X Y

Z Z

i

q f
s represents q as a retraction of i.

Prop.(3.1.7.13)[Small Object Argument].Let C be a presentable category and A0 = {φi : Ci →
Di} be a small collection of morphisms in C, then there is a morphism T : C[1] → C[2] taking
morphisms f : X → Z in C to the diagram

Y

X Z

f ′′f ′

f

That f ′ belongs to the weakly saturated class generated by A0 and f ′′ ∈ r(A0).
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Moreover, if κ is a regular cardinal that each Ci, Di is κ-compact, then T commutes with κ-filtered
colimits.

Proof: Cf.[HTT, P788]. □

Lemma(3.1.7.14). l(A) is weakly saturated for any set of morphisms A(Clear).

Cor.(3.1.7.15)[Generated Weakly Saturated Class].For any presentable category C and A a set
of morphisms in C, l(r(A)) is the smallest weakly saturated class of morphisms containing A.

Proof: One direction of inclusion is by(3.1.7.14), for the other, if f : X → Z ∈ l(r(A)), then there
is a factorization X f ′

−→ Y
f ′′
−→ Z, where f ′ ∈ A and f ′′ ∈ r(A), thus f ∈ l(f ′′), thus f is retraction of

f ′:

X Y

Z Z

f

f ′

f ′′g ⇒
X X X

Z Y Z

f f ′ f

g f ′′

Thus f ∈ A. □

Trees

Cf.[HTT, Appendix]

8 Fibered Categories

Categories of Categories

Def.(3.1.8.1) [2-Category of Categories over Categories].There is a 2-category of categories
over C, where the 1-morphisms are morphisms of categories over C and the 2-morphisms are base-
preserving natural transformations.

Two categories over C are called equivalent if they are equivalent in this 2-category.

Prop.(3.1.8.2)[2-Fibered Products in the Categories of Categories]. 2-fibered products exists
in the categories of categories.

Proof: Let F : A → C, G : B → C be functors, then we can define a category A×C B as follows:
• Objects are the triples (A,B, f) where A ∈ A, B ∈ B and f : F (A)→ G(B) is an isomorphism

in C.

• Morphisms from (A,B, f) to (A′, B′, f ′) are pairs (a, b) where a : A → A′, b : B → B′ s.t. the
diagram

F (A) G(B)

F (A′) G(B′)

f

F (a) G(b)
f ′

is commutative.
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A×C B is a category both over A and over B, and it fits into a 2-fiber products diagram

A×C B B

A C

where the invertible 2-morphism is given by ψ(A,B,f) = f : F (A)→ G(B).
The verification that this defines a final object in the 2-category of 2-commutative diagrams is

in[Sta]02X9. □

Cor.(3.1.8.3).The 2-fibered product A×C B is a groupoid iff A,B are all groupoids.

Prop.(3.1.8.4).Let A → C,B → C,C → D be functors between categories, then there is a 2-fiber
product diagram

A×C B A×D B

C C×D C
∆C/D

Proof: □

Prop.(3.1.8.5) [2-Fibered Products of Categories].The (2, 1)-category of categories over C has
2-fiber products(3.1.4.6). More explicitly, suppose F : X → S,Y → S be morphisms of categories
over C, X ×S Y is given as follows:

• Objects of X ×C Y are quadruples (U, x, y, f), where U ∈ C, x ∈ XU , y ∈ YU , and f : F (x) →
G(y) is an isomorphism in SU .

• A morphism (U, x, y, f)→ (U ′, x′, y′, f ′) is given by a pair (a, b), where a : x→ x′ is a morphism
in X and y → y′ is a morphism in Y that

– a, b induce the same morphism U → U ′.

– the diagram

F (x) G(y)

F (x′) G(y′)

f

F (a) G(b)
f ′

is an isomorphism.

X ×S Y is endowed with morphisms to X and Y over C that the invertible 2-morphism giving the
2-commutativity is ψ(U,x,y,f) : F (x)→ G(y).

The verification of the universal properties are similar to that of(3.1.8.2).

Cor.(3.1.8.6).There is an equivalence of fibre categories:

(X ×S Y)U ∼= XU ×SU YU .
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Fibered Categories

Def.(3.1.8.7)[(Co)Cartesian Arrows].Let p : F → C be a morphism, then a Cartesian arrow is
an arrow φ : C ′ → C in F that for any object C ′′ ∈ F the map

Hom(C ′′, C ′)→ Hom(C ′′, C)×Hom(p(C′′),p(C)) Hom(p(C ′′), p(C ′))

is a bijection. A coCartesian arrow is an arrow that corresponds to a Cartesian diagram in
Fop → Cop.

Prop.(3.1.8.8).
• If f is Cartesian, then f ◦ g is Cartesian iff g is Cartesian.
• An arrow in F whose image is an isomorphism is Cartesian iff it is itself an isomorphism.

Proof: Easy. □

Def.(3.1.8.9)[Quasi-Fibrantion].A functor F : C→ D is called a quasi-fibration if for any X ∈ C

and an isomorphism f : F (X) ∼= Y , there is an isomorphism f : X → Y mapping to f .

Def.(3.1.8.10)[2-Category of Fibered Categories].A fibered category over C is a category over
C p : F → C that for any η ∈ F and an arrow f : U → p(η), there is a Cartesian arrow ξ → η
in F lifting f . A cofibered category over C is a category p : F → C that the dual category
pop : Fop → Cop is a fibered category.

A morphism of fibered categories over C is a morphism of categories over C that maps Cartesian
morphisms to Cartesian morphisms. A 2-morphism of fibered categories is the same as a 2-morphism
of categories over categories.

Def.(3.1.8.11)[Split Fibered Categories].A split fibered category is a fibered category F → C

that comes from a functor Cop → Cat.

Def.(3.1.8.12)[Cleavage].A cleavage of a fibered category π : F → C is a choice of Cartesian arrow
f∗ lifting f for any f ∈ Arr(C).

Lemma(3.1.8.13).Let F : F → G be a morphism of fibered categories over C that F(U)→ G(U) are
fully faithful for any U ∈ C, then F is fully faithful.

Proof: To show F is fully faithful, it suffices to show for objects X,Y lying over U, V , F induces
a bijection of morphisms from x to y lying over a fixed f : U → V . Choose a Cartesian morphism
f∗y → y in S1 lying over f , then this induces a bijection between morphisms from x to y lying over f
and HomS1,U (x, f∗y). Similarly, because F preserves Cartesian morphisms, we get a bijection between
morphisms F (x)→ F (y) lying over f and HomS2,U (F (x), F (f∗y)). Then the desired bijection follows
from the hypothesis. □

Prop.(3.1.8.14)[Equivalence of Fibered Categories].Let F : F → G be a morphism of fibered
categories. Then F is an equivalence iff the restriction FU : F(U) → G(U) is an equivalence of
categories for any object U of C.

Proof: One direction is trivial, for the other, the proof is similar to the fact essentially surjec-
tive+fully faithful implies equivalence.

Because F (U) are equivalences, for any object ξ of G over U , pick an object Gξ in F(U) together
with an isomorphism αξ : ξ ∼= F (Gξ). And for any morphism ξ → η, by(3.1.8.13), there is a unique
arrow Gφ : Gξ → Gη that F (Gφ) = αη ◦ φ ◦ α−1

ξ .
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Thus clearly there is a 2-isomorphism idG ∼= F ◦ G. It remains to construct an 2-isomorphism
idF ∼= G ◦ F : For any object ξ′ over U , since F (U) is fully faithful, there is a unique isomorphism
βξ′ : ξ′ ∼= G ◦ F (ξ) in F(U) that Fβξ′ = αFξ′ . Then this is easily checked to be an 2-isomorphism
β : idF ∼= F ◦G. □

Prop.(3.1.8.15)[2-Fiber Products of Fibered Categories]. 2-fiber products exists in the category
of fibered categories, and it coincides with that defined in(3.1.8.5).
Proof: it suffices to show for fibered categories X ,Y over C, X ×C Y is also fibered over C. Let
(x, y, φ) be an object of X ×C Y mapping to U ∈ C and f : V → U is a morphism in C, choose
Cartesian morphisms a : f∗x → x, b : f∗y → y lying over f , then F (a) and G(b) are Cartesian.
Since φ : F (x) → G(y) is an isomorphism, by the property of Cartesian morphisms, there exists a
unique isomorphism f∗φ : F (f∗x) → G(f∗y) ∈ SV that G(b) ◦ f∗φ = φ ◦ F (a). In other words,
(F (a), F (b)) : (V, f∗x, f∗y, f∗φ)→ (U, x, y, φ) is a morphism in X ×S Y.

The verification that this morphism is Cartesian is omitted?. □
Lemma(3.1.8.16).Let S → C be a fibered category that factors through C/U where U ∈ C, then
S → C/U is also a fibered category.
Proof: Cf.[[Sta]02XR]. □

Def.(3.1.8.17)[G-Equivariant Object].Let G : Cop → (Grp) be a group functor and pF : F → C a
fibered category, and X an object of C with an action of G. A G-equivariant object of F(X) is
an object ρ of F(X) that there is an action of G ◦ pF on ρ and for any object U and ξ ∈ F(U), the
function pF : HomF (ξ, ρ)→ HomC(U,X) is G(U)-equivariant.

The category FG(X) of G-equivariant objects of F(X) consisting of G◦pF -equivariant morphism
of G-equivariant objects.

Prop.(3.1.8.18).Let π2 is the projection G⊗X → X, ρ be an object of F(X), then a G-equivariant
structure on ρ is the same as a Cartesian arrow β : π∗

2ρ→ ρ that pFβ = α, and satisfies the desired
commutative diagram corresponding to (gh)x = g(h(x)). And a morphism of G-equivariant objects
just corresponds to a morphism of pairs (ρ, β).
Proof: Cf.[Vistoli, P68]. □

Def.(3.1.8.19)[Presheaf of Arrows].Let F be a fibered category over C, and ξ, η ∈ F(S), then we
can define a quasi-functor HomS(ξ, η)→ (C/S), where

HomS(ξ, η)(U/S) = {(ξ1 → ξ, η1 → η, φ)}
where ξ1 → ξ, η1 → η are Cartesian arrows over U → S, and φ : ξ1 → η1 ∈ F(U). The arrows in
HomS(ξ, η) are uniquely defined by the property of Cartesian arrows. Then it is a quasi-functor,
by(3.1.8.30).

Then it is equivalence to a presheaf HomS(ξ, η), by(3.1.8.31). Equivalently, this presheaf can be
defined by designating a choice of Cartesian arrows.

Prop.(3.1.8.20)[Splitting a Fibered Category].Let F → C be a fibered category, then there exists
a canonically defined split fibered category F̃ → C with a canonical equivalence of fibered categories
F̃ → F over C.
Proof: There is a functor Cop → Cat : U 7→ Hom(hU ,F), with corresponds to a split fibered
category F̃ . There is an obvious morphism F̃ → F , sending an object φ : hU → F to φ(idU ) ∈ F(U).
And for any f : U → V ∈ C and a φ : hU → F , we send f∗φ → φ ∈ F̃ to φ(f : V/U → U/U) ∈ F ,
Then we get a canonical map of fibered categories F̃ → F over C. It is an equivalence of categories
by(3.1.8.14) and(3.1.8.33). □
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Categories Fibered in Groupoids, Sets and Equivalence Relations

Def.(3.1.8.21) [Category Fibered in Groupoids].A category (co)fibered in groupoids/set-
s/equivalence relations over C is a category F (co)fibered over C that F(U) is a groupoid/se-
toids/equivalence relations(3.1.1.14) for any U ∈ C. Also we call a category fibered in equivalence
relations over C a quasi-functor.

Prop.(3.1.8.22) [Characterization of Category Fibered in Groupoids].Let F be a category
over C, then F is fibered over groupoids over C iff

• Every morphism in F is Cartesian.
• Given any η ∈ F , U ∈ C and a morphism f : U → pF (η), there is an arrow φ : ξ → η ∈ F

mapping to f .
And dually for cofibered categories.

Proof: If these two holds, then F is clearly fibered over C, and for any arrow f : ξ → η in F(U),
there is a morphism g : η → ξ that is right inverse to f , then clearly it is the inverse.

Conversely, if F is fibered over C, it suffices to check1: for any arrow f , the image in C can
be lifted to a Cartesian diagram in F , and differs f by an isomorphism, thus f is also Cartesian
by(3.1.8.8). □

Cor.(3.1.8.23). if A is a category fibered in groupoids over B and B is a category fibered in groupoids
over C, then A is a category fibered in groupoids over C.

Prop.(3.1.8.24)[Associated Category Fibered in Groupoids].Let F → C be a fibered category,
then the associated category fibered in groupoids Fcart is the category obtained by deleting all
the non-Cartesian arrows. Then Fcart is a category fibered in groupoids over C.

Proof: Firstly Fcart is a category by(3.1.8.8), and it is a category fibered in groupoids by(3.1.8.22).
□

Def.(3.1.8.25)[RIgid Fibered Categories].A rigid fibered category is a fibered category whose
associated category fibered groupoids is fibered in setoids. Equivalently, there are no isomorphisms
above any idU .

Prop.(3.1.8.26)[2-Fibered Products of Categories Fibered in Groupoids].The 2-fibered prod-
ucts of categories fibered in groupoids over C is a category fibered in groupoids over C.

Proof: The 2-fibered products exist by(3.1.8.15), and using (3.1.8.6), it is fibered in groupoids
because the 2-fibered products of groupoids is a groupoid by(3.1.8.3). □

Prop.(3.1.8.27)[Characterization of Categories Fibered in Setoids].Let F be a category over
C, then F is fibered in setoids over C iff for any object η of F and an arrow f : U → pFη ∈ C, there
is a unique arrow ξ → η mapping to f .

Proof: Let F be a category fibered in sets, then pick a Cartesian arrow f̃ over f , then any other
lifting factors through this lifting by the property of Cartesian, then it is identity, because F(U) is
a setoid.

Conversely, if the hypothesis holds, then clearly F(U) is a setoid, and the fibered category condi-
tion holds, because of the uniqueness. □

Cor.(3.1.8.28)[Presheaves and Categories Fibered in Setoids].Let C be a category, then cate-
gories fibered in setoids over C are exactly those equivalent to a presheaf over C.
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Cor.(3.1.8.29). In particular, for any object X ∈ C, the presheaf hX determines a category fibered in
sets, which is just the comma category C/X → C.

Prop.(3.1.8.30)[Characterization of Quasi-Functors].A category F over C is a quasi-functor iff:
• Given any object η ∈ F and an arrow f : U → pFη, there is a lifting ξ → η mapping to f . And

given any two such extensions, there is a morphism ξ′ → ξ commuting them.
• Given any two objects ξ, η ∈ F and an arrow f : pFξ → pFη, there is at most one arrow
f̃ : ξ → η lifting f .

Proof: □

Prop.(3.1.8.31).A fibered category over C is a quasi-functor iff it is equivalent to a presheaf.

Proof: If it is equivalent to a functor, then F(U) is equivalent to a setoid, thus it is an equivalent
relation, by(3.1.1.15). Conversely, if F is a quasi-functor, then it is fibered in groupoids, thus
by(3.1.8.22) every morphism is Cartesian, and if we denote Φ(U) the equivalence classes of F(U),
then a morphism U → V will induce a morphism Φ(V )→ Φ(V ) by the property of Cartesian arrows.
Then clearly this defines a presheaf that is equivalent to F . □

Representability

Def.(3.1.8.32)[Representable Fibered Category].A fibered category is called representable if
it is equivalent to the fibered category C/X defined in(3.1.8.29) for some X ∈ C.

Prop.(3.1.8.33)[2-Categorical Yoneda Lemma].Let F be a fibered category over C and X ∈ C,
there is an equivalence of categories:

HomC((C/X),F) ∼= F(X) : φ 7→ φ(idX)

Proof: To show this functor is essentially surjective, choose a choice of pullbacks of F , for any
ξ ∈ F(X), we define a F : C/X → F that maps a φ : U → X to φ∗ξ, and to any morphism in C/X
an arrow in F induced by Cartesian property.

To show it is fully faithful, notice a natural transformation of φ,ψ ∈ HomC((C/X),F) is deter-
mined by their value on idX , and any map φ(idX) → ψ(idX) induces a natural transformation, by
Cartesian properties. □

Cor.(3.1.8.34) [Characterization of Representability].Translating the 2-Yoneda lemma
and(3.1.8.14), we see that a fibered category F is representable by X ∈ C iff F is fibered in groupoids,
and there is an object ξ ∈ F(X) that for any object ρ ∈ F , there is a unique arrow ρ→ ξ.

Cor.(3.1.8.35). If X ,Y are fibered categories over C representable by U, V resp., then there is an
isomorphism of sets

HomC(X ,Y)/2− isomorphisms ∼= HomC(U, V )

Proof: By Yoneda lemma there is an equivalence HomC(X ,Y) ∼= HomC(U, V ), and then
HomC(X ,Y) is an equivalence relation by(3.1.1.15), so the isomorphism is clear. □

Def.(3.1.8.36)[Representable 1-Morphisms].Let C be a category and F : X → Y be a morphism
of categories fibered over C, then F is called representable if for any U ∈ C and a morphism
C/U → Y, the fibered category (C/U) ×Y X → C/U is representable(3.1.8.32)(Notice it is a fibered
category by(3.1.8.15) and(3.1.8.16)).
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Prop.(3.1.8.37)[Diagonal and Representability].Let S be a category fibered in groupoids over
C. Assume C has fibered product, then the following are equivalent:

• ∆S : S → S ×C S is representable.
• For every U ∈ C, any G : C/U → S is representable.

Proof: Cf.[Sta]02YA.
The key to this proposition is the fibered product diagram(3.1.8.15)(3.1.1.48)

X ×F Y F

X ×S Y F ×S F
∆

f×g

which still holds in the 2-commutative sense.
So if ∆F is schematic, then X ×F Y is a scheme, so X → F is schematic, for any scheme X.

Conversely, consider the fibered products

F ×F×SF X X ×F X F

X X ×S X F ×S F
∆

∆ f×g

induced by h = f × g : X 7→ F ×S F . So in order to prove ∆F is schematic, it suffices to prove
F ×F×SF X is a scheme, and for this, it suffices to prove X ×F X is a scheme. But X ×F X → X is
a pullback of X → F , so it is a scheme. □
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3.2 Categorical Logic
Main references are [Categorical Logic Notes, Jacob Lurie], [Coend Calculus, Fosco Loregian],

[Harder-Narasimhan Filtrations, Huayi Chen], [Harder-Narasimhan Theory, Jonathan Pottharst],
[Coend Calculus].

1 Monads and Categories
Def.(3.2.1.1)[Monad].Let C be a category, a monad on C is an endofunctor C → C together with
two natural morphisms:

• (multiplication)µ : T ◦ T → T .
• (unit)idC → T .

that satisfies associativity and unit diagrams.

Def.(3.2.1.2)[Algebras over Monads].An algebra over a monad T is an object X together with
a morphism α : TX → X that satisfies the diagrams for an algebra.

2 Group Formation
The goal of this subsection is to give a formation that encompass both the group theory and

algebraic group theory.

Def.(3.2.2.1)[Group Formations].A group formation is a category C ∈ Cat with a class of arrows
S ∈ C consisting of monomorphisms, satisfying the following axioms:

• G is complete and cocomplete.
• G has a zero object e.
• S is stable under pullbacks.
• If N → H → G ∈ S and H → G is a monomorphism, then N → H ∈ S.
• Let N → G ∈ S, then N is called a normal subobject of G, and N = ker(G→ Coker(N →
G)).

• For G ∈ C, coproducts exist in C/G, and if N → G,H → G ∈ S, then the coproduct is also in
S, denoted by NH → G.

• Let N → G ∈ S and H → G a monomorphism, then
– there is a natural isomorphism: H/N ∩H ∼= HN/N .
– If N → G ∈ S, then there is a natural isomorphism G/NH ∼= (G/N)/(H/H ∩N).

Prop.(3.2.2.2).

3 Filtrations of a Category
Def.(3.2.3.1)[Filtrations in a Category].Let C be a category with an initial object, a filtration
of an object X in C is a family F = (Xt)t∈R of subobjects of X indexed by R that satisfies:

• (decreasing property) if s ≤ t, then Xs → X factors through Xt.
• (separation property) for sufficiently small t, Xt is the initial object.
• (exhaustiveness) for sufficiently large s, Xs = X.
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• (right locally constant property) for any t ∈ R, there exists δ > 0 that for any s ∈ [t, t+ δ), the
morphism Xt → Xs are isomorphisms.

• (finite jump)the jump set of F is finite.
Naturally, we define morphisms of filtrations.

Def.(3.2.3.2) [Pullback and Pushforward Filtrations]. Suppose fibered products exist in C, for
any morphism f : X → Y and a filtration G = (Yt)→ Y , then the family f∗G = (Yt ⊗Y X)→ X is
a filtration on X, called the pullback filtration.

If f : X → Y and F : (Xt) → X is a filtration on X, then if there is a filtration f∗F on Y
and a morphism of filtrations F → f∗F compatible with f , then f∗F is called the pushforward
filtrations.

4 Harder-Narasimhan Formalism
Main references are[Jon20].

Def.(3.2.4.1)[Harder-Narasimhan Formalism].A Harder-Narasimhan formalism consists of
• An exact category C(3.7.2.1).
• A function deg : Ob(C)→ Z that is additive w.r.t. short exact sequences.
• An exact faithful generic fiber functor to an Abelian category F : C → A that induces for

each object F : E ∈ C a bijection

{strict objects of E} ∼= {subobjects of F (E)}

where a strict subobject is an object that can be prolonged to an exact sequence.
• An additive function rank: A → N on A that rank(L) = 0 ⇐⇒ L = 0, and its composition

with F is also called rank.
• If u : E → E ′ is a morphism in C that F (u) is an isomorphism, then deg(E) ≤ deg(E ′) with

equality iff u is an isomorphism.

Cor.(3.2.4.2).
• We are free to choose the ”kernel” for u that F (u) is surjection.
• The subobjects of subobjects are subobjects, by axiom3.

Def.(3.2.4.3)[Saturation].Let X ′ be a subobject of X, then we let X̃ ′ denote the strict subobject
of X corresponding to the subobject F (X ′) of F (X), called the saturation of X ′. The saturation
satisfies:

•
•
•

Proof: Cf.[Jon20]P3. □

Prop.(3.2.4.4).Every morphism f : X → Y has a kernel and a image in C, and 0 → ker f → X →
Im f → 0 is an exact sequence.

Proof: Cf.[Jon20]P3. □
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Prop.(3.2.4.5)[HN-Formalism on the Category of Filtered Vector Spaces]. If L/K is a field
extension, there is a category Vect FilL/K consisting of (V,Fil•) where V ∈ VectK and Fil• is a finite
filtration on V ⊗K L. It is an exact category by declaring exact sequences be those induce exact
sequences on the gradeds.

The generic fiber functor is Vect FilL/K → VectK : (V,Fil•) 7→ V , and rank is as usual, the
Hodge-Tate degree is defined to be

tH-T((V,Fil•)) =
∑

idimL gri(V ⊗K L).

This is a HN-filtration.

Proof: The axioms can be directly checked, noticing that a subfiltration Wn of a filtration Vn is a
strict object iff Wk = Wn ∩ Vk. □

Def.(3.2.4.6)[Slope]. In a HN-formalism, the slope is defined to be slope(E) = deg(E)
rank(E) .

E is called semistable of slope λ iff slope(E) = λ, and slope(E ′) ≤ λ for any nonzero strict
subobject E ′ ⊂ E .

Prop.(3.2.4.7). If 0→ E ′ → E → E ′′ → 0 be a short exact sequence in C, then:
• If two of them have the same slope, then so does the third.
• If two of them have different slope, then we know the ordering of these slopes.

Proof: Just notice that the degree and rank are all additive functions. □

Prop.(3.2.4.8). If E is semistable of slope λ, then for any morphism u : E → E ′′ that F (u) is surjective,
µ(E ′′) ≥ λ.

Proof: Take the kernel of F (u) in A, which corresponds to a strict object E ′ of E , and 0 → E ′ →
E → E ′′ → 0 is exact, so we can use(3.2.4.19). □

Cor.(3.2.4.9). If E ,F are semistable of slopes λ > µ, then HomC(E ,F) = 0.

Proof: Notice F is faithful. □

Prop.(3.2.4.10)[Semistable Objects]. If f : E → F be a map of vector bundles of the same slope λ,
then ker(f) and Coker(f) are all semistable vector bundles of slope λ, and if 0→ E ′ → E → E ′′ → 0
is exact and E ′, E ′′ are semistable of slope λ, then so does E .

Proof: Use F (f) to find the ”coimage” A and the ”image” B of f , then there is a map from F (A)
to F (B) which is an isomorphism, but they have the same degree and rank, thus A ∼= B by the last
axiom. And the image must has slope λ. Then ker(f),Coker(f) all can be defined, and they have
the same slope λ by(3.2.4.19).

ker(f) is semistable because strict subobjects of ker(f) are also strict subobjects of E(3.2.4.2).
And for Coker(f), if it is not semistable, choose F ′ ⊂ Coker(f) that has slope> λ, let F ′ be the
inverse image, then 0 → Im(f) → F ′ → F ′ → 0, then by(3.2.4.19) slope(F ′) > λ, contradicting the
semi-stability of F .

For the extension, slope(E) = λ by(3.2.4.19), and for a strict subobject F of E , then we can find
F ′, F ′′ be strict objects of E ′, E ′′ respectively that there is an exact sequence 0→ F ′ → F → F ′′ →
0?, which shows slope(F) ≤ λ, so E is semistable. □
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Harder-Narasimhan Filtration

Lemma(3.2.4.11)[Final Subobjects of Maximal Slope].Let X be an object of C and X ′, X ′′ its
subobjects of maximal slope, then X ′ +X ′′ and X ′ ∩X ′′ are also of maximal slope.

Proof: Cf.[Jon20]P8. □

Def.(3.2.4.12).Given an object X of C, consider the following condition on a nonzero subobject X ′

of X:
For all subobjects X ′′ of X properly containing X ′, µ(X ′′) < µ(X ′).

Def.(3.2.4.13)[SCSS].Let X ′ be a subobject of X, then the following conditions are equivalent:
• X ′ satisfies condition(3.2.4.12) and is semistable.
• X ′ satisfies condition(3.2.4.12) and is of maximal slope.
• X ′ is the final object of X of maximal slope.

If X ′ satisfies these equivalent conditions and X ′ ̸= X, then X is called a strongly contradicting
semi-stability or SCSS of X.

Proof: Cf.[Jon20]P8. □

Prop.(3.2.4.14).Every object X of C admits a SCSS.

Def.(3.2.4.15)[Harder-Narasimhan Filtration].Let E ∈ C, a chain of strict objects 0 ⊂ E0 ⊊ E1 ⊊
. . . ⊊ Em = E is called a Harder-Narasimhan filtration iff each quotient Ei/Ei−1 is semistable of
slope λi and λ1 > λ2 > . . . > λm.

Prop.(3.2.4.16)[Faltings].Every object E ∈ C has a unique functorial Harder-Narasimhan filtration.

Proof: For uniqueness: if there are two filtrations, it suffices to show that E ′
1 = E1, because notice

by(3.2.4.2) Ei is a strict subobjects of Ej for any i < j, so we finish by induction on the length of the
filtration and considering E/E1.

For this, firstly λ1 = λ′
1, suppose the contrary and λ1 > λ′

1, then λ1 > λ′
i for each i, so

Hom(E1, E ′
i/E ′

i−1) = 0 for each i by(3.2.4.32), so by induction Hom(E1, E) = 0, contradiction.
Next by the same reason as in the proof above, E1 ↪→ E has image in E ′

1, and the reverse is true
for E ′

1, so E1 ∼= E ′
1 in E .

For existence: Use induction on rank(E). If E is semistable, then we finish. Otherwise, there is
a strict subobject F and 0 → F → E → G → 0 that slope(F) > slope(E), so rank(F), rank(G) <
rank(E). Now by induction F and G has HN-filtration, thus by argument as above, we see that E
cannot have strict subobject with slope bigger than slopes appearing in the HN-filtration of F ,G. So
if we choose a strict subobject of E1 of maximal rank among the strict subobjects of maximal slope,
we claim the subobjects of E/E1 all have slopes smaller than slope(E1): if some slope(G) ≥ slope(E1),
consider its inverse image G′, then 0→ E1 → G′ → G → 0, thus slope(G′) ≥ slope(E1) and has bigger
rank, contradiction. So we can use induction on E/E1. □

HN-Polygons

Harder-Narasimhan Categories
This subsection is unnecessary. Main references are [Harder-Narasimhan Categories]
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Def.(3.2.4.17)[Harder-Narasimhan Categories].A Harder-Narasimhan category consists of
a geometric exact category (C, E , A)(3.7.2.4) consists of

1. A function deg : Ob(CA)→ R that is additive w.r.t short exact sequences in EA.
2. A function rank: Ob(C)→ N on A that is additive w.r.t short exact sequences in E , rank(X) =

0 ⇐⇒ X = 0.
The slope of a nonzero object X is defined to be µ(X) = deg(X)/ rankX. And X is called
semistable of slope λ iff µ(X) = λ, and µ(X ′) ≤ λ for any nonzero geometric subobject X ′ ⊂ X.

And the category satisfies the following axiom:
• NH: For any nonzero geometric object X, there exists a geometric subobject Xdes ⊂ X that

µ(Xdes) = sup{µ(Y )|Y is a non-zero geometric subobject of X}

and moreover, any nonzero geometric subobject Z of X that µ(Z) = µ(Xdes) is a geometric
subobject of Xdes.

Notice that Xdes is semistable and unique up to isomorphisms, called the destablization of X.

Cor.(3.2.4.18).A geometric object of rank 1 is semistable.

Proof: For any nonzero geometric subobject X ′ ⊂ X, rankX ′ = rankX = 1, so rankX/X ′ = 0
hence X/X ′ = 0 and X ′ ∼= X. Then clearly µ(X ′) = µ(X) and X is semistable. □

Cor.(3.2.4.19). If 0→ E ′ → E → E ′′ → 0 be a short exact sequence in EA, then:
• If two of them have the same slope, then so does the third.
• If two of them have different slope, then we know the ordering of these slopes.

Proof: Just notice that the degree and rank are all additive functions. □

Prop.(3.2.4.20) [Abelian Categories as Harder-Narasimhan Categories].Let (C, E , A) be a
geometric exact category with functions deg and rank, and C is an Abelian category, E is the set of
short exact sequences, then (C, E , A, deg, rank) is a Harder-Narasimhan category.

Proof: We need to check HN: induct on rankX: The condition is clear when X is semistable, in
particular when rankX = 1(3.2.4.18), and whenX is not semistable, let Y be a geometric subobject of
X that µ(X ′) > µ(X) and rankX ′ is maximal, then by induction hypothesis, there is a destablization
Ydes, and we want to show X ′

des is just Xdes: Let Y be a nonzero geometric subobject of X. If Y is a
geometric subobject of X ′, then µ(Y ) ≤ µ(X ′

des). If Y is not a geometric subobject of X ′, then Y +X ′

is greater than X ′, and rank(Y + X ′) > rankX ′, so by maximality, µ(Y + X ′) ≤ µ(X) < µ(X ′).
Moreover, there is an exact sequence

0→ Y ∩X ′ → Y ⊕X ′ → Y +X ′ → 0

so

deg Y = deg(Y ∩X ′) + deg(Y +X ′)− deg(X ′)
< µ(X ′

des) rank(Y ∩X ′) + µ(X ′)(rank(Y +X ′)− rank(X ′))
≤ µ(X ′

des)(rank(Y ∩X ′) + rank(Y +X ′)− rank(X ′))
= µ(X ′

des) rank(Y ).

In particular, if µ(Y ) = µ(X ′
des), then Y must be a geometric subobject of X ′ hence a geometric

subobject of X ′
des. so HN holds for X. □
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Def.(3.2.4.21)[Harder-Narasimhan Filtration].Let X be a nonzero geometric object, a chain of
admissible monomorphisms 0 = X0 → X1 → . . . → Xm = X is called a Harder-Narasimhan
filtration of X iff each quotient Ei/Ei−1 are all semistable of slope λi and λ1 > λ2 > . . . > λm, called
the slopes associated to X.

Prop.(3.2.4.22) [Harder-Narasimhan Filtrations Exist].Let (C, E , A, deg, rank) be a Harder-
Narasimhan category, then the Harder-Narasimhan filtration exists for any nonzero geometric object
X.

Proof: We induct on the rank of X: if X is semistable, this is clear, so we are done in the case
rankX = 1 by(3.2.4.18). We choose X1 = Xdes, then Xdes is semistable and X ′ = X/Xdes ̸= 0. Now
rankX ′ < rankX, we can apply induction hypothesis to obtain a HN-filtration 0 = X ′

1
f ′

1−→ X ′
2 →

. . .→ X ′
n−1

f ′
n−1−−−→ X ′

n = X ′. Now let Xi = X ×X′ X ′
i(exists by Ex6(3.7.2.1)), then X1 = Xdes. Since

X → X ′ is an admissible epimorphism, Xi → X ′
i are also admissible epimorphisms, and there are

Cartesian diagrams
Xi Xi+1

X ′
i X ′

i+1

πi

fi

πi+1

f ′
i

and fi are monomorphisms, so fi is the kernel of Xi+1 → X ′
i+1/X

′
i, which is an admissible epimor-

phism, so fi is admissible. There are natural isomorphisms φi : Xi+1/Xi → X ′
i+1/X

′
i(? Cf.[Harder-

Narasimhan Filtrations]), and axiom A6(3.7.2.4) shows φ is compatible with the geometric structure,
so Xi+1/Xi are all semistable, and notice

µ(X2/X1) = rank(X2)µ(X2)− rank(X1)µ(X1)
rank(X2)− rank(X1)

< µ(X1)

so 0→ X1 → X2 → . . .→ Xm = X is a HN-filtration for X. □

Prop.(3.2.4.23)[HN-Formalism for Filtrations in an Abelian Category].Let C be an Abelian
category and E the set of all short exact sequences in C, A(X) is the set of isomorphism classes of
filtrations on X, then (C, E , A) is a geometric exact category, by(3.7.2.8), given any additive rank
function on C, and define a degree function for any filtration F = (Xλ) as

deg(F) =
∫
R
λ(d rankXλ),

then deg is additive w.r.t short exact sequences of filtrations, and (C, E , A, deg, rank) is a Harder-
Narasimhan filtration.

Then a filtration is semistable iff it has only one jump. Then the HN-filtration of a filtration is
just the jump set ordered decreasingly.

Prop.(3.2.4.24)[HN Formalism for Vector Spaces with Two Norms].The vector spaces with
two norms is a Harder-Narasimhan category, Cf.[Harder-Narasimhan Filtrations, P9].

Prop.(3.2.4.25)[HN-Formalism for Torsion-Free Sheaves].The category of torsion-free sheaves
on a geometrically normal projective variety of dimension d ≥ 1 over a fieldK is a Harder-Narasimhan
category. Cf.[Harder-Narasimhan Filtrations, P10].
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Prop.(3.2.4.26)[HH-Formalism for Hermitian Adelic Bundle].Let K be a number field, then
the category of Hermitian adelic bundle over K is a Harder-Narasimhan category. Cf.[Harder-
Narasimhan Filtrations, P10].

Prop.(3.2.4.27)[HN Formalism for Filtered Vector Spaces Field]. If L/K is a field extension,
there is a category V ectF ilL/K consisting of (V, F il) where V is a K-vector space and Fil is a (finite)
filtration of vectors spaces over L on V ⊗K L(3.2.3.1). It is a geometric exact category by(3.7.2.8)
and a Harder-Narasimhan category by(3.2.4.20).

The rank is as usual, and the degree is defined to be

deg((V, F il)) =
∫
R
λ(d rank Vλ)(3.2.4.23)

Slope Inequalities and Functoriality

Def.(3.2.4.28)[Additional Conditions]. In this subsubsection, we assume the Harder-Narasimhan
filtration satisfies the following axiom that is

Def.(3.2.4.29) [Slope Inequality Axioms].To show the functoriality of the Harder-Narasimhan
filtration, we need the following axiom:

• (SI): If X1, X2 are two semistable geometric objects that µ(X1) > µ(X2), then there are no
non-zero morphism from X1 to X2 compatible with the geometric structures(3.7.2.5).

Prop.(3.2.4.30). If SI holds, then

Prop.(3.2.4.31). If E is semistable of slope λ, then for any morphism u : E → E ′′ that F (u) is an
isomorphism, slope(E ′′) ≥ λ.

Proof: Take the kernel of F (u) in A, which corresponds to a strict object E ′ of E , and 0 → E ′ →
E → E ′′ → 0 is exact, so we can use(3.2.4.19). □

Cor.(3.2.4.32). If E ,F are semistable of slopes λ > µ, then HomC(E ,F) = 0.

Prop.(3.2.4.33)[Semistable Vector Bundles Form a Weak Serre Subcategory]. If f : E → F
be a map of vector bundles of the same slope λ, then ker(f) and Coker(f) are all semistable vector
bundles of slope λ, and if 0 → E ′ → E → E ′′ → 0 is exact and E ′, E ′′ are semistable of slope λ, then
so does E .

Proof: Use F (f) to find the ”coimage” A and the ”image” B of f , then there is a map from F (A)
to F (B) which is an isomorphism, but they have the same degree and rank, thus A ∼= B by the last
axiom. And the image must has slope λ. Then ker(f),Coker(f) all can be defined, and they have
the same slope λ by(3.2.4.19).

ker(f) is semistable because strict subobjects of ker(f) are also strict subobjects of E(3.2.4.2).
And for Coker(f), if it is not semistable, choose F ′ ⊂ Coker(f) that has slope> λ, let F ′ be the
inverse image, then 0 → Im(f) → F ′ → F ′ → 0, then by(3.2.4.19) slope(F ′) > λ, contradicting the
semi-stability of F .

For the extension, slope(E) = λ by(3.2.4.19), and for a strict subobject F of E , then we can find
F ′, F ′′ be strict objects of E ′, E ′′ respectively that there is an exact sequence 0→ F ′ → F → F ′′ →
0?, which shows slope(F) ≤ λ, so E is semistable. □
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3.3 Topology I
Main references are [Mun00], [Mor19], [?].

1 Basics
Def.(3.3.1.1)[Topologies].

Def.(3.3.1.2)[Continuous Functions].

Def.(3.3.1.3)[Semicontinuous Functions].A function from X → [−∞,∞] is called upper semi-
continuous iff f−1([−∞, a)) are all open. It is called lower semicontinuous iff f−1((a,∞]) are
all open.

Def.(3.3.1.4)[Separable Topological Spaces].A topological space is called separable if it has a
countable dense subset.

Def.(3.3.1.5)[Product Topology].Arbitrary product exists in the category of topological spaces. It
is constructed as follows: for a family of topology spaces Xi indexed over an index set I, the product∏
I Xi is the set-theoretic product endowed with the topology generated by the basis π−1

i (Ui) for Ui
open in Xi.

Prop.(3.3.1.6)[Limits and Colimits].Arbitrary limits and colimits exist in the category of topolog-
ical spaces. The limits is given as a subspace of the product topology, and the colimits X = colimXi

is given a topology that U ⊂ X is open iff U ∩Xi is open for each i.

Prop.(3.3.1.7)[Pullback Space].Let E → X and f : X ′ → X be maps of spaces, then there is a
pullback map f∗E = E ×X X ′ → X ′, called the pullback space.

Def.(3.3.1.8) [Quotient Topology].Let f : X → Y be a surjective map of spaces, and X has a
topology, then we can define a quotient topology on Y that U ⊂ Y is open iff f−1(U) is open
in X.. It has the universal property that any continuous map X → Z that factors through f
set-theoretically factors through f as a continuous map.

Such a map is called a quotient map.

Prop.(3.3.1.9).A surjective open map pr is a quotient map.

Proof: It is clearly that a subset U is open iff pr−1(U) is open. □

Def.(3.3.1.10)[Glueing Space].Let A ⊂ X and f : A→ Y , then we have the glueing space Y ⨿f X.

Def.(3.3.1.11)[Mapping Cylinder].Let f : X → Y be a map, then we define the mapping cylin-
der M(f) = Y

⨿
f X × I, where X × {0} ⊂ X × I mapsto Y by f .

Def.(3.3.1.12)[Cone].For X ∈ Top, define the cone over X to be the space C(X) = (X × I)/(X ×
{1}). Notice that C(∅) = pt.

Def.(3.3.1.13) [Mapping Cone].Let f : X → Y be a map, then we define the mapping cone
C(f) = M(f)/X × {1}.

Lemma(3.3.1.14). If f : X → Y is a surjective continuous map that f(E) ̸= Y for any proper closed
subspace of X, then for any U ⊂ X open, f(U) ⊂ Y \f(X\U).
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Proof: Take y ∈ f(U) and a nbhd V of y in Y , we show that V intersect Y \f(X\U): W =
U ∩ f−1(V ) is nonempty, thus f(X\W ) ̸= Y , take y′ ∈ Y \f(X\W ), then it is clear y′ ∈ Y \f(X\U),
and y′ ∈ V . □

Def.(3.3.1.15)[Locally Closed Subset].A subset Z of X is called locally closed if for any z ∈ Z,
there is a nbhd U of z in X that U ∩ Z is closed in Z. Equivalently, a locally closed subset is the
intersection of an open subset with a closed subset.

Proof: An intersection of an open subset and a closed subset is clearly locally closed. Conversely,
if Z is locally closed, we choose for each z ∈ Z a nbhd Uz that Uz ∩ Z is closed in Uz, then we can
show Z = Z ∩

∪
z Uz. This is because if x ∈ Z ∩∪z Uz, then x ∈ Uz for some z, and also x ∈ Z, thus

x is in Z. □

Filter Langrange

Def.(3.3.1.16)[Convergence and Filter].For a filter F on a topological space, F converges to a
point y iff any open set containing y is in F .

If X is a set and Y is a topological space and X → Y is a function, then y ∈ Y is a F-limit of f
if f∗F converges to Y .

Prop.(3.3.1.17)[Ultrafilter Convergence Theorem].Let X,Y be a topological space, then:
1. Y is compact iff any ultrafilter on Y has a limit point.
2. Y is Hausdorff iff any ultrafilter on Y has at most one limit point.
3. a function f : X → Y is continuous iff for any filter on X converging to x, the filter f∗(F)

converges to y.

Proof:
1. If Y is compact but every point is not a limit point, then for any x, there is an open set Ux

that Ux /∈ F , but then f.m. of them covers Y , which is in F , so one of them must be in F
by(1.2.10.7), contradiction.
Conversely, if ∪IUi = X but no finite union of them cover X, then X − Ui satisfies the finite
intersection property, so there is an ultrafilter containing all X −Ui by(1.2.10.4) and(1.2.10.5).
Then clearly any point x is not a limit point of F .

2. If Y is Hausdorff and x, y are both limit point of a filter F , then there are two non-intersecting
nbhd of them in F , so its intersection ∅ ∈ F , contradiction.
Conversely, if x, y are two point that their nbhds both intersect, then their nbhds together satis-
fies the finite intersection property, so there is an ultrafilter containing all of them, by(1.2.10.4)
and(1.2.10.5), thus converging to both x and y.

3. This is an easy consequence considering the filter of all the nbhd containing x.
□

Connected Components

Def.(3.3.1.18)[Connectedness].A space X is called connected if it satisfies: for any open subset
U, V of X that U ∪ V = X and U ∩ V = ∅, either U = ∅ or V = ∅.

X is called locally connected if there is a basis of X consisting of connected open subsets of X.
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Def.(3.3.1.19)[Path-Connectedness].A space X is called path-connected if any two points of X
can be connected by an arc.

X is called locally path-connected if there is a basis of X consisting of path-connected open
subsets of X.

Prop.(3.3.1.20). If X is an ordered set with the least upper bound property and satisfies: for any
x < y ∈ X, there exists z ∈ X s.t. x < z < y. Then X is connected, so are intervals and rays in X.

Proof: Let Y be an interval or ray in X. Suppose for contradiction Y = A
⨿
B, where A,B

are open and non-empty in Y . Choose a ∈ A, b ∈ B, then [a, b] ⊂ Y . Let A0 = A ∩ [a, b] and
B0 = B ∩ [a, b], and c = supA0 ∈ [a, b].

Then c /∈ B0: If c ∈ B0, then c ̸= a, and because B0 is open, there exists some a ≤ d < c s.t.
(d, c] ⊂ B0. So d is a smaller upper bound for A0, contradiction.

And also c /∈ A0: If c ∈ A0, then c ̸= b, and because A0 is open, there exists some c < e ≤ b s.t.
[c, e) ⊂ A0. Then by hypothesis, there exists z ∈ (c, e) ⊂ A0, contradicting the fact c is an upper
bound for A0.

Then we derived a contradiction that c /∈ Y , which proves Y is connected. □

Def.(3.3.1.21) [Connected Components]. In a topological space X, if x ∈ X, the connected
component of x is the maximal connected subspace of X containing x. The path-connected
component of x is the maximal path-connected subspace of X containing x

Prop.(3.3.1.22).
• Any connected component of X is closed.
• If X is locally connected, then any connected component of X is clopen.
• If X is locally path-connected, then any path-connected component of X is open, and any

connected component is also open.

Prop.(3.3.1.23)[Clopen Subsets and Connected Components].Let X be a normal topological
space and x ∈ X, then the connected component of X containing x is the intersection of clopen
subsets containing x, denoted by A.

Proof: Assume A splits into two components B,D. Since A is closed, B and D are both closed,
because X is normal there are disjoint open neighborhoods U and V around B and D, respectively.
The open sets U and V cover the intersection of all clopen neighborhoods of A, so cause X is compact,
there must exist a finite number of clopen sets around A, say A1, . . . , An such that U ∪ V covers
K =

∩n
1 Ai.

Note that K is clopen. We can assume that x ∈ U . It is not difficult to see that K ∩U is clopen
and does not contain all of A, contradicting the definition of A. □

Cor.(3.3.1.24).For a compact Hausdorff topological space X and a point x ∈ X, the connected
component of X containing x is the intersection of all compact open neighborhoods of x, because X
is normal(3.3.7.6).

Def.(3.3.1.25)[Totally Disconnected Space].A space is called totally disconnected iff any con-
nected subset of X contains only one point.

Prop.(3.3.1.26).A subspace of a totally disconnected space is totally disconnected, because totally
disconnected is equivalent to the only connected subsets are pt sets.
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Extremally Disconnected Space

Def.(3.3.1.27) [Extremally Disconnected Space].A topological space S is called extremally
disconnected if the closure of any open subset of X is open.

Prop.(3.3.1.28).Let X be an extremally disconnected space, If U, V are disjoint open subsets of X,
then U, V

Proof: Because V ∩ U = ∅, thus similarly V ∩ U = ∅. □

Lemma(3.3.1.29).Let f : X → Y be a continuous surjective map of compact Hausdorff spaces
that Y is extremally disconnected and f(Z) ̸= Y for any proper closed subspace of X, then f is a
homeomorphism.

Proof: By(3.3.2.11) it suffices to show that f is injective. Suppose f(x) = f(x′) = y, then choose
disjoint nbhd U,U ′ of x, x′, and T = f(X\U), T ′ = f(X\U ′) closed in Y , then Y = T ∪ T ′ and y is
contained in the closure of Y \T and Y \T ′ by(3.3.1.14), but this contradicts(3.3.1.28). □

Prop.(3.3.1.30)[Projective Spaces].Compact Hausdorff extremally disconnected spaces are exactly
the projective objects in the category of compact Hausdorff spaces.

Proof: Assume X is projective, let U ⊂ X be open, and the complement by Z, then consider the
surjection U

⨿
Z → X, and let σ be the projection, then σ(U) ⊂ U , thus σ−1(U) = U , and it is

open.
Conversely, if X is extremally disconnected, then by(3.3.2.13), there is a compact subset E ⊂ Y

that f(E) = X and f(E′) ̸= X for all closed subspace E′ ⊂ E. Then(3.3.1.29) says f |E is a
homeomorphism, and the inverse of it gives a desired section. □

Prop.(3.3.1.31)[Gleason]. In an extremally disconnected space X, a convergent sequence is eventu-
ally constant. In particular, Zp is a profinite group that is not extremally disconnected.

Proof: Cf.[Projective Topological Spaces] □

2 Compactness
Def.(3.3.2.1)[Quasi-Compact Space].A topological space is called compact or quasi-compact
iff any open covering of it has a finite sub-covering. A subspace of a topological space is called
precompact if its closure is compact.

Def.(3.3.2.2)[Quasi-Compact Morphism].A map of topological spaces is called a quasi-compact
morphism if the inverse image of any quasi-compact open subset is quasi-compact open.

Prop.(3.3.2.3)[Alexander Subbase Theorem].A topological space is compact iff the closed sub-
sets has the finite intersection property(1.2.10.3). In fact, it suffices to show that the family of
complements of a subbasis of open sets has the finite intersection property.

Proof: Cf.[Sta]08ZP. □

Prop.(3.3.2.4).Let X be a totally ordered set with the least upper bound property, then each closed
interval of X is compact in the order topology. In particular, this applies to a complete totally
ordered set X(1.2.3.19).
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Proof: Let a < b and U a covering of [a, b]. We first show that for any x ∈ [a, b), there exists some
x < y ≤ b that [x, y] can be covered by at most two elements of U : If x has an immediate successor,
then take y to be it. If x has no immediate successor, choose an element U of U containing x, then
U contains some [x, c). Choose y ∈ [x, c), then [x, y] is covered by a single element of U .

Now let C be the set of points y ∈ (a, b] that [a, y] can be covered by f.m. elements of U . We
showed before this set is non-empty. Let c be the least upper bound of C, then a < c ≤ b.

Next, we show c ∈ C: take an element U of U containing c, then U contains some (d, c]. There
must be some element of C lying in the interval (d, c], otherwise d is an upper bound of C. Then
[a, y] is covered by f.m. elements of U , so c ∈ C.

Finally, we show c = b, but this is because otherwise we can find c < y ≤ b that [c, y] is covered
by 2 elements, thus y ∈ C, so y ≤ c, contradiction. □

Prop.(3.3.2.5)[Tychonoff].An arbitrary direct product of compact topological spaces is compact.

Proof: We prove the finite intersection property. If A is a family of subsets that any finite inter-
section of closure of them is nonempty, then consider a maximal family D of subsets containing A
that any finite intersection of closures of them is nonempty, it exists by Zorn’s lemma. Consider the
projection of D onto a coordinate, then by Hypothesis, it has an intersection xα. Now we want to
show x = (xα) belongs to each D ∈ D.

If Uβ is any subbasis element containing x, then Uβ intersect each D because xβ ∈ πβ(D), so it
is in D, by maximality of D. So the finite intersections are also in D, so all local basis of x are in D.
This means that local basis intersect each element of D, that is, all closure of elements in D contains
x. □

Def.(3.3.2.6)[Sequentially Compact].A subset A in a space X is called sequentially compact
iff any sequence of points in A has a convergent subsequence in X. It is called self sequentially
compact if it is sequentially compact in itself.

Prop.(3.3.2.7). f : X → Y , X is compact and Y is Hausdorff, then for a descending chain Yi of closed
subsets of X,

f(
∩
n

Yn) =
∩
n

f(Yn).

Proof: The left side is compact, so if x /∈ f(
∩
n Yn), there is a closed subsets x ∈ T that T ∩

f(
∩
n Yn)=0, so f−1(T )

∩
n Yn = 0, so f−1(T ) ∩ Yn = 0 for some n, hence x /∈ f(Yn). □

Prop.(3.3.2.8)[Fixed Point Theorem]. If X is a compact metric space M , T is a continuous map
X → X that d(x, y) < d(Tx, Ty), then T has a unique fixed point in X.

Proof: The uniqueness is obvious, for the existence, first notice T is obviously continuous, so
consider d(x, Tx), this is a continuous function on M , so it contains a minimum value, if it not 0,
then d(Tx, T 2x) < d(x, Tx), which is a contradiction. □

Def.(3.3.2.9)[Proper Map].A proper map is a continuous map s.t. the inverse image of compact
subsets are compact.

Prop.(3.3.2.10). If X is compact and Y is Hausdorff, then a continuous map f : X → Y is proper.

Cor.(3.3.2.11).A continuous bijective map from a compact space to a Hausdorff space is a homeo-
morphism.
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Prop.(3.3.2.12)[Proper Continuous Maps Closed].Let f : X → Y be a proper continuous map
with Y locally compact Hausdorff, then f is a closed map.

Proof: Let K ⊂ X closed, and y ∈ f(K). Choose precompact open nbhd U of y, then f−1(U) is
compact in X, so f(K ∩ f−1(U)) = f(K)∩U is compact and thus closed in Y . Then y ∈ f(K), and
f(K) is closed. □

Lemma(3.3.2.13).Let f : X → Y be a continuous map of compact Hausdorff spaces, then there
exists a smallest closed subset E of X that f(E) = Y .

Proof: Use Zorn’s lemma, noticing that the intersection of a chain of possible Eis also maps to Y ,
by the intersection property(3.3.2.3). □

Stone-Čech Compactification

Def.(3.3.2.14)[Stone-Čech Compactification].The Stone-Čech Compactification β is defined
to be a functor from the category of sets to the category of compact Hausdorff space that is left
adjoint to the forgetful functor.

The construction of β(X) is as follows: βX =the set of all ultrafilters on X, and the topology is
generate by UA = {F|A ∈ F} as a basis of clopen subsets. For a map f : X → Y , the map βX → βY
is given by f∗.

Proof: First βX is a compact Hausdorff space: it is compact because if there are sets Ai that any
ultrafilter contains at least one of them, then f.m. of them must cover X, otherwise X −Ai satisfies
the finite intersection property thus is contained in some ultrafilter, by(1.2.10.4) and(1.2.10.5), con-
tradiction, Then by(1.2.10.7) shows that any ultrafilter contains one of them. It is Hausdorff because
for any two different ultrafilter, there must be an A that A ∈ F1 and X − A ∈ F2. f∗ is continuous
because f−1(UA) = Uf−1(A).

Now for any map f : X → Y where Y is a topological space, map an ultrafilter F to the unique
limit point of f∗F in Y (existence and uniqueness by(3.3.1.17)). This map is continuous from βX to
Y because for any open set V ⊂ Y , Uf−1(V ) is mapped into V . And for any βX → Y continuous,
consider X → Y which maps x to the image of the principle ultrafilter Fx in Y .

This two map are mutually converses to each other, first for a f : X → Y , X → βX → Y is f
itself, because the pushout of the principle ultrafilter clearly converges to f(x). And for a βX → Y ,
if F doesn’t map to lim f∗F but mapped to some t, then by definition, there is a nbhd U of t that
f−1(U) /∈ F , but by continuity, there is a F ∈ UB mapped into U . But then B ∈ f−1(U), otherwise
if x ∈ B − f−1(U), then Fx is mapped to U , contradiction, so f−1(U) containing B is also in F ,
contradiction. □

Lemma(3.3.2.15). In fact, the spaces in the image of the Stone-Čech compactification are all profinite
spaces.

Proof: As shown before, for any two different ultrafilter, there must be an A that A ∈ F1 and
X −A ∈ F2, UA is open and closed. □

Prop.(3.3.2.16) [Stone Representation Theorem].The Stone-Čech compactification β gives an
equivalent of categories from the category of Boolean algebras to the category of profinite spaces.

Proof: βB is a profinite space by lemma(3.3.2.15), and B can be recovered from βB as the Boolean
algebra of all clopen subsets of βB, because βB is compact. This is a inverse isomorphism because?.
□
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Prop.(3.3.2.17).The Stone-Čech compactification of a set βS0 is extremally disconnected.

Proof: We check condition(3.3.1.30): For any surjection S′ → βS0, we may take a lift S0 → S
arbitrarily, then by definition there is a morphism βS0 → S′ extending this morphism. It is a section
by the universal property. □

Locally Compact Space

Def.(3.3.2.18)[Locally Compact Space].A Hausdorff space is called locally compact if for any
point x, there is a compact subset containing a nbhd of x.

Prop.(3.3.2.19). If X is Hausdorff, then X is locally compact iff for any x ∈ X and x ∈ U open, there
exists a precompact nbhd V that x ∈ V ⊂ V ⊂ U .

Proof: One direction is trivial. For the other, for any x ∈ X and a nbhd U of x, let U0 be
a precompact nbhd of X, then U0\U is closed thus compact and disjoint from x. Because X is
Hausdorff, we can find a nbhd V ′ of x that V ′ is disjoint from U0\U . Now let V = V ′ ∩ U0, then
V ⊂ U0 is closed thus compact, and V ⊂ V ′ ∩ U0 ⊂ U . □

Cor.(3.3.2.20).Open subsets and closed subsets of a locally compact Hausdorff space X is locally
compact Hausdorff.

Proof: If A ⊂ X is closed and x ∈ A, then there exists a precompact nbhd U of x ∈ X, then A∩U
is closed in U thus compact, and contains the nbhd U ∩A of x ∈ A, so A is locally compact.

If A ⊂ X is open, x ∈ A, let x ∈ U ⊂ A, and U open in X, then we can apply(3.3.2.19) to find a
precompact nbhd V that x ∈ V ⊂ V ⊂ U , so A is locally compact. □

Prop.(3.3.2.21)[One-Point Compactification].Let X be a space, then X is locally compact Haus-
dorff iff there exists a compact Hausdorff space Y containing X s.t. Y \X is a single point. Moreover,
in this case, Y is unique up to homeomorphisms, called the one-point compactification of X.

Proof: Cf.[Mun00]P183. □

Cor.(3.3.2.22).A space X is homeomorphic to an open subset of a compact open subspace iff it is
locally compact Hausdorff, by(3.3.2.21) and(3.3.2.20).

Prop.(3.3.2.23).A locally compact second countable Hausdorff space X has a countable basis con-
sisting of precompact open subsets. In particular, X is σ-compact.

Proof: Choose a countable basis {Un} of X. For any x ∈ X and any nbhd U of x, there exists
a precompact Ux ⊂ U containing x by(3.3.2.19). Then for some n(x), Un(x) ⊂ Ux containing x, so
Un(x) is precompact. Thus the set of Un that is precompact forms a countable basis of X. □

Prop.(3.3.2.24). If f : X → Y is a quotient map and Z is locally compact, then X × Z → Y × Z is
also a quotient map.

Proof: Consider W as Y ×Z in the quotient map topology, then X ×Z →W is continuous, which
means X → Map(Z,W ) is continuous. But then Y → Map(Z,W ) is continuous because Y is a
quotient map. Applying(3.3.3.7), we see Y × Z → W is continuous. W → Y × Z is continuous by
quotient map hypothesis, so Y × Z ∼= W . □
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Compactly Generated Spaces

Def.(3.3.2.25)[Compactly Generated Spaces].A compactly generated space is a space that
is the colimit of its compact Hausdorff subspaces. The category of compactly generated spaces is
denoted by CG.

Prop.(3.3.2.26).For X ∈ CG and Y ∈ Top, a set-theoretical map f : X → Y is continuous iff for any
K ∈ Top compact Hausdorff and a map i : K → X, the composite map K → Y is continuous.

Prop.(3.3.2.27)[Compact Generating Functor].There is a compact generating functor (−)c :
Top→ CG right adjoint to the inclusion functor.

Proof: k is constructed by X 7→ lim−→K⊂X,K compactK. Notice Xc = X set-theoretically. It is easy
to verify that if Y ∈ CG and Y → X is continuous, then the set-theoretical map Y → Xc is also
continuous. So (−)c is right adjoint to the inclusion functor. □

Cor.(3.3.2.28). CG is both complete and cocomplete, and the colimits coincide with colimits in Top.

Cor.(3.3.2.29). CG is Cartesian closed(3.1.5.7).

Cor.(3.3.2.30).The right adjoint to the Cartesian product is the compactification of the mapping
space functor(3.3.3.1), by(3.3.3.6) and(3.3.2.27).

Prop.(3.3.2.31).Locally compact Hausdorff topological spaces are compactly generated.

Proof: For X ∈ Top, if Z ⊂ X satisfies Z ∩K is closed for any compact Hausdorff subset K ⊂ X,
for any x ∈ X, there exists a precompact nbhd U of x ∈ X, so Z ∩ U is closed, and Z ∩ U is closed
in U . Thus Z is closed in X. □

Prop.(3.3.2.32).Quotients and closed subspaces of a compactly generated space are compactly gen-
erated. Colimits of compactly generated spaces are compactly generated.

Proof: These follow from(3.3.2.25). □

Prop.(3.3.2.33). If X ∈ CG and Y is locally compact Hausdorff, then X × Y ∈ CG.

Proof: Notice by(3.3.3.7), a map X × Y → Z is continuous iff C × Y → Z is continuous for any
compact Hausdorff subset C ⊂ X. The assertion is equivalent to X × Y → (X × Y )c is continuous,
which is then equivalent to C × Y → (X × Y )c continuous for any compact subset C ⊂ X. But Y
is compactly generated, and C is locally compact, thus it suffices to show C × C ′ → (X × Y )c is
continuous for any compact subset C ′ ⊂ Y . Then this is true because C × C ′ is compact. □

3 Mapping Spaces

Compact-Open Topology on Mapping Spaces

Def.(3.3.3.1) [Compact-Open Topology].The compact-open topology on a function space
Map(X,Y ) is a topology generated by the sets (K,U) = {f : f(K) ⊂ U}, where K is compact
in X and U is open in Y .

Prop.(3.3.3.2).For X ′ → X,Y → Y ′ ∈ Top, the induced map Map(X,Y )→ Map(X ′, Y ′) is continu-
ous. In particular, if X ∼= X ′ and Y ∼= Y ′, then Map(X,Y ) ∼= Map(X ′, Y ′).
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Prop.(3.3.3.3). If Y is compact and X a metric space, this the compact open topology on Map(Y,X)
coincides with the uniform topology on functions.

Proof: If f ∈ (K,U), then f(K) ⊂ U , then there is a ε > 0 that B(K, ε) ⊂ U , thus B(f, ε) ⊂
(K,U).

For any f ∈ Map(Y,X), f(Y ) is compact thus there are f.m. open balls B(f(yi), ε3) that
covers f(Y ). Now if Ki = f−1(B(f(yi), ε3)), then ∪Ki = Y , and f ∈ ∩i(Ki, B(f(yi), ε2)). Also
∩i(Ki, B(f(yi), ε2)) ⊂ B(f, ε), because for any g ∈ ∩i(Ki, B(f(yi), ε2)) and y ∈ Ki, |f(y) − g(y)| ≤
|f(y)− f(yi)|+ |f(yi)− g(y)| < ε

2 + ε
2 = ε. □

Def.(3.3.3.4) [Relative Maps].Let A ⊂ X and B ⊂ Y , we denote by Map((X,A), (Y,B)) the
subspace of Map(X,Y ) consisting of continuous functions f : X → Y that map A into B.

Prop.(3.3.3.5)[Composition is Continuous]. If Y is locally compact Hausdorff, then the composi-
tion map

Map(Y, Z)×Map(X,Y )→ Map(X,Z)

is continuous.

Proof: For any compact K ⊂ X, open U ⊂ Y and g ◦ f ∈ (K,U), f(K) ⊂ g−1(U) ⊂ Y . Because
Y is locally compact, there is an precompact open subset V that f(K) ⊂ V ⊂ V ⊂ g−1(U), then
(V ,U)× (K,V ) maps into (K,U). □

Lemma(3.3.3.6)[Subbasis].Let X be Hausdorff,Wα be a subbasis of Y , then (K,Wα) where K ⊂ X
compact is a subbasis of Map(X,Y ).

Proof: If f ∈ (K,U) ⊂ Map(X,Y ), let U =
∪
β Uβ, where Uβ =

∩k(β)
j=1 Wβ,j . Now K ⊂

∪
β f

−1(Uβ),
because K is compact Hausdorff thus the partition of unity(3.3.7.9) gives us f.m. compact subsets
K1, . . . ,Kn of K that Ki ⊂ f−1(Uβi) for some β. Then

f ∈
n∩
i=1

k(βi)∩
j=1

(Ki,Wβi,j) =
n∩
i=1

(Ki, Uβi) ⊂ (K,
n∪
i=1

Uβi) ⊂ (K,U).

□

Prop.(3.3.3.7) [Adjointness of Mapping Space]. Let Y be a locally compact Hausdorff space,
then

Map(X × Y, Z) ∼= Map(X,Map(Y, Z))

as sets. And if moreover X is Hausdorff, then it is a homeomorphism.

Proof: Let φ ∈ Map(X × Y, Z), for any x ∈ X, take φ(x) : Y → Z : φ(x)(y) = φ(x, y), then φ(x)
is continuous, and φ̃ : X 7→ Map(Y, Z) : x 7→ φ(x) is continuous: for any compact K ⊂ Y and open
U ⊂ Z, φ̃−1((K,U)) = {x ∈ X|φ(x×K) ⊂ U}, which is open.

Conversely, for any ψ : X → Map(Y, Z), let ψ̃ : X × Y → Z be given by ψ̃(x, y) = ψ(x)(y).
Then ψ̃ is continuous: For any open U ⊂ Z, if (x, y) ∈ ψ̃−1(U), then ψ(x)y ⊂ U . Because ψ(x) is
continuous, there is a nbhd W of y ∈ Y that φ(x)(W ) ⊂ U . Then because Y is locally compact
Hausdorff, there is a precompact nbhd V of y ∈ Y that y ∈ V ⊂ V ⊂ W . Then ψ−1((V ,U)) is a
nbhd of x ∈ X, and (x, y) ∈ (ψ−1((V ,U)), V ) ⊂ ψ̃−1(U), thus ψ̃−1(U) is open, and ψ̃ is continuous.

Now let F : φ 7→ φ̃ and G : ψ 7→ ψ̃, then we show F,G are both continuous: By(3.3.3.6),
(K, (L,U)) is a subbasis of Map(X,Map(Y, Z)). F is continuous because F ((K×L,U)) = (K, (L,U)).
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G is continuous because X ×Y is Hausdorff and for any J compact in X ×Y , J × J (pr1,pr2)−−−−−→ X ×Y
is continuous, so for any U ⊂ Z open, there exists J1 ⊂ X, J2 ⊂ Y compact s.t. G((J1, (J2, U))) ⊂
(J, U). □

Cor.(3.3.3.8). If Y is locally compact and Hausdorff, A ⊂ X,B ⊂ Y,C ⊂ Z, then

Map((X × Y,X ×B ∪A× Y ), (Z,C)) ∼= Map((X,A),Map((Y,B), (Z,C)))

as sets, and if moreover X is Hausdorff, then it is a homeomorphism.

Def.(3.3.3.9)[Admissible Topology].For X,Y ∈ Top, an admissible topology on Map(X,Y ) is
a topology that makes the evaluation map e : Map(X,Y )×X → Y continuous.

Prop.(3.3.3.10).The compact-open topology on Map(X,Y ) is coarser than admissible topology on
it(3.3.3.9). And if X is locally compact Hausdorff, then it is admissible.

Proof: It suffices to show any (K,U) is open in Map(X,Y ). Let f ∈ (K,U), then for any x ∈ K,
e(f, x) ∈ U , thus there is a nbhd Ux of f and a nbhd Wx of x that e(Ux ×Wx) ⊂ U . Now because
K is compact, we can choose a nbhd V of f that e(V ×K) ⊂ U . Thus f ∈ V ⊂ (K,U), and (K,U)
is open in Map(X,Y ). If Y is locally compact Hausdorff, then Map(Y, Z) × Y → Z continuous by
applying(3.3.3.5) with X = pt. □

Mapping Spaces in CG

Def.(3.3.3.11) [Mapping Spaces].For X,Y ∈ CG, the mapping space Mapc(X,Y ) is the compact
generation(3.3.2.27) of the space of continuous functions from X to Y with the topology generated
by the sets (K,U) = {f : f(i(K)) ⊂ U}, where K is a compact Hausdorff space, i : K → X and U
is open in Y .

Prop.(3.3.3.12).For X ′ → X,Y → Y ′ ∈ CG, the induced map Mapc(X,Y ) → Mapc(X ′, Y ′) is
continuous. In particular, if X ∼= X ′ and Y ∼= Y ′, then Mapc(X,Y ) ∼= Mapc(X ′, Y ′).

Lemma(3.3.3.13)[Evaluations are Continuous].For X,Y ∈ CG, the composition map

Mapc(Y,X)×c Y → X

is continuous.

Proof: It suffices to prove that for any compact Hausdorff space K,F mapping into Map(Y,X), Y ,
K × F → X is continuous: For (f0, y) ∈ Mapc(Y,X)×c Y and f0(y) ∈ U , as f0 is continuous, there
exists a nbhd N of y ∈ Y s.t. f0(N ∩ F ) ⊂ U , and then (f0, y) ∈ (K ∩ (N ∩ F,U), N ∩F ) is mapped
into U . □

Prop.(3.3.3.14) [Adjointness of Mapping Space]. For X,Y, Z ∈ CG, there is a natural homeo-
morphism

Mapc(X ×c Y, Z) ∼= Mapc(X,Mapc(Y, Z))

Proof: Let φ ∈ Mapc(X ×c Y, Z), for any x ∈ X, take φ(x) : Y → Z : φ(x)(y) = φ(x, y),
then φ(x) is continuous, and φ̃ : X 7→ Map(Y, Z) : x 7→ φ(x) is continuous: if φ(x) ∈ (K,U),
φ̃−1((K,U)) = {x ∈ X|φ(x× i(K)) ⊂ U}, which is open.
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To prove this construction is continuous, notice we have already seen that if f : X ×c Y → Z is
continuous then f : Y → Mapc(Y, Z) is continuous. Apply this to

Mapc(Y ×c X,Z)×c Y ×c X → Z

we see that
X ×c Mapc(Y ×c X,Z)→ Mapc(Y, Z)

is continuous, and
Mapc(Y ×c X,Z)→ Mapc(X,Mapc(Y, Z))

is continuous. Similarly, as

Mapc(X,Mapc(X,Z))×c Y ×c X → Z

is continuous, we get
Mapc(X,Mapc(Y, Z))→ Mapc(X ×c Y, Z)

is continuous, and it is clearly the inverse to the construction above. □

Cor.(3.3.3.15).For X,Y, Z ∈ CG, A ⊂ X,B ⊂ Y,C ⊂ Z, then there is a natural homeomorphism

Map((X × Y,X ×B ∪A× Y ), (Z,C)) ∼= Map((X,A),Map((Y,B), (Z,C)))

Cor.(3.3.3.16). products in CG commute with colimits.

Cor.(3.3.3.17)[Compositions are Continuous].For X,Y, Z ∈ CG, the composition map

Mapc(Y, Z)×c Mapc(X,Y )→ Mapc(X,Z)

is continuous.

Proof: It suffices to show that

Mapc(Y, Z)×c Mapc(X,Y )×c X → Z

is continuous, and this follows from(3.3.3.13). □

Construction of Spaces

Def.(3.3.3.18) [Path Spaces].For f : A → B ∈ Top, let Ef be the subspace of A × Map(I,B)
consisting of pairs (a, γ) that γ(0) = a.

The fibers of Ef → B are called homotopy fibers of f .

Def.(3.3.3.19) [n-Loop Space].The n-loop space of X is defined to be Ωn(X,x0) =
M(In, ∂In;X,x0). Then by(3.3.3.8) we have

Ω(Ωn(X,x0), x̃0) ∼= Ωn+1(X,x0).

Prop.(3.3.3.20)[Loop spaces are Homotopy Fibers].Let f : x0 → B be a point, then Ef is the
path space PB of all paths starting from x0, and the homotopy fiber over x0 is just the loop space
Ω(X,x0). PB is contractible, with the contraction given by H : PB × I → PB : γt(x) = γ(tx).
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4 Profinite Space
Def.(3.3.4.1) [Profinite Space].A space is called a profinite space if it is a cofiltered limit of
discrete topological spaces. The category of profinite spaces is denoted by Prof.

A profinite space is the same thing as a totally disconnected, compact Hausdorff topological space.
Thus a closed subspace of a profinite space is profinite.

Proof: The profinite spaces are clearly totally disconnected, compact Hausdorff(by Tychonoff).
Conversely, if it is totally disconnected and compact Hausdorff, let I be the set of clopen de-

compositions X =
⨿
I Ui of X, then for each I ⊂ I, there is a map X → I, and there is a partial

order on the decompositions of X. We show that the map X → limI⊂I I is a homeomorphism. It is
injective by(3.3.1.25)(3.3.1.23)(3.3.7.6). It is surjective by compactness of X, and it is clearly open,
thus homeomorphism by(3.3.2.11). □

Cor.(3.3.4.2).A cofiltered limit of profinite spaces is profinite.

Prop.(3.3.4.3).Any open covering of a profinite space has a clopen disjoint subcover.

Proof: By(3.3.4.1), we may assume that X = limi∈I Xi, where Xi is finite. Let fi be the projection,
as the limit is filtered, a fundamental family of nbhds of a point (xi) f (

i xi), Then for each covering,
we may assume it is finite X = ∪i∈If−1

i (xi), choose a j > i for each i, as I is cofiltered, then
X =

⨿
x∈Xj f

−1
j (x) satisfies the desired property. □

Prop.(3.3.4.4). If X is quasi-compact and any connected component of X is the intersection of clopen
sets containing it (e.g. X is normal(3.3.1.23)), then π0(X) is a profinite space.

Proof: π0(X) is an image of X, so it is quasi-compact, also it is clearly totally disconnected. To
show it is Hausdorff, let C,D be disjoint connected components of X, then C = ∩Uα, where Uα are
clopen. Since C ∩D = ∅, Uα ∩D = ∅ for some α. and then the image of Uα separates C and D in
π0(X). □

Locally Profinite Space

Def.(3.3.4.5)[Locally Profinite Space].A space is called locally profinite iff it is a totally discon-
nected, locally compact Hausdorff topological space.

Prop.(3.3.4.6).A locally closed subsets of a locally profinite space is locally profinite. And compact
subsets are profinite.

Proof: Closed subsets are clearly locally profinite, for the open subsets, it is also locally compact.
□

Cor.(3.3.4.7).Any open covering of a compact subsets of a locally profinite space has an clopen
disjoint subcover, by(3.3.4.3).

Prop.(3.3.4.8).The set of all compact open subsets form a basis of the topology of G.

Prop.(3.3.4.9). If X is locally profinite and K is a compact subspace of X. Let K ⊂ ∪Uα be an open
covering, then there exist f.m. disjoint open compact subsets Vi ⊂ X that each Vi∩K ⊂ Uα for some
α, and K ⊂ ∪Vi.

Proof: Because K is profinite(3.3.4.6), (3.3.4.3) shows there is a finite disjoint compact open
subcover Wi of Uα, then Wi = Vi ∩K for Vi compact, and using compactness of Wi, we can assume
Vi is compact. Finally to make Vi disjoint, we can let Vi = Vi\(∪i−1

k=1Vk). □
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5 Real Numbers

References are [?]Chap10 and [Mun00].

Topology

Prop.(3.3.5.1)[R is Connected].R is connected, and so are intervals and rays in R.

Proof: This follows from(3.3.1.20), as the hypothesis is satisfied by(1.2.9.1) and the fact for any
a < b ∈ R, a < a+b

2 < b. □

Prop.(3.3.5.2).Rn satisfies the Heine-Borel property(3.3.8.3), i.e. bounded closed sets are compact.

Proof: It suffices to consider the square metric. If A is bounded, then A is in [−N,N ]n for some
number N . [−N,N ]n is compact by(3.3.2.4) and(3.3.2.5). □

Borel Set

Def.(3.3.5.3).Let U be a ultrafilter on a set I and {aI} be a bounded sequence of real numbers. Then
a number a is called the U-limit of {aI} is for every ε > 0, {i ∈ I||ai − a| < ε} ∈ U .

There is at most one limit, because {i ∈ I||ai − a| < ε}, {i ∈ I||ai − b| < ε} will be disjoint hence
cannot both be in U .

Prop.(3.3.5.4)[Generalized Limit].Let U be an ultrafilter on N, then for any bounded sequence
of real numbers {an}, limU an exists. i.e. There is a functional from l∞ to R.

And if {an} has a limit pt a in the usual sense, then limU an = a for any non-principal ultrafilter
U , because any {i ∈ I||ai − a| < ε} is cofinite hence in U(1.2.10.9).

Proof: Let Ax = {n|an < x}. Then Ax is monotone, then we can choose c = sup{x|Ax /∈
U}(1.2.3.19). And it is easily verified that c = limU an. □

Cor.(3.3.5.5)[Density Measure].There exists a measure m on N that m(A) = d(A) for each set
A ⊂ N that has a density d(A).

Proof: Let U be a non-principal ultrafilter on N(1.2.10.9), let m(A) = limU
A(n)
n . It is clearly

additive and monotone. And it equals the density by(3.3.5.4) □

6 Separation Axioms

Prop.(3.3.6.1).Any Quasi-compact T0 space X contains a closed point.

Proof: Consider the family of non-empty closed subsets of X, there is a minimal element by quasi-
compactness. Choose a minimal element T , and let x ∈ T , then {x} = T . Then x is closed, otherwise
there is some x′ ̸= x ∈ {x}, and {x′} ̸= {x} because X is T0. □

Hausdorff

Hausdorffization

Cf.[the Hausdorff Quotient].
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Regular

Completely Regular

Normal (T4)

Prop.(3.3.6.2) [Urysohn lemma].Let X be normal, A and B two closed subset of X, then there
exists a continuous map from X to [0, 1] that maps A to 0 and B to 1.

Proof: Use the countability of rational numbers to construct a family of Uq s.t.

p < q ⇒ Ūp ⊂ Uq

Then choose f(x) = inf{p ∈ Q|x ∈ Up}, then this f meets the requirement. □

Cor.(3.3.6.3)[Tietze extension]. If X is normal and Y is a closed subspace, then any continuous
function f on Y can be extended to a continuous function on X.

Proof: □

7 Paracompactness
Def.(3.3.7.1)[Paracompactness].A space X is called paracompact if any open covering U has a
locally finite open refinement covering.

Prop.(3.3.7.2)[Characterization of Paracompactness]. If X is regular, then TFAE:
1. Each open cover of X has an open locally finite refinement.
2. Each open cover of X has a locally finite refinement.
3. Each open cover of X has a closed locally finite refinement.
4. Each open cover of X is even. i.e. for any cover, there is an open nbhd V of diagonal of X×X

such that ∀x, V [x] = {y|(x, y) ∈ V } refines the cover.
5. Each open cover of X has an open σ-discrete refinement.
6. Each open cover of X has an open σ-locally finite refinement.

If this is satisfied, then X is called paracompact.

Proof: 6→ 2:Just minus every open set the part of open sets that appeared in families that ordered
before it. 2 + 4→ 1:Use the lemma below, we can transform the cover A into V [A]∩UA which is an
open locally finite cover
Cf.[General Topology Kelley] and [Mun00]P254. □

Lemma(3.3.7.3). If X satiesfies 4, let U be a nbhd of diagonal of X×X, then their exists a symmetric
nbhd of diagonal s.t. V ◦ V ⊂ U , where U ◦ V = {(x, z)|(x, y) ∈ U, (y, z) ∈ V, ∃y}.

Proof: ∀x in X, there is a nbhd s.t. W [x]×W [x] ⊂ U , this is an open cover, so there is a nbhd R
of diagonal s.t. R[x] refines it. Hense R[x]×R[x] ⊂ U . Let V = R ∩R−1, V ◦ V is the union of sets
V [x]× V [x], so V ◦ V ⊂ U . □

Lemma(3.3.7.4). In the preceding proposition, if X satisfies 4, Let A be a locally finite(resp. discrete
i.e. intersect only one) family of subsets of X, then use the last lemma, there is a nbhd V of diagonal
of X ×X such that V [A] = {y|(x, y) ∈ V, ∃x ∈ A} is locally finite(resp. discrete).
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Proof: Choose for every pt a nbhd satisfy the property, then it is an open cover. Choose a diagonal
nbhd U for the property 4, then choose coordinate symmetric nbhd V of diagonal s.t. V ◦ V ⊂ U . If
V [x] intersect V [A], then V ◦ V [x] intersect A. Done. □

Prop.(3.3.7.5).A locally compact second countable Hausdorff space X is paracompact.

Proof: Let U be a covering of X, because X is second countable and locally compact, by(3.3.2.23),
we may assume U is a countable covering and consisting of precompact subsets. Moreover, we can
change Un to U ′

n = ∪ni=1Ui, because if {Bα} is a locally finite refinement of {∪ni=1Ui}, then {Bα∩Uα}
is a locally finite refinement of {Ui}. So Un ⊂ Un+1, and because Un is compact, we may assume
Un ⊂ Un+1.

Now let Kn = Un+1\Un(where U0 = ∅), then Kn are all compact, and Wn = Un+1\Un−2 is an
open subset containing Kn. So there are f.m. open subsets of Wn that cover Kn. There open subsets
is then a refinement covering of U , and they are locally finite, because any x ∈ X is contained in Un
for some n. □

Prop.(3.3.7.6)[Paracompact Spaces are Normal].A Hausdorff paracompact space X is normal.
In particular, a compact Hausdorff space is normal.

Proof: Firstly X is regular: Let x ∈ X and B a closed subset disjoint from x, then because X is
Hausdorff, there is a covering of B by open subsets Vα that x /∈ V α. Now consider the open covering
{X\B, Vα} of X, then there is a locally finite refinement {Bβ}. Those Bα that intersect B is then
a locally finite covering of B. Let U be the union of these open subsets, then B ⊂ U and x /∈ U ,
because of the locally finiteness.

To prove X is normal, we do the same but x replaced by a closed subset disjoint from B and use
regularity. □

Prop.(3.3.7.7) [Paracompactness for Manifolds].For a connected Hausdorff locally Euclidian
space, the condition of paracompact, second countable and a compact exhaustion is equivalent.

Proof: Cf.[Paracompactness and second countable]. □

Lemma(3.3.7.8) [Shrinking Lemma].Let X be a paracompact Hausdorff space and {Uα}α∈I an
open covering of X, then there is an open covering {Vα} of X that V α ⊂ Uα for any α.

Proof: Let A be the family of open subsets A of X that A ⊂ Uα for some α, then because X is
normal(3.3.7.6), A is a covering of X. Then we find a locally finite open covering B of A, and let the
covering map be Bβ ⊂ Uf(β), then we can get a covering V of X indexed by I that Vα = ∪f(β)=αBβ.
This is also locally finite, and V α ∈ Uα by the locally finiteness of B. □

Prop.(3.3.7.9)[Partition of unity]. In a paracompact Hausdorff space, given any open cover {Uα},
there exists a partition of unity {ρα} that suppρα ⊂ Uα, and {Supp(ρα)} is locally finite. Moreover,
if X is locally compact, we can assume

Proof: Using shrinking lemma(3.3.7.8) twice, we can find locally finite open coverings {Wα}, {Vα}
that Wα ⊂ Vα, V α ⊂ Uα. Because X is normal, we can find functions ψα on X that ψ(Wα) =
1, ψα(X\Vα) = 0. Then Supp(ψ) ⊂ V α ⊂ Uα, so {Supp(ψα)} is locally finite. So we can define
Φ(x) =

∑
α ψα(x). Φ(x) > 0 for any x because {Wα} is a covering of X. Finally, we define

ρα = ψα/Φ, then this is a partition of unity dominated by {Uα}. □
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8 Metric Space
Def.(3.3.8.1)[Metric Balls].Let X be a metric space and x ∈ X, δ ∈ R+, define the metric balls

U(x, δ) = {y ∈ X : d(x, y) < δ}, D(x, δ) = {y ∈ X : d(x, y) ≤ δ}.

Prop.(3.3.8.2)[Metric Spaces are Paracompact].Any metric space is paracompact.

Proof: Cf.[Mun00]P257. □

Def.(3.3.8.3)[Heine-Borel Property].A metric space X is said to satisfy the Heine-Borel prop-
erty if every closed and bounded subset of X is compact.

Complete Metric Space

Def.(3.3.8.4).A set E in a metric space is called totally bounded iff for every ε > 0, there exists
a finite set F that E ⊂ B(F, ε). This definition is compatible with that in the case of a topological
vector space when it is metrizable.

Prop.(3.3.8.5).The closure of a totally bounded set in a metric space is totally bounded.

Proof: For each ε > 0, choose a finite set F that E ⊂ B(F, ε/2), then E ⊂ B(F, ε). □

Prop.(3.3.8.6).A totally bounded metric space X is separable.

Proof: ∪Nn is dense and countable in X, where Nn is a finite 1/n-net of X. □

Prop.(3.3.8.7)[Hausdorff].Let X be a metric space, then:
1. A sequentially compact(3.3.2.6) subset M is totally bounded and the converse is true if X is

complete.
2. A subsetM is compact iff it is self-sequentially compact iff it is closed and sequentially compact.
3. A subset M is precompact iff it is sequentially compact(3.3.2.6).

Proof: 1: IfM is not totally bounded, then for some ε > 0, we can choose consecutively a sequence
of points xi that d(xi, xj) ≥ ε, this cannot has a convergent subsequence in X.

Conversely, ifM is totally bounded, choose a 1/k-net for each k, then for any sequence inM , there
is a yi that some infinite subsequence {x(1)

n } ⊂ B(y1, 1), and consecutively find infinite subsequences
{x(m)

n } ⊂ B(yk, 1/k), then finally choose the diagonal, then it is a Cauchy sequence.
2: If it is compact, given a sequence, if no point is a convergent point, then each point has a

nbhd that contains at most one point of the sequence. Then by compactness, there are at most f.m.
points, contradiction. A compact set must has the convergent point in itself because it is closed as
M is Hausdorff.

Conversely, if it is self-sequentially compact, then it is totally bounded by 1. so if M is not
compact, then for each n it has 1/n-net Nn, then there is at least one xn that B(xn, 1/n) cannot by
covered by f.m. of the covering, The sequence {xn} has a subsequence {xnk} that is convergent to x.
But x ∈M is in some open cover, so B(xnk , 1/nk) is contained in some open cover, contradiction.

That closed and sequentially compact is equivalent to self sequentially compact is obvious.
3: If it is precompact, then it is sequentially compact by 2, conversely, if xi is a sequence in M ,

then choose |yn− xn| ≤ 1/n, so some sequence ynk is convergent to y0 ∈M , so xnk also converges to
y0. So M is self-sequentially compact, so it is compact by 2. □
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Cor.(3.3.8.8) [Arzela-Ascoli].For X ∈ CHaus, F ⊂ C(X) is a sequentially compact(precompact,
by(3.3.8.7)) subset iff it is uniformly bounded and equicontinuous.

Proof: As C(M) is complete metric space, sequentially compact is equivalent to totally bounded.
If it is totally bounded, then it is clearly uniformly bounded, and for every ε > 0, find a ε/3-net for
F , which means f.m. functions in F that any other function is ε/3-close to one of them. So they are
equicontinuous.

Conversely, if it is uniformly bounded and equicontinuous, for every ε > 0, find a finite covering
of M that for any two points x, y in one cover of them, |f(x) − f(y)| < ε/3 for all f ∈ F . Then
choose for each covering a point xi, consider f : F → Cn : φ 7→ (φ(x1), . . . , φ(xn)), then the image
is bounded, hence precompact by(3.3.5.2), so it is totally bounded by(3.3.8.7). So we can choose a
ε/3-net φk for xi simultaneously, and it is by ε/3 argument that these φk is a ε-net for F . □

Prop.(3.3.8.9) [Fixed point theorem]. If X is a complete metric space and f : X → X satisfies
d(f(x), f(y)) ≤ λd(x, y) for some 0 ≤ λ < 1, then f has a unique fixed point in X. If X is moreover
compact, then and f that d(f(x), f(y)) < d(x, y) will have a unique fixed point.

Proof: x+ f(x) + f2(x) + · · · is the fixed point. And uniqueness is easy. For compact case, notice
the image Im fn is a descending chain, it must stable to some T . If x, y ∈ Y attains the diameter of
Y , and let x = f(X), y = f(Y ), where X,Y ∈ T , then d(x, y) < d(X,Y ) ≤ d(x, y), contradiction. □

Prop.(3.3.8.10)[Dilation Closed]. If X,Y are metric spaces that X is complete metric space, then
if f : X → Y is continuous function that is a dilation, i.e. d(f(x1), f(x2)) ≥ d(x1, x2), then f(X) is
closed.

So a continuous dilation map on a complete metric space is a closed map.

Proof: If y ∈ f(X), then because Y is metric, there are xn that y = lim f(xn). Thus {f(xn)} is
Cauchy in Y , and {xn} is Cauchy too. So there is a x = lim xn, and clearly f(x) = y. □

Compact Metric Space

Lemma(3.3.8.11) [Lebesgue Number Lemma].For any open covering Ui of a compact metric
space X, there exists a δ > 0 that any subset X of diameter smaller than δ is contained in some Ui.

Proof: If X is in the covering Ui, then there is nothing to prove, otherwise, it suffices to assume
the covering is a finite covering, let Ci = X − Ui, and let f(x) = 1

n

∑
d(x,Ci). Notice f(x) > 0,

because x /∈ Ci for some Ci. Now it is also continuous, so it has a minimal value> δ > 0.
Now if B has diameter smaller than δ, then if x0 ∈ B, δ < f(x0) < d(x,Ci0), where d(x,Ci0) is

the maximal among d(x,Ck), and B ∈ B(x, δ), thus B ∈ Ui0 . □

Prop.(3.3.8.12)[Uniform Continuity Theorem]. If f : X → Y is a continuous map between two
metric spaces that X is compact, then f is uniformly continuous.

Proof: Take an open covering of Y with balls B(yi, ε/2) of diameter ε/2, and consider their inverse
image, then choose the lebesgue number δ for this covering(3.3.8.11), we see that for any d(x, y) < δ,
d(f(x), f(y)) < ε. □

Prop.(3.3.8.13). If f is an isometry of a compact metric space X, then it is a bijection thus an
homeomorphism.
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Proof: It is clearly injective. If it is not surjective, then choose a x /∈ Im(f), because Im(f) is
compact hence closed in X, d(x, Im(f)) = ε > 0. Now consider the minimal N that we can cover X
with open subsets of diameter smaller than ε, this N exists because X is compact. Now if Ui covers
X, then the one that contains x cannot intersect with Im(f). But f−1(Ui) is an open cover of X
with smaller numbers of open subsets, contradiction. □

9 Baire Space

Def.(3.3.9.1)[Baire Spaces].A subset of a topological space X is called of first category if it is
contained in some countable union of closed subsets of X having no interior point. It is called of
second category if it is not of first category.

A Baire space is a topological space that any nonempty open subsets of X is of second category.

Prop.(3.3.9.2)[Baire Category Theorem].Every complete metric space & locally compact Haus-
dorff space is a Baire space.

Proof: Choose consecutively (precompact)open subsets that doesn’t intersect En to find a limit
point. □

10 Uniform Space

Def.(3.3.10.1)[Uniform Spaces].

Def.(3.3.10.2)[Cauchy Filter in the Topological Group Case].A Cauchy filter is a topological
Abelian group is a filter F that for any nbhd U of 0, there exists E ∈ F that x− y ∈ U if x, y ∈ E.

Def.(3.3.10.3)[Complete Uniform Spaces].A topological Abelian group is called complete uni-
form space iff it is Hausdorff, and any Cauchy filter has a limit.

11 Manifolds

Def.(3.3.11.1)[Manifolds].A (topological) manifold of dimension n is a topological space that is
Hausdorff, second countable and locally Euclidean. By(3.3.7.7), the last condition is equivalent to
say it is paracompact.

The category of topological manifolds is denoted by Mani.

Thm.(3.3.11.2)[Annulus Theorem, Rado-Moise-Quinn-Kirby].For any map h : Rn → Rn that
maps Dn into its interior, there is a homeomorphism Dn\h(Dn) ∼= Sn−1 × I that identifies ∂Dn and
h(∂Dn) with Sn−1 × {0}, Sn−1 × {1} resp.

Proof:
□

Thm.(3.3.11.3)[Jordan Curve Theorem, Jordan1887]. .

Proof: □
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Triangularizations

Def.(3.3.11.4)[Triangularizations].A triangularizable space is a space that is homeomorphic to
the geometrization of a simplicial set(3.5.3.8). Any such homeomorphism is called a triangulariza-
tion of this space.

Thm.(3.3.11.5)[Triangularization of Surfaces].All compact connected surface is triangularizable.

Proof: ? □

Surfaces

Def.(3.3.11.6) [Topological Surfaces].A topological surface (with boundaries) is a topological
manifold of dimension 2 (with boundaries).

Def.(3.3.11.7) [Planer Glueing Diagram].A planer glueing diagram is a polygon with some
glueing of its edges with orientations clockwise such that no three edges are glued together. We can
label the edges by symbols and their inverses. different symbols are considered not glued together.
For example, aba−1b−1, abab.

A compact planer glueing diagram is a planer glueing diagram that every symbol appear
exactly twice in the the edges of the polygon.

Prop.(3.3.11.8).The space correspond to a planer glueing diagram is a compact topological surface
with boundaries.

The space correspond to a compact planer glueing diagram is a compact topological surface.

Proof: It is compact as a quotient of a compact space. It can verified that it is locally Euclidean
at each space. And it is clearly Hausdorff. □

Lemma(3.3.11.9).T2#RP2 ∼= RP2#RP2#RP2.

Proof: By??, it suffices to show that aabcb−1c−1 is homeomorphic to eeffgg. For this, use cut-
and-paste.? □

Thm.(3.3.11.10)[Classification of Surfaces].Any compact topological surface is homeomorphic to
exactly one of the following: S2,#nT2 or #nRP2, n ∈ Z+. The corresponding planer diagram is
aa−1, a1b1a

−1
1 b−1

1 . . . anbna
−1
n b−1

n , e1e1e2e2 . . . enen.

Proof: By triangularization theorem(3.3.11.5), it is easy to see that any compact surface is the
space corresponding to a compact planer diagram. Then it suffices to show any compact planer
diagram is isomorphic to either aa−1, a1b1a

−1
1 b−1

1 . . . anbna
−1
n b−1

n , e1e1e2e2 . . . enen.
Firstly we can reduce to the case where all vertices are glued together: Take a vertex P , then we

can spot all the vertices that are glued to P . If these are not all the vertices, we can find an edge
e = PQ, and let RPQ be a triangle, then we can cut this triangle out to paste along the edge pairing
e. Then we can reduce the number of vertices glued to P . Eventually, we can eliminate P .

Secondly we can collet all edges with the same orientation(i.e. . . . a . . . a . . .) to be adjacent: (i.e.
. . . aa . . .). To do this, suppose a = P1Q1 = P2Q2, we simply cut along the line P1P2 and glue a
together.

Now if all edges glued together are of the same orientations, then it is clearly isomorphic to
#nRP2. Otherwise there are edged a, a−1 glued together with the opposite orientation. Then
there must be another pair b, b−1 s.t. these four pairs are ordered by a, b, a−1, b−1. This is because
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otherwise there will be two vertices. Then by some cut-and-paste, we can move these edges together
as . . . aba−1b−1 . . .. By induction, we can make all edges with the opposite orientations together and
in pairs.

Thus our diagram is a connected sum of T2 and RP2. Then we can reduce the diagram to one
of the three kinds by(3.3.11.9).

Finally, it suffices to show these three kinds are different: Their Euler characteristics are

χ(S2) = 2, χ(#nT2) = 2− 2n, χ(#nRP2) = 2− n.

So the only case their Euler characters equal are χ(#nT2) = χ(#2nRP2). But in this case, they are
still not homeomorphic, as H2(#nT2) = Z and H2(#2nRP2) = 0. □

12 Common Spaces
Def.(3.3.12.1)[Torus].The (n-dimensional) torus Tn is defined to be Tn = (S1)n.

Def.(3.3.12.2)[RPn].The real projective space RPn is the R-points of RPR with the canonical
topology.

Def.(3.3.12.3) [Möbius Band].The Möbius band is the space defined to be the planer glueing
diagram abac.

Def.(3.3.12.4) [Klein Bottle].The Klein bottle K2 is the space defined by the planer glueing
diagram aba−1b.
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3.4 Model Categories

Main references are [Model Category and Simplicial Methods, Goerss], [Model Categories, Kan-
tor], [Homotopy Theories and Model Categories, Dwyer/Spalinski], [Lur09], [Hovey, Model Cate-
gories].

Def.(3.4.0.1). If C ∈ Cat and S is a class of morphisms in C, we denote l(S) the set of morphisms
that has left lifting property w.r.t. all morphisms in C, and r(S) the set of morphisms that have
right lifting property w.r.t. all morphisms in C. Then l(S) is stable under pushout and r(S) is stable
under pull backs.

Def.(3.4.0.2)[Model Structure].Amodel structure on a category C is three classes of morphisms:
fibrations, cofibrations and weak equivalences that satisfy the following axioms: (Denote a A
trivial (co)fibration is a (co)fibration that is also a weak equivalence.)
M1 C has finite limits and colimits.
M2 (two out of three)If two of f, g, fg is weak equivalence, then so is the third.
M3 (retracts) Fibrations, cofibrations and weak equivalences are closed under retract.
M4 (lifting property)We have a lifting property with a cofibration i and fibration p when either of

them is a weak equivalence.
M5 (factorization)Any map f can be factored as pi where i is trivial cofibration and p is a fibration,

and also as pi where i is a cofibration and p is a trivial fibration.

Remark(3.4.0.3).Notice the axioms are symmetric in fibrations and cofibrations, thus the opposite
category Cop has a natural model structure. So whenever we write a theorem, we should always
remember its dual counterpart.

Lemma(3.4.0.4)[Closedness].A model category satisfies the retraction axiom iff:
• fibration= r(trivial cofibrations),
• cofibration= l(trivial fibrations),
• weak equivalence= uv, where v ∈ l(fibrations) and u ∈ r(cofibrations).

Proof: If these are satisfied, retraction axiom is easy: A retract satisfies the same lifting properties.
Hence retraction of a (co)fibration is a (co)fibration. For retracts weak equivalences, Cf.[Quillen,
Homotopical Algebra, Chap5.2].

Conversely, using(3.1.7.12), we first factorize a p = f ◦ i, where i is a trivial cofibration, then
because p ∈ r(i), pis a retraction of f hence a fibration. And similarly for cofibrations and weak
equivalences. □

Cor.(3.4.0.5). In a model category,
trivial fibrations= r(cofibrations),
trivial cofibrations= l(fibrations).

Proof: The proof is the same as that of(3.4.0.4). □

Cor.(3.4.0.6). In a model category, the class of (trivial)fibrations is stable under base change and the
class of (trivial)cofibrations is stable under cobase change.
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Prop.(3.4.0.7).Let p be a fibration in Ccf , then p ∈ r(Cof) iff γ(p) is an isomorphism, Cf.[Quillen 5.2].
So if conditions of(3.4.0.4) are satisfied (i.e. C is a closed model category), γ(f) is an isomorphism
iff f is a weak equivalence by the characterization of weak-equivalence of(3.4.0.4).

Proof: □

Def.(3.4.0.8) [Left Proper Model Categories].A model category is called left proper if weak
equivalences are stable under cobase change by cofibrations. Dually it is called right proper if weak
equivalences are stable under base change by fibrations.

Prop.(3.4.0.9)[Cofibration is Left Proper].For a pushout diagram

A B

A′ B′

j

i

j′

i′

in a model category C, if i is cofibration and A,A′ are cofibrant, and j is weak equivalence, then j′

is also weak equivalence.

Proof: It suffices to show j′ is an isomorphism in Ho(C)(3.4.1.15). For this, by Yoneda lemma, it
suffices to show HomHo(C)(B′, Z) ∼= HomHo(C)(B,Z) for any fibrant object Z.

For surjectivity, by(3.4.1.18), it suffices to show π(B′, Z) ∼= π(B,Z). Given a map f : B → Z,
because j is weak equivalence, there is a map g : A′ → Z that g ◦ j ∼ f ◦ i. Then by(3.4.1.10), there
is a f ′ ∼ f that f ′ ◦ i = g ◦ j, which determines a morphism B′ → Z.

For injectivity, If P is a path object thatH : B → P induces a homotopy between maps s◦j′, s′◦j′,
then we need to extend this homotopy to H̃ : B′ → P , and the method is the argument is the same
as above. □

Cor.(3.4.0.10). If M is a model category s.t. each object is cofibrant, then M is left proper.

1 Homotopies

Def.(3.4.1.1)[Cylinder Objects].A cylinder object for an object X is an object X ∧I which gives
a factorization of the natural map X⨿

X → X as X⨿
X

i−→ X ∧ I j−→ X, where j ∈W . It is called a
good cylinder object if i is a cofibration, and very good cylinder object if j is trivial fibration.
By factorization axiom, every object has a very good cylinder object.

There are two natural morphisms X 7→ X ∧ I, denoted by ∂0 and ∂1.
Dually we can define path object Y I for Y , and every object has a very good path object.

Prop.(3.4.1.2). If A is cofibrant and A ∧ I is a cylinder object for A, then ∂i : A→ A× I are trivial
cofibrations.

Proof: Because it’s pushout of ∅→ A and σ ◦ ∂i = idA. □

Cor.(3.4.1.3). if f ∼l g, then f is a weak equivalence iff g is a weak equivalence.

Proof: This is because f = H ◦ ∂0, g = H ◦ ∂1, and we can use(3.4.1.2). □
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Def.(3.4.1.4) [Homotopies].Two morphisms f, g : X → Y are called (good/very good) left
homotopic, denoted by f ∼l g iff there is a (good/very good) cylinder object X⨿

X → X ∧ I
with X ∧ I → Y that induce (f, g) : X

⨿
X → Y . Dually for right homotopies. And we denote by

πl(A,B)/πr(A,B) the equivalence classes of Hom(A,B) under the equivalence relation generated by
left/right homotopies.

If f, g ∈ Hom(X,Y ) and φ ∈ Hom(Y, Z) that φ ◦ f = φ ◦ g, then f, g is called left homotopic
over Z if there is a homotopy H of f ∼l g that φH is the trivial homotopy. Dually for right
homotopic under X.

Lemma(3.4.1.5)[Very Good Homotopies].For f, g ∈ Hom(X,Y ), if f ∼l g, then f, g are good left
homotopic. And if Y if fibrant, then f, g are moreover very good left homotopic.

Proof: The first assertion is each, just choose a factorization of the cylinder object X⨿
X

i−→
X ∧ I ′ j−→ X ∧ I that i is cofibrant. If Y is fibrant, then we further factorize X ∧ I ′ i−→ X ∧ I ′′ j−→ X,
where i is cofibrant and j is trivial fibration, then by two out of three, i is also trivial cofibration,
and it suffices to extend the homotopy X ∧ I ′ → Y to X ∧ I ′′ → Y , and this is because Y is fibrant.
□

Prop.(3.4.1.6)[Homotopy is Equivalence Relation]. If A is cofibrant, then the left homotopy is
an equivalence relation on Hom(A,B).

Proof: Reflexivity and symmetry is trivial, the only problem is transitivity, so we construct a
glueing A ∧ I ′′ as the pushout of ∂1 : A → A ∧ I and ∂′

0 : A → A ∧ I ′. A ∧ I ′′ → A is a weak
equivalence by the universal property and(3.4.0.4), so this is a cylinder object. The rest is easy. □

Prop.(3.4.1.7)[Properties of Left Homotopies]. If A is cofibrant and f, g ∈ Hom(A,B), then
1. If f, g are right homotopic, then s→ BI can be chosen to be trivial Cof.
2. If f, g are right homotopic, then so does uf ∼ ug or fv ∼ gv. Thus if A is cofibrant, there is a

composition map: πr(A,B)× πr(B,C)→ πr(A,C).
3. For any trivial fibration X → Y , πl(A,X)→ πl(A, Y ) is a bijection.
And dual arguments hold for fibrant objects.

Proof:
1. factorize B → BI to B → BI′ → BI where B → BI′ ∈ TCof and BI′ → BI ∈ W , so BI′ is

also a cylinder object and the homotopy A→ BI can be lifted to A→ BI′ .

2. there is a diagram
B CI

BI C × C

su

s (d0,d1)

(d0u,d1u)

which has a lifting φ, then composed with A→ BI

will give the desired homotopy.
3. the map is well-defined, it is surjective because of lifting property, and it is injective because
A
⨿
A→ A× I ∈ Cof so the homotopy can be lifted to X.

Cf.[Homotopy Theories and Model Categories, P20, 21].
□

Lemma(3.4.1.8) [Left and Right Homotopies]. If X is cofibrant, then for f, g ∈ Hom(X,Y ), if
f ∼l g, then f ∼r g. And the dual conclusion holds for Y fibrant.

In particular, for morphisms between bifibrant objects, left and right homotopic are equivalent.
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Proof: Consider a cylinder object j : X ∧ I → X for X and a path object for Y . Soppse f, g are
left homotopic via a map H : X ∧ I → Y , then we consider the diagram

X Y Y I

X ∧ I Y × Y

f

∂1
(f◦j)×H

.

Then it can be solved by some H̃ because ∂1 is trivial cofibration(3.4.1.2), and then it can be checked
H ◦ ∂1 gives the desired right homotopy. □

Prop.(3.4.1.9)[Whitehead’s Theorem].Let X,Y ∈ C be bifibrant, then a map f : X → Y is an
equivalence iff there is a g : X → Y that fg and gf are homotopic to id.

Proof: Cf.[Homotopy Theories and Model Categories, P23]. □

Prop.(3.4.1.10) [Lifting Criterion].Let C be a model category and i : A → B be a cofibration
between cofibrant objects, and X is fibrant, g : B → X, f : A→ X satisfies g ◦ i ∼ f , then there is a
g′ ∼ g that g′ ◦ i = f .

Proof: Choose a good cylinder object C(A) for A and factorize

C(A)
⨿

A
⨿
A

(B
⨿

B)→ C(B)→ B

where the first map is cofibration and the second is trivial fibration, then C(B) is a good cylinder
object for B.

The homotopy is given by a map C(A)
⨿
AB → X, and we check (A)

⨿
AB → C(B) is a

trivial cofibration(check C(A)
⨿
AB → B is weak equivalence using(3.4.0.6) and check C(A)

⨿
AB →

C(A)
⨿
A
⨿
A(B

⨿
B) is a cofibration as a cobase change of A→ B and C(A)

⨿
A
⨿
A(B

⨿
B)→ C(B)

is a cofibration by definition), so the homotopy extends to a homotopy C(B) → X, which is a
homotopy between g and some g′ and g′ ◦ i = f . □

Def.(3.4.1.11).Let Cc, Cf , Ccf denote the full subcategory of cofibrant, fibrant and cofibrant-fibrant
objects. And we define πCc as the category module right homotopy equivalence between morphisms,
dually for πCf .

Notice(3.4.1.7) assures πCc, πCf are truly categories.
Notice for Ccf , left homotopy is equivalent to right homotopy by(3.4.1.8), so πCcf is full subcat-

egory for both πCc and πCf .

Lemma(3.4.1.12) [Fibrant and Cofibrant Replacement].For an object X in a model category
C, the axioms show there is a cofibrant object QX and a trivial fibration QX → X. Also there is
a fibrant object RX and a trivial cofibration X → RX. We fix choices of Q,R that is identity on
bifibrant objects, and consider it a mapping from C to C.

Then given any morphism f : X → Y , there is a morphism f̃ : QX → QY lifting f , and f̃
depends up to left and right homotopy only on f . And if Y is fibrant, then it depends up to left and
right homotopy only on the left homotopy classes of f .

Dually assertions also holds, so we have functors: Q : C→ πCc and R : C→ πCf .
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Proof: The existence of the lifting follows from the fact QX is fibrant and QY → Y is trivial
fibration. The uniqueness of left homotopy follows from(3.4.1.7), and also right homotopy, because
QX is cofibrant and use(3.4.1.8). For the last assertion, notice when Y is fibrant,(3.4.1.7) shows
the left homotopy class of QX → Y is determined, and use(3.4.1.7) again, the class of f̃ is also
determined. □

Cor.(3.4.1.13).The restrictions define functors Q′ : πCc → πCcf and R′ : πCf → πCcf .
Def.(3.4.1.14)[Homotopy Category].For any model category C, we construct a homotopy cat-
egory Ho(C) whose objects are the same as C, but HomHo(C)(X,Y ) = HomπCcf (RQX,RQY ) =
π(RQX,RQY ).

There is a functor γ : C→ Ho(C) by sending X to RQX, by(3.4.1.12).
Prop.(3.4.1.15) [Weak Equivalence and Isomorphisms].A morphism in C maps to an isomor-
phism in Ho(C) iff it is a weak equivalence. The morphisms in Ho(C) are generated by the image of
morphisms in C and the inverse of images of weak equivalences in C.
Proof: If f ∈ C is a weak equivalence, then f ′ = RQ(f) is also a weak equivalence, by two out of
three lemma. Then Whitehead theorem(3.4.1.9) shows f ′ is an isomorphism in πCcf hence in Ho(C).
Conversely, if f ′ has an inverse in Ho(C), then f ′ is a weak equivalence by Whitehead(3.4.1.9) again,
and so is f .

For the last assertion, just notice Hom(RQX,RQY ) → HomHo(C)(X,Y ) is a surjection, and
X → RQX,Y → RQY are weak equivalence hence are isomorphisms in Ho(C). □

Cor.(3.4.1.16). If F,G : Ho(C)→ D are two functors and t : F ◦γ → G◦γ is a natural transformation,
then t also gives a natural transformation F → G.
Proof: This is because the objects of Ho(C) are the same as that of C, and the morphisms are
generated by γ(f) and γ(g)−1 where g is a weak equivalence. Then the desired transformation
commutative diagrams commute. □

Lemma(3.4.1.17).Let C be a model category and F : C→ D be a functor taking weak equivalences
to isomorphisms, then if f ∼l g or f ∼r g, F (f) = F (g).
Proof: We only prove for left homotopy and the right homotopy is dual: given the cylinder object
A ∧ I, just need to prove that F (∂0) = F (∂1). □

Prop.(3.4.1.18). Suppose A is cofibrant and X is fibrant, then the map γ : Hom(A,X) →
HomHo(C)(A,X) is surjective, and induces a bijection π(A,X) ∼= HomHo(C)(A,X).
Proof: (3.4.1.17) shows γ identifies homotopic maps. Consider the following commutative diagram:

π(RA,QX) π(A,X)

HomHo(C)(RA,QX) HomHo(C)(A,X)

γ γ .

The second vertical arrow is isomorphism by(3.4.1.15), the first arrow is isomorphism by(3.4.1.7).
The left vertical arrow is identity by construction, so the right vertical arrow is also isomorphism. □

Cor.(3.4.1.19).There is a natural isomorphism πCcf ∼= Ho(C).
Prop.(3.4.1.20)[Homotopy Category as Localizing Category].Let C be a model category and
W the class of weak equivalences, then the functor γ : C→ Ho(C) is the localizing category of C w.r.t
W .
Proof: Cf.[Homotopy Theories and Model Categories, P29].? □
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2 Quillen Adjunctions and Derived Functors
Def.(3.4.2.1)[Quillen Adjunctions].An adjunction (F,G) : C −−−⇀↽−−− D between model categories is
called a Quillen adjunction if F preserves cofibrations and G preserves fibrations. By adjointness
and(3.4.0.4), in fact F preserves also trivial cofibrations and G preserves trivial fibrations.

Moreover, it is called a Quillen equivalence if for any cofibrant object C ∈ C and fibrant object
D ∈ D, a map C → G(D) is a weak equivalence iff the adjoint map F (C)→ D is a weak equivalence.

Def.(3.4.2.2)[Derived Functors].Let C be a model category and F : C→ D a functor, then a left
derived functor of F is a left Kan extension of F along γ : C→ Ho(C).

Dually we can define right derived functors.

Prop.(3.4.2.3)[Existence of Derived Functors]. In the situation of(3.4.2.2), if F maps weak equiv-
alences between cofibrant objects to isomorphisms in D, then the left derived functor (LF, t) exists,
and for each cofibrant object X, the morphism tX : LF (X)→ F (X) is an isomorphism.

Dually for the right derived functor case.

Proof: Cf.[Homotopy Theories and Model Categories, P42]. □

Lemma(3.4.2.4).Let C be a model category and F : Cc → D be a functor that maps trivial cofibra-
tions in Cc to isomorphisms, then F maps right-homotopic morphisms to the same morphism.

Proof: Let H : A → BI be a right homotopy between f and g, where BI is a very good path
object(3.4.1.5), then B → BI is a trivial cofibration, and thus mapped by F to an isomorphism.
Then we can show F (∂0) = F (∂1), and then F (f) = F (g). □

Def.(3.4.2.5)[Total Left Derived Functors].Let F : C → D be a morphism of model categories,
then a total derived functor

LF : Ho(C)→ Ho(D)

is defined to be a left derived functor of the morphism C→ D→ Ho(D).

Lemma(3.4.2.6) [Brown].Let F be a morphism of model categories that maps trivial cofibration
between cofibrant objects to weak equivalences, then it preserves weak equivalences between cofibrant
objects.

Proof: If f : A → B is a weak equivalence between cofibrant objects, then we can factor the
morphism (f, id) : A

⨿
B → B as A⨿B

q−→ C
p−→ B that q is cofibration and p is trivial fibration. It

can be shown that q ◦ ∂i : B → C are trivial fibrations and C is cofibrant, thus F (q ◦ ∂i) are weak
equivalences, and hence also F (p) is weak equivalence and so does F (f). □

Prop.(3.4.2.7)[Total Derived Functors and Quillen Equivalence]. If (F,G) is a pair of Quillen
functors between two model categories C,D, then total derived functors

LF : Ho(C) −−−⇀↽−−− Ho(D) : RG

exists and form an adjunction pair. And if (F,G) is a Quillen equivalence, then (LF,RG) defines an
equivalence of homotopy categories.

Proof: By(3.4.2.3) and its dual and(3.4.2.6), the total derived functors LF,RG exist.
Next for A cofibrant in C and X fibrant in D, we can show the adjunction map Hom(A,G(X)) ∼=

Hom(F (A), X) preserves homotopy equivalence relations(3.4.1.8) and induces an isomorphism
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π(A,G(X)) ∼= π(F (A), X): If H : A ∧ I → X is a good homotopy between f, g, then A ∧ I is
cofibrant, and because F preserves colimits and because of(3.4.2.6), F (A ∧ I) is cylinder object for
F (A), thus f ♭ ∼ g♭. A dual argument shows the converse.

Now for any A ∈ C and X ∈ D, there is a bijection

HomHo(C)(A,RG(X)) ∼= π(QA,G(SX)) ∼= π(F (QA), SX) ∼= HomHo(D)(LFA,X)

where the first isomorphism is due to the fact QA→ RQA is trivial cofibration and G(SX) is fibrant,
thus we can use(3.4.1.7), dually for the last isomorphism.

Finally if (F,G) is a Quillen equivalence, then consider the unit map:

A→ RG(LF (A)).

If A is cofibrant, then this is A → G(SF (A)) which is a weak equivalence because F (A) → SF (A)
does, so it is an isomorphism in Ho(C). Now any object in Ho(C) is isomorphic to a cofibrant object,
we know the unit map is an isomorphism. Dually the counit map is an isomorphism, thus LF,GF
are a pair of equivalences. □

3 Combinatorial Model Structure
Cf.[HTT, A.2.6]

Def.(3.4.3.1) [Cofibrantly-Generated Model Categories].A cofibrantly-generated model
category is a model category C that

• there is a small set I of generating cofibrations that generates the class of cofibrations as the
minimal weakly saturated class containing I.

• there is a small set J of generating trivial cofibrations that generates the class of trivial cofi-
brations as the minimal weakly saturated class containing J .

Def.(3.4.3.2)[Combinatorial Model Categories, Smith].A combinatorial model category is
a cofibrantly generated(3.4.3.1) and locally presentable?? model category.

Prop.(3.4.3.3)[Smith].Let M be a combinatorial model category and M[1] the category of arrows,
then the full subcategory generated by fibrations, weak equivalences, or trivial fibrations are all full
accessible(3.1.2.4) subcategories of M[1].

Proof: Cf.[Lur09]P818. □

Prop.(3.4.3.4)[Constructing Combinatorial Model Categories].Let M be a locally presentable
category and W,C be classes of morphisms in M s.t.

• C is a weakly saturated class generated by a small subset C0.
• C ∩W is a weakly saturated class.
• W ⊂ A[1] is a full accessible subcategory.
• W satisfies the 2-out-of-3 property.
• r(C) ⊂W .

Then M admits a combinatorial model category with
• Cofibrations: C.
• Weak equivalences: W .
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• Fibrations: r(C ∩W ).

Proof: Cf.[Lur09]P821. □

Lemma(3.4.3.5). Situation as in(3.4.3.4), the class C ∩W is a weakly saturated class generated by a
small subset S ⊂ C ∩W .

Proof: Cf.[Lur09]P819. □

Prop.(3.4.3.6) [Constructing Left Proper Model Categories].Let M be a locally presentable
category with a class W of morphisms and a small set of morphisms C0 s.t.

• W is a perfect class??,
• C0 is stable under cobase change.
• W is stable under cobase change by C0.
• r(C0) ⊂W .

Then there is a left proper combinatorial model category on M with
• Cofibrations: The weakly saturated closure C of C0.
• Weak Equivalences: W .
• Fibrations: r(C ∩W ).

Moreover, any left proper combinatorial model category arises in this way.

Proof: Cf.[Lur09]P823. □

4 Generating new Model Categories
Prop.(3.4.4.1)[Overcategories and Undercategories]. If C is a model category and A ∈ C, then
the undercategory CA/ and the overcategory C/A have natural model structures.

Proof: □

Prop.(3.4.4.2)[Transfer Model Structures via Left Adjoint].Let

F : C −−−⇀↽−−− D : G

be an adjoint pair of categories and
• C,D are complete and cocomplete,
• C is a cofibrantly generated model category,
• C,D are presentable categories and G is an accessible functor.
• If we define a morphism f in B a fibration/weak equivalent iff G(f) is a fibration/weak equiva-

lence, and a cofibration iff it has left lifting property w.r.t. trivial fibrations, then B has a path
object factorization and a fibrant replacement operator.

Then this defines a cofibrantly generated model category on B, and makes (F,G) a Quillen adjunction.

Proof: It suffices to show that the factorization property holds: In fact, it suffices to show if I, J
are generating classes of cofibrations and trivial cofibrations, then F (I), F (J) are generating classes
of cofibrations and trivial cofibrations. But this suffices to show F (J) is are weak equivalence. For
this, show that any morphism in B that has left lifting properties w.r.t. all fibrations is a weak
equivalence using hypothesis item4.? □
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Bousfield Localizations

Cf.[P.S. Hirschhorn. Model categories and their localizations].

Def.(3.4.4.3) [Bousfield Localizations].Let M,M′ be model categories with the same underlying
category, then M′ is called a Bousfield localization of M if

• Cof(M) = Cof(M′).

• Weak(M) ⊂Weak(M′).

5 Enriched and Monoidal Model Categories

Def.(3.4.5.1)[Left Quillen Bifunctor].Let A,B,C be model categories, then a functor A× B → C

is called a left Quillen bifunctor if
• For any cofibrations i : A→ A′ ∈ A, B → B′ ∈ B, the induced map

i ∧ j : F (A′, B)
⨿

F (A,B)
F (A,B′)→ F (A′, B′)

is a cofibration in C.

• F preserves small colimits separably in each variables.

Def.(3.4.5.2)[Monoidal Model Category].A monoidal model category is a monoidal category
S equipped with a model structure that:

• The tensor product ⊗ : S × S → S is a left Quillen bifunctor.

• The unit objects 1 ∈ S is cofibrant.

• The monoidal structure is closed.

Def.(3.4.5.3) [Enriched Model Category].Given a monoidal model category S, an S-enriched
model category is an S-enriched category A with a model structure satisfying:

• A is tensored and cotensored over S?.

• the tensor product A× S→ S is a left Quillen bifunctor(3.4.5.1).

Prop.(3.4.5.4).The second condition in(3.4.5.3) is equivalent to the following: For a cofibration
i : U → V and a fibration p : X → Y , the induced map

Map(V,X) (i∗,p∗)−−−−→ Map(U,X)×Map(U,Y ) Map(V, Y )

is a fibration in S, and trivial fibration if any of i, p is weak equivalence.

Proof: Use the adjunction relations to write it out?. □

Def.(3.4.5.5) [Fibrant Enriched Categories].Let A be a S-enriched category, the we denote A◦

the subcategory of bifibrant objects of A, which is also a S-enriched category.
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6 Diagram Categories

[Lur09]A.2.8. A.3.3., A.3.5.

Prop.(3.4.6.1)[(Injective)Projective Model Categories].Let S be an excellent model category
and A a combinatorial S-enriched model category, C a small S-enriched category, then there are two
model structures on AC:

• The projective model category Func(C, A)Proj with

– Fibrations: projective fibrations F s.t. F (C) → G(C) is a fibration in A for each
C ∈ C.

– Weak equivalences: F s.t. F (C)→ G(C) is a weak equivalence in A for each C ∈ C.
– Cofibrations: projective cofibrations determined by the above two.

• The injective model category Func(C, A)inj with

– Cofibrations: injective cofibrations F s.t. F (C)→ G(C) is a cofibration in A for each
C ∈ C.

– Weak equivalences: F s.t. F (C)→ G(C) is a weak equivalence in A for each C ∈ C.
– Fibrations: injective fibrations determined by the above two.

Proof: Cf.[Lur09]P868, P828. □

Cor.(3.4.6.2).Both model categories are left/right proper iff A is.

Cor.(3.4.6.3).Projective cofibrations are injective cofibrations, and injective fibrations are projective
fibrations.

Prop.(3.4.6.4).Let C be a model category and let

A A1

A0 A0
⨿
AA1

i

j

be a pushout diagram, then it is a homotopy pushout diagram if either of the following is satisfied:
• j is a cofibration and A,A0 are cofibrant.

• j is a cofibration and C is left proper.

Proof:
□

Reedy Model Categories

Homotopy Colimits and Limits

Should be redone in the general language of diagram categories.?
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Def.(3.4.6.5) [Homotopy Colimits and Limits]. In a model category M, for any diagram A0 ←
A→ A1, there exists a commutative diagram

A′
0 A′ A′

1

A0 A A1

i j

.

such that A′ is cofibrant, and i, j are both cofibrant, and the vertical arrows are weak equivalences.
Then it can be shown that A′

0
⨿
A′ A′

1 only depends on A0 ← A → A1 up to weak equivalence.
Then a commutative diagram

A A1

A0 C

is called a homotopy colimit if for any such cofibrant replacement,

A′
0
⨿
A′

A′
1 → A0

⨿
A

A1 → C

is a weak equivalence.
Dually we can define homotopy limits.

Proof: ? □

Cor.(3.4.6.6).Weakly equivalent diagrams induce weakly equivalent homotopy colimits.

Prop.(3.4.6.7). In a model category M, a diagram

A A1

A0 A0
⨿
AA1

j

is a homotopy limit if j is cofibrant, and either
• A,A0 are cofibrant, or
• M is left proper.

Proof: ? □

7 Model Structures on CatS
Def.(3.4.7.1)[Homotopy Category].Let S be a monoidal model category, then there is a natural
monoidal structure on the homotopy category hS(3.4.1.14), and the functor S 7→ hS is monoidal, thus
we can transfer from a category C enriched over S to an hS-enriched category, called the homotopy
category of C.

Def.(3.4.7.2)[Weak Equivalences of Enriched Categories].Let S be a monoidal model category
and CatS be the category of categories enriched over S, then a morphism F : C→ D ∈ CatS is called
a weak equivalence if it induced an isomorphism of their homotopy categories, or equivalently,
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• F is essentially surjective,
• For any X,Y ∈ C, MapC(X,Y )→ MapD(FX,FY ) is a weak equivalence in S.

Def.(3.4.7.3) [Generating Cofibrations in CatS].Let S be a monoidal model category, A is an
object of S, then we can denote [1]A the S-enriched category consists of objects {X,Y } and that
Hom(X,X) = Hom(Y, Y ) = 1S,Hom(X,Y ) = A,Hom(Y,X) = ∅. And if 1S is the initial object of
S, then we denote [1]1S by [1]S. Also we denote [0]S the S-enriched category consisting of one element
and the morphism space is 1S.

Let [1]∼S be the category consisting of two objects {X,Y } that Hom(Z1, Z2) = 1S for any Z1, Z2 ∈
S.

Let C0 be the class of morphisms in CatS consisting of
• ∅→ [0]S.
• The induced map [1]S → [1]S′ where S → S′ ranges over a generating class of cofibrations of S.

Prop.(3.4.7.4)[Model Category on CatS].Let S be a combinatorial monoidal model category that
every object of S is cofibrant and the collection of weak equivalences of S is stable under filtered
colimits, then there exists a left proper combinatorial model structure on CatS that

• The class of cofibrations in CatS is the smallest weakly saturated class generated by C0 defined
in(3.4.7.3),

• The weak equivalences are as defined in(3.4.7.2).

Proof: Cf.[HTT, P856]. □

Cor.(3.4.7.5).Let
f : S −−−⇀↽−−− S′ : g

be a Quillen adjunction between monoidal model categories satisfying conditions in(3.4.7.4), then
they induces a Quillen adjunction

F : CatS −−−⇀↽−−− CatS′ : G

and this is a Quillen equivalence if (f, g) is.

Proof:
□

Prop.(3.4.7.6).Let C,D be S-enriched model categories and

F : C
Quillen−−−−⇀↽−−−−D : G

is a Quillen adjunction of underlying model categories. Assume every objects of C is cofibrant and
the maps βX,S : S ⊗ F (X) → F (S ⊗X) is a weak equivalence for X ∈ C, S ∈ S cofibrant, then the
following are equivalent:

• (F,G) is a Quillen equivalence.
• G determines a weak equivalence(3.4.7.2) of the underlying S-enriched categories Dcf → Ccf .

Proof: Cf.[HTT, P853]. □
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Def.(3.4.7.7) [Local Fibrations].Let C be an S-enriched category where S is a monoidal model
category, then a morphism f ∈ C is called an equivalence if it maps to an isomorphism in hC.

C is called locally fibrant if for any X,Y ∈ C, the mapping space Map(X,Y ) is fibrant in S.
An S-enriched functor F : C → C′ is called a local fibration if the following conditions are

satisfied:
• for any X,Y ∈ C, the induced map Map(X,Y )→ Map(FX,FY ) is a fibration in S.
• the induced map hC→ hC′ is a quasi-fibration of categories.

Def.(3.4.7.8)[Invertibility Hypothesis].We say a monoidal model category S satisfies the invert-
ibility hypothesis if: For any cofibrant morphism [1]S → C(3.4.7.3) of S-enriched categories, and
maps to a morphism f which is invertible in the homotopy category hC, take the pushout:

[1] S C

[1]∼S C⟨f−1⟩

i

j .

then j is a weak equivalence of S-enriched categories(3.4.7.2).

Def.(3.4.7.9)[Excellent Model Category].An excellent model category is a monoidal model
category S that The monoidal structure is symmetric.

• S is combinatorial,
• Every monomorphism in S is a cofibration, and the collection of cofibrations is stable under

products,
• The class of weak equivalences in S is stable under filtered colimits,
• S satisfies the invertibility condition(3.4.7.8)

Lemma(3.4.7.10).Let T : S → S′ be a monoidal functor between monoidal model categories sat-
isfies axioms besides invertibility hypothesis, that is also a left Quillen functor, then if S′ satisfies
invertibility hypothesis, so does S.

Proof: Cf.[HTT, P862].? □

Prop.(3.4.7.11)[Fibration and Local Fibration]. If S is an excellent model category, then
• An S-enriched category C is a fibrant object in CatS iff it is locally fibrant(3.4.7.7).
• Let F : C→ D be an S-enriched functor and D is fibrant in CatS, then F is fibrant in CatS iff

it is a local fibration.

Proof: Cf.[HTT, P863]. □

Path Spaces

Homotopy Colimits of Enriched Categories

8 Examples
Prop.(3.4.8.1)[Kan-Quillen Model Structure].By(3.5.3.47), s Set is a combinatorial left and right
proper Kan-Quillen model category with

• Weak equivalences: weak equivalences,



248 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

• Cofibrations: inclusions,
• Fibrations: Kan fibrations.

Prop.(3.4.8.2)[Dwyer, Kan]. s Set has an excellent model category with the Kan model structure
and the Cartesian monoidal structures.

Proof: □

Prop.(3.4.8.3)[q-Model Structure].For a unital ring R, then the category ChNR has the structure
of a model category with a morphism f : M• → N• being

• a weak equivalence if Hn(f) is isomorphism for any n.
• a fibration if Mn → Nn is surjective for any n ≥ 1.
• a cofibration if Mn → Nn is injective with projective cokernel for any n ≥ 0.

Proof: [Model category and simplicial methods, P5] or [Homotopy Theories and Model Categories].
□

Prop.(3.4.8.4)[Serre-Quillen].By(3.12.6.28), the category CG can be given a Serre-Quillen model
structure with

• Weak equivalences: weak homotopy equivalence,
• Fibrations: Serre fibrations,
• Cofibrations: Retracts of morphisms X → Y where Y is obtained from X by attaching cells.

And this restricts to a model category on the category CGH of compactly generated weak Hausdorff
spaces.

Prop.(3.4.8.5) [Hurewicz-Str∅m].The category Top can be given a Hurewicz-Str∅m model
structure with

• Weak equivalences: homotopy equivalences.
• Cofibrations: closed Hurewicz cofibrations.
• Fibrations: Hurewitz fibrations.

Proof: See(3.12.6.31). □

Prop.(3.4.8.6)[Derived Categories Model Structure]. If A is an Abelian category with enough
injectives, then K+(A) is a model category with

• Weak equivalence: quasi-isomorphisms,
• Fibration: epimorphisms with ker in K+(I),
• Cofibration: monomorphisms.

Proof: □

Prop.(3.4.8.7)[Joyal Model Structures].By(3.5.4.19), there is a Joyal Model category structure
on s Set with

• Cofibrations: monomorphisms.
• Weak equivalences: categorical equivalences defined in(3.5.4.12).
• Fibrations: categorical fibrations or Joyal fibrations which has the right lifting property

w.r.t. trivial cofibrations.
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Prop.(3.4.8.8)[Reedy Model Structures].Cf.[HTT, A.2.9].

Prop.(3.4.8.9)[Bergner-Model Structure].There is a Bergner model structure on sCat?.(3.5.4.4)
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3.5 Simplicial Homotopy Theory
Main references are [Jardine Simplicial Homotopy Theory], [Lur09].

Notation(3.5.0.1).
• Use notations from Model Categories.

1 Simplicial Objects
Def.(3.5.1.1)[Simplex Category].The simplex category ∆ consists of simplicial objects [n] for
each n ≥ 0 and there maps are order-preserving maps.

∆ has a subcategory ∆+ consisting of the same objects but the morphisms are all surjective
order-preserving maps.

For C ∈ Top, a simplicial object in C is a functor ∆op → C. A cosimplicial object in C is a
simplicial object in Cop. The category of simplicial objects in C is denoted by sC.

Given a simplicial or cosimplicial object in A, its underlying degeneracy map is defined to
be?

Prop.(3.5.1.2). If C is complete or cocomplete, then so is sC.

Def.(3.5.1.3).∆n is the simplicial set ∆n([m]) = Hom([m], [n]).

Def.(3.5.1.4)[Augmentation]. If X is a simplicial object in a category, then an augmentation of
X is a morphism d : A → X that dd0 = dd1. In case C is ModR, this is equivalent to a morphism
π0(X)→ A(4.8.2.2).

Def.(3.5.1.5)[s-Free Simplicial Objects].X ∈ sC is called s-free if the underlying category ∆op
+ →

C is ∆op-free(3.1.3.16).
Equivalently, an s-free object is a simplicial object X that there are objects Zn ∈ C that

Xn =
⨿
φ:[n]↠[k] φ

∗Zk. Moreover, a simplicial morphism of simplicial objects are called s-free if
the underlying diagram X+ → Y+ is of the form X+ → X+

⨿
Y0 where Y0 is s-free.

Prop.(3.5.1.6)[sC is a Simplicial Category].Let sC be the category of simplicial C-objects, then
it can be made into a simplicial category which is also tensored and cotensored(3.1.7.7) over Set∆.

Proof: We define first a action of Set∆ on sC:

⊗ : Set∆×sC→ sC : (K,X) 7→ (K ⊗X)n =
⨿
Kn

Xn,

with the simplicial maps determined by that of K and X.
Also there is a action of s Setop on sC:

(−)− : Setop∆ ×sC→ sC : (K ⊗X)n =
∏
Kn

Xn

with the simplicial maps determined by that of K and X.
Then there is an adjointness

HomsC(K ⊗X,Y ) ∼= HomsC(X,Y K)

for any simplicial set K.



3.5. SIMPLICIAL HOMOTOPY THEORY 251

Next we define MapsC(X,Y ) ⊂ Set∆ as (MapsC(X,Y ))n = HomsC(X ⊗ ∆n, Y ), then there are
functorial isomorphisms

MapsC(K ⊗X,Y ) ∼= MapsC(X,Y K) ∼= MapSet∆
(K,MapsC(X,Y ))

(easy to check). So we are done. □

Remark(3.5.1.7)[Realization Functor].For C ∈ Cat that has countable colimits, there is a simpli-
cial realization functor

| − | : sC→ C : X 7→ lim−→
∆op

+

Xn.

2 Topological Categories
Def.(3.5.2.1)[Topological Categories].A topological category is a category that is enriched over
the category CG of compactly generated and Hausdorff spaces. The category of topological categories
is denoted by CatCG.

Two topological categories is called strongly equivalent if they are equivalent as enriched cat-
egories.

Def.(3.5.2.2)[Homotopy Category of a Topological Category].Given a topological category C,
the homotopy category hC of C is defined to be the category transferred from C(3.1.7.4) by the
right-lax monoidal functor π0(3.1.5.14).

Def.(3.5.2.3)[Homotopy Category of Spaces].Let C be the category of CW complexes that the
morphisms are given the compact-open topology, then its homotopy category H is called the homo-
topy category of spaces.

3 Simplicial Sets

Simplicial Sets

Remark(3.5.3.1).The fact that any simplicial set X is a colimit of ∆n (3.1.3.13) is important in
proving properties of constructions of simplicial set.

Def.(3.5.3.2) [Objects and Morphisms].Given a simplicial set S, its objects are just objects in
S([0]), and its morphisms are objects in S([1]).

Def.(3.5.3.3) [Simplicial Sets and Categories].There is an embedding ∆ → Cat : [n] → [n]
regarding [n] as a category, which by Yoneda extension(3.1.3.14) and(3.1.1.46) corresponds to an
adjunction

τ1 : s Set −−−⇀↽−−− Cat : N

where τ1 is called the fundamental category functor and N : Cat→ s Set is the nerve functor.

Prop.(3.5.3.4) [Nerve Functor is Fully Faithful].The nerve functor N : Cat → s Set is fully
faithful. Equivalently, by(3.1.1.31), for any C ∈ Cat, there is a natural isomorphism τ1(N(C)) ∼= C.

Prop.(3.5.3.5)[Natural Transformation and Homotopy].A natural transformation will induce
homotopic nerve map. thus a pair of adjoint functors will induce a simplicial homotopy between
their nerve.
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Proof: □

Prop.(3.5.3.6)[Characterizing Nerves].For K ∈ s Set,
• there exists C ∈ Cat that K ∼= N(C) iff for each 0 < i < n and each diagram

Λni K

∆n

there exists uniquely a dotted arrow.
• there exists C ∈ Grpd that K ∼= N(C) iff for each 0 ≤ i ≤ n and each diagram

Λni K

∆n

there exists uniquely a dotted arrow.

Proof: [HTT, P9]. □

Def.(3.5.3.7) [Fundamental Groupoid Functor].Let π1 = Grp ◦τ1 : s Set → Grpd, called the
fundamental groupoid functor, then by(3.5.3.3) and(3.1.1.35), there is an adjunction

π1 : s Set −−−⇀↽−−− Grpd : N

Def.(3.5.3.8)[Topological Realization Functor].There is a functor ∆→ CG : [n] 7→ ∆n, which by
Yoneda extension(3.1.3.14) corresponds to an adjunction

| · | : s Set −−−⇀↽−−− CG : Sing

called the topological geometrization functor and the singular complex functor.

Prop.(3.5.3.9).The geometrization as a functor from s Set→ CG preserves finite limits.
The three kinds of geometrization of a bisimplicial set is the same: geometrization the diagonal

simplicial set, the twice geometrization of left(resp. right) simplicial set.

Proof: Cf.[Jardine P9].? □

Def.(3.5.3.10)[Weak (Homotopy) Equivalences].A morphism of simplicial sets S → T is called
a weak equivalence if the induced map |S| → |T |(3.5.3.8) is a weak homotopy equivalence.

Constructing Simplicial Sets

Def.(3.5.3.11)[Opposite Simplicial Sets].There is an involution in the simplex category ι : ∆→ ∆
that maps any ordered set to its reverse order. Then for any simplicial set S : ∆op → Set, there is
another simplicial set Sop = S ◦ ι, called the opposite simplicial set.

Prop.(3.5.3.12).For C ∈ Cat, there is a natural isomorphism of simplicial sets N(C)op ∼= N(Cop).
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Def.(3.5.3.13) [Mapping Spaces].For X,Y ∈ s Set, the mapping space Map(X,Y ) or Y X is a
simplicial set s.t.

Map(X,Y )n = Homs Set(∆n ×X,Y ).

Prop.(3.5.3.14) [Closed Cartesian Monoidal Structure]. s Set is a closed Cartesian monoidal
category, and for any X,Y, Z ∈ s Set, there is an isomorphism of simplicial sets

Map(X,Map(Y, Z)) ∼= Map(X × Y, Z).

Proof:
□

Prop.(3.5.3.15).For A,B ∈ Cat, then there is a natural isomorphism of simplicial sets
N(Func(A,B)) ∼= Map(N(A), N(B)).

Proof: There are natural bijections

N(Func(A,B))n = Func([n]×A,B)
(3.5.3.4) ∼= Map(N([n]×A), N(B))

∼= Map(∆n ×N(A), N(B))
= Map(N(A), N(B))n,

and they form an isomorphism of simplicial sets. □

Cor.(3.5.3.16).For any x ∈ Sm, x
′ ∈ S′

n, there is a unique y ∈ (S ∗ S′)m+n+1 s.t. y|[0,...,m] ∼=
x, y|[m+1,...,m+n+1] ∼= x′.

Def.(3.5.3.17)[Joins].Let S, S′ ∈ s Set, then the join of S, S′ is defined to be the simplicial set that
for all any finite ordered set J ,

(S ⋆ S′)(J) = ∪J=I
⨿
I′S(I)× S(I ′).

where I, I ′ satisfies i < i′ for any i ∈ I, i′ ∈ I ′. And the glueing is natural.

Prop.(3.5.3.18).
• ∆i ⋆∆j ∼= ∆i+j+1.
• The join operation is a functor s Set→ s Set that preserves colimits in each coordinate,
• s Set is a symmetric monoidal category under the join operation.
• If C,C′ ∈ Cat, there is a natural isomorphism N(C) ⋆ N(C′) ∼= N(C ⋆ C′).

Proof: All these are clear. □

Def.(3.5.3.19)[Cones].For a simplicial set K, the left/right cone of K are defined to be the join
K◁ = ∆0 ⋆ K and K▷ = K ⋆∆0.

For a map f : X → S, the left/right cone of f are defined to be S⨿X X
◁ and S⨿X X

▷.

Example(3.5.3.20). (Λ2
2)◁ ∼= (Λ2

0)▷ ∼= ∆1 ×∆1.
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Def.(3.5.3.21)[Overcategories and undercategories].For p : K → S ∈ s Set, there is a simplicial
set S/p that

Hom(Y, S/p) ∼= Homp(Y ⋆ K, S) ∆= Homs SetK/(Y ⋆ K, S)

And dually we can define the undercategories.
There are canonical maps S/p → S and Sp/ → S.

Proof: We just define (S/p)n = Homp(K ⋆ ∆n, S), then the condition holds for ∆n, and use the
fact every simplicial set is a colimit of ∆ns(3.5.3.1), and both sides commutes with colimits in Y
by(3.5.3.18). □

Def.(3.5.3.22).For C0 ⊂ C ∈ s Set and any diagram p : K → C, denote C0
/p = C0 ×C C/p.

Prop.(3.5.3.23).For p : A→ B ∈ Cat, there is a natural isomorphism of simplicial sets

N(B/p) ∼= N(B)/N(p).

Proof: There is a natural map from LHS to RHS, and we also have natural isomorphisms

N(B/p)n = Hom([n], B/p)

= HomCatA/(A→ [n] ⋆ A,A p−→ B)

(3.5.3.4) = Homs SetN(A)/(N(A)→ N([n] ⋆ A), N(A) N(p)−−−→ N(B))

(3.5.3.18) = Homs SetN(A)/(N(A)→ ∆n ⋆ N(A), N(A) N(p)−−−→ N(B))
= Homs Set(∆n, N(B)/N(p)) = (N(B)/N(p))n

□

Prop.(3.5.3.24)[Generating Simplicial Sets].Let U be a collection of simplicial sets that:
• U is stable under isomorphisms,

• U is stable under disjoint union,

• ∆n ⊂ U for any n,

• If there is a pushout diagram
X X ′

Y Y ′

f and X,X ′, Y ∈ U and f is a monomorphism, then

Y ′ ∈ U ,

• suppose we are given a sequence of monomorphisms between objects in U indexed over N, then
the colimit belongs to U .

Then U = s Set.

Proof: Use induction on the dimension of S, and notice S is glued together using their simplexes.
□
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Fibrations and Anodynes

Def.(3.5.3.25)[Fibrations].A morphism of simplicial sets is called a
• Kan fibration iff it has right lifting property w.r.t all Λni → ∆n, 0 ≤ i ≤ n.
• left fibration iff it has right lifting property w.r.t. all inclusions Λni ⊂ ∆n, 0 ≤ i < n.
• right fibration iff it has right lifting property w.r.t all inclusions Λni ⊂ ∆n, 0 < i ≤ n.
• inner fibration iff it has right lifting property w.r.t all inclusions Λni ⊂ ∆n, 0 < i < n.

So a morphism between topological spaces X → Y is a Serre fibration iff S(X) → S(Y ) is a Kan
fibration(3.5.3.8).

Def.(3.5.3.26)[Anodynes].A morphism of simplicial set is called a
• anodyne iff it has left lifting property w.r.t. all Kan fibrations.
• left anodyne iff it has left lifting property w.r.t. all left fibrations.
• right anodyne iff it has left lifting property w.r.t all right fibrations.
• inner anodyne iff it has right lifting property w.r.t all inner fibrations.

Def.(3.5.3.27) [Trivial (Kan)Fibrations].A morphism X → S of simplicial sets that has right
lifting property w.r.t. all inclusions ∂∆n → ∆n is called a trivial fibration.

A cofibration is a morphism that has left lifting property w.r.t all trivial fibrations. By(3.1.7.15)
a cofibration of simplicial sets is just an inclusion.

Lemma(3.5.3.28)[Join and Anodynes]. If f : A0 ⊂ A and g : B0 ⊂ B are inclusions of simplicial
sets, then

h : (A0 ⋆ B)
⨿

A0⋆B0

(A ⋆ B0) ⊂ A ⋆ B

is a(n)
• inner anodyne if either f is right anodyne or g is left anodyne, then
• left anodyne if f is left anodyne.

Proof: 1: By symmetry we assume f is right anodyne. Notice the class of all morphisms f that
the conclusion holds is weakly saturated because ⋆ commutes with colimits, so it suffice to check for
f : Λnj ⊂ ∆n. Then similarly it suffices to check for g : ∂∆m ⊂ ∆m, but then the inclusion is just
Λm+n+1
j ⊂ ∆m+n+1, which is left anodyne.

2 is similar. □

Prop.(3.5.3.29)[Anodynes].
• The saturated class generated by either of the following three classes of monomorphisms are

both left anodynes:
1. Λnk ⊂ ∆n, 0 ≤ k < n.
2. (∆m × {0}

⨿
(∂∆m ×∆1) ⊂ ∆m ×∆1.

3. (S′ × {0})
⨿

(S ×∆1) ⊂ S′ ×∆1, where S ⊂ S′.
Similar conclusion holds for right anodynes and together implies the similar conclusion for
anodynes.

•

Proof:



256 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

• 2 and 3 are equivalence because any inclusion comes from attaching cells(3.5.3.3).
Now inclusions in 2 are compositions of pushouts of inclusions Λn+1

k ⊂ ∆n+1, where 0 ≤ k ≤ n,
thus it is generated by 1. Conversely, Λni ⊂ ∆n is a retract of (∆n×{0})

⨿
(Λni ×∆1) ⊂ ∆n×∆1:

Cf.[HTT, P64].
•

□

Cor.(3.5.3.30)[Products and Anodynes]. Let A ⊂ A′ be a(n) left(inner) anodyne and B ⊂ B′,
then so does the induced map

(A×B′)
⨿
A×B

(A′ ×B)→ A′ ×B′.

Proof: For left anodyne, the proof is similar to that of(3.5.3.28), just check for classes 3 of(3.5.3.29),
and use the fact

(S′ ×∆1)×B
⨿

(S′ × {0}
⨿

S ×∆1)×B′ → (S′ ×∆1)×B′

is just
(S′ ×B

⨿
S ×B′)×∆1⨿(S′ ×B′)× {0} → (S′ ×B′)×∆1.

which is left(inner) anodyne. And similarly for inner anodynes. □

Left Fibration

Remark(3.5.3.31)[Left and Right Fibrations Dual].The theory of left fibrations is dual to the
theory of right fibrations, thus we don’t study right fibrations.

Prop.(3.5.3.32) [Left Fibration and CoFibered in Groupoids].Let F : C → D be a functor,
then C is a category cofibered in groupoids over D iff the induced functor N(F ) : N(C) → N(D) is
a left fibration of simplicial sets.

Proof: By(3.5.3.6), N(F ) is an inner fibration, thus it suffices to check for Λn0 → ∆n. For n = 1,
this is the definition of cofibered category(3.1.8.10), and n = 2 is just the surjectivity of the map
defining CoCartesian arrows(3.1.8.7), and n = 3 is equivalent to the injectivity of the map defining
Cocartesian arrows. And for n > 3, then extension is automatic for nerves. □

Remark(3.5.3.33) [Right Fibrations and Fibered Categories].The (left)right fibration is the
∞-categorial analogue of (co)fibered categories in usual category theory.

Remark(3.5.3.34).Given a left fibration X → S is more or less similar to given a functor from the
homotopy category hS to the ∞-category H of spaces.

Proof: Cf.[HTT, P58].? □

Prop.(3.5.3.35)[Over(Under)categories and Fibrations].Given a digram of simplicial sets:

A ⊂ B p−→ X
q−→ S.

Let r = q ◦ p, p0 = p|A, r0 = r|A, and q is an inner fibration, then
• the induced map Xp/ → Xp0/ ×Sr0/

Sr/ is a left fibration. And dual argument holds for
overcategories.
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• If q is a left fibration or A ⊂ B is right anodyne, then Xp/ → Xp0/×Sr0/
Sr/ is a trivial fibration.

• If q is moreover a left fibration, then the induced map X/p → X/p0 ×S/r0
S/r is a left fibration.

Proof: These just follow from(3.5.3.28). □

Prop.(3.5.3.36)[Homotopy Extension Lifting Property].Let p : X → S be a map of simplicial
sets and i : A ⊂ B, consider the map

q : XB → XA ×SA SB.

• If p is a left fibration, then q is a left fibration.
• If p is a left fibration i is a left anodyne, then q is a trivial fibration.
• If i : {0} ⊂ ∆1, then p is a left fibration iff q is a trivial fibration.
• If p is an inner fibration, then q is an inner fibration.
• If p is an inner fibration and i is an inner anodyne, then q is a trivial fibration.

Proof: First notice that a right lifting of q w.r.t a map Z → Z ′ is equivalent to a right lifting of p
w.r.t the map Z ×B⨿Z ′ × A→ Z ′ ×B. Then the conclusions follow from(3.5.3.30) and(3.5.3.29).
□

Prop.(3.5.3.37)[Homotopy Section and Left Fibration].Let p : X → S ∈ s Set and s : S → X
be section of p, and let h ∈ HomS(X ×∆1, X) that h|X×{0} = s ◦ p and h|X×{1} = id, then s is a left
anodyne.

Proof: Cf.[HTT, P65]. □

Prop.(3.5.3.38)[Left Fibration and Functor to Spaces].Let X → S be a left fibration, then the
fibers are all Kan complexes by(3.6.1.27), and for any edge f : s → s′ ∈ S, we can solve the lifting
diagram

{0} ×Xs X

∆1 ×Xs ∆1 S
f

because the left hand side is left anodyne by(3.5.3.30), thus getting a morphism f! : Xs → Xs′ .
Then this determines a functor from hS to H the homotopy category of spaces.

Proof: First notice f! is uniquely defined up to homotopy: given to dotted arrow solving the
diagram, we can use the lifting property w.r.t. the map

∆1 × ∂∆1 ×Xs

⨿
{0}×∂∆1×Xs

{0} ×∆1 ×Xs → ∆1 ×∆1 ×Xs

which is a left anodyne by(3.5.3.30), to get a homotopy between them.
Next if η ∈ HomH(K,Xs), η′ ∈ HomH(K,Xs′), then η′ = f! ◦ η iff there is a map q : K ×∆1 → X

that q ◦ p is given by the mapping Xs ×∆1 → ∆1 f−→ S, and p|K×{0}, p|K×{1} have homotopy types
η, η′ resp..

Then for any g ◦ f ∼= h ∈ S, which is depicted by a 2-complex, we can use the left anodyne
Xu × {0} ⊂ Xu ×∆2 to get a morphism p : Xu ×∆2 → X, then p|Xu×{1} ∼= f!, p|Xu×{2} ∼= h!, and
the map p|Xu×∆{1,2} witnesses the fact g! ◦ f! ∼= h!. □
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Kan Fibrations

Remark(3.5.3.39)[Kan Complexes and Groupoids].Kan complexes are ∞-categorical analogy
of groupoids, by(3.6.1.27) and(3.5.3.6).

Lemma(3.5.3.40). If a left fibration p : S → T is a weak homotopy equivalence of Kan complexes,
then it is a surjection on vertices.

Proof: Because it is homotopy equivalence, for any t ∈ T , there is a morphism p(s) → t for some
s ∈ S(Kan complex used), thus it lifts to a morphism in S, so surjective on vertices. □

Lemma(3.5.3.41) [Fibrations of Kan Complexes]. If S → T is a left fibration and T is a Kan
complex, then p is a Kan fibration.

Proof: Firstly S is a Kan complex. Let A ⊂ B be anodyne morphisms, we need to show p : SB →
SA ×TA TB is surjective on vertices. Since S, T are complexes, SB → SA and TB → TA are trivial
fibrations by(3.5.3.36). Cf.[HTT, P66].?

Notice this is an immediate consequence of(3.5.3.46), because the homotopy category of a Kan
complex is a groupoid, by(3.6.1.27), so f! must be isomorphisms. □

Prop.(3.5.3.42)[Examples of Kan Complexes].
• The singular complex of topological space is a Kan complex.
• The nerve of a category is a Kan complex iff the category is a groupoid, by(3.5.3.32).
• Simplicial R-module are Kan complexes, by(4.8.1.1).

Proof:
□

Prop.(3.5.3.43).The bar resolution BG is a Kan fibration for every group G.

Proof: □

Prop.(3.5.3.44).A principal G fibration, i.e. X → X/G where X is a simplicial object of G-sets that
G acts freely on Xn, is a Kan fibration.

Lemma(3.5.3.45)[Left Fibrations and Trivial Kan Fibrations].Let p : S → T ∈ s Set be a left
fibration that all the fibers are contractible, then p is a trivial Kan fibration.

Proof: By duality, it suffices to prove for right fibrations. Because fiber is nonempty, it has right
lifting property w.r.t ∅ ⊂ ∆0, and for n > 0, let ∂∆n → S be any map, then to show the lifting
property, we may take fiber product and assume T = ∆n, thus S is an ∞-category. Cf.[HTT, P66].
□

Prop.(3.5.3.46)[Characterizing Kan Fibrations].Let p : S → T be a left fibration of simplicial
sets, then p is a Kan extension iff the morphism f! defined in(3.5.3.38) is an isomorphism in H for
any morphism f ∈ T .

Proof: Cf.[HTT, P66]. □

Def.(3.5.3.47) [Kan-Quillen Model Structure].There is a combinatorial left and right proper
model structure on s Set called the Kan-Quillen model structure with

• Weak equivalences: weak equivalences(3.5.3.10).
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• Cofibrations: inclusions,
• Fibrations: Kan fibrations.

Proof: Cf.[Jardine P62].? □

Prop.(3.5.3.48)[Quillen].The geometrization functor and the singular complex functor(3.5.3.8) de-
fines a Quillen equivalence:

| · | : s Set −−−⇀↽−−− CG : Sing

where the RHS is Serre-Quillen model category(3.12.6.28) and the LHS is the Kan-Quillen model
category(3.5.3.47).

The functor | − | ◦ Sing is also denoted by Γ : CG→ CG.

Proof: Cf.[May, P125].? □

Cor.(3.5.3.49).The localized category of CG and s Set at weak homotopy equivalence classes are the
same, and it is just the homotopy category of spaces H, by(3.4.2.7).

Cor.(3.5.3.50).By(3.5.3.42), for any S ∈ s Set, S → Sing |S| is a fibrant replacement w.r.t. the
Kan-Quillen model category.

Marked Simplicial Sets

Def.(3.5.3.51)[Marked Simplicial Sets].A marked simplicial set is a pair (X, EX) where X is
a simplicial set and EX ⊂ X1 is a set of edges containing all the degenerate ones. The category of
simplicial sets is denoted by s Set+.

4 Simplicial Categories
Def.(3.5.4.1)[Simplicial Categories].The category sCat of simplicial categories consists of cat-
egories enriched over the Cartesian monoidal category s Set. sCat is complete and cocomplete,
by(3.1.7.3) and(3.5.3.14)(3.5.1.2).

Def.(3.5.4.2)[Homotopy Category].There are singular complex functor and geometrization functor
that induce isomorphism of h(s Set) ∼= h(CG) by(3.5.3.49), thus the theory of simplicial categories
and topological categories are the same.

Bergner Model Structure

Def.(3.5.4.3)[Dwyer-Kan Equivalences].A Dwyer-Kan equivalence of simplicial categories
is a weak equivalence of simplicial categories as enriched categories(3.5.4.16).

Def.(3.5.4.4) [Bergner Model Structure].There is a left proper combinatorial model structure
Bergner model structure on sCat called the Bergner model structure with

• Weak equivalences: Dwyer–Kan equivalences(3.5.4.3).
• Fibrations: F : C → D that is an quasi-fibration(3.1.8.9) and for any x, y ∈ C, MapC(x, y) →

MapD(Fx, Fy) is a Kan-fibration.
• Cofibrations:

Proof: ?Cf.[Bergner. A model category structure on the category of simplicial categories] or
[Lurie]. □
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Simplicial Nerves

Def.(3.5.4.5)[Thickened Finite Ordered Sets].Let J be a finite ordered set, define a simplicial
category C[∆J ] as follows:

• The objects are elements of J .
• For i, j ∈ J , Mor(i, j) = N(Pi,j), where Pi,j is the poset {I ⊂ [i, j]|i, j ∈ I}.
• The composition of simplicial sets is induced by the union of partially ordered sets Pi,j×Pj,k ⊂
Pi,k.

Def.(3.5.4.6)[Coherent Nerves]. by Yoneda extension and(3.5.4.1), the functor ∆ → sCat : [n] 7→
C[∆n] corresponds to an adjunction

C : s Set −−−⇀↽−−− sCat : N∆

where N∆ is called the coherent nerve functor, and

(N∆(C))n = HomCat∆(C[∆n],C).

If C is a topological category, then define the topological nerve to be the simplicial nerve of
Sing(C).

By the definition and the adjointness of(3.5.3.8), the nerve functor N∆ is right adjoint to the
functor | · | ◦ C or C.

Remark(3.5.4.7). It should be checked that to give a 2-complex in N∆(C) is equivalent to giving
morphisms f, g, h ∈ C and a path from g ◦ f to h.

Thm.(3.5.4.8)[C : s Set
Quillen−−−−−⇀↽−−−−− sCat : N∆].The adjunction(3.5.4.6) is a Quillen adjunction w.r.t. the

Joyal model category on s Set(3.5.4.19) and the Bergner model category on sCat(3.5.4.4).
In particular, a theory of (∞, 1)-categories given by the model of simplicial sets and the model of

simplicial categories are the same?.

Proof: Cf.[HTT, P89].?
Firstly we show C preserves cofibrations. It suffices to show that C[∂∆n] ⊂ C[∆n] is a cofibra-

tion(3.4.7.4). But notice this two simplicial category only differ at HomC[∂∆n](0, n) is the boundary
of the simplicial cube (∆1)n−1 ∼= HomC[∆n](0, n), thus the inclusion is a pushout of the inclusion
[1]∂(∆1)n−1 ⊂ [1](∆1)n−1 , which is a cofibration by(3.4.7.3).

Left properness is clear(3.4.0.9). C preserves weak equivalences by(3.5.4.12) and(3.4.7.4), so (C, N)
is a Quillen adjunction. To show it is a Quillen equivalence: It suffices to check for each simplicial set
S and fibrant simplicial category C, a map u : S → N(C) is a categorical equivalence iff the adjoint
map v : C[S]→ C is an equivalence of simplicial categories. But v factors as

C[S] C[u]−−→ C[N(C)] w−→ C

and the counit map w is an equivalence by(3.5.4.14). □

Cor.(3.5.4.9).The coherent nerve of a Bergner-fibrant(3.5.4.4) simplicial category is an ∞-category.

Prop.(3.5.4.10)[Kan Fibrations Nerve Inner Fibrations].Let F : C→ D be a a map of simplicial
categories that for any C,C ′ ∈ C, Map(C,C ′) → Map(F (C), F (C ′)) is a Kan fibration, then the
induced map of simplicial sets N(C)→ N(D) is an inner fibration.
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Proof: This is because a lifting of N(C) → N(D) w.r.t. λnj ⊂ ∆n is equivalent to a lifting
of C → D w.r.t C[Λnj ] ⊂ C[∆n]. But this lifting is equivalent to a lifting of Map(F (0), F (n)) →
Map(F ′(0), F ′(n)) w.r.t. the anodyne map MapC[Λnj ] ⊂ MapC[∆n], which is a cube removing the
interior and a face. □

Cor.(3.5.4.11).The topological nerve of a topological category C is an ∞-category, as the singular
complex of a topological space is always a Kan complex, by(3.5.3.42).

Def.(3.5.4.12) [Homotopy Category].For S ∈ s Set, the homotopy category hS is defined to
be the homotopy category(3.5.3.49) of the simplicial category C[S](3.5.4.6), which is an H-enriched
category. A map of simplicial sets is called a categorical equivalence if their homotopy categories
are equivalent as H-enriched categories.

Remark(3.5.4.13). f : S ∼= T ∈ s Set is a categorical equivalence iff C(f) : C[S] → C[T ] is a Dwyer-
Kan equivalence(3.5.4.3).

Lemma(3.5.4.14).Let C be fibrant simplicial category, then the counit map u : MapC[N∆(C)](x, y)→
MapC(x, y) is a weak homotopy equivalence of simplicial sets.

Proof: Cf.[HTT, P72]. □

Lemma(3.5.4.15).Let C be a topological category, then the counit map |C(N(C))| ∼= C(3.5.4.6) is an
equivalence of topological categories.

Proof: By the Quillen equivalence between s Set and CG(3.5.3.48), this follows from(3.5.4.14), as
by(3.4.7.11) and(3.5.3.42), Sing(C) is a fibrant simplicial category. □

Prop.(3.5.4.16) [Topological Category and ∞-Category Equivalent].The adjunction pair
(|C[·]|, N) defines a bijection between equivalent classes of topological(or simplicial) categories and
∞-categories.

Proof: It suffices to show the units and counits are equivalences:

|C[N(C)]| ∼= C, S 7→ N(|C[S]|).

The first is(3.5.4.15), and the second follows from the first by remark(3.5.4.13). □

Prop.(3.5.4.17).For S, S′ ∈ s Set, the natural map C[S × S′] → C[S] × C[S′] is an equivalence of
simplicial categories.

Proof: If S, S′ are nerves of fibrant simplicial categories C,C′, then we have a diagram C[S×S′]→
C[S]× C[S′]→ C× C′. Then by the two out of three axiom, the assertion follows from the fact that
for any fibrant simplicial category D, C[N(D)]→ D is an equivalence(3.5.4.15).

Now for general S, S′, we can find a categorical equivalences S → N(|C[S]|) = T , and then
S × S′ → T × T ′ is also categorical equivalence by(3.5.4.17), and we are done, by(3.5.4.19). □

Joyal Model Structure

Lemma(3.5.4.18)[Inner Anodyne is Categorical Equivalence].Every inner anodyne map A→
B of simplicial sets is a categorical equivalence.
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Proof: The class of morphisms f that C(f) is a trivial cofibration is weakly saturated(because C
is a left adjoint(3.5.4.6) and(3.4.0.5)), then it suffices to check for Λnj ⊂ ∆n. Then C[Λnj ] ⊂ C[∆n] is
a pushout of [i]K ⊂ [1](∆1)n−1 , where K is obtained form (∆1)n−1 by moving a face and the interior.
Thus it is a trivial cofibration(3.4.7.4). □

Prop.(3.5.4.19) [Joyal Model Structure].There is a left proper combinatorial model structure
called Joyal model structure on s Set, with:

• Cofibrations: monomorphisms.
• Weak equivalences: categorical equivalences defined in(3.5.4.12).
• Fibrations: categorical fibrations or Joyal fibrations which has the right lifting property

w.r.t. trivial cofibrations.

Proof: Cf.[HTT, P89].? □

Cor.(3.5.4.20). if K,A,B ∈ s Set and f : A→ B is a categorical equivalence, then A×K → B ×K
is also a categorical equivalence.

Proof: Choose a factorization B → Q, which is an inner anodyne and Q is an∞-category, by small
object argument(3.1.7.13), then B × K → Q × K is also an inner anodyne map(3.5.3.30), hence a
categorical equivalence(3.5.4.18), so we can assume B is an ∞-category. Similarly we can reduce to
the case A,K are also ∞-categories.

For the rest, Cf.[HTT, P92]. □

Prop.(3.5.4.21) [∞-Category Fibrant in Joyal Model].C ∈ s Set is Joyal-fibrant iff it is an
∞-category.

Proof: Fibrant objects are ∞-categories, by(3.5.4.18). For the converse, fix an ∞-category and an
inclusion A ⊂ B, given a map A → C, the inclusion C ⊂ C

⨿
AB is also a categorical equivalence

because Joyal model structure is left proper(3.5.4.19), thus C is a retract of C⨿AB by(3.5.4.22),
which gives an extension B → C. □

Lemma(3.5.4.22).Let C ⊂ D ∈ s Set be a categorical equivalence and C ∈ Cat∞, then C is a retract
of D.

Proof: Include D into an ∞-category by small object argument and(3.5.4.18), we may assume D

is also an ∞-category. So we finish by applying(3.6.1.25) for A = C and B = D. □

Cor.(3.5.4.23).Any S ∈ s Set is weakly equivalent to an ∞-category.

Def.(3.5.4.24)[Joyal Joins].For X,Y ∈ s Set, define the Joyal Join

X ⋄ Y = X
⨿

X×Y×{0}
(X × Y ×∆1)

⨿
X×Y×{1}

Y = (X
⨿

Y )
⨿

X×Y×∂∆1

(X × Y ×∆1).

By(3.4.6.7), this is a homotopy colimit w.r.t. the Joyal model cateogry, so if X → X ′, Y → Y ′ are
categorical equivalences, X ⋄ Y → X ′ ⋄ Y ′ is also a categorical equivalence(3.4.6.6).

Prop.(3.5.4.25).There is a projection map X ⋄ Y → ∆1, and a map X × Y ×∆1 → X ⋆ Y that is
compatible with projection onto ∆1, thus inducing a map

X ⋄ Y → X ⋆ Y

that is compatible with projection onto ∆1. Then this map is a categorical equivalence.
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Proof: Because both ⋄ and ⋆ commutes with filtered colimits, by(3.4.3.3), it suffices to show for X
with only f.m. non-degenerate simplexes. Then we use induction. The case X = ∅ is trivial, and if
X = X ′⨿

∂∆n ∆n, because Joyal model category is left proper(3.5.4.19), by(3.4.6.7), X ⋄ Y → X ⋆Y
is a homotopy pushout of X ′ ⋄ Y → X ′ ⋆ Y . Then it suffices to show for X = ∆n.

By similar reason, because ∆{0,1}⨿
{1} ∆{1,2}⨿

{2}
⨿
. . .
⨿

{n−1} ∆{n−1,n} → ∆n is an anodyne?,
and anodyne are categorical equivalences(3.5.4.18), and homotopy limits of categorical equivalences
are categorical equivalences by(3.4.6.6), it suffices to prove for X = ∆0 or X = ∆1. The same
argument then shows it suffices to prove for Y = ∆0 or Y = ∆1. And in each case the desired map
is an isomorphism. □

Cor.(3.5.4.26). If S → S′, T → T ′ are categorical equivalences, then S⋆T → S′⋆T ′ is also a categorial
equivalence, by(3.5.4.24).

Cor.(3.5.4.27).For X,Y ∈ s Set, there is a natural equivalence of simplicial categories

C[X ⋆ Y ] ∼= C[X] ⋆ C[Y ].

Proof: Cf.[Lur09]P240. □

5 Simplicial Model Categories
Def.(3.5.5.1) [Simplicial Model Categories].A simplicial model category is a s Set-enriched
model category(3.4.5.3).

Prop.(3.5.5.2) [Simplicial Model Category Criterion].Let C be a simplicial category that is
equipped with a model structure that every object of C is cofibrant and the collection of weak
equivalences in stable under filtered colimits, then C is a simplicial model category iff the following
conditions holds:

• C is both tensored and cotensored over Set∆.
• Given a cofibration of simplicial sets i : K → L and a cofibration C → D ∈ C, the induced map

(C ⊗ L)
⨿
C⊗K D ⊗K → D ⊗ L is a cofibration in C.

• The natural map C ⊗∆n → C ⊗∆0 ∼= C is a weak equivalence in C.
Proof: Cf.[HTT, P850]. □

Prop.(3.5.5.3).Let C be a simplicial model category and X cofibrant and Y fibrant, then K =
Map(X,Y ) is a Kan complex, and there is a canonical bijection π0K ∼= HomHo(C)(X,Y ).
Proof: Use(3.4.5.4). □

Model-Categorical Yoneda Extensions

Def.(3.5.5.4)[U(C)].For C ∈ Cat, denoted U(C) = PSh(C, s Set)Proj, which is a left and right proper
combinatorial model category, by(3.5.3.47) and(3.4.6.1)(3.4.6.2). And there is a natural functor

sよ : C 7→ PSh(C, Set)→ PSh(C, s Set).

Prop.(3.5.5.5) [Model-Categorical Yoneda Extensions].Let C ∈ Cat, M be a model category,
then for any functor Q : C → M, there is a Quillen adjunction (L,R) : U(C)

Quillen−−−−⇀↽−−−−M together
with a natural weak equivalence L ◦ sよ ∼= Q ∈ Func(C,M). And the category of such extensions is
contractible.
Proof: Cf.[D. Dugger. Universal homotopy theories]. □
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Exponentiation in Model Categories

Localizations and Presentations

Def.(3.5.5.6)[S-Local and S-Equivalences].

Prop.(3.5.5.7) [Localizations of Simplicial Model Categories].Let M be a left proper combi-
natorial simplicial model category and S ⊂ Cof(M) be a small subset, then there is a left proper
combinatorial simplicial model category S−1M with the same underlying category as M and

• Cofibrations: Cof(M).
• Weak Equivalences: S-equivalences in M.
• Fibrations: defined by the above two.

And X ∈M is fibrant in S−1A iff X is S-local and fibrant in M.

Proof: Cf.[Lur09]P906. □

Prop.(3.5.5.8).Let M be a left proper combinatorial simplicial model category, then
• Any combinatorial Bousfield localization(3.4.4.3) of M is of the form S−1M, where S ⊂ Cof(M)

is a small subset.
• For any two small subset S, T ⊂ Cof(M), S−1M and T−1M coincide iff the class of S-local

objects and T -local objects coincide.

Proof: Cf.[Lur09]P908. □

Prop.(3.5.5.9) [Combinatorial Model Categories have Presentations].Every combinatorial
model category M has a presentation, i.e. there exists a C ∈ Cat a set S of morphisms in U(A) and
a Quillen equivalence

U(C)[S−1]
Quillen−−−−⇀↽−−−−M(3.5.5.7).

Proof: [D. Dugger. Combinatorial model categories have presentations]. □

6 Covariant Model Structure
Prop.(3.5.6.1)[Covariant Model Structure].For S ∈ s Set, a map X → Y ∈ (Set∆)/S is called a

• covariant cofibration if it is a monomorphism.
• covariant equivalence if the induced map X◁⨿

X S → Y ◁⨿
Y S is a categorical equiva-

lence(3.5.4.12).
Then these define a left proper combinatorial model structure on (Set∆)/S .

Proof: Cf.[HTT, P69]. □

Lemma(3.5.6.2).Every left anodyne map in (Set∆)/S is a covariant equivalence.

Proof: Cf.[HTT, P69]. □

Prop.(3.5.6.3) [Covariant Model Structure]. (Set∆)/S is a simplicial model category with the
contravariant model structure and the simplicial structure where

Map(X,Y ) = Y X ×SX {φ} ∈ Set∆

where φ : X → S is the structure map.
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Proof: We use(3.5.5.2), it suffices to check that X ×∆n → X ×∆0 is a covariant equivalence. But
it has a section, which is a left anodyne by(3.5.3.30), thus it is a covariant equivalence by(3.5.6.2). □

Cor.(3.5.6.4)[Contravariant Model Structure].Let S be a simplicial set, then the covariant model
is usually not self-dual, and we can define a contravariant model structure as follows:

• A contravariant cofibration is a monomorphism of simplicial sets.
• f is a contravariant equivalence in (Set)/S iff fop is a covariant equivalence in (Set)/Sop .
• f is a contravariant fibration in (Set)/S iff fop is a covariant fibration in (Set)/Sop .

Prop.(3.5.6.5) [Base Change].Let S → S′ be a map of simplicial sets, then the forgetful functor
and base change functor j!, j∗ defines a Quillen adjunction of covariant models:

j! : (Set∆)/S
Quillen−−−−⇀↽−−−−(Set∆)/S′ : j∗

Proof: it is clearly a pair of adjoints, and j! preserves cofibrations. j! also preserves covariant
equivalences: Cf.[HTT, P71]?. Thus it is a Quillen adjunction. □

Lemma(3.5.6.6).Let S′ ⊂ S be simplicial sets, let p : X → S be a map and q : Y → S be a right
fibration. Let X ′ = X ×S S′, Y ′ = Y ×S S′, then the restriction map

φ : Map(Set∆)/S (X,Y )→ Map(Set∆)/S′ (X
′, Y ′)

is a Kan fibration.
Proof: Firstly it is a right fibration because it has right lifting property w.r.t. right anodyne
inclusion A→ B: this is because (A×X ′)

⨿
(A×X) ⊂ B×X is also a right anodyne(3.5.3.30). Next

we apply this to the inclusion ∅ ⊂ S′ to see that Map(Set∆)/S′ (X ′, Y ′) is a Kan complex(3.6.1.27),
and then φ is a Kan fibration by(3.5.3.41). □

Lemma(3.5.6.7).Let p : X → S be an object of (Set∆)/S , then p is a right fibration iff it is a covariant
fibrant object in (Set∆)/S .
Proof: Cf.[HTT, P85]. □

Def.(3.5.6.8) [Pointwise Equivalence].Let X → Y be a map in RFib(S), then f is called a
pointwise equivalence iff the induced map Xs → Ys is a homotopy equivalence of Kan com-
plexes(3.6.1.27) for any s ∈ S.

Lemma(3.5.6.9).Let f : X → Y be a morphism in RFib(S), then the following are equivalent:
• f is a pointwise equivalence.
• f is an equivalence in the simplicial category (Set)/S .
• For any A ∈ (Set)/S , f induces a homotopy equivalence of Kan complexes:

Map(Set∆)/S (A,X)→ Map(Set∆)/S (A, Y ).

Proof: Cf.[HTT, P82]. □
Prop.(3.5.6.10) [Equivalences]. In the situation of(3.5.6.8), f is a pointwise equivalence iff it is a
contravariant equivalence iff it is a categorical equivalence.

Proof: Cf.[HTT, 2.2.3.13, 3.3.1.5]?. □
Prop.(3.5.6.11) [Contravariant Fibration as Right Fibration].Let f : X → Y be a map in
RFib(S), then f is a contravariant fibration in (s Set)/S iff it is a right fibration.
Proof: Cf.[HTT, P86]. □



266 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

Straightening and Unstraightening

Def.(3.5.6.12)[Straightening and Unstraightening].Fix a simplicial set S, a simplicial category
C and a functor C[S]→ Cop. Given an object X ∈ (Set∆)/S , let v be the cone point of X▷. Then the
simplicial categoryM = C[X▷]

⨿
C[X] C

op can be viewed as a correspondence?? between Cop and ∆0,
thus giving a simplicial functor

StφX : C→ Set∆ : C 7→ MapM(C, v).

Then Stφ is called the straightening functor associated to φ. And we denote by StS the functor
Stφ where φ : idC[S].

By the adjoint functor theorem(3.1.1.34), Stφ has a left adjoint called unstraightening functor
UnStφ?.

Prop.(3.5.6.13).Let S be a simplicial set, C a simplicial category and φ : C[S] → Cop a simplicial
functor, then the straightening and unstraightening functor determines a Quillen adjunction

Stφ : (Set∆)/S
Quillen−−−−⇀↽−−−− SetC∆ : UnStφ

determines a Quillen adjunction, where the LHS has the contravariant model structure and the RHS
has the projective model structure. And if φ is an equivalence of simplicial categories, then (Stφ.Unφ)
is a Quillen equivalence.

Proof: □

Unstraightening of Right Fibrations

Prop.(3.5.6.14).For every simplicial set S, the unstraightening UnS induces an equivalence of sim-
plicial categories

(SetC[S]op
∆ )cf → RFib(S).

(3.4.5.5), where the RHS is the category of fibrations X → S.

Proof: Cf.[HTT, P83]. □

7 Cartesian Fibrations

Remark(3.5.7.1).The theory of Cartesian fibrations is an analogue of the theory of fibered cate-
gories8.

Def.(3.5.7.2)[p-Cartesian].Let p : X → S be an inner fibration and f : x→ y is an edge of X, then
f is called a p-Cartesian if the induced map

X/f → X/y ×S/p(y) S/p(f)

is a trivial Kan fibration.

Remark(3.5.7.3).For C ∈ Cat and p : N(C) → ∆1 ∈ s Set, a morphism f ∈ C is p-Cartesian iff it is
Cartesian in the usual sense.
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Prop.(3.5.7.4)[Characterization of Cartesian Fibrations].Let p : C → D be an inner fibration
of ∞-categories, then an edge f : Y → Z ∈ C is p-Cartesian iff for every object X ∈ C, there is a
Cartesian diagram

Map(X,Y ) Map(X,Z)

Map(p(X), p(Y )) Map(p(X), p(Z))

.

Proof: Cf.[HTT, P131]. □

Cartesian Fibrations

Def.(3.5.7.5)[Cartesian Fibration].A Cartesian fibration is an inner anodyne map p : X → S
that for any edge f : x → y ∈ S and a vertex ỹ mapping to y, there is a p-Cartesian edge f̃ with
p(f̃) = f . The dual of a Cartesian fibration is called a coCartesian fibration.

Prop.(3.5.7.6).The class of Cartesian fibrations is stable under compositions and base change.

Prop.(3.5.7.7)[Cartesian Fibration and Right Fibration].Let p : X → S be an inner fibration,
then the following are equivalent:

• p is a Cartesian fibration and the every edge of X is p-Cartesian.
• p is a right fibration.
• p is a Cartesian fibration and every fiber Xs is a Kan complex.

Proof: Cf.[HTT, P122].? □

Def.(3.5.7.8)[Locally Cartesian Fibration].A map X → S of simplicial sets is called a locally
Cartesian fibration if it is an inner fibration and for every edge ∆1 → S, the pullbackX×S∆1 → ∆1

is a Cartesian fibration.

Prop.(3.5.7.9)[Cartesian and Locally Cartesian].Let p : X → S be a locally Cartesian fibration,
then the following are equivalent:

• p is a Cartesian fibration.
• Given a composition fg ∼= h in the homotopy category, if f, g are both locally p-Cartesian,

then h is also locally p-Cartesian.
• Every locally p-Cartesian edge in X is p-Cartesian.

Proof: Cf.[HTT, P124]. □

Prop.(3.5.7.10).Given maps of ∞-categories: C
p−→ D

q−→ E , if q, q ◦ p are both locally Cartesian
fibrations and p maps locally (q ◦ p)-Cartesian maps to locally q-Cartesian maps and for any Z ∈ E ,
p induces a categorial equivalence CZ → DZ , then p is a categorical equivalence.

Proof: Cf.[HTT, P132].? □

Prop.(3.5.7.11).Categorical equivalences between∞-categories are stable under base change of Carte-
sian fibrations of ∞-categories.

Proof: Cf.[HTT, P132]. □
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8 Simplicial Homology

Prop.(3.5.8.1).For a Kan fibration X, there can be defined a homotopy groups πn that they agree
with πi(|X|) thus also πi(S|X|), Cf.[Weibel P263]. Thus we see that |BG| is truly the Eilenberg-
Maclane spaces BG.

9 Cyclic Homology Theory(欧阳恩林)

Combinatorial Category

Def.(3.5.9.1). The Segal category Fin∗ is the category of pointed finite sets. A morphism is called
inert iff |f−1({i})| = 1 for all i ̸= ∗. It is called active iff f−1({∗}) = {∗}.

A morphism can be uniquely factorized as a composition gh, where h is inert and g is active.

Prop.(3.5.9.2).There is a morphism Cut : ∆op → Fin∗ where we interpret [n] ∈ Fin∗ as the set of
cut in [n], and

Cut(α)(i) =
{
j if there are j s.t. α(j − 1) < i ≤ α(j)
0 otherwise

Prop.(3.5.9.3).The category of functors from the E∞ = Fin∗ to Cat that

X([n])
∏n

i=2 X(ρi)
−−−−−−−→

n∏
i=1

X([1]) n ≥ 0

and X([0]) is the final object, is equivalent to the category of symmetric unital monoidal categories
with base category (X([1])). (Because the commutativity of morphisms encodes the fact that the
tensor action is symmetric).

Similarly, the category of functors from the ∆op to Cat that

X([n])
∏n

i=2 X(ρi)
−−−−−−−→

n∏
i=1

X([1]) n ≥ 0

is equivalent to the category of symmetric unital monoidal categories (X([1])). And it is symmetric
iff it factors through Cut:∆op → Fin∗.

Def.(3.5.9.4).The Conne cyclic category ∆C is a category containing ∆ that Aut∆C([n]) is
Cn+1. And every morphism [n] → [m] in ∆C can be uniquely written as the form φg, where
φ ∈ Hom∆([n], [m]) and g ∈ Aut∆C

([n]).
∆op
C is isomorphic to ∆C Cf.[杨恩林循环同调 P31], thus ∆ and ∆op are all subcategories of ∆C .

Def.(3.5.9.5).The category ∆S is the category that Aut∆S
([n]) ∼= Sn and every morphism [n]→ [m]

in ∆S can be uniquely written as the form φg, where φ ∈ Hom∆([n], [m]) and g ∈ Aut∆S
([n]).

Def.(3.5.9.6).For a category C, a cyclic object in C is a functor ∆op
C → C.

For example, the functor that maps [n] to Cn+1 and the functor maps to the pull back of the
order of the cyclic, is a cyclic object.
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Hochschild Homology(Jeremy Hahn)

Def.(3.5.9.7)[Hochschild Homology Group].Let R be a commutative ring and A a flat R-algebra,
Aenv = A⊗R Aop. Then an Aenv-module is equivalent to an (A,A)-bimodule.

If M is an (A,A)-bimodule, then we define Hochschild homology group HHn(A/R,M) =
Torenvn (M,A). And also we denote HHn(A/R) = HHn(A/R,M).

Hn(A,M) is a Z(A) module by the action of Z(A) on M and HH∗ defines a functor CRingR →
ModR.

Def.(3.5.9.8)[Hochschild Complex].Let R be a commutative ring and A a flat R-algebra, we define
Aenv == A⊗LR Aop, and HH(A/R) = A⊗LAenv A ∈ D(A).

Def.(3.5.9.9) [Flat Case].For a flat R-algebra A and a (A,A)-bimodule M , there is a simplicial
module C(A,M) called the Hochschild complex of A with coefficient in M , with Mn = M ⊗ An
that

di(m, a1, . . . , an) =


(m0a1, a2, . . . , an) i = 0
(anm0, a1, . . . , an−1) i = n

(m0, a1, . . . , aiai+1, . . . , an) otherwise
sj(m, a1, . . . , an) = (m, a1, . . . , aj−i, 1, aj+1, . . . , an)

The homology group of the Moore complex associated to the Hochschild complex is just
HHn(A,M). The Moore complex is of the form

. . .→M ⊗A⊗A⊗A ∂3−→M ⊗A⊗A ∂2−→M ⊗A ∂1−→M
∂0−→ 0→ 0→ . . .

where

∂1(m⊗ a) = ma− am, ∂2(m⊗ a1 ⊗ a2) = ma1 ⊗ a2 −m⊗ a1a− 2 + a2m⊗ a1

∂3(m⊗ a1 ⊗ a2 ⊗ a3) = ma− 1⊗ a2 ⊗ a3 −m⊗ a1a2 ⊗ a3 +m⊗ a1 ⊗ a2a3 − a3m⊗ a1 ⊗ a2.

Proof: □

Example(3.5.9.10).
• HHn(R,R) = R if n = 0 and 0 otherwise.
• HH0(A/R,A/R) = Aab.
• If A is commutative, HH1(A,A) ∼= Ω1

A/R giving by a⊗ x 7→ adx by(4.4.3.4).

• For a symmetric (A,A)-module M , thus we have H1(A,M) = M ⊗A Aab and H1(A,M) =
M ⊗A Ω1

A/R. And if M is flat, Hn(A,M) = M ⊗A Hn(A,A).?

• HHn(R[X]/R) =


R[X] n = 0
Ω1
R[X]/R n = 1

0 otherwise
.

Example(3.5.9.11)[HH(Fp/Z)].Because Fp ⊗LZ Fp = (Fp
0−→ Fp).?

HH∗(Fp,Z) ∼= Fp[X1, X2, . . . , ]/(XiXj =
(
i+ j

i

)
Xi+j)

where deg(Xi) = 2i, ∂Xi = 0.
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Prop.(3.5.9.12). Suppose A,B are R-algebras, then

HH(A⊗LR B/R) = HH(A/R)⊗LR HH(B/R).

Cor.(3.5.9.13).HH(R[X1, . . . , Xn]/R) = Ω∗
R[X1,...,Xn]/R.

Prop.(3.5.9.14). If A is a commutative R-algebra, then HH(A/R) is naturally a commutative dga.
In particular, HH∗(A/R) is a graded ring.

Prop.(3.5.9.15)[Spectral Sequence].For a commutative ring A and a symmetric A-bimodule M ,
there is a spectral sequence

E2
pq = TorRp (Hp(A,A),M)⇒ Hp+q(A,M).

Hochschild Homology

Prop.(3.5.9.16)[Hochschild-Kostant-Rosenberg].The isomorphism Ω1
A/R
∼= HH1(A) extends to

a graded ring map
Ψ : Ω∗

A/k → H∗(A,A)

. If A/R be smooth algebra and R Noetherian, then Ψ is an isomorphism of graded algebra.
Cf.[Weibel P322], [阳恩林循环同调 P133].

Def.(3.5.9.17)[Tsygan’s Double Complex].For a cyclic objec M in an Abelian category, let t∗ be
the cyclic morphism and ∂n =

∑n
i=0(−1)idi, ∂′

n =
∑n−1
i=0 (−1)idi, Nn =

∑n
k=0((−1)ntn)k, then there

is a double complex CC(M):

M1 M1 M1

M0 M0 M0

∂ −∂′ ∂

∂

1−(−1)1t

−∂′

N

∂

1−(−1)1t

1−(−1)0t N 1−(−1)0t

That the column are 2-cyclic. Cf.[Weibel P337]. The first column is called theHochschild complex
of M : Ch(M), the second column is called acyclic complex of M(3.5.9.18) Ca(M). And we can
even augment a cokernel column on the left, which is the complex of M modulo the cyclic action,
called the Conne complex Cλ(M).

We define the Cyclic Homotopy Group HCn(M) = Hn(TotCC(M)) and whenM is the cyclic
module C(A)(3.5.9.9), denote CC(C(A)) = CC(A), HCn(A) = HCn(C(A)).

Lemma(3.5.9.18).The second column is exact and h = tn+1sn is a null-homotopy. Cf.[阳恩林循环
同调 P122].

Lemma(3.5.9.19).Notice the rows are in fact a group homology Hom(Z/(n + 1)Z,Mn), thus when
Q ∈ R, we have the rows are acyclic because the group homology is killed by |G|??, thus HC∗(M) ∼=
Hλ

∗ (M) are isomorphisms by spectral sequence.
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Prop.(3.5.9.20)[Conne SBI Sequence].For a cyclic module M , there is a long exact sequence

· · · → HHn(M) I−→ HCn(M) S−→ HCn−2(M) B−→ HHn−1(M)→ · · ·

Proof: shift the diagram 2 column right, then there is an exact sequence of double complexes and
notice the second column is exact(3.5.9.18), thus we have the kernel is quasi-isomorphic to Ch(M).
So the sequence follows. □

Cor.(3.5.9.21).HC0(A) = HH0(A) = Aab.
When A is commutative, HC1(A) = Coker(HC0(A) B−→ HH1(A)) = Ω1

A/R/dA as a R module,
because we can verify that B(a) = a⊗ 1− 1⊗A.

Cor.(3.5.9.22).For a morphism of two cyclic objects, HH∗(M) ∼= HH∗(M ′) iffHCn(M) ∼= HCn(M ′).
(Use five lemma).

Def.(3.5.9.23).A mixed complex (M, b,B) is a complex with b : Mn →Mn−1 and B : Mn →Mn+1
that makes M into a double chain complex. And there is a Conne double complex associated
with this mixed complex. And similarly there is a same SBI sequence associated to the following
diagram:

M2 M1 M0

C1 C0

C0

b

B

b

B

b

B

From a cyclic object M , we notice that the 2k-th column is acyclic(3.5.9.18), thus there is a
snake-like connection homomorphism B that makesM into a mixed complex BM . Cf.[Weibel P344].
And the Conne double complex will compute the same cyclic homology with previous defined cyclic
homology, Cf.[Weible P345].

Notice for this B, B∗ on homology is exactly the composition BI.

Prop.(3.5.9.24).Let R be a unital commutative ring and A is a commutative R-algebra and M is a
A-module, then there is a natural morphism

M ⊗A Ωn
A/R

εn−→ Hn(A,M) πn−→M ⊗A Ωn
A/R.

such that πn ◦ εn = n!.
We first define a map εn : M ⊗ ∧nA→ Hn(A,M) that

εn(m, a1, . . . , an) =
∑

sgn(σ)(m, aσ−1(1), . . . , aσ−1(n))

then define εn(m⊗xda1∧· · ·∧dan) = εn(mx, a1, . . . , an). And we verify that this map is well-defined
and maps into Zn(C(A,M)),Cf.[阳恩林循环同调 P99].

Then we define πn(m, a1, . . . , an) = m ⊗ da1 ∧ · · · ∧ dan and verify easily that this vanish on
Bn(C(A,M)). And it is easy to verify πn ◦ εn = n!.
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Prop.(3.5.9.25).When A is a unital R-algebra, there is a commutative diagram

Ωn
A/R Ωn+1

A/R

HHn(A) HHn+1(A)

(n+1)d
d

εn εn+1πn

B∗

πn+1

Proof: We notice B = (1− (−1)nt)sN :

(m, a1, . . . , an) 7→
n∑
i=0

(−1)in(1, ai, . . . , an,m, a1, . . . , ai−1)−
n∑
i=0

(−1)in(ai, 1, ai+1, . . . , an,m, a1, . . . , ai−1).

Cf.[阳恩林循环同调 P128]. □

Cor.(3.5.9.26).For a commutative unital R-algebra A, there is a functorial εn : Ωn
A/R/dΩn−1

A/R →
HCn(A) making the following diagram commutative:

Ωn−1/dΩn−2 Ωn Ωn/dΩn−1 Ωn−2/dΩn−3 · · ·

HCn−1 HHn HCn HCn−2 · · ·

0 d

εn−1 εn

0

εn εn−2

B I S B

which is induced by the cokernel. Cf.[阳恩林循环同调 P130]. When Q ∈ R, εn is a split injection.

Prop.(3.5.9.27).When Q ∈ R, 1
n!πn induces a morphism of mixed complexes (BA, ∂,B) →

(Ω∗
A/R, 0, d) by(3.5.9.24), thus there is a natural map

HCn(A)→ Ωn
A/R/dΩn−1

A/R

⊕
i>0

Hn−2i
dR (A).

Prop.(3.5.9.28) [Morita Invariance]. Tr : HH∗(Mr(A),Mr(M)) ∼= HH∗(A,M) by the trace and
inclusion functors. Cf.[阳恩林循环同调 Morita Invariance]. In particular, there is an isomorphism
HH∗(Mr(A)) ∼= HH∗(A), thus also HC∗(Mr(A)) ∼= HC∗(A) by(3.5.9.20).

Prop.(3.5.9.29)[Karoubi].BG is a cyclic group, and then the cyclic homology group HCn(G,A) ∼=⊕
k≥0Hn−2k(G,A). Cf.[Weibel P339].
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3.6 ∞-Categories

References are [Joy02], [Lur09], [Lur11], [Infinity Categories from Scratch], [A whirlwind tour of
the world of (∞, 1)-categories], [Gro15], [Introduction to ∞-Categories].

Notation(3.6.0.1).
• Use notations defined in Simplicial Homotopy Theory.

1 ∞-Categories

Def.(3.6.1.1)[∞-Category].An ∞-category is a simplicial set that has lifting property w.r.t any
Λni → ∆n, where 0 < i < n.

Cor.(3.6.1.2).By(3.5.3.6), the nerve of a category is an ∞-category.

Def.(3.6.1.3)[Sub−∞-Categories].Let C ∈ Cat∞ and D0 ⊂ C0 be a subset of vertices, then there is a
sub-simplicial set D ⊂ C consisting of simplexes with all vertices in C. Then it is also an∞-category,
called the ∞-category spanned by D0.

Prop.(3.6.1.4)[Characterizing ∞-Categories]. C ∈ s Set is an ∞-category iff the restriction map

Map(∆2,C)→ Map(Λ2
1,C)

is a trivial Kan fibration.

Proof: This follows immediately from(3.5.3.29). □

Def.(3.6.1.5)[Homotopy Categories of ∞-Categories].For C ∈ Cat∞, the homotopy category of
C(3.5.4.12) has a simpler description: Let f, g : X → Y ∈ C be called homotopic maps if there is

a 2-complex of the form
X

X Y

fid

g

. f : X → Y is called an equivalence if there exists a

map g : Y → X s.t. f ◦ g ∼= idY and g ◦ f ∼= idX .
Then the homotopy relation is an equivalence relation, and the composition of homotopic maps are

homotopic, and we get a category Ho(C). Then this category is naturally isomorphic to τ1(C)(3.5.3.3).

Proof: [Lur09]P32. □

Prop.(3.6.1.6) [Equivalence of ∞-Categories].Categorical equivalence(3.5.4.12) between ∞-
categories is an equivalence relation(3.5.4.12), by Joyal model category(3.5.4.19).

Def.(3.6.1.7)[Underlying∞-Categories of Simplicial Model Categories].Let M be a simplicial
model category(3.5.5.1), then N∆(Mcf ) is an ∞-category by(3.5.4.4)?, called the underlying ∞-
category of M.

Lemma(3.6.1.8).Let S = s Set, then the map βX,S is a weak equivalence for every cofibrant object
X ∈ C.

Proof: Cf.[HTT, P853]. □
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Prop.(3.6.1.9)[Quillen Equivalent Simplicial Model Categories Give Equivalent Underly-
ing ∞-Categories].Let C,D be simplicial model categories and

F : C
Quillen−−−−⇀↽−−−−D : G

is a Quillen equivalence, every element of C is cofibrant, and G is a simplicial functor, then G induces
an equivalence of their underlying ∞-categories N∆(Dcf ) ∼= N∆(Ccf ).

Proof: This is because G : Dcf → Ccf is an equivalence of simplicial categories, by(3.4.7.6) and
(3.6.1.8), and then(3.5.4.16) shows N∆(G) : N∆(Dcf )→ N∆(Ccf ) is an equivalence of ∞-categories.
□

Def.(3.6.1.10)[Homotopy Coherent Diagrams].Let C ∈ Cat∞ and I ∈ Cat, then a homotopy
coherent I-diagram is a map N(I)→ C ∈ s Set.

Categorical Constructions

Def.(3.6.1.11)[Categorical Constructions].A categorical construction is a functorial construc-
tion T : (s Set)m × (s Setop)n → s Set s.t.

• For Ci ∈ Cat ⊂ s Set, T (C1, . . . ,Cn) ⊂ Cat ⊂ Cat∞.
• For Ci ∈ Cat∞ ⊂ s Set, T (C1, . . . ,Cn) ⊂ Cat∞.
• If for each i, Ci,Di ∈ Cat∞ ⊂ s Set are categorically equivalent, then T (C1, . . . ,Cn) and
T (D1, . . . ,Dn) are equivalent ∞-categories.

Prop.(3.6.1.12)[Opposite ∞-Categories].For C,D ∈ Cat∞,
• The opposite(3.5.3.11) Cop is also an ∞-category.
• If C→ D is a categorical equivalence, then Cop → Dop is also a categorical equivalence.

Thus the opposite construction is a categorical construction, by(3.5.3.12).

Proof: □

Prop.(3.6.1.13)[Mapping Spaces of ∞-Categories].Let C,D ∈ Cat∞ and K,K ′ ∈ s Set, then
• Map(K,C) is also an ∞-category.
• If f : C → D is a categorical equivalence, then the induced map Map(K,C) → Map(K,D) is

also a categorical equivalence.
• If g : K → K ′ is a categorical equivalence, then the induced map Map(K ′,C)→ Map(K,C) is

also a categorical equivalence.
In particular, mapping space is a categorical construction, by(3.5.3.15).

Proof: 1 follows from(3.5.3.30). 2, 3 follow from [HTT, P94].? □

Prop.(3.6.1.14)[Joins of ∞-Categories].Let C,D ∈ Cat∞, then
• The join(3.5.3.17) C ∗D is also an ∞-category.
• If C→ C′,D→ D′ ∈ Cat∞ are categorical equivalences, then C∗D→ C′∗D′ is also a categorical

equivalence.
In particular, the join is a categorial construction by(3.5.3.18).
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Proof: 1: Given a morphism p : Λni → S ⋆ S′, if the image is in S or S′, then it can be extended
to ∆n by hypothesis. Thus we may assume that it maps {0, . . . , j} into S and {j + 1, . . . , n} into
S′, then we restricts p to get a morphism ∆{0,...,j} → S,∆{j+1,...,n} → S′, which determines a map
∆n ∼= ∆j ∗∆n−j−1(3.5.3.18)→ S ⋆ S′, and it extends p by(3.5.3.16).

2 follows from(3.5.4.26). □

Prop.(3.6.1.15)[Homotopic Maps]. If X is an ∞-category, then so does XB for any simplicial set
B, by(3.5.3.36).

And we can call two maps in Map(B,X) homotopic if they are equivalent as vertices in
XB(3.6.1.5).

Lemma(3.6.1.16).Let p : C → D be a left fibration of ∞-categories and f : X → Y be a morphism
that p(f) is an equivalence in D, then f is an equivalence in D. Compare with(3.1.8.8).

Proof: Let g be a homotopy inverse to f , then there is a 2-complex

p(Y )

p(X) p(X)

gp(f)

and by left fibration property lifts to a 2-complex

Y

X X

gf .

So f admits a left homotopy inverse, and by the same reason, g admits a left homotopy inverse,
thus g has a left homotopy inverse, and it can be chosen to be f . □

Lemma(3.6.1.17) [Equivalence Lifts via Left Fibrations].Let p : C → D be a left fibration of
∞-categories, if X ∈ D and Y ∈ C and f : X → p(Y ) is an equivalence, then f can be lifted to a
morphism in C.(Which is also an equivalence by(3.6.1.16)).

Proof: □

Prop.(3.6.1.18)[Equivalence and Left Extension].Let C be an ∞-category and φ an edge, then
φ is an equivalence iff for any n ≥ 2 and every map Λn0 → C that f0|∆{0,1} = φ, there exists an
extension of f0 to ∆n.

Proof: If φ is an equivalence, then consider the diagram

{0} C/∆n−2

∆1 C/∂∆n−2

q

φ′

Because C/∂∆n−2 → C is right fibration(3.5.3.35), and by the dual of(3.6.1.16), φ′ is an equivalence,
thus by the dual of(3.6.1.17) the dotted arrow exists.

Conversely, if the condition holds, then we can use a diagram Λ2
0 → C to find a morphism ψ

that ψ ◦ φ ∼= id, and we can also use a diagram Λ3
0 → C to witness the fact φ ◦ ψ ∼= id, so φ is an

equivalence. □
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Cor.(3.6.1.19).An equivalence in Map(K,C) is equivalent to a map K ×∆1 → C that {x} ×∆ are
all mapped to equivalences in C.

Proof: ?Cf.[HTT, P106]. □

Def.(3.6.1.20)[Space of Morphisms].For vertices x, y in a simplicial set S, we want to defines a
representative for MaphS(x, y) other than MapC[S](x, y). We define the space of right morphisms

HomR
S (x, y) = S/y ×S {x}.

The definition is not symmetric, instead, we define the space of left morphisms HomL
S(x, y) =

(HomR
Sop(x, y))op.

Also we can define HomS(x, y) = {x} ×S S∆1 ×S {y}, then there are natural inclusions:

HomR
S (x, y) HomS(x, y) HomL

S(x, y) .

Prop.(3.6.1.21). If C ∈ Cat∞ and x, y ∈ C, then HomR
C (x, y) is a Kan complex, and the inclusions

defined in(3.6.1.20) are weak equivalences.

Proof: This is obvious, because the right lifting diagram w.r.t. Λnj ⊂ ∆n, 0 < j ≤ n is equivalent to
an extension Λnj ⋆∆0 ⊂ ∆n+1 that satisfies ũ|∆{0,...,n} = x. It can be solved by a two-step extension
where the first is by identity extension and then extend using inner fibration property.

For the last assertion, Cf.[HTT, 4.2.1.8].? □

Prop.(3.6.1.22).Let p : C→ D be an inner fibration of ∞-categories, then the the induced maps on
the spaces of right morphisms are Kan fibrations.

Proof: Since p is an inner fibration, the induced map φ̃ : C/Y → D/p(Y ) ×D C is a right fibration
by(3.5.3.35), and the morphism on HomR

C (X,Y ) is obtained from φ̃ by restricting to fiber over X,
thus also a right fibration. And by(3.6.1.21) and(3.5.3.41). □

Lemma(3.6.1.23).Let C → D be a fully faithful map of ∞-categories and p : K → C ∈ s Set, then
the map of ∞-categories(3.6.1.24)

Cj/ ×C {x} → Dpj/ ×D {p(x)}

is a homotopy equivalence.

Proof: Cf.[HTT, P134]. □

Prop.(3.6.1.24)[Overcategories and Undercategories].
• If C be an ∞-category and p : K → C be an morphism, then the projection Cp/ → C is a left

fibration. In particular, Cp/ is itself an ∞-category. Dually, C/p is also an ∞-category.
• Let p : C → D ∈ Cat∞ be an equivalence of ∞-categories and let j : K → C ∈ s Set, then the

induced map Cj/ → Dpj/ is an equivalence of∞-categories. The dual holds for undercategories.
In particular, the overcategories and undercategories are categorial constructions, by(3.5.3.23).

Proof: 1: We use the proposition(3.5.3.35) in case S = ∆0, A = ∅, X = C.
2: There is a factorization Cj/

f−→ Dpj/×D C
g−→ Dpj/. (3.6.1.23)(3.6.1.24) shows Cj/ and Dpj/×D

C are fiberwise equivalent left fibrations over C, thus by(3.5.7.7) and(3.5.7.10), f is a categorical
equivalence. Also, g is a categorical equivalence by(3.5.7.11). So we are done. ?Cf.[HTT, P135]. □
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Prop.(3.6.1.25)[Lifting of Homotopies].Let p : C→ D be a categorical equivalence of∞-categories
and A ⊂ B be an inclusion of simplicial sets. Let f0 : A → C, g : B → D be any maps that
h0 : A×∆1 → D be an equivalence between g|A and p ◦ f0, then there exists a map B → C and an
equivalence h : B ×∆1 → D between g and p ◦ f that h0 = h|A×∆1 .

Proof: Working with simplexes, it suffices to prove for A = ∂∆n ⊂ B = ∆n. The case n = 0 is
true because categorical equivalence is essentially surjective. For n > 0, we need to construct h from
h|∆n×{0}

⨿
∂∆n×∆1 , and this is a composition of pushout of Λn+1

k ⊂ ∆n+1. For k ̸= 0, the extension
is clear because D is ∞-category, and for k = 0, we need to use [HTT, P136]. □

∞-Groupoids(or Kan Complexes/Spaces)

Def.(3.6.1.26) [∞-Groupoid].An ∞-groupoid or an anima is an ∞-category C that Ho(C) is a
groupoid(3.6.1.5), or equivalently, all morphisms are equivalences. The full subcategory of Cat∞
consisting of ∞-groupoids are denoted by Grpd∞.

Prop.(3.6.1.27)[∞-Groupoids⇐⇒ Kan Complex].For C ∈ s Set, the following are equivalent:
• C is an ∞-groupoid.
• C→ ∆0 is a left fibration.
• C→ ∆0 is a right fibration.
• C is a Kan complex.

Proof: 1, 2 are equivalent by(3.6.1.18), and dually 1, 3 are equivalent, and 4 = 2 + 3. □

n-Categories

Def.(3.6.1.28)[n-Categories].For C ∈ s Set and n ≥ −1, then C is called an n-category if it is an
∞-category and:

• Given any maps f, f ′ : ∆n → C that are homotopic(3.6.1.15) relative to ∂∆n, then f = f ′.
• For any m > n and maps f, f ′ : ∆m → C that coincide on ∂∆m, then f = f ′.

Also C is called an (−2)-category iff it is isomorphic to ∆0.
The definition of an n-category is equivalent to the following: if f, f ′ : K → C satisfies f |sknK is

homotopic to f ′|sknK relative to skn−1K, then f = f ′.

Cor.(3.6.1.29). If C is an n-category and m > n, then the restriction map Hom(∆m,C) →
Hom(∂∆m,C) is bijective.(use ∞-category property to extend).

Prop.(3.6.1.30).A (−1)-category is seen to be isomorphic to ∅ or ∆0. A 0-category is equivalent to
the nerve of a partially ordered set.

Proof: □

Prop.(3.6.1.31)[Cat and Cat1].For a simplicial set S, the following are equivalent:
• u : S → N(hS)(3.5.3.3) is an isomorphism of simplicial sets.
• There is a small category C that S ∼= N(C).
• S is a 1-category.
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Proof: It suffices to show 3 → 1: we induct on the dimension: n = 0 is trivial and n = 1 follows
from the definition of 1-category(3.6.1.28). For n > 1, the injectivity of u follows from induction
hypothesis and(3.6.1.28), and for surjectivity, for a map ∆n → N(hS), choose 0 < i < n and let lift
Λni to S, then use the fact S is an ∞-category to lift to ∆n, and now it coincide on N(hS) because
it is a nerve of a category. □

Prop.(3.6.1.32). If C is an n-category, then for any simplicial set X, CX is also an n-category.
Proof: This is because skp(K × X) ⊂ skp(K) × X for any simplicial set K and integer p, and
use(3.6.1.28). □

Prop.(3.6.1.33).Let n ≥ 1 and C an ∞-category, then C is an n-category iff it satisfies the unique
lifting property w.r.t. the inclusion Λmi ⊂ ∆m, where 0 < i < m.
Proof: Cf.[HTT, P109]. □

Def.(3.6.1.34)[n-Truncated Kan Complexes].Let X be a Kan complex and k ≥ −1, then a Kan
complex is called k-truncated if for every i > k and every point x ∈ X, we have πi(X,x) ∼= ∗. And
it is called (−2)-truncated if it is contractible.

Prop.(3.6.1.35).A (−1)-truncated Kan complex is either empty or contractible. A 0-contractible
Kan complex is a Kan complex that X → π0(X) is a homotopy equivalence.

Proof: ?. □
Prop.(3.6.1.36) [Equivalent to an n-Category].Let C be an ∞-category and n ≥ −1, then the
following conditions are equivalent:

• There is a minimal model C′ ⊂ C that is n-truncated.
• C is categorically equivalent to an n-truncated category.
• For any X,Y ∈ C, the mapping space Map(X,Y ) is (n− 1)-truncated.

Proof: Cf.[HTT, P112]. □
Cor.(3.6.1.37).A Kan complex is categorically equivalent to an n-category iff it is n-truncated.

Proof: Cf.[HTT, P113]?. □
Cor.(3.6.1.38).Let C be an ∞-category and K a simplicial set, if Map(C,D) is n-truncated for any
objects C,D ∈ C, then the ∞-category CK has the same property.
Proof: Cf.[HTT, P114]. □

2 ∞-Category of ∞-Categories

Def.(3.6.2.1)[Models on s Set+].There is a simplicial model structure on s Set+(3.5.3.51) s.t. the
fibrant and cofibrant objects are exactly objects of the form C♮ where C is an ∞-category, and
C♮ = (C, EC) where EC is the set of equivalences in C(3.6.1.5).

Proof: ? □
Def.(3.6.2.2) [Cat∞].The underlying ∞-category Cat∞ = N∆(s Set+

cf ) of s Set+ is called the ∞-
category of ∞-category of ∞-categories. It can be verified that the fundamental category
of Cat∞ consists of equivalent classes of ∞-categories.

Def.(3.6.2.3) [Relative Mapping Spaces].Let p : X → S, q : Y → S ∈ s Set, then define
MapS(X,Y ) = MapCat∞ /T (X,Y ) ∈ s Set.
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(∞, n)-Categories

Def.(3.6.2.4)[(∞, n)-Categories].For n ∈ N, an (∞, n)-category is an ∞-category s.t. for k > n,
any k-maps is invertible?. In particular, an (∞, 0)-category is just an ∞-groupoid.

Def.(3.6.2.5) [Grpd∞].The underlying ∞-category N∆(Kan) of s Set with the Joyal model struc-
ture(3.5.4.19) is denoted by Grpd∞. Then it is an sub-∞-category of Cat∞, and it is an (∞, 1)-
category.

Proof: ? □

3 Limits and Colimits
Remark(3.6.3.1)[Universal Properties].The objects in an∞-category characterized by a universal
property will be a contractible Kan complex.

Def.(3.6.3.2) [Final Objects].For C ∈ Cat∞, x ∈ C is called a final object if the canonical map
C/x → C ∈ s Set is a trivial Kan fibration. Equivalently, for any y ∈ C, MapRC (y, x) is a contractible
Kan complex. It is clear that the sub-∞-category of final objects in C is either empty or a contractible
Kan complex.

Dually we can define initial objects.

Proof: If x is a final object, then MapRC (y, x) is the fiber of C/x → C over x(3.6.1.20), so it is a
contractible Kan-complex by(3.6.1.27). The converse follows from(3.5.3.45). □

Cor.(3.6.3.3).For C ∈ Cat∞ with a final object ∗, we fix a final object, then there is a section C→ C/∗,
which maps each C ∈ C to a morphism C → ∗ ∈ C. We fix such a morphism. The dual is true for
initial objects.

Prop.(3.6.3.4). If C ∈ Cat∞ and ∗ ∈ C is final, then for any diagram p : K → C, ∗ is also final in
Cp/.?

Def.(3.6.3.5)[Limits and Colimits].For C ∈ Cat∞ and p : K → C ∈ Cat, a colimit of p is defined
to be an initial object of Cp/, and a limit of p is defined to be a final object of C/p. By(3.6.3.2),
(co)limits are defined up to a contractible choice, and we may use (lim−→p

) lim←−p to denote any one of
them.

Def.(3.6.3.6).For C,D ∈ Cat∞, let FuncL(C,D) denote the sub-∞-category of Func(C,D) consisting of
functors preserving colimits, and let FuncR(D,C) denote the sub-∞-category of Func(D,C) consisting
of functors preserving limits.

Prop.(3.6.3.7).For C,D ∈ Cat∞, there is a natural equivalence of ∞-categories FuncL(C,D) ∼=
FuncR(D,C)op.

Proof: Cf.[Lur09]P356. □

Cofinal Diagrams

Def.(3.6.3.8)[Cofinal Maps].A cofinal map p : S → T ∈ s Set is a map s.t. for any right fibration
X → T ∈ s Set,

MapT (T,X)→ MapT (S,X) ∈ s Set(3.6.2.3)

is a homotopy equivalence.
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Prop.(3.6.3.9) [Cofinal Maps give Same Colimits].For v : K ′ → K ∈ s Set, the following are
equivalent:

• v is cofinal.
• for any C ∈ Cat∞ and p : K → C ∈ s Set, the induced map Cp/ → Cp◦v/ is an equivalence of
∞-categories.

Proof: Cf.[Lur09]P226. □

Computing Diagrams

Prop.(3.6.3.10) [Reducing to Coherent Colimits].For any K ∈ s Set, there exists a category
I ⊂ Cat and a cofinal map N(I)→ K ∈ s Set.

Proof: Cf.[Lur09]P255. □

Prop.(3.6.3.11)[Colimits in Overcategories].Let C ∈ Cat∞ and q : T → C ∈ s Set, p : K → C/q,
and p0 : K p−→ C/q → C. If p0 has a colimit, then

• p also has a colimit, and the colimit is preserved by the pr : C/q → C.
• x ∈ C/q is a colimit of p iff pr(x) ∈ C is a colimit of p0.

Proof: Cf.[Lur09]P48. □

Cor.(3.6.3.12)[Colimits in Diagram Categories].For K,S ∈ s Set, let C be an ∞-category that
admits K-indexed colimits, then

• the ∞-category Func(S,C)(3.6.1.13) also admits K-indexed colimits.
• p : K▷ → Func(S,C) is a colimit diagram iff for each C ∈ C, the evaluation pC : K▷ → C is a

colimit diagram.

Proof: Cf.[Lur09]P315. □

Kan Extensions

Def.(3.6.3.13)[p-Left Kan Extensions].For a commutative diagram of ∞-categories

C0 D

C D′

F0

pF ,

F is called a p-left Kan extension of F0 if for any C ∈ C, the induced diagram

C0
/C D

(C0
/C)▷ D′

FC

pF ,

exibits C as a p-colimit? of FC .
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Lemma(3.6.3.14) [Existence of p-Left Kan Extensions].Given a commutative diagram of ∞-
categories

C0 D

C D′

F0

pF ,

then there exists a p-left Kan extension F iff for any C ∈ C the composition

C0
/p → C0 F0−→ D

admits a p-colimit.

Proof: Cf.[Lur09]P282. □

Lemma(3.6.3.15).Let C → D′ p←− D ∈ Cat∞ where p is a Joyal-fibration, and C0 ⊂ C a full subcate-
gory, the the restriction functor

i∗ : FuncD′(C,D)→ FuncD′(C0,D)

has right lifting property w.r.t. all ∂∆n → ∆n s.t. the map ∂∆n maps {0} to a functor F : C → D

which is a p-left Kan extension(3.6.3.13) of F |C0 ,

Proof: Cf.[Lur09]P279. □

Prop.(3.6.3.16).Let C→ D′ p←− D ∈ Cat∞ where p is a Joyal-fibration, and C0 ⊂ C a full subcategory.
Let

• K ⊂ FuncD′(C,D) be the full subcategory of functors F : C → D which are p-left Kan exten-
sions(3.6.3.13) of F |C0 ,

• K′ ⊂ FuncD′(C0,D) be the category of functors F0 : C0 → D s.t. for any C ∈ C, the induced
functor C0

/C → D has a p-colimit.
Then the restriction functor i∗ : K→ K′ is a trivial Kan fibration.

Proof: This follows immediately from(3.6.3.14) and(3.6.3.15). □

Cor.(3.6.3.17)[Functorial Left Kan Extensions].Let C → D′ p←− D ∈ Cat∞ where p is a Joyal-
fibration, and C0 ⊂ C a full subcategory. Suppose that every functor F0 : C0 → D over D′ admits a
p-left Kan extension(3.6.3.13), then the restriction

i∗ : FuncD′(C,D)→ FuncD′(C0,D)

admits a section i! whose essential image are exactly those F which are p-left Kan extension of F |C0 .
Any such i! is called the left Kan extension functor. Moreover, this i! is left adjoint to i∗:

i∗ : FuncD′(C,D) −−−⇀↽−−− FuncD′(C0,D) : i!

Proof: Cf.[Lur09]P284. □

4 Adjunctions

Correspondences

Def.(3.6.4.1) [Correspondence].Let C,D be ∞-categories, an correspondence between C,D is
defined to be an ∞-category M and a map M→ ∆1 s.t. C ∼= M0 and D ∼= M1.
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Adjunctions

Def.(3.6.4.2)[Adjunctions].An adjunction between ∞-categories C,D ∈ Cat∞ is a map q : M →
∆1 ∈ s Set that is both Cartesian fibration and coCartesian fibration, together with equivalences
M{0} ∼= C,M{1} ∼= D.

If M→ ∆1 is an adjunction and f : C→ D, g : D→ C are the associated functors, then f is said
to be left adjoint to g and g is said to be right adjoint to f .

Def.(3.6.4.3) [Unit Transformations].For a pair of functors f : C → D, g : D → C between ∞-
categories, a unit transformation for (f, g) is a morphism u : id→ g ◦ f ∈ Func(C,C) s.t. for any
C ∈ C, D ∈ D, the composition

MapD(f(C), D) g−→ MapC(gf(C), g(D)) u(C)−−−→ MapC(C, g(D))

is a homotopy equivalence.

Prop.(3.6.4.4) [Unit Transformations and Adjunctions].For a pair of functors f : C → D, g :
D→ C, f is left adjoint to g iff there is a unit transformation u : id→ g ◦ f .

Proof: Cf.[Lur09]P339. □

Prop.(3.6.4.5)[Adjunction and Limits].Left adjoints between∞-categories preserve small colimits
and right adjoints between ∞-categories preserves small limits.

Proof: Cf.[Lur09]P345. □

Localizations

Def.(3.6.4.6)[Localization of ∞-Categories].A functor C → D ∈ Cat∞ is called a localization
of ∞-category if it admits a fully faithful right adjoint.

5 Presentable ∞-Categories

∞-Categories of Presheaves

Def.(3.6.5.1)[∞-Category of Presheaves].For S ∈ s Set, there exists an ∞-category PShSet
∞ (S) =

Func(Sop, S) ⊂ Cat∞ by(3.6.1.13), called the∞-category of presheaves on S. More generally, for
any C ∈ Cat∞, PShSet

∞ (S;C) = Func(Sop,C) is called the ∞-category of C-valued presheaves on
S.

Prop.(3.6.5.2)[Cocompleteness].For S ∈ s Set and C ∈ Cat∞ that is cocomplete, then PSh(S;C) is
also cocomplete by(3.6.3.12). In particular, PShSet

∞ (S) is cocomplete.

Def.(3.6.5.3)[Yoneda Embedding].For K ∈ s Set, let C = C[K], then the mapping space construc-
tion defines a map

Cop × C→ Kan : (X,Y ) 7→ Sing |MapC(X,Y )|

by(3.5.3.42). And there is a natural map C[Kop ×K]→ Cop × C, so we have a map

C[Kop ×K]→ Kan

which corresponds to a map
Kop ×K → N∆(Kan) = Grpd∞ .
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and induces a map
よ∆ : K 7→ Func(Kop,Grpd∞) = PShSet

∞ (K),

When C ∈ Cat and K = N(C) this is compatible with the usual Yoneda embedding composed with
simplicial enhencement, so it is called the the Yoneda embedding.

Prop.(3.6.5.4) [∞-Categorical Yoneda Lemma].For K ∈ s Set, the Yoneda embedding(3.6.5.3)
よ : K → PShSet

∞ (K) is fully faithful.

Proof: Cf.[Lur09]P316. □

Prop.(3.6.5.5). let C ∈ Cat∞, then よ∆ : C→ PShSet
∞ (C) preserves all small limits.

Proof: Cf.[Lur09]P316. □

Lemma(3.6.5.6).Let S ∈ s Set, and C ∈ Cat∞, then
• Any functor F : PShSet

∞ (S)→ C is a left Kan extension of f |S iff f preserves all small colimits.
• If C is cocomplete, then any functor S → C has a left Kan extension PShSet

∞ (S)→ C.

Proof: Cf.[Lur09]P322. □

Thm.(3.6.5.7) [∞-Categorical Yoneda Extensions].Let S ∈ s Set and C be a cocomplete ∞-
category, the Yoneda embedding よ∆ : S → PShSet

∞ (S) induces an equivalence of ∞-categories

FuncL(PShSet
∞ (S),C) ∼= Func(S,C).

Proof: This follows from(3.6.3.17) and(3.6.5.6). □

Cor.(3.6.5.8).For S ∈ s Set, PShSet
∞ (S) is generated by S under small colimits. In particular, Grpd∞

is generated by ∆0 under small colimits.

Proof: If C ⊂ PShSet
∞ (S) is a strictly full subcategory stable under small colimits containing よ∆(S),

then C is cocomplete by(3.6.5.2), and then よ∆ : S → C is of the form F ◦よ∆ by(3.6.5.7) where
F : PShSet

∞ (S) → C preserves small colimits. Then we can regard F as a self-map of PShSet
∞ (S) that

is identity on id : S → S. Thus by(3.6.5.7) again, F is equivalent to idS . Thus every object of
PShSet

∞ (S) is equivalent some elements in C, so C = PShSet
∞ (S). □

Accessible ∞-Categories

Presentable ∞-Categories

Def.(3.6.5.9)[Presentable ∞-Category].An ∞-category is called a presentable ∞-category if
it is accessible and cocomplete.

Prop.(3.6.5.10)[Simpson].For C ∈ Cat∞ is presentable iff it is an accessible reflective localization?
of an PShSet

∞ (D) for some D ∈ Cat∞.

Proof: Cf.[HTT, P5.5.1.1]. □

Prop.(3.6.5.11).A presentable ∞-category is complete.

Proof: Cf.[HTT, P5.5.2.4]. □
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Prop.(3.6.5.12) [Presentable ∞-Categories as Simplicial Model Categories]. C ∈ Cat∞ is
presentable iff it is equivalent to the underlying category N∆(Mcf ) for some combinatorial simplicial
model category M.

Proof: □

Thm.(3.6.5.13) [Adjoint Functor Theorem].Let F : C → D be a functor between presentable
∞-categories, then

• F admits a right adjoint iff it preserves small colimits.
• F admits a left adjoint iff it preserves small limits and κ-filtered colimits for some regular

cardinal κ.

Proof: [HTT. 5.5.2.9]. □

Compactly Generated ∞-Categories

Def.(3.6.5.14).

6 ∞-Topoi
7 Topological Cyclic Homology(Scholze)
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3.7 Homological Algebra
Main references are [Sta]and [G-M03].

1 Additive Category
Def.(3.7.1.1)[Preadditive Categories]. a preadditive category is a category A that satisfies:

• A1: A is enriched over the Cartesian category of Abelian groups.

Def.(3.7.1.2) [Zero Element].Let A be a preadditive category and x ∈ A, then the following are
equivalent:

• x is initial.
• x is final.
• idx = 0 ∈ Mor(x, x).

Such an element is called a zero element in A, denoted by 0. If 0 exists, then a morphism α : x→ y
factors through 0 iff α = 0.

Proof: Cf.[Sta]00ZZ. □

Cor.(3.7.1.3).An additive functor transforms a zero object to a zero object.

Prop.(3.7.1.4)[Finite Direct Sums]. If A is a preadditive category and x, y ∈ A. If one of x × y
and x⨿ y exists, then so does the other, and they are isomorphic, called the direct sum of x, y.

Proof: Cf.[Sta]0101. □

Def.(3.7.1.5) [Additive Functors].A functor between preadditive categories F : C → D is called
additive if it is a morphism of Ab-enriched categories.

Def.(3.7.1.6)[Kernels, Cokernels, Images and Coimages].Let A be a preadditive category and
f : X → Y is a map, then

• the kernel of f is the fiber product
ker(f) X

0 Y

f .

• the cokernel of f is the fiber pushforward
X Y

0 Coker(f)

f

.

• the image of f is the cokernel of the kernel.
• the coimage of f is the kernel of the cokernel.

Cor.(3.7.1.7). If they exist, then kernel and coimage are monomorphisms, and cokernel and image
are epimorphisms, by general non-sense.

Prop.(3.7.1.8). If the image and coimage of f exist, then there is a natural decomposition f : X →
Im(f)→ Coim(f)→ Y , by the universal property.

Def.(3.7.1.9)[Exact Sequence].A diagram X
f−→ Y

g−→ Z is an exact sequence if f is the kernel of
g and g is the cokernel of f .
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Additive Categories

Def.(3.7.1.10)[Additive Categories].A preadditive category A is called an additive category iff
moreover it satisfies

• A2:There exists an element that is both initial and final, called the zero element.
• A3: A admits finite sums and finite products, and they are equal. Also, the sum induce the

Abelian structure of Hom(X,Y ).

Prop.(3.7.1.11) [Characterizing Direct Sum Decompositions]. If A is a preadditive category
with zero object, x, y, z ∈ A, then z is the product and sum of x, y in A iff there are four morphism
that satisfies some identities.

Proof: Cf.[Sta]0102. □

Cor.(3.7.1.12).An additive functor between additive categories transforms finite direct sums to direct
sums.

Def.(3.7.1.13)[Kernel of an Additive Functor].The kernel of an additive functor between additive
categories is is the full subcategory of objects that are mapped to 0.

Def.(3.7.1.14)[Compact Object].Let D be an additive category with arbitrary direct sums, then a
compact object K ∈ D is an object that⊕

i

Hom(K,Ei)→ Hom(K,
⊕
i

Ei)

is bijective for any set I and objects Ei ∈ D.

Karoubian Categories

Def.(3.7.1.15) [Karoubian Categories].A Karoubian category is an additive category C that
satisfies the following equivalent conditions:

• Every idempotented endomorphism of an object of C has a kernel.
• Every idempotented endomorphism of an object of C has a cokernel.
• Every idempotented endomorphism p : z → z induces a direct sum decomposition z = x ⊕
y(exists by A3) that p corresponds to the projection z → x.

Proof: 1→ 3: Let p : z → z be an idempotent, let x = ker(p), y = ker(1− p), then there are maps
x→ z, y → z. Then p : z → z factors through z → y → z. Similarly (1− p) : z → z factors through
z → x→ z. Then it can be verified that z = x⊕ y is a direct sum decomposition(3.7.1.11).

2→ 3 is dual.
3→ 1, 3→ 2 are easy by(3.7.1.11). □

Prop.(3.7.1.16).Let D be a preadditive category,
• if D has countable products and kernels of morphisms that have a right inverse, then D is

Karoubian.
• Dually, if D has countable coproducts and cokernels of morphisms that have a left inverse, then

D is Karoubian.
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Proof: Given any idempotented morphism e : X → X, e has a kernel iff W 7→ ker(Mor(M,X) e−→
Mor(M,X)) is representable. Notice that for any Abelian group A,

ker(e : A→ A) = ker(Φ :
∏
Z

A→
∏
Z

A)

where
Φ(a1, a2, . . .) = (ea1 + (1− e)a2, ea2 + (1− e)a3, . . .)

and it has a right inverse

Ψ(a1, a2, . . .) = (a1, (1− e)a1 + ea2, (1− e)a2 + ea3, . . .)

thus the kernel exists. □

2 Exact Categories
Main references are [Exact categories, Theo].

Def.(3.7.2.1) [Exact Categories].Let C be an small additive category and E be a set of short
sequences

0→ X → Y → Z → 0

in C. If 0 → X
φ−→ Y

ψ−→ Z → 0 is in E , then we call φ an admissible monomorphism and ψ an
admissible epimorphism. then (C, E) is called an exact category if it satisfies:

• Ex1: For any complex 0→ X
φ−→ Y

ψ−→ Z → 0, φ is the kernel of ψ and ψ is the cokernel of φ.
• Ex2: For any X,Y ∈ C, 0→ X → X × Y → Y → 0 is in E .
• Ex3: E is saturated in the category of short sequences.
• Ex4: if f, g are admissible monomorphisms, then so is gf .
• Ex5: If f is an admissible monomorphism, then any pushout of f exists and is an admissible

monomorphism.
• Ex6: If g is an admissible epimorphism, then any pullback of g exists and is an admissible

epimorphism.

Cor.(3.7.2.2). If C is an Abelian category and E the set of all exact sequences in C, then (C, E) is an
exact category.

Cor.(3.7.2.3). If (C, E) is an exact category, then
• Ex7: if f : X → Y ∈ C is a morphism having a kernel and there is a morphism g : Z → X

that fg is an admissible monomorphism, then so is f . Dual argument holds for admissible
epimorphisms.

Proof: Cf.[Bernhard Keller, Chain complexes and stable categories, P28].? □

Def.(3.7.2.4)[Geometric Exact Categories].A geometric exact category consists of an exact
category (C, E) and a mapping A from Ob(C) to Set together with morphisms:

• a morphism f∗ : A(X)→ A(Y ) for any admissible monomorphism f : X → Y .
• a morphism g∗ : A(X)→ A(Z) for any admissible epimorphism g : X → Z.
that satisfies the following axioms:
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• A1: A(0) = pt.
• A2: If i, j are admissible monomorphisms, then (ji)∗ = i∗j∗.
• A3: If p, q are admissible epimorphisms, then (qp)∗ = q∗p∗.
• A4: id∗

X = (idX)∗ = idA(X).
• A5: If f : X → Y is an isomorphism, then f∗f∗ = f∗f

∗ = id.

• A6: For any Cartesian and Cocartesian diagram
X Y

Z W

u

p q

v

, if u is admissible monomorphism

or q is admissible epimorphism, then v∗q∗ = p∗u
∗.

• A7: If X u−→ Y
v−→ Z is a diagram in C that u is an admissible epimorphism and v is an

admissible monomorphism, and if hX ∈ A(X), hZ ∈ A(Z) satisfy u∗(hX) = v∗(hZ), then
there exists h ∈ A(X ⊕ Z) that (id, vu)∗(h) = hX and π2∗(h) = hZ . (Notice (id, vu) is an
admissible monomorphism because it is composition of X → X ⊕ Z with the isomorphism
(π1, vuπ1 + π2) : X ⊕ Z → X ⊕ Z.

For any X ∈ C, an element of A(X) is called a geometric structure on X.
Exact categories can be viewed as geometric exact categories by asserting A(X) = pt for all

X ∈ C.

Def.(3.7.2.5)[Morphisms compatible with the Geometric Structure].Let (C, E , A) be a geo-
metric exact category, if (X ′, h′), (X ′′, h′′) are two geometric objects, then a morphism f : X ′ → X ′′

is said to be a morphism compatible with the geometric structure if there exists a geomet-
ric object (X,h) and an admissible monomorphisms u : X ′ → X and an admissible epimorphism
v : X → X ′′ that h′ = u∗(h) and h′′ = v∗(h) and f = vu.

The composition of two morphisms compatible with the geometric structure is also a morphism
compatible with the geometric structure.

We denote CA the category of geometric objects of C, and EA the set of diagrams of geometric
objects 0 → X ′ u−→ X

v−→ X ′′ → 0 that the underlying diagram is in E and u, v are compatible with
the geometric structures.

Prop.(3.7.2.6)[Hermitian Spaces].The f.d. Hermitian spaces over C or f.d. normed vector spaces
over R form a geometric exact category.

Proof: Cf.[Harder-Narasimhan Categories, P4]. □

Prop.(3.7.2.7)[F.D. Ultranormed Banach Spaces].Let K be a complete valued field, then the
category of f.d. ultranormed Banach spaces over K(12.2.4.5) is a geometric exact category.

Proof: It suffices to check axiom A7, but vu has norm≤ 1, and for any φ : E → F of norm≤ 1, we
can endow E ⊕ F with the maximum norm, then in the decomposition E (id,φ)−−−→ E ⊕ F π2−→ F , we
have (id, φ)∗(h) = hE and (π2)∗(h) = hF . □

Prop.(3.7.2.8)[Filtrations in an Abelian Category].The filtrations(3.2.3.1) in an Abelian cate-
gory form a geometric exact category.

Proof: Cf.[Harder-Narasimhan Categories, P5]. □
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Def.(3.7.2.9)[K0 Group].Let A be an exact category, then K0-group K0(A) is defined to be the
quotient Abelian group ⊕

[0→A→B→C→0]∈E
Z→

⊕
A∈C

Z→ K0(A)→ 0,

where e0→A→B→C→0 is mapped to eB − eA − eC .

3 Abelian Categories
Def.(3.7.3.1)[Abelian Categories].An Abelian category A is an additive category that satisfies
the follows axiom:

• A4: A admits kernels and cokernels, and for any morphism f ∈ A, the natural map Im(f)→
Coim(f) are isomorphisms.

Remark(3.7.3.2).WARNING: An additive category that epimorphism+monomorphism is isomor-
phism need not be an Abelian category. Cf.[https://mathoverflow.net/questions/41722/
is-every-balanced-pre-abelian-category-abelian] for a counter-example.

Prop.(3.7.3.3). In an Abelian category, the functor X 7→ Hom(X,Y ) and X 7→ Hom(Y,X) is both
left exact.(Note that left and right is seen on the image).

Def.(3.7.3.4) [Injectives and Surjectives].A morphism f is an Abelian category A is called an
injection if ker f = 0. It is called a surjection if Coker f = 0. f is an injection iff it is a
monomorphism, it is a surjection iff it is an epimorphism.

Prop.(3.7.3.5).Axiom A3 asserts the good existence of product and sum of objects as we wanted,
and it can be used to prove that monomorphism and epimorphism are stable under pushout and
pullback.

But this uses A4 strongly, Cf.[MacLane Categories for working mathematicians P203]. (For
epimorphism, first prove 0→ X ×U Y → X × Y → U → 0 is exact when X → U is epi).

Prop.(3.7.3.6). equalizer and finite product derives finite limit, thus finite limits and finite colimits
exists in Abelian categories.

Prop.(3.7.3.7)[Mitchell’s embedding theorem]. If A is a small Abelian category, then there exists
a unital ring R, not necessary commutative and a fully faithful and exact functor A → R−Mod that
preserves kernel and cokernel. WARNING: it may not preserve sum and product, let alone limits
and colimits.

Proof: □

Prop.(3.7.3.8). If C,A are categories and A is Abelian, then Hom(C,A) is an Abelian category. In
particular, Ch(A) is Abelian.

Localization

Prop.(3.7.3.9)[Localization Category]. If C is a preadditive category and S is a left or right local-
izing system of C, then there exists a natural additive structure on S−1C and a localizing functor
C→ S−1C that is additive.

Proof: Cf.[Sta]05QD. □

https://mathoverflow.net/questions/41722/is-every-balanced-pre-abelian-category-abelian
https://mathoverflow.net/questions/41722/is-every-balanced-pre-abelian-category-abelian
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Lemma(3.7.3.10). If C is additive and S is localizing, let X be an element of C, then: Q(X) = 0 iff
there is a morphism 0 : X → Y that is an element of S iff there is a morphism 0 : Z → X that is an
element of S iff there is a morphism 0 : Z → X that is an element of S

Proof: If such 0 : X → Y ∈ S, then it maps to isomorphisms in S−1(C) by(3.1.1.57), so Q(X) = 0.
If Q(X) = 0, then the morphism 0→ X is mapped to an isomorphism, so by(3.1.1.59), there are g, h
that fg = hf = 0, so Z → 0→ X ∈ S. Dually for the other direction. □

Prop.(3.7.3.11)[Localized Abelian Categories]. If A is Abelian and S is localizing, then S−1A is
an Abelian category and A→ S−1A is exact.

Proof: By(3.1.1.57) and its dual, A→ S−1A preserves finite limits and colimits. □

Serre Subcategory

Def.(3.7.3.12)[Serre Subcategories].A Serre subcategory of an Abelian category is a non-empty
full subcategory C that if

A→ B → C

is exact and A,C ∈ Ob(C), then B ∈ Ob(C).
A weak Serre subcategory of an Abelian category is a non-empty full subcategory C that if

A→ B → C → D → E

is exact and A,B,D,E ∈ C, then C ∈ C.

Prop.(3.7.3.13).
• A Serre category is equivalent to a full subcategory A that contains 0, all the subobjects and

quotient objects of A, and extensions of objects of A are in A.
• A weak Serre category is equivalent to a full subcategory A that contains 0, and all the kernels,

cokernels between objects in A, and all the extensions of objects in A.
In these cases, A is an Abelian category and the functor i : A→ C is exact.

Proof: One direction of these two are trivial, it suffices to prove the converse. For the first, 0 →
ImA → B → ImB → 0, so B ∈ C. For the second, 0 → Coker(A → B) → C → ker(D → E) → 0,
so C ∈ C. □

Prop.(3.7.3.14)[Quotients by Serre Subcategory].For an exact functor F between Abelian cate-
gories, the kernel of F is a Serre subcategory. And any Serre subcategory is the kernel of an essentially
surjective exact functor Q : A→ A/C, and this functor satisfies the universal property that any exact
functor between Abelian categories F : A→ C that C ⊂ ker(F ) factors uniquely through A/C.

Proof: The full subcategory of ker(F ) is clearly a Serre subcategory by checking the definition.
Conversely, consider S =all the morphisms that has kernel and cokernel in C, first we prove it is a
localizing system(3.1.1.54).

The long exact seuqence(3.7.5.4) shows that if f, g ∈ S, then gf ∈ S. For other verifications,
Cf.[Sta]02MS?.

Next we construct C/A as S−1C. Consider which objects are mapped to 0 in C/A, use(3.7.3.10)
and consider the kernel and cokernel, it is easy to see that ker(Q) = C. If another category D and
F : C → D satisfies C is mapped to0, then it is clear that elements in S is mapped to isomorphism,
so it factors through C/A by universal property(3.1.1.57). □
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Prop.(3.7.3.15)[K0 Group of Serre Subcategory].Let A be an Abelian category and C a Serre
subcategory, with A/C = B(3.7.3.14). Then

• The exact functors C→ A→ B induces an exact sequence

K0(C)→ K0(A)→ K0(B)→ 0,

• The kernel of K0(C)→ K0(A) is generated by elements of the form

[ker(ψ)/ Im(φ)]− [ker(φ)/ Im(ψ)]

where φ,ψ : M →M are pairs of maps that φ ◦ ψ = ψ ◦ φ = 0.

Proof: Cf.[Sta]02MX. □

Artinian Abelian Categories

Def.(3.7.3.16) [Artinian Abelian Categories].An Artinian Abelian category is an Abelian
category that

• Hom(A,B) are all f.d. vector spaces over k.
• Then length of any filtrations 0 = X0 ⊂ X1 ⊂ . . . ⊂ Xl = X for any object X is bounded. The

maximal length is called the length of X.

Prop.(3.7.3.17)[Jordan-Holder].Let C be an Artinian category, then any maximal length filtration
of an element X has the same length, and the set of quotients Xk+1/Xk is the same, up to order.

Proof: □

Others

Def.(3.7.3.18)[Essential Morphism]. In an Abelian category, an injection A→ B is called essential
iff every non-zero subobject of B intersects A. A surjection is called essential iff every proper
subobject of A is not mapped to B.

Def.(3.7.3.19)[Noetherian Abelian Category]. In a Grothendieck Abelian category A, an object
M is called finitely generated if for every ascending chain

M1 ⊂M2 ⊂ . . . ⊂M

with ∪iMi = M , we have Mi = M for some i.
A is called Noetherian iff a subobject of a f.g. object is f.g.. A is called Artinian iff every f.g.

object has finite length?.

Grothendieck Abelian Category

Main references are [Rings of Quotients]

Def.(3.7.3.20) [Grothendieck Abelian Category].A Grothendieck Abelian category is an
Abelian category A satisfying the following axioms:
AB3: It is a locally small cocomplete Abelian category.
AB5: Small filtered colimits are exact. This is equivalent to { for any family of subobjects {Ai} of

A to B indexed by inclusion can induce a morphism ∑
Ai → B (internal sum)}?
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GEN: It has a generator, which is an object U ∈ A s.t. for any proper subobject N ⊊ M , there
is a map U →M that doesn’t factor through N .

Def.(3.7.3.21)[Further Grothendieck Axioms].For a Grothendieck Abelian category A, we can
also formulate the following axioms:
AB4: Arbitrary direct sums are exact.
AB6: For any index set J and filtered categories Ij , j ∈ J and diagrams indexed over Ij , the natural

map
lim−→
ij∈Ij

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism.
Dual Axioms: Axioms with an ∗ meaning that the dual category satisfies something.

Prop.(3.7.3.22). If A is a Grothendieck Abelian category, then so is PShSet(A).

Proof: For the presheaf, the only problem is the existence of generator, for that, just construct
a family of presheaves and sum them. Take ZX = ifX (U), where U is the generator of A and
f = pt→ AC : pt→ U . Then F (X) = Hom(ZX , F ) by adjointness(5.1.2.9). So they are a family of
generators. □

Prop.(3.7.3.23).Any Grothendieck Abelian category has a functorial injective embedding.

Proof: Cf.[Sta]079H.? □

Prop.(3.7.3.24)[Representability on Grothendieck Category].A contravariant functor from a
Grothendieck category to Set is representable iff it takes colimits to limits.

Proof: M ⊕M →M with induce a map F (M)× F (M)→ F (M) thus F (M) is a semigroup, and
the inverse of idM in Hom(M,M) maps to a F (M) → F (M) which is the inverse, Thus in fact F is
a left adjoint functor to Ab.

Let U be a generator, A =
∑
s∈F (U) U , let suniv = (s) ∈ F (A) =

∏
s∈F (U) F (U). let A′ be the

largest objects that suniv restrics to 0 in A′, let suniv be in F (A/A′) that maps to suniv in F (A)
(because F is left exact). Then we claim (A/A′, suniv) represents F . Cf.[Sta]07D7.? □

Cor.(3.7.3.25)[Grothendieck Categories are Cocomplete].Any Grothendieck category satisfies
AB3∗.

Proof: It suffices to show that small direct products exist. And this is because F =
∏
i Hom(−,Mi)

commutes with colimits. □

Prop.(3.7.3.26) [Grothendieck Categories are Locally Presentable].Any Grothendieck cate-
gory is locally presentable. In fact, for an Abelian category with exact filtered colimits, it is a
Grothendieck Abelian category iff it is locally presentable.

Proof: Cf.[Colimits and homological algebra, Krause]Cor5.2.? □

Cor.(3.7.3.27). If F : Cop → Set commutes with small colimits, then F is a left adjoint.

Proof: ? □
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Examples of Grothendieck Category

Prop.(3.7.3.28)[Modules].For R ∈ Alg, ModR is a Grothendieck Abelian category. More generally,
for R,S ∈ Alg, ModR−S = ModR⊗Sop is a Grothendieck Abelian category.

Proof: This is clear, by(4.1.1.24). □

Prop.(3.7.3.29)[Sheaf of Modules]. Sh(O) for a ringed site (C,O) is a Grothendieck Abelian cate-
gory.

Proof: It is obviously an Abelian category and have filtered colimits as presheaves, which are exact
because colimits in the category of Abelian groups are exact, and for a family of generators, take
j!OU as the representative for Γ(U,−), which is the sheaf associated to the sheaf ZU in the proof
of(3.7.3.22). □

Cor.(3.7.3.30).Let C be a site, the categories PSh(C) and Sh(C) are Grothendieck Abelian categories.

Proof: For the presheaf, C.f(3.7.3.22). For the sheaf, it follows from (3.7.3.29). □

Remark(3.7.3.31).The category of Abelian sheaves doesn’t satisfy AB4*, i.e. not every limit of
epimorphisms is epimorphism.

Proof: Consider the constant sheaf ∏ p
q

∈[0,1]B(pq ,
1
q ) on [0, 1]. □

Prop.(3.7.3.32)[Quasi-Coherent Sheaves].For X ∈ Sch, QCoh(X) is Grothendieck category, and
there is a coherentor left adjoint to the forgetful functor.

Proof: Firstly by(5.5.1.3), QCoh(X) is an Abelian category, and on affine open set, the colimit
is an Qco sheaf, thus the colimit exists in Qco and equals the colimit in the category of sheaves,
thus filtered colimits is exact because Mod(OX) is Grothendieck(3.7.3.29). The generator exists,
Cf.[Sta]077P.

The coherentor exists by the fact that hF commutes with colimits and by the property of
Grothendieck category(3.7.3.24). □

4 Chain Complexes

Def.(3.7.4.1)[Chain Complex].A chain complex over an additive category A is?. The category
of complexes over A is denoted by ChZ(A).

Prop.(3.7.4.2).For any Abelian category A, ChZ(A) is an Abelian category.

Prop.(3.7.4.3).The natural inclusion A ⊂ ChZ(A) embeds A as a full subcategory of ChZ(A), and
H0 is just the left adjoint.

An object K ∈ ChZ(A) is called discrete if it is in the essential image of this embedding.

Def.(3.7.4.4)[Shifting of Complexes].Remember the translation operator K[n] makes the complex
lower n dimensions.

Def.(3.7.4.5)[Truncation of Complexes].Let A be an Abelian category and A• ⊂ ChZ(A), there
are several ways to truncate A•:

• The stupid truncation σ≤nA = . . . → An−1 → An → 0 → . . .. There is a morphism
A→ σ≤nA.
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• The stupid truncation σ≥nA = . . .→ 0→ An → An+1 → . . .. There is a morphism σ≥nA→ A.
• The canonical truncation τ≤nA = . . . → An−1 → ker(dn) → 0 → . . .. There is a natural

morphism τ≤nA→ A that induces isomorphism on cohomology groups on degree≤ n.
• The canonical truncation τ≥nA = . . . → 0 → Coker(dn−1) → An+1 → . . .. There is a natural

morphism A→ τ≥nA that induces isomorphism on cohomology groups on degree≥ n.

Cor.(3.7.4.6).There are exact sequences of complexes

0→ τ≤nA
• → A• → τ≥n+1A

• → 0

0→ σ≥n+1A
• → A• → σ≤nA

• → 0

Def.(3.7.4.7)[Cone & Cylinder].The mapping cone of f : K• → L• is the complex C(f)• that:

C(f) = K[1]• ⊕ L•, d(ki+1, li) = (−dKki+1, f(ki+1) + dLl
i)

The mapping cylinder of f : K• → L• is the complex Cyl(f) that:

Cyl(f) = K• ⊕K[1]• ⊕ L•, d(ki, ki+1, li) = (dKki − ki+1,−dKki+1, f(ki+1) + dLl
i)

It is a shame I haven’t see clearly the similarity of this with the topological cone and cylinder, should
study it further.

Def.(3.7.4.8)[Double Complexes].A double complex over an Abelian category is a complex over
Comp(A)(3.7.4.2).

Def.(3.7.4.9)[Totalization].Given a double complex K•,• over an Abelian category A, the associated
total complexes is defined to be

(TotΠ(K))n =
∏

n=p+q
Kp,q, dn =

∏
n=p+q

(dp,q1 + (−1)pdp,q2 )

(Tot⊕(K))n =
⊕

n=p+q
Kp,q, dn =

∑
n=p+q

(dp,q1 + (−1)pdp,q2 )

Def.(3.7.4.10) [Hom Complexes].Let A be an Abelian category and P •, Q• ∈ K(A), we define
Hom complex Hom•(P •, Q•) to be

Homn(P •, Q•) =
∏

Homi(P i, Qn+i),

with the differential giving by d({fk})i = {dfi − (−1)ifi+1d} and suitable signatures.
It is clear that Hn(Hom•(P •, Q•)) = HomK(A)(P •, Q•[n]).

Homotopy Category K(A)

Def.(3.7.4.11)[Homotopies of Complexes].

Def.(3.7.4.12)[K(A)].Let A be an additive category, the homotopy category of complexes K(A)
is the category whose objects are complexes in A and whose morphisms are homotopy classes of
morphism between complexes.
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Prop.(3.7.4.13) [Distinguished Triangle of K∗(A)].For any morphism K• → L•, there exists a
termwise-spliting exact sequence of Complexes commuting in K(A).

K• L•

0 K• Cyl(f) C(f) 0

0 L• C(f) K•[1] 0

α

β

where βα = id and αβ ∼ id. And K• → L• → C(f)→ K•[1] is called a distinguished triangle. Any
exact triple of complexes in Kom(A) is quasi-isomorphic to a distinguished triangle. In fact, we can
define the distinguished triangle in K(A) as that induced by a split exact sequence, Cf.[Sta]014L.

Notice all this can imitate the similar parallel construction in the category of topological spaces.
Proof: Cf.[Gelfand P157] □

Cor.(3.7.4.14)[Long Exact Sequences].A distinguished triangle will induce a long exact sequence
of cohomology groups, for this, just need to verify that the δ-homomorphism and the morphism
C(f)→ K•[1] induce the same map of cohomology groups.

Cor.(3.7.4.15).A morphism of complexes f : K• → L• is quasi-iso iff C(f) is acyclic. It is homotopic
to 0 iff f can be extended to a morphism C(f)→ L.

Prop.(3.7.4.16)[K(A) is Triangulated]. If A is an additive category, then K(A) is a triangulated
category, with shifting functors defined in(3.7.4.4) and distinguished triangles defined in(3.7.4.13).
Proof: Cf.[Sta]014S. □

Prop.(3.7.4.17).An additive functor F : A→ B between additive categories induces an exact functor
K(A)→ K(B). Moreover, this functor maps quasi-isomorphisms to quasi-isomorphisms(3.7.5.1).
Proof: Cf.[Sta]014X. □

Def.(3.7.4.18)[Bounded Subcategories].
Prop.(3.7.4.19).Let A be an Abelian category,

• If A• ⊂ K+(A), then τ≤n(A•)→ A• is a quasi-isomorphism for n sufficiently large.
• If A• ⊂ K−(A), then A• → τ≥nA

• is a quasi-isomorphism for n sufficiently small.

Unbounded Complexes

Lemma(3.7.4.20)[Left Resolutions of Unbounded Complexes].Let A be an Abelian category
and P be a subset of objects of A. Assume that every object of A is a quotient of an object of P,
then for any complex K•, there exists a commutative diagram

P •
1 P •

2 . . .

τ≤1K
• τ≤2K

• . . .

.

where the vertical arrows are quasi-isomorphisms, and each P •
n is a bounded above complex with

terms in P, and each P •
n → P •

n+1 are termwise-split injections and the cokernel is also a complex
with terms in P.
Proof: Cf.[Sta]06XX. □
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5 Cohomology of Complexes
Def.(3.7.5.1)[Quasi-irosmoepwhiss].

Prop.(3.7.5.2)[Five lemma]. In an Abelian category, if there is a diagram

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
s g f h i

Where the rows are exact and g, h are isomorphisms. If i is injective, then f is surjective; if s is
surjective, then f is injective.

Proof: Rotate the diagram counterclockwise 90◦. Then use the two different filtration both con-
verge(3.9.7.8). □

Prop.(3.7.5.3)[Snake lemma]. In an Abelian category, if there is a diagram

∗ ∗ ∗ 0

0 ∗ ∗ ∗

i

f g h

s

where the rows are exact, then there is a long exact sequence

ker f → ker g → kerh→ Coker f → Coker g → Cokerh

And if i is injective, then the first one is injective; if s is surjective, then the last one is surjective.

Proof: Rotate the diagram counterclockwise 90◦. Then use the two different filtration both con-
verge(3.9.7.8). □

Cor.(3.7.5.4). In an Abelian category, if f : A→ B, g : B → C, then there is a long exact sequence:

0→ ker f → ker gf → ker g → Coker f → Coker gf → Coker g → 0.

Proof: Use snake lemma(as modules), there is a diagrams:

A B Coker f 0

0 C C 0

f

gf g

So by Snake lemma,

ker gf → ker g → Coker f → Coker gf → Coker g → 0.

As Abelian category is dual, we can do this dually to get:

0→ ker f → ker gf → ker g → Coker f → Coker gf.

They splint together to get the desired long exact sequence. □
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Prop.(3.7.5.5).For a 3 × 3 diagram of complexes, the connection homomorphism satisfies an anti-
commutative diagram:

Hq−1(Z ′′) Hq(X ′′)

Hq(Z) Hq+1(X)

δ

δ −δ

δ

by(3.7.7.15) as the category K(A) is triangulated.

Prop.(3.7.5.6)[Universal Coefficient Theorem]. Should be somewhere in [Weibel].

Def.(3.7.5.7) [Herbrand Quotient].For a complex of R-modules cyclic of order 2, we define the
additive Herbrand quotient as lengthR(H0) − lengthR(H1), when both are definable and the
multiplicative Herbrand quotient as |H0|/|H1| when they are both finite.

Prop.(3.7.5.8).For an exact sequence 0 → M → N → K → of complexes of cyclic order 2, we have
h(N) = h(M) + h(K) and h∗(N) = h∗(M)h∗(K) in the sense that if two of them are definable, then
so is the third. This is an easy consequence of long exact sequence.

Prop.(3.7.5.9). If each term of this complex has finite length, then h(M) = 0. If each term is finite,
then h∗(M) = 0. This is an consequence of isomorphism theorem. So we have, if a morphism of
complexes has kernel and cokernel finite, then it induce an isomorphism on h or h∗.

Proof: □

6 Injectives & Projectives

Remark(3.7.6.1).The use of injection resolutions can be replaced by the use of ∞-categories.??
Def.(3.7.6.2)[Injective Objects].An injective object in a Abelian category is a I s.t. Hom(−, I)
is an exact functor, equivalently, maps to I can be extended along injections.

A projective object in a Abelian category is a I s.t. Hom(I,−) is an exact functor, equivalently,
maps to I can be pulled back along surjections.

Prop.(3.7.6.3).Product of injective elements are injective, sums of projective elements are projective.

Prop.(3.7.6.4). In an Abelian category, the direct summand of a projective object is projective. (The
summand has definition in an Abelian category).

Prop.(3.7.6.5). If a functor f between Abelian categories is left adjoint to an exact functor, then it
preserves injectives. Dually for projectives.

Prop.(3.7.6.6). If A is an Abelian category, the chain complex category Ch(A) is abelian by(3.7.3.8).
A chain complex P is projective iff it is a split exact complex of projective objects. The same is true
by dual argument for injectives.

Proof: If K is projective, use the surjection C(idK)→ K[1], there is a homotopy between idK and
0. Thus we have x = dhx+hdx. And if dhx = hdy, then dhdy = 0, thus dy = 0, so K = dhK⊕hdK
and thus K[n] = Bn ⊕ Bn+1. Thus K is a direct product of 0 → B → B → 0. And this one is
projective if B is projective. □
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Prop.(3.7.6.7)[Check Injectives]. In a Grothendieck Abelian category with generator U , an object
is injective iff it is extendable over subobjects of U . (AB5 assures we can extend by Zorn’s lemma.
Then use GEN, Cf.[Sta]079G?). If it is a family of objects, it suffice to extend over each one of
them.

Proof:
□

Injective Resolutions

Prop.(3.7.6.8)[Horseshoe Lemma].For a exact sequence 0→ X1 → X → X2 → 0 and a injective
resolution of X1 and X2, there is a injective resolution of X commuting with them. (Choose them
one-by-one, in fact, In = I1

n ⊕ I2
n using the injectivity of I1

n. Snake lemma told us that the cokernel
is an exact sequence, use that to define the next one.

Prop.(3.7.6.9).For two lifting of morphisms X1 → Y1 and X2 → Y2, there is a lifting of the morphism
X → Y compatible with that. Cf.[Weibel P2.4.6].

Prop.(3.7.6.10)[Cartan-Eilenberg Resolution].For a complexK ∈ K+(A), a Cartan-Eilenberg
resolution of K consists of a 2-complex I•,• and a map of complexes K → I•,0 that the induced
complexes:

0→ Ki → Ii,0 → Ii,2 → . . .

0→ Bi(K)→ Bi
x(I•,0)→ Bi

x(I•,1)→ . . .

0→ Zi(K)→ Zix(I•,0)→ Zix(I•,1)→ . . .

0→ H i(K)→ Bi
x(I•,0)→ H i

x(I•,1)→ . . .

are all injective resolutions, and the exact sequences

0→ Bi
x(I•,j)→ Zix(I•,j)→ H i

x(I•,j)→ 0

0→ Zix(I•,j)→ I•,j → Zix(I•,j)→ 0

split.
Then if IB is sufficiently large, for any K in K(B) there is a Cartan-Eilenberg resolution.

Proof: Cf.[Gelfand P210],[Weibel P146].? □

Cor.(3.7.6.11).For a CE resolution of a complex K ∈ K+(B), the spectral sequence can be applied
and shows K → Tot(L) is a quasi-isomorphism, i.e. Tot(L) is a injective resolution of K.

Cor.(3.7.6.12)[Functoriality of Cartan-Eilenberg Resolution]. If f : A→ B is a chain map and
A → P,B → Q are Cartan-Eilenberg resolutions, then there is a double complex map f̃ : P → Q
extending f . And if f is homotopic to g, then f̃ is homotopic to g̃. In other words, we have a functor
K(A)→ K(I••

A )
In particular, for any two Cartan-Eilenberg resolutions P,Q of A and an additive functor F , the

chain complex TotΠ(F (P )) and TotΠ(F (Q)) are chain homotopy equivalent.

Def.(3.7.6.13)[Injective Amplitude].Let A be an Abelian category with sufficiently injectives, then
K ∈ D(A) is said to have finite injective dimension if K ⊂ Db(IA). It is saied to have injective
amplitude in [a, b] iff K ⊂ D[a,b](IA).
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Prop.(3.7.6.14). Suppose A• → I• is an injective resolution of sheaves on (C,O), then the induced
map of presheaves with values in D∞(Z):

|A•| → |I•|

identifies |I•| with the shifification of |A•|.

Proof: ? □

7 Triangulated Categories
Def.(3.7.7.1)[Triangulated Categories].A triangulated category is an additive category D with
an additive automorphism T denoted by X 7→ X[1] and a set of distinguished triangles Tri(D) that
is stable under isomorphism, and satisfying the following axioms:
(TR1): X id−→ X → 0 → X[1] ∈ Tri(D). Any morphism X

u−→ Y can be completed to some
X

u−→ Y → C(u)→ X[1] ∈ Tri(D).
(TR2): X → Y → Z → X[1] ∈ Tri(D) iff Y → Z → X[1]→ Y [1] ∈ Tri(D).
(TR3): Any two consecutive morphisms of two distinguished triangles can be extended to a mor-

phism of distinguished triangles.
(TR4): If X f−→ Y

g−→ Z are morphisms, then there are maps C(f) → C(gf), C(gf) → C(g) by
TR3, Then C(f)→ C(gf)→ C(gf)→ C(g)→ C(f)[1] is distinguished.

A triangulated subcategory is an additive subcategory D′ stable under [1] and [−1] together with
a subclass of triangles in D′ that forms a triangulated category.

Def.(3.7.7.2) [Notations].We use the tuple (X,Y, Z, f, g, h) to represent a distinguished triangle
X

f−→ Y
g−→ Z

h−→ X[1].

Prop.(3.7.7.3).Given (X,Y, Z, f, g, h), (X ′, Y ′, Z ′, f ′, g′, h′), they are both in Tri(D) iff (X ⊕X ′, Y ⊕
Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′) is in Tri(D).

Proof: [Sta]05QS. □

Cor.(3.7.7.4). (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is a distinguished triangle.

Prop.(3.7.7.5).There is a natural notation of a product of triangulated categories.

Def.(3.7.7.6) [Exact Functors].A functor from a triangulated category to an Abelian category is
called (co)homological iff it maps a distinguished triangle to a long exact sequence.

Conversely, a δ-functor is a functor from an Abelian category to a triangulated category together
with a map from the category of exact sequences to the category of distinguished triangles.

A functor F between two triangulated category is called exact iff it maps distinguished triangles
to distinguished triangles, and there is an isomorphism of functors ξ : F ◦ [1]→ [1] ◦ F .

Prop.(3.7.7.7).An exact functor of triangulated categories is additive.

Proof: Cf.[Sta]05QY. □

Def.(3.7.7.8) [Bi-Exact Functors].Let D,D′,E be triangulated categories, a bi-exact bifunctor
F : D×D′ → E is a functor that for any X ∈ D, F (X,−) : D→ E is an exact functor and for any
Y ∈ D′, F (−, Y ) : D→ E is an exact functor. By(3.7.7.7), any bi-exact functor is bi-additive.
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Prop.(3.7.7.9). If (F,G) : D ⇌ D′ is an adjunction pair between triangulated categories and F is
exact, then G is also an exact functor between triangulated categories.

Proof: Use adjunction, we can show that G commutes with [1], and if A → B → C → A[1] ∈
Tri(D′), choose a distinguished triangle G(A)→ G(B)→ X → G(A)[1] ∈ Tri(D), then by (TR3) we
get a map of distinguished triangles (F (G(A)), F (G(B)), F (X))) → (A,B,C), which by adjunction
defines a map of distinguished triangles (G(A), G(B), X) → (G(A), G(B), G(C)), which shows X ∼=
G(C), and then (G(A), G(B), G(C)) is in Tri(D). □

Prop.(3.7.7.10). If (F,G) : D ⇌ D′ is an adjunction pair between triangulated categories and F,G
are exact, F is fully faithful and ker(G) = 0, then this is an equivalence of categories.

Proof: By(3.1.1.31), u : id → gf is an isomorphism. Now for any X ∈ D′, choose a distinguished
triangle (F (G(X)), X → Y ) ∈ Tri(D′), which corresponds to (G(F (G(X))), G(X), G(Y )) ∈ Tri(D),
and by(3.1.1.29), G(X) uX−−→ GFG(X) → G(X) is idX , so we get an isomorphism of triangles
(G(F (G(X))), G(X), G(Y )) ∼= (G(X), G(X), 0), so G(Y ) ∼= 0, and Y = 0 by hypothesis. So
v : FG→ id is also an isomorphism, so (F,G) is an equivalence. □

Lemma(3.7.7.11). If (X,Y, Z, f, g, h) is a distinguished triangle, then g ◦ f = 0.

Proof: By TR1 (X,X, 0, id, 0, 0) is a distinguished triangle, and by TR3 there is a map of distin-
guished triangles

X X 0 X[1]

X Y Z X[1]

f

f g h

,

so g ◦ f = 0. □

Prop.(3.7.7.12).Let D be a triangulated category and C ∈ D be any object, HomD(−, C) and
HomD(C,−) is (co)homological.

Proof: By(3.7.7.3), for any distinguished triangle (X,Y, Z, f, g, h), Hom(C,X) → Hom(C, Y ) →
Hom(C,Z) is 0, and if a ∈ Hom(C, Y ) is mapped to 0 ∈ Hom(C, Y ), then the morphism
(a, 0) : (C, 0) 7→ (Y, Z) extends to a morphism of distinguished triangles (b, a, 0) : (C,C, 0, id, 0, 0)→
(X,Y, Z, f, g, h), thus f ◦ b = a.

The converse case is dual. □

Cor.(3.7.7.13). If (a, b, c) : (X,Y, Z, f, g, h) → (X ′, Y ′, Z ′, f ′, g′, h′) is a morphism of distinguished
triangles that two of a, b, c are isomorphisms, then this is an isomorphism of triangles.

In particular, the completion in TR1 is unique(may up to non-unique isomorphism) by TR3.

Proof: By 5-lemma, Hom(C,X)→ Hom(C,X ′) is an isomorphism, thenX → X ′ is an isomorphism
by Yoneda lemma. □

Prop.(3.7.7.14).Let D be a triangulated category, then f : X → Y ∈ D is an isomorphism iff
C(f) = 0.

Proof: There is a morphism (idX , f, 0) : (X,X, 0, id, 0, 0) → (X,Y,C(f), f, g, h) by (TR1) and
(TR3). By(3.7.7.13), f is an isomorphism iff 0 → C(f) is an isomorphism, which is equivalent to
Z = 0. □



3.7. HOMOLOGICAL ALGEBRA 301

Prop.(3.7.7.15). In a triangulated category D, any commutative diagram

X Y

X ′ Y ′

can be extended to a diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

X ′′ Y ′′ Z ′′ X ′′[1]

X[1] Y [1] Z[1] X[2]

where the lower right is anti-commutative.

Proof: Let (X,Y, Z), (X ′, Y ′, Z ′), (X,X ′, X ′′), (Y, Y ′, Y ′′), (X,Y,A) be distinguished triangles, then
we can find maps a : Z → A, b : A → Y ′, a′ : X ′′ → A, b′ : A → Z by TR3(3.7.7.1). Then TR4 says
(Z → A, Y ′′), (X ′′ → Z → Z ′) is distinguished.

Now let (X ′′, Y ′′, Z ′′) be distinguished, then we use TR4 again to (X ′′, A, Y ′′), then (Z ′, Z ′′, Z[1])
is distinguished, thus so does (Z → Z ′ → Z ′′).

Now it is left to verify the anti-commutativity of the righthdown square, for this, Cf.[Sta]05R0.
□

Prop.(3.7.7.16)[Kernels are Saturated Triangulated Subcategories].Let D,D′ be triangulated
categories and A an Abelian category.

• Let F : D → D′ be an exact functor, then the full subcategory of D consisting of objects X
that F (X) = 0 is a strictly full saturated triangulated subcategory of D, called the kernel of
F .

• Let H : D → A be a (co)homological functor. then the full subcategory of D consisting of
objects X that F (X[n]) = 0 for all n is a strictly full saturated triangulated subcategory of D,
called the kernel of H.

Proof: Cf.[Sta]05RC, 05RD. □

Prop.(3.7.7.17)[K∗(A) is Triangulated].For Abelian category A, the categories K∗(A) with distin-
guished triangles(3.7.4.14) is triangulated, and they are all subcategories of K(A). This is hard to
verify, but it solves every problem. Cf[Gelfand P246][[Sta]014S]. And an additive functor will induce
exact functor between K∗ because distinguished is split.

Localizations of Triangulated Category

Def.(3.7.7.18) [Compatible Localizing Systems].Let D be a triangulated category, a localizing
system(3.1.1.54) S is said to be compatible with the triangulated structure if it satisfies the following
axioms:



302 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

(LS4): For s ∈ S, s[n] ∈ S for any n ∈ Z.
(LS5): Any two consecutive morphisms of two distinguished triangle can be extended to a morphism

of distinguished triangles by morphisms in S.

Cor.(3.7.7.19).Let D be a triangulated category. If a class of morphisms S satisfy (LS1), (LS5) and
(LS6), then (LS2) holds as well.

Proof: Let f : X → Y ∈ D and s : X → X ′ ∈ S, we can use (TR1) and (TR2) to extend these to
a morphism of distinguished triangles

X Y Z X[1]

X ′ Y ′ Z X ′[1]

f

s s′ s[1] .

The right extension is dual. □

Prop.(3.7.7.20)[Exact Functors and Saturated Localizing Systems].Let D,D′ be triangulated
categories and A an Abelian category.

• If F : D→ D′ is an exact functor and

S = {f ∈ D|F (f) is an isomorphism},

then S is a saturated localizing system compatible with the triangulated structure(3.7.7.18).
• If H : D→ A is a (co)homological functor and

S = {f ∈ D|H i(f) is an isomorphism},

then S is a saturated localizing system compatible with the triangulated structure(3.7.7.18).

Proof: Cf.[Sta]05R4, 05R6. □

Prop.(3.7.7.21) [Localed Triangulated Categories].Let D be a triangulated category and S is
a localizing system compatible with the triangulated structure, then there is a unique triangulated
category structure on S−1D that the localization functor Q : D→ S−1D(3.1.1.53) is exact.

Moreover, S−1D satisfies the following universal properties:
• If A is an Abelian category and H : D → A is a cohomological functor that H(s) are isomor-

phisms for all s ∈ S, then the unique factorization H ′ : S−1D → A s.t. H ′ ◦Q = H(3.1.1.57)
is also a cohomological functor.

• If D′ is a triangulated category and F : D→ D′ is an exact functor that F (s) are isomorphisms
for all s ∈ S, then the unique factorization F ′ : S−1D→ A s.t. F ′ ◦Q = F (3.1.1.57) is also an
exact functor.

Proof: Cf.[Sta]05R6. □

Cor.(3.7.7.22)[Kernel of Localizing Functor].An object Z ∈ D is in the kernel of the localizing
functor Q : D→ S−1D iff it satisfies the following equivalent conditions:

• There exists Z ′ s.t. 0 : Z → Z ′ ∈ S.
• There exists Z ′ s.t. 0 :′→ Z ∈ S.
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• There exists Z ′ and a distinguished triangle (X,Y, Z ⊕ Z ′, f, g, h) that f ∈ S.

Proof: Cf.[Sta]05R8. □

Prop.(3.7.7.23) [Triangulated Subcategories of Localized Triangulated Categories].Let D

be a triangulated category and S is a localizing system compatible with the triangulated structure.
Let D′ be a full triangulated subcategory of D and S′ is a localizing system of D′. If either of the
following holds:

• For any s : X → Y ∈ S and X ∈ D′, there is a morphism t : Y → Z that Z ∈ D′ and t ◦ s ∈ S′.
• The same as in item1 but with arrows reversed.

Then the natural functor (S′)−1D′ → S−1D is fully faithful.

Proof: This is immediate from(3.1.1.60). □

Quotients of Triangulated Categories

Def.(3.7.7.24)[Saturated Triangulated Subcategories].Let D be a triangulated category, then
a full triangulated subcategory D′ is called a saturated triangulated subcategory if whenever
X ⊕ Y is isomorphic to an object of D′, X,Y are all isomorphic to an object of D′.

Prop.(3.7.7.25)[Full Triangulated Subcategories and Localizing Systems].Let D be a trian-
gulated category.

• If D′ is a full triangulated subcategory, then

S = {f : X → Y ∈ D′|there exists a distinguished triangle (X,Y, Z, f, g, h), Z ∈ D′}

is a localizing system compatible with the triangulated structure of D. And S is saturated iff
D′ is saturated.

• If S is a localizing system of D, then D′ = ker(D → S−1D)(3.7.7.21)(3.7.7.16) is a saturated
full triangulated subcategory of D.

Proof: 1: Cf.[Sta]05RH. □

Def.(3.7.7.26)[Quotient Triangulated Categories].Let D be a triangulated subcategory and B
a full triangulated subcategory, define the quotient triangulated category D/B as the localized
triangulated category S−1D, where S is the localizing system associated to B(3.7.7.25).

Moreover, D/B satisfies the following universal properties:
• If A is an Abelian category and H : D→ A is a cohomological functor that B ⊂ ker(H), then
H factors uniquely through D/B by a functor H ′, and H ′ is also a cohomological functor.

• If D′ is a triangulated category and F : D → D′ is a cohomological functor that B ⊂ ker(F ),
then F factors uniquely through D/B by a functor F ′, and F ′ is also an exact functor.

Proof: The universal properties follow from the universal properties of localized triangulated cate-
gories(3.7.7.21) and the definition of S(3.7.7.25), using the long exact sequence or(3.7.7.14). □

Prop.(3.7.7.27)[Saturation].Let D be a triangulated category and D′ be a full triangulated subcate-
gory, then the kernel of the quotient map D→ D/D′(3.7.7.26) is a strictly full saturated subcategory
consisting of objects Z ∈ D that Z ⊕ Z ′ is an object of D′ for some object Z ′ ∈ D. In particular, it
is the smallest saturated triangulated subcategory containing D′, called the saturation of D′.
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Proof: the kernel is a strictly full saturated subcategory by(3.7.7.16). The description of the objects
of kernel follows from the definition(3.7.7.26)(3.7.7.25) amd(3.7.7.22). □

Prop.(3.7.7.28)[Kernel of Cohomological Functor is Saturated].Let D be a triangulated cat-
egory and H : D → A is a cohomological functor, then ker(H) is a saturated full triangulated
subcategory(3.7.7.16) whose corresponding saturated localizing system(3.7.7.20) is the set

S = {f |H i(f) is an isomorphism in A},

and H factors through the quotient D→ D/ ker(H).

Proof: The description of S is clear from the definitions(3.7.7.16)(3.7.7.25) and a use of long exact
sequences. The factorization follows from(3.7.7.26). □

K-Groups

Def.(3.7.7.29)[K-Groups of Triangulated Categories].Let D be a triangulated categories, then
the K-group of D is defined to be the quotient⊕

X→Y→Z distinguished
1→

⊕
X∈D

→ K0(D)→ 0

where eX→Y→Z is mapped to eY − eX − eZ .

Prop.(3.7.7.30)[Naturality].
• An exact functor between triangulated categories induce a map of their corresponding K-groups,
• A bi-exact bifunctor F : D×D′ → E(3.7.7.8) induces a bilinear map K0(D)×K0(D′)→ K0(E)

sending ([X], [X ′]) to F (X,X ′).
• A δ-functor from an Abelian category to a triangulated category induces a map of their corre-

sponding K-groups(Notice these two K-groups are defined differently).
• A functor from an exact category to a triangulated category that sends exact sequences to

distinguished triangles induces a map of their corresponding K-groups.

Brown Representability

Def.(3.7.7.31)[Generators].Let D be a triangulated category, a generator of D is an object of D
s.t. for any object K of D, there exists some integer n and a non-zero map E[n]→ K.

Prop.(3.7.7.32).Let D be a triangulated category, then the compact objects of D form a Karoubian,
saturated, strictly full triangulated category of D.

Proof: Cf.[Sta]09QH. □

Def.(3.7.7.33) [Compactly Generated].Let D be a triangulated category with arbitrary direct
sums, then D is said to be a compactly generated triangulated category if there exists a set of
compact objects {Ei} that ⊕Ei is a generator of D(3.7.7.31).

Prop.(3.7.7.34)[Brown Representability].Let D be a triangulated category with direct sums that
is compactly generated. Let H be a contravariant cohomological functor that transforms direct sums
into products, then H is representable.
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Proof: Cf.[Sta]018F. □

Cor.(3.7.7.35) [Adjointness Lemma].Let D be a triangulated category with direct sums that is
compactly generated and F : D → D′ an exact functor of triangulated categories that transforms
direct limits to direct limits, then F has an exact right adjoint.

Proof: By Brown representability, for any Y ∈ D′, there is an object G(Y ) ∈ D that represents
the contravariant cohomological functor D → Ab : X 7→ HomD′(F (X), Y )(3.7.7.12). Then G is a
functor by Yoneda lemma. It is exact by(3.7.7.9). □

8 Tensor Category Case
In this subsection we consider complexes over a tensor category(3.1.6.2) A.

Lemma(3.7.8.1)[Koszul Sign Rule].There is an isomorphism of complexes

σ : C• ⊗D• → D• ⊗ C• : σ(x⊗ y) = (−1)mny ⊗ x

where x ∈ Cm and y ∈ Dn.

Proof:

∂(σ(x⊗y)) = ∂((−1)mny⊗x) = (−1)mn(∂y⊗x)+(−1)mn+n(y⊗∂x) = (−1)nσ(x⊗∂y)+σ(∂x⊗y) = σ(∂(x⊗y))

□

Prop.(3.7.8.2)[Commutative Monoidal Structure on ChZ(A)].The functor

ChZ(A)× ChZ(A)→ ChZ(A) : (C•, D•) 7→ Tot⊕(C• ⊗D•)

endows ChZ(A) with a (non-strict) commutative monoidal structure.

Proof: Commutativity follows from(3.7.8.1). Associality follows from the definition of totaliza-
tion(3.7.4.9). □

Prop.(3.7.8.3)[Commutative Monoidal Structure on K∗(A)].This monoidal functor descends
to a strict monoidal structure on K∗(A).

Proof: □

Prop.(3.7.8.4) [Tensoring is Exact].Let L• ∈ K(A), then tensoring functor Tot⊕(− ⊕ L•) is an
exact functor between triangulated categories.

Proof: □

Prop.(3.7.8.5).An R-module I is injective iff for any injective homomorphism from I to any R-module
splits.

Proof: The critical point is that we can always embed I to an injective hull J by(3.7.3.23), then
J = I ⊕ J ′, so I is clearly injective. □

Prop.(3.7.8.6)[K-Injective under Change of Rings]. If R→ S is a ring map, then
1. If R → S is flat and I• is a K-injective complex of S-modules, then I• is K-injective as a

complex of R-modules.
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2. If R → S is surjective and I• is a complex of S-modules that is K-injective as a complex of
R-modules, then it is K-injective as a complex of S-modules.

3. If I• is a K-injective complex of R-modules, then HomR(S, I•) is K-injective as a complex of
S-modules.

Proof: 1: This is because HomK(R)(M•, I•) = HomK(S)(M•⊗R S, I•) and(3.9.2.1), as tensoring S
is exact.

2: This is because HomK(R)(N•, I•) = HomK(S)(N•, I•) for a complex of S-modules N•

and(3.9.2.1).
3: This is because HomK(S)(N•,HomR(S, I•)) = HomK(R)(N•, I•), and(3.9.2.1). □
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3.8 Stable ∞-Categories

References are [nLab], [Lur11]

Notation(3.8.0.1).
• Use notations defined in ∞-Categories.

1 Stable ∞-Categories
Def.(3.8.1.1)[Zero Objects].A zero object in an ∞-category is an object that is both initial and
final. A pointed ∞-category is an ∞-category with a zero object.

In a pointed∞-category C, the subcategory of zero objects is a trivial Kan complex. And for any
x, y ∈ C, Map(x, y)(3.6.1.20) is a trivial Kan complex, by(3.4.8.3) and(3.6.1.21). So there is a zero
morphism 0 : x→ y that is unique up to contractible choice.

Def.(3.8.1.2)[∞-Category of Pointed Objects].For C ∈ Cat∞ with a final object ∗, denote Cpt =
C∗/, called the ∞-category of pointed objects in C. Then C∗ is pointed, and there is a map
(−)− : C∗ → C, and there is also a map (−)+ : C→ C∗ given by adding a final object. Then we have
an adjunction between ∞-categories:

(−)+ : C −−−⇀↽−−− Cpt : (−)−.

Proof:
□

Prop.(3.8.1.3).Let C be a pointed presentable ∞-category, then evaluation at S0 ∈ Grpdpt
∞ induces

an equivalence of ∞-categories
FuncL(Grpdpt

∞,C) ∼= C.

Proof:
□

Def.(3.8.1.4)[Triangles in ∞-Categories].A triangle is a pointed ∞-category C is a diagram

τ : ∆1 ×∆1 → C :
x y

0 z

where 0 is a zero object. It is called a fiber sequence if this diagram is a pullback diagram, and
called a cofiber sequence if this diagram is a pushout diagram. Denote Tri(C) ⊂ Func(∆1×∆1,C)
the full sub-∞-category of triangles.

Def.(3.8.1.5)[Cofiber Maps and Fiber Maps]. If C is a pointed∞-category which admits cofibers,
then by(3.6.3.16) and(3.6.3.17), there is a fiber sequence map

Cof : Func(∆1,C)→ Func(∆1 ×∆1,C).

unique up to contractible choice. And its composition with ev(1,1) is also denoted by Σ :
Func(∆1,C)→ C. The dual is true for fibrations.
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Prop.(3.8.1.6) [Cofiber Map Preserves Colimits]. If C is a pointed ∞-category which admits
cofibers, choose a zero object 0, then any Cof : Func(∆1,C) → C is left adjoint to a functor C →
C0/ → Func(∆1,C) which maps each C ∈ C to a morphism 0→ C. In particular, Cof preserves small
colimits by(3.6.4.5). Dually, Fib preserves small limits.

Proof: □
Def.(3.8.1.7)[Suspension and Loop Diagrams].For C ∈ Cat∞, denote CΣ ⊂ Func(∆1×∆1,C) the
full ∞-subcategory of cofiber sequences of the form

τ : ∆1 ×∆1 → C :
x 0′

0 z

where 0, 0′ are zero objects.
Dually, define CΩ ⊂ Func(∆1 ×∆1,C) the full ∞-subcategory of exact triangles of the form

τ : ∆1 ×∆1 → C :
x 0′

0 z

where 0, 0′ are zero objects.

Def.(3.8.1.8) [Suspension Functors and Loop Functors]. If C ∈ Cat∞ is a pointed ∞-category
with admits cofibers, then same argument as in(3.8.1.5) shows that CΣ → C is a trivial Kan fibration,
so there is a section Σ : C→ CΣ, called a suspension functor. And its composition with ev(1,1) is
also denoted by Σ : C→ C.

Dually, if C is a pointed ∞-category which admits fibers, we can define loop functors. If C
admits both fibers and cofibers, for C ∈ C and n ∈ N, denote X[n] = Σn(X), X[−n] = Ωn(X).

Def.(3.8.1.9)[Stable ∞-Category].A stable ∞-category is a pointed ∞-category (C, 0) s.t.
• C admits cofibers and fibers.
• A triangle in C is a fiber sequence iff it is a cofiber sequence.

Notice that C is stable iff Cop is stable.

Prop.(3.8.1.10). If C is a pointed category which admits both cofibers and fibers, then there is an
adjunction

Σ : Ho(C) −−−⇀↽−−− Ho(C) : Ω.

And if C is stable, they are mutually inverse to each other.

Proof: □
Prop.(3.8.1.11) [HA.1.1.3.4].A stable ∞-category is complete and cocomplete. And pullback
squares and pushout squares coincide.

Prop.(3.8.1.12).Let C be a pointed ∞-category, then the following are equivalent:
• C is stable.
• C admits finite colimits, and the suspension functor Σ : C→ C is an equivalence.
• C admits finite limits, and the loop functor Ω : C→ C is an equivalence.

Proof: Cf.[HA, 1.4.2.27]. □
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Homological Algebra

Prop.(3.8.1.13)[Homotopy Groups].Let C be a pointed ∞-category that admits cofibers, then for
any X,Y ∈ C, there is a bijection

HomHo(C)(Σn(X), Y ) ∼= πn MapC(X,Y ).

Proof: ? □

Def.(3.8.1.14) [Ext Groups].For a pointed ∞-category C and X,Y ∈ C, denote Extn(X,Y ) =
HomHo(C)(X[−n], Y ), called the Ext groups.

Prop.(3.8.1.15).Let C be a pointed ∞-category that admits cofibers, then any diagram

X 0

0′ Y

f

f ′

in C corresponds to a homotopy class of morphisms θ ∈ HomHo(C)(X[1], Y ). Then in this way, the
diagram diagram

X 0′

0 Y

f ′

f ′

corresponds to −θ ∈ HomHo(C)(X[1], Y ), where the group structure is given by(3.8.1.13).

Proof: Cf.[Lur11]P25. □

Lemma(3.8.1.16).Let C be a pointed ∞-category that admits cofibers, and the suspension functor
Σ is an equivalence, then Ho(C) is an additive category(3.7.1.10).

Proof: It follows from(3.8.1.13) and the compatibility of group structures on πn that C is preaddi-
tive. To show it is additive, Cf.[Lur11]P24.? □

Def.(3.8.1.17) [Distinguished Triangles].Let C be a pointed ∞-category which admits cofibers,
then a diagram X

f−→ Y
g−→ Z

h−→ X[1] in Ho(C) is called a distinguished triangle if there exists a
diagram ∆1 ×∆2 → C as shown:

X Y 0

0′ Z W

f̃

g̃

h̃

s.t.
• Both 0, 0′ are zeros.
• both square are pushout squares.
• f̃ lifts f , g̃ lifts g.
• h : Z → X[1] equals h̃ composed with an equivalence W ∼= X[1] determined by the outer

rectangle.
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Prop.(3.8.1.18) [Stable ∞-Categories and Triangulated Categories].Let C be a stable ∞-
category, then the translation functor defined(3.8.1.8) and distinguished triangles defined in(3.8.1.17)
endow Ho(C) with the structure of a triangulated category(3.7.7.1).

Proof: Cf.[Lur11]P27. □

Def.(3.8.1.19) [Exact Functors].An exact functor between stable ∞-categories is a functor F :
C→ D that is left and right exact and preserves fiber sequences.

Prop.(3.8.1.20).Let CatEx
∞ ⊂ Cat∞ be the subcategory of all stable ∞-categories and exact functors,

then it admits all small limits and small filtered colimits, and they are preserved by the inclusion.

Proof: Cf.[HA1.1.4.4., 1.1.4.6.] □

Def.(3.8.1.21)[T -Structure].A T -structure on a stable ∞-category C is a pair of full subcategories
C≥0.C≤0 that

Prop.(3.8.1.22).For any n ∈ Z, C≤n ⊂ C is a localization, thus admits a left adjoint τ≤n, called the
truncation functor. Dually for τ≥n.

Proof: Cf.[HA, P1.2.1.5]. □

Def.(3.8.1.23)[Heart].The heart C♡ ⊂ C is defined to be the full subcategory of C≤0 ∩ C≥0 ⊂ C.

Spectra Objects and Stabilization

Def.(3.8.1.24)[Spectra].A spectrum is an object in the universal (∞, 1)-category Sp = Sp(Top) ∼=
Sp(Grpd∞)

Def.(3.8.1.25)[Homology Groups of Spectra].

Def.(3.8.1.26) [Connective Spectra].A connective spectrum is a spectrum(3.8.1.24) that the
negative homotopy groups vanish.

Prop.(3.8.1.27).There are equivalences between the following categories?:
• connected spectra.
• infinite loop spaces.
• group-like E∞-spaces.

Proof: □

Def.(3.8.1.28)[E∞-Rings].An E∞-ring is an object in CMon∞(Sp(Grpd∞))(3.8.1.24).

Cor.(3.8.1.29).For (C, 0) ∈ Catpt
∞, the following are equivalent:

• C is stable.
• C admits finite finite colimits and the suspension functor Σ : C→ C is an equivalence.
• C admits finite finite limits and the loop functor Σ : C→ C is an equivalence.

Proof: Cf.[Lur11]P149. □
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Presentable Stable ∞-Categories

2 Monoidal ∞-Categories
Def.(3.8.2.1)[Monoidal ∞-Categories].A monoidal (∞, 1)-category is a tuple (C,⊗) where

• C is a simplicial set.
• ⊗ : C→ N(∆)op is a coCartesian fibration.
• For n ∈ N and 0 ≤ i ≤ n − 1, the induced (∞, 1)-functor C[n] → C{i,i+1} determines an

equivalence of (∞, 1)-categories

C[n] → C{0,1} × . . .× C{n−1,n} ∼= (C[1])n

Def.(3.8.2.2)[A∞-Rings].Let C be a stable monoidal (∞, 1)-category(3.8.2.1) with the (∞, 1)-functor

p∞ : C→ N(∆)op,

an A∞-Ring is a lax monoidal section of p⊗.

Monoidal (∞, 1)-Categories

Def.(3.8.2.3) [Symmetric Monoidal (∞, 1)-Categories].A symmetric monoidal (∞, 1)-category
is an (∞, 1)-category which is ∞-tuply monoidal. Equivalently, it is a commutative algebra in the
(∞, 1)-category of (∞, 1)-categories.

Or equivalently, it is a coCartesian fibration of simplicial sets

π : C⊗ → N(FinSet∗)

s.t. for any n ∈ N, the associated functor C⊗
[n] → C⊗

[1] determines an equivalence of (∞, 1)-categories.

Proof: ? □

Def.(3.8.2.4) [E∞-Algebras(Commutative Monoids)].Let C be a symmetric monoidal (∞, 1)-
category, then an E∞-algebra of a commutative monoid in C is a lax monoidal (∞, 1)-functor
∗ → C?. The (∞, 1)-category of commutative monoids in C is denoted by CMon∞(C).

Def.(3.8.2.5)[E∞-Space].An E∞-space is a commutative ∞-monoid in Grpd∞(3.6.2.5), i.e.

E∞-Spa = CMon∞(Grpd∞).

It is also denoted by CMon∞.

Def.(3.8.2.6) [Commutative Ring Spectra(E∞-Rings)].An E∞-ring or a commutative ring
spectra is a commutative monoid in the stable (∞, 1)-category of spectra?.

Prop.(3.8.2.7)[∞-Abelianization].There is an (∞, 1)-functor

Ab∞ : Grpd∞ → CMon∞(3.8.2.5)

that is left adjoint to the
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3.9 Derived Categories

Main references are [G-M03] and [Sta]. Need to be refreshed by the language of ∞-categories ?
1 Derived Category

Def.(3.9.1.1) [Derived Category].Let A be an Abelian category. The full subcategory Ac(A) of
K(A) consisting of acyclic complexes is a strictly full saturated triangulated subcategory, and its
associated saturated localizing system is the class QIso(A) of quasi-isomorphisms.

Thus the kernel of the localizing functor QA : K(A)→ QIso(A)−1K(A) is Ac(A), and H0 factors
through QA. Then the quotient triangulated category(3.7.7.26)

D(A) = K(A)/Ac(A) = QIso(A)−1K(A)

is called the derived category of A.

Proof: As H0 is a cohomological functor(3.7.4.14), these follows from(3.7.7.28) and(3.7.7.27). □

Cor.(3.9.1.2)[Universal Properties of Derived Categories].Let A be an Abelian category,
• By(3.7.7.21), the derived category D(A) of an Abelian category A has the universal property

that any exact functor between Distinguished categories F : K(A)→ D s.t. quasi-isomorphisms
is mapped to isomorphisms uniquely factors through D(A).

• Let F : A→ B be an exact functor between Abelian categories, then F induces an exact functor
F : K(A) → K(B) of triangulated categories(3.7.4.17), and it maps quasi-isomorphisms to
quasi-isomorphisms, so by item1 induces a morphism of categories D(A)→ D(B).

Prop.(3.9.1.3)[Universal δ-Functors].The functor Comp(A)→ D(A) is a δ-functor.

Proof: Cf.[Sta]014Z.? □

Prop.(3.9.1.4)[Truncation Triangles].Let A be an Abelian category and K• ∈ K(A), then for any
a ∈ Z, the truncation is a distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → τ≤aK
•[1].

Proof: This exact sequence comes from the exact sequence 0 → τ≤aK
• → K• → K•/τ≤aK

•

via the δ-functor(3.9.1.3) and the fact K•/τ≤a → K• → τ≥a+1K
• is a quasi-isomorphism thus an

isomorphism in D(A). □

Triangulated Subcategories of D(A)

Prop.(3.9.1.5).Let A be an Abelian category and L a full triangulated subcategory of K(A), let
S = L∩QIso(A), then S is the saturated localizing system compatible with the triangulated structure
associated to the cohomological functor H0 restricted to L(3.7.7.20), the we can form the localizing
triangulated category S−1L(3.7.7.21) and there is a natural exact functor of triangulated categories
S−1L → D(A) by the universal property(3.7.7.21).

Prop.(3.9.1.6)[Full Subcategories of D(A)].Let L ⊂ L̃ be full triangulated subcategories of K(A),
and S = L ∩QIso(A), S̃ = L̃ ∩QIso(A). If either of the following holds:
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• For any s : L1 → L̃1 ∈ S̃ and L1 ∈ L, there is a morphism t : L̃1 → L2 that L2 ∈ L and
t ◦ s ∈ S̃.

• The same as in item1 but with arrows reversed.
then the natural functor S−1L ⊂ S̃−1L̃ is fully faithful.

Proof: This follows immediately from(3.9.1.5) and(3.7.7.23). □
Cor.(3.9.1.7)[Bounded Derived Categories].For ∗ = −,+, b, the triangulated categories D∗(A)
are the localized category of K∗(A) at the classes of isomorphism in K∗(A)(3.9.1.5). Then they are
naturally full subcategories of D(A), by(3.9.1.6), as the condition is satisfied by(3.7.4.19).

Def.(3.9.1.8)[Derived Category of Serre Subcategories]. If B is a Serre subcategory of an Abelian
category A, let D∗

B(A) be the full subcategory of D∗(A) consisting of objects X that Hn(X) ∈ B
for all n, then D∗

B(A) is a strictly full saturated triangulated subcategory of D∗(A), as it is just the
kernel of the cohomological functor H0 : D∗(A)→ A→ A/B(3.7.3.14)(3.7.7.16).

Also there are natural exact functors D∗(B)→ D∗
B(A), and D∗(A)/D∗

B(A)→ D∗(A/B)(3.7.7.26).

Prop.(3.9.1.9).The map D∗(A)→ D∗(A/B) is essentially surjective.

Proof: Cf.[Sta]06XL. □
Prop.(3.9.1.10).Let B ⊂ A be a Serre subcategory and suppose that for any surjection X → Y ∈ A

with Y ∈ B, there is a subobject X ′ ⊂ X that X ′ → Y is surjective, then the exact functor
D∗(B)→ D∗

B(A) is an equivalence for ∗ = − or b.

Proof: Cf.[Sta]0FCL. □
Prop.(3.9.1.11). If (C,O) is a ringed site and A ⊂ModO is the Serre subcategory of torsion modules,
then the functor D(A)→ DA(O) is an equivalence.

Proof: Cf.[Sta]0DD7. □
Prop.(3.9.1.12)[Embedding of A in D(A)].The natural inclusion i : A ⊂ D(A) induces an equiv-
alence of A with the subcategory of D(A) consisting of complexes with cohomology concentrated at
degree 0.

An object K ∈ D(A) is called discrete if it is in the essential image of this inclusion.

Proof: The natural map H0 : D(A) → A is inverse to i, so i is faithful. To show it is full, let
(L, f, s−1) be a morphism from i(M) to i(N), then we get a morphism (H0(L),H0(f),H0(s)−1), and
these two morphisms are both dominated by the morphism (σ≥nL, σ≤n ◦ f, (σ≤n ◦ s)−1), so they are
equal morphisms in D(A). But (H0(L),H0(f),H0(s)−1) = i(s−1f) is in the image of i, so i is full.

The assertion that any complex with cohomology groups concentrated at degree 0 is true by using
truncation functors(3.7.4.19). □

Prop.(3.9.1.13) [K-Groups].Let A be an Abelian category, then the embedding(3.9.1.12) induces
an isomorphism of K-groups K0(A) ∼= K0(Db(A))(3.7.7.29).

Proof: The map A → Db(A) is a δ-functor by(3.9.1.3), thus by(3.7.7.30) induces a map
K0(A) ∼= K0(Db(A)). There is a reverse map K0(Db(A)) → K0(A) : X 7→

∑
i(−1)iH i(X), which

is inverse the the map above: one direction is clear, for the other, use induction and the truncation
triangles(3.9.1.4). □

Def.(3.9.1.14)[Perfect Complex].Let A be an Abelian category, a perfect complex in D(A) is a
complex that is equivalent to a bounded complex.
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Operations on the Derived Category

Lemma(3.9.1.15)[Direct Sum]. If A is an Abelian category that has exact countable direct sums,
then D(A) has countable direct sums given by term-wise direct sums.

Proof: A system of morphisms K•
i → L• is a system of quasiisos M•

i → K•
i and Mi → L•. Then

by hypothesis ⊕M•
i → ⊕K•

i is a quasi-iso, thus defines a morphism ⊕K•
i → L•. It can be verified

that this morphism is unique?. □

Lemma(3.9.1.16)[Termwise Colimit as Hocolim].Let A be an Abelian category, L•
n be a system

of complexes of A. Assume colimits over N exists and are exact over A, then the termwise colimit
L• is a derived colimit in D(A).

Proof: We have an exact sequence

0→ ⊕L•
n → ⊕L•

n → L• → 0

and the termwise direct sum is the direct sum in D(A) by(3.9.1.15), and then L• is a derived colimit,
by(3.7.4.13). □

Bounded (Co)Homological Dimensions

Def.(3.9.1.17)[Bounded Cohomological Dimensions].An exact functor between two derived cate-
gories F : D(A)→ D(B) is called has cohomological dimension bounded by N if F (D≤m(A)) ⊂
D≤m+N (B). Dually, it has homological dimension bounded by N if F (D≥m(A)) ⊂ D≥m−N (B).

Prop.(3.9.1.18). If (F,G) : D(A) → D(B) is an adjunction pair of exact functors, then F has coho-
mological dimension bounded by N iff G has homological dimension bounded by N .

Proof: If F has cohomological dimension bounded by N , let K ∈ D≥m(B), then

HomD(A)(τ≤m−N−1GK,GK) = HomD(B)(Fτ≤m−N−1GK,K) = 0.

The dual case is similar. □

2 K-injectives and K-Adapted Classes
Prop.(3.9.2.1) [K-injectives].For an Abelian category A, a complex I• in K(A) is called a K-
injective object iff it satisfies the following equivalent conditions:

• HomK(A)(S•, I•) = 0 for any acyclic S• in K(A).
• HomK(A)(N•, I•) ∼= HomK(A)(M•, I•) for quasi-iso M• → N•.
• HomK(A)(X•, I•) ∼= HomD(A)(X•, I•) for every X•. In particular, a quasi-iso between two
K-injective objects is an isomorphism in K(A).
Dually, we can define K-projective objects.

Proof: 1→ 2 is by(3.7.4.14); 2→ 3 use(3.9.1.7), for 3→ 1, notice any acyclic complex is quasi-iso
to 0. □

Cor.(3.9.2.2).K-Injectives form a full triangulated subcategory of K(A).

Cor.(3.9.2.3). If I• is K-injective and quasi-isomorphic to an object in K+(A), then I• ∈ K+(A).
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Cor.(3.9.2.4)[K-Injective Resolutions are Unique]. by item3 of the definition(3.9.2.1), K-injective
resolutions are unique in K(A).

Prop.(3.9.2.5)[Injectives and K-Injective].Objects K+(IA) are all K-injectives. thus the injective
resolution is unique in K+. Dually K−(P) are all K-projectives.

Proof: Use the first definition of K-injectives(3.9.2.1), we prove any morphism f : S• → I• from
an acyclic complex to a K-injective I• is homotopic to 0 by a homotopy h. Let Ik = 0 for k < n,
choose hk = 0 for k ≤ n, then fk = dhk + hk+1d for k < n. We use induction on n to find
hk, k ≤ n that fk = dhk + hk+1d for k < n Suppose hk are constructed for k ≤ n, for n + 1,
(fn − dhn)d = fnd− dfn−1 = 0, thus fn − dhn = hn+1d for some hn+1 as In is injective. Then we are
done. □

Prop.(3.9.2.6). If a functor f between Abelian categories is left adjoint to an exact functor, then it
preserves K-injectives (use definition1).

Prop.(3.9.2.7)[Products of K-Injectives].Let A be an Abelian category, It be K-injective com-
plexes. If the termwise product of It exists, then it is also K-injective, and is the products of It in
D(A).

Proof: It is clearly K-injective by(3.9.2.1) item1 as it is the product in the category K(A). Thus
we can easily use the (3.9.2.1) item3 to see that I• is also the product in the category D(A). □

Lemma(3.9.2.8). [Sta]070M

Prop.(3.9.2.9) [Functorial K-injective Resolution]. If A is an Abelian category having enough
injectives and exact countable products, then every complex is quasi-isomorphic to a K-injective
complex that each term is injective.

Moreover, if A is a Grothendieck category, then the K-injective resolution can be chosen to be
functorial.

Remark(3.9.2.10).Maybe this can be extended to any large enough class of elements, at least for
K+(A).

Proof: By(3.9.2.8), it suffices to show that K → R lim τ≥−nK is a quasi-isomorphism for all
complex K. But this is clear from the distinguished triangle

R lim τ≥−nK →
∏

τ≥−nK →
∏

τ≥−nK → R lim τ≥−nK[1]

and the fact Hp(
∏
τ≥−nK) =

∏
p≥−nH

p(K).
For the second assertion, Cf.[Sta]079P.? □

K-Adapted Classes

Def.(3.9.2.11)[K-Adapted Classes].Let A be an Abelian category, D a triangularized category and
F : K(A)→ D a triangularized functor, a K-adapted class for F is a full triangulated subcategory
R ⊂ K(A) that

• If I → I ′ is a quasi-isomorphism in R, then F (I)→ F (I ′) is an isomorphism in D.
• Every A• ∈ K(A) admits some quasi-isomorphism A• → I• where I• ∈ R.

Cor.(3.9.2.12)[K-Injective is K-Adapted]. If A has sufficiently many K-injectives, then the class
of K-injectives is K-adapted to any left exact functor F , by(3.9.2.2) and(3.9.2.1).
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3 Derived Functors
Def.(3.9.3.1)[Right Derived Functors].Let A be an Abelian category, E a triangularized category
and F : K(A)→ D an exact functor between triangulated categories. Then a right derived functor
of F is an exact functor RF : D(A) → D together with a natural transformation η : F → RF ◦QA

that satisfies the following universal property: For any exact functor G : D(A) → D and a natural
transformation η′ : F → G◦QA, there is a natural transformation θ : RF → G that η′ = (θ ⋆QA)◦η.

In particular, if RF exists, then it is unique up to unique isomorphism of exact functors.

Prop.(3.9.3.2)[Derived Functors via K-Adapted Classes].Let A be an Abelian category, D a
triangularized category and F : K(A)→ E an exact functor, if there exists a K-adapted class R for
F , then RF exists. Moreover, for I ∈ R, the morphism ηI : F (I)→ RF ◦QA(I) is an isomorphism
in D.

Proof: Let S = R ∩ QIso(A), then R,K(A) and the localizing systems S,QIso(A) satisfy the
conditions in(3.9.1.6), so ι : S−1R ⊂ D(A) is a full triangulated subcategory, and it is also essentially
surjective, thus it is an equivalence of categories. Let I be a right adjoint of the inclusion, then I is
also an exact functor(3.7.7.9), and there is a natural isomorphism ζ : idD(A) ∼= ι ◦ I.

By the universal property, there is an exact functor FR : S−1R→ D extending F |R. Define

RF = FR ◦ I : D(A)→ D.

To construct η : F → RF ◦ QA, for any X ∈ Ob(K(A)) = Ob(D(A)), the isomorphism ζ gives
an isomorphism X ∼= ι(I(X)), which is represented by a roof (R, f, s−1), f, s ∈ QIso(A), and we can
assume R ∈ Ob(ι(S−1R)) = Ob(R) by hypothesis, thus s ∈ S, and F (s) is an isomorphism in E
by hypothesis. Thus we get a morphism ηX : F (s)−1 ◦ F (f) : F (X) → F (ι(I(X))) = RF (QA(X)).
This ηX is independent of the representation given, because if there is another dominant roof (R′, t ◦
f, (t ◦ s)−1), where t : R→ R′ ∈ S, then F (t ◦ s)−1 ◦ F (t ◦ f) = F (s)−1 ◦ F (f) ∈ E.

And for a morphism f : X → Y ∈ K(X), ζ gives a commutative diagram

X ι(I(X))

Y ι(I(Y ))

ζX

f ι(I(f))
ζY

in D(A) where ζX , ζY are represented by (RX , fX , s−1
X ), (RY , fY , s−1

Y ), and I(f) is represented
(R0, f0, s

−1
0 ), then we can construct roof to realize this commutative diagram in K(A) and show

there is a commutative diagram

F (X) RF (QA(X))

F (Y ) RF (QA(Y ))

F (sX)−1◦F (fX)

F (f) F (s0)−1◦F (f0)=RF◦QA(f)

F (sY )−1◦F (fY )

in E, which means η : F → RF ◦QA is a natural isomorphism.
Notice that ηI is an isomorphism for I ∈ R, because in this case F (fI), F (sI) are both isomor-

phisms.
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It remains to show the universal properties of η: Given any exact functor G : D(A) → E and a
natural transformation η′ : F → G ◦ QA, for any X ∈ Ob(K(A)) = Ob(D(A)), we get a morphism
η′
X : F (X) → G(X) in E. Notation as before, because η′ is a natural transformation, we get a
commutative diagram in K(A)

F (X) G(X)

F (RX) G(RX)

F (ι(I(X))) G(ι(I(X)))

η′
X

F (f) G(QA(f))

η′
RX

η′
ι(I(X))

F (s) G(QA(s))

In E. As ζX = (RX , f, s−1) is an isomorphism between X and ι(I(X)), f, s are both quasi-
isomorphisms, thus the vertical arrows are both isomorphisms, and we get a commutative diagram

F (X) G(X)

RF (QA(X)) G(ι(I(X)))

η′
X

ηX G(ζX)
η′
ι(I(X))

.

So we can define
θX = (G(ζX))−1 ◦ η′

ι(I(X)) : RF (QA(X))→ G(X),
then it is is functorial in X as both η′

ι(I(X)) and G(ζX) are functorial in X, so defines a natural
transformation RF ◦QA → G that (θ ⋆ QA) ◦ η = η′.

For the uniqueness of η: For any X ∈ Ob(S−1R) = Ob(R), ηX is an isomorphism, thus ηX is
determined, but ι : S−1R → D(A) is essentially surjective, so ηX is determined for any X ∈ D(A).
□

Cor.(3.9.3.3) [Derived Functors via K-Injective Classes].Let A be an Abelian category, E a
triangularized category and F : K∗(A) → E an exact functor, if K∗(A) has enough K-injectives,
then the class of K-injectives is K-adapted to F (3.9.2.12), so RF : D∗(A)→ E exists. Moreover, for
any K-injective I•, the morphism ηI• : F (I•)→ RF ◦QA(I•) is an isomorphism in E

Cor.(3.9.3.4)[Derived Functors via Injectives].Let A,B be Abelian categories s.t A has enough
injective and countable products, and F : A→ B an additive functor, then K∗(F ) : K∗(A)→ D∗(A)
is an exact functor by(3.7.7.17), and K∗(A) has enough K-injectives by(3.9.2.9).

However, this is useless unless F is left exact in which case we see R0F (A) = F (A) for any A ∈ A

by(3.9.3.3).

Cor.(3.9.3.5)[Naturality]. If η : F → F ′ is a natural transformation of left-exact functors, then by
universal property(3.9.3.1), there is a natural transformation Rη : RF → RF ′ inducing a long exact
sequence about cohomology groups extending η.

Prop.(3.9.3.6)[Composition of Derived Functors].A,B be Abelian categories and D a triangu-
lated category. If F : K∗(A) → K∗(B), G : K∗(B) → D are exact functors between triangulated
categories, and RA is K-adapted to F and G ◦ F , RB is K-adapted to G, then the natural transfor-
mation R(G ◦ F )→ RG ◦RF is an isomorphism.
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Proof: RF is isomorphic to F on RA, so for any A• ∈ K∗(A), choose some quasi-isomorphism
A• → R, where R ∈ RA, then there is a commutative diagram

R(G ◦ F )(A•) R(G ◦ F )(R) G ◦ F (R)

RG ◦RF (A•) RG ◦RF (R) G ◦ F (R)

∼= ∼=

id
∼= ∼=

G ◦ F (R) ∼= G(F (R))→ RG(F (I•)) ∼= RG ◦RF (A•),
and we are done. □

Def.(3.9.3.7) [Universal δ-Functors].A universal δ-functor between Abelian categories is one
that any natural transformation from T 0 to another δ-functor will generate a δ-map. A effaceable
δ-functor is one that for any n > 0 and any object A, there is an injection A → B that Tn(A) →
Tn(B) = 0.

Prop.(3.9.3.8)[Grothendieck].A δ-functor is universal if it is effaceable.
Proof: We construct by induction on n. choose a 0 → A → B → C → 0 such that Tn+1(A) →
Tn+1(B) = 0 then there is an isomorphism Tn+1(A) ∼= Coker(Tn(B) → Tn(C)), and so we can
construct the map on Tn+1 induces by

Coker(Tn(B)→ Tn(C))→ Coker(Gn(B)→ Gn(C))→ Gn+1(A).

This can be verified to be a δ map. □
Prop.(3.9.3.9).The derived functors form a universal δ-functor (when it exists).

Proof: It is a δ functor by(3.9.1.1), it is universal by(3.9.3.8). □
Prop.(3.9.3.10).Derived functor commutes with filtered colimits on a Grothendieck Abelian category,
this is by AB5.

Prop.(3.9.3.11) [Hypercohomology].Given an Abelian category A with enough injectives, B a
complete Abelian category, F : A→ B a left exact functor, and K ∈ K(A), we can define the right
hyper-derived functor of F at K as RF (K) = TotΠF (P ) ∈ K(B) where K → P is a Cartan-
Eilenberg resolution of K. and the hypercohomologies of F at K as RnF (K) = Hn(TotΠF (P )).
Dually we can define the left hyper-derived functor and hyperhomologies.

For complexes in K+(A), there is no restriction and the right derived-hyper functor descends to
a functor from D+(A)→ D+(B).

When the Abelian category A satisfies AB3∗ and AB4∗, i.e. the direct product is exact, then
TotΠ of the Cartan-Eilenberg resolution of any complex is a quasi-isomorphism to it by the dual
of??. (Take horizontal filtration, AB4∗ assures it collapse).

Derived Bifunctors

Def.(3.9.3.12)[Right Derived Functors of Bi-Exact Bi-Functors].LetA,B be Abelian categories
and F : K(A)×K(B)→ D be bi-exact bifunctor between triangulated categories, a right derived
functor of F is a bi-exact bifunctor RF : D(A)×D(B)→ D together with a natural transformation
η : F → RF ◦ (QA ×QB) that satisfies the following universal property: For any bi-exact bifunctor
G : D(A) × D(B) → D and a natural transformation η′ : F → G ◦ (QA × QB), there is a natural
transformation θ : RF → G that η′ = (θ ⋆ (QA ×QB)) ◦ η.

In particular, if RF exists, then it is unique up to unique isomorphisms of bi-exact bi-functors.
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Prop.(3.9.3.13)[Deriving Bi-Exact Functors].Let A1,A2 be Abelian categories and F : K(A1)×
K(A2)→ D be bi-exact bifunctor between triangulated categories, if Ri are full subcategories of Ai

s.t.
• If Ri → R′

i are quasi-isomorphisms in Ri, the induced map F (R1, R2) → F (R′
1, R

′
2) is an

isomorphism in D.
• Any A•

i ∈ K(Ai) admits some quasi-isomorphism A•
i → I•

i where I•
i ∈ Ri.

Then the right derived functor(3.9.3.12) RF exists. Moreover, for any Ri ∈ Ri, ηR1,R2 : F (R1, R2)→
RF ◦ (QA1 ×QA2)(R1, R2) is an isomorphism.

Proof: Let Si = Ri ∩ QIso(Ai), then Ri,K(Ai) and the localizing systems Si,QIso(Ai) satisfy
the conditions in(3.9.1.6), so ι : S−1

i Ri ⊂ D(Ai) is a full triangulated subcategory, and it is also
essentially surjective, thus it is an equivalence of categories. Let Ii be a right adjoint of the inclusion,
then Ii is also an exact functor(3.7.7.9), and there is a natural isomorphism ζi : idD(Ai)

∼= ιi ◦ Ii.
By hypothesis of universal properties, the functor F extends to an exact functor FR :

∏
i S

−1
i Ri →

D. Define
RF = FR ◦

∏
i

Ii :
∏
i

D(Ai)→ D.

The rest of the proof is verbatim as that of(3.9.3.2). □
Remark(3.9.3.14).This proposition can be naturally extended to any multi-exact multi-functors. In
fact, I suppose this can be deduced from the usual derived functors by considering the tensor product
category A⊗ B, Cf.[Basic Concepts of Enriched Category Theory, Kelly].

Prop.(3.9.3.15)[Derived Functors of Adjunctions].Let A1,A2 be Abelian categories and (F,G)
be an adjunction between K(A1) and K(A2), and Ri are full subcategories of Ai s.t.

• If Ri → R′
i are quasi-isomorphisms in Ri, the induced map F (R′

1, R2) → Hom•
B(R1, R

′
2) is an

isomorphism in D(Ab).
• Any A•

1 ∈ K(A1) admits some quasi-isomorphism A•
1 → I•

1 where I•
1 ∈ R1.

• Any A•
2 ∈ K(A2) admits some quasi-isomorphism I•

1 → A•
2 where I•

2 ∈ R2.
then there is a functorial isomorphism

RHom(LF (A•), B•) ∼= RHom(A•, RG(B•)) ∈ D(Ab)

for A• ∈ K(A), B• ∈ K(B). In particular,

Hom(LF (A•), B•) ∼= Hom(A•, RG(B•)) ∈ Ab

Proof: Regard both side as a right derived functor of the isomorphic bi-exact bi-functors

K(A)op ×K(B)→ D(Ab) : (A•, B•) 7→ Hom•
B(F (A•), B•) ∼= HomA •(A•, G(B•)) ∈ D(Ab).

Then the functorial isomorphism follows from universal properties. □
Prop.(3.9.3.16). Situation as in(3.9.3.15), for any K• ∈ K(A2), there is a commutative diagram of
adjunction maps

LF ◦G(K•) F ◦G(K•)

LF ◦RG(K•) K•

Proof: Cf.[Sta]0FPI. □
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Internal Hom

Def.(3.9.3.17) [Internal Hom]. If A is an Abelian category and K(A) has enough K-injectives or
enough K-projectives, thus by(3.9.3.13), we can define the internal Hom

RHom : D(A)op ×D(A)→ D(A)

as the right derived functor of the bi-exact bifunctor Hom• : K(A)op ×K(A)→ D(Ab).

Prop.(3.9.3.18)[Ext Groups].For X,Y ∈ D(A), define the ext groups

ExtiA(X,Y ) = H i(RHom(X,Y )) = HomD(A)(X[0], Y [i]).

Proof: To show H i(RHom(X,Y )) = HomD(A)(X[0], Y [i]), choose a K-injective resolution Y → I•

of Y , then

H i(RHom(X,Y )) = H i(Hom•(X, I•)) = HomK(A)(X, I•[n]) = HomD(A)(X, I•[n]) = HomD(A)(X,Y [n])

by(3.7.4.10) and the definition(3.9.2.1). □

Prop.(3.9.3.19). If P • → X• is a projective resolution, then Exti(X•, Y •) = HomK(A)(P •[−i], Y •).
If Y • → I• is an injective resolution, then Exti(X•, Y •) = HomK(A)(X•, I•).

Prop.(3.9.3.20). If X ∈ D≤a(A) and Y ∈ D≥b(A), then for i < b − a, Exti(X,Y ) = 0, and
Extb−a(X,Y ) = Hom(Ha(X),Hb(Y )).

In particular, for A,B ∈ A, Exti(A,B) = 0 for i < 0 and Ext0(A,B) = Hom(A,B).

Proof: This is because X can be represented by K≤a(P) or Y can be represented by K≥b(I). □

Prop.(3.9.3.21)[Long Exact Sequences].Let 0→ A1 → A2 → A3 → 0 be an exact sequence in A,
then it is distinguished in D(A), so by(3.7.7.12), for any B ∈ A, there is a long exact sequence

0→ Hom(B,A1)→ Hom(B,A2)→ Hom(B,A3)→ Ext1(B,A1)→ Ext1(B,A2)→ . . . ,

and similarly a long exact sequence

0→ Hom(A3, B)→ Hom(A2, B)→ Hom(A1, B)→ Ext1(A3, B)→ Ext1(A2, B)→ . . . .

Def.(3.9.3.22) [Yoneda Extensions].Let A be an Abelian category and A,B ∈ A, a Yoneda
extension of B by A of degree d is an exact sequence

0→ A→ Zd−1 → . . .→ Z0 → B → 0.

One Yoneda extension is said to dominate another if there is a map of extensions s.t. restricts
to idA and idB. Two Yoneda extensions of degree d is called equivalent if they are dominated by a
common Yoneda extension.(Notice this is an equivalence relation by(3.9.3.23).

Prop.(3.9.3.23) [Ext and Yoneda Extensions].There is a map from the equivalence classes of
Yoneda extensions of degree d of B over A to Extd(B,A), which maps the exact sequence 0→ A→
Zd−1 → . . . → Z0 → B → 0 to fs−1 ∈ HomD(A)(B[0], A[d]), where f : (A → Zd−1 → . . . → Z0) →
A[d], and s : (A→ Zd−1 → . . .→ Z0)→ B[0].

and corresponds to the set of i-term extensions of Y by X. There is a natural map

ExtiA(X,Y )× ExtiA(Y, Z)→ Exti+jA (X,Z)

by composition or equivalently the conjunction of extensions.
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Proof: Cf.[Sta]06XU. □
Prop.(3.9.3.24)[Explicit Addition as Extensions]. In an Abelian category with enough injectives,
the extension Ext1(N,M) is equivalent with the Abelian group of extensions with Baer sum as
addition.
Proof: We choose a projective resolution 0 → K → P → N → 0, so Hom(K,M) → Ext1(N,M)
is surjective, so choose a lifting and the pushout 0 → M → L → N → 0 with be the corresponding
extension, Now the Baer sum is easy to define and verify. □

Prop.(3.9.3.25). If A is an Abelian category and p ≥ 0 s.t. Extp(A,B) = 0 for any A,B ∈ A, then
Exti(A,B) = 0 for any i ≥ p and A,B ∈ A.
Proof: Any Yoneda extension of degree i is a conjunction of extensions of degree p and degree i−p.
□

Cor.(3.9.3.26). If A is an Abelian category s.t. Ext2(A,B) = 0 for any A,B ∈ A, then each object of
Db(A) is isomorphic to a direct sum of cohomologies.
Proof: Let K be represented by K• ∈ D[a,b](A). We use induction on b − a. If b − a > 0, then
there is a distinguished triangle τ≤b−1K → K• → Hb(K)[−b]→ τ≤b−1K

•[1](3.9.1.4). If we can prove
Hb(K)[−b]→ τ≤b−1K

•[1] is 0, then we finish by(3.7.7.4). But by induction and the hypothesis,

HomD(A)(Hb(K)[−b], τ≤b−1(K•)[1]) = ⊕i<b Extb−i+1
A (Hb(K),H i(K)),

which vanishes by hypothesis. □

Acyclic Objects

Prop.(3.9.3.27) [F -Acyclic Objects].For a left exact functor F , an object X is (right)F -acyclic
if RF is defined for X, and the natural map F (X) → RF (X) is an isomorphism, or equivalently
RiF (X) = 0 for all i > 0.

Then there is an adapted class of F iff the class of F -acyclic objects Acy(F ) is sufficiently large,
and in this case adapted classes of F are exactly sufficiently large subclasses of Acy(F ), and Acy(F )
contains all injectives(But the class of injectives may not be sufficiently large!).
Proof: Cf.[Gelfand P195]. □

Prop.(3.9.3.28) [Leray’s Acyclicity Lemma].Let F : A → B be an additive functor and RF is
everywhere defined, then for a complex A• in K+(A) consisting of F -acyclic objects, the natural
map F (A•)→ RF (A•) is an isomorphism.
Proof: Cf.[Sta]015E. This may be equivalent to(3.9.3.27). □

Prop.(3.9.3.29) [Acyclic Criterion].Let F be a left exact functor from an Abelian category C of
enough injectives to another Abelian category, T is a class of objects of C that satisfies:

• T is sufficiently large.
• Cokernel of maps between elements of T is in T and 0 → F (A) → F (A′) → F (Coker) → 0 is

exact. (To use induction).
Then every object of T is F -acyclic.
Proof: Cf.[[Sta]05T8]. □

Prop.(3.9.3.30) [Injectives are adapted].By(3.9.2.5), if A contains sufficiently many injectives,
then injective objects are adapted to any left exact functor F . (Because id on acyclic injective
complexes is homotopic to 0 by the lemma).
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4 D∞(R)

5 (Co)Homological Dimension
Prop.(3.9.5.1). If A has enough projectives, then the projective dimension of an object X is the length
of projective resolutions. (Use resolution and long sequence).

Prop.(3.9.5.2) [Hilbert Theorem].For an Abelian category A, the category A[T ] is an Abelian
category. If A has enough projectives and have infinite direct sum, then dhpA[T ](X, t) ≤ dhpA(X)+1
and equality with t = 0.

Cor.(3.9.5.3).The Categories Ab and K[X]-mod have homological dimension 1. K[Xi, . . . , Xk] has
homological dimension k.

Def.(3.9.5.4)[Injective Amplitude].LetA be an Abelian category with enough injectives,K ∈ D(A)
is said to have finite injective dimension if K ∈ Db(I). It is said to have injective amplitude
in [a, b] if K ∈ D[a,b](I).

Prop.(3.9.5.5).Let A be an Abelian category and K ∈ D(A),
• If K ∈ Db(A) and H i(K) all have finite injective dimensions, then K also has finite injective

dimension.
• If K is represented by K• ∈ Kb(A), and Ki all have finite injective dimensions, then K also

has finite injective dimension.

Proof: 1 follows from the Grothendieck spectral sequence applied to the functor Hom(N,−) for
any N ∈ A and the CE resolution of K(3.7.6.10).

2 follows from 1 as we can use induction to show all H i(K) has finite injective dimensions. □

6 Derived Limits and Colimits
Def.(3.9.6.1) [Derived (Co)Limits].Let D be a triangulated category, and (Kn, fn) is an inverse
system of objects in D, then an object K is called the derived colimit of it iff there ⊕Kn exists
and there is a distinguished triangle

⊕Kn → ⊕Kn → K → ⊕Kn[1]

where the first map is given by (1− fn). By TR1, the derived colimit exists as long as ⊕Kn exists,
and by TR3(3.7.7.12), the colimit is unique if it exists. And by TR3 again a morphism of systems
induces a morphism of colimits.

The definition of derived limit is dual.

Prop.(3.9.6.2)[Cofinality of Hocolim].Let D be a triangulated category and (Kn, fn) be a system,
if 0 ≤ ni0 < ni1 < . . . be a sequence of integers, then there is an isomorphism ho colimKni →
ho colimKn.

Proof: Cf.[[Sta]0CRJ]. □

Lemma(3.9.6.3).Let A be an Abelian category with countable products and enough injectives, then
the derived limit R lim for any inverse system in D+(A) exists.

Proof: It suffices to show ∏
K•
i exists in D(A). But every K•

n has a K-injective resolution I•
n,

by(3.7.6.10)(3.9.2.5). And then ∏K•
n is represented by ∏ I•

n, by(3.9.2.7). □
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Def.(3.9.6.4)[Rlim].Rlim on an Abelian category A with countable products and enough injectives
is defined to be the right derived functor of lim : AN → A. Equivalently, it is just the derived
limit(3.9.6.1)(3.9.6.3) in D(A) restricted to the case where each Kn is discrete.

Prop.(3.9.6.5).Let R limA exists on A, if Kn, fn is a system of objects in D+(A), then there are
exact sequences

0→ R1 lim(Hm(Kn), fn)→ Rm+1 lim(Kn, fn)→ lim(Hm(Kn), fn)→ 0.

Immediately from the definition(3.9.6.1).

7 Spectral Sequence
Reference for this section is [Weibel Ch5]. All the definition below is dual for homology and

cohomology, just rotate the diagram 180 degree.
We work in an Abelian category.

Def.(3.9.7.1).A convergent Spectral Sequence is a three-dimensional arrange of entries Ep,qr that:
1. dr : Ep,qr → Ep+r,q−r+1

r that drdr = 0.
2. Hp,q(Ep.qr ) ∼= Ep,qr+1. And Ep,qr has a direct limit Ep,q∞ .
3. There is a complex E• and a decreasing bounded filtration F pEn on each En and Ep,q∞

∼=
F pEp+q/F p+1Ep+q.

Def.(3.9.7.2)[Notations For Cohomological Spectral Sequence].
• The cohomology filtration is called bounded below FnsEn = 0 for some ns, it is called

bounded above FnsEn = En for some ns.
• The cohomology filtration is called exhaustive iff ∪F iEn = En.
• The spectral sequence is called regular iff drpq = 0 for sufficiently large r.
• A spectral sequence is said to weakly converges to E• if there is a filtration

. . . ⊂ F tHn ⊂ F t−1Hn ⊂ . . . ⊂ F sHn ⊂ . . . ⊂ Hn

that Epq∞
∼= F pHp+q/F p+1Hp+q.

• A spectral sequence approaches E• if it weakly converges to E•.
• A spectral sequence converges to E• if it approaches E•, it is regular, and En =

lim←−(En/F pEn).

• If a first quadrant spectral sequence converges to E•, then the morphisms En,00 → En,0∞ ⊂ En

and En → E0,n
∞ → E0,n

0 are called the edge morphisms.

Prop.(3.9.7.3) [Notation for Filtrations on Homological Complexes].Let C• be a complex
and . . . ⊂ Fp−1C ⊂ FpC ⊂ . . . ⊂ C be filtrations of complexes. Then it is called exhaustive if
C = ∪FpC. It is called Hausdorff if ∩FpC = 0. It is called complete if C = lim←−C/FpC.

Def.(3.9.7.4) [Spectral Sequence of a Filtered Complex].For a complex K• and a filtration
F pKn on Kn, we have a natural spectral sequence

Epq1 = Hp+q(F pEp+q/F p+1Ep+q), En = Hn(K•), F pEn = Hn(F pK•).
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For a morphism of filtered complexes that are isomorphism for some r, induction on the exact
sequence 0 → F pEn → F p+1En → Ep,n−p

∞ and use five-lemma shows it induces isomorphism on
H∗E.

Prop.(3.9.7.5) [Comparison Theorem].For a morphism F between two convergent spectral se-
quences, if it is an isomorphism for some r, then it induce isomorphism on the infinite homologies.

Proof: Clearly F induces isomorphisms on Ep,q∞ . Because there are exact sequence

0→ F p+1Hn → F pHn → Ep,n−p
∞ → 0

we can use five lemma and induction to show that F induces isomorphisms on F pHn/F sHn. Then
because Hn = ∪F pHn, we can take colimit to show F induces isomorphisms on Hn/F sHn, then
take inverse limits, we are done. □

Prop.(3.9.7.6) [Classical Convergence]. If the filtration on a complex C• is bounded below and
exhaustive for all Cn, then there is a spectral sequence that is also bounded below and converges to
H•(C•).

Proof: Cf[Gelfand P203] for cohomological case and [Weibel P135] for homological case. □

Prop.(3.9.7.7) [Complete convergence]. If the filtration is complete, exhaustive and the spectral
sequence is regular, then the spectral sequence weakly converges to H•(C•). And if it is also bounded
above, then it converges to H•(C•).

Proof: Cf.[Weibel, P139]. □
There are two examples, the stupid filtration and the canonical filtration, the canonical filtration

is natural and factors through D(A).

Prop.(3.9.7.8) [Spectral Sequence of a Double Complex].A double complex has two natural
filtration of the total complex, they defines two spectral sequence, one has

Ep,q2,x = Hp
x(H•,q

y (L•,•))

and the other has
Ep,q2,y = Hp

y (Hq,•
x (L••)).

Cf.[Gelfand P209]. In fact under reflection, there is only one spectral sequence. For the horizontal
filtration, the differential goes vertical first, for the vertical filtration, the differential goes horizontal
first. The differential goes one way, the convergence goes reversely.

If both the filtration is finite and bounded, in particular if E is in the first quadrant, then they
both converges to Hn(E), this will generate important consequences.

Cor.(3.9.7.9). If a double complex in the first quadrant has its all column acyclic (3rd-quadrant
pointing), then the total complex is acyclic. Thus a morphism of double complex inducing quasi-
isomorphism on each column induces a quasi-isomorphism on the total complex.

If a double complex has Hp(C∗,q) = 0,∀p > 0, q, then

Hn(TotC∗,∗) = Hn(Coker(C1,∗ → C0,∗)
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Prop.(3.9.7.10)[Horizontal Filtration].For a second-quadrant-free homology double complex, the
filtration is bounded below and exhaustive for Tot⊕, so the classical convergence(3.9.7.6) applies and
there is a convergence

E2
p,q = Hh

pH
v
q (C)⇒ Hp+qTot⊕(C).

For a fourth-quadrant free homology double complex, the filtration is complete and exhaustive
for TotΠ, so the complete convergence(3.9.7.7) applies and there is a weak convergence

E2
p,q = Hh

pH
v
q (C)⇒ Hp+qTotΠ(C).

Cor.(3.9.7.11)[Grothendieck Spectral Sequence]. If A,B, C be Abelian categories, B have enough
injectives and F : K+(A) → K+(B), G : K+(B) → K+(C) are exact functors between triangulated
categories. If RA is adapted to F,G ◦ F , then for any X• ∈ K+(A), there is a spectral sequence
convergence(to upper left)

Ep,q2 = RpG(RqF (X)) =⇒ En = Rn(G ◦ F )(X).

And if RA = IA, this spectral sequence is functorial in X•.
In particular, this applies to the case that F is right adjoint to an exact functor and both A,B

have enough injectives.

Proof: Choose a functorial injective resolution X 7→ I•
X(3.9.2.9), let K• = F (I•

X) = RF (X), and
choose a functorial CE resolution of K•(3.7.6.10), because the resolutions for Bi → Zi → H i and
Zi → Ki → Bi+1 split and G is additive, we have

Hq,•
x (G(L•,•)) = G(Hq,•

x (L•,•)) = RG(Hq(K))

So
Ep,q2,y = Hp

y (Hq,•
x (L••)) = RpG(Hq(K)) = RpG(RqF (X))

and
E• = RG(Tot(L)) = G(Tot(L)) = RG(K) = RG ◦RF (X) ∼= R(G ◦ F )(X)(3.9.3.6).

□
Cor.(3.9.7.12).The low degree parts read:

0→ R1G(F (A))→ R1(G ◦ F )(A)→ G(R1F (A))→ R2(G)(F (A))→ R2(G ◦ F )(A).

(Check definition). More generally, if RpG(RqF (A)) = 0, 0 < q < n, then

RmG(F (A)) ∼= Rm(G ◦ F )(A) m < n

And

0→ RnG(F (A))→ Rn(G ◦ F )(A)→ G(RnF (A))→ Rn+1(G(F (A))→ Rn+1(G ◦ F )(A).

Remark(3.9.7.13).The Grothendieck spectral sequence is tremendously important.

Cor.(3.9.7.14)[Spectral Sequence for Hypercohomologies].For chain complex K in K+(A) and
a left exact functor F , the CE resolution will generate two spectral sequences by(3.9.7.10):

Ep,q2,x = Hp
x(RqF (A))⇒ Rp+q(A),when A is bounded below

Ep,q2,y = (RpF )(Hq(A))⇒ Rp+q(A).weakly convergent
where the RHS is the hypercohomologies(3.9.3.11).
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8 T-Structures

Examples
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3.10 Differential Graded Algebras
Main references are [Ker] and [Sta].

Def.(3.10.0.1)[Differential Graded Algebras].A differential graded algebra or DGA is a chain
complex A• of R-modules with R-linear maps Am ×An → Am+n that

d(ab) = d(a)b+ (−1)nad(b).

that makes ⊕An into an associative and unital R-algebra.
Notice the first condition is equivalent to giving a map Tor(A• ×R A•)→ A.
For a differential algebra A•, a right differential module is defined naturally. The tensor

operation gives a closed symmetric monoidal structureMA.
Notice a usual R-algebra A can be seen as a differential graded algebra as A0 = A and An = 0

for n > 0.
And as in the case of chain complexes, the category of differential modules over A can be given

a derived category.

Def.(3.10.0.2).A differential graded algebra A• is called commutative if ab = (−1)deg(a) deg(b)ba. It
is called strictly commutative if moreover a2 = 0 for deg(a) odd.

Def.(3.10.0.3).For two differential graded algebras A,B, the tensor graded algebra A• ⊗B• is given
by the Tor(A• ⊗R B•).

1 dg-Categories
Def.(3.10.1.1)[dg-Categories].Given a DGA A, a dg-category over A is a category enriched over
the monoidal categoryMA(3.10.0.1). Let dgCatA denote the category of small dg-categories over A
where morphisms are given by monoidal functors.

Def.(3.10.1.2)[Homotopy Categories].Because H0 and Z0 are right-lax monoidal functors from
Ch(R) to Mod(R), given a dg-category C, by transferring, we can get categories H0(C) and Z0(C)
enriched over ModA0 .

Def.(3.10.1.3)[Equivalences].A morphism between dg-categories are called an equivalence if in-
duces quasi-isomorphisms on all hom-complexes.

Prop.(3.10.1.4)[Model Category of dg-Categories].There is a cofibrantly generated model cat-
egory on dgCatA, where weak equivalences are quasi-equivalences and the fibrations are morphisms
F : A → B that:

• induces component-wise surjections on hom-complexes.
• given an isomorphism g : F (X)→ Y ∈ H0(B), there is an isomorphism in H0(A) lifting g.

This monoidal structure is induced from that of the case A = R and the right-lax monoidal functor
Ch(R)→M(A) given by M• 7→ A⊗M .

Proof: Cf.[Tabuada, Gon �calo. Une structure de catgorie de modles de Quillen sur la catgorie des
dg- catgories. C. R. Acad. Sci. Paris Sr. I Math. 340 (1) (2005), 15-19. (2005), 3309?3339.] □

2 Sheaves of DGAs
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3.11 Topology II

1 Topological Groups

Def.(3.11.1.1).A topological group is a group object in the category of groups(3.1.1.65).

Prop.(3.11.1.2). If U is a nbhd of 1 in a topological group, then there is a nbhd V of 1 that V V ⊂ U .

Proof: Consider the map G×G→ G continuous, and it maps (1, 1) to 1 ∈ U , so the preimage of
U contains a nbhd of (1, 1), thus some V1 × V2, then choose V = V1 ∩ V2. □

Prop.(3.11.1.3).Let G be a connected topological group, then for any nbhd U of e, G =
∞∪
n=1

(U ∪

U−1)n. In particular, any open subgroup of G equals G.

Proof: This is because the RHS is an open subgroup of G, so all its cosets in G are also open, so
it equals G as G is connected. □

Prop.(3.11.1.4)[Separating Axioms].For a topological group G, the following are equivalent:
• e is a closed pt.
• G is T1.
• G is Hausdorff(T2).
• G is regular.
• G is completely regular

Proof: □

Prop.(3.11.1.5).Hausdorff topological group is completely regular.

Proof: Use a sequence of neighbourhood of identity to construct a uniform metric on G. Then set
ϕ(x) = min{1, 2σ(a, x)}. Cf.[Abstract Harmonic Analysis Ross §8.4] □

Prop.(3.11.1.6).For a compact subset K and a nbhd U of e in a topological group, there exists a
nbhd V of e that xV x−1 ⊂ U for any x ∈ K.

Proof: For any x, there exists a nbhd Wx of x and a nbhd Vx of e that txt−1 ∈ U for any t ∈ Wx

and y ∈ Vx. Let f.m. Wxi cover K, then V = ∩Vxi satisfies the condition. □

Prop.(3.11.1.7).A compact open nbhd of e in a Hausdorff topological group contains an open sub-
group of G.

Proof: Cf.[Etale Cohomology Fulei P147] □

Prop.(3.11.1.8)[Homogenous Space].Let G be a topological group and H a closed subgroup. G/H
is the quotient space in the quotient topology(3.3.1.8), then it is Hausdorff.

Proof: If x ̸= y, then consider a preimage xy−1 ∈ G\H, then we can find some open subset V that
V V ⊂ G\H by(3.11.1.2), thus x+ V ∩ y + V = ∅. Hence G/H is Hausdorff. □
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Group Actions

Prop.(3.11.1.9)[Quotient by Group Action is Open].Let G ×X → X be a group action, then
the quotient map π : X → X/G is open.

Proof: This is because the π−1(π(U)) =
∪
g∈G

gU . □

Def.(3.11.1.10)[Regular Action].An regular action is an action γ : G×X → X that satisfies the
following equivalent conditions:

• the graph of γ in X ×X is closed.
• The diagonal ∆X/G ⊂ X/G×X/G is closed.
• X/G is Hausdorff.

Proof: 2 ⇐⇒ 3 is clear, for 1, 2, notice X/G×X/G ∼= (X ×X)/(G×G), and the inverse image
of ∆ in X ×X is just the graph of γ. □

Def.(3.11.1.11)[Proper Action].A proper action is an action γ : G×X → X that the graph map
Γ : G×X → X ×X is a proper map.

Prop.(3.11.1.12)[Proper Action is Regular].A proper action of a group G on a locally compact
Hausdorff space X is a regular action.

Proof: This follows from(3.3.2.12). □

Def.(3.11.1.13)[Proper Discontinuous Actions].A group action is called proper discontinuous
iff any elements x, y ∈ H there are nbhds Ux, Uy that {g ∈ G|g(Ux) ∩ Uy ̸= ∅} is finite.

Def.(3.11.1.14) [Covering Space Action].A covering space action is action of a topological
group G on a topological space Y is called if for any y ∈ Y , there is a nbhd U that g(U) ∩ U = ∅ if
g ̸= 1.

Prop.(3.11.1.15)[Characterization of Proper Actions].Let γ : G×X → X be a group action that
X is Hausdorff, then γ is a proper action iff anyK ⊂ X compact, the setGK = {g ∈ G|g(K)∩K ̸= ∅}
is compact.

Proof: Let Γ : G×X → X ×X be the graph.
1→ 2: GK = π1(Γ−1(K ×K)), thus it is compact.
2 → 1: Let L ⊂ M × M be compact, then L ⊂ π1(L) × π2(L), and L is closed. Let K =

π1(L)∪ π2(L), then Γ−1(L) ⊂ Γ−1(π1(L)× π2(L)) ⊂ GK ×K, which is a closed subset of a compact
set, so Γ−1(L) is compact, and Γ is a proper map. □

Prop.(3.11.1.16). If G is a compact topological group, then any group action γ : G ×X → X on a
Hausdorff space X is proper.

Prop.(3.11.1.17)[Orbit of Proper Maps].Let θ be a proper action of G on a Hausdorff space X,
then each orbit map θ(p) is proper. In particular, if X is locally compact, then the orbits are all
closed(3.3.2.12).

Proof: For any compact subset K ⊂ X, (θ(p))−1(K) is closed by continuity and is contained in
GK∪{p}, thus is compact. □
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Prop.(3.11.1.18)[Properly Discontinuous Map is Proper]. If G acts proper discontinuously on
a topological space H, then for any compact subsets K1,K2 ∈ H, {g ∈ G|K2 ∩ g(K1) ̸= ∅} is finite.
In particular, if H is Hausdorff, then it is a proper action.

Proof: Notice for any two points we can find nbhds that f.m. g intersects these two nbhds, so we
can use the compactness to find f.m. pair of nbhds to cover K2, and then use these nbhds to cover
K1 and finite the proof. □

Prop.(3.11.1.19)[Proper Free Action is a Covering Space Action].Let G×X → X be a proper
free action on a locally compact Hausdorff space, then it is a covering space action.

Proof: For any p ∈ X, choose a precompact nbhd U of x, then GU is finite, then shrink U . □

Prop.(3.11.1.20)[Continuity].Let a topological group G acts freely and properly on a space X. If
G and X/G are both connected, then X is connected.

Proof: If U, V are open subsets of X that U ∩ V = ∅, U ∪ V = X, then π(U), π(V ) are open
by(3.11.1.9). Now π(U) ∩ π(V ) = ∅, because otherwise there is a G-orbit of X intersecting both U
and V , contradiction the fact G is connected. Then π1(U) = ∅ of π(V ) = ∅, thus U = ∅ or V = ∅,
and X is connected. □

Def.(3.11.1.21)[Constructible Action].An action of a topological group G on a topological space
X is called constructible if its graph is constructible in X ×X(3.11.3.10).

Prop.(3.11.1.22).Let γ : G×X → X be an action
• γ is constructible iff the diagonal ∆X/G ⊂ X/G×X/G is constructible.

• If γ is constructible and X is non-empty, then there is a G-invariant open subset U ⊂ X that
G acts regularly.

• For a constructible action, each G-orbit is locally closed.

Proof: Cf.[Bernstein-Zelevinsky, P54]. □

Totally Disconnectedness

Prop.(3.11.1.23).A compact topological group is totally disconnected iff the intersection of all com-
pact open nbhds of e equals {e}.

Proof: If it is totally disconnected, then {1} is closed, so G is Hausdorff(3.11.1.4), so by(3.3.1.24),
the assertion is true. Conversely, if the intersection of all compact open nbhds of e equals {e}, then
{1} is closed because G is a group. □

Prop.(3.11.1.24).A precompact nbhd of a e in a totally disconnected topological group contains a
compact open subgroup.

Proof: Cf.[Etale Cohomology Fulei P147]. □
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2 Hausdorff Geometry

Def.(3.11.2.1).The Hausdorff distance for two subset Y1, Y2 ∈ X is the

dHX(Y1, Y2) = inf{ε|Y2 ⊂ B(Y1, ε), Y1 ⊂ B(Y2, ε)}.

The Gromov-Hausdorff metric for two metric space is

dGH(X1, X2) = inf{dHZ (i1(X1), i2(X2))}

where i1, i2 are isometry of X1, X2 into a metric space Z.
This metric makes the set of all compact metric space into a complete Hausdorff spaceMET .

Def.(3.11.2.2).A map from X to Y is called a ε approximation iff B(f(X), ε) = Y and |d(x, y)−
d(f(x), f(y))| ≤ ε.

We have: if there is a ε approximation, then dGH(X,Y ) ≤ 3ε, and if dGH(X,Y ) ≤ ε, there is a
3ε approximation.

Prop.(3.11.2.3).The set of isometries of

3 Spaces from Algebraic Geometry

Noetherian Space

Def.(3.11.3.1)[Noetherian Spaces].A Noetherian space is a space X ∈ Top that any descending
chain of closed subsets stabilizes. A locally Noetherian space is a space X ∈ Top that every point
has a nbhd U s.t. U is a Noetherian space.

Prop.(3.11.3.2).A Noetherian space is quasi-compact and all subsets of it in the induced topology is
Noetherian hence quasi-compact.

Proof: Let T ⊂ X, for a chain of closed subsets Zi ∩ T of T , Z1, Z1 ∩ Z2, . . . stabilize in X, hence
the chain stabilize in T . □

Prop.(3.11.3.3). If X can be covered by f.m. Noetherian subspaces, then X is Noetherian.

Proof: □

Prop.(3.11.3.4) [Noetherian Space F.M. Irreducible Components].A Noetherian space has
only f.m. irreducible component, hence it has only f.m. connected components.

Proof: Let C be the family of closed subset that has infinitely many component, then there is a
minimal object, but it is not irreducible, one of the component has infinitely many components and
be smaller. □

Quasi-Separated

Def.(3.11.3.5)[Quasi-Separated].A space X is called quasi-separated if the diagonal morphism
is quasi-compact(3.3.2.2). If X has a basis consisting of quasi-compact open subsets, then this is
equivalent to any intersection of two quasi-compact open subsets is quasi-separated open.
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Specialization & Generalization

Def.(3.11.3.6)[Specializations and Generalizations].Let X ∈ Top then x is said to be a special-
ization of y if x ∈ {y}. And in this case y is said to be a generalization of x.

And they are called immediate specializations/generalizations if there are no other points
z ∈ X s.t. y → z → x.

Def.(3.11.3.7)[Going Up and Down].A map f of spaces is said to satisfy the going-up property
iff specialization lifts along f . It is said to satisfy the going-down property iff generalization lifts
along f .

Prop.(3.11.3.8).A closed map satisfies going-up.

Proof: If y → y′, f(x) = y, consider f({x}), it is closed and contains y, so it contains y′, thus the
result. □

Constructible Set

Def.(3.11.3.9)[Retrocompact Subset].A subset of X is called retrocompact if the inclusion map
is quasi-compact(3.3.2.2).

Def.(3.11.3.10)[Constructible Subset].A subset of X is called constructible if it is a finite union
of sets of the form U ∩ V c where U, V are open and retrocompact in X. In the case when X
is Noetherian, by(3.11.3.2), all subsets are retrocompact hence constructible sets are just union of
locally closed subsets of X.

A set of X is called locally constructible if locally it is constructible. If X is quasi-compact,
then a locally constructible set is just a constructible set.

Prop.(3.11.3.11).Constructible subsets of X forms a Boolean algebra.

Proof: Cf.[Sta]005H. □

Prop.(3.11.3.12)[Constructible and Subsets].
• If U is open in X, then for any E constructible in X, E ∩ U is constructible in U .
• If U is retrocompact open and E is constructible in U , then E is constructible in X.

Proof: Easy. □

Prop.(3.11.3.13).Any constructible subsets of X is retrocompact.

Proof: It suffices to prove Ui ∩ V c
i ∩W is quasi-compact for W quasi-compact, but this is because

it is a closed subspace of the quasi-compact subspace Ui ∩W . □

Cor.(3.11.3.14).An open subset of X is constructible iff it is retrocompact, a closed subset of X is
constructible iff its complement is retrocompact.((3.11.3.11) used).

Def.(3.11.3.15)[Constructible topology].The constructible topology Xcons on a quasi-compact
space X is generated by the open subsets U,U c, where U is a quasi-compact open.

Notice that the space is quasi-compact, so the constructible topology is the coarsest topology
that every constructible subset of X is both open and closed.

Prop.(3.11.3.16).Let X be quasi-compact and quasi-separated, then any constructible subset of X
is quasi-compact. In particular, if Y is closed in X, then Y is constructible iff it is quasi-compact.
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Proof: For Y = ∪ni=1(Ui − Vi), with Ui, Vj quasi-compact open in X, then Ui − Vi is closed in Ui
thus quasi-compact, and then Y is quasi-compact. □

Prop.(3.11.3.17).Let E be a constructible subset of a space X, if E is dense in then E contains some
open dense subset of its closure.
Proof: Let Y = ∪ki=1Yi where Yi are locally closed. Denote Zi = Y i\Yi, Z = ∪Zi, W = Y \Z.
Then W ⊂ Y , and we show that W is open dense in Y : As Yi are locally closed, Yi is open in Y i,
thus Zi is closed, and Z is closed, so W is open in Y . To show W is dense in Y : If some open
subset U of Y satisfies U ∪ Zi, then U cannot be contained in any Zi, so we can inductively show
U\Z1, U\(Z1 ∪ Z2), . . . are non-empty, which is a contradiction. □

Irreducible

Def.(3.11.3.18) [Irreducible Space].A space is called irreducible iff there are no two nonempty
nonintersecting open subsets. Thus an open subset of an irreducible set is dense and irreducible.

Prop.(3.11.3.19). If Y is irreducible in X, then Y is also irreducible.
Proof: Any two nonempty open sets of Y must intersect Y thus must intersect. □

Prop.(3.11.3.20). If X ∈ Top and U ⊂ X is open, then Y 7→ Y is a order preserving bijection between
irreducible closed subspaces of U and irreducible closed subspaces of X meeting U .

Jacobson Space

Def.(3.11.3.21).Let X be a space and X0 the set of closed pts of X, then X is called Jacobson iff
Z ∩X0 = Z for every closed subset Z of X. This is equivalent to every non-empty locally closed
subset of X contains a closed pt.

Thus there is a correspondence between closed subsets of X0 and closed subsets of X, so they
have the same Krull dimension.

Prop.(3.11.3.22).Being Jacobson is local. And for an open covering Ui of X, X0 = ∪Ui,0.
Proof: Firstly, if X = ∪Ui where Ui are Jacobson, X0 ∩ Ui = Ui,0. One direction is trivial, for the
other, let x be closed in Ui, then consider {x} ∩ Uj . If x /∈ Uj , this is empty, if x ∈ Uj , consider
T = {x} ∪ (Uj − Ui ∩ Uj), then T is closed in Uj , so by hypothesis, closed pts of Uj are dense in T ,
so x must be closed in Uj , so x is closed in X. Now clearly X is Jacobson.

Conversely, if X is Jacobson, for a closed subset Z of Ui, X0 ∩Z is dense in Z, so X0 ∩Z is dense
in Z, then clearly Ui is Jacobson. □

Cor.(3.11.3.23). If X is Jacobson, then any locally constructible sets of X is Jacobson. And its closed
pts are closed in X.
Proof: By the proposition, we only have to prove for constructible sets. For T = ∪Ti where Ti is
locally closed, then a locally closed set in T has a non-empty intersection T ∩Ti which is also locally
closed for some i.

Hence is has a closed pt in X hence in T , so T is Jacobson. The second assertion is implicit in
the proof. □

Prop.(3.11.3.24). If X is Jacobson, then an open set U of X is compact iff U ∩X0 is compact, hence
an open set U is retrocompact iff U ∩X0 is retrocompact.

Hence the constructible sets of X correspond to the constructible sets of X0.
And Irreducible closed subsets correspond to irreducible subsets of X0.
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Krull Dimension

Def.(3.11.3.25).The Krull dimension of a topological space is the length of the longest chain of
closed irreducible subsets.

The local dimension dimx(X) = min{dimU |x ∈ U ⊂ X open in X}.

Prop.(3.11.3.26). If Y ⊂ X, then dimY ≤ dimX, because the closure of any chain of Y is a chain of
X by(3.11.3.19).

For an open covering {Ui} of X, dimX = sup dimUi, because for any chain of closed irreducible
subsets, if Ui intersects the minimal one, then dimUi = length of this chain.

Prop.(3.11.3.27). dimX = sup dimx(X).

Proof: The right is smaller than the left by(3.11.3.26), and for any chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn of
irreducible closed subset of X, if I choose a point x ∈ Z0, then dimx(X) ≥ n. □

Prop.(3.11.3.28). In case X = SpecA for a Noetherian ring A, dimX = sup dimAp, because A is of
finite?

Def.(3.11.3.29)[Codimensions].Let X ∈ Top and Y ⊂ X be an irreducible closed subspace, then
the codimension of Y in X is defined to be the supremum of lengths e of chains Y = Y0 ⊂ Y1 ⊂
. . . ⊂ Ye = X, denoted by codim(Y,X).

Sober Spaces

Def.(3.11.3.30)[Sober Spaces].A space X is called sober if every irreducible closed subset has a
unique generic point.

Prop.(3.11.3.31).A sober space is T1. Conversely, a finite T0 space is sober.

Proof: The first assertion is because if x ∈ {y} and y ∈ {x}, then {x} = {y}, and this irreducible
closed subset has two generic point, contradiction.

If the space is finite, then for a closed irreducible subset T = {x1, . . . , xn}, T = ∪{xi}, as it is
irreducible, T = {xi} for some xi, and i is unique as it is T1, so X is sober. □

Prop.(3.11.3.32) [Soberization].There is a left adjoint t to the forgetful functor from the Sober
spaces. t(X) consists of irreducible closed subsets of X, and use t(Y ) for Y closed as closed subsets.
for a map f : X → Z to a sober space Z, the extension maps the generic point of an irreducible Y
to the generic point of the closure of f(Y ).

Def.(3.11.3.33)[Zariski Space].A Noetherian Sober space is called a Zariski space.

Catenary spaces and Dimension Functions

Def.(3.11.3.34)[Catenary Space].A space X is called catenary iff for any inclusion of irreducible
closed subsets of X, their codimension is finite and every maximal chain of irreducible closed subsets
has the same dimension. This is equivalent to codim(X,Y ) + codim(Y, Z) = codim(X,Z).

Prop.(3.11.3.35).Catenary is a local property, by(3.11.3.20).

Def.(3.11.3.36)[Dimension Function].For X ∈ Top, consider the specialization relation(3.11.3.6),
a dimension function is a function δ : |X| → Z that
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• if y is a specialization of x in X, then δ(y) < δ(x).
• if it is a direct specialization, then δ(y) = δ(x)− 1.

The dimension function is usually considered only when the space is sober.

Prop.(3.11.3.37).Let X ∈ Top be sober and catenary with a catenary function, then X is catenary,
and if x is a specialization of x in X, then

δ(x)− δ(y) = codim({y}, {x}).

Proof: This is clear from the definitions(3.11.3.29). □

Prop.(3.11.3.38). If X ∈ Top be locally Noetherian and sober, and δ, δ′ are two dimension functions
on X, then δ − δ′ is locally constant on X.

Proof: We may assume X is Noetherian, so it has only f.m. irreducible components by(3.11.3.4),
then δ − δ′ is locally constant on the X minus the irreducible components not passing through x
by(3.11.3.37). □

Prop.(3.11.3.39) [Catenary and Sober].Let X ∈ Top be locally Noetherian, sober, then X is
catenary iff any point x ∈ X has a nbhd U which has a dimension function.

Proof: Cf.[Sta]02IC.
The other direction follows from(3.11.3.37) and(3.11.3.35). □

Sober Spaces

Def.(3.11.3.40)[Sober Spaces].A space X is called sober if every irreducible closed subset has a
unique generic point.

Prop.(3.11.3.41).A sober space is T1. Conversely, a finite T0 space is sober.

Proof: The first assertion is because if x ∈ {y} and y ∈ {x}, then {x} = {y}, and this irreducible
closed subset has two generic point, contradiction.

. □

Prop.(3.11.3.42)[Catenary and Sober].Let X ∈ Top be locally Noetherian, sober and catenary,
then any point x ∈ X has a nbhd U which has a dimension function.

Proof: Cf.[Sta]02IC. □

4 Spectral Spaces
References are [Sta]5.23 and [Adic Spaces].

Def.(3.11.4.1) [Spectral Space].A space is called spectral iff it is quasi-compact, quasi-
separated(3.11.3.5), sober and the quasi-compact opens form a basis for the topology.

A space is called locally spectral iff it has an open covering by spectral spaces.
A morphism f : X → Y between locally spectral spaces is called spectral if for any open spectral

spaces U ⊂ f−1(V ), f : U → V is quasi-compact.

Prop.(3.11.4.2)[Connected Components].Let X be a spectral space, then any connected subset
of X is an intersection of clopen subsets.
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Proof: Let x ∈ X and S be the intersection of all clopen subsets of X containing x, then it suffices
to show S is connected. Suppose S = B

⨿
C with B,C closed, then B,C are compact, thus there

exist quasi-compact opens U, V ⊂ X that B = U ∩ S,C = V ∩ S. Then U ∩ V ∩ S = ∅. Now
U ∩ V is quasi-compact also, so there exists some clopen Zα containing x that Zα ∩ U ∩ V = ∅.
Similarly, there exists some clopen Zβ containing x that Zβ ⊂ U ∪ V . Then Zγ = Zα ∩ Zβ is clopen
and contained in U∆V , Then Both Zγ ∩ U and Zγ ∩ V is clopen, so U = ∅ or V = ∅. □

Cor.(3.11.4.3).Let X be a spectral space, then for a subset T of X, T is an intersection of clopen
subsets of X iff T is closed in X and is a union of connected components of X.

Proof: If T is an intersection of clopen subsets, then T is clearly a union of connected components
of X. Conversely, if T is a union of connected components of X, if x /∈ T , let C be a connected
components containing x. Then C is an intersection of clopen subsets, by(3.11.4.2). These subsets
are closed under finite intersections, so by the compactness of T , there is a clopen subset containing
T but not x, so we are done. □

Constructible Topology

Lemma(3.11.4.4). If X is a finite T0 space, then it is spectral and every subset of X is constructible.

Proof: Cf.[Adic Space Morel, P26]. □

Prop.(3.11.4.5). If X is a spectral space, then the constructible topology(3.11.3.15) is Hausdorff,
totally disconnected and quasi-compact.

Proof: The space is sober hence T0(3.11.3.41), and then the constructible topology is Hausdorff
and totally disconnected.

To show quasi-compactness, it suffices to show that the family C of quasi-compact open and
complement quasi-compact open subsets has the finite intersection property(3.3.2.3). Notice elements
in C are all quasi-compact. Now if there is a family that has the finite intersection property by has
intersection 0, by Zorn’s lemma, there is a maximal one of them, B. Now let Z be the intersection
of all the closed subsets in B, then it is non-empty as X is quasi-compact. And we claim Z is
irreducible: otherwise Z = Z1 ∪ Z2, thus there are quasi-compact open sets U1, U2 that U1 ∩ Z1 ̸=
∅, U1 ∩ Z2 = ∅, U2 ∩ Z2 ̸= ∅, U2 ∩ Z1 = ∅. then let Bi = X − Ui, then B1, B2 cannot by added to
B by maximality, so there is a finite intersection T1, T2 that Bi ∩ Ti = 0. But then Z ∩ T1 ∩ T2 = 0,
but Z is an intersection of closed subsets, thus some finite intersection of closed subsets in B will
∩T1 ∩ T2 = 0, contradiction.

So now Z is irreducible, but then for every element B ∈ B, Z ∩ B contains the generic point of
Z, thus the intersection of B is not empty, contradiction. □

Cor.(3.11.4.6).Let X be a spectral space, then
• The constructible topology is finer than the original topology.
• A subset X is constructible iff it is clopen in the constructible topology of X.
• If U is open in X, then the constructible topology induces the constructible topology on U .

Proof:
1: Every open subset of X is a union of its quasi-compact open subsets, so it is open in the

constructible topology.
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2: Clearly constructible subset is clopen in the constructible topology. Conversely, if Y is clopen,
then Y is a union of constructible subsets, but also it is quasi-compact, so it is a finite union of
constructible subsets, thus constructible.

3: Cf.[Mor19] P28. □

Prop.(3.11.4.7). If E ⊂ X is closed in the constructible topology, then it is a spectral space with the
induced topology, and the inclusion map is spectral.

Proof: Cf. [Mor19]P34. □

Prop.(3.11.4.8).For a set E closed in the constructible topology in a spectral space,
• every point of E is a specialization of elements in E. Thus if E is stable under specialization,

then it is closed.
• If E is open in the constructible topology and stable under generalization, then it is open.

Proof: Cf. [Sta]0903?. □

Prop.(3.11.4.9).For a map between spectral spaces f : X → Y , the following are equivalent:
• f is spectral.
• f is quasi-compact.
• f : Xcons → Ycons is continuous.

And if this is true, then f : Xcons → Ycons is proper.

Proof: 1→ 2→ 3 is trivial, an open subset of X is quasi-compact iff it is clopen in the constructible
topology(3.11.4.6), so 3→ 2. For 2→ 1, notice that if U ⊂ f−1(V ) are open spectrals, and W ⊂ U
is quasi-compact open, then f−1W ∩ U is quasi-compact open, because X is quasi-separated.

Finally, f is proper because Xcons, Ycons is compact Hausdorff(3.11.4.5), then use(3.3.2.10). □

Criterion of Spectralness

Lemma(3.11.4.10).Let X be a quasi-compact T0 space that is has a subbasis consisting of quasi-
compact open subsets that is stable under finite intersections. Let X ′ be the topology generated by
the quasi-compact open subsets and their complements, then the following are equivalent:

• X is spectral.
• X ′ is compact Hausdorff, and its topology has a basis consisting of open and closed subsets.
• X ′ is quasi-compact.

Proof: Cf.[Adic Space Morel P30]. □

Prop.(3.11.4.11) [Hochster’s Criterion of Spectrality].Let X ′ = (X0, T ′) be a quasi-compact
topological space, and let U be the family of clopen subsets of T ′, let T be the topology generated
by U , let X = (X0, T ).

Then if X is T0, then it is spectral, and every element of U is quasi-compact open in X, and
X ′ = Xcons.

Proof: Cf.[Adic Space Morel, P29]. □

Prop.(3.11.4.12)[Spectral and Inverse Limit].A space is spectral iff it is a direct limit of finite
sober(finite T1(3.11.3.41)) spaces.
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Proof: Cf.[Sta]09XX. □

Prop.(3.11.4.13)[Spec and Spectral Space].A spectral space is exactly the underlying space of
spectrum of some ring.

Proof: The spectrum of a ring is qc: if ∪D(fi) = SpecA, then (fi) = (1), so f.m. of them generate
(1). And similarly it is quasi-separable andD(f) = SpecAf is quasi-compact. For the other direction,
Cf.[M. Hochster. Prime ideal structure in commutative rings, Thm6]?. □

Cor.(3.11.4.14).Every quasi-compact irreducible scheme is homeomorphic to an affine scheme.

Cor.(3.11.4.15)[Characterization of Spectral Spaces].The following are equivalent for a topo-
logical space T :

1. T ∼= SpecR for some ring R.
2. T ∼= lim←−Ti where {Ti} is an inverse system of finite T0 spaces.
3. T is spectral.

Proof: This follows from(3.11.4.13) and(3.11.4.12). □

w-localness

Def.(3.11.4.16)[pro-Zariski Localization].A map of spectral spaces f : W → V is called a Zariski
localization if W =

⨿
i Ui where Ui → V is a quasi-compact open immersion. A pro-Zariski

localization is a cofiltered limit of Zariski localizations of V .

Def.(3.11.4.17)[w-Local].A spectral space is called w-local if the set of closed pts of X is closed and
any point of X specializes to a unique closed pt. A morphism of w-local spaces are called w-local if
it is spectral and maps closed pts to closed pts.

Prop.(3.11.4.18). If X is w-local and Y ⊂ X is a closed subset, then Y is also w-local.

Proof: Y is spectral by(3.11.4.7). Y0 is closed because Y0 = Y ∩X0. And the second assertion is
also trivial. □

Prop.(3.11.4.19).Let X be a spectral space and T profinite, then Y = X ×π0(X) T is also spectral
and T = π0(Y ). If moreover X is w-local, then Y is also w-local and Y → X is w-local.

Proof: Cf.[Sta]096C. □

Def.(3.11.4.20)[Localization Along a Closed Set].Given a closed set Z of a spectral set X, the
pro-open subset of X consisting of all points that specializes to a point of Z is called the localization
of X along Z. And X is called local along Z if X0 ⊂ Z.

Prop.(3.11.4.21).A spectral space that is local along a closed w-local subset Z ⊂ X with π0(Z) ∼=
π0(X), is also w-local.

Proof: X0 = Z0 is clearly closed, and if a pt x of X specializes to two closed pts of Z, then the π0
map is not injective, contradiction. □
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3.12 Algebraic Topology I: Homotopies

Main references are [Hat02], [AGP02], [同调论, 姜伯驹], [May99], [https://ncatlab.org/nlab/
show/Introduction+to+Homotopy+Theory#HomotopyGroupsOftopologicalSpaces].

Notation(3.12.0.1).
• Use notations defined in Topology I.
• All spaces are assumed to be compactly generated, and products and mapping spaces are

assumed to be compact generated versions.

1 Homotopy Types
Def.(3.12.1.1)[Retraction].A retraction of a space X to a subspace A is a map r : X → A that
r|A = idA.

Def.(3.12.1.2)[Homotopy].A homotopy ft : X → Y is a family of maps ft for every t ∈ I that
f : X × I → Y is continuous. For two homotopies F : X × I → Y and F ′ : X × I → Y s.t. F1 = F ′

0,
we can define the composite homotopy F ′ · F : X × I → Y .

Tow maps f0, f1 : X → Y are called homotopic is there is a homotopy ft : X → Y connecting
them. Homotopy relations are denoted by f0 ∼= f1.

Let A be a subspace of X, then a homotopy relative to A is a homotopy ft : X → Y whose
restriction to A is fixed.

Let E1, E2 be spaces over B, then maps f0, f1 : E1 → E2 over B are called fiber homotopic if
there is a homotopy ft : E1 → Y connecting them that each ft are maps over B. Homotopy relations
over B are denoted by f0 ∼=B f1.

Def.(3.12.1.3)[Homotopy Equivalences].A map f : X → Y is called a homotopy equivalence
if there is a map g : Y → X that f ◦ g ∼= id and g ◦ f ∼= id.

A space having the homotopy type of a point is called contractible.
A map f : X → Y over B is called a fiber homotopy equivalence if there is a map g : Y → X

over B that f ◦ g ∼=B id and g ◦ f ∼=B id.

Def.(3.12.1.4)[Deformation Retraction].A deformation retraction of a spaceX onto a subspace
A is a homotopy ft : X → X, t ∈ I that f0 = id, f1(X) = A and ft|A = idA for all t.

Prop.(3.12.1.5).A map X → Y is a homotopy equivalence iff the mapping cylinder deformation
retracts onto X.

Proof: ? □

Def.(3.12.1.6)[Excisive Triads].A triad of spaces is a triple (X;A,B) s.t. A ⊂ X,B ⊂ X. An
excisive triad is a triad (X;A,B) s.t. Ao ∪Bo = X.

Relative Spaces

Def.(3.12.1.7)[Relative Spaces].The category CGrel is the category of pairs (X,A) where A ⊂ X ∈
CG, and morphisms in CGrel are equivariant maps.

Def.(3.12.1.8) [Smash Products]. smash products in CGrel are defined to be (X,A) ∧ (Y,B) =
(X × Y, (X,A) ∨ (Y,B)), where (X,A) ∨ (Y,B) = X ×B ∪A× Y ⊂ X × Y .

https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory#HomotopyGroupsOftopologicalSpaces
https://ncatlab.org/nlab/show/Introduction+to+Homotopy+Theory#HomotopyGroupsOftopologicalSpaces
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Def.(3.12.1.9)[Cones and Suspensions].For (X,A) ∈ Toprel, the cone over (X,A) is defined to
be C(X,A) = (X,A) ∧ (I, {1}). The suspension of (X,A) is defined to be Σ(X,A) = (X,A) ∧ S1.

Prop.(3.12.1.10)[CGrel is Closed].For (X,A), (Y,B), (Z,C) ∈ CGrel, by(3.3.3.15) there is a homeo-
morphism

Map((X,A) ∧ (Y,B), (Z,C)) ∼= Map((X,A),Map((Y,B), (Z,C))).
In particular, CGrel is a closed symmetric monoidal category.

Def.(3.12.1.11)[Pointed Spaces].The category CGpt is the subcategory of CGrel consisting of pairs
(X,A) s.t. A ∼= pt. It is stable under finite products.

We can define similarly homotopies of maps between pointed spaces, and denote ⟨X,Y ⟩ the
homotopy classes of maps from X to Y .

Def.(3.12.1.12)[Smash Products].For X,Y ∈ CGpt, the smash product X ∧ Y is defined to be
X ∧ Y = X × Y/X ∧ Y , where X ∨ Y = X

⨿
∗ Y , called the wedge sum of X and Y . Similar

to(3.12.1.9), we can define cones and suspensions of pointed spaces.
Then the smash product and wedge sums are commutative and associative, and they satisfy

(X ∨ Y ) ∧ Z = X ∧ Z ∨ Z ∧ Z.

Because of(3.12.1.14), the smash product and wedge sums are also denoted by X⊗Y and X⊕Y .
Proof: For the identities, use the fact product commutes with colimits(3.3.3.16). □

Prop.(3.12.1.13)[Smash Products, and Homotopy]. Suspensions preserves homotopy, as Σ(X ∧
I) = X ∧ I ∧ S1 ∼= (X ∧ S1) ∧ I.

Prop.(3.12.1.14)[CGpt is Closed].For X,Y, Z ∈ CGpt, by(3.12.1.10), there is a bijection

Map(X ∧ Y, Z) ∼= Map(X,Map(Y, Z)).

In particular, CGpt is a closed symmetric monoidal category.
Def.(3.12.1.15) [Well-Pointed Spaces].A pointed space (X, ∗) ∈ CGpt is called a well-pointed
space if ∗ → X is a cofibration. The category of well-pointed spaces is denoted by CGwell-pt.

Def.(3.12.1.16)[Augmentation].There is a functor CG→ CGwell-pt : X 7→ X+ = (X
⨿

pt, pt).
Prop.(3.12.1.17).The cone construction

Toprel → Top : (X,A) 7→ C(A→ X)

preserves homotopy equivalence.
Prop.(3.12.1.18)[Path Spaces and Loop Spaces].For X ∈ CGpt, define the path space P (X) =

Map((I, {0}), X), and define the loop space Ω(X) = Map(S1, X).
Then by(3.12.1.14), there are homeomorphism of spaces

Map(Σ(X), Y ) ∼= Map(X,Ω(Y )).

Thus also
⟨Σ(X), Y ⟩ ∼= ⟨X,Ω(Y )⟩.

Def.(3.12.1.19)[Weak Products].For {Xα}Σ ∈ CGpt, define the weak product ∏′Xα as
′∏
Xα = lim−→

S⊂Σ,#S<∞

∨
i∈S

Xi

with base point ∏ ∗.
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2 Isotopies
Prop.(3.12.2.1)[Alexander’s Trick]. If f, g : Dn → Dn be two self-homeomorphisms that there is
an isotopy F : Dn× I → Dn between f |∂Dn and g|∂Dn , then there exists an isotopy between f and g
extending F .

Proof: Firstly, if g = idDn and f fixes every points on the boundary, then an isotopy connecting f
to the identity is given by

J(x, t) =
{
tf(x/t) , 0 ≤ ||x|| < t

x , t ≤ ||x|| ≤ 1
.

In general, isotopy g−1F : Dn × I → Dn between g−1f |∂Dn and id∂Dn can be extended to an
isotopy from F ′ : Cone(g−1f |∂Dn) to idDn . Then Cone(g−1f |∂Dn) and g−1f are identical on ∂Dn, so
by the argument above, they are isotopic. Then g−1f ∼= idDn , which gives an isotopy between f and
g. □

Prop.(3.12.2.2).Any orientation-preserving self-homeomorphism f of Sd is isotopic to idSd .

Proof: By the decomposition of Sd into two hemispheres and using the annulus theorem(3.3.11.2),
we see we can isotopy f to a map that fixes the equator. Then we can use Alexander’s trick(3.12.2.1).
□

3 CW Complexes
Def.(3.12.3.1)[CW Complexes].A CW complex is a space X that ∅→ X is cofibrantly generated
by Sn → Dn.

For a CW complex X, a representation of X is given as follows:
• sk0X is a discrete set, whose elements are regarded as 0-cells.
• Inductively, form the n-skeleton sknX from skn−1X by adding n-cells enα via maps φα :

Sn−1 → skn−1X.
• Let X = ∪ sknX be given the quotient topology from ⨿

n sknX.
We will also call the image of enα as an n-cell. The category of CW complexes is denoted by CW.
Any CW complex is compactly generated, by definition.

Def.(3.12.3.2)[Sub-CW Complexes].For a CW complex X, a subcomplex Y ⊂ X is a subspace
Y ⊂ X s.t. the cells with images in Y makes Y a CW complex.

Def.(3.12.3.3)[Finite CW Complexes].
• A CW complex of finite dimension is a CW complex X s.t. X = sknX for some n ∈ N.
• A CW complex of finite type is a CW complex X that has only finitely many n-cells for

each n.
• A finite CW complex is a CW complex that is both of finite dimensional and of finite type.
• A locally finite CW complex is a CW complex that each cell intersect only f.m. other cells.

Prop.(3.12.3.4) [Dimension of CW Complexes].Given a representation of a CW complex of
finite dimension X, dimX is defined to be the minimal n s.t. X = sknX. Then this dimension is
independent of the presentation given.

Proof: □
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Prop.(3.12.3.5).Any compact subspace K of a CW complex X is contained in a finite subcomplex.
In particular, a CW complex is compact iff it is finite.

Proof: Firstly K intersects with only f.m. interiors of cells of X(where we assume the interior
of a point in sk0X is the point itself): otherwise take S = {x1, x2, . . .} be an infinite sequence of
points lying in different cells, then S ∩ eα is closed for any cell eα of X, so S is closed. But the same
argument show any single point of S is also closed, so S is discrete, so S is finite, contradiction.

Then it suffices to show that any cell meets only f.m. cells: for this we can use induction on
dimX, and notice that for any cell eα, the image of its attaching map is compact. □

Prop.(3.12.3.6) [Miyazaki].Any CW complex is paracompact Hausdorff, thus also normal
by(3.3.7.6).

Proof: To show it is Hausdorff, for any two points x, y, it is not hard to find disjoint precompact
nbhds of x, y by induction on cells.

To show it is paracompact, Cf.[Rudolph Fritsch and Renzo Piccinini, Cellular Structures in Topol-
ogy]Thm1.3.5.? □

Prop.(3.12.3.7).A CW complex is locally compact iff it is locally finite. A connected CW complex
is metrizable iff it is locally finite.

Proof: Cf.[Rudolph Fritsch and Renzo Piccinini, Cellular Structures in Topology, Cambridge Uni-
versity Press, 1990.]Prop1.5.7. □

Prop.(3.12.3.8) [Product of CW Complexes].For X,Y ∈ CW, then the compactly generated
product space X ×c Y admits a CW complex structure with

sknX = ∪i+j=n skiX × skj Y.

And if eitherX or Y is locally compact or bothX,Y have countably many cells, thenX×cY = X×Y .

Proof: Given presentations of CW complexes of X,Y , we can define the CW complex structure on
X × Y by choosing homeomorphisms of pairs

(Dn,Sn) ∼= (Dp ×Dq,Dp × Sq−1 ∪ Sp−1 ×Dq),

where p+ q = n. Then it is a CW structure on X ×c Y by(3.3.3.16).
For the last assertion, the case X is locally compact follows from(3.3.2.33). The case that X,Y

both have countably many cells follow from [Hatcher, P524].? □

Prop.(3.12.3.9)[Cellular Maps].Given X,Y ∈ CW, a cellular map f : X → Y ∈ CW is a map s.t.
f(sknX) ⊂ skn Y for any n ∈ N. And a cellular homotopy between two cellular maps f, g : X → Y
is a homotopy F : X × I → Y between f and g s.t. F is a cellular map.

Prop.(3.12.3.10)[CW Structure on Compact Manifolds].Manicpct ∈ CWfin.

Proof:
□

Def.(3.12.3.11)[Relative CW complexes].A relative CW complex is a pair (A,X) s.t. A→ X
is cofibrantly generated by Sn → Dn. The category of relative CW complexes is denoted by CWrel.
A pointed CW complex is a pointed space (X, ∗) ∈ Toppt s.t. X has a presentation as a CW
complex with ∗ ∈ X0. The category of pointed CW complexes is denoted by CWpt.

Cellular maps in CWrel is defined similarly as that of(3.12.3.9).
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Prop.(3.12.3.12)[Pathspace is CW Complex].The homotopy fibers(3.3.3.18) of any map f : A→
B between CW complexes are homotopic to a CW complex.

Proof: [Milnor, 1959]. or [Rudolph Fritsch and Renzo Piccinini, Cellular Structures in Topology].
□

Cor.(3.12.3.13)[Loop Space].For X ∈ CWpt, the loop space(3.3.3.19) ΩX is homotopic to a pointed
CW complex. In particular, if X is of f.t., then so does ΩX.

Proof: This is a special case of(3.12.3.12) applied to A = {∗}, by(3.3.3.20). □

Common CW complexes

Def.(3.12.3.14)[Infinite Vector Spaces].Let K = R,C or H, then the infinite vector space K∞

is the CW complex lim−→n
Kn.

There can be given a norm map on K∞, as the canonical embedding is norm preserving.

Prop.(3.12.3.15)[Grassmannian].Let K = R,C or H, then the Grassmannian Gra(k,Kn) admits
a CW complex structure.

Proof: Cf.[Algebraic Topology Miller, P46] or [Characteristic Classes, Milnor].? □

Def.(3.12.3.16)[Infinite Grassmannian].Let K = R,C or H, then the infinite Grassmannian
Gra(k,K∞) is the CW complex lim−→n

Gra(k,Kn)(11.7.2.12).
In particular, Gra(1,K∞) ∼= lim−→n

KPn is defined to be the infinite projective space KP∞.

Def.(3.12.3.17)[Infinite Stiefel Manifold].LetK = R,C orH, then the infinite Stiefel Manifold
Vk(K∞) is the CW complex lim−→n

Vk(Kn) where Vk(Kn) is the set of orthonormal k-frames(11.7.2.12).
V1(K∞) = lim−→n

Sn is called the infinite sphere. It is isomorphic to

S∞ = lim−→
k

S2k+1 = lim−→
k

C2k+1\{0}/R+ = (C∞\{0})/R×
+.

Prop.(3.12.3.18). Vk(K∞) is contractible.

Proof: We prove for S∞, the proof for Vk(K∞) is verbatim, using Smith orthogonalization.
There is a map H : S∞ × I → S∞ defined by

H((x1, x2, . . .), t) = ((1− t)x1, tx2 + (1− t)x1, tx3 + (1− t)x2, . . .)/N

where N is the norm of the non-zero element ((1 − t)x1, tx2 + (1 − t)x1, tx3 + (1 − t)x2, . . .). The
image of H1 is in the subspace S∞

1 of elements (x1, x2, . . .) with x1 = 0. Notice there is another map
H ′ : S∞

1 × I → S∞ defined by

H ′((0, x2, . . .), t) = (t, (1− t)x2, (1− t)x3, . . .)/N ′

where N ′ is the norm of the non-zero element (t, (1 − t)x2, (1 − t)x3, . . .). Then the composition
homotopy (H ′ ◦H1) ·H gives the desired homotopy from idS∞ to a constant map. □

Prop.(3.12.3.19).RP∞ = S∞/{±1} = (C∞\{0})/R×.
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Def.(3.12.3.20)[James Reduced Product].Let X be a space with a basepoint e, let the James re-
duced product space J(X) be the quotient of ⨿nX

n under the identification (x1, . . . , xj , . . . , xn) ∼
(x1, . . . , x̂j , . . . , xn) if xj = e.

J(X) is a union of subspaces Jm(X), where Jm(X) is the quotient space of Xm under the iden-
tification (x1, . . . , xj , e, . . . , xn) ∼ (x1, . . . , e, xj , . . . , xn). If (X, e) is a CW-pair, then Jm is obtained
from Xm by glueing together its m subcomplexes where one of the coordinates is e. It is then clear
J is a CW complex.

Def.(3.12.3.21) [Infinite Symmetric Product].Let X be a space with a basepoint e, define the
infinite symmetric product as the quotient of J(X) by permutations. If X is a simplicial complex,
then SP (X) is a CW-complex.

Proof: Cf.[Hat02]P482. □

4 Homotopy Groups

Def.(3.12.4.1)[Homotopy Groups].For (X, ∗) ⊂ Toppt and n ∈ N, define the homotopy groups
πn(X) = πn(X, ∗) = ⟨Sn, X⟩, which is a pointed set.

And π1(X) is a group as S1 has a cogroup structure: S1 → S1∧S1. Similarly, πn(X) = π1(Ωn−1X)
are also groups, and the group structure are given by the cogroup structure Sn → Sn ∧ Sn.

Prop.(3.12.4.2)[Loop Spaces and Homotopy Groups]. πi+1(M) ∼= πi(Ω(M)).

Proof: This follows from the fact Sn = Σn(S0) and(3.12.1.18). □

Prop.(3.12.4.3)[Homotopy Groups are Abelian].For X ∈ CGpt, the homotopy group πn(X) is
an Abelian group for n ≥ 2.

Proof: By(3.12.4.2), it suffices to show for n = 2, and π2(X) = π1(ΩX) is Abelian by(3.13.2.30)
and(3.13.2.24). □

Cor.(3.12.4.4).For any X ∈ CG, ⟨Σ(X), Y ⟩ is a group and ⟨Σ2(X), Y ⟩ is an Abelian group.

Prop.(3.12.4.5) [Homotopy Groups and Change of Basepoints].Let X ∈ CG and γ : I → X
be a path from a to b, then for any n ∈ Z+, we can define a map γ# : πn(X, a) → πn(X, b) as
follows: For any f : (In, ∂In) → (X, a), identity In with the subspace of Rn consisting of vectors x
s.t. d(x) ≤ 1

2 , where d((x1, . . . , xn)) = min(|xi|), and

γ#(f) : (In, ∂In)→ X : x 7→
{
f(2x) , ||x|| ≤ 1

4
γ(4||x|| − 1) , 1

4 ≤ ||x|| ≤ 1

Then for any x0 ∈ X, this defines an actions of π1(X,x0) on πn(X,x0) by group homomorphisms
for any n ∈ Z+. And for n = 1, this is just the conjugation action.

Proof: It is a well-defined action because any homotopy between two maps f1, f2 : (In, ∂In) →
(X, a) can generate a homotopy between γ#(f1) and γ#(f2), and it is an action by group homomor-
phism because there is a homotopy between γ#(f) · γ#(g) and γ#(f · g), which is easy to write out.
□

Def.(3.12.4.6)[Simple Spaces].A space X ∈ CG is called a simple topological space if for any
x0 ∈ X, the action of π1(X,x0) defined in(3.12.4.5) is trivial.
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Def.(3.12.4.7) [Weak Homotopy Equivalences]. f : X → Y ∈ CG is called a weak homotopy
equivalence iff it induces isomorphism πn((X,x0)) ∼= πn(Y, f(x0)) for any n ∈ N and x0 ∈ X.

Prop.(3.12.4.8).Let f0, f1 : X → Y ∈ CG be maps and h : I×X → Y be a homotopy x0 ∈ X, then
if γ : I→ Y : t 7→ h(t, x0), then

γ# ◦ γ#(f0)∗ = (f1)∗.

Proof: For f : f : (In, ∂In) → (X,x0) is easy to write out a homotopy between γ#(f0)∗(f) and
(f1)∗(f). □

Cor.(3.12.4.9).Any homotopy equivalence is a weak homotopy equivalence.

Def.(3.12.4.10) [Relative Homotopy Groups].For an inclusion i : (A, ∗) ⊂ (X, ∗) ∈ Toppt, n ∈
Z+, define the relative homotopy groups πn(X,A) = πn(X,A, ∗) = πn−1(P (X; ∗, A)), where
P (X; ∗, A) is the homotopy fiber of i?. Equivalently, if we denote Jn = ∂In−1× I∪ In−1×{0} ⊂ In

for n ≥ 2 and J1 = {0} ⊂ I1, then

πn(X,A) = [(In, ∂In,Jn), (X,A, ∗)].

This is a pointed set for n = 1, a group for n = 2, and an Abelian group for n ≥ 3.

Prop.(3.12.4.11)[Long Exact Sequence of Relative Homotopy Groups].

Proof: □

Cor.(3.12.4.12)[Covering Spaces and Homotopy Groups]. If E → B is a covering space, then
πn(E)→ πn(B) is an isomorphism for n ≥ 2.

Prop.(3.12.4.13). If X ∈ CGpt is contractible, then πn(X) = 0 for any n ≥ 0.

Prop.(3.12.4.14) [Products and Homotopy Groups].For X,Y ∈ CGpt, πn(X × Y ) = πn(X) ×
πn(Y ) for any n ∈ N.

Prop.(3.12.4.15)[Colimits and Homotopy Groups]. If X = lim−→i
Xi ∈ CGpt is a filtered colimits,

there are natural isomorphisms
lim−→
i

πn(Xi) ∼= πn(X)

for each n ∈ N.

Proof: This follows from the fact any compact subset of X is contained in some Xi?. □

Def.(3.12.4.16)[n-Connectedness].For n ∈ N, (X,A) ∈ CGrel,pt is called n-connected if πi(X,A) =
∗ for any i ≤ n. X ∈ Toppt is called n-connected if πi(X) = ∗ for any i ≤ n.

Def.(3.12.4.17) [n-Equivalences].For n ∈ Z+, f : (X,A) → (Y,B) ∈ Toprel is called an n-
equivalence if f∗ : πp(X,A)→ πp(Y,B) are isomorphisms for p < n, and surjective for p = n.

Thm.(3.12.4.18)[Excision for Homotopy Groups]. if m,n ≥ 0, (X;A,B) is an excisive triad s.t.
(A,A ∩ B) is m-connected and (B,A ∩ B) is n-connected, then (A,A ∩ B) → (A ∪ B,A) is an
m+ n-equivalence.

Proof: Cf.[Hatcher P360]. □
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Cor.(3.12.4.19).For n > 1, πn(
∨
α S

α) is free Abelian with πn(Sn) as generators. This is because
(
∏
α S

n,
∨
α S

n) is (2n− 1)-connected thus use excision, because πn(
∏
α S

n) is easy to calculate.

Prop.(3.12.4.20). If f : X → Y is an n-equivalence between (n − 1)-connected spaces, then the
quotient map pr : (M(f), X) → (C(f), ∗) is an 2n-equivalence. And if X,Y are both n-connected,
then pr is an 2n+ 1-equivalence.

Proof: □

Cor.(3.12.4.21)[Quotients and Homotopy Groups].For n ∈ Z+, if i : A→ X is a cofibration that
is a n-equivalence of (n− 1)-connected space, then the map (X,A)→ (X/A, ∗) is a 2n-equivalence.
And if A,X are n-connected, then this is a 2n+ 1-equivalence.

Proof: This follows from the commutative diagram

(M(i), A) (C(i), ∗)

(X,A) (X/A, ∗)

where the vertical maps are homotopy equivalences, by(3.12.6.7). □

Prop.(3.12.4.22)[Suspension and Homotopy Groups, Freudenthal].For X ∈ CGwell-pt, there
are maps

Σ∗ : πp(X)→ πp+1(Σ(X)) : f ∈ ⟨Sp, X⟩ 7→ Σ(f) ∈ ⟨Sp+1 ∼= Σ(Sp),Σ(X)⟩(3.12.1.13).

Then if n ∈ N, X ∈ CGwell-pt and X is n-connected, then Σ∗ is bijective for p ≤ 2n and surjective for
p = 2n+ 1.

In particular, Σn(X) is (n− 1)-connected.

Proof: Cf.[May, P85]. □

Def.(3.12.4.23)[Stable Homotopy].For X ∈ CGwell-pt, using the suspension(3.12.4.22), we can form
the colimit

πsp(X) = lim−→
n∈N

πp+n(Σn(X)).

Then by(3.12.4.22),
πsp(X) = πp+n(Σn(X)), n ≥ p+ 2.

Prop.(3.12.4.24).The homotopic direct limit of a family of homotopy equivalence is a homotopy
equivalence. Cf.[Morse Theory Milnor].

Fundamental Groups

Def.(3.12.4.25) [Simply Connected].A space is called simply connected if it is connected and
π1(X,x) = 0 for some point x ∈ X.

Def.(3.12.4.26) [Semilocally Simply Connected].A space is called semilocally simply con-
nected if for any point x ∈ X, there is a nbhd U of x that the image of the inclusion-induced map
π1(U, x)→ π1(X,x) is trivial.
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Prop.(3.12.4.27) [Van Kampen]. If X is a union of path-connected subsets Aα all containing x0
that Aα ∩ Aβ and Aα ∩ Aβ ∩ Aγ are all path-connected, then ∗π1(Aα)/ ∼ where ∼ is generated by
i∗(π1(Aα ∩Aβ)) ∈ π1(Aα) ∼ i∗(π1(Aα ∩Aβ)) ∈ Aβ for every α, β.
Proof: Cf.[Hatcher P52]. □

Prop.(3.12.4.28)[Wedge Sums]. If Xi ∈ CGwell-pt and X =
∨
Xi, then π1(X) = ∗iπ1(Xi).

5 CW Approximations

Prop.(3.12.5.1) [CW Complex has Homotopy Extension Property].For (X,A) ∈ CWrel,
X × {0} ∪ A × I is a deformation retract of X × I, thus (X,A) has the homotopy extension prop-
erty(3.12.6.1).
Proof: Cf.[Hat02]P15. □

Lemma(3.12.5.2)[Compression and Homotopies].For n ∈ Z+, f : B → Y ∈ CG, the following
are equivalent:

• f∗ induces an injection on πn and a surjection on πn+1.
• Any map (Dn,Sn)→ (Y,B) ∈ Toprel is homotopic rel Sn to a map Dn → B.

Proof: Cf.[May, P70].? □
Thm.(3.12.5.3)[Compression Theorem]. If n ∈ Z+, (X,A) ∈ CWrel has relative dimension≤ n and
f : B → Y an n-equivalence, then any map (X,A) → (Y,B) ∈ CGrel is homotopic relA to a map
X → B.

In particular, (relative) homotopy doesn’t depend on (2-degree)higher dimensional cells, (but
might on lower one).
Proof: Use(3.12.5.2) on each cells. □

Thm.(3.12.5.4) [Whitehead]. If f : Y → Z ∈ CG is an n-equivalence, then [X,Y ] → [X,Z] is
bijective for X ∈ CWpt of dimension≤ n− 1, and surjective for dimX = n.
Proof: The surjectivity follows from the compression theorem for the pair (∅, X) ∈ CWrel, and the
injectivity follows from the compression theorem applied to (X × I, X × ∂I) ∈ CWrel. □

Cor.(3.12.5.5). If Y → Z ∈ Toppt is a weak-equivalence, then ⟨X,Y ⟩ → ⟨X,Z⟩ is an equivalence for
any X ∈ CWpt.

Cor.(3.12.5.6)[Whitehead].For n ∈ Z+, an n-equivalence of CW complexes of dimension≤ n− 1 is
a homotopy equivalence.

A weak equivalence of CW complexes is a homotopy equivalence.
Proof: Let e : Y → Z ∈ CW satisfies the hypothesis, then because e∗ : [Z, Y ]→ [Z,Z] is a bijection
by compression theorem(3.12.5.3), there exists f : Z → Y s.t. e ◦ f ∼= id. Thus e ◦ f ◦ e ∼= e. Then
since e∗ : [Y, Y ]→ [Y, Z] is also a bijection by compression theorem, f ◦ e ∼= id. □

Cor.(3.12.5.7). If X ∈ CWpt and πn(X) = 0 for all n, then X is contractible.

Cor.(3.12.5.8)[Whitehead Combinatorial Homotopy Theorem I].?If M and K is dominated
by CW complexes, then any weak homotopy equivalence is an homotopy equivalence. If the map is
an inclusion, then it is a deformation retract. In particular, if M is manifold, then it is dominated
by its tubular nbhd, so this theorem is applied.
Proof: For inclusion, use compression, and in general use mapping cylinder and cellular approxi-
mation. □
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Cellular and CW Approximations

Lemma(3.12.5.9).For n ∈ Z+, f (X,A) ∈ CWrel has nom-cells form ≤ n, then (X,A) is n-connected.
In particular, (X,Xn) is n-connected.

Proof: It suffices to show that any map f : (In, ∂In,Jn) → (X,A, ∗) is homotopic to a map
(In,Jn) → (A, ∗) relJn(3.12.4.1). For this, notice that the image is compact, thus we can assume
that (X,A) is finite?. Thus by doing one cell by one cell, it suffices to show for X = A

⨿
f,Sn D

n.
In this case, notice that by simplicial approximation, we can find a homotopic map f ∼= f ′ that f ′

avoids some point in (Dn)o?. Then we can use projection to construct a homotopy. □

Thm.(3.12.5.10)[Cellular Approximationss].Any map f : (X,A)→ (Y,B) ∈ CWrel is homotopic
relA to a cellular map.

In particular, any f : X → Y ∈ CW is homotopic to a cellular map.

Proof: This follows from(3.12.5.9). □

Remark(3.12.5.11).The cellular approximation makes the computation of homotopy theoretically
easier, but the difficulty comes from the complexity of the homotopy group of the sphere.

Remark(3.12.5.12). In fact, all the rest of this subsubsection can be rewritten by the geometric
realization functor Γ(X)→ X(3.5.3.8). It is functorial in the level of spaces.?

Prop.(3.12.5.13)[n-Connected CW Models].For a pair (A,X), if A is CW complex, then there
is a n-connected(3.12.4.16) CW pairs (Z,A) → (X,A) that is identity on A, and πi(Z) → πi(X) is
isomorphism for i > n and injection for i = n.

Such a pair (Z,A) is called a n-connected CWmodel of (X,A), and moreover it can be constructed
from A by attaching cells of dimension greater than n.

Proof: Cf.[Hatcher P353]. □

Cor.(3.12.5.14).For an n-connected CW pair (X,A), there exist a homotopic (Z,A) ∼= (X,A) rel A
that Z\A has only cells of dimension greater than n.

Proof: Choose the n-connected approximation as above. The map induce and isomorphism on π>n
by definition and on π<n because πi(A)→ πi(Z) and πi(A)→ πi(X) are isomorphisms. And on πn,
it is injective by definition and surjective because πn(A) → πn(Z) → πn(X) is isomorphism. Hence
we know that the collapsed mapping cylinder at is weak-homotopy equivalent to Z, thus it deforms
into Z by(3.12.5.8), thus Z → X rel A by(3.12.1.5). □

Cor.(3.12.5.15)[Functorial CW Approximations].A CW approximation of a space X is a CW
complex Z and a weak homotopy equivalence Z → X. A CW approximation of a pair (X,A) is
pair of CW complexes (Z,Z0) and a morphism (Z,Z0)→ (X,A) that induces isomorphisms on both
relative and absolute homotopy groups.

Thus there exists a CW approximation for any space A, and also there exists a CW approximation
for any pair (X,X0).

Proof: Just choose A to be a set containing a point for each connected component of X, then
π0(Z)→ π0(X) is surjective hence injective.

For pairs, first approximate X0 and use the mapping cylinder to get a embedding.? □
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Prop.(3.12.5.16)[Functoriality of CWModels].Given n-connected CWmodel f : (Z,A)→ (X,A)
and f ′ : (Z ′, A′) → (X ′, A′), then any map of pairs g : (X,A) → (X ′, A′) can be extended to a map
of pairs h : (Z,A)→ (Z ′, A′) that gf ∼= f ′h relA. And such a map h is unique up to homotopy relA.

Proof: Cf.[Hatcher, P355]. □

Cor.(3.12.5.17) [Uniqueness of CW approximation].The CW approximation is unique up to
homotopy.

Cor.(3.12.5.18) [Localizing Category].Together with Whitehead combinatorial homotopy theo-
rem(3.12.5.8) the homotopy category of spaces defined in(3.5.2.3) is the category of spaces CG local-
ized by the class of weak homotopy equivalence classes.

Prop.(3.12.5.19)[CW Approximation of Excisive Triads].Cf.[May, 79].

6 Fibrations and Cofibrations

Cofibrations

Def.(3.12.6.1)[Homotopy Extension Property]. (X,A) ∈ Toprel is said to satisfy the homotopy
extension property if every map X×{0}⨿A×{0}A×I → Y can be extended to a map X×I → Y .

Def.(3.12.6.2) [Cofibrations].A cofibration is a map j : A → X that for every map X ×
{0}

⨿
A×{0}A× I → Y can be extended to a map X × I → Y .

This implies X × {0} ∪A× I→ X × I has a left inverse. And the converse is clearly true.
Then a cofibration is just a topological embedding with closed image that (X,A) has the homotopy

extension property(3.12.6.1).
Cofibrations is stable under cobase change and coproducts.

Proof: ? □

Def.(3.12.6.3) [NDR-Pairs].An neighborhood deformation retraction pair, or an NDR-pair is a
pair (X,A) ∈ Toprel s.t. there is a map u : X → I s.t. u−1(0) = A, and a homotopy ft : X → X relA
s.t. f0 = idX , and f1(u−1([0, 1)) ⊂ A.

Prop.(3.12.6.4) [NDR Pairs and Cofibrations]. If A ⊂ X is closed, then (X,A) is a NDR-
pair(3.12.6.3) iff A→ X is a cofibration.

Proof: Cf.[May, P45].? □

Prop.(3.12.6.5)[CW-Pairs are Cofibrations].By compression theorem(3.12.5.3), for any CW-pair
(A,X), A→ X is a cofibration.

Def.(3.12.6.6) [Hurewitz Cofibration].A closed Hurewicz cofibration i : A ⊂ B is a closed
inclusion of spaces that B×{0}⨿A× I→ B× I has left extension property w.r.t any map Y → pt.

Prop.(3.12.6.7)[Quotient a Contractible Cofibration]. If A → X is a cofibration and A is con-
tractible, then the quotient map X → X/A is a homotopy equivalence. In particular, this applies to
(X,A) ∈ CWrel, by(3.12.5.1).
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Proof: Let ft : X → X be a homotopy extending a contraction of A to a point, with f0 = id. Since
ft(A) ⊂ A, they descends to a homotopy f t : X/A→ X/A. Because f1(A) is a point, there is a map
g in the following diagram

X X

X/A X/A

π

f1

π

f1

g
.

So g and π are inverse homotopy equivalences, because f1 ∼= f0 = id and f1
∼= f0 = id. □

Prop.(3.12.6.8).Let X be a normal space, then an inclusion j : A ↪→ X is a cofibration iff A ↪→ V is
a cofibration for some open nbhd V of j(A) ⊂ X.

Proof: Cf.[AGP02]P92. □

Prop.(3.12.6.9)[Homotopic Glueing Functions].Let A→ X1 be a cofibration with X Hausdorff,
and we have attaching maps f, g : A→ X0 that is homotopic, then X0

⨿
f X1 ∼= X0

⨿
gX1 rel X0.

Proof: Now choose a homotopy H : A × I → X0 connecting f and g, then H induces a quotient
space Z = X0

⨿
H(X1×I). Let X = X0

⨿
f X1, Y = X0

⨿
gX1, then there are natural inclusion maps

i : X1 → Z, j : Y → Z, and there are also deformation retractions Z → X,Z → Y constructed as
follows:

Choose a deformation retraction r of X1 × I onto X1 × {0}
⨿
A × I(3.12.6.1), and H induces a

map H : Dn × {0}
⨿
Sn × I → Sn

⨿
f D

n, making the following diagram commutative

A× I X1 × I

A× I
⨿
X1 × {0}

X0 X0
⨿
f X1

H

r

H

id

which by definition defines a deformation retraction r1 : X0
⨿
H(X1 × I)→ X0

⨿
f X1. Similarly we

have deformation retraction r2 : Z → Y . So r2 ◦ i and r1 ◦ j induce an homotopy equivalence between
X and Y . □

Prop.(3.12.6.10). If A→ X,A→ Y are cofibrations, and f : X → Y is a homotopy equivalence that
f |A = idA, then f is a homotopy equivalence rel A.

Proof: Cf.[Hatcher] P16. □

Cor.(3.12.6.11). If j : A → X is a cofibration which is also a homotopy equivalence, and X is
Hausdorff, then A is a deformation retraction of X.

Serre Fibrations

Def.(3.12.6.12)[Serre Fibration].A Serre fibration is the right lifting class of Dn×{0} → Dn×I
for every n. This is equivalent to: for any homotopy of ∂Dn and a image Dn, there is a homotopy
of Dn.

In particular, Serre fibrations are stable under base change, by(3.4.0.1).
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Prop.(3.12.6.13).Being a Serre fibration is local on the target.

Proof: Cf.[Homotopical Point of View]P127. □

Prop.(3.12.6.14)[Long Exact Sequence of Serre Fibration].Let π : E → X be a Serre fibration,
let b0 ∈ B and x0 ∈ F = π−1(b0), then the map π∗ : πn(E,F, x0)→ πn(B, b0) is an isomorphism for
all n ≥ 1. In particular, there is a long exact sequence

. . .→ πn(F, x0)→ πn(E, x0)→ πn(B, b0)→ πn−1(F, x0)→ . . .→ π0(B, b0)→ 0.

by(3.12.4.11).

Proof: Cf.[Hat02]P376. [nLab]. □

Hurewicz Fibrations

Def.(3.12.6.15)[Hurewicz Fibrations].A Hurewicz fibration is a map p : X → Y ∈ CG that has
right lifting property w.r.t maps A × {0} → A × [0, 1] for any A ∈ CG. in particular, a Hurewicz
fibration is a Serre fibration(3.12.6.12).

Hurewicz fibrations are stable under base change.

Prop.(3.12.6.16) [Comparing Fibers of a Hurewicz Fibration]. If π : E → B is a Hurewicz
fibration, then for any arc γ in B with γ(0) = a, γ(1) = b, there is a homotopy equivalence fγ :
π−1(a) ∼= π−1B, and the homotopy class of fγ only depends on the homotopy class of γ.

In other words, a Hurewicz fibration over B determines a contravariant functor Π1(B)→ Ho(CG).

Proof: This follows from the homotopy lifting property. □

Cor.(3.12.6.17).For a Hurewicz fibration E → B, if B is contractible, then it is fiber homotopy
equivalent to a trivial fiber bundle.

Prop.(3.12.6.18).Let π : E → B, π′ : E′ → B be Hurewicz fibrations and f : E → E′ be a map over
B that is also a homotopy equivalence, then f is a fiber homotopy equivalence.

Proof: Cf.[Miller, P141]? □

Prop.(3.12.6.19)[Homotopy Invariance of Pullbacks].Let π : E → X be a Hurewicz fibration
and f0, f1 : Y → X ∈ CG are two maps that are homotopic, then the two Hurewicz fibrations
f∗

0E/Y, f
∗
1E/Y are fiber homotopy equivalent.

Proof: Cf.[Miller, P140]? □

Prop.(3.12.6.20)[Homotopy Fiber of Contractible Fibration].Let f : E → B be a Hurewicz
fibration with E contractible, then the homotopy fibers(3.3.3.18) F over b0 is weak homotopy equiv-
alent to Ω(B, b0).

Proof: Let x0 ∈ π−1(b0). If we compose the contraction of E to x0 with π, then we get for each
x ∈ E a path γx from π(x) to b0. Then these give a map E → PB : x 7→ πγ−1

x , which is a lift of

π. Then this map gives a commutative diagram
F E B

Ω(B, b0) PB B

that gives a map of their

corresponding long exact sequences(3.12.6.14). Thus F → Ω(B, b0) is a weak homotopy equivalence
because E,PB are both contractible(3.3.3.20). □



352 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

Prop.(3.12.6.21) [Pathspaces are Hurewicz Fibrations].For any map f : A → B, the map
π : Ef → B : (a, γ) 7→ γ(1) from the pathspace(3.3.3.18) is a Hurewicz fibration.

In particular, take A = {x0}, then the path space PB → B is a Hurewicz fibration.

Proof: Firstly this map is continuous by(3.3.3.5). To verify the homotopy lifting property, let
gt : X → B be a homotopy and g̃0 : X → Ef be a lifting, let g̃0(x) = (h(x), γx). Define a lift
g̃t : X → Ef by g̃t(x) = (h(x), γx · g[0,t](x)). The second term is concatenation, which can be defined
because g0(x) = πg̃0(x) = γx(1).

To check this is a continuous homotopy, by(3.3.3.7), it suffices to show A× I× I → B : (x, s, t) 7→

γx · g[0,s](x)(t) =
{
γ(x, (1 + t)s) s ≤ 1

1+t
g(1+t)s−1(x) s ≥ 1

1+t
is continuous. □

Cor.(3.12.6.22)[Homotopy Fibers].We can embed A into Ef be mapping x to (x, γx), where γx
is the trivial loop at x. Then A is a deformation contraction of Ef , by restricting to shorter and
shorter initial segments: Ht : Ef → Ef : (a, γ) 7→ (a, γt), where γt(x) = γ(tx).

Then we factored f as a homotopy equivalence followed by a fibration: A→ Ef → B.
If x0 ∈ X and Ff is the fiber of Ef over x0, then a map (Ii+1, ∂Ii+1, J i)→ (A,B, x0) is the same

as a map (Ii, ∂Ii)→ (Ff , γ0), where γ0 is the trivial loop at x0. Thus πi+1(A,B, x0) = πi(Ff , γ0).

Prop.(3.12.6.23) [Pathspace of a Hurewicz Fibration]. If π : E → B is a fibration, then the
inclusion E → Eπ(3.12.6.22) is a fiber homotopy equivalence. In particular, the homotopy fibers of
π are homotopy equivalent to the actual fibers.

Proof: □

Prop.(3.12.6.24) [Fibration Sequence].Given a fibration π : E → B with F = π−1(b0), x0 ∈ F ,
there is a sequence

. . .→ Ω2(B, b0)→ Ω(F, x0)→ Ω(E, x0)→ Ω(B, b0)→ F → E → B → 0

where any two consecutive maps form a fibration, up to homotopy.

Proof: By(3.12.6.23), the inclusion i of F to the homotopy fiber Fπ over π over p is a homotopy
equivalence, and it extends to a map i : Fp → E : (x, γ) 7→ x, which is also a Hurewicz fibration,
because it is the pullback of the fibration PB → B(3.12.6.21).

Thus we can take the homotopy fiber Fi of i : Fp → E over x0, and similarly there is a fibration
j : Fi → F , and F is naturally homotopic to the actual fiber of i, which is just Ω(B, b0). □

Model Category Structures

Lemma(3.12.6.25)[Cofibrant Replacement].Any map f : X → Y is a compositionX →Mf → Y .
Notice Mf → Y is a homotopy equivalence and X →Mf is cofibrant by(3.12.6.4).

Cor.(3.12.6.26)[Homotopy equivalence and mapping cylinder].A map f : X → Y is a homo-
topy equivalence iff X is a deformation retraction of the mapping cylinder Mf . In particular, two
spaces are homotopically equivalent iff there is a third space containing both of them as deformation
retractions.

Proof: Cf.[Hatcher] P16. □
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Lemma(3.12.6.27)[Fibrant Replacement].Any map f : X → Y is a composition X → N(f)→ Y ,
whereN(f) = X×Y Y I , where Y I → Y is evaluation at {0}, andX → N(f) is given by x 7→ (x, cf(x)),
where cf(x) ∈ Y I is the constant map f(x).

It is true that

Proof: X → N(f) is homotopy inverse to the projection map: We can use the homotopyN(f)×I →
N(f) : (χ, a) 7→ χa : t 7→ χ(at).

To show that N(f)→ Y is a fibration, Cf.[May, 50]?. □

Prop.(3.12.6.28)[Serre-Quillen].The category CG can be given a Serre-Quillen model structure
with

• Weak equivalences: weak homotopy equivalence,
• Fibrations: Serre fibrations,
• Cofibrations: Retracts of morphisms X → Y where Y is obtained from X by attaching cells.

Proof: Cf.[Homotopy Theories and Model Categories, Chap8]. □

Prop.(3.12.6.29).The homotopy category Ho(Top) of the Serre-Quillen model structure is equivalent
to the homotopy category of spaces H.

Proof:
□

Lemma(3.12.6.30).Every map can be decomposed as a homotopy equivalence followed by a fibration,
by the construction of homotopy fibers.

Proof: □

Prop.(3.12.6.31) [Hurewicz-Str∅m].The category CG can be given a Hurewicz-Str∅m model
structure with

• Weak equivalences: homotopy equivalences.
• Cofibrations: closed Hurewicz cofibrations.
• Fibrations: Hurewitz fibrations.

Proof: Cf.[strum paper]. □

Prop.(3.12.6.32).The homotopy category of the Hurewicz-Str∅m model structure is equivalent to
the usual category of homotopy types.

7 Calculations of Homotopy Groups
Prop.(3.12.7.1).For 0 < k < n ∈ Z, πk(Sn) = 0. And for 0 < n, π0(Sn) = ∗.

Proof: This follows from cellular approximation(3.12.5.10) and the canonical CW structure on Sn.
□

Prop.(3.12.7.2).For i ≥ 2, π1(RPi) ∼= Z/(2), and πn(RPi) ∼= πn(Si) for n ̸= 1.

Proof: This follows from the fiber sequence Z/(2)→ Sn → RPn and(3.12.4.12). □

Lemma(3.12.7.3).There is a covering space R→ S1 with fiber Z, thus π1(S1) ∼= Z.
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Prop.(3.12.7.4)[Hopf Fibration].By(3.14.1.12) and(3.12.6.14), there is a long exact sequence

. . .→ πi(S1)→ πi(S3)→ πi(S2)→ πi−1(S1)→ . . .→ π0(S2)→ 1.

Thus πi(S3) ∼= πi(S2) for i ≥ 3, and π2(S2) ∼= π1(S1) ∼= Z(3.12.7.3).

Prop.(3.12.7.5)[Finiteness of Sphere Homotopy].For p > n > 1, πp(Sn) are all finite except for
π4n−1(S2n).

Proof: □

Prop.(3.12.7.6)[Basic Sphere Homotopy].For n ∈ Z+, there are maps πi(Sn)→ πi+1(Sn+1) that
is an isomorphism for i < 2n− 1 and surjective for i = 2n− 1.

In particular, πn(Sn) ∼= π2(S2) ∼= Z for any n ≥ 2.

Proof: This follows from Freudenthal suspension theorem(3.12.4.22). The last assertion follows
from(3.12.7.3). □

Prop.(3.12.7.7). π4(S3) ∼= π4(S2) ∼= Z/(2).

Proof: □

Prop.(3.12.7.8). for i ≤ 2m, πiGm(C2m) ∼= πi−1U(m), and

πi−1U(m) ∼= πi−1U(m+ 1) ∼= · · · .

and for j ̸= 1, πjU(m) ∼= πjSU(m).
Similarly, πiΩ1(2m) ∼= πi+1O(2m) for i ≤ n− 4.(11.3.1.12),Cf[Morse Theory Milnor Prop23.4].

Cor.(3.12.7.9)[Bott Periodicity theorem for Unitary Groups].The stable homotopy group πiU
has period 2. π2k+1U ∼= 0 and π2kU ∼= Z.

Proof: Use the last proposition and long exact sequence to show that for 1 ≤ i ≤ 2m,

πi−1U = πi−1U(m) ∼= πiGm(C2m) ∼= πi+1SU(2m) ∼= πi+1U.

Notice that U(m)→ U(2m)/U(m)→ Gm(C2m) □

Prop.(3.12.7.10) [Bott Periodicity for O].For the infinite dimensional orthogonal space O,
Ω8(16r) ∼= O(r),Ω4(8r) ∼= Sp(2r). So Ω8 ∼= O and Ω4O ∼= Sp. Thus by (3.12.4.2),

πi(O) = Z/(2),Z/(2), 0,Z, 0, 0, 0,Z . . . , πi(Sp) = 0, 0, 0,Z,Z/(2),Z/(2), 0,Z . . .

respectively. (Use (11.3.1.13)) Cf.[Morse Theory Prop24.7].

Prop.(3.12.7.11). If a simply-connected finite complex X is not contractible, then infinitely many of
its homotopy groups are non-zero.

Proof: Cf.[Jean-Pierre Serre, Cohomologie modulo 2 des complexes d’Eilenberg-Maclane] □
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3.13 Algebraic Topology II: Homologies and Cohomologies
Notation(3.13.0.1).

• Use notations defined in Algebraic Topology I: Homotopies.

1 Homologies

Axiomatic Homologies

Def.(3.13.1.1) [Eilenberg-Steenrod Homology Theories, Eilenberg-Steenrod1945].A
Eilenberg-Steenrod homology theory is given by the following data:

• A functor Ep(−) : Ho(Toprel)→ Ab for any p ∈ Z. For X ∈ Top, denote Hp(X,∅) by Ep(X).
• For any p ∈ Z, an equivariant boundary map ∂ : Ep(X,A) → Ep−1(A) for any (X,A) ∈

Ho(Toprel).
that satisfies
Exact Sequence: For (X,A) ∈ Toprel, there is a natural long exact sequence

· · · → Ep(A)→ Ep(X)→ Ep(X,A) ∂−→ Ep−1(A)→ · · · .

Excision: For any excisive triad (X;A,B)(3.12.1.6), the inclusion (A,A ∩B)→ (X,B) induces an
isomorphism

Ep(A,A ∩B) ∼= Ep(X,B)

Additivity: If (X,A) =
⨿
α(Xα, Aα), then there are natural isomorphisms⊕

α

Ep(Xα, Aα) ∼= Ep(X,A).

By functorial CW approximations on relative spaces(3.12.5.15), CW approximation of excisive tri-
ads(3.12.5.19) and Whitehead theorem(3.12.5.6), such a theory is equivalent to a theory restricted
to all CW complexes with cellular maps as morphisms.

Prop.(3.13.1.2)[Cofibrations].Given an Eilenberg-Steenrod homology theory E∗, for any cofibration
i : A→ X ∈ Top, there is a natural isomorphism

E∗(X,A) ∼= E∗(X/A, ∗).

Proof: As i is a cofibration, C(A) → C(i) = X
⨿
A×{0}C(A) is also a cofibration. Consider the

commutative diagram

E∗(X
⨿
A×{0}(A× [0, 2/3]), A× [1/3, 2/3]) E∗(C(i), (A× [1/3, 1])/(A× {1}))

E∗(X,A) E∗(X/A, ∗)

.

Then the upper horizontal map is an isomorphism by excision, and the vertical maps are isomorphisms
by homotopy invariance: The right vertical map is

(C(i), (A× [1/3, 1])/(A× {1})) ∼= (C(i), C(A)) ∼= (X/A, ∗)

by(3.12.6.7). Then the lower horizontal map is also an isomorphism. □
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Def.(3.13.1.3)[Reduced Homology Theories].A reduced Eilenberg-Steenrod homology the-
ory is given by the following data: A functor Ẽ∗(−) : Ho(CGwell-pt)→ Ab for any p ∈ Z that satisfies
Exactness: For any cofibration i : A→ X ∈ CGwell-pt, the sequences

Ẽp(A)→ Ẽp(X)→ Ẽp(X/A)

are exact.
Suspension: For any X ∈ CGwell-pt, there are natural isomorphisms

Σ∗ : Ẽp(X) ∼= Ẽp+1(ΣX).

Additivity: If X =
∨
αXα, then there are natural isomorphisms⊕

α

Ẽp(Xα) ∼= Ẽp(X).

By functorial CW approximations on pointed spaces(3.12.5.15), such a theory is equivalent to a
theory restricted to all CW complexes with cellular maps as morphisms.

Prop.(3.13.1.4)[Reduction to Reduced Homology Theories].Giving an Eilenberg-Steenrod ho-
mology theory is equivalent to giving a reduced Eilenberg-Steenrod homology theory. Thus from
now on we will not distinguish from a reduced ES-homology theory and an ES-homology theory.

Proof: Given an ES homology theory E∗, for X ∈ Toppt, define Ẽ∗(X) = E∗(X, ∗), then the
maps ∗ → X → ∗ induce a natural splitting E∗(X) ∼= Ẽ∗(X) ⊕ E∗(∗). Then it is easy to show Ẽ∗
is a reduced ES homology theory by(3.13.1.2): For suspension, because C(X) is contractible and
X → C(X) is a cofibration, the long exact sequence for C(X)/X ∼= Σ(X) and(3.13.1.2) implies the
isomorphism

Σ−1 : Ẽp+1(Σ(X)) ∼= Ẽp+1(C(X)/X) ∼= Ep+1(C(X), X) ∂−→ Ẽp(X).

Conversely, if Ẽ∗ is a reduced ES homology theory, define E∗(X,A) = Ẽ∗(C(A → X)) where
C(A → X) is pointed over the cone point. In particular, E∗(X) = Ẽ∗(X+)(3.12.1.16). We also
define the boundary map as

∂ : E∗(X,A) ∼= Ẽ∗(C(i+)) ∂−→ Ẽ∗(Σ(A+)) Σ−1
−−→ E∗−1(A+),

where ∂ comes from Σ(A+) ∼= C(i+)/X+.
To show E∗ is a ES homology theory: additivity is clear. The homotopy invariance follows

from(3.12.1.17). To show exactness?. To show excision?. Cf.[May, P110].
To show that these two constructions are inverse to each other, it suffices to show that the ∂ and

Σ defined are inverse to each other?. □

Lemma(3.13.1.5).Let E be an ES-homology theory and B ⊂ A ⊂ X, then there is a functorial long
exact sequence

· · · → Ep(A,B)→ Ep(X,B)→ Ep(X,A) ∂−→ Ep−1(A,B)→ ·,

where ∂ : Ep(X,A)→ Ep−1(A)→ Ep−1(A,B).

Proof: This follows from diagram chase or using the functorial CW approximations(3.12.5.15). □
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Lemma(3.13.1.6). If E be an ES-homology theory and (X;A,B) is an excisive triad, then the natural
map

E∗(A,A ∩B)⊕ E∗(B,A ∩B)→ E∗(X,A ∩B)

is an isomorphism.

Proof: This is done by using the CW approximations for excisive triads(3.12.5.19). □

Prop.(3.13.1.7)[Mayer-Vietoris Sequences].Let E be an ES-homology theory and (X;A,B) be
an excisive triad, then there is a long exact sequence

· · · → Ep(A ∩B) ((i1)∗,(i2)∗)−−−−−−−→ Ep(A)⊕ Ep(B) (j1)∗−(j2)∗−−−−−−−→ Ep(X) ∆−→ Ep−1(A ∩B)→ · · · ,

where ∆ is the composite

Ep(X)→ Ep(X,B) ∼= Ep(A,A ∩B) ∂−→ Ep−1(A ∩B).

Proof: Cf.[May, P112]. □

Prop.(3.13.1.8)[Relative Mayer-Vietoris Sequences].The relative MV-sequence is related to the
MV-sequence(3.13.1.7) by

· · · Ep(Y,A ∩B) Ep(Y,A)⊕ Ep(Y,B) Ep(Y,X) Ep−1(Y,A ∩B) · · ·

· · · Ep(A ∩B) Ep(A)⊕ Ep(B) Ep(X) Ep−1(A ∩B) · · ·
∂ ∂⊕∂ ∂ ∂

Prop.(3.13.1.9)[Colimits]. If X = lim−→i∈N
Xi, then there is a natural isomorphism

lim−→E∗(Xi) ∼= E∗(X).

Proof: Cf.[May, P115]. □

Cor.(3.13.1.10).For a reduced ES-homology theory Ẽ∗ and (Xi)i∈N ∈ Toppt, there are natural iso-
morphisms

lim−→ Ẽ∗(Xi) ∼= Ẽ∗(
′∏
i

Xi)(3.12.1.19).

The Ordinary Homology Theory

Def.(3.13.1.11) [Ordinary Homology Theories].For Λ ∈ Ab, an ordinary homology theory
with coefficients in Λ is a generalized homology theory(3.13.2.1) that satisfies the additional axiom

Dimension: Ep(pt) =
{

Λ , p = 0
0 , p ̸= 0

.

Def.(3.13.1.12)[Ordinary Reduced Homology Theories].For Λ ∈ Ab, an ordinary reduced
homology theory with coefficients in Λ is a reduced homology theory(3.13.1.3) that satisfies the
additional axiom

Dimension: Ẽp(S0) =
{

Λ , p = 0
0 , p ̸= 0

.
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Def.(3.13.1.13)[Hurewicz Homomorphism].For an ordinary homology theoryH∗, if we denote the
generator of H̃0(S0) by a0, and an = Σn(a) ∈ H̃n(Sn), then for any X ∈ CGpt, define the Hurewicz
homomorphism

HurX : πn(X)→ H̃n(X) : f 7→ f∗(an).

Prop.(3.13.1.14).For n ∈ Z+, X ∈ Toppt, HurX is a homomorphism of groups.

Proof: Cf.[May, P117]. □

Prop.(3.13.1.15) [Generalized Hurewicz theorem]. If n ≥ 2 and (X,A) is a (n − 1)-connected
pair of spaces, then the Hurewicz map induces an isomorphism

πn(X,A)/ ∼ π1(A) ∼= Hn(X,A),

and Hk(X,A) = 0, k < n. Moreover, the Hurewicz map πn+1(X,A)→ Hn+1(X,A) is surjective.

Proof: Cf.[Hatcher P371 and 390Ex23].? □

Cor.(3.13.1.16)[Converse Whitehead]. If f : X → Y is a map of simple pointed spaces that induces
isomorphisms on all homology groups, then f is a weak homotopy equivalence.

Proof: We may change Y to the mapping cylinder of f , then notice all the relative homology
groups Hn(Y,X) vanishes by long exact sequence, and then by the generalized Hurewicz theorem,
πn(Y,X) = 0, and then f is a weak homotopy equivalence, by(3.12.4.11). □

Thm.(3.13.1.17) [Hurewicz].For n ∈ Z+, if X ∈ CGpt is (n − 1)-connected, then HurX :
πn(X) → H̃n(X) induces an isomorphism πn(X)ab ∼= H̃n(X). In particular, if n > 1, πn(X) ∼=
H̃n(X)(3.12.4.1).

Proof: Cf.[May, P118]. □

The Cellular and Singular Realizations

Def.(3.13.1.18) [Degree of Maps].For any f : Sn → Sn ∈ Top, we can choose a base point and
use cellular approximation to make it homotopic to a cellular map (Sn, ∗) → (Sn, ∗), and define the
degree of f to be the multiplying factor of f∗ : πn(Sn) ∼= Z→ πn(Sn) ∼= Z(3.12.7.6).

Then this degree is independent of the base point chosen simply by rotation.

Prop.(3.13.1.19).The antipodal map Sn → Sn has degree (−1)n−1.

Proof: This is because the antipodal map is a composition of n+1 reflections, and each reflection is
an n-suspension of a reflection on S1 → S1, which clearly has degree −1. Thus we finish by(3.12.7.6).
□

Def.(3.13.1.20)[Cellular Complex on CW].Given X ∈ CW with presentation X = ∪iXi, we can
define the cellular homology groups as follows: Let C•(X) be the complex with Cp(X) the free
Abelian group generated by the p-cells of X, and the map Cp(X)→ Cp−1(X) is given by eα 7→ aαβeβ,
where for any n-cell α and n− 1-cell β, aαβ is the degree(3.13.1.18) of the map

Sp−1 α−→ Xp−1 → Xp−1/Xp−2 β−1
−−→ Sp−1.

Then C•(X) is truly a complex. More generally, for any Λ ∈ Ab, we can define C•(X; Λ) =
C•(X)⊗ Λ.
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Proof: Cf.[May, P99]?. □

Def.(3.13.1.21) [Cellular Homology Groups].For X ∈ CW and a subcomplex A ⊂ X, there is
an inclusion C∗(A) → C∗(X). If we define C∗(X,A) = C∗(X)/C∗(A). Define the homology groups
Hp(X) = Hp(C•(X)),Hp(X,A) = Hp(C•(X,A)).

then the long exact sequence associated to the exact sequence 0 → C∗(A) → C∗(X) →
C∗(X,A)→ 0 gives a boundary map ∂ : Hp(X,A)→ Hp−1(A).

More generally, for any Λ ∈ Ab, we can define C•(X,A; Λ) and also Hp(X; Λ),Hp(X,A; Λ).

Def.(3.13.1.22)[Cellular Complex of Products].For X,Y ∈ CW, with the CW structure on X×Y
given in(3.12.3.8), then

C•(X)⊗ C•(Y ) ∼= C•(X × Y ).

Proof: The map C•(X)⊗ C•(Y ) ∼= C•(X × Y ) is given by eα ⊗ eβ 7→ (−1)|α||β|eα×β.
It is clear that this is an isomorphism up to sign. Fo the sign problem, see [May, P101]. □

Prop.(3.13.1.23).The cellular homology groups in(3.13.1.21) defines a ES-homology theory(3.13.2.1).

Proof: For homotopy invariance, notice a homotopy X × I → Y between f, g : X → Y will induce
a map

C•(X)⊗ C•(I)→ C•(Y )

by(3.13.1.22), and with the canonical CW structure, C•(I) is just 0 → Z
(1,−1)−−−−→ Z ⊕ Z → 0. By

writting it out, this gives exactly a homotopy between the two maps f∗, g∗. Additivity, excision and
exactness is clear. □

Def.(3.13.1.24)[Singular Homologies].For X ∈ Top,Λ ∈ Ab, the singular cohomology groups
with coefficients in R is defined to be Hsing,∗(X; Λ) = H∗(Γ(X);R)(3.5.3.8). This is the just the
homology on Toprel corresponding to the cellular homology on CW-pairs.

Thm.(3.13.1.25)[Uniqueness of Ordinary Homology Theories].There exists a unique ordinary
homology theory, i.e. the one defined in(3.13.1.21).

Proof: Cf.[May, P119]. □

2 Cohomologies

Remark(3.13.2.1)[Eilenberg-Steenrod Cohomology Theories].The whole basic theory of coho-
mologies is dual to that of homologies, so it is omitted here.

We only focus on new features appearing.

Def.(3.13.2.2)[Cohomological Operators].Given reduced ES-cohomology theories Ẽ∗, F̃ ∗, p, n ∈
Z, a cohomological operator of type p and degree n is a natural homomorphism Ẽp → F̃ p+n.

A stable cohomological operator of degree n is a sequence of cohomological operators Φn
p of

type p and degree n that commutes with the suspension isomorphism.
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Ordinary Cohomology Theories

Thm.(3.13.2.3)[Uniqueness of Ordinary Homology Theories].There exists a unique ordinary
cohomology theory, i.e. the one give by cellular cohomology groups.

Proof: The proof is the same as that of(3.13.1.25). □

Prop.(3.13.2.4)[Universal Coefficient Theorem]. See (3.7.5.6).

Cor.(3.13.2.5).A map between topological spaces that induce isomorphism on arbitrary homology
group induce isomorphisms on cohomology groups.

Def.(3.13.2.6)[Cup Product].For X,Y ∈ CW, as C•(X)⊗ C•(Y ) ∼= C•(X × Y )(3.13.1.22), for any
R ∈ CAlg, there is a chain homomorphism

Hom•(C•(X), R)⊗Hom•(C•(Y ), R)→ Hom•(C•(X × Y ), R),

which induces a natural cross product map

H∗(X;R)⊗H∗(Y ;R)→ H∗(X × Y ;R).

And composing with the diagonal map ∆X : X → X ×X gives a cup product map

H∗(X;R)×H∗(X;R)→ H∗(X × Y ;R)

that makes H∗(X;R) into a unital commutative graded R-algebra.

Proof: Cf.[May, P139]. □

Def.(3.13.2.7)[Bockstein Homomorphism].

Prop.(3.13.2.8). the square of the Bockstein homomorphism Hn(X,Fp)→ Hn+2(X,Fp) is trivial.

Proof: There is a commutative diagram of commutative rings

0 Z Z Z/(m) 0

0 Z/(m) Z/(m2) Z/(m) 0

×m

×m

which induces commutative diagrams

Hn(X,Z/(m)) Hn+1(X,Z)

Hn(X,Z/(m)) Hn(X,Z/(m))

β̃

ρ

β

so β = ρβ̃, and β2 = ρβ̃ρβ̃ = 0, as β̃ρ = 0 by long exact sequence. □

Prop.(3.13.2.9)[Lefschetz Fixed Point Theorem].

Prop.(3.13.2.10)[Wedge Sums].For M,N ∈ Top, H̃ i(M ∧N) = H̃ i(M)⊗ H̃ i(N).
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Proof: □

Prop.(3.13.2.11)[Connected Sums].Let M,N ∈Manid,cntd,cpct, the cohomology of M#N is ?
And if M,N are orientable, then H∗(M#N) = 1⊕ [H̃∗(M)⊕ H̃∗(N)/([M ]− [N ])].

Proof: As M#N/Sd−1 = M ∨N , there is a long exact sequence

. . .→ H̃ i(M ∨N)→ H̃ i(M#N)→ H̃ i(Sd−1)→ H̃ i+1(M#N)→ . . .

Thus by(3.13.2.10), H̃ i(M#N) = H̃ i(M)⊕ H̃ i(N) for i ̸= d− 1, d. And there is an exact sequence

0→ H̃d−1(M ∨N)→ H̃d−1(M#N)→ Z→ H̃d(M ∨N)→ H̃d(M#N)→ 0.

If M,N are both orientable, then so does M#N , and the sequence looks like

0→ H̃d−1(M ∨N)→ H̃d−1(M#N) 0−→ Z→ Z⊗Z→ Z→ 0.

and H̃d−1(M ∨N) ∼= H̃d−1(M#N).
If only one of M,N is orientable, then similarly, H̃d−1(M ∨N) ∼= H̃d−1(M#N).
If neither M,N are orientable, then nor does M#N , and the sequence looks like

0→ H̃d−1(M ∨N)→ H̃d−1(M#N)→ Z→ 0⊗ 0→ 0→ 0.

which splits?, so H̃d−1(M#N) ∼= H̃d−1(M ∨N)⊕Z. □

Cup and Cap Products

Main references are [Hat02]Chap3.2.

Prop.(3.13.2.12).The cup product will restrict to a relative version:

H∗(X,A)×H∗(X,B)→ H∗(X,A ∪B),

This implies that if X is a union of n contractible open set, then the cup product of n-elements
vanish. In particular, the cup product in a suspension vanishes.

Prop.(3.13.2.13)[Künneth Formula].The cross product H∗(X,R) ⊗R H∗(Y,R) → H∗(X × Y,R)
is an isomorphisms of rings if X,Y are CW complexes and H∗(Y,R) are a finite free R-modules for
any k.

Proof: Cf.[Hat02]P219. □

Def.(3.13.2.14)[Cap Products].

Cohomology of Fiber Bundles

Prop.(3.13.2.15)[Leray-Hirsch].For a fiber bundle F → E → B and a ring R s.t. Hn(F,R) is f.g
free for all n, and there exist classes cj of H∗(E) that constitute a basis for each fiber F , then

H∗(B,R)⊗H∗(F,R)→ H∗(E,R)

is an isomorphism of H∗(B,R)-modules.



362 CHAPTER 3. CATEGORIES AND ALGEBRAIC TOPOLOGY

Proof:
□

Cor.(3.13.2.16).
• H∗(U(n);Z) = ΛZ[x1, x3, . . . , x2n−1].
• H∗(SU(n,R);Z) = ΛZ[x3, . . . , x2n−1].
• H∗(Sp(n);Z) = ΛZ[x3, x7, . . . , x4n−1].

Prop.(3.13.2.17).H∗(G(n,K∞);Z) where K = R,C,H is generated by the symmetric polynomials,
where for R the coefficient is Z2.

Proof: Use the flag variety and first calculate for ∞. Then use Poincare duality to show it is
mapped onto the symmetric polynomials. Cf.[Hatcher P435]. □

Prop.(3.13.2.18) [Leray-Serre].For a Serre fibration, e.g. fiber bundle, F → E → B, that B is
simply connected, then there is a spectral sequence

Epq2 = Hp(B,Hq(F ))⇒ Hp+q(E) Epq2 = Hp(B,Hq(F ))⇒ Hp+q(E)

Cor.(3.13.2.19)[Wang Sequence].When B = Sn, there is a long exact sequence:

· · · → Hq(F )→ Hq(E)→ Hq−n(F )→ Hq−1(F )→ Hq−1(E)→ · · ·

Cor.(3.13.2.20)[Gysin Sequence].When F = Sn, there is a long exact sequence:

· · · → Hp−n(B)→ Hp(E)→ Hp(B)→ Hp−n−1(B)→ Hp−1(E)→ · · ·

H-Spaces

Def.(3.13.2.21) [H-Spaces].An H-space is a unital magma object in Ho(CGpt). Equivalently, an
H-space is a pointed space X ∈ CGpt with a map µ : X×X → X ∈ Ho(CGpt) s.t. X → {∗}×X → X
and X → X × {∗} → X is homotopic to idX .

An associative H-space is an H-space s.t. µX is associative in Toppt / ∼. Similarly, we can
define group-H-spaces and commutative H-spaces.

An H-space is called strictly associative(or a monoid space) if it comes from a unital associative
object in the category of spaces.

Remark(3.13.2.22).The definition of a H-space structure can be modified when X is a CW complex.
In fact, when (X, e) is a CW-pair, if there exists a map µ : X × X → X and a point e ∈ X that
X → {e} ×X → X and X → X × {e} → X is homotopic to idX , then µ can be homotoped that e
is a strict identity.

Proof: ? □

Prop.(3.13.2.23). If H is an H-space, then for any X ∈ Toppt, ⟨X,H⟩ is a magma. Moreover, if H is
a commutative associative group H-space, then ⟨X,H⟩ ∈ Ab.

Prop.(3.13.2.24)[Loop Spaces are H-Spaces].For any X ∈ Toppt, Ω(X) is an associative group-
H-space, and Ω2(X) is a associative commutative group-H-space.
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Proof: The multiplication is given by concatenation of loops. It is continuous by adjunction
arguments. □

Prop.(3.13.2.25).CP∞ can be given a commutative strictly associative H-space structure. More
generally, B(Z/n) ∼= (C∞\{0})/(R+×µn)(3.14.3.13) can be given a commutative strictly associative
H-space structure. In particular this applies to RP∞.

Proof: We can regard C∞ as the space of polynomials with complex coefficients, then the poly-
nomial multiplication gives a map (C∞\{0}) × (C∞\{0}) → C∞\{0} that descends to a map
B(Z/n)×B(Z/n)→ B(Z/n). And e = (1, 0, . . . , 0, . . .) is the unit. □

Prop.(3.13.2.26).The James reduced product J(X)??s a strictly associative H-space with multipli-
cation given by (x1, . . . , xn)(y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym), and the identity e. This H-space
structure also descends to a H-space structure on SP (X)(3.12.3.21).

Prop.(3.13.2.27).The universal cover of a H-space is a H-space.

Proof: Take an arbitrary lift that maps (ẽ, ẽ) to ẽ. Notice the homotopy can also be lifted. □

Prop.(3.13.2.28) [Cohomology Ring].The cohomology ring of a H-space is a topologists’ Hopf
algebra, by Kunneth formula and naturality.

Cor.(3.13.2.29).CPn is not a H-space.

Proof: This is because H∗(CPn,Z) = Z[α]/αn, |α| = 2, which is a not a topologist’s Hopf algebra,
by(2.9.1.14). □

Prop.(3.13.2.30).The fundamental group of an H-space is Abelian.

Proof: This is because π1 preserves products, so takes unital magma space to unital magma
objects(3.1.1.70). And the unital magma objects in the category of groups is the Abelian
groups(3.1.1.69). □

Prop.(3.13.2.31)[Adam]. S0, S1,S3, S7 are the only spheres that have H-structures.

Proof: Firstly S1 ⊂ C, S3 ⊂ H, S7 ⊂ O are submonoids, so they have H-structures. ? □

Cor.(3.13.2.32).RPn has a H-structure iff n = 1, 3, 7.

Proof: This is because the universal cover of a H-space is a H-space(3.13.2.27). Also S1, S2, S3,S7

are monoid spaces, and −1 are in their center, so the quotients are also monoid spaces. □

Examples of Calculations

Cor.(3.13.2.33).

H∗(RPn,F2) = Z/(2)[a]/an+1, |a| = 1, H∗(CPn,Z) = Z[α]/αn+1, |α| = 2

Proof: We prove for RPn, the CPn case is similar. Use induction. For n = 1, this is clear. For
n > 1, notice RPn is the n−1-skeleton of RPn, thus the map of ringsH∗(RPn,F2)→ H∗(RPn−1,F2)
maps the generator of H2(RPn,F2) to the generator a of H2(RPn−1,F2). Then by hypothesis
an−1 ̸= 0. The Hn−1(RPn,F2) ∼= H1(RPn,F2) ∼= Z/(2) is generated by αn−1. Then the Poincaré
duality shows that α ∪ αn−1 ̸= 0, so we are done. □
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Cor.(3.13.2.34).For n > 1, the natural homomorphism Hn(RPn,Z/2Z)→ Hn(Sn,Z/2Z) is 0.

Proof: Because the cohomology ring map maps a ∈ H1(RPn,Z/2Z) to 0 ∈ H1(Sn,Z/2Z) = 0. □

Prop.(3.13.2.35) [H∗(K,F2)].The cohomology ring of the Klein bottle K is H∗(K,Z/(2)) =
F2[x, y]/(xy, x2 − y2, x3, y3).

Proof: Let φ ∈ C0(K,Z/(2)) be the dual of v, α, β, γ ∈ C1(K,Z/(2)) be the dual of a, b, c, and
µ, λ ∈ C2(K,Z/(2)) be the dual of A,B, then

∂(φ)(a) = ∂(φ)(b) = ∂(φ)(c) = 0

δ(α)(A) = α(∂(A)) = α(a+ b− c) = 1, δ(α)(B) = α(∂B) = α(b+ c− a) = −1

δ(β)(A) = β(∂(A)) = β(a+ b− c) = 1, δ(β)(B) = β(∂(B)) = β(b+ c− a) = 1

δ(γ)(A) = γ(∂(A)) = γ(a+ b− c) = −1, δ(γ)(B) = γ(∂(B)) = γ(b+ c− a) = 1

So

H0(K,Z/(2)) = Z/(2)φ, H1(K,F2) = F2(α+β)⊕F2(α+γ), H2(K,F2) = (F2µ⊕F2λ)/(µ+λ).

Now we calculate the cup product:

(α+ β) ∪ (α+ β)(A) = (α+ β)(a) · (α+ β)(b) = 1

(α+ β) ∪ (α+ γ)(A) = (α+ β)(a) · (α+ γ)(b) = 0

(α+ γ) ∪ (α+ γ)(A) = (α+ γ)(a) · (α+ γ)(b) = 0

(α+ β) ∪ (α+ β)(B) = (α+ β)(b) · (α+ β)(c) = 0

(α+ β) ∪ (α+ γ)(B) = (α+ β)(b) · (α+ γ)(c) = 1

(α+ γ) ∪ (α+ γ)(B) = (α+ γ)(b) · (α+ γ)(c) = 0

Then (α+ β)∪ (α+ β) = (α+ β)∪ (α+ γ) = µ ∈ H2(K,Z/(2)). Now if we set α+ β = x, β+ γ = y,
then the cohomology ring

H∗(K,Z/(2)) = Z/(2)[x, y]/(xy, x2 − y2, x3, y3).

□

Prop.(3.13.2.36)[H∗(L,Z/(m))].Let L be the Lens space, then the cohomology ring is calculated at
[?]P304.

Proof: □
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3 Manifolds

Orientations

Prop.(3.13.3.1).Let d ∈ Z+, R ∈ CAlg,M ∈ Manid, X ⊂ M , then for any x ∈ M , choose a nbhd U
of x ∈M s.t. U ∼= Rn, then by excision and exactness,

Hd(M,M\x) ∼= Hd(U,U\x) ∼= H̃d−1(U\{x}) ∼= H̃d−1(Sd−1) ∼= R.

Prop.(3.13.3.2) [Vanishing].For M ∈ Manidcpct,cntd,∂ ,Λ ∈ Ab, Hi(M ; Λ) = 0 for i > d, and
H̃d(M ; Λ) = 0 unless M is compact without boundary.

Proof: □

Def.(3.13.3.3)[R-Fundamental Class].Let R ∈ CAlg,M ∈Manidcntd, X ⊂M , an R-fundamental
class of M at X is an element z ∈ Hd(M,M\X) s.t. for any x ∈ X, the map

Hd(M,M\X)→ Hd(M,M\{x})

maps z to a generator of Hd(M,M\{x}) ∼= R(3.13.3.1).

Def.(3.13.3.4)[R-Orientation].Let R ∈ CAlg,M ∈ Manidcntd, X ⊂ M , an R-orientation of M is
an open cover {Ui} of M and R-fundamental classes zi of M at Ui s.t. zi, zj restricts to the same
element in Hd(M,M\(Ui ∪ Uj)).

For M ∈Manidcntd,∂ , an R-orientation is an R-orientation of Mo.

Prop.(3.13.3.5)[R-Fundamental Classes and R-Orientations].For R ∈ CAlg,M ∈ Manid and
K ⊂M compact, then

• Hi(M,M\K,R) = 0 for i > d.
• Any R-orientation of M defines an R-fundamental class of M at K that is compatible for
x ∈ K.

In particular, if M is compact, then an R-orientation is equivalent to an R-fundamental class.

Proof: Firstly, if K ⊂ U and U ∼= Rn is a coordinate chart on which the R-orientation is defined,
then by excision and exactness,

Hi(M,M\K,R) ∼= Hi(U,U\K,R) ∼= Hi−1(U\K,R)

which vanishes for i > n by vanishing theorem(3.13.3.2). And the R-orientation restricts to K.
In general, K can be written as a sum of compact subsets each contained in a coordinate char on

which the R-orientation is defined. Then using induction, it suffices to show that if the results hold
for K,L,K ∩ L, then it holds for K ∪ L: item1 follows from the MV-sequence

Hi+1(M,M\(K ∪L))→ Hi(M,M\(K ∪L))→ Hi(M,M\K)⊕Hi(M,M\L)→ Hi(M,M\(K ∩L)).

For item2, the same MV-sequence with R-coefficients and i = d together with the definition of
R-orientation classes(3.13.3.4) shows there exists a fundamental class at K ∩ L that restricts to the
fundamental classes at K and L. □

Prop.(3.13.3.6)[Orientation Dichotomy].For d ∈ Z+,M ∈Manidcntd,cpct, there are only two cases:
• M is non-orientable, and Hd(M) = 0.
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• M is orientable, and the map Hd(M) → Hd(M,M\{x}) ∼= Z(3.13.3.1) is an isomorphism for
any x ∈M .

Proof: For any R ∈ CAlg, as M\{x} is connected and non-compact, Hd(M\{x};R) = 0
by(3.13.3.2), thus

Hd(M,R)→ Hd(M,M\{x};R) ∼= R

is injective. Thus Hd(M) ∼= 0 or Z. In particular, by universal coefficients theorem,

Hd(M)⊗ Fp → Hd(M,M\{x})⊗ Fp

is injective for any p ∈ P. Then it is clear to see that Hd(M) → Hd(M,M\{x}) is an isomorphism
for any x ∈M . □

Prop.(3.13.3.7)[Fundamental Classes on Manifolds with Boundaries].ForM ∈Manid∂ , ∂M ̸=
0, an R-orientation on M determines an R-orientation of ∂M . Moreover, the fundamental class
[∂M ]R defined by(3.13.3.5) comes from the partial of a unique element [M ]R ∈ Hd(M,∂M ;R),
called the R-fundamental class determined the orientation.

Proof: By collar nbhd theorem, M ∼= Mo, and by vanishing theorem, Hd(M) ∼= Hd(Mo) = 0, thus
Hd(M,∂M ;R) → Hd−1(∂M ;R) is injective. Let N be an open collar of ∂M , then Hd(Mo,Mo ∩
N ;R) ∼= Hn(M,∂M ;R). Also, M\N is compact, so the orientation on Mo defines a fundamental
class in Hd(M,Mo ∩ N ;R) ∼= Hn(M,∂M ;R). Then this class determined the orientation on every
point of Mo, and determines the orientation on ∂M , Cf.[May, P170]?. □

Prop.(3.13.3.8)[Orientation Coverings].

Proof: □

Cor.(3.13.3.9). If M ∈ Manidcntd, then if M is orientable, it has exactly two orientations. And if M
is simply connected or π1(M) has no subgroup of index 2, then M is orientable.

Def.(3.13.3.10)[Connected Sums].ForM,N ∈Manidcntd,cpct, define the connected sumM#N as
follows: Take a subset D ⊂M,D′ ⊂ N that are contained in coordinate charts(orientable coordinates
charts if M,N are oriented). φ : U ∼= Rd, φ′ : U ′ ∼= Rd s.t. φ(D) ∼= Dd ∼= φ(D′). Then define

M#N = (M\D)
⨿

∂D∼=∂D′

(N\D′)

where ∂D ∼= ∂D′ is an orientation-reversing homeomorphism when M,N are both orientable. This
is independent of D,D′ and the homeomorphism ∂D ∼= ∂D′ chosen.

Proof: Firstly we show thatM\D is independent of D chosen: AsM is locally path connected and
connected, it is path connected, Then we can consider a chain of charts isomorphic toRd that connects
any two such subsets D,D′. Then reducing to affine charts, it suffices to show for the case M ∼= Rd.
In this case, we can use isotopy of M to make D ⊂ D′, and then use the coordinate charts and
annulus theorem(3.3.11.2) to show that D′\D is isomorphic to Sd−1 × I. Then the homeomorphism
M\D ∼= M\D′ can be easily given.

Now we show the connected sum is independent of the homeomorphism chosen: ∂D and ∂D′ are
given orientations by the coordinate charts, and in the non-orientable case, use the argument above
on the orientation covering of M(3.13.3.8), we know there exists a self-homeomorphism of M that is
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isotopic to idM that reverses the orientation on ∂D. Thus in both cases, we can assume ∂D ∼= ∂D′

is orientation-preserving. Now(3.12.2.2) shows any such homeomorphism is isotopic, and using the
coordinate charts, we can extend the isotopy to a nbhd of nbhd of ∂D. Thus the connected sum is
well-define. □

Remark(3.13.3.11).WARNING: The connected sum may be different in the orientable case if we
change one of the orientations: CP2#CP2 is not homeomorphic to CP2#CP2.

Proof:
□

Poincaré Duality

Lemma(3.13.3.12)[Poincaré Duality].For R ∈ CAlg, if M ∈ Manidcntd,cpct is R-oriented, then for
any p ∈ Z, there is an isomorphism

D = − ∩ [M ]R : Hp(M ;R) ∼= Hn−p(M ;R).

In particular, Hn(X,F2) ∼= Z/(2), and the non-trivial element is called the fundamental ho-
mology class mod 2, denoted by [M ]2.

Proof: which follows immediately from(5.8.6.30) and(5.3.5.9). (Should also attain the compact
cohomology case if we know the relation of compact sheaf cohomology better). □

Prop.(3.13.3.13) [Relative Poincaré Duality].Let R ∈ CAlg,M ∈ Manidcpct,∂ be R-orientable
with fundamental class [M ]R ∈ Hd(M,∂M ;R), then for any Λ ∈ ModR, capping with [M ]R defines
isomorphisms

Hp(M,∂M ; Λ) ∼= Hd−p(M), Hp(M ; Λ) ∼= Hd−p(M,∂M ; Λ).

Proof: Cf.[May, P170]?. □

Cor.(3.13.3.14).For M ∈Manidcntd,cpct,orntd, for any p ∈ Z, there is a perfect pairing

Hp(M)lf ×Hn−p(M)lf → Z : (α, β) 7→ ⟨α ∪ β, [M ]⟩.

Proof: By universal coefficient theorem?, Hp(M)lf ∼= Hom(Hp(M),Z). So if α ∈ Hp(M) is non-
zero in Hp(M)lf , there exists a ∈ Hp(M) s.t. ⟨a, α⟩ = 1. Then by Poincaré duality(3.13.3.12), there
exists β ∈ Hd−p(M) s.t. β ∩ [M ] = a. Thus ⟨α ∪ β, [M ]⟩ = ⟨α, β ∩ [M ]⟩ = 1. □

Def.(3.13.3.15) [Intersection Pairing].Let k ∈ N,M ∈ Mani2kcpct,orntd,cntd, The Poincaré dual-
ity(3.13.3.14) shows the cup product pairing

Hk(M ;Q)×Hk(N ;Q)→ Q : (α, β) 7→ ⟨α ∪ β, [M ]⟩

is non-degenerate, called the intersection pairing of M . Notice if k is odd, it is skew-symmetric,
and if k is even, it is symmetric.

Def.(3.13.3.16) [Index].For M ∈ Manidcpct,orntd,cntd, define the index of M as the index of the
symmetric intersection pairing of M if d = 4k, and 0 otherwise. The index ofM is denoted by I(M).

Prop.(3.13.3.17).For M,N ∈Manicpct,orntd,cntd, I(M ×N) = I(M)I(N).
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Proof: Cf.[May, P167]. □

Prop.(3.13.3.18).For k ∈ N, k ∈ Field,M ∈Mani2k+1
cpct,∂ , then

dimkHk(∂M ; k) = 2 dim ker(Hk(∂M ; k) i∗−→ Hk(M ; k)) = 2 dim Im(Hk(∂M ; k) i∗−→ Hk(M ; k)).

Proof: There is a commutative diagram

Hk(∂M ; k) Hk(M ; k) Hk+1(M,∂M ; k)

Hk+1(M,∂M ; k) Hk(M ; k) Hk(∂M ; k)

i∗

D D

∂

D

∂ i∗

where the vertical arrows are isomorphisms and i∗ is the vector dual of i∗ by universal coefficient
theorem. Thus the theorem follows. □

Prop.(3.13.3.19)[Gysin Sequence].Cf.[姜伯驹同调论].

Euler Characteristic

Def.(3.13.3.20)[Euler Characteristic].For any X ∈ Top with finite Z-homologies, define the Euler
character of X to be

χ(X) =
∑
i

(−1)iHi(X;Z).

Then by universal coefficients theorem(3.13.2.4),

χ(X) =
∑
i

(−1)iHi(X; k)

for any k ∈ Field.
The condition holds for X ∈ CWfin, in particular any X ∈Manicpct(3.12.3.10).

Prop.(3.13.3.21).For any i ∈ N, X ∈Mani2i+1
cpct,cntd, χ(X) = 0.

Proof: This follows from Poincaré duality for F2-coefficients. □

Prop.(3.13.3.22) [Euler Characteristic and Boundary].For i ∈ N,M ∈ Mani2i+1
cpct,∂ , then

χ(∂M) = 2χ(M).

Proof: Consider the “double” M̃ of M along ∂M , then M̃ ∈Mani2i+1
cpct . It is clear by excision and

collar neighborhood theorem that χ(M̃) + χ(∂M) = 2χ(M). Then we use(3.13.3.21). □

Cor.(3.13.3.23). If N ∈Manicpct is a boundary of some other M ∈Manicpct,∂ , then χ(N) = 0.

Proof: If dimN is odd, this is(3.13.3.21). If dimN is even, this is(3.13.3.22). □

Prop.(3.13.3.24).For any i ∈ N, M ∈Mani4i+2
cpct,orntd, χ(M) is even.

Proof: The parity of χ(M) is the same as H2i+1(M,Q), which is odd by(3.13.3.15) and(2.3.8.7).
□
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Prop.(3.13.3.25)[Morse Inequality].For any X ∈ CW,

χ(X) ≤
∑

(−1)ici(X),

where ci(X) is the number of I-dimensional cells. (Use the dimension counting of the long exact
sequence).

Prop.(3.13.3.26).For M ∈Manidcpct,orntd,cntd, I(M) ≡ χ(M)(mod 2).

Proof: If d is odd, I(M) = 0 = χ(M) is even by(3.13.3.21). If d = 4k + 2, then I(M) = 0 and
χ(M) is even by(3.13.3.24). if d = 4k, then I(M) ≡ χ(M) ≡ dimH2k(M,Q). □

deRham Cohomology

Prop.(3.13.3.27)[de Rham Comparison].For X ∈Manism, G ∈ Ab, by(5.3.5.11).

H∗
dR(X,G) ∼= H∗(X,G).

Prop.(3.13.3.28)[Homotopy Axiom for deRham Cohomology].For two homotopic map between
two smooth manifold, they induce the same map on deRham Cohomology.

Proof: We only have to prove the case of M × R → M , where any constant section map induces
an isomorphism H∗

dR(M × I) ∼= H∗
dR(M). Because any homotopy is a morphism M × I → N where

f and g are the sections 0 and 1.
For the zero section, we define K : a+ bdt 7→

∫ t
0 b. This is the desired homotopy, Cf.[Differential

Forms in Algebraic Topology Bott Tu]. □

4 Applications

Prop.(3.13.4.1)[No Contraction to the Boundary].For M ∈Manidcpct,∂ , there are no retraction
from M onto ∂M .

Proof: We may assume ∂M is connected and non-empty, otherwise clearly there are no retraction.
If it has a retraction, Hd−1(∂M,F2) → Hd−1(M,F2) has a left inverse. Thus It suffices to show
that Hd−1(∂M,Z/(2)) → Hd−1(M,Z/(2)) is 0. So it suffices to show that Hd(M,∂M,Z/(2)) →
Hd−1(∂M,Z/(2)) is surjective. And this follows from(3.13.3.7) and(3.13.3.6) as the image of [M ]2 is
[∂M ]2, which generates Hd−1(∂M,F2). □

Prop.(3.13.4.2)[Brouwer Fixed Point Theorem].For any f : Dn → Dn ∈ Top, Fix(f) ̸= ∅.

Proof: If Fix(f) = ∅, consider the intersection of the ray f(x)x with Sn−1, then it depends
continuously on x, and this defines a function from Dn to Sn that is identity on Sn, but then this is
a retraction from Dn → Sn, which is impossible by(3.13.4.1). □

Prop.(3.13.4.3). IfM ∈Manidcntd,∂ , then ifM is contractible and ∂M ̸= ∅, ∂M is a homotopy sphere.

Proof: As Mo ∼ M is contractible, it is orientable by(3.13.3.9). Then by relative Poincaré dual-
ity(3.13.3.13) and the long exact sequence,

Hp(∂M) ∼= Hp+1(M,∂M) ∼= Hd−p−1(M) = 0.

□
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Lemma(3.13.4.4). If m > n ∈ Z+, any map f : RPm → RPn induces f∗ = 0 : π1(RPm)→ π1(RPn).

Proof: As π1(RPm) =
{
Z/(2) ,m > 1
Z ,m = 1

. The assertion is clearly true for n = 1. And if n ∈

Z+, f∗ ̸= 0, then by the naturality of Hurewicz homomorphism(3.13.1.17), f∗ ̸= 0 : H1(RPm) →
H1(RPn). Then by universal coefficient theorem, so is f∗ ̸= 0 : H1(RPn,F2)→ H1(RPm,F2). But
f∗ is a ring homomorphism and H∗(RPm) is generated by a = f∗(a′) ∈ H1(RPm)(3.13.2.33), so
an+1 = f∗((a′)n+1) = 0, contradiction. □

Lemma(3.13.4.5). If m > n ≥ 1, there are no antipodal maps: f : Sm → Sn, i.e. f(x) = −f(−x).

Proof: Any such map induces a map RPm → RPn, which induces 0 on π1, so by covering space
theory, there exists a lifting RPm → Sn. The composition Sm → RPm → Sn is the original map, by
the theory of covering spaces, as Sn is connected and they agree at least on one point. But then f
takes antipodal maps to the same point, contradiction. □

Thm.(3.13.4.6)[Borsuk-Ulam].For ant map f : Sn → Rn, there exists x ∈ Sn s.t. f(x) = f(−x).

Proof: If f(x) ̸= f(−x) for any x ∈ Sn, then we can define a map Sn → Sn−1 that maps x to the in-
tersection of the ray 0, f(x)−f(−x) with Sn. Then this map is antipodal, which contradicts(3.13.4.5).
□

5 Obstruction Theory & General Cohomology Theory

Towers

Prop.(3.13.5.1)[Towers].There are Whitehead Towers and Postnikov Towers for a CW complex X.

· · · → Z2 → Z1 → Z0 → X → · · · → X2 → X1 → X0

Zn annihilate π≤n(X), Xn remains only π≤n(X). The towers can be chosen to be fibrations, with
fibers K(πnX,n) by(3.12.6.30).

Prop.(3.13.5.2).There is a Postnikov towers of :

BString(n)→ BSpin(n)→ BSO(n)→ BO(n)

with corresponding obstructions w1(X), w2(X) and p1(X)/2.

Prop.(3.13.5.3)[Obstructions]. If a connected abelian CW complex X (π1(X) abelian and action
on higher homotopy trivial) and (W,A) satisfies Hn+1(W,A;πnX) = for all n, then A → X can
extend to a map M → X.

Proof: Cf.[Hatcher P417]. □

Cor.(3.13.5.4).A map between Abelian CW complexes that induce isomorphisms on homology is a
homotopy equivalence.

Proof: Notice that π1(X) acts trivially on π1(Y,X) and use Hurewicz. □
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6 Brown Representability

Prop.(3.13.6.1).For any Z ∈ Toppt, the functor

⟨−, Z⟩ : CWpt → Setpt

satisfies:
Exactness: If A ⊂ X is a subcomplex, then there is an exact sequence

⟨X/A,Z⟩ → ⟨X,Z⟩ → ⟨A,Z⟩.

Additivity: If X =
∨
iXi ∈ CWpt, then

⟨X,Z⟩ ∼=
∏
i

⟨Xi, Z⟩.

Proof: 1 follows from the fact that A→ X is a cofibration(3.12.6.5). 2 is trivial. □

Spectrum

Def.(3.13.6.2)[Prespectrums].A prespectrum is a sequence of pointed spaces (Tn)n∈Z together
with maps σn ∈ ⟨ΣTn → Tn+1⟩ ∼= ⟨Tn,ΩTn+1⟩.

An Ω-Spectrum is an prespectrum (Tn)m∈Z s.t. σn are all weak-homotopy equivalences.

Def.(3.13.6.3) [Suspension Prespectrums].For X ∈ Toppt, the sequence of pointed spaces
(Σn(X))n∈Z(where we define Σ−1 = Ω) is a prespectrum, called the suspension prespectrum
of X. If X = S0, this is called the sphere spectrum.

Prop.(3.13.6.4)[Prespectrum and Homotopy Theories].Let (Tn)n∈N be a prespectrum consist-
ing of pointed CW complexes s.t. Tn is (n− 1)-connected for any n ∈ N, then

Ẽp(X) = lim−→
n

πp+n(X ∧ Tn)

is a reduced homology theory on CWpt.

Proof: Cf.[May, P176]. □

Prop.(3.13.6.5) [Ω-Prespectrum and ES-Cohomology theories]. If Kn is an Ω-spectrum, i.e.
Kn
∼= ΩKn+1 weak equivalence, then the functors X 7→ ⟨X,Kn⟩ define a reduces ES-cohomology

theory on CWpt

Proof: By(3.13.6.1), these functors satisfy the additivity and exactness. The natural suspension
isomorphism is given by

Σ : ⟨X,Tn⟩ → ⟨Σ(X),ΣTn⟩ ∼= ⟨Σ(X),ΣTn⟩,

which is an isomorphism by(3.12.5.5). □

Thm.(3.13.6.6)[Brown Representability].Any reduced ES-cohomology theory on CWpt is repre-
sented by a Ω-prespectrum.

Proof: ? □
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Eilenberg-Maclane Spaces

Def.(3.13.6.7)[Eilenberg-Maclane Spaces].For Λ ∈ Ab, an Eilenberg-Maclane space is defined

to be a pointed CW complex K(Λ, n) ∈ CWpt s.t. πk(K(Λ, n)) =
{

Λ , k = n

0 , otherwise
.

Prop.(3.13.6.8)[Eilenberg-Maclane Spaces and Homologies].For X ∈ CWpt,Λ ∈ Ab, there are
isomorphisms

H̃p(X; Λ) ∼= lim−→
p+n

πp+n(X ∧K(Λ, n)).

Proof: Cf.[May, P176]. □

Prop.(3.13.6.9)[Eilernberg-Maclane Spaces and Cohomologies].For Λ ∈ Ab, X ∈ CWpt, n ∈
N, K(Λ, n) are unique up to weak homotopy, and there are natural isomorphisms

H̃n(X; Λ) ∼= ⟨X,K(Λ, n)⟩.

Proof: Given a K(Λ, n), if we define K(Λ,m) = Σm−n(K(Λ, n)), then these are all CW complexes
by(3.12.3.13), and it defines an ordinary cohomology theory: The dimension axiom follows from the
definition of K(Λ, n), and it is a reduced ES-cohomology theory by(3.12.5.5) and(3.13.6.10). Thus
the asserted isomorphism follows from(3.13.2.3).

This shows in particular that K(Λ, n) are unique up to homotopy by Yoneda lemma. □

Cor.(3.13.6.10)[Uniqueness of Eilenberg-Maclane Spaces].K(Λ, n) is unique up to homotopy,
and Ω(K(Λ, n)) ∼ K(Λ, n− 1) ∈ CWpt.

Prop.(3.13.6.11)[Eilenberg-Maclane Spaces Exist].Take K(Λ, n) = Γ(B(Λ, n))(3.14.3.7), where
Λ is regarded as a discrete subgroup.

Note K(G, 1) is constructed the same as by(3.5.8.1).

Proof: □

Prop.(3.13.6.12)[Cohomology Operators].Cohomological operators H̃p(−; Λ)→ H̃p+n(−; Λ′) are
in bijection with elements in H̃p+n(K(Λ, p); Λ′), by(3.13.6.9) and Yoneda lemma.

Prop.(3.13.6.13)[Examples].
• K(Z, 1) = S1 = U(1).

• K(Z, 2) = CP∞.

• K(Z/(2), 1) = RP∞.

Proof: 1 is clear.
2: This is because by(3.14.1.17), S∞ → CP∞ is a locally trivial bundle with fiber S1, and S∞ is

contractible by(3.12.3.18) thus by(3.12.6.14), π2(CP∞) = Z and πn(CP∞) = 0 for n ̸= 2.
3: This is because by(3.14.1.17), S∞ → CP∞ is a locally trivial bundle with fiber {±1}, and S∞

is contractible by(3.12.3.18) thus by(3.12.6.14), π2(CP∞) = Z/2Z and πn(CP∞) = 0 for n ̸= 2. □
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Steenrod Powers

Prop.(3.13.6.14)[Steenrod Powers].There are stable cohomology operators

Sq : H∗(X,F2)→ H∗(X,F2) : x ∈ Hk(X,F2) 7→
∑
i∈N

Sqi(x), Sqi(x) ∈ Hk+i(X,F2)

called Steenrod Powers that satisfies
• Sq(α ∪ β) = Sq(α) ∪ Sq(β).
• Sqi(α) = α2 if i = |α|, and 0 if i > |α|.
For p ∈ P, the total Steenrod powers P is a similar map from Hn(X,Fp) → Hn+∗(X,Fp) that

Pi(α) = αp if 2i = |α| and 0 if 2i > α.

Proof: Cf.[Hatcher P497].? □

Prop.(3.13.6.15)[Adam Relations].For 0 < i < 2j ∈ Z,

Sqi Sqj =
∑

0≤k≤⌊ i2 ⌋

(
j − k − 1
i− 2k

)
Sqi+j−k Sqk ∈ End(H∗(−,F2))

There are Adam relation calculators in terms of Serre-Cartan basis athttps://math.berkeley.
edu/~kruckman/adem/.

Proof: □

Cor.(3.13.6.16).The subalgebra of End(H∗(−,F2) generated by {SqZ} is generated respectively by
elements Sq2k .

and for p ∈ P The subalgebra of End(H∗(−,Fp)) generated by {PZ} is generated by elements
Ppk and β.

Proof: ? □

Prop.(3.13.6.17)[H∗(K(F2, p),F2)].H∗(K(F2, p),F2)) can be calculated, Cf,[May, P185].

Proof:
□

7 Stable Homotopy Theory

https://math.berkeley.edu/~kruckman/adem/
https://math.berkeley.edu/~kruckman/adem/
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3.14 Fiber Bundles & K-Theory
Main references are [Ati64], [AGP02] and [M-S74].

Remark(3.14.0.1).Any base space B in this section is assumed to be paracompact. Instead, we may
require in the definition of locally trivial bundles s.t. there exists a trivialization that is dominated
by a partition of unity on B.

1 Fiber Bundles
Def.(3.14.1.1) [Fiber Bundles]. π : E → X ∈ CG is called a fiber bundle with fiber F if every
fiber π−1(x) is homeomorphic to F . If any x ∈ X has a nbhd U together with a homeomorphism
π−1(U) ∼= U×F over U , then it is called a locally trivial bundle. And a numerical locally trivial
bundle is a locally trivial bundle π : E → X s.t. their there is a numerical covering {Ui → X} s.t.
there are homeomorphisms π−1(Ui) ∼= Ui × F over Ui for each i.

Prop.(3.14.1.2) [Dold]. If π : E → X ∈ CG and there is a numerical covering {Ui → X} s.t.
π−1(Ui)→ Ui are Hurewicz fibrations, then π is a Hurewicz fibration.

Proof: Cf.[Tammo tom Dieck, Algebraic Topology]Chap13? □

Cor.(3.14.1.3)[Fiber Bundles are Hurewicz Fibrations].Every numerical locally trivial bundle
is a Hurewicz fibration.

Prop.(3.14.1.4)[Pullback Bundle].Let π : E → X be a fiber bundle with fiber F and f : Y → X
a map, then the pullback space f∗E → Y (3.3.1.7) is also a fiber bundle over Y with fiber F , called
the pullback bundle.

Prop.(3.14.1.5). If E → B,E′ → B′ are fiber bundles both with compact Hausdorff fibers/or both
with discrete fibers/, and f : E/B → E′/B′ is a bundle map that induces isomorphisms on the fibers,
then E ∼= f∗E′ over B.

Proof: □

Lemma(3.14.1.6). Suppose π : E → B×I is a fiber bundle whose restriction to B×[0, a] and B×[a, 1]
are all trivial for some a ∈ I, then E → B × I is a trivial bundle.

Proof: Choose trivializations φ1 : B× [0, a]×B×F → π−1(B× [0, a]), and φ2 : B× [a, 1]×B×F →
π−1(B × [a, 1]), then these induces a map

B × {a} × F φ1|−−→ π−1(B × {a})
φ−1

2 |
−−−→ B × {a} × F,

of the form (b, a, v) 7→ (b, a, g(b)v), where g : B → Homeo(F ) is continuous. Then we get a trivial-
ization

B × I × F → E : φ(b, t, v) =
{
φ1(b, t, v) t ≤ a
φ2(b, t, g(b)v) t ≥ a

.

□

Lemma(3.14.1.7).Let E → B × I be a fiber bundle, then there exists a covering {Ui} of B that E
is trivial on each Ui × I.
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Proof: For each b ∈ B, we can find a nbhd Ub and a division 0 = s0 < s1 < . . . < sn = 1 that E
is trivial on each of Ub × [si, si+1]. Then by(3.14.1.6), E is trivial on Ub × I. Then these {Ub} is a
covering of X that E is trivial on each Ub × I. □

Lemma(3.14.1.8).Let π : E → B × I be a fiber bundle, where B is a paracompact space, and
r : B × I → B × I defined by r(b, x) = (b, 1), then there exists a bundle morphism f over r that
induces an isomorphism r∗E ∼= E over B × I.

Proof: By(3.14.1.7), we can choose a covering {Uα} of B that is E is trivial over each Uα × I, and
let ψα be a partition of unity 1 =

∑
ψi that Supp(ψi) ⊂ Ui and {Supp(ψi)} is locally finite. We

also define µα(x) = ψα(x)
max{ψβ(x)} , then µα are all continuous and subordinate to {Uα}, and for each

x ∈ B,max{µα(x)} = 1.
Let φα : Ui × I × F → π−1(Ui × I) be the local trivializations. We define a bundle map

fα : E/B×I → E/B×I by identity outside π−1(Ui×I) and fα(φα(b, t, v)) = φα(b,max(µα(x), t), v),
then fα is continuous and induces an isomorphism f∗

αE
∼= E over B× I. Now choose a well-ordering

on α, by local finiteness, for each v ∈ E, there is a nhhdWv×I of π(v) ∈ B×I thatWv∩Uα ̸= ∅ for
only α in a finite set {α1, . . . , αm} with α1 < α2 . . . < αm. Then we define a bundle map f : E → E
that f |π−1(Wv×I) = fαm ◦ . . . ◦ fα1 . Then this is well-defined, and it is a bundle map over r that
induces an isomorphism f∗E ∼= E. □

Prop.(3.14.1.9) [Homotopy Invariance of Fiber Bundles].Let E′ → B′ be fiber bundles. If
f, g : B → B′ are two homotopic maps with B paracompact, then there is a bundle isomorphism
f∗E′ ∼= g∗E′.

Proof: Let F : B × I → B′ be a homotopy from f to g, and let iv : B → B × I : iv(b, x) = (b, v)
for v = 0, 1. Let r : B × I → B × I be the retraction defined by r(b, x) = (b, 1), then by(3.14.1.8),
there is an isomorphism of fiber bundles

f∗E′ ∼= (F ◦ i0)∗E′ ∼= i∗0F
∗E′ ∼= i∗0r

∗F ∗E′ ∼= i∗1F
∗E′ ∼= g∗E′.

□

Prop.(3.14.1.10)[Cone Bundles].Let E/X be a fiber bundle with fiber F , then we can construct a
new fiber bundle Cone(E)/X with bundle C(F ).

Cor.(3.14.1.11).This is because we can use the transformation characterization to extend maps
Ui ∩ Uj → Aut(F ) to maps Ui ∩ Uj → Aut(C(F )).

Prop.(3.14.1.12) [Hopf Fibration].There is a locally trivial fiber bundle S3 → S2 with fiber S1,
called the Hopf fibration.

Proof: Cf.[AGP02]P129. □

Prop.(3.14.1.13)[Ehresmann].Let f : E → B ∈Manism be a proper submersion, then it is a locally
trivial bundle.

Proof: Cf.[Björn Dundas, A Short Course in Differential Topology].? □

Cor.(3.14.1.14).There is a locally trivial bundle S2n−1 → CPn with fiber S1.

Proof:
□
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Cor.(3.14.1.15).There is a locally trivial bundle RP2n−1 → CPn with fiber S1.

Proof:
□

Prop.(3.14.1.16) [Classifying Space Bundles].There is a locally trivial bundle U(n,K) →
Vn(K∞)→ Gra(n,K∞). for K = R,C or H.

Proof:
□

Cor.(3.14.1.17).There is a locally trivial bundle S∞ → CP∞ with fiber S1.

Prop.(3.14.1.18).There is a locally trivial bundle Sn → RPn with fiber {±1}.

Proof: □

Prop.(3.14.1.19).There is a locally trivial fiber bundle S∞ → RP∞ with fiber {±1}.

Proof: Cf.[AGP02]P335. □

Covering Space

Def.(3.14.1.20)[Covering Space].A covering space is a fiber bundle E → X with discrete fibers.

Prop.(3.14.1.21). if X and Y are Hausdorff spaces, f : X → Y is a local homeomorphism, X is
compact, and Y is connected, then f a covering map.

Proof: First, f is surjective (using the connectedness), and that for each y ∈ Y , f−1(y) is finite.
Because X is compact, there exists a finite open cover of X by {Ui} such that f(Ui) is open and
f |Ui : Ui → f(Ui) is a homeomorphism. For y ∈ Y , let {x1, . . . , xn} = f−1(y) (the xi all being
different points). Choose pairwise disjoint neighborhoods U1, . . . , Un of x1, . . . , xn, respectively (using
the Hausdorff property).

By shrinking the Ui further, we may assume that each one is mapped homeomorphically onto
some neighborhood Vi of y.

Now let C = X \ (U1 ∪ · · · ∪ Un) and set

V = (V1 ∩ · · · ∩ Vn) \ f(C)

V should be an evenly covered nbhd of y. □

Prop.(3.14.1.22). If π : B̃ → B is a local onto homeomorphism with the property of lifting arcs. Let
B̃ be arcwise connected and B simply connected, then π is a homomorphism.

Proof: only need to prove injective. If p1 and p2 map to the same point, then they can be connected,
and the image is a loop thus contractable, contradiction. □

Cor.(3.14.1.23). If B̃ is locally arcwise connected and B is locally simply connected, then π is a
covering map.

Proof: Choose the connected components of a simply connected nbhd of a point p and
use(3.14.1.22). □
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Prop.(3.14.1.24)[Homotopy Lifting Property].Given a covering space π : X̃ → X, and a homo-
topy ft : Y → X, and a map f̃0 : Y → X̃ lifting X, then there is a unique homotopy f̃t : Y → X̃ of
f̃0 lifting ft.

Proof: Let Uα be a covering of X that the We first construct a lift F̃ : N × I → X̃ for N a
nbhd near some point y0 ∈ Y . Because f is continuous, there is a nbhd N of y0 and a partition
0 = t0 < t1 < . . . < tm = 1 of I that each N × [ti, ti+1] is mapped into some Uα. Then we can
construct a lifting F̃ : N × I → X̃ by induction using the local homeomorphism property of covering
space.

Next we show the uniqueness in the special case that Y is a point. This can also be done using
a partition of I and induction.

Finally we can construct lifting near every point y ∈ Y , and also they coincide on the overlap
because of the uniqueness we just proved. So these liftings glue together to give a lifting f̃t : Y → X̃.
□

Cor.(3.14.1.25).The map π∗ : π1(X̃, x̃0)→ π1(X,x0) induced by the covering map is injective. And
the image of this map consists of homotopy types of loops that based at x0 whose lift starting at x̃0
are also loops.

Proof: This is because a homotopy of a the image of a loop to trivial loop in X̃ can be lifted to a
homotopy of the loop itself to trivial loop. And this homotopy also fixes the endpoint, because the
lifting of a trivial loop must be a trivial loop.

For the second assertion, one direction is easy, for the other, if a loop is a homotopic to the image
of a loop of X̃, then it is itself the image of a loop of X̃. □

Prop.(3.14.1.26)[Degree of a Covering].Let π : X̃ → X be a covering map, then the cardinality
of π−1(x) is a a locally constant function of x. Thus if X is constant, this cardinality is fixed for any
x ∈ X, and it is called the degree of the covering.

The number of sheets of a covering with X̃ path-connected equals the index of π∗(π1(X̃, x̃0)) in
π1(X,x0).

Proof: For a loop g in X based at x0, let g̃ be its lift to X̃ starting at x̃0. Now if h ∈ π∗(π1(X̃, x̃0)),
then the loop h · g has lift that has the same ending as g̃. So we get a map from the quotient set
π1(X,x0)/π∗(π1(X̃, x̃0)) to p−1(x0) mapping π∗(π1(X̃, x̃0))[g] to g̃(1). This map is injective, and it
is surjective because X̃ is path-connected. Then we are done. □

Prop.(3.14.1.27) [Unique Lifting Property].Let π : (X̃, x̃0) → (X,x0) be a covering space and
f : (Y, y0) → (X,x0) be a map with Y path-connected and locally path-connected, then a lift
f̃ : (Y, y0)→ (X̃, x̃0) exists iff f∗(π1(Y, y0)) ⊂ π∗(π1(X̃, x̃)). And when Y is connected, this lifting is
unique.

In particular, a covering space has unique path lifting property.

Proof: One direction is clear, for the other, to construct a lifting, choose a path γ from y0 to y,
the path fγ has a unique lifting f̃γ starting from x̃0. Define f̃(y) = f̃γ. This is a well-defined map:
if γ′ is another path from y0 to y, then fγ−1fγ′ is a loop that is homotopic to the image of a loop at
x̃0. Now we can lift this homotopy, and then fγ−1fγ′ is also the image of a loop at x̃0, which must
be f̃γ−1

f̃γ′ by uniqueness. So f̃ is well-defined.
It can be verified that f̃ is continuous.
The uniqueness is clear, because if there are two lifts, the points that they are equal and the

points that they are not are both open in Y . □
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Prop.(3.14.1.28)[Galois Theory of Covers].LetX be a path-connected and locally path-connected
and semilocally simply-connected space(3.12.4.26), then

• there is a connected and simply-connected covering space X̃ of X, called a universal cover
of X.

• Thee fundamental group acts continuously and properly on X̃/X.
• For any subgroup H of π1(X,x0), there is a connected covering space π : XH → X that
π∗(π1(XH , x̃0)) = H for a suitably chosen base point x̃0. And this covering space is unique
up to isomorphism over (X,x0). Thus by(3.14.1.27), there is an inclusion-preserving bijection
between isomorphism classes of covering spaces over X and the the set of conjugacy classes of
subgroups of π1(X,x0).

Proof: Cf.[Hat02]P64, P67.? □

Def.(3.14.1.29) [Normal Covering Spaces].A normal covering space is a covering space π :
X̃ → X that for any x ∈ X and two elements x̃, x̃′ ∈ π−1(x), there is a covering isomorphism of
X̃/X taking x̃ to x̃′.

Prop.(3.14.1.30).Let π : (X̃, x̃0)→ (X,x0) be a path-connected covering space of a path-connected,
locally path-connected space X, and let H be the subgroup π∗(π1(X̃, x̃0)) ⊂ π1(X,x0), then

• The covering space is normal iff H is normal in π1(X,x0).
• The group G(X) of covering transformations of X̃ is isomorphic to N(H)/H.

Proof: 1: Let x̃1, x̃2 ∈ π−1(x0) and γ a path from x̃1 to x̃2 corresponding to an element of π1(X,x0),
then H is normal is equivalent to π∗(π1(X̃, x̃1)) = π∗(π1(X̃, x̃2)). Then the lifting criterion shows
there is a covering transformation taking x̃1 to x̃2. The converse is also true.

2: From the above argument, we can define a map N(H)→ G(x̃) by mapping a γ ∈ N(H) to a
covering transformation mapping x̃0 to x̃1. And the kernel of this map is exactly those γ lifting to a
loop at x̃0, which are exactly the elements of H. □

Prop.(3.14.1.31)[Covering Space Action]. If G is a discrete group and G × Y → Y is a covering
space action(3.11.1.14), then the quotient map Y 7→ Y \G is a normal covering space. And if Y is
path-connected, G is the group of covering transformations.

Proof: The condition on the action shows it is locally a homeomorphism, thus it is a covering
space. And it is a normal covering space because g1g

−1
2 takes any g1(x) to g2(x). The group of

covering transformations is just G, because the covering transformation on a path-connected space
is determined by its action on a single point. □

2 Vector Bundles

Basics

Def.(3.14.2.1)[Vector Bundle].Let K = R or C, a K-vector bundle of dimension n over a topo-
logical space X is a fiber bundle over X with fiber Kn that each trivialization φα restricts to K-linear
isomorphisms on the fibers. The category of vector bundles over X is denoted by VectK(X).A vector
bundle homomorphism E → F is a map of spaces over X that the maps on the fibered are all
K-linear.

Then a K-vector bundle of dimension n over X is just an associated GL(n,K)-bundle with fiber
Kn over X. In particular, there is a bijection VectnK(X) ∼= PGL(n,K)(X) by(3.14.3.4).
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Def.(3.14.2.2)[Trivial Vector Bundles].For any n ∈ N, the trivial vector bundle of rank n is
denoted by en.

Prop.(3.14.2.3) [Constructions of Vector Bundles].Let T : (Vectf /K)⊗n → Vectf /K be a
functor that is either covariant or contravariant for each of its factor that T :

∏
i Hom(Vi,Wi) →

Hom(T (Vi), T (Wi)) is continuous, then we have a functor T : V ect(X)n → V ect(X) that is either
covariant or contravariant for each of its factor.

Proof: Cf.[Ati64]P6. □

Cor.(3.14.2.4). In this way, given a vector bundles E,F on X, we can construct

E ⊕ F, E ⊗ F, Hom(E,F ) ∼= E∗ ⊗ F, E∗, TnE, ∧iE.

Prop.(3.14.2.5)[Existence of Hermitian Metric].There exists a Hermitian(Riemannian) metric
on any bundle E over a paracompact space X. In this way, E∗ ∼= E(E).

Proof: Choose a metric on each trivialization open subset and use partition of unity to glue. □

Cor.(3.14.2.6).A vector bundle over a paracompact space can have its transform maps ∈ O(n) (or
U(n)).

Proof: We can choose the metric on it compatible with the given metric. In this way, the transform
map is ∈ O(n) (or U(n)). □

Cor.(3.14.2.7)[Semisimplicity of Vect(B)].Any exact sequence of vector bundles over a paracom-
pact space B splits.

Proof: Because we can take the orthogonal complement. □

Cor.(3.14.2.8). If f : X → Y is a homotopy equivalence, then f∗ : Vect(Y ) → Vect(X) is an
isomorphism.

In particular, if X is contractible, then every bundle over X is trivial.

Def.(3.14.2.9)[Orientations of Vector Bundles].Let π : E → X be a vector bundle of rank n over
a space X and R ∼= Z or Z/2Z, then a orientation of E with coefficient R is a functions that assigns
a generator ux of Hn(Ex, 0, R) ∼= R for any x ∈ X s.t. for any x ∈ X, there is a nbhd U of x ∈ X
and an element u ∈ Hn(π−1N, π−1(N)0, R) s.t. u pulls back to ux via (Ex, 0) ⊂ (π−1N, π−1(N)0)
for any x ∈ U . In particular, any vector bundle is F2-orientable.

Prop.(3.14.2.10)[Orientation of Complex Vector Bundles].For E/X ∈ VectC(X), the underly-
ing real bundle has a preferred orientation, which is compatible with direct sums.

In particular, the tangent bundle of a complex manifold gives rise to a unique orientation of the
underlying real manifold.

Proof: Let a1, . . . , an be a complex basis for E, then take the real basis to be a1, ia1, . . . , an, ian.
This orientation is stable under GL(n,C) transformation, as GL(n,C) is connected. □

Prop.(3.14.2.11). If E is a complex vector bundle over X, then E ⊗R C ∼= E ⊕ E as complex vector
bundles.

Lemma(3.14.2.12). Suppose π : E → B × I is a fiber bundle whose restriction to B × [0, a] and
B × [a, 1] are all trivial for some a ∈ I, then E → B × I is a trivial bundle.
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Proof: The proof is similar to that of(3.14.1.6) □

Lemma(3.14.2.13).Let E → B × I be a fiber bundle, then there exists a covering {Ui} of B that E
is trivial on each Ui × I.

Proof: The proof is similar to that of(3.14.1.7) □

Lemma(3.14.2.14).Let π : E → B × I be a fiber bundle, where B is a paracompact space, and
r : B × I → B × I defined by r(b, x) = (b, 1), then there exists a bundle morphism f over r that
induces an isomorphism r∗E ∼= E over B × I.

Proof: The proof is similar to that of(3.14.1.8) □

Prop.(3.14.2.15)[Homotopy Invariance of Vector Bundles].Let E′ → B′ be a vector bundle.
If f, g : B → B′ are two homotopic maps with B paracompact, then there is a bundle isomorphism
f∗E′ ∼= g∗E′.

Proof: The proof is similar to that of(3.14.1.9) □

Bundles of Finite Type

Def.(3.14.2.16)[Bundles of Finite Type].Let X be a paracompact Hausdorff space, then a vector
bundle of finite type over X is a vector bundle over X that has a covering by f.m. trivialization
maps. The category of k-dimensional vector bundles over X of f.t. is denoted by Vectft

k (X). Trivially,
any vector bundle over a compact space is of f.t..

Prop.(3.14.2.17)[Vector Bundles on the Quotient].Let Y be a closed subspace of X, E a vector
bundle over X, then a trivialization α : E|Y ∼= Y × V defines a bundle E/α over X/Y . The
isomorphism class of E/α only depends on the homotopy type of α.

Proof: To show it is a vector bundle, notice the trivialization α extends to a □

Prop.(3.14.2.18)[Splitting Principle].For a vector bundle E → X, there is a space Y → X that
p∗ is injective on H∗(−,Z) and p∗E splits as a sum of line bundles. This proposition is useful when
proving theorems about characteristic classes.

Proof: It suffice to find a Y that p∗E has a subbundle, then choose its orthogonal part, and use
induction. For this, choose Y = P (E), then Y has a tautological bundle, which is a subbundle of
p∗E, and Y is fibered over X with fiber Pn, and we want to use Leray-Hirsch, so check the fact
H∗(Pn) is free and generated by the first Chern class, by(3.14.4.16) and(5.7.2.1). And Chern class
is functorial, so the powers of Chern class of f∗E will generate the cohomology ring of any stalks. □

Prop.(3.14.2.19).For any bundle E over a compact Hausdorff space X, there is a surjective bundle
map X ⊗Rn → E for some m ≥ 0.

Proof: Choose a finite cover of trivialization of E, then we can glue these maps together via a
partition function. □

Cor.(3.14.2.20)[Negation of Bundles].For any vector bundle E on a compact space X, there is a
vector bundle F that E ⊕ F is a trivial bundle.

Proof: Choose a bundle map Rn × X → E that is surjective, then the kernel of this map is a
bundle F , such that E ⊕ F ∼= Rn(By taking a Hermitian metric(3.14.2.5) and taking the orthogonal
bundle). □
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Cor.(3.14.2.21)[Global Transversal Sections].For a vector bundle over a compact manifold, there
exists a global section transversal to the zero section, in particular, if dimE > M , then it has no
zero.

Proof: Choose a bundle map Rn×X → E that is surjective, and then use parametric transversality
theorem(11.1.4.5) to prove there is a section that is transversal. □

Cor.(3.14.2.22)[Vector Fields with Isolated Zeros].There is a vector field on compact manifold
of only isolated zeros. And a vector bundle over a k dimensional curve splits to components of
dimension no bigger than k. Determined by its Chern class.

Prop.(3.14.2.23)[Constructing Vector Bundles].

Cor.(3.14.2.24).There is a natural isomorphism Vectn(S(X)) ∼= [X,GL(n,C)].

Proof: Write Σ(X) = C+(X)
⨿
C−(X), and C±(X) are both contractible, thus E are trivial

restricted to them(3.14.2.8). Let α± be the trivialization isomorphism, then α+ ◦α− is a bundle map
of X ×Rn, which is equivalent to a map α : X → GL(n,C). The homotopy type of α is determined
because C±(X) are both contractible, and vise versa. □

Prop.(3.14.2.25)[Vector Bundles as Modules].Γ induces an equivalence between the category of
vector bundles over X and the category of finitely projective modules over C(X).

Proof: Clearly a bundle induces a module over C(X). And it is a fully faithful functor. Now the
image is the subcategory of finite projective modules, because every bundle is a direct summand of
a trivial bundle, and a trivial bundle corresponds to a finite free C(X)-modules. □

Thom isomorphism

Prop.(3.14.2.26)[Thom Class].Let R = Z or F2 and an R-orientable vector bundle E over base B
of rank n.

Then there exists uniquely Thom class uE ∈ Hn(E,E\B,R) that induce the preferred generator
Hn(Ex, Ex\{0}, R)(3.14.2.9) on every fiber. Then the relative Leray-Hirsch will give an isomorphism

φR : H i(B,R) ∼= H i+n(E,E\B,R) : x 7→ π∗(x) ∪ uE .

For F2 coefficient there exists a Thom class, and for orientable bundle there exists a Z-Thom class.
Notice that fiber bundle over a simply connected base is orientable.

Proof: □

Cor.(3.14.2.27)[Naturality].
• Let B′ → B be a map and E/B be an R-orientable vector bundle, which induces a map
f∗ : Hn(E,E0, R)→ Hn(f∗(E), E′

0, R). Then f∗uE ∼= uf∗(E).
• The Thom class uE maps to uE,2 under the change of coefficients Z→ Z/2Z.

Prop.(3.14.2.28). Similarly, for a orientable fiber bundle Sn−1 → E → B, make it a Dn → E′ → B
bundle, then E′ is homotopy equivalent to B so there is a Gysin sequence

→ H i−n(B) ⌣e−−→ H i(B)→ H i(E)→ H i−n+1(B)→

Where the Euler class e is chosen to commute with the Thom isomorphism.
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Examples of Vector Bundles

Def.(3.14.2.29) [n-Universal k-Vector Bundle].Let K = R or C, endow Kn with the canonical
Hermitian metric, define Ek(Kn) be the subspace of Gra(k,Kn) × Kn consisting of pairs (W, v)
that v ∈ W . Then this is a vector bundle over the Grassmannian Gra(k,Kn)(11.7.2.12), called the
n-universal k-vector bundles, or the tautological bundles.

Proof: We construct localization maps: endow Kn with the natural metric. For W0 ∈ Gk(Kn),
then the subspace U of Gk(Kn) consisting ofW thatW ∩W⊥

0 = ∅ is a nbhd ofW0, and it is naturally
homeomorphic to Hom(W0,W

⊥
0 ). There is an isomorphism

π−1(U) ∼= U ×W0 : (f, (f + id)w0) 7→ (f, w0).

□

Prop.(3.14.2.30) [Universal Vector Bundle].Because by(3.14.3.20) Ek(K∞)/Gra(k,K∞) is the
universal bundle, there is a map ik : Gra(k,Kn) → Gra(k + 1,Kn) s.t. i∗k(Ek+1(K∞)) is the bundle
Ek(K∞)⊕K. Then it can be shown

BU(K) = colimk(Gra(k,K∞) ik−→ Gra(k + 1,K∞))

is a CW complex.
Moreover, there are maps wk,l : Gra(k,K∞)×Gra(l,K∞)→ Gra(k+ l,K∞) that corresponds to

the bundle Ek(K∞)× El(K∞), and these maps induces an H-space structure on BU .

Proof: □

Prop.(3.14.2.31)[Tautological Line Bundles].For Gra(1,Rn+1) ∼= RPn, the line bundle E1(Rn+1)
is denoted by γ1

n.
Then the tangent bundle τn of RPn is isomorphic to Hom(γ1

n, γ
⊥
n ), where γ⊥

n is the orthogonal
complement of γ1

n in en+1
RPn(with the canonical norm).

Proof: This is because a tangent vector at x ∈ RPn is equivalent to a homomorphism [x] to [x]⊥.
? How to prove this rigorously. □

Cor.(3.14.2.32). τn ⊕ e1 ∼= (γ1
n)n+1.

Proof: By(3.14.2.31), τn ⊕ e1 ∼= Hom(γ1
n, γ

1
n) ⊕ Hom(γ1

n, γ
⊥
n ) = Hom(γ1

n,R
n) = (γ1

n)∗n. Then we
are done because γ1

n is self-dual because it has a Euclidean metric(3.14.2.5). □

Prop.(3.14.2.33)[Pullback the Universal Bundle].For V ∈ Vect /K, for any continuous map φ :
X → Gra(k, V ), we get a subspace Eφ = {(x, v) ∈ X×V |v ∈ φ(x)} ⊂ X×V . This is a vector bundle
over X, and it is a subbundle of the trivial bundle X × V → X. In fact, Eφ ∼= f∗Ek(V )(3.14.2.29).

Cor.(3.14.2.34).Let f : X ′ → X and φ : X → Pr(V ), then f∗(Eφ) = Eφ◦f .

Prop.(3.14.2.35) [Infinite Universal k-Vector Bundle].The n-universal k-vector bundles
Ek(Kn)(3.14.2.29) for various n gets together to a bundle Ek(K∞) on Gra(k,K∞) that the pull-
back of Ek(K∞) via i : Gra(k,Kn)→ Gra(k,K∞) is Ek(Kn).

Def.(3.14.2.36) [Hopf Bundle].Define a map φ : CPn → G1(Cn+1) that φ([z]) = [z], then this
defines a vector bundle on CPn by(3.14.2.33), called the dual of Hopf bundle. The Hopf bundle
is defined to be the dual of the dual of Hopf bundle.
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3 Principal Bundles
Main reference is [Principal Bundles and Classifying Space ].

Def.(3.14.3.1) [Principal Bundles].For G ∈ TopGrp, a principal G-bundle is a bundle P with
G-fibers that the transition function is right G-map, i.e. left multiplication by some gαβ. a associated
bundle of a representation G→ End(V ) is the total space of P ×V module the equivalence [gg0, v] =
[g, g0v]. The corresponding transition function is just the left action by gαβ.

For B ∈ Top, denote PG(B) the isomorphism classes of vector bundles on B.

Prop.(3.14.3.2)[Homogenous Space].For G ∈ LieGrp and H ≤ G is a closed subgroup, then the
quotient H\G can be given a structure of a G-homogenous space and G → H\G is a principal
H-bundle.

Proof: □

Prop.(3.14.3.3).The projection S2n+1 → CPn is a principal S1-bundle.

Proof: □

Prop.(3.14.3.4) [Associated Bundles]. If G ∈ TopGrp and G acts freely on F ∈ Top, then an
associated G-bundle with fiber F is a locally trivial F -bundles with a G-action?.

Then the isomorphism classes of associated G-bundles with fiber F over B is in bijection with
PG(B).

Proof: ? □

Classifying Space

Def.(3.14.3.5)[Classifying Spaces].For G ∈ TopGrp, a classifying space of G is a space B(G) ∈
Top together with a principal G-bundle E(G)→ B(G) s.t. E(G) is contractible.

Notice πn+1(BG) = πn(G) by??.

Thm.(3.14.3.6)[Classifying Spaces and Principal Bundles]. If G ∈ TopGrp and E(G) → B(G)
is a classifying space for G, then for any B ∈ Top that is paracompact, the pullback induces a
bijection

[B,B(G)] ∼= PG(B).

In particular, the classifying spaces is uniquely defined ique up to homotopy, if it exists.

Proof: ?? □

Prop.(3.14.3.7)[Classifying Spaces Exist].For G ∈ TopGrp, define

E∗(G) ∈ sTop : En(G) = Gn+1

di((g1, . . . , gn+1)) =
{

(g2, . . . , gn+1) , i = 0
(g1, gi−1, gigi+1, gi+2, . . . , gn+1) , 1 ≤ i ≤ n

si((g1, . . . , gn)) = (g1, . . . , gi, e, gi+1, . . . , gn), 0 ≤ i ≤ n

And
B∗(G) ∈ sTop : Bn(G) = Gn
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di((g1, . . . , gn)) =


(g2, . . . , gn) , i = 0
(g1, gi−1, gigi+1, gi+2, . . . , gn) , 1 ≤ i ≤ n− 1
(g1, . . . , gn) i = n

si((g1, . . . , gn−1)) = (g1, . . . , gi, e, gi+1, . . . , gn−1), 0 ≤ i ≤ n.

Then there is a map

pr : E∗(G)→ B∗(G) ∈ sTop : (g1, . . . , gn+1) ∈ En(G) 7→ (g1, . . . , gn) ∈ Bn(G).

Denote E(G) = |E∗(G)|, B(G) = |B∗(G)|, then pr induces a map pr : E(G)→ B(G). B(G) is called
the classifying space of G.

Cor.(3.14.3.8).Any group G is a fundamental group of a topological space.

Prop.(3.14.3.9). Situation as in(3.14.3.7), there is a right action ofG on E∗(G) on the last coordinates,
which induces an action of G on E(G), and B(G) ∼= E(G)/G. Then if (G, e) is well-pointed, E(G)→
B(G) is a locally trivial bundle with fiber G, and E(G) is contractible. In particular, G ∼= Ω(BG),
by(3.12.6.20).

Proof: ?. Cf.[Milnor, Construction of Universal Fiber Bundles, I, II]. □

Cor.(3.14.3.10).For G,G′ ∈ TopGrp,

E(G×G′) ∼= E(G)× E(G′), B(G×G′) ∼= B(G)×B(G′).

Cor.(3.14.3.11). If G is commutative, then G × G → G is a homomorphism that makes B(G) a
commutative topological group. Then we can define for any n ∈ N,

B(G,n) = B◦n(G).

Prop.(3.14.3.12). [X,BG] ∼= G-bundles on X. And BG is Abelian if G is Abelian. Thus the classify-
ing space BG is unique up to homotopy equivalence because they all represent the functor from the
CW homotopy category to the set of G-bundles on it.

Proof: Cf.[Principal Bundles and Classifying Space P13]. □

Prop.(3.14.3.13)[Examples of Classifying Spaces].
• B(Z/nZ) ∼= S∞/(Z/n) = (C∞\{0})/(R+ × µn)(3.12.3.17). In particular, B(Z/2) ∼=

RP∞(3.12.3.19).
• BSU(2,R) = HP∞.
• B(Zg) = Tg because R→ T1 is a universal cover, this can be seen observing only has to satisfy

the sum of inner angle is π.
• BO(n), BU(n), BSp(n) are respectively the infinite Grassmannians

Gra(n,R∞),Gra(n,C∞),Gra(n,H∞), because there is a locally trivial fiber bundle(3.14.1.16)
U(n,K) → Vn(K∞) → Gra(n,K∞), and Vn(K∞) is contractible(3.12.3.18). In particular,
B(Z/2) = RP∞ and BS1 = CP∞.

Proof: □
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Def.(3.14.3.14)[Admissible Subgroups].A subgroup of a topological group G is called admissible
if G → G/H is a principal H-bundle. In particular, this is the case for G ∈ LieGrp and H ≤ G
closed, by(3.14.3.2).

Prop.(3.14.3.15). If H is an admissible subgroup of G, then there is a homotopy fiber sequence
G/H → BH → BG.

Proof: Cf.[Principal Bundles and Classifying Space P22]. □

Cor.(3.14.3.16).There are homotopy equivalences ΩBK ∼= K and BΩK ∼= K.

Prop.(3.14.3.17). IfH is an admissible normal subgroup of G, then there is a homotopy fiber sequence
BH → BG→ B(G/H).

Proof: □

Cor.(3.14.3.18).
• there are fiber bundles S0 → BSO(n)→ BO(n) and similarly for BSU(n) and BSp(n).
• there are fiber bundles Sn → BO(n)→ BO(n+ 1).
• there are fiber bundles U(n)/Tn → (CP∞)n → BU(n), where U(n)/Tn is the variety of

complete flags in Cn.
• for a discrete group H ⊂ G, BH → BG is a covering map.
• there are fiber bundles BSO(n)→ BO(n)→ RP∞ and similarly for C and H.
• there are fiber bundles RP∞ → B Spin(n)→ BSO(n).

Proof: These are all classifying spaces of Lie groups. □

Prop.(3.14.3.19) [Classifying Line Bundles].Note that K(Z, 2) = CP∞ = B(K(Z, 1)) =
BU(1)(3.14.3.13), thus we have a bijection H2(X,Z) ∼= [X,K(Z, 2)] ∼= Vect1

C(X). Similarly, we
have a bijection H1(X,Z/2Z) ∼= Vect1

R(X).

Classifying Spaces

Prop.(3.14.3.20)[Universal Real Bundle].Let X be paracompact, then there is a natural bijection

[X,Gra(k,K∞)]→ VectkK(X) : f 7→ f∗Ek(K∞).(3.14.3.13)(3.14.2.35)

Proof: Because E is of f.t., we can find a f.d. vector space W with a metric and a vector bundle
epimorphism φ : X×W → E via partition of unity. Then we can take the map φ : X → Gk(W ) : x 7→
ker(φx)⊥. Then f∗Ek(K∞) ∼= E via restriction of φ. The last assertion follows from the definition
of Ek(K∞)(3.14.2.35) and(3.14.2.15).

Cf.[AGP02]P284.? □

Cor.(3.14.3.21).By(3.13.6.13), there are isomorphisms

VectR1 (X) ∼= [X,Gra(1,R∞)] = [X,K(Z/(2), 1)] = H1(X,F2).

VectC1 (X) ∼= [X,Gra(1,C∞)] = [X,K(Z, 2)] = H2(X,Z).
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Cohomology of Classifying Spaces

Prop.(3.14.3.22).H∗(BG,Z) ∼= H∗(Λ,Z) and H∗(BG,Z) ∼= H∗(G,Z).

Proof: Because EG is weakly contractible, S∗(EG) is a free Z[G]-module resolution of Z and
S∗(EG)G is identified with S∗(BG). The rest is easy. □

Def.(3.14.3.23)[Whitney Sums].

Prop.(3.14.3.24).The diagonal map O(1)n → O(n) induces a map

ω : (RP∞)n ∼= (BO(1))n → BO(n).

The conjugation by permutation matrices preserves O(1)n, thus induces a covariant action on this
map. The action on BO(n) is identity?, and the action on (BO(1))n is by permutation.

Then it induces a map

H∗(BO(n))→ H∗((BO(1))n)Sn ∼= F2[σ1, σ2, . . . , σn]

where σi are the elementary symmetric functions. This is injective and thus surjective when tensoring
any field, thus it is a bijection?.

Denote the inverse image of σi by wi, then

H∗(BO(n)) ∼= F2[w1, . . . , wn], |wi| = i

and these elements satisfy
• c0 = 1.
• i∗1(c1) is the canonical generator of H2(BU(1)).
• i∗n(wi) = ci.
• p∗(wi) =

∑i
j=0wj ⊗ wi−j .

Proof: Cf.[Cohomology of Classifying Space Toda P82]. □

Prop.(3.14.3.25)[H∗(BSO(n),F2)]. pr : BSO(n)→ BO(n) is the universal covering with fiber Z/(2),
and

H∗(BSO(n),F2) ∼= F2[pr∗ ω2, . . . , pr∗ ωn].

Proof:
□

Prop.(3.14.3.26).The diagonal map U(1)n → U(n) induces a map

ω : (CP∞)n ∼= (BU(1))n → BU(n).

The conjugation by permutation matrices preserves U(1)n, thus induces a covariant action on this
map. The action on BU(n) is identity?, and the action on (BU(1))n is by permutation.

Then it induces a map

H∗(BU(n))→ H∗((BU(1))n)Sn ∼= Z[σ1, σ2, . . . , σn]
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where σi are the elementary symmetric functions. This is injective and thus surjective when tensoring
any field, thus it is a bijection?.

Denote the inverse image of σi by ci, then

H∗(BU(n)) ∼= Z[c1, . . . , cn], |ci| = 2i

and these elements satisfy
• c0 = 1.
• i∗1(c1) is the canonical generator of H2(BU(1)).
• i∗n(ci) = ci.
• p∗(ci) =

∑i
j=0 cj ⊗ ci−j .

Proof: Cf.[Cohomology of Classifying Space Toda P81]. □

Prop.(3.14.3.27).

H∗(BO(2n),Z[1
2

]) ∼= H∗(BO(2n+1),Z[1
2

]) ∼= H∗(BSO(2n+1),Z[1
2

]) = Z[1
2

][p1, p2, . . . , pn], |pi| = 4i

H∗(BSO(2n),Z[1
2

]) = Z[1
2

][p1, p2, . . . , pn, e], e2 = pn, |pi| = 4i

Cf.[Cohomology of Classifying Space Toda P81].

Prop.(3.14.3.28)[Complexifications].As BSO(n) is the set of oriented real n-planes in R∞, BU(n)
is the set of complex n-planes in C∞, regarding a complex n-plane as an oriented real 2n-plane
induces a map

r : BU(n)→ BSO(2n).

And complexification of a real plane induces a map

c : BO(n)→ BU(n).

Then

pk = (−1)k c∗(c2k) ∈ H4k(BO(n)), c∗(ck) = w2
k ∈ H2k(BO(n),F2), pk = w2

2k ∈ H4k(BO(n),F2)

r∗(w2k) = ck ∈ H2k(BU(n),F2), r∗(e) = cn ∈ H2n(BU(n)).

Bk∗(pk) =
∑
i+j=k

(−1)icicj , .

Cf.[Cohomology of Classifying Space Toda P81].

4 Characteristic Classes
References are [Cohomology of Classifying Space, Toda], [May99] and [M-S74].

Def.(3.14.4.1) [Characteristic Classes].For an ES-cohomology theory E∗, p ∈ Z, n ∈ N, a
characteristic class functor of degree p for n-dimensional K-bundles is a natural assignment
c : VectnK(X)→ Ep(X) for any X ∈ Top paracompact that is functorial w.r.t. pullbacks.

By(3.14.3.20), there is a bijection between characteristic class functors of degree p with elements
in Ep(BO(n)).
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Stiefel-Whitney Classes

Def.(3.14.4.2) [Stiefel-Whitney Classes].A Stiefel-Whitney class functor w for real bundles
is a total characteristic class functor for real bundles for the ordinary cohomology theory with F2
coefficients H∗(−,F2) that satisfies:

• w(E) = 1 + w1(E) + . . .+ wn(E) ∈ H∗(X,F2), |wi| = i, n = rank(E).
• f∗(w(E)) = w(f∗(E)).
• w(E ⊕ F ) = w(E)w(F ).
• On the tautological bundle γ1

1 overRP1, w(γ1
1) = 1+w1(γ1

1) and w1(γ1
1) is the unique non-trivial

element in H1(RP1,F2).

Prop.(3.14.4.3)[Existence and Uniqueness of Stiefel-Whitney Classes].There exists uniquely
a Stiefel-Whitney class functor, and they can be defined using the Thom isomorphism

φE : H i(B;F2) ∼= H i+n(E,E\B;F2)(3.14.2.26)

as
w(E) = φ−1

E Sq(φE(1)) ∈ H∗(B;F2) = φ−1 Sq(uE).

Proof: Cf.[May, P191] and [Milnor, P92].? □

Prop.(3.14.4.4).For B ∈ Top paracompact, E,E′ ∈ VectR(B), then
• If E is trivial, w(E) = 1.
• If E ⊕ E′ is trivial, then

w(E′) = w(E)−1 = 1 + w1 + (w2
1 + w2) + (w3

1 + w3) + (w4
1 + w2

1w2 + w2
2 + w4) + . . . .

• Let γ1
n be the tautological line bundle over RPn(3.14.2.31), then w(γ1

n) = 1 + a.
• Let ξ, η be vector bundles on M,N , then

w(ξ × η) = π∗
1w(ξ) ∪ π∗

2w(η) = w(ξ)× w(η)

in H∗(M ×N,F2).

Proof: 1: A trivial bundle is the pullback of a bundle over pt, thus w(f∗(E)) = w∗(e(E)) = 1.
2 is trivial.
3: This is because E1(R)/RP1 → E1(Rn)/RPn is a bundle map, thus w1(E1(Rn)) pulls back to

w1(E1(R)) ̸= 0, thus w1(E1(Rn)) = a.
4: This follows from the definition that ξ × η = π∗

1ξ ⊕ π∗
2η and Künneth formula(3.13.2.13). □

Cor.(3.14.4.5)[Tangent and Normal Bundles].Let M be a submanifold of a smooth manifold N ,
let TM , TN be the tangent bundles and ν the normal bundle, then

w(NM/N ) = w(TN )w(TM )−1

Proof: This follows form the smooth nbhd theorem?. □

Prop.(3.14.4.6)[Wu Formula].For E ∈ VectB,

Sqi(wj) =
i∑
t=0

(
j + t− i− 1

t

)
wi−twi+t
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Proof: Use splitting principal. □

Def.(3.14.4.7)[Characteristic Classes of Smooth Manifolds].For M ∈Manism, denote w(M) =
w(TM).

Prop.(3.14.4.8)[Wu Formula].For M ∈ Manidsm,cpct, define the Wu class v =
∑
vi ∈ H∗(M,F2)

s.t.
⟨ν(M) ∪ x, [M ]2⟩ = ⟨Sq(x), [M ]2⟩

for any x ∈ H∗(M,F2). In particular, νk(M)k ∪ x = Sqk(x) for any x ∈ Hd−k(M,F2). Notice such
a class exists by Poincaré duality.

Then the Stiefel-Whitney class of M is given by the Wu class:

w(M) = Sq(ν(M))(3.13.6.14).

Proof: Cf.[Milnor, P132]. □

Cor.(3.14.4.9)[Homotopy Invariance of Stiefel-Whitney Classes of Manifolds].The Stiefel-
Whitney classes only depends on the homotopy type of M , and pullbacks of Stiefel-Whitney classes
along smooth maps between smooth manifolds only depends on the homotopy type of the map.

Def.(3.14.4.10)[Stiefel-Whitney Numbers].Let M be a closed smooth manifold of dimension n,
then for each tuple (i1, . . . , ik) with i1 + . . .+ ik = n, define the Stiefel-Whitney number

wi1,...,ik(M) = (wi1(TM) ∪ . . . ∪ wik(TM), [M ]) ∈ Z/2Z.

Euler Classes

Def.(3.14.4.11)[Euler Classes].Axioms for Euler classes for orientable real bundles E/B:
• e(e1) = 0.
• For any map f : B′ → B, f∗(e(E)) = e(f∗(E)).
• e(E ⊕ F ) = e(E)e(F ).
• for the opposite orientation −E, e(−E) = −e(E).

Prop.(3.14.4.12) [Existence of Euler Classes].For any oriented E/B ∈ VectR(B), let e(E) be
defined as the image of the Thom class(3.14.2.26) under the maps

φ−1
E : Hn(E,E0,Z)→ Hn(E,Z) ∼= Hn(B,Z).

or equivalently, e(E) = φ−1(uE ∪ uE) where uE is the Thom class and φZ is the Thom isomor-
phism(3.14.2.26). then it is the desired Euler class.

Proof: ?
1: If E has a non-zero section s : B → E0, then B s−→ E0 ⊂ E → B is identity, thus

Hn(B) π∗
−→ Hn(E)→ Hn(E0) s∗

−→ Hn(B)

is the identity. But Hn(B) π∗
−→ Hn(E)→ Hn(E0) equals the restriction of uE to E0, which is 0.

2: This e(E) is compatible with base change by(3.14.2.27) and the definition.
3: For products, Cf.[Milnor, P100].
4: If the orientation is reversed, then u−E = −uE . □
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Cor.(3.14.4.13).
• For a trivial line bundle, e(E) = 0.
• For an odd dimensional vector space E/B, 2e(E) = 0.

Proof: 1: A trivial bundle is the pullback of a bundle over pt, thus e(f∗(E)) = f∗(e(E)) is trivial.
2: This is because their is an orientation preserving isomorphism (−1) : E/B ∼= (−E)/B that is

isomorphism on the base, so e(−E) = e(E). □

Cor.(3.14.4.14) [Euler classes and Whitney Classes].For a vector bundle E/B of rank n, the
natural map Hn(B,Z)→ Hn(B,Z/2Z) maps the Euler class e(E) to the top Whitney class wn(E).

Proof: e(E) = φ−1(uE × uE), which maps to φ−1
2 (uE,2 ∪ uE,2) = φ−1

2 (Sqn(uE,2)) = wn(E)
by(3.14.2.27). □

Prop.(3.14.4.15)[Euler Class and Euler Characteristic].For M ∈Manicpct,sm,orntd, then

⟨e(TM ), [M ]⟩ = χ(M).

Proof: ? □

Chern Classes

Def.(3.14.4.16)[Chern Classes].Axioms for Chern classes for complex bundles:
• c(E) = 1 + c1(E) + . . .+ cn(E) ∈ H∗(X,Z), |ci| = 2i, n = deg(E).
• f∗(c(E)) = c(f∗(E)).
• c(E ⊕ F ) = c(E)c(F ).
• For the tautological bundle η over CP∞, c1(η) corresponds to the element id ∈ [CP∞,CP∞] ∼=
H2(CP∞).

Prop.(3.14.4.17).There exists uniquely a natural transformation c : V ectC(X) → H∗(X,Z) satisfy-
ing these axioms. (For this, it suffice to calculate the cohomology ring of BGLn(C), Cf.[Cohomology
of Classifying Space Toda]).

Cor.(3.14.4.18).For a trivial bundle E = C, ci(E) = 0 for i > 0, because E is a pullback from a
bundle on pt.

In particular, for any complex vector bundle E, c(E ⊕ C) = c(E).

Prop.(3.14.4.19) [First Chern Class Map].A complex line bundle can be seen as an element of
H1(X,C∗), by(5.3.2.14), by the exact sequence

0→ Z→ C
exp(2πi−)−−−−−−→ C∗ → 0

(C is sheaf of smooth functions from X to C)which gives a map H1(X,C∗) → H2(X,Z), called the
first Chern class map. It is called so because it gives the first Chern class of this complex line
bundle. It is also an isomorphism because C is fine sheaf so acyclic.

Proof: Only have to prove they are equal in H2(X,C). We choose a totally convex covering Ui of
X by(11.2.3.21), then it is a fine cover, so by(5.3.2.15) the Čech cohomology and sheaf cohomology
equal.
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Use the Chern-Weil map definition of the Chern class, a connection on a line bundle satisfies
∇eα = ωαeα, and if eβ = eαgαβ, then ωβ = g−1

αβωαgαβ + g−1
αβdgαβ = ωα + d(log gαβ). So Ωα = dωα

locally, and the first Chern class is giving by Ωα in H2(X,C).
Then we need to understand the deRham isomorphism. For the exact sequence 0→ C→ A0 →

A1 → . . ., it has a splitting: 0→ C→ K1 → 0 and 0→ K1 → 0→ A1 → K2 → 0, this gives

0→ H1(X,K1) δ−→ H2(X,C)→ 0, A1(X)→ K2(X) δ−→ H1(X,K1)→ 0.

because Ak are fine sheaves. The composite of them is just the de Rham isomorphism(Here we are
identifying H2(X,C) to H2(X,C) by(5.3.5.9)). Tracking the lifting, we notice Ω is mapped to the
cocycle {log gαβ + log gβγ − log gα−β}, which is exactly the image of the first Chern class map. □

Cor.(3.14.4.20).Complex line bundles are characterized by the first Chern class up to smooth iso-
morphism, because H1(X,C∗)→ H2(X,Z) is an isomorphism.

Pontryagin Classes

Def.(3.14.4.21) [Pontryagin Classes].The Pontryagin classes are defined as pk(E) =
(−1)kc2k(EC) ∈ H4k(X,Z).

Def.(3.14.4.22)[Pontryagin Number].Let M be a closed manifold of dimension 4n, then for each
tuple I = (i1, . . . , ik) with i1 + . . .+ ik = n, define the Pontryagin numbers

pI(M) = (pi1(TM) ∪ . . . ∪ pik(TM), [M ]) ∈ Z.

Prop.(3.14.4.23)[Pontryagin Number of Product Manifolds].LetM,N be closed submanifolds
of dimension 4m, 4n resp., then for any tuple I = (i1, . . . , ik) with i1 + . . .+ ik = m+ n,

pI(M ×N) =
∑

I1,I2|I1
⨿
I2=I

pI1(M)pI2(N)

where the summation is over all partitions I1, I2 of m,n resp..

Proof: Cf.[Milnor, P193]. □

Combinatorial Pontryagin Classes

See [Milnor]Chap20.

Calculations and Applications

Prop.(3.14.4.24).w(RPn) = (1 + a)n+1. In particular, w(RPn) = 1 iff n = 2k − 1 for some k.

Proof: This follows from(3.14.2.32). □

Cor.(3.14.4.25).Let n = 2k − 1 − r, where r ≤ 2k−1 − 1, then RPn can be immersed into Rn+d iff
d ≥ r.

Proof: By(3.14.4.5), the normal bundle ν satisfies w(ν) = (1+a)r, and r < n, thus d = rank(ν) ≥ r.
□
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Cor.(3.14.4.26). If n + 1 = 2rm, then there doesn’t exist 2r-linearly independent vector fields on
RPn.

Proof: This is because if their is, then w(RPn) has degree≤ n− 2r = 2r(m− 1)− 1, but in fact it
equals (1 + a2r)m has leading term a2r(m−1). □

Remark(3.14.4.27).By considering irreducibility, we can prove stronger results, like τRP4 doesn’t
contain a subbundle of rank2.

Prop.(3.14.4.28)[Non-Vanishing Vectors].RPn admits a non-vanishing vector field iff n is odd.

Proof: If n = 2k + 1, consider the non-vanishing vector field on S2k+1 : (x1, . . . , x2k+2) 7→
(x2,−x1, x4,−x3, . . . , x2k+2,−x2k+1). Then This descends to a non-vanishing vector field on RP2k+1.
Conversely, if n = 2k, by(3.14.4.26), there doesn’t exists a non-vanishing vector field on RP2k. □

5 K-Theory
Def.(3.14.5.1) [Topological K-Groups].For X ∈ Topcpct, the K-group K(X) is defined to be
K0(Vect(X))(3.7.2.9), which is a ring under sum and tensor. Two vector bundles E,F are called
stably equivalent if [E] = [F ].

There is a degree map degK(X)→ Z, and the kernel is denoted by K̃(X). There is a canonical
splitting K(X) ∼= K̃(X)⊕Z.

Prop.(3.14.5.2).A continuous map f : X → Y induces a group morphism f∗ : K(Y ) → K(X).
By(3.14.1.9), this map only depends on f ∈ [X,Y ].

Prop.(3.14.5.3).By(3.14.2.20), over a compact Hausdorff space, E,F is stably equivalent iff E⊕Rn ∼=
F ⊕Rn for some n.

Thm.(3.14.5.4) [Periodicity Theorem].Let L be a line bundle over X, then as a K(X)-algebra,
K(P (L⊕ 1)) is generated by [H], and is subject to the single relation ([H]− [1])([L][H]− [1]) = 0.

Proof: Cf.[K theory, Atiyah, P46]. □

Cor.(3.14.5.5).K(S2) is generated by [H] as a K(pt)-module, and is subject to the single relation
([H]− [1])2 = 0.

Cor.(3.14.5.6).There is an isomorphism µ : K(X)⊗K(S2)→ K(X×S2), where µ(a⊗b) = (π∗
1a)(π∗

2b).

Def.(3.14.5.7)[Setup for Proof of Periodicity Theorem].Given a line bundle E over X, we can
associate a projective bundle P (E) that P (E)x = P (Ex). Now denote P 0 the subspace of P (E)
consisting of all vectors of length≤ 1 and P∞ the subspace consisting of all vectors of length≥ 1
together with the infinity section. There are projections π0 : P0 → X and π∞ : P∞ → X, which are
homotopy equivalences.

Now by(3.14.2.8),

6 Adam Operators
7 Cobordism

Def.(3.14.7.1)[Bordism Groups]. If X is a topological space, define the bordism group Ωn(X) to
be the set of pairs (M,f) where M is a closed smooth manifold of dimension n and f : M → X is a
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continuous map, under the equivalence relation that (M0, f0) ∼ (M1, f1) iff there is an n+1 manifold
N and a map F : N → X that ∂F = f1

⨿
f2. This is a vector space over F2.

Let Ωn = Ωn(pt), then for any m,n, there is a map Ωm×Ωn → Ωm+n : (M,N) 7→M ×N , so Ω∗
is a graded commutative ring.

Prop.(3.14.7.2)[Thom]. If N ∈ Manin+1
sm,cpct,∂ and ∂(N) = M , then all the Stiefel-Whitney numbers

of M vanish.
Conversely, if M ∈ Maninsm,cpct with all Stiefel-Whitney numbers 0, then it is the boundary of a

compact smooth manifold with boundary.

Proof: Let [N ] ∈ Hn+1(N,M) be the fundamental homology class of the pair, then ∂([N ]) = [M ].
Let τN ,M be the tangent bundle of N,M , then τN |M = τM ⊕ R1, because there is an outward
pointing normal bundle. Thus the Stiefel-Whitney classes of M comes from restriction of that of N .
Now the composite Hn(N)→ Hn(M) δ−→ Hn(N,M) is 0, so δ(wi1,...,ik(M)) = 0. thus

⟨wi1,...,ik(M), [M ]⟩ = ⟨δ(wi1,...,ik(M)), [N ]⟩ = 0.

Conversely, Cf.[Stong, Notes on Cobordism Theory].? □

Prop.(3.14.7.3).For m ∈ Z+, RP2m−1 is a boundary and RP2m is not a boundary.

Proof: Consider the fiber bundle S1 → RP2n−1 → CPn, its cone bundle is D1 → Mn → CP2n−1,
which has boundary RP2n−1.

RP2m is not a boundary by(3.14.7.2) and the fact its top Stiefel-Whitney class is non-zero. □

Thm.(3.14.7.4)[Thom].
Ω∗ = F2[t2, t4, t5, . . . , ]

is a graded polynomial algebra where there’s one generator tn ∈ Ωn for each n ̸= 2k − 1.
Also Ω∗(X) = H∗(X,Ω∗) ∼= H∗(X,F2)⊗F2 Ω∗.

Proof:
□

Cor.(3.14.7.5).A map f : X → Y induces a map f∗ : Ωn(X) → Ωn(Y ). This map only depends on
the homotopy type of f .

Oriented Cobordism

Def.(3.14.7.6)[Oriented Bordism Groups].WhenX is an orientable manifold, define the oriented
bordism group Ωso

n (X) to be the set of pairs (M,f) where M is an oriented smooth manifold of
dimension n and f : M → X is a continuous map preserving orientation, under the equivalence
relation that (M0, f0) ∼ (M1, f1) iff there is an n + 1 manifold N and a map F : N → X that
∂F = (−f1)

⨿
f2.

Let Ωso
n = Ωso

n (pt), then for any m,n, there is a map Ωso
m ×Ωso

n → Ωso
m+n : (M,N) 7→M ×N , and

M ×N ∼= (−1)mnN ×M , so Ωso
∗ is a graded anti-commutative ring.

Prop.(3.14.7.7).The relation of (oriented) bordism is truly an equivalence class. It suffices to show
transitivity, and this is because we can piece together two manifold with boundaries by collar neigh-
borhood theorem(11.1.1.2).
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Prop.(3.14.7.8). If N ∈ Manin+1
sm,cpct,orntd,∂ and ∂(N) = M , then all the Pontryagin numbers of M

vanish.

Proof: Let [N ] ∈ Hn+1(N,M) be the fundamental homology class of the pair, then ∂([N ]) = [M ].
Let τN ,M be the tangent bundle of N,M , then τN |M = τM ⊕ R1, because there is an outward
pointing normal bundle. Thus the Stiefel-Whitney classes of M comes from restriction of that of N .
Now the composite Hn(N)→ Hn(M) δ−→ Hn(N,M) is 0, so δ(wi1,...,ik(M)) = 0. thus

⟨wi1,...,ik(M), [M ]⟩ = ⟨δ(wi1,...,ik(M)), [N ]⟩ = 0.

□

Prop.(3.14.7.9)[Mayer-Vitories].Let X = U ∪ V where U, V are open subsets of X, ?
Thm.(3.14.7.10)[Thom].

Ωso
∗ ⊗Z Q ∼= Q[u1, . . . , un, . . .],

where ui ∈ Ωso
4i and is represented by [CP2i]. Moreover,

• Ωso
0 = Z.

• Ωso
1 = 0.

• Ωso
2 = 0.

• Ωso
3 = 0.

• Ωso
4 = Z, generated by CP2.

• Ωso
5 = Z/2Z, generated by Y 5.

• Ωso
6 = 0.

• Ωso
7 = 0.

• Ωso
8 = Z⊕Z, generated by CP4 and CP2 × CP2.

• Ωso
9 = Z/2Z⊕Z/2Z, generated by Y 9 and Y 5 × CP2.

• Ωso
10 = Z/2Z, generated by Y 5 × Y 5.

• Ωso
11 = Z/2Z, generated by Y 11.

• Ωso
n ̸= 0 for n ≥ 8.

Proof: Cf.[Milnor, P203].
By (3.14.7.8), for any partition I of k, there is a map Ω4k → Z : M 7→ pI(M). These maps

can be used to show that the products {CP2i1 × CP2ir |
∑
ir = k} are linearly independent in Ω4k

by(3.14.4.23). □

Prop.(3.14.7.11) [Index and Oriented Cobordism]. If k ∈ N,W ∈ Mani4k+1
cntd,orntd,cpct, then the

index I(M) = 0.

Proof: This follows from the fact the image of H2k(W ) i∗−→ H2k(M) is a half-dimensional sub-
space(3.13.3.18) that the intersection product is trivial:

⟨i∗α ∪ i∗β, ∂[W ]⟩ = ⟨α ∪ β, i∗∂[W ]⟩ = 0.

Then it is by linear algebra? that the signature of this pairing is 0. □
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Def.(3.14.7.12)[Stably Framed Manifold].A stably framed manifold is a smooth manifold M
of dimension n together with an isomorphism TM ⊕RN ∼= RN+n for some N .

Def.(3.14.7.13)[Framed Bordism Groups].Because T (∂N)⊕R ∼= TN |∂N , we have the notion of
a stably framed bordism Ωfr

n (X). Denote Ωfr
n = Ωfr

n (pt).

Prop.(3.14.7.14).S3 ∼= SU(2) is naturally framed, and this generates Ωfr
3
∼= Z/24.

Thm.(3.14.7.15)[Pontryagin].Ωfr
n
∼= πn+N (SN ).

8 Applications
Prop.(3.14.8.1).A simply connected manifold is orientable. (Use the orientable double cover).
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3.15 Stable Homotopy Theory
Main references are [Higher Algebra, Lurie].
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4 | Commutative Algebras

4.1 Commutative Algebra I
Main References are [A-M69], [Mat80], [Sta]Chap10, [Commutative Algebra with a View Towards

Algebraic Geometry] and [Wei94]Chap4.
Commutative rings are studied in this subsection.

Notation(4.1.0.1).
• All rings and algebras in this section is assumed to be commutative.

1 Basics
Def.(4.1.1.1)[Ideals].For R ∈ CRing, an ideal of R is a subgroup I ≤ R that is a left ideal. The
category of ideals of R is denoted by Ideal(R).

Prop.(4.1.1.2)[Quotients].For R ∈ CRing, I ∈ Ideal(R), there is a quotient ring R/I ∈ CRingR
with the universal propertie: any f : R→ R′ ∈ CRing that vanishes on I factors through R/I.

Proof: □

Prop.(4.1.1.3).The quotient map induces an order-preserving bijection of ideals of A/I and ideals of
A containing I.

Prop.(4.1.1.4)[Prime Avoidance].Let R ∈ CRing, I ∈ Ideal(R), and pi are f.m. prime ideals that
I ⊈ pi for any i, then I ⊈ ∪pi.

Proof: Use induction on the number of primes n. For n = 1 this is trivial. For n > 2, let
zi ∈ I\∪j ̸=iPj . Now consider z = z1 ·zn−1 +zn. If z ∈ Pi for some i < n, then zn ∈ Pi, contradiction.
If z ∈ Pn, then some zi, i < n is in Pn because Pn is a prime ideal, contradiction. □

Prop.(4.1.1.5) [Existence of a Maximal Ideal].Any non-zero commutative ring has a maximal
ideal.

Proof: Use Zorn’s lemma, the union of a chain of ideals is an ideal. □

Cor.(4.1.1.6).Any non-trivial ideal is contained in a maximal ideal.

Proof: If I ⊂ A is a non-trivial ideal, then A/I is a non-zero ring, thus A/I has a maximal ideal,
which corresponds to a maximal ideal of A containing I(4.1.1.3). □

Prop.(4.1.1.7). If r(I) and r(J) are coprime, then I, J are coprime.

Proof: As a+ b = 1, and am ∈ I, bn ∈ J , 1 = (a+ b)m+n ∈ I + J . □
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Def.(4.1.1.8)[Local Ring].A local ring is a commutative ring R that has only one maximal ideal.
Equivalently, there is a prime ideal m that any element in R\m is invertible.

Proof: If m is the maximal ideal, then for any x ∈ R, if (x) is not all of R, then x is contained in
a maximal ideal by(4.1.1.5), which can only be m. Conversely, if there is a prime ideal m that any
element in R\m is invertible, then clearly every non-trivial ideal is included in m. □

Prop.(4.1.1.9).Any quotient of a local ring is also a local ring.

Def.(4.1.1.10)[Local Ring Map].A map between two local rings are called local ring map iff it
maps non-invertible elements to non-invertible elements, equivalently, f−1(mS) = mR.

Def.(4.1.1.11)[Ideal of Definition]. In a Noetherian local ring (R,m), an ideal I ⊂ R is called an
ideal of definition if

√
I = m.

Prop.(4.1.1.12)[Ideals of Products and Filters]. If Fi, i ∈ I is a collection of fields, then the prime
ideals in the ring ∏Fi is in bijection with the ultrafilters on I, where the ultrafilter F corresponds
to the ideal pF = {(ai)|the set of coordinates that ai = 0 is in F}. And in the same way, ideals of∏
Fi corresponds to the filters on I.

Proof: Clearly pF is an ideal, and if F is an ultrafilter, let Z(a) be the coordinates that a is zero
on, and notice Z(ab) = Z(a)∪Z(b), then ab ∈ p iff a ∈ p or b ∈ p, by(1.2.10.7), so it is a prime ideal.

Conversely, notice that any two a, b with Z(a) = Z(b) differs by a unit, so Fp = {Z(a)|z ∈ p}
is easily checked to be a filter. And if p is a prime, then for any A ⊂ I, let a, b ∈ ∏Fi be that
Z(a) = A,Z(b) = I −A, then ab = 0 ∈ p, so a ∈ p or b ∈ p. □

Def.(4.1.1.13)[Torsion-Free Modules].Let S ⊂ A be a set in a commutative ring, then an A-module
M is called S-torsion-free if for any {x ∈M |Sx = 0} = 0.

Prop.(4.1.1.14)[Maximal Torsion-Free Quotient].Let S ⊂ A be a set, the functor from the cate-
gory of torsion-free A-modules to the category of A-modules has a left adjoint, called the maximal
S-torsion-free quotient.
Proof: A quotient of M is determined by the kernel. It suffices to prove if M/N1,M/N2 are both
S-torsion-free, then M/N1 ∩N2 is also S-torsion-free: This is easy. □

Prop.(4.1.1.15).Let A be a ring and B a finite A-algebra. if A→ B is epimorphism in the category
of rings, then A→ B is surjective.

Proof: Notice that hB → hA is injective iff hB ×hA hB ∼= hB, or equivalently, B ×A B → B is an
isomorphism. Now we can localize A at maximal ideals, thus we can assume A is local, with maximal
ideal m and residue field k. And then use Nakayama lemma, it suffices to show that k → B/m = C
is surjective. But C ×k C ∼= C, so dimk C = 1 or 0, which means k → C is surjective. □

Def.(4.1.1.16) [Locally Nilpotent].A locally nilpotent ideal is an ideal consisting of nilpotent
elements.

Prop.(4.1.1.17). If I is a locally nilpotent ideal of A, then 1 + I → 1 + I : x 7→ xn is an isomorphism.

Proof: The converse is given by x 7→ (1 + x)1/n = 1 +
(1/n

1
)
x+

(1/n
2
)
x2 + . . .. □

Cor.(4.1.1.18). If I is a locally nilpotent ideal of A, then a unit in A is an n-th power iff it is an n-th
power in A/I.

Proof: If a =≡ bn mod I, then b is also a unit, and ab−n = cn for some n by(4.1.1.17), thus a is a
n-th power. □
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Tensor Product, Limits and Colimits

Remark(4.1.1.19)[Tensor Product].Tensor product is defined in(2.2.4.13). Notice that in case the
rings are all commutative, there are no need to distinguish between left and right modules.

Def.(4.1.1.20)[Tensor Algebras].For a module M over a commutative ring R, we define the
• tensor algebra operator from ModR to graded algebras over R that is left adjoint to the

forgetful functor. It can be defined as follows:
T (M) =

⊕
n≥0
⊗nM

as the module, and the algebra structure determined by the canonical map ⊗mM × ⊗nM →
⊗m+nM .

• exterior product ∧kM as the module with the universal property that HomB(∧kM,N) is the
set of all morphisms Mn → N that vanishes on all elements that have two equal coordinates.

• exterior algebra operator ∧ fromModR to the category of strict graded commutative algebras
over R that is left adjoint to the forgetful functor. It can be defined as follows: ∧(M) =
T (M)/(x⊗ x), where x ∈M , or equivalently ∧(M) =

⊕
k≥0
∧k(M).

• symmetric algebra operator S from ModR to CRingR that is left adjoint to the forgetful
functor. It can be defined as follows: ∧(M) = T (M)/(x⊗ y − y ⊗ x) where x, y ∈M .

Cor.(4.1.1.21).The construction of T (M),∧M and Sym(M) commutes with all colimits, because
they are all left adjoints.

Prop.(4.1.1.22)[Tensor Product and Quotient].Let R be a commutative ring and I, J be ideals
of R, then R/I ⊗R R/J ∼= R/(I + J).
Proof: This follows from the universal property of quotient and tensoring. □

Prop.(4.1.1.23).There is a pullback square

R/I ∩ J R/I

R/J R/(I + J)

Proof: The pullback is just the elements in R/I×R/J that mapsto the same element in R/(I+J).
If (x+ I, y + J) maps to the same element z + I + J , then x = y + i+ j, so x− i = y + j, and the
pullback lies in the image of ∆ : R 7→ R/I ×R/J . Now the kernel is just I ∩ J . □

Prop.(4.1.1.24)[Filtered Colimits of Modules are Exact].Let I be an index category that each
connected components of I is filtered, then taking colimits over I is exact in the category ModR of
modules over a ring R.

Proof: It is clearly right exact. To check left exactness, Cf.[Sta]04B0.? □
Cor.(4.1.1.25)[Filtered Colimits of Abelian Groups are Exact].Filtered colimits are exact in
Ab.

Prop.(4.1.1.26).Let k be a field and A,B be k-algebras and let b ⊂ A⊗kB be an ideal. Then among
the ideals a ⊂ A that b ⊂ a⊗k B, there exists a smallest one.
Proof: Choose a k-basis of B, then the smallest ideal a is just the ideal generated by all the
A-coefficients of elements of b. □
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Localization

Def.(4.1.1.27)[Localization as Filtered Colimit].Let A be a commutative ring and S be a multi-
plicatively closed subset of A containing 1 and not containing 0, the localization S−1A is defined to
be a ring over A that any ring map A→ B that maps elements of S to units factors through S−1A.

S−1A can be constructed as
lim−→
s∈S

A

where the ordering is defined to be s < t if t = sr for some r ∈ S, and if t = sr, there is a map from
As to At defined by multiplying by r. This is easily seen to be a filtered colimit. There is easily seen
to be the localization.

Prop.(4.1.1.28)[Localization is exact].S−1 is an exact functor from ModR to ModR. Because it
is a filtered colimit(3.7.3.28)(4.1.1.24).

Cor.(4.1.1.29). (R/I)P̄ ∼= RP /IRP , in particular, k(R/P ) ∼= RP /PRP .

Def.(4.1.1.30) [Total Ring of Fractions].For any ring R, the set of non-zerodivisors in R is a
multiplicatively closed set S, and the localization Frac(R) = S−1R is called the total ring of
fractions of R.

Prop.(4.1.1.31) [Localization Along an Ideal].Let I be an ideal of A, then the localization
of A along I is the ring Ã that Spec Ã is the localization of SpecA along V (I) as defined
in(3.11.4.20)(because SpecA is spectral, by(3.11.4.13)).

Equivalently, it can be defined as Ã = S−1A, where S = A\(∪p∈V (I)p). (It can be checked that
S is multiplicatively closed).

Notice then I ⊂ rad Ã.
For f ∈ A, we call the localization of A along f the f-localization of A. In fact, it is the

universal A-algebra that f ∈ rad Ã.

Prop.(4.1.1.32).Let R be a commutative ring, f1, . . . , fn ∈ R, andM an R-module, thenM → ⊕iMfi

is injective iff M → ⊕iM : m 7→ (mf1, . . . ,mfn) is injective.

Proof: Cf.[Sta]0565. □

Prop.(4.1.1.33).For any ring A, A→ ∏
Am is injective, where m are maximal ideals of A.

For a domain A, A =
∩
Am inside the fraction field of A, where m are maximal ideals of A.

Proof: if g ∈ Frac(A) is in the RHS, then I = {x ∈ A|xg ∈ A} is an ideal of A not contained in
any maximal ideal, thus I = 1(4.1.1.6), and thus g ∈ A. □

Lemma(4.1.1.34).Let R be a ring and p be a prime, then there exists an f ∈ R, f /∈ p that Rf ⊂ Rp,
if any of the following holds:

• R is a domain.
• R is Noetherian.
• R is reduced and has f.m. irreducible components.

Proof: Cf.[Sta]0BX1. □

Def.(4.1.1.35)[Identifying Local Rings].A ring map A→ B is said to identify local rings if for
every prime q ⊂ B, the map Aφ−1(q) → Bq is an isomorphism.
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Prop.(4.1.1.36).The property of identifying local rings is stable under base change and composition.
(This is immediate from(4.1.1.37)).

Prop.(4.1.1.37) [Tensor Product and Localization].For a ring map R → S, let q ⊂ SpecS,
p = q ∩R, then (M ⊗R S)q = Mp ⊗Rp Sq for any R-module M .

Proof: (M ⊗R S)q = M ⊗R Sq = M ⊗R Rp ⊗Rp Sq = Mp ⊗Rp Sq. □

Noetherian

Def.(4.1.1.38)[Noetherian Module].Let R be a commutative ring and M an R-module, then M
is called Noetherian iff every ascending chain of submodules stablizes.

R is called a Noetherian ring iff R is Noetherian over itself.

Prop.(4.1.1.39).Let R ∈ CRing and 0→M1 →M →M2 be an exact sequence in ModR, then M is
Noetherian iff M1,M2 are both Noetherian.

Prop.(4.1.1.40)[Hilbert Basis Theorem, Hilbert1888].Let A be a Noetherian ring, then quotient
ring, f.g. module, f.g. algebra, localization and power series of A are Noetherian. Hence graded
algebra of a Noetherian ring A by an ideal I is Noetherian. Products of Noetherian rings are
Noetherian.

Proof: Only need to prove A[X] and A[[X]], localization and others are quotients of these. For an
ascending chain of ideal Ij of A[X], we consider the coefficients ideal Ii,j of Xi of Ij , then there are
only f.m. different Ii,js, so we have Ij stabilize as well.

Similarly for A[[X]], we prove any ideal I is f.g. Consider the lowest terms coefficient ideal at
degree i, then it is ascending and stabilize, then a set of generators as a whole generate I. □

Remark(4.1.1.41).The subring of a Noetherian ring is NOT necessarily Noetherian, by the example
of k[X1, . . . , Xn, . . .] ⊂ k(X1, . . . , Xn, . . .).

Prop.(4.1.1.42).When A is Noetherian and is quipped with I-adic topology, then I is f.g., and there
is a surjective ring map A[[X]] → A∧, mapping to the generators of I, hence the completion is
Noetherian. (It is surjective can be seen by the Cauchy sequence construction of completion).

Prop.(4.1.1.43). If R→ R′ is ring map of f.t., then if S ∈ CRing /R and S is Noetherian, then S⊗RR′

is Noetherian, because S ×R R′ is of f.t. over S, and use(4.1.1.40).

Cor.(4.1.1.44).For k ∈ Field, S ∈ CRing /k, then for any f.g. field extension K/k, S⊗kK is Noethe-
rian. (Because there is a f.g. algebra B over k that K is the localization of B, and use(4.1.1.40)).

Prop.(4.1.1.45). If R is Noetherian and M is a f.g. R-module, then there is a filtration {Mi} of M
that the quotients are all isomorphic to Rpi where pi are primes.

Proof: M is generated by xi, so (x1) ∼= R/Ii, and so we modulo xi, then the result follows by
induction. So we may assume M = R/I. We use Noetherian condition to choose a maximal element
J that is a counterexample, then J is not a prime, so there are a, b /∈ J that ab ∈ J . Then we have a
filtration 0 ⊂ aR/(J ∩aR) ⊂ R/J . Notice R/(J + bR)→ aR/(J ∩aR)→ 0, and the second quotient
is R/(J + aR), so they all can be factorized. □

Prop.(4.1.1.46).A Noetherian ring has only f.m. minimal prime ideals.
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Proof: This is a consequence of(5.4.1.20)(5.4.1.21) and(3.11.3.4). □

Prop.(4.1.1.47)[Cohen]. If R ∈ CRing and every prime ideal is f.g., then R is Noetherian.

Proof: Suppose P is not Noetherian. Firstly the set of non-finitely generated ideals has the chain
property: if Ii is a chain of non-f.g. ideals of R, then I = ∪i∈ΦIi is non-f.g., otherwise there are
(fi) = I, but {fi} ∈ Ih for some h, thus Ih is f.g.. Then we use the Zorn’s lemma to find a maximal
non-f.g. ideal I. We show that I is a prime ideal:

I ̸= R because R = (1). So if a, b ∈ R\I that ab ∈ I, then I + (a) and I + (b) is f.g. by pi + ria,
by maximality, and let K = (P : a), then I ⊂ I + (b) ⊂ K, thus K is f.g., so does aK.

Now I claim I = (p1) + . . . + (pn) + aK: one direction is clear, and if r ∈ I ⊂ I + (a), then
r =

∑
ci(pi + ria), thus (

∑
ciri)a = r −

∑
cipi ∈ I, thus

∑
ciri ∈ K, thus r =

∑
cipi + (

∑
ciri)a ∈

(p1) + . . .+ (pn) + aK.
So now I is f.g., contradiction, which shows I is a prime, but this contradicts the hypothesis. □

Prop.(4.1.1.48)[Modules over Noetherian Ring are Noetherian].Let R be a Noetherian ring,
then any submodule of a finite module M over R is finite. Thus any module over R is a Noetherian
module(4.1.1.38). In particular, any module over R is of f.p.

Proof: it suffices to prove the first assertion: we use induction on the minimal number of generators
of M : if it is generated by 1 element, then M ∼= R/I for some ideal I, thus N ⊂ M is isomorphic
to some J/I, so it is finite because J is finite. If the minimal number of generators of M is greater
than 1, then there exists an exact sequence

0→M ′ →M →M ′′ → 0

where M ′,M ′′ has fewer number of generators. Now there is also an exact sequence

0→ N ∩M ′ → N → N → 0,

and the minimal number of generators of N is smaller than the sum of that of M ′ and M ′′, thus it
is also finite. □

Prop.(4.1.1.49)[Artin-Tate].Let R be a Noetherian ring and S a f.g. R-algebra. If T ⊂ S is an
R-subalgebra that S is a finite module over T , then T is f.g. over R.

Proof: Cf.[Sta]00IS. □

Prop.(4.1.1.50)[Krull-Akizuki]. If R is a Noetherian domain of dimension 1 with fraction field K,
L/K a finite extension of fields, then for any ring A s.t. R ⊂ A ⊂ L, A is Noetherian.

Proof: Cf.[Sta]00PG. □

2 Lengths
Def.(4.1.2.1) [Lengths].The length of a R-module M is the supremum of lengths of chains of
submodules of M , denoted by lengthR(M).

Prop.(4.1.2.2).Length is an additive function on ModR.

Proof: Cf.[Sta]00IV. □
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Prop.(4.1.2.3). If lengthR(M) <∞, then any maximal chain of submodules has the same length.

Proof: Let l(M) be the minimal length of a maximal chain, then if M ⊊ N , then firstly l(M) <
l(N), because a maximal chain ofM restricts to a maximal chain of N , and if the length is the same,
then each term is in M , so N ⊂ N , contradiction. Now any chain has length l(M), because if there
is a chain Mi, then l(M0) < l(M1) < . . . < l(M). □

Prop.(4.1.2.4).Let R ∈ CRing and S a multiplicative set of R, then lengthR(M) ≥
lengthS−1R(S−1M).

Proof: This is because any S−1R-submodule of S−1M is of the form S−1N where N is a R-
submodule of M . □

Prop.(4.1.2.5). If R is a ring with a maximal ideal m, M is an R-module that mM = 0, then
lengthR(M) = dimk(m)(M).

Prop.(4.1.2.6)[Length over a Local Ring].Let (R,m) be a local ring, and M ∈ModR is of finite
length, then mnM = 0 for some n ∈ N.

Conversely, if m is f.g. and M is a finite R-module, and mnM = 0 for some n ∈ N, then
lengthR(M) <∞.

Proof: M is clearly a finite module over R. Take n = lengthR(M). If f1, . . . , fn ∈ m and x ∈ M
s.t. f1 . . . fnx ̸= 0, then by Nakayama the submodules

0 ⊂ (f1 . . . fn)x ⊂ (f2 . . . fn)x ⊂ (fn)x ⊂M

are all different, so lengthR(M) ≥ n, contradiction.
For the converse, use additivity on the filtration 0 = mmM ⊂ mn−1M ⊂ . . . ⊂ M , where each

quotient is finite over R and annihilated by m, so we conclude by(4.1.2.5). □

Prop.(4.1.2.7). If (A,m) is a local ring and B is a ring over A with f.m. maximal ideals mi s.t. each
mi is over m and k(mi)/k(m) is finite, then there for any M ∈ModB with lengthBM <∞,

lengthAM =
∑
i

[k(mi) : k(m)] lengthBmi
Mmi .

Prop.(4.1.2.8).Let A→ B be a flat local maps of local rings, then for any M ∈ModA,

lengthA(M) lengthB(B/mAB) = lengthB(M ⊗A B).

Proof: Cf.[Sta]02M1.? □

Cor.(4.1.2.9).Let A→ B → C be local maps of local rings, C/B is flat, and mA the maximal ring of
A, then

lengthB(B/mAB) lengthC(mBC) = lengthC(C/mBC).

Prop.(4.1.2.10)[Order of Vanishing]. If R is a semi-local Noetherian domain of dimension 1 and
a, b are not zero-divisors, then f(a) = length(R/(a)) satisfies f(a) + f(b) = f(ab) <∞.

So this R ⊂ K and has fraction field K, then f extends to an additive function on K∗, denoted
by ordR(f).

Proof: It is finite by[Sta]00PF. It is additive because length is additive(4.1.2.1) and 0→ R/(a)→
R(ab)→ R(b)→ 0. □
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3 Artinian Ring
Def.(4.1.3.1)[Artinian Rings].A ring A is called Artinian if any descending chain of ideals of A
stablizes.

For example, a f.g. k-algebra that is a finite k-module is an Artinian ring.

Lemma(4.1.3.2).Let A be an Artinian ring, then A has f.m. maximal ideals.

Proof: Consider m1 ⊃ m1 ∩m2 . . . ⊃, then it is a descending chain, by Chinese remainder theorem.
So it has f.m. maximal ideals. □

Lemma(4.1.3.3). If A is an Artinian ring, then the Jacobson radical is nilpotent.

Proof: Consider the Jacobson radical I, In = In+1 for some n, let J = Ann(In), it suffices to show
J = A. If not, choose a minimal J ′ that contains J but not J(exists by Artinian property), then
J ′ = J +Ax, and IJ ′ ⊂ J by Nakayama, so xIn+1 ⊂ JIn = 0, so x ∈ J , contradiction. □

Prop.(4.1.3.4)[Characterization of Artinian Rings].The following are equivalent:
1. A is Artinian.
2. A is Noetherian of dimension 0.
3. lengthAA <∞.
4. A is a finite product of local Artinian rings.
5. A is Noetherian, Jacobson(4.2.6.4), and has f.m. maximal ideals.

Proof: 1 ⇐⇒ 3: if lengthAA <∞, then A is clearly Artinian. Conversely, if A is Artinian, then
by(4.1.3.2)(4.1.3.3)(4.2.6.7) A a finite product of its localization of maximal ideals, so we may assume
A is local with maximal ideal m. Then mn = 0 for some n by(4.1.3.3), and mi/mi+1 has length the
same as their dimension as a A/m vector space, by(4.1.2.5), which is finite because A is Artinian, so
lengthAA <∞.

1 + 3 → 5: A has f.m. maximal ideals by(4.1.3.2). It is Jacobson by(4.1.3.3). lengthAA < ∞
clearly implies A is Noetherian.

5→ 2 : By(4.2.6.7).
2→ 5 : all prime ideals are maximal, so SpecA is discrete, so A has f.m. maximal ideals, and it

is clearly Jacobson.
5 → 3 : By(4.2.6.7), R is a product of its local rings, and the local rings are all Noetherian and

Jacobson(4.2.6.6), so by Nakayama, they have finite lengths. So also R has finite length.
5 → 4 : By lemma(4.2.6.7) below, A is a product of its localization, and its localizations also

satisfies 5, and by 5→ 3→ 1, they both have descending conditions.
4 → 5 : An Artinian ring is Noetherian and Jacobson by 1 + 3 → 5, then so does their product.

□

Cor.(4.1.3.5)[Reduced Artinian Ring].A reduced local Artinian ring is a field. In particular, A
reduced Artinian ring is a product of fields.

Proof: An Artinian local ring A is Jacobson(4.1.3.4) so the maximal ideal m = 0 as A is reduced.
□

Prop.(4.1.3.6).For an Artinian local ring A, the following are equivalent:
1. A is a PID.
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2. the maximal ideal m is principal.
3. dimk(m/m2) ≤ 1.

Proof: It suffices to prove 3 → 1 : If m = m2, then m = 0 by Nakayama, so A is a field. If
dimk(m/m2) = 1, then m is principle by Nakayama. And m is nilpotent by(4.1.3.4), so for any ideal
a there is a minimal n that a ⊂ mn. Now choose y ∈ a−mn+1, then y = uxr, and u /∈ (x), so u is a
unit, thus xr ∈ a, meaning a = mn hence principal. □

4 Local Properties
Def.(4.1.4.1)[Local properties].A property P of rings or modules over a ring is called local prop-
erty iff X has P iff Xfi all has P for a covering (f1, . . . , fn) = 1.

A property of morphisms of rings is called local on the target iff R → S has P iff Rfi → Sfi
has P for a covering (f1, . . . , fn) = 1 in R.

Prop.(4.1.4.2)[Stalkwise Properties].For a commutative ring R, a property P is called stalkwise
if A satisfies P iff all Am satisfies P where m are maximal ideals, and iff all Ap satisfies P where p are
prime ideals of A.

1. Trivial is stalkwise for modules over R. Hence so does injectivity and surjectivity because
localization is exact.

2. Torsion-free is stalkwise for modules over R if R is integral.
3. Flatness for modules over R.
4. Flatness for rings over R on the source.
5. Formal unramifiedness for rings over R, both on the target and source.
6. (universally)catenary is stalkwise.
7. reducedness is stalkwise.
8. Integral+integrally closed is stalkwise.
9. normal is stalkwise.
10. regular is stalkwise.

Proof:
1. It suffice to prove an element is trivial on every localization then it is 0. For this, consider the

annihilator Ann(x), it is not contained in any maximal ideal so it contains 1.
2. if xf = 0 but f ̸= 0, then x ∈ Ann(f) ̸= (1), so Ann(f) ⊂ m maximal, so f is torsion in Mm

over Rm. Conversely, if f is torsion in Rm, then it is clearly torsion over R.
3. We use the definition(4.4.1.2). Notice (IM)p = IpMq and every ideal of Rp is of the form Ip.

Then use the fact injective is stalkwise(4.1.4.2).
4. We use the definition(4.4.1.2). Notice (I⊗RS)q = Ip⊗Rp Sq for all primes q of S and p = q∩R.

And every ideal of Rp is of the form Ip. Then use the fact injective is stalkwise(4.1.4.2)
5. Because formally unramified is equivalent to ΩR/S = 0(4.4.6.1), so we get the result by functorial

properties of ΩS/R(4.4.3.6) and triviality is stalkwise(4.1.4.2).
6. For any two prime ideals p ⊂ q, we can choose a maximal ideal containing them.
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7. use(4.1.1.33).

8. If A is integrally closed, then clearly any localization of A is integrally closed. Conversely, if
r ∈ K(A) is integral over A but r /∈ A, let I = {s ∈ A|rs ∈ A}, then I ̸= A, so I ⊂ m for some
maximal ideal m, then r /∈ Am, so Am is not integrally closed, contradiction.

9. By definition.

10. By definition.
□

Remark(4.1.4.3).Our main technique of proving local properties are using affine communication
theorem(5.4.1.2).

Prop.(4.1.4.4)[Local Properties].For a fixed ring R,
1. Every property that is stalkwise is a local property.(4.1.4.2) The properties listed below should

be not stalkwise.

2. Every property that satisfies faithfully flat descent is a local property. The properties listed
below should not satisfy faithfully flat descent.

3. Noetherian.

4. F.t. ring maps on the source.

5. F.p. ring maps on the source.

6. N-1 and N-2 and universally Japanese for rings.

7. Nagata for rings.

Proof:
1.

2.

3. If A is Noetherian, then Afi are Noetherian by(4.1.1.40). Conversely, if Afi are all Noetherian
and I1 ⊂ I2 ⊂ . . . is an ascending chain of ideals of A, consider A→ ∏

Afi faithfully flat, thus
I1⊗A (

∏
Afi) ⊂ I2⊗A (

∏
Afi) ⊂ . . . is an ascending chain of ∏Afi . Now

∏
Afi are Noetherian

by(4.1.1.40), so this chain stabilizes. But this ring map is faithfully flat, so the original chain
must also stablizes.

4. Let (g1, . . . , gn) = 1, choose ∑higi = 1, and let xij = yij/g
nij
i generates Sgi . Now let S′ be the

sub-R-algebra of S generated by yij , gi, hj . Then (S′)fi → Sfi is surjective for any i, so S′ → S
is also surjective, by(4.1.4.2). Then S′ = S, and S is f.g. over R.

5. Cf.[Sta]00EP.

6. If A is N-1, then Afi are N-1 because taking integral closure commutes with localization. The
same for N-2. Conversely, if all Afi are N-1 or N-2, so is A because finiteness is local(4.1.4.4).
The universal Japanese case follows from the N-2 case.

7. This follows from the localness of Noetherian and N-2(4.1.4.4).
□
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5 Miscellaneous

Fitting Ideals

Def.(4.1.5.1)[Fitting Ideals].Let R ∈ CRing andM be a finite R-module, then for any presentation

⊕j∈JR→ R⊕n →M → 0

given by a n× J matrix A, the ideal generated by the (n− k)× (n− k) matrices of A is independent
of the presentation chosen, called the k-th Fitting ideal of A, denoted by Fitk(M).

6 Rings and Categories

Quotient by Equivalence Relations

Prop.(4.1.6.1) [Quotients by Equivalence Relations].Let u0, u1 : A0 → A1 be an equivalence
in the dual category of CRingR0(3.1.1.23). If u0 is locally free of constant rank r, then a quotient
u : A→ A0 exists, and u is locally free of constant rank r.

Proof: Cf.[Mil17b]P592. □

Morita Equivalence

Basic References are [Morita Equivalence] and [Fuller Rings and Categories of Modules].

Def.(4.1.6.2).Two ring R,S are called Morita equivalent if the category of mod-R is equivalent to
the category of mod-S.

Prop.(4.1.6.3).For an Abelian category A satisfying AB3 (i.e arbitrary sum exists), An object P of
A is a progenerator if the functor h′ : X 7→ HomA(P,X) is exact and and strict: h′(X) = 0 implies
X = 0. Then h′ determines an equivalence from A to mod-R, where R = HomA(P, P ).

Similarly, if A is an Abelian Noetherian category and P is a progenerator, then R is Noetherian
and A is equivalent to the category of finitely generated R-categories.

Proof: Essentially surjective: construct using direct limit and cokernel.
Notice that h′(X) ∼= h′(X ′)→ X ∼= X ′ by strictness and A4 axiom. So let X = Coker(P⊕I , P⊕J),

Hom(h′(X), h′(Y )) = Hom(Coker(h′(P⊕J), h′(P⊕I)), h′(Y ))
= ker(Hom(h′(P⊕J), h′(Y ))→ Hom(h′(P⊕I), h′(Y )))
= ker(h′(Y ΠI)→ h′(Y ΠJ))
= Hom(X,Y )

□

Prop.(4.1.6.4). In the case when A is the category mod-R, P is a generator ⇐⇒ h′ : X 7→
HomR(P,X) is faithful ⇐⇒ every M is a quotient of direct sums of P . And a progenerator
is a f.g. projective generator.

Prop.(4.1.6.5).Let P be a (A,B)-bimodule, iff P is a progenerator as a right B module, then it is a
progenerator as a left A module.
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Prop.(4.1.6.6).Let P be a progenrator as a

Prop.(4.1.6.7)[Morita].The following are equivalent:
• categories A-mod and B-mod are equivalent.
• categories mod-A and mod-B are equivalent.
• There exist a finitely generated progenerator P of mod-A that B ∼= EndA P .

Proof: 2 → 3:A is a progenerator in mod-A, thus when A ∼ B, F : mod-A → mod-B, A ∼=
EndAA = EndB F (A), and F (A) is a left A module as well as a progenerator of B. Thus there is a
(A,B)-bimodule P that A ∼= EndB P , and a (B,A)-bimodule Q that B ∼= EndAQ. □

Prop.(4.1.6.8).There can be defined another Morita invariance that R ∼ S iff there are (R,S)-
bimodule P and (S,R)-bimodule Q that P ⊗S Q ∼= R as a (R,R)-bimodule and Q ⊗R P ∼= S as
a (S, S)-bimodule. This will immediately generate equivalence between R-mod and S-mod as well
as equivalence between mod-R and mod-S by tensoring. And P and Q are projective modules
respectively, because equivalence is a kind of adjoint.

Prop.(4.1.6.9).Let D be a division ring over k of finite degree and A = Mr(D). Let S = Dr with A
acting by left multiplication and D acting by right multiplication, then there S is a simple A-module,
and every A-module is a direct sum of copies of S. This means that S ⊗D − induces an equivalence
from ModD to ModA.

Prop.(4.1.6.10)[Properties Preserved under Morita Invariance].Cf.[Rings and Categories of
Modules P54].

7 Spectra
Lemma(4.1.7.1). In SpecA, a subset U is retrocompact iff it is quasi-compact iff it is a finite union of
standard opens D(fi). In particular, any constructible subset of SpecA is a finite union of morphisms
of the form D(fi) ∩ V (g1, . . . , gm).

Proof: Retrocompact is quasi-compact because SpecA is quasi-compact. A quasi-compact subset
is equivalent to a finite union of D(fi). Now for any quasi-compact subset V = ∪jD(gj), U ∩ V =
∪ijD(figj) is also quasi-compact, so ∪iD(fi) is retrocompact. □

Lemma(4.1.7.2).Let R be a ring, then
• the image of any standard open subsets of SpecR[X] is qc open in SpecR.
• for g, f ∈ R[X] with g monic, the image of D(f) ∩ V (g) is qc open in SpecR.

Proof: 1: For any prime p of R, the primes mapping to p has a minimal one, p[X], so p is in
the image of SpecR[X] → SpecR iff f ∈ p[X], which means the image is D(a0, a1, . . . , an), where
f = a0 + a1X + . . .+ anX

n.
2: R[X]/g is finite free over R, let P (T ) = T d+rd−1T

d−1+. . .+r0 be the characteristic polynomial
of f acting on R[X]/g by left multiplication, then p ∈ V (r0, . . . , rd−1) iff f acts nilpotently on
R[X]/g ⊗R k(p), which is equivalent to p being in the image of D(f) ∩ V (g)(by base change to k(p)
argument). □

Lemma(4.1.7.3) [Affine Chevalley].The Spec map of a f.p. ring map maps constructible sets to
constructible sets.
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Proof: Suppose S = R[X1, . . . , Xn](f1, . . . , fm), then it suffices to show for the case S =
R/(f1, . . . , fm) and S = R[X].

If S = R/(f1, . . . , fm) = R/I, it suffices to show the image ofD(g)∩V (h1, . . . , hm) is retrocompact
in SpecR: in fact its image is just D(g) ∩ V (h1, . . . , hm) ∩ V (I), where g, hi are any inverse images
in R.

For the second case, we first prove some localizing result: If S = Rf , then the compact open
subsets of SpecS are compact open subsets of SpecR, so SpecS → SpecR maps constructible sets
to constructible sets. Now for any c ∈ R, SpecR = SpecR/c

⨿
SpecRc, so to prove the proposition

for R, it suffices to prove for Rc and R/c.
Let D(f) ∩ V (g1, . . . , gn) ⊂ SpecR[X], where f, gi are polynomials, We can use induction on the

degree series deg(g1) ≤ deg(g2) ≤ . . . ≤ deg(gn). If the leading coefficient of g1 is invertible, then
we can use reduction to R/c and Rc to either reduces the degree of g1 or reduce to the case it is
invertible. If it is invertible, then we can use Euclidean division. Eventually, it can be reduced to
the case D(f) ∩ V (g) where g is monic, or D(f). This is proved in the above lemma(4.1.7.2). □

Lemma(4.1.7.4).For a Noetherian local ring (A,m), SpecA−m is affine iff dimA ≤ 1.

Proof: if dimA = 0, this is true, if dimA = 1, let f ∈ m not in any other minimal primes of A,
then SpecA−m = SpecAf .

Conversely, Cf.[[Sta]0BCR]. □

Idempotents

Prop.(4.1.7.5)[Clopen Subsets].The clopen subsets of SpecA corresponds to idempotents in A.

Proof: This is all equivalent to the fact that there exists e+ f = 1, ef = 0:
If A = U

⨿
V , then both U, V are closed hence qc, so SpecA = ∪V (fi)

⨿
∪V (gj), then figj is

nilpotent by(4.2.6.2). Denote I = (fi), J = (gj), then (IJ)N = 0 and I + J = A, there are 1 = x+ y,
x ∈ IN , y ∈ JN .

For uniqueness, if e1 ̸= e2, then 0 ̸= e1 − e2 = e1(e2 + f2) − e2(e1 + f1) = e1f2 − e2f1, so may
assume e1f2 ̸= 0, and it is not nilpotent, so there is a e1f2 ⊂ p, which is a contradiction. □

Cor.(4.1.7.6).A local ring has no non-trivial idempotents, and then an idempotent is defined by the
maximal ideals that it vanishes.

Cor.(4.1.7.7). If I is an ideal of R that I = I2, and I is f.g., then V (I) is open and closed in SpecR,
and V (I) = Re for some idempotent e.

Proof: By Nakayama, there is a a f = 1 − e with e ∈ I that fI = 0. So e − e2 = 0 and f2 = f .
V (I) = D(f) = D(e). □

Lemma(4.1.7.8). If I is a locally nilpotent ideal, then R→ R/I induces a bijection on idempotents.

Proof: Because R → R/I induces a homeomorphism on the spectra, and clopen subsets of the
spectrum corresponds to the idempotents(4.1.7.5). □

Lemma(4.1.7.9).Let R be a ring and T ⊂ SpecR is a set. Then the following are equivalent:
• T is closed and is a union of connected components of SpecR.
• T is an intersection of clopen subsets.
• T = V (I) where I is generated by idempotents.
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Proof: 1 and 2 are equivalent by(3.11.4.3), and 2→ 3→ 1 are easy. □

Prop.(4.1.7.10).Let R be a ring, then any connected component of SpecR is of the form V (I), where
I is an ideal generated by idempotents that any idempotent of R maps to either 0 or 1 in R/I.

Proof: By(3.11.4.2) and(3.11.4.13), a connected component of SpecR is an intersection of clopen
subsets, so it is of the form V (I) where I is generated by idempotents. The last assertion is equivalent
to V (I) being connected. □

Going-up and down

Def.(4.1.7.11)[Going-up and Going Down].Going-up and down for topological spaces is defined
in(3.11.3.7). A ring map R → S is said to satisfy the going-up property iff its Spec map does,
equivalently, for any prime ideal q ⊂ S and prime ideal p ⊂ q ∩ R, there exists a prime ideal q′ ⊂ q
that q′ ∩R = p.

It is said to satisfy the going-down property iff its Spec map does, equivalently, for any prime
ideal q ⊂ S and prime ideal q ∩R ⊂ p, there exists a prime ideal q ⊂ q′ that q′ ∩R = p.

Prop.(4.1.7.12).Going-up and Going-down are stable under composition, trivially.

Prop.(4.1.7.13)[Integral Map satisfies Going-Up]. Integral ring map satisfies going-up(4.2.1.5).
Flat ring map satisfies going-down(4.4.1.19).

Lemma(4.1.7.14). If the image of the Spec map of a ring map is closed under specialization, then
this image is closed.

Proof: Let it be R → S, let I be the kernel, then the image is contained in V (I), so we may
replace R be R/I, then R ⊂ S. Now we show the image contains all the minimal primes of R: for a
minimal prime p, Ap ⊂ Bp, thus Bp is not-empty, and thus has a maximal ideal, whose intersection
with Ap can only be p by hypothesis, thus p is in the image of Spec. Then the image is all of SpecR
by hypothesis, thus closed. □

Cor.(4.1.7.15)[Going-up and Spec Closed].Going-up is equivalent to Spec map closed.

Proof: If going-up holds, then Spec map is closed by(4.1.7.14). Conversely, a closed map satisfies
going-up, by(3.11.3.8). □

Prop.(4.1.7.16). If R→ S is a ring map that satisfies going-up, and P ⊂ S is a maximal ideal, then
P ∩R is also a maximal ideal.

Prop.(4.1.7.17)[Krull]. If A ⊂ B is an integral extension of integral domains, and A is normal, then
going-down holds.

Proof: Let L1,K be the fraction fields of B,A resp., and let L be the normal extension of K
contained in L1, C the integral closure of A in L. Let P ∈ SpecB and p = P ∩ A, p′ ⊂ p. Take a
prime ideal Q′ ∈ SpecC lying over p, and by going-up applied to A ⊂ C(4.1.7.13), there is a prime
ideal Q1 lying over p that Q′ ⊂ Q1. Take Q ∈ SpecC lying over P , then by(4.3.5.12) there is a
σ ∈ GL/K that σ(Q1) = Q. Set P ′ = σ(Q′) ∩ B, then P ′ ⊂ P is a prime of B lying over p′, so
going-down holds for A ⊂ B. □

Prop.(4.1.7.18)[Going-down and Spec Open]. If Spec map is open, then going-down holds.

Proof: □
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Minimal Primes and Irreducible Components

Prop.(4.1.7.19)[Minimal Primes Exists].Every nonzero ring contains a minimal prime ideal.

Proof: Firstly prime ideal exists, by(4.1.1.5), and we use Zorn’s lemma to find a minimal prime
ideal: it suffices to show the intersection of a chain of prime ideals is a prime ideal, this is not hard.
□

Lemma(4.1.7.20). If p is a minimal prime of R, then pRp is locally nilpotent by(4.2.6.1). In particular,
if R is reduced, then Rp is a field.

Prop.(4.1.7.21)[Zerodivisors in a Reduced Ring].Let R be a reduced ring, then
• R→

∏
p minimalRp is an embedding into a product of fields.

• ∪p minimalp is the set of zerodivisors of R.

Proof: 1: By(4.1.7.20), Rp are fields. In particular, the kernel of R→ Rp is p. Then the kernel of
the map R→ ∏

p minimalRp is ∩p minimalp = 0 by(4.2.6.1).
2: If xy = 0 and x ̸= 0, then x /∈ p for some minimal prime p by(4.2.6.1), thus y ∈ p. Conversely,

if y ∈ p for some minimal prime p, then y is mapped to 0 ∈ Rp, which means there are some x /∈ p
that xy = 0. □

Prop.(4.1.7.22). If R is a ring with f.m. minimal primes qi and ∪iqi is the set of zerodivisors of R,
then the ring of fractions of R(4.1.1.30) is equal to ∏iRqi .

Proof: Cf.[Sta]02LX. □

Prop.(4.1.7.23)[Irreducible Components of Spectrum].The irreducible closed subsets of SpecR
are exactly the sets of the form V (p) for some prime p ⊂ R. The irreducible components of SpecR
are exactly the sets of the form V (pi) for some minimal prime pi.

Prop.(4.1.7.24). If R be a ring and p a minimal prime of R. If W ⊂ SpecR is a quasi-compact open
subset of SpecR not containing p, then there exists some f ∈ R that p ⊂ D(f) and D(f) ∩W = ∅.

Proof: W is of the form ∪ri=1D(fi). As p /∈ D(fi), fi ∈ p for each i. Then(4.1.7.20) says fi are
nilpotent in Rp, so there is some g ∈ R that gfi are nilpotent in R for any i, which means g satisfies
the requirement. □

Prop.(4.1.7.25).For R ⊂ S, all the minimal primes of R are in the image of the Spec map of a
minimal prime of S.

Proof: Localize w.r.t. to the minimal prime p, then it is a local ring with only one prime. And
Sp is nonzero because localization is exact, so it has a maximal ideal q. Now we choose a minimal
prime of S contained in q, then it is also mapped to p. □

Universal Homeomorphism

Cf.[Sta]10.45 and [Sta]28.44.

Prop.(4.1.7.26). If φ : R→ S is a ring map and p is a prime number that satisfies:
• S is generated over R by elements x that there is n that xpn ∈ φ(R) and pnx ∈ φ(x).
• ker(φ) is locally nilpotent.
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then SpecS → SpecR is a homeomorphism, and any base change of φ satisfies the above conditions,
so it is a universal homeomorphism.

In particular, this applies to any base change of a field extension k′/k that is purely inseparable,
because it is f.f. hence injective.

Proof: Cf.[Sta]0BRA. □



4.2. COMMUTATIVE ALGEBRA II 413

4.2 Commutative Algebra II

Main references are [Sta].

1 Integral Extensions
Def.(4.2.1.1)[Totally Integrally Closed].For two rings A→ B, f ∈ B is called almost integral(or
totally integral when almost mathematics is performed:) ) over A if fN lies in a f.g. A-module of B.
It is clear that the elements of totally integral elements of B is a subring. And A is called totally
integrally closed in B iff any f ∈ B totally integral over A is in A.

Prop.(4.2.1.2).For a ring map φ : A→ B, an element x is integral over A iff x is contained in a finite
A-module in B. In particular, the elements of B that are integral over A is a ring containing φ(A).

Proof: If x is integral, then φ(A)[x] is finite. If φ(A)[x] is finite, then there is a set of generators
of polynomials in x. Then for m large, xm =

∑
aifi(x), so x is integral over A. □

Prop.(4.2.1.3)[Integral Extension of Field].For A ⊂ B, if B is integral over A, then A is a field
iff B is a field.

Proof: If A is a field, y−1 = −a−1
n (yn−1 + . . .+ an−1) ∈ B. If B is a field, x−1 = −(b1 + b2x+ . . .+

bmx
m−1) ∈ A. □

Cor.(4.2.1.4). If B is integral over A, then a prime p ⊂ B is maximal iff p ∩A is maximal.

Proof: Look at the integral extension A/(p ∩A)→ B/p. □

Prop.(4.2.1.5)[Going-Up].Let A→ B integral. Then:
1. There is no inclusion relation between prime ideals of B lying over a fixed prime ideal of A.
2. if A ⊂ B, then thee Spec map is surjective. In particular, for any p ⊂ A, pB ∩A = p.
3. The going-up holds. In particular, the Spec map of an integral ring map is closed, by(4.1.7.15).

Proof:
1. If p ∩ A = p′ ∩ A = q, Localize at q, then p, p′ are both maximal ideals of Bq by(4.2.1.4), they

cannot contain each other.
2. For any prime p of A, since Ap ⊂ Bp, Bp ̸= 0, so it has a maximal ideal(4.1.1.5), and use(4.2.1.4).
3. for any prime ideal q of B and p = q ∩A, replace A→ B by A/p ⊂ B/q, then we can use2.

□

2 Graded Rings
Cf.[Matsumura Ch11].

Def.(4.2.2.1)[Graded Rings].A graded ring is a ring A =
⊕
n∈Z

An that AmAn ⊂ Am+n. A graded

module over a graded ring A is a module M =
⊕
n∈Z

Mn that AmMn ⊂Mm+n.

Notice that often we mean Z≥0-graded rings when we say graded rings. For a Z≥0-graded ring
A, the subset A+ =

∞⊕
n=1

An is an ideal of A, called the irrelevant ideal.
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Def.(4.2.2.2)[Twisted Modules].Let A be a graded ring and M a graded A-module, denote M(n)
the graded A-module s.t. M(n)m = Mm+n.

Lemma(4.2.2.3).Let A =
∞⊕
0
An be a graded ring, then a set of homogenous elements fi ∈ A+

generate A as an algebra over A0 iff they generate A+ as an ideal of A.
Proof: If fi generate A as algebra over A0, then every element of A+ is a polynomial in fi with
constant coefficients in A0, thus fi generates A+ as an ideal. Conversely, if fi generate A+ as a ideal,
then for any homogenous element f we can use induction on the degree of f to show that f is a
polynomial in fi. □

Prop.(4.2.2.4) [Noetherian Graded Rings].A graded ring A =
⊕∞

n=0An is Noetherian iff A0 is
Noetherian and A+ is f.g. as an ideal of A.
Proof: If A is Noetherian, then clearly A+ is f.g. and A0 = A/A+ is Noetherian. Now if A+ is
f.g. as an ideal of A, then it is generated by f.m. homogenous elements fi, so we see fi generates A
as an algebra over A0, which means A is a quotient of a polynomial ring over A0, thus Noetherian
by(4.1.1.40). □

Def.(4.2.2.5)[Homogenous Ideals].Let A• be a graded ring, then a homogenous ideal I• of A•
is a ring that is generated by homogenous elements.

Prop.(4.2.2.6)[Equivalent definition of Homogenous Ideals].Let S• be a graded ring, then
• an ideal I of S• is homogenous iff it contains the degree n part of each of its element for any n.
• The set of homogenous ideals of S• is stable under sum, product, intersection and radical.
• A non-trivial homogenous ideal I of S• is a prime ideal iff for any homogenous elements a, b, if
ab ∈ I, then a ∈ I or b ∈ I.

Proof: 1: If I contains the degree n part of each of its element for any n, then clearly it is generated
by homogenous elements. Conversely, if it is generated by homogenous elements, then any element
f =

∑
aifi, where fi is homogenous. Then we can see [f ]n =

∑
[ai]n−deg fifi is also in I.

2: Use 1 and the definition. For radicals, we show
√
I contains all its homogenous parts: if

f ∈
√
I, then fn ∈ I for some n, then we see that the minimal degree part [f ]m of f also satisfies

[f ]nm ∈ I, because I contains the homogenous parts of each of its elements. Then we can use induction
to show that all the homogenous parts of f is in

√
I.

3: One direction is trivial, for the other, if a =
∑
ai, b =

∑
bi satisfies ab ∈ I, and a /∈ I, b /∈ I,

and ai, bj homogenous. Let i0, j0 be the minimal numbers that ai0 /∈ I, bj0 /∈ I, then ai0bj0 is not in
I, contradicting the fact I is homogenous. □

Prop.(4.2.2.7).Let R → S be a homomorphism of graded rings, then the integral closure of R in S
is a homogenous ideal of S.
Proof: consider the base change φ : R ⊗R0 R0[t, t−1] → S ⊗S0 S0[t, t−1], where deg(t) = 0, and
the integral closure is denoted by A. Then there is an automorphism of φ: s 7→ tdeg ss. This
automorphism thus preserves the integral closure. if s = sn + sn+1 + . . . + sm ∈ S is integral over
R, to show each si are integral over S. We may assume n > 0 because s0 is clearly integral over R0.
Now we use induction on m. If m > n, consider tnsn + . . .+ tmsm is also in A, we see (tm− ti)si ∈ A
by induction hypothesis.

Notice S ⊂ S[t, t−1]/(tm − ti − 1) = S[t]/(tm − ti − 1) is injective, and the image of (tm − ti)si is
si, which is integral over R[t]/(tm − ti − 1), and this ring is finite over R, so si is also integral over
R. □
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Prop.(4.2.2.8).Let A be a graded ring that is f.g. over A0 and M be a f.g. graded A-module, then
each Mn is a finite S0-module.

Def.(4.2.2.9) [Reductions of Graded Rings].Let S be a graded ring and d ≥ 1, define S(d) the
graded ring ⊕n≥0Snd. And for a graded S-module M , define M (d) = ⊕n∈ZMnd.

Prop.(4.2.2.10). If S is a graded ring that is f.g. over S0, then for d sufficiently divisible, S(d) is
generated by the degree 1 part over S0.

Proof: Let S be generated by homogenous elements f1, . . . , fr. LetM = lcm(deg(f1), . . . , deg(fr)),
then for any f ∈ SNm and N ≥ r, by pigeonhole principle, there are some i s.t. fM/ deg(fi)

i |f . Thus
any monomials of degree nrM is a product of polynomials of degree rM . So d = rM satisfies the
hypothesis. □

Topology Defined by Ideals

Def.(4.2.2.11)[Filtrations on Graded Modules].Let A be a ring, M a graded A-module, and a
be an ideal of A, an a-filtration of M is a descending sequence of submodules M = M0 ⊃M1 ⊃ . . .
that aMn ⊂Mn+1. It is called a stable filtration iff there is an N that aMn = Mn+1 for n ≥ N .

For an ideal a ⊂ A, there can be associated a graded ring A∗ = ⊕an, and an a-filtration M can
be associated a graded module over A∗ : M∗ = ⊕Mn. When A is Noetherian, then so is A∗, because
it is a quotient of a polynomial ring over A(4.1.1.40).

Lemma(4.2.2.12). If A is a Noetherian ring and M is a f.g. A-module that has a a-filtration Mn,
then M∗ is f.g. over A∗ iff Mn is a stable filtration.

Proof: As everyMn is finite over A, if it is stable, thenM∗ is generated over A∗ by all the generator
of Mn, n ≤ N , so it is f.g.. Conversely, if it is f.g., then it is clear that Mn is a stable filtration. □

Prop.(4.2.2.13) [Artin-Rees].For A Noetherian and I an ideal, let N ⊂ M be finite A-modules,
then if Mn is a stable filtration of M , then Mn ∩N is a stable filtration of N .

In particular, let Mn = InM , then InM ∩N = In−r(IrM ∩N), hence the I-adic topology on M
induce the I-adic topology on N .

Proof: This is immediate from the lemma above, as N∗ is an A∗-submodule of M∗, and A∗ is
Noetherian(4.2.2.11). □

Cor.(4.2.2.14)[Krull’s Intersection Theorem].Notation as in(4.2.2.13), let N =
∞∩
InM , then the

I-adic topology on N is trivial, by Artin-Rees, thus IN = N . So Nakayama tells us there is an
element a ∈ 1 + I that aN = 0. Thus if I ⊂ rad(A) or A is an integral domain, N = 0. This can be
used to use induction to prove some theorem.

In particular, for any prime ideal p containing I, use the above on Rp shows Np = 0. But also N
is f.g., so there exists an element g /∈ p that Ng = 0.

Cor.(4.2.2.15)[Krull].For A Noetherian, if I ⊂ rad(A) or A is a domain, then ∩∞ In = 0.

Prop.(4.2.2.16).Notice for any ring A and a non-zero-divisor f , if I = ∩nfnA, then fI = I, needless
of the Noetherian property.

Proof: If x ∈ I, x = fy, because x ∈ fnA, fy = fnt for some t, so y = fn−1t, so f ∈ I. Thus
I = fI. □
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Def.(4.2.2.17) [Hilbert-Serre].Let A be a Noetherian graded ring with A0 Artinian that A+ is
generated by A1. For a f.g. graded A-module M = ⊕Mn, we have l(Mn) is a numerical polynomial
of n(24.1.3.10) for n sufficiently large, called the Hilbert Polynomial. Its degree is the dimension
of SuppM ⊂ Proj(A).

Proof: We prove by induction on the minimal number of generators of A1(it is finite by(4.2.2.4)).
If it is 0, then Mn = 0 for n large and the result holds. Now choose x ∈ S1 as one of the minimal set
of generators, then the induction hypothesis applies to S/(x).

Firstly, if x acts nilpotently on M , then we do induction on the minimal number r that xrM = 0.
If r = 1, then M is a module over S/(x) and the assertion holds. If r > 1, then we can find an exact
sequence 0 → M ′ → M → M ′′ → 0 that M ′,M ′′ has smaller r, then we have the desired result,
because l is additive.

Next, if x doesn’t act nilpotently on M , let M ′ ⊂ M is the largest submodule that x acts
nilpotently, then there is an exact sequence 0 → M ′ → M → M/M ′ → 0. So we can assume
multiplication by x is injective on M .

Let M = M/xM , then for any d, there are exact sequences

0→Md
x−→Md+1 →Md+1.

so l(Md+1)− l(Md) = l(Md+1). Then we finish by(24.1.3.11). □

Cor.(4.2.2.18).Let k be a field, I ⊂ k[X1, . . . , Xn] be a non-zero graded ideal, and M =
k[X1, . . . , Xn]/I, then the numerical polynomial n 7→ dimk(Mn) has degree < d− 1.

Proof: The numerical polynomial associated to k[X1, . . . , Xn] is n 7→
(n−1+d
d−1

)
, and for any non-

zero homogenous element f ∈ I of degree e, f · k[X1, . . . , Xn]d−e ⊂ Id, thus dimk(Mn) <
(n−1+d
d−1

)
−(n−e−1+d

d−1
)
, which means the numerical polynomial has degree< d− 1. □

Prop.(4.2.2.19)[Hilbert Polynomial and Dimension].For a Noetherian local ring A, the Hilbert
polynomial of a f.g. module M w.r.t m has degree dimM . And dimM is the smallest integer r s.t.
there exists x1, . . . , xr that l(M/x1M + . . . , xrM) <∞.

Proof: Cf.[Mat P76]. □

3 Completions
This subsubsection should be combined with the derived completion.

Prop.(4.2.3.1).Let the topology on a A-module be defined by countable filtration of submodules,
then iff M is complete, then M/N is complete in the quotient topology.

Proof: Write xi+1 − xi = yi + zi with yn ∈Mn and zn ∈ N , then the image of the limit of ∑ yi is
the limit of xi. □

Def.(4.2.3.2)[Completeness].Let I be an ideal of R, the I-adic completion of a R-module is a
functor φ : M 7→ M̂ = limM/InM . An R-module is called I-adically complete if the natural map
M → M̂ is an isomorphism.

This is compatible with the general notion of completion of a topological Abelian groups(10.3.1.5).

Prop.(4.2.3.3).Let R be a ring and I ⊂ R be an ideal, φ : M → N be a map of R-modules. Then
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• If M/IM → N/IN is surjective, then M̂ → N̂ is surjective. In particular, this holds for
M → N surjective.

• If 0→ K →M → N → 0 is exact and N is flat, then 0→ K̂ → M̂ → N̂ → 0 is exact.
• M ⊗R R̂→ M̂ is surjective for any finite R-module M .

Proof: Cf.[Sta]0315. □

Prop.(4.2.3.4).Let I be a f.g. ideal of A and M an A-algebra, then M̂ is I-adically complete and
InM̂ = ker(M̂ →M/InM) = (InM)∧.

Proof: Because I is f.g., so does In. If In = (f1, . . . , fr). Applying(4.2.3.3) to (f1, . . . , fr) : M r →
InM shows

M̂ r → (InM)∧ = lim←−
m≥n

InM/ImM = ker(M̂ →M/InM)

but the image is clearly InM̂ , so M̂/InM̂ ∼= M/InM . Taking inverse limit yields (M∧)∧ = M∧. □

Cor.(4.2.3.5)[Completion is Complete].Let I be a f.g. ideal of A and (Mn) an inverse system of
A-modules that InMn = 0, then M = limMn is I-adically complete.

Proof: We have maps M → M/In → Mn, taking limit, we get M → M̂ → M , so M is a direct
summand of M̂ . Since M̂ is I-adically complete by(4.2.3.4), so does M . □

Prop.(4.2.3.6). If I is a f.g. ideal of A and (Mn) is an inverse system of A-modules that Mn =
Mn+1/I

nMn+1, then M = limMn is I-adically complete and M/InM = Mn.

Proof: M̂ is I-adically complete by(4.2.3.5), and M →Mn are all surjective because the transition
maps are surjective. Consider the inverse system Nn = ker(M →Mn). Since Mn = Mn+1/I

nMn+1,
the map Nn+1 + InM → Nn is surjective, and thus Nn+1/(Nn+1 ∩ In+1M) → Nn/(Nn ∩ InM) is
surjective.

Taking the inverse limit of the exact sequences

0→ Nn/(Nn ∩ InM)→M/InM →Mn → 0,

we get an exact sequence
0→ lim←−Nn/(Nn ∩ InM)→ M̂ →M.

As M is I-adically complete, M̂ = M , thus lim←−Nn/(Nn ∩ InM) = 0, thus Nn/(Nn ∩ InM) = 0 for
any n as n the transition maps are surjective. Then M/InM = Mn, as desired. □

Cor.(4.2.3.7)[Spectrum Map of Completions]. SpecR∧ → SpecR has image SpecR/I ⊂ SpecR.
This follows from(4.2.3.18) and R/I ∼= R∧/I.

Prop.(4.2.3.8). If I is an ideal of R and 0 → M → N → Q → 0 is an exact sequence that Q is
annihilated by a power of I, then completion produces an exact sequence

0→ M̂ → N̂ → Q→ 0

Proof: If IcQ = 0, then Q/InQ = Q cor n ≥ c, and InM ⊂ M ∩ InN ⊂ In−cM because of this.
Then M̂ = lim←−M/(M ∩ InN) by(3.1.1.41), and we apply(4.9.3.2) to the inverse system of exact
sequences

0→M/(M ∩ InN)→ N/InN → Q→ 0

to conclude. □
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Cor.(4.2.3.9). If A is a ring with a nonzero-divisor t and there is an exact sequence 0→ M → N →
Q→ 0 of A-modules that IQ = 0, then M is I-adically complete iff N is I-adically complete.

Proof: Use snake lemma. □

Cor.(4.2.3.10).Take I = (f) and M = N = R, then we see that if t is a nonzero-divisor in R then t
is a nonzero-divisor in R̂.

Prop.(4.2.3.11).The completion of a submodule N ⊂M is the closure of φ(N) (By direct construc-
tion). The completion of M/N is M∗/N∗ because it is right exact.

Cor.(4.2.3.12). If N is open in M then M/N ∼= M∗/N∗ because M/N is discrete hence complete.

Prop.(4.2.3.13).When A is Noetherian and M is finite A-module, then the natural map M ⊗AA∗ →
M∗ is an isomorphism (use M is finite presentation and tensor & completion is right exact), and five
lemma.

Cor.(4.2.3.14).When A is Noetherian, A→ A∧ is flat (because flatness is check for finite module).
And when A is complete Hausdorff, any finite module M is complete Hausdorff and hence any

its submodule is complete thus closed in it. Hence the the completion of a submodule N ⊂ M is
φ(N)A∗ in M∗ = MA∗. In fact this implies complete Hausdorff adic-ring is Zariski.

Remark(4.2.3.15).WARNING: If A is not Noetherian, in general A→ A∧ is not flat, Cf.[Sta]0AL8.

Lemma(4.2.3.16).Let A be a ring and I = (f1, . . . , fr) be a f.g. ideal. If M → lim←−M/fni M is
surjective for each i, then M → lim←−M/InM is also surjective.

Proof: Note that lim←−M/InM = lim←−M/(fn1 , . . . , fnr )M , as Irn ⊂ (fn1 , . . . , fnr ) ⊂ In, and elements
in lim←−M/(fn1 , . . . , fnr )M can be written as an infinite sum ξ =

∑
n

∑
i f

n
i xn,i. There is an element xi

mapping to ∑n f
n
i xn,i for any i, thus

∑
i xi maps to ξ. □

Lemma(4.2.3.17).Let A be a ring and I ⊂ J be ideals, if M is J-adically complete and I is f.g., then
M is I-adically complete.

Proof: It is clearly I-adically Hausdorff, and for completeness, by(4.2.3.16) it suffices to show for
I = (f): Let xn ∈ M with xn − xn+1 ∈ fnM , then {xn} is J-adically Cauchy, thus there is an
element x that x − xn ∈ Jn, and we can replace xn by xn − x to assume xn ∈ Jn. Now we prove
xn ∈ (fn): assume xn − xn+1 = fnzn, then

xn = fn(zn + fzn+1 + . . .).

This equation is true because it is J-adically Cauchy. □

Properties of Complete Rings

Prop.(4.2.3.18). If A is I-adically complete, then I ⊂ radA.

Prop.(4.2.3.19).Let A be a ring with a non-zero-divisor t, then any limit of t-adically complete
algebras is t-adically complete.

Proof: Check the definition directly. □
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Prop.(4.2.3.20)[Zariski Rings].A Noetherian I-adic ring is called Zariski ring if it satisfies the
following equivalent conditions:

• Every finite module is Hausdorff in the I-adic topology.
• Every submodule in a finite module is closed in the I-adic topology.
• Every ideal is closed.
• I ⊂ radA.
• A∧/A is f.f.

Hence every complete Hausdorff ring is Zariski.

Proof: 1→ 2: Apply it to the submodule M/N .
3→ 4: If I ⊈ m, then In +m = A, thus M = A, contradiction.
4→ 1: by intersection theorem(4.2.2.14).
4→ 5: for any maximal ideal m, I ⊂ m so it is open, thus A∗/mA∗ = A/m ̸= 0 by(4.2.3.12) thus

f.f. by(4.4.1.5).
5 → 1:by(4.4.1.21), for any m maximal, there is a maximal ideal m′ lying over m, so IA∗ ⊂ m∗

by(4.2.3.14), thus I ⊂ m, hence I ⊂ radA. □

Cor.(4.2.3.21). In a Zariski ring A, maximal ideals are open, thus A/m ∼= A∗/mA∗ by(4.2.3.12), thus
SpecA∗ → SpecA is bijection on closed pt.

Prop.(4.2.3.22)[Cohen Structure Theorem]. If A is a complete local ring containing a field k that
the residue field is separably generated over k, then there is a field K containing k that is a Cohen
ring, i.e. complete local ring with a prime number as a uniformizer, that has the same residue field
as A.

Proof: □

Lemma(4.2.3.23)[Complete Interchanging Lemma]. If R is a commutative ring, x, y ∈ R, if x is
not a zero-divisor in R and R is x-adically complete, and y is not a zero-divisor in R/x and R/x is
y-adically complete, then the same is true with x, y interchanged.

Proof: ? □

4 Dimension

Def.(4.2.4.1) [Dimensions and Heights].For a A-module M , dim(M) is defined as
dim(A/Ann(M)).

The height of an ideal I in A is defined as the infimum of heights of the prime ideals over I.
The dimension of a ring R is defined to be the supremum of heights of prime ideals of R.

Prop.(4.2.4.2).For any ring A dimA = sup dimAp.

Def.(4.2.4.3)[Catenary Rings].A ∈ CAlg is called catenary if for any pair of primes p ⊂ q ⊂ A,
any maximal chain of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pe = q has the same length. A Noetherian ring is
called universally catenary if all f.g. algebras over it are catenary.

Prop.(4.2.4.4).A ∈ CAlg is catenary iff SpecA is a catenary space(3.11.3.34).
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Prop.(4.2.4.5).Any quotient ring and localization of a (universally)catenary ring is catenary. Any
quotient of a Noetherian universally catenary ring is universally catenary. Catenary and universally
catenary are stalkwise properties(4.1.4.2).

Prop.(4.2.4.6). If (A,m) is a Noetherian local ring, then A is catenary iff p→ dim(A/p) is a dimension
function on SpecA.

Proof: This follows from(3.11.4.13)(3.11.3.39) and(3.11.3.37). □

Example(4.2.4.7)[Universally Catenary Rings].The following are same examples of universally
catenary Rings:

• A f.g. algebra over a universally catenary ring.
• A Noetherian C.M. rings.
• 1-dimensional Noetherian domains,
• Fields.

Proof: Cf.[Sta]00NM.? □

Def.(4.2.4.8)[Hilbert Polynomials].Let (A,m) be a Noetherian local ring, I an ideal of definition,
then

Dimension of Noetherian Local Rings

Prop.(4.2.4.9).For a Noetherian local ring R, the following three numbers are equal:
• dimR.
• d(R).
• the minimal number of elements needed to generate an ideal of definition of R(4.1.1.11).

A system of parameters is d elements g1, . . . , gd that generate an ideal of definition of R, where
d = dimR.

Proof: Cf.[Sta]00KQ.? □

Cor.(4.2.4.10).The dimension of a Noetherian local ring is finite, by item3. Thus the codimension
of a subscheme in a Noetherian scheme is finite.

Cor.(4.2.4.11). If A is a Noetherian local ring with maximal ideal m, then dimA ≤ dimk m/m
2.

Proof: By Nakayama, if x1, . . . , xd ∈ m generate m/m2, then (x1, . . . , xd) = m. □

Dimension and Ring Extensions

Prop.(4.2.4.12) [Dimension and Going-Up(Down)]. If A → B is a ring map that Spec map is
surjective and A→ B satisfies either going-up or going-down, then dimB ≥ dimA.

Proof: The hypothesis implies any chain of primes in A can lifted to a chain of primes in B. □

Prop.(4.2.4.13)[Dimensions and Noetherian Ring Extensions].Let A→ B be a map between
Noetherian rings, P a prime ideal of B, p = P ∩A, then:

• ht(P ) ≤ ht(p) + ht(P/pB),in other words dim(BP ) ≤ dim(Ap) + dim(BP /pBP ).
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• equality holds if going-down holds. For example, if it is flat(4.1.7.13).

Proof: 1: Localize at p and P , we may assume A,B are local rings with maximal ideals p and P ,
then use the characterization(4.2.4.9) of dimension, if x1, . . . , xd generate an ideal of definition of Ap

and y1, . . . , ye generate an ideal of definition of BP /pBP , then x1, . . . , xd, y1, . . . , ye generate an ideal
of definition of BP .

2: If going down holds, for any chain of primes in BP containing pBP , we can lift the chain of
primes in Ap to a chain of primes in BP to get a longer chain, thus we get the other direction of
inequality.

□

Prop.(4.2.4.14)[Dimension of Integral Extensions].Let A→ B be an integral ring map, then:
1. Spec maps closed points to closed points, and dim(A) ≥ dim(B), which equality if A ⊂ B.
2. If A,B is Noetherian, ht(P ) ≤ ht(P ∩A)
3. If A,B is Noetherian and going down holds, then ht(J) = ht(J ∩A) for any ideal J ⊂ B.

Proof: 1:By(4.2.1.5), there is no inclusion relation between prime over a fixed prime, so dim(B) ≤
dim(A). On the other hand, if A ⊂ B, then Spec map is surjective going-up holds(4.2.1.5), so
dim(B) ≥ dim(A)(4.2.4.12).

2: Follows from (4.2.4.13)(1) since ht(P/(P ∩A)B) = 0 by(4.2.1.5).
3: In this case, ht(P ) = ht(P ∩ A) holds by(4.2.4.13)(2), then use the surjectiveness of Spec for

the integral extension A/J ∩A ⊂ B/J(4.2.1.5). □

Cor.(4.2.4.15). if A→ B is integral and faithfully flat, then dimA = dimB.

Proof: This follows from(4.2.4.14) and(4.4.1.28). □

Prop.(4.2.4.16)[Dimension and Completion].For a local ring A, dimA = dim Â.

Proof: □

Noetherian Normalization

Prop.(4.2.4.17).For a Noetherian ring A, dimA[X] = dimA+ 1.

Proof: Let p be a prime ideal of A and let q be a prime ideal of A[X] maximal among primes
lying over p, then ht(q/pA[X]) = 1. In fact, by localizing, we can assume p is a maximal ideal, then
A[x]/pA[x] is a polynomial ring over a field thus a PID and ht(q/pA[X]) = 1. Thus ht(q) = ht(p) + 1
by(4.2.4.13). Now we are done, because SpecA[X]→ SpecA is surjective. □

Prop.(4.2.4.18)[Krull’s Height Theorem]. In a Noetherian domain R, the height of an ideal gen-
erated by n elements is at most n.

Proof: Let p be a minimal ideal containing (f1, . . . , fn), then it suffices to show dim(Rp) ≤ n In
this case, (f1, . . . , fn) is an ideal of definition of Rp, thus we can use(4.2.4.9). □

Prop.(4.2.4.19)[Number of Generators].To show an ideal I ⊂ A cannot be generated by smaller
than n element, choose a maximal ideal m, then show that dimA/m I/mI ≥ n.

Cor.(4.2.4.20).
• (x, z) is not principal in k[x, y, z].
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• (wz − xy) is not principal in k[x, y, z].
• (xy, yz, xz) is not generated by two elements in k[x, y, z].

Lemma(4.2.4.21).Let A = k[X1, . . . , Xn] be a polynomial ring over a field k, and I is an ideal of A of
height r, then we can choose Y1, . . . , Yn ∈ A that A is integral over k[Y1, . . . , Yn] and I∩k[Y1, . . . , Yn] =
(Y1, . . . , Yr).

Proof: We use induction on r. r = 0 is easy. For r = 1, let f(X) be any non-zero polynomial in
I, then we can assign suitable integral weights d1 = 1, d2, . . . , dn to Xi that monomials of f have
different weights. Put Yi = Xi −Xdi

1 for i ≥ 2, and

Y1 = f(X) = f(X1, Y2 +Xd2
1 , . . . , Yn +Xdn

1 ) = a1X
N
1 + g(X1, Y2, . . . , Yn)

where g has degree in X1 lower that N . Then X1 is integral over k[Y1, . . . , Yn], and hence Xi =
Y1 +Xdi

1 is also integral over k[Y ].
Now (Y1) is a prime ideal in k[Y ] of height 1 and (Y1) ∈ I ∩ k[Y ]. Also notice I ∩ k[Y ] has height

1 by(4.2.4.14)(Because going-down holds by(4.1.7.17)), so (Y1) = I ∩ k[Y ].
For r ≥ 2, let J ⊂ I be an ideal with height r − 1, let J be an ideal of k[X] contained in I that

ht(J) = r− 1.(This is possible by choosing fi out of all minimal primes containing (f1, . . . , fr−1) and
use Krull’s Height Theorem). By induction hypothesis, there exists Z1, . . . , Zn that k[X] is integral
over k[Z], and J ∩ k[Z] = (Z1, . . . , Zr−1). Now ht(I ∩ k[Z]) = r by the same argument above, thus
there exist f ∈ I ∩ k[Z]\(Z1, . . . , Zr−1), and do the same for r = 1 again, we can find the desired Yi
that Yk = Zk for k ≤ r − 1. □

Prop.(4.2.4.22)[Noetherian Normalization Theorem]. If A is a f.g. algebra over a field. then
there are r alg. independent elements yi that A is integral over k[yi].

Proof: Let A = k[X1, . . . , Xn]/I and height(I) = n−r, then by the lemma we can choose Y1, . . . , Yn
that k[X1, . . . , Xn] is integral over k[Y1, . . . , Yn](so Y1, . . . , Yn are algebraically independent) and
I ∩ k[Y1, . . . , Yn] = (Yr+1, . . . , Yn). Now we can just choose yi = Yi for i ≤ r. □

Cor.(4.2.4.23)[Dimension and Transcendental Degree]. If A is a f.g. integral ring over a field
k, then dimA = tr . degk A.

Proof: This is because integral extensions of integral Noetherian rings have the same dimen-
sions(4.2.4.14) and their fraction fields have the same transcendental degrees. □

Cor.(4.2.4.24).Let A,B be f.g. algebras over a field k, then dim(A⊗k B) = dimA+ dimB.

Cor.(4.2.4.25) [Dimension and Field Base Change].Let K/k be a field extension and S a f.g.
algebra over k, then dimS = dimS ⊗k K.

Proof: By Noetherian normalization, there exists a finite injective map k[d1, . . . , dn] → S where
n = dimS. Then there exists a finite injective map K[d1, . . . , dn] → SK , so dimS ⊗k K = n,
by(4.2.4.14) and(4.2.4.17). □

Prop.(4.2.4.26)[Codimensions and Field Base Change].Let K/k be a field extension and S a
f.g. k-algebra. Let q be a prime of S and qK be a prime of SK lying over q, then

dim(SK ⊗S k(q))qK = dim(SK)qK − dimSq = tr .degk k(q)− tr .degK k(qK).

Moreover, for any q, we can choose qK so that this number is 0.

Proof: Cf.[Sta]0CWE. □
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Local Dimension over Fields

Prop.(4.2.4.27) [Local Dimension].Let Let S be an algebra f.g. over a field k, X = SpecS and
x ∈ X, then the following three numbers are equal:

• the local dimension(3.11.3.25) dimx(X).

• max dim(Z) where Z runs through irreducible components of X passing through x.

• min dim(Sm), where m are maximal ideals containing px.

Proof: Cf.[Sta]00OT. □

Lemma(4.2.4.28).Let k be a field and S a f.g. k-algebra, X = SpecS, x ∈ X, then

dimx(X) = dimSp + tr . degk k(p).

Proof: Cf.[Sta]00P1. □

Cor.(4.2.4.29).Let S′ → S be a surjection of f.g. algebras over a field k, p a prime ideal of S and p′

its inverse image in S′, corresponding to x, x′ in X = SpecS,X ′ = SpecS′ resp., then

dimx′(X ′)− dimx(X) = ht(p′)− ht(p).

Def.(4.2.4.30)[Relative Dimension].Let R → S be a ring map of f.t., and q ⊂ S be a prime over
p ⊂ R, then we define the relative dimension of S/R at q to be dimq(SpecS)p. The supremum of
all these numbers over q ⊂ SpecS is called the relative dimension of S/R, denoted by dim(S/R).

Lemma(4.2.4.31)[Local Dimension and Field Extension].Let K/k be a field extension, S be a
f.g. k-algebra, and X = SpecS. Now if pK is an element of SK lying over p ⊂ S, then dimp(S) =
dimpK (SK).

Proof: The proof is by reduction to polynomial ring. Let S = k[X1, . . . , Xn]/I, let p′
K , p

′ be primes
of k[X1, . . . , Xn] and K[X1, . . . , Xn] that is the image of x and xK , then there is a commutative
diagram

K[X1, . . . , Xn]q′
K

(SK)qK

k[X1, . . . , Xn]q′ Sq

.

The vertical arrows are flat because they are local morphisms of flat maps, and their fibers are the
same, so by(5.6.3.17), ht(q′

K) − ht(q′) = ht(qK) − ht(q). Also use(4.2.4.29) on the horizontal maps,
then we get the desired assertion. □

Prop.(4.2.4.32)[Semicontinuity of Dimensions].Let f : R → S be a ring map of f.t., then the
map q 7→ dimq(S/R) is a upper-semicontinuous function on Spec(S).

Moreover, if f is of f.p., then the set {q| dimq(S/R) ≤ n} is quasi-compact open in Spec(S).

Proof: Cf.[Sta]00QH, 00QJ. □
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5 Support and Associated Primes

Def.(4.2.5.1)[Support of a Module].The support Supp(M) of a module M is the set of all p that
Mp ̸= 0. When M is f.g., Supp(M) = V (Ann(M)).

Prop.(4.2.5.2)[Support is Non-Empty].The support of a nonzero module is not empty, because
triviality is stalkwise by(4.1.4.2).

Prop.(4.2.5.3). If 0 → N → M → Q → 0, then we have Supp(M) = Supp(N) ∪ Supp(Q), this is
because localization is exact.

Cor.(4.2.5.4).

Prop.(4.2.5.5).Let (R,m) be a Noetherian local ring and M a finite R-module, f ∈ m, then

dim Supp(M)− 1 ≤ dim(Supp(M/fM)) ≤ dim(Supp(M))

Proof: Cf.[Sta]0B52. □

Prop.(4.2.5.6).Let 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M be a filtration of M that Mi/Mi−1 ∼= R/pi where
pi are primes, by(4.1.1.45), then Supp(M) = ∪iV (pi).

In particular, the minimal primes in {pi} are the same as the minimal primes of Supp(M).
Moreover, the multiplicity of a prime pi equals lengthRp

Mp.

Proof: Cf.[Sta]00L7. □

Prop.(4.2.5.7).Let (R,m) be a Noetherian local ring and M a non-zero finite R-module, then
Supp(M) = V (m) iff lengthR(M) <∞.

Proof: Cf.[Sta]00L5.? □

Prop.(4.2.5.8).Let A be Noetherian and I be an ideal, then InM = 0 for some n iff Supp(M) ⊂ V (I).

Proof: If InM = 0, then if I ⊈ P , then MP = 0. Conversely, we have a filtration of M , and
by(4.2.5.3) we have all the Pi include I, so In annihilate M . □

Prop.(4.2.5.9). If R is a ring and M is a f.p. R-module, then Supp(M) is a closed subset of SpecR
whose complement is quasi-compact.

Proof: Let Rm → Rn → M → 0, then the support of M is just the the locus that some minor of
the linear map from Rm → Rn doesn’t vanish. Then its complement is quasi-compact. □

Prop.(4.2.5.10).Let (R,m) be a Noetherian local ring and M is a finite R-module, then d(M) =
dim(Supp(M)).

Proof: Cf.[Sta]00L8. □

Prop.(4.2.5.11).Let R be a Noetherian ring and 0→ M ′ → M → M ′′ → 0 be an exact sequence of
finite R-modules, then dim Supp(M) = max(dim Supp(M ′), dim Supp(M ′′)).

Proof: Cf.[Sta]0B51. □
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Associated Primes of a Module

Def.(4.2.5.12)[Associated Primes of a Module].The weakly associated primes Ass(M) of an
A-module M is the set of minimal primes of A/Ann(m) for some m ∈M .

The associated primes Ass(M) is the set of primes {p = Ann(m)} where m ∈M .

Prop.(4.2.5.13).AssR(M) ⊂WeakAssR(M), and if R is Noetherian, the converse is also true.

Proof: Cf.[Sta]058A. □

Prop.(4.2.5.14) [Associated Primes and Exact Sequence].For an exact sequence 0 → M1 →
M → M2 → 0, WeakAsso(M) ⊂ WeakAsso(M1) ∪ WeakAsso(M2) and WeakAsso(M1) ⊂
WeakAsso(M).

Proof: Cf.[Sta]0548.? □

Cor.(4.2.5.15)[F.M. Associated Primes].For a finite moduleM over a Noetherian ring A, AssA(M)
is finite by(4.1.1.45).

Prop.(4.2.5.16)[Associated Primes and Support].WeakAsso(M) ⊂ SuppM , and their minimal
elements are the same.

If M ̸= 0, WeakAsso(M) ̸= ∅ by(4.2.5.2), and WeakAsso(A/I) contains all the minimal primes
over I.?
Proof: If p = Ann(m), then m is nonzero in Mp, so Mp is nonzero, i.e. p ∈ Supp(M).

For the second assertion, we first prove for M finite, and then write any module as sum of finite
submodules, and use the fact Supp and ass are all unions of those of the submodules. Cf.[Sta]05C4
0588.? □

Prop.(4.2.5.17)[Weakly Associated Primes and Zero-divisors].Let M a R-module, then the
union of the weakly associated primes of M is the set of zero-divisors in M .

Proof: Elements in associated points are zero-divisors obviously, and conversely, if xm = 0, then
x ∈ Ann(m) and Ann(m) has an associated point q by(4.2.5.16). Now x must be in q and q is also
an associated point of M by(4.2.5.16). Cf.[Sta]05C3? □

Cor.(4.2.5.18).Use the prime avoidance(4.1.1.4), we can prove if R is Noetherian and M is a finite
R-module, then I ⊂ p for some p ∈WeakAss(M) iff I consists of zero-divisors.

Prop.(4.2.5.19)[Associated Primes and Maps].For a ring map φ : R → S and a S-module M ,
then

Spec(φ)(AssS(M)) ⊂ AssR(M) ⊂WeakAssR(M) ⊂ Spec(φ)(WeakAssS(M)).

Equalities hold if S is Noetherian. Also WeakAssR(M) = Spec(φ)(WeakAssS(M)) if φ is a finite
ring map.

Proof: Cf.[Sta]05C7, 05E1.
We prove it is equal. If p = AnnR(m), then we let I = AnnS(m), then R/p ⊂ S/I ⊂ M , so

by(4.1.7.25), there is a minimal prime of S over I that are mapped to p, now this prime is in Ass(S/I)
by(4.2.5.16) and also in AssS(M) by(4.2.5.14). □
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Prop.(4.2.5.20)[Associated Primes and Localization].Let φ : SpecS−1A → SpecA and M an
A-module, then

AssA(S−1M) = Spec(φ)(WeakAssoS−1A(S−1M)) = WeakAssoA(M) ∩ φ(Spec(S−1R)).

Proof: Cf.[Sta]05C9?.
The first equality is by(4.2.5.19). For the second, if AnnA(x) = p and p ∩ S = ∅, then

AnnS−1A(x/1) = S−1(p). Conversely, if AnnS−1A(x/s) = S−1p, then p ∩ S = ∅, and AnnA(x) ⊂
S−1p ∩A = p. □

Cor.(4.2.5.21)[Associated Primes are Stalkwise].Let R be a ring and M an R-module, p ⊂ R,
then the following are equivalent:

• p ⊂WeakAss(M).
• pRp ⊂WeakAss(Mp).
• Mp contains some element m that

√
Ann(m) = pRp.

Proof: 1 → 2: p is a minimal prime of I = Ann(m) for some m ∈ M , so Ip is the minimal prime
of Ann(m) ⊂ Rp.

2→ 3: As pRp is the maximal prime, it is the only prime over Ann(m), so pRp =
√
Ann(m).

3 → 1: This means there are some m ∈ M that
√
Ip = pRp, which means that p is a minimal

prime over Ann(m). □

Prop.(4.2.5.22). If M is an R-module, then M → ∏
p⊂WeakAss(M)Mp is injective.

Proof: Cf.[Sta]05CB.
If m ̸= 0 ∈ M , there is an associated prime p of Rm(4.2.5.16), then it is an associated prime of

M , and then (x)p ⊂Mp is not zero. □

Def.(4.2.5.23) [Embedded Primes].A non-minimal prime in AssR(M) is called a embedded
prime. Equivalently, it is an associated point that is not a generic point of Supp(M).

Prop.(4.2.5.24).For a reduced ring R, WeakAssR(R) is just the set of minimal primes of R.

Proof: Cf.[Sta]0EMA. □

Cor.(4.2.5.25)[Reduced Ring No Embedded Primes].A reduced ring has no embedded primes,
because it has no nilpotent elements. Hence all its associated primes are just the minimal primes.

Def.(4.2.5.26) [Unmixed Ideals]. I is called unmixed if primes in Ass(A/I) all have the same
height. In particular, they don’t contain each other.

Primary Decomposition

Def.(4.2.5.27).For R Noetherian, a R-module M is called coprimary iff it has only one associated
primes. A submodule N of M is called p-primary iff Ass(M/N) = {p}. A ring is called p-primary
iff (0) is p-primary.

Notice coprimary is equivalent to the following: if a ∈ A is a zero divisor for M , then for each
x ∈ M , there is a n that anx = 0, i.e. locally nilpotent. And for ideals in a Noetherian ring, this
is equivalent to r(I) is a prime.
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Proof: If M is p-primary, if x ∈ M is nonzero, then Ass(Rx) = {p}, so p is the unique minimal
element of Supp(Rx) = V (Ann(x)) by(4.2.5.16). So p is the radical of Ann(x), i.e. anx = 0 for some
n(4.2.6.2).

Conversely, we know the ideal p of locally nilpotent elements equals the union of the associated
primes(4.2.5.17), so if q ∈ AssM = Ann(x), then by definition, p ⊂ q. So p = q, and thus AssM =
{p}. □

Lemma(4.2.5.28).A primary ring has no nontrivial idempotent element, because e and 1− e will all
belong to the same minimal ideal p.

Lemma(4.2.5.29).The intersection of p-primary submodules are p-primary. (Because there is a
injection M/Q1 ∩Q2 →M/Q1 ⊕M/Q2).

Lemma(4.2.5.30)[Associated Prime and Primary Decomposition]. If N = ∩Qi is an irredun-
dant primary decomposition and if Qi belongs to pi, then we have Ass(M/N) = {p1, . . . , pr}.

Proof: There is a injectionM/N →M/Q1⊕. . .M/Qr which shows Ass(M/N) ⊂ {p1, . . . , pr}. And
for the inverse, notice Q2∩ . . .∩Qr/N is a submodule ofM/Q1, which shows Ass(Q2∩ . . .∩Qr/N) =
{p1} by(4.2.5.16). □

Prop.(4.2.5.31). If N is a p-primary submodule of a R-module M , and p′ is a prime ideal, then
• Np′ = Mp′ if p ⊈ p′.
• N = M ∩Np′ if p ⊂ p′.

Proof: Mp′/Np′ = (M/N)p′ , and Ass((M/N)p′) = Ass(M/N) ∩ {primes contained in p′} = ∅
by(4.2.5.20). So Mp′ = Mp′ by(4.2.5.16).

For the second, notice it suffices to show M/N →Mp′/Np′ is injective. But this is because A− p′

contains no nonzero-divisor, by(4.2.5.17). □

Cor.(4.2.5.32) [Second Uniqueness of Primary Decomposition].For an irredundant primary
decompositionN = ∩Qi, if Q1 corresponds to p1 and p1 is minimal in Ass(M/N), then Q1 = M∩Np1 .
In particular, the minimal prime part of a irredundant primary decomposition is uniquely determined.

Proof: By the above proposition, there are elements ui of Qi, i ̸= 1 that are mapped to units in
Mp1 , so Q1 · u2u3 . . . ur is mapped onto the image of Q1 →Mp1 . Then Q1 = M ∩ (Q1)p1 = M ∩Np1 .
□

Prop.(4.2.5.33). If R is Noetherian and M is a R-module, there are p-primary submodules Q(p) for
each p ∈ AssM that (0) =

∩
p∈AssM Q(p).

Proof: For a p ∈ AssM , we seek Q(p) to be the maximal submodule N that p /∈ AssN . This has a
maximal ideal because of Zorn and the fact Ass(∪Nλ) = ∪Ass(Nλ). Then We have Ass(M/Q(p)) =
{p}, otherwise there is another p′, then there is a Q′/Q(p) ∼= A/p′. Now Q′ is bigger than Q(p).
Finally, (0) =

∩
p∈AssM Q(p) because it has no associated primes. □

Cor.(4.2.5.34)[Primary Decomposition]. IfM is f.g. over a Noetherian ringR, then any submodule
has a primary decomposition. (Notice M has only f.m. associated primes).

Def.(4.2.5.35) [Symbolic Power].For a prime ideal p in a Noetherian ring, The n-th symbolic
power p(n) is defined to be the p-primary component of pn, who has only one minimal prime(hence
one associated prime). The symbolic power is giving by pnAp ∩A by(4.2.5.32).
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6 Jacobson Radical and Nilradical

Nilradical

Def.(4.2.6.1)[Nilradical].The nilradical of a commutative ring R is defined to be the ideal consisting
of nilpotent elements.

Prop.(4.2.6.2).The nilradical n of a ring A(4.2.6.1) is the intersection of all prime ideals.

Proof: Every nilpotent element is contained in every prime, and if a is not nilpotent, then the
localization Aa is nonzero, hence there is a maximal ideal, i.e. there is a prime of A not containing
a. □

Cor.(4.2.6.3). In particular, SpecA/n → SpecA is a homeomorphism, and A → A/n induces a
bijection on idempotents and units.

Jacobson Ring

Def.(4.2.6.4) [Jacobson Ring].A commutative ring is called Jacobson if every prime ideal is an
intersection of maximal ideals. In particular, the Jacobson radical equals the nilradical. This is
equivalent to every radical ideal is an intersection of maximal primes.

Prop.(4.2.6.5).R is Jacobson iff SpecR is Jacobson space(3.11.3.21). In particular, the closed pts
are dense in any closed subsets (Hilbert’s Nullstellensatz satisfied).

Proof: We need to show that a locally closed subset contains a closed pt, we assume this set is of
the form V (I) ∩D(f), I is radical, then f /∈ I, then by the condition, there is a I ⊂ m that f /∈ m,
thus the result.

Conversely, for a radical ideal, let J = ∩I⊂mm, then J is radical and V (J) is the closure of
V (I) ∩X0, V (I) = V (J), and because they are both radical, I = J . □

Cor.(4.2.6.6).Being Jacobson is a local property, and quotient of Jacobson ring is Jacobson, and
maximal ideals of Rf are maximal in R. (Immediate from(4.2.6.5)(3.11.3.22) and(3.11.3.23)).

Prop.(4.2.6.7). If a Jacobson ring A has f.m. maximal ideals, then it is the product of its localizations
at maximal primes and dimA = 0.

Proof: Any prime ideal p is a finite intersection of maximal ideals, so it equals one of them, so
dimA = 0. Now A/I = ⊕A/mi by Chinese remainder theorem, so SpecA/I is discrete with n pts,
so by(4.1.7.8) there are n idempotents ei that ei ≡ dij mod mj ,

∑
ei = 1. Thus R =

∏
Rei. And

Rei is just the localization at a maximal prime. □

Lemma(4.2.6.8). If R is a Jacobson domain and R ⊂ K where K is a field, and K is f.g. over R,
then R is a field and K/R is a finite field extension.

Proof: By induction, it suffices to consider the monogenic case A = R[a]. So a is algebraic over
quotient field of R because A is a field. Let ∑ rit

i be a polynomial satisfied by a, and let m be a
maximal ideal of R that rn /∈ R(exists because radR = 0). Then Nakayama says mA ⊈ A. Then
m = 0 because A is a field, hence R is a field. □

Lemma(4.2.6.9).Let R ⊂ A be commutative domains s.t. A is f.g. over R, then radA = 0 if
radR = 0.
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Proof: By induction, it suffices to consider the case A = R[a]. If a is transcendental over quotient
field of R, then we finish by(2.4.2.12). Now assume a is algebraic over quotient field of R, let∑
rit

i,
∑
sit

i be the polynomials satisfied by a, b of minimal degrees, then s0 = −
∑m
i=1 sib

i ̸= 0 ∈
radA, and rns0 ̸= 0.

From the fact radR = 0, we can find a maximal ideal m that rns0 /∈ m. Then Nakayama says

m · S−1A ⊈ S−1A.

In particular, A ⊈ A. Choose a maximal ideal of A containing mA, then it cannot contain s0,
contradicting s0 ∈ radA. □

Prop.(4.2.6.10) [Generalized Nullstellensatz]. If R is Jacobson and S is a finitely generated R-
algebra, then:

• S is Jacobson.
• The maximal ideal of S intersect with R a maximal ideal, and the quotient ring extension is

finite, (in particular algebraic).
In particular, a f.g. algebra over a ring of dimension 0, (e.g. Artinian ring or field) is Jacobson.

Proof: To show S is Jacobson, consider for any prime p ⊂ A, A/p is a f.g. domain over R/p ∩ R.
Because R is Jacobson, rad(R/p ∩ R) = 0, so rad(A/p) = 0, by(4.2.6.9). And this shows A is
Jacobson.

If m is maximal in S, then R/m ∩R→ S/m satisfies the condition of(4.2.6.8), by(4.2.6.6), so the
first two assertions are proved. □

Cor.(4.2.6.11). If R is Jacobson and S ∈ CAlgfg(R) is reduced, then ∩m⊂R maximalmS = 0.

Proof: This is because∩
m⊂R maximal

mS ⊂
∩

M⊂S maximal
(M

∩
R)S ⊂

∩
M⊂S maximal

M = 0.

□

Zariski Pairs

Def.(4.2.6.12)[Zariski Pairs].A pair (A, I) is called a Zariski pair iff I is contained in the Jacobson
radical of A.

Prop.(4.2.6.13). If (A, I) is a Zariski pair, then the map A → A/I induces a bijection between the
idempotents.

Proof: idempotents are determined by the maximal ideals that it vanishes(4.1.7.6), and A→ A/I
induces a bijection on the maximal ideals. □

7 Dedekind Domains
Def.(4.2.7.1)[Dedekind Domain].A Dedekind domain is an integrally closed Noetherian domain
of dimension 1. A UFD is a Dedekind domain by(4.3.5.2).

Prop.(4.2.7.2)[Characterizing].For a domain R, the following are equivalent:
1. R is a Dedekind domain.
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2. R is Noetherian and each Rm is DVR for any maximal ideal m.
3. each ideal of R can be written as a product of prime ideals uniquely.

Proof: 1 ⇐⇒ 2 as normal is a stalkwise and(4.3.5.20).
3 → 2: If 3 is true, then p ̸= p2 for each prime p, so choose x ∈ p − p2, then for each y ∈ p,

(x, y) =
∏
pi, then exactly one pi(may assume p1) is contained in p, so (x, y)Rp = p1Rp. Now in fact

(x)Rp = p1Rp, because (x, y2)Rp is also a prime, so y = ax+ by2 in Rp, (1− by)y = ax ∈ (x)Rp is a
prime, so y ∈ (x)Rp. This is for all y ∈ p, so (x)Rp = p1Rp.

Now if (x) = p1 · · · pr, then p1Rp = pRp, so p1 = p, and p is f.g. by the lemma(4.2.7.3) below. p
is arbitrary, so R is Noetherian and Rm is DVR for m maximal, by(4.3.5.20).

1 → 3 : if 1 is true, then any ideal is a unique intersection of primary ideals, and primary ideals
are their radical are different, so they are coprime(4.1.1.7), so this is in fact a unique decomposition
into products of primary ideals. And any primary ideal is a power of its radical, because this is the
case after localization. □

Lemma(4.2.7.3). I, J be ideals in a ring A and IJ = (f) where f is a non-zero-divisor, then I, J are
f.g. and finitely locally free of rank 1 as A-modules.

Proof: The second assertion implies the first, by(4.3.1.7). f =
∑
xiyi, and xiyi = aif , so

∑
ai = 1

as f is non-zero-divisor. Now we show Iai as Jai is free of rank 1. Now after localization, f = xy, so
x, y are non zero divisors. Now if x′ ∈ I, then x′y = af = axy for some a, so x′ = ax. □

Fractional Ideals

Def.(4.2.7.4) [Fractional Ideals].For A an integral domain and K its quotient field, then an A-
submodule M of K is called a fractional ideal if xM ⊂ A for some x ≠ 0.

Every f.g. submodule in K is a fractional ideal, and if A is Noetherian, then the converse is true,
because it is of the form x−1a.

Prop.(4.2.7.5).An A-submodule M of K is called an invertible ideal if there is a submodule N
that MN = A. It follows that M,N are f.g., because there are ∑xiyi = 1, so M is generated by xi
and N is generated by yi.

Prop.(4.2.7.6). Invertibility is a stalkwise property.

Proof: Notice (A : M)p = (Ap : Mp), and M is invertible iff M(A : M) = A. Then use the fact
isomorphism is stalkwise(4.1.4.2). □

Prop.(4.2.7.7).A local domain is a DVR iff every non-zero fractional ideal of A is invertible.

Proof: If is a DVR, let m = (x), for any fractional ideal M< let yM ⊂ A = (xr), then M = (xr−s),
where v(y) = s. Conversely, if every non-zero fractional ideal of A is invertible, then they are all
f.g.(4.2.7.5), so A is Noetherian. Now it suffices to prove that every ideal of A is a power of m,
by(4.3.5.20). If this is not true, choose a maximal element a in the set of ideals that is not a power of
m(by Noetherian), then m−1a ⊂ m−1m = A, and m−1a ⊃ a, but it is not a, so m−1a = mk for some
k, so a = mk+1, contradiciton. □

Cor.(4.2.7.8) [Dedekind Domain Fractional Ideals are Invertible].An integral domain is a
Dedekind domain iff every non-zero fractional ideal is invertible.

Proof: Immediate from the proposition and(4.2.7.2)(4.2.7.6). □
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Def.(4.2.7.9)[Class Group].Let O be a Dedekind domain, we denote Cl(O) the Abelian group of
fractional ideals of O modulo principal fractional ideals, called the class group of O.

Prop.(4.2.7.10) [Localizations of Dedekind Domains].Let (O, F ) be a Dedekind domain and
S ⊂ SpecO be a finite subset of maximal ideals of O, let OS denote the localization of O at all such
pi. Then there is an exact sequence of Abelian groups:

1→ O∗ → O∗
S →

⊕
p∈S

F×/O∗
p → Cl(O)→ Cl(OS)→ 1.

Proof: The only non-trivial map is the map ⊕
p∈S F

∗/O∗
p → Cl(O) given by (ap) mapsto∏

x∈S p
vp(av). □

Extensions of Dedekind Domains

References are[Neu99]Chap1.8..

Prop.(4.2.7.11)[Krull-Akizuki]. If A is a Noetherian domain of dimension 1 with fraction field K
and L/K is a finite field extension, then the integral closure B of A in L is a Dedekind domain with
fraction field L, and SpecB → SpecA is surjective, and have finite fibers and induces finite residue
field extension.

Proof: Cf.[Sta]09IG or [Neu99]P77.? □

Cor.(4.2.7.12).The integral closure of a Dedekind domain in a finite extension fields of its quotient
fields is again a Dedekind domain.

Def.(4.2.7.13)[Situation].Let OK be a Dedekind domain with quotient field K, L/K a finite field
extension, and OL the integral closure of OK in L, which is also a Dedekind domain by(4.2.7.11).

Prop.(4.2.7.14). In situation(4.2.7.13), if α1, . . . , αn is a basis of L/K that is contained in OL, and
d = d(α1, . . . , αn), then

dOL ⊂ OK{α1, . . . , αn}.

Proof: For any α = a1α1 + . . .+ anαn ∈ OL, ai ∈ K, α satisfies the following equations

trL/K(αiα) =
∑
j

trL/K(αiαj)aj

for any i. Notice tr(αiα) ∈ OK , so daj ∈ OK by linear algebra. □

Prop.(4.2.7.15). In situation(4.2.7.13), if L/K is separable and OK is a PID, then every f.g. OL-
module in L is a free OK-module of rank [L : K]. In particular, rankOK

OL = [L : K].

Proof: Let α1, . . . , αn be a basis of L/K that is contained in OL, and let d = d(α1, . . . , αn) ̸= 0
by(2.2.5.34), then by(4.2.7.14), dOL ⊂ OK{α1, . . . , αn}. Notice any generator of the torsion-free
module OL over OK is a generator of the field L/K, so rankOK

OL ≥ [L : K]. Now if M ⊂ L is a
free OL-module with a set of generators µ1, . . . , µr, then we can take a ∈ OK s.t. aµi ∈ OL. Then

adM ⊂ dOL ⊂ OK{α1, . . . , αn}.

And then
[L : K] ≤ rankOK

OL ≤ rankOK
M = rankOK

(adM) ≤ [L : K].

and the assertion follows. □
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Prop.(4.2.7.16)[Integral Basis of Joins]. In situation(4.2.7.13), if L/K,L′/K are two Galois exten-
sions in K s.t. L ∩ L′ = K, and let ω1, . . . , ωn(resp. ω′

1, . . . , ω
′
n′) be an integral basis of L/K(resp.

L′/K) with discriminants d(resp. d′). Suppose that (d, d′) = OK , then ωiω′
j is an integral basis of

LL′/K with discriminant dn′(d′)n.

Proof: The hypothesis implies that [LL′ : K] = nn′, so {ωiω′
j} is a basis of LL′/K that is integral.

To show it is an integral basis, if α =
∑
i,j aijωiω

′
j ∈ OLL′ , we need to show that aij ∈ OK . Let

βi =
∑
aijωi, and let Gal(LL′/L′) = {σ1, . . . , σn},Gal(LL′/L) = {σ′

1, . . . , σ
′
n′},

T = (σ′
iω

′
j)i,j , a = (σ′

1α, . . . , σ
′
n′α)t, b = (β1, . . . , βn′)t,

then det(T )2 = d′, and a = Tb. So det(T )a = T ∗b has integral entries, and d′b is integral. Thus
d′aij ∈ OK for each i, j. Dually, daij ∈ OK . Thus by hypothesis, aij ∈ OK .

To calculate the discriminant,

d = d({ωiω′
j}) = det({σkσ′

lωiω
′
j}k,ℓ,i,j)2 = det((σkωi)k,i⊗(σ′

lω
′
j)l,j)2 = det((σkωi)k,i)2n′ det((σ′

lω
′
j)l,j)2n = dn

′(d′)n.

□

Def.(4.2.7.17)[Conductors].Let R ⊂ S ∈ CRing the conductor of R in S is defined to

c = {α ∈ R|αS ⊂ R}.

And if (R,K) is an integral domain, the conductor of R is defined to be the conductor of R in the
integral closure of R w.r.t. K.

Prop.(4.2.7.18).Let R be a Noetherian integral domain with integral closure S, then the conductor
of R in S is nonzero iff S is f.g. as a R-module.

Proof: This follows from(4.2.7.4). □

Def.(4.2.7.19)[Conductors of an Element]. In situation(4.2.7.13) and α ∈ OL, then the conductor
of α w.r.t K is the conductor of OK [α] in OL, denoted by d(α). It is non-zero by(4.2.7.4) as OL is
f.g. over OK [α].

Prop.(4.2.7.20)[Inertia and Ramification]. Situation as in(4.2.7.13), let p be a maximal prime of
OK , then pOL ∩ OL by(4.2.1.5). Let pO =

∏
iP

ei
i be a decomposition. Denote ei the ramification

degree of Pi over p, and fi = [OL/Pi : OK/p] the inertia degree of Pi over p.

Prop.(4.2.7.21)[Fundamental Identity]. Situation as in(4.2.7.13), if OL is a finite OK-module, then
for any p =

∏
iP

ei
i , ∑

eifi = [L : K].

In particular, this applies to the case that L/K is separable.

Proof: By hypothesis, OL,p is a finite OK,p-module of rank [L : K], thus OL/p is an OK/pOL-
module of rank n. Notice there is an isomorphism OL/pOL ∼=

∏
iOL/P

ei
i , thus

[L : K] =
∑
i

dimOL/pOL/P
ei
i =

∑
i

eifi.

If L/K is separable, let {α1, . . . , αn} be a basis of L/K with αi ∈ OK , then as d(α1, . . . , αn) ̸= 0
by(2.2.5.34), OL ⊂ d−1(α1OK + . . . + αnOK) by(4.2.7.14). So it is a finite OK-module, as OK is
Noetherian. □
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Prop.(4.2.7.22) [Decompositions in a Galois Extension]. Situation as in(4.2.7.13), if L/K is
Galois, then for any p ∈ Spec(OK), Gal(L/K) acts transitively on the set of primes over p.

Proof: If P,P′ are two primes over p but P′ ̸= σP for any σ ∈ Gal(L/K), then by Chinese
remainder theorem, there exists x ∈ OL s.t.

x ≡ 0 mod P′, x ≡ 1 mod σP, ∀σ ∈ Gal(L/K).

But then NmL/K(x) =
∏
σ∈Gal(L/K) σ(x) ∈ P′ ∩ OK = p, but none of σ(x) is in P, so∏

σ∈Gal(L/K) σ(x) /∈ P ∩ OK = p, contradiction. □

Thm.(4.2.7.23)[Dedekind-Kummer]. Situation as in(4.2.7.13), suppose L = K(θ), where θ ∈ OL
has minimal polynomials p(X) ∈ OK [X](such a θ exists if L/K is separable, by(2.2.5.20)). Let d be
the conductor of θ, then for any prime ideal p of OK prime to d, let

p(X) =
∏
i

pi(X)ei

be the decomposition of p(X) into irreducible factors in OK/p[X], where pi(X) ∈ OK [X] are monic
polynomials, then

• Pi = pO + pi(θ)OL are different primes ideals in OL.
• pOL =

∏
iP

ei
i .

• The inertia degree fi equals deg(pi(X)).

Proof: Cf.[Neu99]P48. □

Def.(4.2.7.24)[Ramification Notations]. Situation as in(4.2.7.20), let pO =
∏
iP

ei
i , then

• splits completely in L if r = [L : K].
• p is non-split in L if r = 1.
• Pi is unramified over p if ei = 1 and the residue fields extension (OL/Pi)/(OK/p) is separa-

ble.
• Pi is ramified in over p if it is not unramified over p.
• Pi is totally ramified over p if it is ramified over p and fi = 1.
• p is called unramified in L if all Pi are unramified over p.
• L/K is called a unramified extension if all primes of OK are unramified.

Prop.(4.2.7.25)[Almost Every Prime is Unramified]. Situation as in(4.2.7.23), then a.e. prime
p of OK is unramified in L, by(4.2.7.39).

Prop.(4.2.7.26). Situation as in(4.2.7.13), OL ⊗OK
OK,p =

∏
iOL,Pi .

Proof: Cf.[MIT notes, 11.7]. □

Prop.(4.2.7.27). If a prime p splits completely in two separable extension LM of K, then it also splits
completely in the composite LM .

Proof: We use the language of valuation. The extension of a valuation v of K corresponds to the
set of equivalent classes of algebra map from L to Kv module conjugacy over Kv. So We only need
to show that two different maps of LM are not conjugate over Kv. But the restrict of them to L or
M is different, thus not conjugate over Kv by the assumption. □
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Cor.(4.2.7.28).A prime splits completely in a separable extension L if it splits completely in the
Galois closure N of L.

Proof: This is because the Galois closure is the composite of the conjugates of L. □

Differents and Discriminants

Def.(4.2.7.29)[Differents].Let L/K be a finite separable field extension with separable residue field
extension, and OK is a Dedekind domain with integral closure OL in L, there is a trace form on L:
(x, y)→ tr(xy), which is non-degenerate.

We define the dual module for a fractional ideal I as I∨ = {x ∈ L| tr(xI) ∈ OK}. This is
truly a fractional ideal because if αi ∈ OL is a basis of L/K, and let d = det(tr(αiαj)), then for any
a ∈ I ∩OL, ad · I∨ ∈ OL, because if x =

∑
xiαi ∈ I∨, then ∑ axi tr(αiαj) = tr(xaαj) ∈ OK , so solve

the equation shows daxi ∈ OK .
The different of K/L is defined to be DL/K = ((OL)∨)−1.

Prop.(4.2.7.30)[Properties of Differents].Different is compatible with composition, localization
w.r.t. a prime ideal and completion.

Proof: Cf.[Neu99]P195. □

Cor.(4.2.7.31).DL/K =
∏

PDLP/Kp
.

Prop.(4.2.7.32). If OL = OK [α], then DL/K = (f ′(α)), where f(X) = Irr(α,K;X).

Proof: By(2.2.5.30), if f(X)/(X − α) = β0 + β1X + . . . + βn−1X
n−1, then O∨

L =
f ′(α)−1(β0, . . . , βn−1). Now the result follows if (β0, . . . , βn−1) = OL, which is easy to see if we
write βi as polynomials of α. □

Cor.(4.2.7.33). If L/K is finite separable extension of local fields, then

vL(DL/K) =
∑

σ∈G,σ ̸=1
iL/K(σ) =

∫ ∞

−1
(|G(L/K)t| − 1)dt.

Notation as in(12.2.2.22).

Prop.(4.2.7.34) [Different as Annihilator of Kähler Differential].The different DL/K is the
annihilator of ΩOL/OK

.

Proof: It suffices to show the exact sequence

0→ DL/K → OL → ΩOL/OK
,

but because exactness is stalkwise(4.1.4.2), we can localized at a maximal ideal, then by(12.2.2.2),
OL = OK [x] is monogenous, thus ΩOL/OK

is cyclic, and the annihilator of dx is f ′(x). So by(4.2.7.32)
we are done. □

Prop.(4.2.7.35)[Ramification and Different].A prime idealP of L is ramified overK iffP | DL/K .
Let e be the ramification of P, then the power s of P in DL/K is{

s = e− 1 P tamely ramified
e ≤ s ≤ e− 1 + vP(e) P wildly ramified

.
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Proof: Cf.[Neu99]P199. □

Def.(4.2.7.36)[Discriminants].Let the situation the same as in(4.2.7.29), the discriminant of L/K
is defined to be the set dL/K consisting of discriminants d(α1, . . . , αn)(2.2.5.33) where αi is a basis
of L/K that αi ∈ OL.

Because d(α1, . . . , αn) ⊂ OK and trL/K is OK-linear, dL/K is an ideal of OK .

Prop.(4.2.7.37)[Differents and Discriminants].

dL/K = NL/KDL/K .

Proof: Cf.[Neu99]P201. □

Cor.(4.2.7.38)[Compositions and Discriminants].For a tower of fields K ⊂ L ⊂M , we have

dM/K = d
[M :L]
L/K NL/K(dM/L).

Proof: Apply NM/K = NL/KNM/L to the equation DM/K = DM/LDL/K(4.2.7.30), we get

dM/K = NL/K(dM/L)NL/K(D[M :L]
L/K ) = NL/K(dM/L)d[M :L]

L/K .

□

Cor.(4.2.7.39) [Ramification and Discriminant].Let L/K be a separable finite field extension,
then a prime ideal p of K ramifies in L iff p|dL/K .

In particular, only f.m. primes are ramified in L/K, and the extension is unramified iff dL/K = 1.

Proof: This follows from(4.2.7.35) and(4.2.7.37). □

Cor.(4.2.7.40). dL/K =
∏

P dLP/Kp
.

Proof: This follows from(4.2.7.31) and(4.2.7.37). □
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4.3 Commutative Algebra III

1 Projective
References are [Projective Modules], [Sta]and[Vak17].

Def.(4.3.1.1)[Projective Modules].A module P over a ring R is called projective iff Hom(P,−)
is exact, or equivalent, for any surjective map of modules F → Q → 0, Hom(P, F ) → Hom(P,Q) is
surjective.

Prop.(4.3.1.2).Localization and tensor product preserves projective because they are left adjoints.
And when tensoring f.f. map, then the converse is also true(4.4.2.1).

Prop.(4.3.1.3).A module over a ring is projective iff it is a direct summand of a free module, in
particular, it is flat. Moreover, there is a free module Q that P ⊕Q = F free.

Proof: For the second assertion, we can choose an arbitrary Q that P ⊕Q free, and see⊕N(P ⊕Q)
is free. □

Lemma(4.3.1.4).A projective module is a direct sum of countably generated projective modules.

Proof: This follows from(2.2.4.28). □

Prop.(4.3.1.5)[Projective over Local Ring].A projective module P over a local ring R or a PID
is free.

Proof: Local ring case: By(4.3.1.4) and(2.2.4.29), it suffices to show that any element x of P is
contained in a free direct summand of P . Because P is projective, it is a direct summand of a free
module F , F = P ⊕Q. Let B be a basis of F that the number of basis element in the expression of
x is minimal. Let x =

∑
aiei. Then no ai is contained in the ideal generated by other aj , otherwise

we can choose another basis to show this is minimal. Let ei = yi + ci be decompositions into P and
Q components, and write yi =

∑
aijei + ti, where ti is combination of elements in B other than ei.

Now it suffices to show det(aij) is invertible, because in this way {yi} ∪ (B\{x1}) is a basis of F and
x =

∑
aiyi because x ∈ P . And N = span{yi} is a summand of P because N ⊂ P and both N,P

are summands of F .
To show det(aij) is invertible, notice that by plugging yi =

∑
bijej + ti into

∑
aiei =

∑
aiyi

shows aj =
∑
aiaij , thus by the argument before, aij are non-invertible for i ̸= j and 1 − aii is

non-invertible, so aii is invertible. Because R is a local ring, we can easily see det(aij) is invertible.
PID case: directly from(2.2.4.21). □

Prop.(4.3.1.6). If R is a ring and I is nilpotent ideal and P is a projective R/I-module, then there
exists a projective R-module P that P/IP ∼= P .

Proof: Cf.[Sta]P07LV. □

Finite Projective Modules

Prop.(4.3.1.7)[Finite Projective Modules].Let M be a R-module, the following are equivalent:
1. M is finite projective.
2. M is f.p. and flat.
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3. M is f.p. and all its localizations at (maximal)primes are free.
4. M is finite locally free.
5. M is finite and locally free.
6. M is finite and all its localizations at primes are free and the function p→ dimk(p)M ⊗R k(p)

is a locally constant function on SpecR.
Proof: 1→ 2: M ⊗K = Rm for some K and m, so K is finite and M = Rm/K is f.p. And M is
flat because it is a summand of Rn(4.4.1.4).

2 → 4: For any prime p, choose a basis for the k(p)-vector space M ⊗ k(p), then by Nakayama,
their inverse image generate Mg for some g /∈ p(2.2.4.8), and the kernel K of this generation is finite
because Mg is f.p. And K ⊗ k(p) = 0 by the flatness of Mg. Then by Nakayama again there is a
g′ /∈ p that Mgg′ = 0(2.2.4.8).

4→ 3: Because f.p. is local(4.1.4.4).
3→ 2: Because flatness is trivial.
4→ 5: Because finite is local(4.1.4.4).
5→ 4, 4→ 6: Trivial.
6→ 4: Cf.[Sta]00NX.?
2 + 3 + 4 + 5 + 6→ 1: Cf.[Sta]00NX.?
Consider the stalk, it is all free by(4.3.1.2) and(4.3.1.5), thus by(5.5.1.38), it is locally free. □

Cor.(4.3.1.8)[Partially Stalkwise]. If P is fo f.p., then finite projectiveness is a stalkwise property
for P .

Cor.(4.3.1.9)[Projective and Flat].A finite module over a Noetherian ring is projective iff it is flat.
Cor.(4.3.1.10). If M is finite projective, then the canonical map Hom(M,N)⊗L→ Hom(M,N ⊗L)
is an isomorphism.
Proof: By proposition above M is f.p. and finite locally free, so by(4.3.7.7) and tensor commutes
with localization, we can check locally, where M is finite free so the isomorphism is obvious. □

Def.(4.3.1.11)[Characteristic Polynomials for Finite Projective Modules].Let M be a finite
projective module over a ring A. then we can define a characteristic polynomial in A[X] for any map
of A-modules M → M : if M is free, then this map is defined as usual. In general, we can find an
open covering SpecAfi of SpecA that Mfi is free over Afi . Thus we can define the characteristic
polynomial locally and glue them together to get a characteristic polynomial in A[X].

In particular, we can also define trace and norm of a A-module map M →M . And when B is a
locally free A-algebra, then there are trace and norm maps tr : B → A and Nm : B → A.

Prop.(4.3.1.12).Let R be a ring and I be a locally nilpotent ideal. If P is a finite projective module
over R/I, then there exists a finite projective R-module P that P/IP ∼= P .
Proof: Cf.[Sta]0D47. □

Prop.(4.3.1.13).Let M be a R module and I a nilpotent ideal of R. If M/IM is a projective
R/I-module and M is flat over R, then M is a projective R-module.
Proof: Cf.[Sta]05CG. □

Thm.(4.3.1.14)[Serre-Suslin].Every finite projective module over the polynomial ring k[x1, . . . , xn]
is free.
Proof: Cf.[Lan05]P850.? □
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Duality of Projective Modules

Prop.(4.3.1.15) [Basis Criterion of Projectiveness].An A-module P is projective iff there are
elements xi in P and fi in P ∗ that for any x, fi(x) = 0 a.e. i, and ∑ fi(x)xi = x. Moreover, P is
finite projective iff there are f.m. of them.

Proof: If P is projective, as a summand of a free module, then we can choose the coordinates of
the inclusion map as fi, and choose the image of the quotient map of the coordinate as xi. The
converse is verbatim. □

Cor.(4.3.1.16)[Finite Projective Duality]. If P is projective, then P → P ∗∗ is injective, and if P
is finite projective, then it is an isomorphism.

Proof: If f(x) = 0 for all f ∈ P ∗, then the proposition says x = 0. And if P is finite projective, it
can be seen xi, fi forms a ”basis” of P ∗(finiteness used), so fi generate P ∗, and similarly xi generate
P ∗, so P → P ∗∗ is surjective. □

Cor.(4.3.1.17). If P is projective over R, then P ∗ ̸= 0.

Cor.(4.3.1.18). In the meanwhile of the proof, we already get: if P is finite projective, then P ∗ is
finite projective, by(4.3.1.15).

Cor.(4.3.1.19). If P is finite projective, the the map P ⊗M → Hom(P ∗,M) is an isomorphism.

Proof: In(4.3.1.10), let N = R and let M = P ∗, then use the fact P ∼= P ∗∗. □
Thm.(4.3.1.20)[Quillen-Suslin].For k ∈ Field, any finite projective module over k[X1, . . . , Xk] is
free. (Highly nontrivial).

Proof: Cf.[Lan05]P850. □
Prop.(4.3.1.21).∏NZ is not free over Z, by(2.1.4.4).

2 Injective
Prop.(4.3.2.1)[Baer’s Criterion].A right R−module I is injective iff for every right ideal J of R,
every map J → I can be extended to a map R→ I. (Directly from (3.7.6.7)).

Cor.(4.3.2.2).A module over a PID is injective iff it is divisible.

Cor.(4.3.2.3).A is injective iff Ext1(R/I,A) = 0 for every ideal I of R.

Cor.(4.3.2.4)[Rank].Let M a finite projective R-module, then M is said to have rank n if M/mM
is of rank n over the field R/m for any arbitrary maximal ideal m of R.

Prop.(4.3.2.5).The category of R-mod has enough injectives by(3.7.3.28), and it has enough projec-
tives trivially.

Prop.(4.3.2.6). If I is an injective A-module, then for any ideal α of A, Γα(I) = {m|αnm = 0} for
some n is injective.

Proof: Use Baer criterion, for any ideal b of A, it is f.g. so there is a n that ϕ(αnb) = 0, and
Artin-Rees tells us that ϕ(αN ∩ b) = 0 for some N . So we have an extension of ϕ over b/b ∩ αN to
A/αN → I, and this obviously factor through Γα(I), so it is done. □

Prop.(4.3.2.7).For an injective module A-module I, I → If is surjective.

Proof: we have the sheaf of modules Ĩ is flabby(5.7.1.5), thus the map to the stalk is surjective. □
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Pontryagin Duality

Basic references are [Weibel Homological Algebra].

Def.(4.3.2.8).The Pontryagin dual M∨ of a left R-module M is the right R-module
HomAb(M,Q/Z), where (fr)(b) = f(rb).

It is easily verified that if A ̸= 0, then A∨ ̸= 0, and Q/Z is an injective Z-module, thus the
Pontryagin dual is faithfully exact.

Prop.(4.3.2.9).M is flat R-module iff M∨ is an injective right R-module (Because Hom(−,Q/Z) is
exact).

3 Homological Dimension
Def.(4.3.3.1).For a R-mod A, the projective dimension pd(A) is the minimal length of a projective
resolution of A. The injective dimension id(A) is the minimal length of a injective resolution of
A. The flat dimension fd(A) is the minimal length of a flat resolution of A.

Prop.(4.3.3.2). If R is Noetherian, then fd(A) = pd(A) for every f.g. module A.

Proof: Use(4.3.3.3), we see that if we choose a syzygy and look at the n-th term, then it is f.p and
flat, so we have it is projective by(4.4.1.14). □

Lemma(4.3.3.3)[pd]. If Extd+1(A,B) = 0 for every B, then for every resolution

0→M → Pd−1 → . . . , P1 → P0 → A→ 0

where Pk is projective, then M is projective. Hence we have pd(A) ≤ d. (Use dimension shifting, the
following two are the same).

Lemma(4.3.3.4)[id]. If Extd+1(A,B) = 0 for every A, then for every resolution

0→ B → P0 → . . . , Pn−1 →M → 0

where Pk is injectives, then M is injective. Hence we have id(B) ≤ d

Lemma(4.3.3.5)[fd]. If Tord+1(A,B) = 0 for every B, then for every resolution

0→M → Fd−1 → . . . , F1 → F0 → A→ 0

where Fk is flat, then M is flat. Hence we have fd(A) ≤ d

Prop.(4.3.3.6)[Global Dimension Theorem].The following are the same for any ring R and called
the left global dimension of R:

1. sup{id(B)}

2. sup{pd(A)}

3. sup{pd(R/I)}

4. sup{d : ExtdR(A,B) ̸= 0 for some module A,B.

Proof: This follows from(4.3.3.3),(4.3.3.4) and (4.3.2.3). □
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Prop.(4.3.3.7).A Z has global dimension 1 because injective is equivalent to divisible, and this shows
that a quotient of an injective is injective.

Prop.(4.3.3.8)[Tor Dimension Theorem].The following are the same for any ring R and called
the Tor dimension of R:

1. sup{fd(A)} for A a left module.
2. sup{fd(B)} for B a right module.
3. sup{pd(R/I)} for I a left ideal.
4. sup{pd(R/J)} for J a right ideal.
5. sup{d : TorRd (A,B) ̸= 0 for some module A,B.

Proof: This follows from(4.3.3.5) applied to R and Rop and also(4.4.1.2). □

Prop.(4.3.3.9)[Change of Rings].Let S → R be a ring map, let A ∈ModR, then we have pdS(A) ≤
pdR(A) + pdS(R).

Proof: Use the Cartan-Eilenberg resolution and the total complex has length pdR(A) + pdS(R). □

4 Depth

Regular sequences

Def.(4.3.4.1) [Regular Sequences]. If R is a commutative ring and M is an R-module, then a
sequence (f1, . . . , fn) of elements of R is called a M-regular sequence if fk is a nonzero-divisor of
M/(f1, . . . , fk−1) and M/(f1, . . . , fn) ̸= 0. If M = R, then it is simply called a regular sequence.

Prop.(4.3.4.2). If R is a local ring, M a finite R-module, and (f1, . . . , fn) is a M -regular sequence,
then a permutation of this sequence is also an M -regular sequence.

Proof: By transposition of adjacent indices, we can assume n = 2. Then x is a non-zero-divisor,
and x ∈ m, so Now (x, y) is anM -regular sequence iffM ⊗LRR/x is discrete andM ⊗LR/x⊗LRR/y is
discrete. Then it suffices to prove y is injective onM : If ym = 0, then m = xm′ for some m′, because
y is injective on M/x, and then ym′ = 0 also because x is injective on M . Then x is surjective on
ker(y), thus ker(y) = 0 by Nakayama. □

Prop.(4.3.4.3).Let R be a ring and 0 → M1 → M2 → M3 → 0 be an exact sequence of R-modules.
Then if a sequence (f1, . . . , fr) ∈ Rr is both M1-regular and M3-regular, then it is also M2-regular.

Proof: Use the snake lemma, ker(f1|M ) = 0, and 0 → M1/fM1 → M2/fM2 → M3/fM3 → 0,
then use induction. □

Prop.(4.3.4.4).For any integers ei ≥ 1, (f1, . . . , fn) is a M -regular iff (fe1
1 , . . . , fenn ) is M -regular.

Proof: Use induction on n. n = 1 is trivial, and it suffices to show that (fe1 , f2, . . . , fn) is M -
regular. Then we use induction on e: There is an exact sequence 0 → M/f1M → M/f e1M →
M/f e−1M → 0, so by(4.3.4.3), if (f1, . . . , fn) is a M -regular, then (fe1 , f2, . . . , fn) is M -regular.
Conversely, if (fe1 , f2, . . . , fn) is M -regular, then f2 is injective on M/f e1M , so also injective on
M/f1M , thus injective on M/f e−1M by induction hypothesis, and also there is a further exact
sequence 0→M/(f1, f2)M →M/(fe1 , f2)M →M/(fe−1, f2)M → 0, so we can consider f3, and then
so on, thus show (fe1 , f2, . . . , fn) is M -regular. □
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Prop.(4.3.4.5).Let R be a ring, then the following are equivaletn:
• any permutation of (f1, . . . , fr) is a regular sequence.
• Any subsequence of (f1, . . . , fr) is a regular sequence.
• (f1X1, . . . , frXr) is a regular sequence of R[X].

Proof: 1 → 2: Trivial. 2 → 1: Use induction on r: If r = 2 and (x, y) is regular, we have M ⊗LR
R/x,M⊗LRR/y are both discrete, andM⊗LRR/x⊗LR/y is also discrete, thusM⊗LRR/y⊗LRR/x is also
discrete and (y, x) is regular. For r > 2, it suffices to show fσ(r) is regular in M/(fσ(1), . . . , fσ(r−1)).
If σ(r) = r, then we are done, otherwise, fr and fσ(r) are both injective onM/(f1, . . . , f̂σ(r), . . . , fr−1)
by induction hypothesis, and (fσ(r), fr) is a regular sequence for this ring, then so is (fr, fσ(r)) by
the r = 2 case, thus we are done.

3 ⇐⇒ 2: Notice as a R-module, R[X1, . . . , Xr]/(f1X1, . . . , fiXi) is a direct sum of the modules
R/IEX

e1
1 . . . Xer

r , where IE is generated by those fj that j ≤ i and ej > 0. Then fi+1Xi+1 is injective
on this iff fi+1 is injective on R/IE for any E. Then it is clear that this is equivalent to 2. □

Def.(4.3.4.6) [Quasi-Regular Sequence].Let f1, . . . , fc ∈ R and J = (f1, . . . , fc), let M be a R-
module, then there is a canonical map M/JM ⊗R/J R/J [X1, . . . , Xc] → ⊗n≥0J

nM/Jn+1M . Then
(f1, . . . , fc) is called M-quasi-regular sequence iff this is an isomorphism.

Depth

Prop.(4.3.4.7)[Rees].For a f.g. module M and IM ̸= M ,
depthI(M) = min{i|ExtiA(A/I,M) ̸= 0} = min{i|ExtiA(N,M) ̸= 0}

where depthI(M) is the length of the maximal M -regular sequence in I, N is a finite A-module with
Supp(N) ⊂ V (I).
Proof: If No elements of I are M -regular, then i ⊂ ∪Ass(M) thus in one of them, so
HomAp(k,Mp) ̸= 0, and we have Np/PNp = N ⊗A kp nonzero by Nakayama, thus Homk(N ⊗A
kp, kp) ̸= 0, thus HomAp(Np,Mp) = (HomA(N,M))p ̸= 0, so Ext0

A(N,M) ̸= 0. Other dimensions
follows by induction, consider the cokernel of M a1−→M .

Conversely, use induction, then we have an injection ExtiA(N,M) a1−→ ExtiA(N,M) for i < n. And
the condition shows that I ⊂

√
Ann(M), so ar1N = 0, thus the result. □

Cor.(4.3.4.8).Two maximal regular sequence in a f.g. module have the same length.
Cor.(4.3.4.9).For a moduleM over a Noetherian ring A, we know ΓI(M) = {m|Inm = 0 for some n},
and Hn

I is its right derived functor, then we have depthI(M) ≥ n ⇐⇒ H i
I(M) = 0 for i < n.

(Because derived functor commutes with colimits, consider N = A/Ik).
Lemma(4.3.4.10) [Ischebeck].For a Noetherian local ring A, if M,N are finite modules, then we
have ExtiA(N,M) = 0 for i < depth(M)− dimN .
Proof: □

Prop.(4.3.4.11).Let A be a local ring andM is finite A-module, then depth(M) ≤ dimA/P ≤ dimM
for every P ∈ Ass(M). (Because Hom(A/P,M) ̸= 0.)
Proof: □

Prop.(4.3.4.12)[Auslander-Buchsbaum Formula].For a local ring R, if M is a finitely generated
R-mod, if pd(M) <∞, then we have depth(R) = depth(M) + pd(M).
Proof: Cf.[Weibel P109]. □
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Cohen-Macaulay

Def.(4.3.4.13)[Cohen-Macaulay Modules].For A Noetherian local, a f.g. A-module M is called
Cohen-Macaulay if depth(M) = dimM . In view of(4.3.4.11), this is equivalence to depth(M) =
dimA/P for all P ∈ Ass(M). A Cohen-Macaulay ring is a ring A that is Cohen-Macaulay over
itself.

A localization of a C.M local ring is C.M, so we call a ring Cohen-Macaulay if all its localization
at primes are C.M.

Prop.(4.3.4.14) [Gorenstein Ring].A ring R is called Gorenstein iff idRR < ∞. A Gorenstein
local ring is C.M. In this case, depth(R) = idRR = dimR, and ExtqR(R/m,R) ̸= 0 ⇐⇒ q = dimR.

Proof: Cf.[Weibel P107]. □

Prop.(4.3.4.15).A ring is C.M. iff for all ideals, the associated primes of A/I all have the same height
as I, i.e. unmixed.

Proof:
□

Prop.(4.3.4.16). If a local ring is C.M. and I = (x1, . . . , xr) is a regular sequence, then (x1, . . . , xr) is
.

Proof: ? Isn’t this always true? □

Prop.(4.3.4.17).Let A is a Noetherian local ring andM a f.g. module, if a set of elements (x1, . . . , xr)
forms a regular sequence for M , then dimM/(x1, . . . , xr) = dimM − r. The converse is also true
when A is C.M. If this is the case, then A/(x1, . . . , xr) is also C.M.

Proof: By(4.2.2.19), we have <, for the converse, Supp(M/fM) = Supp(M) ∩ Supp(A/fA) =
Supp(M) ∩ V (f), and when f is M -regular, V (f) doesn’t contain any Ass(M) thus no minimal
elements of Supp(M), so dim(M/fM) < dimM , thus we have >.

When A is C.M.:? □

Prop.(4.3.4.18).Let R→ S be a local homomorphism of Noetherian local rings, if R is C.M. and S
is finite flat over R or S is flat over R and dimS ≤ dimR, then S is C.M., and dimR = dimS.

Proof: Cf.[Sta]00R5. □

5 Normal & Regular Rings

Normal Ring

Def.(4.3.5.1)[Normal Rings].A normal domain is a domain and is integrally closed in its fraction
field.

A domain is normal iff all its localizations are normal, so we can define a normal ring to be a
ring that all its stalks are normal local rings. In particular, a normal ring is reduced.

Proof: The localization of a normal domain is normal, and the converse follows from A =
∩Am(4.1.1.33). □

Prop.(4.3.5.2)[UFD is Normal].A UFD is a normal domain.
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Proof: If A is a UFD, then for any x ∈ Frac(A) integral over A, checking the primes dividing the
coefficients, we see x ∈ A. □

Prop.(4.3.5.3).A normal ring R is integrally closed in its ring of fractions.

Proof: Let x ∈ Q(R) be integral over R, and I = {f ∈ R|fx ∈ R}, then for any prime p of R,
R → Rp is injective, so Rp ⊂ Frac(R)⊗R Rp, and x⊗ 1 is integral over Rp, thus x⊗ 1 ⊂ Rp, which
means x⊗ 1 = 1⊗ a/f for some a, f ∈ R, f /∈ p. This means f ′(fx− a) = 0 ∈ Q(R) for some f ′ /∈ p,
so ff ′ ∈ I, and thus I is not contained in any prime ideal, so I = 1 and x ∈ R. □

Prop.(4.3.5.4).Let R be a reduced ring with f.m. minimal prime ideals, then the following are
equivalent:

• R is a normal ring.
• R is integrally closed in its ring of fractions.
• R is a finite product of normal domains.

In particular, a Noetherian normal domain is a finite product of normal domains(4.1.1.46).

Proof: 3→ 1 is trivial, 1→ 2 is by(4.3.5.3), for 2→ 3: let pi be the minimal prime ideals of R, then
Frac(R) =

∏r
i=1Qpi(4.1.7.22), with each Qp1 field because R is reduced. Denote the idempotents of

Frac(R) by ei. Then ei is integral thus in R. These idempotents make R into a product of domains,
which are just R/pi, because the kernel of the map R → Rpi is pi. Now R is integrally closed in
Frac(R) implies each R/pi is integrally closed in Rpi , thus R is a finite product of normal domains.
□

Def.(4.3.5.5)[Normalization].The normalization of an integral domain is the alg.closure of it in
its quotient field. It commutes with localization.

Def.(4.3.5.6)[Completely Normal Domains].A domain is called completely normal iff all almost
normal elements are in A, i.e. {u|∃a, aun ∈ A ∀n} ∈ A. For Noetherian ring, completely normal is
equivalent to normal.

Proof: Cf.[Sta]00GX. □

Prop.(4.3.5.7).A is a normal domain, then so does A[X]. If A is Noetherian normal domain, then
so does A[[X]].

Proof: Cf.[Sta]030A, 0BI0. □

Prop.(4.3.5.8).Direct limits of normal rings are normal.

Proof: Let p be an ideal of R = lim−→Ri, pi = p∩Ri, then Rp = lim−→(Ri)pi , so it suffices to prove for
normal domains, the rest is easy. □

Prop.(4.3.5.9)[Closure in Separable Extension].Let R be a Noetherian normal domain with field
of fraction K and L/K is a finite separable field extension, then the integral closure S of R in L is
finite over R.

Proof: Let tr : L× L→ K : (x, y) 7→ tr(xy) be the trace pairing, then as L/K is finite separable,
this is non-degenerate. Now if x ∈ L is integral over R, then tr(x) ∈ R. So if x1, . . . , xn are integral
and form a basis of L over K, then M = {y ∈ L|⟨xi, y⟩ ∈ R} is an R-module and M ∼= Rn, and
S ⊂M , so S is finite over R as R is Noetherian. □
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Prop.(4.3.5.10)[Field Extension].Let A be a K-algebra, and L/K is a field extension, then if AL
is a normal integral domain, so is A. And the converse is also true if L/K is separable.

Prop.(4.3.5.11)[Algebraic Hartogs’s Lemma].Principal ideals in a Noetherian normal domain is
unmixed and A = ∩ht p=1Ap.

Proof: Cf.[Matsumura P124].? [Rising Sea, P320], [Sta]031T. □

Prop.(4.3.5.12)[Krull]. If A is a normal domain with fraction field K, L is a normal extension field
of K and B is the integral closure of A in L that A ⊂ B is integral, then any two prime ideals of B
lying over a prime in A are conjugate by an action of GL/K .

Proof: Firstly if GL/K is finite, and P, P ′ be primes of B that P ∩ A = P ′ ∩ A. Let Pi = σi(P ).
If P ′ ̸= Pi for any i, then P ′ ⊈ Pi for any i by(4.2.1.5), so there is some x ∈ P ′ not in any of Pi.
Now let y = (

∏
i σi(x))q where q = 1 if char(K) = 0 and q = pr for r large if char(K) = p, then

y ∈ K thus in A because A is normal, and it is not in P by hypothesis. But y ∈ P ′ ∩ A = P ∩ A,
contradiction.

For the infinite field extension case, let K ′ be the fixed field of GL/K so that K ′/K is purely
inseparable, then there is clearly exactly one prime of K ′ over any prime of A. So we can assume
L/K is Galois, then use profinite group technique to find a σ ∈ GL/K that σ(P ) = P ′. □

Prop.(4.3.5.13)[Hironaka].Let A be a local Noetherian domain that is a localization of an algebra
of f.t. over a field k. Let t ∈ A that

• tA has only on eminimal associated prime ideal p.

• t generate the maximal ideal of Ap.

• A/p is normal.
Then p = tA and A is normal.

Proof: Cf.[Hartshorne P264]. □

Prop.(4.3.5.14) [Quadratic Extension is Normal]. If A is a UFD that 2 is invertible in A and
f ∈ A\A2, then A[Z]/(Z2 − f) is integral and normal.

Proof: It is integral by(2.2.3.13). To show it is normal, assume F (T ) ∈ B[T ] that f(α) = 0, where
α ∈ K(B)\B, then by replacing F by FF , we can assume F (T ) ∈ A[T ]. We can assume α /∈ K(A),
thus α = g + hZ, then the minimal polynomial of α is Q(T ) = T 2 − 2gT + (g2 − h2f) ∈ K(A)[T ].
Then F (T ) = P (T )Q(T ) in K(A)[T ]. By Gauss’s lemma, 2g, g2−h2f ∈ A, so g, f ∈ A by hypothesis.
□

Cor.(4.3.5.15). If k is a field of characteristic̸= 2, then
• k[x1, . . . , xn]/(x2

1 + . . .+ x2
m) is integral normal for n ≥ m ≥ 3.

• k[x, y, z, w]/(wz − xy) is normal.(Diagonalize).

Prop.(4.3.5.16).Z[
√
n] is integrally closed for n ≡ 3 mod 4, and Z[1+

√
n

2 ] is integrally closed for
n ≡ 1 mod 4, by(12.4.3.6).
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Regular Ring

Def.(4.3.5.17) [Regular Rings].A Noetherian local ring (A,m, k) is called regular local iff it
rankk m/m2 = dimA. This is equivalent to rankk m/m2 ≤ dimA, or gr A ∼= k[X1, . . . , Xd]
by(4.2.2.19).

Localization of a regular local ring at primes are regular local, Cf.[Sta]0AFS. Hence we define a
regular ring to be a Noetherian ring that all its localization at primes are regular local.

Proof: Cf.[Matsumura P139]. □

Prop.(4.3.5.18). If A is regular, then A[X1, . . . , Xn] is regular, and A[[X1, . . . , Xn]] is regular.

Proof: Cf.[Matsumura P176]. □

Prop.(4.3.5.19)[Auslander-Buchsbaum].A regular local ring is UFD. In particular it is a normal
domain. Thus a regular ring is normal and thus reduced(4.3.5.1).

Proof: Cf.[Matsumura P142],[Weibel P106]. □

Cor.(4.3.5.20).A regular local ring of dimension 0 is a field, and a regular local ring of dimension 1
is a DVR.

Prop.(4.3.5.21).A regular local ring is Gorenstein hence C.M..

Proof: □

Prop.(4.3.5.22)[Regular Local Ring and Regular Sequences].Let (R,m) be a regular local ring
of dimension d,

• If x1, . . . , xc be a sequence that maps to linearly independent elements inm/m2, then (x1, . . . , xc)
is a regular sequence, and R/(x1, . . . , xc) is a regular local ring of dimension d− c.

• If I ⊂ m and R/I is a regular local ring, then I = (x1, . . . , xc) where (x1, . . . , xc) is a regular
sequence.

• If (x1, . . . , xc) is a regular sequence in m and R/(x1, . . . , xc) is a regular local ring, then R is
also a regular local ring.

Proof: 1: We can complete it to a sequence (x1, . . . , xd) that (x1, . . . , xd) generate m/m2, then by
Nakayama (x1, . . . , xd) = m. Now by Krull’s height theorem(4.2.4.18), R/(x1) has dimension≥ d− 1
and (x2, . . . , xd) generate the maximal ideal, so R/(x1) is a regular local ring by definition. Now
x1 ̸= 0 because R is a domain(4.3.5.19), thus we can use induction to show (x1, . . . , xc) is a regular
sequence.

2: Let dim(R/I) = d− c, then the hypothesis shows (I+m2)/m2 ∼= I/mI has rank c, thus we can
choose (x1, . . . , xc) ∈ I that generate I/mI. Thus by Nakayama I = (x1, . . . , xc), and (x1, . . . , xc) is
a regular sequence by item1.

3: By induction, it suffices to prove the c = 1 case, then any lift of x1 together with d−1 generator
of the maximal ideal of R/m is a set of generator of m. □

Cor.(4.3.5.23).A regular local ring is C.M., by item1.

Prop.(4.3.5.24). If a quotient of a Noetherian local ring by a non-zerodivisor is regular, then it is
itself regular.

Prop.(4.3.5.25)[Serre].A Noetherian local ring A is regular iff the global dimension of A is finite.
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Proof: Cf.[Mat P139]. □

Prop.(4.3.5.26).For A a regular local ring and M a f.g. A-module,

pd(M) + depth M = dimA.

Cf.[Hartshorne P237].

Cor.(4.3.5.27).For a f.g. module M over a regular local ring A, pd(M) ≤ n iff Exti(M,A) = 0 for
all i > n.

Proof: This is because we can use dimension shifting to show Exti(M,N) = 0 for all N f.g.,
then(4.3.3.3) says that pd(M) ≤ n. □

Prop.(4.3.5.28)[Regular and Regular Sequence].Let

Prop.(4.3.5.29).Let R→ S be a flat local homomorphism of Noetherian local rings that R is regular,
S/mS is regular, then S is also regular.

Proof: Cf.[Sta]031E. □

Serre Conditions Rk & Sk

Def.(4.3.5.30).A ring is called Rk iff for all prime p of height ≤ k, Ap is regular.
A ring is called Sk iff depth(Ap) ≥ min(k, ht(p)) for all prime p.
A module M is called Sk iff depth(Mp) ≥ min(k, dim SuppMp) for all prime p.

Prop.(4.3.5.31).
• M is S1 iff M has no associated embedded primes. Cf.[Sta]031Q.
• A Noetherian ring is reduced iff it is R0 and S1. Cf.[Sta]031R.
• (Serre Criterion)A Noetherian ring is normal iff it is R1 and S2. Cf.[Sta]031S.
• A ring is C.M. iff it is SN.

Proof: □

Cor.(4.3.5.32) [Regular and Normal].A regular ring is normal, and normal ring is regular in
codimension 1.

Proof: By(4.3.5.31), it suffices to prove that a regular ring satisfies R1 and S2. A regular ring is
C.M.(4.3.5.21) so it is S2 by(4.3.5.31), it is R1 by(4.3.5.17) □

Cor.(4.3.5.33)[Normal and Regular Dimension 1].A Noetherian local ring of dim 1 is normal iff
it is regular. i.e. integral domain and integrally closed iff maximal ideal is principal.

6 Geometric Properties
Def.(4.3.6.1).

• A k-algebra S is called geometrically reduced/integral/connected. . . over a field k iff for
any field extension k′/k, SpecSk′ is reduced/integral/connected. . ..

• A Noetherian k-algebra S is called geometrically regular iff for any f.g. field extension K/k,
SK is regular(Notice A⊗k k′ is Noetherian(4.1.1.44), so this makes sense).
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Prop.(4.3.6.2)[Geometrically reduced]. If S is a k-algebra, the following are equivalent.
1. S is geometrically reduced.
2. S ⊗k k is reduced.
3. S ⊗k kper is reduced.
4. S ⊗k k′ is reduced for any finite purely inseparable field extension k′/k.
5. S ⊗k k1/p is reduced.
6. residue fields of S at maximal points are reduced.
7. S ⊗k R is reduced for every reduced k-algebra R.

Proof: 1 → 7: We can assume R is f.g., thus R is contained in a finite product of fields
Cf.[Sta]030V?, and then we can assume R is a product of fields, and we are done.

1→ 2→ 3→ 4 is clear. 3→ 5 is clear.
4→ 1: For any field extension K/k, we can assume WLOG K/k is f.g., thus?
5→ 1: ? 6:? Cf.[Sta]030V and [Gortz 135]. □

Prop.(4.3.6.3)[Geometrically Irreducible].Let S be a k-algebra, the following are equivalent:
1. S is geometrically irreducible.
2. For any finite separable field extension k′/k, the spectrum of Sk′ is irreducible.
3. The spectrum of Sksep is irreducible.
4. The spectrum of Sk is irreducible.

Proof: Cf.[Sta]037K.? □

Prop.(4.3.6.4).Let S be a geometrically irreducible k-algebra and R is a k-algebra, then the map

Spec(R⊗k S)→ SpecR

induces a bijection on irreducible components.

Proof: Cf.[Sta]037O.? □

Prop.(4.3.6.5)[Geometrically Integral].Let S be a k-algebra, the following are equivalent:
1. S is geometrically integral.
2. For any finite separable field extension k′/k, Sk′ is an integral domain.
3. Sk is an integral domain.
4. S ⊗k R is an integral domain for any integral domain R over k.

Proof: This follows from(4.3.6.3)(4.3.6.2) and(4.3.6.4). □

Prop.(4.3.6.6). It suffices to check geometrically regular for k′/k finite purely inseparable.

Proof: Cf.[Sta]0381.? □
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7 Finitely Presentedness

Finite Presented Modules

Def.(4.3.7.1) [Finitely Presented Modules].A finitely presented module is a module of the
form Rm/Rn.

Finite presentation is stable under base change because tensoring is right exact.

Prop.(4.3.7.2).Given an exact sequence of R-modules 0→M1 →M2 →M3 → 0,
• If M1,M3 are f.p., then so does M2.
• If M3 is f.p. and M2 is f.g., then M1 is f.g.
• If M2 is f.p. and M1 is f.g., then M3 is f.p.

Proof: 1: e can find an commutative diagram
0 Rm Rm+n Rm 0

0 M1 M2 M3 0

and use the

snake lemma to see the kernel is f.g..

2: Use the diagram
Rm Rn M 0

0 M1 M2 M3 0
α id . and snake lemma, then image and

cokernel of α are all finite, so M1 is finite.
3: Choose a presentation Rm → Rn → M2 and a surjection f : Rk → M1, then we can lift f to

Rk → Rn, and then M3 can be written as a quotient Rm+k → Rn →M3. □

Cor.(4.3.7.3).A direct summand of a f.p. module is f.p..

Prop.(4.3.7.4). If R→ S is a f.g. ring map and a S-module M is f.p. over R, then it is f.p. over S.

Proof: Let S = R[x1, . . . , xn], and M = R[y1, . . . , ym]/(
∑
aijyj), 1 ≤ i ≤ t, then as M is a

S-module, we let xiyj =
∑
aijkyk, and forms a quotient Smn+t → Sm → N → 0, where Smn+t

corresponds to the relations ∑ aijyj and xiyj −
∑
aijkyk. Then there is a surjective A-module map

N → M , and we check it is injective: if z =
∑
bjyj are mapped to 0, where bj ∈ S, then we can

transform z into the shape ∑ cjyj , where cj ∈ R by relations xiyj −
∑
aijkyk. Thus it is zero by

definition. □

Prop.(4.3.7.5)[Direct Limits of F.P. Modules].Any module is a direct limit of f.p. modules. This
can be seen by considering all finite submodules and f.m relations between them.

Prop.(4.3.7.6)[Characterizing Finite and F.P. Modules].Let N be an R-module, then
• N is finite R-module iff for any filtered colimits M = lim−→Mi of R-modules, the map

lim−→Hom(N,Mi)→ Hom(N, lim−→Mi) is injective.
• N is a f.p. R-module iff for any filtered colimits M = lim−→Mi of R-modules, the map

lim−→Hom(N,Mi)→ Hom(N, lim−→Mi) is a bijection.

Proof: 1: If N is generated by xi and a map f : N →Mi maps to 0 ∈ Hom(N, lim−→Mi), then there
is a j that f : M →Mi →Mj is 0. Thus f = 0. Conversely, N is the sum of its f.g. submodules N ′,
thus N → lim−→N/Ni = 0, which implies the identity map N → N vanishes for some N/N ′ where N ′

is a finite submodule of N , so N = N ′ and N is a finite.
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2: IfM is f.p., we can get the assertion by writingM as a quotient of free modules and use the fact
filtered colimit is exact(4.1.1.24). Conversely, write N as a filtered colimits of f.p. modules(4.3.7.5),
then id : M →M factors through some f.p. module, so it is a direct summand of a f.p. module, thus
f.p. by(4.3.7.3). □

Cor.(4.3.7.7)[FP and Localization].ForM f.p., S−1 HomR(M,N) = HomS−1R Hom(S−1M,S−1N)
for any R-module N . (Use the presentation and Hom is left exact).

Proof: HomS−1R Hom(S−1M,S−1N) ∼= HomR(M,S−1N) by duality, and then we can use(4.3.7.6),
as localization is a filtered colimit. □

Finitely Presented Ring Map

Def.(4.3.7.8)[Finitely Presented Ring Map].A ring map is called of finite presentation iff it
is a quotient of a free algebra by a free algebra.

Prop.(4.3.7.9).Finite presentation is stable under composition(choose a presentation form to see)
and base change because tensoring is right exact.

It is local on the source and target by(4.1.4.4).

Prop.(4.3.7.10).For S f.p. over R, then the kernel of any surjective ring map R[X1, . . . , Rn] α−→ S is
f.g..

Proof: Let S = R[Y1, . . . , Ym]/(f1, . . . , fk), then if α(Xi) ∼= gi(Y ), then α : R[X1, . . . , Rn] →
R[X1, . . . , Xm, Y1, . . . , Ym]/(f1, . . . , fk, Xi − gi). And the Yi are in the image, thus we let Yi are
mapped onto by hj(X), then kerα = (fi(hj(X)), Xi − gi(X)). □

Prop.(4.3.7.11). If g ◦ f : R → S′ → S is of finite presentation and f is of finite type, then g is of
finite presentation.

Proof: Let S′ = R[y1, . . . , ya] and S = R[X1, . . . , Xn]/(f1, . . . , fm), then let hi(X) ∼= yi in S, then
S = S′[X1, . . . , Xn]/(f1, . . . , fm, hi − yi). □

Prop.(4.3.7.12) [Normal Form of F.P.]. If S is f.p. over R that S has a presentation S =
R[X1, . . . , Xn]/I that I/I2 is free over S, then S has a presentation R[X1, . . . , Xm]/(f1, . . . , fc) that
(f1, . . . , fc)/(f1, . . . , fc)2 is freely generated by f1, . . . , fc.

Proof: Cf.[Sta]07CF. □

Prop.(4.3.7.13)[Finite Type Locally of Finite Presentation]. If R→ S is a injective map of f.t.
of domains, then there are f ̸= 0 ∈ R, g ̸= 0 ∈ S that Rf → Sfg is of f.p.

Proof: Use induction on the number of generators of S/R. If S = R[x], then S = R[X]/q. If q = 0,
then S is of f.p.. If g = fxd+ad−1x

d−1 + . . . a0 be a polynomial of minimal degree in q, then R→ Sf
is of f.p.

The more generator case can be reduced to the single generator case, because f.p. ring map is
stable under composition(4.3.7.9). □

Lemma(4.3.7.14)[Filtered Colimits and F.P.].Let R → A be a ring map, then the category of
f.p. R-algebras A′ with an R-algebra map A′ → A is filtered, and the colimit is just A.

Proof: Cf.[0BUF]. □
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8 Nagata & Excellent Rings

Def.(4.3.8.1) [Japanese & Nagata Rings].Let R be a domain with quotient field K, then R is
called N-1 iff the integral closure of R in K is a finite R-module.

R is called N-2 or Japanese iff for any finite field extension L/K, its integral closure in L is a
finite R-module.

A ring R is called universally Japanese if for any domain S of f.t. over R, S is Japanese.
A ring R is called Nagata if it is Noetherian and for any prime p, R/p is Japanese.
All these properties are local properties(4.1.4.4). And they are in fact stable under any localiza-

tions.

Prop.(4.3.8.2)[Nagata].Let R be a ring, the following are equivalent:
• R is Nagata,

• any f.g. R-algebra is Nagata.

• R is universally Japanese and Noetherian.

Proof: Cf,[Sta]0334. □

Prop.(4.3.8.3)[Nagata and Formal Fibers].Let (A,m) be a Noetherian local ring, then A is Nagata
iff the formal fibers of A are geo.reduced.

Proof: Cf.[Sta]0BJ0. □

Excellent Rings

Def.(4.3.8.4)[G-Rings].A G-ring is a Noetherian ring s.t. for any prime p ⊂ R, the map Rp → R∧
p

is regular.

Def.(4.3.8.5)[Excellent Rings].A quasi-excellent ring is a ring that is Noetherian, G-ring and
J-2. A excellent ring is a quasi-excellent ring that is universally catenary.

Prop.(4.3.8.6).Quasi-excellent rings are Nagata.

Proof: Cf.[Sta]07QV. □

Prop.(4.3.8.7)[Examples].The following rings and f.g. algebras over them are excellent rings:
• fields.

• Noetherian complete local rings

• Dedekind domain with fraction field of characteristic 0.
In particular, ring of integers in all local fields and number fields are excellent.

Proof: Cf.[Sta]0335. □

Cor.(4.3.8.8).The above rings are all Nagata, by(4.3.8.6).
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9 Separability
Main references are [Matsumura Ch10], [Weibel Chap P309] and [Sta]10.41, 10.43.

Def.(4.3.9.1)[Separable Algebra].A f.d semisimple algebra R over a field k is called separable iff
for every field extension K/k, R⊗k K is semisimple.

Def.(4.3.9.2).A field extension K/k is called separably generated iff it K is a separable algebraic
extension of a purely transcendental field L/k.

A field extension K/k is called separable iff all f.g. subextensions are separably generated.
An algebra A/k is called separable iff A⊗k k′ is reduce for any k′/k algebraic.

Prop.(4.3.9.3). If k ⊂ K is a f.g. field extension, then there is a finite purely inseparable field
extension k ⊂ k′ that k′ ⊂ k′K is separable.

Proof: □

Prop.(4.3.9.4)[Separable and Geo.Reduced].Let K/k be a field extension, then K/k is separable
iff K/k is geometrically reduced.

Proof: Cf.[Sta]030W.? □

Cor.(4.3.9.5). If K/k is a separable field extension and S is a reduced k-algebra, then S ⊗k K is
reduced.

Proof: Cf.[Sta]030U. □

Cor.(4.3.9.6).A separably generated field extension is separable.

10 Henselian Ring
Main References are [Sta]Chap10.148.

Def.(4.3.10.1).A local ring (R,m, k) is called Henselian iff for every f ∈ R[X] and a0 ∈ k that
f(a0) = 0 and f

′(a0) ̸= 0, then there is a root α of f lifting a0. It is called strict Henselian if
moreover its residue field is separably closed.

Henselian Pairs

Def.(4.3.10.2).A Henselian pair is a pair (A, I) that is Zariski and for any f, g in A[T ] monic and
f = gh ∈ A/I[T ] that is coprime and monic, there is a factorization f = gh lifting the decomposition.

In particular, if f has a simple root x in A/I, then it has a root x ∈ A lifting x.

Prop.(4.3.10.3).Filtered limits of Henselian pairs is Henselian, this is clear from the defini-
tion(4.3.10.2).

Lemma(4.3.10.4). If A is a ring with ideal I, if f = gh be a factorization of a polynomial f ∈ A[T ]
in A/I[T ], then there is an étale ring map A → A′ that A/IA ∼= A′/IA′, and a factorization
f = g′h′ ∈ A′[T ] lifting the factorization.

Proof: Cf.[Sta]0ALH? □
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Prop.(4.3.10.5) [Topological Invariance of Étale Sites]. If I is locally nilpotent, then (A, I) is
Henselian, in particularly Aét ∼= (A/I)ét(4.3.10.9).

Proof: First if A → S is étale, then A/I → S/IS is étale by base change(4.4.7.5) and the map is
essentially surjective by(4.4.7.15). And any map B/IB → B′/IB′ can be lifted to B → B because
étale is smooth and use(4.4.5.16). And the lifting is unique, otherwise if f, g are two lifting, because
étale is unramified, so if we choose an idempotent e generating the kernel of B ⊗A I → B →
B(4.4.6.10), then f ⊗ g(e) ∈ IB′, which is locally nilpotent, thus f ⊗ g(e) = 0, thus f = g.

For then Henselian, I is clearly contained in the Jacobson radical, and for the decomposition,
by(4.3.10.4) these is an étale map A → A′ that A/IA ∼= A′/IA′ that lifts the factorization, but
A = A′, by what we have seen above. □

Cor.(4.3.10.6)[Complete Pair is Henselian]. If (A, I) is a pair that A is I-adically complete, then
(A, I) is Henselian.

Proof: I is in the Jacobson radical because 1 + I consists of units, and by(4.3.10.5) and(4.3.10.4)
we can lift the decomposition to A/In inductively. As A = limA/In, we are done. □

Prop.(4.3.10.7)[Equivalent Definitions of Henselian Pair].The following are all equivalent to
(A, I) being Henselian:

• Given any étale ring map A→ A′, then any A′ → A/I lifts to an A-algebra map A′ → A.
• For any finite/integral A-algebra B, the map B → B/IB induces a bijection on idempotents.
• (Gabber) (A, I) is Zariski and every monic polynomial f(T ) ∈ A[T ] of the form Tn(T − 1) +
anT

n + . . .+ a1T + a0 with ai ∈ I has a root α ∈ 1 + I.
Moreover, root in item3 is unique.

Proof: Cf.[Sta]09XI. □

Cor.(4.3.10.8). if (A, I) is Henselian and A→ B is integral, then (B, IB) is also Henselian.

Prop.(4.3.10.9)[Henselian Lifting]. If (A, I) is a Henselian pair, then there is a natural equivalence
of categories: Aét ∼= (A/I)ét.

Proof: Cf.[Sta]09ZL.? □

Prop.(4.3.10.10).A Zariski pair (R, I) is Henselian iff the pair (Z⊕ I, I) is Henselian. In particular,
the property of being Henselian only depends on the non-unital ring I.

Proof: Cf.[Almost Ring Theory, 5.1.9]. □
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4.4 Commutative Algebra IV

1 Flatness

Def.(4.4.1.1)[Flatness].A modules M over a ring R is called flat if M ⊗R − : ModR →ModR is an
exact functor. This is compatible with the definition(5.2.2.15).

Prop.(4.4.1.2).Flatness need only be checked for finite modules, and it is equivalent to
Tor1(M,A/I) = 0 for any f.g. ideal I(i.e I ⊗M →M is injective).

Proof: This is because of(5.3.3.12) and the fact tensor product commutes with colimit. □

Cor.(4.4.1.3). If 0→M ′ →M →M ′′ → 0, then M ′ and M ′′ flat implies M is flat.

Prop.(4.4.1.4). If M is flat then TorAi (M,N) = 0 for all i > 0, because we have: if 0 → M1 →
M2 → M3 → 0 M2,M3 flat, then M1 is flat (Use 9 entry sequence and the fact that Tor is symmet-
ric(4.9.2.5)). So Torn+1(M3, N) = Torn(M1, N) = 0 by induction.

And a direct summand of a flat module is flat. Thus we have the class of flat modules is adapted
−⊗N for all N (because free is flat).

Prop.(4.4.1.5)[Faithfully Flatness].The following are equivalent:
• M is flat and for any N ̸= 0, N ⊗RM ̸= 0.
• M is flat and for any (maximal)prime ideal m of R, k(m) ⊗R M ̸= 0. (When m is maximal,

which means mM ̸= M).
And such a M is called faithfully flat over R.

Proof: 1 → 2 is easy. 2 → 1: any nonzero module has a submodule R/I, choose a maximal ideal
m containing I, then (A/I)⊗AM ⊂ N ⊗AM surjects to k(m)⊗AM ̸= 0. □

Prop.(4.4.1.6)[Flatness and Base Change].
• (Faithfully)Flatness is stable under base change.
• Flatness satisfies f.f. descent(4.4.2.1).
• Flatness is stable under filtered colimit because filtered colimit commutes with tensor-

ing(2.2.4.13) and is exact(4.1.1.24). In particular, S−1A is flat(4.1.1.27).
• Let S → S′ be a map of R-algebras, M is an S-module, M ′ = M ⊗S S′, then if M is flat over
R, so does M ′. The converse also holds if S → S′ is f.f..

• If R→ S, and a S-module M is R-flat and S-f.f., then R→ S is flat.

Proof:
4: For any injection of R-modules N → N ′, use the fact ker(N ⊗R M → N ′ ⊗R M) ⊗S S′ =

ker(N ⊗RM ′ → N ′ ⊗RM ′).
5: For any injection of R-modules N → N ′, use the fact ker(N ⊗R S → N ′ ⊗R S) ⊗S M =

ker(N ⊗RM → N ′ ⊗RM). □

Prop.(4.4.1.7)[Equational Criterion of Flatness].For a R-moduleM , a relation∑ fixi = 0 where
fi ∈ R, xi ∈M are called trivial iff −→x = A−→y for some A ∈Mn×n(R),−→y ∈Mn, and −→f tA = 0. Then
M is flat iff all relations of elements of M is trivial.
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Proof: Assume M if flat over R, and ∑i fixi = 0 is a relation in M , Let I = (f1, . . . , fn) and let
K = ker(Rn → I : (xi) 7→

∑
xifi), then

∑
fi⊗xi = 0 ∈ I⊗RM by flatness, then∑ ei⊗xi ∈ K⊗RM .

Let ∑ ei ⊗ xi =
∑
kj ⊗ yj , and kj =

∑
i aijei, then this is the desired relations.

Conversely, suppose every relation is trivial, and I is an ideal of R, let x =
∑
fi ⊗ xi ⊂ I ⊗M

be an element mapping to 0 ∈ R ⊗M = M , then ∑ fixi is a relation, so it is trivial, and then
x =

∑
fi ⊗ xi =

∑
fi ⊗ (aijyj) =

∑
(fiaij)yj = 0. □

Prop.(4.4.1.8) [Gororov-Lazard].Any flat A-module is isomorphic to a direct limit of finite free
modules.

Proof: Cf.[Sta]058G. □

Prop.(4.4.1.9).Flat module is torsion-free.

Proof: If x ∈ R is a nonzero-divisor, R x−→ R is injective, thus M x−→M is also injective. □

Prop.(4.4.1.10)[Flat over Local Rings].A finite module M over a local ring A is flat iff it is free.
In particular, finite modules over a field are all flat.

Proof: Let A/m = k, choose a k-basis xi ofM/mM , then they generateM by Nakayama. It suffices
to prove that xi are independent over R. For this, use equational criterion of flatness(4.4.1.7), we
prove that if xi is independent over k, then they are independent over A. Use induction, if x ̸= 0 in
M/M, if fx = 0 for some f ∈ A, then x =

∑
ajyj that faj = 0, but then some aj is a unit, so f = 0.

If ∑ fixi = 0, then by hypothesis, fi ∈ m, and there are yj that xi =
∑
aijyj ,

∑
fiaij = 0.

As xn /∈ mM , there is a anj /∈ m, so fn =
∑

(−aij/anj)fi. then ∑i ̸=n fi(xi − aij/anjxn) = 0, but
xi − aij/anjxn is also independent over k, so by induction, fi = 0, also does fn, so we are done. □

Prop.(4.4.1.11)[Flat over Bézout Domains].A module M over a Bézout domain R is flat iff it is
torsion-free.

Proof: One direction is clear by(4.4.1.9). If it is torsion-free, we use the equational criterion of
flatness(4.4.1.7):

Let ∑ aixi = 0 where ai ∈ R∗, xi ∈ M , then consider (a1, . . . , an) = (a), thus ai = abi for some
bi ∈ R, and

∑
cibi = 1 for some ci ∈ R as R is a domain. Because M is torsion-free, ∑i bixi = 0.

Notice −→x = (1−−→c
−→
b t)−→x , so we can take −→y = −→x , A = 1−−→c

−→
b t. Then −→b tA =

−→
b t −

−→
b t−→c

−→
b t = 0.

□

Cor.(4.4.1.12)[Flat over Valuation Rings].A module over a valuation ring is flat iff it is torsion
free. In particular, if (A,m) is a DVR with a uniformizer t, then M ∈ ModA is flat iff t is injective
on M .

Proof: Because valuation ring is Bézout (10.3.2.8), we can use(4.4.1.11). □

Cor.(4.4.1.13) [Flat Module over a Dedekind Domain]. If A is a Dedekind domain, then an
A-module is flat iff it is torsion-free.

Proof: Because flatness and torsion-freeness is stalkwise(4.1.4.2), so it suffices to prove for its
localization, which is DVR(4.2.7.2), so the result follows from(4.4.1.12). □

Prop.(4.4.1.14)[Finite Flat is Locally Free].Finitely presented flat module is equivalent to finite
projective and equivalent to finite locally free. (Immediate from(4.3.1.7)).
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Prop.(4.4.1.15). if M is a flat R-module, then IM ∩ JM = (I ∩ J)M for ideals of A.

Proof: Tensoring the exact sequence 0→ I ∩ J → I ⊕ J → J ∪ J → 0 with M . □

Prop.(4.4.1.16) [Local & Infinitesimal Criterion of Flatness].Let (A,m) → (B, n) be a local
homomorphism of Noetherian local rings, and M is a finite B-module, then the following are equiv-
alent:

• M is flat over A.
• TorA1 (M,A/m) = 0.
• M/mnM is flat over A/mn for sufficiently large n.

Proof: 1→ 2, 1→ 3 is trivial. For the converse, we need to prove Tor1
A(M,A/I) = 0 for any ideal

I ⊂ A, or I ⊗M →M is injective.
If 2 holds, then TorA1 (M,N) = 0 for any A-module of finite length, because by devissage we can

reduce N to A/m.
Tensoring the exact sequence 0→ mn ∩ I → I → I/I ∩mn → 0 with M , we get

mn ∩ I ⊗M → I ⊗M → (I/I ∩mn)⊗M → 0

and also the exact sequence 0→ I/I ∩mn → R/mn → R/(I + mn)→ 0 gives

0→ (I/I ∩mn)⊗M →M/mnM →M/(I + mn)M → 0

by the fact R/(I + mn) has finite length in case2 or the fact they are all R/mnM modules in case3.
Thus the kernel of I⊗M →M is contained in (mn∩I)⊗M for any n, which means it is contained

in mn(I ∩M) for any n by Artin-Rees(4.2.2.13). Thus the kernel is trivial by Krull’s intersection
theorem(4.2.2.14) as I ⊗M is finite over S. □

Prop.(4.4.1.17).

Flat ring extension

Prop.(4.4.1.18)[Flatness is Local].Flatness is stalkwise both on the target and source, thus flatness
is local both on the target and the source(4.1.4.2).

Cor.(4.4.1.19)[Going-down].Going-down holds for flat ring map.

Proof: The ring map Rp′ → Sq′ is flat by(4.4.1.18), thus it is f.f. by(4.4.1.23). Then(4.4.1.21) says
p ⊂ p′ is in the image. □

Prop.(4.4.1.20). if rings A ⊂ B ⊂ C and C/A,C/B is flat, then B/A is flat.

Proof: Cf.[GAGA Serre P26]. □

Prop.(4.4.1.21).The following are equivalent:
• A→ B is f.f.
• It is flat and SpecB → SpecA is surjective.
• It is flat and Spec map contains all the closed pts.

Proof: This follows form(4.4.1.5) as we see that p is in the image of Spec map iff k(p)⊗AB ̸= 0. □
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Cor.(4.4.1.22). Integral flat injective ring extension is f.f., by(4.2.1.5).

Cor.(4.4.1.23).Flat local ring map of local rings is f.f..

Cor.(4.4.1.24).Filtered colimits of f.f. rings over R is f.f.

Proof: If is flat by(4.4.1.6), and for a maximal ideal m of R, Si/mSi is non-zero, hence there direct
limit is non-zero because 1 is contained. So m is in the image, hence it is f.f. by(4.4.1.21). □

Cor.(4.4.1.25)[Filtered Colimit of Flat Ring Maps]. If I is filtered and Ri → Si are (faifhfully)flat
ring maps, then colimI Ri → colimI Si is (faithfully)flat.

Proof: For any colimRi-module M , (colimSi)⊗colimRiM = colim(Si⊗RiM), so it is flat, because
colim is exact. For the faithfully flatness, for any maximal ideal m of colimRi, let mi = m∩Ri, then
Si/miSi ̸= 0, thus the direst limit is also ̸= 0, so m is in the image, hence it is f.f. by(4.4.1.21). □

Prop.(4.4.1.26). If R→ S is (faithfully)flat ring map and M is a (faithdully)flat S-module, then M
is a (faithfully)flat R-module. In particular, (faithfully) flatness is stable under composition. Also
(faithfully)flatness is stable under base change.

Prop.(4.4.1.27). If B is flat over A, then

TorAi (M,N)⊗B = TorBi (M(B), N(B)), ExtAi (M,N)⊗B = ExtB(M(B), N(B)).

Prop.(4.4.1.28) [Faithfully Flat Ring Map is Injective].A f.f. ring map R → S is universally
injective. In particular, tensoring with R/I, we get R ∩ IS = I for an ideal I of R.

Proof: Because R → S is f.f., we only need to show that N ⊗R S → N ⊗R S ⊗R S is injective for
any N , but this is true because it has a left inverse. □

Prop.(4.4.1.29).A f.f. map between valuation rings is equivalent to an injective local homomorphism.

Prop.(4.4.1.30).A flat ring map maps a non-zero-divisor to a non-zero-divisor, because if we consider
the principal ideal generated by it, then(4.4.1.2) shows the ideal in M is also injective, so it is not a
zero-divisor.

Prop.(4.4.1.31) [Noetherian Completion is Flat]. If A is Noetherian and I is an ideal, the the
I-adic completion A∧ is flat over A by(4.2.3.14).

Prop.(4.4.1.32) [Flat Map is Open].The Spec map of a ring map R → S of f.p. that satisfies
going-down(e.g. flat), is open.

Proof: S → Sf satisfies going-down and is of f.p, so we see that R → Sf satisfies going down. It
suffice to prove the image of this map is open. By Chevalley, the image is constructible, and it is
stable under generalization. So it is open by(3.11.4.8). □

Cor.(4.4.1.33).The Spec map f of a f.f. ring map is an quotient map.

Prop.(4.4.1.34)[Generic Freeness+F.P.].Let R be a reduced ring, S a f.g. R-algebra, M a finite
S-module, and R is reduced, then there exists an open dense subset U ⊂ SpecR that there is a
covering of U by standard opens D(f) s.t.

• Mf and Sf are free over Rf .
• Sf is a f.p. Rf -algebra.
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• Mf is a f.p. Sf -module.
In particular, it is generically flat.

Proof: Cf.[Sta]051Z.? □

Prop.(4.4.1.35)[Miracle Flatness].Let f : A→ B be a local map of local Noetherian rings s.t.
• A is regular.

• B is Cohen-Macauley.

• dimB = dimA+ dim(A/f(mA)B).
Then f is flat.

Proof: Cf.[Sta]00R4. □

Prop.(4.4.1.36) [Slicing Criterion for Flat Modules on the Target].Let R → S be a local
homomorphism of local rings s.t.

• S is essentially of f.p. over R,

• M is of f.p. over S,

• TorR1 (M,R/I) = 0.

• M/IM is flat over R/I.
Then M is flat over R.

Proof: Cf.[Sta]0471.? □

Prop.(4.4.1.37)[Slicing Criterion for Flatness on the Source].Let (R,m) → (S, n) be a local
homomorphism of local rings s.t.

• S is essentially of f.p. over R,

• S is flat over R,

• t is a non-zero divisor of S/mS.
Then S/fS is flat over R, and f is a non-zero divisor in S.

Proof: Cf.[Sta]046Z. □

Prop.(4.4.1.38)[Fibral Criterion of Flat Modules].Let R→ S → S′ be local homomorphisms of
local rings and m is the maximal ideal of R. If

• R→ S′ is essentially of f.p.

• R→ S is essentially of f.t.

• M ̸= 0 ∈Mod(S′) is of f.p. over S.

• M/mM is flat over S/mS.

• M is flat over R.
Then S is essentially of f.p. and flat over R and M is flat over S.

Proof: [Sta]05UV. □
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2 Faithfully Flat Descent

Prop.(4.4.2.1) [Faithfully Flat Descent].List of properties that descent through faithfully flat
morphism. Let R→ R′ be a f.f. ring map.

1. Finiteness for modules over a ring.
2. F.p. for modules over a ring.
3. Flatness for modules over a ring.
4. Finite locally freeness and invertibility for modules over a ring.
5. Mittag-Leffler for modules over a ring.
6. Projectiveness for modules over a ring.
7. F.g. for ring maps.
8. F.p. for ring maps, both on the target and source.
9. (Formal)Smoothness for ring maps.
10. Noetherian for rings.
11. Reducedness for rings.
12. Normal for rings.
13. Regular for rings.
14. Being Noetherian and has property (Rk) for rings.
15. Local Complete Intersection ring maps.

Proof:
1. Cf.[Sta]03C4.
2. Cf.[Sta]03C4.
3. Let M be a R-module, and M ′ = M ⊗R R′, if M ′ is R-flat, then for any R-module N ,

(N ⊗R M) ⊗R S = (N ⊗R S) ⊗S M ′, so as · ⊗R S is exact and reflects exactness, · ⊗R M is
exact, so M is R-flat.

4. This follows from f.f. descent for f.p. and flatness and(4.3.1.7).
5. Cf.[Sta]05A5.
6. Cf.[Sta]05A9.
7. Cf.[Sta]00QP.
8. Cf.[Sta]00QQ, 00EP.
9. Use criterion(4.4.5.3), we see by flatness that the sequence I/I2 → ΩP/R ⊗P S → ΩS/R → 0

commutes with flat base change, and when it is f.f., then use(4.4.3.6) and descent for projective-
ness(4.4.2.1) that ΩS/R is projective, so it is a split exact sequence. The smooth case follows
from definition(4.4.5.12) as f.p. can descend.

10. Because for S → S′ faithfully flat and a chain of ideals Ik in S, IkS′ = Ik ⊗S S′, and IkS′ is
stable if S′ is Noetherian, so also Ik is stable because it is faithfully flat.

11. S → S′ is f.f. hence injective(4.4.1.28).
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12. Normality is stalkwise, so it suffices to assume R → S is f.f. and R,S are both local. Then S
is normal integral thus by(4.4.1.28), R is also normal integral. Now if a/b ∈ R, then a/b ∈ S,
a ∈ bS, thus a ∈ bS ∩R = bR by(4.4.1.28), so a/b ∈ R.

13. Cf.[Sta]07NG.?
14. Cf.[Sta]0353.
15. flatness and f.p. both satisfies f.f. descent, so it suffices to show that if p′ ⊂ R′ is a prime lying

over p ⊂ R, then S⊗Rk(p) is a local complete intersection iff S′⊗R′ k(p′) = S⊗Rk(p)⊗k(p)k(p′)
is a local complete intersection, and this follows from [Sta]00SI.

□

Prop.(4.4.2.2)[fpqc-Poincaré Lemma]. If a ring map A→ B, either has a section B → A, or it is
faithfully flat, then the Amitsur complex s(M) for the canonical descent datum (with augmentation):

0→M → B ⊗AM → B ⊗A B ⊗AM → . . .

with Čech-like maps, is exact.

Proof: In the case A → B has a section s, It suffices to construct a nullhomotopy of the case
M = A. Then we can just let h(e0 ⊗ e1 ⊗ . . .⊗ er) = s(e0)e1 ⊗ . . .⊗ er.

The f.f. case can be reduced to the first case by tensoring B to consider B → B ⊗A B, because
it has a section. □

Cor.(4.4.2.3)[Glueing Functions].Let R be a commutative ring,M a R-module, and (f1, . . . , fn) =
(1), then there is an exact sequence

0→M →
∏
i

Mfi ⇒
∏
i,j

Mfifj .

In particular this holds for M = R.

Proof: This is just(4.4.2.2) applied to A→ ∏
iAfi , which is faithfully flat. □

Formal Glueing of Modules

Main references are [Sta]Chap15.80 and 15.81.

Lemma(4.4.2.4).Let R → S be a ring map and I = (f1, . . . , fr) ⊂ R be an ideal, then for any
R-module M we can define a complex

0→M
α−→M ⊗R S ×

∏
Mfi

β−→
∏

(M ⊗R S)fi ×
∏

Mfifj

where α(m) = (m ⊗ 1,m, . . . ,m), β(m′,m1, . . . ,mt) = (m′ − m1 ⊗ 1,m′ − m2 ⊗ 1, . . . ,m′ − mt ⊗
1,m1 −m2, . . . ,mt−1 −mt).

Assume that R→ S is flat and R/I → S/IS is an isomorphism, then this complex is exact.

Proof: Cf.[Sta]05EK. □

Def.(4.4.2.5)[Category of Gluing Data].Let R → S be a ring map and I = (f1, . . . , fr) ⊂ R be
an ideal, then we define the category Glue(R→ S, f1, . . . , fr) of gluing data Glue(R→ S, f1, . . . , ft)
consisting of objects M = (M ′,Mi, αi, αij) where M ′ is a S-module, Mi are Rfi-modules, αi :
(M ′)fi →Mi ⊗R S and αij : (Mi)fj → (Mj)fi are isomorphisms that
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• αij ◦ αi = (αj)fi .
• αjk ◦ αij = αik.
There is a canonical functor Can : ModR → Glue(R → S, f1, . . . , fr) and also a morphism

H0 : Glue(R→ S, f1, . . . , fr)→ModR where

H0(M) = ker(M ′ ×
∏

Mi →
∏

M ′
fi ×

∏
(Mi)fj ).

H0 is a left inverse of Can, by(4.4.2.4).

Lemma(4.4.2.6). If R → S is flat, then Glue(R → S, f1, . . . , fr) is an Abelian category, and Can is
an exact functor that commutes with arbitrary colimits.

If moreover (f1, . . . , fr) = R, then Can and H0 induces an equivalence of categories.

Proof: The kernels and cokernels can be constructed because − ⊗R S is exact, and Can is exact
because Rfi and S are flat over R, and also tensoring commutes with taking colimits.

For the last assertion, by(4.4.2.5) it suffices to show that Can is essentially surjective. For this,
just use(4.4.2.3) on both R and S. □

Prop.(4.4.2.7). In the setting of(4.4.2.5), if R/I → S/IS is an isomorphism, then Can and H0 induces
an equivalence of categories.

Proof: Cf.[Sta]05ER. □

Cor.(4.4.2.8). If R → S is a flat ring map and f ∈ R that R/fR ∼= S/fS is an isomorphism, then
there is a pullback diagram of categories:

ModR ModRf

ModS ModSf

and we can also restrict to the category of f.g./f.p/flat/projective(any property satisfying f.f. descent)
modules.

Proof: For the last assertion, noticeR→ R∧×
∏
Rfi is f.f. by(4.2.3.7), then use f.f. descent(4.4.2.1).

□

Cor.(4.4.2.9). If R is a Noetherian ring, f ∈ R and R∧ the f -adic completion of R, then there is an
pullback of categories:

ModR ModRf

ModR∧ ModR∧
f

and we can also restrict to the category of f.g./f.p/flat/projective(any property satisfying f.f. descent)
modules.

Proof: This satisfies the hypothesis of(4.4.2.7) by(4.2.3.14). □
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Def.(4.4.2.10)[Gluing Pairs].Let R → R′ be a ring map and f ∈ R that induces an isomorphism
R/fnR ∼= R′/fnR′ for any n > 0, then (R→ R′, f) is called a gluing pair if the sequence

0→ R→ R′ ⊕Rf → R′
f → 0

is exact. The pair (R, f) is called a gluing pair if (R → R̂, f) is a gluing pair(This makes sense
by(4.2.3.6)).

This is equivalent to R[f∞]→ R′[f∞] is bijective.
Let M be an R-module, then M is called a glueable module for (R→ R∧, f) if the sequence

0→M →MR′ ⊕MRf →MR′
f
→ 0

is exact.
This is equivalent to M [f∞] → MR′ [f∞] is a bijection. And when (R → R′, f) is a gluing pair,

this is equivalent to M [f∞]→MR′ [f∞] is injective.

Proof: Cf.[Sta]0BNR, 0BNW. □

Prop.(4.4.2.11)[Flatness and Gluing]. (R → R′, f) is a gluing pair when R → R∧ is flat. In par-
ticular (R, f) is a gluing pair then R is Noetherian or f is a nonzero-divisor(4.2.3.10), Cf.[Sta]0BNT.

If (R → R′, f) is gluing, then M is glueable if TorR1 (M,R′) is f -power torsion, or equivalently
TorR1 (M,R′

f ) = 0. In particular this is the case when M is flat R-module or f is not a zero-divisor.
And when R→ R′ is flat, any R-module M is glueable, in particular this is the case for (R, f) when
R is Noetherian. Cf.[Sta]0BNX.

Prop.(4.4.2.12)[Beauville-Laszlo].Let A be a commutative ring and f ∈ A is a nonzero-divisor,
let Â be the f -adic completion, then there is a pullback diagram of categories:

ModA ModA[ 1
f

]

Mod
Â

Mod
Â[ 1

f
]

Proof: Cf.[Sta]Ch15.81. □

3 Kähler Differentials
Def.(4.4.3.1) [Derivations].A derivation over S from an S-algebra R to an S-module M is a
morphism of S-modules δ : R → M that δ(ab) = aδ(b) + bδ(a). The set of all derivatives from R to
M is denoted by DerS(R,M)

Def.(4.4.3.2)[A⋉RM ].For any R-algebra A, there is a functor A⋉− from ModR to (AlgR)/A that
A⋉RM = A⊗M with the algebra given by

(a, x)(b, y) = (ab, ay + bx).

Then there is a bijection of sets

(CAlgR)/A(X,A⋉RM) ∼= DerR(X,M).
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Def.(4.4.3.3)[Kähler Differential].Let S → R a ring map, Then the Kahler Differential ΩR/S is
defined as a R-module that DerS(R,M) ∼= HomS(ΩR/S ,M). In particular, DerS(R,R) is the R-dual
of ΩR/S .

Prop.(4.4.3.4).One construction is by the free group generated by elements of R module some rela-
tions.

It can also be constructed as follows: there are two ring maps λi from S to R⊗R S, and one map
ε from S ⊗R S to S. Let I = ker ε as a R module by λ1, then I/I2 ∼= ΩS/R by (4.4.3.8) that

0→ I/I2 → ΩS⊗RS/S ⊗S⊗RS S → ΩS/S → 0.

So I/I2 ∼= ΩS/R⊗S (S ⊗R S)⊗S⊗RS S
∼= ΩS/R. And it can be verified that a⊗ 1− 1⊗ a corresponds

to da.

Prop.(4.4.3.5) [Adjointness].The functor X → A ⊗X ΩX/R is left adjoint to the functor A ⋉R −
defined in(4.4.3.2) as a functor from (CAlgR)/A →ModA.

Proof: Because they are both equivalent to DerR(X,M). □

Cor.(4.4.3.6) [Functoriality].From the first construction, we can see directly that for a family of
morphisms Ri → Si,

ΩcolimSi/ colimRi = colim ΩSi/Ri .

In particular, we have:

T−1ΩB/A = ΩT−1B/A, ΩS−1B/S−1A = S−1ΩB/A.

Moreover, we have

ΩS/R ⊗R R′ = ΩS⊗RR′/R′ , (S ⊗R ΩT/R)⊕ (T ⊗R ΩS/R) ∼= ΩS⊗RT/R

by universal properties.

Proof: We prove for the localization: it suffices to show the following two assertions:
1. S−1ΩA/B

∼= ΩS−1A/B.
2. If T ⊂ B is a multiplicatively closed subset that i(t) are all invertible in A, then ΩA/T−1B

∼=
ΩA/B.

We check the universal properties: For any S−1A-module M ,

HomS−1A(S−1ΩA/B,M) ∼= HomS−1A(S−1A⊗A ΩA/B,M) ∼= HomA(ΩA/B,M) ∼= DerB(A,M),

HomS−1A(ΩS−1A/B,M) ∼= DerB(S−1A,M)

There is a map DerB(S−1A,M)→ DerB(A,M) by restriction, and the converse is given by

d 7→ d(a
s

) = sda− ads
s2 .

This is well-defined as
d(at
st

) = std(at)− atd(st)
s2t2

= sda− ads
s2 ,
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and it satisfies

d(a1
t1

+ a2
t2

) = d(a1t2 + a2t1
t1t2

)

= (a1d(t2) + t2d(a1) + a2d(t1) + t1d(a2))t1t2 − (a1t2 + a2t1)(t1d(t2)− t2d(t1))
t21t

2
2

= t1t
2
2d(a1) + t21t2d(a2)− a2t

2
1d(t2) + a1t

2
2d(t1)

t21t
2
2

= d(a1
t1

) + d(a2
t2

)

d(a1a2
t1t2

) = (a1d(a2) + a2d(a1))t1t2 − a1a2(t1d(t2) + t2d(t1))
t21t

2
2

= a1(t2d(a1)− a2d(t2))
t1t22

+ a2(t1d(a2)− a1d(t1))
t2t21

= a1
t1
d(a2
t2

) + a2
t2
d(a1
t1

)

Thus this d is an extension of the derivative to S−1A. Thus we get the desired isomorphism by
Yoneda lemma. □

Prop.(4.4.3.7) [Jacobi-Zariski Sequences].For a sequence of commutative rings: A → B → C,
there is an exact sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules. It has a left inverse and splits iff any derivation over A from B to a C-module can be
extended to a derivation over A from C to M . This is trivially true when B → C has a retraction,
and true when C/B is formally smooth by(4.4.5.5).

Proof: Taking Hom with an arbitrary C-module M , by universal property, we need to check the
exactness of 0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M), which is easy. □

Prop.(4.4.3.8) [Second Exact Sequence]. (This is a special case of(6.1.1.5)). If S′ = S/I, then
there is an exact sequence of R′-modules:

I/I2 → ΩS/R ⊗S S′ → ΩS′/R → 0.

Where f ∈ I is mapped to df ⊗ 1 and it has a left inverse and splits iff S/I2 → S′ has a right inverse.
And in fact ΩS/R ⊗ S′ ∼= Ω(S/I2)/R ⊗ S′.

Proof: For a S/I-module M , we check:

0→ DerR(S/I,M)→ DerR(S,M)→ HomS/I(I/I2,M)

To prove ΩS/R ⊗ S′ ∼= Ω(S/I2)/R ⊗ S′, we apply Hom for a S′-module M .
So to prove the left exactness, we may assume I2 = 0. If we have an inverse ΩS/R ⊗S S′ → I.

then it gives a derivation D : A → I that is identity on I, so a −D(a) gives a R-ring map S → S
that is trivial on I(because I2 = 0). Hence it gives a S/I → S that is inverse to the projection.

For the converse, if d : S/I → S is a right inverse, then a− d(a) is a derivation S → I, which is
identity on I, so it gives a inverse map ΩS/R ⊗S S′ → I by universal property. □
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Cor.(4.4.3.9). If R→ S is of f.p., then ΩS/R is of f.p. over S. If R→ S is of f.t., then ΩS/R is of f.t.
over S. (Follows from the second exact sequence(4.4.3.8) and(4.4.3.10)).

Cor.(4.4.3.10)[Examples].
1. ΩA[X1,...,Xn]/A = A[X1, . . . , Xn]{dX1, . . . , dXn}.
2. If S = A[Xi]/{fj}, then ΩS/A = S[dXi]/{dfj}.
3. ΩA[Xi]/k = ΩA/k ⊗A A[Xi]⊕A[Xi]{dX1 . . . , dXn}.

4. (Standard Étale Algebra)For A = R[x]g/(f), where f ′ has image invertible in A,ΩA/R = 0.
5. The differential for the inclusion k[y2, y3]→ k[y] is k[y]/(2y, 3y2){dy}.

Cor.(4.4.3.11). 1: Use the differential operator and universal property.
2: Use item1 and(4.4.3.8).
3: Use item1 and the fact(4.4.3.8) splits because any derivative of A/k can be extended to

derivative of B/k by acting on the coefficients.
4:
5: Use definition.

Cor.(4.4.3.12). If S/I is a field k that embeds in S, then I/I2 ∼= ΩS/k ⊗S k.
Prop.(4.4.3.13).Let k ⊂ K ⊂ L be fields, and L/K f.g., then

dimL ΩL/k ≥ dimK ΩK/k + tr .deg(L/K).

Equality holds if L/K is separably generated, i.e. separable over a transcendental basis. If K = k,
then the equality hold iff L/k is separably generated. In particular, L/k is separable algebraic
extension iff ΩL/k = 0.
Proof: Take a subfield K ⊂ K(t1, . . . , tn) ⊂ L that L is separable algebra over K(t1, . . . , tn). Then
it suffices to add one element a time, so we may assume L = K(α).

1: If α is transcendental over K, then ΩK[α]/t ∼= ΩK/k ⊗ K[α] ⊕ K[α]dt by(4.4.3.10), and by
localization(4.4.3.6) we get ΩL/K

∼= ΩK/k ⊗K L⊕ Ldt, thus rank ΩL/k = rank ΩK/k + 1.
2: If α is separable over K, then there is a monic polynomial f ∈ K[X] that K[α] ∼= K[X]/(f).

Then f ′ is invertible in K[α], and by(4.4.3.10) ΩK[α]/k = ΩK/k ⊗K L ⊕ LdX/(d(f) + f ′dX) ∼=
ΩK/k ⊗K L. Thus rank ΩL/k = rank ΩK/k.

3: If K has characteristic p and L = K[X]/(Xp − a) and dK/k(a) = 0, then ΩK[α]/k = ΩK/k ⊗K
L⊕ LdX/(d(a)) ∼= ΩK/k ⊗K L⊕ LdX. Thus rank ΩL/k = rank ΩK/k + 1.

4: If K has characteristic p and L = K[X]/(Xp − a) and dK/k(a) ̸= 0, then ΩK[α]/k = ΩK/k ⊗K
L⊕ LdX/(d(a)) has rank rank ΩK/k.

Thus the assertion is clear. □
Prop.(4.4.3.14) [Differential and Regularity].Let B be a Noetherian local ring containing its
residue field k and k is perfect, then ΩB/k is a free B-module of rank dimB iff B is regular.
[Hartshorne Ex.2.8.1] has a generalization of this fact.
Proof: One way is by(4.4.3.12). Conversely, if B is regular, then it is integral(4.3.5.19), so ΩB/k⊗B
K = ΩK/k(4.4.3.6) is of K-dimension tr.degK/k = dimB, where K is the quotient field of B, and
ΩB/k ⊗ k ∼= m/m2 is of k-dimension dimB once again. These two facts shows that ΩB/k is free
B-module of rank dimB by(4.4.8.1). □

Prop.(4.4.3.15).The Kähler differential ΩOL/OK
for an extension of number fields is cyclic.

Proof: Because it is locally cyclic?(4.2.7.34). □
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4 Complete Intersections

Koszul Complex

Prop.(4.4.4.1)[Koszul Complex].The complex of Z[X1, . . . , Xn]-modules K•, where

Kr = ∧r+1Z[dX1, . . . , dXn]⊗Z Z[X1, . . . , Xn]

and the morphism is given linearly by

ι : dXi0 ∧ dXi1 ∧ . . . ∧ dXir 7→
∑
k

XikdXi0 ∧ . . . ∧ dXik−1 ∧ dXik+1 ∧ . . . ∧ dXir

Then this is a free resolution of Z over Z[X1, . . . , Xn].

Proof: We can use induction. If r = 1, then this is clear. For the induction process, if ι(dX1 ∧ α+
β) = 0, and β ∈ Ki, where β, α has no dX1 involved. Notice if dX1 ∧ α ∈ K0, then we may assume
α has no constant coefficient, because this is impossible.

then X1α − dX1 ∧ ι(α) + ι(β) = 0. Then we see that ι(α) = 0. We can write α = α0 + X1α1 +
X2

1α2 + . . ., where αi has no Xi involved, then we see that ι(αi) = 0, then by induction hypothesis
α = ι(α′)(notice α0 has no constant coeffienct), and ι(β) +X1ι(α′) = 0. If β = X1β1 + β2, where β2
has no X1 involved, then ι(β2) = 0, so β2 = ι(β′

2), and ι(β1 + α′) = 0, so β1 + α′ = ι(β′
1). So

dX1 ∧ α+ β = dX1 ∧ ι(α′) + ι(X1β
′
1 + β′

2)−X1α
′ = ι(X1β

′
1 + β′

2 − dX1 ∧ α′).

And in degree0, this is clear. □

Def.(4.4.4.2) [Koszul Complex].Let A be a ring and I = (f1, . . . , fn) ∈ A is an ideal, then the
Koszul complex for Kos(A, f1, . . . , fn) is an object in D(A) defined by

Kos(A, f1, . . . , fn) = A⊗LZ[X1,...,Xn] Z,

where A is a Z[X1, . . . , Xn]-algebra by mapping Xi → fi. If M is an A-module, then we define
Kos(M,f1, . . . , fn) = M ⊗LA Kos(A, f1, . . . , fn).

Prop.(4.4.4.3). If f1, . . . , fn ∈ R, then I = (f1, . . . , fn) annihilates H∗(K(f1, . . . , fn)). In particular,
Kos(A, f1, . . . , fn) is in the image of D(A/I) ⊂ D(A).

Proof: This is because everyH i(A⊗LZ[X1,...,Xn]Z) is anH0(A⊗LZ[X1,...,Xn]Z) = A/I-algebra, because
it is a simplicial algebra. □

Prop.(4.4.4.4).K(A, f1, . . . , fn, g1, . . . , gm) = K(A, f1, . . . , fn)⊗A K(A, g1, . . . , gm). (Easy).

Prop.(4.4.4.5).The cone of the map

fn : K(f1, . . . , fn−1)→ K(f1, . . . , fn−1)

is isomorphic to K(f1, . . . , fn).

Proof: This is because Z[X] X−→ Z[X]→ Z is an exact triangle, so A fn−→ A→ A⊗LZ[X]Z is an exact

triangle, so Kos(A, f1, . . . , fn−1) fn−→ K(A, f1, . . . , fn−1)→ K(A, f1, . . . , fn) is an exact triangle. □
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Prop.(4.4.4.6).Let A be a ring and M be an A-module. Let f1, . . . , fr−1, f, g be elements of A, then
there is a natural distinguished triangle

Kos(M,f1, . . . , fr−1, f)→ Kos(M,f1, . . . , fr−1, fg)→ Kos(M,f1, . . . , g).

Proof: We use(4.4.4.5) to considerKos(M,f1, . . . , fr−1, f) as a cone of fn : Kos(M,f1, . . . , fr−1)→
Kos(M,f1, . . . , fr−1). Then this distinguished triangle is given by(3.7.7.15) applied to the diagram

Kos(M,f1, . . . , fr−1) Kos(M,f1, . . . , fr−1)

Kos(M,f1, . . . , fr−1) Kos(M,f1, . . . , fr−1)
f fg

g

□

Prop.(4.4.4.7) [Koszul Complex and Čech Complex].Let A be a commutative ring and I =
(f1, . . . , fn) ⊂ A, K•

n = Kos(A, fn1 , . . . , fnr ) = A⊗LZ[X1,...,Xr] Z. Then there are natural maps

. . .→ K•
3 → K•

2 → K•
1

compatible with the inverse system H0(K•
n) = A/(fn1 , . . . , fnr ). Then there is a description of

R colimK∨
n (4.9.5.6) as the alternating Čech complex

R→
⊕
i0

Rfi0 →
⊕
i0<i1

Rfi0fi1 → . . .→ Rf1f2...fr

where R sits in degree 0.

Proof: Cf.[Sta]0913, which is not hard. □

Def.(4.4.4.8)[Koszul-Regular Sequence].Let A be a ring and (f1, . . . , fn) ∈ A be a sequence, then
f1, . . . , fn is called M-Koszul-regular iff Kos(M,f1, . . . , fn) = 0. It is called Koszul-regular iff
Kos(A, f1, . . . , fn) = 0.

Prop.(4.4.4.9). If (f1, . . . , fr) is (M -Koszul)regular and ni > 0, then (fn1
1 , . . . , fnrr ) is also (M -

Koszul)regular.

Proof: This follows from(4.4.4.6). □

Prop.(4.4.4.10) [Regular and Koszul-Regular].A M -regular sequence(4.3.4.1) is M -Koszul-
regular. A regular sequence is Koszul-regular.

Proof: Let (f1, . . . , fr) be a regular sequence. The assertion is clear when r = 1. For the induction:

Kos(M,f1, . . . , fn) = Kos(M,f2, . . . , fn)⊗LZ[X] Z = Kos(A, f2, . . . , fn)⊗LAM ⊗LZ[X] Z

= Kos(A/f1, f2, . . . , fn)⊗LA/f1
M/f1M = Kos(M/f1M,f2, . . . , fn)

so we can use induction. □
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Complete Intersections

Def.(4.4.4.11)[Global Complete Intersections]. A ring map R→ S is called global intersection
if S = R[x1, . . . , xn]/(f1, . . . , fc) that every non-empty fiber of SpecS → SpecR has dimension n− c.

Prop.(4.4.4.12).Global intersection is stable under base change and composition. And S → Sf a
global intersection, so it is stable under localization.

Proof: Base change: this is because flatness, f.p. is stable under base change, and the fibers are
the same.

Localization: Sf = S[X]/(fX − 1) has trivial fibers.
Composition: It suffices to assume R is a field and calculate the dimension of the fibers, which is

true by dimension formula(4.2.4.13). □

Prop.(4.4.4.13)[Noetherian Approximation].Let R be a ring and S = R[X1, . . . , Xn]/(f1, . . . , fc)
is a global intersection over R, then there is a f.g. Z-algebra R0 ⊂ R that fi ∈ R0[X1, . . . , Xn], and
S0 = R0[X1, . . . , Xn]/(f1, . . . , fc) is a global intersection over R.

Proof: Cf.[Sta]00SU. □

Prop.(4.4.4.14) [Complete Intersection is Regular].Let R be a ring and S =
R[X1, . . . , Xn]/(f1, . . . , fc) be a global complete intersection, then SpecS → SpecR[X1, . . . , Xn] is a
regular embedding(5.6.8.1), and S is flat over R.

Proof: Cf.[Sta]00SV. □

Local Complete Intersections

Def.(4.4.4.15)[Local Complete Intersections].Let S be a R-algebra, then S is a local complete
intersection over R iff S is locally a global complete intersection over R. Local complete intersection
is flat, by(4.4.4.14).

Prop.(4.4.4.16).Local complete intersection is local on the source and target. In fact satisfies f.f.
descent(4.4.2.1).

Lemma(4.4.4.17). If S is a f.t. k-algebra and K/k is a field extension, then S is a local complete
intersection iff SK is a local complete intersection.

Prop.(4.4.4.18) [Global Intersections and Fibers].Let R → S be a ring map and q ⊂ S be a
prime lying over p ⊂ R, then the following are equivalent:

• R→ S is a global complete intersection around q.
• R → S is a f.p. around q, Sq/Rp is flat, and (the fiber)Sq/pSq is a local complete intersection

ring over k(p).

Proof: 1→ 2 follows from(4.4.4.14). For 2→ 1, Cf.[Sta]00SY. □

Prop.(4.4.4.19) [Local Complete Intersection over Fields is Stalkwise].For a f.g. k-algebra
S, S is a local complete intersection iff all localization at (maximal)primes are complete intersection
local rings over k. In particular, being local complete intersection is a stalkwise property.

Proof: This is because over field everything is f.p. and flat, and use(4.4.4.18). □
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Prop.(4.4.4.20). If S is a f.g. local complete intersection over a field k, then it is a CM ring.
Proof: Cf.[Sta]00SB. □

Def.(4.4.4.21)[Complete Intersection Local Rings].Let A be a local ring essentially of f.t. over
a field k, then A is called a complete intersection local ring over k if there exists a surjection
R → A from a regular local ring essentially of f.t. over k that the kernel is generated by a regular
sequence.

Prop.(4.4.4.22).When A is f.g. local ring over a field k, then A is a complete intersection local ring
iff A is local complete intersection over k(4.4.4.11).
Proof: Cf.[Sta]00SC. □

See more in [Sta]Chap 23.8.

5 Smoothness

Formally Smoothness

Def.(4.4.5.1).A ring map R → S is called formally smooth if has right lifting property w.r.t all
ring maps A→ A/I where I2 = 0.

Formal smooth is stable under base change and composition, by universal arguments. A polyno-
mial algebra is formally smooth.

Prop.(4.4.5.2).Giving a presentation S = P/J where P is formally smooth(e.g. polynomial algebra),
S is formally smooth iff there is a map S → P/J2 that is right converse to the obvious projection.
Proof: One way is from the definition of formally smooth applied to P/J2 and J . Conversely, for
any A and I, we notice the map P → S → A/I can be lifted to P → A, and J is mapped to I, so
J2 is mapped to 0, so we have a map P/J2 → A. Then S → P/J2 → A is the lifting. □

Cor.(4.4.5.3). If P → S is a presentation of S/R by polynomial algebra with kernel I, then S/R is
formal smooth iff

0→ I/I2 → ΩP/R ⊗P S → ΩS/R → 0
is split exact as in(4.4.3.8).
Proof: This sequence is split exact iff P/J2 → S has a right converse, by(4.4.3.8). □

Now we consider the relation of Formal Smoothness and Kahler Differentials.
Cor.(4.4.5.4)[Equivalence Definition].S/R is formally smooth iff NLS/R is quasi-isomorphic to a
projective S-module at degree 0.
Proof: If S/R is formally smooth, then choose a presentation will suffice by(4.4.5.3). The converse
is also true by projectiveness and(4.4.5.3). □

Cor.(4.4.5.5). If C/B is formally smooth, then the Jacobi-Zariski sequence
0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

as in(4.4.3.7) is split exact, by(6.1.1.5). In particular, any derivation of B to a C-module can be
extended to a derivation C to a C-module.

Cor.(4.4.5.6). If A → B → C with A → C formally smooth and B → C surjective with kernel I,
then there is an split sequence

0→ I/I2 → ΩB/A ⊗B C → ΩC/A → 0

by(6.1.2.6).
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Standard Smooth Algebra

Def.(4.4.5.7).A standard smooth algebra over R is a algebra S = R[X1, . . . , Xn]/(f1, . . . , fc),
where c ≤ n and J( f1,...,fc

X1,...,Xc
) is invertible in S.

Prop.(4.4.5.8) [Standard Smooth Localization]. If R → S is standard smooth, then R → Sg is
standard smooth, and Rf → Sf is standard smooth(because stable under base change(4.4.5.9)).

Proof: For localization at g ∈ S, let h be an inverse image of g in R[X1, . . . , Xn], then Sg =
R[X1, . . . , Xn, Xn+1]/(f1, . . . , fc, Xn+1h− 1), and it is standard smooth. □

Prop.(4.4.5.9). Standard smoothness is stable under base change and composition.

Proof: For base change, notice the Jacobi matrix is the base change of the Jacobi matrix, so it is
also invertible. For composition, write out the presentation, the determinant is the product of the
presentation. □

Lemma(4.4.5.10)[Kähler Differential of Smooth Algebra is Free].The Kähler differential of a
standard smooth algebra S over a field k is free of rank dimS, and (f1, . . . , fc)/(f1, . . . , fc)2 is free
over S with basis f1, . . . , fc. Moreover, S is pure dimensional.

Proof: The naive cotangent complex for S/R is

d : (f1, . . . , fc)/(f1, . . . , fc)2 → S[dX1, . . . , dXn].

By hypothesis and linear algebra it is a split injection, and ΩS/R = S[dXc+1, . . . , dXn], so it is free
of rank n− c = dimS, because S is a global complete intersection(4.4.5.11). □

Prop.(4.4.5.11) [Standard Smooth and Complete Intersection].A standard smooth algebra
S = R[X1, . . . , Xn]/(f1, . . . , fc) is a global complete intersection(4.4.4.11).

Proof: It suffices to show any fiber of S has dimension n − c. For this, notice S ⊗R k(p) is also
standard smooth, then we reduce to the field case. Now I = (f1, . . . , fc) satisfies I/I2 → ⊕Sdxi
is a split injection. For any maximal ideal m containing I, tensoring k(m), we get an injection
I/mI → ⊕k(m)dxi. Notice there is a commutative diagram

I S/m⊗ I ∼= I/mI

⊕Sdxi S/m⊗m ∼= m/m2

d incl

dxi 7→1⊗xi

.

And the lower horizontal map is an isomorphism by Hilbert’s Nullstellensatz, so the image of fi in
mi/m

2
i are linearly independent over k(m), thus we can use(4.3.5.22) to show that dimS = n− c. □

Smoothness

Def.(4.4.5.12)[Smooth Ring Map].A ring map R→ S is called smooth if it satisfies the following
equivalent conditions:
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• It is of f.p. and the naive cotangent complex NLS/R is quasi-isomorphic to a finite locally free
S-module placed at degree 0. In other words,

0→ I/I2 → ΩP/R ⊗P S → ΩS/R → 0

is exact and ΩS/R is finite locally free. By(6.1.1.1), we only need to prove for a single presen-
tation of S.

• It is locally standard smooth.
• It is formally smooth and of f.p..

We say S is smooth at x if it is smooth on a nbhd of x.

Proof: 1→ 3: by(4.4.5.4). 3→ 1: By(4.4.5.4), ΩS/R is f.p. and projective, so it is finite projective.
At this point we already know that the first definition is stable under base change and composition,

because f.p. and formally smoothness both do(4.4.5.1)(4.3.7.9).
And also the first definition is local on source because f.p. does(4.1.4.4) and NL commutes

with localization(6.1.1.6) so we can use the local properties of triviality(4.1.4.2) and finite projective-
ness(4.3.1.7).

Now it is also local on the source because it is stable under base change and composition and
R→ Rfi does by locality on the source.

2 → 1:Now the property are all local on source. It suffices to prove a standard smooth map is
smooth. This follows from(4.4.5.10).

1 → 2:We need to prove, assuming the first definition, it is locally standard smooth. For this,
Cf.[Sta]00TA?. □

Cor.(4.4.5.13). Smoothness is stable under composition and base change. Smoothness is local on the
source and target(In particular, R→ Rf is smooth). (Already proved in the proof of(4.4.5.12)).

Prop.(4.4.5.14).A smooth map is a local complete intersection(4.4.4.15), hence flat.

Proof: Clear from(4.4.5.12). □
Prop.(4.4.5.15)[Noetherian Descent].A smooth ring map R→ S is a base change of smooth ring
map over a ring f.g. over Z.

Proof: Use the equivalence definition(4.4.5.2), we know that there is a map

S = R[X1, . . . , Xn]/(f1, . . . , fc)→ R[X1, . . . , Xn]/(f1, . . . , fc)2,

which if we write σ(Xi) = hi, then must satisfy

fi(h1, . . . , hn) =
∑

aijkfjfk.

Then we consider the subalgebra generated by fi, hi, aijk, then by the same reason, they form a
smooth algebra over Z, and its tensor with R gives out S. □

Cor.(4.4.5.16)[Strong Lifting Property].For a smooth ring map, the lifting property is true for
A→ A/I, where I is locally nilpotent.

Proof: By(4.4.5.15), R→ S is a base change of a smooth ring map R0 → S0 where R0 is f.g. over
Z. Now if S0 is generated by x1, . . . xn and a1, an ∈ A maps to the image of x1, . . . , xn in A/I, then
consider the subring A0 generated by R0 and ai, and let I0 = A0 ∩ I, then it suffices to prove this
case followed by base change. But now A0 is f.g. over Z, so it is Noetherian, and then I is nilpotent,
thus we have a desired lifting. □
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Prop.(4.4.5.17)[Stalkwise]. If R → S is f.p., then it is smooth iff it is Sq/Rp is smooth for every
(maximal)prime q of S and p under it.

Proof: Because of f.p., we only need to check triviality of H1(NL) and finite projectivity of
ΩS/R(4.4.5.12). But both triviality and finite projectivity is stalkwise(4.1.4.2). (Notice R → Rp
is smooth). □

Cor.(4.4.5.18)[Smooth Locus and Flat Base Change]. If R → S is of f.p. and R → R′ is flat.
Then the smooth locus of S′ = S ⊗R R′/R′ is the inverse image of smooth locus of S/R.

Proof: One direction is because smooth is stable under base change. Conversely, the local ring
map is f.f., so H1(NLS′/R′,q) = H1((NLS/R ⊗S S′)q) = H1(NLS/R,p ⊗Sp S′

q). Then the result follows
as S′

q/Sp is f.f. and triviality and finite projective descents for f.f. map(4.4.2.1). □

Lemma(4.4.5.19).A global complete intersection S = R[X1, . . . , Xn]/(f1, . . . , fc) is smooth at a point
p iff the Jacobian has rank ≥ n − dimq(S) at q, i.e. J( f1,...,fc

X1,...,Xc
) is not in q for some permutation of

X1, . . . , Xn.

Proof: This is a special case of(4.4.5.24). However, we need to prove it first here. If it is smooth at
q, then ΩS/R is locally free of dimension ≥ n−dimq(S) at q by(4.4.5.10), so the Jacobian has rank ≥
n−dimq(S). Conversely, if g = J( f1,...,fc

X1,...,Xc
) /∈ q, then Sg = R[X1, . . . , Xn, Xn+1]/(f1, . . . , fc, gXn+1−1)

is a standard smooth map. □

Prop.(4.4.5.20) [Fiberwise].For a ring map R → S and q is a prime of S over p. Then S/R is
smooth at q iff S/R is of f.p. around q and Sq/Rp is flat and S ⊗R k(p)/k(p) is smooth at q.

Proof: One direction is because smooth is flat, f.p. and stable under base change. Con-
versely, by(4.4.5.14) and(4.4.4.18), change R to Rg for some g /∈ p, we may assume S =
R[X1, . . . , Xn]/(f1, . . . , fc) is a global complete intersection. Then we may use(4.4.5.19) to see the
map is smooth on the standard open subset defined by the product of Jacobians of fi. □

Prop.(4.4.5.21). If A→ A[X1, . . . , Xn]→ R is smooth, then A[X1, . . . , Xn]→ R is smooth.

Proof: The desired map is firstly of f.p. by(4.3.7.11), and it can be verified to be formally smooth,
because A[X1, . . . , Xn] is free. □

Smooth over Fields

Lemma(4.4.5.22).Let S be f.g. over a alg.closed field k and m a maximal ideal, then the following
are equivalent:

• Sm is regular.
• dimk ΩS/k ⊗S k ≤ dimSm

• dimk ΩS/k ⊗S k = dimSm

• S/k is smooth at m.

Proof: Cf.[Sta]00TS. □

Prop.(4.4.5.23) [Differential Criterion of Smoothness].For a ring S f.g. over a field k, S is
smooth in a nbhd of q iff dimk(q) ΩS/k ⊗ k(q) ≤ dimq(S).

And in this case, equality hold, and Sq is regular.
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Proof: Cf.[Sta]00TT.
If S is smooth at x, then ΩS/R is finite free on a nbhd of x of rank equals to the dimension(4.4.5.10),

so the equation holds.
Conversely, if dimk(x) ΩS/k ⊗ k(x) ≤ dimx(X), then □

Cor.(4.4.5.24)[Jacobian Criterion of Smoothness].For a f.p. ring S = R[X1, . . . , Xn]/(f1, . . . , fc)
and q ⊂ S, S is smooth at q iff the Jacobian has rank≥ n − dimq(S) at q iff the Jacobian has
rank= n− dimq(S) at q.

Lemma(4.4.5.25).Let k be a field and (R,m, κ) be a Noetherian local ring containing k. If the residue
field of R is a f.g. field extension of k, then the derivation map

m/m2 → ΩR/k ⊗R κ

is injective.
Proof: Cf.[Sta]00TU. □

Prop.(4.4.5.26) [Smooth and Regular at Geometric Points].Let S be f.g. over a field k, if
k(q)/k is separable(e.g. char 0) for q a prime of S, then S is smooth at q iff it is regular at q.
Proof: Let R = Sq with maximal ideal m. By(4.4.5.25) and(4.4.3.8) there is an exact sequence

0→ m/m2 → ΩR/k ⊗R k(q)→ Ωk(q)/k → 0.

Since k(q)/k is separable, dimk(q) Ωk(q)/k = tr .deg(k(q)/k). So

dimk(q)(ΩR/k ⊗R k(q)) = dimk(q) m/m
2 + tr .deg(k(q)/k) ≥ dimR+ tr .deg(k(q)/k) = dimq(S)

with identity iff R is regular(The last identity comes from(5.6.3.7)). So we are done by differential
criterion of smoothness(4.4.5.23). □

Prop.(4.4.5.27)[Smooth over Fields and Geo.Regular].Let S be f.g. over a field k, then S is
smooth over k iff S is geo.regular(4.3.6.1).
Proof: If S is smooth at x, then all its base change is smooth at x(4.4.5.13), and the stalk is regular
by(4.4.5.23), so it is geometrically regular at x.

Conversely, if X is geometrically regular, then for any point x ∈ X, k(x) is f.g. over k, so
by(4.3.9.3) there is a finite purely inseparable extension k′/k that the compositum k′k(x) is separable
over k′. Then by(4.1.7.26), SpecA⊗k k′ is homeomorphic to SpecA, so there is a unique prime p′ of
Xk′ over X, and its residue field is k′k(x). So by(4.4.5.26), as k′k(x)/k′ is separable, Xk′ is smooth
over k′ at p′. And f.f. descent for smoothness(4.4.2.1) says X is also smooth over k at p. □

Cor.(4.4.5.28) [Differential and Smoothness].Let k be a field of characteristic 0 and S a f.g.
algebra over k, and q a prime ideal of S, if ΩS/k,q is free over Sq, then S is smooth in a nbhd of q.
Proof: Cf.[Sta]00TX. □

Prop.(4.4.5.29) [Generic Smoothness].Let R → S be an injective ring map of f.t. with R,S
domains, then it is smooth at (0) iff the quotient field map is separable.
Proof: If S is smooth at 0, then replacing S by Sg for some g, we can assume R → S is smooth.
Then K → S⊗RK is also smooth(4.4.5.13), and also for any field extension K ′ of K. Then S⊗RK ′

is regular, by(4.4.5.23), a priori reduced(5.4.1.5). Thus S⊗RK is geometrically reduced. Hence also
L is geometrically reduced over K, thus separable, by(4.3.9.4).

Conversely, by(4.4.1.34), we may assume R → S is of f.p., thus to show it is smooth at (0), it
suffices to show S ⊗R K is smooth at (0), by(4.4.5.20). Then this follows from(4.4.5.26). □
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Smoothing Ring Maps

Prop.(4.4.5.30).A regular homomorphism of Noetherian rings is a filtered colimit of smooth ring
maps.

Proof: Cf.[Sta]07GC. □

6 Unramified

Formally Unramified

Def.(4.4.6.1).A ring map R → S is called formally unramified if for every R-ring A and an ideal
I of A that I2 = 0, a map S → A/I has at most one extension to a map S → A.

Formally unramified is equivalent to ΩS/R = 0. So it is stable under composition by Jacobi-Zariski
sequence(4.4.3.7).

Proof: Let J = ker(S ⊗R S → S), let Auniv = S ⊗R S/J2, then J/J2 ∼= ΩS/R(4.4.3.4), so we
have two natural map from S to Auniv, they differ by the universal differential S → ΩS/R. If S/R is
unramified, then ds = 0 for all s ∈ S, so ΩS/R = 0.

Conversely, if there is a A and A/J that there are two liftings τ1, τ2, then we let Auniv → A
defined by s1 ⊗ s2 → τ1(s1)τ2(s2), this is well-defined, and because Auniv ∼= S, this map descends to
S, so τ1(s1s2) = τ2(s1s2). □

Prop.(4.4.6.2) [Formally Unramified Stalkwise].Formally unramified is stalkwise both on the
source and target(4.1.4.2).

Prop.(4.4.6.3).Colimits of formally unramified rings over R is formally unramified. (Trivial as one
renders on the diagram in the definition of formally unramified).

Unramified Map

Def.(4.4.6.4)[Unramified Maps].A ring map is called unramified iff it is formally unramified and
f.g..

A ring map is called G-unramified iff it is formally unramified and of f.p.. In particular, an
étale map is G-unramified.

These two notions are stable under composition and base change. These two notions are local on
the source and target. R→ Rf is G-unramified.(4.4.6.1)(4.1.4.2)

Prop.(4.4.6.5).R→ R/I is unramified, and if I is f.g., then it is G-unramified. (Trivial).

Prop.(4.4.6.6) [Stalkwise and Fiberwise]. If R → S is of f.t(f.p.), then it is unramified(G-
unramified) at a prime q of S iff (ΩS/R)q = 0 iff ΩS/R ⊗S k(q) = 0 iff (ΩS⊗k(p)/k(p))q = 0 iff
ΩS⊗k(p)/k(p) ⊗ k(q) = 0.

Proof: By Nakayama, two pair of them are equivalent, and if ΩS/R,q = 0, then ΩS/R,g = 0 for some
g /∈ q(because support of finite module is open), so R → Sg is (G-)unramified. And notice in fact
ΩS/R ⊗S k(q) = ΩS⊗k(p)/k(p) ⊗k(p) k(q). □

Prop.(4.4.6.7)[Equivalent Definition of Unramifiedness].A f.g. ring map R→ S is unramified
at a prime q of S over p iff pSq = qSq and k(q)/k(p) is finite separable.
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Proof: Suppose R → Sg is unramified, then S ⊗ k(p) is unramified over k(p), hence by(4.4.5.23),
it is also smooth, so it is étale, and(4.4.7.9) gives the result.

For the converse, Cf[Sta]02FM]. □

Prop.(4.4.6.8).A ring map is unramified iff it is locally a quotient of a standard étale map.

Proof: Cf.[Sta]0395]. □

Prop.(4.4.6.9).Any G-unramified map is a base change of a G-unramified map over a ring R0 f.g.
over Z. And similarly any unramified map is a quotient of a base change of a G-unramified map over
a ring R0 f.g. over Z.

Proof: Let S = R[X1, . . . , Xn]/(g1, . . . , gc), then we have dXi =
∑
aijdgj + aijkgjdXk, so we let

R0 be generated by gi, aij , aijk, so S0 = R0[X1, . . . , Xn]/(g1, . . . , gc) is G-unramified. □

Prop.(4.4.6.10) [Unramifiedness and Idempotent]. If R → S is of f.t., then it is unramified iff
S ×R S → S is isomorphic to S ⊗R S → (S ⊗R S)e for some diagonal idempotent e ∈ S ⊗R S that
e ker(µ) = 0, i.e. S ⊗R S ∼= S × S′.

Proof: If it is G-unramified, the kernel I satisfies I/I2 = 0, and I is f.g.(by xi ⊗ 1− 1⊗ xi) so we
can use(4.1.7.7).

Conversely, the existence of the diagonal idempotent e implies that I = I2. □

7 Étale

Formally Étale

Def.(4.4.7.1).A ring map R → S is called formally étale iff it is formally smooth and formally
unramified.

Prop.(4.4.7.2).Colimits of formally étale rings over R is formally étale. (The lifting are compatible
because of uniqueness).

Prop.(4.4.7.3).R→ S−1R is formally étale.

Proof: It suffice to prove that if φ(s) is invertible modulo I, then φ(s) is invertible, but this is true
because I is nilpotent. □

Étale Map

Def.(4.4.7.4).A ring map R → S is called étale if it is of f.p. and the naive cotangent complex is
exact, i.e. I/I2 ∼= ΩP/R ⊗P S.

In particular, étale is equivalent to smooth+formally unramified(ΩR/S = 0).

Cor.(4.4.7.5)[Properties of Étale].
1. Étale map is stable under base change and composition.
2. Étale map is local on the source and target. In particular, R→ Rf is étale.
3. If R→ S is of f.p. and R→ R′ is flat. Then the set of primes in S′ = S⊗RR′ that has a nbhd

that is étale over R′ is the inverse image of set of primes in S that has a nbhd that is étale over
R. (The same as(4.4.5.18)).
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4. Étale map is syntomic, hence flat.
5. Any Étale map is a base change of an étale map over a ring R0 f.g. over Z. (Cf.[Sta]00U2).

Cor.(4.4.7.6)[Étale Localness of Differential].For ring morphisms A→ R→ S, if R→ S is étale,
then ΩS/A = ΩR/A ⊗R S.

Proof: This follows from(4.4.7.4) and(4.4.5.5). □

Prop.(4.4.7.7)[Jacobson Criterion].Any étale map is equivalent to a standard smooth ring map
S = R[X1, . . . , Xn]/(f1, . . . , fn) that J( f1,...,fn

X1,...,Xn
) is invertible in S.

Proof: I/I2 ∼= ΩP/R ⊗P S, so I/I2 is free, so by(4.3.7.12), there is a presentation of S that
f1, . . . , fc freely generate I/I2, then obviously c = n and J( f1,...,fc

X1,...,Xn
) is invertible in S, i.e. S is

standard smooth. □

Cor.(4.4.7.8)[Example of Étale Maps].The ring

S = R[X1, . . . , Xn, Xn+1]/(f1, . . . , fn, Xn+1 det( f1, . . . , fn
X1, . . . , Xn

)− 1)

is étale over R.

Prop.(4.4.7.9). If R → S is étale at a nbhd of a prime q of S over p, then pSq = qSq, and k(q)/k(p)
is finite separable.

Proof: We can replace S by Sg so Sg/R is étale. Then S ⊗ k(p)/k(p) is étale, that is Sp/pSp is a
finite product of finite separable fields, so Sq/pSq = (Sp/pSp)q = some separable closed field. □

Lemma(4.4.7.10). If R→ S is an étale map and q is a prime of S over p, then S/R is étale in a nbhd
of q if

• R→ S is of f.p.
• Rp → Sq is flat.
• pSq = qSq.
• k(q)/k(p) is a finite separable field extension.

Proof: Cf.[Sta]00U6. □

Prop.(4.4.7.11)[Equivalent Definition of Étale].A ring map R → S is étale iff it is flat, of f.p.
and ΩS/R vanishes.

Proof: One direction is by definition, and the converse is by(4.4.7.10) and(4.4.6.7). □

Prop.(4.4.7.12).A ring map of f.p. is formally étale iff it is étale. (Because in this case, formally
smooth is equivalent to smooth(4.4.5.12).)

Prop.(4.4.7.13). If S/R and S′/R are étale, then any R-algebra map S → S′ is étale.

Proof: S → S′ is of f.p. by(4.3.7.11), the rest Cf.[Sta]00U7. □



476 CHAPTER 4. COMMUTATIVE ALGEBRAS

Prop.(4.4.7.14)[Étale Algebra seen explicitly as Finite Projective Modules].Étale algebras
are finite projective, by(4.3.1.7). And we can see this clearly as follows: There is an diagonal
idempotent as it is unramified(4.4.6.10), If e =

∑
ai⊗ bi, then we can realize S as a direct command

of Rn through maps
S

α−→ Rn
β−→ S

where α(f) = (trS/R(fai)), and β((gi)) =
∑
gibi.

Proof: We check that β ◦ α = id: Notice first that tri2(e) = trS/S(1) = 1, following from the
decomposition above, so ∑ trS/R(ai)bi = 1, thus shows that βα(1) = 1.

Now for general f , using the formula (f ⊗ 1)e = (1⊗ f)e, we get ∑ tr(fai)bi =
∑

tr(ai)bif = f .
□

Prop.(4.4.7.15). If R is a ring and I is an ideal, then any étale ring map R/I → S comes from an
étale ring map R→ S.

Proof: Use(4.4.7.7), an étale map is of the form S = R/I[X1, . . . , Xn]/(f1, . . . , fn) that δ =
J( f1,...,fn

X1,...,Xn
) is invertible in S, then we take S = R[X1, . . . , Xn, Xn+1]/(f1, . . . , fn, Xn+1δ− 1), then it

is étale by(4.4.7.8) and maps to S. □

Standard Étale

Def.(4.4.7.16).A ring map R → R′ = R[X]g/(f) is called standard étale iff f is monic and the
derivative f ′ is invertible in R′.

Standard étale is stable under base change and principal localization, but not stable under com-
position.

Prop.(4.4.7.17)[Étale and Standard Étale].A ring map is étale iff it is locally standard étale.

Proof: For a standard étale algebra R[X]g/(f) = R[X,Y ]/(f, gY − 1) which is standard smooth
and ΩR′/R = 0(4.4.3.10), so it is étale. To prove if it is locally standard étale then it is étale,
Cf.[Sta]00UE. □

Prop.(4.4.7.18).Giving any ring R and a prime p, if there is a finite separable extension L/k(p), then
there is a standard étale map R→ R′ that for some q′, k(q′) ∼= L over k.

Proof: L = k(p)[α] by primitive element theorem, so the minimal polynomial of α is separable,
and if we change α to cα for some c ∈ k(p), we can assume f can be lifted to a f ∈ R[X]. Now f ′(α)
is invertible in L, so there is a map from R[X]f ′/(f) to L, whose kernel gives the desired prime q. □

Étale over Fields

Prop.(4.4.7.19)[Étale over Fields].An algebra over a field k is étale iff it is a finite product of finite
separable extensions of k.

Proof: If k′/k is finite separable, then k′ = k(α) for some α by primitive element theorem, thus
k′ = k[X]/(f) that f ′ is invertible in k′, thus it is étale by(4.4.7.7).

Conversely, Cf.[Sta]00U3. □

Cor.(4.4.7.20)[Étale over Perfect Fields].Let k be a perfect field. If R is a k-algebra that is a
finite as a k-module, then it is étale over k iff it is reduced.
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Proof: If it is étale , then it is reduced, by(4.4.7.19). Conversely, if it is finite and reduced, then it
is a reduced Artinian ring(4.1.3.4), so a product of fields over k, so étale as k is perfect. □

Prop.(4.4.7.21)[Étale and Trace Form].Let A be a f.d. k-algebra, then A is étaleover k iff the
trace form: A×A→ k : (a, b) 7→ trA/k(ab) is non-degenerate.

Proof: If it is étale, then the trace form is non-degenerate by(4.4.7.19) and(2.2.5.32). Conversely,
if the trace form is non-degenerate, then A is reduced, because if a ∈ A is nilpotent, then ab are
nilpotent for any b ∈ A, and trA/k(ab) = 0. Then as a reduced Artinian ring, A is isomorphic to a
product of fields, then by(2.2.5.32), all the fields are separable over k. □

Prop.(4.4.7.22)[Étale and Unramified over Fields].For k ∈ Field, a f.g. k-algebra is étale iff it
is (G-)unramified over k, by(4.4.5.23).

Prop.(4.4.7.23) [Maximal Étale Subalgebra].Let A be an algebra of f.t. over a field k, then
there is a maximal étale k-subalgebra of A. Also this subalgebra commutes with arbitrary field base
change.

Proof: If R is an étale subalgebra of A, then Rk is étale over k, thus isomorphic to (k)n for some n.
Now n is smaller than the number of connected components of SpecAk, which is finite. So it suffices
to show the composite of two étale subalgebras of A is étale. For this, notice RR′ is a quotient of
R ⊗k R′, which is a finite product of finite separable fields over k, thus its quotient is also a finite
product of finite separable fields over k, which is étale.

□

8 Local Algebras
Main references are [Local Algebra, Serre].

Prop.(4.4.8.1). If A is a Noetherian local integral domain with residue field k and quotient field K,
if M is a f.g. A-module that dimkM ⊗A k = dimKM ⊗A K = r, then M is free of rank r.

In other words, if the rank of M at the generic point and closed pt of B are the same, then M is
free.

Proof: First M is generated by r elements by Nakayama and the kernel R of Ar → M vanishes
when tensoring K, thus vanish because it is torsion-free. □

Prop.(4.4.8.2).Let A→ B be a local ring map of local rings that
• B is finite as an A-module.
• mB is a f.g. ideal.
• A/mA

∼= B/mB.
• mA/m

2
A
∼= mB/m

2
B.

Then A→ B is surjective.

Proof: By Nakayama, to show it is surjective, it suffices to show A/mA → B/mAB is surjective,
then it suffices to show mA ⊗A B → mB is surjective. For this, use Nakayama again on B to
reduce to the fact mA ⊗A B/mB → mB ⊗ B/mB is surjective, which is satisfied because this is just
mA/m

2
A → mB/m

2
B. □
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4.5 p-adic Commutative Algebras

1 Fp-Algebras
Def.(4.5.1.1)[relative Frobenius].Let S → R be a ring map, then the relative Frobenius φR/S
is the map R⊗S,Frob S → R induced by universal property.

Def.(4.5.1.2)[Perfect Rings].A ring of characteristic p is called perfect iff the Frobenius Frob/φ :
P → P is an isomorphism. It is called semi-perfect iff Frob is surjective.

Prop.(4.5.1.3) [Perfection and Coperfection]. If R is of char p, we define Rperf = lim−→φ
R and

Rperf = lim←−φR.
The (·)perf and (·)perf are respectively the left and right adjoint to the forgetful functor from the

category of perfect rings to the category of rings of characteristic p.
In particular, the category of perfect rings admits limits and colimits, and it equals the limits

and colimits in the category of rings.

Proof: First both Rperf and Rperf are perfect: for Rperf , every element in Rperf is represented by
an element an ∈ Rn, and this element is equivalent to apn ∈ Rn+1, so its p-th root is an ∈ Rn+1. For
Rperf , an element (. . . , xn, . . . , x0) has p-th root (. . . , xn+1, . . . , x1).

Second it is easily checked to be a functor because Frob is natural. The universal property is
easy. □

Prop.(4.5.1.4)[Perfection Kills Nilextensions]. If f : R → S is a map of rings of characteristic p
that is surjective with nilpotent kernel, then Rperf → Sperf and Rperf → Sperf are both isomorphisms.

Proof: −perf map is clearly surjective, and it is injective because if a maps to 0, then Frobk(a) ∈
ker f for some k, so it is nilpotent, so Frobk+n(a) = 0.
−perf is clearly injective, and it is surjective because: suppose ker fn = 0, then for a (sn) ∈ S, let

tm be the inverse image of smn, for each m, and let x = (xn), xmn−k = Frobktm, then (x) ∈ Rperf

and x maps to s. □

Def.(4.5.1.5) [Perfectly Finitely Presented].A map of perfect Fp-algebras B → A are called
perfectly finitely presented if A = (A0)perf for some f.p. B-algebra A0.

Prop.(4.5.1.6)[Aberbach-Hochster].Let R be a perfect Fp-algebra, f1, . . . , fr ∈ R, and consider
the ideal I =

√
(f1, . . . , fr) ∈ R. Then R/I has flat dimension≤ r as an R-module.

Proof: We only prove for r = 1.
We show I = lim−→f1/pn−1/pn+1 R. The map is given by (an) 7→ f1/pnan. This is injective because if

f1/pna = 0, then f1/pn+1
a = 0 by perfectness, thus a is killed by the transition map f1/pn−1/pn+1 . □

Prop.(4.5.1.7) [Perfect Algebras are Tor Independent].For any two perfect A-algebras B,C
where A is a perfect Fp-algebra, TorAi (B,C) = 0 for i > 0.

Proof: A→ B can be written as a composition of a perfection of a free A-algebra and a quotient.
The perfection of free algebra is flat, thus we can assume B = A/I. By a filtered colimit argument
again, we can assume I = (f

1
p∞

1 , . . . , f
1
p∞
r ) is perfectly f.p. By induction, we can assume r = 1. Now

the lemma(4.5.1.6) applied to R = C shows that IC = lim−→f1/pn−1/pn+1 C = I⊗LAC, so B⊗LAC = C/IC

is discrete. □
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Prop.(4.5.1.8). If R is a perfect Fp-algebra, I is a radical ideal, and J = R[I] ⊂ R, then J and I + J
are both radical, and the square

R R/I

R/J R/I + J

is both a fiber pullback and pushout square of commutative rings.

Proof: J is clearly a radical, and notice that I + J is the kernel of the map R → R/I ⊗R R/J =
R/I + J(4.1.1.22), and the target is a colimit of perfect rings thus perfect, by(4.5.1.3). Thus I + J
is also perfect, thus a radical ideal.

By(4.1.1.23), to show the map is a pullback square, it suffices to show that I∩J = 0. If x ∈ I∩J ,
then x2 = 0, thus xp = 0, so x = 0. □

Tilting

Def.(4.5.1.9)[Tilting].For any R ∈ CRing, the (p-adic)tilting of R is defined to be R♭ = (R/(p))perf ,
endowed with the profinite topology.

Prop.(4.5.1.10). If R is a f.g. algebra over an alg.closed field k of charp, then R♭ ∼= kπ0(SpecR).

Proof: It suffice to prove for SpecR connected and reduced, because by(4.5.1.4). We first prove
the case SpecR is irreducible, i.e. R is integral:

In this case, choose a closed point x, then there is a map R → R̂x, where R̂x is the mx-adic
completion. By Krull(4.2.2.15) and the fact R is integral, this map is injective, so it suffices to show
that 0 = (R̂x)perf = lim−→(Rx/mn

x)perf . But (−)perf is a right adjoint so commutes with colimits and
R̂x = lim−→Rx/m

n
x. But (Rx/mn

x)perf = (Rx/mx)perf = kperf = k, by(4.5.1.4) again.
If R is not irreducible, ? □

Prop.(4.5.1.11)[Examples of Tilting].
• Fp[t]perf = Fp[t

1
p∞ ], Fp[t]♭ = Fp[t]perf = Fp.

• (Zp)♭ = Fp.
• If R is a perfect ring of charp and f ∈ R is a non-zerodivisor, then (R/f)perf is the f -adic

completion of R. In particular, (Fp[t
1
p∞ ]/(t))perf ∼=

̂
Fp[t

1
p∞ ].

• (
̂

Zp[p
1
p∞ ])perf ∼=

̂
Fp[t

1
p∞ ] ∼= F̂p[t]perf ∼= (Fp[t]perf/(t))perf .

Proof: The first two are trivial, for the third, notice R̂f = lim←−nR/f
n = lim←−nR/f

pn , and there are

commutative diagram
R/f R/f

R/fp
k+1

R/fp
k

φ

φk+1 φk

i

, so lim←−nR/f
pn ∼= (R/f)perf .

For the fourth, only the first equivalence needs proving, the others are consequences of the first
three items. Then notice

(
̂

Zp[p
1
p∞ ])♭ ∼= lim←−(

̂
Zp[p

1
p∞ ]/pk)perf ∼= (

̂
Zp[p

1
p∞ ]/p)perf ∼= (Fp[t

1
p∞ ]/t)perf ∼=

̂
Fp[t

1
p∞ ]

The last isomorphism by item3. □
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Prop.(4.5.1.12). If R ∈ CRing is a p-adically complete, π ∈ R×, p ∈ (π), then the map R → R/p
induces an homeomorphism of monoids:

lim←−
x→xp

R ∼= lim
φ
R/π

(4.5.1.4)= lim
φ
R/p = R♭

Proof: Injectivity: if (an), (bn) ∈ limx→xp R satisfies an ≡ bn mod π for all n, then applying power
lifting(24.1.3.4), an ∼= bn mod πn+k for all k, so an = bn.

Surjectivity: for (an) ∈ R♭, choose arbitrary lifting an, then apn+k+1 ≡ an+k mod π for all n+ k,
so k 7→ ap

k

n+k is a Cauchy sequence by power lifting(24.1.3.4) again, thus converging to some point
bn. then it’s easily checked that bpn+1 = (lim ap

k

n+1+k)p = lim ap
k+1

n+1+k = bn. so (bn) maps to (an).
For the topology: it is clearly continuous, and for the reverse, if (ai), (bi) satisfies that ai ≡

bi mod π for i < k, then the image in lim←−x→xp
R satisfies xi ≡ yi mod pk−i for i < k, thus it is

open. □

Cor.(4.5.1.13)[Sharp Map].From this proposition, we get a multiplicative sharp map:

♯ : R♭ → R : (an) 7→ lim
k→∞

ap
k

k ,

and its image is just the elements that has a compatible system of pk-th roots x
1
pk . These elements

are also called perfect.

Cor.(4.5.1.14)[Addition in R♭].From the isomorphism(4.5.1.12) above, we can read what the addi-
tion looks like in the presentation lim←−φR: if (fn), (gn) are two elements, then their addition is given
by (hn), where hn = limk(fn+k + gn+k)p

k .

Cor.(4.5.1.15) [Fontaine’s Functor].By(6.1.4.4), the natural map R♭ → R/p induces a map θR :
W (R♭) → R of rings, called the Fontaine’s functor, which writes as ∑[ai]pi 7→

∑
a♯ip

i. And we
denote Ainf(R) = W (R♭) the infinitesimal Fontaine’s ring of R.

Prop.(4.5.1.16). If R is p-complete, the Fontaine’s functor θR is surjective iff R/p is semiperfect.

Proof: As R is p-complete, θ is surjective iff it is surjective modulo p. Because its reduction modulo
p is R♭ → R/p is surjective as φ : R/p→ R/p does. □

Prop.(4.5.1.17)[Tilting as a Valuation Ring]. If R is a domain or a valuation ring, then the same
is true for R♭. In the valuation case, the valuation of R♭ can in fact be chosen to be | · | ◦ ♯, so in
particular, the rank of R♭ is no more than the rank of R.

Proof: Use the isomorphism lim←−x→xp
R ∼= limφR/p = R♭(4.5.1.12).

For the domain case, if (an)(bn) = 0, then anbn = 0, so a0 = 0 or b0 = 0, so (an) = 0 or
(bn) = 0. Similarly, if R is a valuation ring, then R♭ is firstly a domain, and it suffices to prove that
for any (an), (bn) ∈ R♭, the quotient of one by another is in R♭, by(10.3.2.3). For this, because R is
valuation ring, we may assume a0/b0 ∈ R, so an/bn is also in R, because their power do, and R is
normal(10.3.2.6), thus (an)/(bn) ∈ R♭.

For the valuation given, notice in the above proof, |(an)| ≤ |(bn)| iff |a0| ≤ |b0|, so the valuation
are equivalent to | · | ◦ ♯ by(10.3.3.14), so it can be chosen to be so. □

Prop.(4.5.1.18)[Tilting and Completion]. If R = A/I with A/p perfect, then R♭ identifies with
the I-adic completion of A/p.
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Proof: R♭ = lim←−φR/p = lim←−φA/(p, I). But there are commutative diagrams

A/(p, I) A/(p, I)

A/(p, Ipn+1) A/(p, Ipn)

φ

φn+1 φn

where the vertical arrows are isomorphisms because A/p is perfect. So the conclusion follows. □

2 p-Local Rings
Def.(4.5.2.1)[p-Local Rings].A commutative ring is called p-local if p ∈ radA.

Prop.(4.5.2.2).Let A be a p-adically complete ring, then A is p-local, by(4.2.3.18).

Prop.(4.5.2.3). If A is p-adically complete and has bounded p-torsions, the p-completion of a smooth
A-algebra is p-completely smooth.

Proof: This follows from(4.9.7.4) and(4.9.6.16). □

Def.(4.5.2.4)[p-Normal Rings].A p-torsion-free ring R is called p-normal if R is p-root closed in
R[1

p ].

Complete Discrete Valuation Rings

Structure of complete p-local DVRs will be studied in this subsubsection.
Main references are [Ser79], [Integral p-adic Hodge, BMS].

Def.(4.5.2.5) [Strict p-Ring].A p-ring A is a ring which is complete Hausdorff in the topology
defined by the decreasing chain of ideals a1 ⊃ a2 ⊃ · · · such that aman ⊂ am+n that k = A/a1 is a
perfect ring of characteristic p.

It is called a strict p-ring if moreover an = (pn) and p is a non-zero divisor of A.

Prop.(4.5.2.6)[Teichmüller Lifts].For a p-ring, there exists a unique section map [·] : k → A that
is multiplicative, called the Teichmüller lifts.

If charA = p, then the Teichmüller lift is also additive(but not in general). And an element is in
the image of f iff it is a pn-th power for any n.

Proof: For any λ ∈ k, the λp−n is unique in k, and if we consider Un the set of all xpn where
x is a lift of λp−n , then Un is a descending set. Moreover, the diameter converges to 0, because
a ≡ b mod a1 implies apn ≡ bp

n mod an+1 as p ∈ a1. So it converses to a unique point f(λ) in A.
And we see that any other f ′ maps λ to a pn-th root hence in Un for any n, hence it map be equal
to f(λ). The rest is easy. □

Cor.(4.5.2.7)[Equal Characteristic case]. If A is a complete discrete valuation ring with residue
field k. If k and A have the same characteristic and k is perfect, then A ∼= k[[T ]].

Def.(4.5.2.8)[(0, p)-type case].When A is a complete DVR with residue field k and quotient field
K. If charK = 0 and chark = p, then p goes to 0 in k, so e = v(p) ≥ 1, called the absolute
ramification index of A. It is called absolutely unramified iff e = 1.
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Remark(4.5.2.9)[Universal Strict p-Ring].The canonical strict p-ring is the ring Ŝ = Ẑ[Xp−n
α ].

Its residue ring is Fp[Xp−n
α ] which is perfect. Xi are all Teichmüller lifts, as they has all pn roots.

Now we consider the ∗ = + − × in Ŝ. then there are elements Q∗
i ∈ Fp[Xp−n

α , Y p−n
α ] that

x ∗ y =
∑
f(Q∗

i )pi where f is the Teichmüller lift.

Prop.(4.5.2.10)[Universal Law of p-Rings].For any p-ring A with residue ring k, the calculation
in A is dominated by Q∗

i defined in(4.5.2.9), i.e.(∑
f(αi)pi

)
∗
(∑

f(βi)pi
)

=
∑

f(γi)pi

where γi = Q∗
i (α0, α1, . . . , β0, β1, . . .).

Proof: There is a map θ from Ŝ = Ẑ[Xp−n

i , Y p−n

i ] to A induced by f(αi), f(βi) as they all has
p−n-th roots. Then notice θ induce a θ on residue ring and these two θ commutes with Teichmüller
lift, as seen by the definition of the latter. Then the theorem follows immediately. □

Prop.(4.5.2.11)[Universal Properties of Strict p-Rings].For two p-ring A,A′ that A is strict,
then any map φ of their residue ring induces a unique ring homomorphism A → A′. In particular,
two strict p-ring with the same residue ring is canonically isomorphic.

Proof: We have already seen that ring homomorphism commutes with Teichmüller lift. Now we
define

g(a) =
∑

g(f(αi))pi =
∑

f(φ(αi))pi

and this is the unique choice. It is a ring homomorphism by universal law of(4.5.2.10). □

3 Witt Theory
References are [Michiel Hazewinkel, Formal Groups and Applications] and [Rab14].

Witt Vectors

Def.(4.5.3.1)[Divisor Stable Subsets].A non-empty subset P ⊂ Z+ is called divisor-stable if it
is stable under taking divisors.

For a divisor-stable subset P and n ∈ Z+, define P (n) = {m ∈ P |m ≤ n}.

Def.(4.5.3.2)[Witt Polynomials].For n ∈ N, the n-th Witt polynomial is defined to be

Wn =
∑
d|n

dX
n/d
d ∈ Z[{Xd : d|n}].

For example,
Wpk = Xpk

1 + pXpk−1
p + . . .+ pnXpn .

Prop.(4.5.3.3)[Commutative Coalgebra ∆P ].For a divisor-stable set P , let ∆P = Z[{Xn|n ∈ P}],
then there is a unique commutative ring scheme structure on Spec ∆P s.t. the map

W∗ : Z[XP ]→ ∆P : n 7→Wn ∈ ∆P

induces a homomorphism of ring schemes Spec ∆P → SpecZ[XP ], where the ring structure on
SpecZ[XP ] is given by

× : Z[XP ]→ Z[XP ]⊗Z[YP ] : Xn 7→ Xn⊗Yn, + : Z[XP ]→ Z[XP ]⊗Z[YP ] : Xn 7→ Xn⊗1+1⊗Yn.
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Then for another divisor-stable set P ′ ⊂ P , there is a natural map ∆P ′ → ∆P that induces a
homomorphism of ring schemes.

If P = Z+, denote ∆P = ∆, if P = {1, p, p2, . . .}, denote ∆P = ∆p, and if P = {1, p, . . . , pk},
denote ∆P = ∆p,k.

Proof: □

Cor.(4.5.3.4).Sn is of the form Sn(XP , YP ) = Xn + Yn + fn(XP (n−1), YP (n−1)).

Proof: □

Def.(4.5.3.5)[Witt Vectors].For a divisor-stable set P , consider the functor

WP : CAlg→ CAlg : A 7→WP (A) = Hom(∆P , A),

then it is an exact functor, and by(4.5.3.3), there are natural ring homomorphism

W∗ : WP (A)→
∏
P

A : f 7→ (f(Wn))W

For x ∈ WP (A), Wn(x) are called the ghost components of x, and W∗(x) is called the Witt
coordinate of x.

If P = Z+, WP (A) is denoted by W (A), if P = {1, p, p2, . . .}, WP (A) is denoted by Wp(A), and
if P = {1, p, . . . , pk}, denote WP (A) = Wp,k(A).

Prop.(4.5.3.6)[Natural Coordinates].There is another map

φ∗ : WP (A)→
∏
P

A : f 7→ (f(Xi))

which is an isomorphism of sets, whose components are maps of sets φn : WP (A) → A,n ∈ P .
WARNING: it is not an isomorphism of groups. For x ∈ WP (A), φn(x) are called the ghost
components of x, and φ∗(x) is called the Witt coordinate of x. All coordinates of elements in x
will be assumed to be in the natural coordinates by default.

Then the map W∗φ
−1
∗ is given by

W∗φ
−1
∗ :

∏
P

A→
∏
P

A : (xn)φ 7→ (Wn({xP }))W .

Cor.(4.5.3.7)[Witt Coordinates are Injective].W∗ : WP (A)→
∏
P A is injective if A is n-torsion-

free for any n ∈ P , and an isomorphism iff n is invertible in A for any n ∈ P .
This is very useful because it can prove equations by checking on each Wn. Also when checking

universal equations, it is even not necessary that A is n-torsion-free, because any ring A is a quotient
of a free Z-algebra.

Proof: It suffices to prove for W∗φ
−1
∗ . Using the Witt polynomials and prove inductive on n ∈ P

s.t. if x = (xn) is mapped to 0, then xn = 0 for any n ∈ P .
In case n is invertible in A for any n ∈ P , solve xn out of W∗(x) inductively. □

Def.(4.5.3.8)[Topology on WP (A)].Let P be a divisor-stable set, then for any A ∈ CAlg, the natural
map

WP (A)→ lim←−
n∈Z+

WP (n)(A)
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is an isomorphism of rings, so we can define the natural topology on WP (A) is as the profinite
topology.

Then this topology makes WP (A) a topological ring, and it is discrete iff #P <∞, and WP is a
functor from CAlg to the category of profinite rings.

Prop.(4.5.3.9).Let P be a divisor-stable set and A ∈ CAlg, then for x = (xn), y = (yn) ∈ WP (A), if
xnyn = 0 for any n ∈ P , then

x+ y = (xn + yn) ∈WP (A).

Proof: It suffices to prove on ∆P . By(4.5.3.7), it suffices to prove Wn((xn + yn)) = Wn(x) +Wn(y)
for any n ∈ P . This is true because

Wn((xn + yn)) =
∑
d|n

d(xd + yd)n/d =
∑
d|n

dx
n/d
d +

∑
d|n

dy
n/d
d = Wn(x) +Wn(y).

□

Prop.(4.5.3.10)[Teichmüller Lifts].Let P be a divisor-stable set and A ∈ CAlg, for a ∈ A, denote
[a] = (a, 0, . . .) ∈WP (A). Then for any x = (xn) ∈WP (A),

[a]x = (anxn).

In particular, [·] : A→WP (A) is multiplicative, called the Teichmüller lifts of A.

Proof: It suffices to prove on ∆P . By(4.5.3.7), it suffices to prove Wn((anxn)) = Wn([a]x) for any
n ∈ P . This is because

Wn((anxn)) =
∑
d|n

d(adxd)n/d = an
∑

dx
n/d
d = Wn([a])Wn(x) = Wn([a]x).

□

Frobenius and Verschiebung Maps

Def.(4.5.3.11)[Verschiebung Maps].

Def.(4.5.3.12)[Frobenius Maps].

Prop.(4.5.3.13)[Frobenius and Verschiebung].Let n ∈ Z+ and P is a divisor-stable subset s.t.
nP ⊂ P . Let A ∈ CAlg, let x, y ∈WP (A), then

• Fn ◦ Vn = n · id.

• Vn(Fn(x)y) = xVn(y).

• If (m,n) = 1, then Vm ◦ Fn = Fn ◦ Vm.

• For m ∈ Z+, (Vn(x))m = nm−1Vn(Xm).

Proof: Cf.[Rab14]P18. □
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p-Typical Witt Vectors

Prop.(4.5.3.14)[Structure of ∆p].The ring structure on Spec ∆p is given by

× : ∆p → ∆p ⊗∆p : Xpk 7→ Sk(XP , YP ), + : ∆p → ∆p ⊗∆p : Xpk 7→ Zk(XP , YP )

where

S1 = X1 + Y1, S2 = Xp + Yp +
p−1∑
i=1

1
p

(
p

i

)
Xi

1Y
p−i

1 ,

Z1 = X1Y1, Z2 = Xp
1Yp +XpY

p
1 + pXpYp.

Proof: □

Cor.(4.5.3.15) [W2].Let W2 = WP where P = {1, p}, then W2(A) is the set A × A(as the natural
coordinates) with the addition and multiplication given by

(x0, x1)+(y0, y1) = (x0+y0, x1+y1+xp0 + yp0 − (x0 + y0)p

p
), (x0, x1)(y0, y1) = (x0y0, x

p
0y1+yp0x1+px1y1)

There are two natural morphism of rings ε1, ε2 : W2(A)→ A:

ε1((x0, x1)) = x0, ε2((x0, x1)) = xp0 + px1.

Prop.(4.5.3.16).For k ≥ 1 and A ∈ CAlg, the kernel of W1 : Wp,k(A)→ A is a nilpotent ideal.

Proof: Cf.[Basic Algebra 2, Jacobson]P508.? □

Cor.(4.5.3.17).An element x ∈Wp,k(A) is a unit iff W1(x) ∈ A is a unit.

Example(4.5.3.18)[p-Typical Witt Vectors].
• Wp(Fq) is the unramified extension of Zp of degree logp q.

• Wp(Fp) is the completion of the maximal unramified extension of Wp(Fp).

Proof:
□

Lemma(4.5.3.19)[Formula for p-Rings].For ∗ = + or ×, there are integral polynomials S∗(Xi, Yi)
that (∑

f(αi)pi
)
∗
(∑

f(βi)pi
)

=
∑

f(γi)pi

where γi = Q∗
i (α0, α1, . . . , β0, β1, . . .). And for +, when reduced to Fp, Q+

i are polynomials in
Xp−n

i , Y p−n

i for i ≤ n and homogenous of degree 1. And

Q+
i = (Xn + Yn) + (Xp−1

n−1 + Y p−1

n−1)Rn,n−1 + . . .+ (Xp−n

0 + Y p−n

0 )Rn,0.

Proof: We solve Sn by induction. Notice for any lift Ŝi of Si,

f(Si) ≡ Ŝi(X1/pn−i
, Y 1/pn−i)pn−i mod pn−i+1

so we mod pn+1 to solve Sn:

Sn ≡ 1/pn
(
X0 + Y0 + . . .+ pnXn + pnYn − Ŝ0(X1/pn , Y 1/pn)pn − . . .− pn−1Ŝn−1(X1/p, Y 1/p)p

)
The rest follows by induciton. □
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Lemma(4.5.3.20). If k is a perfect field of characteristic p and R is a strict p-ring with residue field
k, then the map

f : Wp(k)→ R : (x1, xp, xp2 , . . .) 7→
∞∑
n=0

[x1/pn
pn ]pn

is an isomorphism of topological rings.

Proof: We need to prove this is a ring homomorphism. That on W (A) is to make φ a ring
homomorphism, and that on the right is usual. It suffice to prove for the canonical strict p-ring, as
seen by the universal law(4.5.2.10).

For this, we let (
∑
Xp−i

i pi) ∗ (
∑
Y p−i

i pi) =
∑
f(ψi(Xi, Yi))p

−i
pi, and Wn(ai) ∗Wn(bi) = Wn(φi),

where ψi ∈ Fp[Xi, Yi] and φi ∈ Z[Xi, Yi], they both exist, the latter because of(4.5.4.7).
Then we mod pn+1, and let Xi = Xpn

i , Yi = Y pn

i , so

Wn(φi) = Wn(Xi) ∗Wn(Yi) ≡
∑
i≤n

f(ψi(Xpn

i , Y pn

i ))p−i
pi ≡Wn(ψi) mod pn+1

Now induction, φi ≡ ψi mod p, then pnφn ≡ pnψn mod pn+1 so this is true for n, too.
Cf.[Rab14]P8, 20.? □

Prop.(4.5.3.21)[Wp For Perfect Rings].For any perfect ring k of char p, there exists uniquely a
strict p-ring W (k) that has residue ring k, which is just the ring of Witt vectors Wp(k).

Then Wp is a faithful functor from the category of perfect rings to the category of p-rings with
perfect residue fields that is left adjoint to the functor mapping a p-ring with perfect residue fields
to its residue field, by(4.5.2.11).

Proof: For a canonical ring Fp[Xp−n
α ], Ẑ[Xp−n

α ] is a strict p-ring. Now arbitrary perfect p-ring
is a quotient of Fp[Xp−n

α ], so we can construct its strict p-ring W (k) as the quotient of Ẑ[Xp−n
α ].

Uniqueness is by(4.5.2.11).
Notice it is nothing mysterious, it is just the set of all formal sum ∑

f(xi)pi under the operation
defined in(4.5.2.9). See also(4.5.3.20). □

Cor.(4.5.3.22).Wp,k(Fp) ∼= Z/(pk).

Def.(4.5.3.23)[Witt Vectors over Valued Rings]. If a perfect ring R itself has a complete valuation
v, then we can endow W (R) with a finer topology: we let wk(x) = inf i≤k v(xi), where x =

∑
pif(xi).

Now wk(x + y) ≥ inf(wk(x), wk(y)) by(4.5.3.19). The weak topology of W (R) is defined by the
semi-valuations wk.

Prop.(4.5.3.24). If a, b ∈ OR + pn+1W (R), then

pnv(an − bn) ≥ wn(a− b) ≥ inf
k≤n

p−kv(an−k − bn−k).

So we see that a sequence is Cauchy inW (R) if each coordinate is Cauchy in R, soW (R) is complete
in the weak topology.

Proof: Firstly the last proposition follows from the first because we can always multiply by a f(α)
to make the first n coordinate in OR.

The first is nearly an immediate consequence of(4.5.3.19). □
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Prop.(4.5.3.25).OE = W (K
1
p∞ ) is a complete ring with maximal ideal pOE . And OE [1

p ] = E is

complete ring of character p. And the same construction of K
1
p∞ yields the completion of maximal

unramified extension of OE , and the Galois group is the same as GK .

Prop.(4.5.3.26) [van Der Kallen]. If A → B is an étale morphism, then Wr(A) → Wr(B) is also
étale. Moreover, if A→ A′ is any ring map with B′ = B ⊗A A′, then the natural map

Wr(A′)⊗Wr(A) Wr(B)→Wr(B′)

is also an isomorphism.

Proof: Cf.[Integral p-adic Hodge, BMS]. □

Cohen Rings

Def.(4.5.3.27)[Cohen Rings].For any k ∈ Fieldp, there exists a unique absolutely unramified DVR
of characteristic 0 and residue field k, denoted by Coh(k).

Proof: Cf.[Fontaine-OuYang]P185.? □

Cor.(4.5.3.28). If k0 = kperf , then W (k0) ⊂ Coh(k) ⊂W (k).

4 δ-Rings
Def.(4.5.4.1)[δ-Ring].A δ-ring structure on R characterize the deficit in lifting the Frobenius action
on R/p. i.e. φ(x) = xp + pδ(x). A δ-ring is a pair (R, δ) where R is a commutative ring and
δ : R→ R is a map that δ(0) = δ(1) = 0, and satisfies:

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y), δ(x+ y) = δ(x) + δ(y)− (x+ y)p − xp − yp

p
.

δ-rings naturally form a category, denoted by CAlgδ. And in case A is p-torsionfree, a δ-structure
on A is the same as a lifting of the Frobenius on A/p.

Def.(4.5.4.2)[δ-Pairs].The category of δ-pairs consists of pairs (A, I) where A is a δ-ring and I is
an ideal of A that morphisms φ : (A, I)→ (B, J) are δ-ring maps A→ B that φ(I) ⊂ J .

Prop.(4.5.4.3) [δ-Rings and W2].A δ-ring structure on A is the same as a section of the map
W1 : W2(A)→ A, and a morphism of δ-rings is a commutative diagram of sections.

Proof: By the description of W2 in(4.5.3.15), this is clear, the morphism is given by A→ W2(A) :
x 7→ (x, δ(x)). □

Lemma(4.5.4.4)[Initial δ-Algebra].We usually work with δ-algebras over Z(p). Then there is an
initial object in the category of δ-rings, given by Z(p) with δ(x) = x−xp

p .

Prop.(4.5.4.5).For a δ-ring A, φ commutes with δ.

Proof: We need to check δ(xp + pδ(x)) = δ(x)p + pδ(δ(x)). This is hard to check, but we can check
φ(φ(x)−xp

p ) = φ(φ(x))−φ(x)p
p , so the conclusion is true when A is p-torsion-free. But by(4.5.4.10), every

δ-ring is a quotient of a free thus p-torsionfree ring, thus the equation is also true for arbitrary A. □
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Def.(4.5.4.6) [Commutative Coalgebra Z[δ]].Denote Z[δ] = Z[e, δ1, . . . , δn, . . .]. Using the for-
mulas in(4.5.4.1), we can write δ◦n(xy) and δ◦n(x + y) as functions of δ◦i(x), δ◦i(y) for 0 ≤ i ≤ n,
i.e.

δn(xy) = Mn(x, δ(x), δ◦2(x), . . . , δ◦n(x), y, δ(y), . . . , δ◦n(y))

δn(x+ y) = Sn(x, δ(x), δ◦2(x), . . . , δ◦n(x), y, δ(y), . . . , δ◦n(y))

Then we can change δ◦n to δn to define a commutative ring scheme structure on SpecZ[δ]:

× : Z[δ]→ Z[δ]⊗Z[δ] : δn 7→Mn, + : Z[δ]→ Z[δ]⊗Z[δ] : δn 7→ Sn.

it is easily prove by induction that if we denote Z[φ] = Z[e, φ, φ2, . . . , φn, . . .], and SpecZ[φ] the
commutative ring scheme with the ring structure given by

× : Z[φ]→ Z[φ]⊗Z[φ] : φn 7→ φn ⊗ φn, + : Z[φ]→ Z[φ]⊗Z[φ] : φn 7→ φn ⊗ 1 + 1⊗ φn,

then the map
Z[φ]→ Z[δ] : φn 7→ expansion of φ◦n ∈ Z[e, δ1, . . . , δn]

induces a homomorphism of ring schemes SpecZ[δ]→ SpecZ[φ].
There is a natural functor:

[δ] : Z[δ]→ Z[δ] : δi 7→ δi+1

Lemma(4.5.4.7)[δ-Component].Let φ = ep+pδ be a polynomial in e, δ, then there are polynomials
Θn ∈ Z[e, δ1, δ2, . . . , δn] s.t.

φ◦n = Θpn

0 + pΘpn−1

1 + · · ·+ pnΘn = Wpn(Θ0, . . . ,Θn),∀n

In particular, Θ0 = e,Θ1 = δ.
Moreover, Z[Θ0,Θ1, . . . ,Θn] = Z[e, δ1, δ2, . . . , δn] for any n.

Proof: Use equation φ ◦ φn = φn ◦ φ and module pnZ[Θ0,Θ1, . . . ,Θn].? □

Prop.(4.5.4.8)[Witt Vectors as δ-Rings].By(4.5.4.7), there is an isomorphism of algebras

∆p
∼= Z[δ] : Xpn 7→ Θn,

but it is also an isomorphism of ring schemes because of the uniqueness property of(4.5.3.3).
Then for any A ∈ CAlg, every element of Wp(A) has a δ-coordinates:

f ∈Wp(A) = Hom(∆p, A) 7→ (f(e), f(δ1), f(δ2), . . .)δ.

LetWp(A) be defined as in(4.5.3.5), then [δ] : Z[δ]→ Z[δ] induces a homomorphism δ : Wp(A)→
Wp(A) that can be checked to be a δ-functor from our definition of coalgebra structure on Z[δ]. Thus
Wp is a functor CAlg→ CAlgδ.

Prop.(4.5.4.9)[Witt Vectors as an Right Adjoints].Wp is right adjoint to the forgetful functor
CAlgδ → CAlg.



4.5. P -ADIC COMMUTATIVE ALGEBRAS 489

Proof: Given a ring homomorphism f : B → A, let

f δ : B →Wp(A) : x 7→ (f(x), f(δ(x)), f(δ◦2(x)), . . .)δ,

Then f δ is a δ-ring homomorphism: It is a homomorphism by our definition of the ring structure on
SpecZ[δ](4.5.4.6), and it is a δ-ring homomorphism by our definition δ-ring structure(4.5.4.8).

And it is easy to see f δ is the unique δ-ring homomorphismB →W (A) that restricts to f : B → A,
thus

Homδ(B,W (A)) ∼= Hom(B,A).
□

Prop.(4.5.4.10)[Free δ-Rings].The ring Z{xi} is a ring on the free generators {x, δ(xi), δ2(xi), . . .}
and the Frobenius morphism defined by asserting φ(δi(x)) = δi(x)p + pδi+1(x).

Generally we can define the free δ-ring generated by {xi} over a δ-ring A as the tensor A⊗Z{xi},
and it satisfies the universal property.

Then the Frobenius action is f.f..
Proof: It is easily verified that for any δ-ring R over A and a map of sets {xi} → R, there is a
unique morphism Z(p){xi} → R sending x to f , thus verifying the universal property.

For the f.f., notice it is a colimit of φn : Z[x, δ(x), . . . , δn(x)] → Z[x, δ(x), . . . , δn+1(x)], so
by(4.4.1.25), it suffices to show φn are all f.f.. We decompose this map as n maps:

Z[x, δ(x), . . . , δn(x)] ∼= Z[x, δ(x), . . . , (δi(x))p, . . . , δn(x)] ⊂ Z[x, δ(x), . . . , δn(x)]

which are all f.f., so it is f.f. □
Cor.(4.5.4.11)[Frobenius is Fpqc locally Surjective].For a δ-ring A and an element x ∈ A, there
is a faithfully flat morphism of δ-rings A→ B that the image of x in B is of the form φ(y) for some
y ∈ B.

Cor.(4.5.4.12). Set B as the pushout of the diagram Z(p){s} ← Z(p){t} → A, where the arrows sends
t to φ(s) and x. B exists by(4.5.4.13) and the underlying ring is the same as the ring pushout, thus
A→ B is faithfully flat by(4.5.4.10).

Prop.(4.5.4.13) [Limits and Colimits of δ-Rings]. CAlgδ admits limits and colimits, and their
underlying rings are just the ring-theoretical limit and colimit, as the forgetful functor CAlgδ → CAlg
has both left and right adjoints (4.5.4.9)(4.5.4.10).
Proof: Use(4.5.4.3), the construction of limits is straightforward, as W2 commutes with limits. To
construct colimits, notice the morphisms Ai →W2(Ai) induces a morphism

lim−→Ai → lim−→W2(Ai)→W2(lim−→Ai)

and clearly this map is a section of W2(lim−→Ai)→ lim−→Ai, thus given a δ-ring structure on lim−→Ai.
It is a colimit because any commutative diagrams φi : (Ai → W2(Ai)) → (B → W2(B)) induces

a unique commutative diagram

lim−→i
Ai lim−→W2(Ai) W2(lim−→Ai)

B W2(B)

lim−→φi

lim−→W2(φij)

W2(lim−→φi)
.

□
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Extension of δ-Structures

Lemma(4.5.4.14)[Quotients].Let A be a δ-ring and I be an ideal, then if I is stable under δ, then
there is a natural δ-structure on A/I compatible with A. In general, if J is an ideal of A, then there
is a universal δ-A-algebra B = A/J , where J = ∪n≥0δ

n(I). It is the universal δ-A-algebra that the
image of I is 0.

Lemma(4.5.4.15)[Localization].Let A be a δ-ring and S be a multiplicative set of A that φ(S) ∈ S,
then there is a unique δ-structure on S−1A, and it satisfies the universal property.

Proof: Firstly if A is p-torsionfree, in this case a δ-structure is the same as a lifting of the Frobenius
on A/p, thus the proposition is clear because φS−1A : S−1A→ S−1A is uniquely determined.

Generally, we choose a free δ-ring F and a surjection α : F → A, then T = α−1S is multiplicative,
and T−1F admits a unique δ-structure. But now S−1A = T−1F ⊗F A, so there is a δ-structure on
S−1A as the colimit, so compatible with that of S−1A. Then it’s also the unique one(because if
there is another one, the colimit properties gives a morphism of δ-rings above idS−1A, which must by
identity). □

Lemma(4.5.4.16)[p-adic Localization]. If A is a δ-ring with p ∈ rad(A), then the formula φ(f) =
fp + pδ(f) shows if f is a unit, then φ(f) is also a unit(2.4.2.2), so S−1A = T−1A, where T =
{S, φ(S), φ2(S), . . .}.

Thus for any δ-ring A and a multiplicative set S, the p-localization(4.1.1.31) (S−1A)(p) is the
same as the p-localization of T−1A. Then(4.5.4.15) shows that (S−1A)(p) carries a unique δ-structure
compatible with that of A.

Lemma(4.5.4.17)[Completions].For a δ-ring A and a f.g. ideal I, the I-adic completion of A has
a unique δ-structure compatible with that of A.

Proof: Let A → W2(A) corresponds to the δ-structure by(4.5.4.3), then there is a natural map
A→W2(A)→W2(Ã), then by the universal property of complete, it extends to a map Ã→W2(Ã),
which is a ring map and is a section, all by universal properties. □

Lemma(4.5.4.18)[Derived Completion]. If A is a δ-ring and I ⊂ A is an ideal containing p, then
the derived I-completion ring Â of A admits a unique δ-structure extending that of A.

Proof: The proof is similar as(4.5.4.17). □

Prop.(4.5.4.19)[Étale Extension].Let A be a δ-ring with a f.g. ideal I containing p. Assume B is a
derived I-complete and I-completely étale A-algebra, then B admits a unique δ-structure compatible
with that of A.

In particular, any δ-structure on an algebra A passes uniquely to its derived I-completion for any
ideal I ⊂ A containing p.

Proof: By Elkik’s algebraization(4.9.7.9), we can write B as derived I-completion of some étale
A-algebra B′. Then W2(A)→W2(B′) is étale by van der Kallen’s theorem(4.5.3.26). Then W2(B) is
the derived I-completion of W2(B′), with the A-algebra structure given by A → W2(A) → W2(B′).
For the rest, Cf.[Scholze, Prism, 2.18]. □
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Distinguished Elements

Def.(4.5.4.20) [Distinguished Elements]. In a δ-ring A, an element d is called a distinguished
element if δ(d) is a unit in A. A distinguished element is preserved by a δ-ring map.

Lemma(4.5.4.21)[Distinguished up to units]. If A is a δ-ring, d is distinguished and u is a unit,
then ud is also distinguished, if d, p ∈ rad(A).

Proof: δ(ud) = upδ(d) + dpδ(u) + pδ(u)δ(d) is a unit. □

Lemma(4.5.4.22)[Irreducibility of Distinguished Elements].Let A be a δ-ring and d be distin-
guished element in A. If d = fh for some f, h ∈ A that f, p ∈ rad(A), then f is also distinguished
and h is a unit.

Proof: Notice that δ(d) = fpδ(h)+hpδ(f)+pδ(f)δ(h), δ(d) is a unit, fpδ(h)+pδ(f)δ(h) ∈ rad(A),
thus hpδ(f) is a unit, so we are done. □

Prop.(4.5.4.23)[Characterization of Distinguished Elements].Fix a δ-ring A and an element d
that d, p ∈ rad(A), then d is distinguished iff p ∈ (d, φ(d)). In particular, distinguished elements is
stable under units.

Proof: If d is distinguished, then δ(d) is a unit, thus φ(d) = dp + dp + pδ(d) shows immediately
p ∈ (d, φ(d)). Conversely, if p = ad + bφ(d), we show δ(d) is invertible. It suffices to show it is
invertible modulo (d, p) as d, p ∈ rad(A), or equivalently (p, d, φ(d)) = A. If it is not the case, then
we may take a (p, d, φ(d))-adic completion to assume p, d, φ ∈ rad(A), thus the equation simplifies
to p(1 − bδ(d)) = cd. The left side is distinguished, by(4.5.4.21), and then d is also distinguished,
by(4.5.4.22), so truly (p, d, φ(d)) = A. □

Prop.(4.5.4.24) [Examples of Distinguished Elements].The element d is distinguished in the
following cases:

• (Crystalline cohomology)Take A = Z(p) and d = p, then δ(p) = 1− pp−1 is a unit.

• (q-de Rham cohomology) Take A = Zp[[q−1]] and d = [p]q =
∑p−1
i=0 q

i ∈ A, with the δ-structure
determined by φ(q) = qp.

• (Breuil-Kisin cohomology)Fix a discretely valued field K/Qp with uniformizer π, W the max-
imal unramified subring of OK . Take A = W [[u]] with δ(u) = up, then any generator of the
kernel of the map of A→ OK : u 7→ π is distinguished?.

• (Ainf -cohomology)Let A be the (p, q− 1)-completion of Zp[q
1
p∞ ]. Then A is p-torsion free and

φ(q) = qp gives a δ-structure. Then d = [p]q defined in item2 is also distinguished. And φn(d)
is distinguished for any n ∈ Z by(4.5.4.5).

Proof: 2: It is clear φ is continuous and δ stablizes (q − 1), and d is distinguished because the
image of δ(d) in A/(q − 1) ∼= Zq is δ(p) = 1− pp−1 is a unit, thus it is also a unit in A. □

Perfect δ-Ring

Def.(4.5.4.25)[Perfect δ-Ring].A perfect δ-ring is a δ-ring that φ is an isomorphism.

Prop.(4.5.4.26) [Perfections].The inclusion of the category of perfect δ-rings to the category of
δ-rings admits left and right adjoints, Aperf and Aperf with definition similar to(4.5.1.9).
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Proof: We use(4.5.4.3), the map A → W2(A) → W2(Aperf) extends uniquely to a map Aperf →
W2(Aperf) lifting the δ-action of A. Similarly, because (−)perf is a limit and W2(−) is a right adjoint,
then W2(−) commutes with (−)perf . In particular, there is a natural map Aperf →W2(Aperf). □

Lemma(4.5.4.27) [Frobenius Kills p-Torsion]. If A is a δ-ring and x ∈ A satisfies px = 0, then
φ(x) = 0. In particular, if A is perfect, then A is p-torsionfree.

Proof: Applying δ to px = 0, we have 0 = ppδ(x) + xpδ(p) + pδ(x)δ(p) = ppδ(x) + φ(x)δ(p). As
δ(p) is a unit, and ppδ(x) = pp−1(φ(x)− xp) = φ(pp−1x)− pp−1xp = 0, thus φ(x) = 0. □

Prop.(4.5.4.28)[Perfect p-Complete δ-Rings].The following categories are equivalent:
• The category of perfect p-adically complete δ-rings.
• The category p-adically complete and p-torsionfree rings A with A/p perfect.
• The perfect Fp-algebras.

In particular, every perfect p-complete δ-ring is of the form W (k) thus has Teichmuller expansions.

Proof: 2 and 3 are equivalent by Witt vector construction, by(6.1.4.3), noticing that there is
a natural lifting on W (k) lifting the Frobenius of k/Fp that induces a δ-functor?. There is a
forgetful functor from 1 to 2, by(4.5.4.27)(notice A/p is also perfect because if φ(x) ∈ (p), then
x ∈ φ−1(p) = (p) as φ(p) = pφ(1) = p) and it is faithful. Now there is an equivalence from
3→ 1→ 2, thus 1→ 2 is essentially surjective thus is an equivalence. □

Prop.(4.5.4.29)[Perfect Element has Rank 1].Fix a δ-ring A and an element x ∈ A, then δ(xpn) ∈
pnA for any n. In particular, if A is p-adically separated and y is perfect in A, then δ(y) = 0.

Proof: By formal calculation, it suffices to show that pδ(xpn) ∈ pn+1A, which is equivalent to
φ(xpn) ≡ xpn+1 mod pn+1A, which is true by(24.1.3.4). □

Prop.(4.5.4.30)[Distinguished Elements in Perfect δ-Rings].Let A be a perfect p-complete δ-
ring(or perfect Fp-algebra by(4.5.4.28)), and d ∈ A, then d is distinguished iff its coefficient of p in
the Teichmuller expansion(4.5.4.28) is a unit.

If d is distinguished, then it is a nonzero-divisor, and A/d[p∞] = A/d[p].

Proof: Let d =
∑
i≥0[ai]pi, then

δ(d) = 1
p

(
∑
i≥0

[api ]p
i − (

∑
i≥0

[ai]pi)p) ≡ [ap1] mod pA

thus it is a unit iff a1 is a unit, because A is p-complete.
Now if d is distinguished, and fd = 0. If f ̸= 0, we may assume p ∤ f , because A is p-torsionfree

and p-adically complete(4.5.4.28). Now

φ(f)δ(fd) = φ(f)(fpδ(d) + δ(f)φ(d)) = φ(f)fpδ(d) = 0,

so fpφ(f) = 0, and f2p ≡ 0 mod p. Hence f ≡ 0 mod p, but then p|f , contradiction.
For the last assertion, it suffices to show that A/d[p2] = A/d[p]. If p2f = dg, then φ(g)δ(gd) =

φ(g)(δ(d)gp + φ(d)δ(g)) = φ(g)δ(d)gp + φ(dg)δ(g) ∈ pA, thus φ(g)gp ∈ pA, hence g2p ∈ pA, and
hence g ∈ pA, showing pf ∈ dA. □
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4.6 Divided Power Algebras

Basics

Def.(4.6.0.1)[PD-Structures].Let I be an ideal of a commutative ring A, a devided power struc-
ture or pd-structure on I is a collection of maps In : I → A,n ≥ 0 that

• γ0(x) = 1, γ1(x) = x, γn(x) ∈ I∀n.
• γn(x+ y) =

∑
γn−i(x)γi(y).

• γn(λx) = λnγn(x), λ ∈ A, x ∈ I.
• γm(x)γn(x) =

(m+n
n

)
γm+n(x).

• γn(γm(x)) = (mn)!
(m!)nn!γmn(x).

It is a simulation of the divided power γn(x) = xn

n! in case n! is definable.
A divided power ring is a triple (A, I, γ) where I is an ideal of a commutative ring A and γ is

a pd-structure on I. A morphism of divided power rings is a morphism of pairs (A, I) that preserves
pd-structures.

For a pd-structure (A, I), denote I [n] the ideal generated by∏i γni(xi) where xi ∈ I and
∑
ni ≥ n.

Prop.(4.6.0.2)[Limits and Colimits].The category of divided power rings has all limits and colimits,
the limits commute with forget functors but the colimits don’t. However, the colimit always commutes
with the functor taking (A, I) to A/I. This can be seen from the universal property of colimit applied
to the pd-structures that I = 0.

Proof: The construction of the limit is clear. For the colimits, we use representability crite-
rion(3.1.1.27), Cf.[[Sta]07GX]?. □

Prop.(4.6.0.3).Let A be a ring and I an ideal of A, then if γ is a pd-structure on I, then n!γ(x) = xn.

Proof: If γ is a pd-structure, then we have nγn(x) = γ1(x)γn−1(x), so we can use induction. □

Prop.(4.6.0.4). If I, J are two ideals of A and γ a pd-structure on I and δ a pd-structure on J , then
• γ, δ agree on IJ .
• If γ, δ agree on I ∩ J , then they extends to a pd-structure on I + J .

Proof: 1: for x ∈ I, y ∈ J , γn(xy) = ynγn(x) = n!δn(y)γn(x) = δ(xy).
2: direct calculation. □

Prop.(4.6.0.5)[p-Nilpotent and Thickening].Let p be a prime and (A, I, γ) a pd-structure. Assume
p is nilpotent in A/I, then I is locally nilpotent iff p is nilpotent in A, equivalently (A, I, γ) is a pd-
thickening.

Proof: If pN = 0 ∈ A, then for any x ∈ I, xpN = (pN)!γpN (x) = 0. Then converse is trivial. □

Constructing PD-Structures

Prop.(4.6.0.6)[Z(p)-Algebras].Cf.[[Sta]07GN].

Prop.(4.6.0.7).Let A be a Z(p)-algebra and I is an ideal, then two pd-structures γ, γ′ on γ are equal
iff γp = γ′. Moreover, given a map δ : I → I that
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• p!δ(x) = xp,
• δ(ax) = apδ(x) for any a ∈ A, x ∈ I,
• δ(x+ y) = δ(x) + δ(y) +

∑
i+j=p,i>0,j>0

1
i!j!x

iyj .
Then there exists a unique pd-structure on I that γp = δ.

Proof: Just notice that γn(x) = dxγn−1(x) for some c invertible in Z(p), and also γpm(x) =
cγm(γp(x)) for some c invertible in Z(p), thus γ is uniquely determined, and we can also define γn
inductively in this way, and the verification of axioms in in[[Sta]07GS]. □

Prop.(4.6.0.8).Let A be a Z-torsion-free ring and I an ideal of A, then:
• I has at most one pd-stuucture.
• if γn : I → I are maps, then γ is a pd-structure iff n!γn(x) = xn.
• I has a pd-structure iff there is a set of generators {xi} of I that xni ∈ n!I.

Proof: 1 is clear from(4.6.0.3).
2: because A ⊂ A⊗Z Q, we can verify in A⊗Z Q, then the verifications are trivial.
3: Use the axioms to extend linearly and additively. □

Prop.(4.6.0.9)[DVR]. If R is a DVR in char 0 with residue field of char p and ramification p and
maximal ideal m, then m has a pd-stucture iff e ≤ p− 1.

Proof: As R has char0, it has at most one pd-structure by(4.6.0.8), and we need to show that
xn/n! is in m for any x ∈ m. And using(24.1.3.17), we are done. □

Extending PD-Structure

Def.(4.6.0.10)[Extending PD-Structure].Let (A, I, γ) be a pd-structure and B is an A-algebra,
we say that γ extends to B if A→ B extends to a morphism of pd-structures (A, I, γ)→ (B, IB, γ′).

Let (A, I), (B, J) be two pd-structures and B is an A-algebra, then these two pd-structures are
said to be compatible iff the pd-structure on A extends to B and the pd-structure on J and IB
coincides, or equivalently, there is a pd-structure on IB + J compatible with IB and J , by(4.6.0.4).

Prop.(4.6.0.11) [Extendability].Let (A, I) is a pd-structure and B an A-algebra, if any of the
following holds:

• IB = 0,
• I is principal,
• B[I] = 0, (e.g. A→ B is flat).

then γ extends to B.

Proof: 1 is trivial.
2: if I = (x), we define γn(bx) = bnγn(x). This is well defined: if (b − b′)x = 0, then (bn −

(b′)n)γn(x) = 0 because γn(x) ∈ (x). Verifications of axioms is routine.
3: The condition shows I ⊗A B ∼= IB, thus it suffices to define γ on I ⊗A B. For this we define

on I × B and descend: let γn((x, b)) = bnγn(x) and extend by freeness and axioms in(4.6.0.1), then
it is easy to show it is bi-additive and A-linear, so descend to I ⊗B by(2.2.4.13). □
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Prop.(4.6.0.12)[PD-Structure and Completions].Let (A, I, γ) be a pd-structure that p is nilpo-
tent in A/I, then each γn is continuous in the p-adic topology and extends to a pd-structure γ̂ on
Î.

If moreover A is a Z(p)-algebra, then for e large, peA ∈ I is preserved by γ and

(Â, Î, γ̂) = colime(A/peA, I/peA, γ).

Proof: Let pt ∈ I, then 1 follows from(4.2.3.8). γn is clearly continuous, and γn preserves peA
because

γn(pea) = pnγn(pe−1a) = pn

n!
pn(e−1)an ∈ peA.

The limit equation follows from(4.6.0.2). □

Prop.(4.6.0.13) [Quotient].Let (A, I, γ) be a pd-structure and a ⊂ A is an ideal, and I ′ = I ∩ a,
then the following are equivalent:

• δ extends to A/a.
• I ′ is preserved by γ.
• There is a set of generator xi of I ′ that γn(xi) ∈ I ′ for all n, i.

Proof: 1→ 2→ 3 is clear. 2→ 1: we can just define γ(x+ I) = γ(x) + I, which is well defined by
axiom2 of(4.6.0.1). 3→ 2 is clear. □

Def.(4.6.0.14)[Free PD-Algebra].For a pd-structure (A, I, δ), the free pd-algebra A⟨t1, . . . , tn⟩ is
defined to be the A-algebra generated by symbols t[ni]i , where ni > 0, modulo the algebraic relations
t
[m]
i t

[n]
i =

(m+n
n

)
t
[m+n]
i . Denote by A⟨t1, . . . , tn⟩+ the ideal generated by t[ni]i where ni > 0.

Then the ideal J generated by I and A⟨t1, . . . , tn⟩+, where ni > 0 has a unique pd-structure that
γn(ti) = t

[n]
i and (A, I, δ)→ (A⟨t1, . . . , tn⟩, J, γ) is a morphism of pd-structures.

It has a universal property that Hom(((A⟨t1, . . . , tn⟩, J, γ), (C,K, ε) is the same as
Hom((A, I, δ), (C,K, ε)) with specified n elements in K.

Proof: Because IA⟨ti⟩ ∩ A⟨t1, . . . , tn⟩+ = IA⟨ti⟩ + A⟨t1, . . . , tn⟩+, by(4.6.0.4), it suffices to con-
struct pd-structures on IA⟨ti⟩ and A⟨t1, . . . , tn⟩+. The former is by(4.6.0.11) and for the latter:
if A is torsion-free, then we can use(4.6.0.8) because γm(x)n = n!γn(γm(x)) = (mn)!

(m!)n γmn(x) ∈
n!A⟨t1, . . . , tn⟩+. In general, we write A = R/a where R is a torsion-free pd-structure(can choose
Z⟨A⟩), so there is a pd-structure on R⟨ti⟩, and R⟨ti⟩/a⟨ti⟩ = A⟨ti⟩, then we can use(4.6.0.13) to
construct a pd-structure on A⟨ti⟩ compatible with that of A.

The verification of universal property is omitted. □

PD-Envelopes

Prop.(4.6.0.15)[PD-Envelope].Let (A, I, γ) be a pd-structure, then there is a pd-envelope functor
(B, J) → (DB(J), J, δ) from the the category of pairs over (A, I) to the category of pd-structures
over (A, I, γ) that is left adjoint to the forgetful functor.

In particular, by the universal property of pd-envelope, there is a morphism (B, J) →
(DB(J), J)→ (B/J, 0) of pairs, so in particular D/J → B/J is surjective.
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Proof: We use adjoint functor theorem(3.1.1.34), the forgetful functor preserves limit by(4.6.0.2),
and it satisfies the set-theoretical condition: for any pair (B, J) over (A, I) and a morphism ψ :
(B, J) → (C,K) over (A, I) where φ : (A, I, γ) → (C,K, δ) is a pd-morphism, then we can consider
the subring C ′ ⊂ C generated by all φ(A), ψ(B) and δm(J), andK ′ ⊂ K∩C ′ the ideal of C ′ generated
by φ(I), δn(ψ(J)), then |C ′| < |A| ⊗ |B|ℵ0 and its type is bounded by a cardinal, so does (C, I). □

Prop.(4.6.0.16) [PD-Envelope of Quotients].Let (A, I, γ) be a pd-structure and φ : B′ → B
be a surjection of A-algebras with kernel K. Let IB ⊂ J ⊂ B an ideal and J ′ = φ−1(J) and
DB′,γ(J ′) = (D′, J

′
, γ), then DB,γ(J) = (D′/K ′, J

′
/K ′, γ) where K ′ is the ideal generated by all

γn(k) for n ≥ 0 and k ∈ K.

Proof: There is a pd-structure on (D′/K ′, J
′
/K ′, γ) by(4.6.0.13). A map of pais (B, J)→ (T, I ′, γ)

is equivalent to a map of pairs (B′, J ′) → (T, I ′, γ) that vanishes on K, or a map of pd-structures
(D′, J

′
, γ)→ (T, I ′, γ) that vanishes on γn(K), thus this is clearly represented by (D′/K ′, J

′
/K ′, γ).

□

Prop.(4.6.0.17). If (A, I) is a pd-structure and (B, J) is a pair over (A, I), then

DB[Xi],γ(JB[Xi] + (Xi)) ∼= DB,γ(J)⟨Xi⟩

Proof: This follows from the universal property of free pd-structure(4.6.0.14). □

PD-Structures and δ-Rings

Lemma(4.6.0.18). If A is a p-torsionfree Z(p)-δ-ring, denote γn(z) = zn

n! . If z ∈ A satisfies γp(z) ∈ A,
then γn(z) ∈ A for any n.

Proof: WARNING: this is not an easy consequence of power counting. We first prove for n = p2:
as A is a δ-ring, δ( zpp ) ∈ A

δ(z
p

p
) = 1

p
(φ(z)p

p
− zp

2

pp
) = (zp + pδ(z))p

p2 − zp
2

pp+1 ∈ A.

The first term is in A by assumption, thus the second term is also in A, proving the case for n = p2.
Now for general n, it suffices to prove for n = kp. But it can be checked that γnk(z) = uγk(γp(z))

where u is a unit. Now by what we just proved, we can use induction hypothesis for z = γp(z), and
conclude that γnk(z) ∈ A. □

Prop.(4.6.0.19).The ring C = Z(p){x,
φ(x)
p }(4.5.4.10) identifies with the pd-envelope D =

DZ(p){x}(x) = Z(p){x}[{γn(x)}] where γn(x) = xn

n! . Moreover, it also equals to
Z(p)[X1, X2, . . .]/(pX1 − xp, pX2 −Xp

1 , . . .).

Proof: It suffices to show that the smallest δ-ring of Z(p){x}[1
p ] containing Z(p){x} and φ(x)

p is the
same as the smallest ring of Z(p){x}[1

p ] containing Z(p){x} and φ(x)
n! .

D ⊂ C is immediate from(4.6.0.18). To show C ⊂ D, notice xp

p ∈ D, it suffices to show φ
preserves D, or equivalently, φ(y)− yn ∈ pD for any y ∈ D. Now

φ(x
n

n!
) = (xp + pδ(x))n

n!
=
∑n
i=0

(n
i

)
(pi)!pn−i xpi

(pi)!δ(x)n−i

n!
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The coefficients (n
i

)
(pi)!pn−i

n!
are all in pZ(p), thus φ(xnn! ) ∈ pD. On the other hand,

(x
n

n!
)p = γp(γn(x)) = uγpn(x) · p! ∈ pD

where u is a unit in Z(p) by(4.6.0.1), thus we are done. □
Lemma(4.6.0.20). If A is a p-torsionfree (equivalently, flat) Z(p)-algebra and (a, p) is a regular se-
quence in A, then DA((a)) ∼= A⊗Z(p){x} DZ(p)((x)) = A[X1, X2, . . .]/(pX1 − ap, pX2 −Xp

1 , . . .).

Proof: By(4.6.0.19),

A⊗Z(p){x} DZ(p)((x)) = A⊗Z(p){x} [{γn(x)}] = A[X1, X2, . . .]/(ap − pX1, X
p
1 − pX2, X

p
2 − pX3, . . .)

thus there is a natural map from A⊗Z(p){x} DZ(p)((x)) to DA((a)) given by

Xk 7→
ap

k

pordp(n!) = ap
k

p1+p+...+pk−1 ∈ DA((a)).

It is surjective, and it is an isomorphism when inverting p. Thus the kernel are all p∞-torsions.
Then to show it is an isomorphism, it suffices to show A[X1, X2, . . .]/(ap − pX1, X

p
1 − pX2, X

p
2 −

pX3, . . .) is p-torsion-free. It is a filtered colimit, so it suffices to show A[X1, . . . , Xn]/(ap−pX1, X
p
1 −

pX2, . . . , X
p
n−1 − pXn) is p-torsionfree.

For this, it suffices to prove A′ = A[X1, . . . , Xk]/(px1 − ak, px2 − xk1, . . . , pxk − x
p
k−1) is p-torsion-

free. If we denote K(R) = K(R[X1, . . . , Xn], px1− ak, px2−xk1, . . . , pxk−x
p
k−1) for any ring R, then

we have a distinguished triangle

K(A) p−→ K(A)→ K(Kos(A[X1, . . . , Xk], p)) = K(A/p)

as A is p-torsionfree. Now we can consider the spectral sequence associated to this distinguished
triangle. Notice first that (px1 − ak, px2 − xk1, . . . , pxk − x

p
k−1) is a regular sequence in A′/p, which

is clear. So the E1 page looks like
A′ A′ A′/p

∗ ∗ 0

∗ ∗ 0

. . . . . . . . .

p

and the E2 page is of the form
A′[p] 0 0

∗ ∗ 0

∗ ∗ 0

. . . . . . . . .

p
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This spectral sequence converges to 0, so A′[p] = 0, we win. □

Prop.(4.6.0.21) [PD-Envelope for Regular Sequence].Let A be a p-torsionfree δ-ring and
p, f1, . . . , fr define a regular sequence in A, then A{φ(f1)

p , . . . , φ(fr)
p } identifies with the pd-envelope

DA(I) of I = (f1, . . . , fr) as a subring of A[1
p ].

Proof: In case r = 1, A{φ(f1)
p } = A ⊗Z(p){x} Z(p){x,

φ(x)
p } = A ⊗Z(p){x} DZ(p)((x)) ∼= DA((f1))

by(4.6.0.20).
The general case follows from this, by considering the tower

(A, (f1))→ (DA(f1), (f2)) = (A{φ(f1)
p
}, (f2))

→ (D
A{φ(f1)

p
}(f2), (f3)) = (A{φ(f1)

p
,
φ(f2)
p
}, (f3))

→ . . . = A{φ(f1)
p

, . . . ,
φ(fr)
p
}

The equations are true because (p, fk) are regular in A{φ(f1)
p , . . . ,

φ(fk−1)
p }:

A{φ(f1)
p

, . . . ,
φ(fk−1)

p
}/p =A/p[X11, X12, . . . , X21, X22, . . . , . . . , Xk−1,1, Xk−1,2, . . .]/

(fp1 , f
p
2 , . . . , f

p
k−1, X

p
11, X

p
12, . . . , X

p
21, X

p
22, . . . , . . . , X

p
k−1,1, X

p
k−1,2, . . .)

and fk is a nonzero-divisor in it because it is a non-zero divisor in A/(p, fp1 , . . . , f
p
k−1), as (p, fp1 , . . . , f

p
k )

is also a regular sequence by(4.3.4.4). then a map of pairs of rings (A, I) → (C, J) will lift through
this tower uniquely by the universal property of pd-envelop.

then we see A{φ(f1)
p , . . . , φ(fr)

p } is just the pd-envelop of (A, I), by the universal property. □

Lemma(4.6.0.22).Let A be an Fp-algebra and B an A-algebra. If (x1, . . . , xn) ∈ B is regular w.r.t.
A(4.8.3.7), then DB((x1, . . . , xn)) is A-flat.

Proof: By(4.6.0.19) and base change, it is clear that DB(I) is a free B/Ip-algebra. Thus we need
to show that B/Ip is a flat A-module. And this is true as the sequence xp1, . . . , xpn is also regular
w.r.t. A(4.8.3.8). □

Prop.(4.6.0.23) [Flatness of PD-Envelope]. If A → B is a map of simplicial rings, A is nat-
urally a simplicial pd-structure with I• = pA•, and B is p-completely flat over A(4.8.3.5), and
(x1, . . . , xn) ∈ π0(B) is p-completely regular w.r.t A(4.8.3.7), then the completed pd-envelope
D = DB((x1, . . . , xn))∧ is p-completely flat over A.

Proof: By definition(4.8.3.5), to check it is p-completely flat, it suffices to check

Kos(A, p)→ Kos(A, p)⊗LA D

is flat. and by(4.8.3.4) it suffices to check that

π0(Kos(A, p))→ π0(Kos(A, p))⊗LA D
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is flat. The formation of pd-envelope commutes with derived base change by universal property, and
tensor with A/p-algebra undoes the completions, so we are reduced to the the case A′ = π0(Kos(A, p))
and B′ = A′ ⊗LA B is flat over A′ and to show that

A′ → DB′((x1, . . . , xn))

is flat. Notice B′ is a discrete flat A′-algebra by definition(4.8.3.5), and (x1, . . . , xn) is a sequence in
B′ that Kos(B, x1, . . . , xn) is a sequence regular w.r.t. A′:

Kos(B, x1, . . . , xn) = Kos(B′ = A′ ⊗LA B, x1, . . . , xn) = A′ ⊗LA Kos(B, x1, . . . , xn)
= A′ ⊗LKos(A,p) Kos(A, p)⊗A Kos(B, x1, . . . , xn)

= A′ ⊗LKos(A,p) Kos(B, p, x1, . . . , xn)

is flat because Kos(A, p)→ Kos(B, p, x1, . . . , xn) does by definition(4.8.3.7) and(4.8.3.3). So we are
done by(4.6.0.22). □

Cor.(4.6.0.24). If A is a p-complete simplicial δ-ring and B is a p-completely flat simplicial δ-A-
algebra, and if x1, . . . , xr ∈ π0(B) is p-completely regular w.r.t. A, then

C• = B•{
x1
p
, . . . ,

xr
p
}

is p-completely flat over A.

Proof: Let C ′
• = B•{φ(x1)

p , . . . , φ(xr)
p }

∧, then C ′
• is p-completely flat over A, by(4.6.0.21)(? why

B is p-torsionfree and (p, x1, . . . , xn) is regular sequence) and(4.6.0.23). Now there is a commutative
diagram

A A{x1, . . . , xr} B B{x1
p , . . . ,

xr
p } C•

A A{φ(x1), . . . , φ(xr)} B′ B′{φ(x1)
p , . . . , φ(xr)

p } C ′
•

ψ ψB ψ′ ψC

where ψ is the relative Frobenius and ψB, ψC is the derived base change and completed de-
rived base change. Then ψ is f.f. as it is the base change of the Frobenius on the free δ-ring
Z{x1, . . . , xr}(4.5.4.10), thus so does ψ′. Then ψC is p-completely flat, because it is the comple-
tion(use(4.9.7.2)(4.9.7.4)). Now the conclusion follows, by completely f.f. descent(4.9.7.2). □

1 de Rham Complex
Def.(4.6.1.1) [PD-Differentials].Let B be an A-algebra and (B, J, δ) be a pd-structure and M a
B-module, then a pd-A-derivation from B to M is a an element θ of DerA(B,M) that θ(δn(x)) =
δn−1(x)θ(x) for n ≥ 1 and x ∈ J .

As in(4.4.3.4), there is a pd-differential ΩB/A,δ that

HomB(ΩB/A,δ,M)

is isomorphic to the set of pd-A-derivations of B to M , functorially in M .

Prop.(4.6.1.2)[PD-Differential of PD-Envelope].Let (A, I, γ) be a pd-structure and (B, J) be a
pair over (A, I), and let DB/A,γ(J) = (D, J, γ) be the pd-envelope, then ΩD/A,γ = ΩB/A ⊗B D.
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Proof: It suffices to show that for any D-moduleM , the set of A-derivations B →M is isomorphic
to the set of pd-A-derivations D →M .

Let D⊗M be the ring that M2 = 0 and a pd-structure on J ⊕M is given by δn(x+m) = δn(x)+
δn−1(x)m. Then a pd-A-derivationsD →M is equivalent to a pd-ring map (D, J)→ (D⊕M,J⊕M),
and an A-derivations B → M is also equivalent to a map of pairs (B, J) → (D ⊕M,J ⊕M), thus
we are done by the universal property of D. □

Prop.(4.6.1.3).Let B be an A-algebra and (B, J, δ) be a pd-structure, then
• if (B[X], JB[X], δ′) is the δ-structure extended from that of (B, J, δ) as in(4.6.0.11), then

ΩB[X]/A,δ′ = ΩB/A,δ ⊗B B[X]⊕B[X]dx.

• Let B⟨x⟩ be the free pd-algebra over B(4.6.0.14), then

ΩB⟨x⟩/A,δ′ = ΩB/A,δ ⊗B B⟨x⟩ ⊕B⟨x⟩dx.

• Let K ⊂ J be an ideal preserved by δ and then consider the quotient (B′ = B/K, J = J/K, δ),
then ΩB′/A,δ is quotient of the module ΩB/A,δ ⊗B B′ by the B′-submodule generated by dk
where k ∈ K.

Proof: These are all somewhat trivial. □

Prop.(4.6.1.4) [PD-Differential and Completion].Let A be a Z(p)-algebra, B be an A-algebra
and (B, J, δ) be a pd-structure and p is nilpotent in B/J , then

lim
e

ΩBe/A,δ
= (ΩB/A,δ)∧ = (Ω

B̂/A,δ̂
)∧.

where Be = B/pe.

Proof: By(4.6.0.12), the terms make sense. Now by(4.6.1.3) and the observation d(pe) = 0, we
have ΩBe/A,δ

= ΩB/A,δ/p
e = Ω

B̃/A,δ̃
/pe, thus we are done. □

Def.(4.6.1.5)[PD-de Rham Complex].Let Ωi
B/A,δ = ∧iΩB/A,δ, then the surjection ΩB/A → ΩB/A,δ

satisfies the condition of(7.2.1.2), thus there is a pd-de Rham complex Ω•
B/A,δ.

PD-Poincaré Lemma

Lemma(4.6.1.6)[PD-Poincaré Lemma].Let A be a ring, P = A⟨Xi⟩ is the free PD-algebra over
A, then for any A-module, the complex

0→M →M ⊗A P →M ⊗A Ω∧
P/A,δ → . . .

is exact. And if D = P̂ and let Ωn
D = Ωn

P/A,δ, then for any p-complete A-module M , the complex

0→M →M⊗̂AP →M⊗̂AΩ∧
P/A,δ → . . .

is exact.

Proof: It suffices to show that 0 → M → M ⊗A P → M ⊗A Ω1
P/A,δ → . . . is homotopic to 0. For

this, notice every element of Ωn
P/A,δ is of the form ∑

P
∏n
j=0 dxi0dxi1 . . . dxin , so we can let

f(ω) = f(γni0 (xi0)dxi0 ∧ ω) = γni0 +1(xi0)ω

where ω doesn’t divides dxk for k < i0. Then it can be checked that df + fd = id, so we are done. □
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Prop.(4.6.1.7). If A is a ring and (B, J, δ) is a is a pd-structure, and let P = B⟨Xi⟩ be the free
pd-structure(4.6.0.14). Let M be a B-module endowed with an integrable connection ∇ : M →
M ⊗B Ω1

B/A,δ, then the map of de Rham complexes

M ⊗B Ω∗
B/A,δ →M ⊗B Ω∗

P/A,δ

is a quasi-isomorphism. And if we denote D,D′ the p-adic completions of B,P , and ΩD,ΩD′ the
p-adic completion of ΩB/A,δ,ΩP/A,δ, and M is a p-complete B-module endowed with an integrable
connection ∇ : M →M ⊗D ΩD, then the map of de Rham complexes

M ⊗D Ω∗
D →M ⊗D′ Ω∗

D′

is a quasi-isomorphism.

Proof: Consider the filtration F ∗ on Ω•
B/A,δ given by the stupid truncation σ≥iΩ•

B/A,δ, and consider
the filtration on Ω•

P/A,δ given by

F ∗(Ω•
P/A,δ) = F ∗(Ω•

B/A,δ) ∧ Ω•
P/A,δ.

Notice that we have a split exact sequence

0→ Ω1
B/A,δ ⊗B P → Ω1

P/A,δ → Ω1
P/B,δ → 0

and Ω1
P/B,δ is free on Xi over B(pondering the universal property, this is for the same reason

as(4.4.3.7).
Then we see that F i(Ω•

P/A,δ) → Ω•
P/A,δ is termwise split injection for any i, and the graded

is Ωi
B/A,δ ⊗B Ω•

P/B,δ. Thus if we let F i(M ⊗B Ω•
P/A,δ) = M ⊗ F i(Ω•

P/A,δ), then the graded is
M⊗BΩi

B/A,δ⊗BΩ•
P/B,δ, which is quasi-isomorphic toM⊗BΩi

B/A,δ by(4.6.1.6). Then the original map
is a filtered complexes that induces quasi-isomorphism on gradeds, so it induces a quasi-isomorphism,
because it induces an morphism between two convergent spectral sequences, by(3.9.7.6) and(3.9.7.5).
□
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4.7 Almost Ring Theory
References are [Almost Ring Theory Gabber/Ramero] and [Almost Ring Theory Foundations

Gabber/Ramero].

Def.(4.7.0.1).The setup of most mathematics is an flat ideal I ⊂ R, that I2 = I. This implies that
I ⊗ I ∼= I2 = I.

Denote i : R → R/I. Then there is a map i∗ : M 7→ MR, which has a left adjoint i∗ : N 7→
N ⊗R R/I, and a right adjoint i! : N 7→ Hom(R/I,N).

1 Homological Theory

Almost Modules

Prop.(4.7.1.1)[Examples].
• If K is a perfectoid field, R = K0, I = K00, then I is flat over R, because if π is a pseudo-

uniformizer of K(10.3.8.9), then I = (π
1
p∞ ), which is a colimit of free modules thus flat, and

I2 = I clearly.

• Let R be a ring and f is an arbitrary element with compatible pn-th roots, let I = (f
1
p∞ ), then

I2 = I. To show I is flat, consider:

M0
f

1− 1
p

−−−→M1
f

1
p− 1

p2

−−−−→M2 → . . .→Mn

1
pn

− 1
pn+1

−−−−−−→Mn+1 → . . .

where Mi
∼= R, and M = colimMi, then M is flat, and there is a map M → I : 1 ∈Mn → f

1
pn ,

then this map is surjective, and it is injective: if α maps to 0, then αf
1
pn = 0, so αpmf = 0 for

all m ≥ n, and by perfectness of R, αf
1
pm = 0, so in particular, α = 0 ∈Mn+1.

Prop.(4.7.1.2)[The Category of Almost R-Modules in disguise].Let A ⊂ ModR be the category
of all R-modules M that the action I ⊗M → M is an isomorphism(By I ⊗ I = I this is equivalent
to M = I ⊗N for some N) then:

• The inclusion j! : A → ModR is exact, i.e. the cokernel, kernel of objects in A are also in A.
• j! has a right adjoint j∗ : M 7→ I ⊗M , and the unit map N → j∗j!N is an isomorphism on A.
• j∗ has its right adjoint j∗(M) = Hom(I,M), and the counit j∗j∗M → M is an isomorphism

on A.

Proof: 1: an easy consequence of five-lemma.
2: We need to show for N ∈ A, Hom(N, I ⊗M) ∼= Hom(N,M). Notice there is a distinguished

triangle
I ⊗M →M →M ⊗R/I,

as −⊗LRM is a derived functor and I is flat. So it suffices to show

RHomR(N,M ⊗LR R/I) = 0 = RHomR/I(N ⊗LR R/I,M ⊗LR R/I).

And in fact N⊗LRR/I = 0, because N⊗LRR/I = N⊗LRI⊗LRR/I, and I⊗LRR/I = I⊗RR/I = I/I2 = 0
by flatness and hypothesis.

N ∼= j∗j!N is an easy consequence of I ⊗ I = I.
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3: The adjointness is just Tor-Hom-adjunction, and for the isomorphism I ⊗Hom(I,M) ∼= M , as
I is flat, it suffices to prove the stronger result that I ⊗LR RHom(I,M) = M [0]. As there is an exact
triangle

RHom(R/I,M)→M → RHom(I,M),
so it suffices to show I ⊗L RHom(R/I,M) = 0, because I ⊗L M = M . But this is because I ⊗L
RHom(R/I,M) = I ⊗L R/I ⊗L RHom(R/I,M), and I ⊗L R/I = 0 as before. □

Prop.(4.7.1.3)[Category of Almost R-modules].
• The image of the functor i∗ : ModR/I → ModR is a Serre subcategory of ModR, so the quotient

ModaR = ModR/ModR/I exists by(3.7.3.14),
• The quotient q : ModR → ModaR admits fully faithful left and right adjoints. In particular, q

preserves all limits and colimits.
• The image of i is a ’tensor ideal’ of ModR, so the quotient ModaR inherits a natural symmetric

monoidal ⊗-product structure.
• There is a functor alHom : (ModaR)op × ModaR → ModaR : (X,Y ) → alHom(X,Y ) that

alHom(X,−) is right adjoint to −⊗X:

Hom(Z ⊗X,Y ) ∼= Hom(Z, alHom(X,Y )).

Proof: 1: the image of i∗ is just the category of modules killed by I, if M is killed by I, then
subobjects and quotients of M is killed by I, and if M is an extension of two elements killed by I,
then IM = I2M = 0.

2: In fact we show that the category A in(4.7.1.2) and the functor j∗ is just equivalent to ModaR:
First: j∗(ModR/I) = 0, because I ⊗M = I ⊗R R/I ⊗R/I M = I/I2 ⊗R/I M = 0 as I = I2, and j∗ is
exact because I is flat.

And for any R-module M , consider I ⊗M → M , it has kernels and cokernels, then tensoring I,
it becomes I ⊗M → I ⊗M(4.7.0.1). as I is flat, the kernel and cokernels are killed by I, so for any
functor q to another category that kills ModR/I , q(M) = q(I ⊗M) = qj!j

∗(M), so q factors through
M , uniquely, as j∗ is surjective.

Now the left/right adjoints exist by(4.7.1.2).
3: if IM = 0, then IM ⊗ N = 0, so the tensor products pass to the quotient, and j∗ is a map

between symmetric monoidal categories.
4: alHom is defined by alHom(j∗M, j∗N) = j∗(Hom(M,N)) = Hom(M,N)a. This is well defined,

because if IM = 0 or IN = 1, then I Hom(M,N) = 0. □
Cor.(4.7.1.4).

• i∗j! = 0.
• i!j∗ = 0.
• j∗i∗ = 0, and the kernel of j∗ is just i∗(ModR/I).

Proof: 1: R/I ⊗ I ⊗M = 0, because I ⊗R/I = 0.
2: Hom(R/I,Hom(I,M)) = 0, because I ⊗R/I = 0.
3: This is by 2 of the proposition(4.7.1.3). □

Remark(4.7.1.5).The construction above can be summarized as the following diagram:

ModR/I ModR ModaR
i∗

i!

i∗

j∗

j∗

j!
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with four adjoint pair and three vanishing. This should be seen as an analogy of the case of topology:
X is a space and i : U → X is open in X, and j : Z → X is closed, Z = X − U , then the defined
sheaf operations are the same as written above.

However, one should not consider ModaR as the sheaf of modules on the open subscheme SpecRf
for some pseudo uniformizer, because the map M → M ⊗ Rf factors through ModaR as it vanishes
on ModR/I , but it is not ModaR/I . For example, if k is a perfect field, and consider R = k[t

1
p∞ ], then

the module M = R/(t) is also killed by ⊗Rf , but it is not killed by I.
Then one may consider it is the category of Qco sheaves on D(I), but first this is not an affine

scheme, and second this is false, anyway. And we should imagine an non-existent open subscheme U
bigger than U , as it contains any affine opens of U .

Remark(4.7.1.6).Notice j∗ is both left exact and right exact, so it preserves both arbitrary limits and
colimits, so almostification nearly loses anything. In particular, the category ModaR has all colimits
and limits.

Def.(4.7.1.7)[Almost Commutative Algebras].As ModaR has a symmetric monoidal structure, it
is possible to define the category of almost commutative algebras as the category of commutative
unitary monids in ModaR, denoted by CAlg(ModaR). Notice that its unit object is I = Ra.

There is an obvious map
(−)a : Alg(ModR)→ Alg(ModaR),

and yet another functor
(−)∗ : Alg(ModaR)→ Alg(ModR),

because M →M∗ is lax symmetric monoidal, i.e. there are natural map M∗⊗N∗ → (M ⊗N)∗. This
is a right adjoint of (−)a, as j∗ and j∗ is adjoint.

Finally there is a functor
(−)!! : Alg(ModaR)→ Alg(ModR),

whose construction is a little complicated, first notice the functor (−)! preserves multiplication but
it has no units, so in order to give it a unit, consider the module pushout: (A! ⊕ V )/I, which has
a natural multiplicative structure that can be made into a R-module, and (−)!! is left adjoint to
(−)a,Cf.[Almost Ring Theory P22].

Prop.(4.7.1.8). (−)!! preserves faithfully flatness.

Proof: Cf.[Almost Ring theory P52]? □
Def.(4.7.1.9).For an almost commutative algebra A, a left module is an almost moduleM ⊂ ModaR
that has a left action A⊗M →M that has natural commutative diagrams as one expects. And for
any R-algebra A, there are natural maps ModA → ModaAa .

Almost Homological Algebra

2 Almost Commutative Algebra
Def.(4.7.2.1)[Almost Notations].Given a R-module M , an element f ∈ M is called almost zero
if I · f = 0, and M is called almost zero if all f ∈M is almost zero.

Denote

Ma = j∗M ∈ ModaR, M∗ = j∗M
a = Hom(I,M), M! = j!M

a = I ⊗M.

Then there are morphisms M! →M →M∗, which becomes isomorphisms after almostification.
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Prop.(4.7.2.2). If I = (f
1
p∞ ), then M∗ = {x ∈M [f−1]|f

1
pn x ∈ A} for all n.

Prop.(4.7.2.3). If M → N is almost surjective maps of K0-algebras that M/I → N/I is surjective,
then M → N is surjective.

Proof: As I is flat over K0, if M → N → Q→ 0 is the cokernel, tensoring A/I, as M/I → N/I is
surjective, Q/IQ = 0, but Q is almost zero thus IQ = 0, so Q = 0. □

Def.(4.7.2.4)[Almost Properties]. Something is called almost XXX if it is XXX when passed to
the category of almost R-modules. For example,

• elements of M∗ are called almost elements of M .
• M is called almost flat iff Ma ⊗− is exact on ModaR, which is equivalent to TorR>0(M,N) is

almost zero for all N .
• M is called almost projective iff alHom(M,−) is exact on ModaR, which is equivalent to

Ext>0
R (M,N) is almost zero for all N .

Notice this is not equivalent to projective in ModaR, because R is almost projective, but
HomRa(Ra,Ma) = Hom(I,M) is not exact as I is not projective: Ext1

Ra(Ra, Ra) =
Ext1

R(I,R) = Ext2(k,R), which is not 0 if R is the valuation ring of a non-spherically complete
perfectoid field K, like Q̂p?.

• M is called almost finitely generated/almost finitely presented if for any ε ∈ I, there
is a f.g./f.p. Mε → M with Nε generators that the kernel and cokernel are killed by ε. It is
called uniformly almost finitely generated iff Nε is independent of ε.
Notice this definition doesn’t depends on M chosen?

• If S is of charp, it is called almost perfect iff S∗ is perfect.

Prop.(4.7.2.5) [Enough Almost Injectives].The category modaR has enough injectives. In fact
j∗, j∗ both preserves injectives, because they has exact left adjoints, so I is injective R-module iff Ia
is injective Ra-module, and J is injective Ra-module iff J∗ is injective R-module. So to construct
an injective resolution in Ra, pass to R-modules using either (−)∗ or (−)! and find an injective
resolution, then almostificate it.

Prop.(4.7.2.6) [Derived Functors of (−)∗].Notice that HomRa(Ma, Na) = HomR(I ⊗M,N) by
adjointness, so using(4.7.2.5),

ExtkRa(Ma, Na) = ExtkR(M∗, N) = ExtkR(M,RHom(I,N)),

then as M∗ = Hom(I,M), the derived functor of (−)∗ is just ExtkR(I,M) = ExtkRa(Ra,Ma).
Notice that ExtkRa(M,N) are all almost zero, as jaj∗ = id, and use trivial Grothendieck spectral

sequence.

Prop.(4.7.2.7)[(Example)A Quadratic Extension of a Perfectoid Field]. If K =
̂
Qp[p

1
p∞ ] and

L = K(√p) with p ̸= 2, then L0 is a uniformly almost f.p. projective K0-module.

Proof: It suffices to find for each n a K0-module Rn of rank 2 that Rn → L0 is injective with
cokernel annihilated by p

1
pn . For this, consider Rn = K0 ⊕K0p

1
2pn , then L0 = ̂colimnRn.

Notice that the cokernel of Rn → Rn+1 is killed by p
1
pn , because

p
1
pn · p

1
2pn+1 = p

(p+1)/2
pn+1 · p

1
2pn ⊂ Rn.
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So by killing one by one, the cokernel of Rn → colimnRn is killed by any p-power with power
larger than∑ 1

pn , in particular by p
1

pn−1 . So colimnRn is an extension of R0 by a cokernel killed by p,
so it is also p-adically complete, and L0 = colimnRn. Now Consider 0→ Rn → colimnRn → Coker,
then Extn(colimnRn, N) = Extn(Coker, N) is killed by p

1
pn−1 for all n, so it is killed by I, thus

colimnRn is almost projective. □

Completions and Closures

Prop.(4.7.2.8)[prc and Completion]. If A is a ring with a nonzero-divisor f that A ⊂ A[f−1] is
p-root closed(prc), then:

• Â ⊂ Â[f−1] is p-root closed.
• If f admits a compatible p-power roots, then A∗ ⊂ A∗[f−1] is p-root closed(where almost

mathematics is performed w.r.t (f
1
p∞ ).

Proof: We first replace A with its maximal separated quotient A/(∩nfnA = I): f is still non-zero-
divisor, because if fg ∈ I, then fg ∈ fnA for all n, so g ∈ fn−1A as f is non-zero-divisor. And
it is p-root closed, because if ap ∈ A/I[f−1], then ap = b + f−cd for c integer and d ∈ I. Notice
I = fI = f cI by(4.2.2.16), so f−cd ∈ I as well, so a ∈ A.

Now A is f -separated, in particular, A ↪→ Â.
1: If g ∈ Â[f−1] and gp ∈ Â, then fNg ∈ Â for some N and choose a m ≥ N(p− 1), then by the

density, g = g0 + fmg1 for some g0 ∈ A[f−1], g1 ∈ Â. Notice fNg0 ∈ Â, now

gp = gp0 + pgp−1
0 fmg1 + . . .+ (fmg1)p,

By definition of m, all terms except gp0 are in Â, so gp0 ∈ A, so g0 ∈ A, and g ∈ Â.
2: Use the convention(4.7.2.2), if g ∈ A∗[f−1] that gp ∈ A∗, then f

1
pn gp ∈ A for all n, so

(f
1

pn+1 g)p ∈ A, thus f
1

pn+1 g ∈ A, hence g ∈ A∗. □

Prop.(4.7.2.9) [ic and Completion].Let A be a ring with a non-zero-divisor f , if A ⊂ A[f−1] is
integrally closed, then:

• Â ⊂ Â[f−1] is integrally closed.
• If f admits a compatible p-power roots, then A∗ ⊂ A∗[f−1] is integrally closed(where almost

mathematics is performed w.r.t (f
1
p∞ ).

Proof: We first replace A with its maximal separated quotient A/(∩nfnA = I): f is still non-
zero-divisor and I is f -divisible as in the proof of(4.7.2.8). And it is integrally closed, because if g
satisfies a monic polynomial h(X) ∈ A/I[f−1][X], then choose a lifting, h(g) ∈ I[f−1] = I ⊂ A, so g
is integral over A thus g ∈ A, and g ∈ A/I. Now A is f -separated and A ↪→ Â.

1: If g ∈ Â[f−1] satisfies a polynomial H ∈ Â[X], then g = f−ch for h ∈ Â, and then h satisfies a
polynomial H(f cx), and choose an approximation of coefficients of H(x) and h0 of h mod f cn, then
it is clear that H(f ch0) ∈ f cnÂ ∩ A = f cnA, so when dividing back, g0 = f−ch0 is integral over A
thus g0 ∈ A, thus h0 ∈ f cA, and h ≡ h0 mod f cn, thus h ∈ f cÂ, and g ∈ A.

2: Use the convention(4.7.2.2), if g ∈ A∗[f−1] is integral over A∗, then there are polynomial H
that H(g) = 0, now if ε = f

1
pk consider another polynomial H(x/ε), then its coefficients are all in

A, thus εg is integral over A thus εg ∈ A, and then g ∈ A∗. □
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Prop.(4.7.2.10) [tic and Completion].Let A be a ring with a non-zero-divisor f that admits a
compatible system of p-power roots f

1
pn for all n > 0, and A is totally integrally closed(tic) in

A[f−1], then Â is totally integrally closed in Â[f−1] and A = A∗.

Proof: 1: Notice totally integrally closed is p-root closed, so Â ⊂ Â[f−1] is p-root closed. Now
if fkgN ⊂ Â for some k, then by prc, f

k
pn g ∈ Â for all n, thus g in an almost zero element in

Â[f−1]/Â ∼= A[f−1]/A, and then g is totally integrally closed over A, because for any n, let n < pk,
then f

1
pk g ∈ A, thus f

n

pk g ∈ A, and fgn ∈ A.
2: Because f

1
pkA∗ ⊂ A by convention(4.7.2.2), clearly A∗ is totally integrally closed in A, thus

A∗ ⊂ A. □

Almost Étale Map

Def.(4.7.2.11).A map A→ B of Ra-algebras is called almost étale iff:
• B is almost f.p. projective over A.
• (Unramifiedness(4.4.6.10))There exists a diagonal idempotent e ∈ (B ⊗A B)∗. i.e. e2 = e and
µ∗(e) = 1, and ker(µ)∗ · e = 0, where µ : B ⊗A B → B is the multiplication map.

Prop.(4.7.2.12)[Example of Almost Étale Maps].Let K =
̂
Qp[p

1
p∞ ] and L = K(√p) with p ̸= 2,

then L0/K0 is uniformly almost f.p projective K0-module, by(4.7.2.7). We show it is finite étale:
flatness is clear, as L0/K0 is torsion-free and K0 is a valuation ring and use(4.7.3.3).

For unramifiedness, notice that

L⊗K L ∼= L× L : (a, b) 7→ (ab, aσ(b)).

by(2.2.7.6), the diagonal idempotent e is given by

e = 1
2p

1
2pn ⊗ 1

(1⊗ p
1

2pn + p
1

2pn ⊗ 1)

for any n ≥ 0, then we see p
1
pn e ∈ L0 ⊗K0 KL0 for all n, thus e ∈ (L0 ⊗K0 L0)∗.

Lemma(4.7.2.13)[Lemma for Almost Purity in Characteristic p]. If η : R → S is an integral
map of perfect rings. If η[t−1] is finite étale for some t ∈ R, then η is almost finite étale w.r.t the
ideal I = (t

1
p∞ ).

Proof: Firstly, we may assume R,S are both t-torsion-free, because the t-torsion part R[t∞] and
S[t∞] is almost zero: if tcα = 0, then tcαpn = 0, so t

c
pn α = 0. So we reduce to R/R[t∞]→ S/S[t∞],

which doesn’t change anything.
Now we reduce to the case that R,S are integrally closed in R[t−1] and S[t−1]: it suffices to show

that Rint ⊂ R∗, thus they are almost isomorphic. For this, an element f ∈ Rint satisfies fNtk ∈ R
for some k, so by perfectness, ft

k
pn ∈ R for all n, so f ∈ R∗.

Now check unramifiedness: let e ∈ (S ⊗R S)[t−1] be a diagonal idempotent, then tce ∈ S ⊗R S
for some c, now e2 = e, so easily e ∈ (S ⊗R S)∗.

Now check almost finite projective: for m > 0, represent t
1
pm e =

∑
ai⊗ bi ∈ S⊗R S, then use the

map S α−→ Rn
β−→ S as in(4.4.7.14), then βα = t

1
pm on S, as S is t-torsion free, Rn → S is injective

with t
1
pm -torsion cokernel, for any m. So S is almost finite projective. □
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Prop.(4.7.2.14)[Almost Purity in Characteristic p]. If R is a perfect ring of charp, then using
the almost mathematics w.r.t. I = (t

1
p∞ ), S → S∗[t−1] gives an isomorphism of categories: Rafét ∼=

R[t−1]fét.

Proof: As in the proof of(4.7.2.13), we may assume R is t-torsion-free. Notice that any integral
extension of R[t−1] comes from an integral extension of R(choose the integral closure), so the lemma
above(4.7.2.13) tells us the functor is essentially surjective.

Now we construct an inverse functor, S∗[t−1] maps to T a, where T is the integral closure of R
in S∗[t−1]. By lemma(4.7.2.15) below, S is almost perfect. So S∗ is t-torsion-free, as if tcf = 0,
then t

c
pn f = 0 for all n, so f = 0 ∈ (S∗)∗ = S∗. So now S∗ ⊂ S∗[t−1]. Clearly T is also perfect

and t-torsion-free. So R → T is an integral extension that is identified with R[t−1] → S∗[t−1] after
inversion of t.

To show that T a = S, it suffices to show T∗ = S∗. for f ∈ T , fN spans a finite module of
T [t−1] = S∗[t−1], so tcfN ⊂ S∗, then by perfectness, f ∈ (S∗)∗ = S∗, so T∗ ∈ S∗. Conversely, if
g ∈ S∗, then tgN lies in a f.g. R-module of S∗[t−1], by almost f.g.. So tcgN ⊂ T , and then by
perfectness g ∈ T∗. □

Lemma(4.7.2.15).Almost finite étale map of rings of charp is almost relatively perfect.

Proof: Cf.[Bhatt notes on Perfectoid Spaces P28]. □

3 Almost Mathematics on Perfectoid Fields
Prop.(4.7.3.1) [Almost Elements]. If K is a perfectoid field, R = K0 and I = K00, M is an
R-module, then

• If M is torsion-free, then M∗ = {m ∈ M ⊗K0 K|Im ∈ M} = {m ∈ M ⊗K0 K|t
1
pnm ∈

M},by(10.3.8.12) and(4.7.2.2).
• I∗ = R∗ = R. More generally, for an ideal J ⊂ R, let c = sup{|x||x ∈ J}, then J∗ = {a ∈
K, |a| ≤ c}.

Prop.(4.7.3.2).Let K be a perfectoid field with a pseudo-uniformizer π. If α : M → N is an almost
surjective map of K0-algebras that M is π-adically separated and N is π-torsion-free that α mod π
is an almost isomorphism, then α is an almost isomorphism.

Proof: We may replace N with the image of α as to assume α is surjective. Now if L = kerα, then
the π-torsion-freeness of N shows L/π is the kernel of (α mod π), and L/π is almost zero, thus L is
almost π-divisible, but it is also π-separated, thus it is almost zero(using t

∑
i

1
paim ∈ ∩ntnL). □

Prop.(4.7.3.3) [Almostification and Completeness].Let K be a perfectoid field with a pseudo
uniformizer t and R = K0, I = K00, let M ∈ ModaR, then:

• M is almost flat iff M∗ is R-flat iff M! is R-flat.
• Assume M is almost flat, then M is t-adically complete iff M∗ does.
• Assume M is almost flat, then for each f ∈ K0, fM∗ ∼= (fM)∗, and M∗/fM∗ ⊂ (M/fM)∗.

And for any ε ∈ I, the image of (M/fεM)∗ and M∗/fM∗ in (M/fM)∗ are identical.

Proof: 1: R is a valuation ring, so M∗ is R-flat iff M∗[t] is flat by(4.4.1.12), as t is a pseudo
uniformizer. As (−)∗ is left exact, M∗[t] = (M [t])∗, so if M is almost flat, then M [t] = 0 as t is
nonzero-divisor, so M∗ is R-flat. The converse is true as M = (M∗)a, and the tensor is compatible.
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For (−)!, this follows from the observation that (−)! and (−)a are both exact and commute with
tensor products, and notice M! ⊗N = (M ⊗Na)!.

2: As (−)a commutes with all limits and colimits, if M∗ is t-adically complete then so does
M = (M∗)a. Conversely, if M is R-flat and t-adically complete, then M!,M∗ are also R-flat, and
consider the commutative diagram:

M! lim(M/tnM)! = limM!/t
nM! = M̂!

M∗ lim(M/tnM)∗

a

d b

c

then d is almost isomorphism by(4.7.1.2) and so does b because (−)a commutes with all limits, and
c is an isomorphism as (−)∗ commutes with limits and M is t-adically complete. So a is also almost
isomorphism.

Now notice M! is flat hence t-torsion-free, so the kernel of a, d must be 0, with almost zero
cokernels. Now(4.2.3.9) shows first M! is complete and next M∗ is complete.

3: Notice (fM∗)a = fM as (−)a is exact, so

(fM)∗ = Hom(I, fM∗) = {y ∈M∗[t−1]|Iy ⊂ fM∗} = f{y ∈M∗[t−1]|Iy ⊂M∗} = fM∗

and M∗/fM∗ ⊂ (M/fM)∗ follows from the left exactness of (−)∗.
For the last assertion, consider the commutative diagram

0 M M M/fM 0

0 M/εM M/fεM M/fM 0

f

f

and apply (−)∗ = HomRa(Ra,−) and use(4.7.2.6), then

0 M∗/fM∗ (M/fM)∗ Ext1
Ra(Ra,M)[f ] 0

0 (M/fεM)∗ (M/fM)∗ Ext1
Ra(Ra,M/εM)

a

c

b

To show a, b has the same image, it suffices to show that c is injective. For this, it suffices to
show Ext1

Ra(Ra,M)→ Ext1
Ra(Ra,M/εM) is injective. Consider the exact sequence 0→M

ε−→M →
M/εM → 0, it suffices to show that εExt1

Ra(Ra,M) = 0, and this is obvious as ε ∈ I(4.7.2.6). □

Prop.(4.7.3.4) [General Completeness and Almostification].More generally, if J =
(f1, . . . , fr) ⊂ R is a f.g. ideal, then an Ra-module M is J-adically complete iff M∗ does.

Proof: Cf.[Perfectoid Spaces Bhatt P32]. □

Banach Space

Prop.(4.7.3.5)[Uniform Banach K-Algebra]. If K is a non-Archimedean perfectoid(perfect) field
with a pseudo uniformizer t, then the following categories are equivalent:

• The category of uniform Banach K-algebras.
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• The category Dtic of t-adically complete and t-torsionfree K0-algebras A with A totally inte-
grally closed in A[t−1](4.2.1.1).

• The category Dic of t-adically complete and t-torsionfree K0-algebras that A is integrally closed
in A[t−1] and A = A∗.

• The category Dprc of t-adically complete and t-torsionfree K0-algebras that A is p-root closed
in A[t−1] and A = A∗.

Proof: The last three are equivalent, because if A ∈ Dtic, then A = A∗ by(4.7.2.10), as K is perfect
by(10.3.8.4). So Dtic ⊂ Dic ⊂ Dprc, so it suffices to show that Dprc ⊂ Dtic. Now for any f that
fN ⊂ t−kA, then tkfpn ⊂ A, and A is p-root closed, so t

k
pn f ⊂ A for all n, so f ∈ A∗(4.7.2.3), but

A∗ = A.
The equivalence of 1, 2 is general, by(12.2.4.8). □

Prop.(4.7.3.6). If K is a perfectoid field, then the category of uniform Banach spaces has all colimits
and limits.

Proof: Cf.[Bhatt P38]. □
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4.8 Simplicial Commutative Algebras

Main references are [Model Categories and Simplicial Methods, Paul Goerss and Kristen Schem-
merhorn], [Simplicial Commutative Rings, Mathew].

1 Simplicial Groups

Prop.(4.8.1.1).A morphism of simplicial groups, when regarded as simplicial set, is a Kan fibration
iff

X → π0X ⊗π0(Y ) Y

is surjective. In particular, any simplicial group is a Kan complex.

Proof: Cf.[Simplicial Homology Theory Jardine P12] □

Def.(4.8.1.2) [Simplicial Modules].A simplicial module over a simplicial ring R• is a map of
simplicial map R• ×M• →M• that is a ring action.

2 Simplicial R-Modules and Resolutions

Def.(4.8.2.1)[Moore Complex].Giving a simplicial object in an Abelian category, we can have a
Moore chain complex with Čech-like differentials. ∂n =

∑n
1 (−1)idi. And we have ∂2 = 0.

Proof: Should use didj = dj−1di for i < j. □

Def.(4.8.2.2)[Normalized Moore complex of a simplicial R-Module].The normlized Moore
complex of a simplicial R-module M is the chain complex

NM : · · · → NMn
(−1)ndn−−−−−→ NMn−1 → · · ·

where NMn =
∩n−1
i=0 ker(di) ∈ Mn. This is a chain complex because dn−1dn = dn−1dn−1 is 0 on

NMn. In fact NM is preserved by all injections.
The homotopy groups π∗(M) of M is defined to be the homology of the normalization of M .

And it can be shown that as a set πn(M) is just the n-th homotopy group of the geometrization of
the

The degenerate complex of a Moore complexDM is the chain complex thatDn =
∑n−1
i=0 siMn−1

is a sub chain complex of M by the relation of di, sj .

Def.(4.8.2.3).A morphism of simplicial Abelian groups is called a weak equivalence is it induces
an isomorphism on the homotopy groups.

Prop.(4.8.2.4)[Differential Graded Structures].For any simplicial commutative R-algebra A, the
homotopy groups π∗(A) form a graded commutative R-ring.

Proof: The group structure on π∗(A) is given by smash products. Cf.[Simplicial Commutative
Algebras, Mathew, P2]. □

Cor.(4.8.2.5) [π0 is an Algebra]. If Y is a simplicial commutative R-algebra, then π0(Y ) =
Y0/(Im(d0 − d1)), which is an algebra.
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Proof: It suffices to show Im(d0 − d1) is an ideal of Y0: If a ∈ Y0, then

(d0 − d1)(s0(a)y) = d0s0(a)d0(y)− d1s0(a)d1(y) = a(d0 − d1)(y).

□

Prop.(4.8.2.6). if R• is a simplicial ring and M• is a simplicial R•-ring, then π∗(M) is a graded
π∗(R)-module.

Prop.(4.8.2.7).The simplicial homology of the Moore complex of the bar resolution BG of group
homology with coeeficient in R is just the group homology Hn(G,R) for the trivial module R. And
it has the same homology with the geometrization |BG|.

Lemma(4.8.2.8).A∗ ∼= NA∗⊕DA∗ as a complex, NA∗, A∗, (A/DA∗) are all homotopically equivalent.

Proof: We define similarly NkA∗ and DkA∗ and induct on k, our conclusion is the case k = n− 1.
When k = 0, Im d0 ⊕ ker s0An = An because d0s0 = idn−1 thus An−1

s0−→ An is a split injection.
There are two split exact rows by simplicial relations:

0 Nk−1An−1 Nk−1An NkAn 0

0 An−1/Dk−1An−1 An/Dk−1An An/DkAn 0

sk 1−skdk

sk

The first one split because it has a right section, the second one split because it has a left section.
So by induction, NkAn → An/DkAn is an isomorphism, thus NkAn ⊕DkAn = An because it splits.

For the homotopy equivalence, Cf.[Jardine P150]. □

Prop.(4.8.2.9)[Dold-Kan Correspondence].For R ∈ Ring, the normalized Moore complex(4.8.2.2)
functor N gives an equivalence of categories:

N∗ : sModR ∼= Ch≥0(A).

and the inverse is given by
(σC•)n =

⊕
[n]↠[k]

Ck

and a morphism σn → σm for a morphism [m] → [n] is defined as follows: For [n] ↠ [k], write
[m] → [n] → [k] as [m] ↠ [r] ψ−→ [k] where φ is injective, thus maps a ∈ Ck in σCn to ψ∗(a) ∈ Cr
in σCm, where ψ∗ is zero unless ψ = dn : ∆[n − 1] → ∆[n]. And homotopy groups and homology
groups correspond via this equivalence, so does weak equivalences.

Proof: σ(C•) defines a simplicial Abelian group because of the uniqueness of the the canonical
decomposition. There is a natural map from σ(NA) to A.

Now the task is to show that σ(NA) ∼= A and N(σC) ∼= C. We has N(σC)n = Cn because diCn is
0 for i ̸= n and the other components are all degeneracies thus are not in N(σC)n = Cn by(4.8.2.8).

Then we prove σ(NA) ∼= A. It is a surjection by(4.8.2.8) and induction. For the injectivity, if
(aφ) ̸= 0 is mapped to 0, aidn is 0 by(4.8.2.8). And we choose an ordering on the φ : [n] → [k] by
dominating, and suppose ψ is a minimal one. Now choose a section ξ of ψ that ξ is the maximal
section, thus φξ cannot by idk for any other φ. Now by induction we have aψ = 0, contradiction. □
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Cor.(4.8.2.10) [Trivial Simplicial Algebra].There is a functor form an R-algebra S to a trivial
simplicial R-algebra s(S), it is a fully faithful embedding and π0 is left adjoint to it.

Proof: This is the adjointness of(3.9.1.12) under the equivalent σ(4.8.2.9). □

Cor.(4.8.2.11)[Model Structure on sModR].By(3.4.4.2) applied to the equivalence with Ch≥0R,
sModR has the structure of a model category where a morphism X → Y is

• an equivalence if it is a weak equivalence,
• a fibration if NXn ↠ NYn for any n ≥ 1.
• a cofibration if the the maps of the degenerate diagrams is of the form

Xn → Yn = Xn ⊕
⊕

φ:[n]↠[k]
φ∗Pk

compatible with the differential, and Pk are all projectives.

Prop.(4.8.2.12)[Fibrations].A fibration of simplicial R-modules is a fibration iff it is a fibration of
simplicial sets. Moreover, by(4.8.1.1), this is equivalent to X → π0X ⊗π0(Y ) Y is surjective.

Proof: □

Prop.(4.8.2.13)[Simplicial Model Structure]. sModR admits a simplicial model category struc-
ture.

Proof: Firstly sModR is a simplicial category tensored and cotensored over Set∆(3.1.7.7)
by(3.5.1.6), then it suffices to show(3.4.5.3)?. □

Prop.(4.8.2.14) [Model Structure on sCRingR].By(3.4.4.2) applied to the forgetful functor to
Set∆, Let R be a commutative algebra, then the category of simplicial commutative algebras sCAlgR
has a simplicial model category structure where a morphism is

• a weak equivalence if it is a weak equivalence of simplicial sets.
• a fibration if it is fibration of simplicial sets.

Proof: □

Cor.(4.8.2.15).For a ring map R → S, the tensor product S ⊗R − and forgetful functor form a
Quillen adjunction between sCRingR and sCRingS .

Def.(4.8.2.16) [Free Morphisms].A morphism of simplicial R-algebras is called free if it is s-
free(3.5.1.5) on the a set of objects Pk where Pk are projective R-modules.

Prop.(4.8.2.17)[Cofibrations in sAlgR].A morphism in sAlgR is a cofibration iff it is a retraction
of a free morphism(4.8.2.16). In particular, a cofibrant simplicial R-algebra is the symmetrization of
a chain of projective R-modules.

Proof: This follows from(3.4.4.2)(3.1.7.10) and notice the free morphisms just corresponds free
commutative algebra applied to the attaching cell morphism in the category of sets. □
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Simplicial Resolutions

Def.(4.8.2.18)[Simplicial Resolutions].
• LetM ∈ModR, a simplicial resolution ofM is a cofibrant replacement ofM , or equivalently,

it is an augmented simplicial R-module X →M that NX →M is a projective resolution.
• Let M ∈ CRingR, a free resolution of M is free cofibrant replacement of M , or equivalently,

it is an augmented simplicial commutative R-algebras X → M that NX → M is a resolution
of R-modules, and Pn are all projective(3.1.1.21) in AlgR. Notice we can always choose a free
resolution only only cofibrant resolution by(3.4.8.3) and Dold-Kan complex.

Def.(4.8.2.19)[Bar Resolution].Let C be a category and T : C → C a monad, and X is an algebra
over T (3.2.1.2), then we can form a simplicial T -algebras where B(T,X)n = Tn+1X where the
simplicial operators come from the action of T on itself and the action of T on X.

Then there is a simplicial morphism B(T,X)→ X, which is a simplicial homotopy.

Remark(4.8.2.20). If C is the category of sets, R is an algebra and T is a functor that sends a set S
to R[S], then a T -algebra is just an R-algebra, and the bar resolution is just the canonical resolution,
and it is a cofibrant replacement, by(4.8.2.17).

Prop.(4.8.2.21). If f, g : A• → B• are two homotopic maps of cosimplicial Abelian groups, then f, g
induces an isomorphism between their totalizations.

Proof: Cf.[[Sta]019S]. □

3 Properties
Def.(4.8.3.1). If A is a ring and f1, . . . , fn ∈ A, the Koszul complex is defined to be

Kos(A, f1, . . . , fn) = A⊗LZ[X1,...,Xn] Z.

We want to extend this definition to the case of simplicial commutative rings.
Now if A is a simplicial ring and f1, . . . , fn ∈ π0(A), let g1, . . . , gn in A0 lifting fi, then we define

Kos(A, f1, . . . , fn) = A⊗LZ[X1,...,Xn] Z.

Then we need to check that this is independent of the lifting: if there is another set of lifting hi,
because we have identities

A⊗LZ[X1,...,Xn] Z
∼= (A⊗LZ[X1,...,Xn] Z[X1])⊗LZ[X] Z

it suffices to prove for n = 1. Then there is a γ ∈ A1 that d0(γ) = g, d1(γ) = h. Then we consider
the evaluating maps

e0, e1 : Hom(∆1, A)→ A

are weak equivalences?, and then the maps

e0 : Hom(∆1, A)⊗Lγ,Z[X] Z→ A⊗Lg,Z[X] Z

e1 : Hom(∆1, A)⊗Lγ,Z[X] Z→ A⊗Lh,Z[X] Z

are also weak equivalences, so we are done.
And if M is a simplicial A-module, then we define

Kos(M,f1, . . . , fn) = M ⊗LA Kos(A, f1, . . . , fn)
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Def.(4.8.3.2) [Flatness].A map A → B of simplicial rings is called (faithfully)flat if π0(B) is
(faithfully)flat over π0(A) and πi(A)⊗π0(A) π0(B)→ πi(B) is an isomorphism for any i.

Prop.(4.8.3.3).Flatness is stable under base change.

Proof: Cf.[Emerton note, completely flatness, P12]. □
Prop.(4.8.3.4). If π0(A)⊗LAM is (faithfully)flat over π0(A), then M is (faithfully)flat over A.

Proof: Cf.[Emerton note, completely flatness, P12]. □
Def.(4.8.3.5). If A is a simplicial ring and M is a simplicial A-module, if I = (f1, . . . , fn) is an
ideal of π0(A), then M is called I-completely flat over A if Kos(M,f1, . . . , fn) is flat over
Kos(A, f1, . . . , fn).

Clearly if M is A-flat, then it is I-completely flat.

Prop.(4.8.3.6) [Flatness and Derived Completion]. If A is a simplicial ring, M is a flat sim-
plicial A-module, and I = (f1, . . . , fn) is an ideal of π0(A), then its derived I-completion M̂ =
ho limnKos(M,fN1 , . . . , f

N
n ) is I-completely flat. The proof is similar to that of(4.9.7.4).

Prop.(4.8.3.7) [Relative Regular Sequence]. If A → B is a map of simplicial rings, then
x1, x2, . . . , xn ∈ π0(B) is called regular with respect to A• if

A→ Kos(B, x1, . . . , xn)

is flat. And if I = (f1, . . . , fm) ∈ π0(A), then it is called I-completely regular if

Kos(A, f1, . . . , fm)→ Kos(A, f1, . . . , fm)⊗LA Kos(B, x1, . . . , xn) = Kos(B, f1, . . . , fm, x1, . . . , xn)

is flat. In particular, regular relative to A• implies I-completely regular relative to A•.

Prop.(4.8.3.8). If (f1, . . . , fr−1, f) is regular w.r.t. A and (f1, . . . , fr−1, g) is regular w.r.t A, then
(f1, . . . , fr−1, fg) is also regular w.r.t A. In particular, for any ni > 0, fn1

1 , . . . , fnrr is also regular
w.r.t. A.

Proof: Similarly as in(4.4.4.6), we have a distinguished triangle

Kos(M,f1, . . . , fr−1, f)→ Kos(M,f1, . . . , fr−1, fg)→ Kos(M,f1, . . . , g).

Then we can use induction. □
Prop.(4.8.3.9)[Regular and Derived Completion]. If x1, . . . , xn ∈ π0(B) is regular w.r.t A, then
they are I-completely regular w.r.t. A in the derived I-completion B̂. The proof is similar to that
of(4.8.3.6).

4 Non-Abelian Derived Functors
Def.(4.8.4.1)[∞-Category of Chain Complexes].Let A be an additive category, then Ch(A) is
enriched over Ch(Ab), and the Dold-Kan correspondence can be made into a right-lax monoidal
functor by?[S. Schwede and B. Shipley. Equivalences of monoidal model categories.], so N∗(Ch(A))
is enriched over sAb, which consists of Kan complexes(4.8.1.1). Thus N∗(Ch(A)) is Bergner-fibrant,
and we can define the ∞-category of chain complexes

Ch∞(A) = N∆(N∗(Ch(A))),

which is an ∞-category by(3.5.4.9).
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Prop.(4.8.4.2)[Left Derived Functor].Let F : PolyA → C be a functor where C is any ∞-category
admitting all colimits (e.g. D∞(Ab)), then there exists a left Kan extension LF of F along PolyA ⊂
CRingA that

• LF commutes with filtered colimit.
• LF commutes with geometric realization of simplicial resolutions: given B ∈ CRingA and a

simplicial resolution P• → B by A-algebras, the geometric realization |LF (P•)| is equivalent to
LF (B).

which is called the left derived functor of F .

Proof: Cf.[Bhatt, Prism, 7.1.2]. □
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4.9 Derived Commutative Algebras
Main references are [Sta].
[Sta]Chap15 contains many beautiful results working on the derived category of rings, and is used

heavily in Scholze’s Thesis.
The basic construction of Rtensor and RHom should be redone at the level of ringed sites,

Cf.[Sta]Chap21.
This section is obsolete and should be redone in the language of ∞-categories.

1 Basics
Prop.(4.9.1.1)[Product in D(R)].Let R be a ring and Kn ∈ D(R), then the product in D(R) of
Kn is given by ∏ In, where In are K-injective resolutions of Kn.
Proof: This is immediate from(3.9.2.7). □

Def.(4.9.1.2)[Homotopy Fiber Square].A square of Abelian groups is called a homotopy fiber
square if it is a homotopy fiber square in the derived category, or equivalently, the kernel of the two
rows(or the two columns) are isomorphic.

This notion is identical to the notion of pullback square when the rows or the columns are
surjective.?

Prop.(4.9.1.3)[Bockstein Differential].Let I be an invertible ideal of A, for any M• ∈ D(A), we
use the Breuil-Kisin Twist notation(7.7.5.1) and consider the exact triangle

M• ⊗LA A/I{i+ 1} →M• ⊗LA Ii/Ii+2 →M• ⊗LA A/I{i}

obtained from the exact triangle

In+1/In+2 → In/In+2 → In/In+1

tensoring O∆. Then we get a Bockstein differential

βn : Hn(M• ⊗LA A/I{n})→ Hn+1(M• ⊗LA A/I{n+ 1})

Then these maps satisfy βn+1 ◦ βn = 0.
Proof: Consider the morphism of distinguished triangles:

In+1/In+3 In/In+3 In+1/In+1

In+1/In+2 In/In+2 In+1/In+2

then we see for any M• ∈ D(A), βn factors as

Hn(M• ⊗LA In/In+1)→ Hn+1(M• ⊗LA In+1/In+3)→ Hn+1(M• ⊗LA In+1/In+2)

and also we consider the distinguished triangle

In+2/In+3 → In+1/In+3 → In+1/In+2

to see that the composition

Hn+1(M• ⊗LA In+1/In+3)→ Hn+1(M• ⊗LA In+1/In+2) βn+1
−−−→ Hn+2(M• ⊗LA In+2/In+3)

is 0, and this two observation gives the result. □
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Injective Amplitude

Prop.(4.9.1.4)[Injective Amplitude].For K ∈ D(A), the following are equivalent:
• K has finite amplitude in [a, b].
• Exti(N,K) = 0 for any N ∈ D0(A) and i /∈ [a, b].
• Exti(A/I,K) = 0 for any ideal I of A.

Proof: 1→ 2→ 3 is clear. For 3→ 1: Notice Extn(A,K) = Hn(K), H i(K) = 0 for any i /∈ [a, b].
Then K is represented by a complex

0→ Ia → Ia → Ia+1 → . . .→ Ib → . . . .

Let J = ker(Ib → Ib+1), then K is also represented by

0→ Ia → Ia → Ia+1 → . . .→ Ib → J → 0.

Let K ′ = (Ia → . . .→ Ib) ∈ D(A), then there is an distinguished triangle

J [−b]→ K → K ′ → J [1− b],

which induces an exact sequence Extb(R/I,K ′) → Ext1(R/I, J) → Extb+1(R/I,K) for any ideal
I ⊂ A. Then by 1→ 2, Ext1(R/I, J) = 0, implying J is injective. □

Prop.(4.9.1.5) [Dedekind Domain].Let R be a Dedekind domain, then every ideal I is finite
torsion-free thus projective over R, so every R-module has injective dimension≤ 1. In particular,
Exti(M,N) = 0 for any i ≥ 2 and M,N ∈ ModR. In particular, by(3.9.3.26). any K ∈ D+(R) is
isomorphic to a direct sum of their cohomology groups.

Prop.(4.9.1.6).Let (R,m, k) be a Noetherian local ring and K ∈ D+(R) have finite cohomology
modules, then K has finite injective dimension iff ExtiR(k,K) = 0 for i large.

Proof: Cf.[Sta]0AVJ. □

2 Derived Tensor and Tor
Prop.(4.9.2.1)[Differential Graded Structure]. IfK is a commutative A-algebra object in D(A) in
the monoidal structure defined in(5.3.3.8), then ⊕n≥0H

n(K•) carries a natural graded commutative
A-algebra structure.

Proof: Compare with(4.8.2.4).
We may replace K by a K-flat resolutions L1(5.3.3.3) that the algebra structure map for K is

represented by a morphism L•
1 ⊗A L•

1 → L2 of complexes where L2 is a complex quasi-isomorphic
to K, hence the graded A-algebra structure is clear by(3.7.8.2), and it is commutative by(3.7.8.1).
(How to check the structure is uniquely determined?). □

Tor

Def.(4.9.2.2) [Tor].Let M,N be A-module, then the torsion group TorAn (M,N) is defined to be
Hn(M ⊗LO N), compatible with the definition in(5.3.3.11).
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Def.(4.9.2.3) [Torsion Group].Let A be a commutative ring, B an A-algebra and I be an ideal,
then the I-torsion of B is defined to be TorA1 (A/I,B), denoted by B[I]. In case I = (f), it can be
checked that B[f ] is the set of elements of B that killed by f .

Also we denote B[I∞] = colimn→∞B[In]. And B is said to have bounded f-torsion iff B[f∞] =
B[fn] for some n.

Prop.(4.9.2.4). If A is a commutative ring with bounded I-torsions and B is a flat A-module, then
B also has bounded I-torsions. (Because tensoring B is exact).

Prop.(4.9.2.5)[Balancing Tor]. In the category of rings, Torn(A,B) = Torn(B,A). This can be seen
using spectral sequence of the double complex of flat resolutions of A and B. Similarly, we have two
definitions of Exti(M,N) are compatible.
Proof: □

Prop.(4.9.2.6)[Base Change].For a ring extension R→ S, using projective resolution and spectral
sequence, there is a first quadrant homology spectral sequence:

E2
pq = TorSp (TorRq (A,S), B)⇒ TorRp+q(A,B).

Similarly, for Ext,
Epq2 = ExtpS(A,ExtqR(S,B))⇒ Extp+q

R (A,B).

Prop.(4.9.2.7)[Universal Coefficient Theorem].Let P be a free R-module so d(Pn) are all flat,
then Z(Pn) are also flat and

0→ d(Pn+1)→ Zn → Hn → 0
is a free resolution. we have an exact sequence:

0→ Hn(P )⊗RM → Hn(P ⊗RM)→ TorR1 (Hn−1(P ),M).

0→ Ext1
R(Hn−1(P ),M)→ Hn(HomR(P,M))→ Hom(Hn(P ),M)→ 0

and these exact sequences non-canonically split because Zn is a direct summand of Pn, thus Zn⊗M
is a direct summand of Pn ⊗M and a fortiori Zn(Pn ⊗M). so Hn(P )⊗M is a direct summand of
Hn(P ⊗RM).

Internal Hom and Derived Tensor

Prop.(4.9.2.8). If R is a ring and K,L,M ∈ D(R), then

RHomR(K,RHom(L,M)) = RHomR(K ⊗LR L,M).

Proof: This is a special case of(5.3.3.29). □
Cor.(4.9.2.9).

HomD(R)(K,RHom(L,M)) = HomD(R)(K ⊗LR L,M),
i.e., derived tensor is left adjoint to internal Hom.
Proof: This follows from taking H0, by(3.9.3.18). □

Prop.(4.9.2.10) [Derived Base Change Adjunction].For a ring map R → S and any L ⊂
D(R),M ⊂ D(S), there is an isomorphism

HomR(L,M) ∼= HomS(L⊗LR S,M)

Proof: This follows from(5.3.3.16). □
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3 Rlim
Def.(4.9.3.1) [Rlim].Rlim is the derived limit(3.9.6.1) in D(Ab) restricted to the inverse systems
consisting of discrete complexes.

Lemma(4.9.3.2).The set of Mittag-Leffler Complexes in Ab(N) is adapted for R lim.

Proof: Firstly, for any complex (An), we can associate to it the complex (Bn) where Bn = An ⊕
An−1 ⊕ . . . ⊕ A1, then (Bn) is a Mittag-Leffler complex and (An) ↪→ (Bn). So ML complexes are
sufficiently large.

Now for any exact sequence of complexes 0 → (An) → (Bn) → (Cn) → 0, if An is ML, then
limBi → limCi is surjective: for an element (ci) ∈ limCi, let Ei = π−1

i (ci) ∈ Bi, then (Ei) is an
inverse system of nonempty sets, and it suffices to show (Ei) is ML, because then(3.1.1.45) will show
there is a element (ei) ∈ limEi ⊂ limBi that maps to (ci).

For this, Cf.[Sta]0598. □

Prop.(4.9.3.3)[Rlim].
• If (An) is Mittag-Leffler, then R1 lim((An)) = 0.
• R lim((An)) is represented by the complex in degree 0, 1:∏

n

An →
∏
n

An : (xn) 7→ (xn − fn+1(xn+1))

.
• for any (An) ∈ Ab(N) we have Rp lim((An)) = 0 for p > 1.

Proof: 1 follows from(4.9.3.2) and(3.9.3.2).
2, 3: We use(3.9.3.2) again. Notice the complex (Bn) where Bn = An ⊕An−1 ⊕ . . .⊕A1 and the

complex (Cn) where Cn = An−1 ⊕An−2 ⊕ . . .⊕A1 form an exact sequence of complexes

0→ (An)→ (Bn)→ (Cn)→ 0

where Bn → Cn : (xi) 7→ (xi − fi+1(xi+1)), and (Bn), (Cn) are both ML, so we are done. □

4 Lifting Complexes
Prop.(4.9.4.1) [Lifting Projective Complex Along Thickening].Let R be a ring and I be a
nilpotent ideal, and K ∈ D(R). Now if K ⊗LR R/I is represented by a bounded above complex of
projective R/I-modules, then there is a complex P of bounded above complex of projective R-modules
that P ∼= K ∈ D(R), and P ⊗R R/I ∼= E.

Proof: Cf.[[Sta]09AR]. □

5 Pseudo-Coherent and Perfect Modules
Def.(4.9.5.1)[Pseudo-Coherent Modules].Let R be a ring, m ∈ Z, then K ∈ D(R) is called an
m-pseudo-coherent module iff there exists a complex E• ∈ Kb(R) and a morphism α : E• → K•

where K• represents K, s.t. H i(α) is an isomorphism for i > m, and surjective for i = m.
K ∈ D(R) is called a pseudo-coherent module if it is represented by a bounded above complex

of finite free R-modules.
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Prop.(4.9.5.2). If A is Noetherian and C• is a complex of A-modules bounded above that every
cohomology group H i is a finite A-module, then there is a complex L• of finite free A-modules, that
g : L• → C• is a quasi-isomorphism.

Moreover, if Ci are all flat A-modules, then L•⊗AM → C•⊗AM is quasi-isomorphism for every
M .

Proof: C• is bounded above so we choose Ln = 0, and use induction to construct Ln that H i(L)→
H i(C) is isomorphism for i > n+1 and surjection for i = n+1. For this, choose a generator x1, . . . , xr
of Hn(C) in Zn(C), and let yr+1, . . . , ys be a generator of g−1(Bn+1(C))(Noetherian used), and let
g(yi) = dxi for xi ∈ Cn.

Now let Ln be freely generated by e1, . . . , es and dei = 0 for i ≤ r and dei = yi for i > r, and let
g : Ln → Cn be gei = xi. Then it can be verified to be a quasi-isomorphism.

If Ci are all flat, we check isomorphism for all f.g. modules M , because ⊗ and cohomology all
commutes with direct limits. Use induction, for n large, both are 0, and if we write 0→ R → F →
M → 0, for F finite free, then there is a commutative diagram of long exact sequences, and for F ,
H i are obviously isomorphism, so I can use five lemma. □

Def.(4.9.5.3)[Perfect Complexes of Modules].Let R be a ring, then K ∈ D(R) is called a perfect
module if K is quasi-isomorphic to a bounded complex of finite projective R-modules. An R-module
M is called perfect iff M [0] is perfect.

Prop.(4.9.5.4) [Perfectness and Pseudo-Coherence].An object K ∈ D(R) is perfect iff it is
pseudo-coherent and has finite Tor amplitude.

Proof: Cf.[Sta]0658. □

Prop.(4.9.5.5). If R is a regular ring of finite dimension, then an object K ∈ D(R) is perfect iff
K ∈ Db(R) and each H i(K) is a finite R-module.

Proof: Cf.[Sta]066Z. □

Prop.(4.9.5.6) [Duality of Perfect Complexes].Let K be a perfect complex of D(A), then the
dual complex K∨ = RHom(K,A) is also a perfect complex and (K∨)∨ ∼= K. Also, there is a
functorial isomorphism

L⊗LA K∨ = RHomA(K,L)

Proof: Cf.[Sta]07VI. □

Prop.(4.9.5.7). If A is a ring and Kn is a system of perfect objects in D(A), then for any E ∈ D(A),
there is an isomorphism

RHomA(ho colimKn, E) ∼= R limE ⊗LA K∨
n

Proof: By(4.9.5.6), R limE ⊗LA K∨
n = R limRHom(Kn, E) which fits into a distinguished triangle

R limRHom(Kn, E)→
∏

Hom(Kn, E)→
∏

Hom(Kn, E)

. So it suffices to show that ∏
Hom(Kn, E) ∼= RHomA(⊕Kn, E).

This follows from Yoneda lemma and(5.3.3.28)(5.3.3.29). □
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Prop.(4.9.5.8)[Perfectness and Thickening]. If R is a ring, I ⊂ R is a nilpotent ideal, and K ∈
D(R). If K ⊗LR R/I is perfect in D(R/I), then K is perfect in R. Moreover, if K ⊗LR R/I = 0, then
K = 0.

Proof: Let P • ∼= K⊗LRR/I where P is a complex of finite projective R/I-modules, then by(4.9.4.1)
there is a complex of projective R-modules P that P/IP ∼= P . Then it follows from Nakayama that
P is bounded. □

Pseudo-Coherent Modules

Def.(4.9.5.9)[Pseudo-Coherent Complexes of Modules].Let R ∈ CAlg, K ∈ D(R) is called an
m-pseudo-coherent module if there exists a perfect object E ∈ D(R) and a morphism E → K
that induces isomorphisms on H i for i > m and surjection on Hm.

K ∈ D(R) is called a pseudo-coherent module if it is represented by a bounded above complex
of finite free R-modules.

6 Derived Completeness
Cf.[Sta]Chap15.90.

Def.(4.9.6.1).For a ring A, f ∈ A and a complex K ∈ D(A), we denote by T (K, f) a derived limit of
the system

. . .→ K
f−→ K

f−→ K

Prop.(4.9.6.2) [Properties of T (K, f)].For a ring A, f ∈ A and K ∈ D(A), the following are
equivalent:

1. T (K, f) = 0.
2. RHomA(Af ,K) = 0.
3. ExtnA(Af ,K) = 0 for all n.
4. HomD(A)(E,K) = 0 for all E ∈ D(Af ).

5. For any p ∈ Z, HomA(Af ,Hp(K)) = 0 and Ext1
A(Af ,Hp(K)) = 0.

6. For any p ∈ Z, T (Hp(K), f) = 0.

Proof: 2, 3 is clearly equivalent.
4→ 3 is clear, and for 3→ 4: Let I• be a complex representing K, then 3 says HomA(Af , I•) is

acyclic, and HomD(A)(E,K) = HomK(A)(E, I•) = HomK(Af )(E,HomA(Af , I•)). As HomA(Af , I•)
is both acyclic and K-injective(3.7.8.6), we get it is homotopic to 0 by(3.9.2.1), thus we get 4.

1 ⇐⇒ 3: There is a free resolution of Af given by

0→ ⊕nA→ ⊕nA→ Af → 0

where the first map is (an) 7→ (an − fan−1), and the second map is (an) 7→
∑
ai/f

i. Applying
HomA(−, I•), we get a distinguished triangle

RHomA(Af ,K)→
∏

K →
∏

K.

So this shows RHomA(Af ,K) is just T (K, f), so we get 1 ⇐⇒ 3.
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1 ⇐⇒ 5 ⇐⇒ 6: There is a spectral sequence convergence(choose a finite free resolution of Af
then rotate and use(3.9.7.10)):

Ep,q2 = ExtqA(Af ,Hp(K))⇒: Extp+q(Af ,K)

This spectral sequence degenerates at E2 because Af has a length 1 resolution by free A-modules
hence the E2 page has only 2 rows. So there is an exact sequence

0→ Ext1
A(Af ,Hp−1(K))→ Ext1

A(Af ,K)→ HomA(Af ,Hp(K))→ 0.

Then we are done. □

Lemma(4.9.6.3).Let A be a ring, K ∈ D(A), then the set I of f that T (K, f) = 0 is a radical ideal
of A.

Proof: If T (K, f) = 0 and g ∈ A, then Agf is a Af -module, then

ExtnA(Agf ,K) = HomD(A)(Agf [−n],K)(5.3.3.32) = 0

by(4.9.6.2) item4. Then T (K, gf) = 0 by(4.9.6.2) again. And if f, g ∈ I, there is an exact sequence

0→ Af+g → Af(f+g) ⊕Ag(f+g) → Afg(f+g) → 0

by(4.4.2.3) and a easy check that the last term is surjective. Then from the long exact sequence of
Ext, we get Extn(Af+g,K) = 0 for any n. Finally if fn ∈ I, then f ∈ I, because Af = Afn . □

Def.(4.9.6.4)[Derived Completeness].Let A be a ring, K ∈ D(A), I is an ideal of A, then K is
said to be derived complete w.r.t I if T (K, f) = 0 for any f ∈ A. Let Dcomp(A, I) denote the
subcategory consisting of derived I-complete objects in D(A).

Let M be an A-module, then M is called derived complete w.r.t I if M [0] ∈ D(A) is derived
complete w.r.t I.

Prop.(4.9.6.5).A ℵ0-filtered colimit of derived I-complete rings is also derived I-complete.

Proof: Cf.[Bhatt, Prism, 5.4.3]. □

Prop.(4.9.6.6) [Complete and Derived Complete].Let A be a ring and I be an ideal, M an
A-module, then

• If M is I-adically complete, then T (M,f) = 0 for any f ∈ I.
• If T (M,f) = 0 for all f ∈ I and I is f.g., then M → limM/InM is surjective.

In particular, if I is f.g.,M is I-adically complete iffM is derived I-adically complete and ∩InM = 0.
In particularly, whenM is f.g. over A Noetherian and I ⊂ rad(A), derived I-complete is equivalent

to I-complete(4.2.2.14).

Proof: If M is I-adically complete, by(4.9.6.2), it suffices to show that Hom(Af ,M) = 0 and
Ext1(Af ,M) = 0. But M = lim←−nM/InM , and Hom(Af ,M/InM) = 0, because f ∈ I. For Ext,
use(3.9.3.24), for any extension

0→M → E → Af → 0,

chose arbitrary en that maps to 1/fn. Then δn = fen+1 − en ∈M . We consider

e′
n = en + δn + fδn+1 + f2δn+2 + . . . ,
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which exist because M is I-adically complete. Then fe′
n+1 = e′

n, so this gives a splitting of the
extension.

Conversely, if I = (f1, . . . , fr) and T (M,fi) = 0 for any i, then by(4.2.3.16), we can assume
I = (f). Then consider the extension

0→M → E → Af → 0

where E = (M ⊕
⊕
Aen)/(xn− fen+1 + en)→ Af that maps M to 0 and en to 1/fn. This extension

splits by(4.9.6.2) and(3.9.3.24), thus there is an element x+ e0 that generate a copy of Af in E.
But then x+ e0 = x− x0 + fe1 = x− x0 − fx1 + f2e2 . . ., which implies x− x0 − fx1 − f2x2 −

. . .− fn−1xn−1 ∈ fnE +Af for any n. Then x− x0 − fx1 − f2x2 − . . .− fn−1xn−1 ∈ fnM , because
E = M ⊕Af . Then we are done. □

Prop.(4.9.6.7). If M ∈ D(A/I) ⊂ D(A), then M is derived-I-complete. (This follows from the
definition of T (M,f)).

Prop.(4.9.6.8)[Category of Derived Complete Modules].Let I be an ideal of A, then the derived
I-complete A-modules form a weak Serre subcategory of ModA. In particular, Dcomp(A, I) is also a
weak Serre subcategory.

Proof: If f : M → N is a map of derived I-complete A-modules, then we consider the complex K =
(M → N), then there is an exact sequence 0 → M [1] → K → N → 0, so we have Extn(Af ,K) = 0
for any f ∈ I, n ∈ Z because M,N does(4.9.6.2), so K is derived I-complete by(4.9.6.2) again. Then
we have ker(f),Coker(f) are derived I-complete, by(4.9.6.2) again. Extension is also clear. □

Lemma(4.9.6.9). If R is ring, I is an ideal, and K ∈ D(R) that K ⊗LR R/I = 0, then K ⊗LR M for
any M ∈ Db(R) with all the cohomology groups I-power torsions.

Proof: We use the truncation(3.7.4.6), then it suffices to prove for M discrete. Now M = ∪M [In],
and we have K ⊗LR M = ho colimK ⊗LR M [In], so we may assume InM = 0 for some n. Consider
the R-algebra R′ = R/In ⊕M , where M2 = 0, then it suffices to show K ′ = K ⊗LR R′ = 0. Now
0 = K ⊗LR R/I = K ′ ⊗LR′ R/I, so by(4.9.5.8) K ′ = 0. □

Prop.(4.9.6.10)[Derived Nakayama]. the derived tensor product − ⊗LA A/I reflects isomorphism
on Dcomp(A, I), i.e. if M ⊗LA A/I = 0, then M = 0.

Proof: Let I = (f1, . . . , fr), by(4.9.6.9), M ⊗LA Kn = 0 for any Kn = Kos(A, fn1 , . . . , fnr ), so
K = R limK ⊗LA Kn = 0. □

Cor.(4.9.6.11). If I is f.g. and M is a derived I-complete A-module that M/IM = 0, then M = 0.

Proof: ?This should be an immediate corollary.
Let I = (f1, . . . , fr), if M ̸= 0, let i be the largest integer that M/(f1, . . . , fi)M ̸= 0, then N is

also derived I-complete by(4.9.6.8). But fi+1 : N → N is surjective, so T (N, fi+1) ̸= 0, contradiction.
□

Prop.(4.9.6.12). If A is derived I-complete, then (A, I) is a Henselian pair.

Proof: Cf.[[Sta]0G3H]?. □
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Prop.(4.9.6.13)[Derived I-Completion]. If I = (f1, . . . , fn) is f.g. in A, the inclusion of categories
Dcomp(A, I) ⊂ D(A) has a left adjoint, which maps K to

K̂ = RHom((A→
∏
i0

Afi0 →
∏
i0<i1

Afi0fi1 → . . .→ Af1,...fr),K).

called the derived I-completion of K.
Moreover, this construction is identical to K 7→ K• = R lim(K ⊗LA K•

n), by(4.9.5.7) and(4.4.4.7).

Proof: There is a map (A →
∏
i0 Afi0 →

∏
i0<i1 Afi0fi1 → . . . → Af1,...fr) → A, which induces a

morphism K → K̂. Now by(5.3.3.28), RHom(Af , K̂) is isomorphic to

RHom((Af →
∏
i0

Affi0 →
∏
i0<i1

Affi0fi1 → . . .→ Aff1,...fr),K)

as Af is A-flat. Now this one is 0 for any f ∈ I, by(4.4.4.7), so K̂ is derived I-complete.
Conversely, if K̂ is derived I-complete, then RHom(Af ,K) = 0 for any f ∈ I, thus K → K̂ is an

isomorphism is we inductively use the stupid truncation(3.7.4.6). □

Cor.(4.9.6.14). If M is an A-module, then H0(M̂) is the derived-I-completion in the category of
modules, by(3.9.1.12).

Cor.(4.9.6.15). (4.9.6.2) show the notion of derived I-complete and derived I-completion only depends
on rad I.

Principal Ideal Case

Prop.(4.9.6.16)[Bounded Torsion and Derived Completion].Let A be a commutative ring and
f ∈ A. If M is an A-module that has bounded f∞-torsion, then the derived f -completion of M as
a complex is a module and coincides with the classical f -adic completion.

Proof: The derived f -completion is defined to be

M̂ = R lim
n

(M ⊗LZ[X] Z[X]/(xn)) = R lim
n

(M fn−→M).

So by(3.9.6.5), there are exact sequences

R1 lim
n
M/fnM ∼= H1(M̂)

0→ R1 limM [fn]→ H0(M̂)→ lim
n
M/fn → 0

H−1(M̂) ∼= lim
n
M [fn]

Now the hypothesis implies that (M [fn]) is Mittag-Leffler and limnM [fn] = 0, so we have the desired
result. □

Cor.(4.9.6.17).Let R be a perfect Fp-algebra, then the derived p-completion and p-adic completion
of R coincide.
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7 Derived Completely Properties
Def.(4.9.7.1)[Derived Completely Properties].Let A be a commutative ring and I is a f.g. ideal,
thenM ⊂ D(A) is called I-completely (faithfully)flat/smooth/étale/. . . iffM⊗LAA/I is discrete
and is a (faithfully)flat A/I-module.

M is said to have finite I-completely Tor amplitude if M ⊗LA A/I is is a bounded complex
in D(A/I).

Clearly, any flat/smooth/étale A-moduleM is I-completely flat/smooth/étale/. . . for any I. And
M has finite I-completely amplitude if M has a finite resolution of flat A-modules.

Prop.(4.9.7.2)[I-Completely F.F. Descent]. If A→ B → B′ are ring maps and I is an ideal of A,
1. If C is a B-algebra and B is I-completely f.f. over A, then C is I-completely (f.)f. over A iff C

is I-completely (f.)f. over B.
2. If B → B′ is I-completely flat,M is a B-module, thenM is I-completely flat over A iffM⊗LBB′

is I-completely flat over A.

Proof: 1: One direction is easy, for the other, if C is I-completely (f.)f. over A, then

C ⊗LA A/I = C ⊗LB B ⊗LA A/I = (C ⊗LB B/I)⊗B/I (B ⊗LA A/I)

is a discrete and (f.)f. C/I-module iff (C ⊗LB B/I) does, as (B ⊗LA A/I) is f.f. over B/I.
2: This is because (B′ ⊗LB M)⊗LA A/I ∼= B′ ⊗LB (M ⊗LA A/I). □

Prop.(4.9.7.3). If I is generated by a Koszul-regular sequence, then any A-module M has finite I-
completely Tor amplitude.

Proof: This is because A/i ∼= A⊗LZ[X1,...,Xr] Z in this case, so M ⊗LA/I ∼= M ⊗LZ[X1,...,Xr] Z, which
has f.m. homology groups because Z has a finite free Z[X1, . . . , Xn]-resolution(4.4.4.1). □

Prop.(4.9.7.4)[I-Completely Flatness and Derived Completion].Let A be a commutative ring
and I be f.g., then the derived I-completion of a I-completely (faithfully)flat/étaleM is I-completely
(faithfully)flat/étale, both the complex and the module. In fact, H0(M̂) ⊗LA A/I ∼= M̂ ⊗LA A/I ∼=
M ⊗LA A/I.

Proof: Because objects in the image of D(A/I) → D(A) are all derived I-complete, by(4.9.6.7),
so there is an isomorphism M ⊗LA A/I ∼= M̂ ⊗LA A/I for any M , because they are both left adjoint
to ModA/I ⊂ D(A), by the definition of derived I-completion and(4.9.2.10). So M̂ ⊗LA A/I ∼=
M ⊗LA A/I = M ⊗A A/I, which is a flat A/I-module. □

Prop.(4.9.7.5) [Flatness and Completed Derived Tensor].The completed derived tensor of a
I-completely flat/étale module is discrete and I-completely flat/étale.

Proof: If M is an I-completely flat A-module, then M⊗̂LAB is I-complete and I-completely flat
by(4.9.7.4), and (M⊗̂LAB)⊗LB B/I = H0(M⊗̂LAB)⊗LB B/I = M ⊗LA B/I, because they are both left
adjoint of the forgetful functor ModB/I ⊂ D(A). Then we have M⊗̂LAB ∼= H0(M⊗̂LAB) is discrete,
as they are both I-complete, by(4.9.6.2) and derived Nakayama. □

Prop.(4.9.7.6).A is derived I-completely flat iff A is In-completely flat for any n > 0. Moreover, in
this case, A is derived J-completely flat for any ideal J that I ⊂ rad J .
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Proof: The exact sequence
0→ I/I2 → A/I2 → A/I → 0

induces distinguished triangles

(M ⊗LA A/I)⊗LA/I I/I
2 →M ⊗LA I/I2 →M ⊗LA A/I2 →M ⊗LA A/I

which shows M ⊗LA I/I2 is discrete, = N . Then N is an A/I2-module that N ⊗LA/I2 A/I = M/IM is
A/I-flat. Then N is A/I2 flat: for any A/I2-module L, let L′ = IL and L′′ = L/IL which are both
A/I-modules, then there is a distinguished triangle

N ⊗LA/I2 L′ → N ⊗LA/I2 L→ N ⊗A/I2 L′′

and
N ⊗LA/I2 L′ = (N ⊗LA/I2 A/I)⊗LA/I L

′ = (M/IM)⊗A/I L′

N ⊗LA/I2 L′′ = (N ⊗LA/I2 A/I)⊗LA/I L
′′ = (M/IM)⊗A/I L′′

are both discrete, hence so does N ⊗LA/I2 L, implying it is A/I2-flat.
In a similar fashion, we can show M is I/In-flat for any n. And if I ⊂ rad J , then In ⊂ J , so

M ⊗LA A/J = (M ⊗LA A/In)⊗LA/In A/J is discrete and A/J-flat. □

Prop.(4.9.7.7).Let A be a ring and I be an invertible ideal, then any derived (p, I)-complete and
(p, I)-completely flat A-complex M ∈ D(A) is discrete and (p, I)-complete. Moreover, for any n ≥ 0,
we have M [In] = 0 and M/InM has bounded p∞-torsion.

Proof: M is (In, p)-completely flat by(4.9.7.6), so we fine M ⊗LA A/In is p-completely flat in
D(A/In). Notice that A/In has bounded p∞-torsion by induction(I invertible used), (4.9.7.11) says
M ⊗LA A/In is discrete in D(A/In) and has bounded p∞-torsion, and is p-adically complete. In
particular,

M ⊗LA A/In = (M ⊗LA A/In+1)⊗LA/In+1 A/In

So if we denote M ⊗LA A/In = Mn, then Mn = Mn+1/I
nMn+1, as M is derived I-complete, we have

M = R lim(M ⊗LA/In), so clearlyM is discrete. And then we haveM ⊗LAA/In = M/InM , which
means M [In] = 0, and M/InM has bounded p∞-torsion. Now because M is derived (p, I)-complete,

M = R lim←−
m,n

((M⊗AIn →M)⊗A/In(A/In pm−−→ A/In)) = R lim←−
m,n

(M/In
pm−−→M/In) = R lim←−

m,n

(M/(In, pn))

is (p, I)-complete. □

Lemma(4.9.7.8).Let C be a commutative ring with a f.g. ideal J , and D a C-algebra that has finite
J-complete Tor amplitude, then the J-completed base change operator −⊗̂LCD commutes with total-
ization in D≥0(C) and D≥0(D), i.e. if M• is a cosimplicial object with in D≥0(C) with totalization
M , then

Tot(M•)⊗̂LCD ∼= Tot(M•⊗̂LCD)

via the natural map.

Proof: Cf.[Scholze, Prism, 4.22].? □
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Prop.(4.9.7.9)[Elkik’s Algebrization Theorem].Let A be a commutative ring and I is a f.g. ideal,
then an A-algebras is derived I-completely étale/smooth iff it is the derived I-completion of some
étale/smooth A-algebra.

Proof: if it is the derived I-completion of some étale/smooth algebra, then it is derived I-completely
étale/smooth by(4.9.7.4). Converse, Cf.[A. Arabia, “Relèvements des algèbres lisses et de leurs mor-
phismes”, Commentarii Mathematici Helvetici 76 (2001), 607–639.]. □

Lemma(4.9.7.10).Let A be a ring, if M is an A-module with bounded f∞-torsion, i.e. M [f∞] =
M [f c] for some c > 0, then there are maps

(M fn−→M)→M/fnM, M/fn+c → (M fn−→M)

in D(A) inducing an equivalence between two pro-objects {M fn−→M} and {M/fn}.

Proof: The first map is obvious, for the second map, use the following commutative diagram:

M/M [f c] M

M M

fn+c

fc

fn

the upper row is injective thus isomorphic to M/fn+cM , then this gives the map. It can be checked
that this is an equivalence of pro-objects?. □

Prop.(4.9.7.11).Let A be a commutative ring that has bounded f∞-torsion, then for a M ∈ D(A),
the following is equivalent:

• M is derived f -complete and f -completely flat.
• M is discrete and is represented by a f -adically complete module that M/fnM is A/fn-flat

for any n > 1 and M has bounded f∞-torsion.
Furthermore, in this case, M ⊗A A[f∞] = M [f∞].

Proof: By(4.9.7.10), {A/fnA} and {Kos(A, fn)} are two equivalence pro-objects in D(A). So if 1
or 2 holds, then M is derived f -complete, so

M = R lim(M ⊗LA Kos(A, fn)) = R lim(M ⊗LA A/fnA).

Now if 1 holds, then Mn = M ⊗LA A/fnA is discrete by(4.9.7.6), and Mn = Mn+1/f
nMn+1 is

surjective:
M ⊗L AA/fnA = (M ⊗LA A/fn+1A)⊗LA/fn+1 A/fn.

So M = R lim(M ⊗LA A/fnA) is discrete. Then M ⊗A A/fn = M ⊗LA A/fn is flat over A/fn.
Next we prove M ⊗A A[f∞] = M [f∞]: There is an exact sequence

0→ (A[fn])[1]→ Kos(A, fn)→ A/fn → 0

Then tensoring M⊗LA gives a distinguished triangle

(M ⊗LA A[fn])[1]→ Kos(M,fn)→M ⊗LA A/fn.
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Notice that

M ⊗LA A[fn] = (M ⊗LA A/fn)⊗LA/fn A[fn] = (M ⊗A A/fn)⊗LA/fn A[fn] = M ⊗A A[fn]

by flatness, so the distinguished triangle shows M ⊗A A[fn] ∼= H−1(Kos(M,fn)) = M [fn].
Conversely, if 2 holds, then there are equivalences of pro-objects

{M ⊗LA A/fn} ∼= {M ⊗LA Kos(A, fn)} = {Kos(M,fn)} ∼= {M/fnM}

by(4.9.7.10) as M has bounded f∞-torsion. So

M̂ = R lim{M ⊗LA Kos(A, fn)} = R lim{M/fnM} = M [0]

so M is derived p-complete. And the constant system

{M ⊗LA A/f} = {M ⊗LA/fn A/f
n ⊗LA/fn A/f} ∼= {M/fnM ⊗LA/fn A/f} = {M/fM}

where we used M/fnM is A/fn-flat. So M ⊗LA A/f ∼= M/fM is flat over A/f . □

8 Duality
Def.(4.9.8.1)[Dualizing Complexes].Let A be a Noetherian ring, then a dualizing complex for
A is a complex ωA ∈ D(A) s.t.

• ωA has finite injective dimension.
• H i(ωA) are all finite A-modules.
• A[0]→ RHom(ωA, ωA) is a quasi-isomorphism.

Prop.(4.9.8.2)[Dualizing Complex is Local].Let A be a Noetherian ring,
• If B = S−1A and ωA ∈ D(A) is a dualizing complex for A, then ωA⊗LAB is a dualizing complex

for B.
• If (f1, . . . , fn) = (1) ∈ A, and ωA ∈ D(A) satisfies (ωA)fi are dualizing complexes for Afi for

any i, then ωA is a dualizing complex for A.

Proof: Cf.[Sta]0A7G, 0A7H. □

Def.(4.9.8.3) [Dualizing Modules].Let (A,m, k) be a Noetherian local ring and ωA a normalized
dualizing complex for A, then [ωA] = H− dimA(ωA) is called a dualizing module for A.

Def.(4.9.8.4)[Relative Dualizing Complex].Cf.[Sta]0E9M.

Quasi-Finite Case

Cf.[Sta]Chap49.4.

Prop.(4.9.8.5).
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5 | Algebraic Geometry I: Scheme Theory

5.1 Sites, Sheaves, Topoi and Stacks

References are [Sta], [Ols16], [Vis08] and [Fibered Category to Algebraic Stacks Lamb].

1 Sites

Def.(5.1.1.1)[Sites].A site is given by a category C and a set Cov(C) of families of morphisms with
fixed target, called the coverings of C that:

• An isomorphism is a covering.
• Coverings of covering is a covering.
• Base change of a covering is a covering.

Sometimes A site is wrongly called a topology, the difference is that the morphism of site is looks
like a reverse of a morphism of topology(5.1.1.5). We never talk about the category of sites, but we
use C ∈ Site to mean that C is a site.

Def.(5.1.1.2)[Discrete Topology].A discrete topology or chaotic topology is a site that the only
coverings are identies. In this way, we can regard any category as a site.

Def.(5.1.1.3)[Noetherian Topology].An object U in a site C is called quasi-compact if for each
covering of U , f.m. of them still forms a covering of U . The site C is called Noetherian if each
object of C is quasi-compact.

Given a site C, we can define a new site Cf whose coverings are coverings of C that are finite.
Then this is truly a site and it is Noetherian.

Def.(5.1.1.4) [Comma Topology].For a site C and an object S, we have the comma category
C/S(3.1.1.17), and we can define a topology on it where the coverings are coverings of C that is
compatible over S.

Def.(5.1.1.5)[Continuous Functor].A continuous functor between sites C→ D is a functor that
preserves covering and any base change by morphisms in a covering.

A morphism of sites C → D is given by a continuous functor u : D → C that us(5.1.2.11) is
exact.

This exact condition is easy to be satisfied, by(5.1.2.14).

Def.(5.1.1.6) [Cocontinuous functors].A cocontinuous functor between sites u : C → D is a
functor that for any U ∈ C and any covering {Vi → u(U)} in D, there is a covering {Ui → U} ∈ C

that refines {Vi → u(U)} after the functor u.
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Topologies and Sieves

Def.(5.1.1.7)[Sieves].For a covering U = {Ui → U} in a category C, define a subfunctor hU ⊂ hU ,
where for each X hU (X) consists of elements in Hom(X,U) that factor through some Ui → U .

A sieve S on U is a subfunctor of hU . Notice that any sieve must by of the form hU , by choosing
U to consist of all arrows in {S(T )}T∈C.

Def.(5.1.1.8). If T is a Grothendieck topology on a category C, then a sieve S ⊂ hU over U is said to
belong to T or just a sieve of the site C if there exists a covering U of U that hU ⊂ S.

G-Spaces

Def.(5.1.1.9) [G-Spaces].A G-space is a set X with a family of subsets of X that they form a
site w.r.t inclusions and that covering are all set-theoretic coverings(but not necessarily conversely).
These subsets are called admissible opens of X and covers are called admissible covers. (In
other words, a G-topological space is a ”topological space without unions”). Morphisms of G-spaces
is simultaneously a continuous map and a morphism of sites.

Def.(5.1.1.10)[Completeness].The completeness of a G-topological space X:
• G0: ∅ and X are admissible open.
• G1: Let {Ui → U} be an admissible cover, then a subset V ⊂ U is admissible if V ∩ Ui are all

admissible.
• G2: Let {Ui → U} be a cover of admissible opens for U admissible, then the cover is admissible

if it has an admissible cover as a refinement.

Lemma(5.1.1.11) [Admissible is Local]. If G2 is satisfied for a G-topological space X, then for
an admissible covering {Xi → X} and another covering {Ui → X} between admissible opens, it is
admissible iff Ui ∩Xj is an admissible covering for Xj for each j. (By composition, {Ui ∩Xi → X}
is admissible, and it refines {Ui → X}).

Prop.(5.1.1.12) [Glue of Complete G-topological spaces].For sets ∪Xi = X, if there are
Grothendieck category Ii on Xi making Xi into a G-topological space, and they all satisfies the
completeness conditions G0, G1, G2 of(5.1.1.10). Assume that Xi ∩ Xj is Ii-open in Xi and Ii, Ij
restrict to the same topology on Xi ∩ Xj , then there is a unique Grothendieck category I on X
making X a G-topological space that:

• Xi is I-open and I restricts to Ii on Xi,
• I satisfies the completeness conditions G0, G1, G2.
• Xi is a I-covering of X.

Proof: By(5.1.1.10) and(5.1.1.11), the uniqueness is straightforward, for the existence,
• check Grothendieck first: Composition, base change.
• check condition 1: by hypothesis, and(5.1.1.10) applied to Xi ∩ Xj → Xi(this is admissible

because idXi refined it).
• check condition 2: G0 obvious, G1 by if V ∩ Ui ∩ Xi admissible, then V ∩ Xi admissible by

admissibility of Ui → U , then V is admissible, G2: obvious
• check condition 3: because Xi ∩Xj → Xi is admissible.

□
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Def.(5.1.1.13).A G-topological space is called connected iff there isn’t two nonempty admissible
open subset X1, X2 that X1 ∩X2 = ∅ and {X1, X2 → X} is an admissible cover.

G-torsor

Def.(5.1.1.14) [Torsors].Let C be a site and G ∈ ShGrp(C), then a pseudo G-torsor is a sheaf of
sets F over C endowed with an action G × F → F that G × F → F × F : (g, f) 7→ (gf, f) is an
isomorphism.

A pseudo G-torsor is called a G-torsor if for any U ∈ C, there is a covering {Ui → U} that F(Ui)
is non-empty for each i.

Prop.(5.1.1.15).A G-torsor on a site is trivial iff Γ(C,F) ̸= 0(5.3.1.1).

Proof: This is because the transitive action of G on the global section induces an isomorphism
G → F . □

Prop.(5.1.1.16). If C is a subcanonical site, and G a sheaf of groups over C, then a sheaf of sets F
together with an action α : G ×F → F is a G-torsor iff for any U ∈ C, there is a covering {Ui → U}
that the restrictions to Ui are trivial torsors, i.e. α|C/Ui = π2 : G|Ui ×F|Ui → F|Ui .

Proof: If F is a G-torsor, then the restrictions of the torsor on Ui are trivial because they have
global sections in Γ(C/Ui,F) = F(Ui), by(5.1.1.15). Conversely, if there is a covering {Ui → U}
that the restrictions to Ui are trivial torsors, then the map G × F → F × F : (g, f) 7→ (gf, f) are
isomorphisms when restricted to Ui, which means G(U)×F(U)→ F(U)×F(U) is an isomorphism
for any U , because they are sheaves, so it is an isomorphism, and F is a G-torsor. □

Cor.(5.1.1.17)[Representable G-Torsor]. If C is a site and G is a group object in C, then
• X → Y is a G-torsor in the category C/Y iff X → Y is a G-equivariant map(where the action

of G on Y is trivial), G×X → X ×Y X : (g, x) 7→ (gx, x) is an isomorphism, and {X → Y } is
refined by a covering of Y .

• If C is a subcanonical site, then X → Y is a G-torsor in the category C/Y iff X → Y is a
G-equivariant map(where the action of G on Y is trivial), and there exists a covering {Yi → Y }
that each Yi ×Y X → Yi is a trivial torsor, i.e. G-equivariantly isomorphic to G× Yi → Yi.

Cor.(5.1.1.18). If C is a site and G is a group object in C, X → Y is a G-torsor in the category C/Y ,
then the map G×G×X → X ×Y X ×Y X : (g, h, x) 7→ (ghx, hx, x) is an isomorphism.

Presheaves

Def.(5.1.1.19) [Presheaves].Let C,D ∈ Cat, then a presheaf of objects in D on C is a functor
Cop → D. The category of presheaves of objects in D on C is denoted by PSh(C;D). For any U ∈ C,
Γ(U,−) is the functor PSh(C;D)→ D : F 7→ F (U).

Prop.(5.1.1.20). If D is complete or cocomplete, and the same is true for PSh(C;D).

Def.(5.1.1.21)[Coherent Sheaves].For C ∈ Cat, denote PSh∞(C) = PSh(C;Grpd∞)(3.6.2.5), called
the category of coherent sheaves on C. It is complete and cocomplete.

Def.(5.1.1.22)[Points].A point of a site is a Cf.[Sta]00Y3.
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2 Sheaves and Topoi
Def.(5.1.2.1) [Sheaves].Let C be a site and D ∈ Cat∞, then F ∈ PSh(C;D) is called a sheaf of
objects in D on C iff for any sieve S on U belong to C, the natural map

Map(hU ,F)→ Map(hU ,F)

is an equivalence?.

Def.(5.1.2.2) [Separate Presheaves].Let C be a site, then F ∈ PShSet(C) is called a separated
presheaf if F (U) ↪→

∏
i F (Ui) is injective for any covering U = {Ui → U} ∈ Cov(C).

Def.(5.1.2.3)[Effective Epimorphisms].An epimorphism {Ui → V } in a category is called a family
of effective epimorphisms if

Hom(V, Z)→
∏

Hom(Ui, Z) ⇒
∏

Hom(Ui ×V Uj , Z)

is exact for each Z. Similarly for a family of universal effective epimorphisms.

Prop.(5.1.2.4)[Subcanonical Site].The class of all families of universal effective epimorphisms in
a category forms a Grothendieck topology, called the canonical topology. It is the finest topology
that all representable presheaves are sheaves.

Topologies that are coarser than the canonical topology are called subcanonical topology.
Equivalently, a subcanonical topology is a topology that every representable presheaf is a sheaf.

Proof: We only need to verify that family of universal effective epimorphisms is closed under com-
position. For this, first prove epimorphism, then use epimorphism to prove effectiveness. Universal
follows routinely. Cf.[Tamme]. □

Prop.(5.1.2.5).For a subcanonical topology on a site C, its restriction on a localizing category C/S
is subcanonical.

Proof: The only nontrivial part is that the glued morphism is a morphism over S. For this, consider
its composition that maps to S, then the uniqueness of the exact sequence(5.1.2.3) will show that it
is truly a S-morphism. □

Prop.(5.1.2.6).Let C be a subcanonical site, and f : X → Y is an arrow in C/S, suppose there is a
covering {Si → S} that the pullback of f to C/Si are all isomorphisms, then f is an isomorphism.

Proof: This follows from(5.1.3.6) and(5.1.3.8). □

Prop.(5.1.2.7)[Sheafification].Let C be a site, consider the functor

(·)+ : PSh∗(C)→ Sh∗(C) : F+(U) = lim−→ ker(
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ×U Uj)) = Ȟ0(U,F ).

Then
• For F ∈ PSh∗(C), F+ is separated.
• If F ∈ PSh∗(C) is separated, F → F+ is injective and F+ ∈ Sh∗(C). (The problem of separated

is that the cover may not be identical in Ui ×U Uj but only on a cover of it).
• (·)+ is left exact.
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• sheafification functor (·)# : PSh∗ → Sh∗ : F 7→ F# = F++ is exact and it is left adjoint to
the forgetful functor.

So the forgetful functor is left exact and it preserves injectives. Thus the sheaf cokernel is the
shifification of the presheaf kernel, the sheaf kernel is the presheaf kernel.

Proof: The separatedness is simple. For sheaf condition, an element of F+(Ui) is represented by a
covering {Vij → Ui}, and there restriction to Ui ×U Uj coincide by separatedness hence the covering
{Vij → U} is an element of F+(U).

Sh is left exact because (−)+ is left exact from PSh∗ to PSh∗ by(5.3.2.4) checked on every element
U . It is right exact trivially, hence it is exact. □

Def.(5.1.2.8) [Constant Sheaves].The constant sheaf S for a set S is the sheafification of the
constant presheaf U 7→ S.

Transfer of Sheaves under Morphisms of Sites

Def.(5.1.2.9)[Functoriality of Presheaves].Given a functor of sites u : C → C′, which should be
regarded as an inverse map, there are maps

upF ′(U) = F ′(u(U)) : PSh(C′)→ PSh(C), up(F )(U ′) = lim−→
Ui|U ′→u(Ui)

F (Ui) : PSh(C)→ PSh(C′)

Then up is left adjoint to up.
We can also define a functor

pu : pu(F )(U ′) = lim←−
{Ui|u(Ui)→U ′}op

F (Ui) : PSh(C)→ PSh(C′).

Then this functor is right adjoint to up, by duality.

Proof: A map f ∈ Mor(up(F ), G) is represented by compatible maps

lim−→
Ui:U ′→u(Ui)

F (Ui)→ G(U ′),

and this is represented by compatible maps F (Ui)→ G(U ′) which is indexed over ∏U ′∈C′ IU ′ , where
IU ′ = {Ui : U ′ → u(Ui)}. Now this is equivalent to compatible maps F (Ui) → G(u(Ui)), which is a
map g ∈ Mor(F, up(G)). □

Cor.(5.1.2.10). up is exact.

Def.(5.1.2.11)[Functoriality of Sheaves].
• Given a continuous functor u : C→ C′ between sites, there are maps

us = ♯ ◦ up ◦ ι : S → S ′, us = up ◦ ι : S ′ → S.

us is left adjoint to us, by adjointness of up, up and ♯, ι.
• Given a cocontinuous functor u : C→ C′ between sites, there are maps

us = ♯ ◦ up ◦ ι : S ′ → S, su = pu ◦ ι : S → S ′.

us is left adjoint to su, by adjointness of up, pu and ♯, ι. Moreover, us is exact.
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Proof: 1: Notice if F is a sheaf, then usF is also a sheaf, by continuity(5.1.1.5).
2: puF is a sheaf by [Sta]00XK?. up is clearly right exact, and it is left exact because ι, ♯ do,

and up is exact by(5.1.2.10). □
Cor.(5.1.2.12).When u is continuous, (up(G))♯ ∼= (up(G♯))♯ for any presheaf G on T .

When u is cocontinuous, (upG)♯ ∼= (up(G♯))♯ for any presheaf G on T .
Proof: Use Yoneda lemma. □

Prop.(5.1.2.13).For Z ∈ T , uphZ = hu(Z).
Proof: Use the adjointness of up, up(5.1.2.9), then for any presheaf F ,

Hom(uphZ , F ) = Hom(hZ , upF ) = fp(F )(Z) = F (f(Z)),

thus we are done by Yoneda lemma. □
Prop.(5.1.2.14)[When is us Exact]. If f : C→ C′ is a continuous functor between sites that IU ′ is
cofiltered for any U ′ ∈ C′, where IU ′ is the category of all pairs (U,φ) where U ∈ C and φ : U ′ → u(U),
then us is exact.

In particular, this is the case when C,C′ both have weakly final objects and finite fiber products
and u preserves them. Notice the condition of weakly final objects can be released if we can show
IU ′ is nonempty for any U ′.
Proof: It suffices to show the left exactness of up. By definition, up(U ′) = lim−→Iop

U′
FU ′ where FU ′

is the covariant functor (U,φ) → F (U). Because IopU ′ is filtered, this colimit process is exact form
Hom(IopU ′ ,Ab) to Ab and up is exact. Now shifification is also exact(5.1.2.7), so we conclude.

The last assertion is clear.(Notice the weakly-final object are used to assure IU ′ is nonempty.) □
Prop.(5.1.2.15)[Localization Site].For a site T and Z ∈ T , there is a site T/Z as objects over T ,
and i : T/Z → T is continuous. Then is is exact.
Proof: Rqis(F ) = (ip(Hq(F )))♯(5.3.1.7), and (Hq(F ))♯ = 0(5.3.2.14), so it suffices to show ip and
♯ commutes. But is and + commutes obviously. □

Prop.(5.1.2.16)[Sheaf Condition is Local].To check sheaf condition for presheaf w.r.t. a topology,
it suffice to show that for any covering, there is a refinement covering of it that sheaf condition hold,
because by the definition of sheafification functor, F+ = F , so F is a sheaf.

Cor.(5.1.2.17).For two topology on a same category that I ′ is finer than I, then any I ′-sheaf is a
I-sheaf. And if any covering in I ′ can be refined by a covering in I, then S → S ′ is an equivalence
of categories. In particular, if T is Noetherian, S(T ) and S(T f )(5.1.1.3) are equivalent.

Topoi

Def.(5.1.2.18)[Topoi].A topos is an Abelian category that is equivalent to the category of sheaves
ShSet(C) on a site C. A morphism of topoi f : ShSet(C)→ ShSet(D) is an adjunction

f−1 : ShSet(D) −−−⇀↽−−− ShSet(C) : f∗

s.t. f−1 is exact. Compositions of morphisms of topoi are defined routinely. A 2-morphism of topoi
between two morphisms of topoi f, g : ShSet(C)→ ShSet(D) is a natural transformation t : f∗ → g∗.

Prop.(5.1.2.19)[Presheaves and Topoi]. C ∈ Cat is a Grothendieck category iff it is a left exact,
reflective accessible localization?? of PShSet(A) for some A ∈ Cat.
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Sites and Topoi

Prop.(5.1.2.20) [Continuous Maps and Topoi].A morphism of sites f : D → C consists of a
continuous functor u : C→ D that us is exact, so it induces a functor of topoi f : ShSet(C)→ Sh(D),
if we define f−1 = us, f∗ = us, by(5.1.2.11).

Prop.(5.1.2.21) [Cocontinuous Maps and Topoi].Let u : C → D be a cocontinuous functor
between sites, then this defines a morphism of topoi g : ShSet(C) → ShSet(D), if we define g−1 = us

and g∗ = su, by(5.1.2.11).

Prop.(5.1.2.22)[Cocontinuous Map with a Right Adjoint].Let u : C → D be a cocontinuous
functor between sites with a right adjoint v : D → C, then the morphism of topoi g : ShSet(C) →
ShSet(D) is pretty simple,

g−1G(U) = G(u(U)), g∗F(V ) = F(v(V )).

This holds in particular for localization of sites.

Proof: It follows from adjunction that uphV = hv(V ), so g−1(h♯V ) = (uph♯V )♯ = (uphV )♯ = h♯v(V ),
and

(g∗F)(V ) = Hom(h♯V , g∗F) = Hom(g−1h♯V ,F) = Hom(h♯v(V ),F) = F(v(V )).

The other identity is clear. □

Prop.(5.1.2.23)[Continuous and Cocontinuous Maps and Topoi].Let u : C→ D be a functor
between sites that satisfies

• u is continuous and cocontinuous,
• u is fully faithful,
• C has final objects and fiber products and u preserves them.

then there are two maps of topoi: f = (us, us) : ShSet(D) → ShSet(C), g = (us, su) : ShSet(C) →
ShSet(D) induced by u(5.1.2.20)(5.1.2.14)(5.1.2.21). They satisfy f ◦ g = idShSet(C), and f−1 = us is
fully faithful.

In particular, if we define g! = us, then there are two adjunctions

(g!, g
−1) : Sh(C) ⇌ Sh(D), (g−1, g∗) : Sh(D) ⇌ Sh(C).

Proof: We need to show that for any F ∈ ShSet(C), F ∼= g−1g!F and g−1g∗F ∼= F . For this,
Cf.[Sta]00XT.?

Then f ! is fully faithful follows from the equality F ∼= g−1g!F . □

Prop.(5.1.2.24)[Special Cocontinuous Maps and Topoi].A functor u : C → D between sites is
called a special cocontinuous functor if:

• u is continuous and cocontinuous,
• Given any a, b : U ′ → U ∈ C s.t. u(a) = u(b) : u(U ′)→ u(U), there is a covering {fi : U ′

i → U ′}
that afi = bfi.

• Given any U ′, U ∈ C and a morphism c : u(U ′)→ u(U) ∈ D, there exists a covering {fi : U ′
i →

U ′} ∈ C and morphisms ci : U ′
i → U that u(ci) = c ◦ u(fi).

• Given any V ∈ D, there is a covering of the form {u(Ui)→ V } in D.
Then the induced morphism of topoi g : ShSet(C) ∼= ShSet(D)(5.1.2.21) is an equivalence of topoi.



538 CHAPTER 5. ALGEBRAIC GEOMETRY I: SCHEME THEORY

Proof: Cf.[Sta]03A0.? □

Cor.(5.1.2.25)[Comparing Topologies].Let C′ be a fully subcategory of C, and
• i : C′ → C is continuous, i.e. Cov(C′)→ Cov(C).
• i : C′ → C is cocontinuous, i.e. any covering {Ui → U ′} ∈ Cov(C) s.t. U ′ ∈ C′ has a refinement
{U ′

j → U ′} ∈ Cov(C′).
• Each U ∈ C has a covering {Ui → U} ∈ Cov(C) with Ui ∈ T ′.

then i : ShSet(C′) → ShSet(C) is an equivalence of topoi. i−1 is just the restriction functor, and i∗ is
called the extension functor of sheaves.

In particular, this applies to the case i : C′ = C/Z → C, the localization category, in with case for
Z ′ ∈ C/Z, i−1F (Z ′) = F (Z ′) is called the restriction sheaf.

Prop.(5.1.2.26)[Localizing at Sheaves].Let C be a site and Fi be a set of topos on C, then there is
an equivalence ShSet(C) ∼= ShSet(C′) induced by a special cocontinuous functor C→ C′(5.1.2.24) s.t.

• C′ has the subcanonical topology,
• A family of morphisms {Vi → V } are a covering of C′ iff ⨿hVI → hV is surjective.
• C′ has fiber products and a final object.
• Every subsheaf of a representable sheaf is representable,
• Each g∗Fi is a representable sheaf.

Proof: Cf.[Sta]03CI. □

3 Stacks
Def.(5.1.3.1)[Stacks].Let F → C be a fibered category on a site C. Then F is called a prestack
over C if for each covering {Ui → U} in C, the functor Hom(hU ,F) → Hom(hU ,F)(5.1.1.7) is fully
faithful. It is called a stack over C if it is moreover an equivalence of categories.

Def.(5.1.3.2)[Category of Descent Datum].Let F → C be a fibered category on a site C, U ∈ C

and U is a covering of U . Given a choice of fibered products Uij , Uijk in C, we can define the
category of descent datum Fdesc(U) to be the category of tuples (ξi, ξij , ξijk) where ξα ∈ F(Uα)
with Cartesian morphisms between them that are commutative. A morphism in Fdesc(U) is a family
of morphisms (φi, φij , φijk) commuting with the Cartesian morphisms.

Then there is an equivalence of categories Hom(hU ,F) ∼= Fdesc(U).

Proof: For any F : hU → F , Ui → U ∈ hU (Ui), applying F to the arrows idUi , Uij → Ui, Uijk →
Uij ∈ hU , we get an element in Fdesc(U). Also a natural transformation F → G maps to a morphism
in Fdesc(U), so we get a functor T : Hom(hU ,F)→ Fdesc(U).

Conversely, choose an arbitrary choice of pullbacks(that coincide with ξij → ξi), for any arrow
f : T → U ∈ hU (T ), we choose a Ui that T → U factors as T → Ui → U(also for f = idUi , choose
Ui), then define F (f) as the pullback of ξi along T → Ui. For any morphisms T ′ → T → U ∈ hU
and their choice of Ui, Uj that T ′ → U factors through Uj → U and T → U factors as Ui → U , then
T ′ → Uj factors through Uij , i.e. we have a commutative diagram

T ′ Uij Uj

T Ui U

.
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Then by Cartesian properties, we get a unique map F (T ′) → F (T ), which is Cartesian by(3.1.8.8).
It can be shown these maps make F a functor, using Cartesian property and the existence of ξijk.
And also for any map of descent datum, we get a natural transformation in Hom(hU ,F). Thus we
get a functor S : Fdesc(U)→ Hom(hU ,F).

The construction of S shows T is essentially surjective and full, and also faithful, so (S, T ) is an
equivalence of categories. □

Def.(5.1.3.3)[Everyday Descent Datums].Let F/C be a fibered category on a site C, U ∈ C and
U is a covering of U . Given a choice of fibered products Uij , Uijk in C and a cleavage of F/C, let
F(U) be the category of tuples (ξi, φij) where ξi ∈ F(Ui) and φij are isomorphisms φij : pr∗

1 ξi
∼=

pr∗
2 ξj ∈ F(Uij) s.t.

pr∗
13 φik = pr∗

23 φjk ◦ pr∗
12 φij : pr∗

1 ξi
∼= pr∗

3 ξk.

WARNING: Notice this doesn’t make sense unless we insect three isomorphisms such as pr∗
12 pr∗

1 ξi
∼=

pr∗
13 pr∗

1 ξi.
Then there is a (non-canonical!)equivalence of categories Fdesc(U)→ F(U).

Proof: For (ξi, ξij , ξijk) ∈ Fdesc(U), there are isomorphisms ξij ∼= pr∗
1 ξi and ξij ∼= pr∗

2 ξj , which
gives an isomorphism φij : pr∗

1 ξi → pr∗
2 ξj . This gives an element of F(U), by comparison with ξijk.

Conversely, given (ξi, φij) ∈ F(U), choose an ordering on I, for i < j, let ξij = pr∗
1 φi, and

pr∗
2 ◦φij : ξij → ξj is Cartesian. And for i < j < k, let ξijk = pr∗

1 ξi, then there are Cartesian
morphisms ξijk → ξij , ξijk → ξik, ξijk → ξjk by Cartesian properties, and it can be verified that the
cocycle condition guarantees the diagram can be completed. □

Cor.(5.1.3.4)[Cocycle Conditions]. If F/C is a rigid fibered category, then there is no need to check
the cocycle condition, because every automorphism over idU is trivial.

Cor.(5.1.3.5)[Stacks and Sheaves].A rigid (pre)stack over a site C is equivalent to a (pre)sheaf on
C, by(3.1.8.28).

Cor.(5.1.3.6).A site is subcanonical iff any representable fibered category hU → C is a stack.

Prop.(5.1.3.7) [Equivalence Categories and Stacks].Let F → G be an equivalence of fibered
categories over a site C, then F is a prestack/stack(in groupoid) iff G is.

Proof: There is a strict commutative diagram of categories

Hom(hU ,F) Hom(hU ,F)

Hom(hU ,G) Hom(hU ,G)

that the vertical arrows are equivalences of categories, then we are done. □

Prop.(5.1.3.8)[Prestack and Hom Functor].Let F be a fibered category over a site C, then F is
a prestack iff for any object S of C and two objects ξ, η ∈ F(S), the presheaf HomS(ξ, η) : (C/S)op →
Set(3.1.8.19) is a sheaf in the comma site C/S(5.1.1.4).

Proof: By(5.1.3.7), it suffices to show HomS(ξ, η) is a stack in the comma topology C/S. Then it
can be shown that Hom(hU ,HomS(ξ, η)) → Hom(hU ,HomS(ξ, η)) is an equivalence of categories iff
Hom(hU ,F)→ Hom(hU ,F) is fully faithful. □
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Lemma(5.1.3.9).Let F be a prestack over a site C, S, S′ be sieves belonging to the topology of C
that S′ ⊂ S, then the restriction functor

HomC(S,F)→ HomC(S′,F)

is faithful.
Proof: it suffices to show for S′ = hU for some covering U . Let F,G ∈ HomC(S′,F) and φ,ψ
be two natural transformations from F to G that induce the same natural transformation from the
restriction of F to hU to the restriction of G to hU , then φ = ψ. For this, just notice there are
commutative diagrams

F (T ×U Ui/U) G(T ×U Ui/U)

F (T/U) G(T/U)

φT×UUi/U

φT/U

,

where the vertical arrows are Cartesian, and the hypothesis implies φT×UUi/U = ψT×UUi/U . Then we
deduce φT/U = ψT/U as HomT (F (T/U), G(T/U)) is a sheaf, as F is a presheaf(5.1.3.8). □

Prop.(5.1.3.10)[Stack and Sieves].A prestack F → C is stack iff for any U ∈ C and any sieve S on
U belonging to T ,

Hom(hU ,F)→ Hom(S,F)
is an equivalence of categories.
Proof: Let S be a sieve on U belong to C, choose a covering U of U that hU ⊂ S ⊂ hU , then there
is a factorization

Hom(hU ,F)→ Hom(S,F)→ Hom(hU ,F).
Then we are done by(5.1.3.9). □

Cor.(5.1.3.11). let T , T ′ be two topologies on a category C that T ′ is subordinate to T and F → C
is a fibered category, then if F is a prestack/stack relative to T , it is also true for T ′.

Prop.(5.1.3.12)[2-Fiber Products of Stacks].There is a natural 2-category of stacks over C defined
as a sub-2-category of the 2-category of fibered-categories over C, and the (2, 1)-category of stacks
over C has 2-fibered products, which coincides with that of(3.1.8.15).
Proof: Let X → S,Y → S be morphisms of stacks over C, then the category X ×S Y is a fibered
category over C, by(3.1.8.15). It remains to show that the morphism presheaves sheaves and descent
datum are effective.

For this, Cf.[Sta]026G. □
Prop.(5.1.3.13)[Associated Stack in Groupoids].Let C be a site and F be a prestack, and Fcart
is the associated category fibered in groupoids(3.1.8.24), then Fcart is also a prestack. And in this
case, F is a stack iff Fcart is a stack.
Proof: The categories F(U) and Fcart(U) have the same isomorphism classes of objects, as iso-
morphisms are Cartesian, so it suffices to show F is a prestack iff Fcart is a prestack. For this,
use(5.1.3.8) and consider ξ, η ∈ F(U) and a covering {Ui → U}, if there are arrows αi : ξi → ηi that
are compatible, then there is a unique arrow α : ξ → η restricting to αi, thus it suffices to show α is
Cartesian. But since Fcart is a category fibered in groupoids, each αi is invertible, and their inverses
glue together to a morphism β : η → ξ which is the inverse of α, so α is also an isomorphism thus
Cartesian. □
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Prop.(5.1.3.14)[2-Fibered Products of Stacks Fibered in Groupoids].Let C be a category, the
2-category of stacks fibered in groupoids over C(automatically a (2, 1)-category) has 2-fiber products,
and coincide with that of(5.1.3.12).
Proof: This is clear from(5.1.3.12) and(3.1.8.26). □

Prop.(5.1.3.15)[Equivalence of Stacks].Let F : S1 → S2 be a morphism of stacks over a site C. If
F is fully faithful, then F is an equivalence iff for any x ∈ S2,U , there exists a covering {fi : Ui → U}
s.t. f∗

i x is in the essential image of the functor F : S1,U → S2,U .
Proof: Easy. □

Prop.(5.1.3.16)[Subcanonical Site Prestack]. If C is a subcanonical site(5.1.2.4) and P is a class
of arrows in C stable under base change, then the corresponding fibered category P → C is a prestack.
Proof: By(5.1.3.8), we need to prove for any covering {Ui → U} and arrows X → U, Y → U ,
Xi = Ui ×U X, and Xij = Uij ×U X and analogous for Y , if there are arrows fi : Xi → Yi over Ui
that the arrows Xij → Yij induced by fi and fj coincide, then there is a unique arrow f : X → Y
over U that induces fi.

Notice that the composite Xi
fi−→ Yi → Y give sectiosn gi ∈ hY (Xi), and the pullback of gi, gj to

Xij coincide by hypothesis. Now hY is a sheaf by hypothesis, so there is an arrow f : X → Y that
pulls back to fi on Xi. Finally f is compatible over U because (Y → U) ◦ f and (X → U) coincide
when composed with Xi → X, and hU is a sheaf. □

Prop.(5.1.3.17) [Category of Sheaves is a Stack].Let C be a site, we denote (Sh /C)(X) =
Sh(C/X), then Sh /C is a stack over C.
Proof: To show Sh/C is a prestack, by(5.1.3.8), it suffices to show for any F,G ∈ Sh(C/X),
HomX(F,G) is a sheaf. For this, let {Ui → U} be a covering, and φi : FUi → GUi be morphisms
of sheaves that their restrictions to FUij → GUij are compatible, then for any T → U , there are
commutative diagrams

F (T )
∏
i Fi(Ti)

∏
i,j Fij(Tij)

G(T )
∏
iGi(Ti)

∏
i,j Gij(Tij)

where φT : F (T )→ G(T ) is the unique function of sets that makes the diagram commutative. And
it can be shown that these φT defines a natural transformation FU → GU .

Now for any covering {Ui → U} and a descent datum (Fi, Fij), we need to show it is effective.
We define a function F on C/U : F (T ) = equal(∏i F (Ti) ⇒ ∏

ij F (Tij)), then it can be shown that
this is a sheaf by spectral seqence.

Then it suffices to check FUk = Fk. For any T → Uk, Ti maps to Uik, so Fi(Ti) = Fk(Ti), thus for
any s ∈ Fk(T ), we can produce an element (sTi) ∈

∏
i Fi(Ti) that satisfies compatibility conditions,

which gives us an element of F (T ). It can be shown this is a natural transformation Fk → FUk , and
it is an isomorphism of sheaves. □

Prop.(5.1.3.18)[Descent Along Torsors].Let C be a site, G a group object and X → Y a G-torsor,
F → C a stack. Then there exists a canonical equivalence of categories between F(Y ) and the
category of G-equivariant objects FG(X)(3.1.8.17).
Proof: By(5.1.1.17) X → Y is refined by a covering, thus by(5.1.3.10), F(Y ) is equivalent to
F(X → Y ). And we check F(X → Y ) ∼= FG(X). Then by(5.1.1.18), F(X → Y ) consists of
elements ξ ∈ F(X), η ∈ F(G×X) and Cartesian arrows φ1, φ2 over α, π2. Cf.[Vis08]P106.? □
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Stackifications

Prop.(5.1.3.19)[Stackification].Let C be a site and p : F → C a fibered category over C, then there
exists a stack p′ : F ′ → C and a morphism G : F → F ′ of fibered categories over C s.t. for any stack
X → C, a morphism F : F → X of fibered categories over C factors through G 2-commutatively and
uniquely up to 2-isomorphisms. In other words, there is a canonical equivalence of categories:

MorFib/C(F ,X ) ∼= MorSta /C(F ′,X ).

In particular, such a stack F ′ is determined up to unique 2-isomorphisms, and is called the stackifi-
cation of F .

Proof: By(3.1.8.20), we may assume F is split, thus F corresponds to the functor Cop → Cat :
U 7→ Hom(hU ,F). Then we define a functor

F ′ : Cop → Cat : U 7→ lim−→
U∈Cov(U)

Hom(hU ,F).

then there is a natural map of fibered categories F → F ′. For any stack X → C, because
Hom(hU ,X ) → Hom(hU ,X ) is an isomorphism for any covering U of U , we get the desired equiva-
lence of categories. □

Cor.(5.1.3.20).Let G : S → S ′ be the stackification of a fibered category over C, then
• For any U ∈ C and x, y ∈ SU , the map

Hom(x, y)→ Hom(G(x), G(y))

identifies the RHS as the shifification of the LHS.
• For any U ∈ C and x ∈ S ′

U , there exists a covering {Ui → U} that for any i, x|Ui is in the
essential image of GU : SU → S ′

U .

Proof: Cf.[Sta]0435. □

Prop.(5.1.3.21)[Stackifications Commute with 2-Fibered Products]. Stackifications commute
with 2-fibered products.

Proof: Cf.[Sta]04Y1. □

Prop.(5.1.3.22). If F ,G are prestacks over a topological space X, if there is a morphism η : F → G
that satisfies:

• F is a stack and G is a prestack.
• η induces isomorphisms on stalks.
• η(U) : F(U)→ G(U) is fully faithful.

Then η is an equivalence of prestacks. In particular, G is also a stack.

Proof: Let H be the stackification of G, then F → G → H is a morphism of stacks that is
isomorphism on the stalk, so it is an isomorphism?. But G is separated, so for any open U ,
F(U)→ G(U), G(U)→ H(U) is fully faithful, and their composition is an equivalence, thus both of
them are equivalences. □
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Gerbes

Def.(5.1.3.23)[Gerbe].Let C be a site, a gerbe over C is a stack in groupoids over C s.t.
• For any U ∈ C, there is a covering {Ui → U} that SUi is nonempty for any i.
• For any U ∈ C and x, y ∈ SU , there exists a covering {Ui → U} that x|Ui = y|Ui for any i.

Prop.(5.1.3.24).Let p : S → C be a gerbe over a site C, assume that for all U ∈ C and x ∈ SU , the
sheaf of groups Aut(x) on C/U is Abelian, then there exists a sheaf of Abelian groups over C and for
any x ∈ SU an isomorphism G|U → Aut(x) that for any morphism φ : x→ y ∈ SU , the diagram

G|U G|U

Aut(x) Aut(y)α 7→φ◦α◦φ−1

is commutative.

Proof: It can be checked by using the fact Aut(x) is Abelian that there are canonical morphisms
Aut(x)→ Aut(y) induced by any morphism φ : x→ y.

If there is no morphism from x to y, then we can use the condition of gerbe to obtain morphisms
Aut(x)|Ui → Aut(y)|Ui locally, and then glue together. Similarly, if SU is empty, then we can restrict
to a covering and then glue.

Finally, notice this gives an Abelian sheaf G = Aut on C. □

Bands

4 Sites over Schemes
Prop.(5.1.4.1).Fiber products exist in the category of schemes, by(5.2.7.15).

Zariski Topology

Def.(5.1.4.2) [Zariski Topology].The Zariski topology has the the covering of a scheme T as
classes of open immersions {Ti → T} that their images cover T .

The Zariski site SchZar /S has the objects as all schemes over S.
The small Zariski site SZar has the objects as all open subschemes over S.
The restricted Zariski site SZar fp has the objects as all schemes that are qcqs open subschemes

of S.
The big affine Zariski site AffZar /S has the objects as all schemes affine over S.
These are all topologies because open immersions satisfies base change trick(5.4.4.60).
In particular when the cover has only one element and is affine, the descent datum is equivalent

to compatible isomorphisms

φ13 : N ⊗A B ⊗A B
φ12−−→ B ⊗AM⊗B

φ23−−→ B ⊗A B ⊗AM.

Def.(5.1.4.3) [Zariski Stacks].The category of sheaves on SchZar /S is denoted by ShZar /S. The
category of stacks on SchZar /S is denoted by StaZar /S.

Prop.(5.1.4.4) [Affine and Full Sites].The inclusion functor AffZar /S → SchZar /S is a special
cocontinuous functor, so by(5.1.2.24), it induces an equivalence of topoi Sh(AffZar /S) ∼= ShZar /S.
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Def.(5.1.4.5) [Restriction to Small Sites].The inclusion functor SZar → SchZar /S satisfies the
hypothesis of(5.1.2.23), thus induces morphisms of topoi

πS : ShZar /S → Sh(SZar), iS : Sh(SZar)→ ShZar /S

that satisfies πS ◦ iS = idSZar . In particular, i−1
S F is called the restriction to small sites of F .

Prop.(5.1.4.6).A sheaf w.r.t the small Zariski topology is equivalent to a sheaf on S, trivially, so the
sheaf cohomology on AffZar /S is equivalent to usual sheaf cohomology on S.

Prop.(5.1.4.7)[Transfer of Big Sites].Let f : T → S ∈ SchZar /S, then SchZar /T → SchZar /S is a
localization, so by(5.1.2.22) it induces a morphism of topoi

f : ShZar /T → ShZar /S : f−1G(U/T ) = G(U/S), f∗F(U/S) = F(U ×S T/T ).

Prop.(5.1.4.8)[Transfer of Small Sites].Let f : T → S ∈ SchZar /S, then the base change functor
SZar → TZar is continuous, and by(5.1.2.14) induces a morphism of topoi

f : ShZar /T → ShZar /S.

Prop.(5.1.4.9).By??, if X is qs, then Sh(XZar)→ Sh(XZar fp) is an equivalence by is and is.

Étale Topology

Def.(5.1.4.10)[Étale Topology].The étale topology has the covering of a scheme T as classes of
étalemorphisms that their images cover T .

The étale site Schét /S has the objects as all schemes over S.
The small étale site Sét has the objects as all schemes that are étale over S.
The restricted étale site Sét fp has the objects as all schemes that are étale and qcqs over S.
The big affine étale site Aff ét /S has the objects as all schemes affine over S.
These are truly topologies because étale is stable under base change and composition.

Prop.(5.1.4.11).Zariski covering is étale , because open immersions are étale.

Prop.(5.1.4.12).For a family of maps in Sét to be a covering, it suffices to check their image is
adjointly surjective, by(5.6.6.4).

Prop.(5.1.4.13) [Affine and Full Sites].The inclusion functor Aff ét /S → Schét /S is a special
cocontinuous functor, so by(5.1.2.24), it induces an equivalence of topoi Sh(Aff ét /S) ∼= Shét /S.

Def.(5.1.4.14) [Restriction to Small Sites].The inclusion functor Sét → Schét /S satisfies the
hypothesis of(5.1.2.23), thus induces morphisms of topoi

πS : Shét /S → Sh(Sét), iS : Sh(Sét)→ Shét /S

that satisfies πS ◦ iS = idSét . In particular, i−1
S F is called the restriction to small sites of F .

Prop.(5.1.4.15).Any étale covering of a qc scheme can be refined a finite covering by affine étale
schemes, this is because étale map are open(5.6.6.3).

Def.(5.1.4.16)[Étale Stacks].The category of sheaves on Schét /S is denoted by Shét /S. The cate-
gory of stacks on Schét /S is denoted by Staét /S.
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Prop.(5.1.4.17).For a qc scheme X, Xét fp is a Noetherian topology, because étale map is open, and
any object in Xét fp is qc.

Prop.(5.1.4.18)[Transfer of Big Sites].Let f : T → S ∈ Schét /S, then the functor u : Schét /T →
Schét /S is cocontinuous, and has base change as a right adjoint, so by(5.1.2.22) it induces a morphism
of topoi

f : Shét /T → Shét /S : f−1G(U/T ) = G(U/S), f∗F(U/S) = F(U ×S T/T ).

Prop.(5.1.4.19)[Transfer of Small Sites].Let f : T → S ∈ Schét /S, then the base change functor
Sét → Tét is continuous, and by(5.1.2.14) induces a morphism of topoi

f : Sh(Tét)→ Sh(Sét)

Prop.(5.1.4.20). If X is qs, then Sh(Xét)→ Sh(Xét fp) is an equivalence by is and is.

Proof: Want to use(5.1.2.25), one condition is satisfied by(5.1.4.15), so it suffice to check any
X ′ ∈ Xét has an étale covering by schemes étale and qcqs over X. For any point p ∈ X ′, there is an
affine nbhd U ′ that maps to an affine nbhd U ′ of X, so U ′ → U is étaleand qcqs, and U → X is open
immersion and qs, it is qc because X is qs and U is qc(5.4.4.27). So these affine nbhds U ′ cover X ′.
□

Prop.(5.1.4.21)[Cohomology Big and Small Sites].The inclusion of small sites to the big sites
has no infection on the sheaf cohomology, by(5.3.1.4). This is applicable to all topologies τ considered
here.

Prop.(5.1.4.22)[Topological Invariance of Étale Sites]. If f : S′ → S is universally homeomor-
phism, then f : S′

ét → Sét is an equivalence of sites.
In particular this applies to S′ = Sred.

Proof: Cf.[Étale Cohomology Conrad P18]. □

Smooth Topology

This topology will be shown to be identical to the étale topology, so it is not so important.

Def.(5.1.4.23)[Smooth Topology].The smooth topology has the covering of a scheme T as classes
of smooth morphisms that their images cover T .

The big smooth site Schsm /S has the objects as all schemes over S.
The small smooth site Ssm has the objects as all schemes that are smooth over S.
The restricted smooth site Sét fp has the objects as all schemes that are smooth and qcqs over

S.
The big affine smooth site Aff ét /S has the objects as all schemes affine over S.
These are truly topologies because smoothness is stable under base change and composition.

Syntomic Topology

Def.(5.1.4.24)[Syntomic Topology].The syntomic topology has the covering of a scheme T as
classes of syntomic morphisms that their images cover T .
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fppf Topology

Def.(5.1.4.25)[Fppf Topology].The fppf topology has the covering of a scheme T as classes of flat
locally of finite presentation morphisms that their images cover T . (f.f.+locally of f.p.).

The big Zariski site Schfppf /S has the objects as all schemes over S.
The big affine Zariski site Aff fppf /S has the objects as all schemes affine over S.
They are all topologies because flatness and finite presentedness satisfy base change trick

by(5.6.2.1) and(5.6.1.1).

Prop.(5.1.4.26)[Syntomic Covering is Fppf].A syntomic covering is fppf by definition(4.4.4.18).

Prop.(5.1.4.27).A fppf covering of an affine scheme can be refined a finite affine fppf covering, because
fppf map are open(5.6.2.10).

Def.(5.1.4.28) [Fppf Stacks].The category of sheaves on Schfppf /S is denoted by Shfppf /S. The
category of stacks on Schfppf /S is denoted by Stafppf /S.

fpqc Topology

Def.(5.1.4.29)[Fpqc Topology].The fpqc topology has the covering of a scheme T as classes of
flat morphisms s.t. their images cover T and for any affine open U ⊂ T , the restriction on T can
be refined by a finite affine cover of open affine subschemes of the covering(f.f.+qc). It is a topology
by(5.6.2.1) and(5.4.4.25).

When the covering consists of affine schemes, it is called a standard fpqc covering.

Def.(5.1.4.30) [Fpqc Stacks].Defining fpqc sites has inescapable set-theoretic difficulties, thus we
don’t consider fpqc sites and fpqc cohomologies. Cf.[Sta]0BBK.

Nevertheless, we will denote the category of presheaves on Sch /S satisfying the sheaf condition
w.r.t. the fpqc topology by Shfpqc /S, and denote the category of fibered categories over Sch /S
satisfying the sheaf condition w.r.t. the fpqc topology by Stafpqc /S.

Prop.(5.1.4.31)[fppf is fpqc].Fppf coverings are fpqc.

Proof: Use(5.6.2.10), we see that fppf covering consists of open morphisms, thus it is qc because
affine scheme is quasi-compact. □

Prop.(5.1.4.32).A covering consisting of flat morphisms refined by a fpqc covering is a fpqc covering.
Hence being fpqc is local on the target, because a Zariski cover is a fpqc covering.
If U is a covering consisting of flat morphisms that there is a fpqc covering V that U × V → V

is a fpqc covering, then U is fpqc, because U × V does and it refines U .

Lemma(5.1.4.33)[Checking Sheaf Condition].Let S ∈ Sch, F ∈ PShSet((SchS)fpqc) is a sheaf iff
it is a sheaf w.r.t the Zariski topology and satisfies sheaf property w.r.t the single covering V → U
f.f. between affine schemes.

Proof: This follows from(5.1.3.5)(5.1.3.6) and(5.1.5.7). □

Prop.(5.1.4.34)[fpqc Site is Subcanonical].The coverings in (SchS)fpqc are families of universal
effective epimorphisms. In other words, (SchX)fpqc is subcanonical.

In particular, for any covering U = {Ui → X} ∈ Cov((SchS)fpqc) and {Vijk → Ui ×X Uj} ∈
Cov((SchS)fpqc),

X = Coeq(
⨿
i,j,k

Vijk ⇒
⨿
i

Ui) ∈ SchS .
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Proof: By(5.1.4.33), it suffices to show that any representable presheaf is a sheaf w.r.t Zariski
topology and f.f. affine morphisms. The Zariski case follows from(5.1.5.3), for the second,
SpecB → SpecZ, for any scheme X, the morphism corresponds to 0→ Hom(R,A)→ Hom(R,B)→
Hom(R,B ⊗A B), but this follows immediately from(4.4.2.2), with M = A. □

Cor.(5.1.4.35).For f : Y → X a morphism of schemes, if Z ∈ Xτ for the above topologies τ , then
f∗(HomX(−, Z)) ∼= Hom(−, Z ⊗X Y ), in other words, the inverse sheaf of a representable sheaf is
representable.

Proof: By definition, f∗(HomX(−, Z)) is the sheaf associated to the presheaf fp(HomX(−, Z)),
which by(5.1.2.13) is just the presheaf represented by Z ⊗X Y , but by the proposition, it is already
a sheaf. □

Prop.(5.1.4.36) [Coherent Sheaves on Schfpqc /X].Let F ∈ QCoh(X), then the functor X ′ →
Γ(X ′,F ⊗OX

OX′) satisfies the the axiom for Abelian sheaves on Schfpqc /X, by(5.1.5.13).

Prop.(5.1.4.37)[Qco Sheaves on Sites].For X ∈ Sch, τ ∈{fppf, étale, smooth, syntomic, Zariski},
restriction defines an equivalence of categories

QCoh(X) ∼= QCoh(Schτ /X).

And if τ ∈{Zariski, étale}, restriction defines an equivalence of categories

QCoh(X) ∼= QCoh(Xτ ).

Proof: Cf.[Sta]03DX. □

PH-Covering

Def.(5.1.4.38)[Standard PH-Covering].

Def.(5.1.4.39)[PH-Topology].

Prop.(5.1.4.40)[Zariski Covering is PH-Covering].A Zariski covering is a PH-covering.

Proof: Cf.[[Sta]0DBH]. □

Prop.(5.1.4.41).A proper surjective morphism is a ph-covering.

Proof: Cf.[[Sta]0DES]. □

V-Topology

Def.(5.1.4.42) [Standard V-Covering].A finite family of morphisms morphism Ti → X of affine
schemes is a covering in the standard v-topology if for any morphism SpecV → X where V
is a valuation ring, there is an extension of valuation rings(10.3.2.11) V → W and a morphism
SpecW → SpecV ×X Ti for some i.

Def.(5.1.4.43) [V-Topology].A family of morphisms {Ti → T} is called a v-covering in the v-
topology if for any open affine subscheme U of T , the base change is refined by a standard v-covering
of U .

The v-coverings form a topology, by[[Sta]0ETJ].
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Lemma(5.1.4.44).A standard fpqc covering is a standard v-covering.

Proof: Cf.[[Sta]022E]. □

Prop.(5.1.4.45)[fpqc Covering is v-Covering].A fpqc covering is a v-covering.

Proof: This follows immediately from(5.1.4.44). □

Prop.(5.1.4.46).A standard ph-covering is a standard v-covering.

Proof: Cf.[[Sta]0ETD] □

Prop.(5.1.4.47)[ph-Covering is V-Covering].A ph-covering is a v-covering.

Proof: This follows immediately from(5.1.4.46). □

Cor.(5.1.4.48).A proper and surjective map is a v-covering, by(5.1.4.47) and(5.1.4.41).

Arc-Topology

Def.(5.1.4.49)[Arc-Topology].A finite family of morphisms {Ti → X} of schemes is a covering in
the arc-topology if for any morphism SpecV → X where V is a rank1-valuation ring, there is a
rank1-valuation ring W and a morphism SpecW → SpecV ×X Ti for some i that V →W is f.f..

Prop.(5.1.4.50). V -coverings are arc coverings.

Proof: This is by the definition and(10.3.2.11). □

5 Descent for Algebraic Spaces

Main references are [Sta]Chap34, 10.158.

General Principal

Prop.(5.1.5.1).A property of schemes is called local in a topology if for any covering {Ui → S},
S has P iff Ui has P . A property of morphisms is called local in a topology if for any covering
{Ui → S}, X → S has P iff X ×S Ui → Ui has P .

Prop.(5.1.5.2)[Twists and Čech Cohomology].Let ξ be an object of a stack F over a site C lying
over an object U of C, we call an object ξ′ ∈ F(U) a twist of ξ if there is some covering {Ui → U}
that the pullback of ξ and ξ′ to Ui → U are isomorphic.

Then there is a natural bijection between F(U)-isomorphism classes of twists of ξ with
Ȟ1(U,Aut(ξ)).

Proof: Cf.[Appendix of Lamb]. □
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Zariski Descent

Lemma(5.1.5.3) [Zariski Descent of Qco Sheaves].The fibered category X 7→ (QCoh /X) is a
stack over SchZar /S.

Proof: This is a consequence of(5.1.3.17) and the fact quasi-coherentness is a Zariski local property.
□

Prop.(5.1.5.4)[Zariski Descent of Schemes].The fibered category X 7→ Sch /X is in StaZar /S.

Proof: Firstly it is a prestack by(5.1.3.16) and(5.1.4.34).
To show any descent datum of effective, let {Ui → U} be a Zariski covering, and Xi → Ui be

schemes with descent datum φij : Xi ×Ui Uij ∼= Xj ×Uj Uij , then we define X =
⨿
Xi/ ∼, where

xi ∼ xj if xi ∈ Uij, xj ∈ Uji and φij(xi) = φji(xj). It can be shown this is an equivalence relation.
Denote φi : Xi → X the natural map, and Ui = φi(Xi). Define the topology on X as the quotient
topology. In particular, φi is a homeomorphism onto the image. Then we can use(5.1.3.17) to glue
the sheaves of rings (φi)∗(OXi) to a sheaf of rings OX on X that φ∗

iOX = OXi . Also we have a map
f : X → U by set-theoretical and topological consideration. For the structure map f−1(OU )→ OX ,
use(5.1.3.17). □

Cor.(5.1.5.5). If P is a subclass of arrows of schemes that is stable under base change and local on
the target, then P/S is a stack over (Sch /S)Zar.

Cor.(5.1.5.6) [Zariski Descent of Schemes with a Qco Sheaf].The fibered category X 7→
{Schemes over X with a Qco sheaf F} is a stack in the Zariski topology SchZar /S.

Proof: This is a combination of(5.1.5.4) and(5.1.5.3). □

Fpqc Descent

Prop.(5.1.5.7)[Reduction to Affine Case].Let S be a scheme and F be a fibered category over
Sch /S. Suppose that

• F is a stack w.r.t. the Zariski topology.
• When V → U is a f.f. morphism of affine S-schemes, F(U)→ F(V → U) is an equivalence of

categories.
then F is a stack w.r.t the fpqc topology.

Proof: Firstly, to show F is a prestack, using(5.1.3.8), it suffices to show for an S-scheme T → S
and objects ξ, η ∈ F(T ), the functor

HomT (ξ, η) : (Sch /T )op → Set

is a sheaf. But then we can use(5.1.4.33) to achieve this.
Next, according to(3.1.8.20) and(5.1.3.7), we may assume F is splitting.
Notice that F(∅) is equivalent to the category pt. This is because F(∅) is equivalent to F(U),

where U is the null Zariski covering of ∅(with no mapping or obejcts at all!). Then for any disjoint
union of open subschemes U =

⨿
Ui, there is a natural isomorphism of categories F(U) ∼=

∏
iF(Ui).

Thus for any covering U = {Ui → X}, to show F(X) → F(U) is an equivalence of categories,
it suffices to show that F(X) → F(

⨿
Ui → X) is an equivalence of categories: this is because⨿

Ui ×X
⨿
Ui ∼=

⨿
Ui ×X Uj , so F(

⨿
Ui → X)→ F(U) is an equivalence of categories.
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If U = {V → U} is a covering of F with a single morphism that is qc and U is affine, then by
the proof of(5.1.3.10), we can choose a finite affine cover of V reduce to the case of covering of f.m.
affine maps, then we finish by the case above.

If U = {V → U} is a covering of F with a single morphism and U is affine, then we can find
a Zariski covering {Vi → V } that each Vi is qc. and surjects onto U . Then there are maps of
categories F(U) → F({V → U}) → F({Vi → V }), where F(U) → F({Vi → V }) is an equivalence
and F(U) → F({V → U}) is fully faithful. Thus to show F(U) → F({V → U}) is an equivalence,
it suffices to show F({V → U})→ F({Vi → V }) is faithful, which is true by(5.1.3.9).

For general case, Cf.[Vis08]P88. □

Prop.(5.1.5.8).Mor /S : X 7→ Sch /X is a prestack over Schfpqc /S, by(5.1.4.34) and(5.1.3.16).

Def.(5.1.5.9) [Affine Fpqc Descent Datum].For A → B ∈ CAlg, define a category ModA→B as
follows: its objects are pairs (N,ψ), where N ∈ModB and ψ : N ⊗AB → B⊗AN is an isomorphism
of B ⊗A B-modules s.t. that

ψ12 ◦ ψ01 = ψ02 : N ⊗A B ⊗A B → B ⊗A B ⊗A N

where ψij is permuting the i, j-parts using ψ. The morphisms in ModA→B are maps in ModB that
is compatible with ψ.

There is a natural functor ModA→B →ModB.

Lemma(5.1.5.10) [Affine Fpqc Descent].For A → B ∈ CAlg, there is a functor F : ModA →
ModA→B, where M is mapped to (B ⊗AM,ψM ) with

ψM : (B ⊗AM)⊗A B → B ⊗A (B ⊗AM) : b⊗m⊗ b′ 7→ b⊗ b⊗m.

Then when A→ B is f.f., this is an equivalence of categories.

Proof: We construct an inverse T that maps (N,ψ) to {n|ψ(n ⊗ 1) = 1 ⊗ n}. Then TF ∼= id
because of the first exactness of(4.4.2.2).

And for FT ∼= id, let T ((N,ψ)) = M . Notice if ψ(n⊗ 1) =
∑
i bi ⊗ ni, then by cocycle condition,∑

i

bi ⊗ 1⊗ ni =
∑
i

bi ⊗ ψ(ni ⊗ 1).

so ψ(N ⊗ 1) ⊂ ker(idB ⊗(n 7→ ψ(n⊗ 1)− 1⊗ n)) = B ⊗M because B/A is flat.
So we defined a map N Ψ−→ B ⊗AM ∈ModB, and the composition B ⊗AM mul.−−→ N

Ψ−→ B ⊗AM
is identity, because

ψ(bm⊗ 1) = (b⊗ 1)ψ(m⊗ 1) = (b⊗ 1)(1⊗m) = b⊗m.

This shows Ψ is surjective. And Ψ is injective because n 7→ n⊗ 1 is injective as B/A is f.f., and ψ is
an isomorphism. So Ψ is an isomorphism of N ∼= FT (N).

Finally, to show ψ = ψM , as now B ⊗AM
mul.−−→ N is an isomorphism, we check

ψ((bm)⊗ b′) = (b⊗ b′)ψ(m⊗ 1) = (b⊗ b′)(1⊗m) = b⊗ (b′m).

□

Remark(5.1.5.11). In fact, a descent datum is always effective iff A → B is universally injective.
Cf.[Sta]. And f.f. extension is u.i.(4.4.1.28).
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Prop.(5.1.5.12)[fpqc Descent for Qco Sheaves].Let S be a scheme, then QCoh / Sch ∈ Stafpqc /S.

Proof: We use(5.1.5.7), the first condition is satisfied by(5.1.5.3), and for the second condition, let
SpecB → SpecA be a f.f. morphism of affine schemes, then QCoh(SpecB → SpecA) is equivalent
to ModA→B, and QCoh(SpecA) is equivalent to ModA, so the conclusion follows from(5.1.5.10). □

Cor.(5.1.5.13).For any F ∈ QCoh(S), the functor (Sch /S)op → Ab : T → Γ(T, f∗F) ∈ Stafpqc /S,
hence are also sheaves w.r.t. the fppf, étale, Zariski topologies.

Proof: Because this functor is just HomS(OS ,F), and it is a sheaf(5.1.3.8). □

Cor.(5.1.5.14). If P is a property of Qco sheaves that is stable under base change and fpqc local, then
QCohP /S ∈ Stafpqc /S.

Prop.(5.1.5.15) [Descending Affine Morphisms].For a scheme S, let P be the class of affine
arrows in Sch /S that denote by MorAff

S the resulting fibered category, then MorAff
S ∈ Stafpqc /S.

Proof: Firstly MorAff /S ∈ StaZar /S, and it satisfies the affine fpqc descent condition
of(5.1.5.7)(Notice the {n|ψ(n ⊗ 1) = 1 ⊗ n} is now a ring, because ψ is a ring homomorphism),
so we are done by(5.1.5.7). □

Cor.(5.1.5.16). If P is a subclass of affine arrows stable under base change and fpqc local on the
target, then MorP /S ∈ Stafpqc /S.

Prop.(5.1.5.17) [Descent via Ample Invertible Sheaves].Let S be a scheme and P be a class
of flat proper morphisms of f.p. in Sch /S that is local in the fpqc topology. Assume that for each
object ξ : X → U ∈ P, we have an invertible sheaf Lξ on X that is ample relative to X → U , and
for an arrow f : (X ξ−→ U) → (Y → ηV ), we have an isomorphism ρf : f∗Lη ∼= Lξ that satisfies
ρgf = ρf ◦ f∗ρg, then MorP /S ∈ Stafpqc /S.

Proof: Cf.[Vistoli, P96].? □

Étale Descent

Prop.(5.1.5.18)[Galois Descent].Let L/K be a finite separable field extension with Galois group
G, then SpecL → SpecK is a G-torsor in the étale topology. so Galois descent is a special case of
étale descent along torsors(5.1.3.18).

Notice this is also true for arbitrary finite separable field extensions with continuity condition
added, because we can take direct limits of categories over its finite normal subextensions.

Proof: Consider the locally constant group scheme G = Spec(
∏
g∈GK), let X = SpecL, Y =

SpecK, then {X → Y } is an étale cover, and the action G×X → X is given by

L→
∏
g∈G

L : x 7→
∏
g∈G

(g(x)).

Thus X → Y is a G-equivariant map, and there is an isomorphism G×X ∼= X×Y X : (g, x) 7→ (gx, x)
that corresponds to the isomorphism

L⊗K L ∼=
∏
g∈G

L : (a, b) 7→
∏
g∈G

(g(a)b)

□
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Cor.(5.1.5.19) [Galois Descent of Closed Immersions].Let X be a scheme over a field k, and
K/k be a Galois field extension with Galois group Γ, X ′ = X ⊗k K. Then the category of closed
subschemes of X is equivalent to the category of closed subschemes that is base change from some
Xk′ where k′/k is finite, and is stable under the action of Γ. This weird finiteness condition can be
removed when X is locally algebraic over k.

Proof: This is because the class of closed immersions is a stack(5.1.5.16). □

Remark(5.1.5.20).When Y is a subvariety of X and K = ks, to check Y is stable under action of
Γ, it suffices to check that the geometric points is closed under action of Γ. This is because the
geometric points are dense in Y ′(5.10.1.10).

Cor.(5.1.5.21)[Galois Descent for Ideals of Algebras].Let A ∈ CAlgk, and K/k be a Galois field
extension with Galois group Γ, then the category of ideals of A is equivalent to the category of ideals
of AK that is base change from some Ak′ where k′/k is finite, and is stable under the action of Γ.
This weird finiteness condition can be removed when A is f.g. over k.

Cor.(5.1.5.22)[Galois Descent of Morphisms].Let X,Y be locally algebraic schemes over k and
K/k a Galois field extension with Galois group Γ, X ′ = X ⊗k K,Y ′ = Y ⊗k K. If Y is separated,
then a morphism φ′ : X ′ → Y ′ arises from a morphism X → Y iff its graph Γφ′ ⊂ X ′×k′ Y ′ is stable
under action of Γ. In this case φ is unique.

And when X,Y are varieties and K = ks, then it suffices to check the map

φ′(ks) : X ′(ks)→ Y ′(ks)

commutes with action of Γ.

Cor.(5.1.5.23)[Galois Descent for Qco Sheaves].LetK/k be a Galois extension with Galois group
Γ and X be a scheme over k with X ′ = X ⊗k K, then QCoh /X → (QCoh /X ′)Γ is an equivalence of
categories.

Proof: This is because QCoh / Sch is a fpqc stack(5.1.5.12). □

Cor.(5.1.5.24) [Galois Descent for Vector Spaces].Let L/K be a Galois extension, then the
functor V 7→ L⊗K V induces an equivalence VectK ∼= RepL(Gal(L/K)).

Prop.(5.1.5.25)[Failure of Étale Descent for proper smooth morphisms].Cf.[Vis08]P107.

Descending Properties

Prop.(5.1.5.26)[Properties of Morphisms Local in Fpqc Topology].The following properties
of morphisms are local on the target w.r.t. the fpqc topology.

1. quai-compact.
2. (quasi-)separated.
3. Universally closed.
4. universally open.
5. universally submersive.
6. surjective.
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7. universally injective.
8. universally homeomorphism.
9. (locally)of f.t.
10. (locally)of f.p.
11. properness.
12. flatness.
13. (closed/open)immersion.
14. isomorphism/monomorphism.
15. (quasi-)affineness.
16. quasi-compact immersion.
17. integral
18. (locally)(quasi-)finite.
19. syntomic.
20. smooth, unramified, étale.
21. finite locally free.

Proof: Cf.[Sta]Chap34.20.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
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19. Cf.[Sta]00SM.
20.
21.

□

Prop.(5.1.5.27)[Properties of Schemes Local in the Fppf Topology]. •

Proof: Cf.[Sta]Chap34.13. □

Prop.(5.1.5.28)[Descending Properties that is not Fpqc Local].
• If X → Y is a faithfully flat morphism of schemes and X is (geo.)reduced, then Y is also

(geo.)reduced.
• If X → Y is a faithfully flat morphism of f.p. between schemes and X is (geo.)regular, then Y

is also (geo.)regular.

Proof: Looking stalkwise, these follows from(4.4.2.1). □

Prop.(5.1.5.29)[Torsors].Let G be a group object in (SchS)τ and X → S a G-torsor. Then if τ is a
subcanonical site and P is a property that is local on (SchS)τ and G → S has P, then X → S has
P .

Proof: By(5.1.1.17), there is a covering {Yi → S} s.t. each X ×S Yi → Yi ∼= G×S Yi is trivial, thus
each X ×S Yi → Yi has P , and then X → S has P . □

Weil Restrictions

Def.(5.1.5.30) [Weil Restrictions].Let L/k be a finite extension of fields, X ∈ Sch /L, then the
Weil restriction resL/k(X) is the scheme over k representing the functor

Sch /k → Set : S 7→ X(S ×k L).

Prop.(5.1.5.31).Let L/k be a finite extension of fields, and X ∈ Sch /L. If every finite subset of X
is contained in some affine open subset of X, then resL/K(X) exists. In particular, this applies to
the case that X is quasi-projective.

Proof: Cf.[BLR90, Chap7.6. Thm4]. □

6 Étale Torsors

Prop.(5.1.6.1).For X ∈ Sch, Ȟ1(X,GL(n)) ∼= Vectn(X) as pointed sets, by(5.1.5.2).
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5.2 Ringed Topoi, Ringed Sites, Ringed G-Spaces and Schemes

1 Ringed Topoi, Ringed Sites
Def.(5.2.1.1)[Ringed Topoi].A ringed topos is a pair (Sh(C),O) where C is a site and O is a unital
object in Sh(C), called the structure sheaf. A morphism of of ringed topoi (f, f ♯) : (C,O)→ (C′,O′)
consists of a morphism of topoi(5.1.2.18) f : Sh(C) → Sh(C′) and a map of sheaves of rings f ♯ :
f−1O′ → O. A composition of morphism of topoi is defined to be (g, g♯)◦(f, f ♯) = (g◦f, f ♯◦f−1(g♯)).

Def.(5.2.1.2)[Ringed Sites].A ringed site is pair (C,O) where C is a site and O is a sheaf of rings
on C, called the structure sheaf. A ringed site induces a ringed topos. A morphism of ringed
sites is a morphism of sites that the induced morphism of topoi(5.1.2.20) is a morphism of ringed
topoi(5.2.1.1).

A site is naturally a ringed site where O = Z the constant sheaf(5.1.2.8). So we only consider
ringed sites afterwards, then a morphism of ringed sites is naturally a morphism of ringed sites. So
whenever we say C is a site, it is understood as a ringed site (C,Z).

Prop.(5.2.1.3) [Ringed Topoi and Ringed Sites].Let (f, f ♯) : (Sh(C),OC) → Sh(D,OD) be a
morphism of ringed topoi, then we can find ringed sites (C′,OC′) and (D′,OD′) and a diagram

(Sh(C),OC) (Sh(D),OD)

(Sh(C′),OC′) (Sh(D′),OD′)
(g,g♯)

(f,f♯)

(e,e♯)
(h,h♯)

where
• (g, g♯) and (e, e♯) are equivalence of ringed topoi.
• C′,D′ have final objects and finite products.
• (h, h♯) is induced by a continuous functor D′ → C′ that the preserves the final object and finite

products,(thus induces a morphism of sites by(5.1.2.14)).
Moreover, given a set of sheaves Fi on C and a set of sheaves Gi on D, we may choose C ′ and D′ that
these sheaves are representable by objects in C′ or D′.

Proof: [Sta]03CR. □

Prop.(5.2.1.4) [Multiplicative Structure Sheaf].Given a ringed topoi (Sh(C),O), the presheaf
U 7→ O∗(U) is a sheaf of groups, called the multiplicative structure sheaf O∗.

Proof: This comes from the sheaf property of O and the fact the inverse of an element is unique.
□

Def.(5.2.1.5)[Local Ringed Site].A ringed site (C,O) is called a local ringed site if

∅♯ → Equalizer(0, 1 : pt→ O)

is an isomorphism of sheaves, and for any U ∈ C and f ∈ O(U), there exists a covering {Ui → U}
s.t. for any j, either f |Ui is invertible or (1− f)|Ui is invertible.

Prop.(5.2.1.6)[Characterizing Local Ringed Sites].Let (C,O) be a ringed site, the following are
equivalent:
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• (C,O) is a local ringed site.
• (Partition of Unity) For any U ∈ C, f1, . . . , fn ∈ O(U) that (f1, . . . , fn) = (1), there is a

covering {Ui → U} that for each j, there exists an i that fi is invertible on Uj .
• The map of sheaves of sets:

(O ⊗O)
⨿

(O ×O)→ O×O
which maps (f, a) in the first component to (f, af) and (f, b) in the second component to
(f, b(1− f)) is surjective.

Proof: Cf.[Sta]04ES. □
Def.(5.2.1.7)[Local Ringed Topoi]. If f : Sh(C′) → Sh(C) is a morphism of topoi and (C,O) is a
local ringed site, then (Sh(C′), f−1O) is also a local ringed site. In particular, being a local ringed site
is an intrinsic property, so we can define local ringed topoi to be ringed topoi that the underlying
ringed sites are local ringed.
Proof: Because f−1 is exact(5.1.2.18) and commutes with products and equalizers, it maps the
isomorphism

∅♯ → Equalizer(0, 1 : pt→ O)
to the corresponding isomorphism of C′, and also the sejection of

(O ⊗O)
⨿

(O ×O)→ O×O

in(5.2.1.6) to that of C′, thus (Sh(C′), f−1O) is also a local ringed site. □
Def.(5.2.1.8) [Morphisms of Local Ringed Topoi].A morphism of local ringed topoi is a
morphism of ringed topoi (f, f ♯) : (Sh(C),OC)→ (Sh(D),OD) that the diagram of sheaves

f−1(O∗
D) O∗

C

f−1(OD) OC

f♯

f♯

is Cartesian, where O∗
C is the multiplicative structure sheaf(5.2.1.4). Morphisms of local ringed topoi

are stable under compositions.

Ringed Spaces

Def.(5.2.1.9)[Ringed Spaces].A ringed space is a pair (X,OX) consisting of a topological space
X and a sheaf of rings OX on X. A morphism of ringed spaces (X,OX) → (Y,OY ) consists of a
pair (f, f ♯) where f is a continuous map X → Y and f ♯, which induces a map of sites (f−1, f∗) :
XZar → YZar(5.2.6.7), and f♯ is a map f ♯ : f−1(OY ) → OX(5.2.6.2), such that (f, f ♯) is a map of
ringed topoi(5.2.1.1).

Def.(5.2.1.10)[Local Ringed Space].A local ringed space is a topological space X with a sheaf
of rings OX that (X,OX) forms a local ringed site(5.2.1.5). A morphism of local ringed space
is a morphism of ringed spaces that the corresponding morphism of ringed topoi (Sh(C),OC) →
(Sh(D),OD) is a morphism of local ringed topoi(5.2.1.8).

Prop.(5.2.1.11).A ringed space (X,OX) is a locally ringed space iff any stalks OX,x is either 0 or a
local rings.
Proof: Cf.[Sta]04ET. □
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2 Modules on Ringed Topoi
Main References are [Sta]Chap 18.

Def.(5.2.2.1) [Modules on Ringed Topoi].Let (Sh(C),O) be a ringed topos, then a sheaf of O-
modules is a presheaf of O-modules that the underlying presheaf of Abelian groups is a sheaf.

Def.(5.2.2.2)[Support].Let (X,OX) be a ringed space, F a OX -module, then the support of F is
the set of points x that Fx ̸= 0. It is denoted by Supp(F). For a section s ∈ Γ(X,F), Supp(s) is
defined to be the set of points x that sx ̸= 0 ∈ Fx.

Prop.(5.2.2.3).Glueing sheaves is available for ringed spaces, similar to(5.1.5.3).

Proof: □

Prop.(5.2.2.4).Glueing ringed spaces is available.

Proof: □

Def.(5.2.2.5) [Local Properties of Modules].On a ringed site (C,O), an O-module F is called
locally has property P if for any object U ∈ C, there is a covering {Ui → U} that F|Ui has property
P .

Def.(5.2.2.6)[Intrinsic Properties of Modules].An intrinsic property of sheaves of modules in
a ringed topos (Sh(C),O) that is invariant under equivalence of topoi.

Def.(5.2.2.7) [Tensor Products Sheaf].Let (C,O) be a ringed site and F ,G be O-modules, then
the tensor product F ⊗O G is defined to be the shifification of the presheaf U 7→ F(U)⊗O(U) G(U).

The tensor product is easily seen to be an intrinsic notion(5.2.2.6), so it can be defined on any
ringed topoi.

Prop.(5.2.2.8) [Base Change].Let (C,O) be a ringed site and O2 be a sheaf O1-algebras, G be a
sheaf of O1-module and F a sheaf of O2-module, then

HomO1(G,FO1) = HomO2(G ⊗O1 O2,F).

Proof: This can be seen from the definition of tensor product and the fact shifification doesn’t
bother because F is a sheaf. □

Def.(5.2.2.9)[Transfer of Modules on Ringed Sites].Let (f, f ♯) be a morphism of ringed topoi
(Sh(C),O)→ (Sh(C′),O′), then there are functor:

• the pushforward: f∗ : Mod(O)→Mod(O′) : f∗F = f∗F as a O′-module via O′ → f∗O.
• the pullback f∗ : Mod(O′)→Mod(O) : f∗G = O ⊗f−1O′ f−1G via f ♯ : f−1O′ → O. f∗ is left

adjoint to f∗, by the adjointness of f−1 and f∗(5.1.2.18).
If (f, f ♯) is a morphism of ringed sites (C,O)→ (C′,O′), then there is an extension by zero functor:

• (Extension by zero): For the localization of sites jU : (C/U,OU )→ (C,O) the localization map
of site, j∗

U = j−1
U has a left adjoint jU ! defined by shifification of the presheaf

G 7→ jU !(G) : jU !(G)(V ) =
⊕

φ:V→U

G(V φ−→ U ∈ C/U).

Proof: To show jU ! is left adjoint to j∗
U , Cf.[Sta]03DI. □
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Remark(5.2.2.10).The f∗ may not be exact. f−1 is exact, but we tensored with OX , it is exact
when f is flat(5.2.2.15).

Prop.(5.2.2.11) [Extension by Zero is Exact].Let (C,O) be a ringed site and U ∈ C, then the
extension by zero functor jU ! : Mod(OU )→Mod(O) is exact and reflects exactness.

Proof: It is right exact because is a left adjoint, and it is left exact by direct inspection.
For refection of exactness, Cf.[Sta]0E8G.? □

Prop.(5.2.2.12)[Tensor Products and Pullbacks].Tensor products commute with pullbacks, in
particular with taking stalks. So tensoring with a locally free sheaf is exact.

Proof: By(5.2.3.3) and(5.2.3.5), for any O-module H,

Hom(f∗F ⊗ f∗G,H) = Hom(F , f∗Hom(f∗G,H)) = Hom(F ,Hom(G, f∗H)) = Hom(f∗(F ⊗ G),H).

□

Prop.(5.2.2.13) [jU ! Commutes with Restriction].Let (C,O) be a ringed site and U ∈ C,G ∈
Mod(OU ),F ∈Mod(O), then there is a natural isomorphism jU !G ⊗O F ∼= jU !(G ⊗OU

F|U )

Proof: By(5.2.3.3) and(5.2.3.5), for any H ∈Mod(O),

HomO(jU !(G ⊗OU
F|U ),H) = HomOU

(G ⊗OU
F|U ,H|U ) = HomOU

(G,HomO(F|U ,H|U ))
= HomOU

(G,HomOU
(F ,H)|U ) = HomO(jU !G,HomO(F ,H))

= HomO(jU !G ⊗O F ,H)

then use Yoneda lemma. □

Prop.(5.2.2.14)[Properties of Tensor Products].Let (C,O) be a ringed site and F ,G be sheaves
of O-modules, then

1. If F ,G are locally free, then so does F ⊗ G.
2. If F ,G are locally finite free, then so does F ⊗ G.
3. If F ,G are locally generated by sections, then so does F ⊗ G.
4. If F ,G are of f.t., then so does F ⊗ G.
5. If F ,G are quasi-coherent., then so does F ⊗ G.
6. If F ,G are of f.p., then so does F ⊗ G.
7. If F is of f.p. and G is coherent, then F ⊗ G is coherent. In particular, if F ,G are coherent,

then so does F ⊗ G(5.2.2.27).

Proof: Cf.[Sta]03L6. □

Flat Modules

Def.(5.2.2.15)[Flat Modules and Flat Morphisms].Let C be a site and O a presheaf of rings,
then a presheaf F of O-modules is called flat if the functor P Mod(O)→ P Mod(O) : G 7→ G ⊗O F
is exact.

Let C be a ringed site, and F is a sheaf of O-modules, then it is called flat if the functor
Mod(O)→Mod(O) : G 7→ G ⊗O F is exact.
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A morphism (f, f ♯) is called a flat morphism if the ring map f ♯ : f−1O′ → O is flat, or
equivalently, the pullback functor(5.2.2.9) f∗ is exact.

If (f, f ♯) is a morphism of ringed topoi (Sh(C),O)→ (Sh(C′),O′), and F is a sheaf of O-modules,
then F is flat over (Sh(C′),O′) if F is flat over f−1O′.

Prop.(5.2.2.16).Let C be a site and O a presheaf of rings with shifification O♯.
• If F is a presheaf of O-modules that each F(U) is flat O(U)-modules, then F is flat.
• If F is a flat presheaf of O-modules, then F ♯ is a flat O♯-modules.
• A filtered colimits of flat presheaves of modules is flat. A direct sum of flat presheaves of

modules is flat.
• A filtered colimits of flat sheaves of modules is flat. A direct sum of flat sheaves of modules is

flat.
Prop.(5.2.2.17)[Flatness is Stalkwise].Let (X,OX) be a ringed space, then an OX -module F is
flat iff the stalks Fx are all flat OX,x-modules.
Proof: Cf.[Sta]05NE. □

Prop.(5.2.2.18)[Flat Morphism and Support].Let f : (X,OX) → (X ′,OX′) be a flat morphism
of local ringed spaces, F an OX′-module, then Supp(f∗(F)) = f−1(Supp(F)).
Proof: Use the fact flat ring map of local rings is faithfully flat. □

Modules of Finite Type & Finite Presentation

Def.(5.2.2.19)[Finite Type].An O-module is called if finite type iff locally a quotient of a finite
free sheaf.

Prop.(5.2.2.20)[Extension of F.T. Sheaves]. if 0 → F1 → F2 → F3 → 0 is an exact sequence of
O-modules and F1,F3 are of f.t., then F2 is of f.t..
Proof: For any U ∈ C, choose a covering {Ui → U} that F3(Ui) is generated by f.m. sections, then
by passing to a covering, we may assume these sections come from F2. Pass to another covering that
F1 is generated by f.m. sections, then on this covering, F2 is generated by f.m. sections. □

Def.(5.2.2.21) [Finite Presentation].A sheaf of modules F is called of finite presentation iff
locally it is a cokernel of two finite free modules. The pullback of a f.p. sheaf is f.p, by the left
adjointness of f∗.

Prop.(5.2.2.22)[FP-FT-FT]. If f : G → F is a surjection of O-modules, F is of f.p. and G is of f.t.,
then the kernel is of finite type.
Proof: We first show for G = On: By pass to covering, we can construct a diagram

OmUij OnUij F|Uij 0

0 ker(f)|Uij G|Uij F|Uij 0

α

and then use snake lemma. The image and cokernel of α are all of f.t., then ker(f)|Uij is of f.t.
by(5.2.2.20).

For general G, locally choose a surjection φ : OnUi → G|Ui , then ker(f |Ui) = φ(ker(φ◦f |Ui)), which
is of f.t.. □
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Prop.(5.2.2.23).Pullbacks of a module of finite type is of finite type. Pullback of a module of finite
presentation is of finite presentation.

Finite type and finite presentation are local on the target.

Proof: This is because pullback is a left adjoint thus right exact. They are local on the target
because they are defined locally. □

Prop.(5.2.2.24) [Support is Zariski Closed]. If (X,OX) is a ringed space and f : G → F is
surjective at a point x and F is of f.t., then it is surjective on a Zariski nbhd of x. Thus the support
of a f.t. sheaf is closed (look at 0→ F).

Proof: Choose a nbhd of x that F(U) is generated by s1, . . . , sn ∈ F(U), because f is surjective at
the stalk of x, after shrinking U , we may assume si = f(ti) for ti ∈ G(U), so f is surjective on U . □

(Quasi-)Coherent Sheaves

Def.(5.2.2.25)[Quasi-Coherent Sheaf].An O-module F on a ringed site is called quasi-coherent
iff locally it is a cokernel of two free modules. A locally f.p. sheaf of modules is Qco.

Prop.(5.2.2.26)[Associated Qco Sheaves].And for a ringed space (X,OX) and a R = Γ(X,OX)-
module M , we have a coherent sheaf FM on X, defined as π∗(M), where M is seen as a qco sheaf
on (pt, R). It is the sheaf associated to the presheaf U 7→ OX(U)⊗M .

This construction is a functor from the category of R-module to the category of Qco OX -modules,
and it commutes with colimits because π∗ does. And it is left adjoint to Γ by(5.2.2.9):

HomA(M,Γ(X,G)) ∼= HomOX
(FM ,G)

Def.(5.2.2.27)[Coherent Sheaves].A coherent sheaf is a O-module F that is of f.t. and for any
object U and for any set of elements of Γ(U,F), the kernel of ⊕OU → F|U is of f.t..

A coherent sheaf is of f.p., by base change to a smaller covering, and it is Qco.

Prop.(5.2.2.28)[Properties of Coherent Sheaves].Any f.t. subsheaf of a coherent sheaf is coher-
ent, by definition. Any kernel of a morphism from a f.t. sheaf to a coherent sheaf is of f.t..

Coh(X) is a weak Serre subcategory of ModOX
. In particular, if OX is coherent, then a sheaf is

coherent iff it is f.p.

Proof: Let G be a sheaf of f.t. and F be a coherent sheaf. For any map f : G → F and U ∈ C, let
{Ui → U} be a covering that there are surjections φi : OniUi → G|Ui . Then ker(f ◦φi) is a OU -module
of f.t.. Now φi : ker(f ◦ φi)→ ker(f)|Ui is a surjection, so ker(f)|Ui is of f.t., and ker(f) is of f.t..

The kernel of a map between coherent sheaves is of f.t. by the result above, thus it is coherent.
Let φ : F1 → F be a map between coherent sheaves, then Im(φ) and Coker(φ) are of f.t.. For

any U ∈ C and sections si of Coker(φ)(U) inducting a map Φ : OnU → Coker(φ)|U , we can choose a
covering {Ui → U} that si comes from si ∈ F(Ui) for any i. Now we can choose coverings {Uij → Ui}
that there are surjections OnijUij → Im(φ)(Uij). Consider the commutative diagram

0 O|nijUij O|nijUij ⊕O
n
Uij

OnUij 0

0 Im(φ)|Uij F|Uij Coker(φ)|Uij 0
Φ ,
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then snake lemma gives a surjection ker Φ → ker(Φ) → 0. Because ker Φ is of f.t., so does ker(Φ),
and Coker(φ) is coherent.

Let 0→ F1 → F2 → F3 → 0 be an exact sequence that F1,F3 is coherent, then by(5.2.2.20), F2
is of f.t.. For any object U ∈ C, consider the commutative diagram

0 0 OnU OnU 0

0 F1|U F2|U F3|U 0

φ1 φ2 ,

the snake lemma gives an exact sequence 0→ ker(φ1)→ ker(φ2)→ F1|U . So ker(φ1) is of f.t., so F2
is coherent. □

Prop.(5.2.2.29).The pullback of a (quasi-)coherent module is a (quasi-)coherent, because f∗ is a left
adjoint.

Prop.(5.2.2.30). (Quasi-)Coherence is local on the target.

Proof: This is because they are defined locally. □

Prop.(5.2.2.31).Let (X,OX) be a ringed space and x ∈ X.
• Let f : G → F be a map of OX -modules. If G is of f.t. and F is coherent, and f is injective at

the stalk of x, then there exists a nbhd U of x that f |U is injective.
• Let f : G → F be a map of coherent OX -modules that is surjective at the stalk of x, then there

exists a nbhd U of x that f |U is surjective.
• Let f : G → F be a map of coherent OX -modules that is isomorphism at the stalk of x, then

there exists a nbhd U of x that f |U is an isomorphism.

Proof: 1: Consider the kernel of f , then it is of f.t. by definition(5.2.2.27). Then ker(f)x = 0, so
there is a nbhd U of x that ker(f)|U = 0, by(5.2.2.24), which means f |U is injective.

2: this is immediate from(5.2.2.24).
3 follows from 1 and 2. □

3 Construction of Sheaves

Internal Hom

Def.(5.2.3.1)[Internal Hom].Let C is a category and O is a presheaf of rings, F , G be presheaves
of O-modules, then U 7→ HomO|U (F|U ,G|U ) defines a presheaf Hom(F ,G) of O-modules, and there
is a natural evaluation map

F ⊗O Hom(F ,G)→ G.

Now if C is a site and O is a sheaf of rings, F , G be sheaves of O-modules, then HomO(F ,G) is a
sheaf of O-modules by(5.1.3.17), called the internal Hom sheaf. Denote Hom(F ,O) by F∨.

Prop.(5.2.3.2). Internal Hom sheaf commutes with localization: HomOU
(F|U ,G|U ) = HomO(F ,G)|U .

This follows from thedefinition.
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Prop.(5.2.3.3) [Tensoring and Inner Hom]. If C is a site, O is a sheaf of rings and F ,G,H are
sheaves of O-modules, then there is a canonical isomorphism of sheaves:

HomO(H⊗O F ,G) ∼= HomO(F ,HomO(H,G)).

In particular, taking limit over C, we see −⊗O H is left adjoint to HomO(F ,−):

HomO(H⊗O F ,G) ∼= HomO(F ,HomO(H,G)).

In particular, the monoidal category of OX -modules is closed(5.2.2.15).

Proof: Omitted(Recall the definition of tensor product sheaf(5.2.2.7)). □

Prop.(5.2.3.4).

Hom(lim−→Ai, B) ∼= lim←−Hom(Ai, B) Hom(A, lim←−Bi)
∼= lim←−Hom(A,Bi)

Proof: This is immediate from(3.1.5.10). □

Prop.(5.2.3.5). f∗ is left adjoint to f∗ by(5.2.2.9): HomOX
(f∗G,F) ∼= HomOY

(G, f∗F). In fact

f∗(HomO(f∗G,F)) ∼= HomO′(G, f∗F).

by checking on every open subset U ⊂ Y .

Prop.(5.2.3.6).Let C be a site and O → O′ is a map of sheaves of rings, then for any G ∈ Mod(O′)
and F ∈Mod(O), there is a natural isomorphism

HomO(G,F) = HomO′(G,HomO(O′,F)).

by checking on every open subset U ⊂ Y .

Prop.(5.2.3.7).Let f∗ : (X,OX) → (Y,OY ) be a morphism of ringed spaces, and F ,G are OY -
modules. If F is f.p. and f is flat, then the canonical map

f∗HomOY
(F ,G)→ HomOX

(f∗F , f∗G)

is an isomorphism.

Proof: ? □

Prop.(5.2.3.8).Let (X,OX) be a ringed space and F ,G be OX -modules. If F is f.p. or locally free,
then the canonical map

Hom(F ,G)x → HomOX,x
(Fx,Gx)

is an isomorphism.

Proof: Choose a presentation of F . This follows from the exactness of taking stalks and(5.2.3.4).
□

Prop.(5.2.3.9).Let (X,OX) be a ringed site and F ,G be OX -modules. If F is f.p. and G is coherent,
then Hom(F ,G) is also coherent. In particular, this applies to F ,G both coherent.

Proof: This follows from(5.2.3.4) and(5.2.2.28). □
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Tensor Sheaves

Def.(5.2.3.10)[Tensor Sheaves].Let (C,O) be a ringed site and F an O-module, then we define
• T (F) to be the sheafification of the presheaf U 7→ TOX(U)(F(U))(4.1.1.20).
• ∧F to be the sheafification of the presheaf U 7→ ∧OX(U)(F(U))(4.1.1.20).
• Sym(F) to be the sheafification of the presheaf U 7→ SymOX(U)(F(U))(4.1.1.20).

Cor.(5.2.3.11).Over a ringed space (X,OX), the construction of T (F),∧(F) and Sym(F) commutes
with taking stalks, because the construction of tensor algebras and shifification are both left ad-
joints(4.1.1.21). Also they commutes with pullbacks, because they satisfy the same universal proper-
ties.

Prop.(5.2.3.12). let F be an (C,O)-module, then the following properties are preserved under the
construction of T (F),∧(F) and Sym(F):

• Locally generated by sections.
• Finite Type.
• Finite Presented.
• Coherent.
• Quasi-coherent.
• Locally free.

Proof: Cf.[Sta]01CL. □

4 Sheaf of Differentials
Prop.(5.2.4.1). If C is a site and O1 → O2 is a homomorphism of sheaves of rings and F is a sheaf
of O2-modules, then an O1-derivation from O2 to F is a map that for any U ∈ C, the map
O2(U)→ F(U) is a O1(U)-derivation(4.4.3.1).

Prop.(5.2.4.2)[Sheaf of Differentials].Let C be a site and O1 → O2 is a homomorphism of sheaves
of rings and F is a sheaf of O2-modules, then the functor Mod(O2) → Ab : F → DerO1(O2,F)
is representable by a sheaf of modules ΩO2/O1 , called the sheaf of differentials. and the map
d : O2 → ΩO2/O1 is called the universal derivation.

Proof: The construction is similar to that of(4.4.3.4): if for any sheaf F we denote O2[F ] generated
by shifification of the presheaf U 7→ O2(U)[F(U)], then ΩO2/O1 is the cokernel of

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1]→ O2[O2]

□

Prop.(5.2.4.3)[Localness of Sheaf of Differentials]. If O1 → O2 is a homomorphism of presheaves
of rings, then ΩO♯

2/O♯
1
is the sheafification of the presheaf U 7→ ΩO2(U)/O1(U).

Proof: This is because the construction of ΩO♯
2/O♯

1
(4.4.3.4) for all U gives an exact sequence of

presheaves, and the shifification of which is just the construction in(5.2.4.2), so we are done because
shifification is exact(5.1.2.7). □
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Prop.(5.2.4.4)[Change of Sites].Let f : Sh(D)→ Sh(C) be a morphism of topoi and φ : O1 → O2
a homomorphism of rings on C, then there is a canonical isomorphism f−1ΩO2/O1

∼= Ωf−1O2/f−1O1
compatible with the universal derivations.

Proof: This follows from the construction(5.2.4.2) and the fact f−1 is exact(5.2.4.2). □

Prop.(5.2.4.5)[Functoriality of Ω].Let φ : (O1 → O2)→ (O′
1 → O′

2) be a commutative diagram of
sheaves of rings over a site C, then the map O′

1 → O′
2 composed with the derivative O′

2 → ΩO′
2/O′

1
is a O′

1-derivative, thus we obtain a map of O2-modules ΩO2/O1 → ΩO′
2/O′

1
, or equivalently a map of

O′
2-modules ΩO2/O1 ⊗O2 O′

2 → ΩO′
2/O′

1
. Thus Ω−/− is a functor of arrows.

Moreover, if O′
2 = O2 ⊗O1 O′

1, then this map is an isomorphism, by(5.2.4.3) and(4.4.3.6).

Prop.(5.2.4.6).Let O1 → O2 → O′
2 be a map of sheaves of rings that O2 → O′

2 is surjective with
kernel I ⊂ O2, then there is a canonical exact sequence of O′

2-modules

I/I2 → ΩO2/O1 ⊗O2 O′
2 → ΩO′

2/O1 → 0,

where the first map is characterized by mapping local sections f of I to df ⊗ 1.

Proof: The first map is well-defined if d(I2) = 0. To show the exactness, let O′′
2 ⊂ O′

2 to be the
presheaf of O1-algebras that O′′

2(U) the image of O2(U)→ O′
2(U). Then there is an exact sequence

I(U)/I(U)2 → ΩO2(U)/O1(U) ⊗O2(U) O′′
2(U)→ ΩO′′

2 (U)/O1(U) → 0

by(4.4.3.8). Now shifification of these presheaves gives use the desired result by(5.2.4.3). □

Def.(5.2.4.7)[Sheaf of Differentials].Let (X,OX)→ (S,OS) be a morphism of ringed sites,
• Let F be an OX -module, an S-derivation from OX to F is a derivation over f−1OS . The set

of S-derivations is denoted by DerS(OX ,F).
• the sheaf of differentials ΩX/S is defined to be a sheaf of modules ΩOX/f−1OS

(5.2.4.2), with
a universal derivation dX/S : OX → ΩX/S .

5 Locally Free sheaves

Prop.(5.2.5.1).Pullbacks of (finite)locally free sheaves are (finite)locally free. Sub-OX -modules of a
(finite)locally free sheaf is (finite)locally free, by(2.2.4.21).

Prop.(5.2.5.2) [Finite Locally Free Sheaves and Hom].For any finite locally free sheaf E on a
ringed site (C,O):

• E∨∨ ∼= E .
• HomO(E ,F) ∼= E∨ ⊗O F .
• HomO(F ,G)⊗H ∼= HomO(F ,G ⊗O H) if F or H is finite locally free.
• HomO(E ⊗ F ,G) ∼= HomO(F , E∨ ⊗ G), by the first and(5.2.3.3).

Proof: We define the map, and verify locally, which is by1. □

Prop.(5.2.5.3).Hom(H,−) is exact for any locally free sheaf H.



5.2. RINGED TOPOI, RINGED SITES, RINGED G-SPACES AND SCHEMES 565

Invertible Sheaves

Def.(5.2.5.4)[Invertible Sheaf].An invertible sheaf L on a ringed topoi (Sh(C),O) is an invertible
object in the symmetric monoidal category ModO(3.1.5.21).

Prop.(5.2.5.5).Let (C,O) be a ringed site and L an O-module, the following are equivalent:
• L is an invertible sheaf.
• there exists some O-module N that L ⊗O N ∼= O.

And in this case, L is flat and of finite presentation, and N ∼= HomO(L,O).

Proof: L is flat because tensoring L is an equivalence thus exact. Let ψ : L ⊗O N ∼= O the
isomorphism, U an element of C, then by construction of ⊗, after localization, we may assume there
exists sections xi ∈ L(U), yi ∈ N (U) that ψ(xi ⊗ yi) = 1. Then there is an automorphism of
L|U : x 7→

∑
ψ(x⊗ yi)xi. This automorphism factors through

L|U → O⊕n
U → L|U ,

thus L|U is a direct summand of a finite free OU -module, thus L is of finite presentation.
Assume L is invertible, consider the evaluation map

L ⊗O Hom(L,O)→ O,

and by(5.2.3.3),

Hom(O,O) = HomO(L ⊗N ,O)→ HomO(N ,HomO(L,O)).

The image of 1 gives a morphism N → HomO(L,O). Tensoring L gives the inverse of the evaluation
map. □

Cor.(5.2.5.6).The pullback of an invertible sheaf is an invertible sheaf, because tensoring commutes
with pullbacks(5.2.2.12).

Def.(5.2.5.7)[Picard Groups].For any ringed site (C,O), there is a set of invertible modules over
C that any invertible module is isomorphic to exactly one of them. Then this set forms an Abelian
group, called the Picard group Pic(O).

Prop.(5.2.5.8)[Invertible Sheaves and Locally Free Sheaves of Rank 1]. If (X,OX) is a ringed
space, then any locally free OX -module of rank 1 is invertible. And when (X,OX) is a local ringed
space, the converse holds as well.

Proof: Assume L is locally free of rank 1 and consider the evaluation map(5.2.3.1)

L ⊗O Hom(L,O)→ O.

This map is an isomorphism when restricting to any trivializing covering of L, so it is an isomorphism.
Thus L is invertible by(5.2.5.5).

Assume (Sh(C),O) is a local ringed topoi and L is invertible, the proof of(5.2.5.5) shows there
exists a covering {Ui → U} that L|Ui is a direct summand of a finite free OUi-module. Replacing Ui
by U , let π be the projection of OrU onto L|U which corresponds to a matrix with entries in O(U).
The image of π acting on O(U)r is a finite free O(U)-module M , thus there are f1, . . . , ft generating
unit ideal of O(U) such that Mfi is finite free. Now by definition of local ringed topoi(5.2.1.6), after
replacing U by a covering, we may assume M is finite free, which means L|U is free summand of OrU .
But L is invertible, thus rank of L is 1. □
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Prop.(5.2.5.9).Let X be a locally ringed space and L ∈ Pic(X) that is generated by global sections
s0, . . . , sn. If F is the kernel of the map O⊕n+1

X → L, then F ⊗ L is globally generated.

Proof: F is finite locally free of rank n by(5.2.5.1). The elements

sij = (0, . . . , 0, sj , 0, . . . , 0, si, , . . . , 0) ∈ Γ(X,L⊕n+1)

is in Γ(X,F ⊗ L), and it can be verified locally s.t. they generate F ⊗ L. □

6 Sheaves on Spaces

Sheaves on Topological Spaces

Remark(5.2.6.1).A topological space can be regarded as a ringed space by assigning the locally
constant sheaf Z as the structure sheaf.

Def.(5.2.6.2)[Grothendieck’s Six Operators]. Let f : X → Y be a continuous map of topological
spaces, then the inverse image defines a continuous map between sites YZar → XZar, so by(5.1.2.9)
and(5.1.2.11) we can define

• the pushforward fpF , fpF (U) = F (f−1(U)) sends presheaf to presheaf.
• the direct image f∗F , f∗F(U) = F(f−1(U)) sends sheaf to sheaf.
• the inverse image fpG, fpG(U) = lim−→f(U)⊂V G(V ) that sends presheaf to presheaf.

• the inverse image f−1G = fs(G) that sends sheaf to sheaf.
• For a morphism of locally compact spaces, we can define a proper direct image:

f!(F)(U) = {s ∈ Γ(f−1(U),F)|Supp(s)→ U proper}

This is a subsheaf of f∗F and it is left exact. we denote Γc(X,F) as the group f!(F) where
f : X → pt. And the stalk f!(F)y = Γc(f−1(y),F|f−1(y)) Cf.[Gelfand P224 P225].

• the proper inverse image (special case) i! for a closed immersion Z ⊂ X defined by

i!(F)(U = V ∩ Z) = {s ∈ Γ(V,F)|Supp(s) ∈ Z}.

sends Abelian sheaves to Abelian sheaves.
• the internal tensor product.
• the internal Hom.

Proof: Check that f! is a sheaf: it is separated clearly, it suffices to show that for a covering
∪Ui = W and ξi ∈ F (f−1(Ui)), the section ξ ∈ F (f−1(W )) they generated by sheaf property of F is
in f!F (W ). For a compact subset K, there is a finite cover ∪iUi of it, thus K − ∪i ̸=jUj is compact
in Uj , thus its inverse image is compact in Supp(ξ). there are f.m. Uj , thus the inverse image of K
is compact in Supp(ξ). □

Def.(5.2.6.3)[Stalks].The convenience of rings spaces compared to the case of sites is the it has stalk
functors: For any presheaf F on X and a point i : x→ X, define the stalk Fx = ip(F)(5.2.6.2).

Prop.(5.2.6.4)[Stalks Commutes with Shifification].Taking stalks commutes with shifification.
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Proof: Cf.[Sta]007Z. □
Prop.(5.2.6.5). If a sheaf on a ringed space has only one non-vanishing stalk, then it is a skyscraper
sheaf. (Because the restriction map to that point for every open set is an isomorphism).

Prop.(5.2.6.6)[Stalks].Taking stalks is a left adjoint to the skyscraper sheaf from Presheaves to Sets,
thus it preserves cokernel. Moreover, for a map of sheaves F → G on X,

• φ is a monomorphism iff φx is injective for all x ∈ X.
• φ is an epimorphism iff φx is surjective for all x ∈ X.
• φ is an isomorphism iff φx is surjective for all x ∈ X.

Proof: 1: If φ is a monomorphism, then φx is clearly. Conversely, if φx are all injective, if s ∈ F(U)
mapsto 0 ∈ (U), then sx mapsto 0 ∈ Gx for all x, thus sx = 0 for all x, thus s = 0.

2: If φ is an epimorphism, then φx is surjective by definition. The converse is also true.
3: If φx is isomorphism for all x, then φ is monomorphism by 1, and for any t ∈ G(U), t is locally

coming from some section of s, and these sections are compatible on their intersections because of
monomorphism, so they glue together to a section s ∈ F(U) that φ(U)(s) = t. □

Prop.(5.2.6.7)[Topological Spaces and Sites].Let f : X → Y be a continuous map of topological
spaces, then f induces a map of sites X → Y because f−1 is exact(5.1.2.14), thus induces a map of
topoi f : Sh(X)→ Sh(Y )(5.1.2.20).

Cor.(5.2.6.8).Let f : X → Y be a continuous map of topological spaces,
• Let G be a presheaf on Y , then there is a canonical bijection of stalks (fp(G))x = Gf(x). If G is

a sheaf on Y , then there is a canonical bijection of stalks (f−1(G))x = Gf(x).
• f−1 is left adjoint to f∗.
• f! is left exact when X,Y are locally compact. And j! is left adjoint to the functor j−1 for an

inclusion of open subset j : U ⊂ X.
• i! is right adjoint to i∗ for a closed immersion i : Z → X, in particular i∗ is exact when i is a

closed immersion.

Proof: 1: This is because (−)p commutes with composition(5.2.6.3), and also shifification commutes
with (−)p(5.2.6.4).

2: This is immediate.
3:
4: The adjointness follows form the fact that any section under a homomorphism i∗G → F has

support contained in Z. □
Prop.(5.2.6.9).Let i : Z → X be a closed immersion, then the functor i∗ : Ab(Z)→ Ab(X) is exact,
fully faithful, with the essential image those sheaves with support in Z.

Prop.(5.2.6.10)[Canonical Exact Sequences].We have a canonical exact sequences of sheaves of
modules:

0→ j!(F|U )→ F → i∗(F|Z)→ 0
0→ i∗i

!
Y F → F → j∗(F|U )→ 0

(check on stalks), which is important to use reduction to calculate sheaf cohomology. The latter
induces long exact sequences:

0→ H0
Y (X,F)→ H0(X,F)→ H0(U,F|U )→ H1

Y (X,F)→ · · ·
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Proof: Cf.[Sta]02UT. □

Prop.(5.2.6.11).On a topological space X, for a qc open subset U , (⊕Fi)(U) = ⊕Fi(U). This uses
the compactness of U .

Morphisms of Local Ringed Spaces

Def.(5.2.6.12)[Open Immersion of Ringed Spaces].A morphism f : (X,OX)→ (Y,OY ) of ringed
spaces is called an open immersion if f is a homeomorphism of X onto an open subset of Y , and
the map f ♯ : f−1(OY )→ OX is an isomorphism.

Prop.(5.2.6.13).Let (X,OX) be a ringed space, U ⊂ X an open subset, and OU = OX |U is a sheaf of
rings on U , then (U,OU )→ (X,OX) is an open immersion, and (U,OU ) is called the open subspace
associated to U .

Prop.(5.2.6.14) [Universal Property of Open Immersions].Let f : (X,OX) → (Y,OY ) be an
open immersion of ringed spaces, then it has the universal property that any morphism of ringed
spaces (T,OT ) → (Y,OY ) that factors set-theoretically through f(X) factors uniquely through
(X,OX).

Def.(5.2.6.15)[Closed Immersion].Let i : Z → X be a morphism of local ringed spaces, then i is
called a closed immersion if:

• i is a homeomorphism of Z onto a closed subspace of X.
• the map OX → i∗OZ corresponding to f ♯ is surjective with kernel I.
• the OX -module I is locally generated by sections.

And for a closed immersion, I is called the ideal sheaf of i.

Def.(5.2.6.16)[Closed Immersion Defined by Ideals].Let (X,OX) be a local ringed space, and
I ⊂ OX a sheaf of ideals on X locally generated by sections , Let Z be the support of the sheaf of
rings OX/I. Z is closed in X because it is the support of 1. by(5.2.6.9), there is a unique sheaf of
rings OZ on Z that i∗OZ = OX/I. For any z ∈ Z, the stalk Oz = OX,z/Iz is a quotient of a local ring
and is non-zero, thus a local ring. Then (Z,OZ) is a local ringed space and i : (Z,OZ)→ (X,OX) is
a closed immersion, called the closed immersion defined I.

Prop.(5.2.6.17) [Closed Immersions are Equivalent to Ideals].Let f : X → Y be a closed
immersion of local ringed spaces with ideal sheaf I. Let i : Z → X be the closed immersion defined
by I(5.2.6.16), then f is isomorphic to i.

Proof: Because f∗OZ ∼= OX/I on X. □

Prop.(5.2.6.18).For a closed immersion of ringed spaces f , f∗ on OX -mod is fully faithful, with image
those modules annihilated by I, where I is the structural kernel.

Proof: Cf.[Sta]08KS. □

7 Spec and Schemes
Def.(5.2.7.1)[Spectrum].Given a commutative ring A, the spectrum of A SpecA is a locally ringed
space whose underlying space is the set of primes of A, and the topology is generated by the standard
open subsets D(f) = {p|f /∈ p}.
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To define the structure sheaf OX , we first define a sheaf on the site of standard open subsets,
which takes value Rf on D(f). This is truly a sheaf by(4.4.2.3), and then we can use(5.1.2.25) to
extend this sheaf to a sheaf on SpecA, called the structure sheaf OX .

A locally ringed space of the form SpecA is called an affine scheme. The category of affine
schemes is denoted by Aff.

Def.(5.2.7.2)[Schemes].The category Sch of schemes is the full subcategory of the category of local
ringed spaces(5.2.1.10) consisting of local ringed spaces that are locally isomorphic to SpecA.

Lemma(5.2.7.3). If X is a local ringed space, x ∈ X, and Y = SpecA an affine scheme, f : X → Y is
a morphism, consider the ring map Γ(X,OX) f♯−→ Γ(Y,OY )→ OX,x, and consider the inverse image
p of mx, which corresponds to y ∈ Y , then f(x) = y.

Proof: There are commutative diagrams

Γ(Y,OY ) OY,f(x)

Γ(X,OX) OX,x

and the map of local rings is a local ring map. So the inverse image of mx is just mf(x), so mf(x) = my.
□

Prop.(5.2.7.4).Let X be a local ringed spaces and Y = SpecA an affine scheme, then the map
Hom(X, SpecA)→ Hom(A,Γ(X,OX)) is an isomorphism.

Proof: The inverse map is constructed as follows: for any φ : A → Γ(X,OX) and x ∈ X, define
Φ(x) to be the point corresponding to the inverse image of mx in A → Γ(X,OX) → OX,x. In this
way, Φ−1(D(f)) is just D(φ(f)) ⊂ X which is open, thus Φ is continuous. Now we want to construct
a sheaf homomorphism f−1(OY ) → OX , and it suffices to construct compatible maps on the affine
open basis D(f), by(5.1.3.17). Now Γ(D(f),OY ) = Af , and because f is invertible on D(φ(f)), there
is by universal property a unique map Af → D(φ(f)) extending φ. Then by universal property these
maps are compatible. Notice the construction here also shows the homomorphism is determined by
the map set-theoretically.

Finally, we need to show this induces a local ring map on the stalks, and this is quite obvious
from the definition.

Then we show these two maps are inverse to each other: It suffices to show any ring map A →
Γ(X,OX) comes uniquely from a map X → Y : the uniqueness is proven by(5.2.7.3), and the sheaf
homomorphism is determined by the set-theoretical map by the above argument. □

Cor.(5.2.7.5)[Adjointness of Spec and Γ].The Spec operator Spec : CAlgop → Sch is right adjoint
to X → Γ(X,OX):

HomSch(X, Spec(A)) ∼= HomCAlg(A,Γ(X,OX)).

Notice the category of schemes is a full subcategory of the category of locally ringed spaces.

Cor.(5.2.7.6).Aff is equivalent to CAlgop.

Prop.(5.2.7.7)[Points of Schemes].Let X be a scheme and R a local ring, then there is a natural
bijection between morphisms SpecR→ X and pairs (p, φ) where p ∈ X is a point and φ : OX,x → R
is a local ring map.
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Proof: Consider where the closed point of SpecR is mapped to and choose an affine open nbhd of
that point, then we reduce to the affine case, which is by(5.2.7.5). □

Cor.(5.2.7.8). if f : Y → X is a morphism of schemes that f(y) = x, then we have a commutative
diagram

OY,y Y

OX,x X

Cor.(5.2.7.9).The points of X are in bijection with equivalent classes of morphisms from the spectra
of fields to X, and each equivalent class contains a minimal element Spec k(x)→ X.

Proof: This is because a local ring map from OX,x to a field factors through k(x). □

Prop.(5.2.7.10).The closure of a subset T of Spec(A) is V (∩p, p ∈ T ).

Prop.(5.2.7.11)[Scheme is Sober].The underlying space of a scheme is sober.

Proof: Firstly this is true for affine schemes, by(3.11.4.13). Then notice for any affine open
subscheme U , the generic point for Z ∩ U is the generic point for Z. □

Construction of Schemes

Prop.(5.2.7.12)[Global Spec].There is an S-scheme f : SpecS A → S for every Qco sheaf of OS-
algebras A on S that for any affine open subscheme U ⊂ X, f−1(U) ∼= SpecA(U) over U . This
construction is right adjoint to the direct image map:

HomCAlgOS
(A, π∗OX) ∼= HomSch /S(X,SpecS A).

and defines an equivalence of affine morphisms over S and Qco OS-algebras. Moreover, this defines
an equivalence of the category of A-modules and the category of OSpec A-modules.

Proof: Choose an affine open covering {Ui → X} of X, and consider the schemes SpecA(Ui)→ Ui
over Ui, then their restrictions to Uij are compatible, because this is true after further restriction
to an affine open covering of Uij , we can use(5.1.5.4). Then we can use(5.1.5.4) to get an S-scheme
f : SpecS A → S that f−1(Ui) ∼= SpecA(Ui).

Now we check that for any affine open subset U ⊂ X, f−1(U) ∼= SpecA(U) over U . But this is
true after base change to Ui ∩ U for any i, so it is true, by(5.1.5.4).

To show the adjointness condition, by(5.1.5.4), it suffices to show canonical(thus compatible)
isomorphism for S affine. In this case, this reduces to(5.2.7.5). □

Cor.(5.2.7.13).Let S be a scheme and A is a Qco sheaf of OS-algebras, then
• For any morphism g : S′ → S, S′ ×S SpecS(A) ∼= SpecS′(g∗A).
• The natural map A → π∗OSpecS(A) is an isomorphism of OS-algebras.

Proof: 1: It can be checked that S′ ×S SpecS(A) and SpecS′(g∗A) satisfy the same universal
property.

2: It suffices to check on affine opens, then it is trivial. □

Lemma(5.2.7.14) [Affine Case].Fiber product of affine schemes is also affine that corresponds to
the tensor product of their corresponding rings, by(5.2.7.5).
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Prop.(5.2.7.15)[Finite Limits of Schemes].Fiber products exist in the category of schemes, and
there is a final object SpecZ, so arbitrary limits exist in the category of schemes(3.1.1.47).

In fact, finite limits exists in the category of ringed spaces, and finite limits of schemes coincide
with finite limits as ringed spaces.

Proof: Let f : X → S, g : Y → S, and Ui is an affine open covering of S, Vij is an affine open
covering of f−1(Ui) and Wik is an affine open covering of g−1(Ui), then we can check hVij ×hUi
hWik

is a covering of hX ×hS hY by representable open subfunctors(8.7.1.13), by(5.2.7.14), thus it is
representable. □

Cor.(5.2.7.16)[Open Subschemes].Let X → S, Y → S, and V ⊂ X,W ⊂ Y be open subschemes
mapping into open subscheme U ⊂ S, then there is a natural open immersion V ×U W → X ×S Y
with image π−1

1 V ∩ π−1
2 (W ).

Proof: There is a natural map V ×U W → X ×S Y by Yoneda lemma, and this map has the
universal property that any map f : (T,OT ) → X ×S Y that π1 ◦ f has image in V and π2 ◦ f has
image in W factors uniquely through V ×U W . But so does the open immersion π−1

1 V ∩ π−1
2 (W )→

X ×S Y (5.2.6.14), so they are equal. □

Cor.(5.2.7.17).Let f : X → S, g : Y → S, and Ui is an affine open covering of S, Vij is an affine open
covering of f−1(Ui) and Wik is an affine open covering of g−1(Ui), then

X ×S Y = ∪i ∪j,k Vij ×Ui Wik

is an affine open covering of X ×S Y .
Also, the structure sheaf of X ⊗S Y is given by OX×SY = π−1

1 OX ⊗π−1OS
π−1

2 OY .

Cor.(5.2.7.18).The equalizer of two morphisms from X to Y exists, it is a locally closed subscheme
of X, and it is a closed subscheme of X if Y is separated.

Proof: because it is the base change of ∆ : Y → Y × Y (3.1.1.47), then use(5.4.4.76). □

Remark(5.2.7.19)[Infinite Product of Schemes Doesn’t Exists].WARNING: infinite products
of schemes may not exists, Cf.[Sta]0CNH. Intuitively, if you want to glue affine products together,
you will notice you can identify only those products that is equal a.e..

Remark(5.2.7.20).Let X be a scheme over S and S′ → S is a morphism of schemes, then we
sometimes denote X ×S S′ by XS′ , if no confusion is caused.

Def.(5.2.7.21)[Generic Fibers and Special Fibers]. If X is a scheme over an integral ring A, then
the generic fiber of X/A is the stalk Xη, where η = (0) ∈ SpecA.

If X is a scheme over a ring R, a special fiber is the stalk of X over a maximal ring m.

8 Rational Maps
Def.(5.2.8.1) [Rational Maps].Let X,Y ∈ Sch /S and Y/S separated, a rational map over S
f : X → Y is an equivalence class of maps U → Y over S where U is an open dense subset of X. A
rational function on X is a rational map X → A1. It has a ring structure. The ring of rational
functions is denoted by R(X).

Because two rational maps are equivalent iff they are compatible on the intersection of their
domain as Y/S is separated, a rational map φ : X → Y has a maximal domain of definition, denoted
by dom(φ).
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Prop.(5.2.8.2). If X is a scheme with f.m. generic points ηi, then

R(X) =
∏
OX,ηi .

Proof: Cf.[Sta]01RV. □

Def.(5.2.8.3)[Birational Maps].X,Y ∈ Sch /S are called birational over S if they are isomorphic
in the category of S-schemes with dominant rational maps.

Prop.(5.2.8.4).Two schemesX,Y over S are birational over S iff there are nonempty open subschemes
U ⊂ X,V ⊂ Y that are isomorphic over S.

Proof: □

Def.(5.2.8.5) [S-Dense Subsets].Let X ∈ Sch /S, a subscheme U ⊂ X is called S-dense if Us is
dense in Xs for any s ∈ S.

Prop.(5.2.8.6).Let X ∈ Schpf /S and V ⊂ X is a qc open subscheme, then the set of points s ∈ S
s.t. Vs ⊂ Xs is not dense is locally constructible in S. And if V is S-dense in X, then it is also
schematically dense in X.

Proof: Cf.[?]P56. □

Prop.(5.2.8.7). If X ∈ Schqc /S and U ⊂ X is an S-dense open subscheme, then U contains an
S-dense open subscheme of S that is qc.

Proof: Cf.[?]P56. □

Def.(5.2.8.8)[S-Rational Maps].Let X,Y ∈ Schsep,loc.pf /S an S-rational map f : X → Y is an
equivalence class of maps U → Y over S where U is an open subset of X that is S-dense.

Because two rational maps are equivalent iff they are compatible on the intersection of their
domain as Y/S is separated, a rational map X → Y has a maximal domain of definition.

Def.(5.2.8.9) [S-Birational Maps].Let X,Y ∈ Schsep,loc.pf /S are called S-birational if they are
isomorphic in the category of S-schemes with dominant S-rational maps.

Prop.(5.2.8.10).The notion of S-rational and S-birational maps are stable under base change, because
a base change of fields is flat locally of f.p. thus open.

Prop.(5.2.8.11) [Faithfully Flat Descent].Let X ′, X, Y ∈ Schsep,loc.pf /S and φ : Y → S an S-
rational map,

• If f : X ′ → X flat, then φ ◦ f is an S-rational map X ′ → Y , and dom(φ ◦ f) = f−1(dom(φ)).
In particular, if f is f.f. and φ ◦ f is a morphism, then φ is also a morphism.

• If T → S is flat, then the base change φT : XT → YT satisfies dom(φT ) = dom(φ)×S T .

Proof: Cf.[BLR90]P58. □
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9 Associated Points

Main References are [Sta]Chap30.

Def.(5.2.9.1).For a scheme X and a Qco sheaf F on X, a point is called associated to F iff mx is
associated to Fx, which is equivalent to mx are all zero-divisors in M by(4.2.5.18). When F = OX ,
x is called an associated point of X.

Prop.(5.2.9.2). If X is locally Noetherian, then an associated prime is equivalent to it is an associated
prime of Γ(X,OX) of Γ(U,F) for a nbhd U of x.

Proof: Cf.[[Sta]02OK]. □

Prop.(5.2.9.3). Same results of associated points are parallel to the discussion of associated primes:
• relations of Ass(F) w.r.t exact sequences(4.2.5.14).
• Ass(F) ⊂ Supp(F)(4.2.5.16).
• When X is locally Noetherian and F is coherent, for a quasi-compact open set U of X, the

number of associated points in U is finite(4.2.5.16).
• When X is locally Noetherian, F = 0 iff Ass(F) is empty(4.2.5.16).
• When X is locally Noetherian, If Ass(F) ⊂ an open subset U , then Γ(X,F) → Γ(U,F) is

injective(4.2.5.22).
• If X is locally Noetherian, then the minimal elements(under specialization) of Supp(F) are

associated points of F . in particular, any generic point of an irreducible component of X is an
associated points of X.

• If X is locally Noetherian, then if a map φ : F → G that is injective at all the stalks of Ass(F),
then φ is injective.

10 Others

Frobenius

Def.(5.2.10.1)[Frobenius].Let p ∈ P, r ∈ Z, q = pr, k ∈ Field,#k = q,X0 ∈ Sch /k,X = X0 ⊗k k,
• The absolute Frobenius for X or X0 is the automorphism φr,X : X → X that is the pr-th

power on OX .
• FX = idX0 ×kφ−1

k/k
, called the arithmetic Frobenius, which is not k-linear!

• FrX = φX0 ×k idk : X → X, which is k-linear, called the geometric Frobenius.
• Let U be a X0-scheme, then the relative Frobenius FU/X0,r : U → φ∗

r,X0
(U) is defined by the

universal property of the base change of U by φrX0
. FU/X0,1 is denoted by FU/X0 .

Prop.(5.2.10.2).FrX = φr,X ◦ FX : X → X.

Proof: Easy. □

Prop.(5.2.10.3).FU/X0 is a universal homeomorphism. In particular, if U → X0 is étale, then it is
an isomorphism.
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Proof: Because U → X,X ×φX ,X U → X are both étale, FU/X0 is étale. And from the fact both
both φX0 and φU0 are universally bijective, we see FU0/X0 is universally bijective. So it must be an
isomorphism?. □

Prop.(5.2.10.4). If X is a scheme over a field k of char p, then X(p) is reduced iff X is geometrically
reduced. This follows from(5.4.3.2).
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5.3 Cohomology on Ringed Sites
Main references are [Sta], [Har77] and [Sheaf Cohomology, Anonymous]. Should be refreshed with

the language of ∞-categories?
Notation(5.3.0.1).

• We use notations defined in Sites, Sheaves, Topoi and Stacks.

1 Derived Cohomology

D(Mod(O))

Def.(5.3.1.1)[Setups].Let (C,O) be a ringed site, write K(O) = K(Mod(O)), D(O) = D(Mod(O)).
The Abelian category Mod(O) contains enough injectives by(3.7.3.29) and(3.7.3.23), so we can con-
sider right derived functor for any left exact functor.

1. (Hom) Let K be a presheaf of sets on C, then F 7→ HomPSh(C)(K,F) is a left exact functor
Mod(O) to Ab, thus we denote its derived functors as H i(K,F).

2. (Section) The section functor Γ(U,F) is the left exact functor Mod(O) → Mod(O(U)) and
call the derived functors H i(U,F) = H i(RΓ(U,F)) as the i-th cohomology of F at U . In
fact, this functor is just MorPSh(C)(hU ,F) defined in(5.3.1.1).

3. (Global Section) Let e be the final object in PSh(C), then we define the global section
functor Γ(C,−) to be the left exact functor Mod(O) → Ab : F → MorPSh(C)(e,F) =
lim←−X∈Cop

Γ(X,F), then we define its derived functor R(C,F), and call the derived functors
H i(C,F) = H i(RΓ(C,F)) the i-th cohomology groupg of F on C.

4. (Pushforward) Let (Sh(C),O) → (Sh(D),O′) be a morphism of topoi, then f∗ is a left exact
functor from Mod(O) to Mod(O′)(5.1.2.18), and we call its derived functors Rif∗ the i-th
higher direct images.

5. (Shifification) Let shifification functor ι : PSh(C)→ Sh(C) is left exact, and we call the derived
functors Hp(F ) the sheaf-cohomology presheaves of F .

Def.(5.3.1.2)[Ga,Gm].Let (C,O) be a ringed site, denote Ga,C = O,Gm,C = O∗.

Prop.(5.3.1.3)[Global Section as Pushforward].For a ringed site (C,O), if we endow C with the
discrete topology, then there is a functor C → pt which is cocontinuous, thus induce a morphism of
ringed topoi π : (Sh(C),O)→ (Sh(pt) ∼= Ab,Γ(C,O))(5.1.2.21). Then π∗ is exactly F 7→ Γ(C,F), so
Rπ∗F = H i(C,F).

Prop.(5.3.1.4) [Change of Topologies].Let C, C′ be sites and i : C′ be a fully subcategory of C,
i : C′ → C is continuous and cocontinuous satisfying the hypothesis of(5.1.2.23), then for F ∈
Sh(C′),G ∈ Sh(C), there are functorial isomorphisms

Hp(C′, U, i−1G) ∼= Hp(C, U,G).

And if i satisfies the hypothesis of(5.1.2.25), then moreover there are functorial isomorphisms

Hp(C′, U, F ′) ∼= Hp(C;U, i∗F ′) = Hp(C; i(U), i!F ′)

Proof: For the first assertion, notice g−1 preserves injectives because it is right adjoint to g! = f−1

is exact(5.1.2.23).
The second assertion follows immediate from(5.1.2.25). □
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Calculations

Prop.(5.3.1.5) [Locality of Cohomologies].Let (C,O) be a ring site and U ∈ C, then for F ∈
Mod(OX), Hn(U,F) = Hn(C/U,F|U ), by(5.3.4.2) and the composition of derived functors applied
to the pullback j∗ : C/U → C.

Prop.(5.3.1.6) [Sheaf-Cohomological Presheaves].The forgetful functor is right adjoint to the
exact shifification functor, the composition of derived functors applied to the functor Γ(U,−)◦ ι from
PSh(C) to Ab shows its right derived functor is

Hp(F ) = Rpι(F ) : U → Hp(U,F ).

Prop.(5.3.1.7) [Higher Direct Image].For f : (C′,O′) → (C,O) a morphism of ringed topoi and
F ∈ Sh(C), the composition of derived functors applied to the functor (♯◦(f∗)PSh)◦ι(because ♯, (f∗)PSh

are exact(5.1.2.10)) shows that Rpf∗F = (f∗Hp(F))♯. So flask sheave thus flabby sheave are right
acyclic for f∗.

In particular, Rpf∗F can be calculated locally on the base.

Prop.(5.3.1.8)[Relative Leray Spectral Sequence].Let

(f, f ♯) : (Sh(C),O)→ (Sh(C′),O′), (g, g♯) : (Sh(C′),O′)→ (Sh(D),OD)

be morphisms of ringed topoi, then the natural transformation R(g ◦ f) → Rg∗ ◦ Rf∗ is an isomor-
phisms, and for any F• ∈ K+(O), there is a spectral sequence convergence

Ep,q2 = Rpg∗R
qf∗(F•) =⇒ En = Rn(g ◦ f)∗F•.

Proof: This is just the Grothendieck spectral sequence(3.9.7.11), where the condition is satisfied
by(5.3.1.7) and(5.3.4.12). □

Cor.(5.3.1.9)[Leray Spectral Sequence].Let (f, f ♯) : (Sh(C),O)→ (Sh(C′),O′) be a morphism of
ringed topoi, then for any F• ∈ K+(O), then RΓ(C,−) → RΓ(C′,−) ◦ Rf∗ is an isomorphism, and
there is a spectral sequence convergence

Ep,q2 = Hp(C′, Rqf∗(F•))⇒ En = Hn(C,F•).

Prop.(5.3.1.10)[Relative Mayer-Vietoris Sequence].Let (C,O) be a ringed site and U : {U →
X,V → X} is a covering s.t. U → X is a monomorphism, then for any F ∈ Sh(O) and any morphism
of ringed sites f : (C,O)→ (C′,O′), there is a long exact sequence of sheaves in Sh(O′):

0→ (f |X)∗(F|X)→ (f |U )∗(F|U )⊕ (f |V )∗(F|V )→ (f |U∩V )∗(F|U∩V )→ R1(f |X)∗(F|X)→ . . .

that is functorial in F .

Proof: Choose a functorial injection resolution F → I•(3.9.2.9), then there is an exact sequence
of complexes

0→ (f |X)∗(I•|X)→ (f |U )∗(I•|U )⊕ (f |V )∗(I•|V )→ (f |U∩V )∗(I•|U∩V )→ 0

because injective sheaves are flabby(5.3.4.9) and (U ×X V )×X f−1W → V ×X f−1W is a monomor-
phism for any W ∈ C′. Then we take the long exact sequence of cohomology. □
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Cor.(5.3.1.11)[Mayer-Vietoris Sequence].Let (C,O) be a ringed site and U : {U → X,V → X}
is a covering s.t. U → X is a monomorphism, then for any F ∈ Sh(O), there is a long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ×X V,F)→ H1(X,F)→ . . .

that is functorial in F .

Prop.(5.3.1.12)[Compatibility with Algebraic Structures].Let (C,O) be a ringed site and F ∈
Sh(C), K ∈ PSh(C), then H∗(K,F) is the same calculated as O-modules or Abelian sheaves.

Proof: Denote (C,Z) the trivial ringed site and ab : (C,O)→ (C,Z) the forgetful functor, then ab
is exact and Hom(K,Fab) = Hom(K,F), thus we can use the Leray spectral sequence(5.3.1.9). □

Prop.(5.3.1.13)[Direct Products].Let (C,O) be a ringed site and Fi be a family of sites indexed over
a set I, then for any presheaf of sets K on C, there is a Leray spectral sequence convergence(5.3.1.8)

Hp(K,Rq(
∏
i

)Fi)→ Rn(
∏
i

Hom(K, ·))(Fi) ∼=
∏
i

Hn(K,Fi).

In particular, H1(K,
∏
iFi)→

∏
iH

1(K,Fi) is injective.

Prop.(5.3.1.14)[Filtered Colimits].Hn(U,−) commutes with filtered colimits if T is a Noetherian
topology.

Proof: n = 0 case follows from the fact the colimit presheaf is already a sheaf, because for any
finite cover, the Čech complex of the limit sheaf is the filtered colimit of Čech complexes, and filtered
colimit is exact.

And a filtered colimits of injective sheaves is flask, because flask need only be checked for finite
coverings at this case(because of the fact T and T f have equivalent category of sheaves(5.1.1.3) and
definition of flask(5.3.4.8)), and a filtered colimit of exact Čech complexes is exact. So we can choose
a functorial injective resolution(3.9.2.9) and use the colimit resolution to calculate the cohomology.
□

Lemma(5.3.1.15). ?? If X is a qs ringed space, then Sh(X) → Sh(Xfp) is an equivalence by is and
is, where fp is the subtopology of X generated by qcqs open subsets.

Proof: The proof is the same proof as that of(5.1.4.20). □

Prop.(5.3.1.16)[Filtered Colimits].H i(U,−) commutes with direct limits if X is a qs ringed space
and U ⊂ X is qc.

Proof: This follows from?? the same way(7.4.1.8) follows from(5.1.4.20). □

Low Dimensions

Cf.[Sta]Chap21.5-7.

Prop.(5.3.1.17)[H1 and Picard Group].Let (C,O) be a local ringed site, then there is a canonical
isomorphism of Abelian groups

H1(C,O∗) = Pic(O).
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Proof: Let L be an invertible sheaf, them there exists a subsheaf

L∗ : U 7→ {s ∈ L(U)|s· : O(U)→ L(U) is an isomorphism}.

Notice if f ∈ O∗(U) and s ∈ L∗(U), then fs ∈ L∗(U), and any two s, s′ ∈ L∗(U) differ by an
element of O∗(U), so L∗ is a pseudo-O∗-torsor. Moreover, as L is locally free of rank 1 by(5.2.5.8),
so L∗(U) has sections locally, so it is an O∗-torsor.

In this way, we get a map

Pic(O)→ Tor(O∗
X) ∼= H1(X,O∗

X)(5.3.2.18).

This map is injective: if L corresponds to a trivial torsor, then L∗ has a global section, and then L
is also trivial. This map is also surjective, because if F is an O∗

X -torsor, then we can define

L1 : U 7→ [F(U)⊗O(U)]/O(U)∗,

where the action is given by f · (s, g) = (fs, f−1g), and L1 is an O-module given the addition
(s, g) + (s′, g′) = (s, g + s′

s g), where s′

s ∈ O(U) satisfies s′

s · s = s′. Then the shifification L of L is a
locally trivial bundle that maps F . □

Prop.(5.3.1.18) [H2 and Objects of Gerbes].Let C be a site and S → C be a gerbe whose au-
tomorphism sheaves are Abelian. Let G be the sheaf defined in(5.1.3.24). If U is an object of C
that

• there exists a cofinal system of coverings {Ui → U} that for any such covering, H1(Ui,G) =
0,H1(Ui ×U Uj ,G) = 0,

• H2(U,G) = 0.
Then SU is non-empty.

Proof: By hypothesis, there is a covering {Ui → U} and xi in S lying over Ui. By item1, after
refining the covering, we may assume H1(Ui,G) = 0 and H1(Uij ,G) = 0. Consider the sheaf

Fij = Isom(xi|Uij , xj |Uij )

on C/Uij , then there is an action GUij × Fij → Fij . Then Fij is a pseudo G|Uij -torsor and clearly a
torsor because any two objects of a gerbe is locally isomorphic.

By(5.3.2.18), these torsors are trivial, thus having a global section. In other words, there are
isomorphisms φij : xi|Uij → xj |Uij . To get an object x over U , it suffices to manage the choices of φij
to get a descent datum. For this, use the fact H2(U,G) = 0 and Ȟ2(U ,G)→ H2(U,G) is injective by
Cech to Derived spectral sequence(5.3.2.13). □

Others

Prop.(5.3.1.19).Let K ′ → K be a map of presheaves of sets on C whose shifification is surjective.
Set K ′

p = K ′ ×K × . . .×K K ′, then for any F ∈ Sh(C), there is a spectral sequence convergence

Ep,q1 = Hq(K ′
p,F)⇒ Hp+q(K,F).

Proof: Since shifification is exact, (K ′
p)♯ = (K ′)♯p. Then we use(5.1.2.26) to change to a larger site

C′ where the topoi are equivalent and K ′,K are objects in C′ and K ′ → K is a covering, then we
use the E1 page of the Čech to derived spectral sequence(5.3.2.13). Notice this need modification,
the modification goes back to the proof of the Grothendieck spectral sequence, where we choose the
natural Čech complex resolution in place of the CE resolution, because we have(5.3.2.3). □
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Cor.(5.3.1.20)[Čech-Alexander Resolution]. If C is a site with the indiscrete topology, X a weakly
final object(3.1.1.8) of C, then for any Abelian sheaf F on C, the total cohomology RΓ(C,F) is
represented by the Čech complex

F(X)→ F(X ×X)→ F(X ×X ×X)→ . . . .

Proof: By(5.3.4.10), Hq(Xp,F) = 0 for q > 0. The assumption says hX → ∗ is surjective, thus the
conclusion is a special case of(5.3.1.19). □

2 Čech Cohomology

Def.(5.3.2.1)[Čech Complex and Čech Cohomology].Let (C,O) be a ringed site and U : {Ui →
U} be a covering, we have a canonical complex of presheaves ZU ,• defined to be

· · · →
⊕
i0,i1,i2

j!ZUi0i1i2 →
⊕
i0,i1

j!ZUi0i1 →
⊕
i0

j!ZUi0 → 0.

And for any presheaf of OX -module F , the complex

Hom•
Psh(O)(ZU ,• ⊗O,F) ∼= Hom•

P Ab(ZU ,•,F)

is called the Čech complex Č•(U ,F) of F . The cohomology Ȟ∗(U ,F) of Č•(U ,F) is called the
Čech cohomology of F w.r.t U .

ZU ,• is exact except in degree 0, where the homology is j!ZU . This is because we have a homotopy:
choose a fixed i0, for a s ∈ Γ(Ui1...in ,F), we map it to (hs)ii1...in = δi,i0s?. In particular, an injective
sheaf is Čech acyclic.

Lemma(5.3.2.2).The Čech complexes Č•(U ,−) induces a functor from PSh(C) to K+(Ab), which is
an exact functor.

Proof: Because in each degree this functor is a sum of functors of the form F 7→ F(U), which are
exact functors on PSh(C). □

Prop.(5.3.2.3) [Čech Complex as Derived Functors].Let C be a site and U : {Ui → U} be a
covering, then Ȟ0(U ,−) is left exact, and for F ∈ Sh(C), there are functorial quasi-isomorphisms

Č•(U ,F)→ RȞ0(U ,F)

which is functorial in F .

Proof: Choose a functorial injective resolution of presheaves I• of F , and consider the double
complex Č(U , I•). There are maps of complexes

Č(U ,F)→ Tot(Č(U , I•)), Ȟ0(U , I•)→ Tot(Č(U , I•))

which are both quasi-isomorphism by an application of spectral sequence and the fact the columns
and rows are exact in positive degrees: The columns are exact because of(5.3.2.2) and the rows are
exact because ZU ,• is exact in positive degrees(5.3.2.1) and Ip are injective. Then we have the desired
quasi-isomorphism, and it is functorial in F . □
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Cor.(5.3.2.4) [Čech Cohomologies]. If we take filtered colimit for coverings, F → Ȟ0(U,F) =
H0(U,F) is a left exact functor from presheaves to sets, the derived complex is just lim−→U Č•(U ,F),
and the derived functors are just lim−→U Ȟ

q(U ,F).

Proof: This is because we can take colimit of the conclusion of(5.3.2.3), because the colimit is
filtered by(5.3.2.5) so exact, so the Čech complex also represents the derived complex. □

Lemma(5.3.2.5).The refinement morphism of Čech cohomologies of two coverings doesn’t depends
on the refinement map chosen.

Proof: For two refinement map, there is a commutative diagram

∏
F (Ui)

∏
F (Ui ×U Uj)

∏
F (U ′

j)

f−g

d0

∆1

so it induce the same map on the kernel. □

Def.(5.3.2.6) [Alternating Čech Complexes].Let (C,O) be a ringed site and U : {Ui → U} ∈
Cov(C), F ∈ Sh(O), then the alternating Čech complex of F is defined to be the subcomplex

Č•
alt(U ,F) = {s ∈ Č•(U ,F)|si0,...,ip = 0 if im = in,m ̸= n, siσ(0),...,iσ(p) = sgn(σ)si0,...,ip} ⊂ Č•(U ,F).

It is truly a subcomplex.

Prop.(5.3.2.7)[Alternating and Usual Complexes].Let (X ,OX) be a ringed space, U : {Ui →
U} ∈ Cov(C), F ∈ Sh(OX), then the inclusion

Č•
alt(U ,F)→ Č•(U ,F)

is a homotopy equivalence.

Proof: Cf.[Sta]01FM. The proof is rather complicated.? □

Remark(5.3.2.8).WARNING: This is not right for ringed sites, e.g. the étale sites, for example,
cf.(7.4.1.23).

Comparison Theorems

Prop.(5.3.2.9). If two coverings are refinements of each other, then their Čech cohomology is isomor-
phic.

Proof: Because the refinement morphism doesn’t depends on the refinement map(5.3.2.5). □

Prop.(5.3.2.10)[Comparison Theorem for Čech Acyclicity]. If there are two coverings U,V and
a presheaf F , then we can construct a double Čech complex with the (p, q)-term being F(Ui1,...ip ∩
Vj1,...jq). Then the vertical and horizontal arrays calculate the Čech cohomology ∏j H

∗(U|Vj1...,jq ,F),∏
iH

∗(V|Ui1...,iq ,F) respectively.
So by Spectral sequence(3.9.7.8), if both higher Čech cohomology group Hk(U|Vj1...,jq ,F),

Hk(V|Ui1...,iq ,F) vanish, i.e., they are both F-acyclic, then H∗(U,F) ∼= H∗(V,F).
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Cor.(5.3.2.11). If V is a refinement of U, and V|Ui1,...,ip are all F acyclic, then H∗(U,F) ∼= H∗(V,F).

Proof: It suffices to prove U|Vi1,...,iq is F-acyclic. But U|Vi1,...,iq and idVi1,...,iq are refinements of each
other, so(5.3.2.9) settles the proof. □

Cor.(5.3.2.12). If V|Ui1,...,ip is F-acyclic, then the covering H∗(U × V,F) = H∗({Ui ∩ Vj},F) ∼=
H∗(U,F).

Proof: Because V|Ui1,...,ip and U × V|Ui1,...,ip are refinement of each other, so U × V|Ui1,...,ip are
F-acyclic by(5.3.2.9), and U×V refines U, so(5.3.2.11) can be applied. □

Prop.(5.3.2.13)[Čech to Derived].For any F ∈ Sh(C), the Grothendieck spectral sequence applied
to Γ(U,−) = H0({Ui → U},−) ◦ ι = Ȟ0(U,−) ◦ ι gives us:

Hp({Ui → U},Hq(F)) =⇒ Hp+q(U,F).

Ȟp(U,Hq(F )) =⇒ Hp+q(U,F).

Cor.(5.3.2.14)[Ȟ0 of Sheaf-Cohomology Presheaves].For any F ∈ Sh(C), Hp(F)++ = Hp(F )♯ =
0 for p > 0, so

Hp(F)+(U) = Ȟ0(U,Hp(F )) = 0 p > 0.

because Hp(F)+ is separated by(5.1.2.7). In particular, for any s ∈ Hp(U,F), p > 0, there exists a
covering U of U s.t. s|Ui = 0 for any i.

Thus the low degree of Čech to sheaf says(3.9.7.12):

0→ Ȟ1(U,F)→ H1(U,F)→ 0→ Ȟ2(U,F)→ H2(U,F)→ Ȟ1(U,H1(F))→ Ȟ3(U,F)→ H3(U,F).

Proof: By Grothendieck spectral sequence applied to forgetful functor and exact ♯ functor, where
the condition are satisfied by(5.3.4.3). □

Cor.(5.3.2.15) [Acyclic Covering Calculates Derived Cohomologies]. If we have
Hq(Ui0i1...ir ,F) = 0, q > 0, then Hp({Ui → U},F) = Hp(U,F) as OX(U)-modules.

Proof: Because Hp({Ui → U},Hq(F )) vanish for q > 0. □

Prop.(5.3.2.16)[Čech Acyclic Čech Comparison]. If C be a ringed site, G ⊂ C,Cov ⊂ Cov(C) and
F ∈ Sh(C) that

• For any {Ui → U} ∈ Cov, Ui, U ∈ G, and Ui0,...,ip ∈ G.

• Cov |U is cofinal in Cov(C/U) for any U ∈ G.

• Ȟq(U,F) = 0 for any U ∈ G and q > 0.
Then Hp(X,F) = Ȟp(X,F) = Hp({Ui → X},F) for any {Ui → X} ∈ Cov.

Proof: By(5.3.2.15), we only have to show that Hq(U,F) = 0 for U ∈ G and q > 0. Use induction
on q, use Čech to sheaf2: Ȟp(U,Hq(F)) ⇒ Hp+q(U,F). The case q ̸= 0 is by condition2, 3, and
induction hypothesis. For p = 0, use (5.3.2.14). □
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Non-Abelian Čech Cohomologies

Def.(5.3.2.17) [Non-Abelian Cohomology].Let C be a site and G ∈ ShGrp(C), for any covering
U = {Ui → U} ∈ Cov(C), we can define a non-Abelian Čech cohomology Ȟ1(U ,G) as follows:
Define Z1(U ,G)=sets of families

{(ci)|ci ∈ Γ(Uij ,G) : cjkc−1
ik cij = 1}.

If c ∈ Z1(G,M), then for any g ∈ Γ(U,G),

cg = (c′
ij = g|−1

Ui
cijg|Uj )

is also in Z1(U ,G). This defines an equivalence relation on Z1(U ,G), the equivalence classes are
called Ȟ1(G,M). This is compatible with the commutative case.

Taking filtered colimit over all coverings of U , we can also define Ȟ1(U,G).

Prop.(5.3.2.18)[H1 and Torsors].Let C be a site and H ∈ Sh(C), then there is a canonical isomor-
phism of H-torsors(5.1.1.14) and H1(C,H).

Proof: Cf.[Sta]03AJ. Should have a non-commutative version. □

Prop.(5.3.2.19)[Long Exact Sequence of Non-Abelian Čech Cohomologies].Let C be a site
and 1→ A→ B → C→ 1 is an exact sequence in ShGrp(C), then for any U ∈ C, there is a long exact
sequence of pointed sets

1→ Γ(U,A)→ Γ(U,B)→ Γ(U,C) δ−→ Ȟ1(U,A)→ Ȟ1(U,B)→ Ȟ1(U,C) ∆−→ Ȟ2(U,A)

the last term is defined only when A is in the center of B and U satisfies: For any covering U and a
refinement W → U × U , there exists a refinement U ′ → U s.t. U ′ × U ′ is a refinement of W.

δ is defined as follows: for c ∈ Γ(C,C), by taking a covering {Ui → U}, we may assume that
c|Ui = bi ∈ Γ(Ui,B), then aij = b−1

i bj is a cocycle, and a different choice differ by a cocyle, so this is
well-defined.

∆ is defines as: for any covering U of U and c = (cij) a cocycle in Ȟ1(U ,C), by passing to a
refinement, we may assume that cij ∈ Γ(Uij ,B), then δ(c) is represented by the 2-cocycle aijk =
cjkc

−1
ik cij ∈ Γ(U,A).

Proof: ??The verification of well-definedness of ∆ is checked at [Serre Local Fields P124].?
For the exactness at CG, the definition of δ shows that δ(c) = 1 iff there is an inverse image b

that b−1σ(b) = 1 for all σ.
For the exactness at H1(G,A), aσ = b−1σ(b) if aσ is in the image of δ. Conversely, the image of

b in C is in CG, so it is in the image of δ.
For the exactness at H1(G,B), one way is clear, and for the other, if π(bσ) = c−1σ(c), then if t

is an inverse image of c, then tbσσ(t)−1 is a cocycle in A cohomologous to bσ.
For the exactness at H1(G,C), one way is clear, and if bs is an inverse image of bs and aσ,τ =

bσσ(bτ )b−1
στ is a coboundary, then it is aσσ(aτ )a−1

στ , so we change b to a−1
σ bσ, as A is in the center of

B, this lifts c to a cocycle in B. □

Prop.(5.3.2.20)[Hilbert’s Theorem 90].For L/K a Galois extension, H1(Gal(L/K),GLn(L)) = 1,
where L is equipped with the discrete topology.
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Proof: We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite
quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of
L/K finite.

By definition, this is equivalent to any B-semi-linear representation of G free of finite rank is
trivial, which is by(15.1.1.14). □

Cor.(5.3.2.21) [semi-linear representations].The proposition implies that any semi-linear L-
representation of GL/K is trivial.

Cor.(5.3.2.22).H1(G(L/K), SLn(L)) = 1. This is seen from the exact sequence 1 → SL(n,L) →
GL(n,L)→ L× → 1.

3 Derived Homology

K-Flat Complexes

Def.(5.3.3.1)[K-flat Complexes].Let (C,O) be a ringed site, a complex K• of O-modules is called
K-flat if for any acyclic complex F• of O-modules, the total complex Tot⊕(F•⊗O K•) is acyclic, or
equivalently, tensoring with K• maps quasi-iso to quasi-iso, by the long exact sequence and the fact
tensoring is an exact functor of triangulated categories(3.7.8.4).

Prop.(5.3.3.2). If K,K ′ are K-flat complexes of O-modules,
• Tot⊕(K ⊗O K ′) is K-flat.
• If (K1,K2,K3) is a distinguished triangle in K(O), if two of them is K-flat, then the third is

also K-flat.
• Any bounded above complex of flat O-modules is K-flat.
• Any filtered colimits of K-flat complexes are K-flat.

Proof: 1: This follows from(3.7.8.2).
3: use(3.7.8.4), and the long exact sequence.
4: Cf.[Sta]06YQ.
5: because we are taking termwise-colimit, and Tot and tensor all commute with filtered colimits.

□

Prop.(5.3.3.3)[K-Flat Resolutions].Any complex P • of O-modules has a K-flat resolution K• →
P •, moreover, each term of K• is a flat O-module and K• → P • is termwise surjective.

Proof: Cf.[Sta]06Y4. □

Lemma(5.3.3.4).Let P → Q be a quasi-iso of K-flat complexes of O-modules, then for any complex
L of O-modules, Tot(L⊗ P )→ Tot(L⊗Q) is a quasi-isomorphism.

Proof: Choose a K-flat resolution(5.3.3.3) K of L, then notice

Tot(L⊗ P ) ∼= Tot(K ⊗ P ) ∼= Tot(K ⊗Q) ∼= Tot(L⊗Q)

by definition of K-flatness(5.3.3.1). □

Prop.(5.3.3.5)[Pullback of K-Flat is K-Flat].Let f : (Sh(C′),OC′)→ (Sh(C),OC) be a morphism
of ringed topoi, then f∗ maps K-flat complexes to K-flat complexes.

Proof: Cf.[Sta]0G7E. □
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Derived Tensor Product and Tor

Def.(5.3.3.6)[Derived Tensor Product].Let A → B be a homomorphism of sheaves of rings over
a site C, then the functor Tot⊕(− ⊗O −) is a bi-exact bifunctor of triangulated categories K(A) ×
K(B)→ D(B) by(3.7.8.4)(3.7.7.8), and the class of K-flat complexes in K(A) and K-flat complexes
in K(B) satisfies the condition of (the dual of)?? by(5.3.3.1) and(5.3.3.3), so we get a left derived
functor

−⊗LA − : D(A)×D(B)→ D(B),

called the derived tensor product. And if any of M•, N• ∈ K(A) is K-flat, the natural map
M• ⊗LA N• → Tot⊕(M• ⊗A N•) is an isomorphism in D(B)

Prop.(5.3.3.7).Let A → B be a homomorphism of sheaves of rings over a site C. Let N• be a
B-module, then for M• ∈ D(A), there are a functorial isomorphisms

M• ⊗LA N• ∼= (M• ⊗LA B)⊗LB N•

Proof: Consider both sides as right derived functors of the multi-exact multifunctor. As this is
true for Tot⊕, these follow from the universal property and(3.9.3.14), the conditions are satisfied
by(5.3.3.3)(5.3.3.4)(5.3.3.5). □

Cor.(5.3.3.8)[Commutative Monoidal Structure]. If A = B = C = O and K,L,M ∈ K(O), there
are natural isomorphisms

K ⊗L L ∼= L⊗L K, (K ⊗L L)⊗LM ∼= K ⊗L (L⊗LM).

Thus D∗(O) has a commutative monoidal structure.

Remark(5.3.3.9) [WARNING]. If M,N are two A-modules, then we can define MR ⊗LR N and
M ⊗LR NR, but there are no reason for them to be isomorphic.

Prop.(5.3.3.10).Let A → B → C be homomorphism of sheave of rings on a site C, then for M• ∈
K(A), N• ∈ K(B) and K• ∈ K(C), there are functorial isomorphisms

(M ⊗LA N)⊗LB K = M ⊗LA (N ⊗LB K) = (M ⊗LA C)⊗LC (N ⊗LB K)

and
(M ⊗LA N)⊗LB K ∼= (M ⊗LA K)⊗LC (N ⊗LB C)

Proof: Consider both sides as right derived functors of the multi-exact multifunctor. As these are
true for Tot⊕, these follow from the universal property and(3.9.3.14), the conditions are satisfied
by(5.3.3.3)(5.3.3.4)(5.3.3.5). □

Def.(5.3.3.11)[Tor Modules].Let F ,G be O-modules, then the Tor modules TorO
p (F ,G) is defined

to be H−p(F ⊗LO G).

Prop.(5.3.3.12)[Flatness and Tor].Let (C,O) be a ringed site, and F is an O-module. Then F is
a flat O-modules iff TorO

1 (F ,G) = 0 for any O-module G.

Proof: If F is flat, then clearly TorO
1 (F ,G) = 0 for any O-module G. Conversely, use the long

exact sequence associated to F ⊗LO ·(3.7.8.4). □
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Def.(5.3.3.13)[Relative Cup Product].Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi, then for any K,L ∈ D(OC), there is a canonical functorial relative cup product

Rf∗K ⊗LOD Rf∗L→ Rf∗(K ⊗LOC
L)

in D(OD) that is the adjunction map of the map

Lf∗(Rf∗K ⊗LOD Rf∗L)→ Lf∗Rf∗K ⊗LOC
Lf∗Rf∗L→ K ⊗LOC

L

by(5.3.3.15). This map is symmetric and associative.
In particular, if (Sh(D),OD) = (Sh(pt),Γ(C,OC) = A)(5.3.1.3), we get a map

RΓ(C,K)⊗LA RΓ(C, L)→ Γ(C,K ⊗LOC
L).

Derived Pullback

Def.(5.3.3.14)[Derived Pullback].Let f : (Sh(C′),O′) → (Sh(C),O) be a morphism of ringed site,
define the derived pullback

Lf∗ : D(O)→ D(O′) : F• 7→ f−1F• ⊗Lf−1O O
′(5.3.3.6).

In particular, if F• is K-flat, then there are natural isomorphisms Lf∗F• ∼= f∗F•.
Moreover, Lf∗ is also naturally isomorphic to the left derived functor of the pullback morphism

f∗, by composition of derived functors applied to the f∗ = Tot(· ⊗f−1OO′) ◦ f−1 where f−1 is exact.
In particular, Lf∗ only depends on the underlying map f∗ of ringed topoi.

Prop.(5.3.3.15).Let f : (Sh(C),OC) → (Sh(D),OD), g : (Sh(D),OD) → (Sh(E),OE) be a morphism
of ringed topoi, then

• There is a natural isomorphism L(g ◦ f)∗ ∼= Lf∗ ◦ Lg∗. In particular, as localizing map j∗ is
exact, Lf∗ can be calculated locally on the base.

• For F•,G• ∈ModOD , there are natural functorial isomorphisms

Lf∗(F• ⊗LOD G
•) ∼= Lf∗F• ⊗LOC

Lf∗G•.

In particular, as localizing map j∗ is exact, the derived tensor product can be calculated locally
on the base.

• For F• ∈ModOC
,G• ∈ModOD , there are natural functorial isomorphisms

F• ⊗LOC
Lf∗G• ∼= F• ⊗Lf−1OD

f−1G′

• For F•,G• ∈ModOD , the natural isomorphisms satisfy a commutative diagram

Lf∗(F• ⊗LOD
G•) Lf∗ Tot⊕(F• ⊗OD G•)

Lf∗F• ⊗LOC
Lf∗G• f∗ Tot⊕(F• ⊗OD G•)

f∗F• ⊗LOC
f∗G• Tot⊕(f∗F• ⊗OC

f∗G•)
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Proof: 1, 2, 3: These follow from(5.3.3.10).
4: By a universal argument, (F•,G•) 7→ Lf∗(F• ⊗LOD

G•) is the derived functor of the bi-exact
bifunctor

F : K(OD)×K(OD)→ D(OC) : (F•,G•) 7→ f∗ Tot⊕(F• ⊗OD G
•).

Then by the universal property, both natural transformations corresponds to a natural transformation
θi : LF → LF . So it suffices to show that they are isomorphic. But K-flat morphisms are essentially
surjective in D(OD), thus it suffices to prove the diagram is commutative for F ,G K-flat. But in this
case, there are commutative diagrams

LF (F•,G•) F (F•,G•)

LF (F•,G•) F (F•,G•)

η(F,G)

θi⋆(QOD ×QOD ) id

η(F,G)

and η(F ,G) is an isomorphism, so θ1 = θ2. □

Prop.(5.3.3.16)[Adjunction].Lf∗ is left adjoint to Rf∗, by(3.9.3.15) and(5.2.2.9).

Prop.(5.3.3.17)[Base Change Map].Let

(Sh(C′),OC′) (Sh(C),OC)

(Sh(D′),OD′) (Sh(D),OD)

g′

f ′ f

g

be a commutative diagram of ringed topoi, then for any K ∈ D(OC), there is a canonical base change
map

Lg∗Rf∗K → R(f ′)∗L(g′)∗K

functorial in K, and this map is compatible with composition of diagrams.

Proof: By adjunction(5.3.3.16), this follows from the canonical map

Rf∗K → Rg∗R(f ′)∗L(g′)∗K = Rf∗R(g′)∗L(g′)∗K,

which comes from the adjunction map K → R(g′)∗L(g′)∗K. □

Cor.(5.3.3.18)[Flat Base Change Morphism].Let

(Sh(C′),OC′) (Sh(C),OC)

(Sh(D′),OD′) (Sh(D),OD)

g′

f ′ f

g

be a commutative diagram of ringed sites. Assume both g, g′ are flat, then for any F• ∈ K+(OC),
there is a canonical base change map

g∗Rf∗F• → Rf ′
∗(g′)∗F•.

and when (Sh(D′),OD) = (Sh(C/U),OU ) is the localizing site, then this map is an isomorphism

(Rf∗F•)U ∼= Rf ′
∗F•

U .
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Proof: The last assertion follows from the fact the restriction of a K-injective is also a K-
injective(5.3.4.2). □

Def.(5.3.3.19)[Projection Map].Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi,
then for any E ∈ D(OC) and K ∈ D(OD), there is a canonical functorial projection map

Rf∗E ⊗LOD K → Rf∗(E ⊗LOC
Lf∗K)

which is the adjunction of the map

Lf∗(Rf∗E ⊗LOD K) ∼= Lf∗Rf∗E ⊗LOC
Lf∗K → E ⊗LOC

Lf∗K

by(5.3.3.15).

Prop.(5.3.3.20) [Projection Formula]. In situation(5.3.3.19), if K is perfect(5.3.4.17), then the
projection map is an isomorphism.

Proof: To check it is an isomorphism, it suffice to find a covering {Ui → V } for each V ∈ C that
this map is an isomorphism on Ui.(To see this, look at H i, and notice U 7→ Mod(OU ) is a stack).
Then we may assume K is a finite complex of OU -modules consisting of finite free OU -modules. And
then we use truncation to reduce to the case K is discrete, in which case it is trivial. □

Inner Hom

Def.(5.3.3.21)[Sheaf Hom Complexes].Let (C,O) be a ringed site and P •, Q• ∈ K(O), we define
the Sheaf Hom complex Hom•(P •, Q•) to be

Homn(P •, Q•) =
∏
i

HomO(P i, Qn+i)(5.2.3.1),

with the differential giving by d({fk})i = {dfi − (−1)ifi+1d} and suitable signatures.
It is clear that

Γ(U,Hom•
O(P •, Q•)) = Hom•

OU
(P •|U , Q•|U ), Γ(C,Hom•

O(P •, Q•)) = Hom•
O(P •|U , Q•|U )

and

Hn(Γ(U,Hom•(P •, Q•))) = HomK(OU )(P •|U , Q•|U [n]), Hn(Γ(C,Hom•(P •, Q•))) = HomK(O)(P •, Q•[n]).

Prop.(5.3.3.22)[Adjunction].For K•,M•,L• ∈ K(O), there is a canonical functorial isomorphism:

Hom•(K,Hom•(L,M)) = Hom•(Tot(K ⊗R L),M).

Proof: Cf.[Sta]0A5Y. □

Prop.(5.3.3.23).For K•,M•,L• ∈ K(O), there are canonical functorial morphisms:
• Tot(Hom(K•,L•)⊗O K•)→ L•,
• Tot(Hom•(L,M)⊗O Hom•(K,L))→ Hom•(K,M),
• Tot(Hom•(L,M)⊗O K)→ Hom•(Hom•(K,L),M),
• Tot(K ⊗O Hom•(M,L))→ Hom•(M,Tot(K ⊗O L)),
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• K → Hom•(L,Tot(K ⊗O L)).

Proof: All these are consequences of(5.3.3.22). □

Lemma(5.3.3.24).Let (C,O) be a site and (I•)′ → I• be a quasi-isomorphism of K-injective O-
modules and (L•)′ → L• be a quasi-isomorphism of O-modules, then the natural map

Hom•(L•, (I•)′)→ Hom•((L•)′, I•)

is a quasi-isomorphism.

Proof: Hn(Hom•(L•, (I•)′)) is the the sheaf U 7→ HomK(OU )(L•
U , (I•)′

U [n]), and (I•)′
U [n] is K-

injective by(5.3.4.2). □

Def.(5.3.3.25) [Internal Hom].Let (C,O) be a ringed site, K(O) has enough K-injectives, thus
by(3.9.3.13), we can define the internal Hom

RHom : D(O)op ×D(O)→ D(O)

as the right derived functor of the bi-exact bifunctor Hom• : K(O)op × K(O) → D(O), where the
conditions are satisfied by(5.3.3.24).

Prop.(5.3.3.26)[Internal Hom and Localization].Let (C,O) be a ringed site, for any G,F ∈ K(O)
and U ∈ C, the natural transformation

RHom(F ,G)|U → RHom(F|U ,G|U )

is an isomorphism. In particular, we can calculate Ext locally.

Proof: This follows from(5.3.3.21)(5.3.4.2) and trivial Grothendieck duality applied to restrictions.
□

Prop.(5.3.3.27) [Derived Hom and Internal Hom].For a ringed site (C,O) and F ,G ∈ D(O),
U ∈ C,

RΓ(C, RHom(F ,G)) = RHom(F ,G), RΓ(U,RHom(F ,G)) = RHomOU
(F|U ,G|U ).

In particular,
Γ(U,RHom(F ,G)) = HomD(OU )(F|U ,G|U ),

and
H0(C, RHom(F ,G)) = HomD(O)(F ,G), Hp(C, RHom(F ,G)) = ExtpO(F ,G)

by(5.3.3.21)(5.3.4.2)(5.3.4.13) and the composition of derived functors.

Prop.(5.3.3.28). If K,L,M∈ D(O), then there is a natural isomorphism

RHomO(K, RHom(L,M)) ∼= RHomO(K ⊗LO L,M).

Proof: Consider both sides as the derived functor of the triple-exact triple-functor

K(O)op ×K(O)op ×K(O)→ D(O) : (K•,L•,M•) 7→ Tot⊕(K• ⊗O Tot⊕(L• ⊗OM•)),

the conditions are satisfied by(5.3.4.13)(5.3.3.3). As this is true for Tot by(5.3.3.22), this follows
from the universal properties and(3.9.3.14). □
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Cor.(5.3.3.29)[Adjunction].By(5.3.3.28), taking H0(RΓ(C,−)), we get:

HomD(O)(K, RHom(L,M)) = HomD(O)(K ⊗L L,M).

that is, derived tensor is left adjoint to internal hom.

Prop.(5.3.3.30).Given complexes K,L,M∈ D(O), there are canonical functorial morphisms:
• Hom(K,L)⊗LO K → L,
• RHom(L,M)⊗LO RHom(K,L)→ RHom(K,M),
• RHom(L,M)⊗LO K → RHom(RHom(K,L),M),
• K ⊗LO RHom(M,L)→ RHom(M,K ⊗LO L),
• K → RHom(L,K ⊗LO L).

Proof: These are direct consequences of(5.3.3.29). □

Prop.(5.3.3.31).Let (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed site and K,L ∈ D(O), there
is a natural morphism

Rf∗RHomO(L,K)→ RHomO′(Rf∗L,Rf∗K).

Proof: This follows from the adjunction(5.3.3.28)(5.3.3.30) and the relative cup product(5.3.3.13).
□

Def.(5.3.3.32)[Internal Ext Groups].For any G,F ∈ K(O), we define the internal Ext groups

ExtnO(G,F) = H i(RHom(G,F)) ∈Mod(O).

Prop.(5.3.3.33).For E ,F ,L ∈Mod(OX) and L finite locally free,

Exti(F ⊗ L,G) ∼= Exti(F ,L∨ ⊗ G) ∼= Exti(F ,G)⊗ L∨

because there are maps between them(5.2.5.2), and Ext is local, so check locally. In particular,

Exti(F ⊗ L,G) = Exti(F ,L∨ ⊗ G).

Prop.(5.3.3.34) [Spectral Sequences for Internal Ext].Let (C,O) be a ringed site and K• ∈
K−(O),F• ∈ K+(O), then there are spectral sequence convergence

Ei,j2 = ExtiO(H−j(K•),F•) =⇒ Exti+jO (K•,F•).

Ei,j1 = ExtjO(K−i,F•) =⇒ Exti+jO (K•,F•)

Ei,j2 = H i(C, ExtjO(K•,F•)) =⇒ Exti+jO (K•,F•)

Proof: 1, 2: Choose a (bounded below) injective resolution I• of F•, and these are the two spectral
sequences associated to the double complex Hom•

O(K•, I•).
3: Use Grothendieck spectral sequence on(5.3.3.27). □



590 CHAPTER 5. ALGEBRAIC GEOMETRY I: SCHEME THEORY

4 Acyclic Sheaves
Prop.(5.3.4.1)[Pushforward of Injectives].Let f : (Sh(C),OC) → (Sh(D),OD) be a flat map of
ringed topoi, then f preserves injectives, as f∗ is exact.

Prop.(5.3.4.2)[Restriction of (K-)Injectives].Let (C,O) be a ringed site, U ∈ C, then
• If K• be a K-injective complex O-modules, then (K•)|U is a K-injective complex of OU -modules.
• If I is an injective O-module, then I|U is an injective O-module.

Proof: Use(3.9.2.6) and the fact j∗
U is right adjoint to the exact functor jU !(5.2.2.9)(5.2.2.9). □

Prop.(5.3.4.3). If I ∈ Sh(C) is injective, then I is also injective in PSh(C).

Proof: Because restriction is right adjoint to the exact shifification functor. □

Prop.(5.3.4.4).For an injective sheaf F on a site (C,O), F (U) is injective Abelian group for every
U ∈ C.

Proof: This is because for the morphism i : pt → C : pt 7→ U , ip is exact(ipA(V ) = ⊕Hom(V,U)A),
hence ip preserves injectives. □

Flask Sheaves

Def.(5.3.4.5) [Totally Acyclic Sheaves].A totally acyclic sheaf on a ringed site (C,O) is an
object in Sh(C) that is acyclic for any functor HomPSh(C)(K,−).

Prop.(5.3.4.6) [Characterization of Totally Acyclic Sheaves].Let C be a site and F ∈ Sh(C),
then F is totally acyclic iff

• F is acyclic for Γ(U,−) for any U ∈ C.
• For every surjection K ′ → K of sheaves of sets the extended Čech complex

0→ H0(K,F)→ H0(K ′,F)→ H0(K ′ ×K K ′,F)→ . . .

is exact.

Proof: Cf.[Sta]07A1. □

Prop.(5.3.4.7).A totally acyclic sheaf is acyclic for any map of ringed topoi f : (Sh(C),OC) →
(Sh(D),OD).

Proof: This follows from the description of Rif∗ in(5.3.1.7). □

Def.(5.3.4.8)[Flask Sheaves].A flask sheaf on a ringed site (C,O) is an object of Sh(C) that satisfies
the following equivalent conditions:

• it is acyclic for ι.
• It is acyclic for any Ȟ0({Ui → U},−)
• It is acyclic for all Γ(U,−).

In particular a totally acyclic sheaf is flask.
A flabby sheaf is an object of Sh(C) that for any monomorphism U → V , F(V ) → F(U) is

surjective;
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Proof: 1 ⇐⇒ 3 is by(5.3.1.6),
3 → 2: use Čech to sheaf1(5.3.2.13), notice the q > 0 terms vanish, thus Ȟp({Ui → U},F) =

Hp(U,F) = 0.
2→ 3 follows from(5.3.2.16). □

Prop.(5.3.4.9). Injective sheaves are flabby, Flabby sheaves on a ringed space are flask.

Proof: For the first assertion, use(5.2.2.9) and the fact j!OU → j!OV is a monomorphism for
V → U a monomorphism by definition(5.2.2.9).

For the last assertion, use(3.9.3.29): Injectives are flabby, so it is sufficiently large. For an exact
sequence 0 → F → G → H → 0 of sheaves, if F is flabby, then H is just the presheaf cokernel. (It
reduces to Ȟ1({Ui → U}, F ) = 0, and this is done by Zorn’s lemma). Thus if F is flabby, G is flabby
iff H is flabby(by five lemma). □

Prop.(5.3.4.10).On a discrete site, all sheaves is flask, because ι is the identity functor.

Prop.(5.3.4.11).Filtered colimits of flabby sheaves is flabby. (This is because filtered colimits are
exact).

Filtered colimits of injective sheaves over a Noetherian topological space is injective. (Use Baer
criterion, then notice every sub-object of ZU is finitely generated because it has only f.m. connected
component(3.11.3.4) so it maps to some Fα).

Prop.(5.3.4.12) [Pushforward of Totally Acyclic/Flask Sheaves].Let f : (Sh(C),OC) →
(Sh(D),OD) be a map of ringed topoi(reps. ringed site), then f∗ maps totally acyclic(resp. flask)
sheaves to totally acyclic(resp. flask) sheaves(5.3.4.5)(5.3.4.8). in particular, it maps injectives to
totally acyclic sheaves.

Proof: By(5.2.1.3) we may assume f is a map of ringed sites, and K = hU for some U ∈ C. Then
we notice H∗({Ui → U}, f∗F) = H∗({f−1(Ui) → f−1(U)},F), then we can use(5.3.2.16) to show
f∗F is totally acyclic. □

Prop.(5.3.4.13) [Technical Lemma]. If K• is K-flat O-modules and I• is K-injective O-modules,
then Hom•(K•, I•) is K-injective.

Proof: Use definitions(5.3.3.1)(3.9.2.1) and(5.3.3.22). □

Prop.(5.3.4.14). If I is an injective OX -module, then for a coherent locally free sheaf L, L⊗I is also
injective, because tensoring with L is adjoint to tensoring with L∨(5.2.5.2), which is exact.

Pseudo-Coherent Sheaves

Def.(5.3.4.15)[Strictly Perfect Complexes of Modules].Let (C,O) be a ringed site, a strictly
perfect complex of O-modules of O-modules is a finite complex of O-modules that each term is
a direct summand of a finite free O-module.

Def.(5.3.4.16)[Pseudo-Coherent Complexes of Modules].Let (C,O) be a ringed site, then K ∈
D(OX) is called an m-pseudo-coherent OX-module if for any U ∈ C, there exists a covering
{Ui → U} s.t. for any i, there are strictly perfect object Ei ∈ D(OUi) and a morphism Ei → K|Ui
that induces isomorphisms on H i for i > m and surjection on Hm.

K ∈ D(R) is called a pseudo-coherent OX-module if it is m-pseudo-coherent for any m.
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Perfect Sheaves

Def.(5.3.4.17)[Perfect Complexes of Modules].Let (C,O) be a ringed site, a perfect complex
of O-modules of O-modules is an object E in D(O) that for any U ∈ C there is a covering {Ui → U}
that E|Ui is can be represented by a strictly perfect complexes(5.3.4.15).

Prop.(5.3.4.18).Every mapping from a strictly perfect complex to an acyclic complex has a cover of
open sets that on each open set the map is nullhomotopic.

Proof: This is true for a single direct summand of a finite free sheaf, and we can use induction to
prove, Cf.[Sta]08C7. □

Cor.(5.3.4.19).The strictly perfect complexes are fake ”K-projective” objects in K(OX). Note it is
note technically K-projective, but it has all the properties of K-projective when proven, noticing the
fact it is irrelevant when taken shifification.

Def.(5.3.4.20)[Perfect Sheaves].Let (C,O) be a ringed site, an object K• in K(O) perfect if there
is a covering U that on each Ui there is a quasi-iso K•

i → K•|Ui with K•
i strictly perfect.

This is equivalent to K• is locally represented by perfect objects in D(O) by the fact that perfect
object is fake K-projective.

Prop.(5.3.4.21).When X is local ringed space, perfectness is equivalent to the fact that it is locally
a finite free OUi-module.

Proof: This is because direct summand of a finite free module is free, Cf.[Sta]0BCI. □

Prop.(5.3.4.22)[Strictly Perfect Modules are “Acyclic” for Hom•]. If (C,O) is a ringed site and
E•,F• ∈ K(O), then RHom(E•,F•) can be calculated directly by Hom•(E ,F) in the following cases:

• E• is strictly perfect.
• E• ∈ D−(OX),F• ∈ D+(OX), and each term En is a direct summand of a finite free OX -

module.

Proof: Cf.[Sta]08I5, 08DM. □

Prop.(5.3.4.23)[Duals].Let K be a perfect object in D(O), then
• K∨ = RHom(K,O) is also a perfect object, and (K∨)∨ ∼= K.
• For any M ∈ D(O), there are functorial isomorphisms

M ⊗L K∨ ∼= RHom(K,M), H0(C,M ⊗L K∨) ∼= HomD(O)(K,M).

Proof: Cf.[Sta]08JJ. □

Def.(5.3.4.24)[Relative Perfect Modules].Let (X,OX) → (S,OS) be a morphism of ringed sites
that is flat and locally of f.p., then E ∈ D(OX) is called a perfect object relative to S if E is
pseudo-coherent and E locally has finite tor dimension as an object in D(f−1OS). Cf.[Sta]08CG.

5 Topological Sheaves
References are [Sheaf Cohomology, Anonymous].
A topological space can be seen as a ringed site, so the theory of ringed sites applies to topological

spaces.
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Acyclic sheaves

Def.(5.3.5.1).An Abelian sheaf on a paracompact Hausdorff topological space X is called
soft iff is and ∀ closed V,F(X)→ F(V ) is surjective. A flabby sheaf is soft.
fine iff the sheaf of rings Hom(F ,F) is soft.
Fine and soft are local properties (Use Zorn’s lemma to construct one-by-one).

Prop.(5.3.5.2).For a sheaf of unital rings over a paracompact Hausdorff space X, the following are
equivalent,

1. it is a soft sheaf.
2. for any disjoint closed sets V,W , there is a section of X that is 0 on V , and 1 on W .
3. it possesses a partition of unity.
4. it is a fine sheaf.

Note any soft sheaf possesses a partition of unity.

Proof: 1 ⇐⇒ 2 is easy and 1→ 3 is the to choose a closed locally finite subcover and use Zorn’s
lemma to construct one-by-one. For 3 → 1, notice a closed section can extend to a slightly larger
nbhd.

Because for a sheaf of rings F , a partition of unity is equivalent to a partition of unity Hom(F ,F),
so 34 are equivalent because 13 are equivalent. □

Cor.(5.3.5.3).
• Note that a fine sheaf possesses a decomposition of section because the previous proposition

applies to Hom(F ,F), and a partition of unity in Hom(F ,F) yields a decomposition of section
in F . Thus a fine sheaf is soft. (extend to a small nbhd and use partition of unity).

• The sheaf of modules over a soft sheaf of rings is soft, by partition of unity.
• The continuous function sheaf on a paracompact Hausdorff space or the smooth function sheaf

on a smooth manifold is fine, thus any smooth module is fine (Use bump function).

Prop.(5.3.5.4). Soft sheaf, e.g. fine sheaf is adapted to Γ(X,−). (Similar as in(5.3.4.9), notice flabby
is soft and the others are the same as before).

Prop.(5.3.5.5).Let X be a locally compact space of finite compact dimension, when S is a soft sheaf,
and one of S and F is flat, then S ⊗k F is soft. Cf.[Cohomology of Sheaves Iversen P319].

Prop.(5.3.5.6).Over a locally compact space of finite dimension, any flat sheaf F onX has a resolution
of soft flat sheaves.

Proof: Cf.[Gelfand P232]. □

Lemma(5.3.5.7).A constant sheaf on an irreducible topological space is flabby, thus flask.

Basics

Prop.(5.3.5.8). If i : Z → X ∈ Top is a closed immersion, then for any F ∈ Sh(Z), H∗(Z,F) =
H∗(Z, i∗F).

Proof: This is because i∗ is exact(5.2.6.7), so we can apply the Leray spectral sequence(5.3.1.9). □
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Comparison Theorems

Prop.(5.3.5.9) [Singular].For any locally contractible topological space X and G ∈ Ab, there are
canonical isomorphisms

H∗
sing(X,G) ∼= H∗(X,G).

Proof: Shifification of the singular cochain complex is a flabby presheaf resolution of G because
it is locally contractible, check on stalks. Then we only have to prove C•(X) → (C/V )•(X) is
quasi-isomorphism, where V is the presheaf of locally vanishing cochain. It suffice to prove V •(X) is
exact.

For any i-cocycle φ, for any i − 1-complex σ, use barycentric subdivision, we can construct a
cσ whose boundary is σ and other simplexes on which ϕ vanishes, so we have the coboundary of
η : σ → φ(cσ) is φ. □

Lemma(5.3.5.10)[Poincaré].For a smooth manifold X of dimension n, there is an exact sequence

0→ RX
d−→ Ω0 d−→ Ω1 d−→ . . .

d−→ Ωn → 0

Proof: □

Prop.(5.3.5.11)[DeRham].For any smooth manifold X,

H∗
dR(X,RX) ∼= H∗(X,R)

Where the right is constant sheaf cohomology.

Proof: Use the fact that smooth sheaf is fine so adapted to sheaf cohomology(5.3.5.4), and Poincaré
lemma(5.3.5.10). □

Prop.(5.3.5.12)[Period Maps].For a smooth manifold X, by a similar method as(5.3.5.9), we can
define a differentiable singular cohomology H∗

sing,∞(X), and prove a canonical isomorphism

H∗
sing,∞(X,R) ∼= H∗(X,R).

Then combining with(5.3.5.11), we get a canonical isomorphism

H∗
dR(X,RX) ∼= H∗

sing,∞(X,R)

which can be described as follows: there is a map of sheaves

Ωk → C•
sing,∞(X)

that is locally defined to be ω 7→ σ 7→
∫
σ ω, then this map gives a map of complexes

Ω• → C•
sing,∞(X)

that induces the isomorphism.

Proof: ? Cf.[Warner, P206]. □

Prop.(5.3.5.13)[Čech and Sheaf Cohomology].For a paracompact Hausdorff space X, there are
isomorphisms

Ȟ i(X,Z) ∼= H i(X,Z).

Proof: Cf.[Godement, Prop5.10.1].? □
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Cohomology with Proper Support

References are [Cohomology of Sheaves Iversen].

Prop.(5.3.5.14). Soft sheaf is adapted to f! when X,Y are locally compact. Cf.[Gelfand P226]. So
we can use soft resolution to define Rif!, in particular, when Y = pt, we denote it by H i

c(X,F).
Using(5.2.6.2), we get the stalk of Rif!(F) at y is just H i

c(f−1(y),F|f−1(y)).

Def.(5.3.5.15).The compact dimension of a locally compact topological space is the smallest n
that H i

c(X,F) = 0 for i > n. It is also the maximal length of minimal soft resolution.
dimcR

n = n, and when Y is an open or closed subset of X, dimc Y ≤ dimcX. dimc is local in
the sense if every point has a nbhd of dimension≤ n, then dimcX ≤ n. Cf.[Iversen].

Prop.(5.3.5.16)[Proper Pushforward Commutes with Pullback].For a pullback diagram

X ×Y Z X

Z Y

τ ′

π′ π

τ

we have τ−1(π!F) = π′
!(τ ′)−1F .

Proof: □

Cohomology on Noetherian Spaces

There are three basic objects, the derived functor for f∗ as an Abelian sheaf, f∗ as a OX -module,
Γ(U,−) as an Abelian sheaf. Notice that an Abelian group is just a Z-module.

Prop.(5.3.5.17) [Grothendieck Vanishing].The sheaf cohomology of an Abelian sheaf over a
Noetherian topological space of dimension n vanish for k > n.

Proof: Use(5.2.6.10) and(5.3.5.8) and long exact sequence, we can reduce to the case of X irre-
ducible. Then we induct on dimension. Notice first any sheaf is a filtered colimits of sheaf generated
by f.m sections, thus we can use(5.3.1.14) to reduce to f.m sections case. And notice Fα′ → Fα → G,
then G Is generated by at most |α| − |α′| elements, so reduce to the one section case.

Now it is a quotient sheaf of Z, look at the kernel R. If the kernel is dZ at the generic pt, then
R|V ∼= Z on some nbhd, and R|V /Z supports on a lower dimension set, then we only need to consider
the pushout of constant sheaf ZU .

Now there is an exact sequence 0 → ZU → Z → ZY → 0(5.2.6.10), Z is flabby(5.3.5.7) so flask,
and the conclusion follows by induction.

Cf.[Sta]02UU.? □

Prop.(5.3.5.18).For f : X → Y , if I is an injective module on X, then Ȟp({Ui → U}, f∗I) = 0
for every open cover for an open subset U(5.3.4.8). This is because Čech cohomology is a derived
functor. (Notice f∗I may not be injective when f is not flat).

Cor.(5.3.5.19)[Mayer-Vietoris].For X = U ∪ V , there is a long exact sequence

0→ H0(X,F)→ H0(U,F)⊗H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ · · ·

derived from the Čech to sheaf1 because it has only two column, just wrap out the definition.
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5.4 Properties of Schemes

Main References are [Har77], [Sta], [?]nd [Tin20].

1 Basic Scheme Properties

Affine Local Properties of Schemes

Lemma(5.4.1.1) [Nike’s Trick]. In a scheme X and x ⊂ SpecA ∩ SpecB, x has an open nbhd in
SpecA ∩ SpecB that are distinguished in both SpecA and SpecB.

Proof: Choose a nbhd of x that is distinguished in SpecA that is contained in Spec∩SpecB, then
because distinguished of distinguished is distinguished, we may assume i : SpecA ⊂ SpecB. Now let
f ∈ B be an element that D(f) ⊂ SpecA, then I claim D(i♯(f)) = D(f), this will finish the proof,
but this is equivalent to i−1(SpecBf ) = SpecAi♯(f), which is true for ideal-theoretical reason. □

Prop.(5.4.1.2)[Affine Communication Theorem].A property P of affine open subsets is called
affine local if: Spec(A) has P ⇒ all Spec(Af ) has P , and any cover of Spec(Afi) has P ⇒ Spec(A)
has P . Notice a stalk-wise property is obviously affine-local.

Now if we call X has P̃ if X =
∪
i SpecAi that Ai has P . Then the following is equivalent:

• any open affine subscheme of X has P .
• any open subscheme of X has P̃ .
• X has a cover of open subschemes that has P̃ .
• X has P̃ .

Proof: 1→ 2→ 3→ 4 is obvious. It suffices to prove 4→ 1: if X = ∪SpecA, for any open affine
subscheme of X, by(5.4.1.1), it can be covered by distinguished opens that are also distinguished in
some SpecAi, so by hypothesis it has P . □

Remark(5.4.1.3).When proving locality of morphism properties using affine communication theorem,
one usually resort to Local Properties.

Prop.(5.4.1.4)[List of Stalkwise Properties]. All properties defined by a stalkwise ring-theoretic
property that is stalkwise.(4.1.4.2)

Prop.(5.4.1.5)[List of properties affine local on the target]. (All the property besides the H-
projectiveness is local on the target).

1. Because affineness is local on the target(5.1.5.26), all properties defined by a ring-theoretic
property local on the target is local on the target(4.1.4.4).

2. All properties that is stalkwise.
3. All properties that satisfies faithfully flat descent.(5.1.5.26)
4. Locally projective morphism.

Prop.(5.4.1.6)[List of properties affine local on the source]. (not complete)
1. All properties defined to be local ring map property local on the source.(4.1.4.4)
2. Openness.
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Proof:
1. Trivial.
2. Trivial.

□

Irreducible

Def.(5.4.1.7)[Irreducible Schemes].A scheme is called irreducible iff its underlying topological
space is irreducible.

Prop.(5.4.1.8)[Nearly Affine Local].For a scheme, the following are equivalent:
1. It is irreducible.
2. There is an affine cover Ui of X that Ui are all irreducible and Ui ∩ Uj ̸= ∅.
3. Every affine open subset of X is irreducible.

Proof: A scheme is sober(5.2.7.11), if X is irreducible, then X has a unique generic pt η that
{η} = X, then 2, 3 all holds. If 2 holds, then for a decomposition X = Z1 ∪Z2, any Ui belongs to Z1
or Z2, so it is easy to see Z1 = X or Z2 = X. If 3 holds, then choose an affine cover Ui of X, then
Ui ∩ Uj ̸= 0, otherwise Ui

⨿
Uj is affine and not irreducible, contradiction, so 2 holds. □

Cor.(5.4.1.9).The fiber product of irreducible schemes is irreducible, because .

Reducedness

Def.(5.4.1.10)[Reduced Schemes].A scheme is called reduced if OX(U) is reduced for every open
set U . Reduced is a stalk-wise property(5.4.1.5), it suffices to check reducedness at closed pts.

Prop.(5.4.1.11).For a reduced scheme X, Γ(X,OX)→
∏
x∈X k(x) is injective.

Prop.(5.4.1.12). If X is locally Noetherian, the set of points with reduced stalk is open in X.

Proof: This set is just the set of points x that Nx = 0, where N is the sheaf of nilradicals, which
is coherent, so it has closed supports(5.5.1.38). □

Prop.(5.4.1.13)[Reduction].There is a Xred → X associated tot every scheme, it is Spec(OX/N )
where N is the sheaf of nilpotent elements. This construction is right adjoint to the forgetful functor
by the adjoint property of Spec(5.2.7.12). Xred → X is an closed immersion.

It’s useful to change to Xred when the proposition only involve topology because Xred has the
same topology as X. A map can induce a map on their reduced structure.

Prop.(5.4.1.14) [Induced Reduced Scheme Structure].Let Z be a locally closed subset of a
scheme X, There is a unique reduced subscheme Zred of X with underlying topological space Z,
called the induced reduced scheme structure of Z. It has the universal property that any
morphism from a reduced scheme Y to X that has image in Z factors through this subscheme(By
virtue of reducedness).

In particular, there is a closed subscheme structure Xred of X, called the underlying reduced
subscheme of X.

Proof: The uniqueness is clear by the universal property. The existence is clear when X is affine
and Z is closed in X. Then we can use the uniqueness to glue them to a global subscheme structure.
□
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Integral

Def.(5.4.1.15)[Integral Schemes].A scheme X is called integral if OX(U) are all integral. This
is equivalent to reduced and irreducible. So a scheme is integral iff there is an integral open affine
cover that are pairwise-intersect(5.4.1.7).

The category of integral schemes is denoted by Schint.

Proof: If X is irreducible and reduced, then so does any affine subscheme SpecR, so R is integral
as (0) is the generic prime, because it has only one minimal prime consisting of nilpotent elements.
Conversely, if X is reduced, then any affine subscheme SpecR is integral so reduced, and is irreducible
by the presence of prime (0). □

Cor.(5.4.1.16).The projective space over an integral scheme is integral. (Check the affine covers are
dense). The projective space PnZ is integral.

Prop.(5.4.1.17)[Integral is Almost Stalkwise].Let X be a non-empty and connected scheme, then
X is integral iff all the

Def.(5.4.1.18)[Function Field].LetX be an integral scheme with generic point η, then R(X) ∼= OX,η
is a field(5.2.8.2), called the function field of X, denoted by K(A). Then any rational function on
X is defined on an open dense subset of X.

Prop.(5.4.1.19). If X is an integral scheme and Z1, Z2 are closed subschemes of X with generic points
η1, η2, then OX,η1 ⊈ OX,η2 . In particular, if Z = {x} consists of a closed point, then there is a rational
function defined near x that is not in OX,η2 .

Proof: [Sta]02NF. □

Noetherian

Def.(5.4.1.20)[Noetherian Scheme].A scheme is called locally Noetherian if it can be covered
by open affine schemes of noetherian rings. It is called Noetherian if moreover it is quasi-compact.

(Locally)Noetherian is affine local(5.4.1.5).

Prop.(5.4.1.21)[Noetherian Scheme is Noetherian].The underlying space of a Noetherian scheme
is a Noetherian space.

Proof: By(3.11.3.3), we are reduced to the affine case. Now it is clear from the definition. □
Prop.(5.4.1.22).Any locally closed subscheme of a (locally)Noetherian scheme is (locally)Noetherian.
In particular, an subset of a Noetherian scheme is quasi-compact.

Proof: This is because any localization and quotients of a Noetherian ring is Noetherian(4.1.1.40),
and any subset of a Noetherian space is quasi-compact(3.11.3.2)(5.4.1.21). □

Prop.(5.4.1.23) [Finitely Many Irreducible Components].For a closed subscheme in a locally
Noetherian space, the collection of its irreducible components is locally finite in X, because a Noethe-
rian space has f.m. irreducible components(3.11.3.4).

In particular, a locally Noetherian space is locally connected.

Prop.(5.4.1.24).Let k′/k be a f.g. field extension, then a scheme X over k is locally Noetherian iff
Xk′ is locally Noetherian.

Proof: Locally Noetherian is affine local, so the problem is totally ring-theoretic. If Xk′ is Noethe-
rian, then so does X by ff descent(4.4.2.1). If X is Noetherian, then so does Xk′ by(4.1.1.44). □
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Jacobson

Def.(5.4.1.25).An scheme is called Jacobson iff its underlying topological space is Jacob-
son(3.11.3.21). In particular, an affine scheme SpecR is Jacobson iff R is Jacobson(4.2.6.5).

So by(3.11.3.22), being Jacobson is a local property.

Prop.(5.4.1.26)[Locally Algebraic Scheme is Jacobson].For a scheme locally algebraic over a
field k, the set of closed points X0 is dense in every closed subset of X, Because it is a Jacobson space
by(3.11.3.22) and(4.2.6.10). Equivalently, every locally closed subset of X contains a closed point.

Moreover, the residue field of a closed point is finite over k by(4.2.6.10), and the converse is also
true. In particular, by(5.2.7.9), the closed points of X are just the geometric points.

Proof: For the converse, because k ⊂ A/px ⊂ k(x) are finite hence integral extensions, by(4.2.1.3)
A/px is a field, thus x is a closed point. □

Cor.(5.4.1.27) [Algebraic Scheme Preserves Closed Points].A morphism between algebraic
schemes over a field k maps closed points to closed points.

Remark(5.4.1.28).When X is geo.reduced, a stronger statement shows the set of separable closed
points of X is dense in X, Cf.(5.4.3.3).

Cor.(5.4.1.29) [Check Surjectiveness on Closed Points]. If a morphism of locally algebraic
schemes over a field k is surjective on closed points, then it is surjective.

Proof: By Chevalley theorem(5.6.1.5), the image is a locally constructible set, thus the supplement
set is also locally constructible. Now if it is not surjective, then there is an open closed subset U ∩Z
not in the image. But this set contains a closed point by(5.4.1.26), which is a contradiction . □

Cohen-Macaulay

Def.(5.4.1.30)[Cohen-Macaulay Schemes].A Cohen-Macaulay scheme of a C.M. scheme is a
scheme X ∈ Sch s.t. all its stalks is C.M. local. Thus being C.M. is a stalkwise property.

Catenary Schemes

Def.(5.4.1.31)[Catenary Schemes].A catenary scheme is a scheme that its underlying space is
catenary. A scheme S is called universally catenary iff S is locally Noetherian and every scheme
locally of f.t. over S is catenary.

(Universally) catenary is a stalkwise property, by(4.1.4.2).

Prop.(5.4.1.32)[Catenary and Dimension Functions].Let X ∈ Sch be locally Noetherian, then
X is catenary iff locally around every point there is a dimension function, by(3.11.3.39).

Example(5.4.1.33)[Universally Catenary Schemes].The following are some examples of univer-
sally catenary schemes, by(4.2.4.7).

• A scheme locally of f.t. over a universally catenary scheme.
• A C.M. scheme.
• Spectrum of a 1-dimensional Noetherian domains,
• Spectrum of a fields.
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Japanese & Nagata Schemes

Def.(5.4.1.34)[Japanese & Nagata Schemes].A (universally)Japanese scheme is a scheme that
can be covered by open affine spectrum of (universally)Japanese rings(4.3.8.1). A Nagata scheme
is a scheme that can be covered by open affine spectrum of Nagata rings(4.3.8.1).

Prop.(5.4.1.35).Being (universally)Japanese or Nagata is a local property, and are stable under
taking open subschemes, by(4.3.8.1).

Prop.(5.4.1.36).Let X be a locally Noetherian scheme, then X is Nagata iff every integral closed
subscheme Z of X is Japanese.

Proof: One direction is clear. If every integral closed subscheme Z of X is Japanese, let U =
SpecA ⊂ X be an affine open subscheme and Z = V (p) ⊂ U , we need to show A/p is Japanese.
Consider Z with the reduced induced structure is an integral closed subscheme of X and Z is an
open subscheme of Z, thus Z is Japanese and so is Z by(5.4.1.34). □

2 Normal & Regular
Def.(5.4.2.1)[Normal & Regular Schemes].A scheme is called normal if all its stalks are normal
domains(4.3.5.1), or equivalently all its affine sections are normal rings. In particular, a normal
scheme is reduced.

A locally Noetherian scheme is called regular iff all its stalk are regular local rings(4.3.5.17), i.e.
all affine opens are regular rings. Regular only have to be checked at close pt by(4.3.5.17).

Def.(5.4.2.2).Let X be a locally Noetherian scheme, the points x that OX,x is a regular local ring
is called the regular locus of X, and the complement of the regular locus is called the singular
locus of X.

Prop.(5.4.2.3)[Noetherian and Integral].Let X be a locally Noetherian scheme, then X is normal
iff it is a disjoint union of integral normal schemes.

Proof: It suffices to show that a connected locally Noetherian scheme is integral. Thus it suffices to
show it is irreducible. Suppose there are several irreducible components, and let p be a intersection
point, then we may assume X is affine, then this follows from(4.3.5.4). □

Cor.(5.4.2.4).A normal scheme is integral iff it is connected.

Prop.(5.4.2.5). If X is an integral normal scheme, then Γ(X,OX) is a normal ring.

Proof: If X is integral, then R = Γ(X,OX) is integral. If f = a/b ∈ K(R) that is integral over
R, then for any affine open U ⊂ X, b|U is non-zero as X is integral, thus f |U is integral over OX(U)
thus f |U ∈ OX(U), thus f ∈ R. □

Prop.(5.4.2.6) [Normalization].For an integral scheme X, there is a Xnom → X which is
Spec(OX,nom), any dominant morphism f from a normal integral scheme to X will factor through
Xnom. (Use the adjointness for Spec and notice f maps generic to generic).

Proof:
□

Prop.(5.4.2.7)[Normalizations are Birational].The normalization of an integral scheme X is a
finite birational map.
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Proof: ? □

Prop.(5.4.2.8)[Normalization is not flat].Non-trivial normalization is never flat.

Proof: Use(5.6.2.6).? □

Prop.(5.4.2.9)[Regular and Normal].Regular scheme is C.M and locally factorial, hence normal,
by(4.3.5.21) and(4.3.5.19). A Normal scheme is regular in codimension 1, by(4.3.5.32).

Cor.(5.4.2.10).A regular connected scheme X is irreducible, by(5.4.2.4).

Prop.(5.4.2.11).For a locally Noetherian scheme of dimension≤ 1, normal is equivalent to regular,
by(10.3.3.4).

Factorial Schemes

Def.(5.4.2.12) [Factorial Schemes].A factorial scheme is a scheme that all the local rings are
UFD.

Prop.(5.4.2.13). If A is a UFD, then SpecA is factorial.

Dedekind Scheme

Def.(5.4.2.14)[Dedekind Scheme].A Dedekind scheme is an integral Noetherian normal scheme
of dimension 1.

Prop.(5.4.2.15).Let X be a Dedekind scheme and x ∈ X is a closed pt, let X̂ = Spec(ÔX,x) → X
be the completion of X at x, then there is a pullback of categories:

BunX BunX\{x}

Bun
X̂

Bun
X̂\{x}

Proof: We may study locally near x, then we can assume that X is affine. Now shrink X even
more, we can assume that x is defined by a single f ∈ A(localized at the maximal ideal defined by
x), then we finish by(4.4.2.12). □

3 Geometrical properties

Def.(5.4.3.1)[Geometric Properties over Fields].
• A scheme X is called geometrically integral/reduced/separated/irreducible. . . over a

field k iff for any field extension k′/k, Xk′ is integral/reduced/separated/. . ..

• A locally Noetherian scheme is called geometrically regular iff for any f.g. field extension
K/k, XK is regular. It is stalkwise by(5.4.3.18).
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Geo.reducedness

Prop.(5.4.3.2)[Geo.Reduced].For a scheme X over a field k, the following are equivalent:
1. X is geometrically reduced.
2. For every reduced k-scheme Y , the product X ⊗k Y is reduced.
3. All stalks are geometrically reduced ring.
4. X is reduced and for every maximal point η of X, the residue field k(η) is separable over k.
5. Xkper is reduced.
6. XK is reduced for every finite purely inseparable field extension K/k.
7. Xk1/p is reduced.

In particular, if k has characteristic 0, then geo.reduced⇐⇒ reduced.

Proof: As reduced is local, these all follows from(4.3.6.2). □

Prop.(5.4.3.3)[Geo.Reduced and Arithmetic Points].Let X be a locally algebraic geo.reduced
scheme over a field k, then the set of closed points with finite separable field extensions k(x)/k is
dense in X.

Proof: Combine(5.6.4.19) and(5.6.4.21). □

Def.(5.4.3.4)[Density of Points].Let X be an algebraic scheme over a field k and k′/k be a field
extension, then a subset S ⊂ X(k′) is said to be schematically dense in X if the only closed
subscheme Z ⊂ X over k that S ⊂ Z(k′) is X itself.

? Should merge with the definition of scheme-theoretical image.

Prop.(5.4.3.5)[Schematically Dense Subset].Let X be an algebraic scheme over a field k, S ⊂
X(k) be a subset. Then the following are equivalent:

1. S is schematically dense in X.
2. X is reduced and S is dense in |X|.
3. The family of homomorphisms OX → k : f 7→ f(s) is jointly injective.

Proof: 1→ 2: Let S be the induced reduced structure of the closure S in X(5.4.1.14), then S = X,
so X is reduced with X = S.

2→ 3: ? Cf.[Milne Algebraic Groups, P10]. □

Cor.(5.4.3.6).A schematically dense subset remains schematically dense after field base changes.

Cor.(5.4.3.7).The schematic closure of a subset commutes with base change.

Proof: Use the third definition in(5.4.3.5), notice that the valuation maps are also jointly injective
because k′/k is flat. □

Cor.(5.4.3.8). If X admits a schematically dense subset S, then X is geo.reduced.

Prop.(5.4.3.9). If X(k′) is dense in X, then X is reduced. Conversely, if X(k′) is dense in |Xk′ | and
X is geo.reduced, then X(k′) is dense in X.

Proof: X is reduced because Xred(k′) = X(k′). Conversely if Z ⊂ X is a closed subscheme that
Z(k′) = X(k′), then |Zk′ | = |Xk′ | by condition, and then Zk′ = Xk′ as Xk′ is reduced. Thus Z = X
by flatness. □
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Cor.(5.4.3.10)[Geometric Points Schematically Dense]. IfX is locally algebraic and geo.reduced,
then X(k′) is schematically dense in X for any separably closed field k′ containing k.

Proof: X(k′) is dense in |Xk′ | by(5.4.3.3), thus it is schematically dense in X by the proposition.
□

Cor.(5.4.3.11). If Z,Z ′ are closed subvarieties of a locally algebraic algebraic scheme X over k that
Z(k′) = Z ′(k′) ⊂ X(k′) for some separably closed field k′ containing k, then Z = Z ′. In other words,
a closed subvariety of X is determined by the subset Z(ks) ⊂ X(ks).

Proof: The closed subscheme Z ∩ Z ′ satisfies Z ∩ Z ′(k′) = Z(k′), so Z ∩ Z ′ = Z by(5.4.3.10).
Similarly Z ∩ Z ′ = Z ′. □

Geo.Connected and Geo.Irreducible

Prop.(5.4.3.12)[Geo.Connectedness].For a scheme X over a field k, the following are equivalent:
• For every connected k-scheme Y , the product X ⊗k Y is connected.
• X is geometrically connected.
• XKs is connected.
• XK is connected for any finite separable extension K/k.

Proof: Cf. [Sta]0385, 0389.? □

Prop.(5.4.3.13)[Invariance of Base Change].Let X be a scheme over a field k and k′/k a field
extension, then X is geo.connected iff Xk′ is geo.connected.

Proof: Cf.[Sta]054N. □

Prop.(5.4.3.14).Let T → X be a map of schemes over a field k, if T is geo.connected and X is
connected, then X is geo.connected.

Proof: Cf.[Sta]056R. □

Cor.(5.4.3.15)[Connected with a Rational Point].Let X be a scheme over a field k. Assume X
is connected and has a point x that k is alg.closed in k(x), then X is geo.connected. In particular,
if X is connected and has a rational point, then X is geo.connected.

Proof: Cf.[Sta]04KV. □

Prop.(5.4.3.16) [Geometrically Irreducible].For a scheme X over a field k, the following are
equivalent:

• For every irreducible k-scheme Y , the product X ⊗k Y is irreducible.
• X is geometrically irreducible.
• Xks is irreducible.
• X is irreducible and if η is the generic pt of X, then k is separably closed in k(η).
• XK is irreducible for any finite separable extension K/k.

Proof: Cf.[Gortz P136].? □
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Geo.Integral

Cor.(5.4.3.17)[geometrically Integral].For a scheme X over a field k, the following are equivalent:
• For every integral k-scheme Y , the product X ⊗k Y is integral.
• X is geometrically integral.
• XK is irreducible for any finite extension K/k.
• Xk is integral.
• X is integral and if η is the generic pt of X, then k is alg.closed in k(η) and k(η)/k is separable.

Proof: 1→ 2→ 3→ 4 is easy, Cf.[Gortz P136].? □

Geometrically Regular

Prop.(5.4.3.18).Let X be a locally Noetherian scheme over a field k, then X is geometrically regular
iff the local ring OX,x is geometrically regular over k. Thus it suffice to check for finite purely
inseparable field extensions k′/k, by(4.3.6.6).

Proof: For a finite purely inseparable field extension, OX,x ⊗k k′ is also a local ring because their
spectra are the same(4.1.7.26), so OX,x is geometrically regular by(4.3.6.6).

Conversely, if OX,x is geo.regular, then for any field extension k′/k, stalks of Xk′ are localization
of OX,x ⊗k k′, so it is regular by(4.3.5.17). □

Cor.(5.4.3.19).A geometrically regular ring is geometrically reduced, by(4.3.5.19) and(5.4.3.2).

Prop.(5.4.3.20)[Partially Invariance Under Base Change]. If k′/k is a f.g. field extension, then
Xk′ is geo.regular over k′ iff Xk is geo.regular over k.

In fact, this is true for any field extension k′/k if X is locally algebraic over k, because in this
case geo.regular is equivalent to smoothness.

Proof: One direction is trivial, for the other, Cf.[Sta]038W?. □

4 Basic Morphism Properties

Main references are [Sta]02WE.

Base Change Trick

Prop.(5.4.4.1)[Base Change Trick]. If a property P of morphisms satisfy:
• Closed immersion has P .
• Stable under base change and composition.

Then
• it is stable under product.
• g ◦ f : X → Y → Z has P and g separated implies f has P .
• it is stable under fred. (Notice Xred → X is closed immersion).
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Proof: For the product, we may assume one of them is identity and use composition, but then the
product is just base change, so it has P .

For the second, factorize f : X → X ×Z Y → Y , the first is base change of ∆ : Y → Y ×Z Y , so
it satisfies P because g is separable, and the second map is a base change of X → Z, so it satisfies
P , so f satisfies P .

Xred → X → Y = Xred → Yred → Y has P because Xred → X is closed immersion, and Yred → Y
is separable because closed immersion is separable(checked directly), so by what has been proved,
Xred → Yred has P . □

Prop.(5.4.4.2).Lists of properties satisfying the base change trick(5.4.4.1)(not complete):
1. Universal closed/universal injective morphisms.
2. Affineness.
3. Morphisms (locally)of finite type.
4. Finite Morphisms.
5. Integral Morphisms.
6. Morphisms (locally)of finite presentation.
7. Quasi-affine morphisms.
8. Closed Immersions.
9. Quasi-compactness.
10. (Quasi-)Separatedness.
11. Proper.
12. Unramified.
13. Monomorphisms.
14. (Locally) Quasi-finiteness.
15. H-projectiveness.

Proof:
1. Trivial.
2. Because affineness is local on the target(5.4.1.5), this follows from(5.2.7.17) and(5.2.7.14).
3. Trivial.
4. Trivial.
5.
6. By(4.3.7.9).
7. Affine morphism is quasi-compact: because quasi-compactness is local on the target, we can

reduced to the affine case, thus it is quasi-compact, by(5.4.4.26). To show a base change of quasi-
compact morphism is quasi-compact, because quasi-compactness is local on the target(5.4.1.5),
then we can choose a cover by affine opens that the image is contained in an affine open, thus
it reduces to show a map between affine schemes is quasi-compact, which is(5.4.4.26).

8. For closed immersions, use(5.2.7.16) and check locally, for open immersions, use(5.2.7.16).
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9. It suffices to show an affine map is quasi-compact.
10. Closed immersion is separated is checked directly. Composition: For X → Y → Z, the diagonal

map decomposes as X → X ×Y X → X ×Z X, the second one is closed immersion(or quasi-
compact) by(5.4.4.78), so this follows from that of closed immersion and qc. Base change: The
diagonal commutes with base change(3.1.1.48), so this follows from that of closed immersion
and qc.

11. Because universally closed, f.t. and separatedness both do(5.4.4.2).
12.
13.
14.

□

Injectivity and Monomorphisms

Def.(5.4.4.3)[Injectivity and Monomorphisms].A morphism of schemes is called injective if it
is injective topologically. A morphism of schemes is called a monomorphism if it is a monomorphism
in the category of schemes.

Prop.(5.4.4.4)[Universally Injective].For a morphism of schemes X → S, the following are equiv-
alent:

• It is universally injective.
• It is injective and the residue field extension are all purely inseparable.
• The diagonal map is surjective.
• For any field K, Hom(SpecK,X)→ Hom(SpecK,S) is injective.

In particular, any monomorphism is universally injective.

Proof: 1 → 4: For s ∈ Hom(SpecK,S), a x ∈ Hom(SpecK,X) mapping to s is a section of the
injective map X ×S SpecK → SpecK, which is unique if it exists.

4 → 1: If S′ → S is a morphism, X ′ = X ×S S′, and x, x′ ∈ X ′ map to the same point
s′ ∈ S′, then we can choose a common field extension K/k(s′) of k(x)/k(s) and k(x′)/k(s). Then
we get two elements in Hom(SpecK,X ′), and the hypothesis says they map to the same element in
Hom(SpecK,X). Thus they are the same, as X ′ is the fiber product.

1 → 2: It the residue field extension is not purely inseparable, then tensoring with this field
extension, we get two points mapping to the same, contradiction.

2 → 4: It the residue field extension is purely inseparable, then k(x) → K is determined by the
composition, k(s)→ k(x)→ K, which means 4 is true.

1 → 3: If X → S is universally injective, then X ×S X → X is injective, and ∆X/S is a section
of this map, thus it must be surjective.

3→ 1: If ∆X/S is surjective, then for any base change S′ → S, ∆X′/S′ is surjective, thus X ′ → S′

is injective, thus 1 holds. □
Prop.(5.4.4.5)[Monomorphism and Injectivity].Amorphism of schemes j : X → Y is a monomor-
phism if j is an injective map and for any x ∈ X, OY,f(x) → OX,x is surjective.

Proof: First check topologically, then check the local ring map. □
Cor.(5.4.4.6).For any scheme X and a point x, SpecOX,x → X is a monomorphism.
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Closed Map

Prop.(5.4.4.7)[Universal Closed].Universal closedness is local on the basis and satisfies the base
change trick(5.4.4.2).

Prop.(5.4.4.8). If g is surjective, then f ◦ g is universally closed iff f is universally closed (because
surjective is S.u.B).

Prop.(5.4.4.9)[Closed Map and Specialization].The image of a quasi-compact morphism is closed
iff it is stable under specialization. And it is a closed map iff specializations lift along f .

Proof: For the first, the question is local, so reduce to Y affine, and then X is qc= ∪Ui, then we
can replace X by an affine ⨿Ui, then reduce to the affine case(4.1.7.14).

For the second, for any closed subset of X with its induced reduced structure, the restriction to
it is still qc and specialization lifts, so we prove the image is closed. Now the image is stable under
specialization, so the result follows from the first assertion. □

Affine Map

Prop.(5.4.4.10).X is affine if there is a finite set of elements fi ∈ Γ(X,OX) that generate the unit
ideal and Xfi is affine.

Proof: First prove that Xfi ∩Xfj = Xfifj is affine because affine intersect Xfi is affine. Second,
prove Γ(Xf ,OX) = Γ(X,OX)f , finally glue them to get a map X → Spec(A) and use the fact
isomorphism is local on the target(5.4.1.5). X is affine scheme if X → Spec(Γ(X)) is affine. □

Cor.(5.4.4.11).Affineness is affine local on the target, and it satisfies the base change trick(5.4.4.2).

Lemma(5.4.4.12)[Serre Criterion of Affineness].
• A qc scheme X is isomorphic to an affine scheme iff H1(X, I) = 0 for every Qco sheaf of ideals
I.

• If X is qcqs, then it suffices to show H1(X, I) = 0 for every Qco sheaf of ideals I of f.t..
• If f : X → Y is a quasi-compact morphism between quasi-separated schemes, then f is affine

iff for any Qco sheaf of ideals I on X, R1f∗I = 0.

Proof: ? Cf.[Sta]01XF.
The case of affine scheme is proven by(5.7.1.1) and(5.7.1.2). The converse: For every point p,

choose an open affine nbhd U , let Y = X − U , by the exact sequence

0→ IY ∪{p} → IY → k(P )→ 0,

we have a surjective map Γ(X, IY )→ Γ(X, k(P )) thus there is a f ∈ A = Γ(X,OX) that P ∈ Xf ⊂ U
is affine. So using(5.4.4.10), we only have to show that for f.m fi, they generate Γ(X,OX). This
is by considering the kernel F of OrX → OX : (a1, . . . , ar) →

∑
fiai, and there is a filtration on F ,

the quotient of which are all coherent sheaves because kernel and cokernel are Qco, and there by
induction and hypothesis, H1(X,F ) = 0, thus the result.

2: In the qcqs case, by(5.7.1.6), we can use filtered colimit to show that H1(X, I) = 0 for any
Qco sheaf of ideals.

3: For any affine open U of Y , the inclusion U → Y is qc, thus f−1(U)→ X is also qc. Now any
Qco sheaf of ideals I on U extends to a Qco sheaf of ideals on X by(5.5.1.8), then we can use Leray
spectral sequence to conclude that H1(f−1(U), I) = 0, so f−1(U) is affine. □
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Cor.(5.4.4.13).For a Noetherian scheme X, X is affine iff Xred is affine.

Proof: The canonical exact sequence(5.2.6.10) reads: 0 → NF → F → i∗i
∗F → 0, so iff Xred is

affine, then we have H i(F) ∼= H i(NF), and notice N k = 0 for some k. □

Cor.(5.4.4.14).For a Noetherian reduced schemeX,X is affine iff each irreducible component is affine.
(The same as the above, notice that ∏ pi = 0, for the minimal primes of A). (The reducedness can
be dropped by the last proposition).

Lemma(5.4.4.15). If a morphism X → Y is a homeomorphism onto a closed subset of Y , then f is
affine.

Proof: Cf.[[Sta]04DE]. □

Quasi-affine

Def.(5.4.4.16)[Quasi-Affine Morphism].A scheme is called quasi-affine iff it is isomorphic to a
qc open subscheme of an affine scheme. A morphism is called quasi-affine iff the inverse of any
affine scheme is quasi-affine.

Prop.(5.4.4.17).Quasi-affine is local on the target and satisfies the base change trick.

Proof: Cf.[Sta]01SN. □

Prop.(5.4.4.18).Any qc immersion i of a quasi-affine scheme is quasi-affine.

Proof: As i is qc, i factors through a map Z → U → X, where U is a quasi-compact open subset
of X. Thus it suffices to consider the closed immersion case, which is clear. □

Prop.(5.4.4.19).A morphism f : X → S is quasi-affine iff OX is f -ample. In particular, A scheme is
quasi-affine iff OX is ample.

Proof: Cf.[Sta]01QE. □

Cor.(5.4.4.20).Let X be a quasi-affine scheme and Hp(X,OX) = 0 for p > 0, then X is affine.

Proof: By(5.4.4.19) OX is ample, then by(5.5.4.18), X is affine. □

Prop.(5.4.4.21)[Descent].Let X be a scheme over a field k and K/k be a field extension, then X is
quasi-affine iff XK is quasi-affine.

Proof: Cf.[Sta]0BDD. □

Dominant

Prop.(5.4.4.22).Let f : X → S be a map of schemes.
• If every generic point of irreducible components of S is in the image of f , then f is dominant.
• If f is quasi-compact, then the converse is also true. More precisely, if a generic point η is not

in the image, then it is not in the closure of the image.
• If X has only f.m. irreducible component, then the converse is also true.

Proof: Cf.[Sta]Chap28.8. □



5.4. PROPERTIES OF SCHEMES 609

Prop.(5.4.4.23) [Dominant Map between Integral Schemes]. If f : X → S is a map between
integral schemes, then the following are equivalent:

• f is dominant.
• f(ηX) = ηY .
• for some(all) affine open subset U ⊂ X,V ⊂ Y with f(U) ⊂ V , the ring map OY (V )→ OX(U)

is injective.
• for some(all) x ∈ X, the local ring map OY,f(x) → OX,x is injective.

Proof: Cf.[Sta]0CC1. □

Def.(5.4.4.24)[Dominant Rational Maps].A rational map between irreducible schemes is called a
dominant map if it maps the generic point to the generic point.

Quasi-Compact

Prop.(5.4.4.25)[Quasi-Compact Morphism].A morphism f : X → S of schemes is quasi-compact
iff the inverse image of any quasi-compact open subsets is quasi-compact, because affine opens form
a basis of X.

Quasi-compactness is local on the target and satisfies the base change trick(5.4.4.2).

Prop.(5.4.4.26).A map between affine schemes is quasi-compact.

Proof: Because quasi-compactness is local on the target(5.4.1.5), it suffices to show the inverse
image of a distinguished open subset is quasi-compact, and this is true. □

Prop.(5.4.4.27).Let f : X → Y , g : Y → Z. If g ◦ f is quasi-compact and g is qs, then f is qc.

Proof: Factor it through X → X ×Z Y → Y . The second map is a base change of X → Z hence
qc, the first map is a section of X ×Z Y → X, which is a base change of Y → Z, hence qs, so
by(14.5.3.19), the first map is also qc. □

Prop.(5.4.4.28).Any map between Noetherian schemes is quasi-compact, by(5.4.1.22).

Finite Type

Def.(5.4.4.29)[Morphisms of Finite Type].A morphism f : X → S is called of locally of finite
type if for there exists an affine open cover {Spec(Bi)} of S that f−1(Ui) has an affine open cover
of spec of finite generated Bi-algebras. It is called finite type if moreover it is quasi-compact.

Let k ∈ Field, then S ∈ Sch /k is called (locally)algebraic iff S is (locally)of finite type over
Spec k.

For S ∈ Sch, denote Schloc.ft /S(Schft /S) the full subcategory of Sch /S consisting of (locally) of
finite type schemes over S.

(Locally)Finite type is affine local on the target and on the source, and satisfies the base change
trick(5.4.4.2).

Prop.(5.4.4.30) [Closed Subschemes Descending Chain Stablizes].The closed subschemes of
an algebraic scheme X over a field k satisfy the descending chain condition.

Proof: As X is Noetherian, the topological chain |Z1| ⊃ |Z2| ⊃ . . . stablizes, so we may assume
|X| = |Z1| = |Z2| = . . .. Now choose a finite affine cover SpecAi of X, then Zi corresponds to ideals
Ii of Ai, so they stablizes, as Ai are Noetherian. □
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Cor.(5.4.4.31).Arbitrary intersection of closed subschemes of an algebraic scheme X is well-defined.

Prop.(5.4.4.32)[Algebraic Schemes of Dimension 0].Let X be a locally algebraic variety over a
field k of dimension 0, then X is a disjoint union of f.d. local Artinian k-algebras.

Proof: Cf.[Sta]06LH.? □

Prop.(5.4.4.33) [Dimensions for Locally Algebraic k-Schemes].Let k be a field and X is a
locally algebraic k-scheme.

if X is irreducible, then dimX = dimU for any nonempty open U ⊂ X.

Proof: It suffices to show any two affine open subsets U,U ′ of X have the same dimension, then
use(3.11.3.26). Now U ∩U ′ ̸= ∅ as X is irreducible, and then it contains a maximal pt x by Hilbert’s
Nullstellensatz, and then dimU = dim(OX,x) = dimU ′ because f.g. algebras over a field is catenary.
□

Integral & Finite Map

Def.(5.4.4.34)[Finite and Integral Map].A morphism f : X → S is called integral if it is affine
and there is a affine open covering Ui = SpecAi of S that f−1(Ui) = SpecBi and Ai → Bi is integral.

Integral is affine local on the target and satisfies the base change trick(5.4.4.2).
A morphism f : X → S is called finite if it is affine and there is a affine open covering Ui = SpecAi

of S that f−1(Ui) = SpecBi and Bi are finite modules over Ai.
Finiteness is affine local on the target and satisfies the base change trick(5.4.4.2).
A morphism f : X → S is called (locally) quasi-finite if it is (locally)of f.t. and the inverse of

a point is a discrete set.

Prop.(5.4.4.35) [Integral Morphism is Closed]. Specialization lifts along an integral morphism.
In particular, an integral morphism is closed, by(5.4.4.9).

Proof: If f(x) = y, y → y′, then we can choose an open affine U containing y′, which also contains
y. So we can choose an open affine containing x mapping into U , then it reduces to the affine
case(4.1.7.13). □

Prop.(5.4.4.36)[Chevalley]. If f : Y → X is integral surjective, Y is affine, then X is affine.

Proof: Cf.[Sta]05YU. □

Lemma(5.4.4.37). If f : Y → X is finite surjective, Y is affine, then X is affine.

Proof:
□

Prop.(5.4.4.38)[Finite and Integral].A morphism is finite iff it is integral of f.t..

Prop.(5.4.4.39)[Integral and Affine u.c.]. Integral map is equivalent to u.c. and affine.

Proof: Integral is stable under base change. And if it is integral, then it is closed by(4.2.1.5).
Conversely, we need to prove if SpecB → SpecA is u.c., then A→ B is integral. For any a ∈ B,

let J be the kernel of A[X] → B[X]/(aX − 1), then if f ∈ J , then f(X) = (aX − 1)q(X), and
Xdeg(f)f( 1

X ) = (a−X)Xdeg(q)q( 1
X ) vanishes at a, so it suffices to find a f ∈ J with constant term 1.

It suffices to show that Spec(A[X]/J + (x)) is empty:
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As f is universally closed, SpecB[X]→ SpecA[X] is closed, thus the image of Spec(B[X]/(aX−
1)) is closed in SpecA, which is the underlying set of SpecA/J , by(5.4.4.64). Now notice T =
Spec(A[X]/J + (x)) ×Spec(A[X]/J) Spec(B[X]/(aX − 1)) is empty, because (A[X]/J + (x)) ⊗A[X]/J
(B[X]/(aX−1)) = SpecA⊗SpecA[X]Spec(B[X]/(aX−1)) = 0, asX is invertible in B[X]/(aX−1) but
vanish in A. But T → Spec(A[X]/J + (x)) is surjective, as a base change of Spec(B[X]/(aX−1))→
SpecA/J , thus we are done. □

Def.(5.4.4.40)[Degree of Finite Morphisms at a Point]. Suppose π : X → Y is a finite morphism,
then π∗OX is a OY -module of f.t.. Let p ∈ Y , then the degree of π at p is the rank of this sheaf
on Y (5.5.1.11), which is an upper-semicontinuous function(5.5.1.41).

Prop.(5.4.4.41).The degree of a finite morphism π : X → Y at p is the dimension over k(p) of the
fiber of π at p. In particular, the degree is zero iff π−1(p) = 0.

Proof: Look affine locally. □

Lemma(5.4.4.42).For f : Y → X finite surjective and X locally Noetherian, for every integral
subscheme Z of X with generic point ξ, there is a coherent sheaf F on Y that the support of f∗F is
Z and (f∗Z)ξ is annihilated by mξ.

Proof: W consider an inverse image of ξ = ξ′, and let Z ′ = {ξ′} with the induced reduced structure,
then let F = i∗OZ′ on Y , F is coherent, then we need to show that (f∗F)ξ is annihilated by mξ.
This is because it factors through Z.? Cf.[Sta]01YO. □

Quasi-Finiteness

Def.(5.4.4.43)[Quasi-Finite Morphisms].?
(Locally)Quasi-finite morphisms are local on the target and satisfies base change trick.

Prop.(5.4.4.44)[Characterization of Quasi-Finiteness].Let f : X → S be a morphism, then the
following are equivalent:

• f is quasi-finite.
• f is locally quasi-finite and quasi-compact.
• f is locally of f.t., quasi-finite and has finite fibres.

Proof: Cf.[Sta]01TJ, 02NH. □

Prop.(5.4.4.45). Immersions are locally quasi-finite.

Prop.(5.4.4.46).Let f : X → S be a morphism of schemes and s ∈ S. Assume that f is locally of
f.t. and f−1(s) is a finite set, then Xs is a finite discrete topological space, and f is quasi-finite at
every point of f−1(s).

Proof: Cf.[Sta]02NG. □

Prop.(5.4.4.47) [Zariski’s Main Theorem].Let f : Y → X be an affine morphism of f.t.. Let
Y

f ′
−→ X ′ ν−→ X where X ′ is the normalization of X in Y , then there exists an open subscheme

U ′ ⊂ X ′ that (f ′)−1(U) → U is an isomorphism and (f ′)−1(U) is the set of points at which f is
quasi-finite.
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Proof: Cf.[Sta]03GT. □

Prop.(5.4.4.48)[Quasi-Finite Locus is Open].Let f : X → S be a morphism of schemes, then the
set of points of X that f is quasi-finite is an open subset U ⊂ X, and U → S is locally quasi-finite.

Proof: Cf.[Sta]01T1. □

Prop.(5.4.4.49)[Zariski’s Main Theorem].For a morphism X → S that is quasi-finite and sepa-
rated, if S is qcqs, Then there is a factorization X → T → S that X → T is a qc open immersion
and T → S is finite.

Proof: Cf.[Sta]05K0. □

Prop.(5.4.4.50). If f : Y → X is a quasi-finite morphism of schemes, and T ⊂ Y is nowhere dense,
then f(T ) ⊂ X is also nowhere dense.

Proof: Cf.[Sta]03J2. □

Generically Finiteness

Def.(5.4.4.51)[Generically Finite Morphisms].A generically finite morphism is a morphism
f : X → Y locally of f.t. and there exists a dense open subset U ⊂ X s.t. U → Y is locally
quasi-finite.

Lemma(5.4.4.52).Let R → S be a ring map of f.t., if p ⊂ R is a minimal prime that there are f.m.
primes in S lying over p, then there is a g ∈ R, g /∈ p that Rg → Sg is finite.

Proof: The condition means Sp/pSp has only f.m. primes and pSp is locally nilpotent. Then
κ(p) → Sp/pSp if finite. Let xi generate S over R, then there are polynomials Pi ∈ R[X] that
Pi(xi) = 0 ∈ Sp/pSp, and thus P eii (xi) = 0 ∈ Sp. Now choose g /∈ p that g divides the common
divisors of the coefficients of Pi and Pi(xi) = 0 ∈ Sg, then Rg → Sg is finite. □

Prop.(5.4.4.53)[Generically Finiteness].Let f : X → Y be a morphism of finite type. If η ∈ Y is
a generic point, then:

• f−1(η) is a finite set iff there are affine opens Ui ⊂ X, i = 1, . . . , n and V ⊂ Y that f(Ui) ⊂
V, η ∈ V and f−1(η) ⊂ ∪Ui and Ui → V are finite.

• If f is qs, then we can further restrict to n = 1.
• If f is qcqs, then we can further restrict to U1 = f−1(V ).

Proof: These are local on Y , so we can change Y to an affine open subscheme containing η.
1: If these affine opens exist, then #f−1(η) <∞ because finite maps are quasi-finite(5.4.5.5).
If f−1(η) = {ξ1, . . . , ξn}, choose affine opens Ui around each ξi, then we reduce to the affine

case(5.4.4.52).
2: Cf.[Sta]02NW.
3: □

Prop.(5.4.4.54)[Extension of Fraction Fields].Let f : X → Y be a dominant morphism locally
of f.t. between integral schemes, then the following are equivalent:

• tr.degK(X)/K(Y ) = 0.
• K(X)/K(Y ) is finite.
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• there exists non-empty affine opens U ⊂ X,V ⊂ Y s.t. f(U) ⊂ V and U → V is finite.
• the generic point of X is the only point mapping to the generic point of Y .
• If f is qc or qs, we can assume U = f−1(V ).

Proof: Cf.[Sta]02NX. □

Def.(5.4.4.55)[Degree Generically Finite Morphisms].Let f : X → Y be a dominant morphism
of f.t. between integral schemes, then by(5.4.4.23), f induces an injective map of function fields
K(Y ) → K(X), the degree of [K(X) : K(Y )] is called the degree of f , denoted by deg(f). It is a
positive integer or ∞.

When deg(f) is finite(i.e. the conditions of(5.4.4.54) hold), it is called a separable/purely
inseparable morphism if the field extension K(X)/K(Y ) is separable/purely inseparable. And
also we can define the separable, inseparable degree of f .

Immersions

Def.(5.4.4.56)[Immersions].A closed immersion of schemes is a closed immersion of local ringed
spaces(5.2.6.15). A closed subscheme of a scheme X is a closed sub-ringed space(5.2.6.15) that is
also a scheme.

An open immersion of schemes is an open immersion of local ringed spaces(5.2.6.15). An open
subscheme of a scheme X is an open subspace(5.2.6.15) that is also a scheme.

Open and closed immersions are affine local on the target(5.4.1.5).
An immersion is a morphism that is a closed immersion of an open immersion.

Lemma(5.4.4.57)[Closed Immersion for Schemes].Let f : Y → X be a morphism of schemes
that induces a homeomorphism of Y onto a closed subset of X, and f ♯ : OX → f∗OY is surjective,
then it is a closed immersion(5.2.6.15).

Proof: It suffices to show that the kernel of f ♯ is Qco. For this, notice that f is quasi-compact, and
it is a monomorphism by(5.4.4.5), in particular separated by(5.4.4.86). Then(5.5.1.6) shows f∗OY is
Qco. Then the kernel is Qco by(5.5.1.3). □

Prop.(5.4.4.58)[Closed Subschemes of Affine Schemes].The closed sub-ringed spaces of X =
SpecA are all closed subschemes, and they corresponds to ideals I ⊂ A:

• If I ⊂ A is an ideal, then the morphism Z = SpecA/I → SpecA is a homeomorphism of Z
onto a closed subspace V (I) of X, and also the stalk map at a point p ⊂ Z is Rp → (R/I)p/I =
Rp/IRp, which is surjective. So this is a closed immersion by(5.4.4.57).

• By(5.2.6.17), for any closed subscheme Z of X with sheaf of ideals I, Z is isomorphic to the
closed subscheme of X defined by I. Now I is locally generated by sections, so the quotient
sheaf OX/I is a Qco sheaf, so it is of the form S̃ for some A-module S, by(5.5.1.2). Then I, as
the kernel of OX → S̃, is also Qco(5.5.1.3), so it equals Ĩ for some ideal I ⊂ A. Thus S = R/I,
and we are done.

Prop.(5.4.4.59)[Closed Subscheme of Schemes].The closed sub-ringed spaces of a scheme X are
all closed subschemes, and they corresponds to Qco OX -sheaves of ideals via the ideal sheaf(5.2.6.15):

Proof: Let i : Y → X be a closed immersion, for any x ∈ X, choose an open affine nbhd U of
x ∈ X, then i : i−1(U) → U is also a closed immersion, so it corresponds to SpecA/I → SpecA for
some ideal I by(5.4.4.58). So Z is a scheme, and the ideal sheaf I is Qco. □
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Prop.(5.4.4.60).Closed immersion satisfies the base change trick(5.4.4.2). Open immersion are stable
under base change and composition. Immersions are stable under base change and composition.

Proof: For immersion, shrink the open subset. □

Remark(5.4.4.61).A open immersion followed by a closed immersion can be written as a closed
immersion followed by an open immersion, but not reversely. The reverse happens if the immersion
is quasi-compact or the source is reduced (use the reduced induced structure).

Def.(5.4.4.62)[Scheme-Theoretical Image].For a morphism f : X → Y , there is a closed scheme
called scheme-theoretic image that is the smallest closed subscheme of Y that f factors through
Z.

For an immersion of schemes, the scheme-theoretic image of the immersion is called the scheme-
theoretic closure.

Proof: Consider the kernel of the structural map, and the kernel contains a maximal Qco sheaf of
ideals I by(5.5.1.12). □

Prop.(5.4.4.63). If
X1 Y1

X2 Y2

f1

f2

be a commutative diagram of schemes and Zi ⊂ Yi be the scheme-

theoretic image of fi, then it induces a commutative diagram
X1 Z1 Y1

X2 Z2 Y2

.

Proof: It suffices to show Z1 factors through the closed subscheme Z2 ×Y2 Y1 of Y1, which follows
from the universal property of Z1. □

Prop.(5.4.4.64).Let f : X → Y be a qc morphism of schemes and Z be the scheme-theoretical image,
then

• the kernel I = ker(OY → f∗OX) is Qco, thus Z is the closed subscheme determined by I.
• For any open subscheme U ⊂ Y , the scheme-theoretical image of f |f−1(U) is equal to Z ∩ U .
• f(X) is dense in Z.

Proof: 1: As being Qco is local, it suffices to show for Y affine. Then X = ∪Ui is a finite union of
affine schemes. Now take X ′ =

⨿
Ui, then there are maps X ′ f ′

−→ X → Y . Then OX is a subsheaf of
f ′

∗OX . So I = ker(OY → f∗f
′
∗OX′). Now f ◦ f ′ is qcqs, thus by(5.5.1.6), f∗f

′
∗OX′ is Qco, thus also

I is Qco.
2 follows from 1 as the formation of I commutes with restriction to open subschemes.
3 follows from 2 as the scheme-theoretical image of empty set is empty. □

Prop.(5.4.4.65). If f : X → Y is a morphism and X is reduced, then the scheme-theoretical image
of f is the induced-reduced structure(5.4.1.14) of f(X) ⊂ Y .

Proof: This is clear. □

Def.(5.4.4.66) [Scheme-Theoretically Dense].An open subscheme U ⊂ X is called scheme-
theoretically dense if for any open subscheme V of X, the scheme-theoretical closure of U ∩ V in
V is equal to V .
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Prop.(5.4.4.67). If the inclusion U → X is qc, then U is scheme-theoretically dense in X iff the
scheme-theoretical closure of U is X, by(5.4.4.64).

Prop.(5.4.4.68).Let j : U → X be an open immersion of schemes, then U is scheme-theoretically
dense in X iff OX → j∗OU is injective.

Proof: If it is not injective, then we can find an open subscheme V of X that the kernel is non-zero,
thus it contains a non-zero Qco ideal sheaf, which means the scheme-theoretical closure of U ∩ V is
not V . □

Cor.(5.4.4.69). If U, V are open subschemes of X scheme-theoretically dense in X, then U ∩V is also
scheme-theoretically dense in X.

Proof: OX → OX(U)→ OX(U ∩ V ) is injective. □

Prop.(5.4.4.70)[Scheme-Theoretical Image of Immersions].Let f : Z → X be an immersion
and either f is qc or Z is reduced. Let Z be the scheme-theoretically image of f , then the morphism
Z → Z is an open immersion that identifies Z with a scheme-theoretical dense open subscheme of
Z, and also Z is dense in Z.

Proof: Cf.[Sta]01RG. □

Prop.(5.4.4.71)[Immersion to be Closed].An immersion f is a closed immersion iff the image is
closed.

Proof: Let i : Y → U be a closed immersion where j : U ⊂ X is an open subscheme, then i is
associated to an ideal sheaf I of OU . Now because I|U\f(Y ) = OU\f(Y ), we can glue I and O|X\f(Y )
to a sheaf of ideals J ⊂ OX . Now j∗OX/J = OU/I ∼= i∗OY , thus OX → f∗OY = j∗(OU/I) =
j∗j

∗(OX/J ) is surjective, because OU/I is supported on a closed subset of U . Thus f is a closed
immersion by(5.4.4.57). □

Prop.(5.4.4.72)[Immersions are Monomorphisms].An immersion is a monomorphism.

Proof: It is easy to check(5.4.4.5) for both open and closed immersions. □

Prop.(5.4.4.73)[Equivalent Definitions of Closed Immersion].The following are equivalent for
a morphism f :

• f is a closed immersion.
• f is a proper monomorphism.
• f is proper, unramified and u.i..
• f is a u.c., unramified monomorphism.
• f is u.c., unramified and u.i..
• f is u.c., locally of f.t. and a monomorphism.
• f is u.c., u.i., locally of f.t. and formally unramified.

Proof: 4− 7 are equivalent by(5.6.5.13). For the rest, Cf. [Sta], 04XV. □



616 CHAPTER 5. ALGEBRAIC GEOMETRY I: SCHEME THEORY

Universal Homeomorphism

Prop.(5.4.4.74).A morphism is a universally homeomorphism iff it is integral, surjective and univer-
sally injective.

Proof: A universally homeomorphism is affine by(5.4.4.15). It is clearly u.c, so it is integral
by(5.4.4.39). Conversely, it is integral hence u.c, and universally bijective, so it is universally home-
omorphism. □

Cor.(5.4.4.75).The reduction Xred → X is a universal homeomorphism, as closed immersion is u.c..

Separatedness

Def.(5.4.4.76) [Separatedness].A map f : X → Y is called separated if the diagonal ∆ : X →
X ×Y X is a closed immersion. It is called quasi-separated if the diagonal is quasi-compact.

In fact ∆ is always an immersion because maps between affine scheme is separated so ∆(X) is
closed in ∪Uij ⊗Vi Uij where U, V are affine open, hence it suffice to check the image is closed.

Prop.(5.4.4.77). (Quasi-)Separateness is local on the target because closed immersion and quasi-
compact is local on the target(5.4.1.5).

(Quasi-)Separatedness satisfies base change trick by(5.4.4.2).

Prop.(5.4.4.78)[Graph].By(3.1.1.50), for X → S and Y → S, the map X = X ×Y Y → X ×S Y is
an immersion. It is closed immersion if Y → S is separated, and it is qc if Y → S is quasi-separated.

Cor.(5.4.4.79). for X → Y is a morphism of schemes over S, the map X = X ×Y Y → X ×S Y is an
immersion. It is closed immersion if Y → S is separated, and it is qc if Y → S is quasi-separated.

Cor.(5.4.4.80). If s : S → X is a section of f : X → S, the above proposition applies to this case,
because S = S ×X X → S ×S X = X.

Prop.(5.4.4.81)[Characterization of Separatedness].A morphism is quasi-separated iff for any
two affine open that mapped into an affine open, their intersection is quasi-compact. This is because
quasi-compact is local on the target.

A morphism is separated iff for any two affine open that mapped into an affine open, their
intersection is affine and O(U) ⊗O(W ) O(V ) → O(U ∩ V ) is surjective. This is because closed
immersion is local on the target(5.4.1.5).

Cor.(5.4.4.82).A locally Noetherian scheme is quasi-separated.

Cor.(5.4.4.83). If g ◦ f is (quasi-)separated, then so is f .

Cor.(5.4.4.84). If X is (quasi-)separated, then X → Y is (quasi-)separated.

Prop.(5.4.4.85)[Injective Maps are Separated]. Injective maps of schemes are separated.

Proof: Let f : X → Y be an injective map. Firstly X ×Y X is a union of affine subschemes of the
form U ×V U where U, V are affine and f(U) ⊂ V : let z ∈ X×Y X, then π1(z) = π2(z), because they
map to the same point in Y , thus we can choose affine nbhds U, V of π1(z) and f(π1(z)). Now for each
of these U ×V U , ∆ : U → U ×V U is closed immersion, thus ∆X is also closed immersion(5.4.1.5). □

Cor.(5.4.4.86).monomorphisms are separated because they are universal injective(5.4.4.4), and im-
mersions are separated.
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Prop.(5.4.4.87). (Quasi-)Affine morphism is separated (Check closed immersion directly).

Prop.(5.4.4.88). if f : X → S is affine, h : Y → S is separated, and g : X → Y is a morphism over
S, then g is affine.

Proof: Decompose g as X → X ×S Y → Y , where the first map is base change of ∆Y and the
second map is base change of f , so they are both affine. □

Prop.(5.4.4.89)[Scheme-Theoretic Equalizer]. If X,Y are schemes over S and a, b : X → S are
morphisms, then there is a largest locally closed subscheme Z of X that a|Z = b|Z . And if Y/S is
separated, Z is a closed subscheme of X.

Proof: By definition, Z should be the fibered product:

Z X

Y Y ×S Y
(a,b)

∆Y

then the theorem follows from the definition and base change trick of locally closed morphisms. □

Prop.(5.4.4.90)[Qsqc Lemma].Let X be a qcqs scheme and s ∈ Γ(X,OX), then there is a natural
isomorphism Γ(X,OX)s ∼= Γ(Xs,OX).

Proof: Firstly this is true for X affine by definition(5.2.7.1). In general, let Ui be an affine open
cover of X that Ui ∩Uj = ∪cijk=0Uijk be a finite cover by affine opens, then there is an exact sequence

Γ(X,OX)→
∏
i

Γ(Ui,OX)→
∏
ijk

Γ(Uijk,OX).

Then we can take localization by s to get an exact sequence

Γ(X,OX)s →
∏
i

Γ(D(s, Ui),OX)s →
∏
ijk

Γ(D(s, Uijk),OX)s.

but D(s, Ui) is an open cover of Xs with D(s, Ui) ∩D(s, Uj) = ∪kD(s, Uijk), thus we get a natural
isomorphism Γ(X,OX)s ∼= Γ(Xs,OX). □

5 Proper & Projective
Prop.(5.4.5.1)[Proper].A morphism that is separated, of finite type and universally closed is called
proper.

Properness is local on the target, because all these three properties do(5.4.1.5). Properness
satisfies the base change trick(5.4.4.2).

Prop.(5.4.5.2).The class of proper morphisms satisfies the base change trick(5.4.4.1), by valuation
criterion(5.4.5.13) and fibered products tricks.

Proof: Closed immersion is proper because it is f.t. and is affine so separated(5.4.4.76), and it is
universally closed because immersions are stable under base change(5.4.4.60). □

Prop.(5.4.5.3)[Image of Proper Map]. If f : X → Y is morphism between separated schemes f.t
over S, then if X is proper, then f is proper(by base change trick) thus the image is closed, and is
proper over S in its scheme-theoretic structure.
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Proof: Notice proper is qc, so by(5.4.4.62), the scheme-theoretic closure has the same underlying
space as the image. Then use(5.4.4.8) to show it is u.c.. □

Cor.(5.4.5.4) [Connected Proper to Affine Constant].A morphism from a connected proper
scheme to an Noetherian affine scheme SpecA is constant.

Proof: Because the image is proper, by(5.7.4.12), the global section of its image is a finite module
over k thus Artinian(4.1.3.4) so has finitely many points and is discrete. But X is connected, thus it
is constant. □

Prop.(5.4.5.5)[Chevalley].Let f : X → Y be a morphism of schemes, the following are equivalent:
• f is finite.
• f is proper and affine.
• f is proper with finite fibers.
• f is proper and locally quasi-finite.
• f is separated, u.c., locally of f.t. and has finite fibres.

Proof: The fiber of f : X → S is Spec(k(y) ⊗A B), which is Artinian(4.1.3.4), so it has finitely
many primes and they are all closed. Finite morphism is proper because it is integral(5.4.4.39).

The converse follows from Zariski’s main theorem(5.4.4.49).
Cf.[Sta]02LS. □

Cor.(5.4.5.6) [Quasi-Affine+Proper imply Affine].Let f : X → SpecA be a quasi-affine and
proper map, then f is affine.

Proof: This follows from(5.7.2.8)(5.4.4.20) and the fact Hp(X,OX) = 0 for p > 0. □

Prop.(5.4.5.7) [Quasi-Finite+Proper Imply Finite].Let f : X → S be a proper morphism of
schemes and s ∈ S that f−1(s) is a finite set, then there exists a nbhd V of s ∈ S that f−1(V )→ V
is finite.

Proof: By(5.4.4.46), f is quasi-finite at the points of f−1(s). By(5.4.4.48) the set U of points that
f is quasi-finite is open. Denote Z = X\U , then f(Z) is closed in S and doesn’t contain s. Then
V = S\f(Z) satisfies the requirement by(5.4.5.5). □

Prop.(5.4.5.8)[Generically Finite+Proper Imply Finite].Let f : X → S be a proper morphism
of locally Noetherian schemes and y ∈ Y satisfies dimOY,y ≤ 1, and if one of the following holds:

• For every generic point η of X s.t. f(η) generalizes y, k(η)/k(f(η)) is algebraic.
• f is quasi-finite at every generic point of x.
• f is quasi-finite on a dense subset of X.

then there exists an open nbhd V of y ∈ Y s.t. f−1(V )→ V is finite.

Proof: Cf.[Sta]0AB7. □

Prop.(5.4.5.9). If X is a separated scheme over a field k of dimension> 0 and x ∈ X is a closed point,
then X\{x} is not proper over k.

Proof: Cf.[Sta]0A24. □
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Def.(5.4.5.10)[Modification and Alteration].Amodification of X ∈ Sch is a scheme X ′ together
with a proper birational map X ′ → X.

A alteration of X is a scheme X ′ together with a proper dominant morphism f : X ′ → X that
for some non-empty open U of X, f−1(U)→ U is finite.

Prop.(5.4.5.11)[Modifications and Alterations].Any modification is an alteration. And if Y →
X ∈ Sch be an alteration, then it can be decomposed into Y → W → X where Y → X is a
modification and W → X is finite surjective.

Proof: ?Use Stein factorization. □

Valuation Criteria

Lemma(5.4.5.12) [Valuation Criteria Lemma]. If X is a scheme and x → y is a specialization
of pts, then for any field extension K/k(x), there is a valuation ring A ⊂ K and a morphisms
SpecA→ X that maps the generic pt η to x and the unique closed pt to y.

Moreover, if X is locally Noetherian, then A can be chosen to be a DVR.

Proof: There is a morphism OX,y → k(x)→ K, so there is a valuation ring A with field of fractions
K that dominate the image of OX,y by(10.3.2.1), which is also a local ring(4.1.1.9). Then this is
what we desire.

For the locally Noetherian case, add(10.3.3.7). □

Prop.(5.4.5.13) [Valuation Criteria].The valuation criterion for SpecK → SpecR where R is a
valuation ring with field of fractions K: Given a morphism f : X → S,

1. If it is qc, then it is universally closed iff there is at least one lifting.
2. it is separated iff it is quasi-separated and there is at most one lifting.
3. it is proper iff it is finite type, quasi-separated and lifting exists uniquely.

Moreover, if S is locally Noetherian and f is locally of f.t., then it suffices to check for discrete
valuation rings. Proof:

1. Firstly, in this case, by(5.4.4.9), it suffices to prove that: specializations lift along any base
change of f iff it has has least one lifting. If specializations lift along any base change of f ,
change S to SpecA and X to X ×S SpecA. Let x′ be the image of SpecK → X, then by
hypothesis there is a specialization x′ → x where x mapsto the closed pt of SpecA. Then we
get a map A→ OX,x → k(x′)→ K, which is exactly the quotient map A→ K. So the image
of OX,x in K dominates A, which means it is just A. Thus we get a map OX,x → A, which
gives a map SpecA→ X that commutes SpecK.
Converly, if f has at least one lifting, then any base change of f also has at least one lifting
by categorial reason. Thus it suffices to show specializations lift along f . Let s′ → s be a
specialization in S and x′ ∈ X maps to s′, we can apply(5.4.5.12) to k(s′) ⊂ k(x′) = K, then
we get a lifting diagram, and the image of the closed pt of SpecA under the lifting is a point
mapping to s.

2. If it is separated, then if there are two lifting, then consider their equalizer, it is a closed
subscheme of SpecA by(5.2.7.18), and it contains the generic pt, so it equals SpecA, as desired.
Conversely, if there are at most one lifting, then we want to prove the diagonal is closed. But
by (5.4.4.76) and(5.4.4.71) and the valuation criterion for u.c., it suffices to prove the existence
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of a lifting for the diagonal map(5.4.5.13). But in fact, a valuation digram for the diagonal
correspond to two lifting of a valuation criterion for X → S, then they are the same, and
SpecA→ X ×S X lifts along the diagonal.

3. follows from the above two.
□

Prop.(5.4.5.14)[Extension of Rational Maps].LetX,Y be schemes over S, X is locally Noetherian
and Y/S is proper. If there is a morphism from an open subset U of X to Y , and there is a point x
in the closure of U with the stalk being a valuation ring, then the morphism can be extended to an
open set containing x.

Proof: We can replace X by an affine open nbhd of X. By(5.4.6.1), we assume X is affine and
Γ(X,OX) ⊂ OX,x. In particular X is integral with generic pt ξ with residue field K. Then U contains
ξ. By the valuation criterion(5.4.5.13), the morphism SpecK ξ−→ U → Y can be lifted to a morphism
SpecOX,x → Y , thus lemma(5.4.6.2) shows there is a morphism on a nbhd V of X spreading this
morphisms.

Now because Y/S is separated, the equalizer of this morphism and f on their intersection is a
closed subscheme by(5.4.4.89), but it contains ξ, so they coincide on the intersection, so we are done.
□

Prop.(5.4.5.15) [Singularity in Codimension1].Let φ : X → X ′ be a rational map of a locally
Noetherian scheme X/K regular in codimension1 to a proper scheme X ′/K with maximal domain
U , then

codim(X\U,X) ≥ 2.

In particular, if X is non-singular curve, then φ is a morphism.

Proof: Use(5.4.5.14), noticing that the stalk at a point of codimention1 is a DVR(4.3.5.20). □

Projective Morphism

Def.(5.4.5.16) [Projective Morphism].A projective morphism X → Y is a closed immersion
X → Proj(E) for some Qco f.t. module E over Y .

An H-projective morphism X → Y is a closed immersion X → PnY .
An H-quasi-projective morphism is a H-projective morphism composed with a quasi-compact

open immersion.
A locally projective morphism f : X → Y is a morphism f that there exists a covering Ui of

Y that f−1(Ui)→ Ui is projective.
Some proposition about projective is written before the language of Hartshorne so I may not have

changed them to the more general notion of projectiveness yet.

Prop.(5.4.5.17).For a morphism f : X → S, he following are equivalent:
• f is locally projective.
• There is a covering Ui of S that f−1(Ui)→ Ui is H-projective.

Proof: Clearly 2 implies 1, and for the converse, it suffices to show that projective morphism is
locally H-projective. Locally on each affine open nbhd U = SpecR, XU is isomorphic to a closed
subscheme of P (E) for some f.t. Qco sheaf of OU -modules E . Write E = M̃ for some f.t. R-module
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M , and choose a set of generators x1, . . . , xn for M , which induces a surjection of graded R-algebra
R[X0, . . . , Xn]→ SymR(M), then the corresponding morphism P (E)→ Pn is a closed immersion, so
f−1(U) is a H-projective scheme over U . □

Prop.(5.4.5.18).H-(quasi-)projectiveness is stable under base change and composition. (because
Segre embedding is closed). Disjoint union of f.m. projective morphisms is projective (embed into
the Segre embedding).

Proof: [Sta]01WE. □

Cor.(5.4.5.19) [Projective Maps are Proper].Projective morphisms are locally projective and
locally projective morphisms are proper. Thus a quasi-projective morphism is locally of f.t. and
separated(5.4.4.86).

Proof: Because locally projective and proper are both local on the base(5.4.4.2), it suffices to show
that H-projective morphism is proper by(5.4.5.17).

Because properness satisfies base change trick(5.4.4.2), it suffices to show PnS → S is proper.
Also this is base change of PnZ → Z, it suffices to check this one. PnZ is clearly separated
by(14.5.3.20)(looking at the natural affine covering), and qc. Finally we show it is u.c. using valuation
criterion(5.4.5.13):

Let
SpecK X

SpecR SpecZ

be a diagram, by induction on n, we may assume the image ξ1 of SpecK

is not contained in any of the hypersurface V (xi), then xi are all invertible in Oξ1 , and there is a
morphism φ : k(ξ1) → K. Let fij be the image of xi/xj under φ, and choose k which fk0 has the
minimal valuation, then fik ∈ R for any i, which means the there is a map

Z[x0/xk, . . . , xn/xk]→ R

compatible with φ, or equivalently a map SpecR→ D(xk) ⊂ X commuting the diagram. □

Prop.(5.4.5.20)[Descent for Projectiveness].Let X be a scheme over a field k, and K/k is a field
extension, then Xk is (quasi-)projective iff XK is (quasi-)projective.

Proof: This follows from(5.5.4.19) and f.f. descent. □

Prop.(5.4.5.21).H-Projective scheme over SpecA is of the form ProjS where S0 = A and S is f.g
over S0 by S1(5.5.2.11).

Proof: □

Prop.(5.4.5.22)[Projective Morphisms and Closed Embeddings].Let k be an alg.closed field
and π : X → Y is a projective morphism of algebraic schemes over k that is injective on closed points
and injective on tangent vectors at closed points, then π is a closed embedding.

Proof: Cf.[Vak17]P506. □

Prop.(5.4.5.23) [Chow’s Lemma].Let X → S be separated of f.t over a qcqs S, then there is a
birational, H-projective map π : X ′ → X over S that X ′ is quasi-projective over S.

If X is proper, then X ′ is projective over S. And if X is integral/irreducible/reduced over S, X ′

can also be chosen to be so.
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Proof: We only prove for S Noetherian, for the general case, Cf.[Sta]0203.
In this case all schemes here are Noetherian. Suppose Xi, i ≤ r are irreducible components of X

with generic points ηi, by(5.4.6.5) and the fact X is qc we can find a finite affine cover X = ∪Ui that
each Ui contains all the generic points of X, thus U = U1 ∩ . . . ∩ Un is dense in X. Let X∗ be the
schematic-closure of U in X, and U∗

i = Ui ∩X∗, then we may replace X by X∗ and assume that U
is schematically dense in X by(5.4.4.67) as X is qs. By(5.5.4.22) and(5.4.4.19), there are immersions
Ui → PniS together with a closed subscheme Zi ⊂ PniS that Ui → Z is a scheme-theoretically dense
open immersion(5.4.4.70).

Consider the map (j1, . . . , jm) : U → PniS × . . . × PnmS with scheme-theoretic image Z, and the
commutative diagrams

U PniS × . . .× PnmS

Ui PniS

(j1,...,jm)

πi

ji

,

which induces a map pi : Z → Zi(5.4.4.63) which is proper.
Consider p−1

i (ji(Ui)) = Vi and X ′ = ∪iVi which is an open subscheme of Z ⊂ PniS × . . . × PnmS
thus quasi-projective over S.

Finally, we prove that the morphism pi : Vi → Ui glue together to a proper birational morphism
π : X ′ → X: this is because they are compatible on U , which is scheme-theoretically dense in Vi for
each i thus also also scheme-theoretically dense in Vi ∩ Vj , thus pi and pj are compatible on Vi ∩ Vj
as the target X is separated over S.

To show π is proper, firstly notice π−1(Ui) = Vi: there are decompositions Vi → π−1(Ui) → Ui,
where Vi → Ui is proper, thus Vi → π−1(Ui) is also proper and Vi is schematically dense in π−1(Ui)
because it contains U , so it is and isomorphism.

For the same reason U → π−1(U) is an isomorphism. Finally π is projective because it factors
through some map X ′ → X ×S PnS = PnX and it is proper.

If X is reduced, then X ′ is reduced by(5.4.4.65), and if X is irreducible, then X ′ = Z is the
closure of j(X) by(5.4.4.70), which is irreducible. □

6 Technical Lemmas
Lemma(5.4.6.1).Let X be a scheme and x a point, then there exists an open affine nbhd U of x that
OX(U)→ OX,x is injective, if any of the follows holds:

• X is integral.
• X is locally Noetherian.
• X is reduced with f.m. irreducible components.

Proof: This problem is clearly local hence follows from the algebra case(4.1.1.34). □

Lemma(5.4.6.2)[Spread Out Stalk Morphism].Let X,Y be schemes over S, s ∈ S and x, y be
pts over S, then:

• Let f, g : X → Y be morphisms over S that f(x) = g(x) = y and f ♯x = g♯x, then f = g on a
nbhd U of x if any of the following holds:
(a) Y/S is locally of f.t..
(b) X is integral.
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(c) X is locally Noetherian.
(d) X is reduced with f.m. irreducible components.

• Let φ : OY,y → OX,x be a local ring map over OS,s, then there is a morphism f from a nbhd U
of x mapping to Y that f(x) = y, and f ♯x = φ, if any of the following holds:
(a) Y/S is locally of f.p..
(b) Y/S is locally of f.t. and X is integral.
(c) Y/S is locally of f.t. and X is locally Noetherian.
(d) Y/S is local of f.t. and X is reduced with f.m. irreducible components.

Proof: Cf.[[Sta]0BX6]. □

Prop.(5.4.6.3)[Base Change of Fields is Quotient Map].For any scheme X over a field k and
algebraic extensions K/k, XK → X is a quotient map, as it is surjective(5.6.2.1), continuous and
closed(5.4.4.39).

Lemma(5.4.6.4).Let X be a qs scheme and Zi be a finite set of irreducible components of X. Let
ηi be the generic point of Zi, then there are open affine subsets ηi ∈ Ui that U1, . . . , Un are pairwise
disjoint.

Proof: □

Lemma(5.4.6.5).Let X be a qs scheme and Zi be a finite set of irreducible components of X. Let ηi
be the generic point of Zi and x ∈ X, then there is an affine open subset of X containing x and ηi.

Proof: Let x ∈ Z1, . . . , Zr but x /∈ Zr+1, . . . , Zn, then we can find an arbitrary affine open nbhd W
of x that contains η1, . . . , ηr but not ηi+1, . . . , ηn. By(5.4.6.4), we may choose pairwise disjoint affine
open nbhds ηr+1 ∈ Ur+1, . . . , ηm ∈ Un. Now Ui ∩W is quasi-compact and doesn’t contain ηi, so we
can shrink Ui s.t. W ∩Ui = ∅ by(4.1.7.24). Then U = W

⨿
(
⨿
Ui) satisfies the desired condition. □
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Main references are [Sta]and [Vak17].

5.5 Quasi-Coherent Sheaves on Schemes

1 (Quasi-)Coherent Sheaves
Lemma(5.5.1.1)[Associated Qco Sheaves on Affine Scheme].On an affine scheme SpecA, there
is a sheaf M̃ , that is Mf on SpecAf . To check it is a sheaf, we only need to check to affine coverings,
and this follows from(4.4.2.2).

Prop.(5.5.1.2) [Qco Sheaves on Affine Schemes].M 7→ M̃ is an equivalence to the category of
quasi-coherent sheaves over SpecA. In particular,

HomA(M,Γ(X,G)) ∼= HomOX
(M̃,G),

so M 7→ M̃ commutes with colimits and is exact, and commutes with pullbacks.
When A is Noetherian, this also induces an equivalence between finite A-modules and coherent

sheaves over SpecA, because finiteness for modules is local(5.4.1.5).

Proof: For any A-module M , there is a sheaf of modules FM on X = SpecA by(5.2.2.26). This
is left adjoint to Γ and defines a functor from the category of A-modules to the category of OSpecA-
modules.

By universal property of FM (5.2.2.26), there is a natural map FM → M̃ corresponding to the
ring mapM 7→ Γ(SpecA, M̃) = M . The induced maps on the stalk at a point x isM⊗AOX,x →Mp,
which is isomorphism, so FM ∼= M̃ .

From the universal property of M̃ = FM , Hom(M̃, Ñ) = Hom(M,N), thus ∼ is fully faithful,
to show it is an equivalence, it suffices to show for any Qco sheaf F on SpecA, the natural map
˜Γ(X,F)→ F is an isomorphism:? Cf.[Sta]01IA.
If 0→M1 →M →M2 → 0 is exact, then 0→ M̃1 → M̃ → M̃2 → 0 is exact, because localization

is exact. □

Prop.(5.5.1.3)[properties of (Quasi-)Coherent Sheaves on Schemes].
• QCoh(X) and Coh(X) are weak Serre subcategories of ModOX

, and Coh(X) is a Serre subcat-
egory of QCoh(X).

• Colimits in Mod(OX) preserves QCoh(X), because localization is exact.
• Tensor product of two (Q)co sheaf is (Q)co, and locally free if they are locally free. More

explicitly, M̃ ⊗A N ∼= M̃ ⊗OX
Ñ as tensor product commutes with π∗.

• If F is Qco, then so does T (F),Sym(F) and ∧(F), by(5.2.3.12).
• Given F ,G ∈ QCoh(F) that F is f.p., Hom(F ,G) ∈ QCoh(X), by(5.2.3.2) and(5.5.1.2). More

explicitly, affine locally HomX(M̃, Ñ) = ˜HomA(M,N).
• pullback preserves QCoh(X) and Coh(X), by(5.2.2.29). More explicitly, if SpecB ⊂ Y is

mapped into SpecA ⊂ X, then f∗(F)(SpecB) = F(SpecA)⊗A B, using the fact M̃ = FM =
π∗M .

Proof: 1: Coh(X) follows from(5.2.2.28). For QCoh(X), it follows from(5.5.1.2) that the kernel and
cokernel of φ : M̃ → Ñ is just k̃erφ and C̃okerφ which is Qco, for the extension of Qco, use(5.7.1.3)
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that the global section is exact, so there is a morphism of exact sequences ˜Γ(X,Fi)(U) → Fi(U),
and five lemma gives the result. □

Prop.(5.5.1.4)[Qco Sheaves of F.T./F.P].Let X = SpecA and F = M̃ a Qco sheaf on X, then
F is of f.t./f.p. if M is of f.t/f.p. over A.

Proof: These follows from the fact finiteness/f.p. are local properties for modules over a
ring(4.1.4.4). □

Def.(5.5.1.5)[Locally Projective Qco Sheaves].Let X be a scheme, then a locally projective
Qco sheaf is a Qco sheaf F on X that is affine locally a locally projective module sheaf.

Being locally projective for Qco sheaves satisfies fpqc descent, by(4.4.2.1).

Prop.(5.5.1.6) [Qcqs Pushforward]. If f is qcqs, then the pushforward of of a Qco sheaf is Qco.
(Used in??).

Proof: The question is local so we let Y be affine, and then X is qcqs, so we cover it with affine
opens Ui and their intersections are Uijk. Then we see by sheaf property

0→ f∗F → ⊕if∗(F|Ui)→ ⊕ijkf∗(F|Uijk)

The last two are Qco because two are maps between affine schemes, so the first is Qco. □

Prop.(5.5.1.7)[Qco Sheaves on Qcqs Schemes].For a qcqs scheme X and s ∈ Γ(X,OX), and a
Qco module F , (Γ(X,F))s ∼= Γ(Xs,F).

Proof: The canonical map f : X → Spec Γ(X,OX)(5.2.7.5) is qcqs, so f∗F is Qco on Spec Γ(X,OX)
by(5.5.1.6). Then the result follows from the fact f−1(Spec(Γ(X,OX)s)) = Xs and the definition of
f∗. □

Lemma(5.5.1.8) [Extending Qco Sheaves].Let i : U → X be a quasi-compact open immersion
of schemes, F a Qco OX -module and G ⊂ F|U a Qco OU -submodule, then there exists a Qco
OX -submodule G′ ⊂ F that G′|U = G

Proof: immersion is separated(5.4.4.86), so i∗G is a Qco OX -sheaf by(5.5.1.6), and it is a submodule
of i∗i∗F , so the kernel

H = ker(F ⊕ i∗G → i∗i
∗F)

is also Qco by(5.5.1.3), and H ⊂ F , H|U = G. □

Prop.(5.5.1.9)[Extending Qco Sheaves of F.T.].Let X be a qcqs scheme, and U ⊂ X a qc open
subset, F a Qco OX -module and G ⊂ F|U a Qco OU -submodule of f.t., then there exists a Qco
OX -submodule G′ ⊂ F of finite type that G′|U = G.

Proof: Let n be the minimal number of affine open subsets Ui that X = U
∪
∪Ui, by induction on

n, it suffices to prove for n = 1. Thus we may assume X = U ∪ V where U, V are affine opens. Now
U ∩ V is qc because X is qs. Then we can change (X,U) to (V,U ∩ V ), because we can glue the
resulting sheaf. Then we reduce to the case X is affine.

Let X = SpecR and F = M̃ , then by(5.5.1.8), there exists a Qco sheaf Ñ that Ñ |U = G. By
hypothesis we can cover U by f.m. open affine D(fi) that Nfi is f.g., by element xij/fnij . Let N ′ be
the submodule of N generated by these elements xij , then Ñ ′ meets our requirement. □
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Cor.(5.5.1.10)[Qco Sheaf is a Direct Union of Qco Sheaves of F.T.].Let X be a qcqs scheme,
then any Qco sheaf F on X is a direct colimit of its Qco subsheaves of f.t..

Proof: It is a direct colimit because the sum of two Qco sheaves of f.t. is also Qco of f.t.. Now
for any affine open U ⊂ X and s ∈ OX(U), s generates a Qco OU -submodule of f.t. of F|U , and
by(5.5.1.9) this extends to a Qco OX -submodule of F . Then we see that the direct colimit of Qco
subsheaves of f.t. of F contains elements of F(U) for any affine open subset U , thus it is just F . □

Def.(5.5.1.11)[Rank of Sheaves].Let X be a scheme and F a Qco sheaf on X, p ∈ X, then the
rank of F at p is rankp(F) = dimk(p)Fp/mpFp.

Prop.(5.5.1.12) [Maximal Qco Submodule].For X a scheme and any OX -module F , there is a
Qco submodule of F maximal among all Qco submodules of F . This is because a direct colimit of
Qco sheaves is Qco(5.5.1.3).

Prop.(5.5.1.13)[Integral and Finite Modules].Let X be a qcqs scheme and A an integral Qco
OX -submodule, then

• A is the directed colimits of its finite Qco OX -modules.
• A is a direct colimit of finite and finitely presented Qco OX -modules.

Proof: Cf.[Sta]0817. □

Def.(5.5.1.14). ?
• for a closed immersion Y → X, there is i! : QCoh(X) → Qco(Y ) that is right adjoint to i∗:
i!G = i∗((HZ(G))′), whereHZ(G) is the sheaf of sections annihilated by I and F ′ is the maximal
Qco sheaf of F .

• For f proper between locally Noetherian scheme, there is a inverse sheaf f !G = HomY (f∗OX ,G),
which maps Qco(Y ) to QCoh(X) by(5.5.1.33) and??. When f is affine, in particular when it is
finite, then f ! is right adjoint to f∗ on Qco(5.8.6.13).

Associated Points

Def.(5.5.1.15) [Weakly Associated Points].Let X ∈ Sch and F ∈ QCoh(X), then a weakly
associated point of F is the set of points x ∈ X that mx ⊂ OX,x is weakly associated to the
module Fx. The set of w.ass points are denoted by WeakAsso(F). The weakly associated points
of X is the weakly associated points of OX .

Similarly we can stalkwise define the set of associated points of X.

Def.(5.5.1.16)[Embedded Points].Let X be a scheme and F a Qco sheaf on X, then an embedded
point of F is an associated point that is a specialization of another associated point.

Prop.(5.5.1.17)[Properties of Associated Points].Let X be a scheme and Fi be Qco sheaves on
X, then

1. Ass(F) ⊂WeakAsso(F) ⊂ Supp(F).
2. If 0 → F1 → F2 → F3 → 0 is an exact sequence, then WeakAss(F1) ⊂ WeakAss(F2), and
WeakAss(F2) ⊂WeakAsso(F1) ∪WeakAsso(F3).

3. WeakAss(F) = ∅ iff F = 0.
4. The generic points of Supp(F) are in WeakAsso(F). In particular, generic points of X are in
WeakAss(X).
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5. If X is locally Noetherian, then Ass(F) = WeakAsso(F).
6. If X is reduced, then WeakAsso(X) is just the generic points of X. In particular, X has no

embedded points.
7. If X is locally Noetherian, then an associated point is an embedded point iff it is not a generic

point of Supp(F).
8. If X is locally Noetherian and F is coherent, then F has no embedded points iff it satisfies

(S1).
9. If X is locally Noetherian of dimension≤ 1, then X is C.M. iff it has no embedded points.

Proof: By(4.2.5.21), these reduces to the affine case, so they follows from
• (4.2.5.13)(4.2.5.16).
• (4.2.5.14).
• (4.2.5.16).
• (4.2.5.16).
• (4.2.5.21).
• (4.2.5.24).
• (4.2.5.23).
• [Sta]031Q.
• [Sta]0BXG.

□

Prop.(5.5.1.18).Let X be a scheme and F ∈ QCoh(X). If U is an open subset of X that contains
WeakAsso(F), then Γ(X,F)→ Γ(U,F) is injective.

Proof: If s ⊂ Γ(X,F) be a section that restricts to 0 on U , let F ′ be the subsheaf generated by
s, then WeakAss(F ′) ⊂ WeakAsso(F), but Supp(F ′) ⊂ X\U , thus WeakAss(F ′) = 0, so F ′ = 0
by(5.5.1.17). □

Prop.(5.5.1.19) [Schematically Dense and Associated Points].Let X be a locally Noetherian
scheme and U ⊂ X an open subset, then the following are equivalent:

• U is schematically dense in X.
• U is dense in X and contains all the embedded points of X.
• U contains Ass(X).

Proof: The problem is local, so we assume X = SpecA, then 2, 3 are clearly equivalent.
Let U = ∪iD(fi), then by(5.4.4.64), U is schematically dense in A iff A →

∏
Afi is injective.

If p = Ann(x) for some x ∈ A, then x maps to some non-zero element of Afi , then fi /∈ p, so
p ⊂ D(fi) ⊂ U . Conversely, if Ass(X) ⊂ U , then every map A → Ap factors through A → Afi for
some i, so injectivity of A→ ∏

p∈Ass(X)Ap implies injectivity of A→ ∏
iAfi . □

Prop.(5.5.1.20).Let X be a scheme and φ : F → G ∈ QCoh(X) that Fx → Gx is injective for any
x ∈WeakAss(F), then φ is injective.

Proof: The hypothesis says WeakAss(ker(φ)) = 0, so ker(φ) = 0 by(5.5.1.17). □
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Fitting Ideals

Def.(5.5.1.21)[Fitting Ideals].Let X ∈ Sch and F ∈ QCohft(X), the fitting ideal of F is defined
to be? Cf.[Sta]0C3C.

Locally Free Sheaves

Prop.(5.5.1.22)[Locally Free is Stalkwise].F ∈ QCohpf(X) is locally free iff its stalks are all free,
by(4.3.1.7).

Def.(5.5.1.23).Let X ∈ Sch and δ : X → N a locally constant function, then the category of locally
free sheaves of rank δ is denoted by Cohfree,δ(X). The category of locally free sheaves is denoted by
Cohfree(X)

Prop.(5.5.1.24)[Locally Free Sheaves]. Suppose 0 → F ′ → F → F ′′ → 0 is an exact sequence of
sheaves on a scheme X, then

• If F ′,F ′′ are both locally free, then so is F .
• If F ,F ′ are both locally free of finite rank, then so is F ′.

Proof: Firstly of all in each case all sheaves are Qco by(5.5.1.3).
1: on an affine open U = SpecA ⊂ X, the exact sequence is induced by 0 → AI → Γ(U,F) →

AJ → 0, so it splits and Γ(U,F) ∼= AI+J is free.
2: on an affine open U = SpecA ⊂ X, the exact sequence is induced by 0 → Γ(U,F ′) → Am →

An → 0, where the map Am → An is represented by a n×m matrix M . Then U is covered by open
subsets Ui that some n × n minor of M is invertible. Then after a change of coordinates on each
subset, F(Ui) ∼= Am−n. □

Prop.(5.5.1.25).For a exact sequence 0→ F ′ → F → F ′′ → 0 in QCohfree(X), there is a filtration of
Symr F :

0 = Gr+1 ⊂ Gr ⊂ . . . ⊂ G0 = Symr F

that
Gp/Gp+1 ∼= SympF ′ ⊗ Symr−pF ′′.

Proof: On any affine open subset, choose a splitting of the exact sequence, then use coordinates.
□

Prop.(5.5.1.26).For a exact sequence 0 → F ′ → F → F ′′ → 0 in Cohfree(X), there is a filtration of
∧rF :

0 = Gr+1 ⊂ Gr ⊂ . . . ⊂ G0 = ∧rF

that
Gp/Gp+1 ∼= ∧pF ′ ⊗ ∧r−pF ′′.

In particular,
∧F ′ ⊗ ∧F ′′ ∼= ∧F .

and when F ′′ ∼= L is a line bundle, there is an exact sequence

0→ ∧r(F ′)→ ∧r(F)→ ∧r−1(F ′)⊗ L → 0
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Proof: On any affine open subset, choose a splitting of the exact sequence, then use coordinates.
□

Prop.(5.5.1.27) [Perfect Pairing Wedge Product Sheaf].Let F be a locally free sheaf of rank
n, then there is a perfect pairing ∧rF ⊗ ∧n−rF → ∧F which is a perfect pairing, i.e. it induces an
isomorphism ∧rF ∼= (∧n−rF)∨ ⊗ ∧F .

Proof: The map is natural, and the isomorphism can be seen at the level of stalls, by(5.2.3.11). □

Prop.(5.5.1.28).Let 0 → F → G → H → 0 is an exact sequence in QCoh(X) where H is a locally
free sheaf, then for any Qco sheaf E of X, then for any Qco sheaf E on X, there is an exact sequence
of sheaves

0→ Hom(H, E)→ Hom(G, E)→ Hom(F , E)→ 0.

In particular, 0→ H∨ → G∨ → F∨ → 0 is exact.

Proof: As Hom(−, E) is left exact, it suffices to show the last one is surjective. This is local, so we
may assume 0→ F → G → H → 0 is 0→M → N → An → 0, so this sequence splits, and the then
Hom(G, E)→ Hom(F , E) is surjective, by(5.5.1.3). □

Prop.(5.5.1.29) [Grothendieck].Every object in Cohfree,r(P1
k) is isomorphic to ⊕r

i=1O(ai) for a
unique non-decreasing sequence of integers a1, . . . , ar.

Proof: Use induction on r. The r = 1 case follows from(5.5.3.16). For a general r, let
E ∈ Cohfree,r(P1

k), then E(m) is generated by global sections for m large as OP1 is ample, and
H0(E(−m)) = H1(E∨(m)) = 0 by Serre duality and(5.7.2.5), so there is a maximal m s.t. there is a
non-zero map O(m)→ E . The image of this map is also locally free and has degree≥ m by(5.11.2.8),
so it must has degree m and OX(m)→ E is injective by(5.11.2.8). Now the cokernel F is also locally
free, because otherwise let Ftor be the torsion part of F(5.11.2.16), and let N be the inverse image
of Ftor in E , then it is locally free thus invertible, and O(m) ↪→ N , so N = O(m) by(5.11.2.8), and
Ftor = 0.

There is an exact sequence

0→ O(−1)→ E(−m− 1)→ F(−m− 1)→ 0

which induces H0(E(−m−1)) = H0(F(−m−1)) = 0 as H1(P1
k,O(−1)) = 0, so by induction hypoth-

esis F = ⊕r−1
i=1O(ai) and ai ≤ m. To show this sequence splits, notice Ext1(F(−m − 1),O(−1)) =

⊕r−1
i=1H

1(O(m− ai)) = 0. □

Prop.(5.5.1.30)[Splitting Principal].Let X be an integral scheme and E ∈ Cohfree(X), then there
exists a modification X ′ → X s.t. f∗E has a filtration by invertible sheaves.

Proof: Use induction on rank(E). If rank(E) ≤ 1, this is trivial, otherwise let rank(E) = r,
P = P(E), then π : P → X is proper and there is a canonical surjection π∗E → OP (1), with
kernel in Cohfree,r−1(P ). Let U be an open subset of X s.t. E is trivial, then π−1(U) ∼= Pr−1

U . Let
s : U → Pr−1(U) be a section, and let X ′ be the scheme-theoretic closure of U , which is integral.
Then X ′ → X is proper and thus a modification. Now f∗E has an invertible quotient, and we are
done by induction hypothesis. □
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Coherent Sheaves

Prop.(5.5.1.31) [Coh(X)].The category of coherent sheaves on a scheme X is denoted by Coh(X).
When OX ∈ Coh(X), Coh(X) = QCohpf(X)(5.2.2.28).

In particular when X is locally Noetherian, Coh(X) = QCohft(X). And the notion of coherence
are used usually only when X is locally Noetherian.

(Quasi-)coherence is an affine local property by(5.2.2.30). QCoh(X) is an Abelian category,
by(5.2.2.28).

Lemma(5.5.1.32). If f is finite, then f∗ maps coherent sheaves to coherent sheaves.

Proof: This is trivial. □

Prop.(5.5.1.33) [Proper Pushforward]. If f is a proper morphism between locally Noetherian
schemes, then f∗ maps coherent sheaves to coherent sheaves.

Proof: Immediate from Grothendieck’s coherence theorem(5.7.4.11). □

Prop.(5.5.1.34) [Artin-Rees].Let X be a Noetherian scheme, F a coherent OX -module, G a Qco
subsheaf of F , I ⊂ OX a Qco sheaf of ideals, then there exists some c > 0 that for all n ≥ c

In−c(IcF ∩ G) = InF ∩ G.

Proof: Cover X by f.m. affine open subsets, then this follows from the affine case(4.2.2.13). □

Cor.(5.5.1.35)[Vanish Analytically].Let X be a Noetherian scheme, F a coherent OX -module, for
any element f ∈ ∩

n
mn
xF , f vanishes at a nbhd of x.

Proof: This follows from the intersection theorem(4.2.2.14). □

Prop.(5.5.1.36)[Deligne].On a Noetherian scheme X, let F be a Qco sheaf, G be a coherent sheaf
and I be a Qco sheaf of ideals correspongding to Z, U = X − Z, then we have

lim−→HomOX
(InG,F) ∼= HomOU

(G|U ,F|U ).

In particular,
lim−→HomOX

(In,F) ∼= Γ(U,F).

Proof: Cf.[Sta]01YB. □

Prop.(5.5.1.37)[Kleinmann]. If X is a Noetherian integral separated locally factorial scheme, then
every coherent sheaf on X is a quotient of a finite locally free sheaf.

Proof: Cf.[Hartshorne P238].? □

Prop.(5.5.1.38) [Support of Modules].For X ∈ Sch and F ∈ QCohft(X), the support(5.2.2.2)
Supp(F) is closed by(5.2.2.24).

For a flat morphism f , Supp(f∗(F)) = f−1(SuppF), by(5.2.2.18).

Proof: because affine locally, for a set of generators xi of M , Ann(F) = ∪Ann(xi), and Ann(xi)
is closed. □

Cor.(5.5.1.39).Any coherent sheaf on an integral scheme is locally free over a dense open subset.
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Cor.(5.5.1.40)[Geometric Nakayama]. If F ∈ QCohft(X) and for some p ∈ U ⊂ X and a1, . . . , an ∈
F(U) generate Fp ⊗ k(p), then there is an affine nbhd V ⊂ U that a1, . . . , an generate F(V ).

Cor.(5.5.1.41) [Upper-Semicontinuity of Ranks].For a Qco sheaf F of f.t. over X, the rank
function p 7→ rankp(F) is an upper semicontinuous function on X.

Proof: By Nakayama, φ(y) is equal to the minimal number of generators of the Oy-module Fy.
But these generators extends to a nbhd of y, so φ ≤ n on this nbhd. □

Def.(5.5.1.42)[Schematic Support].Let X be a scheme and F a Qco sheaf of f.t. over X, then the
annihilating ideal is the ideal I ⊂ OX that is affine-locally defined by Ann(F(U)) ⊂ OX(U), and
the schematic support Supp(F) of F is the closed subscheme of X corresponding to Ann(F).

Prop.(5.5.1.43).Let F be a Qco sheaf of f.t. over a reduced scheme that the rank function rankp(F)
is locally constant, then it is locally free.

Proof: Let rankp(F) = n, by(5.5.1.38), for any x ∈ X, there exists an affine nbhd U = SpecA of x
and a surjection f : OnU → FU . Consider the kernel of f . If (r1, . . . , rn) is in the kernel and r1 ̸= 0,
then r1 /∈ p for some prime p of A, as A is reduced. Then rankxp(F) < n, contradiction. □

Torsion-Free Sheaves

Def.(5.5.1.44)[Torsion Sheaves].Let X be an integral scheme, then a torsion sheaf is a Qco sheaf
that its stalk at the generic point of X vanishes. Equivalently, for any affine open U ⊂ X, F(U) is
a torsion OX(U)-module.

Prop.(5.5.1.45).Any

Prop.(5.5.1.46).A torsion OX -module of f.t. on an integral scheme vanish on a dense open subset.

Prop.(5.5.1.47).For X integral, any F ∈ QCoh(X) factors as 0→ Ftor → F → Ftf → 0, where F is
a torsion sheaf(5.5.1.44) and Ftf is Qco and torsion-free.

Cor.(5.5.1.48).The subpresheaf U 7→ {s ∈ F(U)|sη = 0} is a sheaf, and it is also Qco as on an affine
open U ⊂ X, it is just F(U)tor. So the quotient is clearly Qco and torsion-free.

Devissage of Coherent Sheaves

Lemma(5.5.1.49).Let X be a Noetherian scheme and F ∈ Coh(X), let I be a sheaf of ideals that
correspond to Z, then Supp(F) ⊂ Z iff InF = 0 for some n. (This follows easily from Noetherian
and(4.2.5.8)).

Lemma(5.5.1.50).Let X be a Noetherian scheme and F ∈ Coh(X) s.t. Supp(F) = Z1 ∪ Z2 where
Z1, Z2 are closed, then there is an exact sequence of coherent sheaves 0 → G1 → F → G2 → 0 that
Supp(Gi) ⊂ Zi.

Proof: Let I be the ideal defining the induced reduced structure of Z2, we use the exact sequence
0→ InF → F → Coker→ 0 and use (5.5.1.49) on X\Z2 to find n large that Supp(InF) ⊂ Z1, and
notice Coker has support in Z2. □

Lemma(5.5.1.51).Let X be an integral scheme and Z ⊂ X an integral closed subscheme with generic
point Z. If F ∈ Coh(X) satisfies Fξ is annihilated by mξ, then there exists some r ≥ 0 and sheaf of
ideals I on Z and an injection i∗(I⊕r) ↪→ F that is an isomorphism at ξ.
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Proof: Cf.[Sta]01YE. □

Prop.(5.5.1.52).Let X be a Noetherian scheme and F ∈ Coh(X), then there is a filtration of coherent
sheaves that the quotients are pushforward of ideal sheaves on integral subschemes of X. This is
analogous to the filtration in the module case.

Proof: We consider the set of these counterexamples and their Supp, then use Noetherian induction.
The minimal one Z is irreducible, otherwise from(5.5.1.50) we find a filtration for it. Let the ideal
of sheaf of the induced reduced structure of Z be I, then InF = 0 for some n by(5.5.1.49), then we
may assume IF = 0. Then we use(5.5.1.51) to finish the proof. □

Cor.(5.5.1.53)[Basic Devissage].Let X be a Noetherian scheme and P be a property of coherent
sheaves on X s.t.
(1) for an exact sequence of sheaves:0→ F1 → F → F2 → 0, if Fi has P , then F has P .
(2) for any integral closed subscheme i : Z ⊂ X and any Qco sheaf of ideals I on Z, P holds for

i∗I.
then P holds for any coherent sheaf of X.

Lemma(5.5.1.54).Cf.[Sta]01YH.

Prop.(5.5.1.55)[Devissage of Coherent Sheaves I].Let X be a Noetherian scheme and P be a
property of coherent sheaves on X s.t.
(1) for an exact sequence 0→ F1 → F → F2 → 0 ∈ Coh(X), if two of them have P , then the third

also has P .
(2) For every integral closed subscheme Z of X with generic point ξ, there is a G ∈ Coh(X) that

(a) SuppG = Z.
(b) Gξ ∼= OX/mx.
(c) P holds for G.

Then P holds for every coherent sheaf on X.

Proof: Suppose otherwise, let Z be the minimal couterexample of item2 of(5.5.1.55). Then it is
easily seen that P holds for any F with support strictly contained in Z. Then take G as in item2,
and let 0 → i∗(I⊕r) ↪→ G → Coker → 0, then Supp(Coker) is strictly contained in Z, and r = 1
by hypothesis, so i∗(I). Then for any other sheaf of ideals I ′ on Z, if I ′ is supported on a smaller
subscheme, then it has P , otherwise there are two exact sequences

0→ i∗I → i∗(I + I ′)→ Q→ 0,

0→ i∗I ′ → i∗(I + I ′)→ Q→ 0,

where I,Q are supported on smaller subschemes, so P also holds for I ′. □

Prop.(5.5.1.56)[Devissage of Coherent Sheaves II].Let X be a Noetherian scheme and P be a
property of coherent sheaves on X s.t.
(1) for an exact sequence of sheaves:0→ F1 → F → F2 → 0, if Fi has P , then F has P .
(2) If F⊕r has P , then F has P .
(3) For every integral closed subscheme Z of X with generic point ξ, there is a G ∈ Coh(X) that
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(a) SuppG = Z.
(b) Gξ is annihilated by mξ.
(c) For every sheaf of ideals I on X that Iξ = OX,ξ, there is a Qco subsheaf G′ ⊂ IG that
G′
ξ = Gξ and P holds for G′.

Then P holds for every coherent sheaf on X.

Proof: Cf.[Sta]01YM. □

2 Projective Spaces

Prop.(5.5.2.1).For any graded ideal I ⊂ S, V+(I) = ∅ iff S+ ⊂
√
I.

Proof: □

Def.(5.5.2.2) [Projective Schemes].For a graded ring S, we have a scheme Proj(S) that consists
of homogenous primes of S minus S+ and the affine cover is D(f) = {p|f ⊈ p}, and O(D(f)) =
SpecS(f), where S(T ) is the degree zero part of T−1S. It has Op = S(p).

Proof: Cf.[Sta]01M5? □

Cor.(5.5.2.3).For any graded ring S, Proj(S) is a separated scheme.

Proof: Check that for standard affine opens D+(f) and D+(g), D+(f)∩D+(g) = D+(fg) is affine
open, and S(f) ⊗Z S(g) → S(fg) is surjective, which are both clear. □

Prop.(5.5.2.4)[Representing Functor of Projective Schemes].Let S be a graded ring generated
by S1 over S0, then Proj(S) represents the functor that maps a scheme Y to the set of pairs (L, ψ),
where L is an invertible sheaf on Y , and ψ : S → Γ∗(Y,L) is a graded ring homomorphism that L is
generated by the global sections ψ(S1), up to strict equivalences.

Proof: Cf.[Sta]01NA. □

Prop.(5.5.2.5)[Associated Qco Sheaves].Let M be a graded S-module, then
• there is a unique Qco sheaf M̃ ∈ QCoh(Proj(S)) s.t. Γ(D+(f), M̃) = Mf and the restrictions

are compatible with base changes..
• For a point x ∈ Proj(S) corresponding to a homogenous prime not containing S+, M̃x = M(p).

• M 7→ M̃ is an exact functor from the category of graded S-modules to QCoh(Proj(S)).
• There is a canonical ring map S0 → Γ(Proj(S),OProjS ) and canonical S0-module map M0 →

Γ(Proj(S), M̃).

Proof: ?
4: This follows from the fact short exact sequences can be checked on stalks, and item2. □

Cor.(5.5.2.6).There is a canonical morphism of schemes Proj(S)→ SpecS0.

Prop.(5.5.2.7). If X ⊂ Pnk is a closed subvariety disjoint from a d-dimensional subspace L ⊂ Pnk , then
the projection π : X → Pn−d−1 with center L induces a finite map X → π(X).

Proof: Cf.[Shafarovich 1, P63]. □
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Cor.(5.5.2.8). If F0, . . . , Fs are forms of degree m > 0 on Pnk having no common zero on a closed
subvariety X ⊂ Pn, then φ(x) = [F0(x), . . . , Fs(x)] defines a finite map φ : X → φ(X).

Proof: Let vm : Pn → PN be the Veronese embedding of degree m, then X → vm(X) is an
isomorphism, and φ is a composition of vm and a projection PNk → Pns , thus it is a finite map,
by(5.5.2.7). □

Prop.(5.5.2.9) [Tensor and Proj].For two graded ring with the same S0 = A, Proj(S ×A T ) ∼=
X ×A Y , where (S ×A T )n = Sn ×A Tn

Proof: □

Def.(5.5.2.10) [Relative Proj].The relative Proj S over locally Noetherian Y of a Qco graded
OY -algebra S f.g. over S0 by coherent S1 is the glueing of locally ProjS. ProjS → Y is locally
projective thus proper. It is equipped with invertible sheaf O(1) by glueing.

Prop.(5.5.2.11)[Closed Subscheme of Projective Scheme].The closed scheme of X = PnA corre-
sponds to the saturated homogenous ideal IY , (i.e. for any s, if there is an n that for any i, xni s ∈ IY ,
then s ∈ IY ).

So projective scheme over SpecS0 corresponds to ProjS, where S are f.g. over S0 by S1 saturated
in the sense above.

Proof: A closed immersion is proper, thus the kernel IY of the structural map is a Qco(5.5.1.3),
so it must be an ideal on every affine open, because Qco is affine local. Then we should use(5.5.3.6),
Γ∗(IY ) will suffice. Cf.[Hartshorne Ex2.5.10]. □

Prop.(5.5.2.12).The global section of a projective space ProjS → SpecS0 is just S0, this is
by(5.5.3.6).

Prop.(5.5.2.13).A quasi-projective scheme X over a field k of dimension r can be covered by r + 1
open affine subsets. This is because there are r hyperplane that intersect X non-empty. This can
happen by choosing a hyperplane non-intersecting the generic point of X, otherwise we choose many
hyperplane, then their intersection is empty.

Sheaves on Proj

Def.(5.5.2.14)[Serre Twisting Sheaves].Let S be a graded ring and X = Proj(S), there are Qco
Serre twisting sheaves OX(n) = S̃(n). For F ∈ QCoh(Proj(S)), the Serre twisting sheaf of F
is the sheaf F ⊗OX

OX(n).

Prop.(5.5.2.15).Let S be a graded ring and X = Proj(S),
1. there are canonical maps

OX(m)⊗OX
OX(n)→ OX(m+ n),

inducing a map of graded rings S → Γ∗(X,OX) = ⊕n≥0Γ(X,OX(n)).
2. For any F ∈ Sh(OX), there are canonical maps

OX(n)⊗OX
F → F(n).

inducing a map of graded module structure of Γ∗(X,OX) on Γ∗(X,F) = ⊕n≥0Γ(X,F(n)).
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3. There is a canonical map ˜Γ∗(X,F)→ F that is identity on global sections.

4. For any graded S-module M , let M(n) = M ⊗S S(n), there are maps M̃(n) → M̃(n). (Use
property of Qco sheaves).

5. For graded rings M,N over S, there are canonical maps M̃ ⊗OX
Ñ → M̃ ⊗S N .

Proof: □
Prop.(5.5.2.16).Let S be a graded ring s.t. S is generated by S1 over S0, then

1. (M ⊗S N)(f) ∼= M(f) ⊗S(f) N(f) for f ∈ S1.
2. There canonical maps in item1, 4, 5 of(5.5.2.15) are isomorphisms.
3. For a graded ring map S → T , we have the corresponding Proj map f : U → T that f∗(M̃) ∼=

˜(M ⊗S T )|U and f∗(Ñ |U ) ∼= ÑS . That’s to say, f∗(M̃(n)) = f∗(M̃)(n) and f∗(M̃(n)) =
f∗(M̃)(n).

Proof: 1:
2: By1 and check locally that tensoring fn is an isomorphism on D+(f). □

Cor.(5.5.2.17).OX(n)⊗OX(m) ∼= OX(n+m) for any scheme X projective over Y .

Prop.(5.5.2.18)[Twisting of Proj].With notation as in (5.5.2.10), Let S′ = S ∗ L : S′
d = Sd ⊗ Ld,

then φ : ProjS′ → ProjS is an isomorphism that induces

O′(1) ∼= φ∗O(1)⊗ π′∗L.

Prop.(5.5.2.19). If Y is Noetherian and admits an ample invertible sheaf, then by definition, we have
S1 ⊗ Ln is base point free for some n, thus we have a morphism Proj(S ∗ Ln)→ PNY , so P = ProjS
is H-quasi-projective with O(1) = OP (1)⊗ π∗Ln.

Relative Projective Spaces

Def.(5.5.2.20)[Relative Projective Spaces].
Def.(5.5.2.21)[Projective Bundles].Let S be a scheme, π : V → S is called anQco vector bundle
if it is affine, and π∗OV endowed with the structure of a graded OS-algebra structure π∗OV = ⊕En,
where E0 = OS , and Symn E1 → En is an isomorphism for any n. The category of Qco vector bundles
on S is denoted by VectQCoh(S).

A morphism of affine bundles is a map E′ → E over S that the associated map f∗ : π∗OV → π′
∗OV ′

is compatible with grading.
For E ∈ QCoh(X), we can define the associated vector bundle V (E) as

SpecS Sym(E)(5.2.3.10)(5.2.7.12). In this way, the category of Qco vector bundles over S is anti-
equivalent to the category of Qco OS-algebras.

For E ∈ QCoh(X), we can define the associated projective bundle P(E) as
ProjS Sym(E)(5.2.3.10)(5.2.7.12). It is equipped with a Serre twisting sheaf O(1), which is the
glue of locally the Serre sheaf in projective space. There is a surjective morphism π∗(E) → O(1)
(local check).

Prop.(5.5.2.22).Let g : Y → X by a scheme over X, a morphism Y → P(E) over X is equivalent to
an invertible sheaf L on Y and a surjective map g∗E → L.

In particular, giving a morphism X → Pn
A is equivalent to a base point free invertible sheaf with

n generators on X.
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Proof: If there is a morphism, it will pullback π∗(E) → O(1) into g∗E → L. For the coverse,
construct locally and glue, we have the natural morphisms A[x1/xi, . . . , xn/xi] → OXsi : xj/xi →
sj/si in a homogenous sense. It is natural hence glue together. For the module, maps xi → si. □

Cor.(5.5.2.23).All automorphisms of Pnk is linear.

Proof: The Picard group of Pnk is Z and is generated by O(1)(5.5.3.16), so the automorphism
will map O(1) to O(±1) and O(−1) has no global section(5.5.3.5). And the globals section is n-
dimensional and determines the morphism by the prop. □

Def.(5.5.2.24)[Projective Space].Let A be a ring, the projective space PnA is defined to be

Pn
A = Proj(A[T0, . . . , Tn])

with deg(Ti) = 1. It represents the functor that maps a scheme T to the equivalence classes of
pairs (L, (s0, . . . , sn)), where L is an invertible sheaf on T , and s0, . . . , sn ∈ Γ(T,L) that generate L
by(5.5.2.22). For any scheme S, Pn ×Z S is called the projective space over S.

Prop.(5.5.2.25).Let R be a ring and X = PnR, F ∈ QCoh(X), then the canonical map ˜Γ∗(X,F) →
F(5.5.2.15) is an isomorphism.

Proof: Cf.[Sta]03GM.? This is a corollary. □

Prop.(5.5.2.26)[Closed Subschemes of PnR].Let Z be a closed subscheme of PnR, then it is of the
form

Z = Proj(R[X0, . . . , Xn]/I) ⊂ Proj(R[X0, . . . , Xn])

where I = ⊕In and In = ker(R[X0, . . . , Xn]d → Γ(Z,OZ(d))).

Proof: Cf.[Sta]03GI.? □

Prop.(5.5.2.27)[Segre Embedding].Let S be a scheme, there is a natural closed immersion

Pm
S ×S Pn

S → Pmn+m+n
S

called the Segre embedding.

Proof: It suffices to a prove for S = Z, and in this case, it suffices to write down an invertible
sheaf on Pm

S ×S Pn
S with (n+ 1)(m+ 1) global sections that generate it. Then we take the invertible

sheaf L = π∗
1OPm(1)⊗ π∗

2OPn(1). and the sections XiYj , where (X0, . . . , Xm) generate OPm(1) and
(Y0, . . . , Yn) generate OPn(1).

It is a closed immersion by[Sta]01WD.? □

Prop.(5.5.2.28)[Venerose Embedding].

3 Invertible Sheaves
General invertible sheaves on a ringed site is treated in5.

Prop.(5.5.3.1)[Faithfully Flat Descent].To show a quasi-coherent sheaf is a line bundle, it suffices
to show fpqc-locally, by(4.4.2.1).
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Def.(5.5.3.2) [Basepoint-Freene Line Bundles].Let L be a line bundle over a scheme X over a
field k, then it is called basepoint free if the intersections {div(s)|s ∈ H0(V )} is empty.

Prop.(5.5.3.3). If X is qcqs over a field k and K/k is a field extension, then L is basepoint free iff
LK is basepoint free over XK .

Proof: By flat base change(5.7.5.1), H0(XK ,LK) = H0(X,L)⊗k K. □

Prop.(5.5.3.4) [Relative Triviality].Let f : X → Y be a finite morphism of schemes and L ∈
Pic(X), then for any y ∈ Y , there exists a nbhd U of y ∈ Y s.t. L|f−1(U) is trivial.

Proof: Cf.[Sta]0BUT. □

Prop.(5.5.3.5)[Global Sections].Let L be an invertible sheaf over qcqs schemeX, for F ∈ QCoh(X),
let the global section functor Γ∗(F) = ⊕Γ(X,F ⊗ Ln), then

Γ∗(F)(f) ∼= F(Xf ).

where s ∈ Γ(X,L). In particular that if there is a section f of F on Xs, then for some n, f ⊗ sn is a
global section of F ⊗ Ln.

Proof: This is nearly the same as the proof that (SpecA)f = SpecAf , Cf.[Sta]01PW.? □

Cor.(5.5.3.6).When X = ProjS projective over SpecS0 and F ∈ QCoh(X), Γ̃∗(F) ∼= F , where
Γ∗(F) = ⊕n∈ZΓ(X,F(n)), which is a graded S-module. In particular, Γ∗ for projective space PnA
equals A[x1, . . . , xn].

Def.(5.5.3.7)[Regular Sections].

Prop.(5.5.3.8)[Complete Series].Let H0(X,L) be the sections that corresponds to injective maps
L−1 → OX , then there is a canonical isomorphism

H0(X,L)reg/H∗(X,O∗
X) ∼= |L|.

Notice when X is not integral, H0(X,L)reg may not equal H0(X,L).

Proof: Cf.[Kle05]P22. □

Prop.(5.5.3.9)[Meromorphic Sections].Let X be a locally Noetherian scheme having no embedded
points, then every invertible sheaf L ∈ Pic(X) has a meromorphic section. In particular, this applies
for X integral, by(5.5.1.17).

Proof: Cf.[Sta]0EMI. □

Picard Groups

Remark(5.5.3.10) [Picard Groups].The Picard group Pic(X) of a local ringed space (X,OX) is
defined in(5.2.5.7), and it is isomorphic to H1(X,O∗

X) by(5.3.1.17).

Prop.(5.5.3.11) [Class Group]. If X = SpecO where O is a Dedekind domain, then by(4.2.7.8),
the isomorphism class of invertible sheaves on X is equivalent to the isomorphism class of fractional
ideals modulo principle ideals. Thus Pic(O) equals the class group of O(4.2.7.9). In particular, if R
is a UFD, then Pic(SpecR) = 0.
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Def.(5.5.3.12) [Invertible Sheaf Associated to Cartier Divisors].For a Cartier divisor on a
scheme X, we can define O(D) the Line bundle associated to D as the sub OX -module of K
locally generated by (f−1

i ), where D = (fi) locally. Equivalently, it is the line bundle I−1
D .

Def.(5.5.3.13) [Linear Series].Let L ∈ Pic(X), then denote |L| the complete linear series of
effective Cartier divisors D s.t. L(D) ∼= L.

Def.(5.5.3.14)[Weil divisor of an invertible Sheaf].For X a locally Noetherian integral scheme
and L an invertible sheaf in K, if s ∈ Γ(X,K ⊗ L) is a meromorphic section of L(which exists
by(5.5.3.9)), for any prime Weil divisor Z with generic pt η, define ordZ(s) = ordOX,η

(s/sη)(4.1.2.10),
for any sη a generator of Lη over OX,η. This is independent of sη chosen.

The prime Weil divisors that ordZ(s) ̸= 0 is locally finite, the same as in(7.1.2.18). And any two
different sections si defines Weil divisors up to a difference of div(f)(7.1.2.18). So we can define the
Weil divisor class associated to L as ∑ ordZ(s)[Z] for any meromorphic section s of L.

It is easy to verify that this induces a homomorphism from Pic(X) to Cl(X).

Prop.(5.5.3.15)[Cl-Pic].For a normal integral locally Noetherian scheme, the above map Pic(X)→
Cl(X)(5.5.3.14) is an injection. It is an isomorphism iff all local rings of X are UFD.

Explicitly, the inverse image of a prime Weil divisorD is the sheaf OX(D) = Hom(ID,OX) = I−1
D ,

and there is an exact sequence of sheaves on X:

0→ OX(−D) = ID → OX → i∗OD → 0

In particular, this applies to non-singular prevarieties over a field k, by(5.4.2.9).

Proof: If it is not injective, then some meromorphic section on L has no associated Weil divisors,
then it suffices to show L is trivialized by s. Consider on an affine subscheme SpecA, then ordAp(s) =
0 for each minimal prime p of A, but Ap is DVR by(4.3.5.20), so s ∈ A∗

p for each minimal prime p,
so s ∈ A∗ by(4.3.5.11). This shows s trivialize L.

To show it is surjective, it suffices to show any Weil divisor D is in the image: notice D is an
effective Cartier divisor by(5.8.1.4), and by definition(5.8.1.5) the vanishing of the canonical section
1D ∈ OX(D) is exactly D. □

Prop.(5.5.3.16)[Examples of Picard Groups].
• If X is a locally Noetherian normal integral separated scheme, then so are X × SpecZ[T ] and

PnX , and Cl(X × SpecZ[T ]) = Cl(X) and Cl(PnX) = Z⊕ Cl(X).
• For a UFD R, Pic(An

R) ∼= Cl(An
R) = 0.

• For a UFD R, Pic(PnR) ∼= Cl(PnR)
deg∼= Z, and it is generated by OPnR

(1).

• For any UFD R, Pic(P1
R × P1

R) ∼= Cl(P1
R × P1

R) ∼= Z⊕Z.
• If k is a field and Y ⊂ Pnk is a hypersurface of degree d, then Pic(Pnk\Y ) ∼= Cl(Pnk\Y ) ∼= Z/dZ.

Proof: By(5.5.3.15) and(7.1.5.7)(7.1.7.10)(7.1.5.8)(7.1.5.9). □
Prop.(5.5.3.17).Let X be a complete prevariety over a field k of characteristic p > 0, then for any n
prime to p and any purely inseparable field extension k′/k, the natural map

Pic(X)[n]→ Pic(Xk)[n]

is an isomorphism.

Proof: Cf.[Sta]0CD5. □
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4 Ample Invertible Sheaves
Prop.(5.5.4.1).Let X ∈ Sch and L ∈ Pic(X). Then for any affine open U ⊂ X and a section s of L,
Xs ∩ U is affine.

Proof: It suffices to show: If R is a ring, N is an invertible R-module and s ∈ N , then U = {p|s /∈
pN} is an affine open subset of SpecR. For this, let R′ = lim−→−⊗sN

⊗n, then in fact U = SpecR′.
Because locally, R′ is just Rs via an isomorphism Nf

∼= Rf . □

Def.(5.5.4.2)[Ample Invertible Sheaves].On a quasi-compact scheme X, an ample invertible
sheaf is a line bundle L ∈ Pic(X) s.t. there is some n ∈ Z+ and sections si ∈ Γ(X,Ln) that Xsi is
an affine cover of X. In particular, an ample invertible sheaf is globally generated.

For a qc morphism f : X → Y , an invertible sheaf on X is called f-ample iff it is ample restricted
to every open subscheme f−1(V ), where V is an affine open in Y . In particular, an invertible sheaf
L on a quasi-compact scheme X is ample iff it is f -ample where f : X → SpecZ.

Prop.(5.5.4.3).An invertible sheaf L is (f -)ample iff Lm is (f -)ample.

Prop.(5.5.4.4) [Ample Implies Separatedness].When there is a f -ample invertible sheaf for f :
X → Y qc, then f is separated. In particular, if there is an ample line bundle over a qc scheme X,
then X is separated.

Proof: [Sta]09MP.? □

Prop.(5.5.4.5)[Characterizing Ampleness].Let X be a qc scheme and L be an invertible sheaf on
X, S = Γ∗(X,L), then the following are equivalent:

1. L is ample.
2. The open subsets Xs, where s ∈ Γ∗(X,L) homogeneous, cover X, and the associated morphism
X → ProjS is an open immersion.

3. The open subsets Xs where s ∈ Γ∗(X,L) homogeneous, form a topological basis for X.
4. The open subsets Xs that is affine and where s ∈ Γ∗(X,L) homogeneous, form a topological

basis for X.
5. For any Qco sheaf F on X, the sum of images of the canonical maps Γ(X,F⊗Ln)⊗L⊗−n → F

is surjective.
6. X is quasi-separated, and for any Qco sheaf F on X of f.t., F ⊗ L⊗n is generated by global

sections for n sufficiently large.
7. X is quasi-separated, and for any Qco sheaf F on X of f.t., there exists an integer n that F is

a quotient of a direct sum of f.m. copies of L⊗−n.

Proof: Cf.[Sta]01Q3.? □

Cor.(5.5.4.6).The pullback of an ample invertible sheaf along a qc immersion is an ample invertible
sheaf.

Cor.(5.5.4.7).Let S be a quasi-separated scheme and X,Y be schemes over S. If L is an ample
invertible sheaf over X and N an ample invertible sheaf over Y , then M = pr∗

1 L ⊗OX×SY
pr∗

2N is
ample over X ×S Y .
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Proof: Because X×S Y → X×Y is a qc immersion, by(5.5.4.6), it suffices to show for S = SpecZ.
Then if Xs is an affine nbhd of x and Yt is an affine nbhd of Y , then (X×Y )π∗

1s⊗π∗
2 t

is an affine nbhd
of x× y. □

Cor.(5.5.4.8)[Tensor Product of Ample Invertible Sheaves is Ample]. IfM an invertible sheaf
generated by global sections and L is an ample invertible sheaf, then L⊗M is ample. In particular
if L,M are ample invertible sheaves, then L ⊗M is ample.

Proof: For any x ∈ X and U a nbhd of x, choose s ∈ Γ(X,Ln) that x ∈ Xs ⊂ U , and choose
t ∈ Γ(X,M) that tx ̸= 0, then x ∈ Xs⊗tn ⊂ U , thus Xr form a basis for X where r ∈ Γ(X, (L⊗M)n),
so L ⊗M is ample. □

Cor.(5.5.4.9). If L is ample and M is an invertible sheaf, then M⊗L⊗n is ample for n sufficiently
large.

Proof: This is because L⊗Mn is generated by global sections for n sufficiently large, thus L⊗Mn+1

is ample, by(5.5.4.8). □

Prop.(5.5.4.10)[Gluing Ample Invertible Sheaves].Let X be a qc scheme s.t. there is an affine
open covering of the form Xsi where si are sections of Li and Li are globally generated line bundles
in Pic(X), then X has an ample line bundle.

Proof: Let Xsi be an affine open covering of X where si are sections of globally generated invertible
sheaves Li, i = 1, . . . , r. As Li are globally generated, let X = ∪jXtij for j = 0, 1, . . . ,mi where
ti0 = si. Then for the line bundle ⊗iLi, the sections t1,j1 ⊗ . . .⊗ tr,jr where at least one of ji equals
0, covers X, and they are all affine by(5.5.4.1). So ⊗iLi is ample. □

Prop.(5.5.4.11). f : X → Y , let L be f -ample on X and M ample on Y , then L ⊗ f∗Mn is ample
for n large.

Proof: Cf.[Sta]0892? □

Cor.(5.5.4.12). If f : X → Y is quasi-affine, then the pullback of an ample invertible sheaf is ample,
by(5.4.4.19) and(5.5.4.3).

Prop.(5.5.4.13)[Pullback of Ampleness]. If f : Y → X is finite and surjective morphism between
schemes proper over a Noetherian affine scheme, then for any invertible sheaf L on X, L is
ample iff f∗L is ample.

Proof: Cf.[Sta]0B5V.?
One direction follows from(5.5.4.12), For the other we use Serre criterion(5.7.2.8) and devis-

sage(5.5.1.56). We only verify 3: By(5.4.4.42), there exists such coherent sheaf f∗F for any integral
subscheme, and for a any Qco sheaf of ideals I, If∗F = f∗(f−1IF) because f is affine, thus

Hp(X, If∗F) = Hp(X, f∗(f−1IF ⊗ Ln)) = Hp(Y, f−1IF ⊗ Ln)

by projection formula, and f is affine. This vanish for n large. □

Cor.(5.5.4.14) [Ampleness and Irreducible Components].Let X be a scheme proper over a
Noetherian affine scheme, then an invertible sheaf L on X is ample iff it is ample on the induced
reduced structure of irreducible components of X.
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Proof: This is(5.5.4.13) applied to the case ⨿iXi → X. □

Prop.(5.5.4.15)[Ampleness Restricted to Reduced Case]. If i : Z → X is a closed immersion of
schemes that induce homeomorphism on the underlying topology, then L is ample iff i∗L is ample.

In particular, this applies to Xred → X.

Proof: Cf.[Sta]09MW.? □

Prop.(5.5.4.16).Let f : X → Y be a proper morphism of schemes and L an invertible sheaf on X.
If y ∈ Y satisfies Ly is ample on Xy, then there is a nbhd U of y ∈ Y that L|f−1(U) is f -ample.

Proof: Cf.[Sta]0D2S. □

Prop.(5.5.4.17)[Finite Map and Ample].Let L be a basepoint-free line bundle on a proper scheme
X, then the associated map X → PΓ(X,L) is finite iff L is ample.

Proof: Cf.[Positivity in Algebraic Geometry, P28]. □

Prop.(5.5.4.18).Let X be a scheme. Let L be an ample invertible OX -module. Let n0 be an integer.
If Hp(X,L−n) = 0 for n ≥ n0 and p > 0, then X is affine.

Proof: Cf.[Sta]0EBD. □

Prop.(5.5.4.19)[Descent of Ample Line Bundles].Let K/k be a field extension, X a scheme over
k s.t. there exists an ample line bundle on XK , then X also has an ample line bundle.

Proof: Cf.[Sta]0BDC. □

Very Ample Invertible Sheaves

Def.(5.5.4.20)[Very Ampleness].Let f : X → S be a morphism, a f-very ample invertible sheaf
on X is the pullback of O(1) along some immersion X → Proj(E) for some Qco module E over Y ,
Cf.(5.5.2.14). It is called H-very ample iff E is trivial. Notice when X is proper, this immersion
must be closed by(5.4.5.3).

When S is affine and f : X → S is of f.t., f -very ample is equivalent to H-very ample.

Proof: Cf.[Sta]02NP. □

Prop.(5.5.4.21) [Tensor Product of Very Ample Line Bundles].Let f : X → SpecA be a
morphism. If L is H-very ample andM is generated by global sections, then L⊗M is H-very ample.
In particular, the tensor product of two H-very ample invertible sheaves is H-very ample.

Proof: The hypothesis means L = φ∗O(1), where φ : X → PnA is an immersion, andM = ψ∗O(1),
where ψ : X → Pmk is a morphism. Then the product T : X → Pnk × Pmk is also an immersion, by
base change trick(5.4.4.2), as Pnk × Pmk → Pnk is separated. Then S ◦ T : X → Pmn+m+n, where
S : Pnk × Pmk → Pmn+m+n is the Segre embedding, is also an immersion, and (ST )∗O(1) ∼= L ⊗M,
thus it is H-very ample. □

Prop.(5.5.4.22) [Ample and H-Very Ample]. If f : X → S is locally of f.t. and L is an ample
invertible sheaf on X, then L⊗m is H-very ample for m sufficiently large.
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Proof: Choose an affine open cover {Vi} of S. By(5.5.4.5), there are f.m. affine opens Xsi that
cover X refining a inverse image of {Vi}. Now OX(Xsi) is f.g. over OS(Vi), so we can find f.m.
fij ∈ OX(Xsi) that generates it over OS(Vi). By(5.5.3.5), we can write each fij = sij/s

eij
i for

some aij homogenous. We can multiply by a factor to make all the seiji the same degree N , and
fij = sijs

N/ deg(si)−eij
i , then all the elements si, sij generates the invertible sheaf L, thus inducing a

map j : X → Pmk . This map is an immersion, because j−1(D(Ti)) = Xsi and the function Tij/Ti on
D(Ti) pulls back to sij/sj . Thus j is locally a closed immersion, thus an immersion.

Now L⊗d1 is H-very ample for some d1, in particular it is separated, and by(5.5.4.5) there is some
d2 that L⊗d is generated by global sections for all d ≥ d2, then by(5.5.4.21), L⊗d is H-very ample for
d ≥ d1 + d2. □

Prop.(5.5.4.23)[f-Very Ample Implies f-Ample]. If f : X → S is qc, then f -very ample implies
f -ample.

Proof: Cf.[Sta]01VN.? □

Cor.(5.5.4.24)[Serre]. If f : X → S is of f.t. and S is affine, L is an invertible sheaf on X, then the
following are equivalent:

• L is ample .
• L is f -ample.
• L⊗n is (H-)f -very ample for some (all large)n.

Proof: This follows from(5.5.4.20)(5.5.4.22) and(5.5.4.23). □

Cor.(5.5.4.25). If f : X → S is of f.t. and S is qausi-compact, L is an invertible sheaf on X, then the
following are equivalent:

• L is f -ample.
• L⊗n is (H-)f -very ample for some (all large)n.

Proof: Cf.[Sta]01VU. □

5 Sheaf of Differentials
Prop.(5.5.5.1)[Differentials on Schemes].Consider a morphism of schemes X → Y , we define the
sheaf of differentials ΩX/Y together with an S-derivative OX → ΩX/S as for ringed sites(5.2.4.7).
Then it is a Qco sheaf by(5.2.4.5). In fact, If U = SpecA is mapped into SpecB ⊂ S, then
ΩX/S(U) ∼= Ω̃A/B.

In particular, the stalk of ΩX/S at a point x ∈ X is ΩOX,x/OS,f(x) .
Thus when X → Y is locally of f.t.(or locally of f.p.), then ΩX/S is an OX -module of f.t.(or of

f.p.).

Prop.(5.5.5.2) [Base change and Differentials].Let
X ′ X

S′ S

f

g′ g be a commutative diagram of

schemes, then there is a canonical map

f∗ΩX/S → ΩX′/S′

which is an isomorphism if the diagram is a fiber product square.
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Proof: Such a diagram gives a diagram (f−1g−1OS → f−1OX)→ ((g′)−1(OS′)→ OX′) of sheaves
of rings on X ′

Zar, thus the conclusion follows from(5.2.4.5) and(5.2.7.17). □

Prop.(5.5.5.3).Let X,Y be schemes over another scheme S, then

π∗
1ΩX/S ⊕ π∗

2ΩY/S
∼= ΩX×SY/S ,

where the maps are given by(5.5.5.2).

Proof: It suffices to check on affine subschemes, so we may assume X,Y, S are affine, thus the map
is given by

ΩA/S ⊕S B ⊕A⊗SB ΩB/S ⊗S A→ ΩA⊗SB/S

which is an isomorphism by(4.4.3.6). □

Prop.(5.5.5.4).Let X,Y be schemes over another scheme S, then ΩX×SY/S
∼= π∗

1ΩX/S ⊗ π∗
2ΩY/S .

Prop.(5.5.5.5)[Jacobi-Zariski Sequence].Let f : X → Y and g : Y → Z, then there is an exact
sequence of sheaves on X:

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.
Where the maps come from(5.5.5.2).

Proof: Immediate from(4.4.3.8). □

Prop.(5.5.5.6).The stalk of the differential sheaf ΩX/k at a rational point x of a scheme over a field
k is just the Zariski cotangent space mx/m

2
x(5.6.4.22).

Proof: Using the Jacobi exact sequence(4.4.3.8) on an affine nbhd SpecA of x for A and mx.
Then we verified that there is a right inverse of A/m2 → k(x) = x, then it follows that mx/m

2
x
∼=

ΩA/k ⊗A k(x) = ΩAmx/k
which is the stalk of ΩX/k by(5.5.5.1). □

Prop.(5.5.5.7)[Euler Exact Sequence]. If X = PnA = Proj(A[x0, . . . , xn]) over Y = SpecA, then
there is an exact sequence

0→ ΩX/A → (OX(−1))n+1 → OX → 0.

ΩX/A is locally free by(5.10.1.16), so by taking dual and exterior powers,

0→ OX → OX(1)n+1 → TX → 0, KX ∼= OX(−n− 1).

Proof: Let S = A[x0, . . . , xn], E = S(−1)⊕n+1 with a basis e0, . . . , en, then there is a map of
S-graded modules E → S with kernel M . E → S is surjective in all dimension≥ 1, so we have an
exact sequence

0→ M̃ → Ẽ → OX → 0.
Notice E(xi) → S(xi) is given by ej 7→ xj/xi, so M̃ |D(xi) is a free sheaf generated by sections (1/xi)ej−
(xj/x2

i )ei, j ̸= i. So we can define φi : ΩX/A|D(xi) → M̃ |D(xi) : d(xj/xi) 7→ (1/xi)ej − (xj/x2
i )ei, j ̸= i

mapping isomorphically onto the kernel. It suffices to show this map glue to a map ΩX/A → Ẽ: On
D(xixj), xk/xi = (xk/xj) · (xj/xi), so

d(xk
xi

)− xk
xj
d(xj
xi

) = xj
xi
d(xk
xj

).

Applying φi to the LHS and φj to the RHS gives the same element (1/xi)ek − (xk/xixj)ej , which
shows compatibility. □
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Conormal Sheaves

Def.(5.5.5.8) [Conormal Sheaf of an Immersion].Let i : Z → X be a closed immersion with
corresponding sheaf of ideals I. Consider the Qco sheaf I/I2, which is annihilated by I, thus
corresponds to a sheaf on Z by(5.2.6.18), called the conormal sheaf CZ/X of Z.

More generally, if i is any immersion, we can define the conormal sheaf as the conormal sheaf
of the closed immersion i : Z → X\∂Z. And also the normal sheaf NZ/X is defined to be
NZ/X = HomOZ

(I/I2,OZ).

Prop.(5.5.5.9) [Pullback of Conormal Sheaf].Let
Z ′ X

Z ′ X ′

i

f g

i′

be a fiber product square where

i, i′ are immersions, then the canonical map

f∗CZ′/X′ → CZ/X

is surjective, and if g is flat, it is an isomorphism.

Proof: Change X ′ to X ′\∂Z ′ and X to X\(g−1∂Z ′ ∪ ∂Z), we may assume i is a closed immersion.
Then we may localize to the case X ′ and X is affine. Then we notice if R′ → R is a ring map and
I ′ ⊂ R′ is an ideal, with I = I ′R, then (I ′/(I ′)2)⊗R′ R→ I/I2 is surjective, and if R/R′ is flat, then
I ∼= I ′ ⊗R′ R, and the map is an isomorphism. □

Prop.(5.5.5.10).Let Z i−→ Y → X be immersions of schemes, then there is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

Proof: By changing Y to Y \∂Z and X to X\(∂(Y \Z)), we can assume the immersions are closed
immersion. Now by restricting to affine subsets, it suffices to show that for surjective ring maps
C → B → A, if I = ker(B → A), J = ker(C → A),K = ker(C → B), then there is an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0.

But this follows from the observation K = ker(J → I). □

Prop.(5.5.5.11)[Conormal Sheaf of the Diagonal].Let f : X → S be a morphism, then there is
a canonical isomorphism between ΩX/S and the conormal sheaf of the diagonal ∆ : X → X ⊗S X.

Proof: Cf.[Sta]08S2.? □

Cor.(5.5.5.12). If f : X → S is a monomorphism, e.g. an immersion, then ΩX/S = 0.

Prop.(5.5.5.13). If f : Z → X is an immersion of schemes over S, then there is an exact sequence of
sheaves on Z:

CZ/X → i∗ΩX/S → ΩZ/S → 0.

Proof: Replace X be X\∂Z, we can assume f is a closed immersion. This follows immediate
from(5.2.4.6). □
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Prop.(5.5.5.14). If i : Z → X is an immersion over S that locally has a left inverse, then the canonical
sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0.

is locally split exact. In particular, if s : S → X is a section of the structure morphism X → S, then
the map CS/X → s∗ΩX/S is an isomorphism.

Proof: Cf.[Sta]0474.? □

Prop.(5.5.5.15).Let
Z X

Y

i

j be a commutative diagram where i, j are immersions, then there is

a canonical exact sequence
CZ/Y → CZ/X → i∗ΩX/Y → 0,

where the first arrows comes from(5.5.5.9) and the second map comes from(5.5.5.13).

Proof: By replacing Y by Y \∂Z and X by X\(∂i(Z)∪ ∂j(Z)), then we may assume i, j are closed
immersion. Then we check locally, the exactness follows from(6.1.1.5). □
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5.6 More Properties of Schemes
Main references are [Sta].

Notation(5.6.0.1).
• Use notations defined in Properties of Schemes.

1 Finitely Presentedness
Def.(5.6.1.1)[Locally of Finite Presentation].A morphism between schemes f : Y → X is called
of locally finite presentation iff for any point x ∈ X, there is an open affine mapped into an open
affine that the ring map is of finite presentation. It is called of finite presentation iff moreover it
is qcqs.

locally of finite presentation is local on the source and target and it is stable under composition
and base change but it doesn’t satisfies the base change trick by(5.4.1.6)(5.4.1.5) and(4.3.7.9).

Prop.(5.6.1.2).Open immersion is locally of finite presentation.

Prop.(5.6.1.3).When the target is locally Noetherian, (locally)finite type and (locally)finite presen-
tation is equivalent.

Prop.(5.6.1.4).For f : X → Y over S, if X/S is locally of f.p. and Y/S is locally of f.t., then f is
locally of f.p.. If moreover X is of f.t. and Y is qs, then f is of f.t..

Proof: The first follows from(4.3.7.11), the second needs to check qcqs. Qc follows from(5.4.4.27).
□

Prop.(5.6.1.5)[Chevalley].A qc morphism locally of f.p. maps locally constructible subset to locally
constructible subset.

Proof: We prove f(E) ∩ Ui is constructible for every Ui affine open in X. The inverse image of
Ui is qc, hence a locally constructible set is constructible (3.11.3.10). So we reduce to the affine
case(4.1.7.3). □

Cor.(5.6.1.6).As in the proposition, if Y is qc, and the image is dense in Y , then it contains an open
dense subset of Y , by(3.11.3.17).

2 Flatness
Def.(5.6.2.1)[Flatness for Schemes].Flat modules and flat morphisms over schemes are defined in
the same way as that of ringed spaces(5.2.2.15).

Prop.(5.6.2.2).Flatness is stalkwise by(5.2.2.17), it is stable under base change and compositions.
F ∈ Coh(X) is flat over X iff it is locally free, by(4.4.1.10)

Thus for F ∈ QCoh(X), flatness is equivalent to: For any affine open subsets SpecA ⊂ X,
Γ(SpecA,F) is flat over A, because flatness is also stalkwise for modules(4.1.4.2). Similarly, a
morphism of schemes f : X → Y is flat iff for any affine opens SpecB ⊂ X, SpecA ⊂ Y that
f(SpecB) ⊂ SpecA, B is flat over A.

Prop.(5.6.2.3).For a flat morphism of ringed space, f∗ is exact.

Proof: Because it is f−1 followed by tensoring with OX , check on stalks. □
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Prop.(5.6.2.4) [Faithfully Flat Descent for Flat Modules].Let f : X → Y be a morphism of
schemes over S and G ∈ QCoh(Y ), then G is flat over S iff f∗G is flat over S. In particular, Y is flat
over S iff X is flat over S.

Proof: This follows from(4.4.1.6). □

Prop.(5.6.2.5).For a Qco sheaf F on a scheme X, the following are equivalent, by(4.3.1.7).
1. F is finite projective.
2. F is f.p. and flat.
3. F is f.p. and all its localizations at (maximal)primes are free.
4. F is finite locally free.
5. F is finite and locally free.
6. F is finite and all its localizations at primes are free and the function p→ dimk(p)F ⊗R k(p) is

a locally constant function on SpecR.

Cor.(5.6.2.6).Let f : X → Y be a finite morphism of locally Noetherian schemes and Y is reduced,
the following are equivalent:

• f is flat.
• f∗OX is locally free.
• dimk(x)(π∗OX)x ⊗ k(x) is a locally constant function for x ∈ Y .

Proof: 3 follows from(5.5.1.43). □

Prop.(5.6.2.7)[Going-Down].Generalizations lift along a flat morphism.

Proof: We can find an affine nbhd, then choose a nbhd of the inverse image, then a generalization
in an affine open is a true generalization, so it reduce to the affine case. The rest follows from
going-down(4.4.1.19). □

Cor.(5.6.2.8)[Flat Map and Irreducible Components].A flat morphism maps generic points to
generic points.

Prop.(5.6.2.9)[Flat Map and Associated Points].Let f : X → S be a morphism of schemes that
S is locally Noetherian, and F a Qco sheaf on X. If F is flat over S, then f maps WeakAss(F) to
Ass(S). In particular, if X is flat over S, then f maps WeakAss(X) to Ass(S).

Proof: Let x ∈ X, f(x) = s that s ∈ Ass(S), then we get a map (OS,s,ms)→ (OX,x,mx). If ms is
not associated point, then by prime avoidance(4.1.1.4), there is some m ∈ ms that is not a non-zero
divisor, by(4.2.5.17), so f ♯(m) is also a non-zero divisor on Fx, so mx is not a weakly associated point
of F . □

Prop.(5.6.2.10)[Flat Map is Open].A flat morphism locally of f.p. is (universally)open, hence it
is qc.

And a qc f.f. morphism of schemes is a quotient map.

Proof: It suffices to consider the affine case. Then the assertion follows from(4.4.1.32).
For the second, by(5.6.2.7), a subset whose inverse image is closed is stable under specializa-

tion(surjectiveness used), then it is closed by(5.4.4.9) □
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Prop.(5.6.2.11)[Cartier Divisor and Flat Base Change].
• The flat base change of Cartier divisor is also a Cartier divisor.
• The flat base change of a regular embedding is also a regular embedding.
• The flat base change commutes with blow up, by universal property.

Prop.(5.6.2.12)[Flat Pullback of Closed Subschemes].Let Z ⊂ X be a closed subscheme corre-
sponding to a Qco sheaf of ideals I, and f : X ′ → X be a flat morphism, then the pullback Z ′ ⊂ X ′

is a closed subscheme that corresponds to the ideal sheaf f∗I.

Proof: This is because f∗ is exact. □

Prop.(5.6.2.13)[Pullback of Flat Closed Subschemes].Let X be a scheme over S, S′ → S be a
morphism of schemes, and Z ⊂ X be a closed subscheme corresponding to a Qco sheaf of ideals I
flat over S, then the pullback Z ′ ⊂ X ′ is a closed subscheme that corresponds to the ideal sheaf f∗I.

Prop.(5.6.2.14)[Flat Loci is Open].For a morphism f : X → S locally of f.p., and F ∈ QCohpf(X),
then the set of points of X that F is flat over S is open. In particular, if f is a closed map, then the
set of points of Y that F is flat is open.

Proof: Cf.[Sta]00RC.?
The last assertion follows from the first one. □

Prop.(5.6.2.15)[Generic Flatness].For a morphism f : X → S of f.t., if S is reduced and F is a
Qco f.t. OX -module, then there exists an open dense subset U of S that XU → U is flat, of f.p., and
FXU is flat over U and of f.p. over OU .

Proof: As flat and f.p. is local on the base, it suffices to show for S affine. Then this almost
immediately reduces to the affine case??y choosing an affine cover of X, except that we need XU to
be qs over U . To achieve this, it suffices to do it second time and let X = ∪i≤n SpecBi = ∪Xi, and
Xi ∩Xj = D(Iij), Mij = Bi/Iij , then choose f large enough that over Sf , all Mij are f.p. over Bi,
then by(4.2.5.9), Xi,f ∩Xj,f is qc, thus Xf is f.p. over Sf . □

Prop.(5.6.2.16) [Fibral Criterion of flatness].Let S ∈ Sch and f : X → Y in Sch /S, F ∈
QCohpf(X). Let x ∈ X, y = f(x) and x maps to s ∈ S. Suppose X,Y are both locally Noetherian or
X is locally of f.p. over S and Y is locally of f.t. over S, then the following are equivalent:

• F is flat over S at x and Fs is flat over Ys at x.
• Y is flat over S at y and F is flat over Y at x.

Proof: Cf.[Sta]039B, 039C. □

Prop.(5.6.2.17)[Hilbert Polynomial Constant in Flat Family].For X/T projective, where T is
an integral Noetherian scheme and X ⊂ PnT . Then for each point T , Xt is a closed subscheme of
Pnk(t), so we can consider its Hilbert Polynomial Pt. Then X/T is flat iff Pt is independent of T .

?Needs huge improvement.

Proof: Pt(m) = dimk(t)H
0(Xt,OXt(m)) for m large by(5.7.3.10). And we may let X = PnT and

prove for any coherent sheaf F . Moreover, we may let T be a affine local Noetherian, because flatness
is local and we only need to compare Hilbert polynomial with the generic point. Now we prove a
stronger assertion: The following are equivalent:
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• F is flat over T .

• H0(X,F(m)) is a free A-module of finite rank, for m large.

• The Hilbert polynomial Pt of Ft on Xt = Pnk(t) is independent of t.
1 → 2: Use the canonical cover and Čech cohomology, then we notice when m is large,

H0(X,F(m)) is a kernel of the Čech resolution, so it is flat. And it is also finite by(5.7.4.12).
Then it is free because it is flat by(4.4.1.10).

2 → 1: Let M = ⊕m≥m0H
0(X,F(m)), then M̃ = F(5.5.3.6), notice that the truncation doesn’t

affect.
2→ 3: It suffice to prove that for any t ∈ T , when m is large,

H0(Xt,Ft(m)) ∼= H0(X,F(m))⊗A k(t).

For this, we may use(5.7.5.1) to pass to the localization and assume t is the closed pt of T . Then
A → k(t) is surjective and we may let Aq → A → k → 0, then by(5.7.4.8), we have H0(Xt,Ft(m))
is the cokernel of H0(X,F(m))q → H0(X,F(m)), but this cokernel is H0(X,F(m))⊗k because
tensoring is right-adjoint, so we are done.

3→ 2: We have the rank of H0(X,F(m)) at the generic and closed point of T are the same(still
use H0(Xt,Ft(m)) ∼= H0(X,F(m)) ⊗A k(t).) Now(4.4.8.1) gives H0(X,F(m)) is free. It is f.g.
automatically. □

Cor.(5.6.2.18).For a flat morphism to a connected scheme T , the dimension, degree, and arithmetic
genus of the fibers are independent of t.

Proof: By(5.7.3.6)and (5.7.3.12). □

Def.(5.6.2.19).For a surjective map of varieties f : X → T over an alg.closed field k, its fiberes
over closed points with induced reduced structure X(t) is called a algebraic family of varieties
parametrized by T if

1. f−1(t) is irreducible of dimension dimX − dimT for every closed point t.

2. If ζ is the generic point of f−1(t), then F ♯mt generates the maximal ideal mζ ⊂ Oζ,X .

Prop.(5.6.2.20). ifX(t) is an algebraic family of normal varieties over an alg.closed field k parametrized
by a nonsingular curve T , then it is a flat family of schemes.

Proof: By(5.11.1.20), X → T is flat. So what we need to do is to prove Xt is reduced so Xt = X(t).
Let A = Ox,X , let ut be a uniformizer of Ot,T , then A/tA is the local ring of x on Xt. By hypothesis
Xt is irreducible so tA has a unique minimal prime p in A, and t generate the maximal ideal of Ap
by hypothesis. The local ring of X(t) is A/p, so A/p is normal by hypothesis. Then the result follows
from(4.3.5.13). □

Cor.(5.6.2.21) [Igusa].Let X(t) be an algebraic family of normal varieties in Pnk for k alg.closed
parametrized a variety T , then the Hilbert polynomials of X(t) are independent of t.

Proof: ? Why is X/T projective? Cf.[Hartshorne P265]. □
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Degenerating Techniques

Finite Locally Free Morphism

Def.(5.6.2.22)[Finite Locally Free].A morphism f : X → Y is called finite locally free of rank
d iff it is affine, and f∗OX is a finite locally free OY -module of rank d.

Cor.(5.6.2.23). If f is finite locally free of rank n, then for any locally free sheaf E of rank k on X,
f∗E is locally free of rank nk.

Prop.(5.6.2.24). f is finite locally free iff it is finite, flat and of f.p.. In particular, when Y is locally
Noetherian, this is equivalent to f is finite flat.

Proof: Both notions are local on the target, so we reduce to the ring case, which is(4.3.1.7). □

Cor.(5.6.2.25).Finite locally freeness is stable under composition and base change, and it is local on
the target.

Prop.(5.6.2.26)[Trace and Norm].Let f : Y → X be a finite locally free map of constant rank,
then there are trace and norm maps tr : f∗OY → OX ,Nm : f∗OY → OX compatible with arbitrary
base change.

Proof: The proof is the same as that of(4.3.1.11). □

Prop.(5.6.2.27).Let f : Y → X be a finite locally free map of constant rank, and b ∈ Γ(Y,OY ), then
f(Z(b)) = Z(Nm(b)).

Proof: We can assume X is affine, then we need to show that for a prime p with inverse images pi,
b ∈ ∪pi iff Nm(b) ∈ p. We localize at p, then Nm(b) ∈ p iff Nm(b) is non-invertible iff multiplication
by b is non-invertible iff b is non-invertible iff b /∈ ∪pi, because pi are all the maximal ideals of Bp. □

3 Dimensions
Main references are [Mat80] and [Vak17]Chap11.

Prop.(5.6.3.1)[Locally Algebraic Scheme is Catenary]. If X is a locally algebraic scheme over
a field k purely of dimension n, and Y an irreducible subscheme of X, then dimY + codim(Y,X) =
dimX.

Proof: Choose an affine open of the generic point of Y , then we are reduced to the affine
case(4.2.4.3)(4.2.4.7). □

Prop.(5.6.3.2).For any scheme, dimOx = codim({x}, X).

Prop.(5.6.3.3).For an integral scheme algebraic over a field k,

dimX = dimOp,X = dimU = tr .deg K(X)/k

for any closed point p and any open subscheme U .

Proof: Use closed point are dense(5.4.1.26) and k is universal catenary to prove it is true for some
U and all the closed point in it, so other U ’s because X is irreducible. The last equation follows
from(4.2.4.23). □
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Prop.(5.6.3.4)[Finite Surjection Preserves Dimension].Let X → Y be a surjective finite mor-
phism of algebraic integral schemes over a field k, then dimX = dim Y .

Proof: The hypothesis implies that for any affine open SpecA ⊂ Y , the inverse image is SpecB
that A→ B is an injective integral ring extension, so we can use(5.6.3.3) and(4.2.4.14). □

Prop.(5.6.3.5).Let X be a locally Noetherian scheme, if U ⊂ X is an open subscheme that U → X
is affine, then every irreducible complements of X −U has codimension≤ 1. And if U is dense, then
equality must hold.

Proof: Cf.[Sta]0BCU. □

Prop.(5.6.3.6) [Local Dimensions].Let Let X be a locally algebraic scheme over a field k and
x ∈ X, then the local dimension dimx(X) equals the maximal dimension of irreducible components
of X passing through x, by(4.2.4.27).

Prop.(5.6.3.7). If f : X → Y ∈ Schloc.ft /S, x ∈ X and s = f(x), then

dimx(Xs) = dimOXs,x + tr.degk(s) k(x).

Proof: This reduces to the case Y = Spec k(s), and it follows from(4.2.4.28). □

Prop.(5.6.3.8)[Semicontinuity of Dimension].Let f : X → S be a morphism of schemes locally
of f.t., then the function x 7→ dimx(Xf(x)) is upper-semicontinuous on X.

Moreover, if f is of f.p., then the open subsets {x|dimx(Xf(x)) ≤ n} is retrocompact.

Proof: This follows directly from(4.2.4.32). □

Prop.(5.6.3.9)[Local Dimension and Base Change].Let

X ′ X

S′ S

g′

f ′ f

g

be a fiber product diagram of schemes, and f is locally of f.t.. Suppose x′ ∈ X ′, x = g′(x′), s = g(s′).
Then

• dimx(Xs) = dimx′(Xs′).
•

dimOF,x′ = dimOX′
s′ ,x

′ − dimOXs,x = tr.degk(s)(k(x))− tr.degk(s′)(k(x′))

where F is the fiber of the morphism X ′
s′ → Xs over x. In particular, dimOX′

s′ ,x
′ ≥ dimOXs,x

and tr.degk(s′)(k(x′)) ≤ tr.degk(s)(k(x)).
• Given s′, s, x that f(x) = g(s′), there exists an x′ ∈ X ′ that dimOX′

s′ ,x
′ = dimOXs,x and

tr.degk(s′)(k(x′)) = tr.degk(s)(k(x)).

Proof: It can be reduced to the case that S = Spec k(s), S′ = Spec k(s′) and X,X ′ affine. Then 1
follows from(4.2.4.31), and 2, 3 follows from(4.2.4.26). □

Cor.(5.6.3.10)[Dimension and Field Extension].Let K/k be a field extension, X a locally alge-
braic scheme over k purely of dimension n, then XK is a scheme purely of dimension n.
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Remark(5.6.3.11).This proposition shows in particular local dimension behaves better than the
dimension of the stalk.

Def.(5.6.3.12) [Relative Dimensions].A morphism of schemes which locally of f.t. is called of
relative dimension n iff all fibers Xs are equidimensional of dimension n.

Prop.(5.6.3.13).Being a morphism of relative dimension n is stable under field extension, by(5.6.3.10).

Dimension and Flatness

Prop.(5.6.3.14) [Faithfully Flat Morphism]. If f : Y → X is a faithfully flat morphism, then
dimY ≥ dimX.

Proof: This is easy from(5.6.2.7). □

Prop.(5.6.3.15)[Integral Flat Morphisms]. If f : X ′ → X is an integral flat morphism of schemes,
and X is pure of dimension n, then so does X ′. The converse holds if f is faithfully flat.

Proof: By(5.6.2.8) and(5.4.4.35), f maps an irreducible component of X ′ onto an irreducible
component of X, Then by(3.11.3.26), the proposition reduces to the affine case(4.2.4.15). If f is
faithfully flat, then every irreducible component of X is in the image. □

Cor.(5.6.3.16) [Dimension and Field Extension]. If K/k is an algebraic extension, X a scheme
over k purely of dimension n, then XK is a scheme purely of dimension n. Compare with(5.6.3.10).

Prop.(5.6.3.17)[Dimension Extension and Flatness].Let f : X → Y, g : Y → S be locally of f.t.,
x ∈ X, y = f(x), s = g(y), then

dimx(Xs) ≤ dimx(Xy) + dimy(Ys).

Moreover, equality holds if OX,x/OY,y is flat.
In particular, if S = Spec k and X,Y are irreducible and X is flat over Y , then dimXy =

dimX − dimY for any y ∈ Y .

Proof: By(5.6.3.7) and the fact transcendental degree is additive, this reduces to

dimOXs,x ≤ dimOXy ,x + dimOYs,y.

We can assume X,Y is affine and S = Spec k(s), so the rest follows from(4.2.4.13). □

Cor.(5.6.3.18). If f : X → Y, g : Y → Z are of relative dimension m and n(5.6.3.12), and f is flat,
then g ◦ f is of relative dimension m+ n.

Cor.(5.6.3.19)[Generic Dimension Equation]. If f : X → Y is a dominant morphism of irreducible
algebraic schemes over K that X is reduced, then there is a dense open subset U of Y that for any
y ∈ Y ,

dim(Xy) = dimX − dimY.

Proof: This is a combination of the above proposition and generic flatness(5.6.2.15). □

Prop.(5.6.3.20)[Relative Dimension and Base Change].By(5.6.3.9), the base change of a mor-
phism of locally algebraic schemes over a field k of relative dimension n is still of relative dimension
n. In particular, for a variety over K a field, the dimension is invariant under base change of fields.
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Cor.(5.6.3.21).Let Y, Z be irreducible locally algebraic schemes over k, then Y ×k Z is pure of
dimensional dim(Y ) + dim(Z).

Proof: Combine(5.6.3.20) and(5.6.3.17). □

Prop.(5.6.3.22).For a morphism f : X → Y between locally Noetherian schemes which is flat and
locally of f.t and of relative dimension n, then if y = f(x), we have dimx(Xy) = dimx(X)−dimy(Y ).

Proof: Shrinking the nbhd, we may assume dimx(X) = dimX and dimy(Y ) = dim Y and X,Y
are affine. Now f is locally of f.p. and flat, so it is open(5.6.2.10). So we may assume f is surjective.
Then dimOX,a = dimOY,b + dimOXb,a = OY,b +n by(4.2.4.13), then taking supremum??, the result
follows. □

Cor.(5.6.3.23).For a morphism of schemes that is flat and of f.t., if Y is irreducible, then X is
equidimensional of dimension dimY + n iff Xy is equidimensional of dimension n for every y ∈ Y .

Proof: The proof highly relies on(5.6.3.3).
If X is equidimensional of dimension dimY + n, for Z ⊂ Xy an irreducible component, choose a

closed pt x of Z not contained in any other irreducible component, then

dimx Z = dimxX − dimy Y = dimX − dim {x} − dimY + dim {y}.

The two closures are of the same dimension because by(4.2.6.10), their quotient field extension is
finite, and use(4.2.4.14).

Conversely, for an irreducible component of X, choose a closed pt x of Z not contained in any
other irreducible component, then the image is also closed, by(5.4.1.27), so the result is immediate.
□

Prop.(5.6.3.24). If f : X → Y is a proper flat morphism of schemes of f.p., then the dimension of
fibers of f is a locally constant function.

Proof: Cf.[Sta]04DJ.? □

4 Smoothness
Def.(5.6.4.1) [Smooth Morphisms].A smooth morphism f : X → Y between schemes is a
morphism that there is an open affine cover {Ui} of S and an open affine cover Vij of f−1({Ui}) that
the ring map is smooth(4.4.5.12). In particular, it is locally of f.p.. A standard smooth morphism
is the Spec map of a standard smooth ring map.

Smoothness is local on the source and target(4.4.5.13). Smoothness is stable under base change
and composition(4.4.5.13).

Prop.(5.6.4.2).For a smooth morphism X → S, the morphism of differential ΩX/S is locally free and
dimx ΩX/S = dimx(Xf(x))(local dimension(3.11.3.25)).

Proof: We can assume that X → S is standard smooth, so by the proof in(4.4.5.12), ΩX/S is free
of dimension n − c, and also standard smooth is relative global complete intersection(4.4.5.11), so
Uf(x) is equidimensional of dimension n− c, thus the result. □

Cor.(5.6.4.3)[Differential Criterion of Smoothness]. If X → S is a flat of relative dimension n,
then X is smooth over S iff it is locally of f.p. and ΩX/S is locally free of dimension n, by(4.4.5.23).
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Prop.(5.6.4.4) [Smooth Morphism is Open]. Smooth morphism is syntomic hence flat. Smooth
morphism is locally of f.p. Hence smooth morphism is universally open(5.6.2.10).

Smooth morphism is locally standard smooth(4.4.5.12).

Prop.(5.6.4.5)[Fiberwise and Stalkwise].For a morphism X → S locally of f.p., the following are
equivalent:

• It is smooth at a point x ∈ X over s ∈ S.
• OX,x/OX,f(x) is flat and Xf(x)/k(f(x)) is smooth at x, by(4.4.5.20).
• OX,x/OS,f(x) is flat and ΩX/S,x can be generated by dimx(Xf(x)) elements, by(5.6.4.2)

and(4.4.5.23).
• OX,x/OS,f(x) is flat and ΩXs/s,x ⊗OXs,x

k(x) = ΩX/S,x ⊗OX,x
k(x) can be generated by

dimx(Xf(x)) elements, by Nakayama, because ΩX/S,x is of f.p. by(4.4.3.9).
In particular, A smooth morphism can be seen as a family of smooth schemes.

Proof: □

Cor.(5.6.4.6)[Smoothness over DVR].Let R be a DVR with fraction field K and residue field k,
then an integral R-scheme X of f.t. is smooth over R iff XK ̸= ∅ and both XK/K and Xk/k are
smooth.

Proof: Notice that it is flat iff XK ̸= ∅. □

Prop.(5.6.4.7). If X → Y is a smooth map of schemes over S, then by(5.5.5.5)(4.4.5.5), there is an
exact sequence of sheaves:

0→ f∗ΩY/S
df∗
−−→ ΩX/S → ΩX/Y → 0

Prop.(5.6.4.8). If Z → X → S, Z/S is smooth and Z → X is an immersion, then there is an exact
sequence of sheaves(5.5.5.13)(4.4.5.6):

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0

Prop.(5.6.4.9). If X → Y → S, and X → Y are faithfully flat and locally of f.p., X/S is smooth,
then Y/S is smooth.

Proof: Cf.[Sta]05B5. □

Prop.(5.6.4.10). If f : X → S is faithfully flat and locally of f.p., then the set of points of S s.t. f is
smooth is table under base change.

Proof: □

Prop.(5.6.4.11).By(5.6.4.5)(5.6.4.2), A morphism is smooth of relative dimension n is equivalent to
fppf+fibers equidimensional of dimension n and ΩX/S is locally free of dimension n.

Prop.(5.6.4.12)[Jacobian Criterion for Projective Schemes].Let X be a closed subscheme of
PnR defined by r polynomials F1(X0, . . . , Xn), . . . , Fr(X1, . . . , Xn), then for x ∈ X, X is smooth at x
iff the Jacobian has rank≥ n− dimxX at x iff the Jacobian has rank= n− dimxX at x.

Proof: Assume that x is in the standard open X0 ̸= 0, then we can use Euler’s identity∑Xi
∂F
∂Xi

=
dim(F )F to eliminate the first row, then divide by XdimF

0 to get the Jacobian on the affine open
SpecR[X1

X0
, . . . , XnX0

], so we finish by(4.4.5.24). □
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Prop.(5.6.4.13) [Generic Smoothness on the Source].Let π : X → Y be a dominant map of
integral schemes of f.t. that K(Y )→ K(X) is separable, then thee is a non-empty open subscheme
U ⊂ X that π|U is smooth of relative dimension dimX − dimY .

Proof: This reduces to the affine case, and follows from(4.4.5.29) and(5.6.3.17). □

Prop.(5.6.4.14)[Generic Smoothness on the Target].Let π : X → Y be a morphism of k-varieties
where char k = 0, and X is smooth over k, then there is a dense open subset U ⊂ Y that π−1(U)→ U
is smooth.

Proof: Cf.[Vak17]P681. □

Smooth over Fields

Prop.(5.6.4.15)[Differential Criterion of Smoothness].Let X be a scheme algebraic over a field
k.

• If X is equidimensional of dimension n, then X is smooth over k iff ΩX/S is locally free of
dimension n.

• If ΩX/k is locally free, and k is of char 0 or k is perfect and X is reduced, then X is smooth
over k.

Proof: 1: This follows from(5.6.4.3).
2: If k is of characteristic 0, then this follows from(4.4.5.28).
perfect case: [Sta]04QP.? □

Prop.(5.6.4.16)[Smooth over Field and Geo.Regular].For a scheme locally algebraic over a field
k, X is geometrically regular iff it is smooth over k. In particular, if k is perfect, then smoothness is
equivalent to regularity, by(5.4.3.18).

Proof: The question is local around x, so may assume X is affine. Then this follows from(4.4.5.27).
□

Cor.(5.6.4.17) [Hartshorne Definition].By(5.6.4.5) and(5.6.4.16), a morphism between schemes
algebraic over a field k is smooth of relative dimension n iff f is flat and every fiber of f is geometrically
regular of dimension n.

Cor.(5.6.4.18).A smooth scheme over a field k is regular hence normal.

Prop.(5.6.4.19) [Smoothness and Separable Closed Points].Let X be smooth over a field k,
then the set of closed points of X with finite separable residue field k(x)/k is dense in X.

Proof: It suffices to show there exists one such points. By(5.6.6.7), we can assume X π−→ Ad
k → k,

where π is étale. Thus X is open in Adk by(5.6.6.3). Then we can choose a closed point of π(X) s.t.
the residue field is finite separable, as ksep is infinite. Then choose an inverse image, then the residue
if finite étaleover k, by(5.6.6.8). This point is clearly closed. □

Prop.(5.6.4.20)[Smoothness at Rational Points].Let X be a locally algebraic scheme over a field
k. Let x ∈ X that k(x)/k is finite separable, then X is smooth at x iff it is x is a regular point,
by(4.4.5.26).
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Prop.(5.6.4.21) [Geo.Reduced Scheme Generic Smooth].Let X be a locally algebraic scheme
over a field k that is geometrically reduced, then it contains an open dense subset that is smooth
over k.

Proof: The problem is local, so we may assume X is affine, consider its irreducible components,
all their intersections can be removed, because they are nowhere dense, so we may assume X is
irreducible. So X is integral, let η be the generic pt, then k(η)/k is separable, by(5.4.3.2). Then
choose an affine subscheme SpecA ⊂ X, then A is smooth at (0) over k, by(4.4.5.29), then by
definition, it is smooth on some dense open subscheme of X. □

Tangent Spaces

Def.(5.6.4.22)[Relative Tangent Spaces].Let X be a scheme over S and x ∈ X, define T ∗
X/S,x =

ΩX/S,x⊗OX,x
k(x), and TX/S,x = Homk(x)(T ∗

X/S,x, k(x)) = HomOX,x
(ΩX/S,x, k(x)), called the relative

tangent space of X over S at x.
When x ∈ X mapping to s ∈ S, TX/S,x = Homk(x)(mx/m

2
x, k(x)), where mx is the maximal ideal

of the stalk of x ∈ Xs.
Then it can be verified that for a k-scheme and a rational point x ∈ X, TX,x is in bijection with

Mork(Spec k[ε], X) that maps the closed point to x.

Prop.(5.6.4.23)[Tangent Map].Let f : X → Y be a morphism of schemes over S, x ∈ X, f(x) = y.
Assume k(x) = k(y), then f defines a natural linear map

df : TX/S,x → TY/S,y : HomOX,x
((ΩX/S)x, k(x))→ HomOX,x

((f∗ΩY/S)x, k(x))(5.5.5.5) =
HomOX,x

(ΩY/S,y ⊗OY,y
OX,x, k(y)) = HomOY,y

(ΩY/S,y, k(y))

Cor.(5.6.4.24).Via similar argument, if k(x) = k(s) = k(y), there is an isomorphism

TX/S,x ⊕ TY/S,y ∼= TX×SY,(x,y).

Prop.(5.6.4.25).Let X be a scheme over a field k and x ∈ X with residue field k(x), then the tangent
space is canonical isomorphic to Mor(k(x)[ε], X) that maps the closed point to x. And the vector
bundle structure is given by the cogroup structure on Spec k[ε] : µ : k[ε]⊗ k[ε]→ k[ε].

Prop.(5.6.4.26) [Krull’s Principal Tangent Theorem].Let Z ⊂ X be a closed subscheme with
ideal of definition I, x ∈ Z, then TZ,x is the subspace of TX,x cut out by (I mod m2

x).
In particular, TY ∩Z,p = TY,p ∩ TZ,p ⊂ TX,p.

Prop.(5.6.4.27)[Tangent Criterion of Smoothness].By(5.6.4.16)(5.6.4.20) and the definition of
regular local ring, if X is a locally algebraic scheme over a field k, then X is smooth at a point x
with residue field k(x)/k separable iff dimk(x) TX,x equals(≤) the dimension of OX,x.

Bertini’s Theorem

Prop.(5.6.4.28)[Bertini].Let k be a field. For any quasi-projective scheme X ⊂ Pnk smooth away
from f.m. points, there is an open dense subset U of the dual projective space Pn∨

k s.t. for any closed
point [H] ⊂ U , H doesn’t contain any component of X, and the scheme H ∩X is smooth over k.

Moreover, if X is a variety and dimX ≥ 2, the smooth cut is even a smooth variety
by(5.8.6.25)and(5.4.2.10).
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Proof: Let Pn = Proj k[x0, . . . , xn], (Pn)∨ = Proj k[a0, . . . , an], Let X be cut out by equations
f1, . . . , fr, we define a projective scheme Z ⊂ Pn × (Pn)∨ be cut by the equations

• fr.
• fr+1 =

∑
aixi.

• determinants of (r + 1)× (r + 1)-minors of ( ∂fi∂xj
)(r+1)×n.

Now for any (x, [H]) ∈ Z, x ∈ X,x ∈ H that [H] is closed in (Pn)∨, the last equation means X∩H
is non-smooth at p or contains the irreducible component passing p, by Jacobian criterion(5.6.4.12).
Now consider the projection Z → X, for each closed point p ∈ X that dimpX = d, the codimension
of the fiber of Z over x is of dimension r−1 = n−dimxX−1(To see this, one way is use regularity and
tangent space, another way is to use the fact (xi) is orthogonal to ( ∂fi∂xj

)j for all i by Euler identity, so
the r+1 restrictions of (ai) are linearly independent), then by(5.6.3.17), dimZ = dim π−1

1 (Z) ≤ n−1,
Thus the image of Z in Pn∨

k is also a closed subscheme of dimension≤ n− 1.
If X has f.m. singular points, we also need to cut out the surfaces Nk(x)/k(

∑
xki ai), where (xji )

are the f.m. closed singular points of x. They are also of dimension n− 1. □

Cor.(5.6.4.29)[Bertini’s Theorem for Surfaces]. Similarly, for any d ≥ 0, a generic dimension d
surface intersect X at a smooth subscheme, by using Veronese embedding.

Cor.(5.6.4.30).When X ⊂ Pnk is a projective k-variety where k has characteristic 0, the scheme Z in
Pn∨
k is called the dual variety of X. When X is irreducible and smooth, it is of dimension n− 1.

Proof: □

Prop.(5.6.4.31).The dual variety of the dual variety is X itself.

Proof: Cf.[Joe Harris, Algebraic Geometry, 15.24]. □

Prop.(5.6.4.32)[Kleinman-Bertini].Let X be a k-variety that is homogenous space for a k-variety
G over a field k, suppose α : Y → X,β : Z → X are morphisms of varieties, then

• There is a non-zero open subset V ⊂ G that for any closed point σ ∈ V , dim σ(Y ) ×X Z =
dimY + dimZ − dimX.

• If Y, Z are smooth over k of characteristic 0, then there is a non-empty open subset V ⊂ G
that (G×k Y )×X Z → G is smooth. In particular, for any closed point σ ∈ V , σ(Y )×X Z is
smooth over k(σ) of dimension dimY + dimZ − dimX.

Proof: Let Γ = (G ×k Y ) ×X Z, then there is a map Γ → Y ×k Z. Y ×k Z has dimension
dimY + dimZ by(5.6.3.21), and there is a base change diagram

(G×k Y )×X Z Y ×k Z

G×k X X ×k X

,

and G×X → X ×X is flat as it is equivariant under G×G-action, by(5.6.2.15), thus Γ→ Y ×k Z
is flat of relative dimension dimG− dimX, thus it has dimension dimY + dimZ + dimG− dimX.

1: This follows from(5.6.3.19) applied to the map G×k Y ×X Z → G.
2: As G×X → X ×X is flat, and its fiber are isomorphic to Gx, which is the fiber of the map

ox : G → X, and this map is smooth by(5.6.4.14), thus G × X → X × X is smooth, and then the
assertion follows from(5.6.4.14). □
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Cor.(5.6.4.33).Let Z be a smooth k-variety where chark = 0. Let V be a f.d. basepoint-free line
series on Z, then the section of a general element of V is smooth.

Proof: Apply Kleinman-Bertini to φV : Z → PV ∨, Y = V (
∑
aixi) ∈ PV × PV ∨ → PV ∨,

X = PV ∨. □

5 Unramified
More advanced materials to learn at [Sta]Chap40.

Def.(5.6.5.1) [Unramified Morphism].A morphism is called (G-)unramified iff there is an
open affine cover Ui and an open affine cover of f−1(Ui) that the induced ring map is (G-
)unramified(4.4.6.4). Equivalently, ΩX/S = 0 and it is locally of f.t.(f.p.).

(G-)unramifiedness is local on the source and target(5.4.1.5)(5.4.1.6). (G-)unramifiedness is stable
under base change and composition(4.4.6.4). Moreover, unramifiedness satisfies the base change trick.

Prop.(5.6.5.2).An unramified map is locally quasi-finite.

Proof: Cf.[Sta]02V5. □

Prop.(5.6.5.3) [Fiberwise].A morphism is (G-)unramified iff it is locally of f.t.(f.p.) and all the
fibers Xs are disjoint unions of spectra of finite separable extensions of k(p).

Proof: By(4.4.6.7), Notice pSq = qSq is equivalent to every q is minimal in Xp, which is equivalent
to Xp is discrete. □

Cor.(5.6.5.4) [Unramified over Fields].A scheme over a field k is unramified iff it is a disjoint
union of spectra of finite separable extensions of k, because locally of f.p. is trivially satisfied.

Prop.(5.6.5.5)[Diagonal is Open].A morphism X → S is (G-)unramified iff it is of f.t.(f.p.) and
the diagonal is a clopen immersion of X, thus all of X.

Proof: If it is unramified, then the diagonal is an open immersion by(4.4.6.10). Conversely, ΩX/S

is just the conormal sheaf of the diagonal map, so it is zero. □

Cor.(5.6.5.6)[Sections of Unramified Morphism].Any section of an unramified morphism is an
open immersion. In particular, a section of a separable unramified morphism is a clopen immersion.

Proof: This follows from the proposition and the fact S → X is a base change of ∆X/S . □

Cor.(5.6.5.7).Let X,Y be schemes over S, if f, g are two maps from X to Y , then if Y/S is unramified
and f, g are equal on a pt x of X(both on image and residue field), then there is a nbhd of x that
f, g are equal.

Proof: This follows as ∆Y/S is open immersion, so the set that f, g are equal is open in X. □

Prop.(5.6.5.8)[Fiberwise].For a morphism f : X → S locally of f.t.(f.p.), let x ∈ X, s = f(x), then
the following are equivalent:

• It is (G-)unramified at x,
• The fiber Xs is unramified over k(s) at x, by(5.6.5.3).
• ΩXs,x = 0.
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• ΩXs/s,x ⊗OXs,x
k(x) = ΩX/S,x ⊗OX,x

k(x) = 0 by(4.4.6.6).

• msOX,x = mx and k(x)/k(f(x)) is separable.

Proof: 1 → 2 → 3 → 4 is clear. 4 → 1: Nakayama implies ΩX/S,x = 0, thus ΩX/S vanishes on a
nbhd of x as it is Qco of f.t..

4 ⇐⇒ 5 follows from(4.4.6.7). □

Cor.(5.6.5.9)[Generic Unramifiedness].Let f : X → Y be a finite separable dominant morphism
of integral schemes, then there exists an open dense nbhd U of Y s.t. f : f−1(U)→ U is unramified.

Prop.(5.6.5.10). If X → Y → S is unramified, then X/Y is also unramified. And if X/S is G-
unramified and Y/S is of f.t., then X/Y is G-unramified.

Proof: By(5.6.1.4)and(5.5.5.5). □

Prop.(5.6.5.11)[Unramified Points Base Change]. If f is of f.t.(f.p.), then the set of points of S
that f is unramified is stable under base change.

Proof: □

Prop.(5.6.5.12)[Tangent Criterion of unramifiedness].Let f : X → Y be a morphism of schemes
locally of f.t. over S, x ∈ X, y = f(x), then the following are equivalent:

• df : TX/S,x → TY/S,y is an injection(5.6.4.23).

• f is unramified at x.

Proof: It follows from(5.6.4.23) that df is an isomorphism iff (f∗ΩY/S)x⊗OX,x
k(x)→ ΩX/S,x⊗OX,x

k(x) is surjective, which by Jacobi-Zariski(5.5.5.5) is equivalent to ΩX/Y,x ⊗OX,x
k(x) = 0, and this

is equivalent to f is unramified at x by(5.6.5.8). □

Prop.(5.6.5.13) [Unramified U.i. Morphisms].For a morphism f of schemes, the following are
equivalent:

• f is unramified and a monomorphism.

• f is unramified and universal injective.

• f is locally of f.t., formally unramified and universal injective.

• f is locally of f.t. and a monomorphism.

• f is locally of f.t. and Xy is either empty or Xy → y is an isomorphism for all y ∈ Y .

Proof: Cf.[Sta], 05VH. □

Prop.(5.6.5.14)[Unramified and Smoothness].Let f : X → Y be a morphism of schemes over S
s.t. X/S is smooth(of relative dimension n) and Y/S is unramified, then f is also smooth(of relative
dimension n).

Proof: This follows from differential criterion(5.6.4.3) and(5.6.1.4). Notice to show it is flat, use
the fact ∆Y/S and X × Y → Y are both flat(5.6.5.5). □
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Noetherian Case

Prop.(5.6.5.15).Let S be a Noetherian scheme, X → S a qc unramified morphism and Y → S a
morphism with Y Noetherian, then MorS(Y,X) is a finite set.

Proof: Cf.[Sta], 0AKI. □

Prop.(5.6.5.16)[Unramified Morphisms and DVR].Let Rv be a DVR with fraction field K and
φ : X → X ′ be a morphisms of schemes of f.t. over Rv. Let Q ∈ X ′(K) and P ∈ X(K) with
φ(P ) = Q. Let w|v be a valuation of K(P ) extending v. If P extends to an Rw-valued point P of
X, then using the fact Rw ∩K = Rv, we see Q also extends to a Rv-valued point of X ′.

Denote the image of the maximal ideal of Rw under P by P (w), then if φ is unramified at P (w),
then K(P )/K is unramified in w.

Proof: Since the unramified point is open, φ is also unramified at P , thus K(P )/K is separa-
ble(5.6.5.8). For the rest, Cf.[Diophantine Geometry, P598]?. □

6 Étale
More advanced materials to learn at [Sta]Chap40.

Def.(5.6.6.1) [Étale Morphisms].An étale morphism f : X → Y of schemes is a morphism s.t
there is an open affine cover {Ui} of S and an open affine cover Vij of f−1({Ui}) that the ring map
is étale. A standard étale morphism is the Spec map of a standard étale ring map.

étale is local on the source and target(4.4.7.5). Étale is stable under base change and composi-
tion(4.4.7.5).

Prop.(5.6.6.2)[Properties of Étale Morphisms].
• Étale at a point x is equivalent to smooth and unramified at a x(4.4.7.4).
• Étale at a point x is equivalent to flat and G-unramified at that point, by(4.4.7.11). So étaleover

field is equivalent to G-unramified, because over a field it is obviously flat.
• Étale at a point x is equivalent to locally standard étale at that point(4.4.7.17).
• A morphism is étale iff it is smooth of relative dimension 0, by definition(5.6.4.11).
• Étale is equivalent to flat, locally of f.p. and formally unramified, by(4.4.7.11).

Cor.(5.6.6.3).Étale map is smooth, hence syntomic, flat.
Étale map is universally open because it is flat and locally of f.p.(5.6.2.10).

Prop.(5.6.6.4). If X,Y are étaleover S, then any map X → Y is étale, by(4.4.7.13).

Prop.(5.6.6.5)[Fiberwise].A morphism of schemes is étale iff it is flat, locally of f.p., and every fiber
Xs is a disjoint union of spectra of finite separable field extensions of k(s).

Proof: Follows from(5.6.6.2)(5.6.5.3) and(4.4.7.10). □

Cor.(5.6.6.6)[Étale Over Fields].A scheme is étale over a field k iff it is a disjoint union of spectra
of finite separable field extensions. In particular, étaleover fields is equivalent to unramified over
fields.

Prop.(5.6.6.7)[Smoothness and Étale]. If f : X → Y is smooth at x, then there exist a nbhd U of
x ∈ X and nbhd V of f(x) ∈ Y that it factors through U π−→ Ad → V , where π is étale.
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Proof: Any standard smooth morphism can be factorized as an étalemap over a polynomial algebra,
as easily seen. □

Prop.(5.6.6.8)[Stalkwise and Fiberwise].For a morphism locally of f.p., by(5.6.5.8) and(5.6.4.5),
the following are equivalent:

• It is étale at a point x.
• OX,x/OS,f(x) if flat and Xf(x)/k(x) is smooth at x.
• OX,x/OS,f(x) if flat and Xf(x)/k(x) is unramified at x.
• OX,x/OS,f(x) is flat and ΩXf(x),x = 0.
• OX,x/OS,f(x) is flat and ΩXs/s,x ⊗OXs,x

k(x) = ΩX/S,x ⊗OX,x
k(x) = 0.

• OX,x/OS,f(x) is flat and mf(x)OX,x = mx and k(x)/k(s) separable.
In particular, an étalemorphism can be seen as a family of smooth schemes.

Prop.(5.6.6.9) [Étale Schemes over Field].Let k be a field and ks its separable closure. Let
Γ = Gal(ks/k), then the functor X 7→ X(ks) is an equivalence between étale schemes over k to the
category of discrete Γ-sets.

Proof: Cf.[Sta]03QR.? □

Prop.(5.6.6.10). If X → Y → S, and X → Y are faithfully flat and locally of f.p., X → S is étale,
then Y → S is also étale.

Proof: Cf.[Sta]05B5. □

Cor.(5.6.6.11). If f : X → S is faithfully flat and locally of f.p., then the set of points of S s.t. f is
étale is table under base change.

Proof: This follows from(5.6.5.11) and(5.6.4.10). □

Def.(5.6.6.12)[Étale Neighborhood].For a point s : Spec k → X, an étale nbhd of s in X is defined
to be an étale map U → X that s factors through U .

Prop.(5.6.6.13).For a morphism f : Y → X of schemes étale over field k, then f is surjective iff
Y (ks)→ X(ks) is surjective.

Proof: If Y → X is surjective, then? □

Étale Connected Components

Def.(5.6.6.14) [Étale Connected Components].Let X be a scheme over a field k, let π0(X) =
Spec(π(X)), where π(X) is the largest étale subalgebra of Γ(X)(4.4.7.23).

Prop.(5.6.6.15).Let X be an algebraic scheme over a field k, then
• for any field extension k′/k, π0(Xk′) = π0(X)k′ .
• Let Y be a schemes over a field k, then π0(X × Y ) = π0(X)× π0(Y ).

Proof: 1: Cf.[Mil17b]P15.
2: There is a map π(X) ×k π(Y ) → π(X × Y ). Because π commutes with base change, we can

base change to separable closure. In this case, it suffices to show if X,Y is connected then X × Y is
connected, but this follows from(5.4.3.12). □
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Prop.(5.6.6.16).Let X be an algebraic scheme over a field k, then
• The mapping φ : X → π0(X) induces a 1 to 1 correspondence of points of π0(X) and connected

components of X.
• For all x ∈ π0(X), the fiber φ−1(x) is geo.connected over k(x).

Proof: π0(X) is discrete, so the inverse image of each point is a sum of connected components of
X. But this must be connected, because π0(Xk(x)) = π0(X)k(x) = k(x). Also, this implies for the
alg.closure k of k(x), π0(Xk) = π0(Xk(x))k = k, thus Xk(x) is geo.connected. □

Noetherian Case

7 Zariski’s Main Theorem
References are [Sta]Chap36.38.

Prop.(5.6.7.1)[Zariski’s Main Theorem].For a morphismX → S that is quasi-finite and separated,
if S is qcqs, Then there is a factorization X → T → S that X → T is a qc open immersion and
T → S is finite.

Proof: Cf.[[Sta]05K0]. □

8 Complete Intersection
Should be refreshed with intrinsic definition of locally complete intersection, Cf.[Sta].

Def.(5.6.8.1) [Regular Embedding].A regular embedding of codimension r is a locally closed
embedding X → Y that for p ∈ X, the ideal of X in the local ring OY,p is generated by a regular
sequence of length r.

Def.(5.6.8.2)[Complete Intersection].A complete intersection of codimension r in Y is a closed
subscheme X that is the intersection of r effective Cartier divisors Di that at each point p ∈ X, the
equations defining Di form a regular sequence.

Def.(5.6.8.3)[Locally Complete Intersection].A closed subscheme Y of a nonsingular variety X
over a field k is called locally complete intersection iff Y is locally generated by r = codim(Y,X)
elements. By(4.3.4.17) Y is C.M.. In particular, by(5.10.1.16), a regular variety is always a locally
complete intersection.

Def.(5.6.8.4) [Syntomic Morphisms].A standard syntomic morphism is the Spec map of a
global complete intersection ring map(4.4.4.11). A syntomic morphism is a morphism that is
locally a standard syntomic morphism.

Prop.(5.6.8.5). Syntomic is local on the source and target, stable under base change and composition,
by(4.4.4.12).

Prop.(5.6.8.6). Syntomic is equivalent to flat, locally of f.p.+fibers being local complete intersections.

Proof: This follows from(4.4.4.18). □

Cor.(5.6.8.7). Syntomic morphisms are universally open.
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Prop.(5.6.8.8).An open immersion is syntomic, because localizations are global complete intersec-
tions(4.4.4.12).

Prop.(5.6.8.9). If f : X → S is a syntomic map, then the function x 7→ dimx(Xf(x)) is locally constant
on X. If it is standard syntomic, then it is constant.

Proof: It suffices to prove for syntomic maps, Cf.[Sta]02K0. □

Prop.(5.6.8.10).A local complete intersection has its ideal sheaf I, then I/I2 locally free by(4.3.4.16).

Prop.(5.6.8.11). If Y is a complete intersection in Pnk of hypersurfaces of degree d1, . . . , dr, then
ωY = OY (

∑
di − n− 1).

Proof: Use the exact sequence 0→ OZ(n− d)→ OZ → i∗OY → 0 and(5.10.1.17). □

Prop.(5.6.8.12).For a complete intersection of dimension q, H i(Y,OY (n)) = 0 for 0 < i < q. And the
natural map Γ(P,OP (n))→ H0(Y,OY (n)) is a surjection for every n. In particular, Y is connected,
and the arithmetic genus pa(Y ) = dimHq(Y,OY ).

Proof: We use induction, the case Y = P follows from(5.7.2.1), let Y = Z∩H, where H has degree
d, then

0→ OZ(n− d)→ OZ → i∗OY → 0

thus use long exact sequence. The rest is easy. □
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5.7 Cohomology of Schemes
Main references are [Sta]Chap29.

Notation(5.7.0.1).
• Use notations defined in Cohomology on Ringed Sites.

1 Zariski Cohomology

Qco Sheaves

Lemma(5.7.1.1)[Zariski-Poincare].A Qco sheaf on an affine scheme X is Čech-acyclic.

Proof: Because the principal affine covers are cofinal in the ordering of covers, we only need to
consider principal affine covers. Let R→ A =

∏
Rfi , then it is f.f., so we can use(4.4.2.2), just notice

the higher term is ∏i0,...,in Rfi0 ...fin . □

Prop.(5.7.1.2)[Čech Cohomology on Separated Schemes]. If X is separated and F ∈ QCoh(X),
Hp(X,F) = Ȟp(X,F) = Hp

alt({Ui → X}, F ) for any open affine covering {Ui → X}.

Proof: Use(5.3.2.16) and(5.3.2.6), the family of affine open subsets of X satisfies the requirement
because X is separated and(5.7.1.1), thus the result It can be calculated by alternating complexes
by(5.3.2.7). □

Cor.(5.7.1.3)[Affine Cohomological Vanishing]. If X is affine and F ∈ QCoh(X), H i(X,F) = 0
for i > 0.

For a qcqs scheme X, choose a finite affine cover U1, . . . , Ut of X, then for any F ∈ QCoh(X),
Hn(X,F) = 0 for n ≥ d, where

d = max
I⊂{1,...,t}

(|I|+ t(UI))

and t(Y ) is the minimal cardinality of an affine open cover of Y .

Proof: The last assertion follows form Čech to sheaf2(5.3.2.13) and(5.7.1.2), as UI is separated for
any I ̸= ∅. □

Remark(5.7.1.4).Compare with(6.2.0.4)?.

Prop.(5.7.1.5) [QCoh(X) vs. Mod(OX)]. If X is a Noetherian scheme, then injective objects in
QCoh(X) are all flabby(5.3.4.8), thus nearly calculating all cohomologies are legitimate in the category
QCoh(X).

However, in general, this is not true, as there are examples of injective A-module I s.t. Ĩ is not
flask on SpecA, by [Sta]0274.

Proof: We use the Deligne formula(5.5.1.36) and the definition of injective, by considering the
sheaf of ideals of the corresponding induced reduced structure. □

Prop.(5.7.1.6)[Filtered Colimits].By(5.3.1.16), ifX is qcqs, then sheaf cohomology onX commutes
with filtered colimits.

Prop.(5.7.1.7)[Ext For Coherent Sheaves].On a locally Noetherian scheme, for F ∈ QCoh(X) and
G ∈ Coh(X), Exti(F ,G) ∈ QCoh(X), and affine locally are given by Exti(F(U),G(U)).

Moreover G ∈ Coh(X), then Exti(F ,G) ∈ Coh(X).
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Proof: This follows from(5.8.5.13) and(5.8.5.10). □
Prop.(5.7.1.8).When X is locally Noetherian and F ∈ Coh(X),

Exti(F ,G)x ∼= ExtiOx
(Fx,Gx).

Proof: Taking stalk is exact.? □
Cor.(5.7.1.9). If X is locally Noetherian, suppose that every coherent sheaf is a quotient of a locally
free sheaf, we can define the homological dimension hd(F) of a coherent sheaf F as the minimal
length of a flat resolution of F . Then hd(F) ≤ n ⇐⇒ Exti(F ,G) = 0 for every G and every i > n.
And hd(F) = sup pdOX,x

Fx, by(5.7.1.8).
Prop.(5.7.1.10) [Künneth Formula]. If X,Y are qcqs over a field k and F ,G be Qco OX ,OY -
modules, then there is a canonical isomorphism:

Hn(X ×Spec k Y, pr∗
1F ⊗OX⊗Spec kY

pr∗
2 G) ∼= ⊕p+q=nH

p(X,F)⊗k Hq(Y,G).

Proof: Cf.[Sta]0BEF.? □
Prop.(5.7.1.11).On a locally Noetherian scheme X, any Qco sheaf F admits a resolution of Qco
sheaves that are flabby.

Proof: Because QCoh(X) is Serre subcategory,? □
Lemma(5.7.1.12)[Gabber].Let X be a scheme, then there exists a cardinal κ that every Qco sheaf
is a colimit of its κ-generated Qco subsheaves.
Proof: Cf.[Sta]077N. □

Prop.(5.7.1.13) [Qco Cohomology Comparison].For X ∈ Sch,F ∈ QCoh(X), τ ∈{fppf, étale,
smooth, syntomic, Zariski}, there are canonical isomorphisms

Hp(X,F) ∼= Hp(Schτ /X,F) ∼= Hp(XZar,F) ∼= Hp(Xét,F).

Proof: Let C = Schτ /X or Xét, XZar. We use(5.3.2.16) with G the set of affine schemes and Cov
the subset of Cov(C) consisting of morphisms between affine schemes. Then Čech vanishing is clear
in the affine case by(4.4.2.2). Thus(5.3.2.16) says Hp(C,FC) = 0 for p > 0.

Next, if U ⊂ X is an affine open s.t. U → X is separated. Let U be an affine open covering of U ,
then all Ui0,...,ip are affine, thus

Hp(C,FC) = Ȟ(U ,FC) = Hp(U,F|U )

by(5.3.2.15).
Finally, for X, take an injective resolution F → I•, and an injective resolution FC → J •. Then

the latter restricts to a chain complex F → J •|X , which is exact because it is exact on any affine
open U ⊂ X as Hp(C,FC) = 0 for p > 0. Thus by(3.9.2.5), there is a map J •|X → I•, inducing a
map Hp(C,FC) = Hp(X,J •)→ Hp(X, I•) ∼= Hp(X,F).

To show these map are isomorphisms, take an affine open covering U of X, then there are Čech-
to-derived spectral sequences

τEp,q2 = Ȟp(U ,Hq(Fa))⇒ Hp+q(C,FC), Ep,q2 = Ȟp(U ,Hq(Fa))⇒ Hp+q(C,F).

The map J •|X → I• induces a map Č•(U ,J ) → Č•(U , I) which induces a map of the spectral
sequences. But as each affine open of X is separated over X, the E2-page is an isomorphism by what
we have proved. Thus Hq(Fa))→ Hp+q(C,F) is an isomorphism. □
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Prop.(5.7.1.14).For X ∈ Sch, τ ∈{fppf, étale, smooth, syntomic, Zariski},

H1
τ (X,Gm) ∼= Pic(X)(5.5.3.10).

Proof: As these Xτ are all locally ringed sites, by(5.3.1.17), H1
τ (X,Gm) ∼= Pic(Xτ ). Thus it suffices

to prove that
Pic(XZar)→ Pic(Xét)→ . . .→ Pic(Xfppf)

are isomorphisms. Then this is because any invertible sheaf is quasi-coherent by(5.2.5.8), so Pic(Xτ )
are in fact the group of invertible objects in QCoh(Xτ ). But QCoh(Xτ ) are all equivalent categories,
by fpqc descent for Qco sheaves(5.1.5.12). □

2 Proper Schemes
Prop.(5.7.2.1)[Cohomology of Projective Space].Let X = PrA we have:

(1)

Hq(X,OX(d)) =


(A[T0, . . . , Tr])d q = 0
0 q ̸= 0, r
( 1
T0...Tr

A[ 1
T0
, . . . , 1

Tr
])d q = r

(2) The cup product defines a perfect pairing

H0(X,OX(n))×Hr(X,OX(−n− r − 1))→ Hr(X,OX(−r − 1)) ∼= A.

Proof: X is separated, we use Cech cohomology. Let F = ⊕d∈ZOX(d), then F is a Qco
graded ring. Let Ui0,...ik be the affine open subset U(xi0) ∩ . . . U(xik) of X, then F(Ui0,...,ik) =
A[T0, . . . , Tr, T

−1
i0
, . . . , T−1

ik
] as graded rings, and the cohomology H•(F) is calculated by the Čech

complex(5.3.2.1)

Č• =
∏
i

A[T0, . . . , Tr, T
−1
i ]→

∏
i,j

A[T0, . . . , Tr, T
−1
i , T−1

j ]→ . . .→ A[T0, . . . , Tr, T
−1
1 , . . . , T−1

r ].

This complex has a natural Zr-grading, and the differential is natural inclusion thus preserves the
grading, i.e.

Č• =
⊕
v∈Zr

Č•(v)

where if we set NEG(v) = {i ∈ {0, . . . , r}|vi < 0}, then

Č•(v) =
∏

NEG(v)⊂{i}
AT v0

0 . . . T vrr →
∏

NEG(v)⊂{i,j}
AT v0

0 . . . T vrr → . . .→ AT v0
0 . . . T vrr

is the subcomplex of Č•. So it suffices to calculate the cohomology of Č•(v) for each v.
If NEG(v) = {0, 1, . . . , n}, then there is only one term, so

H•(Č•(v)) =
{
AT v0

0 . . . T vrr q = r

0 otherwise
.

The sum of all such v clearly contribute to 1
T0...Tr

A[ 1
T0
, . . . , 1

Tr
] in degree r.

If NEG(v) = 0, then the complex is isomorphic to the Čech complex calculating cohomology of
SpecA using the trivial cover {Vi → SpecA}, Vi ∼= SpecA times T v0

0 . . . T vrr . As Spec is separated, it
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is just to the sheaf cohomology of SpecA, which is A is degree 0 and 0 otherwise by(5.7.1.1). The
sum of all such v clearly contribute to A[T0, . . . , Tr] in degree 0.

Finally, for other v, choose a j ∈ {0, 1, . . . , n}\NEG(v), then the maps

h : Čp+1(v)→ Čp(v) : h(s)i0...ip = sji0ip

(where we are using the alternating Čech complex) induces a homotopy between 0 and id, so Čp+1(v)
have trivial cohomologies.

The pairing given by cup product makes T v0
0 . . . T vrr dual to T−1−v0

0 . . . T−1−vr
r , thus it is a perfect

pairing. □

Cor.(5.7.2.2).when n > 0, Hr(X,OX(n−r−1)) = 0. Notice this an instance of the Kodaira vanishing
theorem when k has characteristic 0(11.9.7.3).

Prop.(5.7.2.3).Let X = Pnk and 0 ≤ p, q ≤ n, then Hq(X,Ωp
X) = 0 for p ̸= q and when p = q,

Hq(X,Ωp
X) = k.

Proof: By(5.5.1.26) and(5.5.5.7), there is an exact sequence 0 → Ωq → ∧qO(−1) → Ωq−1 → 0,
and the middle has vanishing q-th cohomology by(5.7.2.1), thus we can induct and (5.7.2.1) gives the
result. □

Prop.(5.7.2.4) [Cohomology of Complete Intersections].Let X be a closed subscheme of Pnk
defined by a single homogenous equation f(x0, x1, x2) of degree d, then show that dimH0(X,OX) = 1,
and if n ≥ 2, dimH1(X,OX) = (d− 1)(d− 2)/2.

Proof: By(5.5.3.15), there is an exact sequence of sheaves on Pnk :

0→ OPn
k
(−d) ∼= OPn

k
(−X)→ OPn

k
→ i∗OX → 0

which induces a long exact sequence(5.7.4.2):

H0(Pnk ,OPn
k
(−d))→ H0(Pnk ,OPn

k
)→ H0(X,OX)→ H1(Pnk ,OPn

k
(−d))

→ H1(Pnk ,OPn
k
)→ H1(X,OX)→ H2(Pnk ,OPn

k
(−d))→ H2(Pnk ,OPn

k
)

By(5.7.2.1), this reads:

0→ k → H0(X,OX)→ 0→ 0→ H1(X,OX)→ H2(Pnk ,OPn
k
(−d))→ 0,

and if n = 2, dimH2(P2
k,OPn

k
(−d)) = (d− 1)(d− 2)/2.

? It is faster using Hilbert Polynomial. □

Lemma(5.7.2.5)[Cohomology of Projective Space].Let R be a Noetherian ring and n ≥ 0, then
for any coherent sheaf F on PnR,

• H i(PnR,F(n)) = 0 for i > 0 and n large enough.
• For any i, H i(PnR,F) is a finite R-module.
• For any k ∈ Z, ⊕d≥kH

0(PnR,F(d)) is a finite R[T0, . . . , Tn]-module.
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Proof: 1: The assertions are true for OX(n) by(5.7.2.1), and for general F , we use descending
induction on i. This is true for i > n by Čech cohomology(5.7.1.2). For general i > 0, choose a
surjection ⊕OX(ni)→ F with coherent kernel R(5.5.4.5), then there is an exact sequence

H i(X,⊕OX(ni + n))→ H i(X,F(n))→ H i+1(X,R(n)),

and the left term vanish for n large(5.7.2.1), and the right term vanish by induction hypothesis.
2: Notation as above, we use descending induction on i. This is true for i > n by Čech cohomol-

ogy(5.7.1.2). For general i > 0, H i(X,⊕OX(ni)) is finite by(5.7.2.1), and H i+1(X,R) is finite by
induction hypothesis, thus H i(X,F(n)) is also finite.

3: Notation as above, for n large, H i(X,⊕OX(ni + n)) → H i(X,F(n)) is surjective. Thus
Mk =

⊕
d≥kH

0(PnR,F(d)) is a quotient of Nk =
⊕

d≥kH
0(PnR,OX(d)) for k large. Notice for k small

enough, Nk
∼= ⊕iR[T0, . . . , Tn][i] is a finite graded R[T0, . . . , Tn]-module, thus Nk is finite for any k

as R[T0, . . . , Tn] is Noetherian. Then Mk is finite for k large, and each H0(PnR,F(d)) is itself finite
by item 2, thus Mk is a finite R[T0, . . . , Tn]-module for any k. □

Prop.(5.7.2.6)[Cohomology of Proper Schemes].Let X be a proper scheme over a Noetherian
ring A, L an ample invertible sheaf on X and F ∈ Coh(X), then

• H i(X,F ⊗ L⊗d) = 0 for i > 0 and d large enough.
• The graded ring A =

⊕
n≥0H

0(X,L⊗n) is a f.g. R-algebra.

• For any k ∈ Z, ⊕d≥kH
0(X,F ⊗ L⊗d) is a finite A-module.

Proof: By(5.5.4.24), there exists a d > 0 and some immersion i : X → PnA that i∗OPnA
(1) ∼= L⊗d,

and i is a closed immersion because X is proper. Let S = R[T0, . . . , Tn].
1: By projection formula(5.7.4.6),

i∗(F ⊗OX
L⊗nd+q) = i∗(F ⊗OX

L⊗q)(n).

Then by(5.7.4.2) and(5.7.2.5), for n large enough, Hp(X,F ⊗L⊗q) = 0 for any 0 ≤ q ≤ d− 1, p > 0.
2: By proof of item1 and(5.7.2.5), we see ⊕n≥0And+q is a finite graded S-module for any q, thus

A = ⊕d−1
q=0

⊕
n≥0And+q is a f.g. R-module.

3: Similarly, we see⊕d≥kH
0(X,F⊗L⊗d) is a finite graded S-module, and the S-module structure

factors through S → A, thus it is a finite A-module. □

Lemma(5.7.2.7).For an invertible sheaf L on a qc scheme X, if for each Qco sheaf of ideals I ∈ OX ,
there exists an n that H1(X, I ⊗ Ln) = 0, then L is ample.

Proof: For any closed pt P , choose an open affine nbhd U that L is trivial, let Y = X −U , by the
exact sequence 0→ IY ∪{p} → IY → k(P )→ 0, for each n,

0→ IY ∪{p} ⊗ Ln → IY ⊗ Ln → k(P )⊗ Ln → 0.

Thus by assumption for some n the map Γ(X, IY ⊗ Ln) → Γ(X, k(P ) ⊗ Ln) is surjective. Now
k(P ) ⊗ Ln ∼= A/mP , so we let s ∈ Γ(X, IY ⊗ Ln) maps to a section in Γ(X, k(P ) ⊗ Ln) that
corresponds to 1 ∈ A/mP , then P ∈ Supp(s) ⊂ U , and Supp(s) is affine. So we find an affine nbhd
Xs for every closed pt of X.

Finally these Xs cover X, because the complement of ∪Xs is closed in X thus qc, then it contains
a closed point by(3.3.6.1). □
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Prop.(5.7.2.8)[Serre’s Cohomological Criterion of Ampleness]. IfX is proper over a Noetherian
affine scheme, L is an invertible sheaf, then the following is equivalent.

• L is ample
• For any F ∈ Coh(X), for n large enough, Hp(X,F ⊗ Ln) = 0 for p > 0.
• For any Qco sheaf of ideals I ∈ OX , there exists an n ≥ 1 that H1(X, I ⊗ L⊗n) = 0

(Notice in this case H-ample⇐⇒ ample).

Proof: 1→ 2: This follows from(5.7.2.6). 2→ 3 is trivial. 3→ 1: (5.7.2.7). □

Lichtenbaum’s theorem

Lemma(5.7.2.9).Let X is a variety and F ∈ Coh(OX). If Hd(X,F) ̸= 0, then dimX ≥ d, and if
equality holds, X is proper.

Proof: Cf.[Sta]0G5E. □

Prop.(5.7.2.10) [Lichtenbaum].Let X be a non-empty separated scheme of f.t. over a field k of
dimension d, then the following are equivalent:

• Hd(X,F) = 0 for all F ∈ Coh(X).
• Hd(X,F) = 0 for all F ∈ QCoh(X).
• No irreducible component of X of dimension d is proper over k.

Proof: Cf.[Sta]0G5F. □

3 Euler Characteristics
Def.(5.7.3.1) [Euler Characteristic].Let X be proper over a field k and F ∈ Coh(X), then the
Euler characteristic of F is defined to be:

χ(F) =
∑

(−1)i dimkH
i(X,F).

It is definable by Grothendieck vanishing(5.3.5.17) and Grothendieck coherence theorem(5.7.4.12),
and It is clearly an additive functor on Coh(X).

Prop.(5.7.3.2).For a proper scheme X over a field k and Li be invertible sheaves on X. Then for
any F ∈ Coh(X),

χ(X,F ⊗ Ln1
1 ⊗ · · · ⊗ L

nr
r )

is a polynomial in (n1, . . . , nr) of total degree at most dim SuppF .

Proof: Cf.[Sta]0BEM. □

Prop.(5.7.3.3).Let f : Y → X be morphism between schemes proper over field k and F ∈ Coh(X),

χ(Y,F) =
∑

(−1)iχ(X,Rif∗F).

In particular, if f is affine(finite), then χ(Y,F) = χ(X, f∗F).

Prop.(5.7.3.4).This formula makes sense by(5.7.4.4) and(5.7.4.12), and it is true by Leray spectral
sequence(5.3.1.9).
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Prop.(5.7.3.5). If X is a proper scheme and F ∈ Coh(X) with dim Supp(F) = 0, then F is generated
by global sections, H i(X,F) = 0 for i > 0, and

χ(X,F ⊗ E) = nχ(X,F)

for any E ∈ Vectn(X).

Proof: The first two are clear as F = i∗G where i : Supp(F)→ X. The last assertion follows from
the projection formula(5.7.4.6) i∗(G ⊗ i∗E) ∼= F ⊗ E . □

Def.(5.7.3.6)[Arithmetic Genus].The arithmetic genus of a proper scheme of dimension r over a
field is defined to be pa(X) = (−1)r(χ(OX)− 1)(5.7.3.1). In particular, when X is a complete curve
over a field k, then pa(X) = dimkH

1(X,OX)(5.10.1.12).
The arithmetic genus is stable under base change of fields, by flat base change theorem.

Prop.(5.7.3.7)[Arithmetic Genus of Product].By Künneth formula, if X,Y are proper schemes
of dimension r, s over a field k, then

Hn(X ⊗k Y,OX⊗kY ) ∼=
⊕

0≤k≤n
Hk(X,OX)⊗Hn−k(Y,OY ).

Thus χ(X ×k Y ) = χ(X)χ(Y ). In particular, we have

pa(X × Y ) = pa(X)pa(Y ) + (−1)spa(X) + (−1)rpa(Y ).

Prop.(5.7.3.8) [Arithmetic Genus of Complete Intersections].Let C be a smooth complete
intersection of a degree m surface S1 and a degree n surface S2 in P3

k, then pa(C) = 1
2(mn(m+ n−

4) + 2).

Proof: There are exact sequences 0→ OP3
k
(−Si)→ OP3

k
→ OSi → 0, which gives

0→ OP3
k
(−S2)|S1 → OS1 → OS1∩S2 → 0.

So by adjunction formula,

KC = KS1(S1 ∩ S2)|C = KP3
k
(S1)(S2)|C = OC(m+ n− 4).

So 2g − 2 = mn(m+ n− 4). □

Prop.(5.7.3.9)[Asymptotic Riemann-Roch]. If X is a proper scheme over a field k of dimension
d and L is an ample invertible sheaf, then dim Γ(X,Ln) ∼ cnd.

Proof: Cf.[Sta]0BJ8. □

Hilbert Polynomials

References are [Hartshorne I.7] and [Vak17].

Prop.(5.7.3.10)[Hilbert Polynomial].For a projective scheme over a field k and a coherent sheaf
F , there is a polynomial Hilbert polynomial P ∈ Q[λ] that χ(F(n)) = P (n), and degP ≤
dim Supp(F).

This Hilbert polynomial is compatible with the definition in(5.7.3.12), because by(5.7.4.7), the
higher cohomology group vanishes for n large, so χ(F(n)) = Γ(F(n)) = Γ∗(F)n.
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Proof: □

Prop.(5.7.3.11).Let X ↪→ Y ↪→ Pnk be a sequence of closed embeddings, then PX(m) ≤ PY (m) for
m large, and if equality holds for m large, then X = Y .

Proof: Cf.[Vak17]P490. □

Def.(5.7.3.12)[Hilbert Polynomial].For a scheme projective over a field k of dimension r, we define
the Hilbert polynomial PY as the Hilbert polynomial of its homogenous coordinate ring Γ∗(Y ).
It has dimension r by(4.2.2.17).

The degree of Y is defined as the r! times the leading coefficients of PY .

Prop.(5.7.3.13).
• The degree is a positive integer.
• If Y = Y1 ∪ Y2 and dimY1 ∩ Y2 < r, then deg Y = deg Y1 + deg Y2.
• If H is a hypersurface whose ideal is generated by a homogeneous polynomial of degree d, then

degH = d.

Proof: Cf.[Hartshorne P52]. □

Prop.(5.7.3.14).For a variety of degree k and a general linear space, the intersection has k points.

Proof: □

4 Relative Cohomology
Prop.(5.7.4.1)[Filtered Colimits]. If f : X → Y is qcqs, then Rif∗ commutes with filtered colimits,
by(5.3.1.6) and(5.7.1.6).

Prop.(5.7.4.2) [Sheaf Cohomology Commutes with Affine Map].For f : X → Y affine and
F ∈ QCoh(X), Hn(Y,F) = Hn(X, f∗F).

Proof: Because Rif∗F(U) = 0 by(5.7.1.3) and(5.3.1.7), we can then use(5.3.1.8) to conclude. □

Prop.(5.7.4.3)[Higher Direct Image Preserves Qco Sheaves]. If f : X → S is qcqs then Rnf∗
maps QCoh(X) to QCoh(S), and for U ⊂ S affine open, (Rpf∗F)|U = (Hp(f−1(U),F))∼.

Proof: Firstly by(5.3.3.18), (Rpf∗F)|U = RpfU∗(F|U ), so it suffices to prove for S affine. Then
Rpf∗F is the sheafification of the presheaf G : U 7→ Hp(f−1(U),F) by(5.3.1.7).

If f is separated, then we can use Čech cohomology(5.7.1.2) to see that Hp(f−1(D(f)),F) =
Hp(X,F)f thus G is itself a sheaf and the conclusion follows.

In general we can choose a finite affine cover Ui ofX, then every intersection of Ui is quasi-compact
and separated, and there is a spectral sequence convergence Hp({Ui → X},Hq(F )) =⇒ Hp+q(X,F ),
where the left can be calculated using Čech cohomology. Taking localization w.r.t. f , we get the
desired isomorphism Hp(f−1(D(f)),F) = Hp(X,F)f also by comparison(3.9.7.5). □

Prop.(5.7.4.4)[Cohomological Boundedness of Rf∗].For a qcqs morphism f : X → S, if S is qc,
there is an N that for every base change f ′ of f , we have Rnf ′

∗F = 0 for every F ∈ QCoh(X) and
n ≥ N .

In particular, if f is affine, then Rnf ′
∗F = 0 for n > 0. And if f is projective, then Rnf ′

∗F = 0
for n bigger than the maximal dimension of the fiber of f .
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Proof: Check affine locally on S and use(5.7.4.3), choose a finite affine cover U of X. Then when
n is large, (Rnf ′

∗F)|Ui = 0 by(5.7.4.3) and(5.7.1.3) for any i, thus Rnf ′
∗F = 0. For base changes,

notice the cardinality of the affine cover are the same. □

Cor.(5.7.4.5).For a qc separated scheme X, the cohomology vanish for n large. And when X is
separated and can be covered by r affine opens, then N can chosen to be r.

Cor.(5.7.4.6)[Projection Formula].
• Let f : X → Y be a morphism of schemes, and E a locally free OY -module, then for any
F ∈Mod(OX) and any i, there are natural isomorphisms.

Rif∗(F ⊗ f∗E) ∼= Rif∗(F)⊗ E .

• If f : X → Y is a qcqs morphism of schemes, then for any F ∈ Coh(OX), E ∈ Coh(OY ), there
is a natural isomorphism

Rf∗(F ⊗L Lf∗E) ∼= Rf∗(F)⊗L E .

Proof: 1 follows from(5.3.3.20) and 2 follows from(5.8.5.8). □

Proper Morphism and Coh(X)

Prop.(5.7.4.7)[Relative Serre Vanishing]. If f : X → Y is a proper morphism of locally Noetherian
schemes, I an invertible sheaf on X, then the following are equivalent:

• L is f -ample.
• For any F ∈ Coh(X), for n sufficiently large, Rif∗(F ⊗ I⊗n) = 0 and i > 0.
• For any Qco sheaf of ideals I ⊂ OX , there exists an n ≥ 1 that R1f∗(I ⊗ L⊗n) = 0.

Proof: 1 → 2: By(5.7.4.3), this follows from(5.7.2.8). 2 → 3 is trivial as X is Noetherian. 3 → 1:
Notice for any affine open subset U of Y , U → Y is qc, thus f−1(U) → X is quasi-compact, thus
by(5.5.1.8), a Qco sheaf of ideals I on f−1(U) can be extended to a Qco sheaf of ideals on X. Then
we can use(5.7.4.3) and Leray spectral sequence to reduce to(5.7.2.8). □

Cor.(5.7.4.8).Let X be proper over a Noetherian affine scheme with an ample invertible sheaf I,
then for any finite exact sequence in Coh(X), if tensoring it with I⊕n for large n, the resulting global
section is exact.

Cor.(5.7.4.9).Let X be proper over a Noetherian affine scheme with an ample invertible sheaf I, and
F ,G ∈ Coh(X), i ≥ 0, then for n large(depending on F ,G, i),

Exti(F ,G(n)) ∼= Γ(X, Exti(F ,G(n))).

Proof: By(5.3.3.34)(5.7.1.7), there is a spectral sequence s.t. for n large, all the small terms vanish.
□

Lemma(5.7.4.10). If f : X → Y is projective and Y locally Noetherian, then for any n ∈ N, Rnf∗
maps coherent sheaves to coherent sheaves.

Proof: By(5.7.4.3), this problem is local on the target, so we may assume that Y = SpecR and
X = PnR, in which case this follows from(5.7.2.5). □
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Prop.(5.7.4.11) [Grothendieck’s Coherence Theorem]. If f : X → Y is proper and Y locally
Noetherian, then for any n ∈ N, Rnf∗ maps coherent sheaves to coherent sheaves.

Proof: By(5.7.4.3), this problem is local on the target, so we may assume Y is Noetherian, and then
X is also Noetherian. We prove by devissage(5.5.1.55): 1 is trivial, for 2, for any closed subscheme
i : Z ⊂ X, denote g = f |Z , then it suffices to find a coherent sheaf G on Z s.t.

1. Gξ ∼= k(ξ).
2. Rpg∗G are coherent for any p ≥ 0.

Because then i∗G is a coherent sheaf on X(5.5.1.32) that Rpf∗(i∗G) = Rpg∗G for any p by relative
Leray spectral sequence(5.3.1.8) and(5.7.4.4), and also (i∗G)ξ = Gξ.

As g : Z → Y is proper, by Chow’s lemma(5.4.5.23), there is a birational, H-projective map
π : Z ′ → Z over Y that Z ′ is projective over Y . Then there is a closed immersion j : Z ′ → PnY and
an induced closed immersion j′ : Z ′ → PnZ . Then L = j∗OPnY

(1) = (j′)∗OPnZ
(1) is both g◦π-relatively

ample and π-relatively ample.
Hence by relative Serre vanishing(5.7.4.7) there exists an n that Rpπ∗L⊗n = 0 for any p > 0. Let

G = π∗L⊗n, then this G satisfies the conditions: Gξ = κ(ξ) as π−1(U) → U is an isomorphism, and
from relative Leray spectral sequence

Rpg∗R
qπ∗L⊗n =⇒ Rn(g ◦ π)∗L⊗n,

we see Rpg∗G ∼= Rpg′
∗L⊗n, which are coherent by(5.7.4.10). □

Cor.(5.7.4.12) [Coherent Cohomology Finite]. If π : X → SpecA is proper over a Noetherian
affine scheme A and F is a coherent sheaf on X, H i(X,F) are finite A-modules.

Proof: By(5.7.4.3), Rpπ∗F is the Qco sheaf ˜Hp(X,F), which is coherent iff Hp(X,F) is a finite
A-module. □

Prop.(5.7.4.13).Given a proper morphism between locally Noetherian schemes f : X → Y , a coherent
sheaf F on X and a coherent sheaf of ideals I of OY . ThenM =

⊕
n≥0R

pf∗(InF) is a Qco graded
A =

⊕
n≥0 In-module of f.t..

Proof: By(5.7.4.3), this is local on Y , so we may assume Y is affine, Cf.[Sta]02O8. □

Prop.(5.7.4.14).Let f : X → Y be a proper morphism between locally Noetherian schemes and F a
coherent sheaf on X, y ∈ Y . Consider the infinitesimal nbhds Xn = Spec(OY,y/mn

y ) ×Y X
in−→ X of

the fiber X1 = Xy, and set Fn = in∗F , then

(Rnf∗F)∧
y
∼= lim←−

n

Hn(Xn,Fn)

as O∧
Y,y-modules.

Proof: Cf.[Sta]02OD. □

Cor.(5.7.4.15)[Support of Higher Direct Images].Let f : X → Y be a proper morphism between
locally Noetherian schemes and y ∈ Y s.t. dim(Xy) = d, then for any coherent sheaf F on X,
(Rpf∗F)y = 0 for p > d.

Proof: Cf.[Sta]02V7. □
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5 Base Change
Prop.(5.7.5.1)[Flat Base Change].For a Cartesian diagram of schemes

X ′ X

S′ S

f ′

g′

f

g

If g is flat and f is qcqs, then for every Qco sheaf F on X with base change F ′ on X ′, there is a
canonical isomorphism

g∗Rf∗F ∼= Rf ′
∗F ′.

By(5.3.3.18), when S, S′ is affine, this reads:

H i(X,F)⊗A B ∼= H i(X ⊗A B, (g′)∗F).

Proof: Firstly by(5.3.3.18)(5.7.4.3), it suffices to show for S, S′ affine. If X is separated, then the
then we can use Čech cohomology(5.7.1.2), and the Čech complex of K ′ is just the cohomology of
the Čech complex tensored with B, so it commutes with taking cohomology because B is A-flat.

Now if X is only qs, then we choose a finite affine open cover {Ui}, then every intersection
of Ui is quasi-compact and separated. and there is a spectral sequence convergence Hp({Ui →
X},Hq(F )) =⇒ Hp+q(X,F ). Tensoring with B, we also get the desired isomorphism H i(X,F) ⊗A
B ∼= H i(X ⊗A B, (g′)∗F) by comparison(3.9.7.5). □

Prop.(5.7.5.2)[Finite Locally Free Base Change].For a Cartesian diagram of schemes

X ′ X

S′ S

f ′

g′

f

g

If S = SpecA,S′ = SpecB and B is finite locally free over A, for every Qco sheaf F on X with
base change F ′ on X ′, there is a canonical isomorphism

H i(X,F)⊗A B ∼= H i(X ⊗A B, (g′)∗F).

Proof: If X is separated, then the then we can use Čech cohomology(5.7.1.2), and the Čech
complex of K ′ is just the cohomology of the Čech complex tensored with B, so it commutes with
taking cohomology because B is A-flat and tensoring a f.p. ring map commutes with colimits of
rings.

In general we choose an affine open cover {Ui}, then every intersection of Ui is separated. and
there is a spectral sequence convergence Hp({Ui → X},Hq(F )) =⇒ Hp+q(X,F ). Tensoring with B,
we also get the desired isomorphism H i(X,F)⊗A B ∼= H i(X ⊗A B, (g′)∗F) by comparison(3.9.7.5).
□

Prop.(5.7.5.3) [Representing Higher Direct Image].Let f : X → S be a qcqs morphism of
schemes. If S is qc and separated and F is a Qco sheaf on X, there exists a K• ∈ K+(QCoh(OS)) s.t.
for any morphism g : S′ → S, the complex g∗K• is a representative for Rf ′

∗F ′, where the notation is
as in(5.7.5.1).
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Proof: We only prove the case X is separated, the general case in [Sta]01XN.
Choose a finite affine open covering U of X, consider the complex of sheaves C•(U ,F) =

Hom•((Z♯U ,•),F)(5.3.2.1), then Cp(U ,F) =
⊕

i0...ip ji0...ip∗Fi0...ip . Then let Č•(U , f,F) = f∗C
•(U ,F).

There is a natural map F → C•(U ,F). Now ji0...ip and fi0...ip are both affine by(5.4.4.88), so are
their base changes, thus the higher direct image vanish. So by relative Leray spectral sequence, we
see each term ji0...ip∗F ′

i0...ip is f ′
∗-acyclic. Then by Leray’s acyclicity theorem,

Rf ′
∗(F ′) = Rf ′

∗(C•(U ,F)) ∼= C•(U ′, f ′,F ′) = g∗C•(U , f,F).

The last equation follows from the fact fi0...ip are all affine thus the base change are isomorphisms.
□

Prop.(5.7.5.4)[Proper Flat Base Change]. If f : X → S is a proper morphism of f.p., then
• If E a perfect object in D(OX), G ∈ D(OX) is representable by a bounded complex of f.p.
OX -modules flat over S, then

Rf∗(E ⊗LOX
G•), Rf∗RHom(E,G•)

are perfect complexes in D(OS), and its formation commutes with base change.
• If E a pseudo-coherent object in D(OX), G ∈ D(OX) is representable by a bounded above

complex of f.p. OX -modules flat over S, then Rf∗(E ⊗LOX
G•) is a pseudo-coherent complex in

D(OS), and its formation commutes with base change.

Proof: Cf.[Sta]0A1H, 0A1J, 0CSC.? □

Cor.(5.7.5.5).Let f : X → S be a proper morphism of f.p., then
• If E ∈ D(OX) is perfect(pseudo-coherent) and f is flat, then Rf∗E is a perfect(pseudo-coherent)

object in D(OS), and its formation commutes with base change.
• If G ∈ QCohpf(OX) and is flat over S, then Rf∗G is a perfect object of D(OS) and its formation

commutes with base change.

Cor.(5.7.5.6). If A ∈ CAlg, X be a proper scheme of f.p. over A, then if G ∈ QCohpf(OX) and is flat
over A, there exists a finite complex of finite projective A-modules L• that for any A′ ∈ CAlgA,M ∈
ModA, by(5.7.5.5) and projection formula(5.7.4.6),

H i(XA′ ,FA′) = H i(L• ⊗A A′), H i(X,F ⊗AM) = H i(L• ⊗AM)

6 Semicontinuity
Prop.(5.7.6.1). T i is left exact iff Coker di−1 is a projective A-module, iff it is representable by a finite
A-module.

Proof: DenoteW i = Coker di−1, then Coker di−1⊗AM = W i⊗M , because tensoring is right exact.
Thus T i(M) = ker(W i ⊗M → Li+1 ⊗M). Then for M ′ ⊂M , there is a commutative diagram

0 T i(M) W i ⊗M ′ Li+1 ⊗M ′

0 T i(M) W i ⊗M Li+1 ⊗M

α β γ
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γ is injective, so using spectral sequence, its clear α is injective iff β is injective, i.e. W i is flat, which
is equivalent to finite projective(4.3.1.7).

To prove T i is representable, let Q = Coker(Li+1,∗ → W i,∗), then Q is finite because W i is
finite(4.3.1.18), and 0 → Hom(Q,M) → Hom(W i,∗,M) → Hom(Li+1,∗,M), but by(4.3.1.19), the
last two are just W i ⊗M and Li+1 ⊗M , Hom(Q,M) = T i(M) by what has already be proved. □

Prop.(5.7.6.2). T i is right exact iff the cup product H i(X,F)⊗AM → H i(X,F ⊗AM) is an isomor-
phism for any A-module M .

Proof: Because T i and ⊗ commutes with direct limit, it suffices to prove for M finite. In this case,
choose a finite presentation Ar → As →M → 0, then there is a diagram

T i(A)⊗Ar T i(A)⊗As T i(A)⊗M 0

T i(Ar) T i(As) T i(M)

The first two vertical arrows are isomorphisms, so if T i is right exact, so does the third vertical arrow.
Conversely, if T i(A)⊗AM → T i(M) are all isomorphisms, then by a similar diagram, we can show
T i(M)→ T i(M ′) are surjective for M →M ′ surjective. □

Cor.(5.7.6.3). T i is exact iff it is right exact and T i(A) = H i(X,F) is a finite projective A-modules.

Proof: When T i is right exact, H i(X,F ⊗A M) ∼= H i(X,F) ⊗A M by(5.7.6.2), so it is exact iff
H i(X,F) is flat. Because it is in priori finite, this is equivalent to finite projective(4.3.1.7). □

Def.(5.7.6.4).For a point y ∈ SpecA, define T iy(N) = H i(L•
y ⊗N), then T i is (left/right)exact at y

iff T iy are all (left/right)exact(exact sequence is stalkwise(4.1.4.2)).

Prop.(5.7.6.5). If T i is (left/right)exact at a point y, then the same is true on a nbhd of y.

Proof: From(5.7.6.1), (Coker di−1)y is a finite projective Ap module, so it is free, and it is a coherent
sheaf, so it is free at a nbhd of y by(5.5.1.38), so the same is true on a nbhd of y. Now right exactness
of T i is equivalent to left exactness of T i+1, and exact is left exact+right exact, so we are done. □

Prop.(5.7.6.6). T i is right exact at y iff H i(X,F)⊗ k(y)→ H i(X,F ⊗A k(y)) is surjective.

Proof: Cf.[Hartshorne P289].? □

Prop.(5.7.6.7)[Cohomology and Stalks].Let f : X → Y be a proper morphism of locally Noethe-
rian schemes and F is a coherent sheaf on X flat over Y , y ∈ Y , then

• If the natural map
φi(y) : Rif∗(F)⊗ k(y)→ H i(Xy,Fy)

is surjective, then it is an isomorphism, and and the same is true for y′ in an open nbhd of y.
• Assume φi(y) is surjective, then φi−1(y) is also surjective iff Rif∗(F) is finite projective in a

nbhd of y.

Proof: 1: This follows from(5.7.6.2)(5.7.6.6) and(5.7.6.5).
2: φi−1(y), φi(y) are both surjective iff T i and T i−1 are both right exact at y(5.7.6.6), which is

equivalent to T i exact at y. Then we finish by(5.7.6.3) □
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Remark(5.7.6.8).How’s this related to(5.7.5.5)?
Prop.(5.7.6.9) [Semicontinuity of Cohomology].Let X → Y be a projective morphism of lo-
cally Noetherian schemes and F is a coherent sheaf on X, flat over Y , then for each i, hi(y,F) =
dimk(y)H

i(Xy,Fy) is an upper semicontinuous function on Y .

Proof: The question is local on Y , so we may assume Y is affine Noetherian. By(5.7.5.1),
H i(y,F) = dimk(y) T

i(k(y)). And as in the proof of(5.7.6.1), T i(M) = ker(W i⊗M → Li+1⊗M), and
W i → Li+1 →W i+1 → 0 is exact, so 0→ T i(k(y))→W i⊗ k(y)→ Li+1⊗ k(y)→W i+1⊗ k(y)→ 0,
and counting dimension, hi(y,F) = dimW i ⊗ k(y) + dimW i+1 ⊗ k(y) − dimLi+1 ⊗ k(y). Notice
the last term is constant as Li+1 is free A-module and the first two terms are upper semi-continuous
by(5.5.1.41), thus hi(y,F) is upper-semicontinuous. □

Cor.(5.7.6.10)[Grauert]. If Y is integral and hi(y,F) is constant on Y , then Rif∗(F) is locally free
on Y and Rif∗(F)⊗ k(y) ∼= H i(Xy,Fy).

Proof: Cf.[Hartshorne P288]. □
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5.8 Topics in Schemes
Main references are [Sta]and [Har77].

1 Cartier Divisors
Def.(5.8.1.1)[Cartier Divisor].A Cartier divisor on a scheme X is an element in Γ(X,K∗

X/O∗
X).

An effective Cartier divisor is a Cartier divisor that is locally defined as {(Ui, fi)} where
fi ∈ Γ(Ui,OUi) are nonzero-divisors, equivalently, it is a closed subscheme whose ideal sheaf is an
invertible sheaf.(Notice by definition, K is the localization w.r.t. nonzero-divisors, and fi is invertible
in K∗ so fi must be nonzero-divisors.)

The group of effective Cartier divisors is denoted by Carteff(X).
The Cartier divisor group CaCl is the quotient of Γ(X,K∗)→ Γ(X,K∗/O∗

X).

Prop.(5.8.1.2)[Cartier Divisor is Nowhere Dense].Let D ⊂ X be an effective Cartier divisor,
then it is nowhere dense in X, i.e X\D → X is scheme-theoretically dense.

Proof: It suffices to check affine-locally, it is qc so the scheme-theoretic closure of SpecAf → SpecA
is V (ker(A→ Af )) = V (0) as f is a nonzero-divisor. □

Prop.(5.8.1.3)[Closed Subschemes and Effective Cartier Divisors].Let X be a locally Noethe-
rian scheme and D ⊂ X is a closed subscheme corresponding to a Qco sheaf of ideals I ⊂ OX . If
for any x ∈ D, the ideal Ix ⊂ OX,x is generated by a single nonzero-divisor, then D is an effective
Cartier divisor.

Proof: Cf.[Sta]0AG8. □

Cor.(5.8.1.4) [Prime Divisor and Effective Cartier Divisor].Let X be a locally Noetherian
scheme and D is a prime Weil divisor on X and OX,x are UFDs for any x ∈ D, then D is an effective
Cartier divisor.

Proof: For any x ∈ D, let A = OX,x, and p be the prime corresponding to the generic point of D,
then dimAp = 1, so p is principle as A is a UFD, so D is an effective Cartier divisor by(5.8.1.3). □

Prop.(5.8.1.5) [Cartier-Pic].For an integral scheme X, the homomorphism CaCl(X) →
Pic(X)(5.8.1.1)(5.5.3.10) induced from long exact sequence of 0 → O∗

X → K∗
X → K∗

X/O∗
X → 0

is an isomorphism.
Explicitly, for a Cartier divisor D = {(Ui, fi)}, the image is the invertible sheaf OX(D)(5.5.3.12).

Proof: It is clearly injective by definition, so it suffices to show any invertible sheaf can embed into
the constant sheaf: for any invertible sheaf L, tensor with K and restrict to the stalk of the generic
point, i.e. there is a compatible choice of homomorphisms into K(X). □

Prop.(5.8.1.6). If X ∈ NSch and the diagonal map is affine, for a dense affine open U , if all the stalk
of X\U are UFD, then U is the complement of an effective Cartier divisor.

Proof: The irreducible complements of X\U is finite and has codimension 1 by(5.6.3.5) because
U → X is affine, and it is an effective Cartier divisor by(7.1.5.1)., so their sum will suffice. □

Prop.(5.8.1.7)[Pullback of Effective Cartier Divisors].Let f : X → Y ∈ Sch andD ∈ Carteff(Y ),
then the pullback of D via f is an effective Cartier divisor on X in the following cases:



5.8. TOPICS IN SCHEMES 679

• f(x) /∈ D for any x ∈WeakAsso(X).
• X,Y ∈ Schint and f is dominant.
• f is flat.

Proof: 2 is a special case of 1 as a reduced scheme has no embedded points.
1 follows from(4.2.5.17).
3 is easy. □

Prop.(5.8.1.8)[Effective Cartier Divisors]. If X is a Noetherian scheme with an ample invertible
sheaf L, then any line bundle in Pic(X) is isomorphism to OX(D − D′) for some effective Cartier
divisors D,D′ on X.

Proof: Cf.[Sta]0AYM. □

Relative Effective Cartier Divisors

Def.(5.8.1.9)[Relative (Effective) Cartier Divisors].Let X be a scheme over S, then a relative
effective (Cartier)divisor on X/S is an effective Cartier divisor D on X that is flat over S.

Prop.(5.8.1.10)[Fibral Criterion of Relative Effective Divisor].Let f : X → S be a morphism
of locally Noetherian schemes locally of f.t., D ⊂ X be a closed subscheme and x ∈ D, s = f(x),
then the following are equivalent:

• D is a relative effective divisor at a nbhd of x.
• X and D are flat over S at x, and the fiber Ds is a Cartier divisor on Xs at x.
• X is flat over S at x, and D is cut out by an element that is regular on the fiber Xs.

In particular, a relative Cartier divisor pair can be regarded as a family of Cartier divisors pairs.

Proof: 1→ 2: Let OD,x = bOX,x, then there is an exact sequence 0→ OX,x
b−→ OX,x → OD,x → 0,

which induces a long exact sequence

TorOS,s

1 (OX,x, k(s))→ TorOS,s

1 (OX,x, k(s))→ TorOS,s

1 (OD,x, k(s))→ OXs,x ⊗ k(s) b−→ OXs,x ⊗ k(s).

Because D is flat over S, TorOS,s

1 (OD,x, k(s)) = 0, thus b is regular in OXs,x and Ds is en effective
divisor on Xs at x. Also the map TorOS,s

1 (OX,x, k(s)) → TorOS,s

1 (OX,x, k(s)) is surjective, which is
multiplication by b, and b is in the maximal ideal, thus by Nakayama lemma, TorOS,s

1 (OX,x, k(s)) = 0.
Then OX,x is OS,s-flat by local criterion(4.4.1.16).

2→ 3: Let D corresponds to an ideal I in OX,x, and because Ds is effective divisor on Xs, there
exists b ∈ I s.t. the image of b in OX,x ⊗ k(s) generate the ideal of Ds. Then it suffices to show that
b generates I. Notice there is an exact sequence 0 → I → OX,x → OD,x → 0, and OD,x is flat over
OS,s, thus I ⊗ k(s)→ OX,x⊗ k(s) is injective, and the image is just the ideal of Ds, thus b generates
I ⊗ k(s). Thus by Nakayama, it also generates I.

3→ 1: The exact sequence 0→ I → OX,x → OD,x → 0 induces the long exact sequence

TorOS,s

1 (OX,x, k(s))→ TorOS,s

1 (OD,x, k(s))→ I ⊗ k(s)→ OXs,x ⊗ k(s).

I⊗k(s)→ OXs,x⊗k(s) is injective because its composition withOXs,x⊗k(s)→ I⊗k(s)→ OXs,x⊗k(s)
is multiplication by b, thus injective as b is regular on the fiber Xs. Thus TorOS,s

1 (OD,x, k(s)) = 0,
thus D is flat at x by local criterion(4.4.1.16). And also I is flat over OS,s. Notice b : OX,x → I is
isomorphism after tensoring k(x) and I is flat, so ker(b) = 0 by Nakayama, and b is regular. □
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Cor.(5.8.1.11). If D,E are relative effective Cartier divisors on X/S, then D + E is also a relative
Cartier divisor on X/S.

Proof: This follows from item3 of(5.8.1.10). □

Prop.(5.8.1.12)[Pullback of Divisors].For S ∈ Sch, X ∈ Sch /S and Z an relative Cartier divisor
on X/S, then for any T ∈ Sch /S, ZT is a relative Cartier divisor on XT /T .

And if f : X′ → X is a flat morphism over S, then f∗Z is also a relative Cartier divisor on X ′/S.

Proof: If 0→ OX
I−→ OX → i∗OZ → 0, then 0→ OXT

IT−−→ OXT → i∗OZT → 0 because OZ is flat
over OS , so IT is also an effective divisor on XT /T .

The second case is similar. □

2 Blowing Up

Blowing-up

Blowing-up serves as a way to magnify local properties to global ones.

Def.(5.8.2.1)[Blowing-Up].Let X be a scheme and a closed subscheme Z ⊂ X defined by I, the
blowing up of X along Z BlZ X is defined as the map β : ProjX(⊕d≥0Id)→ X.

The map β : BlZ X → X pulls back Z to an effective Cartier divisor EZX, called the exceptional
divisor, and it has the universal property that any morphism Y → X that pulls back Z to an effective
Cartier divisor uniquely factors through BlZ X.

Proof: Notice first an effective devisor is equivalent to an invertible sheaf of ideal. And any
morphism Z → X pulls back I to the image of f−1I ⊗OX

OZ → f−1I · OZ . This is just O(1) on
BlXI so invertible.

For the construction, the local uniqueness will implies the existence. Notice locally X̃I is projective
over X. Now because the Z → X pulls back I to an invertible sheaf and it is generated by f−1(ai), we
use?? to get another Z → ProjnX and it factors through the closed subscheme X̃I . If there is another
morphism g, then f−1I · OZ = g−1(π−1I · O

X̃I
) · OZ = g−1(O

X̃I
) · OZ surjective, and a surjective

morphism between two invertible sheave is an isomorphism, and they are both ideal sheaves, thus is
the same, so this morphism is unique as it is determined by the map on OX??. □

Cor.(5.8.2.2).Let X be a scheme and Z ⊂ X.
• If Z is itself an effective Cartier divisor, then the BlZ X = X.
• If U ⊂ X is an open subscheme, then BlZ(U) = β−1(U) ⊂ BlZ(X). In particular, Blowing-up

is a local construction.
• If Z = X, then BlX X = ∅.
• β is an isomorphism β−1(X\Z)→ X\Z away from Z.
• If X is reduced, then BlZ X is also reduced.
• If X is irreducible and Z doesn’t contain the generic point of X, then BlZ X is irreducible.

Proof: 1: By universal property.
2: This follows from universal property and the fact the restriction of an effective Cartier divisor

is an effective Cartier divisor.
3: By universal property.
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4: By item2 and 3.
5: ?
6: ? □

Cor.(5.8.2.3). π : X̃I → X is birational, proper thus surjective. If X is a (complete)variety, then so
does X̃I .

Def.(5.8.2.4)[Strict Transform].Let Z ⊂ X is a closed subscheme and f : Y → X be a morphism,
then Y ×XBlZ X is called the total transform of Y , and the strict transform of Y is the scheme-
theoretic closure of Y ×X BlZ X\Y ×X EZX in Y ×X BlZ X, or equivalently the closed subscheme
of Y ×X BlZ X cut out by the Qco ideal of sections supported on Y ×X EZY .

Prop.(5.8.2.5) [Strict Transformation].Let Z ⊂ X is a closed subscheme and f : Y → X be a
morphism, then the strict transform of Y is the blowing-up of Y at the closed subscheme f−1Z.

Proof: Cf.[Sta]080E.? (Recall the definition of fiber product, we only need to check for Z,X affine
and glue. For this, check B ⊗A (⊕Id)→ ⊕(IB)d defines the fiber map). □

Prop.(5.8.2.6). If X is H-(quasi-)projective, then so does X̃I and π is H-projective(5.5.2.19). And
any birational projective morphism from another variety Z to X comes from a blowing-up.

Proof: Cf.[Hartshorne P166]. □

Prop.(5.8.2.7) [Exceptional Divisor].Let E be π−1(x) for a blowing-up, called the exceptional
divisor. Often the line bundle O

X̃
(E) associated with it is called denoted by E.

There are canonical coordinates near E: let Ũi be Ũ − {(li = 0)}, then endow Ũi with the
coordinate z(i) = (lj/li, . . . , zi, . . . , ln/li), it is holomorphic to Cn. π in this coordinate is written as
(z(1), . . . , z(n)) 7→ (z(i)z(1), . . . , z(i), . . . , z(n)z(i)).

The transition function can be written, it is

φj ◦ φ−1
i ((z(i)1, . . . , z(i)n)) = (z(i)1

z(i)j
, . . . ,

1
z(i)j

, . . . , z(i)iz(i)j , . . . ,
z(i)n
z(i)j

).

Notice it is somewhat tricky because it has two different coordinates.
The defining function of E in this coordinate is (z(i)) = (zi). So the line bundle O

X̃
(E) has

transition function gij = z(i)/z(j), and it can be thought of as the line bundle that has line [l] at
the point (z, [l]) ∈ Ũ . So it is kindof tautological, in fact its restriction on E ∼= CPn−1 is just the
tautological line bundle.

Prop.(5.8.2.8).The canonical line bundle K
X̃

= π∗KX + (n− 1)E, where n is the dimension of X.

Proof: Away from E, the π is a holomorphism, so It suffices to compare the two transition function
of the two canonical maps near E using the coordinates in(5.8.2.7), with the local section given by
dz1 ∧ . . . ∧ dzn and dz(i)1 ∧ dz(i)n respectively. On Ũi, locally dz1 ∧ . . . ∧ dzn is pulled by π∗ to the
trivial bundle on U ′, and by calculation, dz(j)1 ∧ dz(j)n = z(i)n−1

j dz(i)1 ∧ dz(i)n, so KX̃ − (n− 2)E
has a global section z(i)n−1

i dz(i)1 ∧ dz(i)n, so it is also trivial on Ũ , so K
X̃

= π∗KX + (n − 1)E is
true. □
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Blowing up along a regular variety

Prop.(5.8.2.9). If X is a regular variety over k and Y is a regular closed subvariety defined by I,
then the blowing up along I is also regular, and the inverse image Y ′ of Y is locally principal in it.
In fact, Y ′ → Y is isomorphic to P(I/I2), the projective space associated to the locally free bundle
I/I2 on Y , and the normal sheaf NY ′/X′ ∼= OP(I/I2)(−1).

Proof: (Imagine the blowing up of A2 along {0}). X ′ ∼= Proj⊕Id and Y ′ ∼= Proj⊕Id/Id+1. Then
since Y is regular, (4.3.4.17) tells us I is locally generated by a regular sequence and(4.3.4.16) tells
Y ′ = P(I/I2). Y ′ is regular by(4.3.5.18), and then(4.3.5.24) shows that X ′ is regular also. For the
normal sheaf, the defining sheaf I ′ = OX′ and then I ′/I ′2 = OY (1), thus NY ′/X′ ∼= OP(I/I2)(−1). □

Prop.(5.8.2.10). In a blowing up along a regular variety of codimension r ≥ 2, There is an isomor-
phism PicX ′ ∼= PicX ⊕ Z induced by the Weil divisor exact sequence of Y ′ ⊂ X ′. This is because
r ≥ 2 and (5.8.2.2).

We also have ωX′ = f∗ωX ⊗ L((r − 1)Y ′) because L(Y ′) = O(−1) and ωY ∼= ωX ⊗ L(D) ⊗ OY
by(5.10.1.17), so it suffice to prove ωY ′ ∼= f∗ωX ⊗OY ′(−r). For this, notice for a closed pt of Y , the
fiber is a Pr−1 because I/I2 is locally free of rank r by(5.10.1.16) and the functoriality of O(1).

3 Compatifications

Def.(5.8.3.1)[Compatifications].Let S ∈ Schqcqs, X ∈ Schsep,ft /S, then the category of compati-
fications of X/S is the category of pairs (i,X), where i : X → X is an immersion and X → S is
proper.

Thm.(5.8.3.2)[Nagata Compatification]. Situation as in(5.8.3.1), thenX/S has a compactification.

Proof: Cf.[Sta]0F41. □

4 Limits of Schemes
Prop.(5.8.4.1)[Noetherian Reduction].For any S ∈ Schqcqs, there exists a direct system (Si, fii′)
indexed over a set I that

• fii′ are affine.
• Si are of f.t. over Z.
• S = lim←−i Si.

Proof: Cf.[Sta]01ZA. □

Prop.(5.8.4.2)[Characterizing Morphisms of F.P.].Let f : X → S be a morphism of schemes,
then the following are equivalent:

• f is locally of finite presentation.
• For any directed inverse system (Ti, fii′) in AffS , we have

MorS(lim←−
i

Ti, X) = lim−→
i

MorS(Ti, X)

• For any directed inverse system (Ti, fii′) in SchS with Ti qcqs and fii′ affine, we have

MorS(lim←−
i

Ti, X) = lim−→
i

MorS(Ti, X)
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Proof: Cf.[Sta]01ZC. □

Prop.(5.8.4.3)[Reduction to Finite Presented Morphisms].Let f : X → S be a morphism of
schemes, if X is qcqs and S is qs, then X = lim←−iXi is a limit of a directed system of schemes Xi of
f.p. over S with affine morphisms over S.

Proof: Cf.[Sta]09MV. □

Prop.(5.8.4.4)[Integral and Finite].Let f : X → S be an integral morphism of schemes with S
qcqs, then X = lim←−iXi is a limit of a directed system of schemes Xi finite of f.p. over S with affine
morphisms over S.

Proof: Consider A = f∗OX , which is a Qco sheaf of OS-modules. Then A = lim−→Ai is a filtered
colimit of finite and f.p. OS-modules by(5.5.1.13). Then Xi = SpecS(Ai) satisfies the requirement
by(5.2.7.12). □

Sheaves

5 DQCoh(X)

Def.(5.8.5.1)[Notations].For X ∈ Sch,
Denote D∗

QCoh(X) = D∗
QCoh(X)(Mod(OX))(3.9.1.8). There is a natural functor D∗(QCoh(X)) →

D∗
QCoh(X).
Denote D∗

Coh(X) = D∗
Coh(X)(Mod(OX))(3.9.1.8). There is a natural functor D∗(Coh(X)) →

D∗
Coh(X).
By(5.3.1.5), these notions are affine local.

Prop.(5.8.5.2)[Direct Sum].Direct sum exists in DQCoh(X), and equals that in D(X).

Proof: By(3.9.1.15), direct sum exists in D(X) and are given by term-wise direct sums. Notice
the direct sum of elements in DQCoh(X) is also in DQCoh(X) as direct sums are exact functor and
QCoh(X) is stable under direct sums. □

Prop.(5.8.5.3)[Affine Case].LetX = SpecA, there is a natural equivalence˜: D(A)→ D(QCoh(X)).
Then the functors RΓ(X,−) : DQCoh(X) → D(A) is quasi-inverse to the inclusion functor
D∗(QCoh(X))→ D∗

QCoh(X)(5.8.5.1), and they are both isomorphism of triangulated categories.

Proof: Cf.[Sta]06Z0. □

Prop.(5.8.5.4)[Derived Pullbacks].Let f : X → S be a qcqs morphism of schemes, then Lf∗ maps
DQCoh(X) intoDQCoh(S), and affine locally it is just the derived tensor functor−⊗LAB : D(A)→ D(B)
via identifications in(5.8.5.3), by(5.3.3.14)(5.3.3.15).

Prop.(5.8.5.5) [Derived Products].For X ∈ Sch, DQCoh(X) is stable under derived tensor prod-
ucts, and affine locally it is just the derived tensor product − ⊗L − via identifications in(5.8.5.3),
by(5.3.3.6)(5.3.3.15).

Prop.(5.8.5.6)[Higher Direct Images].Let f : X → S be a qcqs morphism of schemes, then Rf∗
maps DQCoh(X) into DQCoh(S). And if f is affine, affine locally it is just the restriction D(B)→ D(A)
via identifications in(5.8.5.3), by(5.3.1.9).

Moreover, if S is qc, then there exists a N ∈ Z s.t. Rf∗(D≤m
QCoh(X)) ⊂ D≤m+N

QCoh (S), and this N is
invariant under base change.
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Proof: Cf.[Sta]08D5.? □

Prop.(5.8.5.7).For f : X → Y qcqs, Rf∗ : DQCoh(X)→ DQCoh(Y ) preserves direct sums.

Proof: Cf.[Sta]08DZ. □

Prop.(5.8.5.8) [Projection Formula].Let f : X → Y be a qcqs morphism of schemes and E ∈
DQCoh(X),K ∈ DQCoh(Y ), then the projection map(5.3.3.19)

Rf∗(E)⊗LOY
K → Rf∗(E ⊗LOY

Lf∗K)

is an isomorphism.

Proof: Cf.[Sta]08EU. □

Pseudo-Coherent and Perfect Complexes

Prop.(5.8.5.9) [Affine Case]. If X = SpecA, M ∈ D(A) and E is the corresponding element in
D(X), then

• E is an (m-)pseudo-coherent object in D(X) iff M is an (m-)pseudo-coherent object in
D(A)(4.9.5.9).

• E has Tor-amplitude in [a, b] iff M has Tor amplitude in [a, b].
• E is a perfect object in D(X) iff M is a perfect object in D(A)(4.9.5.3).

Proof: Cf.[Sta]08E7, 08EB, 08E9,. □

Prop.(5.8.5.10) [Noetherian Case].Let X be a Noetherian scheme and E ∈ DQCoh(X), then the
following are equivalent:

• E is m-pseudo-coherent.
• E ∈ D−

QCoh(X) and H i(E) ∈ Coh(X) for i ≥ m.
In particular, E is pseudo-coherent iff E ∈ D−

Coh(X).

Proof: Cf.[Sta]08E8. □

Prop.(5.8.5.11)[Ext].Let X ∈ Sch.
1. If X = SpecA and K,L ∈ D(A), then Extn(K̃, L̃) is the sheaf extending the sheaf on the basis
D(f) 7→ ExtnAf (Kf , Lf ).

2. If X = SpecA and K,L ∈ D(A), then RHom(K̃, L̃) = (RHomA(K,L))∼ iff K is pseudo-
coherent and L ∈ D+(A), or K is perfect.

3. If L ∈ DQCoh(X) and K ∈ D(X) perfect, then RHom(K,L) ∈ DQCoh(X).
4. If L ∈ D+

QCoh(X) and K ∈ D(X) pseudo-coherent, RHom(K,L) ∈ DQCoh(X) and are locally
bounded below.

Proof: 1: This follows from(5.3.3.27) as

Hn(RHom(Xf , K̃, L̃)) = HomD(OXf
)(K̃f , L̃f [n]) = HomD(Af )(Kf , Lf [n]) = Extn(Kf , Lf ).

2: This follows from(5.3.4.22).
3, 4 follows from item2,(5.3.4.22) and locality of cohomology. □
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Prop.(5.8.5.12)[Criterion for Relative Perfectness over Affine Base].Let A ∈ CAlg and X be
a separated, flat of f.p. scheme over A, K ∈ DQCoh(X). If RΓ(X,E⊗LK) is perfect in D(A) for any
perfect object E ∈ D(X), then K is perfect over A.

Proof: Cf.[Sta]0GET. □

DCoh(X)

Prop.(5.8.5.13)[RHom Preserves DCoh(X)]. If X is a locally Noetherian scheme and L ∈ D+
Coh(X)

and K ∈ D−
Coh(X), then RHom(K,L) ∈ D+

Coh(X).

Proof: Cf.[Sta]0D0C. □

Prop.(5.8.5.14).Let X be a Noetherian scheme, then there are natural equivalences

D−(Coh(X)) ∼= D−
Coh(X)(QCoh(X)) ∼= D−

Coh(X), Db(Coh(X)) ∼= Db
Coh(X).

Proof: Cf.[Sta]0FDA, 0FDB. □

Prop.(5.8.5.15).Let S be Noetherian and f : X → S be a proper morphism, then Rf∗ maps Db
Coh(X)

to Db
Coh(S).

Proof: Cf.[Sta]08E2. □

Prop.(5.8.5.16)[Perfect Complexes for Regular Schemes]. If X is a Noetherian regular scheme
of finite dimension, then Db

Coh(X) consists exactly of the perfect objects in D(X), by(4.9.5.5)
and(5.8.5.9).

Def.(5.8.5.17)[K-Groups of Schemes].Let X ∈ Sch, the Grothendieck group of X is defined
to be K0(X) = K0(Dperf(X)). If X is locally Noetherian, also define the Grothendieck group of
coherent sheaves on X to be K ′

0(X) = K0(Coh(X)).

Prop.(5.8.5.18). If X is Noetherian, then

K ′
0(X) = K0(Coh(X)) = K0(Db(Coh(X))) = K0(Db

Coh(X)).

In particular, there is a map K0(X)→ K ′
0(X).

Proof: This follows from(3.9.1.13) and(5.8.5.14). □

Prop.(5.8.5.19) [K0 ∼= K ′
0]. If X is a Noetherian regular scheme of finite dimension, then the map

K0(X)→ K ′
0(X)(5.8.5.18) is an isomorphism, by(5.8.5.16).

Prop.(5.8.5.20).For X ∈ Sch, −⊗L− defines a ring structure on K0(X), by(3.7.7.30) and(3.9.3.12).

Prop.(5.8.5.21). IfX = SpecR, thenK0(X) = K0(R). And if R is Noetherian, thenK ′
0(X) = K ′

0(R).

Proof: Cf.[Sta]0FDH. □

Prop.(5.8.5.22) [Push and Pull].Let f : X → Y be a proper morphism of locally Noetherian
schemes, then there is a map

f∗ : K ′
0(X)→ K ′

0(Y ) : [F ] 7→ ⊕i≥0[R2if∗F ]−⊕i≥0[R2i+1f∗F ],

which is definable by(5.8.5.15). And there is an obvious map f∗ : K ′
0(Y )→ K ′

0(X). They satisfy

f∗(α · f∗β) = f∗α · β, α ∈ K ′
0(X), β ∈ K ′

0(Y ).
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Proof: The first assertion follows from long exact sequence for Rf∗. The last assertion follows from
projection formula(5.8.5.8). □

Prop.(5.8.5.23) [Lambda Operators].Let X ∈ Sch, there are functor λr : K0(Cohfree(X)) →
K0(Cohfree(X)) that sends [E ] to [∧rE ].

Proof: Consider a map c : Cohfree(X)→ K0(QCohfree(X))[t] : E 7→
∑∞
i=0[∧iE ]ti. It suffices to prove

that for any exact sequence 0→ E ′ → E → E ′′ → 0, c(E) = c(E ′)c(E ′′), and then take λr as

c(M) =
∑
r>0

λr(M)tr.

To show this, notice that there is a filtration of ∧rE with quotients

∧rE ′,∧r−1(E ′)⊗ E ′′, . . . ,∧r(E ′′),

by(5.5.1.26). □

Prop.(5.8.5.24)[Adam Operators].Let X ∈ Sch, then there is are Adam operators

ψ−1, ψ1, ψ2, : K0(X)→ K0(X)

s.t. for L ∈ Pic(X),
ψ−1[L] = [L−1], ψ1[L] = [L], ψ2[L] = [L⊗2].

Proof: For any L ∈ K0(X), there is an action of {±1} on L ⊗L L by switching factors. Denote
(L⊗L L)+, (L⊗L L)− the fixed and anti-fixed parts? of L⊗L L, and define ψ2[L] = [(L⊗L L)+]−
[(L⊗L L)−]. ? □

Coherator

Prop.(5.8.5.25)[RQX ].

Prop.(5.8.5.26)[DQX ].Let X be a qcqs scheme, then the inclusion functor DQCoh(X)→ D(X) has a
right adjoint, called the coherator, denoted by DQX .

Proof: Use(3.7.7.35). The conditions are satisfied as DQCoh(X) is compactly generated and has
direct sums that is preserved by inclusion by(5.8.5.30)(5.8.5.2). □

Prop.(5.8.5.27).Let f : X → Y be a morphism of qcqs schemes, then

Rf∗ ◦DQX = DQY ◦Rf∗ : D(X)→ DQCoh(Y ).

Proof: They are both right adjoint to Lf∗ : DQCoh(Y ) → D(X), as Lf∗ maps DQCoh(Y ) into
DQCoh(X)(5.8.5.4). □

Prop.(5.8.5.28) [Cohomological Boundedness of DQX ].Let X be a qcqs scheme, then there
exists N ∈ Z s.t. if K ∈ D(X) satisfies K|U ∈ D[a,b](OU ) for any affine open U ⊂ X, then
DQX(K) ∈ D[a,b+N ]

QCoh (X).

Proof: Cf.[Sta]0CSA. □
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Compact Generators

Prop.(5.8.5.29) [Perfect and Compact Objects].Let X be a qcqs scheme, then K ∈ D(X) is
perfect iff it is a compact object in DQCoh(X).

Proof: Cf.[Sta]09M1. □

Prop.(5.8.5.30) [DQCoh(X) is Compactly Generated].There is a perfect object P ⊂ DQCoh(X)
that is a generator of DQCoh(X)(3.7.7.31).

Proof: Cf.[Sta]09IS. □

Resolution Property

Def.(5.8.5.31)[Resolution Properties].A scheme X is said to have resolution property iff every
F ∈ QCohft(X) is a quotient of a locally free sheaf.

Prop.(5.8.5.32). If X has an ample invertible sheaf, then X has the resolution property by(5.5.4.5).
In fact, every coherent sheaf is a quotient of a finite direct sum of OX(−n).

Prop.(5.8.5.33)[Regular Scheme has Resolution property]. If X is qc regular scheme with an
affine diagonal, then X has the resolution property, Cf.[Sta]0F8A?. Conversely, if X is qcqs with
the resolution property, then X has affine diagonal. Cf.[Sta]0F8C.

Prop.(5.8.5.34)[Kleiman]. If X is a qc irreducible and locally factorial scheme with affine diagonal
map, then X has the resolution property.

Proof: By(5.8.1.6), we have an basis of the form Xs for s ∈ Γ(X,L) for various invertible sheaves,
then for any coherent sheaf, it is generated by f.m. sections in Γ(Ui,F) and Ui = Xs for s ∈ Γ(X,L),
and for each of them, we can use(5.5.3.5), we can extend these to global sections on Γ(F ⊗ Lnii ) for
ni large. Then tensoring L−n

i , we find a ⊕L−ni
i → F surjective. □

Prop.(5.8.5.35).When X has the resolution property, Ext•(−,G) is an universal δ-functor for every
G ∈ QCoh(X), because locally free sheaf is adapted to Ext•(−,G) by(5.3.3.25), so we can calculate
Ext(F ,G) using a finite locally free resolution of F .

Prop.(5.8.5.36). If X is a qcqs scheme with the resolution property, then the map K0(Vect(X)) →
K0(X) is an isomorphism.

Proof: Cf.[Sta]0FDJ. □

6 Duality for Schemes
Main references are [Hartshorne Residues and Duality, Hartshorne], [Sta]Chap48 and

[Grothendieck Duality and Base Change, Conrad]

Right Adjoints of Pushforwards

Prop.(5.8.6.1)[Right Adjoints of Pushforwards Exist].Let f : X → Y be a morphism between
qcqs schemes, then the functor Rf∗ : DQCoh(X)→ DQCoh(Y ) has a right adjoint, denoted by f×.

Proof: Use(3.7.7.35). The conditions are satisfied as DQCoh(X) is compactly generated and has
direct sums by(5.8.5.30)(5.8.5.2), and Rf∗ preserves direct limits(5.8.5.7). □
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Prop.(5.8.6.2).Let f : X → Y be a morphism between qcqs schemes, then f× maps D+
QCoh(Y ) into

D+
QCoh(X).

Proof: This follows from the fact Rf∗ has finite cohomological dimension N(5.8.5.6) and(3.9.1.18).
□

Prop.(5.8.6.3).Let f : X → Y be a morphism of qcqs schemes, then for K ∈ DQCoh(X), L ∈
DQCoh(Y ), there is a canonical map

Rf∗RHomOX
(L, f×K)→ RHomOY

(Rf∗L,Rf∗f
×K)→ RHomOY

(Rf∗L,K),

by(5.3.3.31) and adjunction.
Then this map becomes isomorphism after applying the coherator DQX(5.8.5.26).

Proof: By Yoneda lemma, it suffices to show that for any M ∈ DQCoh(Y ),

HomY (M,Rf∗RHomOX
(L, f×K)) ∼= HomY (M,RHomOY

(Rf∗L,K)) :

HomY (M,Rf∗RHomOX
(L, f×K)) = HomX(Lf∗M,RHomOX

(L, f×K))
= HomX(Lf∗M ⊗L L, f×K)

( as Lf∗M ⊗L L ∈ DQCoh(X) by (5.8.5.4)(5.8.5.5)) = HomY (Rf∗(Lf∗M ⊗L L),K)
= HomY (M ⊗Rf∗L,K)
= HomY (M,RHomOY

(Rf∗L,K))

□

Cor.(5.8.6.4).By(5.8.5.6), this adjointness is true without coheration if both RHomOX
(L, f×K) and

RHomOY
(Rf∗L,K) are in DQCoh(Y ). This is the case if L,Rf∗L are perfect or K ∈ D+

QCoh(Y ) and
and L,Rf∗L are pseudo-coherent, by(5.8.5.11).

In particular, this holds if f : X → Y is a proper morphism of Noetherian schemes and L ∈
D−

Coh(X) and S ∈ D+
QCoh(S), by(5.8.5.15) and(5.8.5.10).

Cor.(5.8.6.5) [Global Sections].Let f : X → Y be a morphism of qcqs schemes, then for K ∈
DQCoh(X), L ∈ DQCoh(Y ), there is a canonical isomorphism

RHomOX
(L, f×K)→ RHomOY

(Rf∗L,Rf∗f
×K)→ RHomOY

(Rf∗L,K)

Proof: This is because for any E ∈ D(X), H i(X,E) = ExtiX(OX , E) = Hom(OX [−i], E) =
Hom(OX [−i], DQ(E)) only depends on DQ(E). □

Prop.(5.8.6.6)[Proper Flat f×].Let f : X → Y be a proper flat morphism of f.p. between qcqs
schemes, then f× is compatible with base change between qcqs schemes.

Proof: Cf.[Sta]0AAB. □
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Upper Shriek

Def.(5.8.6.7) [Schft,sep
S ].For a locally Noetherian scheme S, let Schft,sep

S be the full subcategory of
Sch /S consisting of schemes separated of f.t. over S.

Prop.(5.8.6.8) [Lower Shriek].Let f : X → Y ∈ Schft,sep
S , take a compactification f : X → Y of

X/Y , then we can define the functor

f ! : D+
QCoh(Y )→ D+

QCoh(X) : f !K = f
×(K)|X .

and this functor is independent of the compactification chosen.

Proof: Cf.[Sta]0AA0. □

Prop.(5.8.6.9). If f : X → Y, g : Y → Z ∈ Schft,sep
S , then there is a canonical isomorphism of functors

(g ◦ f)! ∼= f ! ◦ g!.

Proof: Cf.[Sta]0ATX. □

Prop.(5.8.6.10)[Properties of f !].Let S ∈ Sch be Noetherian, then for X,Y ∈ Schft,sep
S ,

• If j : X → Y is an open immersion, then j! = j∗.
• If i : X → Y is a closed immersion, then i! = RHom(OX ,−).
• f ! maps D+

QCoh(Y ) into D+
QCoh(X).

• If f : X → Y is a local complete intersection morphism, then f !OY is an invertible object of
D(X), and f ! preserves perfect complexes.

• If f : X → Y is finite, then f∗f
!(−) = RHomOY

(f∗OX ,−).
• If f : X → Y is an effective Cartier divisor, then f !(−) = Lf∗(−)⊗LOX

OY (−X)[−1].

• If f : X → Y is a Koszul regular immersion of codimension c, then f !(−) = Lf∗(−)⊗L∧cN [−c].
• If f : X → Y is smooth proper of relative dimension d, then f !(−) = Lf∗(−)⊗L Ωd

X/Y [d].

Proof: Cf.[Sta]0AU0, 0AA2, 0AU1, 0B6V, 0AU3.? □

Dualizing Complexes

Def.(5.8.6.11)[Dualizing Complex].Let X be a locally Noetherian scheme, then a complex K ∈
DQCoh(X) is called a dualizing complex if it satisfies the following equivalent conditions:

• For any affine open U = SpecA ⊂ X, K|U is a dualizing complex in D(A).
• There exists an affine open covering Ui = SpecAi of X s.t. K|Ui is a dualizing complex in
D(Ai) for any i.

Proof: This follows from(4.9.8.2). □

Prop.(5.8.6.12)[Dualizing].Let X be a locally Noetherian scheme and ωX be a dualizing complex,
then D = RHomOX

(−, ωX) is an anti-equivalence of DQCoh(X) with itself, and there is a canonical
isomorphism id ∼= D◦2.

Moreover, if X is qc, then D exchanges D+
QCoh(X) and D−

QCoh(X), and induces an equivalence
D : Db

QCoh(X)→ Db
QCoh(X).
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Proof: Cf.[Sta]0A89. □

Thm.(5.8.6.13)[Grothendieck Duality].Let S be a Noetherian scheme, then
• f ! makes D+

QCoh a pseudo-functor on Schft,sep
S .

• If f : X → Y ∈ Schft,sep
S is proper, then f ! is the right adjoint of Rf∗, and there is a canonical

isomorphism
Rf∗RHomOX

(K, f !M) ∼= RHomOY
(Rf∗K,M)

for any K ∈ D−
Coh(X) and M ∈ D+

QCoh(Y ), by??

• If X ∈ Schft,sep
S has a dualizing complex ωX , then DX = RHom(−, ωX) defines an involution

of DCoh(X) switching D+
Coh(X) and D−

Coh(X) and fixing Db
Coh(X).

• If Y has a dualizing complex ωY , then
– ωX = f !ωY is a dualizing complex for X,
– for M ∈ D+

Coh(Y ), there is a canonical isomorphism DX(f !M) ∼= Lf∗DY (M).
– If moreover f is proper, then Rf∗RHomOX

(K,ωX) = RHomOY
(Rf∗K,ωY ) for K ∈

D−
Coh(X).

Proof: Cf.[Sta]0AU3. □

Thm.(5.8.6.14)[Over a Dualizing Basis].

Proof: Cf.[Sta]0AUE. □

Dualizing Modules

Prop.(5.8.6.15)[Relative Dualizing Modules].Let f : X → Y be a locally quasi-finite morphism
of locally Noetherian schemes, then there exists a unique coherent OY -module ωX/Y ∈ Coh(Y ) that
affine locally is given by the dualizing sheaf ωB/A(4.9.8.4).

Proof: Cf.[Sta]0BVG. □

Relative Dualizing Complex

Def.(5.8.6.16) [Relative Dualizing Complexes].For a separable f.t. morphism of Noetherian
schemes f : X → S, the relative dualizing complex is defined to be ωX/S = f !OS .

Prop.(5.8.6.17).Let Y be a qcqs scheme and f : X → Y be a proper flat morphism of f.p., then
• ωX/Y is perfect over Y .
• Rif∗ωX/Y = 0 for i > 0.
• OX → HomOX

(ωX/S , ωX/S) is an isomorphism.

Proof: As f× commutes with base change(5.8.6.6), it suffices to assume that Y = SpecA.
1: By(5.8.6.4)(5.3.4.23) and(5.7.5.5), for any perfect object E ∈ D(X), there are canonical iso-

morphisms:

Rf∗(E ⊗L ωX/Y ) = Rf∗RHomOX
(E∨, ωX/Y ) = RHomOY

(Rf∗E
∨,OY ) = (Rf∗E

∨)∨,

which is perfect. So ωX/Y is perfect over S by(5.8.5.12).
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2: By(5.8.5.8),

HomY (OY [−i], Rf∗ωX/Y ) = HomY (Rf∗Lf
∗OY [−i],OY ) = HomY ((Rf∗OX)[−i],OY ).

By proper flat base change(5.7.5.5), Rf∗OX is perfect in Y , so it can be represented by a finite
complex of finite projective A-modules, so by(5.3.4.22), Rif∗ωX/Y = 0 for i > 0.

3: For any perfect object E ∈ D(X), by(5.8.6.4)(5.3.4.23)(5.7.5.5)(5.3.4.23) and(5.3.1.9), there
are canonical isomorphisms

HomX(E,RHomOX
(ωX/Y , ωX/Y )) = HomY (Rf∗(E ⊗L ωX/Y ),OY )

= HomY (Rf∗Hom(E∨, ωX/Y ),OY )
= HomY (Hom(Rf∗E

∨,OY ),OY )
= RΓ(Y,Rf∗E

∨)
= HomX(E,OX)

So by(5.8.5.30), perfect objects generate DQCoh(X), so RHomOX
(ωX/Y , ωX/Y ) ∼= OX . □

Proper over Field case

Prop.(5.8.6.18)[Serre Duality(Proper over Fields case)].Let X be a proper scheme over a field
k of dimension d, then there exists a unique dualizing complex ωX with the following properties:

• H i(ωX) ̸= 0 only for i ∈ [−dim(X), 0].
• [ωX ] = H−d(ωX) is a coherent (S2)-module whose support is the irreducible components of X

of dimension d.
• dim Supp(H i(ωX)) ≤ −i.
• For x ∈ X closed, H i(ωX,x)⊕ . . .⊕H0(ωX,x) ̸= 0 iff depth(OX,x) ≤ −i.
• For K ∈ DQCoh(X), there is a functorial isomorphisms

Ext−i
X (K,ωX) ∼= Homk(H i(X,K), k)

compatible with shifts and distinguished triangles, which characterizes ωX uniquely.
• There are functorial isomorphisms Hom(F , [ωX ]) = Homk(Hd(X,F), k) for F ∈ Coh(X).
• If X is C.M., equidimensional, then ωX = [ωX ][d].
• If X is smooth over k, then ωX = KX/k[d].

Proof: Cf.[Sta]0FVV, 0AWT.? □

Cor.(5.8.6.19)[Serre Duality(Smooth over Fields case)]. If k ∈ Field, X ∈ Sch /k is a smooth
proper scheme over k of dimension d, then for any locally free sheaf F , there is a functorial isomor-
phism:

H i(X,F) ∼= (Hn−i(X,F∨ ⊗KX/k))∨.

Cor.(5.8.6.20).For a smooth proper variety X over a field k of dimension n, Hn(X,KX) = k,
by(5.10.1.12).
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Cor.(5.8.6.21).For a smooth proper variety X over a field k of dimension n, ΩX/k is locally free
by(5.6.4.15), thus by(5.5.1.25), Ωn−p

X/k
∼= (Ωp

X/k)
∨ ⊗KX . So by(5.8.6.19):

Hq(X,Ωp
X/k) ∼= (Hn−q(X,Ωn−p

X/k))∨.

Cor.(5.8.6.22). If X is a closed subscheme of Pnk of codimension r, then X has a dualizing sheaf
[ωX ] = ExtrP (i∗OX ,KPn

k
/k), and Exti(i∗OX ,KPn/k) = 0 for i < r

Proof: This follows from(5.8.6.18) and(5.8.6.13). □

Prop.(5.8.6.23)[Characterizing Cohen-Macauley Schemes].Let X be projective of dimension
n over a field k and [ωX ] be the dualizing sheaf, then for F ∈ Coh(X), there is a natural map

Exti(F , [ωX ])→ (Hn−i(X,F))∨

And the following are equivalent:
• For any F locally free on X, H i(X,F(−q)) = 0 for i < n and q large.
• H i(X,OX(−q)) = 0 for i < n and q large.
• This is an isomorphism of δ-functors.
• X is C.M. and equidimensional.

Proof: Notice the left side is an universal δ-functor in F by(5.8.5.35), so the map exist, and
2→ 3: This implies that the right is also universal by(5.8.5.32).
3→ 1: For F locally free, by(5.3.3.33),

H i(X,F(−q)) = (Extn−i(F(−q), ωX))∨ = (Hn−i(X,F∨ ⊗ ωX(q)))∨

which is 0 for q large.
4→ 1: Embed X in P = PNk , for F locally free, since X is catenary, equidimensional is equivalent

to dimFx = n for all closed pt x, and C.M. says depth Fx = n. Thus by(4.3.5.26), pdOP,x
Fx = N−n.

Thus ExtkP (F ,−) vanish for k > N − n checked on stalks.
Now H i(X,F(−q)) is dual to ExtN−i

P (F , ωP (q)) by the proof of(5.8.6.22), which is isomorphic to
Γ(P, ExtN−i

P (F , ωP (q))) for q large by(5.7.4.9), so it vanish when i < n by what we proved.
1→ 4: The same as the proof of 4→ 1, then for i < n,

Γ(P, ExtN−i
P (F , ωP (q))) = 0 = Γ(P, ExtN−i

P (F , ωP )(q))

for q large, so ExtN−i
P (F , ωP ) = 0 as it is coherent. Then the stalk is ExtN−i

OP,x
(OX,x,OP,x), so

pdOP,x
Fx ≤ N − n by(4.3.5.27), so depth OX,x ≥ n, we must have equality, thus X is C.M. and

equidimensional, as it suffice to check at closed pts. □

Cor.(5.8.6.24) [Enriques-Severi-Zariski].Let X be a normal projective scheme that every irre-
ducible component has dimension≥ 2, then for any F ∈ Vect(X), H1(X,F(−q)) = 0 for q large.

Proof: Just notice that dimFx ≥ 2, and Serre criterion shows depthFx ≥ 2, the rest is the same
as 4→ 1 in the proof of(5.8.6.23). □

Prop.(5.8.6.25)[Ample Effective Divisor Connected].Let X be a proper connected CM. equidi-
mensional scheme over k of dimension at least 2 and D is an ample effective Cartier divisor, then D
is connected.

In particular, if X is a smooth complete variety of dimension≥ 2, D is also a complete variety.
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Proof: Let D = V (s), where s is a section of an ample invertible sheaf, then there is an exact
sequence

0→ OX(−nD)→ OX → i∗OV (sn) → 0,
which gives a long exact sequence

0→ H0(X,OX(−nD))→ H0(X,OX)→ H0(V (sn),OV (sn))→ H1(X,OX(−nD)).

But by Serre duality(5.8.6.19) and(5.7.2.6), H0(X,OX(−nD)) = HdimX(X, [ωX ] ⊗ OX(nD)) = 0
for n sufficiently large, and H1(X,OX(−nD)) = HdimX−1(X, [ωX ]⊗OX(nD)) = 0 for n sufficiently
large, so H0(V (sn),OV (sn)) ∼= H0(X,OX) has no idempotents for n sufficiently large, so V (sn) is
connected, and D is also connected. □

Cor.(5.8.6.26).Any global complete intersection in Pn is connected.

Topological Sheaves

Prop.(5.8.6.27)[Global Verdier Duality]. If f : X → Y is a map between locally compact spaces
with finite dimension, then there exists a functor f ! : D+(SAbY )→ D+(SAbX) that

RHom(Rf!F•,G•) ∼= RHom(F , f !G•).

In particular, f ! is right adjoint to Rf!. Cf.[Gelfand P228].
There is also a local form of Verdier duality, which implies the global version by taking global

section, Cf.[Cohomology of Sheaves Iversen P330].
Prop.(5.8.6.28).When X → Y is an inclusion of open subset, f! is just j! defined in(5.2.6.2) and f !

is the restriction. When it is an inclusion of closed subset of locally compact spaces, it is the direct
image f∗ and f ! is the j! previously defined in(5.2.6.2). They are not barely defined on D+(SAb) but
on SAb.

Prop.(5.8.6.29).We consider the case where f : X → pt, and let G = Z, denote f !(Z) by D•
X , called

the dualizing complex, then there is a duality:
RHom(RΓc(X,F•),Z) ∼= RHom(F•,D•

X).

for F• ∈ D+(Sh(X)).
Prop.(5.8.6.30).When X is a n dimensional topological manifold with boundary, then D•

X = ωX [n],
where the sheaf ωX is defined by

Γ(U, ωX) = HomAb(Hn
c (U,Z),Z).

Cf.[Gelfand P234]. If we replace Z by a field k, then wX is the sheaf of k-orientations of int(X), thus
the constant sheaf when X is oriented or char k = 2?.

In particular, place k in dimension i then we get an isomorphism
Homk(H i

c(X,F), k) = Extn−i(F , ωX)

(because k is a field thus injective). Gelfand even gives an interpretation of this pair in [Gelfand
P236].

And if F = ωX and X oriented or chark = 2, we have Extn−i(kX , kX [n]) = Hn−i(X, kX) using
the adjointness of constant sheaf, so we get the Poincare duality:

H i
c(X, kX)∨ ∼= Hn−i(X, kX).

Prop.(5.8.6.31).Compact cohomology commute with colimits, Cf.[Cohomology of Sheaves Iversen
P173].
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7 Discriminant and Different

Trace Elements

Def.(5.8.7.1)[Traces].Let f : X → Y be a finite locally free morphism, the trace of f is defined to
be

trf : f∗OX → OY .

Then trf ◦f# = [deg(f)] : OY → OY . Let the trace pairing be

Qf : f∗OX ⊗ f∗OX → OY : (s, t) 7→ trf (st)

which is equivalent to a map Qf : f∗OX → f∗O∨
X , so the determinant of which is

det(Qf ) : ∧(f∗OX)→ ∧(f∗OX)−1,

a section of the line bundle ∧(f∗OX)−2. Then the discriminant of f is defined to be the closed
subscheme Df of Y cut out by this section det(Qf ).

Def.(5.8.7.2)[Trace Element of Rings].Let A→ B be a flat quasi-finite map of Noetherian rings,
[ωB/A] the dualizing module(4.9.8.4), then there exists a unique element τA/B ∈ ωB/A s.t. for any
Noetherian A-algebra A1 s.t. B ⊗A A1 = C ×D with C finite over A1, the image of τB/A in [ωC/A1 ]
is trC/A, called the trace element.

Def.(5.8.7.3)[Trace Element of Morphisms].Let f : X → Y be a flat quasi-finite morphism of
locally Noetherian schemes, then denote τX/Y ∈ Γ(X, [ωX/Y ]) the trace element of f affine locally
given by the trace element τB/A(5.8.7.2).

Prop.(5.8.7.4)[Discriminant and ÉtaleLocus]. If f : X → Y is finite locally free, then f is étaleiff
Df = ∅.

Proof: f is flat, so it suffices to check fiberwise. Then this follows from(4.4.7.21). □

Differents

Def.(5.8.7.5) [Kähler Different].Let f : X → Y be a morphism of schemes locally of f.t., the
Kähler different of f is the 0-th fitting ideal Fit0(ΩX/Y ) ∈ QCoh(X)(5.5.1.21).

Prop.(5.8.7.6).Let f : X → Y be a morphism of schemes locally of f.t., then the closed subscheme
cut out by the Kähler different is stable under base change.

Proof: Cf.[Sta]0BVX. □

Prop.(5.8.7.7). If X = SpecA[X1, . . . , Xn]/(f1, . . . , fm), then the Kähler different of X → SpecA is
just the ideal generated by the Jacobians det(∂fi(j)

∂Xj
)0≤j≤n.

Proof: Because ΩX/A has a presentation

0→
⊕

0≤i≤m
fi

d−→
⊕

0≤j≤n
dXj → ΩX/A → 0.

□
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Prop.(5.8.7.8) [Kähler Different and Unramified Locus].Let f : X → Y be a morphism of
schemes locally of f.t., then the closed subscheme cut out by the Kähler different contains exactly
the points that f is not unramified.

Proof: Cf.[Sta]0C3J. □

Def.(5.8.7.9)[Differents].Let f : X → Y be a flat quasi-finite morphism between locally Noetherian
schemes, define the different of f to be the annihilator of [ωX/Y ]/τX/Y , which is a coherent ideal
Df ⊂ OX .

Prop.(5.8.7.10)[Differents and Étale(Unramified) Locus].Let f : X → Y be a flat quasi-finite
morphism between locally Noetherian schemes, then the closed subscheme of X cut out by the
different Df contains exactly the set of points that f is not étale(unramified).

Proof: Cf.[Sta]0BW9. □

Prop.(5.8.7.11). If f : X → Y is a quasi-finite syntomic morphism between locally Noetherian
schemes, then the different Df equals the Kähler different of f(5.8.7.5).

Proof: Cf.[Sta]0BWG. □

Prop.(5.8.7.12)[Differents for Smooth Schemes].Let S be a locally Noetherian scheme and X,Y
be smooth scheme of relative dimension n over S, and f : X → Y is a quasi-finite morphism, then
f is syntomic, and the closed subscheme R cut out by the different Df of f is the locally principal
vanishing locus of

∧n(df∗) ∈ Hom(f∗Ωn
Y/S ,Ω

n
X/S) = Γ(Y, (f∗Ωn

Y/S)−1 ⊗ Ωn
X/S).

And if f is étaleat the associated points of X, then R is an effective Cartier divisor, and

f∗Ωn
Y/S ⊗O(R) ∼= Ωn

X/S .

Proof: Cf.[Sta]0BWJ. □

8 Fourier-Mukai Transform
Cf.[Sta]Chap56.

9 Deformation Theory
Basic references are [Sta]Chap36.

Def.(5.8.9.1)[Thickenings].We call X ′ a thickening of a X iff X is a closed subscheme of X ′ that
their underlying topological space are the same. Morphisms of thickenings are defined routinely.

A thickening is said to have order n iff the ideal sheaf I satisfies In+1 = 0.
Base change and composition of a (order n)thickening is also a (order n)thickening, because closed

immersion and surjective do.

Prop.(5.8.9.2).Any thickening of an affine scheme is also affine.

Proof: This is a special case of(5.4.4.36). □
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Prop.(5.8.9.3)[Picard Group of Thickenings].Let X ⊂ X ′ be a first order thickening with ideal
sheaf I, then there is a canonical long exact sequence of Abelian groups:

0→ H0(X, I)→ H0(X ′,O∗
X′)→ H0(X,O∗

X)→ H1(X, I)→ Pic(X ′)→ Pic(X)→ H2(X, I)→ . . .

Proof: This follows from taking cohomology of the exact sequence 0 → I → OX′ → i∗OX → 0,
where I → OX′ is given by a 7→ 1 + a. □

Prop.(5.8.9.4).Let X ⊂ X ′ be a thickening with ideal sheaf I and n is invertible in OX , then
Pic(X)[n]→ Pic(X ′)[n] is an isomorphism.

Proof: By taking cohomology of the exact sequence 0→ (1 + I)∗ → OX′ → i∗OX → 0, it suffices
to show that n : (1 + I)∗ → (1 + I)∗ is an isomorphism, which is true by(4.1.1.17). □

Def.(5.8.9.5)[Infinitesimal Neighbourhood].Let Z ⊂ U ⊂ X be a closed immersion of the open
subscheme U that Z corresponds to the ideal I on U , then a n-th infinitesimal neighbourhood
of Z in X is the closed subscheme of U corresponding to In.

The infinitesimal neighbourhood of Z in X has the universal property s.t. for any infinitesimal
thickening T ⊂ T ′ of order n over X and a map T → Z ∈ SchX extension to a morphism of
infinitesimal thickenings (T ⊂ T ′)→ (Z → Z ′) over X.

Def.(5.8.9.6) [Infinitesimal Extension].Let X be a scheme algebraic over a field k and F is a
coherent sheaf on X, then a infinitesimal extension of X by the sheaf F is a scheme X ′ over
k that has a sheaf of ideals I that I2 = 0 and (X ′,OX′/I) ∼= (X,OX), and moreover, I with the
OX -structure is isomorphic to F .

There is a trivial extension, that is (X ′,OX′) ∼= (X,OX ⊕ F), where the multiplication is
(a, f)(a′, f ′) = (aa′, af ′ + a′f).

Def.(5.8.9.7) [Deformation].Let X be a scheme algebraic over a field k, an infinitesimal defor-
mation of X is a scheme X ′ flat over D = k[t]/(t2) that X ′ ⊗D k = X. A infinitesimal deformation
is a first order thickening, by(5.8.9.1).

If Y is a closed subscheme of X, then we define the infinitesimal deformation of Y in X to
be a closed subscheme Y ′ ⊂ X ⊗k D which is flat over D and Y ′ ⊗D k = Y .

A scheme algebraic over a field k is called rigid if it has no infinitesimal deformations.

Prop.(5.8.9.8) [Affine Case].Any thickening of an affine scheme is affine. (Immediate
from(5.4.4.36)).

Prop.(5.8.9.9).Let X be a nonsingular variety over an alg.closed field k, infinitesimal deformation of
X is the same as an infinitesimal extension of X by the sheaf OX . Thus we get the set of infinitesimal
deformations of X is parametrized by H1(X, TX), by(5.8.9.11)below.

Proof: For an infinitesimal deformation, tensoring OX′ with the exact sequence 0 → k
t−→ D →

k → 0, we get(by flatness)
0→ OX

t−→ OX′ → OX → 0,

, and conversely, an extension is locally free(because it is f.g. so flat over D is equivalent to free). □

Prop.(5.8.9.10). IfX is an affine regular scheme algebraic over an alg.closed field k, then any extension
by coherent sheave is trivial.
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Proof: For any infinitesimal extension, the morphism X → X ′ is a closed immersion and surjection,
so X ′ is also affine by(5.8.9.8), = SpecA′. Now the rest follows from??. □

Cor.(5.8.9.11)[Infinitesimal Extension and Cohomology].Let X be a nonsingular variety over
an alg.closed field k, then the set of infinitesimal extensions by a coherent sheaf F is parametrized
by H1(X,F ⊗ TX).

If Y is a closed subscheme ofX, then the set of infinitesimal deformation of Y inX is parametrized
by H0(Y,NY/X).

Proof: By the proposition, we know that an infinitesimal extension s locally isomorphic to
(U,OX(U)⊗F(U)), by a section F(U)→ OX′(U).

But there is a twist, because there can because different sections. But the different sections
different at a HomOX(U)(ΩOX(U)/k,F(U)) = (T ⊗ F)(U). These forms a Čech cocycle for F ⊗ TX ,
and the converse is also true. Finally, use the fact that X is separated so Čech and sheaf cohomology
coincide.

For the subscheme,? □

Formal Properties

Def.(5.8.9.12)[Formal Properties].Let f : X → S be a morphism of schemes, then f is called a
formally unramified/smooth/étale if for any first order thickening of affine schemes T → T ′ and
a morphism (T → T ′) → (X → S), there exists at most one/exists one/exists exactly one lifting
T ′ → X.

Formally unramified/smooth/etale morphisms are stable under base change and compositions.

Prop.(5.8.9.13).
• A morphism is (G-)unramified iff it is formally unramified and locally of f.t.(f.p.).
• A morphism is étaleiff it is formally étaleand locally of f.p.
• A morphism is smooth it is formally smooth and locally of f.p.

Proof: [Sta] □
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5.9 Resolution of Singularities
References are[K-M85].

Def.(5.9.0.1)[Desingularizations].Let X ∈ Sch be reduced and locally Noetherian, then a desingu-
larization of X is a modification(5.4.5.10) Z → X s.t. Z is regular. A strong desingularization
is a desingularization π : Z → X that π is an isomorphism over any regular point x ∈ X.

Thm.(5.9.0.2) [Hironaka].Let X be a reduced scheme locally of f.t. over an excellent, reduced,
locally Noetherian scheme S of characteristic 0(i.e. charκ(x) = 0 for any x ∈ X), then X admits a
strong desingularization over S.

Proof: [Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic
zero. I, II, Ann. Math. 79 (1964), 109–203; 205–326.] or [Resolution of Singularities, Hauser,
Lipman, Oort, Quiros]. □

Thm.(5.9.0.3) [de Jong].Let R be a CDVR or a field, X ∈ Schft,sep
int /R, then X admits an alter-

ation(5.4.5.10) Y → X over R s.t. Y is regular.

Proof: [de Jong, Smoothness, Semi-stability and Alterations, Publ. Math. IHES 83 (1996), 51–
93.] □
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5.10 Varieties

Basic references are [Sta]and [Har77].
The materials distinguishes here in the fact that most schemes considered have geo.reduced,

geo.connected or geo.integral properties in nature.

1 Varieties

Classical varieties

Prop.(5.10.1.1)[Soberization Functor].For a sep.closed field k, the soberization functor t induce
a fully faithful functor from classical varieties over k to quasi-projective integral schemes over k. It
maps projective varieties to projective integral schemes and preserves fiber products ?.

Proof: We assign the irreducible closed subsets space t(X) and show that this embeds X in t(X),
and for an affine variety (V,OV ), the regular function sheaf is isomorphic to the pullback sheaf on
t(V ) = Spec(A).

By definition t(X) is quasi-projective, which is separated, the set of geometric pts of any closed
variety is dense so t(V ) is homeomorphic to X. And because they are both reduced, they are
isomorphic. So it is essentially surjective.

It is fully faithful by(5.10.1.11). □

Prop.(5.10.1.2).The soberization of a classical variety X is regular at a closed point iff the local
defining functions has rank n− dimX.

Proof: Consider the space of closed point of X, they correspond to classical points because
k is alg.closed. Let ap = (x1 − a1, . . . , xn − an) and b be the locally defining ideal. Then
the differential defines an isomorphism of vector space ap/a

2
p
∼= kn, and the local ring at p is

m/m2 ∼= (ap/b)/(ap/b)2 ∼= ap/(b + a2
p). The rank of the defining functions is b + a2

p/a
2
p. Count-

ing dimension gives us the result. (Use (5.6.3.3) also). □

Varieties

Def.(5.10.1.3)[Varieties].Given k ∈ Field,
• A variety over k is a geo.integral separated scheme algebraic over k.
• An prevariety over k is an integral separated scheme algebraic over k.
• A complete variety over k is a variety over k that is also proper(i.e. universally closed) over
k.

• A classical variety over k is an abstract variety over k because quasi-projective is f.t. and
separated(5.4.5.19).

• A non-singular variety over k is a regular variety over k.
• A curve over k is a variety of dimension 1 over k.

The category of varieties over k is denoted by Vark.
If X/k is a (complete)variety and K/k is a field extension, then XK is a (complete)variety over

K, by(5.4.3.17).

Remark(5.10.1.4).Notice the prevariety is the same as the variety defined in [Sta].
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Cor.(5.10.1.5).Any variety is birational to an integral H-quasi-projective scheme. A complete variety
is birational to an integral projective scheme by Chow’s lemma(5.4.5.23)(5.4.5.3).

Prop.(5.10.1.6).By valuation criterion, for a complete variety, every valuation of the function fields
of K/k dominate a unique point of X. So the points of X correspond to valuations of K containing
k

Prop.(5.10.1.7)[Generically Smoothness].A variety is generically smooth, by(5.6.4.21).

Prop.(5.10.1.8)[Nagata].By Nagata compactification(5.8.3.2), any variety can be embedded as an
open subset of a complete variety.

Proof:
□

Prop.(5.10.1.9) [Product of Varieties].The product of two (complete)varieties over k is also a
(complete)variety.

Proof: It is geometrically integral by(5.4.3.17), it is separated because separatedness is stable under
composition and base change(5.4.4.2). So does properness. □

Def.(5.10.1.10) [Arithmetic Points].An arithmetic point of a scheme X over a field k is an
element of X(ks). When X is a variety, the arithmetic points of X is dense in X, by(5.4.3.3).

An geometric point of a scheme X is an element of X(k).

Prop.(5.10.1.11).To verify two morphisms f, g between two varieties X and Y are equal, it suffices
to prove that they are equal on the set of arithmetic points of an open subscheme U(5.10.1.10).

Proof: Because the equalizer is a closed subscheme of X(5.2.7.18), and it contains all geometric
pts of an open subset of X, so it must by X, as the geometric-points are dense in U(5.10.1.10), and
X is reduced and irreducible. □

Prop.(5.10.1.12)[Global Sections].Let k ∈ Field and X ∈ Schproper /k, then
• A = Γ(X,OX) is a finite k-algebra hence is a finite product of Artinian local k-algebras, one

for each connected component of X.
• If X is reduced, then A =

∏
ki is a finite product of finite field extensions of k.

• If X is geo.reduced, then ki are all separable over k.
• If X is geo.connected, then A is geo.irreducible over k(4.3.6.1).
• If X is geo.integral(i.e. a complete variety), then Γ(X,OX) = k.

Proof: 1: H0(X,OX) is finite k-algebra by(5.7.4.11), thus it is Artinian(4.1.3.4). The connected
components of X clearly corresponds to idempotents of A, which corresponds to Artinian local
k-algebras, as a local ring is connected.

2: This follows from(4.1.3.5).
3: A ⊗k k = H0(Xk,OXk) is also reduced by flat base change(5.7.5.1), so each k′/k is

geo.reduced(4.3.6.2), thus separable by(4.3.9.4).
4: By hypothesis A⊗k k = H0(Xk,OXk) is an Artinian local ring, thus it has only one point, so

irreducible, so it is geo.irreducible(4.3.6.3).
5: By item3, 4, A = k′ is a finite separable field extension of k that Spec(k′ ⊗k k) is irreducible,

but k′ ⊗k k is a finite product of k, thus k′ = k. □
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Prop.(5.10.1.13)[Check Properties on Geometric/Closed Points].A nice property of varieties is
that identity of two morphisms of products of varieties can be checked at the geometric pts(5.10.1.10),
by(5.10.1.11) and(5.10.1.9).

Surjectiveness of a map between varieties can be checked on closed points, by(5.4.1.29).
Also surjective and injective of Qco sheaves need only be checked at closed pts

by(5.5.1.38)(5.4.1.26).

Canonical Sheaves

Prop.(5.10.1.14)[Canonical Sheaves].For a smooth variety X over a field k and Y a local complete
intersection of X of codimension r, by(5.6.4.2) and(5.6.4.16) and(5.6.8.10), KX/k and I/I2 is locally
free, so we can define the following locally free sheaves:

• The canonical sheaf KX/k = ∧nΩX/k on X.
• The tangent sheaf TX = (KX/k)−1 on X.
• The conormal sheaf CY/X = I/I2 on Y .

• The normal sheaf NY/X = C−1
Y/X on Y .

Prop.(5.10.1.15)[Kodaira-Spencer map].There is another characterization of tangent vector fields.
(Note: this should be a special case of Prop8.5.9 in [FGA]).

Let X be a variety over k and S = k[ε] the dual numbers. Then H0(X, TX) ∼= Aut(1)(XS/S),
where Aut(1)(XS/S) means that the automorphisms of XS over S that is identity on X(inclusion to
XS induced by Spec k ⊂ SpecS).

Proof: First the caseX = SpecA is affine, then becauseH0(X, TX) = Homk(KA/k, A) = Der(A,A),
so this is equivalent to Der(A,A) ∼= automorphisms of A[ε] that is identity under pass to quotients
to A. For this, a d ∈ Der(A,A) is mapped to a+ bε 7→ a+ bε+ d(a)ε. This is checked to be a ring
morphism, and any desired morphism are like these.

The above construction is natural and functorial in A, so it glue together to give the global case.
□

Prop.(5.10.1.16)[Smoothness and Conormal Sheaves].? Let X be a smooth variety over a field
k, then an irreducible closed subscheme Y of codimension r in X is smooth iff KY/k is locally free
and(5.5.5.13) is exact on the left.

In this case, I is locally generated by r elements and CY/X is a locally free sheaf of rank r on Y
by(5.6.8.10).

Proof: Cf.[Hartshorne P178]. Should has something to do with(5.6.4.2),(5.6.4.16) and(5.6.4.15).
□

Prop.(5.10.1.17)[Adjunction Formulas].For a smooth variety X over a field k and Y a smooth
subvariety of codimension r. There is an exact sequence

0→ I/I2 → KX/k ⊗OY → KY/k → 0

by(5.5.5.14). Taking the highest exterior power(5.5.1.25), we get:

KY = KX ⊗ ∧rNY/X = KX ⊗ (∧I/I2)−1
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In particular, if r = 1 then Y is a divisor D in X, the canonical sheaf

KY ∼= (KX ⊗ L(D))Y , KPn
k
/k = O(−n− 1)(5.5.5.7).

because IY ∼= L(−Y ) in this case so IY /I2
Y = L(−Y )⊗OY .

Taking dual, we get:
0→ TY → TX ⊗OY → NY/X → 0

Prop.(5.10.1.18) [Geometric Genus].For a smooth proper variety over a field k, the geometric
genus pg is defined as the rank of the global section of the invertible canonical sheaf KX = ∧nKX/k.
It is a birational invariance. With the same methods, we can prove the rank of global sections of any
other functorially defined bundles of KX is birational invariance, e.g. Hodge numbers.

Proof: For any rational map U → Y , there is a subset V ∈ U and a local isomorphism V and f(V ),
that will define an isomorphism of global sections. Because a nonzero section of an invertible sheaf
cannot vanish on a dense open set f(V ), the morphism of global sections is injective into Γ(U,OU ).
Now we find a U that codim(X − U) > 1, then we can use(4.3.5.11) to get Γ(U) = Γ(X), then
pg(X) ≥ pg(X ′), and the converse is also true. For this, we use valuation criterion of properness,
then for any codimension 1 point, the stalk is a DVR, thus we find a SpecOp → X ′, this extends to
a nbhd of p because X ′ is of f.t.. □

Cor.(5.10.1.19).By(5.5.5.7), KPn
k

∼= O(−n − 1), so it has no global section by(5.7.2.1), pg(Pnk) = 0.
Hence every rational variety over a field k, i.e. one that is birational to Pnk , has geometric genus 0.

Complete Variaties

Lemma(5.10.1.20) [Rigidity Lemma].Let X,Y be varieties over a field k and f : X × Y → Z
a morphism of schemes over k s.t. Z is separated. If X is complete with a rational point p and
y is a rational point of Y s.t. f(·, y) : X → Z is constant, then f factors through the projection
prY : X × Y → Y .

Proof: The equalizer is a closed subscheme of X × Y as Z is separated(5.4.4.89), and X × Y is a
variety(5.10.1.9), thus we can check on closed points. Let g(y) = f(p, y) : Y → Z, then we want to
show f = g ◦ prY .

Let U be affine open in Z, then because X is universally closed, prY is closed, so V =
prY (f−1(Z\U)) is closed in Y . But if y /∈ V (k), then f(X, y) ⊂ U , and X is complete and con-
nected, so f(·, y) is constant(5.4.5.4), and f(x, y) = f(p, y). Thus f = g ◦ prY on a non-empty open
subset of X × Y , which is a variety, so this is true on all of X × Y by(5.10.1.11). □

Prop.(5.10.1.21)[See-Saw Principle].Let X be a complete variety over a field k and Y a k-scheme,
then for any line bundle L on X × Y , there is a closed subscheme Y1 ⊂ Y s.t. for any morphism
f : S → Y , (1× f)∗L is trivial on X × S iff f factors through Y1.

Proof: This L corresponds to a morphism Y → PicX/k, and clearly Y1 is the fiber of Y over
e ∈ PicX/k. □

Cor.(5.10.1.22).Let X be a complete variety over a field k and Y a reduced locally algebraic k-
scheme, if L,M are two line bundles on X × Y s.t. Ly ∼= My for all closed points y ∈ Y , and for
some x ∈ X(k), Lx ∼=Mx, then L ∼=M.
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Prop.(5.10.1.23)[Theorem of the Cube]. If X,Y are complete varieties over a field k, and Z is a
connected, locally Noetherian k-scheme, if x, y are rational points of X,Y resp. and z ∈ Z. Supposed
L ∈ Pic(X × Y × Z) that is trivial on x× Y × Z,X × y × Z,X × Y × z, then L is trivial.

Proof: Let Z ′ be the maximal closed subscheme of Z given by(5.10.1.21). We show that Z ′ is
open, thus it is all of Z: If ζ ∈ Z ′, let I ⊂ OZ,ζ be the ideal defining Z ′, we show I = (0),
which is equivalent to Z ′ containing a nbhd of ζ(locally Noetherian used). If not, then because
∩mn = 0 by Krull’s theorem(locally Noetherian used), there is an n ≥ 1 that I ⊂ mn, I ⊈ mn+1. Let
a1 = (I,mn+1), and mn+1 ⊂ a2 ⊂ a1 that dimk(ζ)(a1/a2) = 1(so a1 = a2 + k(ξ)a for some a ∈ a2),
and let Zi ⊂ SpecOZ,ξ be the closed subscheme defined by ai. Let Li be the restriction of L on
X × Y ×Z2. If we show that L2 is trivial, then Z2 is contained in Z ′, which is contradiction because
I ⊈ a2.

For this, notice that L1 is trivial, and to show that L2 is trivial, it suffices to lift a non-vanishing
global section s of L1 to L2, because Z1, Z2 has the same underlying set.

For this, notice there is an exact sequence 0 → k(ξ) a−→ OZ2 → OZ1 → 0, where k(ξ) is the
skyscraper sheaf at ξ. So the obstruction of the lifting is an element ξ ∈ H1((X×Y )k(ξ),O(X×Y )k(ξ)).
But now the conditions show that ξ is zero under the pullback along x× Y ↪→ X × Y and X × y ↪→
X × Y . So by Kunneth formula(5.7.1.10) and(5.10.1.12), ξ vanishes. □

2 Projective Varieties
Example(5.10.2.1)[Non-Projective Smooth Proper Varieties].There are proper smooth com-
plex varieties that are not projective. Examples are given in [Har77]P443?.

Prop.(5.10.2.2)[Affine Dimension Theorem]. SupposeX,Y are subschemes ofAn
k of codimensions

d and e resp., and d+ e ≤ n, then every non-empty irreducible component of X ∩ Y has dimension
≥ n− d− e.

Proof: If Y is an intersection of e hypersurfaces, then this follows from Krull’s height theo-
rem(4.2.4.18). In general, notice the diagonal map ∆ : An

k → An
k × An

k is an isomorphism onto
the diagonal T defined by {Xi = Yi}i=1,...,n, thus it is a complete intersection in An

k → An
k ×An

k , and
∆ induces an isomorphism X ∩ Y ∼= X × Y ∩ T , so we are done. □

Cor.(5.10.2.3)[Projective Dimension Theorem]. Suppose X,Y are subvarieties of Pnk of codimen-
sions d and e resp., and d+ e ≤ n, then X and Y intersect.

Proof: Take the affine cone, then item2 shows any irreducible component of X ∩ Y containing the
origin has dimension≥ 1, which means X ∩ Y ̸= 0. □

Prop.(5.10.2.4)[Transversal Intersection]. Show that ifX is a closed subscheme of Pnk of dimension
r, then there is an intersection of r + 1 non-empty hypersurfaces missing X. And if k is infinite,
these hypersurfaces can be chosen to be hyperplanes.

If k is infinite, there is an intersection of r non-empty hypersurfaces intersecting X at f.m. points.

Proof: Let η1, . . . , ηn be the generic points of X, we want to find a hypersurface F that doesn’t
contain any of these generic points. We use induction on n. If n = 1, then there is clearly a
hyperplane missing η1. If we find a hypersurface missing η1, . . . , ηn−1, if it also misses ηn, we are
done, if it contains ηn, we can change ηn to ηi and consider again. If we find polynomials F1, . . . , Fn
that Fi(ηi) = 0, Fi(ηj) ̸= 0, we may assume deg(Fi) are the same, so∑i F1 . . . F̂i . . . Fn is a polynomial
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non-zero on each of ηi. If moreover k is infinite, then we want to find a hyperplane missing every
generic point of X. But each generic point corresponds to a graded ideal Ii of k[T0, . . . , Tn], and
(Ii)1 ̸= k{T0, . . . , Tn} are proper linear subspaces. As k is infinite, we can choose a a0T0 + . . .+ anTn
not in these subspaces, thus non-zero on any generaic point of X.

Now X ∩ F is a closed subscheme of Pnk of dimension r − 1, thus we can use conduction on r to
finish. □

3 Birational Geometry

Prop.(5.10.3.1).Any variety over K is birational to a hypersurface in An
K for some n.

Proof: Cf.[Diophantine Geometry, P575]. □

Prop.(5.10.3.2)[Prevarieties and Function Fields].The following categories are equivalent.
• The category of prevarieties over k with dominant rational morphisms.
• The dual category of f.g. field extensions over k.

Proof: Cf.[Sta]0BXN.? □

Prop.(5.10.3.3).Let φ : X → X ′ be a rational map of K-varieties with X smooth. If the base change
φK extends to a morphism XK → X ′

K
, then φ extends to a morphism X → X ′.

Proof: Let U be an open dense subset that φ is defined. For a point x, let x′ = φK(x), then x′ is
in the closure of φ(U). By(5.4.6.2), it suffices to construct a morphism OX′,x′ → OX,x, i.e., to prove
for any rational function f regular at x′, φ ◦ f is regular at x. The argument is the same as that
of(5.4.5.14).

For any such f , fK ◦ φK is regular at x, thus no pole of div(fK ◦ φK) passes through x. For the
rest, Cf.[Diophantine Geometry, P576].? □

Prop.(5.10.3.4)[Generic Separable Degree].Let φ : X → X ′ be a dominant morphism of varieties
over a field k of the same dimension, then there exists an open dense subscheme U ′ of X ′ s.t.
φ−1(U ′)→ U ′ is finite and the fibers all have cardinality degs(φ).

Proof: By(5.10.3.2), we can decompose φ and assume it is either separable or purely inseparable,
and also primitive. If it is separable, let it be generated by t. After shrinking(and cutting closure of
images), we may assume the coefficients of t are regular functions, and Γ(X) = Γ(X ′)[t]/(q(t)). As q
is separable, there exists a, b ∈ K(X ′) s.t. aq+ bq′ = 1. We may shrink X ′ and assume a, b ∈ Γ(X ′),
so q is also separable over any fiber of X, which means the fibers all have cardinality degs(φ).

If it is purely inseparable, let q(t) = tp
k−h be the minimal polynomial of t overK(X ′), h∈ K(X ′).

Then after shrinking, we may assume h ∈ Γ(X ′), thus q(t) is purely inseparable over any fiber of X,
which means □

4 Others

Prop.(5.10.4.1).Varieties are triangulable.

Proof: Cf.[Triangulation of Algebraic Sets, Hironaka]. □
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Fano Varieties

Def.(5.10.4.2)[Fano Varieties].A Fano variety is a complete smooth variety X over a field K s.t.
K∗
X is ample.

Prop.(5.10.4.3). a smooth complete intersection of hypersurfaces in PnK is Fano if and only if the sum
of their degrees is at most n.

Prop.(5.10.4.4)[Kollár-Miyaoka-Mori].Fano varieties over an alg.closed field are rationally chain
connected.

Proof: Cf.[Rational connectedness and boundedness of Fano manifolds, Kollar]. □

Rationally Connected Varieties

Def.(5.10.4.5) [Rationally Connected Varieties].A variety X over K is called rationally con-
nected if any two points of X(K) can be connected by a rational curve(5.11.1.1) over K.

5 Relative Varieties
Def.(5.10.5.1) [Varieties over Schemes].Let S ∈ Sch, a (proper/smooth)variety over S is a
(proper/smooth) flat morphism f : X → S s.t. all the geometric fibers of f are geo.integral over the
resp. residue field k(s). It can be regarded as a family of (proper/smooth)varieties parametrized by
S.

Being a (proper/smooth) variety is stable under base change.

Prop.(5.10.5.2)[Global Sections].Let S ∈ Sch be locally Noetherian and X a proper variety over
S, then OS → f∗OX is an isomorphism.

Proof: For any closed point s ∈ S, k(s) → H0(Xs,OXs) is an isomorphism by(5.10.1.12), and
this isomorphism factors through k(s) → f∗(OX) ⊗ k(s) → H0(Xs,OXs). So f∗(OX) ⊗ k(s) →
H0(Xs,OXs) is surjective, thus it is an isomorphism by item4→ 3 of (8.7.3.16). Thus the first map
is also an isomorphism.

Now OS → f∗(OX) is a surjection at s by Nakayama. Let Q be the coherent sheaf on S associated
to F , then by(8.7.3.16), it is free at s, and Qs = H0(Xs,OXs) is of rank 1, but also Q∨ ∼= f∗(OX), so
OS → f∗(OX) is in fact a surjection at s. Now s is arbitrary, so OS → f∗(OX) is an isomorphism. □

Prop.(5.10.5.3).Let (R,K, k) be a DVR and X is a smooth R-scheme s.t. XK is geo.integral and
Xk is proper, then X is a proper smooth variety over R.

Proof: Cf.[Good Reduction of Abelian Varieties, P495]? □
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5.11 Curves

Main references are [黎曼曲⾯, 伍鸿熙], [Vak17]Chap19, [G-H78], [Har77]Chap4 and [Sta]Chap53.
In this section, properties to morphisms of relative dimension≤ 1 are studied.

Notation(5.11.0.1).
• Use notations defined in Cohomology of Schemes.
• Use notations defined in Varieties.

1 Basics
Def.(5.11.1.1)[Rational Curve].A rational curve over a field k is a curve that is birational to P1

k.

Lemma(5.11.1.2). If X is an integral separated scheme and U ⊂ X is an non-empty affine open that
X\U is a finite set of points with OX,xi Noetherian of dimension 1, then there exists a base-point
free invertible sheaf L ∈ Pic(X) and a section s s.t. U = Xs.

Proof: Cf.[Sta]09NB. □

Prop.(5.11.1.3).A Noetherian separated scheme of dimension≤ 1 has an ample invertible sheaf.

Proof: First reduce to the case when Xred, because(5.11.2.19) shows any invertible sheaf on Xred
is a pullback of a sheaf of X and(5.5.4.15) shows this sheaf is ample.

Second we reduce to the case X is integral. Let Xi are the integral irreducible components of Z,
Cf.[Sta]09NX?

Finally, for X integral, the assertion follows from(5.11.1.2) and(5.5.4.10). □

Cor.(5.11.1.4)[Complete Precurves are Projective].A separated algebraic scheme X of dimen-
sion 1 over a field k is H-(quasi)projective, by(5.11.1.3) and(5.5.4.22). If X is proper, then it is
projective.

Prop.(5.11.1.5)[Completion of Curves].For a separated algebraic k-scheme X of dimension≤ 1,
there is an open immersion j : X → X that

• X is projective over k.
• j(X) ⊂ X is dense and schematically dense open subscheme.
• X\X consists of f.m. closed points {xi} of X.

This X is called a completion curve of X. And when X is reduced, the stalk at xi are DVRs. In
particular, it is non-singular if X is non-singular.

Proof: By(5.11.1.3), we can assume X is a locally closed subscheme of Pnk . Let X be the scheme
theoretic image(5.4.4.62) of the inclusion, then 1, 2 holds by(5.4.4.70). 3 holds because X\X is
Noetherian of dimension 0.

For the last assertion, Cf.[Sta]0BXW. □

Cor.(5.11.1.6).A morphism of prevarieties X → Y with X a precurve(thus reduced) and Y proper
over a field k factors through the completion X of X by(5.4.5.14). In particular, the completion
curves of X are unique.

Prop.(5.11.1.7) [Affine or Projective].A precurve over a field k is either affine(not proper) or
H-projective(proper).
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Proof: Cf.[Sta]0A27?, (Hard). □

Cor.(5.11.1.8).Let X be a separated scheme algebraic over a field k. If dimX ≤ 1 and no irreducible
component of X is proper of dimension 1, then X is affine.

Proof: Let Xi be f.m. irreducible components of X, then they are precurves in the induced reduced
structure, so they are affine by(5.11.1.7). Now ⨿

Xi → X is a finite surjective morphism, so X is
affine by(5.4.4.36). □

Prop.(5.11.1.9).A map from a proper connected scheme to a precurve is either constant or surjective.

Proof: Because the closed subset of a precurve is either itself or f.m. closed points. □

Prop.(5.11.1.10)[Constant or Finite].Let f : X → Y be a morphism of schemes over a field k that
Y is separated and X is proper of dimension ≤ 1. If the image of every irreducible component of X
is not a pt, then f is finite. If Y is a precurve, then it is moreover surjective.

Proof: Cf.[Sta]0CCL.? □

Def.(5.11.1.11)[Separable Morphisms].Let f : X → Y be a non-constant morphism of precurves,
then f is finite surjective by(5.11.1.10). so deg(f) is finite(5.4.4.55), and we can define separa-
ble/purely separable morphisms as in(5.4.4.55).

Non-Singular Curves

Def.(5.11.1.12) [Uniformizer].Let C be a precurve over a field k, then the local rings of C at a
non-singular closed point p is a DVR by(10.3.3.4). Then an element t ∈ K(C) with valuation 1 is
called a uniformizer at p.

Prop.(5.11.1.13).Let C be a precurve over a field K, and t ∈ K(C) is a uniformizer at some non-
singular point, then K(C) is a finite separable extension of the subfield generated by t.

Proof: K(C) is a finite extension of K(t), because tr . deg(K(C)/K) = 1 and t is not algebraic over
K by valuation reasons. Then it suffices to show for any x ∈ K(C), x is separable over K(t). Let
Φ(X,T ) =

∑
aijT

iXj be a minimal polynomial of x over K(T ). It is separable iff for some (j, p) = 1
and some i, aij ̸= 0. If it is not separable then we can write Φ(X,T ) =

∑p−1
k=0 φk(X,T )pT k. But

each φk(x, t)ptk has distinct valuations, unless they are all zero, contradicting the fact Φ is a minimal
polynomial. □

Prop.(5.11.1.14)[Non-singular Complete Precurves and DVRs].Let C be a non-singular com-
plete precurve, then all valuation rings of K(C) containing k are DVRs, and the set of closed points
of C correspond to the set of DVRs in K(C) containing k, which is denoted by Σ0

K(C).

Proof: This is a consequence of the valuation criterion(5.4.5.13). Notice that the local rings of C
at closed points are all DVRs(10.3.3.4), thus they must equal to the valuation ring given. □

Prop.(5.11.1.15)[Extension of Rational Maps].Rational map from a non-singular precurve to a
complete prevariety is the same as a morphism, by(5.4.5.15).

Cor.(5.11.1.16).Two birationally equivalent normal proper precurves over a field is isomorphic.
Thus if a normal precurve is birationally equivalent to another normal complete curve, then it is

an open immersion, by(5.11.1.5).



708 CHAPTER 5. ALGEBRAIC GEOMETRY I: SCHEME THEORY

Prop.(5.11.1.17)[Category of Non-singular Projective Precurves].Let k be a field, the follow-
ing categories are equivalent:

1. The opposite category of f.g. field extensions of k of trans.deg 1 with injective k-
homomorphisms.

2. The category of precurves and dominant rational maps.
3. The category of normal complete precurves over k with non-constant morphisms.
4. The category of non-singular projective precurves over k with non-constant morphisms.

Proof: 1 and 2 are equivalent by(5.10.3.2).
3 and 4 are equivalent by(5.11.1.7) and the fact normal and regular are the same(5.4.2.11).
For the rest, Cf.[Sta]0BY1.? □

Cor.(5.11.1.18)[Non-singular Projective Model].Comparing this and(5.10.3.2), we see that every
precurve over k is birational to a unique non-singular proper precurve over k with the same function
field, which is called the non-singular projective model.

Prop.(5.11.1.19) [Flatness and Associated Points]. f : X → Y with Y integral and regular of
dimension 1. Then f is flat iff every associated prime of X is mapped to the generic point of Y .

In particular when X is reduced, this is equivalent to every irreducible component of X dominants
Y , by(4.2.5.25).

Proof: If x is mapped to a closed pt of Y , then Oy,Y is a DVR, let t be a uniformizer, then t is not
a zero-divisor, and f ♯(t) ∈ mx is also not a zero-divisor. So x is not an associated point.

Conversely, to show f is flat, if y is the generic point, then Oy,Y is a field, so it is flat. When y is
a closed pt, Oy,Y is a DVR, so by(4.4.1.11), we need to show that it is torsion free. If it is not, then
f ♯(t) must be a zero-divisor for a uniformizer t of Oy,Y . But then it is contained in some associated
prime p of Ox,X(4.2.5.17). Now p is mapped to y, which is a contradiction. □

Cor.(5.11.1.20) [Morphism to a Non-singular Curve is Flat]. If f : X → Y is a dominant
morphism from a prevariety to a non-singular curve over k, then f is flat.

Cor.(5.11.1.21)[Flat Specializations along Curves].Let Y be integral and regular of dimension
1 and P a closed pt. X is a closed subscheme in PnY−P that is flat over Y −P , then there is a unique
closed subscheme X closed in PnY that is flat over Y and restrict to X on PnY−P .

Proof: Choose the scheme-theoretic closure of X in PnY . Cf.[Hartshorne P258]. □

Cor.(5.11.1.22) [Finite Flatness].Any non-constant morphism from a precurve to a nonsingular
precurve is finite locally free, by(5.11.1.19) and(5.11.1.10).

Prop.(5.11.1.23).A projective non-degenerate non-singular curve of degree d in Pnk is isomorphic to
the n-tuple embedding, and d = n.

This has easy generalizations to surfaces and higher dimensions.

Proof: (5.5.3.16)shows OX(1) ∼= O(d) over P1
k, and the restriction of global sections is injective.

So the global section is an isomorphism, and it defines the embedding up to a linear automorphism.
□
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Prop.(5.11.1.24)[Genera Equal].For a complete smooth curve X over a field k,

pa(X) = pg(X) = dimkH
1(X,OX)

by Serre duality(5.8.6.19) and(5.10.1.18)(5.7.3.6).
So from now on we use genus to denote the arithmetic genus.

Cor.(5.11.1.25)[Topological Genus].By GAGA, for a complex complete smooth curve, the genus
also equals the topological genus.

Morphisms Between Non-singular Curves

Prop.(5.11.1.26) [Degree and Analytic Degree].Let f : C → C ′ be a non-constant morphism
between smooth complex curves, then the degree defined in(5.4.4.55) is the same as the degree as
map of Riemann surfaces.

Proof: This is because the map is finite locally free(5.11.1.22), thus for an affine open subset
U = SpecA of C ′, the f−1(U) = SpecB where B ∼= A⊗n as A-modules, where n is the degree. Then
clearly for most x ∈ U , ♯f−1(x) = n(look at the minimal polynomial of a family of generators for B
over A). □

Def.(5.11.1.27)[Ramification Degrees].Let f : X → Y be a morphism of non-singular precurves
over a field k, let P ∈ X be a closed point and f(P ) = Q. Because the local rings are DVRs, we
define the ramification degree eP (f) where f ♯(mQ)OX,P = m

eP (f)
P .

f is called weakly unramified at P if eP (f) = 1, and it is called unramified at P if moreover
κ(P )/κ(f(P )) is separable. f is called tamely unramified at P if?

Notice that unramifiedness just means the morphism is unramified, by(5.6.5.8) and(5.11.1.22).

Prop.(5.11.1.28).Let f : X → Y be a non-constant morphism of non-singular precurves over a field
k, then

• If g : Y → X be another morphism of non-singular precurves, then for any P1 ∈ X, eP (g ◦f) =
eP (f)ef(P )(g).

• for any closed point Q ∈ C2,
∑
P∈f−1(Q) eP (f)[k(P ) : k(Q)] = deg(f).

• If k is alg.closed, then for a.e. closed point Q ∈ C2, #f−1(Q) = degs(f).

Proof: 1: Trivial.
2: This follows from(5.11.1.44).
3: This follows from(5.10.3.4). □

Prop.(5.11.1.29). If f : X → Y is a non-constant morphism of percurves over a field k s.t. X is
smooth and Y is non-singular, then Y is also smooth, by(5.1.5.28).

Prop.(5.11.1.30).Let X be a smooth curve over a field k, x ∈ X and x ∈ Xk is a point mapping to
x, then the ramification degree of OX,x ⊂ OX

k
,x equals the inseparable degree of k(x)/k.

Proof: By(5.6.6.7), we can find a étalemapX → A1
k, which has ramification degree 1 and separable,

so we may assume X = A1
k. Then the assertion is clear. □

Prop.(5.11.1.31)[Separable Morphisms].Let f : X → Y be a morphism of smooth curves over k,
then the following are equivalent:
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1. f is finite separable.
2. df∗ : f∗ΩY/k → ΩX/k is non-zero.
3. ΩX/Y is supported on a proper closed subscheme of X.
4. There exists a non-empty open subset U ⊂ X s.t. f is unramified.
5. There exists a non-empty open subset U ⊂ X s.t. f is étale.

Proof: As X,Y are smooth, ΩX/k,ΩY/k are invertible sheaves, and the exact sequence

f∗ΩY/k → ΩX/k → ΩX/Y → 0

shows 2, 3 are both equivalent to ΩX/Y,ξ = 0.
3, 4, 5 are equivalent as f is automatically flat(5.11.1.20).
1, 5 are equivalent by(5.6.5.9). □

Prop.(5.11.1.32) [Riemann-Hurewitz for Separable Maps]. If f : X → Y is a non-constant
separable map between two complete smooth curves over a field k, then

2gX − 2 = deg(f)(2gY − 2) +
∑
x∈X

dx[κ(x) : k],

where dx = lengthOX,x
(ΩX/Y,x) ≥ 0 satisfies dx ≥ ex(f) − 1, and equality holds iff f is tamely

unramified at P .

Proof: By(5.8.7.12), in this case the vanishing locus R of df∗ is an effective Cartier divisor, and
f∗KY/k ⊗O(R) ∼= KX/k, so by(5.11.2.10)(5.11.2.3)(5.11.2.7),

2gX−2 = deg(KX/k) = deg(f∗KY/k⊗O(R)) = deg(f) deg(KY/k)+deg(R) = deg(f)(2gY−2)+deg(R).

For analysis of dx, Cf.[Sta]0C1F.? □

Cor.(5.11.1.33).The only geo.integral unramified finite covering of P1
k is itself.

Thm.(5.11.1.34)[De Franchis].Let k ∈ Field and C,C ′ are two complete smooth curves over k.
Then if g(C) ≥ 2, there are only f.m. non-constant maps C ′ → C.

In particular, # Aut(C) <∞.

Proof: We prove for k = C? Cf.[Mil08]P146.
Any automorphism of C fixes its set of Weierstrass sets, which is finite, so we only need to consider

the case that it fixes all Weierstrass points.
If C is hyperelliptic, consider a hyperelliptic map, this covering has an involution of C, and this

is just C 7→ C/τ . So modulo τ , it suffices to show P1 has f.m. automorphisms fixing the branch
points. But this is true, as 2g + 2 > 3.

If C is non-hyperelliptic, then there are more than 2g + 2 Weierstrass points. But we can find
a function f on C with g + 1 zeros and poles, by Riemann-Roch, then for an automorphism φ of
C, f − φ∗f has no more than 2g + 2 poles, so also has no more than 2g + 2 zeros. But φ fixes all
Weierstrass points, so it has more than 2g + 2 zeros, contradiction. □

Prop.(5.11.1.35)[Hurewitz’s Automorphism Theorem]. If C is a complete smooth curve of genus
g ≥ 2 over a field of characteristic 0, then # Aut(C) ≤ 84(g − 1).
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Proof: We may pass to the alg.closure. By(5.11.1.34), # Aut(C) < ∞. In fact, let G be a finite
group acting on C, let C ′ be the non-singular precurve corresponding to C ′, then by(2.2.7.5), C → C ′

is a Galois cover with Galois group G. Now by Dedekind extension theory, G acts transitively on the
preimage of a given point. Suppose there are n branched points with ramification degrees ri, then
by Riemann-Hurewitz(5.11.1.32)(notice in this case it is tamely unramified):

(2g − 2) = |G|(2g(C ′)− 2 +
n∑
i=1

ri − 1
ri

).

Then a combinatorial argument shows the maximal possible |G| is obtained when g(C ′) = 0, n = 3
and (r1, r2, r3) = (2, 3, 7). □

Remark(5.11.1.36). In the case char k ̸= 0, there may be more automorphisms. For example, if
p ∈ P\{2}, the completion of the affine curve ypn = x + xp

n+1 has genus g = pn(pn − 1)/12
and # Aut(C) = p3n(p3n + 1)(p2n − 1), Cf.[H.Stichtenoth,U ̈berdieAutomorphismengruppeeinesal-
gebraischenFunktionenko ̈rpersvon Primzahlcharakteristik. I. Eine Abscha ̈tzung der Ordnung der
Automorphismengruppe, Arch. Math. (Basel) 24 (1973), 527–544.].

Prop.(5.11.1.37)[Frobenius Map].Let C be a smooth curve over a field k of characteristic p, and
C

FX/k,r−−−−→ C(r) be the Frobenius, where C(r) = C ⊗k,Frobr k, then FX/k,r is purely inseparable, and
deg(FX/k,r) = pr. And it is a topological homeomorphism by(4.1.7.26).

Proof: To show inseparability, we can base change to k, then the field map is f/g 7→ f(Xpr)/g(Xpr),
which is just K(Ck)

pr , so purely inseparable of degree pr. □

Prop.(5.11.1.38)[Inseparable Decomposition].Let k be a field of characteristic p > 0. If C1 is
a smooth complete precurve, then any map of non-singular complete precurves f : C1 → C2 over k
factors as

C1
FX/k,r−−−−→ C

(r)
1

λ−→ C2

where C(r)
1 = C1 ⊗k,Frobr k, and λ is separable.

Proof: By(5.11.1.17), it suffices to show any inseparable morphism is a Frobenius. It suffices to
show that any subfield of K(X) of index p equals K(X(1)) = kK(X)p. For this, Cf.[Sta]0CCY?. □

Cor.(5.11.1.39). If C → C ′ is a non-constant separable map between complete smooth curves, then
g(C) ≥ g(C ′).

Proof: This follows from(5.11.1.38)(5.11.1.32) and the fact C(r)
1 is smooth and have the same genus

as C1 by flat base change. □

Divisors on Curves

Def.(5.11.1.40)[Divisors on Curves]. If X is a locally algebraic integral scheme of dimension 1 over
an alg.closed field, then a Weil divisor on X are just a locally finite formal sum of closed pts.

If X is integral algebraic over a field k of dimension 1, then the sum is in fact finite, we we can
define the degree of a Weil divisor D =

∑
nPP as deg(D) =

∑
nP [k(P ) : k].

Similarly, for a Cartier divisor D on X, the degree of D is defined to be dimk Γ(D,OD).
By(7.1.5.1), a Cartier Divisor on X is equivalent to an effective Weil divisor, and the definition
of degrees are compatible.
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Cor.(5.11.1.41) [Non-singular Case].As a nonsingular precurve C is locally factorial, (5.5.3.15)
shows in this case a line bundles on C is equivalent to a Weil divisor on C.

Prop.(5.11.1.42)[Pullback of Divisor].For a non-constant morphism f between two non-singular
curves over alg.closed field, e.g. dominant morphism between complete non-singular curves,
deg f∗D = deg f · degD. This is because f is finite locally free(5.11.1.22), thus this follows from
[Sta]02RH?.

Prop.(5.11.1.43).An element /∈ k in the function fields of a projective non-singular curve over an
alg.closed k defines a inclusion k(f) ⊂ K(X) thus a morphism from X to P 1

k (5.10.3.2), and (f) =
φ∗({0} − {∞}).

Prop.(5.11.1.44).Let π : C → C ′ be a non-constant separable morphism of precurves over a field k
that C ′ is nonsingular, p ∈ C ′ is a closed point, then π is finite locally free by(5.11.1.22), and

• π−1(p) ⊂ C is a dimension 0 scheme.
• dimk(Γ(π−1(p))) = (deg π)(deg p).
• Let ϖ be a uniformizer of the DVR OC′,p, then

deg π =
∑

x∈π−1(p)
[k(x) : k(p)] ordOC,x

(f∗ϖ).

Proof: Look affine locally, then these follow from the fundamental identity(4.2.7.21). □

Prop.(5.11.1.45).For a 1-dimensional integral scheme c : X → k proper over a field k and a function
f ∈ K(X)∗, ∑

x closed
[k(x) : k]ordOX,x

(f) = 0.

In other words, the number of zeros of f equals the number of poles of f .

Proof: It suffices to show that the pushforward c∗ div(f) = 0 ∈ CH0(Spec k). consider Y the
closure of the graph of f in X × P1

k, then there is a commutative diagram

Y X

P1
k Spec k

pr1

pr2 c

c′

,

and divX(f) = pr1∗ divY (f) by(7.1.2.22). We may assume f is not constant, then pr2 is finite locally
free of degree d, and divY (f) = pr∗

2([(0)] − [(∞)]), so pr2∗ divY (f) = d([(0)] − [(∞)]) is mapped to
0 ∈ CH0(Spec k). □

2 Vector Bundles

Degrees and Riemann-Roch

Def.(5.11.2.1)[Degrees].The degree of a locally free sheaf E of rank n on a proper scheme X of
dimension≤ 1 over a field k is defined to be deg(E) = χ(X, E)− nχ(OX)(5.7.3.1).

If X is integral(e.g. a complete precurve), this definition can extends to any coherent sheaves F ,
if we define rank(F) = dimk(η)Fη.
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Prop.(5.11.2.2).The degree function is additive, stable under base change of fields, and stable under
birational equivalence of proper scheme X of dimension 1 over a field k.

Proof: The base change follows from flat base change(5.7.5.1), the additivity follows from the
additivity of rank and Euler characteristic(5.7.3.1).

For the birational equivalence, If f : X → Y is a birational map between proper schemes of
dimension≤ 1 over k, then f is proper with finite fibres, so f is finite(5.4.5.5), thus for any E ∈
QCohfree,n(Y ), f∗f

∗E = E ⊗OY
f∗OX , and there is an exact sequence

0→ K → OY → f∗OX → Q→ 0

where K,Q are coherent sheaves on Y with supported dimension0. Then by(5.7.3.5) and(5.7.3.3),

χ(Y, E)− χ(X, f∗E) = χ(Y, E)− χ(Y, f∗f
∗E)

= χ(Y,K ⊗ E)− χ(Y,Q⊗ E)
= nχ(Y,K)− nχ(Y,Q)
= nχ(Y,OY )− nχ(X,OX)

□

Prop.(5.11.2.3)[Non-reduced Riemann-Roch]. If X is a proper scheme over a field k of dimen-
sion≤ 1 with integral components Ci of X of dimension1 with generic points η1, . . . , ηr and multi-
plicity mi, and E ∈ Vectn(C),F ∈ Coh(C), then

χ(E ⊗ F) =
∑
i

(lengthOX,ηi
Fηi) deg(E|Ci) + nχ(F).

Proof: We use dévissage(5.5.1.55), the condition1 are true by additivity of χ, and for condition2,
take G = i∗OZ , the equation holds by(5.7.3.5) and projection formula. □

Cor.(5.11.2.4).Let X be a proper scheme of dimension≤ 1 over a field k, and Ci are the irreducible
components of X of dimension1 with the induced reduced structure and multiplicity mi, then for
E ∈ Cohfree(X),

deg(E) =
∑

mi deg(E|Ci).

Cor.(5.11.2.5).Let X be a proper scheme of dimension≤ 1 over a field k, then
• If E ∈ Cohfree,m(X),F ∈ Cohfree,n(X), then deg(E ⊗ F) = m deg(F) + n deg(E).
• If L,M∈ Pic(X), then deg(L ⊗M) = deg(L) + deg(M).
• If L ∈ Pic(X), deg(L) = −deg(L−1).
• If E ∈ Cohfree(X), deg(E) = deg(∧E).

Proof: By(5.11.2.4), we can assume X is integral. Then 1, 2 follow from(5.11.2.3), and 3 follows
from the fact there is a modification X ′ → X s.t. f∗E has a filtration with invertible sheaves Li as
quotients(5.5.1.30). Then by(5.11.2.2), we can work on X ′. Then deg(E) = ⊗iLi, and the assertion
follows from additivity and(5.11.2.3). □

Prop.(5.11.2.6). If D is an effective Cartier divisor on a proper scheme of dimension≤ 1 on a field k,
then for E ∈ Cohfree,n(X),

deg(E(D)) = n dimk deg(D) + deg(E)

In particular, deg(L(D)) = deg(D).
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Proof: By(5.8.1.2), D is nowhere dense in X, thus D is finite over k, and there is an exact sequence

0→ E → E(D)→ E(D)|D → 0.

So the assertion follows from(5.7.3.5). □

Prop.(5.11.2.7).Let f : X → Y be a non-constant map of complete precurves over a field k and
E ∈ Cohfree(Y ), then deg(f∗E) = deg(f) deg(E).

Proof: By(5.11.1.10) and(5.11.2.3),

χ(X, f∗E) = χ(Y, E ⊗ f∗OX) = deg(f) deg(E) + rank(E)χ(X,OX).

□

Prop.(5.11.2.8)[Degree and Sections].Let C be a complete precurve over a field k and L ∈ Pic(C),
then

• If L has a non-zero section, then deg(L) ≥ 0.
• If L has a non-zero section that vanishes at some point, then deg(L) ≥ 1.
• If both L,L−1 have non-zero sections, then L ∼= OX .
• If deg(L) ≤ 0 and L has a non-zero section, then L ∼= OX .
• If N → L is a non-zero map of invertible sheaves, then deg(L) ≥ deg(N ), with equality iff this

is an isomorphism.

Proof: If s is a section of L with vanishing locus D, then D is an effective Cartier divisor and
L ∼= L(D), so deg(L) = deg(D) by(5.11.2.6), so these are all simple now. □

Prop.(5.11.2.9)[Riemann-Roch].Let D be a Weil divisor on a complete non-singular precurve X
of genus g, then

• If l(D) = dimkH
0(X,L(D)), l(D) is finite by(5.7.4.11).

• [ωX ] is an invertible sheaf by [Sta]0BFQ?.
• l(D)− l([ωX ]−D) = degD + 1− g.
• deg(D) = deg(L(D))

Notice when X is smooth, [ωX ] is just KX(5.8.6.18).

Proof: 4 is equivalent to 3 by Serre duality(5.8.6.18), and 3 follows from(5.11.2.6). □

Cor.(5.11.2.10). deg([ωC ]) = 2g − 2.

Proof: By(5.11.2.9) and Serre-duality(5.8.6.18),

deg([ωC ]) = h0(X, [ωX ])− h0(X,OX) + g − 1 = h1(X,OX)− h0(X,OX) + g − 1 = 2g − 2.

□

Prop.(5.11.2.11)[Twisting Sheaves].Let L be a line bundle on a complete nonsingular precurve C,
and p ∈ C is a closed point of degree d, then 0 ≤ h0(L)− h0(L(−p)) ≤ d for any L ∈ Pic(C).

In particular, by(5.11.2.8), if C is a complete non-singular curve, then h0(L) ≤ degL+ 1 for any
L ∈ Pic(C).
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Proof: There is an exact sequence 0 → OC(−p) → OC → OC |p → 0, tensoring with L and take
the cohomology, we get an exact sequence 0 → h0(L,L(−p)) → h0(L,L) → H0(C,L|p), and notice
that h0(C,L|p) = d. □

Prop.(5.11.2.12)[Riemann-Roch for High Degree D]. If deg(D) ≥ 2g−1, then deg([ωX ]−D) < 0,
so by(5.11.2.8), l([ωX ]−D) = 0, thus l(D) = d− g + 1.

Cor.(5.11.2.13)[Characterizing [ωC ]].Any degree 2g − 2 divisor D satisfies l(D) = g − 1 or g, and
the latter case happens iff D = [ωC ].

Proof: l([ωC ]−D) = 1 iff [ωC ] = D by(5.11.2.8). □

Def.(5.11.2.14)[Special Divisors].A special divisor on a complete non-singular curve is a divisor
D that h0([ωC ]−D) > 0.

Prop.(5.11.2.15).For any complete smooth curve C of genus g > 1 over a field k, there is a closed
point on C of degree≤ 2g − 2. And if g ≥ 2, we can assume this point is a geometric point.

Proof: The canonical sheaf KC is a line bundle of degree 2g − 2 and h0(KC) = g ≥ 1, so we can
assume KC is an effective divisor, then one of its support point has degree≤ 2g − 2.

For the last assertion, Cf.[Sta]0CD4. □

Vector Bundles

Prop.(5.11.2.16)[Torsion-Free Sheaves].Let C be a non-singular precurves over a field k, then
• Any torsion-free coherent sheaf F on C is locally free.

• Any F ∈ Coh(X) factors as 0→ Ftor → F → Flf → 0, where F is a torsion sheaf(5.5.1.44) and
Flf is Qco and locally free, by(5.5.1.47)

Proof: □

Prop.(5.11.2.17)[Pic0(C)].For a smooth complete curve C over a field k with a rational point, Pic0(C)
are exactly the set of line bundles of degree 0, by(13.5.13.1). In particular, there is an exact sequence

0→ Pic0(C)→ Pic(C)→ Z→ 0.

Prop.(5.11.2.18)[Torsion Elements].Let C be a smooth complete curve of genus g over an alg.closed
field, then for m ∈ Z ∩ k∗, Pic(C)[m] = Pic0(C) ∼= (Z/(m))2g.

Proof: This follows from(13.5.13.1)(5.11.2.17) and(13.5.6.14). □

Prop.(5.11.2.19). If Z → X is a closed immersion and dimX ≤ 1, then Pic X → Pic Z is a surjection.

Proof: Use the exact sequence 0 → (1 + I) ∩ O∗
X → O∗

X → i∗O∗
Z → 0, dimX ≤ 1 and the

Grothendieck vanishing theorem gives the desired result, also notice i is affine. □
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Ample Line Bundles

Prop.(5.11.2.20).A line bundle L over a complete precurve C over a field k is ample iff deg(L) > 0.

Proof: If C is non-singular, the proof is easy: L is ample iff L⊗n is very ample for n large(5.5.4.22).
If deg(L) < 0, this cannot happen, by(5.11.2.8). For degL ≥ 0, L⊗n is very ample for n large
by(5.11.2.26).

In general, Cf.[Sta]0B5X? □

Cor.(5.11.2.21)[Ample and Nef Line Bundles].Let L be an invertible OX -module over a proper
scheme of dimension≤ 1 over k, let Ci be the integral components of X of dimension 1, then L is a
ample iff deg(L|Ci) > 0 for all i.

Proof: This follows from(5.5.4.14) applied to the reduced structure of the irreducible components
of X, together with the fact a line bundle on an irreducible component Spec k(x) of dimension 0 is
obviously ample. □

Prop.(5.11.2.22).Let L be a line bundle on a complete non-singular precurve C of degree d that is
basepoint-free, then it determines a morphism π : C → P1

k of degree d.

Proof: This follows from(5.11.1.44). □

Prop.(5.11.2.23).Let C be a complete precurve over a field k with genus g > 0, and p, q are rational
points on C, then OC(p) ∼= OC(q) iff p = q, and h0(C,OC(p)) = 1.

Proof: The hypothesis shows L = OC(p) has degree 1 and is basepoint-free, thus defines a degree
1 map C → P1

k, which is an isomorphism, by(5.11.1.15) and(5.11.1.17), contradiction.
If h0(C,OC(p)) ≥ 2, then for any section s, div(s) = q for some rational point q, so by the above

argument, q = p, so any two such f is proportional. □

Prop.(5.11.2.24).Let C be a complete curve over a field k with genus g > 0, and L is a line bundle
of degree 2, then h0(C,L) ≤ 2, and if the equality holds, then it is basepoint-free.

Proof: We can base change to k. h0(C,L) ≤ 3 by(5.11.2.11). If equality holds, then then
h0(C,L(−p)) = 2 for some p, contradiction by(5.11.2.23). If h0(C,L) = 2, then h0(C,L(−p)) < 2
for any p, so it is basepoint-free. Conversely, if it is basepoint free, then L ∼= O(p) for some rational
point p, and h0(C,L) = h0(C,OC) + 1 = 2. □

Prop.(5.11.2.25) [Criterion of Very Ampleness].Let L be a line bundle on a curve over an
alg.closed field k, then

• L is basepoint-free iff h0(L)− h0(L − p) = 1 for any closed point p ∈ L.
• L is very ample iff h0(L)− h0(L − p− q) = 2 for any closed points p, q ∈ L.

Proof: Cf.[Vakil, P509].? □

Cor.(5.11.2.26).Any line bundle L on a complete non-singular curve of genus g that deg(L) ≥ 2g is
basepoint-free, and if deg(L) ≥ 2g + 1, then it is very ample.

Proof: When k = k, this follows from(5.11.2.25) and Riemann-Roch(5.11.2.9). For general k, use
the fact being basepoint-free, closed embedding and degree are all stable and reflective under base
change of fields(5.11.2.2)(5.5.3.3)(5.1.5.26). □
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Prop.(5.11.2.27)[Very Ample Line Bundles].Let X be a complete curve over a field k, then
• If L is effective and H1(X,L) = 0, then L⊕6 is very ample.
• If L is globally generated and H1(X,L) = 0, then L⊕2 is very ample.

Proof: Cf.[Sta]0E8V, 0E8W.? □

Curves in Low Dimension

Prop.(5.11.2.28) [Projection Along a Point].Let C ⊂ Pnk be a non-singular precurve, then for
any rational point p ∈ C, there is a projection along p map vp : C → Pn−1

k that is the projection
along p for q ∈ C\{p}, and extend to whole C by(5.11.1.15), which corresponds to the line bundle
OC(1)(−p).

Prop.(5.11.2.29).Let C be a smooth plane precurve of degree e > 2 and D1, D2 are two polynomials
of degree d not vanishing on C. Suppose there is a divisor E on C of degree de − 1 and rational
points pi on C that Di|C = E + pi, then OC(−E) is not base-free.

Proof: Notice by genus formula g > 0, and OC(−E) ∼= OC(pi) has degree 1, then p1 = p2
by(5.11.2.23). □

Prop.(5.11.2.30).Let C be a smooth conic plane curve over a field of characteristic̸= 2, show the
dual variety of C is also a smooth conic. In particular, for a general point in the plane, there are two
tangents to C.(This can be also proved using Riemann-Hurewitz by projection through this point).

Proof:
□

Prop.(5.11.2.31).The number of plane conics containing i generally chosen points and 5− i generally
chosen lines is 1, 2, 4, 4, 2, 1 resp. for i = 0, 1, . . . , 4, 5. (The duality comes from the duality between
the conic and the dual conic(5.11.2.30)).

Proof: □

Prop.(5.11.2.32) [Curves in P1 × P1].Let C be a curve in P1 × P1 given by a bi-homogenous
polynomial of type (a, b). Then g(C) = (a− 1)(b− 1).

Proof: We have KC = (KP1×P1 + C)|C(5.10.1.17). We have Pic(P1 × P1) ∼= ZH1 ⊕ZH2, thus

deg(KC) = deg((KP1×P1 + C)C)
= deg((−2H1 − 2H2 + aH1 + bH2)|C)
= deg(((a− 2)H1 + (b− 2)H2)|C)
= (a− 2)b+ (b− 2)a = 2ab− 2a− 2b
= 2g − 2.

Thus g = (a− 1)(b− 1).
? For non-smooth case, see AG psets. □

Prop.(5.11.2.33) [Genus Formula].Let C be a closed subscheme of P2
k defined by a homogenous

polynomial f(x0, x1, x2) of degree d, then it has arithmetic genus pa(C) = (d− 1)(d− 2)/2.
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Proof: This follows from(5.7.2.4). □

Cor.(5.11.2.34).Let C be a complete smooth plane curve of degree d, then it has genus g = (d −
1)(d− 2)/2.

Proof: Alternative proof: By adjunction formula, KC = KP2(C)|C = OC(d− 3) which has degree
d(d− 3). But this also equals 2g − 2(5.11.2.10), thus g = (d− 1)(d− 2)/2. □

Prop.(5.11.2.35)[Cubic Curves in P3].A twisted cubic(rational) C in P3 is contained in a quadric.

Proof: Calculate that h0(OP3(2)) = C2
5 = 10 and deg(OC(2)) = 6, thus h0(OC(2)) = 6 + 1 = 7 by

Riemann-Roch. Then C is contained in 3 quadrics. □

3 Singularities and δ-Invariants
Def.(5.11.3.1) [Different Kinds of Singularities].Let X be a curve over an alg.closed field k, a
point p ∈ X is called a

• node if the completion of OX,p at mX,p is isomorphic to k[[x, y]]/(xy) as topological local rings.
• cusp if the completion of OX,p at mX,p is isomorphic to the completion of k[x, y]/(x2 − y3) at

(x, y).
• tacnode if the completion of OX,p at mX,p is isomorphic to the completion of k[x, y]/(x2− y4)

at (x, y).
• triple point if the completion of OX,p at mX,p is isomorphic to the completion of k[x, y]/(x3−
y3) at (x, y).

Def.(5.11.3.2)[δ-Invariants].

4 Linear Series
Def.(5.11.4.1) [Moduli Spaces].Define the Hilbert scheme Hd,g,r =
{Curves C of degree d and genus g}.

Define themoduli space of curvesMg = {isomorphism classes of smooth projective curves of genus g}.
Define W r

d (C) = {L ∈ Picd(C), h0(L) ≥ r + 1}.

Def.(5.11.4.2) [Linear Series].A linear series is a line bundle L together with a vector space
V ⊂ H0(L).

A grd is a line bundle L together with a vector space V ⊂ H0(L) of dimension r + 1.
For a line bundle L, denote by |L| the linear series (L,H0(L)).

Cor.(5.11.4.3)[r ≤ d]. If grd exists on a complete curve C, then r ≤ d. And if r = d, then g(C) = 0.

Proof: Let s be a section of L, then the vanishing locus of s is an effective Cartier divisor D,
L ∼= L(D), and there is an exact sequence

0→ OX → L → L|D → 0.

As D is an Artinian scheme, L|D is trivial as D is discrete, so by(5.11.2.6), h0(L|D) = deg(D), and
h0(X,OX) = 1, so r = h0(X,L) ≤ d.
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If the equality holds, then H0(X,L)→ H0(X,L|D) is surjective, so to show g(C) = 0, it suffices
to show that h0(X,L) = 0. As L|D is trivial, there is a section t of L that generate L|D. Consider
the exact sequence

0→ L → L2 → L2|D → 0,

H0(X,L2)→ H0(X,L|D) is surjective because σ ⊗ t is mapped to σ. Then by(5.11.2.5),

h0(X,L2) = 2r + 1 = deg(L2) + 1.

So we may replace L by arbitrarily large powers of L. Now L is ample by(5.11.2.20), so for r large,
H1(X,Lr) = 0. □

Prop.(5.11.4.4)[Linear Series and Maps].For any grd (L, V ) on a non-singular precurve C, there
is a map φ : C → Pr and a map φ∗OPr(1)→ L s.t. the coordinates T0, . . . , Tr are mapped to a basis
of V .

This map is injective iff for any p ̸= q, Vp+q has codimension 2. This map is an immersion iff for
all p, V2p has codimension 2. So in particular, this map is an embedding iff for any effective divisor
D of degree 2, VD has codimension 2.

Proof: Take a basis s0, s1, . . . , sr ∈ V , as C is non-singular, the image of the map (s0, . . . , sr) :
Or+1
X → L is an invertible sheaf as it is torsion-free. Then take the corresponding embedding induced

by(5.5.2.4). □

Cor.(5.11.4.5). If L is a very ample line bundle of degree d on a curve C, then φ|L| embeds C as a
closed subscheme of degree d.

Proof: Use(5.11.4.4), The pullback of OPr(1) under φ is just L, so the assertion follows
from(5.11.2.7). □

Lemma(5.11.4.6).Let L ∈ Picd(C) be general, then h0(L) = max{1, d− g + 1}.

Proof: If D =
∑
pi is a general effective divisor, notice h0(K) = g, h0(K − p1) = g − 1, h0(K −

p1 − p2) = g − 2, and repeating this, we get h0(K − D) = max{0, g − d}, when we choose pi
that are as independent as possible(any section has f.m. zeros). Then by Riemann-Roch, l(D) =
d − g + 1 + max{0, g − d} = max{1, d − g + 1}. As every divisor of degree d ≥ g is effective, this
settles the d ≥ g case.

If D is non-effective and d ≤ g − 1, we need to show W 0
d is not dominant in Picd. But J has

dimension g by??nd W 0
d has dimension at most d, so this is true. □

Prop.(5.11.4.7). Suppose D is a divisor of degree g + 3, then for D general, φD = φ|L(D)| is an
embedding.

Proof: By(5.11.4.6), for a general D, l(D) = 4. Thus φD being not an embedding is equivalent to
the existence of a divisor D0 = p+q that l(D−D0) ≥ 3. This means D−D0 ∈W 2

g+1 = K−W 0
g−3. So

the divisor D = D0 + (D−D0) ∈W 0
2 + (K−W 0

g−3) which has dimension at most 2 + (g−3) = g−1.
But a general divisor D doesn’t lie on this g − 1-dimensional subvariety by(13.5.13.10), so a general
D defines an embedding φD. □

Def.(5.11.4.8)[Canonical Map].For a smooth curve C of degree g over a field k of genus g ≥ 1, the
canonical divisor KC is basepoint-free, and defines a canonical map to P

g−1
k .
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Proof: By(5.11.2.2)(5.5.3.3)(5.1.5.26), it suffices to prove for k, thus for any closed point p, h0(KC−
p) = 2g − 3− g + 1 + h0(OC(p)) ≤ g − 1 < h0(KC) = g by(5.11.2.23), so it is basepoint-free. □

Prop.(5.11.4.9)[Base-Free Pencil Trick].Let L,M be line bundles on C. Let s1, s2 be sections of
H0(L) without common zero, then the kernel of the map

s1H
0(M)⊕ s2H

0(M)→ H0(L ⊗M)

is H0(M⊗L−1).

Proof: Indeed, there is an exact sequence of sheaves:

M⊗L−1 →M⊕M (s1,s2)−−−−→M⊗L → 0.

Where the first map maps a section t to the pair (ts2,−ts1). This is a Koszul regular sequence(on
a common trivialization U ofM,L, s1, s2 ∈ C(U), thus this is just 0 → A → A ⊕ A s1,s2−−−→ A → 0).
Taking the global section functor gives the desired result. □

Prop.(5.11.4.10)[Geometric Riemann-Roch].Let C be a non-hyperelliptic curve of genus g ≥ 2.
Then the canonical map φK is an embedding, so we can assume C ⊂ Pg−1. Then for a divisor
D =

∑
pi,

r(D) = d− 1− dimD,

where D is the linear subspace generated by pi. Thus r(D) can be interpreted as the number of
linear relations between pi.

Proof: By the definition of the canonical embedding, l(K−D) is just the dimension of hypersurfaces
containing pi, thus it is equal to g− 1− dimD. Now by Riemann-Roch, r(D) = d− g+ l(K −D) =
d− g + g − 1− dimD = d− 1− dimD. □

Prop.(5.11.4.11).

Cor.(5.11.4.12)[Special Divisors].Let U (g) be the open subscheme of C(g) corresponding to the set
of non-special divisors of degree g.?
Proof:

□

Prop.(5.11.4.13)[Clifford Theorem].For a divisor D of degree 0 ≤ d ≤ 2g − 2 on a curve of genus
g,

r(D) ≤ d

2
.

with equality iff one of the following holds:
• r = d = 0, D = 0.
• d = 2g − 2, r = g − 1, D = KC .
• C is hyperelliptic and D = mg1

2.

Proof: Cf.[Algebraic Curves, Harris, P32].? □
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5 Hyperelliptic Curves
Def.(5.11.5.1) [Hyperelliptic Curves].A hyperelliptic curve over k is a complete non-singular
curve C together with a finite degree 2 map C → P1

k. Such a map is called a hyperelliptic map.
For g > 0, this is equivalen to the existence of a g1

2 on C(such a linear series must be basepoint-free,
by(5.11.2.24).

Cor.(5.11.5.2)[Genus 2 Curves are Hyperelliptic].Any complete nonsingular curve of genus 2 is
hyperelliptic, because KC has degree 2 and h0(KC) = 2(5.11.2.10).

Prop.(5.11.5.3) [Equation of Hyperelliptic Curves].Any image of a hyperelliptic map from a
hyperelliptic curve of genus g over an alg.closed field k of characteristic k ̸= 2 is isomorphic to the
projective curve that is the completion(5.11.1.18) of the affine curve in A2 defined in an affine chart
by y2 =

∏2g+2
i=0 (x−αi) or y2 =

∏2g+1
i=0 (x−αi), depending on whether the ∞ is branched or not. And

given 2g + 2 points in P1
k, there is exactly one degree 2 covering of P1 branched over these points.

Proof: Given any r points of P1
k, we can use a transformation of P1 to assume that all branch

points are finite, denoted by α1, . . . , αr. Consider the curve C ′ defined by y2 =
∏2g+2
i=0 (x− αi), then

it is a smooth curve by Jacobian criterion. Now let C be the smooth model of C ′, and consider
π : C → P1 by projecting to the x-coordinates and extend to the whole C by(5.11.1.15). This is
finite separable of degree 2, and π is simply branched at the points αi, and simply branched over ∞
if r is odd, thus it has genus ⌊ r−1

2 ⌋ by Riemann-Hurwitz(5.11.1.32).
Conversely, by Riemann-Hurwitz(5.11.1.32), any degree 2 covering of P1 has 2g+2 branch points,

because the branch points must be simply branched. The map k(x) → k(C) is Galois of degree 2,
take a y ∈ k(C) that σ(y) = −y, then y2 = g ∈ k(x). We can modify y s.t. g is a monic polynomial
with no repeated factors. Then it is of the form g(x) =

∏r
i=1(x − xi). Then it is isomorphic to the

curve constructed above, and branched over x1, . . . , xr and possibly∞. In particular, it is determined
by the set of branched points, so we get the desired assertion. □

Remark(5.11.5.4).The completion of C can be explicitly constructed, by gluing another affine chart
defined by ( y

xg+1 )2 =
∏2g+2
i=0 (1− αi 1

x) or ( y
xg+1 )2 = 1

x

∏2g+1
i=0 (1− αi 1

x).
Prop.(5.11.5.5). If C is a nonsingular complete curve of genus g ≥ 2 over k and L is a line bundle
that corresponds to a hyperelliptic map C → P1

k, then L⊗(g−1) ∼= KC .
In particular, the image of C under the canonical map is the rational curve in P

g−1
k .

Proof: Consider the composition of the hyperelliptic map and the Veronese map

C
|L|−−→ P1

k

vg−1−−−→ P
g−1
k ,

which corresponds to the line bundle |L⊗(g−1)|. This line bundle has degree 2g − 2, and the map
H0(Pg−1,O(1)) → H0(C,L⊗(g−1)) is injective, because the Veronese map is non-degenerate. Thus
h0(L⊗(g−1)) ≥ g, thus isomorphic to KC , by(5.11.2.13). Hence this map is just the canonical map. □

Cor.(5.11.5.6).For a hyperelliptic curve, the smallest degree of an embedding C → Pr is g+ r. Note
that hyperelliptic curves cannot be embedded into P2, i.e. smooth plane curves are non-hyperelliptic.
Proof: Firstly we show a special divisor cannot induce an embedding: A special divisor is a divisor
that is contained in a hypersurface intersection of C under the canonical map, thus by geometric
Riemann-Roch(5.11.4.10), r(D) is just the number of points of D mapped to the same point under
the canonical map, because intersection with the rational normal curve are all linearly independent.
Now this means D contains g1

2, so φD factors through π, thus not an embedding.? Cf.[Algebraic
Curves, Harris, P21]. □
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Prop.(5.11.5.7)[Hyperelliptic and Canonical Map].A complete smooth curve of genus g ≥ 1 is
hyperelliptic iff the canonical map(5.11.4.8) is not a closed embedding.

Proof: The canonical map is not an embedding iff there exists an effective divisor D of degree 2
that l(K −D) > l(K)− 2. Now l(K −D) = 2g − 4− g + 1 + l(D), so this is equivalent to l(D) > 1,
which is equivalent to a g1

2, which is equivalent to hyperelliptic(5.11.5.1). □

Prop.(5.11.5.8)[Uniqueness of Hyperelliptic Maps].For a hyperelliptic curve of genus g ≥ 2, up
to automorphic of P1, there are at most one hyperelliptic map, or equivalently there is exactly one
g1

2 on C.
But for (hyperelliptic)curve of genus 1, thus is not unique: any divisor of degree 2 is effective,

but they are not unique, because Pic2(C) ∼= J(C)(13.5.13.10).

Proof: If L ̸=M are two line bundles on C with h0 = 2, then h0(L ⊗M) ≥ 4 by base-free pencil
trick(5.11.4.9), and in fact h0(L ⊗M) = 4 by(5.11.4.3). Now we can tun the same argument again
to L and L ⊗M, to show that h0(L2 ⊗M) = 6. And inductively h0(Ln ⊗M) = 2n+ 2. But then
for n large, Riemann-Roch shows 2n+ 2 = 2n+ 2− g + 1, thus g = 1, contradiction. □

Gonal Curves

Def.(5.11.5.9)[Gonal Curves].A trigonal curve is a complete non-singular curve C with a degree
3 map C → P1. Similarly, a k-gonal curve is a complete non-singular curve C with a degree k map
C → P1

k. Being k-gonal is equivalent to having a basepoint-free g1
k.

Notice also for non-hyperelliptic curves, any g1
3 must be basepoint-free.

Def.(5.11.5.10)[Hurewitz Spaces].Let the Hurewitz space be

Hd,g = {(C, f)|C ∈Mg, f : C → P1 of degree d with simple branching}.

In particular, H2,g is just the space of hyperelliptic curves together with a hyperelliptic map.

Prop.(5.11.5.11)[Dimension of Hurewitz Spaces]. dimHd,g = 2d+ 2g − 2.

Proof: Let b = 2d+ 2g− 2, then the branch divisor will consist of an unordered b-tuple of distinct
points. Then we obtain a map Hd,g → Pb\∆, where we regard Pb as the set of polynomials of degree
b and ∆ the determinant, and the fiber is finite by cut-paste technique. □

Cor.(5.11.5.12)[Dimension of Moduli Space of Curves]. dimMg = 3g − 3.

Proof: There is a map Hd,g →Mg. When d is large, we can analyze the fiber of this map, that is,
given a curve of genus g, how many simply branched maps C → P1 of degree d are there? Such a map
is equivalent to a line bundle of degree d and a pair of base free sections σ0, σ1 ∈ H0(L). The base-free
condition is an open condition, thus the dimension of the fiber is g + 2(d− g − 1)− 1 = 2d+ g − 1.
Thus the dimension ofMg = 2d+ 2g − 2− (2d− g + 1) = 3g − 3. □

Cor.(5.11.5.13).The space of hyperelliptic curves has dimension 2g − 1.

Proof: H2,g has dimension 2g+2, and for any hyperelliptic curve, there is exactly one hyperelliptic
map up to automorphism of P1, by(5.11.5.8), thus the space of hyperelliptic curves has dimension
2g + 2− 3 = 2g − 1. □

Cor.(5.11.5.14). If g ≥ 3, then not all curves of genus g is hyperelliptic.
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Proof: Because when g ≥ 3, 2g − 1 < 3g − 3. □

Lemma(5.11.5.15).For a line bundle of degree 3 on a curve of genus g ≥ 3, h0(L) ≤ 2, by Clifford’s
theorem(5.11.4.13). Thus a trigonal map must be associated to a complete linear series g1

3.

Prop.(5.11.5.16)[Hyperelliptic are not Trigonal].A curve of genus g ≥ 3 cannot be both hyper-
elliptic and trigonal.

Proof: Suppose there are two basepoint-free line bundles L,M of degree 2 and 3 on C that h0(L) =
h0(M) = 2(5.11.5.15), then the base-free pencil trick(5.11.4.9) implies that h0(M⊗L) ≥ 4. If g = 3,
then this contradicts Riemann-Roch. If g ≥ 4, then this contradicts Clifford’s theorem(5.11.4.13). □

Prop.(5.11.5.17)[Genus 3 Curves are Hyperelliptic or Trigonal].Any genus 3 non-hyperelliptic
complete smooth curve C with a rational point is trigonal.

Proof: If C is non-hyperelliptic, then the canonical map realizes C as a plane curve of degree
4(5.11.8.6), thus the projection of C along a point on C induces a map C → P1. This map is finite
of degree 3 because it is non-constant as C is non-degenerate, and has degree 3, by(5.11.2.28). □

Prop.(5.11.5.18) [Uniqueness of Trigonal Divisors].There exists at most one g1
3 on a curve of

genus g ≥ 5.

Proof: If L ̸=M are two base free line bundles of degree 3 that h0 = 2, then we can use base-free
trick to show that h0(L ⊗M) = 4. But this contradicts Clifford’s theorem(5.11.4.13). Notice the
equality cannot hold, because the degree is too low to be the canonical bundle, and also C cannot
be both hyperelliptic and trigonal(5.11.5.16). □

6 Castelnuovo’s Theory
Lemma(5.11.6.1)[Castelnuovo’s Lemma].Let Γ ∈ Pn be a configuration of d ≥ 2n + 3 points in
linear general position, and if hΓ(2) = 2n+ 1, then Γ lies in a rational normal curve.

7 Plucker Formulas
Def.(5.11.7.1) [Weierstrass Group].Let C be a smooth of genus g ≥ 2, p ∈ C, then Sp =
{− ordp(f)|f ∈ H0(OC(−p))} is a semigroup, called the Weierstrass semigroup of p ∈ C. And
the gap sequence is N\Sp, which is the set of orders of pole of p that doesn’t occur.

Lemma(5.11.7.2).We have |Gp| = g.

Proof: Notice that

Gp = {m : h0(mp) = h0((m− 1)p)}, Sp = {m : h0(mp) = h0((m− 1)p) + 1}

and we know by(5.11.2.12) that hp(mp) = m − g + 1 for m large, thus there are exactly g jumps,
which shows |Gp| = g. □

Def.(5.11.7.3)[Weierstrass Points].A point p ∈ C is called Weierstrass point if the gap sequence
is not {1, 2, . . . , g}. It is called a hyperelliptic Weierstrass point if Gp = {1, 3, . . . , 2g − 1}, and
is called a normal Weierstrass point if Gp = {1, 2, 3, . . . , g − 1, g + 1}.

Define the weight of the p ∈ C to be the sum w(p) =
∑
i≤g(ai − i), where the gap sequence is

numbered {a1, . . . , ag}.
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Prop.(5.11.7.4).For any compact Riemann surface C, ∑p∈C w(p) = g(g − 1)(g + 1).

Proof: Cf.[G-H78], P274. □

Cor.(5.11.7.5).For general p ∈ C, Gp = {1, 2, . . . , g}.

Prop.(5.11.7.6)[Hyperelliptic Weierstrass Points]. If C is hyperelliptic defined by y2 =
∏2g+1
i=0 (x−

αi), then there are 2g + 2 branching point of x, where Sp = {0, 2, 4, . . . , 2g, 2g + 1, . . .}. In this way,
w(p) = g(g − 1)/2. Thus there are 2g + 2 Weierstrass points, and these are all of them.

If C is non-hyperelliptic, then by Clifford’s theorem(5.11.4.13),

h0(kp) < k

2
+ 1, k = 1, . . . , g

Thus h0((ai − 1)p) < ai−1
2 + 1, and h0((ai − 1)p) = 1 + (ai − 1)− (i− 1). Thus we get

ai ≤ 2i− 2, i = 2, . . . , g.

Then w(p) ≤
∑g
i=2(i− 2) = (g−1)(g−2)

2 . Thus there are at least

2g(g − 1)(g + 1)
(g − 1)(g − 2)

≥ 2g + 6

Weierstrass points.
To sum up, there are no less than 2g+2 Weierstrass points, and there are exactly 2g+2 Weierstrass

points iff C is hyperelliptic.

Prop.(5.11.7.7).A generic Riemann surface of genus g ≥ 3 has no automorphisms.

8 Curves of Low Genus

In this subsection complete smooth curves of low genus are considered.

Prop.(5.11.8.1)[Genus 0 Curve].All smooth complete curve C of genus 0 is isomorphic to a plane
conic.

Proof: The curve has a degree 2 line bundle K∨
C , thus by Riemann-Roch h0(O(p)) = 3 and

by(5.11.2.26) it induces a closed embedding of C into P2 of degree 2, thus it is a plane conic. □

Prop.(5.11.8.2).A nonsingular curve C of genus 0 with a k-rational point p is isomorphic to P1
k:

Proof: By Riemann-Roch, h0(O(p)) = 2 and degO(p) = 1, thus by(5.11.2.26), O(p) defines a
closed embedding of C into P1, which must be an isomorphism. □

Prop.(5.11.8.3)[Genus 1 Curve].By(5.11.2.26), an effective divisor of degree 3 induces an embed-
ding of C into P2, So it is a smooth plane cubic by genus formula(5.11.2.33). Conversely, any smooth
plane cubic has genus 1.

Similarly, if we take an effective divisor of degree 4, then it gives an embedding C → P3. We
know that h0(OP3(2)) = 10 and h0(OC(2)) = 8, thus C is contained in 2 quadrics. Then C is the
intersection of these two quadrics, by Bezout’s theorem.



5.11. CURVES 725

Prop.(5.11.8.4)[Genus 2 Curves and Degree 4 Divisors].Let C be a curve of genus 2, and D
a divisor of degree 4. Then l(D − KC) = 1 + l(2KC − D) ≥ 1, thus D − KC is effective. Let
D −KC = p+ q. Then φD maps p, q to the same point.

There are two situations, firstly if D ̸= 2KC , then D−KC can be written uniquely as p+q. Then
the image of φD is a degree 4 curve with a node(if p = q) or a cusp(if p = q). Counting genus, this
has exactly arithmetic genus 2.

If D = 2KC . Then notice φ2KC is equal to φK followed by the normal curve map P1 → P2. This
is because if ω1, ω2 are a basis of H0(KC), then ω2

1, ω1ω2, ω
2
2 is a basis of H0(K2

C). So φD is a 2 to 1
map to a rational normal curve in P2.

Prop.(5.11.8.5)[Genus 2 Curve and degree 5 Divisors].Let C be a curve of genus 2 and D a
divisor of degree 5, then φD : C → P3 embeds C as a degree 5 curve, by(5.11.2.26).

Notice h0(OP3(2)) = 10 and h0(OC(2)) = 10− 2 + 1 = 9, thus C lies on at least one quadric Q.
And it can in fact lie on only one quadric, because if it lies on two quadrics, then C is the intersection,
and can have degree at most 4.

Next, notice h0(OP3(3)) = 20 and h0(OC(3)) = 15 − 2 + 1 = 14, so C lies on at least 6 cubics.
Without the 4 cubics containing the quadric, there are still at least 2 new cubics. Let S be such a
cubic, then S ∩Q is a curve of degree 6, so S ∩Q = C ∪ L, where L ∼= P1.

Prop.(5.11.8.6)[Genus 3 Non-Hyperelliptic Curve].For any non-hyperelliptic smooth curve C
of genus 3 over a field k, the canonical map(5.11.4.8) embeds C as a smooth quartic curve in P2.
This induces an isomorphism of smooth quartic plane curves up to automorphism of P2.
Proof: The canonical embedding is a closed embedding by(5.11.5.7). For the last assertion, any
plane curve of degree 4 has genus 3 by(5.11.2.33), and the sheaf OC(1) has degree 4 and 3 sections,
thus by(5.11.2.13), so this comes from a canonical embedding. In particular, any such curve can be
embedded in P2 in a unique way. □

Prop.(5.11.8.7).Any hyperelliptic smooth curve of genus 3 is a flat limit of non-hyperelliptic smooth
curves of genus 3.
Proof: Cf.[Vak17]P520. □

Prop.(5.11.8.8) [Genus 4 Non-Hyperelliptic Curves].Any non-hyperelliptic smooth complete
canonical curve C of genus 4 is a complete intersection of a quadric surface and a cubic surface.
Conversely, any regular complete intersection of a quadric surface and a cubic surface is a canonically
embedded non-hyperelliptic curve of genus 4.
Proof: Looking at the map H0(OP3(2)) → H0(OC(2)), we see C lies on a unique quadric
Q(uniqueness follows from Bezout’s theorem and(5.7.3.11), by the same reason as(5.11.8.5)).

Next looking at the mapH0(OP3(3))→ H0(OC(3)), then the kernel has dimension at least 5, thus
there is a cubic containing C but not Q. Then S∩Q is a complete intersection of degree 6 containing
C, also it has the same arithmetic genus as C(5.7.3.8), thus the same Hilbert polynomial(linear
function), so C = S∩Q by(5.7.3.11)s. Conversely, any smooth curve of the form S∩Q is a canonical
curve of genus 4, by adjunction formula(KC = OC(1) has degree 6).

Conversely, for any smooth complete intersection of a quadric surface and a cubic surface has
arithmetic genus 4 by(5.7.3.8), OC(1) has degree 6 and h0(OC(1)) ≥ 4 because C is non-degenerate:
there are no smooth plane curve of genus 4.

Now if Q is non-singular, then C is of type (3, 3) in Q, thus the two projections are two trigonal
map from C to P1, and if Q is a cone, the projection from the vertex is a trigonal map from C to
P1. □
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Prop.(5.11.8.9) [Non-Hyperelliptic Curve of Genus ≥ 5].For a non-hyperelliptic curve C of
genus 5, we have a canonical map φ : C → P4. Firstly we consider what quadrics C lies on:
h0(OP4(2)) = 15 and h0(OC(2)) = 12, so C lies on at least 3 quadrics. There are two cases:

1. C = ∩Qi where Qi are the quadrics containing C.
2. C is a strict subset of ∩Qi.

which corresponds to non-trigonal and trigonal curves.

Proof: The case 1 does occur, because by Bertini’s theorem(5.6.4.29), for general three quadrics
Qi, ∩Qi is a smooth curve, and thus KC = (KP4(−5 + 2 + 2 + 2))|C = OC(1). So d = 8, g(C) = 5.

In this case, C is not trigonal, because if C is trigonal, then C has a g1
3, which means C has three

colinear point. Then all the quadrics Qi must contain this line, contradiction.
The case 2: Cf.[Algebraic Curves, Harris, P24].? This case corresponds to trigonal curves. □

Prop.(5.11.8.10) [Non-Hyperelliptic Curve of Genus 5 is Tetragonal].Let C be a canonical
embedded curve which is not trigonal admits a map of degree 4 to P1.

Proof: Let P2 = {Q|C ⊂ Q}. We can ask there are singular quadrics in this set. Inside P14 which
is the space of all quadrics in P4, there is a quintic hypersurface of singular quadrics. ? For the
rest, Cf.[Algebraic Curves, Harris, P25]. □

Prop.(5.11.8.11). If C ⊂ P
g−1
k is a canonical smooth curve of genus g ≥ 6, then C is not a complete

intersection.

Proof:
□

Correspondences

Complex Tori and Algebraic Varieties

9 Castelnuovo Theory
10 Brill-Noether Theory
11 Relative Curves

Def.(5.11.11.1) [Relative Curves].Let S ∈ Sch, a smooth curve over S is a smooth morphism
C → S of relative dimension 1 that is separated and of f.p..

Prop.(5.11.11.2).Let S ∈ Sch and C a smooth curve over S, then

12 Riemann Surfaces
Prop.(5.11.12.1)[Genus].

Thm.(5.11.12.2)[Uniformization Theorem, Poincaré-Klein-Koebe].Any simply-connected Rie-
mann surface is analytically isomorphic to one of the following:

H,C,C.

Proof: □
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Cor.(5.11.12.3)[Classifying Riemann Surfaces].For any Riemann surface S with universal cover-
ing space S̃,

• If S̃ ∼= C, then S is compact, so by(5.11.12.5) and Riemann-Hurewitz(5.11.1.32), S̃ → S is an
isomorphism. So in this case S ∼= C.

• If S̃ ∼= C, then π1(S) ⊂ Aut(S̃) = C⋉ C× by(10.5.7.8). But π1(S) can have no fixed point, so
they are all of the form τ : z 7→ z + b. So it is a lattice of C, thus isomorphic to 1,Z or Z2.
The corresponding S is C,C× or C/Λ a torus.

• If S̃ ∼= H, then S = H/Γ where Γ ⊂ PSL(2,R) is a Fuchs group?. Such S are called a
thyperbolic Riemann surface.

Prop.(5.11.12.4)[Metrics on Riemann Surfaces].For a Riemann surface S,
• If S = C, then S has a natural Fubini-Study metric

ds2 = 4|dz|2
(1 + |z|2)2 .

with curvature 1.
• If S̃ = C, then π1(S) ⊂ Aut(C) are all translations so preserves the Euclidean metric ds2 =
|dz|2, thus S has a flat metric.

• If S̃ = H, then π1(S) ⊂ Aut(C) ∼= PSL(R) preserves the hyperbolic metric ds2 = y−2dxdy
by(11.7.4.5), thus inducing a hyperbolic metric on S with curvature −1.

Compact Riemann Surfaces

References are [李 04].
Prop.(5.11.12.5)[Riemann Existence Theorem].Any compact Riemann Surface is a Hodge man-
ifold, thus projective algebraic, by(11.9.8.6) and Chow’s lemma??. And the category of compact
Riemann surfaces is equivalent to the category of compact algebraic curves, by GAGA(11.8.7.17).
Proof: Because H1,1(X) = H2(X,Z), so it clearly contains integral classes. And it is positive be-
cause there is a basis generated by any Hermitian metric onX. So the theorem follows from(11.9.8.6).
□

Remark(5.11.12.6). In fact the same argument shows that any Kähler manifold with H0,2(X) = 0 is
projective.

Cor.(5.11.12.7).Any compact Riemann surface of genus 0 is analytically isomorphic to C.
Prop.(5.11.12.8).

• For any meromorphic function f on a compact Riemann surface, (f) = (f)0− (f)∞ has degree
0.

• Let ω be a differential form on a compact Riemann surface, then the sum of residues of ω at
its poles is zero.

Proof: 2: Choose a triangularization of the Riemann surface, then use the fact for any simple
region Ω be boundary C, ∫

C
ω = 2π i(

∑
poles

resp ω).

And the integrals cancel out.
1: This is a direct consequence of 2 applied to the differential form ω = df/f . □
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Abel’s Theorem and Reciprocity Law

Prop.(5.11.12.9)[Reciprocity Law I].Cf.[Griffith/Harris P230].

Prop.(5.11.12.10)[Weil]. f, g are meromorphic functions on a compact Riemann surface that (f), (g)
are disjoint, then ∏

f(p)vp(g) =
∏

g(p)vp(f).

Proof: Cf.[Griffith/Harris, P242]. □

Prop.(5.11.12.11)[Differentials on Plane Curves].
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5.12 K3 Surfaces
References are [Lectures on K3 Surfaces Huybrechts].
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5.13 Perverse Sheaves
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6 | Algebraic Geometry II: Spectral Alge-
braic Geometry

6.1 Andre-Quillen-Cohomology
Basic references are [Andre-Quillen Cohomology of Commutative Algebras Iyenger]. See also

[Quillen Cohomology of Commutative Rings] and [Quillen On the (Co-)homology of Commutative
Rings]. [Smoothness, Regularity and Complete Intersections] is a must read.

1 Naive Cotangent Complex
This subsection is obsolete.

Prop.(6.1.1.1)[Polynomial Replacement].For a morphism of ring morphisms (R → S) → (R′ →
S′), let α, α′ be two presentations, then there exists morphism of presentations, and different mor-
phisms induce homotopic maps NLS/R → NLS′/R′ .

Proof: Cf.[[Sta]00S1]. In fact, any surjective formally smooth representation will give the naive
cotangent complex, up to quasi-isomorphism(6.1.1.4). □

Cor.(6.1.1.2). If A = R[Xi] be a polynomial algebras, then NLA/R is homotopic to (0 → ΩB/A)
because A→ A is a presentation with zero kernel.

If R→ A is surjective with kernel I, then NLA/R is homotopic to (I/I2 → 0).

Lemma(6.1.1.3)[Formally Smooth Replacement 1]. If A→ B is a ring map that has two surjec-
tive presentations C → B,D → B with kernels I, J . If there is a map C → D commutating these
two presentation, D formally smooth, and C → D is surjective or C is formally smooth, then their
corresponding naive cotangent complexes are quasi isomorphic.

Proof: Cf.[Foundations of Perfectoid Geometry P123]. □

Prop.(6.1.1.4) [Formally Smooth Replacement 2]. If B is an A-algebra that has two formally
smooth presentation C → B,D → B with kernels I, J . then their corresponding naive cotangent
complexes are quasi isomorphic.

Proof: It suffices to prove they are both quasi isomorphic to the canonical cotangent complex. For

this, we first consider the diagram
D C

A[B] B

, where D = A[S] and S = C
⨿
A[B] as sets. The

two map D → A[B] and D → A[B] can be chosen because C → B is surjective. So the results follows
from(6.1.1.3). □
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Prop.(6.1.1.5)[Jacobi-Zariski Sequence].Let A→ B → C be a ring map. Choose a presentation
α : P → B for B/A with kernel I, a presentation β : Q→ C for C/B with kernel J , a presentation
γ : R → C for the induced representation C/A with kernel K, then there is an exact sequence of
complexes:

I/I2 ⊗B C K/K2 J/J2 0

0 ΩP/A ⊗B C ΩR/A ⊗ C ΩQ/B ⊗ C 0

Applying snake lemma, we get

H1(NLB/A ⊗B C)→ H1(LC/A)→ H1(LC/B)→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0.

Proof: Cf.[[Sta]00S2]. □
Prop.(6.1.1.6)[Localization].Let A → B be a ring map, for a multiplicative set S of B, we have
NLB/A ⊗B S−1B is quasi-isomorphic to NLS−1B/A.
Proof: Because it commutes with colimit, it suffice to prove for S = f , and this is the content of
lemma(6.1.1.7) below. □

Lemma(6.1.1.7). If A → B is a ring map and α : P → B is a presentation of B with kernel I, then
β : P [X]→ Bg : X → 1/g is a presentation of Bg with kernel J = I + (gX − 1). Then we have

• J/J2 = (I/I2)g ⊕Bg(fX − 1).
• ΩP [X]/A ⊗P [X] Bg = ΩP/A ⊗P Bg ⊕BgdX.

• NL(β) ∼= NL(α)⊗B Bg ⊕ (Bg
g−→ Bg).

Hence NLB/A ⊗B Bg → NLBg/A is a homotopy equivalence.
Proof: Cf.[[Sta]08JZ]. □

2 Cotangent Complex
Def.(6.1.2.1) [Cotangent Complex].The adjunction of A ⋉ − and A ⊗− Ω−/R(4.4.3.5) extends
to an adjunction between (sCAlgR)/A and sModA. Theses categories are model categories
by(4.8.2.11)(4.8.2.14) and(3.4.4.1), and A ⋉ − preserves all weak equivalences and fibrations, so
it is a Quillen adjunction(3.4.2.1). Then the cotangent complex LA/R as a simplicial A-module is
defined to be the total left derived functor applied to the trivial simplicial algebra A. Equivalently,
it is

LA/R = A⊗X ΩX/R

where X is a cofibrant replacement(3.4.1.12) of A.
Because of the Dold-Kan equivalence, we sometimes also call NLA/R the cotangent complex.

Def.(6.1.2.2)[André-Quillen Homology and Cohomology].The André-Quillen homology is
defined to be

Dq(A/R) = πq(LA/R) = HqN(LA/R)(4.8.2.2).
More generally, if M is an A-module, then let

Dq(A/R,M) = πq(LA/R ⊗AM).

The André-Quillen cohomology is defined to be

Dq(A/R,M) = Extn(NLA/R,M).
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Prop.(6.1.2.3)[Functoriality].The cotangent complex is functorial in arrows R → A: If there is a
commutative diagram

R S

A B

then there is a natural morphism LA/S⊗AB → LB/R. This is because if X is a cofibrant replacement
for A, then X ⊗R S is also cofibrant object, because B ⊗A − is a Quillen adjunction, by(4.8.2.15),
then it factors through X ⊗R S → Y → B where Y is a cofibrant replacement of B, thus Y is also
cofibrant. Then the functor LA/S ⊗A B → LB/R is induced by

B ⊗A (A⊗X ΩX/R)→ B ⊗Y ΩY/S .

The formation of Kähler differential commutes with arbitrary colimit as it is a left adjoint, so
the formation of cotangent complex commutes with filtered colimits, both in A and B. Especially,
it commutes with taking stalks, hence the sheaf of cotangent complexes of a map between schemes
can be constructed as in the case of Kähler differentials, and it is a Qco sheaf.

Def.(6.1.2.4)[Canonical Resolution].By the Dold-Kan correspondence, we will say that two sim-
plicial A-modules are quasi-isomorphic iff their normalized nerves are quasi-isomorphic. Then
PA(B)→ B is a quasi-isomorphic resolution of B, where B is the trivial complex.

Proof: There is a homotopy d between id and 0 for n ≤ 0, where

dn : F (GF )nG(B)→ F (FG)n ◦GFG(B)

using counit map, and on degree 0,−1, it is A[A[B]] ∂1−∂2−−−−→ A[B] → B → 0, which is clearly 0, so
this is a zero map.

Thus Tot(PA(B)) ∼= B, and N∗(A) ∼= Tot(A) by Dold-Kan correspondence, so we are done. □

Cor.(6.1.2.5).
D0(LB/A,M) = ΩB/A ⊗M, D0(A/R,M) = DerR(A,M)

by the generator-relation definition of Kähler differential.

Prop.(6.1.2.6) [The fundamental Distinguished Triangle]. If T is a site and A → B → C
are morphisms of sheaves of rings over T , then there is a morphism of simplicial A-modules that
corresponds to distinguished triangles in D≤0(C) via Dold-Kan correspondence:

LB/A ⊗LB C → LC/A → LC/B.

In particular, if M is a B-module, then there are long exact sequences

. . .→ D1(A/R,M)→ D1(B/R,M)→ D1(B/A,M)→M⊗AΩA/R →M⊗AΩB/A →M⊗BΩB/A → 0

. . .→ D1(A/R,M)→ D1(B/R,M)→ D1(B/A,M)→ DerR(A,M)→ DerA(B,M)→ DerA(B,M)→ 0

Proof: Choose a simplicial resolution X → A where X is free, then we factor the morphism
X → A→ B to get a commutative diagram

X Y

A B

i
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where i is free, then we have an exact sequence(in Ch≥0(R) via Dold-Kan) of simplicial modules

0→ B ⊗X ΩX/R → B ⊗Y ΩY/R → B ⊗Y ΩY/X → 0

because each Xn → Yn = Xn ⊗
⊕

φ:[n]↠[k] φ
∗Pk has a retraction, and use(4.4.3.7).

Notice we have a simplicial map A⊗X Y → B which is a weak equivalence and A⊗X Y is a free
simplicial A-algebra. Then it suffices to note that Xn → Yn = Xn ⊗

⊕
φ:[n]↠[k] φ

∗Pk is projective
implies

B ⊗Y ΩY/X
∼= B ⊗A⊗XY ΩA⊗XY/A

, and ΩX/R is termwise projective. □
Prop.(6.1.2.7)[Properties of Cotangent Complexes].

• If B = s(P ) where P is a projective A-module, then LB/A is weakly equivalent to Ω1
P/A[0].

• (Kunneth Formula) If B,C are Tor independent over A, then

LB⊗C/A ∼= (LB/A ⊗A C)⊕ (LC/A ⊗A B).

• (Flat Base Change)If B,C are Tor independent over A, LB/A ⊗A C ∼= LB⊗AC/C .
Proof:

• SR(P ) is already cofibrant in (sCAlgR)/A.
• Let X → B, Y → C be cofibrant replacement of A,B respectively, then X ⊗R Y → B ⊗A C is

a cofibrant replacement, as X ⊗A Y is cofibrant, and Tor independence shows

π∗(X ⊗A Y ) = π∗(X)⊗A π∗(Y ) = B ⊗A C.

thus the result follows from(4.4.3.6).
• The same as Künneth formula, noticing that X ⊗A C → B ⊗A C is a weak equivalence by Tor

independence, and X ⊗A C is cofibrant.
□

3 Relations with Algebraic Properties
Cf.[Andre-Quillen Homology].

Prop.(6.1.3.1) [Acyclicity for Smooth Algebras]. If A → B is smooth, then LB/A ∼= Ω1
B/A[0].

In particular, if A → B is étale, then LB/A = 0, and LC/A ∼= LB/A ⊗B C, by distinguished trian-
gle(6.1.2.6).
Proof: The cotangent complex is local, so we may assume it is standard smooth, so it factors as
A → A[X1, . . . , Xk]

g−→ B, where g is étale, so using the distinguished triangle and polynomial case,
the result follows. □

Prop.(6.1.3.2)[Compatibility with p-adic Completion]. If A is a p-adically complete commuta-
tive ring with bounded p-torsion and B is a flat A-module, then B also has bounded p∞-torsion
by(4.9.2.4), let B̂ be the p-adic completion of B, then the cotangent complex L

B̂/B
vanishes after

derived p-completion.
In particular, by the distinguished triangle(6.1.2.6), if B is a smooth algebra, then L

B̂/A
∼= Ω1

B̂/A

is a finite projective B̂-module.
Proof: This is true after base change −⊗LA A/p by flat base change(6.1.2.7),(4.9.7.4) and derived
Nakayama(4.9.6.10). □
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4 Deformations

Prop.(6.1.4.1) [Topological Invariance of Étale Site].Let A be a ring, consider the following
category: CA of flat A-algebras B that LB/A = 0, then if Ã → A is surjective with locally nilpotent
kernel, then the base change defines an isomorphism of categories C

Ã
∼= CA.

By(6.1.2.7), LB/A vanish is equivalent to being étale, thus the properties characterize the invari-
ance of étale site under infinitesimal thickening.

Proof: ? □

Prop.(6.1.4.2) [Relative Perfect Case]. If A is a ring of charp and B is an A-algebra which is
relatively perfect, i.e. B(1) = B ⊗A,Frob A→ B is an isomorphism, then LB/A = 0.

Proof: Notice for any A-algebra C, the relative Frobenius induces zero map LC(1)/A → LC/A, be-
cause by using the canonical polynomial resolution, d(xp) = pxp−1xs = 0. Now the relative Frobenius
is an isomorphism B(1) → B, thus induces an isomorphism LB(1)/A → LB/A by Functoriality, thus
LB/A = 0. □

Cor.(6.1.4.3)[Witt Vector Construction].There is an equivalence of categories of Cn = flat Z/pn-
algebras that A/p is perfect and C1 = perfect rings over Z/p.

moreover, taking limit, this is even equivalent to the category of flat p-adically complete Zp
algebras that A/p is perfect. Which is just the construction of Witt vectors.

Proof: It suffices to show that Cn ⊂ CZ/pn : By(6.1.4.2) and flat base change(6.1.2.7),
LA/(Z/pn) ⊗Z/pn Z/p ∼= L(A/p)/(Z/p) = 0, so LA/(Z/pn) ⊗Z/pn Z/pk ∼= 0 by induction, and so
LA/(Z/pn) ∼= 0.

For the last assertion, it is flat because it is torsion-free, which is because if p(xn) = 0, then by
0 → pnZ/pn+1 → Z/pn+1 p−→ Z/pn → 0 and the flatness of An+1, xn+1 ∈ pnAn+1, thus xn = 0, and
x = 0. □

Prop.(6.1.4.4) [Adjointness of Witt Vectors].Using a more careful analysis of cotangent com-
plex(embedded deformation), we can show that if A→ B ∈ CA and there is a infinitesimal deforma-
tion C → C ′ of A-algebra, then a map B → C ′ can be lifted to an A-algebra map A→ C.

In particular, taking inverse image, we get that

HomFp(A,B/p) ∼= HomCRingZp
(W (A), B).

which is the usual adjointness of the Witt vector construction.

5 Algebra Extension
Cf.[Perfectoid Geometry Appendix B].

Def.(6.1.5.1) [Algebra Extensions].Let A → B be a ring map and M be a B-module, then an
A-algebra extension of B by M is a short exact sequence of A-modules 0 → M → B′ → B → 0
that B′ is an A-algebra with M being an ideal of it.

The set of such extensions are denoted by ExalA(B,M).

Prop.(6.1.5.2).ExalA(B,M) is a group under Baer sum, where the sum of two extension is the
extension given by pushout, i.e. (B1 ⊕ B2)/{(m,−m)|m ∈ M}. Moreover, it is a B-module, where
the multiplication is the pushout along multiplication of b on M .



736 CHAPTER 6. ALGEBRAIC GEOMETRY II: SPECTRAL ALGEBRAIC GEOMETRY

Prop.(6.1.5.3).There is a trivial extension given by DB(M) = B⊕M(4.4.3.5), and the automorphism
of DB(M) is isomorphic to DerA(B,M) via d 7→ id⊕d.

Proof: Cf.[Foundations of Perfectoid Spaces Masullo P118]. □

Prop.(6.1.5.4).Let A→ B → C be ring maps, then for any C-module M , there is an exact sequence

0→ DerB(C,M)→ DerA(C,M)→ DerA(B,M) ∂−→ ExalB(C,M)→ ExalA(C,M)→ ExalA(B,M)

functorial in M . Where ∂ is given by(6.1.5.3).

Proof: Cf.[Foundations of Perfectoid Spaces Masullo P119]. □

Prop.(6.1.5.5).Let A → B be a ring map or a map of sheaves of rings, and let M be a B-module,
then there is an isomorphism of B-modules that is natural in M :

ExalA(B,M) = Ext1
B(NLB/A,M).

Proof: Cf.[Foundations of Perfectoid Spaces, P127]. □

Infinitesimal Deformation

Def.(6.1.5.6).An infinitesimal deformation of a f.g. k-algebra is defined as a algebra A′ flat over
D = k[t]/(t2) that A′ ⊗D k = A.

A f.g. k-algebra is called rigid if it has no infinitesimal deformations.

Prop.(6.1.5.7).Let A be a f.g. k-algebra, write A as a quotient of a polynomial ring over k with
kernel J , then there is an exact sequence J/J2 → ΩP/k ⊗P A → ΩA/k → 0 by(4.4.3.7), then we
apply HomA(−, A) and let T 1(A) = Coker(HomA(ΩP/k ⊗A A,A) → HomA(J/J2, A)). Then T 1(A)
parametrize infinitesimal deformations of A.
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6.2 Spectral Algebraic Geometry(Lurie)
Main references are Lurie’s work, [Derived Algebraic Geometry, Thesis, Lurie].

Notation(6.2.0.1).
• Use notations from Derived Commutative Algebras.

Prop.(6.2.0.2)[DQCoh(SpecR)].For R ∈ CRing, there exists a unique sheaf of ∞-categories DQCoh on
SpecR s.t. for any affine open subset U ,

DQCoh(U) = D(O(U)).

Proof: Cf.[Clausen, deRham Cohomology]L8P3. □

Cor.(6.2.0.3).For R ∈ CRing and any M ∈ Mod(R), there exists an associated sheaf of derived
modules M ♯ on SpecR s.t. for any affine open U ⊂ SpecR, M ♯(U) = M ⊗R OSpecR(U). (I think
this sheaf is just the derived shifification of the associated sheaf M̃ on SpecR defined in(5.5.1.1).)

Proof: Cf.[Clausen, deRham Cohomology]L8P3. □

Cor.(6.2.0.4).Let X ∈ Aff and F ∈ QCoh(X), then Hq(X;F) = 0 for q > 0.

Proof: This is because the sheaf cohomology is the global section of the derived shifification, and
the derived shifification of F(X)♯ equals F̃(X) on any affine opens by(6.2.0.3). Thus H∗(X;F) =
F(X) ∈ D(OX(X)). □

Cor.(6.2.0.5).For R ∈ CRing, there is a sheaf of Abelian categories on X = SpecR with assigns
ModOX(U) for any affine open subset U ⊂ X.

Proof: It suffices to show the discrete elements in DQCoh(SpecR) form a sheaf, i.e. if M ∈ DOX(U)
is locally discrete, then it is discrete. And this is because the ring extensions are flat. □

Def.(6.2.0.6)[D(X)].Let X ∈ Sch, then D(X) = ModOX
(Sh(X;D(Z))) is an ∞-category, and the

assignment DX : U 7→ D(U) is a sheaf of ∞-categories on X.

Proof: ? □

Def.(6.2.0.7)[DQCoh(SpecR)].Let X ∈ Sch, then there is a sub-∞-category

DQCoh(X) ⊂ D(X)

consisting of elementsM s.t. for any inclusion of affine opens U ⊂ V , there is a natural isomorphism

M(V )⊗OX(V ) OX(U) ∼=M(U).

And the assignment DQCoh,X : U 7→ DQCoh(X) is a sheaf of ∞-categories on X.
Moreover, when X is affine, the global section functor defines an equivalence D(X) ∼= D(OX(X)).

Proof: ?
This follows from(6.2.0.6) and the fact that the Qco requirement is local:.
The last assertion is trivial. □
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Prop.(6.2.0.8) [Compact Objects in D(R)].For R ∈ CRing and M ∈ D(R), the following are
equivalent:

• M is a compact object.
• M lies in the thick (stable-∞)subcategory generated by R.
• M is dualizable w.r.t. the tensor product.
• M can be represented by a bounded chain of finite projective R-modules.

In particular, there is a full sub-∞-category of DQCoh(R) consisting of perfect objects, denoted by
Perf(R).

Proof: Cf.[Clausen, deRham Cohomology]L8P8. □

Cor.(6.2.0.9).For R ∈ CRing, X = SpecR, the assignment Perf : U 7→ Perf(OX(U)) on affine opens
is a subsheaf of DQCoh,X on affine opens.

Proof: Cf.[Clausen, deRham Cohomology]L8P9. □

Def.(6.2.0.10)[Perfect Objects].For X ∈ Sch, a perfect quasi-coherent sheaf on X is an object
F ∈ DQCoh(X) s.t. for any affine open U ⊂ X, F|U ∈ D(U) is a compact object(?i.e. Hom(M,−) :
DQCoh(X)→ s Set commutes with filtered colimits).

Prop.(6.2.0.11)[Pull and Push].For f : X → Y ∈ Sch, there is a pushforward functor f∗ : D(X)→
D(Y ) s.t.

• f∗DQCoh(X) ⊂ DQCoh(Y ).
• f∗ : DQCoh(X)→ DQCoh(Y ) preserves colimits and limits.

And it has a left adjoint f∗ : D(Y )→ D(X) s.t.
• f∗DQCoh(Y ) ⊂ DQCoh(X).
• If X,Y ∈ Aff, then f∗ is just the derived base change functor.

• f∗ commutes with base change?.

• f∗ satisfies projection formula?.

Proof: Cf.[Clausen, deRham Cohomology]L8P7. □

Prop.(6.2.0.12). If f is smooth and proper, f∗ : DQCoh(X)→ DQCoh(Y ) preserves perfect objects.

Proof: Cf.[Clausen, deRham Cohomology]L8P8. □

Prop.(6.2.0.13)[Grothendieck Duality]. If f : X → Y ∈ Sch is proper and smooth, then there is a
right adjoint f ! to f∗ : D(X)→ D(Y ), and it satisfies

• There is a natural isomorphism of functors: f∗ ⊗ f !(OY ) ∼= f !.
• If f has relative dimension d, then there is a natural isomorphism f !(OY ) ∼= Ωd

X/Y [d].

Proof: ? □
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6.3 Elliptic Cohomology Theory(Lurie)
Main references are [Elliptic Cohomology,1, 2, Lurie].
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7 | Weil Cohomologies, Motives and Motivic
Cohomology

7.1 Intersection Theory

Main references are [Sta]Chap43, 44 and [Ful98].

1 Setups
Def.(7.1.1.1) [Setups].The setup is a universally catenary(hence locally Noetherian) scheme
S(5.4.1.31) endowed with a dimension function δ(3.11.3.36), which will be fixed.

Example(7.1.1.2).There are some examples of (S, δ) in(7.1.1.1):
• k ∈ Field, S = Spec k and δ(|S|) = 0.
• A is a Noetherian domain of dimension 1, δ(p) = 0 if p is a maximal ideal and δ(η) = 1 for the

generic point η.
• S is a C.M. scheme and let δ(s) = −dim(OS,s).

Proof: These follow from(5.4.1.33). □

Prop.(7.1.1.3).Let (S, δ) be in(7.1.1.1), S Jacobian and δ(s) = 0 for any closed point s ∈ S. If Z ⊂ S
is an integral closed subscheme with generic point ξ, then

δ(ξ) = dim(Z) = dim(OZ,z)

where z ∈ Z is a closed point.

Proof: Cf.[Sta]02QO. □

Prop.(7.1.1.4)[δ-Dimenision].For f : X → S locally of f.t., the function

δ(x) = δ(f(x)) + tr.degk(f(x)) k(x)

is a dimension function on X. In particular, this equation is satisfied for any morphisms between
schemes of f.t. over S.

For a closed subscheme Z ofX, define dimδ(Z) = sup dimδ(η) where η are generic pts of irreducible
components of Z.

Proof: Cf.[Sta]02JW.? □
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2 Chow Homologies

Cycles

Def.(7.1.2.1)[Cycles].An algebraic cycle on a scheme X ∈ Schloc.ft /S is a formal sum of integral
closed subschemes of X with integer coefficients that is locally finite. A k-cycle is a cycle that is a
sum of integral closed subschemes of dimension k that is locally finite. The group of k-cycles over X
is denoted by Zk(X).

If dimδ(X) = d, then we also denote Zk(X) = Zd−k(X).

Prop.(7.1.2.2).Let X be a scheme locally of f.t. over S, and X = X1 ∪ X2 is a decomposition as
closed subschemes, then there are exact sequences

Zk(X1 ∩X2)→ Zk(X1)⊕ Zk(X2)→ Zk(X)→ 0

Prop.(7.1.2.3)[Cycle associated to a Closed Subscheme].For a closed subscheme Z of a scheme
X ∈ Schloc.ft /S, if dimδ(Z) ≤ k and η ∈ Z has dimension k, then η is a generic pt of an irreducible
component Z ′ of Z, and mZ,Z′ = lengthOX,η

OZ,η is finite.
So we may define the k-cycle associated to Z as: [Z]k =

∑
Z′⊂Z mZ,Z′ [Z ′], where the sum is

over all integral components of Z of δ-dimension k.

Proof: mZ,Z′ is finite because lengthOZ,η
OZ,η = lengthOX,η

OZ,η <∞ because it is Noetherian and
have 0 dimension(4.1.3.4). The sum is locally finite by(5.4.1.23). □

Prop.(7.1.2.4) [Cycle associated to a Coherent Sheaf].For X ∈ Schloc.ft /S and F ∈ Coh(X),
if dimδ Supp(F) ≤ k and η ∈ Supp(F) has dimension k, then η is a generic pt of an irreducible
component Z ′ of Z, and mZ,F = lengthOX,η

Fη <∞.
So we may define the k-cycle associated to F as: [F ]k =

∑
Z⊂X mZ,F [Z], where the sum is

over all integral components of SuppF of δ-dimension k.

Proof: lengthOX,η
Fξ <∞ by(4.2.5.7). □

Prop.(7.1.2.5).Let X ∈ Schloc.ft /S and Z ⊂ X a closed subscheme with dimδ(Z) ≤ k, then [Z]k =
[OZ ]k.

Prop.(7.1.2.6).Let X ∈ Schloc.ft /S, the cycle map from Coh≤k(X) to Zk(X) is additive.

Pushforward and Pullback

Lemma(7.1.2.7)[Degree of Maps].Let f : X → Y be a map between schemes integral and locally
of f.t. over S, if dimδX = dimδ Y , then either f(X) not dominant or the function field extension is
finite. If f is dominant, the the degree of f(5.4.4.55) is a finite number.

Proof: Because X is irreducible, so does f(X) and f(X). If f(X) is dominant, then f maps the
generic point of X to that of Y . Now degK(Y )(K(X)) = 0 and K(X)/K(Y ) is f.g., thus it is a finite
extension. □

Lemma(7.1.2.8).Let f : X → Y be a qc map between schemes integral and locally of f.t. over S,
and {Zi} is a locally finite collection of closed subschemes of X, then {f(Z)} is also a locally finite
collection of closed subschemes of X.

Proof: This is a simple topological proof and omitted. □
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Def.(7.1.2.9)[Proper Pushforward].Let f : X → Y be a proper morphism in Schloc.ft /S, we define
a map

p∗ : Zk(X)→ CHk(X)

as follows: If Z ⊂ X is an integral closed subscheme of X that dimδ(Z) = k, then we define

f∗[Z] =
{

0 dimδ(f(Z)) ≤ k
deg(Z/f(Z))[f(Z)](7.1.2.7) dimδ(f(Z)) = k

.

where we regard f(Z) as an integral closed subscheme of Y using its scheme-theoretical image. In
general

f∗(
∑

nZ [Z]) =
∑

nZf∗([Z]).

The sum is locally finite by(7.1.2.8).
It can be easily verified that f∗ ◦ g∗ = (f ◦ g)∗.

Prop.(7.1.2.10)[Pushforward of Coherent Sheaves].Let f : X → Y ∈ Schloc.ft /S, then
• If Z ⊂ X is an integral closed subscheme of X that dimδ(Z) ≤ k, then

f∗[Z]k = [OZ ]k.

• If F ∈ Coh≤k(X), then
f∗[F ]k = [f∗F ]k.

Proof: 1 follows from 2 and(7.1.2.5). To show 2, by restricting to Supp(F) and taking the scheme-
theoretic image, it suffices to show for both closed immersions and proper dominant maps. The
closed immersions case are easy. For the proper dominant case, it suffices to show f∗[F ]k and [f∗F ]k
have the same coefficients in each integral subscheme Z ⊂ X of dimension k. By looking at the
inverse image of the generic point of Z, we may assume that f is finite by(5.4.4.53). Thus we can
assume f is finite. Then it reduces to the affine case, which follows from(4.1.2.7). □

Lemma(7.1.2.11).Let f : X → Y be a flat morphism of relative dimension r in Schloc.ft /S, then for
any closed subscheme Z ⊂ Y , dimδ(f−1(Z)) = dimδ(Z) + r if f−1(Z) ̸= ∅. If Z is irreducible and
Z ′ ⊂ f−1(Z) is an irreducible component, then Z ′ dominants Z and dimδ(Z ′) = dimδ(Z) + r.

Proof: By passing to the integral components, we may assume Z = Y is integral and X → Y is
surjective, then notice f is open, and use(7.1.1.4) and(5.6.3.7). □

Def.(7.1.2.12) [Flat Pullbacks].Let f : X → Y be a flat morphism of relative dimension r in
Schloc.ft /S, for Z ⊂ X an integral closed subscheme that dimδ(Z) ≤ k, define

f∗ : Zk(Y )→ Zk+r(X) : f∗([Z]) = [f−1(Z)]k+r

which is definable by(7.1.2.11). In general, define f∗(
∑
nZ [Z]) =

∑
nZf

∗([Z]), which is locally finite.

Prop.(7.1.2.13). If f : X → Y, g : Y → Z ∈ Schloc.ft /S is flat of relative dimensions r and s, then
f∗ ◦ g∗ = (g ◦ f)∗.

Proof: Firstly g ◦ f is flat of relative dimension r + s by(5.6.3.18). And the assertion follows
from(4.1.2.9). □
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Prop.(7.1.2.14).Let X ∈ Schloc.ft /S and i : Y → X a reduced closed subscheme of X, j : U =
X\Z → X, then for any k ∈ Z, there is an exact sequence

Zk(Y ) i∗−→ Zk(X) j∗
−→ Zk(U)→ 0.

Prop.(7.1.2.15) [Pullback of Coherent Sheaves]. If f : X → Y ∈ Schloc.ft /S is flat of relative
dimensions r, F ∈ Coh≤k(OY ), then f∗F ∈ Coh≤k+r(OX), and

f∗[F ] = [f∗F ]k+r.

In particular, for a closed subscheme Z ⊂ X with dimδ(Z) ≤ k, f∗[Z]k = [f−1Z]k+r, by(4.1.2.8).

Proof: This follows from(4.1.2.9). □

Prop.(7.1.2.16)[Push and Pull].
• Let

X ′ X

Y ′ Y

g′

f ′ f

g

be a diagram in Schloc.ft /S where f is proper and g is flat of relative dimension r, then

g∗f∗ = (g′)∗f ′
∗ : Zk(X)→ Zk+r(Y ′).

• Let f : X → Y ∈ Schloc.ft /S be a finite locally free morphism of degree d, then it it both
proper and flat of relative dimension 0, and f∗f

∗ = [d] : Zk(Y )→ Zk(Y ).

Proof: 1: It suffices to prove for a closed subscheme W ⊂ X of δ-dimension k. Then [W ] =
[OW ](7.1.2.5). Then by(7.1.2.10) and(7.1.2.15), the assertion follows from flat base change.

2: Similarly this follows from the fact f∗f
∗OZ is a finite locally free OZ-sheaf of rank d. □

Rational Equivalences and Chow Groups

Def.(7.1.2.17)[PrimeWeil Divisors].LetX ∈ Schloc.ft,int /S, then an integral closed schemeW ⊂ X
of δ-codimension 1 is called a prime Weil divisor.

Prop.(7.1.2.18)[Principal Weil Divisor].Let X ∈ Schloc.ft,int /S, f ∈ K, for any prime Weil divisor
Z with generic pt η, we can define ordZ(f) = ordOX,η

(f)(4.1.2.10). It is multiplicative, and the
closed integral subschemes Z that ordZ(f) ̸= 0 is locally finite.

So, we can define the principle Weil divisor div(f) =
∑
Z ordZ(f)[Z].

Proof: There is an open subset U that f ∈ Γ(U,O∗
X), so all Z are irreducible components of X−U ,

which is locally finite because X is locally Noetherian and(5.4.1.23). □

Def.(7.1.2.19)[Principle Divisors].LetX ∈ Schloc.ft /S and f ∈ K(X)∗, then the principle divisor
associated to f is defined to be

div(f) =
∑

ordZ(f)[Z] ∈ Z1(X)

as defined in(7.1.2.18). This is truly a k-cycle.
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Def.(7.1.2.20)[Rational Equivalence].Let X ∈ Schloc.ft /S has δ-dimension k+1. Given any locally
finite collection of integrally closed subschemes Wi ⊂ X of δ-dimension k + 1 and rational functions
fi on Wi, we can consider the k-cycle ∑(ij)∗(div(fi)) on X. This is a cycle because ⨿Wi → X is
proper. Two k-cycles are called rational equivalent if they differ by a k-cycle of the this form.

Define the Chow group of k-cycles CHk(X) to be Zk(X) modulo the rational equivalence
relation. CHk(X) is also denoted by Cl(X).

Lemma(7.1.2.21)[Push and Pull of Principle Divisors].
• If f : X → Y ∈ Schloc.ft,int /S is flat of relative dimension r, and g ∈ K(Y )∗, then f∗ div(f) =

div(f).
• If φ : X → Y ∈ Schloc.ft,int,δ=d /S is a dominant proper morphism, f ∈ K(X)∗, and g =

NmK(X)/K(Y )(f) ∈ K(Y )∗, then f∗ div(f) = div(g).

Proof: 1: Cf.[Sta]0EPH?.
2: Cf.[Sta]02RT?. □

Lemma(7.1.2.22). If X ∈ Schloc.ft,int,δ=n /S U ⊂ X be an open subscheme and f ∈ Γ(U,OX)∗ ⊂
K(X)∗, let Y be the graph of f in X ×S P1

S , then
• the projection pr1 : Y → X is an isomorphism pr−1(U)→ U , thus dimδ(Y ) = n.
• the closed subschemes Y0 = pr−1

2 ({0}) and Y∞ = pr−1
2 ({∞}) of Y are effective Cartier divisors.

In particular, they have δ-dimension n− 1 by(7.1.5.2).
• divY (f) = [Y0]− [Y∞].
• divX(f) = pr1∗ divY (f) = [Y0]− [Y∞].

Proof: 1 is clear.
2 follows from(5.8.1.7) as pr2 : Y → P1 is dominant.
3 is clear.
4 follows from item1 and(7.1.2.21). □

Prop.(7.1.2.23)[Rational Equivalence via Rational Functions].Let X ∈ Schloc.ft /S, then α ∈
Zk(X) is rationally trivial iff

α =
∑

([(Wi)0]k − [(Wi)1]k) = j∗
0(
∑

[Wi])− j∗
∞(
∑

[Wi])

where {Wi} is a locally finite family of integral closed subschemes of X×SP1
S of δ-dimension k.(j∗

0 , j
∗
∞

are the Gysin maps, which will be defined in(7.1.4.2))

Proof: Firstly such a ∑([(Wi)0]k − [(Wi)∞]k) is locally finite, and each [(Wi)0]k − [(Wi)∞]k is
rationally trivial: Similar as in(7.1.2.22), [(Wi)0] − [(Wi)∞] is rationally trivial on Wi, and then it
pushforward via pr1 is also rationally trivial, by(7.1.2.21).

Conversely, if α =
∑

(Vi → X)∗ div(fi), where {Vi} is a locally finite family of integral closed
subschemes of X of δ-dimension k+1 and fi ∈ K(Vi)∗. LetWi ⊂ Vi×P1

k ⊂ Xi×P1
k be the the graph

of f , then (Vi → X)∗ div(fi) equals [(Wi)0]k − [(Wi)1]k by(7.1.2.22) again.(We are secretly using the
fact Gysin map commutes with pushforwards(7.1.6.9), but in this case it is trivial trough). □

Prop.(7.1.2.24)[Push and Pull for Chow Groups].
• If f : X → Y ∈ Schloc.ft /S is flat of relative dimension r, then f∗ induces a map CHk(Y ) →

CHk+r(X) for each k ∈ N.
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• If f : X → Y ∈ Schloc.ft /S is proper, then f∗ induces a map CHk(X) → CHk(X) for each
k ∈ N.

Proof: Cf.[Sta]02S2, 02S1. □

Prop.(7.1.2.25) [Restriction of Divisors].Let X ∈ Schloc.ft /S and i : Y → X a reduced closed
subscheme of X, j : U = X\Z → X, then for any k ∈ Z, there is an exact sequence

CHk(Y ) i∗−→ CHk(X) j∗
−→ CHk(U)→ 0.

Proof: Cf.[Sta]02RX?. □

Prop.(7.1.2.26)[Excision].Let X ∈ Schloc.ft /S and X1, X2 be closed subschemes of X s.t. X1∪X2 =
X as sets, then for any k ∈ Z, there is an exact sequence

CHk(X1 ∩X2)→ CHk(X1)⊕ CHk(X2)→ CHk(X)→ 0.

Proof: Cf.[Sta]0F94. □

Def.(7.1.2.27)[Degree of 0-Cycles].Let X be a proper scheme over a field k, the degree of a zero
cycle is given by the proper pushforward

p∗ : CH0(X)→ CH0(Spec k) ∼= Z.

Equivalently, if α =
∑
ni[Zi] ∈ Z0(X), deg(α) =

∑
ni deg(Zi). deg is also denoted by

∫
X .

Def.(7.1.2.28)[Stratification by Dimension].Let X ∈ Schloc.ft /S, then the following are equiva-
lent:

• There exists a decomposition X =
⨿
nXn where Xn is pure of δ-dimension n.

• For any x ∈ X, there exist s nbhd x ∈ U s.t. U is pure of δ-dimension n.
• For an x ∈ X, the irreducible components of X containing x are all of the same δ-dimension
nx.

These conditions are satisfied if X is normal or Cohen-Macaulay.

Proof: 1→ 2→ 3 is trivial. 3→ 1 follows from the fact x 7→ nx is continuous.
If X is normal, it is a disjoint union of integral schemes by(5.4.2.3). For X Cohen-Macaulay,

Cf.[Sta]0FE3.? □

Def.(7.1.2.29)[Cohomological Chow Groups]. If X satisfies(7.1.2.28), we define

Zp(X) =
∏
n

Zn−p(Xn), Z∗(X) =
⊕
p

Zp(X)

and the Chow group of codimension p cycle

CHp(X) =
∏
n

CHn−p(Xn), CH∗(X) =
⊕
p

CHp(X).

Def.(7.1.2.30)[Fundamental Class]. If X satisfies(7.1.2.28), define

[X] =
∏

[Xn]n ∈ CH0(X)

to be the fundamental class of X.
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3 Chow Groups and K-Groups
Cf.[Sta]42.22, 42.56 and42.68.

4 Gysin Maps

Def.(7.1.4.1)[Gysin Maps for Virtual Divisors].Let X ∈ Schloc.ft /S,L ∈ Pic(X), s ∈ H0(X,L),
denote D = Z(s), and i : D → X the closed immersion. Then for any k ∈ Z, there is a Gysin
homomorphism

i∗ : Zk+1(X)→ CHk(D)

that for an integral closed subscheme Z ⊂ X with dimδ(Z) = k + 1,

i∗([Z]) =
{

[D ∩ Z]k , Z ⊈ D

i′∗(c1(L|Z) ∩ [Z]) , Z ⊂ D via i′ : Z → D

and extends linearly to Zk+1(X), which is also locally finite.
We will see this is map i∗ in fact factor through rational equivalence relations in(7.1.6.9).

Proof: To show this is well defined, Cf.[Sta]02TO.? □

Remark(7.1.4.2). If L|D ∼= OD, the c1(L|Z) term is trivial, so the Gysin homomorphism factors
through Zk(D)→ CHk(D).

Cor.(7.1.4.3).Let X ∈ Schloc.ft /S, (L, s, i : D → X) as in(7.1.4.1), then for any α ∈ CH∗(X),

i∗i
∗α = c1(L) ∩ α

Def.(7.1.4.4) [Intersection with Cartier Divisors]. If X ∈ Schloc.ft /S,D ∈ Carteff(X), denote
D ∩ α = c1(OX(D)) ∩ α for α ∈ Z∗(X).?

Def.(7.1.4.5)[Gysin Map for Local Complete Intersection Maps].Let f : X → Y ∈ Schloc.ft /S
be a local complete intersection map s.t. f = g ◦ i where g is smooth and i is a regular immersion,
then we define the Gyin map for f to be f ! = i! ◦ g∗ ∈ A∗(X → Y ). This is independent of the
decomposition f = g ◦ i chosen. In this case, we say the Gysin map for f exists.

Proof: Cf.[Sta]0FF2.? □

Prop.(7.1.4.6)[f ! and f∗].Let f : X → Y ∈ Schloc.ft /S be a local complete intersection map, then
if the Gysin map f ! exists and f is flat, then f∗ can be defined and f ! = f∗ ∈ A∗(X → Y ).

Proof: Cf.[Sta]0FF4.? □

5 Weil Divisors

Prop.(7.1.5.1) [Weil-Cartier].For X ∈ Schloc.ft /S, there is a map from Cartier divisors on X to
Weil divisors mapping (D, sD) to [Z(sD)]k. Notice this is defined because a Cartier divisor is locally
defined by a regular element and Krull’s principal ideal theorem.

Moreover, if X is locally factorial, this map is an isomorphism CaCl(X) → Cl(X) by(5.8.1.4),
and (effective)Cartier divisors correspond (effective)Weil divisors.

This in particular applies to non-singular varieties over a field, by(4.3.5.19).
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Prop.(7.1.5.2).Let X ∈ Schloc.ft /S and Z ⊂ X be an integral closed subscheme, then Z is a Weil
divisor iff dimδ(Z) = dimδ(X) − 1. In particular, this holds for any irreducible component of a
Cartier divisor by(7.1.5.1).

Def.(7.1.5.3)[Q-Cartier Divisors].A Q-Cartier divisor on a locally Noetherian integral scheme
is a Weil divisor that some multiply of it is the image of a Cartier divisor.

Example(7.1.5.4)[Non-Q-Cartier Divisors]. It is easy to show someWeil divisor is not anQ-Cartier
divisor (on a singular variety), by showing its complement is not affine(5.8.1.1). For example, on
X = Spec k[x, y, z, w]/(xy − zw), the Weil divisor cut out by (z, w) is not Q-Cartier, as the closed
subscheme y = w = 0 of its complement is isomorphic toA2

k\{(0, 0)}, which is not affine by calculating
Čech cohomology.

In particular, k[x, y, z, w]/(xy − zw) is normal but not a UFD.

Prop.(7.1.5.5) [Rational Functions and Poles]. If X is an integral locally Noetherian normal
scheme and f ∈ K(X) has no poles, then f ∈ Γ(X), by(4.3.5.11).

Prop.(7.1.5.6) [UFD and Class Groups].For A a Noetherian normal domain, it is a UFD iff
Cl(SpecA) = 0.

Proof: It suffices to show minimal primes of A is principal iff minimal primes of A are principal
divisors. This is done by(4.3.5.11) and(2.2.3.6). □

Prop.(7.1.5.7)[Picard Group of Projective Spaces].Let R be a UFD, then Cl(PnR) = Z, and it
is generated by [H] where H is any hyperplane of PnR. And a hypersurface Y of degree d is mapped
to d.

Proof: These follow from(7.1.7.10) and(7.1.5.6). The last assertion follows from the fact [Y ] ∼ d[H]
by direct verification. □

Cor.(7.1.5.8). If Y ⊂ Pnk is a hypersurface of degree d, then Cl(P2\Y ) = Z/dZ.

Proof: This follows form(7.1.2.25) and(7.1.5.7). □

Cor.(7.1.5.9). If k ∈ Field, Cl(P1
k × P1

k) = Z⊕Z, by(7.1.7.10).

Prop.(7.1.5.10). If X is a non-singular cubic surface in P3
k, then Cl(X) ∼= Z7.

Proof: Cf.[Har77]Chap5.4.8. □

6 Bivariant Classes

Def.(7.1.6.1)[Bivariant Classes].Let f : X → Y ∈ Schloc.ft /S and p ∈ Z, a bivariant class c of
degree p for f is a class of maps

c ∩ − : CHk(Y ′)→ CHk−p(Y ′ ×Y X)

for any Y ′ ∈ Schloc.ft /Y and k ∈ Z+ that satisfies
• If Y ′′ → Y ′ ∈ Schloc.ft /Y is proper, c ∩ − commutes with proper pushforwards.
• If Y ′′ → Y ′ ∈ Schloc.ft /Y is flat of relative dimension r ∈ Z, c∩− commutes with flat pullbacks.
• Let (L, s, i : D → Y ′) be a triple on Y ′ as in(7.1.4.1), then c ∩ − commutes with Gysin

homomorphisms i∗.
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The set of bivariant classes of degree p for f is denoted by Ap(X → Y ). And denote A∗(X → Y ) =
⊕p∈ZA

p(X → Y ).

Prop.(7.1.6.2).For any f : X → Y, g : Y → X ∈ Schloc.ft /S, p, q ∈ Z, Ap(X → Y ) is an Abelian
group, and the composition defines a bilinear map

Aq(Y → Z)×Ap(X → Y )→ Ap+q(X → Z)

that is associative w.r.t. compositions in Schloc.ft /S.

Def.(7.1.6.3)[Chow Cohomologies].Let X ∈ Schloc.ft /S, denote Ap(X) = Ap(idX), and A∗(X) =
⊕p∈ZA

p(X) the graded ring, called the Chow cohomology group of X.

Prop.(7.1.6.4)[Restriction of Classes].Let X → Y, f : Y ′ → Y ∈ Schloc.ft /S and X ′ = X ×Y Y ′,
then obviously there is a map f∗ : Ap(X → Y )→ Ap(X ′ → Y ′). In particular, if Z ⊂ X is a closed
subscheme, then f∗(c)∩α = c∩f∗(α) for c ∈ Ap(Z → X), α ∈ Ap(Z) by proper pushforward(7.1.6.1).

Cor.(7.1.6.5) [Product of Classes].Let X → Y,X ′ → Y ′ ∈ Schloc.ft /S, c ∈ Ap(X → Y ), c′ ∈
Aq(X ′ → Y ′), then the product c ◦ c′ is defined to be the element in Ap+q(X ×S X ′ → Y ×S Y ′)
defined by the map

CH∗(Y ×S Y ′) c′∩−−−−→ CH∗+q(Y ×S X ′) c∩−−−→ CH∗+p+q(X ×S X ′)

and all base change variants of this.
Notice c′ ◦c is also in Ap+q(X×SX ′ → Y ×S Y ′), so it makes sense to talk about when two classes

commute. Maybe c′ ◦ c can be defined on smaller base changes, but to say c, c′ commute always
means c ◦ c′ = c′ ◦ c ∈ Ap+q(X ×S X ′ → Y ×S Y ′).

Lemma(7.1.6.6)[Gysin Factors Through Rational Equivalences].Let X ∈ Schloc.ft /S, Gysin
homomorphism for a triple (L, s, j : D → X) on X that are base change of (O(1), x, j : S×(0)→ P1

S)
factors through rational equivalences.

Proof: This follows from the characterization of rational equivalences in(7.1.2.23) and the fact in
this case Gysin maps are easy to describe: They are just k-parts of the inverse images. □

Prop.(7.1.6.7)[Weakening Bivariant Conditions].Let f : X → Y ∈ Schloc.ft /S and c is a class
of maps

c ∩ − : Zk(Y ′)→ CHk−p(Y ′ ×Y X)

for any Y ′ ∈ Schloc.ft /Y that is compatible with Gysin homomorphism for triples (L, s, j : D → Y ′)
that are base change of (O(1), x, j : S × (0)→ P1

S), then c factors through rational equivalences
And if moreover c commutes with proper pushforwards and flat pullbacks(up to rational homo-

topy), then it induces a bivariant class c ∈ Ap(X → Y ).

Proof: For the first assertion: As L|D = OD, the Gysin homomorphism is defined on the level of
cycles by(7.1.4.2) and pass to CH∗(7.1.6.6), so compositions with Gysin homomorphisms are well-
defined. Then c factors through rational equivalence by the characterization of rational equivalences
in(7.1.2.23).

For the last assertion, Cf.[Ful98]P321 or [Sta]0F9A.? □
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Prop.(7.1.6.8).Let f : X → Y ∈ Schloc.ft /S and X =
⨿
I Xi, Y =

⨿
J Yj be clopen subschemes and

α : I → J is a map of sets s.t. f(Xi) ⊂ Yα(i), then for any p ∈ Z+,

Ap(X → Y ) =
∏
I

Ap(Xi → Yα(i)).

Proof: Cf.[Sta]0FDZ?. □

Prop.(7.1.6.9)[Gysin Homomorphisms are Bivariant].Let X ∈ Schloc.ft /S and (L, s, i : D → X)
be a triple on X as in(7.1.4.1), then the Gysin homomorphism (i′)∗ associated to the base changes
of i form a bivariant class in A1(D → X).

Proof: Cf.[Sta]02TA, 0B71, 0B73.? and(7.1.6.7).
Let f : X ′ → X ∈ Schloc.ft /S and (L, s, i : D → X) be a triple on X as in(7.1.4.1), we can define

the pullback triple f∗(L, s, i) = (L′, s′, i′ : D′ → X ′), and then
• If f is proper, then Gysin maps commute with proper pushforwards.
• If f is flat of relative dimension r, then the Gysin maps commute with flat pullbacks.
• If (M, t, f : X ′ → X) is a triple on X as in(7.1.4.1), then the different Gysin maps are

compatible.
□

Prop.(7.1.6.10) [Flat Pullbacks are Bivariant].Let f : X → Y ∈ Schloc.ft /S be flat of relative
dimension r, then the flat pullbacks along base changes of f form a bivariant class of degree −r.

Proof: This follows from(7.1.2.13)(7.1.2.16)(7.1.6.9) and(7.1.6.7). □

Prop.(7.1.6.11)[Proper Pushforwards are Bivariant].Let f : X → Y, g : Y → Z ∈ Schloc.ft /S, f
is proper, and c ∈ Ap(X → Z), then the base change of f∗ ◦ c form a bivariant class in Ap(Y → Z).

Proof: This reduces to the fact proper pushforwards commutes with flat pullbacks, proper push-
forwards and Gysin maps, by(7.1.6.10)(7.1.6.9)(7.1.2.9) and(7.1.6.7). □

7 Chern Classes

Invertible Sheaves

Prop.(7.1.7.1) [First Chern Classes].Let X ∈ Schloc.ft /S and L ∈ Pic(X), then for any k ∈ Z,
there is a map

c1(L) ∩ − : Zk+1(X)→ CHk(X)

called intersection with the first Chern class of L(the name will be made clear from(7.1.7.5)),
defined as follows: If i : Z → X is an integral subscheme of X with dimδ(Z) = k+1, then c1(L)∩ [Z]
is the the pushforward of the image of i∗L under the map Pic(Z)→ Cl(Z) ∼= CHk(Z)(5.5.3.14), i.e.

c1(L) ∩ [Z] = i∗(c1(i∗L) ∩ [W ]).

In general, define c1(L) ∩ (
∑
nZ [Z]) =

∑
nZc1(L) ∩ [Z]. We will see the first Chern class factors

through rational equivalence relations in(7.1.7.5).
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Lemma(7.1.7.2) [The first Chern Class is Multiplicative].Let X ∈ Schloc.ft /S and L,N ∈
Pic(X), then

c1(L) + c1(N ) = c1(L ⊗N ) : CH∗(X)→ CH∗(X).

In particular, c1(L) = −c1(L−1), and c1(OX) = 0.

Prop.(7.1.7.3)[Chern Classes and Zero Cycles].Let X ∈ Schloc.ft /S and L ∈ Pic(X), Y ⊂ X a
closed subscheme. If s ∈ Γ(Y,L|Y ) satisfies

• dimδ(Y ) ≤ k + 1.
• dimδ(Z(s)) ≤ k.
• For any generic point ξ of irreducible components of Z(s) of δ-dimension k, multiplying by s

induces an injection OY,ξ → (L|Y )ξ.
Then c1(L) ∩ [Y ]k+1 = [Z(s)]k.

Proof: Cf.[Sta]02SQ.? □

Prop.(7.1.7.4) [First Chern Classes Factor Through CH∗(X)]. Situation in(7.1.7.1), then the
map c1(L) ∩ − : Zk+1(X)→ CHk(X) factors through Zk+1(X)→ CHk+1(X).

Proof: Cf.[Sta]02TI. □

Prop.(7.1.7.5) [First Chern Classes Form Bivariant Classes].Let X ∈ Schloc.ft /X and L ∈
Pic(X), then the maps c1(f∗L) ∩ − : Z∗(X ′)→ CH∗−1(X ′) factor through rational equivalences for
each f : X ′ → X ∈ Schloc.ft /X, and form a bivariant class in A1(X), called the first Chern class
c1(L).

Proof: Cf.[Sta]02SU, 02SS, 0B72. and(7.1.6.7).
To show it commutes with pullbacks, □

Prop.(7.1.7.6) [First Chern Classes Commute with Bivariant Classes].Let f : X ′ → X ∈
Schloc.ft /S and L ∈ Pic(X), then c1(L) commutes with every element of A∗(X ′ → X).

In particular, c1(L) is in the center of A∗(X).

Proof: Cf.[Sta]0B7B.? □

Prop.(7.1.7.7).Let X ∈ Schloc.ft /S and L ∈ Pic(X) be an ample invertible sheaf. Assume d =
dim(X) <∞, then for any L1, . . . ,Ld+1 ∈ Pic(X), c1(L1) ◦ . . . c1(Ld+1) = 0 ∈ Ad+1(X).

Proof: Use induction on d: d = 0 case is trivial as X is discrete thus any invertible sheaf is trivial.
In general, by(5.8.1.8) and(7.1.7.2), it suffices to prove for Li = OX(Di) being Cartier divisors. If
i : Dd+1 → X, then c1(Ld+1) = i∗ ◦ i∗ by(7.1.4.3), and c1(Li) commutes with both i∗ and i∗, so we
can replace X by D and then use induction hypothesis. □

Lemma(7.1.7.8). If X ∈ Schloc.ft /S and 0 → L1 → E → L2 → 0 is an exact sequence with L1,L2 ∈
Pic(X), and there is a non-vanishing section s of E , then c1(L1) ∩ c1(L2) = 0 ∈ A2(X).

Proof: Consider the image s of s in Γ(X,L2), then we can consider the Gysin map associated to
(L2, s, j). Then

c1(L1) ∩ c1(L2) ∩ α = j∗(c1(j∗L1) ∩ j∗α).

j∗L1 is trivialized by s now, so this one is vanishes. □
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Lemma(7.1.7.9). If X ∈ Schloc.ft /S, r ∈ Z+,L ∈ Vectr(X), let π : P(E)→ X be the projective space
of E , then for any k ∈ Z and α ∈ CHk(X),

π∗(c1(OP(E)(1))s ∩ π∗α) =
{

0 , s < r − 1
α , s = r − 1

∈ CHk+r−1−s(X).

Proof: Cf.[Sta]02TW. □

Prop.(7.1.7.10) [Projective Bundles Formula]. If X ∈ Schloc.ft /S, r ∈ Z+,L ∈ Vectr(X), let
π : P(E)→ X be the projective space of E , then for any k ∈ Z, the map

CHk+r−1(P(E)) =
r⊕
i=0

ci(OP(E)(1))i ∩ π∗ CHk+i(X).

is an isomorphism.
In particular, if X is integral, then

Cl(P(E)) = π∗(Cl(X))⊕ [c1(OP(E)(1))].

Proof: Cf.[Sta]02TX.? □

Prop.(7.1.7.11) [Vector Bundles]. If X ∈ Schloc.ft /S, r ∈ Z+,L ∈ Vectr(X), let π : E =
Spec(Sym(E)) → X be the vector bundle of E , then for any k ∈ Z, p∗ : CHk(X) → CHk+r(X)
is an isomorphism.

Proof: Cf.[Sta]02TY. □

Vector Bundles

Prop.(7.1.7.12) [Splitting Principle].Let X ∈ Schloc.ft /S, Ei ⊂ Vect(X) be a finite set of finite
locally free sheaves, there exists a projective flat morphism π : P → X of relative dimension d s.t.

• For any Y ∈ Schloc.ft /X, the map π∗
Y : CH∗(Y )→ CH∗(Y ×X P ) is injective.

• Each π∗Ei has a filtration with invertible quotient sheaves.
This is useful in the way that when proving functorial properties of Chern classes of vector bundles,
we can reduce to invertible sheaves.

Proof: Cf.[Sta]02UL. □

Prop.(7.1.7.13)[Chern Classes of Vector Bundles].Let X ∈ Schloc.ft /S, r ∈ Z+, E ⊂ Vectr(X)
with projective bundle π : P(E)→ X, then for any k, p ∈ N, there is a map

cp(E) ∩ − : CHk(X)→ CHk−p(X)

called intersection with Chern classes as follows(the name will be made clear in(7.1.7.14)): Let
α ∈ CHk(X), by(7.1.7.10) there are unique elements cp ∈ CHk−p(X) s.t. c0 = α and

r∑
p=0

(−1)pc1(OP(E))p ∩ π∗cr−p = 0 ∈ CHk−1(P(i∗E)).

Then define cp(E) ∩ α = cp.
In particular, if E is an invertible sheaf, c1(E)∩ is just the intersection with the first Chern class

c1(E) ∩ α(7.1.7.1)(7.1.7.6).
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Prop.(7.1.7.14) [Chern Classes Form Bivariant Classes].Let X ∈ Schloc.ft /X, r ∈ Z+, E ∈
Vectr(X), then the maps cp(f∗E)∩− : CHk(X ′)→ CHk−p(X ′) for each f : X ′ → X ∈ Schloc.ft /X, k ∈
Z+ form a bivariant class in Ap(X), called the Chern classes cp(E). By convention, set cp(E) = 0
for p > r.

And c(E) =
∑r
i=0 ci(E) ∈ A∗(X) are called the total Chern class of E .

Proof: For commuting with proper pushforward, use the definition(7.1.7.13) and(7.1.2.24)(7.1.7.5),
and push and pull(7.1.2.16).

For commuting with flat pullback, use the definition(7.1.7.13) and(7.1.2.24)(7.1.7.5) and proper-
ties of flat pullbacks(7.1.2.13).

For commuting with Gysin map, use the definition(7.1.7.13) and(7.1.2.24)(7.1.7.5) and properties
of Gysin maps(7.1.6.9). □

Prop.(7.1.7.15) [Chern Classes Commute with Bivariant Classes].Let f : X ′ → X ∈
Schloc.ft /S and E ∈ Vectr(X), then for any p ∈ Z+, cp(E) commutes with every element of
A∗(X ′ → X).

In particular, cp(E) are in the center of A∗(X), and for E ∈ Vectr(X),F ∈ Vects(X), p, q ∈ Z+,
cp(E), cq(F) commute.

Proof: Reduce to c1 and(7.1.7.6) as we did in(7.1.7.14). □

Prop.(7.1.7.16) [Chern Classes for Arbitrary Vector Bundles].Let X ∈ Schloc.ft /X, E ∈
Vectδ(X), then constancy of r induces a clopen partition of X =

⨿∞
i=0Xi, where Xi are the clopen

subscheme s.t. δ = i. Then by(7.1.6.8), Ap(X) =
∏∞
i=0A

p(Xi), so we can define the Chern class
cp(E) to be the product of cp(E|Xi). Also we can define a rank class r(E) ∈ A0(X) =

∏∞
i=0A

0(Xi)
that is product of [i] ∈ A0(Xi).

Prop.(7.1.7.17)[Additivity].Let X ∈ Schloc.ft /S and 0→ E1 → E → E2 → 0 ∈ Vect(X), then

c(E) = c(E1)c(E2).

Proof: It suffices to check this by their action on [X] where X ∈ Schloc.ft,int /S. Using splitting
principle(7.1.7.12), we can easily reduce to the case E1, E2 ∈ Pic(X) by induction on rank(E1) and
rank(E2). In this case, let P be the projective bundle of E with O(1) = OP(1). By tag02U6, it
suffices to show that

c1(O(1))2 ∩ π∗α− c1(O(1)) ∩ π∗(c1(E1) ∩ α+ c1(E2) ∩ α) + π∗(c1(E1) ∩ c1(E2) ∩ α).

for which it suffices to show that

(c1(O(1))− c1(π∗E1)) ∩ (c1(O(1))− c1(π∗E2)) = c1(π∗E∨
1 (1)) ∩ c1(π∗E∨

2 (1)) = 0

There is a surjection E → O(1), which corresponds to a non-zero section of E∨(1). Notice there
is an exact sequence

0→ E∨
2 → E∨(1)→ E∨

1 → 0,

so the assertion follows from(7.1.7.8). □

Prop.(7.1.7.18).Let X ∈ Schloc.ft /S and E ∈ Vectr(X), then c1(∧E) = c1(E), and
r∏
p=0

c(∧pE)(−1)n = 1− (r − 1)!cr(E) + . . . .
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Proof: Use splitting principle and Cf.[Sta]0FEE. □

Prop.(7.1.7.19)[Degrees and First Chern Classes].Let X be a proper scheme over a field k, then
• Let L1, . . . ,Ld be invertible sheaves on X and Z ⊂ X a closed subscheme of dimension d, then

(L1 · . . . · Ld;Z) = deg(c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d).

In particular, if L is an ample invertible sheaf,

degL(Z) = deg(c1(L)d · [Z]d).

• If dimX ≤ 1, for E ∈ Cohfree(X),

deg(E) = deg(c1(E) · [X]1).

Proof: Cf.[Sta]0AZ3, 0BFI.? □

Prop.(7.1.7.20)[Chern Characters].Let X ∈ Schloc.ft /S, r a locally constant Z-valued functions
on X and E ∈ Vectr(X), define the Chern character of E to be

ch(E) = rank(E) +
∑
p≥0

Pp(c1(E), . . . , cn(E))
p!

∈
∏
i≥0

Ai(X)Q

= rank(E) + c1(E) + 1
2

(c1(E)2 − 2c2(E)) + 1
6

(c1(E)3 − 3c1(E)c2(E)3c3(E))

+ 1
24

(c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E)) + . . .

where Pp are Chern polynomials(2.2.2.27).

Prop.(7.1.7.21)[Tensor Products]. If X ∈ Schloc.ft /S, r, s, t are locally constant Z-valued functions
on X and E ∈ Vect(X),F ∈ Vect(X),G ∈ Vect(X), then

• If there is an exact sequence 0→ E → G → F → 0, then ch(E) + ch(F) = ch(G).
• ch(E ⊗OX

F) = ch(E) ch(F).
• chi(E∨) = (−1)i chi(E).

In particular, ch defines a ring homomorphism ch : K0(Vect(X))→
∏
i≥0A

i(X)Q.

Proof: It suffices to prove for X connected, and then by(7.1.7.12), we can assume E ,F have filtra-
tions with invertible quotient sheaves E1, . . . , Er and F1, . . . ,Fs with first Chern characters a1, . . . , ar
and b1, . . . , bs, then by additivity(7.1.7.17) and the definition of Chern polynomials(2.2.2.27), we see

ch(E) =
r∑
i=1

exp(ai), ch(F) =
s∑
j=1

exp(bj),

and E⊗F has a filtration with quotient sheaves Ei⊗Fj with first Chern characters ai+bj by(7.1.7.2),
so the assertions are now clear. □

Cor.(7.1.7.22)[Chern Classes of Tensor Products]. If X ∈ Schloc.ft /S, r, s are locally constant
Z-valued functions on X and E ∈ Vectr(X),F ∈ Vects(X), then

ci(E∨) = (−1)ici(E) ∈ Ai(X),
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c1(E ⊗ F) = rc1(E) + sc1(F) ∈ A1(X),

c2(E ⊗ F) = rc2(F) + sc2(E) +
(
r

2

)
c1(F)2 + (rs− 1)c1(E)c1(F) +

(
s

2

)
c1(E)2 ∈ A2(X),

c2(Hom(E , E)) = 2rc2(E)− (r − 1)c1(E)2 ∈ A2(X).

Prop.(7.1.7.23) [Todd Classes].Let X ∈ Schloc.ft /S and E ∈ Vect(X), define the Todd class
Todd(E) of E to be

Todd(E) = Todd(c1(E), c2(E), . . .)(2.2.2.28) = 1 + 1
2
c1(E) + 1

12
(c1(E)2 + c2(E))

+ 1
24
c1(E)c2(E) + 1

720
(−c4

1(E) + 4c2
1(E)c2(E) + 3c2

2(E) + c1(E)c3(E)− c4(E)) + . . . .

Then if 0→ E ′ → E → E ′′ → 0 ∈ Vect(X) be an exact sequence, then Todd(E) Todd(E ′′) = Todd(E).

Proof: The proof is the same as that of(7.1.7.21). □

Prop.(7.1.7.24)[Borel-Serre].Let X ∈ Schloc.ft /S and E ∈ Vectr(X), then

r∑
p=0

(−1)p ch(∧pE∨) = cr(E) Todd(E)−1.

Proof: ? □

Prop.(7.1.7.25) [Chern Classes of K-Groups].X ∈ Schloc.ft /S, by additivity and multiplica-
tiveness(7.1.7.17)(7.1.7.21), we can extend Chern classes and Chern characters to the K-group
K0(Vect(X)):

c : K0(Vect(X))→
∏
p≥0

Ap(X), ch : K0(Vect(X))→
∏
p≥0

Ap(X)Q

where c is a group homomorphism and ch is a ring homomorphism.

Prop.(7.1.7.26) [Adam Operators and Chern Characters].X ∈ Schloc.ft /S and α ∈
K0(Vect(X)), then ci(ψk(α)) = 2kici(α) and chi(ψk(α)) = 2ki chi(α).

Proof: It suffices to prove for α = [E ] where E ∈ Vect(X), then by splitting principle it suffices to
prove for line bundles, and this is clear from(7.1.7.22) and the definition(7.1.7.20)t. □

Perfect Complexes

Lemma(7.1.7.27).Let X ∈ Schloc.ft /S, then for each perfect complex E in D(OX), we can de-
fine the Chern classes, Chern characters and ranks of E . But we only define fora subset of E
here?Cf.[Sta]0F9E: If E is represented by a finite complex E• of vector bundles on X, define

c(E) =
∏
i

c(E i)(−1)i ∈
∏
i≥0

Ai(X), ch(E) =
∑
i

(−1)i ch(E i) ∈
∏
i≥0

Ai(X)Q, r(E) =
∑
i

(−1)ir(E i).

Proof: To show this is well defined, □
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Prop.(7.1.7.28) [Chern Classes via Envelopes].Let Y → X ∈ Schloc.ft /S be an envolope?, E
perfect in D(OX) s.t. Lf∗E is representable by a finite complex of vector bundles on Y , then there
are unique bivariant classes c(E) ∈

∏
i≥0A

i(X), ch(E) ∈
∏
i≥0A

i(X)Q, r(E) s.t. their restrictions
to Y are of the form defined in(7.1.7.27).

Moreover, these bivariant classes are invariant of the envelope chosen. In this case, we say the
Chern classes of E are defined.

Proof: Cf.[Sta]0GUD. □

Prop.(7.1.7.29). If X ∈ Schloc.ft /S and each irreducible components of X are qc, then X has an
envelope. In particular, this applies to X qc.

Proof: Cf.[Sta]0GUE?. □

Prop.(7.1.7.30)[Additivity]. If X ∈ Schloc.ft /S and E1 → E2 → E3 → E1[1] is a distinguished triangle
of perfect complexes in D(OX), and one of the following holds:

• There exists an envelope f : Y → X s.t. Lf∗E1 → Lf∗E2 is representable by a map of finite
complexes of vector bundles on Y .

• Each irreducible components of X is irreducible.
Then Chern classes of Ei are defined, and

c(E2) = c(E1)c(E3), ch(E2) = ch(E1) + ch(E3).

Proof: Cf.[Sta]0F9F?. □
Se

Prop.(7.1.7.31). If X ∈ Schloc.ft /S and E be a perfect object in D(OX) whose Chern classes are
defined, then

• Let f : X ′ → X ∈ Schloc.ft /S, p ∈ Z+, then cp(E) commutes with every element of A∗(X ′ →
X), i.e. c · cp(E) = cp(Lf∗E) · c.
In particular, cp(E) are in the center of A∗(X), and for E ,F perfect in D(OX) whose Chern
classes are defined, p, q ∈ Z+,cp(E), cq(F) commute.

• log(c(E)) =
∑
p≥0

Pp(c1(E),...,cn(E))
p also holds, where Pp are Chern polynomials(2.2.2.27). Simi-

larly for Chern character ch(E).

• ci(E∨) = (−1)ici(E), chi(E∨) = (−1)i chi(E).

Proof: These follow from the splitting principle and the definition(7.1.7.28). □

Prop.(7.1.7.32) [Tensor Products]. If X ∈ Schloc.ft /S and E,F perfect in D(OX) whose Chern
classes are defined, then

ch(E ⊗LOX
F) = ch(E) ch(F),

in particular, formulas in(7.1.7.22) hold.

Proof: This follows from the splitting principle and the definition(7.1.7.28). □



7.1. INTERSECTION THEORY 757

8 Non-Singular Intersection Theory

Lemma(7.1.8.1). If X ∈ Schft,sep
reg,qc /S with bounded δ-dimension, then the composition

K0(Vect(X))⊗Q
ch−→

∏
p≥0

Ap(X) −∩[X]−−−−→ CH∗(X)⊗Q

is an isomorphism.
Proof: Firstly K0(X) = K ′

0(X) = K0(Vect(X)) by(5.8.5.33) and(5.8.5.36).
The rest follows from[Sta]0FEY.? □

Prop.(7.1.8.2)[Q-Intersection Products on Regular Schemes]. If X ∈ Schft,sep
reg,qc /S with bounded

δ-dimension, then the isomorphism K0(Vect(X)) ⊗ Q ∼= CH∗(X) ⊗ Q endows CH∗(X)Q with a
commutative associative ring structure: If α = ch(α′) ∩ [X], β = ch(β′) ∩ [X], then

α · β = ch(α) ∩ ch(β) ∩ [X] = ch(α′) ∩ β = ch(β′) ∩ α.

And this ring structure preserves the gradation on CH∗(X)Q. Also it is preserved under morphism
in Schft,sep

reg,qc flat of relative dimension r.

Proof: To prove it preserves gradation, suppose α ∈ CHi(X), β ∈ CHj(X), then α′ and
2−iψ2(α′)(7.1.7.26) are both inverse images of α, so they are equal. Then ch(α′) = ch(2−iψ2(α′)),
which means ch(α′) ∈ Ai(X)Q, and then ch(α′) ∩ β ∈ CHi+j(X)Q. □

Smooth over Dedekind Schemes Case

Smooth over Fields Case

Prop.(7.1.8.3)[Exterior Products]. If k ∈ Field, S = Spec k, X,Y ∈ Schloc.ft /k, there is a exterior
product map

CHn(X)⊗ CHm(Y )→ CHn+m(X ×S Y )
defined by sending [X ′]⊗[Y ′] to [X ′×SY ′]n+m, where X ′ ⊂ X,Y ′ ⊂ Y are integral closed subschemes
of dimension n and m resp.
Proof: To show this is well defined, consider i : X ′ → X, c : X → Spec k, then by(7.1.6.11),
c∗ ◦ (c ◦ i)∗ ∈ A−n(X → Spec k), which sends [Y ′] to [X ′ ×k Y ′]n+m, so this map factors through
rational equivalences on Y , and similarly it factors through rational equivalences on X. □

Prop.(7.1.8.4). If k ∈ Field, S = Spec k and X ∈ Schloc.ft /k, there is a natural isomorphism Ap(X →
Spec k) ∼= CH−p(X) for any p ∈ Z.
Proof: The map Ap(X → Spec k) → CH−p(X) is given by c 7→ c ∩ [Spec k]. Conversely, for any
α ∈ CH−p(X), we can define for any X ′ ∈ Schloc.ft /k a map

CHn(X ′)→ CHn−p(X ×k X ′) : β 7→ α× β(7.1.8.3).

Then this is a bivariant class in Ap(X → Spec k): Let α =
∑
ni[Xi], and let g :

⨿
iXi → X,

f :
⨿
iXi → Spec k. Denote ν∗ ∈ A0(

⨿
iXi) the bivariant class that multiplies by ni at each

component Xi, then g∗ ◦ ν ◦ f∗ ∈ Ap(X → Spec k) by(7.1.6.10)(7.1.6.11), and this is just the map we
defined above.

To show these two maps are inverse to each other, one direction is clear. To show c(β) =
(c ∩ [Spec k])× β, it suffices to show for β = [X ′] is integral, then β = (X ′ → Spec k)∗[Spec k], then
it is easy to see they are equal because c commutes with flat pullbacks (X ′ → Spec k)∗. □
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Cor.(7.1.8.5)[Commutativity and Associativity]. If k ∈ Field, S = Spec k and X ∈ Schloc.ft /k,
then c ∈ Ap(X → Spec(k)) commutes with any c′ ∈ Aq(Y → Z) for any f : Y → Z ∈ Schloc.ft /k. In
other words, for any α ∈ CH∗(X), β ∈ CH∗(Z) and c ∈ A∗(Y → Z),

α× (c ∩ β) = c ∩ (α× β) ∈ CH∗(X ×k Y ).

In particular, if γ ∈ CH∗(Y ), then

(α× β)× γ = α× (β × γ) ∈ CH∗(X ×k Y ×k Z).

Proof: This is because c = g∗ ◦ ν ◦ f∗ as in the proof of(7.1.8.4). □

Prop.(7.1.8.6) [Perturbation and Chow Rings].Any two algebraic cycles γ1, γ2 ∈ Z∗(X) are
rationally equivalent to cycles γ′

1, γ
′
2 s.t. γ′

1, γ
′
2 intersect properly. And the rational class of resulting

intersection cycle is well-defined. So there is an intersection on CH∗(X) making it a commutative
ring, called the Chow ring of X.

Proof:
□

Prop.(7.1.8.7)[Bezout].The Chow ring of Pnk is isomorphic to Z[x]/(xn+1). The degree of an irre-
ducible closed variety corresponds to the coefficient of it.

Proof:
□

Def.(7.1.8.8) [Euler Characteristic]. If X is a smooth scheme over a field k of dimension d with
tangent bundle TX/k, the Euler characteristic of X is defined to deg(cd(TX/k)∩[X]), and the Todd
characteristic of X is defined to deg(Toddd(TX/k) ∩ [X]).

Prop.(7.1.8.9). If X is a smooth scheme over a field k and i : Y → X is a regular closed immersion
and Y is equidimensional of dimension e, then

[Y ]e · α = i∗(i!(α)).

Proof: Cf.[Sta]0FFE?. □

Serre’s Approach

Prop.(7.1.8.10). If X is a integral scheme smooth over a field k, and W,V be two integral closed
subschemes of X, then codim(W ∩ V ) ≤ codim(W ) + codim(V ).

Proof: Cf.[Sta]0AZP. □

Def.(7.1.8.11)[Proper Intersections].Let X be a integral scheme smooth over a field k, then two
cycles α =

∑
ni[Wi] and β =

∑
mj [Vj ] are said to intersect properly iff

codim(Wi ∩ Vj) ≥ codim(Wi) + codim(Vj).

And in fact equality holds, by(7.1.8.10).
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Lemma(7.1.8.12) [Tor Sheaves].Let X be a integral scheme smooth over a field k and F ,G ∈
Coh(X), then TorOX

p (F ,G) ∈ Coh(X), with stalk at x ∈ X being TorOX,x
p (Fx,Gx), and is supported

on Supp(F) ∩ Supp(G), and nonzero only for 0 ≤ p ≤ dimX.

Proof: Cf.[Sta]0AZT. □

Def.(7.1.8.13)[Intersection via Tor].Let X be a regular scheme and W,V ⊂ X be integral closed
subschemes intersecting properly, by(7.1.8.12) we can define the intersection product

W · V =
∑
i

[TorOX
i (OW ,OV )]r+s−dimX ,

and for any irreducible component Z of W ∩ V the intersection multiplicities

e(X,W · V, Z) =
∑
i

(−1)i lengthOX,Z
TorOX,Z

i (OW,Z ,OV,Z).

Proof: Why is this compatible with the definition given before?. Why the multiplicity is given by
this form? □

Remark(7.1.8.14) [Serre Conjecture]. Serre conjectured that in(7.1.8.13), even if W,V doesn’t
intersect properly, for an irreducible component Z ⊂W ∩V of dimension≥ dimW + dimV −dimX,
we have e(X,W · V, P ) = 0.

Prop.(7.1.8.15)[Discrete Case].Let X be a integral scheme smooth over k and W,V ⊂ X be closed
subvarieties that intersect properly. Let Z be an irreducible component of V ∩W with generic point
ξ and OW,ξ,OV,ξ are both C.M., then

e(X,W · V, Z) = lengthOX,ξ
(OV ∩W,ξ).

Proof: Cf.[Sta]0B02?. □

Prop.(7.1.8.16)[Exterior Product of Subvarieties].Let X,Y be integral schemes smooth over k
and W ⊂ X,V ⊂ Y be subvarieties, then [W ]× [V ] = ([W ]× [Y ]) · ([X]× [V ]) ∈ Z∗(X × Y ).

Proof: As W × V is a variety with generic point ξ, and X is smooth over k, X × V is smooth over
V , thus OX×V,ξ is regular, hence C.M., and similarly is OW×Y,ξ, thus(7.1.8.15) applies to show that
([W ]× [Y ]) · ([X]× [V ]) = [W ]× [V ]. □

Prop.(7.1.8.17)[Serre]. IfX is a integral scheme smooth over a field k, F ∈ Coh≤r(X),G ∈ Coh≤s(X),
and dim(Supp(F) ∩ Supp(G)) ≤ r + s− dimX. Then [F ]r and [G]s intersect properly, and

[F ]r · [G]s =
∑
p

(−1)p[TorOX
p (F ,G)]r+s−dimX

Proof: Cf.[Sta]0B0W. □

Cor.(7.1.8.18). If X is a smooth integral scheme over a field k, the intersection product on CH∗(X)
makes it a commutative graded (associative, unital)ring.
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Proof: To show the intersection is associative, let U, V,W be closed subvarieties ofX s.t. codim(U∩
V ∩W,X) = codim(U,X) + codim(V,X) + codim(W,X) = p, then it suffices to show that∑

i

(−1)i+j [Torj(OU ,Tori(OV ,OW ))]dimX−p =
∑
i

(−1)i+j [Torj(Tori(OU ,OV ),OW )]dimX−p.

This is true because they are both equal to∑
k

(−1)k[Hk(OU ⊗L OV ⊗L OW )]dimX−p

which is because there is an spectral sequence convergence

Ep,q2 = Tor−p(OU ,Tor−q(OV ,OW ))⇒ Hp+q(OU ⊗L OV ⊗L OW )

and use the fact length functions are additive. □

9 Numerical Geometry

Let k ∈ Field and k = k.
References are http://www.math.columbia.edu/~chaoli/docs/IntersectionTheory.html#

sec13.

Prop.(7.1.9.1)[Schubert Cycles of the Grassmannian].

Prop.(7.1.9.2).Given 4 curves C1, . . . , C4 in P3
k of degree d1, . . . , d4, there are 2d1d2d3d4 lines inter-

secting all of them.

Proof: □

Prop.(7.1.9.3).Use the projective bundle formula to show that given 9 lines L1, . . . , L8 ∈ P3
k in

general position, there are 92 conics meeting all Li.

Proof:
□

Prop.(7.1.9.4). Show that given two general twisted cubic curves C,C ′ ∈ P3
k, they have 10 common

chords.

Proof: □

Prop.(7.1.9.5). Show that given a general quintic surface S ∈ P3
k, there are 575 lines meeting S at

only one point.

Proof: □

Prop.(7.1.9.6). Show that given 5 general conics S1, . . . , Sr in P3
k, there are 3264 conics tangent to

all Si.

Proof: □

http://www.math.columbia.edu/~chaoli/docs/IntersectionTheory.html#sec13
http://www.math.columbia.edu/~chaoli/docs/IntersectionTheory.html#sec13
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10 Riemann-Roch
Main references are[Ful98]Chap15, 18.

Prop.(7.1.10.1)[Grothendieck-Riemann-Roch].Let f : X,Y ∈ Schloc.ft /S be proper smooth, and
E ∈ Cohfree(X), TX/Y the locally free relative tangent bundle, then

f∗(Todd(TX/Y ) ch(E)) =
∑
i

(−1)i ch(Rif∗E).

Remark(7.1.10.2).This theorem also has an Arithmetic version.

Proof: □

Cor.(7.1.10.3) [Hirzebruch-Riemann-Roch]. If X is a smooth complete variety over a field k,
E ∈ Cohfree(X), then

χ(X, E) =
∫
X

Todd(TX/k) ch(E)

Cor.(7.1.10.4). If X is a smooth complete variety over a field k, then

χ(X,OX) =
∫
X

Todd(TX/k).

Singular Case

11 Numerical Equivalences

Def.(7.1.11.1) [Numerical Equivalences].Two cycles γ, γ′ ∈ CHk(X) are called numerically
equivalent if for any δ ∈ Zk(X), γ · δ = γ′ · δ. And we can define GHk(X) the Grothendieck
group of k-cycles to be Zk(X) modulo the numerical equivalence relation.

Prop.(7.1.11.2)[Grothendieck Rings].There is a group homomorphism CH∗(X) → GH∗(X) and
the ring structure on CH∗(X) descends to GH∗(X), making it a ring, called the Grothendieck ring
of X.

12 Intersection for Line Bundles
Main references are [FGA, Appendix B].

Algebraic Equivalence

Def.(7.1.12.1)[Algebraically Equivalent Line Bundles].Let X be a scheme over a field k, then
L1,L2 ∈ Pic(X) are called algebraically equivalent if they are equivalent in the equivalence
relationM∼ N iff there is a connected scheme T and a line bundle L ∈ PicX/k(T ) s.t. Nk(t1) = Lt1
andMk(t2) = Lt2 where t1, t2 ∈ T .

Cor.(7.1.12.2)[Pic0(X)].The elements in Pic(X) algebraically equivalent to 0 is a subgroup of Pic(X),
denoted by Pic0(X). In(7.1.12.4), we will see whenX has a rational point and PicX/k is representable,
this is just Pic0

X/k(k), by(8.7.3.7).

Prop.(7.1.12.3) [Algebraically Equivalent Divisors]. If X be a regular K-prevariety, then
Pic(X) ∼= CH1(X)(5.5.3.15). We call two divisors D1, D2 on X algebraically equivalent if O(D1)
and O(D2) are algebraically equivalent.
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Proof: Cf.[Diophantine Geometry, P563]. □

Prop.(7.1.12.4) [Moduli Characterization]. If X is a scheme over a field k s.t. PicX/k is repre-
sentable, then two line bundles are algebraically equivalent iff they corresponds to points of PicX/k
in the same connected component.

Proof: By(8.7.3.20), PicX/k is a locally algebraic group scheme over k, so by(8.1.4.13), every
connected components of it is irreducible. Clearly two algebraically equivalent line bundles are in
the same connected component of PicX/k. Conversely, the inclusion of their common connected
component P corresponds to a line bundle on some fppf covering T → P . Then use the fact fppf
covering is open map, and the fact P is irreducible to get an algebraic equivalence chain. □

Prop.(7.1.12.5)[Algebraic Equivalence for Curves]. If C is a smooth complete curve over a field
k, then two line bundles L1,L2 ∈ Pic(C) are algebraically equivalent iff they have the same degree.

Proof: It suffices to show after base change to k. Then it suffices to show for any two closed points
x1, x2 ∈ C, L(x1) ∼ L(x2). Consider the diagonal of C ×C is a Cartier divisor, and its restriction to
C × {xi} is L(xi). □

Numerical Intersections

Def.(7.1.12.6).Let X be a proper scheme and F be a coherent sheaf with dim SuppF ≤ n, and
L1, . . . ,Ln are invertible sheaves on X, then we define (L1 · . . . · Ln;F) to be∑

{i1,...,im}⊂{1,...,n}
(−1)mχ(X,L∨

i1 ⊗ . . .⊗ L
∨
im ⊗F).

When F is the structure sheaf of a closed subscheme Y , then denote (L1 ·. . .·Ln;F) by (L1 ·. . .·Ln;Y).
This intersection is stable under base change of fields.

Prop.(7.1.12.7). If X is a complete curve and L an invertible sheaf on X, then (L;X) = deg(L).

Proof: □

Prop.(7.1.12.8). If k is an infinite field and X = Pnk , and Y is a dimension n subvariety of X. If
H1, . . . , Hn are generic chosen hypersurfaces of degree d1, . . . , dn resp., then

(OX(H1) · . . . · OX(Hn);Y ) = d1 . . . dn deg(Y ).

Proof: □

Prop.(7.1.12.9). If D is an effective Cartier divisor on X that doesn’t contain any associated point
of F , then

(L1 · . . . · Ln · O(D);F) = (L1|Y · . . . · Ln|Y ;F|D)

Proof:
□

Prop.(7.1.12.10).For a fixed F , (L1 · . . .Ln;F) is a symmetric multilinear function of L1, . . . ,Ln,
where the addition is tensor production. Moreover, if F is a coherent sheaf with support dimension
n, then (L1 · . . . · Ln+1;F) = 0.
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Proof: Cf.[Rising Sea, P544]. □

Prop.(7.1.12.11).The numerical intersection (L1 · . . . · Ln;F) only depends on the numerical classes
of Li.

Prop.(7.1.12.12)[Projection Formula].Let π : X1 → X2 be a proper morphism of proper schemes,
then

(π∗L1 · . . . · π∗Ln;F) = (L1 · . . . · Ln;π∗F).

In particular, when X1, X2 are integral with the same dimensions and π is a finite map,

(π∗L1 · . . . · π∗Ln) = deg(π)(L1 · . . . · Ln).

Proof:
For the last assertion, notice π∗OX1 = deg(π)OX2+ coherent sheaves with smaller supper dimen-

sions. □

Prop.(7.1.12.13).Let k be a field and X a proper scheme over k, and Z ⊂ X a closed subscheme of
dimension d. If L1, . . . ,Ld are ample invertible sheaves on X, then (L1 · . . . · Ld;Z) is positive.

Proof: □

Prop.(7.1.12.14).Let X be a complex projective scheme, then (L1 · . . . · Ln;Z) equals

(c1((L1)an) ∪ . . . c1((Ln)an), Z)

where c1 is the complex Chern class.

Proof: Cf.[Rising Sea, P547]. □

Def.(7.1.12.15)[First Chern Class].Let X be a proper scheme and K be the Grothendieck group
of Coh(X). For L ∈ Pic(X), define c1(L) to be the endomorphism of K defined by

c1(L)F = F − L−1 ⊗F .

Prop.(7.1.12.16). If L,M∈ Pic(X), then
• c1(L)c1(M) = c1(L) + c1(M)− c1(L ⊗M).
• c1(OX) = 0.
• c1(L)c1(L−1) = c1(L) + c1(L−1).

In particular, c1(L) and c2(M) commutes.

Prop.(7.1.12.17). If X is a proper scheme over a field k and let Kd be the subgroup generated by
coherent sheaves over X with support dimension ≤ d, then if F ∈ Kd, then c1(L)F ∈ Kd−1.

Proof:
□

Prop.(7.1.12.18). If Y ⊂ X is a closed subscheme, and L ∈ Pic(X) satisfy LY is an effective Cartier
divisor D, then c1(L)[Y ] = [D].

Proof: There is an exact sequence 0→ OY (−D)→ OY → OD, and OY (−D) ∼= L−1 ⊗OY . □
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τ-Equivalences

Def.(7.1.12.19)[τ-Equivalence].Let X be a scheme over a field k, then two line bundles L1,L2 are
called τ-equivalent if there are some m ∈ Z+ s.t. L⊗m

1 ∼ L⊗m
2 .

Prop.(7.1.12.20)[Moduli Characterization].Let X be a scheme over a field k and PicX/k is rep-
resentable, then L ∈ Pic(X) is τ -equivalent to OX iff its corresponding point λ ∈ PicX/k is in
PicτX/k.

Proof: Clear from the definition of PicτX/k. □

Def.(7.1.12.21)[Numerically Equivalence].Tow line bundles L1, L2 on a complete prevariety over
a fieldK is called numerically equivalent if c1(L1).α = c1(L2).α for any complete precurve C ⊂ X.
Two divisors on X is called numerically equivalent if their corresponding line bundle do.

Numerically trivial line bundles form a group, and are stable under proper pullbacks,
by(5.11.2.7)(5.11.2.5).

Prop.(7.1.12.22)[Algebraic and Numerical Equivalences].Let L1,L2 be algebraically equivalent
line bundles on a proper scheme X/k, then degL1(X) = degL2(X). In particular, algebraically
equivalent divisors are numerically equivalent.

Proof: This is because in this case L1,L2 are in the same connected component of PicX/k. □

Cor.(7.1.12.23).Let X be a complete prevariety over K and Li be line bundles and Z ∈ Zr(X), then
deg(c1(L1).c1(L2). . . . .cr(Lr).Z) only depends on algebraic equivalence classes of Li.

Proof: Cf.[Diophantine Geometry, P562]. □

Def.(7.1.12.24)[Bounded Set of Line Bundles].Let X be a scheme over S, then a set Λ ⊂ Pic(Xk)
where Spec k → S are points are called bounded if there is a T ∈ Schft /S and a line bundleM on
XT s.t. for any L ∈ Λ, there is some schematic point Spec k → T s.t. L ∼=Mk.

Prop.(7.1.12.25) [Numerical and τ-Equivalence]. If X is proper over an alg.closed field k and
L ∈ Pic(X), then the following are equivalent:

• L is τ -equivalent to OX .
• L is numerically equivalent to OX .
• The family {L⊕p|p ∈ Z} is bounded.
• For any F ∈ Coh(X), χ(F ⊗ L) = χ(F).
• For any p ∈ Z, L⊕p(1) is ample.
•

Proof: Cf.[Kle05]P52, 57. is this true for k separably closed? □

Prop.(7.1.12.26). If X is projective over an alg.closed field k, then the set of line bundles numerically
equivalent to OX is bounded.

Proof: See the proof of [Kle05]P52. □

Prop.(7.1.12.27). If X is projective over an alg.closed field k, then there exists an m ∈ Z s.t. for any
L ∈ Pic(X) numerically equivalent to OX , L is m-regular and χ(L(n)) = χ(OX(n)) for any n ∈ Z.

Proof: Cf.[Kle05]P55. □
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Nef Line Bundles

Def.(7.1.12.28)[Nef Line Bundles].A nef line bundle or numerically effective line bundle
on a complete prevariety over a field k is a line bundle L s.t. c1(L).C ≥ 0 for any complete precurve
C ⊂ X.

Nef line bundles form a semigroup, and are stable under proper pullbacks, by(5.11.2.7)(5.11.2.5).

Prop.(7.1.12.29).Ample line bundles are nef, by(5.11.2.20).

Surface Case

Def.(7.1.12.30)[(−1)-Curves].Let X be a complete curve over a field k, then a (−1)-curve on X is
a curve C consisting of smooth points, C ∼= P1

k and C · C = −1.

Prop.(7.1.12.31) [Hodge Index Theorem].Let X is a smooth surface over a field k and L,H ∈
Pic(X) with H · H > 0 and L · H = 0, then L · L = 0, and the equality holds iff L is numerically
trivial.

Proof: Cf.[Rising Sea, P552]. □

Prop.(7.1.12.32)[P1×P1].Let X = P1×P1, l = P1×{0} and m = {0}×P1, then l · l = m ·m = 0,
and l ·m = 1.
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7.2 Algebraic de Rham Cohomology

Main references are [algebraic de Rham Cohomology, Clausen] and [Gro15].

Notation(7.2.0.1).
• Use notations from Spectral Algebraic Geometry(Lurie).

1 de Rham Complexes
Def.(7.2.1.1)[Absolute de Rham Complex].Let B be a ring, let ΩB = ΩB/Z, and Ωi

B = ∧iΩB,
then there is a total de Rham complex of B:

B → Ω1
B → Ω2

B → . . .

as B-modules, which is a complex, where d(b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 . . . dbp.

Proof: d is well-defined on Ω1
B because it vanishes on the element d(a+ b)− da− db and d(ab)−

ad(b)− bd(a) by Leibniz rule, and the we get a map

p⊗
1

ΩB → Ωp+1
B : ω1 ⊗ . . . ωp 7→

∑
(−1)i+1w1 ∧ . . . ∧ d(ωi) ∧ . . . ∧ ωp.

We want to descend this to a map on Ωp
B using(4.1.1.20): it is clearly alternating, and it suffices to

show it is f -linear, and this is clear by direct calculation.
Finally d2 = 0. □

Prop.(7.2.1.2)[Quotient of de Rham Complexes].Let B be a ring and π : ΩB → Ω be a surjective
map of B-modules. Denote d : B → ΩB → Ω, and Ωi = ∧iΩ. Assume that the kernel of π is generated
as a B-module by elements ω that ∧2(π)(dB(ω)) = 0 in Ω2, then there is a de Rham complex

B → Ω1 → Ω2 → . . .

whose differential is defined by the rules similar to that of(7.2.1.1).

Proof: Because π is surjective, so do ∧iπ, and it suffices to show ∧π gives a connnecting morphism
between Ω•

B and Ω•, then the well-definedness of d is automatic. Cf.[[Sta]07HY]. □

Cor.(7.2.1.3) [Relative de Rham Complex]. If B is an A-algebra, the surjection ΩB → ΩB/A

satisfies the condition of(7.2.1.2) thus we can define the relative de Rham complex Ω•
B/A.

Proof: The verification of the condition is routine. □

Prop.(7.2.1.4)[Universality of de Rham Complexes].Let C be a B-algebra and (E•, d) a non-
negatively graded commutative B-dga and we are given a B-algebra map η : C → E0 that for every
x ∈ C, the element d(η(x)) ∈ E1 satisfies d2 = 0, then the map C → E0 extends uniquely to a map
Ω•
C/B → E• of B-dga.

Proof: One direction is trivial as Ω•
C/B is strict by construction. Conversely, the composite map

C → E0 → E1 is a B-derivation thus extends to a map η1 : Ω1
C/B → E1, then the universal property

of the exterior product(4.1.1.20) gives maps ηi : Ωi
C/B → Ei, and this gives the desired extension. □
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Def.(7.2.1.5) [Connection].Let B be a ring and ΩB → Ω be a quotient satisfying the condition
of(7.2.1.2), then a connection on M is an additive map

∇ : M 7→M ⊗B Ω : ∇(b⊗m) = b∇(m) +m⊗ db

Given a connection on M , we can define maps
∇ : M ⊗B Ωi →M ⊗B Ωi+1, ∇(b⊗ ω) = ∇(b) ∧ ω +m ∧ dω

This is well defined because it commutes it commutes with B-action. The connection is called
integrable if ∇2 = 0.

Prop.(7.2.1.6)[Algebraic de Rham Cohomology].Let X → S be a morphism of rings, then we
define the algebraic de Rham cohomology of X over S as the image of the de Rham complex
Ω•
X/S in D(Mod(OS)).

Prop.(7.2.1.7).There is a similar construction of connections on a f.g. projective R-module M and
Weil-Chern theory parallel to that of 9 and 3.

But in this case, the trace map is defined only when M is f.g. projective, which is called the
Hattoris-Stallings trace: If A is f.g. projective, the natural map HomR(A,R) ⊗R A → EndA(P )
is an isomorphism (Because locally it is an isomorphism??), and the inverse composed with
HomR(A,R)⊗R A→ A, we get the desired map.

Also, when M is f.g. projective, there is a Levi-Cevita connection induced by the A→ Ω1
A/R

because M is a direct summand of some An. This is verified to be independent of n, or one can more
alggeoly use the fact that projective module is locally free.

The Chern character is important, it defines a ring map from K0(R) to Hev
dR(A). In fact, this can

be lifted to a morphism K0(A)→ HCperf
0 (A)→ Hev

dR(A), Cf.[阳恩林 循环同调 Dennis trace].
Prop.(7.2.1.8)[Grothendieck].For X ∈ Schsm /C, there is a functorial equivalence

RΓ(X; Ω•
X/C) ∼= RΓ(Xan; Ωan,•

Xan/C).

Proof: □
Remark(7.2.1.9).Notice if X is smooth and proper, then this follows from GAGA.

2 Infinitesimal Sites
3 Cup Products

Def.(7.2.3.1)[Hodge Cohomologies].For a morphism f : X → S, define the Hodge cohomology
to be the graded H0(S,OS)-algebra

H∗
Hdg(X/S) =

⊕
n≥0

Hn
Hdg(X/S) =

⊕
n≥0

⊕
p+q=n

Hp(X,Ωq
X/S)

with cup product given by?. It is associative and graded commutative. And S 7→ H∗
Hdg(X/S) is

compatible with base change.
Proof: Cf.[Sta]0FM5. □

Prop.(7.2.3.2)[Hodge-to-deRham Spectral Sequence].There is a spectral sequence convergence
Ep,q1 = Hq(X; Ωq) =⇒ Hn

dR(X/C).

And its E2-page is given by Hq(X;RpΩ).

Proof: ? □
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4 Poincaré Duality
Def.(7.2.4.1)[Situation].Let S be a qcqs scheme and f : X → S is a proper smooth morphism of
schemes whose fiber are all equidimensional of dimension d.

Prop.(7.2.4.2) [Relative Poincaré duality]. In situation(7.2.4.1) there is a canonical OS-module
map

t : Rf∗Ωd
X/S [d]→ OS

s.t. for any p, the pairing
Rf∗Ωp

X/S ⊗
L
OS

Rf∗Ωn−p
X/S → OS

induced from relative cup product and t is a perfect pairing of perfect complexes in D(OS) that is
compatible perfect under base change. And it also induces a perfect OS-bilinear pairing

f∗OX ⊗Rdf∗Ωd
X/S → OS

compatible with base change.

Proof: Cf.[Sta]0G8I. □

Cor.(7.2.4.3). If S is Noetherian andX is a proper smooth variety over S, then there is an isomorphism
Rdf∗Ωd

X/S
∼= OS that is compatible with base change.
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7.3 Étale Fundamental Groups

References are[K-M85].

1 Étale Connected Components

Def.(7.3.1.1) [Étale Connected Components].Let X be a scheme over a field k, let π0(X) =
Spec(π(X)), where π(X) is the largest étale subalgebra of Γ(X,OX)(4.4.7.23).

Prop.(7.3.1.2).Let X be a locally algebraic scheme over a field k, then
• for any field extension k′/k, π0(Xk′) = π0(X)k′ .
• Let Y be a schemes over a field k, then π0(X × Y ) = π0(X)× π0(Y ).

Proof: 1: Cf.[Mil17b]P15.
2: There is a map π(X) ×k π(Y ) → π(X × Y ). Because π commutes with base change, we can

base change to separable closure. In this case, it suffices to show if X,Y is connected then X × Y is
connected, but this follows from(5.4.3.12). □

Prop.(7.3.1.3).Let X be a locally algebraic scheme over a field k, then
• The mapping φ : X → π0(X) induces a 1 to 1 correspondence of points of π0(X) and connected

components of X.
• For all x ∈ π0(X), the fiber φ−1(x) is geo.connected over k(x).
• X → π0(X) is faithfully flat.

Proof: π0(X) is discrete, so the inverse image of each point is a sum of connected components of
X. But this must be connected, because π0(Xk(x)) = π0(X)k(x) = k(x). Also, this implies for the
alg.closure k of k(x), π0(Xk) = π0(Xk(x))k = k, thus Xk(x) is geo.connected. □

2 Étale Fundamental Groups

Main references are [Sta]Chap53 and [Fu11]Chap3.

Lemma(7.3.2.1)[Rigidity Lemma]. If f, g : S′ → S′′ are two S-morphisms where S′′ is a separated
étale S-scheme and (S′, s′) is a pointed scheme that f(s′) = g(s′), then f = g.

Proof: The diagonal S′′ → S′′ ⊗S S′′ is a closed immersion and also étale hence open(5.6.6.3), so
the diagonal is an clopen subset. And now f × g : S′ → S′′ ⊗S S′′ intersects the diagonal, and S′ is
connected, so f, g are identical on the diagonal. □

Def.(7.3.2.2)[Galois Cover]. If (S, s) is a pointed connected scheme, S′ → S is a finite étale cover
of degree n, then there are at most n point over s, so by(7.3.2.1), |Aut(S′/S)| ≤ n. If the equality
holds, then we call S′/S a Galois cover and define Gal(S′/S) = Aut(S′/S)op.

Prop.(7.3.2.3). If S′ → S is a connected finite étale cover, then there is a finite étale cover S′′ → S′

that S′′ → S is Galois.

Proof: Cf.[SGA1, Exp.V, §2− §4]. □
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Def.(7.3.2.4)[Étale Fundamental Group].For any two finite Galois étale cover S′/S, S′′/S, if there
is a S-morphism S′′ → S′, then it induces a morphism of Galois groups because the Galois group of
S′ acts transitively on the fiber over a closed point. And it is surjective by the same reason for S′′.

Then we define the étale cohomology group

π1(S, x) = lim←−
(S′,x′)

Gal(S′/S)

Prop.(7.3.2.5)[Fundamental Group and Covers].For X connected smooth scheme and x→ X a
geometric point, there is a profinite group π1(X,x) that there is a correspondence:

{finite étale covers Y → X} ↔ {Finite sets with a continuous action of π1(X,x)}

Such a group π1(X,x) is called the étale fundamental group of X w.r.t x.

Proof:
□

Prop.(7.3.2.6).Let (S, s) be a connected scheme, then the functor S′ 7→ S′
s induces an equivalence of

categories between the finite étale covers S′ → S with the category of finite discrete π1(X,x)-sets.

Proof: We may assume S′ is connected, then use(7.3.2.3) to find a Galois cover S′′ → S′ that S′′/S
is Galois, then clearly there is a bijection

Gal(S′′/S)/Gal(S′′/S′) ∼= S′(s′)

And any transitive discrete π1(X,x)-sets arise this way.
To prove the essentially surjectivity and fully faithfulness, ? □

Cor.(7.3.2.7).The étale fundamental group is independent of the base point s chosen.

Proof: This is because for two profinite groups, if the categories of their finite sets are equivalent,
then they are isomorphic?. □

Cor.(7.3.2.8) [Locally Constant Sheaves and Fundamental Group].By(7.4.2.19), if X is a
connected scheme and x be a geometric point of X, then there is an equivalence of categories between
finite locally constant Abelian sheaves on X and finite π1(X,x)-modules.

Prop.(7.3.2.9).For k alg.closed, π1(P1
k) = 0.

Proof: □

Prop.(7.3.2.10)[Arithmetic Geometric Exact Sequence]. If X0 is a variety over Fq, then there
is an exact sequence

1→ π1(X,x)→ π1(X0, x)→ G(k/k)→ 1.
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7.4 Étale Cohomology Theory

Basic references are [Fu11], [Sta], [Étale Cohomology, Tamme], [Mil13b], [Con15] and [Notes on
étale cohomology of number fields,. Ann. Sci. Éc. Norm. Super. (4) 6, 521–552 (1973), Mazur].

Notation(7.4.0.1).
• Use notations defined in Cohomology of Schemes.
• Use notations defined in More Properties of Schemes.

1 Basics
Prop.(7.4.1.1).For X ∈ Sch, the étale site Xét is a ringed site, Sh(Xét) is a Grothendieck Abelian
category, and we can define right derived functors of any left exact functor, by(5.3.1.1).

Étale Topoi

Prop.(7.4.1.2)[Zariski-Étale Comparison].For X ∈ Sch, the inclusion XZar → Xét of topologies
which is a morphism of sites ε : Xét → XZar, for any F ∈ Sh(Xét), there is a Leray spectral
sequence(5.3.1.8)

Epq2 = Hp
Zar(X,R

qε∗(F))⇒ Hp+q
ét (X,F).

Def.(7.4.1.3)[Pushforward & Pullback].For a morphism of schemes X → Y , there is a continuous
functor between sites fét : Yét → Xét, which preserves final objects and finite fiber products, so
by(5.1.2.14), it induces a morphism of sites(5.1.1.5) fét : Xét → Yét, which induces a morphism of
topoi

fét : Sh(Xét)→ Sh(Yét).

f∗
ét is called the inverse image, it is exact. By definition(5.1.2.11), for F ∈ Sh(Yét) and X ∈ Xét,

f∗F(X ′) equals the colimit over all pairs (Y ′, φ) where Y ′ ∈ Yét and φ : X ′ → Y ′×Y X, equivalently,
all X ′ → Y ′ over Y .

Cor.(7.4.1.4)[Localizations].By(5.1.2.25), an object i : X ′ → X ∈ Xét induce a morphism (si, is)
of topoi X ′

ét → Xét.
Denote isF = F/X ′, then for Z ′ ∈ X ′

ét, by(5.3.1.4) and(5.1.2.25)

F/X ′(Z ′) = F (Z ′), Hq(Xét;Z ′, F ) ∼= Hq(X ′
ét;Z ′, F/X ′).

In particular,
Hq(Xét;X ′,F) = Hq(X ′

ét;X ′,F|X′),

thus we will omit the ambient sites and the restriction of sheaves, which should cause no confusion.

Prop.(7.4.1.5). If Z is étale over X, then the canonical morphism

f∗ HomX(−, Z)→ HomY (−, Z ×X Y )

is an isomorphism.

Proof: By definition, f∗ HomX(−, Z) is the sheaf associated to the presheaf
fp HomX(−, Z)(5.1.2.11), which is identical to the presheaf HomY (−, Z) on Yét, but it is
already a sheaf(5.1.4.34). □
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Prop.(7.4.1.6)[Relative Leray Spectral Sequence]. If f : X → Y, g : Y → Z ∈ Sch, then for any
F ∈ Sh(Xét), there is a relative Leray spectral sequence(5.3.1.8)

Epq2 = Rpg∗(Rqf∗(F))⇒ Rp+q(gf)∗(F).

Cor.(7.4.1.7)[Leray Spectral Sequence].For a morphism of schemes f : X → Y and F ∈ Sh(Xét),
Y ′ ∈ Yét, there is a Leray spectral sequence??:

Ep2 = Hp(Y ′, Rqf∗(F))⇒ Hp+q(Y ′ ×Y X,F)

Prop.(7.4.1.8)[Commutes with Colimits].For X ∈ Schqcqs, by(5.1.4.17)(5.1.4.20) and(5.3.1.14),
Hqét(X,−) commutes with filtered colimits.

Prop.(7.4.1.9).Let X,Y ∈ Aff, then for any morphism of ringed sites (g, g♯) : (Xét,OX)→ (Yét,OY ),
there exists a unique morphism of schemes f : X → Y ∈ Sch s.t. (g, g♯) is 2-isomorphic to (f, f ♯).

Proof: Cf.[Sta]04I6. □

Field Case

Prop.(7.4.1.10)[Etále Site over Fields].The functor f : X ′ → X ′(ks) is an equivalence of topologies
from the small étale site (Spec(k))ét to the canonnical topology TG on the category of G-sets, where
G = G(ks/k).

In particular, any Abelian sheaf on Spec(k)ét is representable by?.

Proof: First f maps a family of morphisms of schemes to a covering iff this family is a covering
itself. This is because both are defined by set-theoretical surjectivity, and this is by(5.6.6.13).

Next we need to show this is an equivalence of categories. f has a left adjoint g because X ′ →
HomG(U,X ′(ks)) is representable for any G-set U , because any G-set is equivalent to disjoint sums
of G/H, and both category has arbitrary sums, so it suffice to prove for G/H, but this is represented
by Spec k′, where k′ is the fixed field of H.

To prove fg ∼= id and gf ∼= id, they commutes with direct sums, so the first one is true because
G/H → fg(G/H) = Spec(ks)(k) is an isomorphism, and the second follows from(5.6.6.6) as all étale
schemes over field k is a disjoint union of spectra of finite separable field extensions of k. □

Cor.(7.4.1.11)[Étale and Galois Cohomologies].By(10.1.2.1),

Sh((Spec k)ét)→ModG : F → lim−→
k⊂k′⊂ks

F(Spec k′)

is an equivalence of categories, so

Hét
q(Spec k,F) ∼= Hq(G, lim−→

k⊂k′⊂ks
F(Spec ks)).

In particular, if k = ks, then (Spec k)ét is equivalent to Ab, and Hpét(Spec(k),F) = 0 for p > 0.
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Stalks

Def.(7.4.1.12) [Stalk].By(7.4.1.10), for any scheme X and an arithmetic point x : Spec k → X,
the section functor F → F (x) is an equivalence of categories from (Spec k)ét to Ab. Thus for any
F ∈ Sh(Xét), we can define the stalk map

Sh(Xét)→ Ab : F 7→ (x∗F)(x).

Prop.(7.4.1.13).For any geometric point P of X,
• the stalk map is exact and commutes with colimits.
• For any morphism u : P ′ → P of geometric points over X, FP ∼= FP ′ .
• If X → Y is a morphism, then (f∗F )P ∼= FP .

Proof: 1: taking stalk is a composition of f∗ and taking section over P (which is an equivalence),
so it is exact and commutes with colimits(7.4.1.3).

2, 3: Trivial. □
Prop.(7.4.1.14)[Stalk is Defined Naturally].By the definition of f∗(5.1.2.11), if X ′ be an étale
nbhd of P in X, i.e. P → X ′ → X, then

(fét)p(F(P )) = lim−→
X′
F(X ′)

and FP = f∗F (P ), thus there is a natural map lim−→X′ F (X ′)→ FP .
Then we have:

lim−→
X′

G(X ′)→ (G♯)P

for any presheaf G on Xét.

Proof: Firstly (f ·)♯(G) ∼= (f∗G)♯ by(5.1.2.12). Then it suffices to prove that G(P )→ G♯(P ) is an
isomorphism for any presheaf G on Pét. But this is because Pét is just Ab(7.4.1.10), and P id−→ P is
cofinal in the category of coverings of P . □

Cor.(7.4.1.15).For a morphism of schemes X → Y and P is a geometric point of Y , then

Rpf∗(F )P ∼= lim−→
P∈Y ′

Hp(X ×Y Y ′, F ).

Cor.(7.4.1.16).For X = Spec k, the equivalence(7.4.1.10) of Xét with continuous G-modules are just
induced by taking the stalk at Spec ks.

Prop.(7.4.1.17) [Exactness and Stalks].The exactness, injectivity and surjectivity of maps of
sheaves F ′ → F on Xét can be checked on stalks(7.4.1.12).

Proof: It suffices to prove the isomorphism case, because taking stalks are exact(7.4.1.13) and
other maps can be characterized by isomorphisms.

Monomorphism: suppose not, if s ∈ F ′(X ′) is mapped to 0, by taking base change, we can assume
X ′ = X, and then 0 = v(s)x = vx(sx), thus sx = 0 by assumption. Now by(7.4.1.14), for any x there
is an étale nbhd of x that s vanishes on it. So we find an étale covering of X that s vanishes, thus
s = 0 because F ′ is a sheaf.

Epimorphism: Similarly, for any v ∈ F (X ′), we can pass to the base change and assume X ′ = X,
then find for each x a nbhd that comes from some v(sx), and they glue together to be a global section
of F ′(X). □
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Prop.(7.4.1.18)[Finite Morphism is Exact].For a finite morphism f , f∗ are exact on étale topos.

Proof: Check on stalks, □

Properties of Étale Cohomologies

Prop.(7.4.1.19)[Restriction to Small Sites]. If F ∈ Shét /S, then the cohomology groups of F on
S agrees with the cohomology of its restriction on Sh(Sét), by(5.3.1.4).

Prop.(7.4.1.20) [Čech Comparison, Arin]. If X ∈ Sch is compact and any finite subset of X is
contained in an open affine(e.g. X is quasi-projective), then for any covering U ∈ Cov(Schét /X) of
X, Ȟ(U ,−) is exact.

In particular, by(5.3.2.16), in this case, we can use Čech cohomology to calculate the étale coho-
mologies.

Proof: Cf.[Milne, Étale Cohomologies, Prop3.2.17]. □

Prop.(7.4.1.21)[Inverse Limits].Let (Xi)I be a projective system in Schqc with affine morphisms,
X∞ = lim←−i∈I Xi. For any projective system of sheaves (Fi)I ,Fi ∈ Sh((Xi)ét), let F∞ = lim←−i∈I Fi,
then there are isomorphisms

lim−→
i∈I

Hpét(Xi,Fi) ∼= Hpét(X∞,F∞).

Proof: Cf. SGA4, Prop7.5.8, or Artin 1962, Chap3.3.? □

Prop.(7.4.1.22) [Étale-Zariski Comparison for Qco Sheaves].Recall by(5.1.4.36) if M ∈
QCoh(X) then M̃ is a fpqc sheaf on X, in particular an étale sheaf on X. Now the edge map
of the Zariski-étale comparison for M̃ is an isomorphism:

Hp
Zar(X,M) ∼= Hpét(X, M̃)

In particular, Hpét(X,Ga) ∼= Hp(X,OX), and the étale cohomology for Qco sheaves vanishes on affine
schemes.

Proof: Cf.[Sta].
We show that Rpεs(M̃) = 0 for p > 0, Cf.[Tamme P109]. Not hard. □

Prop.(7.4.1.23)[Galois Covering and Group Cohomology]. If U = {Y → X} is a single Galois
covering with Galois group G, P is a presheaf on Sch /X s.t. then Ȟr(U ,P) = Hr(G,P(Y )).

In particular, we may not use alternating complex to calculate the étale cohomologies.

Proof: □

Prop.(7.4.1.24)[Hochschild-Serre Spectral Sequences].Let X ∈ Sch and Y ∈ Xét be a Galois
covering with Galois group Γ, then for any F ∈ Sh(Xét), there is a spectral sequence

Prop.(7.4.1.25) [Mayer-Vietoris Sequences].Let X ∈ Sch and f : Y → X ∈ Xét, U ⊂ X s.t.
f(Y ) ∪ U = X, then for any F ∈ Sh(Xét), there is a long exact sequence

0→ H0
ét(X,F)→ H0

ét(U,F)⊕H0
ét(Y,F)→ H0

ét(f−1(U),F)→ H1
ét(X,F)→ . . .

that is functorial in F , by(5.3.1.11).
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Def.(7.4.1.26)[Restricted Cohomologies].Let X ∈ Sch, Z ⊂ X be a closed subscheme, U = X\Z,
then there is a functor

ΓZ(X,−) : Sh(Xét)→ Ab : F 7→ ker(Γ(X,F)→ Γ(U,F)),

which is left exact as both Γ(X,−) and Γ(U,−) are.
The right derived cohomology of Hr

Z(X,−), called the cohomology of F with supports in Z.

Prop.(7.4.1.27)[Long Exact Sequences]. Situation as in(7.4.1.26), for any F ∈ Sh(Xét), there is a
functorial long exact sequence

· · · → Hr
Z(X,F)→ Hrét(X,F)→ Hrét(U,F)→ Hr+1

Z (X,F)→ · · · .

Proof: Choose a functorial injective resolution(3.9.2.9), and this follows from the fact an injective
sheaf is flabby(5.3.4.9). □

Prop.(7.4.1.28) [Excisions].Let X ∈ Sch, f : X ′ → X ∈ Xét, Z ⊂ X be a closed subset s.t.
Z ′ = f−1(Z) → Z is an isomorphism, and f−1(X\Z,F) → X\Z is an open immersion, then for
F ∈ Sh(Xét), the canonical maps

Hr
Z(X,F)→ Hr

Z′(X ′,F)

are isomorphisms.

Proof: As f∗ is exact and preserves injectives by(5.3.4.2), it suffices to prove for r = 0. Let
U = X\Z,U ′ = X ′\Z ′. If s ∈ ΓZ(X,F) restricts to 0 ∈ ΓZ′(X ′,F), then s restricts to 0 in both X ′

and U . But {X ′, U} is an étale covering of X, so s = 0.
Conversely, if s′ ∈ ΓZ′(X ′,F), to show it comes from some s ∈ ΓZ(X,F), it suffices to show

s′ and 0 ∈ Γ(U,F) defines a cocycle in the Čech complex Č({X ′, U},F): They both restrict to
0 ∈ X ′ ∩ U = U ′, and for X ′ ×X X ′, we can check on stalks: s′ restrict to 0 on U ′ ×X U ′ from both
sides, and on Z ′ ×X Z ′ ∼= Z ′, the maps Z ′ ×X Z ′ → Z are equal isomorphisms. □

Cor.(7.4.1.29)[Restricted Cohomology at a point].Let x ∈ X be a closed point, then for any
F ∈ Sh(Xét), there is an isomorphism

Hp
x(X,F) ∼= Hrét(SpecOhX,x, j∗F).

Proof: Take limits over the affine étale nbhds of x ∈ X and use(7.4.1.21). □

Artin-Schreier Theory and Kummer Theory

Prop.(7.4.1.30)[Artin-Schreier Sequence].Let X be a scheme that has char p, let F : (Ga)X →
(Ga)X be the Frobenius map, and let P = id−F , then there is an Artin-Schreier exact sequence

0→ (Z/(p))X → (Ga)X
P−→ (Ga)X → 0

Proof: If s ∈ OX′ is in the kernel, then s = sp, so it is locally constant and comes from the map
Z/pZ→ OX′ . Conversely, for any s ∈ OX′ , it suffices to find an étale cover that s is a p-th power in
OX′

i
. For this, it suffices to notice that for any p-ring A, A[t]/(tp − t− s) is free of rank p and étale

over A. □



776 CHAPTER 7. WEIL COHOMOLOGIES, MOTIVES AND MOTIVIC COHOMOLOGY

Cor.(7.4.1.31). If X has char p, then by the long exact sequence and(7.4.1.22), there is an exact
sequence

0→ H0(X,OX)/P (H0(X,OX))→ H1(X, (Z/pZ))→ H1(X,OX)F → 0

where the last one is the fixed elements.

Cor.(7.4.1.32). If X = SpecA and pA = 0, then Hq(X, (Z/pZ)X) = A/P (A) for p = 0 and vanish
for p > 0.

Cor.(7.4.1.33). If k is separably closed field of charp and X is a reduced proper k-scheme, then
H1(X, (Z/pZ)X) = (H1(X,OX))F .

Prop.(7.4.1.34) [Kummer Sequence]. If n is invertible on X, then there is an exact sequence in
Sh(Xét):

0→ µn,X → Gm,X
n−→ Gm,X → 0

Proof: The proof is similar to that of Artin-Schreier sequence(7.4.1.30), noticing that A →
A[T ]/(Tn − s) is an étale map. □

Cor.(7.4.1.35). If n is invertible on X,then by(5.7.1.14), there is an exact sequence

0→ H0(X,O∗
X)/nH0(X,O∗

X)→ H1(X,µn)→ Pic(X)[n]→ 0

Cor.(7.4.1.36). If X = SpecA where A is a local ring and n is invertible in A, then H1(X,µn) ∼=
A∗/(A∗)n.?
Proof: Cf.[Tamme, P110]. □

Cor.(7.4.1.37). If k ∈ Field, k = ks, X ∈ Sch /k is reduced and proper, and n ∈ Z ∩ k×, then
H1(X,µn) ∼= Pic(X)[n], by(5.10.1.12).

Strict Henselization

Def.(7.4.1.38).

2 Constructible Sheaves

Torsion Sheaves

Def.(7.4.2.1) [Torsion Sheaves].For C ∈ Site, F ∈ Sh(C; Set) is called a torsion sheaf iff it is
associated to a presheaf of torsion Abelian groups. Equivalently, the canonical morphism lim−→n

F [n]→
F is an isomorphism. The category of torsion sheaves on C is denoted by Shtor(C).

Proof: It F = P ♯, then consider 0 → P [n] → P
n−→ P → 0. Because ♯ is exact, F [n] = (P [n])♯.

Then because ♯ commutes with inductive limits and P = lim−→n
P [n], it follows F = lim−→n

F [n].
Conversely, if F = lim−→n

F [n], then F = lim−→n
(FPSh[n])♯ = (lim−→n

F [n])♯, and lim−→n
FPSh[n] is

presheaf of torsion Abelian groups. □

Remark(7.4.2.2).WARNING: For a torsion sheaf, F(U) need not be torsion Abelian, but this is the
case if U is quasi-compact, Cf.[Tamme P146].

Prop.(7.4.2.3)[Being Torsion is Local].F ∈ Sh(Xét) is a torsion sheaf iff all stalks Fx are torsion.
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Proof: By definition F is torsion iff lim−→n
F [n] → F is an isomorphism. Then use the fact isomor-

phisms are checked on stalks(7.4.1.17) and stalk maps are exact(7.4.1.13). □

Prop.(7.4.2.4).
• If X → Y is a morphism of schemes and F is a torsion sheaf on Y , then f∗F is torsion sheaf

on X.
• If X → Y is a qcqs morphism of schemes and F is a torsion sheaf on X, then Rqf∗F are torsion

sheaves on Y .
• In particular, if X is qcqs and F is a torsion sheaf on X, then Hqét(X,F ) are torsion for all q.

Proof: 1: This follows immediately from(7.4.2.3) and(7.4.1.13).
2: For any y ∈ Y , (Rqf∗F )y ∼= Hq(X,F ), where X = X ⊗Y Y and Y is the strict localization

of Y in y by?. Now F is torsion sheaf by item1, and X → Y is also qcqs with Y being affine, so
Hq(X,F ) is torsion by item3, so Rqf∗F is torsion by(7.4.2.3).

3: By(7.4.1.8), in this case, Hpét(X,−) commutes with filtered colimits, so we can replace F by
nF . Then multiplying by n is zero on F , so also it is zero on Hpét(X,F ), so Hpét(X,F ) is torsion. □

Prop.(7.4.2.5). If X is Noetherian scheme and x is a point of X, let i : Spec(k(x)) → X be the
structure map, then

• for any Abelian sheaf F on Spec(k(x))ét, the sheaves Rpi∗F are torsion sheaf for p > 0.
• Hpét(X, i∗F ) are torsion for all p > 0.

Proof: 1: Cf.[Tamme P148]. Uses strict Henselization.
2: Consider the Leray spectral sequence Hpét(X,Rqi∗F ) =⇒ Hp+q

ét (Spec(k(x)), F ), the left term
vanishes for p ≥ 0, q > 0 by item1 and(7.4.2.4), and the right hand side vanish for p + q > 0
by(7.4.2.4), then it can be checked that Hpét(X, i∗F ) are torsion for p > 0. □

Prop.(7.4.2.6).For a closed subscheme i : Y ⊂ X, Rpi! preserves torsion sheaves.

Proof: Cf.[Tamme P148]. □

Prop.(7.4.2.7).For a regular Noetherian scheme X, Hqét(X, (Gm)X) are torsion for q ≥ 2.

Proof: Cf.[Tamme P149]. □

Prop.(7.4.2.8).For a torsion sheaf F , define F (ℓ) = lim−→n
F [ℓn], so it is an ℓ-torsion sheaf, and in fact

⊕ℓ∈PF (ℓ) = F

this is because this is true at the stalks, because stalks is exact and commutes with colimits(7.4.1.13).
So if X is qcqs, then Hp(X,F ) ∼= Hp(X,F (l)), which is the primary decomposition of Hp(X,F ).

Proof: □

Def.(7.4.2.9)[Cohomological Dimension]. If X ∈ Schqcqs /k, ℓ ∈ P, define the ℓ-adic cohomolog-
ical dimension of X as the smallest number cdℓ(X) = n that Hp(X,F)[1

ℓ ] = 0 for all p > n and
F ∈ Shtor(Xét), and define the cohomological dimension cd(X) of X as the smallest number n
that Hp(X,F ) = 0 for all p > n and F ∈ Shtor(Xét). Equivalently, cd(X) = supℓ∈P{cdℓ(X)}.
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Prop.(7.4.2.10). If k ∈ Field and X ∈ Schft /k, then

cdℓ(X) ≤
{

2 dimX + cdℓ(k) ℓ ̸= char k
dimX + 1 ℓ = char k

.

Proof: □

Cor.(7.4.2.11). If k ∈ Field, k = ks, then cd(X) ≤ 2 dimX.

Proof: □

Thm.(7.4.2.12)[Artin Vanishing]. If k ∈ Field, k = ks and X ∈ Aff ft /k, then cd(X) ≤ dimX.

Proof: Cf.[Mil13b]P105.? □

Prop.(7.4.2.13) [Arc Descent for Étale Cohomology].Let R be a ring and G ∈ Shtor
ét (SpecR),

and F : (Schqcqs /R)op → D≥0(Λ) be the functor (f : X → SpecR) 7→ RΓ(Xét, f
∗G), then F satisfies

arc-descent.

Proof: Cf.[Arc Topology, Bhatt, 5.4.] □

Constructible Sheaves

References are [Conrad notes, L3].

Prop.(7.4.2.14). If G is a commutative, finite and étale group scheme on X, the sheaf GX represented
by G is locally finite on Xét.

Conversely, any locally constant sheaf on Xét is represented by a unique commutative étale group
scheme over X, and it is finite if F has finite stalks.

Proof: Cf.[Tamme P152]. □

Def.(7.4.2.15)[Finite étale Sheaves].For X ∈ Sch, a finite étale sheaf is a sheaf F ∈ Sh(Xét; Set)
s.t. all its stalks are finite.

Def.(7.4.2.16) [Constructible étale Sheaves].For X ∈ NSch, a constructible étale sheaf is a
sheaf F ∈ Sh(Xét; Set) s.t. there is a stratification {Xi} of X that FXi are all locally constant and
finite(7.4.2.15). The category of constructible sheaves on X is denoted by Shconst(Xét; Set).

If moreover F is locally constant, i.e. F is locally constant and finite, then it is called a lcc étale
sheaf. The category of lcc étale sheaves are denoted by Shlcc(Xét; Set).

Prop.(7.4.2.17). µn,X is étale over X iff n is prime to the characteristic of all local residue fields of
X. (Only unramifiedness is concerned, and it is fiberwise(4.4.6.6)). And we can compute the Kahler
differential of k[T ]/(Tn − 1) vanish iff n ̸= 0 in k.

In this case, µn is locally isomorphic to (Z/nZ)X , because for any affine open U = SpecA,
U ′ = SpecA[t]/(tn − 1) → U is étale and surjective(4.4.1.22) and U ′ has all n-th roots of unity, so
(µn)SpecU ′ ∼= (Z/nZ)SpecU ′ .

Example(7.4.2.18).For n ∈ Z+, µn ∈ Shconst(Z[ 1
n ]) but µn /∈ Shlcc(Z[ 1

n ]).

Proof: It is locally constant after the étale base change Z[ 1
n ]→ Z[ 1

n ][ζn]. □
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Prop.(7.4.2.19)[Properties of Constructible Sheaves].
• If F ∈ Sh(Xét) and X has a finite decomposition into constructible reduced subschemes Xi

that F/Xi are locally constant, then F is constructible. The converse is also true if X is qcqs.
• Constructibility is a local property.
• Constructibility is stable under pullback, pushout and finite direct limits.
• Constructibility is stable j! for j qc étale.
• Subsheaves of a constructible sheaf are constructible.

Proof: Cf.[Tamme P155]. [Conrad L3 P2], [Étale Cohomology and Weil Conjecture P42]? □
Prop.(7.4.2.20)[Lcc Sheaves and Finite Étale Schemes].The functor X 7→ HomS(−, X) defines
an equivalence of categories

Schfét /S ∼= Shlcc(Sét; Set).

Proof: The Yoneda functor is fully faithful, thus we need to show the essentially surjectivity. Notice
first HomS(−, X) is locally constant finite: we can restrict to an open subset of S that the fiber are
of fixed order n, and X → X ×S X is étale and a closed immersion, thus X ×S X = X

⨿
Y , and Y

is finite étale over X through π1. Now by induction on the order of the fiber, Y = X ⊗ Σ′ locally.
So X = S × Σ locally, which means X represents the constant sheaf Σ locally.

To show that every locally constant finite étale sheaf is represented by a finite étale scheme,
Cf.[Conrad Etale coh, P19]?. □

Prop.(7.4.2.21). If G is a commutative étale group scheme over X, then the sheaf GX represented by
G is constructible iff G is f.p. over X.

Proof: □
Prop.(7.4.2.22)[Locally Constancy and Specializations].For S ∈ NSch and F ∈ Shconst(Sét), F
is locally constant iff all the specialization maps for geometric points Fs → Fη are bijective.

Proof: If F is locally constant, because the conclusion is local, we may assume F is constant, then
Fs → Fη are all identities.

Conversely, for any geometric point s, Σ = Fs is finite by definition, thus there is an étale nbhd
U of s that the map Σ → F induces an isomorphism on s-stalks, so this is an isomorphism for
any geometric point linked to s by specialization, in particular the generic point of the irreducible
component containing s and all the points in this irreducible component, thus F is constant on an
open nbhd of s(because X is Noetherian thus has f.m. irreducible components), so F is locally
constant because X is Noetherian. □

Prop.(7.4.2.23)[Constructible Sheaves are Noetherian]. Shconst(Xét) are exactly the Noetherian
objects in Shtor(Xét).

Proof: □

Frobenius Actions

Prop.(7.4.2.24) [Frobenius action on Étale Sheaves].Let k ∈ Fieldp, k ∼= Fpr and X ∈
Sch sep, ft/k,F ∈ Sch(Xét), we have an isomorphism F ∼= (φr,X)∗F which is the inverse of the
isomorphisms

(φr,X)∗(F)(U) = F(φ−1
r,X(U))

F ∗
U/X−−−→ F(U),
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and its adjoint φ∗
r,XF → F is denoted by φF .

Then φF commutes with tensor product and it is an isomorphism.

Proof: The adjoint is an isomorphism because φ induces equivalence of categories of étale site of
Xét with itself by(5.1.4.22). □

Prop.(7.4.2.25)[Compatibility of φF wit Pullbacks].Let k ∈ Fieldp, k ∼= Fpr and f : Y → X ∈
Sch sep, ft/k be separated, F ∈ Sch(Xét), then the morphism φ∗

Y f
∗F ∼= f∗φ∗

r,XF
f∗φF−−−→ f∗F is just

φf∗F .

Proof: Cf.[Fu11]P586. □

Prop.(7.4.2.26)[Compatibility of φF with Higher Direct Image].Let k ∈ Fieldp, k ∼= Fpr and
f : X → Y ∈ Sch sep, ft/k be separated, F ∈ Sch(Xét), so we have a Cartesian diagram about φr,X
and φY . Then the composition

φ∗
SR

if∗F → Rif∗φ
∗
r,XF

Rif∗(φF )−−−−−−→ Rif∗F

is just φRif∗F .

Proof: Cf.[Conrad L18 P4].? □

Cor.(7.4.2.27)[Compatibility of φF with Proper Pushforward]. If X → S is a separated mor-
phism of f.t. between k-schemes and F is a torsion Abelian sheaf on Xét, then the morphism

φ∗
r,SR

if!F → Rif!φ
∗
r,XF

Rif!(φF )−−−−−−→ Rif!F

is just φRif!F .

Proof: Choose a compactification, the j! doesn’t matter, so we finish by(7.4.2.26). □

Def.(7.4.2.28) [Frobenius Action on Compact Cohomology].Let k ∈ Fieldp, k ∼= Fpr , X0 ∈
Sch sep, ft/k,F0 ∈ Sh((X0)ét), X = X0 ×k k, F = F0 ×k k,

• As FrX is finite, by(7.4.5.4) it induces a pullback map H i
ét,c(X,F) → H i

ét,c(X,Fr∗
X F), which

by composing with the natural isomorphism

FrF : Fr∗
X F = Fr∗(X → X0)∗F0 = (X → X0)∗(φr,X)∗F0

φF0 (7.4.2.24)
∼= (X → X0)∗F0 = F

gives an endomorphism Fr∗
F : H i

ét,c(X,F) → H i
ét,c(X,F), called the geometric Frobenius

action on the étale cohomology.
• Similarly, there are natural isomorphisms

FF : F ∗
XF = F ∗

X(X → X0)∗F0 ∼= ((X → X0) ◦ FX)∗F0 = F ,

so we can define the action F ∗
X on H i

ét,c(X,F), called the arithmetic Frobenius action on
the étale cohomology.

• Similarly, the natural isomorphisms φF : φ∗
r,XF ∼= F(7.4.2.24) defines an action φ∗

r,X on
H i

ét,c(X,F), called the absolute Frobenius action on the étale cohomology.
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Lemma(7.4.2.29). Situation as in(7.4.2.28), Fr∗
X F = φ∗

r,XF
∗
XF ∼= φ∗

r,XF
φF−−→ F is just FrF ,

by(5.2.10.2).

Prop.(7.4.2.30) [Frobenius Actions are Compatible]. Situation as in(7.4.2.28), φ∗
r,X = id on

H i
ét,c(X,F).
In particular, (7.4.2.29) shows Fr∗

X = φ∗
r,X ◦ F ∗

X on H i
ét,c(X,G), so F ∗

X agrees with Fr∗
X on

H i
ét,c(X,F), which is k-linear. We can calculate with either one of them, and denote it by F ∗

X .,
called the Frobenius action on compact étale cohomologies.

Proof: Choose an injective resolution F → I•, it suffices to show that

Γ(X, I•)→ Γ(X,φ∗φ
∗I•) φF−−→ Γ(X,φ∗I•)

is the identity. But notice by definition I• → φ∗φ
∗I• φF−−→ φ∗I• is the inverse of the isomorphism

in(7.4.2.24). □

3 Base Changes

Prop.(7.4.3.1)[Proper Base Change]. If there is a Cartesian diagram

X ′ Y ′

X Y

g′

f ′ f

g

that f is proper, then for any torsion sheaf F on Y ′, the base change maps(5.3.3.18)

g∗Rqf∗F → Rqf ′
∗(g′∗F)

are isomorphisms.

Proof: Cf.[Conrad L6]. □

Prop.(7.4.3.2)[Smooth Base Change]. If there is a Cartesian diagram

X ′ Y ′

X Y

g′

f ′ f

g

that f is smooth, then for any K• ∈ D+(X,Z/(n)), the base change map(5.3.3.18)

f∗Rg∗K• → Rg′
∗f

′∗K•

is an isomorphism.

Proof: Cf.[Lei Fu, P391]. □
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4 Lower Shriek Functor
5 Cohomology with Compact Support

Cf.[Weil1, P18].

Lemma(7.4.5.1).Extension by 0 commutes with pullback Cf.[KF Lemma4.9].

Def.(7.4.5.2) [Higher Direct Images with Compact Support].Let Y ∈ Schqcqs, f : X → Y ∈

Schsep,ft /Y,F ∈ Sh(Xét), then f factors as f : X
j
↪→ X

f−→ Y where j : X → X is an open dense
subscheme and f is proper, by Nagata compactification(5.8.3.2), then we define the higher direct
image with compact support as

Rf! = Rf∗j! : D+(X, tor)→ D+(Y, tor).

Then this notion is well-defined.
And if Y = Spec k, define H i

ét,c(X,F) = H i(Spec k,Rf!F), called the étale cohomology with
compact support.

Proof: To show it is well-defined, notice for any two compactification, we can find a common
compactification that dominates them both?, so using lemma(7.4.5.3), we easily show they are
isomorphic. □

Lemma(7.4.5.3)[i! and Higher Pushforward]. If there is a commutative diagram

X X

Y Y

i

f f

j

where i, j are open immersion and f, f are proper, then there is a natural transformation j!f∗ → f∗i!
that induces a natural transformation

j!Rf∗ → Rf∗i!,

which is an isomorphism iff f is proper.

Proof: If this is a Cartesian diagram, then the natural transformation is give by

j!f∗ → f∗f
∗
j!f∗ ∼= f∗i!f

∗f∗ → f∗i!.

(the second isomorphism is by(7.4.5.1)). The rest is by proper base change Cf.[KF P88].
The general case is also easily reduced to the Cartesian case.? □

Prop.(7.4.5.4)[Proper Map Induces Map on Proper Pushforward]. If g : Y → X, f : X → S
is a proper morphism between schemes separated of f.t. over a Noetherian scheme S, then for any
étale Abelian sheaf F on X, there is a canonical mop

g : Rf!(F)→ R(f ◦ g)!(F)

Proof: Choose a compactification X2
j−→ X2, then choose a compactification X1

i−→ X1 of i◦g, now
Cf.https://math.stackexchange.com/questions/3120833/proper-morphism-induces-a-map-between-compact-support-etale-cohomology-groups

?. □

https://math.stackexchange.com/questions/3120833/proper-morphism-induces-a-map-between-compact-support-etale-cohomology-groups
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Prop.(7.4.5.5)[Properties of Compact Pushforwards].
• (Base Change) If there is a Cartesian diagram

X ′ X

S′ S

h

f ′ f

g

that f is separated of f.t., then there is a natural isomorphism

g∗Rf! ∼= Rf ′
!h

∗

• (Composition) For two separated morphisms of f.t, R(f1 ◦ f2)! = R(f1)!R(f2)!, which induces
a Leray spectral sequence.

• (Excision) Let f : X → S be a separated morphism of f.t, and F ∈ D+
tor(X). Let Z ⊂ X be a

closed subscheme and U = X\Z, then there is a long exact sequence

· · · → Rp(fU )!(F|U )→ Rpf!F → Rp(fZ)!(F|Z)→ Rp+1(fU )!(F|U )→ · · ·

Proof: 1: Choose a compactification of f , then it suffices to show Rf c∗ and j! both commutes with
base change, which is by proper base change(7.4.3.1) and(7.4.5.1).

2: Two compactification can be splinted, and use(7.4.5.3).
3: Use the long exact sequence applied to the exact sequence(checked on stalks(7.4.1.17))

0→ j!j
∗F → F → i∗i

∗F → 0

□

Prop.(7.4.5.6)[Proper Pushforward to Direct Image].There is a natural map from Rif! → Rif∗,
which is induced by

Rif! = Rif∗j! → Rif∗j∗ → Rif∗

where the second one is edge map of Leray spectral sequence.
In particular, there is a map H i

ét,c(X,F)→ Hiét(X,F).

Prop.(7.4.5.7)[Vanishing Result]. If f : X → S is separated of f.t. and let d = sups∈S dimXs, then
if F ∈ D(X, tor) satisfies Hp(F)[p] = 0 for p ≥ r, then

Rpf!F = 0, p ≥ r + 2d.

Proof: Cf.[Conrad L10 P4]. □

Prop.(7.4.5.8) [Projection Formula]. If X → S is a quasi-projective morphism, F ∈ D−(S) and
G ∈ D(X), then we have a natural isomorphism

F ⊗LS Rf!G ∼= Rf!(f∗F ⊗LX G)

Proof: We may pass to the compactification, as j! commutes with f∗?. □
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6 Torsion Cohomology

Finiteness Theorems

Prop.(7.4.6.1). If S ∈ Sch is Noetherian, f : X → S ∈ Schsep,ft /S, and F ∈ Shconst(Xét) whose
torsion order is invertible in S, then Rpf!F are all constructible on Y .

Proof: Cf.[Conrad L10 P5]. □

Cor.(7.4.6.2). If X is a proper scheme over a separably closed field k and F is a constructible sheaf
on Xét, then Hpét(X,F) are finite for all p ≥ 0.

Proof: □

Lemma(7.4.6.3). If X → S is smooth and proper, and F is a locally constant finite Abelian sheaf
with torsion order invertible on S, suppose S is Noetherian, then all specialization maps for Rpf∗F
are isomorphisms.

Proof: Cf.[Conrad L10 P5]. □

Prop.(7.4.6.4)[Proper Smooth Higher Direct Image of Lcc Sheaves]. If X → S is smooth and
proper, and F is a lcc Abelian sheaf(7.4.2.15) with torsion order invertible on S, then Rpf∗F are
locally constant finite sheaves for any p ≥ 0.

Proof: By(7.4.2.20), we may assume F = X ′ for some finite étale scheme X ′ → X. By Noetherian
descent? together with proper base change, we may reduce to the case S is Noetherian. Thus
by(7.4.6.1), Rpf∗F = Rpf!F are constructible, and(7.4.6.3) shows that the stalk maps are isomor-
phisms. So(7.4.2.22) shows that Rpf∗F are locally constant finite. □

7 ℓ-adic Étale Cohomologies
Notation(7.4.7.1).

• Fix a CDVR (Λ,m,K, κ) of mixed characteristic (0, p) and suppose #κ <∞.
• Fix S ∈ Sch.
• Let Λn = Λ/mn.

Artin-Rees Formalism

Def.(7.4.7.2).The pre Artin-Rees category of A-modules has objects M• = (Mn)n∈Z which are
projective systems of A-modules with Mn = 0 for n << 0, and the morphisms in this category are
the elements of the set

HomA-R(M•, N•) = lim−→Hom(M•[d], N•)

An object M• in the Artin-Rees category is called a null system if for some ≥ 0 the map
Mn+ →Mn vanishes for all n.

Prop.(7.4.7.3) [Artin-Rees Category].The pre Artin-Rees category is an Abelian category, and
the null systems form a Weak Serre subcategory. Then we define the Arin-Rees category as the
quotient category.

Proof: □
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Prop.(7.4.7.4). If the kernel and cokernel of two systems are all null systems, then they induce iso-
morphism on inverse limit.

Proof: Cf.[Conrad L15, P5]. □

Def.(7.4.7.5).An object M• in the A-R category is called Artin-Rees I-adic if it is represented
by a system Mn that Mn = 0 for n < 0 and Mn is finite over An, Mn+1 ⊗An+1 An → Mn is an
isomorphism for n ≥ 0.

Prop.(7.4.7.6).The full subcategory of Artin-Rees I-adic modules is an Abelian category, and it is
equivalent to the category of finite A-modules by the stalk functor.

Prop.(7.4.7.7).The category ShΛ-lcc(Sét) is equivalent to the full subcategory of Shm(Sét) consisting
of objects with Artin-Rees property and that the terminal stable image is constructible.

Proof: □

Def.(7.4.7.8)[Strictly m-adic Sheaves].The category Shm-strict(Sét) of strict m-adic sheaves are
defined as before.

Prop.(7.4.7.9).We can strictify any m-adic sheaf, Cf.[Conrad, Etale Coh].

Constructible and Lisse m-adic Sheaves

Def.(7.4.7.10) [Lisse Adic Sheaves].For S ∈ Sch, F ∈ Shm(S) is called constructible m-adic
sheaf if it is isomorphic to a strict system {Fn} that Fn ∈ ShΛn-const(Sét). The subcategory of
constructible m-adic sheaves is denoted by Shm-const(S).
F ∈ Shm(S) is called a lisse m-adic sheaf if it is isomorphic to a strict system {Fn} s.t.

Fn ∈ ShΛn-lcc(Sét).

Def.(7.4.7.11)[Tate Twist Sheaves].The Tate twist sheaf Λ(1) is defined to be. It is invertible,
thus we denote its dual by Λ(−1). Then Λ(r) ∈ ShΛ-lcc(Xét) if p is invertible on X.

For any m-adic sheaf F , denote F(1) to be the sheaf F ⊗ Λ(1). Also denote Λ(r) = Λ(1)⊗r.

Def.(7.4.7.12)[Stalk Maps].Let s→ S be a arithmetic point, then there is a stalk map

Shm-const(S)→Modfin
Λ : F• 7→ lim←−

n

(Fn)s.

It is well-defined by [Conrad, Etale Coh]P72.

Prop.(7.4.7.13).Constructibility/lisse are étale-local and stratification-local properties for F ∈
Shm(Sét).

Proof: Cf.[Conrad, Etale Coh]P71. □

Prop.(7.4.7.14).The full subcategory Shm-lcc(Sét) ⊂ Shm(Sét) is stable under taking kernels and
cokernels.

Prop.(7.4.7.15)[Constructible and Lisse m-adic Sheaves].Let S ∈ NSch and F ∈ Shm-const(Sét),
then there is a stratification of X that F is locally constant finite on each stratum.
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Proof: Cf.[Conrad, Etale Coh]P73?.
By the stalk criterion of locally constant finite(7.4.2.22), a constructible extension of locally

constant finite sheaves is also locally constant finite. So by the exact sequence 1→ ℓn−1Fn → Fn →
Fn−1 → 1, iff we show there is a stratification that all ℓn−1Fn are locally constant finite, then by
induction all Fn are locally constant finite. But then ℓn−1Fn is a descending chain of quotients of
F1, thus the kernel is ascending thus stablizes because F1 is constructible(7.4.2.23), so there are only
f.m. such lnFn, so there is a common stratification. □

Cor.(7.4.7.16).Exactness/Isomorphism between constructible sheaves can be checked at stalks.
Def.(7.4.7.17) [Constructible K-Sheaves].The category ShK-const(Xét) of constructible K-
sheaves has the same object as Shm-const(Xét) but with the homomorphism groups

HomShK-const(Sét)(F ,G) = HomShm-const(Sét)(F ,G)⊗Λ K.

And there is a natural functor
K ⊗− : Shm-const(Xét)→ ShK-const(Xét).

Then a lisse K-sheaf is the image of a lisse m-adic sheaf.
Def.(7.4.7.18)[Tate Twist Sheaves].Denote K(r) = Λ(r)⊗Λ K, also called the Tate twist sheaf.
Prop.(7.4.7.19) [Lisse K-Sheaves and π1(S, x)-Representations].Assume S is connected, then
for an arithmetic point s of S, the stalk map F → Fx induces equivalences:

ShΛ-const(Xét) ∼= RepΛ(π1(S, s)), ShK-const(Xét) ∼= Repfd
K(π1(S, s)).

Proof: The point is that by(15.3.1.3), any representation of π1(S, s) stabilizes some Λ-lattice. So by
the equivalence(7.3.2.5)(7.4.2.20) and taking limit using(7.4.7.6), we get the result about OE-sheaves
and representations of π1(X0, s) over OE . □

Prop.(7.4.7.20)[Lisse and Specializations].For S ∈ NSch and F ∈ Shm-const(Sét), then F is lisse
iff all the specialization maps for geometric points Fs → Fη are bijective.

And if S is moreover normal, then the same holds for F ∈ ShK-const(Sét).
Proof: We can assume F is strictly m-adic(7.4.7.10) and then use(7.4.2.22) on each Fn.

For the second assertion, Cf.[Conrad, Etale Coh]P77. □
Cor.(7.4.7.21) [Étale Descent for Lisse K-Sheaves]. If S is Noetherian and normal, then étale
descent holds for lisse K-sheaves.
Proof: ? □

Prop.(7.4.7.22).Constructible m-adic sheaves are Noetherian: Ascending chain of subsheaves sta-
blizes.
Proof: Cf.[Conrad L16 P3]. □

Prop.(7.4.7.23).For any F ∈ Shm-const(Sét), there exists some G ∈ ShΛ-const(Sét) s.t. G ⊂ F and F/G
has Λ-flat stalks.

In particular, any F ∈ ShK-const(Sét) is K-isomorphic to some K ⊗F ′ where F ′ has Λ-flat stalks.

Proof: Cf.[Conrad Etale Coh]P75.? □
Def.(7.4.7.24)[Extensions].Let Λ′/Λ be an extension, then we can define extension functors

Λ′ ⊗Λ − : ShΛ-const(Xét)→ ShΛ′-const(Xét), K ′ ⊗K − : ShK-const(Xét)→ ShK′-const(Xét).

?
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m-adic Cohomologies

Prop.(7.4.7.25)[Direct Pushforward of m-adic Sheaves].For a constructible m-adic sheaf F and
a compatifiable morphism X0 → S0, we can define Rif∗ and Rif! termwisely, and we have Rif∗F is
a constructible sheaf, hence so is Rif!.

Proof: Cf.[Weil Conjecture and Étale sheaves, P128]. □

Constructible and Lisse Qℓ-Sheaves

Def.(7.4.7.26)[E-Sheaves].The category Sh
Qℓ-const(Xét) of constructible Qℓ-sheaves are the direct

limit of categories of ShE-const(Xét) for E ∈ p-NField.
The category Sh

Qℓ-lcc(Xét) of lisse Qℓ-sheaves are the direct limit of categories of ShE-lcc(Xét)
for E ∈ p-NField.

Prop.(7.4.7.27)[Lisse Qℓ-Sheaves and π1(S, x)-Representations].Assume S is connected, then
for an arithmetic point s of S, the stalk map F → Fx induces equivalences:

Sh
Qℓ--const(Xét) ∼= RepΛ(π1(S, s), ShΛ-const(Xét) ∼= Repfd

Qℓ
(π1(S, s)

Proof: This follows from(7.4.7.19) and(15.3.1.3) by taking direct limit. □

Cor.(7.4.7.28) [Irreducible/Semisimple Lisse Sheaves].F ∈ Sh
Qℓ−lcc(Sét) is called an irre-

ducible/semisimple lisse sheaf if its corresponding representation(7.4.7.27) is. It is called ge-
ometrically irreducible/semisimple if Fks ∈ Sh

Qℓ-lcc((Sks)ét) is irreducible/semisimple, or equiv-
alently, its corresponding representation is irreducible/semisimple as a π1(Sks , x)-representation.

Def.(7.4.7.29)[p-adic étale Cohomologies].For X ∈ Sch, p ∈ P, define

Hiét(X,Qp) = (lim←−
n

H i(X,Z/(pn)))[1
p

].

Analytification

Comparison Theorems

Thm.(7.4.7.30)[Topological Comparison, Artin].Let f : X → S ∈ Schft /C be separable of f.t.,
then

• If F ∈ Schtor(Sét), then the comparison morphism for R•f! is an isomorphism.
• If C ∈ Schconst(Sét), then the comparison morphism for R•f∗ is an isomorphism.

Proof: [Conrad, Etale Coh]? □

Cor.(7.4.7.31)[Comparison with Betti Cohomology].For X ∈ Schft,sep /C, A ∈ Abfin, there is a
canonical isomorphism

Hqét(X,AX) ∼= Hq
Betti(X;A).

Cor.(7.4.7.32).Let F ∈ NField, p ∈ P and v ∈ Σp
F . For X ∈ SmPrpr /OFv , let X = Xκ(v) and

X = X
κ(v), then for ℓ ̸= p, then

Hiét(X;Qℓ) ∼= H i(Xη;Qℓ) ∼= H i
Betti(XC)Qℓ .
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Proof: Let SpecOFv = {s, η}, where s is the special point and η the generic point. Let η, s be
arithmetic points mapping to η, s resp. By proper base change(7.4.3.1), The stalk of higher direct
image of X → OFv along s, η are Hiét(X,Qℓ) and H i(Xη,Qℓ) resp., and they are the same by(7.4.6.4).
And H i(Xη,Qℓ) ∼= H i

Betti(X,Qℓ) by(7.4.7.31) and the fact Qℓ is isomorphic to C. □

Cor.(7.4.7.33)[Good Reduction implies Unramifiedness]. If K ∈ p-LField and X is a scheme
over K with good reduction, then Hiét(X,G) is an unramified representation of GalK .

Prop.(7.4.7.34)[Étale and Fppf Comparison].Let X ∈ Sch and G a smooth commutative group
scheme over X, then there are natural isomorphisms

H∗
ét(X;G) ∼= H∗

fppf(X;G).

Proof: Cf.[Mil80Etale Cohomologies, Prop. III.3]. □

Af -Cohomologies

Def.(7.4.7.35)[Af -Cohomologies].For X ∈ Sch, define

Hnét(X; Af ) = (lim←−
m

Hnét(X,Z/(m)))⊗Q.

Then if X is a smooth complete variety over C, then by(7.4.7.31), there is a canonical isomorphism

Hn
Betti(X)⊗Af ∼= Hn

Af (X).

Thus Hn
Betti(X)⊗Af is intrinsic in X and Hn

Af (X) free over Af .

Conjectures

Conj.(7.4.7.36) [Grothenfieck-Serre].For F ∈ NField and X ∈ SmPrpr /F , the representation
Hiét(X,Qp) of GalF is semistable.

Conj.(7.4.7.37)[Semisimplicity of Frobenius].For X

8 Curves

Prop.(7.4.8.1). If k ∈ Field, k = ks, X ∈ Schsep,ft,dim=1 /k, and F ∈ Shtor(Xét), then Hiét(X,F) = 0
for i > 2, and if F is constructible, then Hiét(X,F) are finite.

Moreover if X is affine and F is locally killed by n not divisible by chark or X is proper and
sections of F are locally p-torsions with p = char k > 0, then H2

ét(X,F) = 0.

Proof: Cf.[Conrad L4 P4] and [Tamme]. □

Lemma(7.4.8.2)[Smooth Complete Curves]. If k ∈ Field, k = ks, X is a smooth complete curve
of genus g and n ∈ Z ∩ k∗, then there are canonical identifications

Hqét(X,µn) =


µn(k) , q = 0
Pic0(X)[n] , q = 1
Z/nZ , q = 2
0 , q ≥ 3

, #Hqét(X,µn) =


n , q = 0
n2g , q = 1
n , q = 2
0 , q ≥ 3

In particular, because Z/(n) ∼= µn, we can get the corresponding cohomologies.
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Proof: Cf.[Sta]03RQ. □

Prop.(7.4.8.3) [Torsion-Freeness].Let k ∈ Field, L ∈ ℓ-NField, X a smooth curve over k, then
H i

ét,c(X,OL) are torsion-free.

Proof: Cf. [SGA41
2 , Chap3.3].? □

Prop.(7.4.8.4)[Curve and Jacobians].For a smooth complete curve C, its first ℓ-adic étale coho-
mology group equals that of its Jacobian variety.

Proof: □

Prop.(7.4.8.5)[Non-Complete Curves]. If k ∈ Field, k = ks, ℓ ∈ P\ char k, then

H i
ét,c(A1

k,Qℓ) =
{
Qℓ , i = 2
0 , otherwise

, H i
ét,c(A1

k\{0},Qℓ) =
{
Qℓ , i = 1, 2
0 , otherwise

Proof: These follow from(7.4.8.2) by excision and(7.4.2.12). □

Weil Axioms

Prop.(7.4.8.6) [Compact ℓ-adic Étale Cohomologies].Let k ∈ Field, k = ks, X ∈
Schsep,ft,dim=d /k, Λ ∈ Abtor with torsion orders prime to char k, then

1. H i
ét,c(X,Λ) are finite Λ-modules.

2. H i
ét,c(X,Λ) = 0 if i < 0 or i > 2d. And if X is affine, then H i

ét,c(X,Λ) = 0 if i < 0 or i > d.

3. There is a natural isomorphismH2d
ét,c(X,Λ) ∼= Λ[S], where S is the set of irreducible components

of X of dimension d.
4. there is a long exact sequence

· · · → Hp
ét,c(U,Λ)→ Hp

ét,c(X,Λ)→ Hp
ét,c(Z,Λ)→ Hp+1

ét,c (U,Λ)→ · · ·

5. H i
ét,c(Ad

k,Λ) =
{

Λ i = 2d
0 otherwise

.

6. If G is a connected algebraic scheme over k acting regularly on X, then G(k) acts trivially on
H i

ét,c(X,Λ).

Proof: 1 follows from(7.4.6.1). 4 follows from excision(7.4.5.5).
2 follows from(7.4.2.11) and(7.4.2.12).
3: By item2 and item4, it suffices to show for X irreducible.?
5: This follows from Künneth formula(7.4.8.9) and(7.4.8.5).
6: Cf.[Deligne-Lustig]Prop6.4?. □

Def.(7.4.8.7)[Cup Product].

Cor.(7.4.8.8) [Homotopy Axiom].Two maps φ,φ′ : X → Y ∈ Sch induce the same map on the
ℓ-adic cohomology if their graphs are rationally equivalent.

Proof: This is because the maps on cohomology depends only on the rational equivalence classes
of the graph.? □



790 CHAPTER 7. WEIL COHOMOLOGIES, MOTIVES AND MOTIVIC COHOMOLOGY

Prop.(7.4.8.9)[Künneth Formula].Let X,Y be complete varieties over k, then there is a natural
isomorphism

H∗
ét(X,Qℓ)⊗H∗

ét(Y,Qℓ) ∼= H∗
ét(X × Y,Qℓ).

Proof: ? □
Lemma(7.4.8.10)[Torsion Poincaré Duality].

Prop.(7.4.8.11) [Poincaré Duality]. If X ∈ SmProj /k, d = dimX, F is a lisse sheaf on X, then
there is a natural isomorphism H2d

ét,c(Xks ,Qℓ(d)) trX−−→ Qℓ and a perfect pairing

Hnét(Xks ,F)×H2d−n
ét,c (Xks ,F∨(d)) ∪−→ H2d

ét,c(Xks ,Qℓ(d)) trX−−→ Qℓ

compatible with action of Galk.

Proof: Cf.[Conrad L12-13], [Weil 2Bhatt P5].?. □
Def.(7.4.8.12)[Cycle Maps].For X ∈ SmPrpr /k, there exists a cycle map

cylℓ : CHj(X)→ H2j
ét (Xks ,Qℓ)(j)

s.t.
x · y = trX(cylℓ(x) ∪ cylℓ(y)).

Proof:
□

Trace Formulae

Def.(7.4.8.13) [Lefschetz Numbers].Let k ∈ Field, k = ks, X ∈ Schsep,ft /k, F a constructible
Qℓ-sheaf on X, then for any g ∈ Aut(X), define the alternating cohomology group

Hét,c(X,F) =
∑
i≥0

(−1)iH i
ét,c(X,F).

and the Lefschetz number to be

tr(g,X,F) = tr(g|Hét,c(X,F)) =
∑
i≥0

(−1)i tr(g|H i
ét,c(X,F)).

Prop.(7.4.8.14).Let k ∈ Field, k = ks, X,C ′ ∈ Schsep,ft /k, g, h ∈ Aut(X), g′ ∈ Aut(X ′), then
1. tr(g,X, ·) is additive.
2. If Z ⊂ X is a closed subscheme and U = X\Z, then tr(g,X,F) = tr(g, U,F) + tr(g, Z,F).
3. tr(g × g,X ×X ′,F × F ′) = tr(g,X,F) tr(g′, X ′,F ′).
4. If g, h commute, then tr(gh,X,F) = tr(g,Xh,F).
5. If T is a tori acting on X, then tr(g,X,F) = tr(g,XS ,F).

Proof: 1, 2, 3 follow from(7.4.8.6).
4, 5: [Deligne-Lustig, Thm3.2] and [Digne and Michel, Prop10.15].? □

Prop.(7.4.8.15).Cf.[Representations of Finite Groups of Lie type, Digne and Michel].

Cor.(7.4.8.16).The Lefschetz number is independent of ℓ.
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7.5 Pro-Étale Cohomology

Main references are [B-S14] and [Sta]Chap56.

1 Introduction
In his second paper on the Weil conjectures ([Del80]), Deligne introduced a derived category of

l-adic sheaves as a certain 2-limit of categories of complexes of sheaves of Z/lnZ-modules on the
étalesite of a scheme X. This approach is used in the paper by Beilinson, Bernstein, and Deligne
([BBD82]) as the basis for their beautiful theory of perverse sheaves. In a paper entitled “Continuous
ÉtaleCohomology”([Jan88]) Uwe Jannsen discusses an important variant of the cohomology of a l-
adic sheaf on a variety over a field. His paper is followed up by a paper of Torsten Ekedahl ([Eke90])
who discusses the adic formalism needed to work comfortably with derived categories defined as
limits.

2 Ring-Theoretical Stuff
Def.(7.5.2.1)[étaleLocal Isomorphism].A ring map A→ B is called a local isomorphism if for
every prime q ∈ SpecB, there is a nbhd SpecBg that SpecBg → SpecA is an open immersion.

Prop.(7.5.2.2).The class of local isomorphisms is stable under base change and compositions. (This
follows from(5.4.4.60)).

Moreover, if A → B → C are ring maps that A → B,A → C are both local isomorphisms, then
B → C is also a local isomorphism.

Def.(7.5.2.3)[w-Local Rings].A ring A is called w-local if SpecA is w-local(3.11.4.17). it is called
strictly w-local if it is w-local and every f.f. étale map A → B has a section. A map of rings is
called w-local if it induces a w-local map(3.11.4.17) on the Spec.

Prop.(7.5.2.4).A w-local ring A is strictly w-local iff all local rings of A at closed pts are strictly
Henselian.

Proof: Cf.[Pro-Etale Cohomology, Scholze, P10]. □

Ind-Zariski Algebra

Def.(7.5.2.5)[Ind-Zariski Algebra].A ring map A→ B is called ind-Zariski/smooth/étale if B
is a filtered colimit of local isomorphisms/smooth ring maps/étale ring maps A→ Bi.

Prop.(7.5.2.6)[Properties of Ind-Zariski Algebras]. Ind-Zariski ring maps are stable under base
change and composition, by(7.5.2.2).?

If A → B → C are ring maps that A → B,A → C are both ind-Zariski, then B → C is also
ind-Zariski.

A→ B be ind-Zariski, then it identifies local rings.

Proof: □

Def.(7.5.2.7)[Ind-(Zariski Localization)].A ring map A → B is called a Zariski localization if
B =

∏n
i Afi . An ind-(Zariski localization) of A is a colimit of Zariski localizations of A.
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Ind-Smooth Algebra

Ind-Étale Algebra
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7.6 Crystalline Cohomology
Main references are [Sta]and [Berthelot-Ogus, Notes on Crystalline Cohomology. Princeton Uni-

versity Press, 1978.]

1 PD-Schemes
Def.(7.6.1.1)[PD-Schemes].A pd-scheme is a triple (S, I, γ) where S is a scheme, I is a Qco sheaf
of ideals, and γ is a pd-structure on I(4.6.0.1). A morphism of pd-schemes is a morphism that all
the structure morphisms are morphisms of pd-structures.

Def.(7.6.1.2)[PD-Thickening].A pd-thickening is a (U, T, δ) where T is a thickening of U(5.8.9.1)
with sheaf of ideals I(i.e. U = Spec(I)) that (T, I, δ) is a pd-structure.

Prop.(7.6.1.3).The fibered product of two morphisms in the category of pd-schemes exists if one of
them is a pd-thickening.
Proof: Cf.[Sta]07ME. □

2 Crystalline Site
Def.(7.6.2.1)[Coverings].A family of morphisms {(Ui, Ti, δi)→ (U, T, δ)} of pd-thickenings is called
a Zariski/smooth/étale/syntomic/fppf. . . iff

• Ui = U ⊗T Ti,
• {Ti → T} is a Zariski/smooth/étale/syntomic/fppf. . . covering of T .

Def.(7.6.2.2)[Crystalline Sites].Let p be a prime and (S, I, γ) be a pd-scheme over Z(p), let S0 =
V (I) ⊂ S, and X → S0 a morphism of schemes that p is nilpotent on X, then the big-crystalline
site (X/S)Crys consists of pd-thickenings(7.6.1.2) (U, T, δ) over (S, I, δ) and a morphism of schemes
U → X, and the topology is the Zariski topology(7.6.2.1). In fact for any (U, T, δ) ∈ (X/S)Crys, p is
locally nilpotent in T , by(4.6.0.5).

The crystalline site (X/S)crys is the strictly full subcategory consisting of objects that U → X
is an open immersion.

Notice the structure sheaf that maps (U, T, δ) to Γ(OU , U) is a sheaf of rings on (X/S)crys, called
the structure sheaf OX/S .

Prop.(7.6.2.3)[Comparing with Zariski Site].The functor
uX/S : (X/S)crys → XZar : (U, T, δ)→ U

is cocontinuous(easy to verify), thus defines a morphism of topoi Sh((X/S)crys) → Sh(XZar)
by(5.1.2.21), which is functorial in X and S.

Prop.(7.6.2.4)[Finite Limits].The category (S/X)Crys has all finite limits, and the forgetful functor
(U, T, δ)→ U preserves finite limits.

Proof: Cf.[[Sta]07I9].? □
Def.(7.6.2.5)[Affine Crystalline Site].Let (A, I, γ) be a pd-structure that A is a Z(p)-algebra, and
C is an A/I-algebra that p is nilpotent in C, then the crystalline site(7.6.2.2) (C/A)Crys is the site
whose object are pd-structures (B, J, δ) over (A, I, γ) that p is nilpotent in B(4.6.0.5), together with
a map of rings C → B/J over A/I, and (C/A)crys the full subcategory of objects B that C → B/J
is an isomorphism.

Notice for any object (B, J, δ) in (C/A)Crys, J is nilpotent, by(4.6.0.5).
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Sheaf of Differentials

Def.(7.6.2.6)[S-Derivations].Let F be a sheaf of OX/S-modules on (X/S)crys, then an S-derivation
D : OX/S → F is a map of sheaves that for any object (U, T, δ) of (X/S)crys, the map D : Γ(T,OT )→
Γ(T,F) is a pd-derivation over Γ(V,OV ) for any open subset V ⊂ S that T → S factors through V .

Prop.(7.6.2.7) [Sheaf of PD-Differentials]. Similar to the construction of sheaf of differen-
tials(5.2.4.2), we can construct of sheaf of pd-differentials ΩX/S,δ on (X/S)crys, which is a quo-
tient of the sheaf of differentials ΩX/S . And similar to(5.2.4.3), for any (U, T, δ) ∈ (X/S)crys,
ΩX/S,δ|(T/S)crys = ΩT/S,δ.

Prop.(7.6.2.8)[A First Order PD-Thickening].Let (U, T, δ) ∈ (X/S)crys, J the ideal sheaf of U ,
we define a first order thickening T ′ of T : let OT ′ = OT ⊕ ΩT/S,δ with the algebraic structure that
Ω2
T/S,δ = 0, and let J ′ = J ⊗ ΩT/S,δ, and define the pd-structure as

δ′
n(f, ω) = (δn(f), δn−1(f)ω).

Then (U, T, δ′) is a pd-thickening and (U, T, δ)→ (U, T ′, δ′) is a morphism in (X/S)crys. Moreover,
there are two ring maps

p0, p1 : OT → OT ′ : p0(f) = (f, 0), p1(f) = (f, dT/S,δ(f))

Then we get two contraction of the morphism T → T ′, and p∗
0 − p∗

1 is the universal derivation dT/S,δ
included in OT ′ .

This construction is functorial in T/S by(7.6.2.7) and hence gives a functor of sites (X/S)crys →
(X/S)crys.

Proof: The verification of the pd-axioms in in [Sta]07HH. □

Prop.(7.6.2.9)[Second Order PD-Thickening].There is a further thickening T ′′ of T ′, which is a
second order thickening of T :

ΩT ′′ = OT ⊕ ΩT/S,δ ⊕ ΩT/S,δ ⊕ Ω2
T/S,δ

with the algebra structure given by

(f, ω1, ω2, η)(f ′, ω′
1, ω

′
2, η

′) = (ff ′, fω′
1 + f ′ω1, fω

′
2 + f ′ω2, fη

′ + f ′η + ω1 ∧ ω′
2 + ω′

1 ∧ ω2)

Let J ′′ = J ⊕ ΩT/S,δ ⊕ ΩT/S,δ ⊕ Ω2
T/S,δ, then there is a PD-structure on J ′′ given by

δ′′
n(f, ω1, ω2, η)) = (δn(f), δn−1(f)ω1, δn−1(f)ω2, δn−1(f)η + δn−1(f)ω1 ∧ ω2)

This construction is functorial in T/S by(7.6.2.7) and hence gives a functor of sites (X/S)crys →
(X/S)crys.

Proof: For the details, Cf.[Sta]07J3. □
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3 Crystals

Def.(7.6.3.1)[Crystals]. In situation(7.6.2.2), for F ∈ Mod(X/S)crys, it restricts to a sheaf fT on T
for every object (U, T, δ) ∈ (X/S)crys. And it is functorial. Then F is called

• an OX/S-crystal if for any morphism u : (U ′, T ′, δ′) → (U, T, δ) in (X/S)crys, the morphism of
OT ′-modules u∗FT → FT ′ is an isomorphism.

• locally Qco if FT ∈ QCoh(OT ) for any (U, T, δ) ∈ (X/S)crys.

• Qco as defined in(5.2.2.25).
In particular, OX/S is a crystal in OX/S-modules.

Def.(7.6.3.2). Is it true that if X = S = SpecR where R is a perfect ring, then a crystal is simply a
module over W (R)??

Connections

Def.(7.6.3.3) [deRham Complexes for (X/S)crys].On a crystalline site (X/S)crys, if we define
Ωi
X/S,δ = ∧iΩX/S,δ(7.6.2.7), then by(7.2.1.2), the universal S-derivative dX/S give rises to the deR-

ham complex
OX/S → Ω1

X/S,δ → Ω2
X/S,δ → . . .

as OX/S-modules on (X/S)crys.

Proof: The verification of the condition for the quotient ΩX → ΩX/S,δ is routine. □

Def.(7.6.3.4) [Connections on (X/S)crys].we define the notion of connection on (X/S)crys of an
OX/S-module F on (X/S)crys w.r.t. the differential ΩX/S,δ, as in(7.2.1.5).

Prop.(7.6.3.5)[Connections of Crystals].Any OX/S-crystal F is equipped with a canonical inte-
grable connection.

Proof: For any (U, T, δ) ∈ (X/S)crys, consider the first order thickening (U, T ′, δ′) given in(7.6.2.8),
then there are two projections p0, p1 : T ′ → T and a inclusion i : T → T ′, then by the property of
crystals we get isomorphisms

p∗
0FT

c0−→ FT ′
c1←− p∗

1FT

then ∇(s) = p∗
1(s) − c−1

1 c0(p∗
0(s)) vanishes after pulling back to T via i∗, so it is in the kernel of i∗,

which is
FT ⊗OT

ΩT/S

by the construction of T ′(7.6.2.8). This ∇ is functorial in T as everything is functorial, hence gives
a connection on F .

For the integrability, Cf.[Sta]07J6.? □

Cor.(7.6.3.6). If F is a crystal in in Qco modules, then we can define a de Rham complex

F → F ⊗OX/S
ΩX/S,δ → F ⊗OX/S,δ

Ω2
X/S,δ → . . .
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Crystals in Qco modules

Def.(7.6.3.7) [Quasi-Coherent Crystals].An OX -module F on (X/S)crys is called a quasi-
coherent crystal if it satisfies the following equivalent conditions:

• F ∈ QCoh(X/S)crys.
• F is locally Qco(7.6.3.1) and it is a crystal in OX/S-modules.

Moreover, F is called a crystal in finite locally free modules if F is finite locally free.

Proof: Cf.[[Sta]07IT]. □

Def.(7.6.3.8)[Notations in Polynomial case]. If in situation(7.6.2.5), S = SpecA,X = SpecC, we
let P → C be a surjection of A-algebras with P = A[Xi], and the kernel is J . Set D = DP,γ(J)∧

be the p-adically completed pd-envelope, then (D, Ĵ, γ̂) admits a natural pd-structure, by(4.6.0.12).
Let De = D/pe and Je the image of Ĵ in De. Denote

ΩD = (ΩD/A,γ)∧ = (ΩDP,γ(J)/A,γ)∧ = lim
e

ΩD(n)e/A,γ(4.6.1.4).

By(4.6.1.4), ΩDP,γ(J)/A,γ = ΩP/A⊗P DP,γ(J) which is free over DP,γ(J) on dxi, so ΩD is topologically
free over D on dxi, and there is a universal derivation d : D → ΩD.

Now let J(n) = ker(P ⊗A ⊗A . . .⊗A P → C) where the tensor has n+ 1 factors, and

D(n) = (DP⊗A⊗A...⊗AP/A,γ(J(n)))∧

with divided ideals Ĵ(n), and also D(n)e = D(n)/pe, T (n)e = SpecD(n)e, then (X,T (n)e, γ(n)) is a
pd-thickening by(4.6.0.5) for e large(4.6.0.12), by(4.6.0.5) as p is nilpotent in X. And

ΩD(n) = (ΩD(n)/A,γ(n))∧.

Then D(0) = D,D(1), . . . form a cosimplicial pd-structures.
Let F be a sheaf of OX/S-modules, denote

M(n) = lim
e

(Γ((X,T (n)e, γ(n)),F)).

Prop.(7.6.3.9).Notation as in(7.6.3.8), there is an isomorphism

D(n) ∼= (D⟨ξi(j)⟩)∧

where ξi(j) = Xi ⊗ 1⊗ . . . 1− 1⊗ 1 . . . Xi ⊗ 1⊗ . . . 1.

Proof: There is an isomorphism P ⊗A . . . ⊗A P ∼= P [ξi(j)], and J(n) is just generated by JP ⊗A
. . .⊗A P + (ξi(j)), so this theorem follows from(4.6.0.17). □

Crystals and Connections

Lemma(7.6.3.10)[Crystals and Connections].Notation as in(7.6.3.8), there is a functor from the
category of crystals in Qco OX/S-modules to the category of pairs (M,∇) that

• M is a p-adically complete D-module.
• ∇ : M →M⊗̂DΩD is an integrable connection.
• ∇ is topological quasi-nilpotent: for any m ∈ M , there are only f.m. pairs (i, k) that
∇k∂/∂xi(m) ∈ pM .
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Proof: For a crystal, we associate to it M = M(0) defined in(7.6.3.8). let Γ((X,T (0)e, γ(0)),F) =
Me, then because F is a crystal in qco sheaves, FT (0)e = M̃e, and Me = Me+1/p

eMe+1, thus
Me = M/peM and M is p-adically complete by(4.2.3.6). By evaluating the natural connection
defined in(7.6.3.6) on Te and take limit, then we get an integral connection ∇ : M →M⊗̂DΩD.

To show this integral is topologically quasi-nilpotent, we can do the same thing for M = M(n)
for any n, and using the crystal property of F and take limits, we get isomorphisms

M⊗̂D,p0D(1)→M(1)→M⊗̂D,p1D(1)

For the rest, Cf.[[Sta]07JG]. □

Prop.(7.6.3.11).The functor defined in(7.6.3.10) is an equivalence of categories.

Proof: Cf.[[Sta]07JH]. □

Def.(7.6.3.12) [Notations in Smooth Case]. Situation as in(7.6.3.8), but this time we choose a
smooth A-algebra P ′ and A → P ′ → C with ker(P ′ → C) = J ′ and do the same as(7.6.3.8) again,
to get

D′ = DP ′,γ(J ′)∧

and
ΩD′ = (ΩD′/A,γ)∧ = (ΩDP ′,γ(J)/A,γ)∧ = lim

e
ΩD′(n)e/A,γ

Prop.(7.6.3.13)[Crystals and Connections in Smooth case]. Situation as in(7.6.3.8) and(7.6.3.8),
then we can find a P = A[Xi] that there are maps a : D → D′, b : D′ → D between the completed
pd-envelope of P, P ′ that a ◦ b = id and compatible with the maps D → C and D′ → C, such that
the base change along a, b induces an equivalence of categories between the categories of modules
with an integrable connection over D as in(7.6.3.10) and the category of modules over D′ with an
integrable connection.

Proof: We con find P that P → C factors through a surjection P → P ′, hence we get a surjection
a : D → D′ the left adjointness of pd-envelope. Let e large that D′

e is a pd-thickening of C over
A by(4.6.0.12)(4.6.0.5), then the kernel of De → D′

e is nilpotent by(4.6.0.5), hence by the strongly
lifting property(4.4.5.16) of the smooth ring map P → P ′(4.4.5.21) w.r.t. the thickening De → D′

e,
we find a lift P ′ → De.

Notice De+i+1 → De+i×D′
e+i

D′
e+i+1 is surjective with nilpotent kernels(because pe+iD → pe+iD′

is surjective), we can use the smooth of A → P to lift inductively the map P ′ → De to a map
P ′ → D, thus by universal property of completed pd-envelope extends to a map b : D′ → D. It is
clear that a ◦ b = id.

For the equivalence of categories, Cf.[[Sta]07L5].? □

Remark(7.6.3.14). In fact this proposition holds with P ′ being any ring that A → P ′ satisfies the
strong lifting property(4.4.5.16). In particular, this holds for ind-smooth A-algebras(7.5.2.5).

4 (F-)Isocrystals
References are [Slope Filtrations of F-Crystals, Katz].

Notation(7.6.4.1).
• Let R ∈ CRing /Fp, S = SpecR.
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Def.(7.6.4.2)[Crystals and Isocrystals].A locally free crystal over S is simply a module over
W (R).

An isocrystal on S is an object in the category of locally free crystals on S up to isogeny, i.e.
a module over W (R)[1

p ].
An F-isocrystal on S is a pair (M,φ) where M is an isocrystal over S and φ : M (p) ∼= M is an

isomorphism of isocrystals over S. The category of F-isocrystals over S is denoted by F-Isoc(S).

Over Perfect Fields

Notation(7.6.4.3).
• Let k ∈ Fieldp be a perfect field.
• K0 = W (k)[1

p ] its maximal unramified subextension.
• The Frobenius action on K0 is denoted by σ.
• We abbreviate F-isocrystals to isocrystals.

Def.(7.6.4.4)[Isocrystals and φ-Modules].An isocrystal over k is the same thing as a φ-module
over (K0, σ)(15.4.6.1).

Def.(7.6.4.5)[Hodge-Tate Weight].For any completeW (k)-latticeM of D, let an be the maximum
integer that φn(M) ⊂ panM , then we have am+n ≥ am+an, thus by(24.1.1.1), we have an/n converges
to sup an/n = λ. λ doesn’t depend on M because of the cofinality of lattices, and it is called the
Hodge-Tate weight of D.

Lemma(7.6.4.6).Let M be a lattice of D that φh+1(M) ⊂ p−1M , where h is the dimension of D,
then D is effective.

Proof: Let Mj = M + φ(M) + . . .+ φj(M), then Mj/M ⊂ p−1M/M , which is a k-vector space of
dimension h, then Mj = Mj+1 for some j, hence Mj is stable under φ. □

Prop.(7.6.4.7). λ ≥ 0 iff D is effective(15.4.6.11). And λ = s/r, where 1 ≤ r ≤ h.

Proof: If D is effective, then an ≥ 0, conversely, if an ≥ 1, then M ′ = M + φ(M) + . . .+ φn−1(M)
is stable under φ, so D is effective.

For the second assertion, we first notice, if λ > 0, then φ is nilpotent on M/pM , which is a
k-vector space of dimension h, then φh = 0 on M/pM , so λ ≥ 1/h.

Now we find s, r that |rλ− s| ≤ 1/(h+ 1), and φ̃ = p−sφr has |λ̃| ≤ 1/(h+ 1), so(7.6.4.6) shows
that φ̃ is effective, hence φ̃ ≥ 0, and by what we have proved, φ̃ = 0, hence it is λ = s/r. □

Lemma(7.6.4.8).For a φ-stable W (k)-lattice M of D, one has M = M0 ⊕M>0, where φ is bijection
on M0 and topologically nilpotent on M>0.

Proof: We consider M/pnM , then by(2.2.4.5) under slight modification, we have a decomposition
for M/pnM . This decompositions for different n are compatible, so taking an inverse limit gives a
decomposition of M it self. □

Def.(7.6.4.9) [Isotypical φ-Modules]. V ∈ φMod(K0) is called pure(isotypical) of slope λ =
s/r ∈ Q if V admits a lattice M on which p−sφr is a bijection. This is independent of V because λ
is independent of V .
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Prop.(7.6.4.10)[Dieudonné-Manin].Any V ∈ φ-Mod(K0) is a finite sum of modules pure of slopes
λi. This is called the isocrystal decomposition of V .

Proof: We use the φ̃ as in the proof of(7.6.4.7), we see that M has a decomposition M0 ⊕M>0
by(7.6.4.8), and M0 ̸= 0 by definition. Then we use induction to get the result. □

Lemma(7.6.4.11). If k is a separably closed field and V is a φ-module with a ≥ 1 of slope 0, then V
has a basis of elements fixed by φ, and 1− φ is a surjection.

If A = W (k) is a ring with k a separably close field and V is a φ-module over A with a ≥ 1 and
slope 0, then V has a basis of elements fixed by φ, and 1− φ is a surjection.

Proof: We choose a e0 ∈ V , and set ei = φi(e0), and suppose ed = a0e0 + . . . + ad−1ed−1, then if
we consider the equation φ(b0e0 + . . . + bd−1ed−1) = b0e0 + . . . + bd−1ed−1, then we need to assure
bd−1 is a zero of

x = aq
d−1

0 xq
d + aq

d−2

1 xq
d−1 + . . .+ ad−1x

q

which is separable, so it has a non-zero solution in k, so φ has a fixed point v. By induction, we have
V/k · v admits a basis fixed by φ. We know that 1− φ : k · v → k · v : x 7→ (x− xq) is surjective, so
we can adjust the coefficient of v to get a basis of V fixed by φ. And meanwhile we proved 1− φ is
surjective.

The second assertion follows from successive approximation, as xp − x − a always has a root in
k. □

Def.(7.6.4.12).When k is alg.closed, for λ = s/r, we define a φ-module over K = W (k)[1/p] Eλ =
⊕r−1
i+0Kei that φ(ei) = ei+1, and φ(er+1) = pse0. In this case, Eλ is irreducible.

Proof: IfD is aW (k)-lattice stable under φ, then we may assume it is pure of slope d/h by(7.6.4.10),
and then we find an element y =

∑
yiei fixed by p−dφh, then pshφrh(yi) = prdyi, which by valuation

is only possible when sh = rd, so h ≥ r, so D generate Eλ. □

Thm.(7.6.4.13)[Dieudonné-Manin]. If k = k, then any V ∈ φ-Mod(K0) has a unique decomposi-
tion as sums of Eλi(7.6.4.12).

Proof: By(7.6.4.10) we assume D is pure, then by(7.6.4.11) we find a basis yi that φr(yi) = psyi,
then there is a map Eλ → D. Since Eλ is irreducible, this is injective, and we consider all yi until
Emλ → V is surjective, then it is an isomorphism(this is like the case of simple modules). □

Def.(7.6.4.14) [Tate Twists].The Tate object 1(n), n ∈ Z is the 1-dimensional isocrystal over K0
that φ = pnσ, so it is of slope n. And the Tate twist isocrystal is tensoring by 1(n). It preserves
rank and shifts Hodge-Tate weight by n.

5 Properties

Cf.[Sta]Chap55.24.

Def.(7.6.5.1)[Higher Direct Images].Let p be a prime number, (S, I, γ) → (S′, I ′, γ′) be a mor-
phism of PD-schemes over Z(p) and f : X/S0 → X ′/S′

0 be a morphism of schemes that p is locally
nilpotent on X and X ′. For the rest, Cf.[Sta]07MJ.
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Def.(7.6.5.2) [F -Crystals]. In situation(7.6.2.2), let S = SpecA where (A, I, γ) is a divided power
algebra with p ∈ I, and there is a Frobenius σ on A extending that of A/I. Since the absolute Frobe-
nius on X and S0 are compatible, thus there is a morphism of crystalline site (FX)crys : (X/S)crys →
(X/S)crys.

Then an F -crystal on X/S relative to σ is a pair (E , FE) given by a crystal in finite locally free
OX/S-modules(7.6.3.7) together with a map

FE : (FX)∗
crysE → E .

A non-degenerate F -crystal is an F -crystal that there exists a map V : E → (FX)∗
crysE that

V ◦ FE = pi id for i ≥ 0.

6 Computations
Prop.(7.6.6.1)[Affine Thickening is Acyclic]. If T is a locally Qco sheaf of OX -modules on (X/S),
then Hp((U, T, δ),F) = 0 for any p > 0 and U or T affine.

Proof: Firstly notice U is affine iff T is affine, by(5.8.9.2), then we use(5.3.2.16) with G being
the affine thickenings and Cov the affine coverings of affine thickenings, then Cov is cofinal, and it
suffices to check that Ȟq(T,F) = 0 for an affine thickening T and q > 0, and this is just the usual
cohomology for Qco sheaves as the affine covering is cofinal, and it follows from(5.7.1.1). □

Lemma(7.6.6.2). Situation as in(7.6.3.8), then the morphism

(colime h(X,Te,δ))
♯ → ∗

of sheaves on (X/S)crys is surjective.

Proof: We need to show that for any (U,B, δ) ∈ (X/A)Crys, there is an Zariski covering (Ui, Bi, δ)
of it that there are maps (Ui, Bi, δ) → (X,Tei , δ) that are compatible, But this is in fact equivalent
to the existence of a morphism (U,B, δ) → (X, SpecD, δ) of pd-structures. For this, notice the
morphism U → X can be extended to a morphism X → SpecP by strong lifting property(4.4.5.16)
of smooth morphism(4.4.5.21), and this extends to the desired morphism by the universal property
of pd-envelope and the fact p is locally nilpotent on B(7.6.2.2) thus B is locally p-complete. □

Lemma(7.6.6.3).Let K ′ = (colime h(X,Te,δ))
♯, then the product sheaf (K ′)n is in fact isomorphic to

(colime h(X,T (n)e,δ))
♯ on (X/S)crys.

Proof: This follows from the definition and the universal properties of completion, pd-envelope
and P ⊗A ⊗A . . .⊗A P is a coproduct. Compare with the proof of(7.6.6.2). □

Prop.(7.6.6.4). Situation as in(7.6.3.8), if F is locally Qco and satisfies: for any morphism f :
(U, T, δ) → (U ′, T ′, δ′) ∈ (X/S)crys that f : T → T ′ is a closed immersion the map f∗FT ′ → FT
is surjective, then the complex

M(0)→M(1)→ . . .

computes RΓ((X/S)crys,F). Moreover,

RΓ((X/S)crys,F ⊗OX/S
Ωi
X/S,δ) = 0

for i > 0.
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Proof: We use(5.3.1.19) for the presheaf K ′ = colime h(X,Te,δ) and K = ∗, which satisfies the
condition by(7.6.6.2). Then we get a spectral sequence

Ep,q1 = Hq(K ′
p,F)⇒ Hp+q(K,F).

Notice K ′
n = (colime h(X,T (n)e,δ))

♯ by(7.6.6.3), so the cohomology

RΓ(K ′
n,F) = R lim

e
(Γ((X,T (n)e, γ(n)),F))

Now the surjectivity f∗FT ′ → FT is equivalent to the surjectivity FT ′ → f∗FT , so there is an
exact sequence of Qco T ′-sheaves

0→ K → FT ′ → f∗FT → 0

which implies that F((U ′, T ′, δ′))→ F((U, T, δ)) is surjective, by(5.7.4.2) and(5.7.1.3).
Then by(4.9.3.3),

RΓ(K ′
n,F) = R lim

e
(Γ((X,T (n)e, γ(n)),F)) = M(n)

thus we are done. □

Lemma(7.6.6.5). Situation as in(7.6.3.8), the complex ΩD(•) is homotopic to 0 as a D(•)-cosimplicial
module.

Proof: This complex is the p-adic completion of the base change of the cosimplicial module M• =
(Ω

P
⊗•
A/A

) under the cosimplicial ring map P⊗•
A → D(•). Then it suffices to show M• is homotopic

to 0. For this, the whole thing can be written down clearly, Cf.[Sta]07LA. □

Lemma(7.6.6.6). In situation(7.6.3.8), for any cosimplicial moduleM∗ over the cosimplicial ring D(∗)
and i > 0, the cosimplicial module

M0⊗̂D(0)Ωi
D(0) →M1⊗̂D(1)Ωi

D(1) → . . .

is homotopic to 0.

Proof: □

Crystal Case

Prop.(7.6.6.7). Situation as in(7.6.3.8), and let F be a crystal in Qco modules, and let (M,∇) be the
corresponding module with connection over D by(7.6.3.10), then the complex

M⊗̂DΩ•
D

computes RΓ((X/S)crys,F).

Proof: Use the spectral sequence associated to the double complex

Ka,b = M⊗̂DΩa
D(b)
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Then the rows Ka,• is acyclic for a > 0 by(7.6.6.6) and(4.8.2.21), and K0,• is quasi-isomorphic to
RΓ((X/S)crys,F) by(7.6.6.4). Now we look at the other direction, (4.6.1.7) and(7.6.3.9) show that
each of the b maps D → D(b) determines the same quasi-isomorphism

M⊗̂DΩ∗
D
∼= M⊗̂D(b)Ω∗

D(b)

as their inverse is given by the same D(b)→ D. Then it is clear that the E2 page in this direction is
Ha(M⊗̂DΩ∗

D) in the zero-th row and vanish otherwise, so we get the desired isomorphism by edge
morphisms. □

Prop.(7.6.6.8)[de Rham Comparison for Crystalline Cohomology]. In situation(7.6.3.12), let
F be a crystal in Qco modules, and let (M ′,∇′) be the corresponding module with connection over
D′ by(7.6.3.13), then the complex

M⊗̂D′Ω•
D′

computes RΓ((X/S)crys,F).

Proof: Let b : D′ → D, a : D → D′ be the maps defined in(7.6.3.13), then by(7.6.6.7), it suffices to
prove the base change along a, b induces quasi-isomorphisms

M⊗̂DΩ•
D
∼= M⊗̂D′Ω•

D′ .

a ◦ b is trivial, thus it suffices to prove that b ◦ a induces anautomorphism of M⊗̂DΩ•
D. In fact,

this is true for any morphism ρ : D → D of pd-algebras over A compatible with the map D → C:
Write ρ(xi) = xi + zi, where zi ∈ J because ρ is compatible with D → C. Then we can factor ρ

as
D

σ−→ D⟨ξi⟩∧
τ−→ C

where σ(xi) = xi + ξi and τ(ξi) = zi.
Notice that there exists an automorphism α of D⟨xi⟩∧ that maps xi to xi− ξi and ξi to ξi. (Such

a map exists because by universal property, it suffices to give a map of pairs

(P, J)→ DP,γ(J)⟨ξi⟩ = DP [ξi],γ(JP [ξi] + (ξi))

by(4.6.0.17), and we surely have.
Now α is an automorphism, we have a quasi-isomorphism

M⊗̂DΩ∗
D
∼= M⊗̂D,σΩ∗

D̂⟨ξi⟩

by(4.6.1.7). Also τ induces an isomorphism because it has a right inverse, which is an isomorphism
by(4.6.1.7) again, so ρ induces an isomorphism. □

Cor.(7.6.6.9) [Crystalline-de Rham Comparison modulo p]. In situation(7.6.3.12), if R is a
smooth A/p-algebra, then there is a natural quasi-isomorphism

RΓcrys(R/A)⊗LA A/p ∼= Ω•
R/(A/p)

of commutative algebra objects.

Proof: we choose P to be a smooth lift of R? to A, then J = IP , and by(4.6.0.11), the pd-
structure extends to P , thus DP/A,γ = P , and notice Ωi

P/A is finite projective hence flat, so Ω•
P/A is

K-flat(5.3.3.2), and the left side of is just Ω̂•
P/A ⊗A A/p = Ω̂•

R/(A/p) by(7.6.6.8)(4.6.1.2) and(4.4.3.6).
□
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7.7 Prismatic Cohomology

Main references are [[Sta]], [Prisms and Prismatic Cohomology, Scholze], [Notes on Prismatic
Cohomology, Bhatt], [Prismatic Cohomology notes, Kedlaya].

1 Prisms
Def.(7.7.1.1)[Prisms].A prism is a pair (A, I) where A is a δ-ring A and I is an ideal of A, that
V (I) is a Cartier divisor on SpecA, A is derived (p, I)-complete, and p ∈ I + φ(I)A.

A prism (A, I) is called perfect prism if A is a perfect δ-ring(4.5.4.25). it is called bounded
prism if A/I has bounded p∞-torsion. It is called crystalline prism if I = (p). It is called
orientable if I is principal. It is called oriented if I = (d) for d fixed.

A map of primes is called (faithfully)flat iff the map A → B is (p, I)-completely (faith-
fully)flat(4.9.7.1).

Lemma(7.7.1.2).Let A be a δ-ring and I be a locally principal ideal contained in rad(A) that (p, I) ⊂
radA, then the following are equivalent:

• p ∈ Ip + φ(I)A.
• p ∈ I + φ(I)A.
• There is a f.f. morphism of δ-rings A → A′ where A′ is a finite product of localizations

of A φ-stable multiplicative subsets that IA′ is generated by a distinguished element d and
d, p ∈ rad(A′).

Proof: 1 → 2 is trivial, for 2 → 3: Choose (g1, . . . , gr) = A that IAgri is principal. Let B =∏r
i=1Agi , so A → B is f.f. and IB = (f) is principal. Lt A′ be the localization of B along the

ideal (p, f)(4.1.1.31), then p, f ∈ radA′. Then A→ A′ is still f.f., because it is flat hence the image
is stable under generalization by(4.4.1.19), so it must be all of SpecA because it contains (p, I) by
construction, and (p, I) ∈ radA by hypothesis.

Now because p ∈ radA, each localization of A has a compatible δ-structure, and Ã is a finite
product of localizations of A, thus it has a δ-structure, and d is distinguished by(4.5.4.23).

3→ 1: We need to check that p = 0 in A/(Ip+φ(I)A), but this can be checked after base change
to A′, which is p = 0 ∈ A′/(dp, φ(d)). This is true, because dp = dp + pδ(d) and δ(d) is a unit. □

Remark(7.7.1.3)[Examples of Prisms].
• If A is a p-torsionfree and p-adically complete δ-ring A, the pair (A, (p)) is a bounded crystalline

prism.
• q-de Rham cohomology(4.5.4.24) determines a bounded prism. (completeness and boundedness

is clear, and p ∈ (d, φ(d)) because?)

• Breuil-Kisin cohomology(4.5.4.24) determines a bounded prism. (boundedness is clear, and?)
• Ainf -cohomolgoy(4.5.4.24) detemines a bounded prism. (The same reason as item2).

Prop.(7.7.1.4) [Universal Oriented Prism].Let A0 = Z(p){d, δ(d)−1} be the localization δ-
ring(4.5.4.15) of the free Z(p)-δ-ring on the variable d, and let A be the derived (p, d)-completion of
A0(it is discrete by(4.9.7.7)), and let I = (d), then (A, I) is a bounded oriented prism, and it is the
initial object in the category of bounded oriented prisms.

Moreover, the sequence (p, d) is regular and the Frobenius φ : A/p→ A/p is d-completely flat.
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Proof: It is clearly a prism and universal. For the assertions, firstly we show A/(p, d) = A0/(p, d):
notice A⊗LA0

A0/(p, d) = A0/(p, d) by(4.9.7.4), so we can replace ⊗L with ⊗. Similarly for A/(p, dp)
because A is (p, dp)-complete. Now this map is .

(p, d) is regular by(4.9.7.7) applied to (Z(p)[d], A)?, for the last assertion, it suffices to show
A/(p, d) Frob−−−→ A/(p, dp) is f.f.. □

Prop.(7.7.1.5).Let (A, (d)) be the universal prism(7.7.1.4) and let B = A{φ(d)
p }

∧(derived (p, d)-
completion), then B is (p, d)-complete, p-torsionfree and it equals the derived (p, d)-completion of
the pd-envelope DA,δ((d)) of (A, (d)). In particular, (B, (p)) is a crystalline prism, by(4.5.4.18).

Proof: B is p-complete by(4.9.6.16), as A is p-torsionfree. Also dp = p(φ(d)
p − δ(d)), so B is also

(p, d)-complete. The last assertion follows from(4.6.0.21) and(7.7.1.4). □

Cor.(7.7.1.6) [Connection with Crystalline Prism]. In the above situation, B is also a δ-ring
by(4.5.4.17), and both φ(d), p are distinguished in B and φ(d) divides p in B, so by(4.5.4.22) (φ(d)) =
(p).

Now the composition of maps of δ-rings(4.5.4.5) α : A φ−→ A → B promotes to a morphism of
prisms(7.7.1.5) (A, (d))→ (B, (p)) which decompose as

(A, (d)) φ−→ (A,φ(d))→ (B, (φ(d))) = (B, (p))

Prop.(7.7.1.7)[Rigidity of Maps]. If (A, I) → (B, J) is a morphism of prisms, then I ⊗A B = J ,
in particular, IB = J . Conversely, if B is a derived (p, I)-complete δ-A-algebra, then (B, IB) is a
prism iff B[I] = 0.

Proof: For the first assertion, it suffices to show that I ⊗A B → J is surjective, because they are
both invertible sheaves on B. Choose f.f. ring morphisms A → A′, B → B′ as in(7.7.1.2) and there
is a morphism A′ → B′ extending A → B, (by taking B as the localization of A′ ×A B along (p, J)
and do the construction again). Then IB′ ⊂ JB′ are an inclusion of principal ideals generated by
distinguished elements, thus they are equal, by(4.5.4.22), finally we use faithfully flatness.

For the second assertion, notice B[I] = 0 iff I ⊗A B → IB is an isomorphism. If (B, IB) is a
prism, then clearly I ⊗A B → IB is an isomorphism, because they are both invertible sheaves. The
converse is also trivial. □

Prop.(7.7.1.8)[Prism is Nearly Principal].Let (A, I) be a prism, then the ideal φ(I)A is a principal
ideal, and any generator is a distinguished element. In particular, if it is a perfect prism, then I = (f)
where f is a distinguished element.

Proof: It suffices to prove φ(I)A is generated by a single distinguished element, and then
use(4.5.4.21). By(7.7.1.2), we can assume p = a + b where a ∈ Ip, b ∈ φ(I)A. Now we show b
generate φ(I)A: choose a f.f. map as in(7.7.1.2), and then it suffices to check that b : A′ → φ(I)A′

is surjective. Now φ(I)A′ = (d), a = xdp, b = yφ(d), so it suffices to show y is a unit in A′. Now
(p, d) ∈ radA′, it suffices to show A′/(p, f, y) = 0. If not, we localize along (p, f, y), then we may
assume (p, f, y) ∈ radA′.

The equation p = a+ b implies p(1−yδ(d)) = dp(x+y), and the left side is distinguished because
p does and 1− yδ(d) is a unit, by(4.5.4.21). Then(4.5.4.22) shows dp−1(x+ y) is a unit, then so does
d, contradicting d ∈ radA′. □

Remark(7.7.1.9).Notice the proof goes through even I is only a locally principal ideal of A.
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Cor.(7.7.1.10). If (A, I) is a prism, the invertible A-modules φ∗(I) = I ⊗A,φ A and Ip are trivial.

Proof: Cf.[Prisms, Scholze, P25]. □

Prop.(7.7.1.11)[Properties of Bounded Prisms].Let (A, I) be a bounded prism, then
1. Any derived (p, I)-complete and (p, I)-completely flat A-complex M ∈ D(A) is discrete and

(p, I)-complete. For any n ≥ 0, we have M [In] = 0 and M/InM has bounded p∞-torsion.
2. A is (p, I)-complete, A/I is p-adically complete, A[In] = 0 and A/In has bounded p∞-torsions.
3. The category of (faithfully)flat prisms over (A, I) identifies with the category of (p, I)-

completely (faithfully)flat δ-A-algebras B by the bijection B ↔ (B, IB).
4. (Bounded Prisms are fpqc-Locally Orientable)There is a (p, I)-completely faithfully flat δ-A-

algebra B that IB = (d), where d is distinguished and determines a nonzero divisor of B. Also
(B, IB) is bounded.

Proof: 1: By(4.9.7.7).
2 follows from1. For A/I, it is derived p-complete by(4.9.6.8), then it is p-adically complete

by(4.9.6.16).
3: By definition, a (faithfully)flat (A, I)-prism is (p, I)-completely (faithfully)flat(4.9.7.1). Con-

versely, by(7.7.1.7), it suffices to show that B[I] = 0, and this follows from item1.
4: We may choose B to be the derived (p, I)-completion of the f.f. δ-ring defined in(7.7.1.2), then

it is also (p, I)-completely faithfully flat(4.9.7.4), and by item2 and3 it determines a bounded prism
(B, IB). □

Prop.(7.7.1.12)[The Site of Bounded Prisms].The prismatic site is the opposite category of the
category of bounded prisms where the covers are determined by f.f. map of prisms.

Then the functors that maps (A, I) to A or A/I are sheaves on this cohomology with vanishing
higher cohomologies.

Proof: To show this is a site, we need to check the base change of covers. If (C, IC) c←− (A, IA) b−→
(B, IB) is a diagram that b is f.f., then we let D be the derived (p, I)-completion of B ⊗LA C, then
C → D is also (p, I)-completely f.f. by(4.9.7.5), so by(7.7.1.11) and(7.7.1.7) D is discrete and (D, ID)
is a bounded prism over (A, IA). It is clear this is a base change in the category of bounded prisms.

The assertion about cohomology follows from [Scholze, Prism, 3.12]. □

Prismatic Envelopes

Prop.(7.7.1.13)[Prismatic Envelopes].Let (A, I) be a prism, then the forgetful functor from the
prisms over (A, I) to δ-pairs over (A, I) admits a left adjoint, called the prismatic envelope which
maps (B, J) to B{JI }∧.

Proof: If we can construct this locally, then we can construct it globally by gluing and the universal
property, so we can localize and assume I = (d) where d is distinguished. Let B′ be the free δ-ring
over A generated by {x/d|x ∈ J}(4.5.4.10) and B1 the derived (p, d)-completion module of B which
is a δ-algebra by(4.5.4.18).

If d is torsion-free in B1, then (B1, (d)) is a prism that satisfies the universal property. Other-
wise we choose the maximal d-torsion-free quotient(4.1.1.14)(4.5.4.14) and taking the derived (p, d)-
completion module, and we can do this to ℵ0, where we take the filleted colimit, then it is d-torsion-
free and (p, d)-complete, by(4.9.6.5) and any prism over A map factors through this chain. □
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Cor.(7.7.1.14). In the above situation, if (B, J) is (p, I)-completely flat over A, and J = (I, x1, . . . , xn)
where (x1, . . . , xn) is a (p, I)-completely regular sequence w.r.t. A, then the prismatic envelope of
(B{JI }

∧, IB{JI }
∧) is flat over (A, I)(7.7.1.1).

Moreover, It is compatible with completed derived base change on (A, I), by universal properties
and the fact the completed derived base change of it is discrete(4.9.7.5). Also, it is compatible with
completed derived base change along a (p, I)-completely flat map (B, J)→ (B′, J ′).
Proof: It suffices to check locally for I = (d) that B1 = (B{x1

d , . . . ,
xn
d })

∧ as a simplicial δ-ring
is (p, I)-completely flat over A, then it is discrete and is torsionfree by(7.7.1.11), thus it is a prism
over (A, (d)) by(7.7.1.7). And for the flat localization, notice the image of x1, . . . , xn is also (p, I)-
completely regular w.r.t. A.

Consider the following diagram of derived (p, d)-complete simplicial δ-rings:

Zp{z}∧ A B B{x1
d , . . . ,

xn
d }

∧ = C

Zp{y}∧ A′ B′ B′{ x1
φ(d) , . . . ,

xn
φ(d)}

∧ = C ′

D = A′{φ(y)
p }

∧ B′′ B′′{x1
p , . . . ,

xn
p } = C ′′

z 7→d

z 7→φ(y)

where each square is completed derived tensor product. Notice the lat term has denominator p
because φ(y) and p are both distinguished in π0(D), so by(4.5.4.22) φ(y)

p is a unit in D.
The leftmost arrow is (p, z)-completely f.f. by(4.5.4.10)(4.9.7.4), so all the vertical arrow in

the upper row is (p, z)-completely flat by(4.9.7.5). Now the map D → C ′′ is (p, z)-completely flat
by(4.6.0.24), noticing that the conditions holds, by(4.9.7.5).

Now by definition the (p, d)-completely flatness is defined by flatness after base change to
Kos(A, p, d)(4.8.3.5), it suffices to show that there is a map D → Kos(A′, p, d). To show this, it
suffices to assume A′ = Zp{y} = Zp[y, y1, . . . , yn, . . .] and base change. In this case, p, y is a regular se-
quence, so by(4.6.0.21)D is the derived completion ofDZp{y}((y)), andKos(A′, p, y) = Fp[y1, . . . , yn],
so A′ → Kos(A′, p, d) factors through D by universal property. □

2 Perfect Prisms
Prop.(7.7.2.1)[Properties of Perfect Prisms].Let (A, I) be a perfect prism(7.7.1.1), then:

• I = (d) where d is distinguished and is a nonzero-divisor.
• A is p-torsionfree and p-adically complete, hence there is a natural isomorphism A ∼= W (A/p)

of δ-rings.
• A/I[p∞] = A/I[p], and A/p[I∞] = A/p[I]. In particular, (A, I) is bounded.
• A is (p, I)-complete.

Proof: 1: I is principal by(7.7.1.8). d is distinguished by(4.5.4.23), it is nonzero-divisor by definition
of prisms.

2: This is because A is p-torsionfree by (4.5.4.27) and thus p-adically complete by(4.9.6.16), then
A ∼= W (A/p) by the equivalence in(4.5.4.28).

3: Use item2, then A/p is perfect by(4.5.4.28), thus A/p[I∞] = A/p[I]. A/d[p∞] = A/d[p] follows
from(4.5.4.30).

4: This follows from item3 and(7.7.1.11). □
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Prop.(7.7.2.2)[Perfection of Prisms].There is a perfection of prisms functor that maps a prism
(A, I) to a perfect prism (A∞, IA∞) left adjoint to the inclusion functor.

Proof: Let A′
∞ = Aperf be the perfection of A as a δ-ring(4.5.4.26), and A∞ be the derived

(p, I)-complete of A′
∞ as a δ-ring(4.5.4.18), then the universal property follows form that of derived

completion and perfection once we proved that A∞ is perfect and IA∞ = (d) where d is a nonzero-
divisor.

A∞ is perfect because the Frobenius is isomorphism on Aperf and derived (p, I)-completion and
(p, φ(I))-completion coincide(they have the same radical(4.9.6.15)).

A∞ is p-adically complete because it is p-torsionfree(4.5.4.27), and then use(4.9.6.16).
Now(7.7.1.9) and the fact A∞ is perfect shows IA∞ = (d) where d is distinguished, and(4.5.4.30)

shows d is a nonzero-divisor, so we are done. □

Prop.(7.7.2.3)[Perfect Prisms are Final].Let (A, I) be a perfect prism, then for any prism (B, J),
a map A/I → B/J will induce a map of prisms (A, I)→ (B, J).

Proof: Cf.[B-S19]4.8.
This map will induce a map A ∼= W ((A/I)♭) → W ((B/J)♭). And there is a Fontaine’s functor

W ((B/J)♭) → B(10.3.9.7) which is a δ-map. Thus we obtain a map A → B. And this map can be
seen to be lifting A/I → B/J . □

3 Integral Perfectoid Rings
Def.(7.7.3.1)[Integral Perfectoid Rings].A commutative ring R is called a integral perfectoid
ring if it has the form A/I for a perfect prism (A, I). An equivalent definition of an integral perfectoid
ring is given in(7.7.3.6).

Def.(7.7.3.2)[Special Fiber].For an integral perfectoid ring R, then special fiber of R is defined
to be R = R/

√
pR. It is perfect, by(7.7.3.5).

Prop.(7.7.3.3) [Perfect Prisms and Integral Perfectoid Rings].The mapping (A, I) → A/I
defines an equivalence of categories between perfect prisms and integral perfectoid rings, where the
converse is given by R 7→ (Ainf(R), ker(Ainf(R)→ R))(4.5.1.15).

Proof: To show A ∼= Ainf(A/I), by(4.5.4.28), it suffices to show there is a natural isomorphism
A/p ∼= (A/I)♭. By(4.5.1.18), (A/I)♭ identifies with d-adic completion of A/p. Then it suffices to
show A/p is I-adically complete, which is by(4.9.6.16), as A/p is derived d-complete because A
does(4.9.6.8).

Now we have the Fontaine’s map A = Ainf(A/I) → A/I, this map is surjective because φ :
A/(p, I) → A/(p, I) is surjective as A/p is perfect. Also this is just the quotient map A → A/I
because they are equal when modulo p, and then use(4.5.4.28). □

Cor.(7.7.3.4).Any perfect Fp-algebra is an integral perfectoid ring corresponding to a crystalline
prism, by(4.5.4.28).

Any integral perfectoid ring is p-adically complete, by(7.7.1.11).

Prop.(7.7.3.5). If R is a perfectoid ring, then
• R is semiperfect.
• There exists an element ϖ ∈ R that admits a compatible system ϖ1/pn of p-power roots s.t.
ϖ = pu for a unit u and the kernel of the Frobenius φ : R/p→ R/p is generated by ϖ1/p.
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•
√
pR = ∪n(ϖ1/pn), and it is flat.

• R[p] = R[
√
pR].

Proof: 1: Let R = A/d where A = Ainf(R), then R/p = A/(p, d), so φR/p is surjective, as A/p = R♭

is perfect.
2: Notice d = [a0]− pu for a unit u ∈ A by(4.5.4.30), then we can take ϖ to be the image of [a0]

in R, and then ϖ1/pn = [a1/pn
0 ].

3: firstly the LHS contains the RHS, and R/∪n (ϖ1/pn) is perfect hence reduced, so the two sides
are equal. To check it is flat, we need to check that M ⊗LR

√
pR is discrete, or equivalently M ⊗LRR ∈

D≥−1 where R = R/
√
pR is perfect. But there is a distinguished triangleM⊗LZpQp/Zp[−1]→M →

M [1
p ](Qp is Zp flat(4.4.1.6)) and the fact R[1

p ] = 0, it suffices to proveM⊗LZpQp/Zp⊗LRR ∈ D≥−2(R).
Now M ⊗LZp Qp/Zp has cohomology groups p∞-torsion, so using canonical truncation, it suffices to
show M ⊗LR R ∈ D≥−1 for any p∞-torsion M . Because tensoring commutes with filtered colimits, it
suffices to show for M an R/pn-module. Now using exact sequences like

0→M [p]/M [p2]→M/M [p2]→M [p]/M [p2]→ 0,

we can reduce to the case M is a R/p-module.
Now there is a commutative diagram

Ainf(R) R

Ainf(R) R

and d is p-torsionfree in both Ainf(R) and Ainf(R)(4.5.4.30), and d = [a0] − pu = pu ∈ W (R)(as
a0 = 0 ∈ R), so R = W (R)/d and this is a Tor-independent pushout square. Thus M ⊗LR R ∼=
M ⊗L

W (R♭) W (R). As p is nonzero divisor in both Ainf(R) and Ainf(R), and pM = 0, we have a
similar diagram quotient by p, and by the same reason M ⊗L

W (R♭)W (R) ∼= M ⊗L
R♭
R. Now the kernel

of R♭ → R is of the form (f1/p∞), where f corresponds to (ω1/pn), so the claim follows from(4.5.1.7).
4: notation as in the proof of item2, it suffices to show the A-module R[p] is annihilated by [a1/pn

0 ]
for n ≥ 0. But R[p] = A/d[p] = A/p[d] = R♭[d], and d = [a0] on R♭, which is perfect, so we are done.
□

Prop.(7.7.3.6)[Equivalent Definition of Integral Perfectoid Rings].A commutative ring R is
an integral perfectoid ring iff the following are satisfied:

• R is p-adically complete and R/p is semiperfect.
• The kernel of θR : Ainf(R)→ R((4.5.1.15), notice R is p-adically complete) is principal.
• There exists some ϖ ∈ R that (ϖp) = (p).

And if R is p-torsionfree, the condition2 can be replaced by: R is p-normal??.

Proof: If R is an integral perfectoid ring, then these are true by(7.7.3.5). Now if these are satisfied,
then firstly θ is surjective by(4.5.1.16). Next, let d ∈ Ainf(R) be the generator of θ, we show Ainf(R)
is derived (p, d)-complete. it is derived p-complete by(4.9.6.16). Now R♭ is derived d-complete
by(4.5.1.18). By induction and(4.9.6.8), Ainf(R)/pn are all derived d-complete, and also by induction
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Ainf(R)/pn has bounded d∞-torsion, as R♭ is perfect. Then Ainf(R)/pn are all d-adically complete.
Thus

Ainf(R) = lim←−
n

Ainf(R)/pn = lim←−
n

lim←−
m

Ainf(R)/(pn, dm),

which means Ainf(R) is (p, d)-adically complete thus derived (p, d) adically complete.
Then it suffices to show d is distinguished, by(4.5.4.30). Let ϖp = up, and lift ϖ,u to x, v ∈

Ainf(R). Since Ainf(R) is d-adically complete, v is unit in Ainf(R). Then d|xp − pv and xp −
pv is distinguished(4.5.4.30). Now d, p ∈ rad(Ainf(R)) as Ainf(R) is (d, p)-adically complete, so
by(4.5.4.22), d is distinguished.

Now if R is a p-torsionfree integral perfectoid ring, if x ∈ R[1
p ] satisfies xp ∈ R, let n ≥ 0 minimal

that y = ϖnx ∈ R, then we show n = 0: if n > 0, then (ϖnx)p = ϖnpxp ∈ ϖnpR. Then we get
ϖnx ∈ ϖnR, and then x ∈ R as R is p-torsionfree.

Conversely, we use condition1, 2, 4 to prove 3: We first show the kernel of φ : R/p → R/p is
generated by ϖ as in condition4: if xp ∈ pR = ϖpy, then (x/ϖ)p = y, thus x ∈ ϖR by hypothesis.
Since R/p is semiperfect, ϖ admits a compatible pn-th roots {ϖ1/pn}. It can be shown by induction
that ker(φn) = (ϖ1/pn). This implies that the kernel of θR : R♭ → R/p is generated by the elementϖ♭

determined by the system {ϖ1/pn}. As W (R♭) and R are both p-torsionfree and p-adically complete,
they kernel of θR is generated by any element in the kernel that lifts ϖ♭. In particular, the kernel is
principal. □

Prop.(7.7.3.7)[Pushout of Integral Perfectoid Rings]. Integral perfectoid rings are closed under
pushouts in the category of derived p-complete rings: i.e. if C ← A → B are maps of integral
perfectoid rings, then B⊗̂LAC is also an integral perfectoid ring.

Proof: Let R = C♭ ⊗L
A♭
B♭ = C♭ ⊗A♭ B♭ which is a perfect ring, by(4.5.1.3) and(4.5.1.7). Then we

have
W (R) = W (A♭)⊗̂LW (A♭)W (B♭),

because this can be checked via derived Nakayama(4.9.6.10). Now use the fact A = W (A♭)/d for some
distinguished element d, and then B = W (B♭)/d,C = W (C♭)/d by rigidity(7.7.1.7), and d is nonzero-
divisor in W (B♭),W (C♭),W (R) by(4.5.4.28), so taking derived base change along W (A♭) → A, we
get

D = W (R)/d = B⊗̂LAC,
and W (R) is a perfect prism, by(7.7.1.7), so D = W (R)/d is an integral perfectoid ring and equals
B⊗̂LAC. □

Cor.(7.7.3.8).The category of integral perfectoid rings is closed under arbitrary colimits and products
in the category of derived p-complete rings.

But it is not closed under equalizers: Notice by Ax-Sen-Tate, (OCp)Gal(Qp/Qp) = Zp, but Zp is
not an integral perfectoid by(7.7.3.6).

Proof: It suffices to show it is closed under products and sums?. □

Prop.(7.7.3.9) [Gluing].Let R be an integral perfectoid ring, R = R/
√
pR, S = R/R[

√
pR], S =

S/
√
pS, then R,S, S are perfectoids, and the square

R S

R S
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is both a homotopy fiber square(4.9.1.2) and pullback square. Moreover,
• S is p-torsionfree.
•
√
pR maps isomorphically onto

√
pS.

• R[
√
pR] maps isomorphically to ker(R→ S), thus x 7→ xp is bijective on R[

√
pR].

In particular, any integral perfectoid ring is a fiber product of integral rings that is either perfect or
p-torsionfree.

Proof: By(7.7.3.5), R[
√
pR] = R[p∞]. In particular, S is p-torsionfree. Now if we know this is a

homotopy fiber square, then we get 2, 3 by comparing the kernel. And if we know the kernel, then
this is a pushout square by(4.1.1.23). So it suffices to show this is a homotopy fiber square.

Let d = [a0] − pu for a distinguished element of A = Ainf(R) that R = A/(d), and the ideal
I = (a1/p∞

0 ) ⊂ R♭ and J = R♭[I]. Then the square

W (R♭) W (R♭/J)

W (R♭/I) W (R♭/I + J)

is a homotopy fiber square: all vertices are p-torsionfree and p-adically complete, and the square gives
a fiber square when modulo pn(use induction on n and(4.5.1.8)), and then take derived p-completions.
Next we apply? □

Cor.(7.7.3.10). Integral perfectoid rings are reduced.

Proof: By(7.7.3.9), we may assume R is p-torsionfree or perfect. Thus it suffices to assume R is
p-torsionfree. Let ϖ ∈ R that ϖp = pu as in(7.7.3.6). If xp = 0, we show inductively that x ∈ ϖnR.
If x = ϖny, then yp = 0 as R is p-torsionfree. Now the kernel of Frobenius φ : R/p → R/p is
generated by ϖ, thus we have y ∈ ϖR, so we can use induction. □

4 Prismatic Site
Remark(7.7.4.1). In this subsection, fix a bounded prism (A, I), all formal schemes over A are as-
sumed to have the (p, I)-adic topology, and formal schemes over A/I are assumed to have the p-adic
topology.

Def.(7.7.4.2) [Prismatic Site].Let (A, I) be a bounded prism and X be a smooth p-adic formal
scheme over A/I, let (X/A)∆ be the site whose objects are bounded prisms (B, IB) over (A, I)
together with a map Spf(B/IB) → X over A/I. The morphisms are the natural one, and the
coverings in (X/A)∆ are f.f. maps of prisms (B, IB) → (C, IC). There are structure sheaves
O∆((B, IB)) = B and O((B, IB)) = B/IB. They are sheaves by(7.7.1.12).

Thus O∆ is valued in (p, I)-complete δ-A-algebras and O∆ is valued over p-complete-
algebras(4.9.6.16).

Def.(7.7.4.3)[Perfect Prismatic Site].The perfect prismatic site (X/A)perf
∆ is the full subcate-

gory of (X/A)∆ consisting of perfect prisms. By(7.7.3.3), objects in this site are equivalent to the
category of perfectoid rings R over A/I with a map Spf R→ X.

Remark(7.7.4.4). If we further restrict to the site of perfect prisms (S, I) that S/I is integrally closed
in S/i[1

p ], then we will get the notion of diamond of (X[1
p ], X), in sense of[?].
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Def.(7.7.4.5) [Absolute Prismatic Site].For a p-adic formal scheme X the absolute prismatic
site consisting of bounded prisms (B, J) with a map Spf B/J → X.

Prop.(7.7.4.6) [Prismatic Site and Étale Site].Let FSch /X be the category of p-adic formal
schemes over X with the étaletopology, then there is a natural functor µ : (X/A)∆ → FSch /X
sending (B, IB) over X to Spf B/IB → X.

This functor is cocontinuous: for any p-completely étalemap B/IB → C, it is a derived p-
completion of some étalemap B/IB → C

′ by(4.9.7.9), and this can be lifted to a map B → S′
C

by(7.7.1.11)(4.3.10.6) and(4.3.10.9), and we choose the (p, I)-completion of SC , then it is a prism
that lifts C. Thus by(5.1.2.21) defines a morphism of topoi:

µ : Sh((X/A)∆)→ Sh(FSch /X).

Also there is a natural map of topoi Sh(FSch /X)→ Sh(Xét) by restriction, by(4.9.7.1). So we get a
morphism of topoi

ν : Sh((X/A)∆)→ Sh(Xét).
In particular, for any étaleformal scheme U over X, by definition of sµ(5.1.2.11), for any sheaf F ,

(ν∗F)(U/X) = H0((U/A)∆,F|(U/A)∆).

Cor.(7.7.4.7)[Prismatic Complex and Hodge-Tate Complex]. In the above situation, we define
prismatic complexes

∆X/A = Rν∗O∆ ∈ D(Xét, A)
and the Hodge-Tate complex

∆X/A = Rν∗O∆ ∈ D(Xét,OX).

The Frobenius action on O∆ induces a φ-semi-linear map ∆X/A → ∆X/A. And there is a relation

∆X/A ∼= ∆X/A ⊗LA A/I ∈ D(Xét, A/I)

by the Grothendieck spectral sequences associated to the diagram of functors:

Mod((X/A)∆,O∆) Mod((X/A)∆,O∆)

Mod(Xét, A) Mod(Xét, A/I)

−⊗O∆
O∆

Γ((X/A)∆,−) Γ((X/A)∆,−)

Affine Case

Def.(7.7.4.8) [Situation]. In this subsubsection, fix a bounded prism (A, I) and a p-completely
smooth(4.9.7.1) A/I-algebra R (or equivalently the p-adic completion of an étaleA-algebra,
by(4.9.7.9) and(4.9.6.16), and they define the same site by the universal property of completion).

Prop.(7.7.4.9)[Prismatic Site over Affine Formal Scheme].The prismatic site of R relative
to A, denoted by (R/A)∆ is the site whose objects are bounded prisms over (A, I) together with an
A/I-algebra map R → B/IB. And it is endowed with the indiscrete topology(5.1.1.2), so sheaves
on this site is just presheaves.

There are two natural sheaves on this site, O∆ maps a prism (B, IB) to B which is valued in (p, I)-
complete δ-A-algebras, and O∆ which maps a prism (B, IB) to B/IB which is valued in p-complete
R-algebras(4.9.6.16)
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Prop.(7.7.4.10)[Compare with Indiscrete Topology]. If (X/A)′
∆ ⊂ (X/A)∆ is a continuous map

of sites that the former is endowed with the indiscrete topology, then it is a morphism of sites,
by(5.1.2.14), so this induces a morphism of topoi

Sh((X/A)∆)→ Sh((X/A)′
∆)

by(5.1.2.20), then we have the Leray spectral sequence(5.3.1.9)

Ep,q2 = Hp(C′, Rqf∗(F•))⇒ Hp+q(C,F•).

and by(5.3.1.7)(5.3.1.6) and(7.7.1.12), we have a natural isomorphism

RΓ((X/A)′
∆,F)→ RΓ((X/A)∆,F)

for F = O∆ or O∆.

How to Compute the Prismatic Complex in the Affine Case

Lemma(7.7.4.11)[Weakly Final Object].Let (A, I) be a prism and let R be a p-completely smooth
A/I-algebra, then the category (R/A)∆ admits a weakly final object. Moreover, we can choose it to
be flat over (A, I).

Proof: Let F0 be the derived (p, I)-completion of a free δ-ring over A on the set R, then there is a
surjection of A-algebras F0 → R, with kernel J derived (p, I)-complete?. Then(7.7.1.13) applied to
the δ-ring (F0, J) gives a prism (F, IF ) over (A, I), and by construction it is an object of (R/A)∆.
And it is weakly final because of the universal properties of F0(4.5.4.10) and F (7.7.1.13).

For the flatness, we temporarily call a δ-pair (B, J) good if
• B is (p, I)-completely flat over A and J is (p, I)-complete.
• the prismatic envelope is flat over (A, I) and its formation commutes with completed derived

base change on a (p, I)-completely flat map B → B′.
Then we need to show that (F0, J) is good. We have the following observations:

• Good pairs are stable under filtered colimit in the category of δ-pairs (B, J) that J is derived
(p, I)-complete. (Because filtered colimits of flat modules are flat(4.4.1.6).)

• If (B, J) is a δ-pair over A with B completely (p, I)-flat over A, and B → B′ is a (p, I)-
completely f.f. map that (B′, (JB′)∧) is good, then (B, J) is good. (This follows from(7.7.1.13)
and the f.f. descent(7.7.1.13).)

Then we can write B as a filtered colimit of (p, I)-complete algebras Bs ↠ R, and the kernel of each
of them is locally generate by a (p, I)-completely regular sequence, so we can use the observations to
pass to f.f. localization and filtered colimit to show that (B, J) is good. Cf.[Prism, Scholze, 3.14].?
□

Lemma(7.7.4.12)[Products].The category (R/A)∆ admits products.

Proof: For δ-rings B,C ∈ (R/A)∆, we can take the δ-ring colimit D0 = B ⊗A C(4.5.4.13), but it
may not be compatible with R-actions. Instead, let J be the kernel of the natural map

D0 → D0/ID0 → B/IB ⊗A/IA C/IC → B/IB ⊗R C/IC,

then (D0, J) is a δ-ring over (A, I), and then we can use(7.7.1.13) to get a prism (D, ID) over
(A, I), then the maps R → B/IB → D0/ID0 → D/ID and R → C/IC → D0/ID0 → D/ID are
equal(because they all factor through D/J), thus giving a product object in (R/A)∆. □
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Prop.(7.7.4.13) [Čech-Alexander Construction for Prismatic Cohomology].
By(5.3.1.20)(7.7.4.10) and the lemmas(7.7.4.11)(7.7.4.12) above, the prismatic complex ∆R/A
is represented by the complex

F 0 → F 1 → F 2 → . . . .

In particular, F 0 = F as constructed in(7.7.4.11) and each Fn are (p, I)-completely A-flat, I-torsion-
free and (p, I)-complete δ-rings by(7.7.1.11) and(7.7.1.14).

Moreover, this complex is the prismatic envelope functor applied to the Čech nerve of A → F0,
w.r.t. the Čech nerve F • of ideals J• = ker(F • → F0 → R), because prismatic envelope is a left
adjoint hence commutes with tensor product of pairs(7.7.1.13).

Cor.(7.7.4.14).∆R/A is derived (p, I)-complete and ∆R/A is derived p-complete, because each term
of the complex F • is derived (p, I)-complete, so does its cohomology groups(4.9.6.8), thus so does
∆R/A itself. Similarly for ∆R/A, because each term of F •/I is p-complete(7.7.4.13) hence derived
p-complete, by(4.9.6.16).

5 Hodge-Tate Comparison
Def.(7.7.5.1)[Breuil-Kisin Twist].Let I be an invertible ideal of A, then for any A/I-module M ,
we define the Breuil-Kisin twist of M as M{n} = M ⊗ (I/I2)n. Notice this definable for n ∈ Z

because I/I2 is an invertible OA/I -module, by definition(7.7.1.1). Also it is definable in the level of
D(A/I), as (I/I2)n is locally free thus flat.

Def.(7.7.5.2)[Completed de Rham Complex].The completed de Rham complex is the derived
p-completion of the de Rham complex of ΩX/(A/I). We will use the derived p-completed de Rham
complex in the sequel. It has a property that it coincides with the p-completion of its separate terms
by(4.9.7.8) and (4.9.6.16) and the fact ΩX/(A/I) is finite projective hence flat(4.4.5.12).

In fact, as ΩX/S is finite locally free, the derived p-completion is just by tensoring − ⊗R0 R,
where R0 is a smooth A-algebra that R∧

0 = R by(4.9.7.9). In particular, the completed de Rham
complex is compatible with base change and p-completely étaleextension, because the ordinary de
Rham complex does(4.4.3.6)(4.4.7.6).

Prop.(7.7.5.3) [Hodge-Tate Comparison Theorem].We have a structure map η0 : OX →
H0(∆X/A), and H•(∆X/A) is a dga by(4.9.1.3) applied to M• = ∆X/Aand(4.9.2.1) noticing O∆ is
a sheaf of algebras. then the universal property of de Rham complex(7.2.1.4) and lemma(7.7.5.4)
shows η0 extends to a map

η•
R : Ω•

X/(A/I) → H•(∆X/A){•}

of sheaves of A/I-dgas on Xét.
Then this is an isomorphism of differential graded A/I-algebra. In particular ∆X/A ∈ D(Xét, A/I)

is a perfect complex with H i(∆X/A) ∼= Ωi
X/(A/I){−i}.

Proof: The proof of the isomorphism is given in(7.7.6.10). □

Lemma(7.7.5.4).For any local section f ∈ OX(U), the differential βI(f) ∈ H1(∆X/A){1}(U) squares
to 0.

Proof: This follows from(7.7.6.9) in the affine line case because H2(∆X/A){1}(U) = 0, and for the
general case, use the étalelocalization(7.7.6.2) and base change theorem(7.7.6.1), noticing that cup
product survives through derived tensor product. □
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Cor.(7.7.5.5)[Base Change].The formation of ∆X/A ∈ D(Xét, A) commutes with base change along
a bounded prism (A, IA) → (B, IB): Let g : XB = X ⊗Spf A/IA Spf B/IB → X be the projection,
then

(g∗∆X/A)∧ ∼= ∆XB/B, (g∗∆X/A)∧ ∼= ∆XB/B

where ()∧ is the derived (p, I)-completion or p-completion.

Proof: Because both side are derived (p, I)-complete, we take their cylinder object and by derived
Nakayama w.r.t. B/(p, I)(4.9.6.10) it suffices to show the second, which is true because this is true
for completed de Rham complexes(7.7.5.2). □

6 Proof of Hodge-Tate Comparison

The strategy is as follows: we study the affine case to construct and prove the Hodge-Tate
comparison isomorphism in the affine case, and then this gives the construction of Hodge-Tate map
in the general case, then we can also prove the general Hodge-Tate comparison by localizing at affine
subschemes, so the affine case is important.

To prove the Hodge-Tate comparison isomorphism in the affine case, we use étalelocalization to
reduce to the polynomial case, and then use flat base change to reduce to the oriented case. Then
we use a slick strategy to reduce to the crystalline case, and finally reduce to crystalline comparison.

Lemma(7.7.6.1)[Base Change].Let R be a p-completely smooth A/I-algebra and (A, I)→ (A′, I ′)
be a map of bounded prisms that A → A′ has finite (p, I)-complete Tor amplitude(4.9.7.1). If
R′ = R⊗̂LAA′ for the the base change, then the natural map induces an isomorphism

∆R/A⊗̂
L
AA

′ ∼= ∆R′/A′ , ∆R/A⊗̂
L
AA

′ ∼= ∆R′/A′

Proof: We use the Čech nerve of a weakly final object (7.7.4.13) to compute the cohomology, then
we notice the (p, I)-completed base change −⊗̂LAA′ applied termwise to the Čech nerve of A → F 0

is the Čech nerve of A→ F 0⊗̂AA′, which is weakly final in (R′/A′)∆, by the universal property and
the fact (p, I)-completed base change is a left adjoint.

Finally we use(4.9.7.8) to see that this termwise completed derived base change just represents
∆R/A⊗̂

L
AA

′ because each term of the prismatic envelope F is (p, I)-completely flat over A and the
completed derived base change of Fn is discrete by(7.7.4.13). □

Lemma(7.7.6.2) [Étale Localization].Let R → S be a p-completely étalemap of p-completely
smooth algebras, then the natural map

∆R/A⊗̂
L
RS → ∆S/A

is an isomorphism.

Proof: Firstly the forgetful functor (R/A)∆ → (S/A)∆ has a right adjoint, described as fol-
lows: a prims (B, IB) ∈ (B/S)∆ induces a p-completely étalemorphism of (discrete)rings B/IB →
B/IB⊗̂LRS by(4.9.7.5), and by Elkik’s algebrization(4.9.7.9), this is a derived p-completion of some
étalemap B/IB → T0, and we can lift it to some étalemap B → S0 by Henselian pair prop-
erty(4.9.6.12)(4.3.10.9), then we can also take the derived (p, I)-completion(discrete by(7.7.1.11))
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SB of S0, then SB/ISB ∼= B/IB ⊗LR S?. So we have the following base change diagram:

B S0 SB

B/IB T0 B/IB⊗̂LRS

For the adjointness, it suffices for every prism (T, IT ) with morphisms B → T,B/IB ⊗LR S →
T/IT , we can lift to a map SB → T . But if we consider the p-completely étalemap T → T ⊗̂BBS
and its base change, it suffices to find a section of this map, and this is by Henselian pair
(T, IT )(4.3.10.6)(7.7.1.11)(4.3.10.9). Moreover, SB has a δ-structure by(4.5.4.19) so it is clearly a
prism, and the right adjoint F just takes (T, IT )→ (SB, ISB).

This right adjoint preserves weakly final objects and products, and it is just the completed derived
tensor −⊗̂LRS when modulo I by construction, so when combined with(4.9.7.8) we get the conclusion.
□

Remark(7.7.6.3).Notice these two lemmas(7.7.6.1)(7.7.6.2) are consequences of Hodge-Tate compar-
ison isomorphism, once we proved it!

Crystalline Comparison in Characteristic p

Prop.(7.7.6.4)[Crystalline Comparison in Characteristic p].Let (A, (p)) be a crystalline prism
and let I ⊂ A be a pd-ideal with p ∈ I, in particular the Frobenius A/p → A/p factors through
A/I by(4.6.0.3), inducing a map ψ = ψI : A/I → A/p. Let R be a smooth A/I-algebra and let
R(1) = R⊗A/I,ψ A/p, then there is a canonical

∆R(1)/A
∼= RΓcrys(R/A)

of E∞-A-algebras compatible with Frobenius action.

Proof: ? □

Cor.(7.7.6.5). If we have a smooth R over A/p and let R̃ = R ⊗A/p A/I, then R̃(1) = φ∗R, and we
can apply this theorem to R̃ to get a canonical isomorphism

φ∗∆R/A ∼= RΓcrys(R̃/A)

of E∞-A-algebras compatible with Frobenius action.

Lemma(7.7.6.6) [Hodge-Tate Comparison for the Affine Line over (Zp, (p))]. If (A, (p)) is a
p-torsionfree crystalline prism and R = Fp⟨X⟩, then the Hodge-Tate map constructed in(7.7.5.3) is
an isomorphism.

Proof: WARNING: This proof will not use the construction of the Hodge-Tate map in degree> 1
and this lemma will be used in the proof of Hodge-Tate map in the general case, so there is no cycle
in the reasoning.

The map

Ω•
R(1)/(A/p) → H∗(RΓcrys(R/A)⊗LA A/p){∗} ∼= H∗(∆R(1)/A ⊗

L
A A/I){∗} = H∗(∆R(1)/A){∗}



816 CHAPTER 7. WEIL COHOMOLOGIES, MOTIVES AND MOTIVIC COHOMOLOGY

is an isomorphism by Cartier isomorphism?, where the middle is by prismatic-crystalline compari-
son(7.7.6.4).

It suffices to check this is the Hodge-Tate map for R(1)/(A/p). But the Hodge-Tate map is induces
by the inclusion OX → H0(∆X/S). It is fairly easy to check the proof of(7.7.6.4) and(7.6.6.9) the
composition is also the canonical one. Finally if we choose Fp⟨X⟩ = R = R(1), then we get the
desired Hodge-Tate isomorphism. □

Lemma(7.7.6.7) [Hodge-Tate Comparison for (Zp, (p))]. If (A, (p)) is a p-torsionfree crystalline
prism and R = Fp[X1, . . . , Xn], then the Hodge-Tate map constructed in(7.7.5.3) is an isomorphism.

Proof: The proof is the same as that of(7.7.6.6), notice now we already have the Hodge-Tate
Comparison map. □

Direct proof of the Hodge-Tate comparison for (Zp, (p))

The proof of(7.7.6.6) and(7.7.6.7) is sloppy because we somehow lose track of whether the com-
position morphism is the Hodge-Tate comparison map. As the situation is so explicit, we decided to
give a direct proof.

Mix Characteristic Case

Prop.(7.7.6.8) [Comparing with the Characteristic p].Let A be a universal oriented prism in
any characteristic and A→ B as in(7.7.1.5), let α : (A, (d)) φ−→ (A, (d))→ (B, (p)), then α is a map
of prisms by(7.7.1.6), and:

1. α/p factors as A/p→ A/(p, d) φ−→ A/(p, dp)→ B/p = DA/p((d)) where the first map has finite
Tor amplitude and the last two maps are f.f., thus α/p has finite Tor amplitude.

2. The functor α̂∗ : Dcomp(A, (p, d))→ Dcomp(B, (p)) reflects isomorphisms.
3. For any p-completely smooth A/I-algebra R, let RB = R⊗̂AB, then the map

α̂∗∆R/A → ∆RB/B

is an isomorphism.

Proof: 1: It factors because dp = p!γp(d) ∈ pB, and B/p = DA/p((d)) by(4.6.0.16), noticing
DA((d)) = DA((p, d)). The first map is of finite Tor amplitude(4.9.7.1) because d is a nonzero-
divisor in A/p by(7.7.1.4). φ is f.f. because it is a base change of φA/p and the latter is f.f.(7.7.1.4).
The last one is f.f. because it is a free summand as DA/p((d)) = A/p[X1, X2, . . .]/(ap, Xp

1 , X
p
2 , . . .)

by(4.6.0.20).
2: Because Dcomp(A, I) is a weak Serre subcategory of D(A)(4.9.6.8), to show it reflects iso-

morphisms, by item1 and derived Nakayama applied to − ⊗LB B/p, it suffices to show if X ∈
Dcomp(A, (p, d)), if X ⊗LA A/p ⊗LA/p A/(p, d) = 0, then X = 0, but X ⊗LA A/p ⊗LA/p A/(p, d) =
X ⊗LA A/(p, d), and this follows from derived Nakayama again.

3: α has finite (p, d) Tor amplitude by(4.9.7.3) and(7.7.1.4), so 3 follows from(7.7.6.1). □

Final Proof

Prop.(7.7.6.9)[Hodge-Tate Comparison in the Affine Line Case]. In situation(7.7.4.8), If R =
A/I⟨X⟩, η0

R : R → H0(∆R/A) and the twisted morphisms η1
R{−1} : Ω1

R/(A/I){−1} → H1(∆R/A)
defined by the universal property of ΩR/(A/I) are isomorphisms, and H i(∆R/A) = 0 for i > 1.
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In particular, by étalelocalization of prismatic cohomology(7.7.6.2), lemma(7.7.5.4) holds for any
p-completely smooth algebra R over A/I. But this doesn’t say that higher cohomologies vanish for
any R, this is because cup product can survive derived tensor but cohomology groups cannot.

Proof: In this case, ΩR/S is topologically free over R, thus we can choose a map

η : R⊕ Ω1
R/A{−1}[−1]→ ∆R/A

lifting η0
R ⊕ η1

R{−1}.
Firstly if (A, I) = (Zp, (p)), this case is done by(7.7.6.6).
Next, if (A, (d)) is oriented, then there is a map of prisms from the universal oriented prism(7.7.1.4)

A0 → A, then we have a pushout diagram of simplicial commutative rings

A0 A

Zp D0 E = A⊗̂LA0D0

α β

and (E, (p)) is a simplicial prism.
Now the warning is what we have done so far can all be extended to the derived algebraic geometry

setting, or at least to the ”animated commutative algebra” setting!
We denote the composite of the lower row as γ, because α̂∗ reflects isomorphisms, so does β̂∗,

and we can show β̂∗∆R/A ∼= γ̂∗∆Fp⟨X⟩/Zp , and identifies the Hodge-Tate map: This is because we are
in the polynomial case, so we can make the construction of ∆R/A clear: we just take the F 0 to be the
derived (p, I)-completion of the free δ-rings A{X} in the construction of weakly final object(7.7.4.11),
then the resulting Čech-Alexander complex is free and compatible with base change in the complex
level.

Also β has finite (p, d)-Tor amplitude because α has because (p, d) is regular in A0(7.7.1.4), also
γ has finite p-Tor amplitude because E is p-torsionfree by(7.7.1.11), and use(4.9.7.3). So we are
reduced to the (Zp, (p)) case, which we have done.

Finally, for a general bounded prism (A, I), we can reduce to the oriented case by base change
along the f.f. extension defined in(7.7.1.11), then we reduce to the orientable case by(7.7.6.1). □

Prop.(7.7.6.10)[Hodge-Tate Comparison Theorem in General].The map

η•
R : Ω•

X/(A/I) → H•(∆X/A){•}

constructed in(7.7.5.3) is an isomorphism of sheaves of A/I-dgas on Xét.

Proof: Because we already have the Hodge-Tate comparison map, it suffices to prove the theorem
for affine subscheme Spf R, and because both prismatic cohomology and de Rham complex are étale-
local(7.7.6.2)(7.7.5.2), it suffices to prove for the polynomial case. In this case, Ω̂i

R/A is topological
free over R, then we can lift the Hodge-Tate map(7.7.5.3) to the level of chain complexes:

η : ⊗ni=0Ωi
R/(A/I){−i}[−i]→ ∆R/A.

And then the rest is the same as the proof of(7.7.6.9), where in the (Zp, (p)) case, we use(7.7.6.7)
instead of(7.7.6.6). □
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de Rham Comparisons

Prop.(7.7.6.11)[de Rham Comparison]. In situation(7.7.4.2), ifW (A/I) is p-torsionfree, then there
is a natural isomorphism

∆X/A⊗̂
L
A,φA/I

∼= Ω•
X/(A/I)

of commutative algebra objects in D(A/I).

Proof: Cf.[Sholze, Prism, 6.4].
It suffices to construct locally a functorial isomorphism ∆R/A⊗̂

L
A,φA/I

∼= Ω∗
R/(A/I) and then glue.

Let A → W (A/I) be the canonical map, and ψ : A φ−→ A → W (A/I), then it takes I into
(p)?. But the map ψ/p : A/I → W (A/I)/p = A/I factors through A/(p, I), thus R′ also equals
R/p⊗A/(p,I) W (A/I)/p, so there is a base change diagram:

R R/p R(1) = R⊗A/I,ψ W (A/I)/p

A/I A/(p, I) W (A/I)/p = A/I
ψ(p,[p])

Base change for prismatic cohomology(7.7.5.5) gives an isomorphism

∆R/A⊗̂
L
A,ψW (A/I) ∼= ∆R′/W (A/I).

Note that W (A/I) → A/(p, I) is a pd-thickening with ideal (p, [p])?, so we can use crystalline
comparison w.r.t. the crystalline prism (W (A/I), (p))? to show that

∆R(1)/W (A/I)
∼= RΓcrys((R/p)/W (A/I)).

Then finally we use the crystalline de Rham comparison? to get the desired result. □

Remark(7.7.6.12).The technical condition W (A/I) is p-torsionfree can be removed, by [Scholze,
Prism, 15.4].

7 Derived de Rham Cohomology
Def.(7.7.7.1) [Derived de Rham Cohomology].For an Fp-algebra k, the derived de Rham
cohomology functor dR−/k : CAlg /k → D(k) is the left derived functor of the functor Polyk → D(k)
given by R→ Ω•

R/k via(4.8.4.2).

Prop.(7.7.7.2)[Derived Cartier Isomorphism].

Regular Semiperfect Rings

Def.(7.7.7.3)[Regular Semiperfect Rings].Let k be a perfect ring, a regular semiperfect ring
over k is an k-algebra of the form R/I where R is a perfect k-algebra and I is an ideal generated by
a regular sequence.

Prop.(7.7.7.4).Let k be a perfect field and S be a regular semiperfect ring, then
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8 Derived Prismatic Cohomology
Prop.(7.7.8.1)[Derived Hodge-Tate Comparison].

9 q-de Rham Cohomology
Prop.(7.7.9.1)[Hodge-Tate isomorphism via q-de Rham Complex].Cf.[Bhatt, Prism, 5.3.9.].

10 Étale Comparison
Prop.(7.7.10.1) [Frobenius Fixed Points].Fix an Fp-algebra B with an element t, let D(B[F ])
be the derived category of Frobenius B-modules: this is a category whose objects are (M,φ)
where M ∈ D(B) and φ is a morphism M → M ⊗LB,φ B in D(B). And let Dcomp(B[F ]) be the full
subcategory spanned by pairs (M,φ) where M ∈ Dcomp(B, (t))(4.9.6.4).

Given (M,φ) ∈ Dcomp(B[F ]), let Mφ=1 = RHomD(B[F )((B,φ), (M,φ)) ∈ D(Fp)?, called the
Frobenius fixed pts of M .

Prop.(7.7.10.2).Fix an Fp-algebra B with an element t, then
• The functor Dcomp(B[F ]) → D(Fp) given by M → Mφ=1 and M 7→ (M [t−1])φ=1 commute

with colimits.
• For any (M,φ) ∈ Dcomp(B[F ]) and

11 Almost Purity
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7.8 Motives

Main references are [Sta]Chap45, [Ful98], [Kle94], [Mil12] and [Lectures on Pure Motives, Murre].
[ Jannsen, Uwe Motivic sheaves and filtrations on Chow groups. Motives (Seattle, WA, 1991), 245–
302, Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994.], [Jannsen, Uwe
Equivalence relations on algebraic cycles. The arithmetic and geometry of algebraic cycles (Banff,
AB, 1998), 225–260, NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht,
2000], [Jannsen, Uwe Mixed motives and algebraic K-theory. With appendices by S. Bloch and C.
Schoen. Lecture Notes in Mathematics, 1400. Springer-Verlag, Berlin, 1990. xiv+246 pp. ISBN:
3-540-52260-3].

Notation(7.8.0.1).
• Let k ∈ Field.

1 Correspondences

Def.(7.8.1.1).The full subcategory of Sch /k consisting of smooth projective schemes over k is denoted
by SmProj /k.

Any X ∈ SmProj /k has a decomposition X =
⨿
nXn into clopen subschemes that Xn is equidi-

mensional of dimension n by(7.1.2.28). Thus we can talk about Rings CH∗(X) andGH∗(X)(7.1.2.29).

Def.(7.8.1.2) [Adequate Equivalent Relations of Cycles].An adequate equivalent relation
on cycles is an equivalence relation on Z∗(X) for each X ∈ SmProj /k s.t.

• it is compatible with gradings and additions.
• it is compatible with products: Z ∼ 0 =⇒ Z × Y ∼ 0.
• it is compatible with intersections: Z1 ∼ 0 =⇒ Z ·W = 0.
• it is compatible with projections: If Z ∼ 0 ∈ Z∗(X × Y ) =⇒ (prX)∗(Z) ∼ 0.
• it satisfies moving lemma: Given Z,W1, . . . ,Wℓ ∈ Z∗(X), there exists Z ′ ∼ Z s.t. Z ′ and Wi

intersect properly for any i.

Def.(7.8.1.3) [(Rational)Correspondences].Let X,Y ∈ SmProj /k the group of (ratio-
nal)correpondences from X to Y of degree(codimension) r ∈ Z is defined to be

Corrrrat(X,Y ) =
⊕
d

CHd+r(Xd ×k Y )Q ⊂ CH∗(X × Y )Q.

Similarly we can define the groups of Grothendieck correspondences Corrrnum(X,Y ).

Def.(7.8.1.4)[Compositions of Correspondences].Let X,Y, Z ∈ SmProj /k, there is a composi-
tion of correspondences map

Corrs(Y, Z)× Corrr(X,Y )→ Corrr+s(X,Z) : (c′, c) 7→ c′ ◦ c = pr13∗(pr∗
23 c

′ · pr∗
12 c

′).

Then composition of correspondences are Q-linear and associative.

Proof: Cf.[Sta]0FG0. □
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Prop.(7.8.1.5) [Tensor Product of Correspondences].Let X,Y,X ′, Y ′ ∈ SmProj /k, there is a
tensor product of correspondences map

⊗ : Corrr(X,Y )× Corrs(X ′, Y ′)→ Corrr+s(X ×k X ′, Y ×k Y ′) : (c, c′) 7→ pr∗
13(c) · pr∗

24(c′).

which is Q-linear and associative, and commutes with compositions in both coordinates.

Prop.(7.8.1.6).Corr0(P1
k) = CH1(P1

k ×P1
k)Q ∼= Q⊕Q, where a basis is given by c0 = [{0} ×P1] and

c2 = [P1 × {0}]. And the diagonal ∆ = c0 + c2.
Also c0 ◦ c0 = c0, c2 ◦ c2 = c2, c0 ◦ c2 = 0 = c2 ◦ c0, so Corr0(P1

k) ∼= Q⊕Q as a Q-algebra.

Def.(7.8.1.7)[Push and Pull via Correspondences].Let c ∈ Corrrrat(X,Y ), we can define the
• (Pullback): CHk(Y )→ CHk−r(X) : β 7→ c∗(β) = pr1,∗(c · pr∗

2 β).

• (Pushforward): CHk(X)→ CHk+r(Y ) : α 7→ c∗(α) = pr2,∗(c · pr∗
1 α).

by using stratification and (7.1.2.12)(7.1.2.9).

Prop.(7.8.1.8)[Correspondences and Chow Groups].
• There are canonical isomorphisms

CH−r(X)Q ∼= Corrrrat(X, Spec k)

s.t. pullbacks by correspondences correspond to compositions.
• There are canonical isomorphisms

CHr(X)Q ∼= Corrrrat(Spec k,X)

s.t. pushforwards by correspondences correspond to compositions.

Proof: Cf.[Sta]0FG0. □

Cor.(7.8.1.9).Pushforwards and pullbacks by correspondences commute with compositions,
by(7.8.1.8) and(7.8.1.4).

Prop.(7.8.1.10)[Graphs].Let f : X → Y ∈ SmProj /k, its transposed graph Γtf defines a correspon-
dence [Γtf ] ∈ Corr0(Y,X). [ΓidX ] ∈ Corr0(X,X) is denoted by [∆X ].

Def.(7.8.1.11)[Transpose].Let X,Y ∈ SmProj /k be equidimensional, then the isomorphism X ×k
Y ∼= Y ×k X induces a transpose isomorphism

(−)t : Corrr(X,Y )→ CorrdimX−dimY+r(Y,X).

In particular, when f : X → Y ∈ SmProj /k and X,Y are equidimensional, then [Γtf ]t = [Γf ].

Prop.(7.8.1.12).Let α ∈ Corr∗(X,Y ), β ∈ Corr∗(Y, Z), then
1. (β ◦ α)t = αt ◦ βt.
2. If β = [Γtg], then β ◦ α = (idX ×g)!α.
3. If α = [Γtf ], then β ◦ α = (f × idZ)∗β.

4. If α = [Γtf ], β = [Γtg], then β ◦ α = [Γtfg].
5. ∆Y ◦ α = α, β ◦∆Y = β.
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Proof: 1: This follows from commutativity and naturality of intersection products.
2: By(7.1.4.6) and(7.1.8.9),

[Γtg] ◦ α = pr13∗(pr∗
23[Γtg] · pr∗

12 α) = pr13∗(1, g, 1)∗((1, g, 1)! pr!
12 α) = (1, g)!α.

3 is similar to item2.
4, 5 follow from item2, 3. □

Prop.(7.8.1.13)[Push and Pull by Graphs].Let f : X → Y ∈ SmProj /k, then
• Pushforward by [Γf ]t agrees with the Gysin map f ! : CH∗(Y )→ CH∗(X).
• Pullback by [Γf ]t agrees with the pushforward f∗ : CH∗(X)→ CH∗(Y ).

Proof: These follows from(7.8.1.8) and(7.8.1.12). □
Prop.(7.8.1.14).Let f : Y → X ∈ SmProj /k where X,Y are equidimensional, then there are com-
mutative diagram of correspondences

X × Y Y × Y Y

X ×X X Spec k

[Γtf ]⊗∆Y

∆X⊗[Γf ]

[Γt∆Y ]

[Y ]

[Γt∆X ] [X]

Proof: By(7.8.1.12), it suffices to show that (idX ×f)!(∆X)∗[X] = (f × idY )∗(∆Y )∗[Y ]. But both
sides equal [Γtf ]. ((idX ×f)![∆X ] = [Γtf ] follows from [Sta]0FF7?). □

Prop.(7.8.1.15) [Virtual Number of Coincidences].Let X,Y ∈ SmProj /k, α, β ∈ Corr∗(X,Y ),
then

pr1∗(α · β) = (βt ◦ α) ·∆X = (αt ◦ β) ·∆X .

In particular, if X,Y are equidimensional of dimension n, and α, β ∈ Corr0(X,Y ), then the virtual
number of coincidence of α and β, defined as

∫
X×Y α ·β, equals the virtual number of fixed points

of βt ◦ α.
Proof: Cf.[Ful98]P309. □

Def.(7.8.1.16) [Degenerate Correspondences].Let X,Y ∈ SmProj /k, then the subgroup of de-
generate correspondences from X to Y is the subgroup of Corr∗(X,Y ) generated by exterior
products CH∗(X) × CH∗(Y )(7.1.8.3). The subgroup of degenerate correspondences from X to Y is
denoted by I(X,Y ).

Then I(X,X) is a two-sided ideal in Corr∗(X,X), and is stable under transpose if X are equidi-
mensional.

Def.(7.8.1.17)[Valence].Let X ∈ SmProjn /k, then α ∈ Corr0(X,X) is said to be of valence ν iff
α+ ν[∆X ] ∈ I(X,X).

Def.(7.8.1.18) [Degree of Correspondences].Let X,Y, Z ∈ SmProjn /k be irreducible, then for
α ∈ Corrn(X,Y ), the degrees of α is defined to

α∗[X] = pr2∗(α) = d2(α)[Y ], α∗[Y ] = pr1∗(α) = d1(α)[X].

Then
• Let β ∈ Corrn(Y, Z), then di(β ◦ α) = di(α)di(β).
• If P ⊂ X is a rational point, then d1(α) =

∫
X×Y α · [P × Y ].

Proof: 1 is clear. 2 follows by composing with the correspondence [ΓP ] ∈ Corr−n(P,X). □
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2 Weil Cohomology Theories

Pre-Weil Cohomology Theories

Prop.(7.8.2.1)[Non-Existence of a Q-Cohomology Theory].For any p ∈ P ∪ {0}, there exists
an alg.closed field of characteristic p s.t. there doesn’t exists a cohomology theory on the category
of smooth projective varieties over k with coefficients in Q that specializes to the étale cohomology
with Qℓ coefficients, where ℓ ∈ P ∩ {p}.

Proof: For p = 0, take k = C. For a smooth projective variety X over k, it is defined over a subfield
k0 finite over Q. Let Γ = Gal(k/k0), then Γ acts on H∗(X,Qℓ). If H∗(X,Qℓ) is specialized from a
Q-cohomology H̃∗(−,Q), then the continuous Γ-action on H∗

ét(X,Qℓ) stablizes H̃∗(X,Q). But it is
known that

H∗
ét(X,Qℓ) ∼= H∗

Betti(X,Q)⊕Qℓ,

so dimQ H̃
∗(X,Q) = dimH∗

Betti(X,Q) < ∞. Then because infinite Galois group is uncountable, Γ
acts H̃∗(X,Q) through a finite quotient. But this is not true in general.? In fact, This contradicts
Tate’s conjecture.

If p > 0, let k = F p and E be an supersingular elliptic curve over k, which exists by(13.9.3.12),
then End(E) ⊗ Q is a definite quaternion algebra Q over Q, and dimQℓ H

1
ét(E,Qℓ) = 2(13.5.6.15),

so if H∗(X,Qℓ) is specialized from a Q-cohomology H̃∗(−,Q), dimQ H̃
1(E,Q) = 2, and End(E)⊗Q

acts on it. But there is no ring homomorphism Q→M2(Q). □

Def.(7.8.2.2)[Weil Cohomology Theories].Let k, F ∈ Field, charF = 0, then a pre-Weil coho-
mology theory over k with coefficients in F is given by a tuple (F (1),H∗, γ, tr), where

• F (1) is a 1-dimensional vector space over F . And denote F (n) = F (1)⊗n, F (−n) = F (n)∗,
and for any V ∈ VectF , define V (n) = V ⊗ F (n).

• H∗ is a functor H∗ : SmProj /k → CRinggr /F . H∗(X) is called the cohomology ring of X,
and its multiplication is denoted by ∪.

• For every X ∈ SmProj /k and i ∈ N, γX is a homomorphism γX : CHi(X)→ H2i(X)(i), called
the cycle class maps of X.

• For any X ∈ SmProjd /k, trX is a map trX : H2d(X)(d) → F , called the trace map of X.
The trace map is sometimes also denoted by

∫
X .

that satisfy the following properties:
Poincaré duality: For any X ∈ SmProjd /k,

1. dimF H
i(X) <∞ for any i and H i(X) = 0 unless 0 ≤ i ≤ 2n.

2. H i(X)⊗F H2d−i(X)(d) ∪−→ H2d(X)(d) trX−−→ F is a perfect pairing.
Künneth formula: For any X, y ∈ SmProj /k,

H∗(X)⊗F H∗(Y )→ H∗(X ×k Y ) : (a, b) 7→ pr∗
1 a ∪ pr∗

2 b

is an isomorphism in CRinggr /F .
Cycle class map is natural:

1. For any f : X → Y ∈ SmProj /k, γ(f !β) = f∗γ(β) for β ∈ H∗(Y ) and γ(f∗α) = f∗γ(α)
for α ∈ H∗(X).

2. γ(a · b) = γ(a) ∪ γ(b).
3.
∫

Spec k γ(Spec k) = 1.
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H∗ is called a Weil cohomology theory if moreover it satisfies:
• For X ∈ SmProj /k and Γ(X,OX) = k′, then the natural map H0(Spec k′) → H0(X) is an

isomorphism.

Prop.(7.8.2.3) [Pushforward].Let k, F ∈ Field and H∗ be a pre-Weil cohomology theory, for
f : X → Y ∈ SmProj /k where dimX = d, dimY = e, we can define a pushforward map of
cohomology H2d−∗(X)(d)→ H2e−∗(Y )(e) via Poincaré duality, i.e.∫

X
f∗b ∪ a =

∫
Y
b ∪ f∗a

for any a ∈ H2d−i(X)(d), b ∈ H i(Y ). Then
• f∗(f∗b ∪ a) = b ∪ f∗a.
• g∗f∗ = (gf)∗.

Proof: Use duality and the corresponding properties of f∗. □

Prop.(7.8.2.4)[H∗(Spec k)].Let k, F ∈ Field and H∗ be a pre-Weil cohomology, then H i(Spec k) = 0
unless i = 0, and there is a unique F -algebra isomorphism H0(Spec k) ∼= F , sending γ([Spec k]) to 1
and trSpec k is identity under this identification.

Proof: Cf.[Sta]0FHE. □

Prop.(7.8.2.5)[Coproducts].Let k, F ∈ Field and H∗ be a pre-Weil cohomology, then for X,Y ∈
SmProj /k, H∗(X

⨿
Y )→ H∗(X)×H∗(Y ) is an isomorphism.

Proof: Cf.[Sta]0FHJ. □

Weil Cohomology Theories

Prop.(7.8.2.6) [Characterizing Weil Cohomology Theories].Let k, F ∈ Field and H∗ be a
pre-Weil cohomology theory, for X ∈ SmProj /k and Γ(X,OX) = k′, the following are equivalent:

• There exists f.m. geometric points x1, . . . , xr ∈ X s.t. H0(X) → H0(x1) ⊕ . . .H0(xr) is
injective.

• The map H0(Spec k′)→ H0(X) is an isomorphism.
If these hold, then H0(X) is finite étale over F . Moreover, if X is equidimensional of dimension d,
then these are further equivalent to

• The classes of closed points of X generate H2d(X)(d) as a module over H0(X).

Prop.(7.8.2.7) [Non-negativeness].Let k, F ∈ Field and H∗ be a Weil cohomology theory, then
for any Y ∈ SmProj /k, H i(Y ) = 0 for i < 0.

Proof: IfH i(Y ) ̸= 0 for some Y ∈ SmProj /k and i < 0, we may assume Y is irreducible by(7.8.2.5),
and also we may assume i = −2j is even by changing Y to Y × Y using Künneth formula. Then
take X = Y × (P1

k)j , then Künneth formula shows

H0(Y )⊕H i(Y )⊗H2(P1
k)⊗l ⊂ H0(X),

so H0(X) cannot be isomorphic to H0(Spec Γ(X,OX)) = H0(Spec Γ(Y,OY )) ∼= H0(Y ). □

Prop.(7.8.2.8).? Let k, F ∈ Field and H∗ be a Weil cohomology theory, then
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• If X ∈ SmProjd /k, then trX ◦γ = deg : CHd(X)→ F (7.1.2.27).
• If X,Y ∈ SmProj /k, then trX×kY = trX ⊗ trY via Künneth formula(7.8.2.2). In particular, for
a ∈ H2 dimX(X)(dimX), b ∈ H∗(dimY ), pr2,∗(a⊗ b) = (

∫
X a)b ∈ H∗(Y ).

Proof: 1: This holds forX = Spec k by hypothesis, and also for any other x ∈ X(k) by pushforward.
2: For any x ∈ X(k), y ∈ Y (k), by item1, γ([x × y]) ∈ Htop(X × Y ) is mapped to 1 ∈ F via

trX×Y , and it equals γ([x])⊗ γ([y]) by(7.8.2.2) as [a× b] = pr!
1(a) · pr!

2(b). The latter is also mapped
to 1 ∈ F by trX ⊗ trY .

For the last assertion, notice
∫
Y pr2,∗(a⊗ b) ∪ c =

∫
X×Y (a⊗ b) ∪ (1⊗ c) = (

∫
X a)

∫
Y (b ∪ c) □

Prop.(7.8.2.9). If Z ∈ CH∗(X) satisfies mZ is algebraically trivial for some m ∈ Z∗, then γX(Z) = 0.
Proof: Cf.[Algebraic Cycles and the Weil Conjecture, Kleiman, Prop1.2.1]. □

Prop.(7.8.2.10)[Lefschetz Trace Formula].Let k, F ∈ Field and H∗ be a Weil cohomology theory,
then for X ∈ SmProj /k and α, β ∈ H2∗(X ×X)(∗), then

(α · β) =
∑
i

(−1)i tr(β ◦ α|H i(X)).

Proof: Cf.[Sta]0FH0.? □
Cor.(7.8.2.11).Let k, F ∈ Field and H∗ be a Weil cohomology theory, then for X ∈ SmProj /k,

2 dimX∑
i=0

(−1)i dimF H
i(X) = deg([∆X ] · [∆X ]) = deg(cd(TX) ∩ [X]).

Conj.(7.8.2.12)[Betti Numbers].Let k, F ∈ Field, k = k and H∗ be a Weil cohomology theory, is
it true that for a smooth projective variety over k, the numbers βi = dimF H

i(X) are independent
of F and the cohomology theory?

Proof: ? □

3 Pure Motives
Conj.(7.8.3.1)[Category of Motives as a Universal Cohomology Theory].Let k ∈ Field, then
there should be a category of motives Mot(k) s.t.

• Mot(k) is a Tannakian category over Q.
• There is a functor h : SmProj /k → Mot(k).
• Every correspondence X → Y of degree 0 defines a map hX → hY .
• Every Weil cohomology theory(7.8.2.2) on the SmProj /k factors uniquely through h.

Proof: ? □
Def.(7.8.3.2)[Chow Motives].The category Motrat(k) of Chow motives over k consist of triples

(X, e,m) where X ∈ SmProj /k, e is an idempotent in Corr0
rat(X,X)Q and m ∈ Z. And morphisms

in Mrat(k) are defined to be

Hom((X, e,m), (Y, f, n)) = f ◦ Corrn−m
rat (X,Y ) ◦ e.

The category Moteff
rat(k) of effective Chow motives over k is defined to be the full subcategory of

Motrat(k) consisting of triples (X, e, 0).
There is a contravariant functor SmProj /k → Moteff

rat(k) : X 7→ (X, [∆X ], 0) and f 7→ [Γtf ].
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Def.(7.8.3.3)[Grothendieck Motives].The category Motnum(k) of Grothendieck motives over k
consist of triples (X, e,m) where X ∈ SmProj /k, e is an idempotent in Corr0

num(X,X)Q and m ∈ Z.
And morphisms in Mnum(k) are defined to be

Hom((X, e,m), (Y, f, n)) = f ◦ Corrn−m
num (X,Y ) ◦ e.

The category Moteff
num(k) of effective Grothendieck motives over k is defined to be the full sub-

category of Motnum(k) consisting of triples (X, e, 0).
Prop.(7.8.3.4).There are natural functors Moteff

rat(k) → Moteff
num(k) and Motrat(k) → Motnum(k), by

definition(7.8.1.3).
Def.(7.8.3.5)[Tate Twists]. In Mrat(k) or Mnum(k), define 1(n) = (Spec k, id, n), and for any object
M , define M(n) = M ⊗ 1(n).

Prop.(7.8.3.6).Mrat(k) and Mnum(k) are Karoubian categories(3.7.1.15) and symmetric monoidal
categories with identity 1(0)(7.8.3.5).
Proof: The symmetric monoidal structure is given by(7.8.1.4). It is clearly an additive category.
To show it is Karoubian, for M = (X, e,m) ∈Mrat(k), p ∈ End(M) be an idempotent, then p = epe,
and N = (X, p,m) ∈Mrat(k), and p : N →M is a morphism. □

Prop.(7.8.3.7). h(P1
k) = 1⊕ 1(−1) ∈Mrat(k).

Proof: Cf.[Sta]0FGG. □
Prop.(7.8.3.8) [Motrat(k) as Inverting c2].For any Q-Karoubian category C and a symmetric
monoidal functor f : M eff

rat(k) → C s.t. f(c2) ∈ f(P1
k) is an invertible object, f factors through

uniquely through a symmetric monoidal functor Mrat(k)→ C.
Proof: Cf.[Sta]0FGH. □

Prop.(7.8.3.9)[Left Duals].Let X ∈ SmProjd /k, then h(X)(d) is a left dual of h(X). In particular,
every element in Mrat(k) has a left dual.

Proof: Cf.[Sta]0FGI, 0FGJ.? □
Def.(7.8.3.10)[Chow Groups of Motives].Let k ∈ Field and M = (X, e,m) ∈ Mrat(k), the i-th
Chow group of M is defined to be

CHi(M) = e ◦ CHi+m(X)Q = Hom(1(−i),M).

Then each CHi defines a functor Mrat(k)→ VectQ via pushforwards?.
Prop.(7.8.3.11)[Manin].Let k ∈ Field and M ∈ Mrat(k). If c : M → N ∈ Motrat(k) satisfies that
for X ∈ SmProj /k, the map c⊗ 1 : M ⊗ h(X)→ N ⊗ h(X) induces isomorphisms on Chow groups,
then c is an isomorphism.

Proof: Cf.[Sta]0FGN.? □
Prop.(7.8.3.12)[Weil Cohomologies and Chow Motives].Let k, F ∈ Field, k = k, charF = 0,
then a classical Weil cohomology over k with coefficients in F is equivalent to a Q-linear monoidal
functor G : Matrat(k)→ CRinggr /F together with an isomorphism F [2]→ G(1(1)) s.t.

• G(h(X)) ⊂ CRinggr≥0 /F .
• dimF G

0(h(X)) = 1.
Proof: Cf.[Sta]0FH3. □
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Theorems

Thm.(7.8.3.13)[Voisin-Voevodsky].For k ∈ Field and X ∈ SmProj /k, Zialg(X)Q ⊂ Zi×(X)Q.

Proof: Cf.[Lectures on Pure Motives, Murre]P19. □
Thm.(7.8.3.14)[Jannsen].For k ∈ Field, k = k, let ∼ be an adequate equivalence relation(7.8.1.2),
and F ∈ Field0, then the following are equivalent:

• Mot∼ is an Abelian semisimple category.
• ∼ is the numerical equivalence relation.
• For all X ∈ SmProj /k, Corr0

∼(X,X)F is a f.d. semisimple F -algebras.

Proof: Cf.[Lectures on Pure Motives, Murre]P39 or [Jan92]. □

Realizations

Cor.(7.8.3.15) [Realization Functors].For k ∈ Field, suppose the category of motives ex-
ists(7.8.3.1), then there should be realization functors

• Realp : Mot(k)→ RepQp(Galk) s.t. H i(−,Qp) = Realp ◦ hi,

• Realι,Betti : Mot(k)→ Hdgint s.t. H i
ι,Betti(−,Z)lf = Realι ◦ hi, for each embedding ι : k → C.

• RealdR : Mot(k)→ FilK s.t. H i
dR(−) = RealdR ◦ hi.

And comparison isomorphisms

Iℓ : Realι⊗Qℓ
∼= Realℓ : Mot(k)→ Vect /Qℓ

IdR : Realι,Betti⊗C ∼= RealdR⊗k,ιC : Mot(k)→ Fil•C
and the Tate twist(7.8.3.5) acts on the relations via

• Realι,Betti(M(r)) = (Λ,Λp,qC ) is given as follows:

Λ = (2π i)r Realι,Betti(M), Λp,qC = (2π i)r Realι,Betti(M)p−r,q−r.

• Realp(M(r)) = Realp(M)(r) = Realp(M)⊗ µ⊗r
p∞ .

• RealdR(M(n)) = RealdR(M).

Proof: It suffices to show that these are all Wei cohomology theories,? □
Prop.(7.8.3.16).By(11.10.3.7), if ι : k → C factors through R, then

IdR : Realι,Betti⊗C ∼= RealdR⊗k,ιC

identifies c∗⊗ c on the LHS with c on the RHS.

Prop.(7.8.3.17)[Tate Conjecture and Motives].The Tate conjecture(13.15.1.2) and Grothendieck-
Serre conjecture(7.4.7.36) hold iff the functor Mot(k)→ RepQp(GalK) : M 7→ H∗

ét(M) is fully faithful.

Proof: ? □
Prop.(7.8.3.18).For k ∈ Field, the functor Mot(k)→ Hdg(M) is fully faithful iff the Hodge conjec-
ture holds for k.

Proof: Cf.[Hodge-de Rham Structure and Periods of Automorphic Forms, Michael Harries, in
Motives 2]Prop1.2.? □
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Chow-Künneth Decompositions

Def.(7.8.3.19) [Chow-Künneth Decompositions].For X ∈ SmProjd /k, a Chow-Künneth de-
composition is a decomposition

∆X =
2d∑
i=0

πi ∈ CHd(X ×X,Q)

s.t.
• πjπi = δi,jπi.

• For any Weil cohomology over k, πi is mapped to the usual Künneth component ∆(2d− i, i)?.

4 Mixed Motives
Remark(7.8.4.1).The motives are conjectured to be the subcategory of semisimple objects in a larger
category of mixed motives.

There is at present no definition of a category of mixed motives, but several mathematicians
have constructed triangulated categories that are candidates to be its derived category; it remains
to define a T -structure on one of these categories whose heart is the category of mixed motives.?
Beilinson-Bloch-Murre Filtration Conjecture

Conj.(7.8.4.2)[Beilinson].For X/k, there exists a descending filtration Fil• CH•(X)Q s.t.
• Fil0 CHj(X)Q = CHj(X)Q, Fil1 CHj(X)Q = CHj(X)Q = CHj(X)hom 0,Q.
• this filtration is multiplicative.
• grv CHj(X)Q only depends on the motive modulo homological equivalence, h2j−v(X).
• Filj+1 CHj(X)Q = 0.

And moreover, if k = Q, then Fil2 = 0.

Proof: □

5 Standard Conjectures
Cf. [Kle94].

Remark(7.8.5.1).The standard conjectures over k are necessary conditions to make the Motnum(k)
a universal cohomology theory(7.8.3.1).

Conj.(7.8.5.2) [Lefschetz Standard Conjecture].Let k, F ∈ Field, k = k and H∗ be a Weil
cohomology theory, X ⊂ SmProjd /k, then the Lefschetz operator L : CHi(X)→ CHi+2(X) satisfies
for any i ≤ d,

Ln−i : H i(X)→ H2d−i(X)

is an isomorphism?. and for i ≤ d we can define

Λ = (Ld−i+2)−1L(Ld−i) : H i → H i−2,Λ = Ln−iL(Ln−i+2)−1 : H2n−i+2(X)→ H2n−i(X),

then this Λ is induced from a correspondence from X to X of degree −1.
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Conj.(7.8.5.3)[Standard Conjecture D].Let k, F ∈ Field, k = k and H∗ be a Weil cohomology
theory, then for X ∈ SmProj /k, a cycle Z ∈ CH∗(X) is numerically trivial iff γX(Z) = 0.

Remark(7.8.5.4).This conjecture was shown by Lieberman for varieties of dimension≤ 4 and for
Abelian varieties.

Conj.(7.8.5.5)[Künneth Standard Conjecture].Let k ∈ Field. Assume the conjecture D(7.8.5.3)
holds, which implies Corrrnum(X) can acts on H∗(X) for any Weil cohomology H∗.

Then for any X ∈ SmProj /k, there exists a decomposition of ∆X ∈ CorrdimX
num (X × X) into

orthogonal idempotents
∆X = h0(X) + . . .+ h2 dimX(X)

s.t. it induces the decomposition
H∗(X) = H0(X)⊕H1(X)⊕ . . .⊕H2 dimX(X)

for any Weil cohomology theory H∗.
Remark(7.8.5.6)[Murre].Murre even conjecture that such a decomposition exists in CH∗(X) with
certain properties, which is equivalent to a filtration on CH∗(X), conjectured by Beilinson and
Bloch.?

Prop.(7.8.5.7) [Hodge Standard Conjecture].Let k, F ∈ Field, k = k and H∗ be a Weil
cohomology theory, X ∈ SmProjd /k, P k(X) = ker(L|Hk(X)) be the primitive cohomologies,
Ai(X) = γX(CHi(X)), then for any i < d/2, the Q-valued pairing on Ai(X) ∩ P 2i(X):

(x, y) 7→ (−1)i⟨Lr−2ix, y⟩

is positive definite.
Remark(7.8.5.8).This conjecture is true in characteristic 0 by Hodge theory. This conjecture is shown
for surfaces by Grothendieck(1958). This conjecture is shown for Abelian varieties of dimension 4 by
Ancona(2020).

Prop.(7.8.5.9).The conjecture D implies the Lefschetz standard conjecture. The Hodge standard
conjecture and the Lefschetz standard conjecture implies conjecture D.
Proof: □

Prop.(7.8.5.10)[Hodge Conjecture and Standard Conjecture].The Hodge conjecture(13.15.4.3)
implies the Lefschetz and Künneth standard conjectures and conjecture D for varieties over fields of
characteristic 0.
Proof: □

Prop.(7.8.5.11). If the Lefschetz standard conjecture and the Hodge standard conjecture hold, then
for any X ∈ SmProj /k,

• Corr∗
num(X,X) is a semisimple Q-algebra.

• (Generalized Riemann Hypothesis)If k is a finite field with Frobenius φ, then for any Weil
cohomology H∗, the Frobenius action Φ on H i(X) is semisimple with characteristic polynomial
in Z[T ], and eigenvalues of absolute value qi/2.

Proof: Cf.[Kle94]P19. □
Prop.(7.8.5.12)[Tate Conjecture and Standard Conjectures].The Tate conjecture implies Lef-
schetz, Künneth standard conjectures and conjecture D for ℓ-adic étale cohomology over any field.
Proof: □
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7.9 Motivic Cohomology(Voevodsky-Suslin)

References are [Motivic Cohomology, Voevodsky], [A1-Homology of Schemes, Voevodsky], [Bloch-
Kato conjecture and motivic cohomology with finite coefficients, Suslin-Voevodsky] and [Voe02].

Def.(7.9.0.1)[Bloch’s Motivic Cohomology Groups].For k ∈ Field and X ∈ SmProj /k, define
the complex

CpBlo,•(X) = Cp(X ×A•),

and it is a complex via the pullback along the embedding from edges of ∆n ⊂ An. And in fact the
cycles must satisfy that the intersections are all proper.(This is what makes it impossible to work
with.)

Then define
H2p−q

Mot (X,Z(p)) = CHp(X, q).

Def.(7.9.0.2)[Beilinson’s Motivic Cohomology Groups].For X ∈ SmProj /Q,

Hp
Mot(X,Q(q)) = (K2q−p(X)Q)(q),

where the RHS is the Adam operator q-part.
Then this definition is compatible with Bloch’s definition(7.9.0.1).? In particular,

H2q
Mot(X,Q(q)) = CHq(X)Q, and ⊕

CHp(X, q)⊗Q ∼= Kq(X).

Proof: □

Prop.(7.9.0.3).There are ℓ-adic comparison maps

Hp
Mot(X,Q(q))→ Hpét(X,Qℓ(q)), ℓ ∈ P,

and Deligne comparison maps

Hp
Mot(X,Q(q))→ Hp

Del(X,Q(q)).

Proof: □

Conj.(7.9.0.4)[Modified Motivic Cohomology Groups].For X ∈ SmProj /Q, define

Hp
Mot(XZ,Q(q)) = HpMot(X ,Q(q)),

Where X/Z is a proper flat model of X, which always exists?.
Then this definition is conjectured to be independent of X chosen.

Proof: □

Conj.(7.9.0.5) [Beilinson].For k ∈ Field and any n ∈ N, there exists sheaf Z(n) ∈
K(Sh(Varsm,quasi−proj

Zar /k)) s.t.
1. Z(0) = Z[0], Z(1) = O∗[−1],
2. Hn(SpecF,Z(n)) = Kn

Mil(F ) for any F ∈ Field.
3. H2n(X,Z(n)) = CHn(X).
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4. Hp(X,Z(n)) = 0 for p < 0.
5. There are spectral sequences

Hp−q(X,Z(−q)) =⇒ K−p−q(X).

6. For ℓ ∈ P \ {char k},
Z(n)⊗L Z/(ℓ) ∼= τ≤n(Rπ∗µ

⊗n
ℓ ).

7. H i(X,Z(n))⊗Q ∼= H i
Mot(X,Q(n))(7.9.0.2).

Proof: ? Voevodsky constructed candidates Z(n) satisfying these conditions except for item4. □

Def.(7.9.0.6)[Absolute Chern Class Maps].There are Chern class maps:

cj,m : Kj(X)→ H2m−j
Del (X/R,R(m)),

chj =
∑
m≥0

(−1)m−1

(m− 1)!
cj,m : Kj(X)⊗Q→

⊕
m≥0

H2m−j
Del (X/R,R(m)).

such that chj maps (Kj(X)Q)j to H2m−j
Del (X/R,R(m)).

Proof: Cf.[Notes on Beilinson’s Conjecture, Yihang] or [Nekovar]. □
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8 | Algebraic Geometry III: Group Theory

8.1 Group Schemes I: Structure Theory
Main references are [Sta]Chap38, [Mil17].

1 Group Schemes
Def.(8.1.1.1) [Group Scheme].A monoid scheme over S is a monoid object in the Cartesian
monoidal category Sch /S. The category GrpS of group schemes over S consists of group objects
in the Cartesian category Sch /S(3.1.1.65).

An open/closed subgroup scheme of a group scheme G/S is an open/closed subscheme of
G/S that represents a subgroup functor of G/S.

A smooth/flat/separated/. . . group scheme is a group scheme G/S that G is
smooth/flat/separated/. . . over S.

We have the left(right)translation for an elements in G(R), equivalently, a natural transformation
on G, and base change (G⊗S S′)(T ′/S′) = G(T ′/S)

Remark(8.1.1.2)[Yoneda Interpretation].We do not need to verify all the relations, whenever we
have a functorial commutative group structure on all the set Hom(T,G), we immediately recover the
map m : G×G→ G as pr1 ·pr2 ⊂ G(G×G), inv : G→ G as inv in G(G), u : S → G as e in G(S),
by Yoneda lemma.

Cor.(8.1.1.3)[Group Schemes as Functors].From the Yoneda Interpretation and strong Yoneda
lemma(8.7.1.1), a group scheme over S is equivalent to a contravariant functor

AffS → Grp : R 7→ Hom(SpecR,G)

(or equivalently a functor SchS → Grp) that is represented by a scheme over S.
In particular, the category of affine group scheme over SpecR is equivalent to the category of

commutative Hopf algebras over R(2.9.2.1).

Def.(8.1.1.4)[Categorical Group Definitions].Because we can regard group schemes as functors
by(8.1.1.3), we can define categorical constructions of group schemes:

• (Trivial Group Scheme)S is a trivial group scheme over S. It is the zero object in GrpS , denoted
by e.

• (Commutative Group Schemes)A group scheme G is called a commutative group scheme
if each G(R) is commutative.

• ([n]G)For any n ≥ 1, the natural transformation of commutative groups functors x 7→ xn

induces a morphism of commutative group schemes [n] : G 7→ G for any group scheme G.
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• (Semi-Direct Product)Let G be a group scheme acting on a group scheme H, then we can form
a semi-direct product group scheme G⋉H representing the functor T 7→ G(T ) ⋉H(T ).
and G⋉H is isomorphic to G×H as schemes.

• (Kernel)For a homomorphisms of group schemes φ : G → H over R, we define the kernel
group scheme kerφ representing the functor R 7→ ker(φ(R)). it is represented by the fibered
product

kerφ SpecR

G H

εH

φ

then it is a group scheme over R.
When G,H are affine group schemes, it corresponds to the cokernel Hopf algebra defined
in(2.9.2.17).

• (Short Exact Sequences)A sequence of homomorphisms of algebraic groups e → N
i−→ G

q−→ Q
is called an exact if they are exact as sheaves in Sh(AffS)(or Sh(SchS)). Exact sequences are
stable under base change of fields

• (Quotient Scheme)Let H ⊂ G be subgroup schemes. If G̃/H̃ is representable, then it is called
the quotient group scheme, denoted by G/H.

• (Monomorphism)A homomorphism H → G of group schemes is called a monomorphism if
H̃ → G̃ is injective.

• (Quotient Map)A homomorphismH → G of group schemes is called a quotient map if G̃→ H̃
is surjective.

• (Normal/Characteristic/Central Subgroups)A subgroup scheme H of G is called normal/char-
acteristic/central if H(R) is normal/characteristic/central in G(R) for any k-algebra R.

• (Normalizing) Let H,N be subgroup schemes of G, then we say H normalizes N if H is
contained in the normalizer of N in G.

• (Product Subgroup)Let H,N be algebraic subgroups of an algebraic group G such that H
normalizes N , then we define NH ⊂ G be the algebraic subgroup that is the image of the
homomorphism N ⋊H → G, if it is representable.

• (Generated Subgroup Scheme)Let {Xi → G} be a family of maps to a group scheme G, then
the smallest algebraic subgroup H of G generated by φi is called the generated subgroup
scheme if it is representable, denoted by ⟨Xi, φi⟩. It is clear such generated subgroup scheme
commutes with base change of fields.

• (Commutator Subgroup)If H1,H2 are subgroups of G, let [H1,H2] be the subgroup generated
by the commutators ofH1,H2 if it is representable. Or equivalently, it is the subgroup generated
by the map H1 ×H2 → G : [h1, h2] 7→ h1h2h

−1
1 h−1

2 .
• (Derived Series)For a group scheme G, define G(1) = [G,G] and define inductively G(n+1) =

[G(n), G(n)].
• (Derived Central Series)For a group scheme G, define G1 = [G,G] and define inductively
Gn+1 = [Gn, Gn].

• (Subnormal Series)For a group scheme G, a subnormal series is a finite sequence of algebraic
subgroups G = G0 ▷ G1 ▷ . . . ▷ Gr = e s.t. Gi+1 is normal in Gi.
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• (Solvable Group Schemes) A solvable group scheme is a group scheme G that has a subnor-
mal series G = G0 ▷ G1 ▷ . . . ▷ Gs = {e} that each quotient Gi/Gi+1 is commutative.

• (Nilpotent Group Schemes) A nilpotent group scheme is a group scheme G that has a
subnormal series G = G0 ▷ G1 ▷ . . . ▷ Gs = {e} that each quotient Gi/Gi+1 is central in
G/Gi+1. Such a sequence is called a central series

• (Split Solvable(resp. Nilpotent) Group Schemes)A split solvable(resp. nilpotent) group
is a group scheme G that has a subnormal(resp. central) series G = G0 ▷ G1 ▷ . . . ▷ Gs = {e}
that each quotient Gi/Gi+1 is isomorphic to either Ga or Gm.

• (Perfect Group Schemes)A group scheme G is called perfect if G = [G,G].

Lemma(8.1.1.5)[Butterfly Lemma].Let H1,H2 be algebraic subgroups of an algebraic group G,
N1, N2 are normal subgroups ofH1 andH2, then there is a canonical isomorphism of algebraic groups:

N1(H1 ∩H2)/N1(H1 ∩N2) ∼= N2(H2 ∩H1)/N2(H2 ∩N1).

Proof: Use the Butterfly lemma for groups(2.1.9.2) and shifify. □

Def.(8.1.1.6)[Translation Map].For G ∈ Grp /S and any a ∈ G(S), there is a (left)translation map

la : G ∼= S ×S G
(a,id)−−−→ G×S G

m−→ G.

and it satisfies la, lb by associativity.

Prop.(8.1.1.7)[Common Group Schemes].
• D(Γ) = SpecZ[Γ] for a group Γ(2.9.2.3).
• µn = Z[T ]/(Tn − 1)(2.9.2.5)
• Ga = Z[T ](2.9.2.6)
• Γ = Spec

∏
γ∈Γ Z(2.9.2.9).

• αpr = SpecFp[X]/Xpr(2.9.2.15).
• Va = Spec Sym(V ∨)(2.9.2.8).

Prop.(8.1.1.8).Hom(Gm,R,Ga,R) = 0.

Proof: Such a homomorphism corresponds to an element f(T ) =
∑
aiT

i s.t. ∑
aiT

i ⊗ T i =∑
ai(T i⊗ 1 + 1⊗ T i), which implies ai = 0 for all i. A homomorphism Gm,R → Ga,R corresponds to

an element f(T ) =
∑
aiT

i s.t. ∑ aiT
i⊗T i =

∑
ai(T i⊗ 1 + 1⊗T i), which implies ai = 0 for all i. □

Prop.(8.1.1.9).Hom(Ga,R,Gm,R) = 0.

Proof: The proof is the same as that of(8.1.1.8). □

Prop.(8.1.1.10). If R is reduced, then Aut(Ga,R) ∼= R.

Proof: Any endomorphism of Ga,R is of the form X 7→ a0 + a1X + . . . + anT
n. If it is an

automorphism, then for any prime ideal p, a0 /∈ p and ai ∈ p, i > 0, thus a0 is a unit and ai are
nilpotent for i > 1, so ai = 0 for i > 1. □
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Prop.(8.1.1.11).For G ∈ Grp /S, there is a Cartesian diagram:

G G×S G

S G

∆X/S

(g,g′)7→m(i(g),g′)
e

This can be seen by a testing scheme T .

Cor.(8.1.1.12) [Separatedness].G ∈ Grp /S is (quasi-)separated iff e is qc(closed immersion). In
particular, if S is a field, then G is separated.

Def.(8.1.1.13)[Character Group].A character of a group scheme G is a homomorphism G→ Gm.
It is easy to see that a character of G is equivalent to a group-like element(2.9.2.19) in Γ(G). The
characters of G form a group, denoted by X(G). X(G)(k) is denoted by X(G).

Moreover, let ks/k be a separable closure, then the character group of Gks is denoted by X∗(G).
In particular, if G is an algebraic group scheme over a field, then the set of characters of G are

linearly independent, by(2.9.2.20).

Prop.(8.1.1.14)[Sheaf of Differentials is Parallel]. If f : G→ S ∈ Grp /S, then there are canonical
isomorphisms

ΩG/S
∼= f∗CG/S ∼= f∗e∗ΩG/S .

In particular, if S is the spectrum of a local ring, then ΩG/S is a free OG-module.

Proof: By base change, ΩG⊗SG/S = π∗
0ΩG/S , and the transition map

τ : G⊗S G→ G⊗S G : (g, h) 7→ (m(g, h), h)

is an automorphism of G⊗S G over G, so there is an isomorphism

τ∗π∗
0ΩG/S

∼= π∗
0ΩG/S

but π0◦τ = m, showing this isomorphism is m∗ΩG/S
∼= π∗

0ΩG/S . Now pulling this isomorphism along
the isomorphism by (e ◦ f, id) : G→ G⊗S G we obtain the isomorphism

ΩG/S
∼= f∗e∗ΩG/S .

Finally e∗ΩG/S
∼= CS/G by(5.5.5.14). □

Prop.(8.1.1.15). If k ∈ Field, then any G ∈ Grp /k is geo.reduced.

Proof: Cf.[Sta]047O.? □

Prop.(8.1.1.16)[Galois Descent].Let k ∈ Field, G ∈ Grp /k and K/k is a Galois extension with
Galois group Γ. If H ′ is a subgroup of G⊗kK, then H ′ is stable under the action of Γ iff there exists
a subgroup H of G that H ⊗k K = H ′. In this case, H is unique.

Proof: Use(5.1.5.19) and(5.1.5.22). □

Prop.(8.1.1.17).Let X,Y be varieties over a field k that both have at least one K-point, and X is
complete. Then any morphism X × Y → G to a group scheme G over k factorizes as f(x, y) =
g(x)h(y), where f : X → G and h : Y → G.
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Proof: Fix a y0 ∈ Y (K) and define a morphism g : X → G : x 7→ f(x, y0), then the morphism
F : X×Y → G : (x, y) 7→ g(x)−1f(x, y) is constant on X×{y0}. Then the rigidity lemma(5.10.1.20)
and(8.1.1.12) shows F (x, y) = h(y) where h : Y → G is a morphism. Then we are done. □

Cor.(8.1.1.18).Any morphism from a P1
K to a group scheme G is constant.

Proof: Let (x0, x1) be a homogenous coordinate of P1, consider the morphism s : P1 ×A1 → P1 :
(x0, x1)× y 7→ (x0, x0 + x1y). Let f : P1 → G be a morphism, consider the composition

P1 ×A1 s−→ P1 f−→ G

then by(8.1.4.19), f ◦ s factors as f(s(x, y)) = g(x)h(y).
We take y = 0, then s(x, 0) = x, and g(x) = f(x)h(0)−1. Thus f(s(x, y)) = f(x)h(0)−1h(y).

Next we take x = (0, 1), then s((0, 1), y) = (0, 1), and f((0, 1)) = f((0, 1))h(0)−1h(y). This shows
h(y) = h(0) is constant, thus f(s(x, y)) = f(x). Finally, let x = (0, 1), then s((0, 1), y) = y, and
f(y) = h(0) is constant. □

Cor.(8.1.1.19).Let U be an open subset of P1, then any morphism from U to a group variety G is
constant. In particular, G contains no rational curve, and any morphism from a rationally connected
variety to G is constant, in particular PnK .

Proof: Any rational map from P1 to G can be extended to a morphism, by(5.11.1.15), thus it is
constant, by the proposition above. □

Prop.(8.1.1.20) [Singularity in Codimension1].Let S ∈ Sch be normal and Noetherian, Z,G ∈
Sch /S s.t. Z/S is smooth and G/S is a smooth separated S-group scheme. If φ : Z → G is an
S-rational map, then every irreducible component of X\dom(φ) is of codimension 1.

Proof: Cf.[BLR90]P109.? □

Classification of groups schemes of height 1 over a field

Quotients of Group Schemes

Prop.(8.1.1.21)[Grothendieck].Let G be a group scheme of f.t. over S and H is a closed subgroup
scheme of G. If H is proper and flat over S and if G is quasi-projective over S, then the quotient
functor G̃fppf/H̃fppf is representable, denoted by G/H.

Proof: Cf.[Grothendieck, A. Technique de descente et theoremes d’6xistence en geometrie alge-
brique, III]. □

Cor.(8.1.1.22)[Existence of Quotient Space].Let H → G be a monomorphism of algebraic groups
over a field k(8.1.5.6), then the quotient functor G̃fppf/H̃fppf is representable by an algebraic scheme.
And G→ G/H is faithfully flat.

Proof: Cf.[Mil17b]P605.? □

Cor.(8.1.1.23)[Quotient by Normal Subgroups].Every normal algebraic group N of an algebraic
group G arises as the kernel of a quotient map G→ G/N . And if G is affine, G/N is also affine.

Proof: This is a corollary of(8.1.1.22) and(8.1.1.26) and(8.7.1.12).
The second assertion follows from[Mil17]P103.? □
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Cor.(8.1.1.24)[Quotient Map is a Cokernel].Let q : G→ Q be a quotient map of algebraic groups
over k and let N be the kernel, then every homomorphism G→ H whose kernel contains N factors
uniquely through q.

Prop.(8.1.1.25).Let G/H be a quotient space, then the map

(g, h) 7→ (g, gh) : G×H 7→ G×G/H G

is an isomorphism.

Proof: This is because for any R, G(R)×H(R)→ G(R)×G(R)/H(R) G(R) is an isomorphism, and
use the fact G(R)/H(R) ⊂ (G/H)(R) as G̃/H̃ is a subfunctor of G̃/H. □

Cor.(8.1.1.26).For any k-algebra R, the nonempty fibers of G(R)→ G/H(R) are cosets of H(R). In
particular, the fiber over o ∈ G/H is just H.

Cor.(8.1.1.27)[Quotient is a Torsor].G is a (fppf) H-torsor over G/H.

Proof: This follows from(8.1.1.22) and(8.1.1.27). □

Prop.(8.1.1.28) [Additivity of Dimensions].Let G be an algebraic group and H an algebraic
subgroup, then

dimG = dimH + dimG/H.

Proof: This follows from(5.6.3.17) and(8.1.1.26). (Notice G(k)→ H(k) is surjective(8.1.5.5)). □

Thm.(8.1.1.29)[Homomorphism Theorem].Every homomorphism of algebraic groups f : G→ H
factors uniquely as

G
q−→ I

i−→ H

where q is a quotient map and i is a monomorphism. I is called the image of f .

Proof: Let N = ker(f), and q : G→ I = G/N(8.1.1.23), then by(8.1.1.24), f factors through I via
a monomorphism I by(8.1.1.21). □

Cor.(8.1.1.30).A homomorphism of algebraic groups is a quotient map iff it is an epimorphism in
the category of algebraic schemes.

Proof: For any homomorphism of group schemes φ : G→ H, factor it as in(8.1.1.29), then we can
form the quotient space H/I, so if it is an epimorphism, I = H, and φ is a quotient map. Conversely,
if it is a quotient map, then OH → φ∗OG is injective by(8.1.5.3), thus it is an epimorphism. □

Cor.(8.1.1.31). If f is surjective and H is reduced, then f is a quotient map.

Prop.(8.1.1.32).Let H,N be subgroup schemes of G with N normal, then the canonical map

N ⋊H → G

is an isomorphism iff N ∩H = e and NH = G.

Proof: This follows from the exact sequence e→ N ∩H → N ⋊H → NH → e. □
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Prop.(8.1.1.33)[Isomorphism Theorem].Let H,N be algebraic subgroups of an algebraic group
G such that H normalizes N , then H ∩N is a normal algebraic subgroup of H, and the natural map

H/H ∩N → HN/N

is an isomorphism.

Proof: The isomorphism is induced by shifification of the natural isomorphism

TR : H(R)/H(R) ∩N(R) ∼= H(R)N(R)/N(R)(2.1.3.8).

□

Prop.(8.1.1.34)[Correspondence Theorem].Let N be a normal algebraic subgroup of an algebraic
group G, then

• An algebraic subgroup H of G, the inverse image of the image of H in G/N is HN .
• The map H 7→ H/N is a bijection between the set of algebraic subgroups of G containing N

to the set of algebraic subgroups of G/N .
• An algebraic subgroup H of G containing N is normal in G iff H/N is normal in G/N , in which

case the natural map G/H → (G/N)/(H/N) is an isomorphism.

Proof: Cf.[Mil17]P113.? □

Prop.(8.1.1.35)[Group Formation].WARNING: the category AlgGrpk of algebraic groups is not
Abelian, not even an exact category, but it is a group formation(3.2.2.1), and its subcategory
CAlgGrpk of commutative algebraic groups is an Abelian category, by(8.1.1.23)(8.1.5.2)(8.1.1.4).

Also the subcategory of affine algebraic groups is a Serre subcategory, by(8.1.1.23) and(8.1.5.29).

Cor.(8.1.1.36).By taking shifification, it can be shown that the same categorical properties of Grp
holds for AlgGrpk, such as the nine lemma, five lemma, and the restrictive snake lemma.

2 Finite Groups
Main references are [Finite Flat Group Schemes and p-Divisible Groups, Jakob], [Finite Group

Schemes, Pink], [Introduction to Finite Group Schemes], [Finite Flat Group Schemes, Tate].

Def.(8.1.2.1)[Finite Locally Free Group Schemes].A finite Locally Free group scheme is a
group scheme G that is finite locally free(5.6.2.22) over S. It is said to have order/rank d if G is
finite locally free of rank d over S, where d is a locally constant integral-valued function on S.

Def.(8.1.2.2) [Finite Groups].A finite locally free group scheme over a field k is called a finite
group scheme over k. An infinitesimal group scheme is a finite group scheme G s.t. |G| = e.

Prop.(8.1.2.3)[Cartier].Let k be a field of characteristic 0, then
• Every affine finite commutative group scheme over k is finite étale.
• If k is alg.closed, then there is an equivalence of categories between finite commutative group

schemes over k and Ab, by G 7→ G(k) and Γ 7→ Γk.

Proof: 1: by(2.9.2.22) and(4.4.7.20).
2: Γk is clearly affine commutative group schemes over k. If A is finite locally free Hopf algebra

over k, then it is finite étale by item1 and isomorphic to a fintie product of copies of k. Now the
equivalence is clear. □
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Prop.(8.1.2.4)[Finite Group Schemes of Order Invertible in S is Finite Étale].A finite group
scheme G over S of order invertible in S is finite étale.

Proof: Cf.[Jakob, P45].? □

Prop.(8.1.2.5)[Finite Étale Group Schemes].Let X be a connected smooth scheme with a geo-
metric point x, then there is a equivalence of categories:

{Finite étale group schemes over X} ↔ {Finite groups with a continuous action of π1(X,x)}

by(7.3.2.5). In particular, constant group schemes correspond to finite groups with trivial π1(X,x)
actions.

Cor.(8.1.2.6).The category of finite étale commutative group schemes over X is Abelian.
The category of commutative group schemes overX of order invertible inX is Abelian, by(8.1.2.4).

Commutative Finite Groups

Prop.(8.1.2.7)[Cartier Duality].Let G be a finite commutative locally free group scheme over S,
then OG is a finite locally free OS-Hopf algebra, then HomOS

(OG,OS) = O∨
G is again a finite locally

free OS-Hopf algebra(5.2.5.2), and thus SpecOG is a finite locally free group scheme over S, called
the Cartier dual GD of G.

Moreover, this Cartier dual of G represents the Hom sheaf HomSch /S(G,Gm).
If G is dual to G′, then their base changes are dual, too.
Finally, (GD)D = G by(5.2.5.2), so Cartier duality is a contravariant autoequivalence of the

category of commutative finite locally free group schemes over S.

Proof: For the Hom sheaf, we need to show

GD(T ) ∼= HomT (G⊗S T,Gm,T )

for any T/S. Notice a g ∈ GD(T ) corresponds to an R-algebra morphism g ∈ HomOS
(O∨

G → OT ) =
OG ⊗OS

OT (5.2.5.2) that satisfies

(∆⊗ idT )(g) = g ⊗T g ∈ (OG ⊗OS
OG)⊗OS

OT , (ε⊗ idT )(g) = 1

Also, g is a unit, as

g·(ι×idT )(g) = µ◦((idOG
⊗ι)⊗idOT

)(g⊗g) = µ◦((idOG
⊗ι)⊗idT )◦(∆⊗idT )(g) = (ηOG

⊗idT )(ε⊗idT )(g) = 1

so g corresponds to a OT -Hopf algebra map

OT [X,X−1]→ OG ⊗OS
OT

which maps X to G, □

Prop.(8.1.2.8)[Γ is Cartier Dual to D(Γ)].Let Γ be a finite commutative group and S be a scheme,
then ΓS is Cartier dual to D(Γ)S .
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Proof: By(8.1.2.7), it suffices to show for S = SpecZ. Now Γ =
∏
γ∈Γ Z, and ∆(eγ) =

∑
gg′=γ eg ⊗

eg′ . Let fγ ∈ Γ∨ be dual to eγ , then

fγ · fγ′ =
∑
g∈Γ

∆∨(fγ ⊗ fγ′)(eg)fg =
∑
g∈Γ

fγ ⊗ fγ′(
∑
st=g

es ⊗ et)fg = fγγ′

so Γ∨ ∼= Z[Γ], and
∆(fγ) =

∑
g,g′∈Γ

µ∨(fγ)(eg ⊗ eg′)fg ⊗ fg′ = fγ ⊗ fγ .

□
Cor.(8.1.2.9).Z/nZ is Cartier Dual to µn.
Prop.(8.1.2.10)[αp is Cartier Dual to αp].Over a Fp-scheme S, the group scheme αp,S is Cartier
dual to itself.
Proof: By(8.1.2.7), it suffices to show for S = SpecFp. Then αp = Fp[X]/Xp with

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

Let Yi ∈ α∨
p dual to Xi then

Yi·Yj =
p−1∑
k=0

∆∨(Yi⊗Yj)(Xk)Yk =
∑

Yi⊗Yj(∆(Xk))Yk =
∑

Yi⊗Yj(
∑

a+b=k

(
k

a

)
Xa⊗Xb)Yk =

(
i+ j

i

)

Now
(i+j
i

)
is unit, so α∨

p = Fp[Y ]/Y p where Y = Y1. and

∆(Y ) =
∑
a,b

µ∨(Y )(Xa ⊗Xb)Ya ⊗ Yb =
∑

Y (Xa+b) = Y ⊗ 1 + 1⊗ Y,

so α∨
p = αp. □

Prop.(8.1.2.11). If G1, G2 are finite groups over a field k, then there are no non-trivial homomorphism
from G1 to G2 or from G2 to G1 if G1 is étaleand G2 is connected.
Proof: Cf.[Van de Geer, P67]. □

Prop.(8.1.2.12). If e → G1 → G → G2 → e is an exact sequence of finite locally free group schemes
over S, then rank(G) = rank(G1) · rank(G2).
Proof: Cf.[Van de Geer, P68]. □

Prop.(8.1.2.13).Let char k = p > 0, then the rank of any finite group over k is a power of p.
Proof: Cf.[Van de Geer, P68]. □

Cor.(8.1.2.14).Let char k = p > 0, then a finite group over k is étaleand coétaleiff p ∤ rank(G).
Proof: Cf.[Van de Geer, P68]. □

Prop.(8.1.2.15).Over a Fp-scheme S, the three group schemes Z/pZ
S
, µp,S , αp,S are mutually non-

isomorphic.
Proof: We may take a fiber and assume S = SpecK, then Z/pZ

S
is reduced, µp,S is non-reduced

and αp,S is non-reduced. Then we can look at the reducedness of the group scheme and its Cartier
dual. □

Prop.(8.1.2.16)[The Order Kills the Group, Deligne]. If G is a finite locally free commutative
group scheme over S of constant order n, then [n]G = 0 : G→ G.

Proof: Cf.[Jakob P12].? □
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Finite Locally Free Group Schemes over Henselian Local Rings

Remark(8.1.2.17).Throughout this subsubsection, let R be a Henselian local ring (R,m).

Prop.(8.1.2.18).

Proof: □

Cor.(8.1.2.19).Let R be a equicharacteristic Henselian local ring of characteristic p > 0, then every
finite locally free group scheme over R of prime order is automatically commutative.

Proof: Cf.[Shatz, P50]. □

Cor.(8.1.2.20).Let R be a strict Henselian local ring with residue field of characteristic p > 0, then
any connected finite locally free group scheme over R has order pt for some t > 0.

Proof: Cf.[Shatz, P50]. □

Commutative p-Group Schemes

Cf.[Finite Flat Group Schemes, Tate]Section4.

3 Groupoid Schemes

Cf.[Sta]Cha38, 39.

4 Algebraic Groups over Fields

All group schemes G in this subsection are algebraic over a field k.

Prop.(8.1.4.1)[Smoothness and Geo.Reducedness].For a locally algebraic group scheme G over
a field k, smoothness is equivalent to geo.reducedness at a closed point.

Proof: If G is smooth, then it is geo.regular thus geo.reduced. The converse follows from(8.2.1.10).
□

Cor.(8.1.4.2)[Cartier].Any locally algebraic group scheme over a field of char 0 is smooth.

Proof: This is a consequence of(8.1.1.15) and(8.1.4.1). Alternative proof: ΩG/k is free, by(8.1.1.14),
so it is smooth by(5.6.4.15). □

Prop.(8.1.4.3)[Reduced Structure]. If Gred is geo.reduced, then it is a subgroup of G. This is the
case if k is perfect.

Proof: This is because Gred×Gred is reduced so the multiplication factors through Gred×Gred. □

Prop.(8.1.4.4)[Smoothness in Characteristic p].Let G be an affine algebraic groups over a perfect
field k of characteristic p ̸= 0, and r ≥ 0, then image of the relative Frobenius FG/k : G → G(pr) is
geo.reduced group scheme when r is sufficiently large.
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Proof: To show it is a group scheme, notice F r is a homomorphism and use homomorphism
theorem(8.1.1.29). And It corresponds to

Γ(G)⊗k,φr k → Γ(G) : a⊗ c 7→ cap
r
.

The image of which is just Γ(G)pr as k is perfect. To show it is geo.reduced, we can assume k is
alg.closed, then the nilradical N of Γ(G) is nilpotent, so some Nm = 0, and then the image is reduced
for any pr > m. □

Prop.(8.1.4.5)[Smoothness and Tangent Space].A locally algebraic group scheme G over a field
is smooth iff it is regular iff dimk Te ≤ dimeG, where e is the identity element.

Proof: By homogeneity and the fact smooth locus is open, G is smooth iff it is smooth at e. Now
e is a rational point, by(4.4.5.26), G is smooth at e iff it is regular at e. □

Prop.(8.1.4.6)[Closed Subgroups and Points].Let G be a locally algebraic subgroup over k and
S ⊂ G(k) a closed subgroup, then there is a unique reduce closed subgroup H of X that H(k) = S.
Moreover, H is geo.reduced. The algebraic subgroups of G arising in this way are exactly those that
H(k) is schematically dense in H. linear In particular, when k is sep.closed, then H 7→ H(k) is a
bijection between closed subgroups of G and closed subgroups of G(k), by(5.4.3.10).

Proof: Let H be a reduced closed subscheme of G that H(k) = S, then S is dense in |H| and H
is reduced, so by(5.4.3.5) and(5.4.3.8) shows S is schematically dense in H and H is geo.reduced.
Therefore H ×H is reduced and thus multiplication map H ×H → G factors through H, also does
inversion and unit, so H is a subgroup of G.

The converse is also true. □

Cor.(8.1.4.7) [Zariski Closure].Let G be a locally algebraic subgroup over k and S ⊂ G(k) a
subgroup, then there is a unique geo.reduced closed subscheme H of G, called the Zariski closure of
S in G, such that H(k) is the Zariski closure of S ⊂ G(k).

Prop.(8.1.4.8)[Algebraic Group Scheme is Quasi-Projective].Any algebraic group scheme over
a field k is quasi-projective.

Proof: Cf.[Sta]0BF7?. □

Prop.(8.1.4.9)[Center Subgroup].For a locally algebraic group scheme G over a field k, its center
is an algebraic subgroup of G.

Proof: Cf.[Sta]0BF8. □

Prop.(8.1.4.10).Every étale normal subgroup of a connected algebraic group is central.

Proof: This is because the automorphism group scheme of an étale group scheme is étale?. □

Prop.(8.1.4.11)[Identity Component].For a locally algebraic group G over a field k, consider its
identity component G0, then

• It commutes with the formation of identity component commutes with base change of fields.
In particular, G0 is geo.connected.

• G is locally connected(5.4.1.23), thus G0 is clopen in G.
• G0 is a a characteristic algebraic subgroup of G
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Proof: 1, 2 follows from(5.4.3.15).
3: By(5.4.3.12), G0 × G0 is connected, thus G0 × G0 is mapped into G0, and it is an open

subscheme, thus it is an algebraic subgroup of G. □

Cor.(8.1.4.12)[π0(G)].Let G be a locally algebraic group, then group structure induces a group struc-
ture on the maximal étalesubalgebra of Γ(G), thus G → π0(G) is a group homomorphism(7.3.1.1),
which is faithfully flat by(7.3.1.3), and the stabilizer of the identity in π0(G) is just G0 by(7.3.1.3)
again. Thus π0(G) = G/G0 by(8.2.1.11).

Prop.(8.1.4.13).Every connected component of a locally algebraic groupG over a field k is irreducible.

Proof: By(8.1.4.11), G0
k
is connected. To show it is irreducible, it suffices to consider its re-

duced structure, and in this case it is smooth(Notice in this case G0
red is an algebraic group because

G0
red ×G0

red is reduced). Thus no closed point is connected in two irreducible component, thus it is
irreducible. Then G0, as a quotient space of G0

k
, is also irreducible.

For another connected component H, choose a closed point h, let L be a finite normal extension
of k containing k(h), then each connected component of HL maps surjectively onto H, thus contains
one of the finitely many inverse images of h in HL. And they are all rational points, thus isomorphic
to G0

L, which is irreducible, thus H is also irreducible. □

Cor.(8.1.4.14)[Connected Algebraic Group is Geo.Irreducible].A connected algebraic group
over a field is geo.irreducible by(8.1.4.11) and(8.1.4.13).

Cor.(8.1.4.15). If G is a connected algebraic group over a field k, then for any non-empty open
subschemes U, V of G, U × V → G is surjective.

Proof: By(5.4.1.29), it suffices to check on closed points. Let p be a closed point, by base change,
we may assume x ∈ G(k), then xV −1 ∩ U ̸= ∅ as G is geo.irreducible(8.1.4.14), thus x ∈ UV . □

Cor.(8.1.4.16).Every connected component of a locally algebraic group scheme over a field k is
algebraic over k.

Proof: For the identity component, take a non-empty affine open subset U , then U2 = G0

by(8.1.4.15), thus G0 is quasi-compact. For the other components, the same proof as that of(8.1.4.13)
shows they are also quasi-compact. □

Def.(8.1.4.17)[Torsion Component].Let G be a locally algebraic commutative group over k, then
Gτ = ∪n>0[n]−1G0 ⊂ G is an open group subscheme, called the torsion component of G. Forming
Gτ commutes with change of fields, and if Gτ is quasi-compact, it is a clopen subgroup.

Prop.(8.1.4.18).Let G be a locally algebraic commutative group over k, then any algebraic subgroup
of G is contained in Gτ . In particular, if Gτ is algebraic over k, then it is the maximal algebraic
subgroup of G.

Proof: As H is qc, it is covered by f.m. translates of G0, thus G0 has finite index in G0H, which
means [n](H) ⊂ G0 for some n ∈ Z+. □

Prop.(8.1.4.19).Let X,Y be varieties over a field k that both have at least one K-point, and X is
complete. Then any morphism X × Y → G to a group scheme G over k factorizes as f(x, y) =
g(x)h(y), where f : X → G and h : Y → G.
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Proof: Fix a y0 ∈ Y (K) and define a morphism g : X → G : x 7→ f(x, y0), then the morphism
F : X×Y → G : (x, y) 7→ g(x)−1f(x, y) is constant on X×{y0}. Then the rigidity lemma(5.10.1.20)
and(8.1.1.12) shows F (x, y) = h(y) where h : Y → G is a morphism. Then we are done. □

Cor.(8.1.4.20).Any morphism from a P1
K to a group scheme G is constant.

Proof: Let (x0, x1) be a homogenous coordinate of P1, consider the morphism s : P1 ×A1 → P1 :
(x0, x1)× y 7→ (x0, x0 + x1y). Let f : P1 → G be a morphism, consider the composition

P1 ×A1 s−→ P1 f−→ G

then by(8.1.4.19), f ◦ s factors as f(s(x, y)) = g(x)h(y).
We take y = 0, then s(x, 0) = x, and g(x) = f(x)h(0)−1. Thus f(s(x, y)) = f(x)h(0)−1h(y).

Next we take x = (0, 1), then s((0, 1), y) = (0, 1), and f((0, 1)) = f((0, 1))h(0)−1h(y). This shows
h(y) = h(0) is constant, thus f(s(x, y)) = f(x). Finally, let x = (0, 1), then s((0, 1), y) = y, and
f(y) = h(0) is constant. □

Cor.(8.1.4.21).Let U be an open subset of P1, then any morphism from U to a group variety G is
constant. In particular, G contains no rational curve, and any morphism from a rationally connected
variety to G is constant, in particular PnK .

Proof: Any rational map from P1 to G can be extended to a morphism, by(5.11.1.15), thus it is
constant, by the proposition above. □

Def.(8.1.4.22) [Anti-Affine Group Schemes].An anti-affine algebraic group is an algebraic
group over k s.t. Γ(G) = k. For example, Abelian varieties are anti-affine by(5.10.1.12)

Prop.(8.1.4.23).Let φ : G→ H be a homomorphism of algebraic groups over k that G is anti-affine
and H is connected, then φ factors through the center of H(8.1.4.9).

Proof: Cf.[?]P151. □

Cor.(8.1.4.24). If G is a connected algebraic group over k, then every anti-affine algebraic subgroup
is contained in the center of G.

Cor.(8.1.4.25).Any anti-affine algebraic group is commutative and connected.

Proof: G→ π0(G) is surjective but π0(G) is affine thus this map is trivial, so G is connected. Then
it is also commutative by(8.1.4.24). □

Construction of Algebraic Groups

Prop.(8.1.4.26)[Generated Closed Subgroup].Let φi : Xi → G be a family of maps from algebraic
schemes X to an algebraic group over a field k.

• If Xi and G are all affine, then the generated group scheme is representable by an algebraic
subgroup H.

• If Xi are all geo.reduced. Then the generated group scheme is representable by a smooth
subgroup H.

Moreover, in both cases, if there is only a single map φ : X → G and X is geo.connected, and
e ⊂ φ(X), then ⟨X,φ⟩ is geo.connected.
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Proof: Cf.[Mil17]P54, 55, 56. □

Def.(8.1.4.27) [Commutator Group].Let G be an algebraic group that is affine or smooth, then
[G,G] exists by(8.1.4.26), and:

• [G,G] is the intersection of all normal subgroups H of G s.t. G/H is commutative.

• For a field extension k′/k, [Gk′ , Gk′ ] = [G,G]k′ .

• If G is geo.connected/smooth, then [G,G] is also geo.connected/smooth.

• If G is an affine smooth geo.connected group scheme, then [G,G] is the unique smooth
geo.connected subgroup scheme that satisfies [G,G](k) = [G(k), G(k)].

Proof: 1: Cf.[Mil17]P129.
2: This is formal.
3: This follows from(8.1.4.26).
1: Cf.[Mil17]P130. □

Def.(8.1.4.28)[Transporter].Let G×X → X be an action of an algebraic group on a scheme, and
Y, Z be subschemes of X, Z is a closed subscheme and Y is an algebraic scheme, then the functor

R 7→ {g ∈ G(R)|gYR ⊂ ZR}

is represented by a closed subscheme of G, called the transporter TG(Y, Z).

Proof: TG(Y, Z) is in fact the sheaf Hom(Y, Z)×Hom(Y,X)G, and notice Hom(Y, Z)→ Hom(Y,X) is
a closed subfunctor(8.7.1.3), thus TG(Y, Z) is a closed subfunctor of G, thus represented by a closed
subscheme of G. □

Cor.(8.1.4.29).Let G×X → X be an action of an algebraic group on a scheme, and Y, Z be closed
subschemes of X, then the functor

R 7→ {g ∈ G(R)|gYR = ZR}

is represented by a closed subscheme of G.

Proof: In this case, the functor is represented by the closed subscheme TG(Y, Z) ∩ inv(TG(Z, Y )).
□

Cor.(8.1.4.30)[Stablizer].Let G ×X → X be an action of an algebraic group on a scheme, and Y
be closed subschemes of X, then the functor

StabG(Y ) : R 7→ {g ∈ G(R)|gYR = YR}

is represented by a closed subscheme of G, called the stablizer subgroup of Y .

Def.(8.1.4.31)[Normalizer].

Def.(8.1.4.32)[Centralizer].



8.1. GROUP SCHEMES I: STRUCTURE THEORY 847

Group Varieties

Def.(8.1.4.33)[Group Varieties].A group variety over a field k is a k-variety(5.10.1.3) that is also
a group scheme.

Prop.(8.1.4.34) [Group Varieties are Smooth].A group variety over k is smooth by(8.1.4.1).
Conversely, any smooth connected algebraic group over k is a group variety, by(8.1.4.14)(8.1.1.12).

Prop.(8.1.4.35)[Tangent Bundle Trivial].For a group variety over a field k, TX,e is the tangent
space at e, then there is a natural isomorphism ΩX/k

∼= T ∗
X,e ⊗OX . Also true for TX(because ΩX/k

is locally free as X is smooth(8.1.4.34)(5.10.1.14)).

Proof: There should be another proof using relation in(5.5.5.14)?.
Use a dual number characterization of tangent spaces and tangent vector

fields(5.6.4.22)(5.10.1.15), then notice a tangent vector τ ∈ TX,e is a S = k[ε]-point of X,
then right translation gives a translation XS → XS that is invariant on X, which gives a tangent
vector on X.

So there is a map TX,e ⊗ OX → ΩX/k. To check isomorphism, both are locally free of the same
rank, so it suffices to show it is surjective. But on closed pts, pass to Nakayama, this is clearly true,
so it is surjective by(5.10.1.13). □

Prop.(8.1.4.36) [Dimension Theorem].Let φ : G → H be a surjective homomorphism of group
varieties, then

dim(G) = dim(H) + dim(ker(φ)).

Proof: This is a consequence of(5.6.3.19), as the fiber over any closed pt is isomorphic to a field
base change of ker(φ). □

Prop.(8.1.4.37).Every binational homomorphism of a connected affine group varieties is an isomor-
phism.

Proof: Such an isomorphism induces a homomorphism A→ B of integral Hopf algebras that is an
isomorphism on the fraction field, then it is an isomorphism by(2.9.2.24). □

Def.(8.1.4.38)[Quasi-Central Homomorphisms].A quasi-central homomorphism φ : G′ → G
of group varieties over k is a homomorphism the kernel of φ(k) is central in G′(k).

Prop.(8.1.4.39). If a homomorphism of group varieties φ : G′ → G is quasi-central and the kernel of
Lie(φ) is central, then ker(φ) ⊂ Z(G′).

Proof: Cf.[Bruhat-Tits, 2.1]. □

Prop.(8.1.4.40) [1-Dimensional Group Varieties].Let G be a group variety over a field k = k,
then either G ∼= Ga, Gm or an elliptic curve.

Proof: Cf.[Sil99]. □
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5 Homomorphisms
Prop.(8.1.5.1) [Connected-étale Sequence].Cf.[Mil17]P114, [Finite Flat Group Schemes,
Tate]Section3.7 and [Mil17b]P117.

Prop.(8.1.5.2)[Algebraic Subgroups are Closed].Algebraic subgroups H of an algebraic group
G are closed subgroups. In particular, an algebraic subgroup of an affine algebraic group is affine.

WARNING: H must first be an algebraic group, so we can use Chevalley theorem to show it is
locally closed.

Proof: As Hk′ → H is a quotient map(5.4.6.3), we can assume k is alg.closed, and also assume
H,G are reduced. Now Chevalley shows that the image is a constructible set of G. Then we can
consider all on the level of k points, because G is Jacobson. Then H contains an open subset of H
by(3.11.3.17), which implies H(k) is open in H ∩G(k). Now H ∩G(k) is the closure of H(k) in G(k),
thus it is also a subgroup of G(k), and we can consider the coset of H(k) in H ∩G(k). H is open in
H, and H is compact, and also H ∩ G(k) is compact because G is Jacobson, so there are only f.m.
coset, thus H(k) is also closed in H ∩G(k), thus H is also closed in H, so H = H. ? Cf.[Mil17]P19.
□

Prop.(8.1.5.3)[Characterizating Quotient Maps].The following conditions on a homomorphism
φ : G→ Q of algebraic groups are equivalent:

• φ is fully faithful.
• φ is a quotient map(8.1.1.4).
• The homomorphism OQ → φ∗OG is injective.

Proof: 1→ 2 follows from the very definition of fat subfunctors, as f.f. map is a fppf cover.
Cf.[Mil17]P109.? □

Prop.(8.1.5.4).Let φ : G → H be a surjective homomorphism of group schemes and H is reduced,
then φ is a quotient map.

Proof: The hypothesis implies G(k) acts transitively on H(k), thus φ is faithfully flat by(8.2.1.4).
□

Prop.(8.1.5.5)[Check Quotient Map on Closed Points].Let φ : G → H be a quotient map of
locally algebraic groups, then φ : G(k) → H(k) is surjective. The conversely is also true if H is
reduced. In particular, if e → N → G → H → e is an exact sequence, then e → N(k) → G(k) →
H(k)→ e is exact.

Moreover, if φ is étale, then φ : G(ks)→ H(ks) is also surjective.

Proof: This follows from the fact for any x ∈ H(k)(resp. ks), Gx is non-empty and locally
algebraic(resp. étale) over k(x), thus has a k(resp. ks-point).

For the converse, notice the image of φ has the same k-points as H, thus it equals H as H is
reduced and locally algebraic. □

Prop.(8.1.5.6)[Characterizing Monomorphisms].For a homomorphism φ : G → H of algebraic
groups over k, the following are equivalent:

• φ is a monomorphism.
• ker(φ) = e(8.1.1.4).
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• φ is a monomorphism in the category of algebraic groups over k.
• φ is a monomorphism in the category of algebraic schemes over k.

Moreover, a monomorphism is just a closed embedding.

Proof: 1→ 4→ 3 is obvious.
3→ 2: the composition of ker(φ)→ G with φ is trivial, thus ker(φ) is trivial.
2 ⇐⇒ 1: This follows from the definition of ker(φ)(8.1.1.4).
For the last assertion, if φ is a closed embedding, then , conversely, if φ is a monomorphism,

consider the quotient space G → G/H(8.1.1.21), then by(8.1.1.26), H is the fiber over o ∈ G/H,
thus a closed subscheme. □

Def.(8.1.5.7)[Embedding].An embedding of algebraic groups is a closed immersion of algebraic
groups.

Isogenies

Def.(8.1.5.8)[Finite Index Subgroups].An algebraic subgroup H of an algebraic group scheme G
is said to have finite index if the quotient G/H is a finite scheme.

Prop.(8.1.5.9).For any algebraic group G over k, the identity component G0 is of finite index in G.

Proof: Notice an algebraic group H is finite iff #H(k) < ∞. And (G/G0)(k) =
G(k)/G0(k)(8.1.4.11) is finite as G is compact. □

Def.(8.1.5.10) [Isogeny].A homomorphism of algebraic groups G → H is called an isogeny if its
kernel is finite and its image is of finite index in H(8.1.5.8).

Def.(8.1.5.11) [Strongly Connected Groups].An algebraic group G is called a strongly con-
nected group if it has no non-trivial subgroup of finite index.

Def.(8.1.5.12)[Strongly Identity Components].The strongly identity component Gs0 of an
algebraic group G is defined to be the intersection of the algebraic subgroups of finite index. Thus
it is a characteristic subgroup of G.

Prop.(8.1.5.13).G/Gs0 is a a finite scheme. In particular, Gs0 is the smallest algebraic subgroup
having the same dimension as G.

Proof: As G is Noetherian, Gs0 = H1∩ . . . Hr for G/Hi finite schemes. Thus G/Gs0 ↪→ H1∩ . . .Hr

is a finite scheme. □

Prop.(8.1.5.14)[Strongly Identity Components and Identity Components].Gs0 is connected,
and the converse is true if G is smooth. In fact, if G is smooth, Gs0 = G0.

In particular, a group variety has no algebraic subgroup of finite index. Thus an isogeny to a
group varieties is surjective(thus a quotient map by(8.1.1.31)).

Proof: Gs0 is connected because the identity component is of finite index(8.1.5.9). Conversely,
G0/Gs0 is smooth and connected and finite(8.1.5.29), thus it is a group variety of dimension0, which
is trivial. □

Prop.(8.1.5.15).Let G be an algebraic group over a perfect field k, then G0
red = Gs0.

Proof: Cf.[Mil17]P122. □
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Def.(8.1.5.16).A central/multiplicative isogeny is an isogeny that the kernel is central/of multi-
plicative type.

Prop.(8.1.5.17).Any isogeny with kernel order prime to the characteristic has étalekernel by(8.1.2.4),
thus it is central, by(8.1.4.10).

Prop.(8.1.5.18).Every multiplicative isogeny from a connected algebraic group is central,
by(8.2.3.22).

Def.(8.1.5.19).A composition of multiplicative isogenies is a multiplicative isogeny.

Proof: This is because there is an exact sequence e→ ker(φ1)→ ker(φ2 ◦φ1)→ ker(φ2)→ e, thus
ker(φ2 ◦ φ1) is central, hence of multiplicative type by(8.2.3.16). □

Prop.(8.1.5.20)[Isogenies between Group Varieties].Let φ : G → H be a surjective homomor-
phism of group varieties, then φ is flat. And if dimG = dimH, then φ is finite, and the rank of
ker(φ) equals the separable degree of K(G)/K(H).

Proof: φ is flat by(8.2.1.4). By(5.10.3.4), there exists a dense open subscheme U ′ s.t. φ−1(U ′)→ U ′

is finite, thus by homogeneity, φ is finite, and rank of ker(φ) is [K(G) : K(H)]s. □

Subnormal Series

Prop.(8.1.5.21)[Solvability].Let G be an algebraic group that is either affine of smooth, then G is
solvable iff G(n) = e for some n large. In particular, for a field extension k′/k, G is solvable iff Gk′ is
solvable.

Prop.(8.1.5.22)[Nilpotency].Let G be an algebraic group that is either affine of smooth, then G is
nilpotent iff Gn = e for some n large. In particular, for a field extension k′/k, G is solvable iff Gk′ is
solvable.

In particular, if G is a nilpotent and geo.connected, then it contains a non-trivial geo.connected
subgroup scheme in its center, by(8.1.4.27).

Prop.(8.1.5.23).A split solvable algebraic group G is an affine group variety, by(8.1.5.29)
and(8.1.5.29).

Lemma(8.1.5.24). If G = G0 ▷ G1 ▷ . . . ▷ Gs = {e} is a subnormal series and dimG = dimGi/Gi+1
for some i, then G ∼ Gi/Gi+1.

Proof: The maps Gi → Gi/Gi+1 and Gi → Gi−1 → . . .→ G0 = G are isogenies(8.1.5.10). □

Def.(8.1.5.25)[Composition Series].A composition series of G is defined to be a maximal object
among the subnormal series

G = G0 ▷ G1 ▷ . . . ▷ Gs = {e}

that satisfies dimG0 > dimG1 . . . > dimGs.

Prop.(8.1.5.26).Any two composition series of an algebraic group G has refinements that the quo-
tients are isogenous.

Cor.(8.1.5.27)[Jordan-Holder].
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Maximal Subgroup with Properties

Def.(8.1.5.28)[Good Properties].A property of algebraic groups is called a good property s.t.
• e has P .
• Every extension of groups with property P has P .
• Every quotient of a group with property P has P .

Prop.(8.1.5.29)[List of Good Properties(Not Complete)].
1. Strongly connectedness.
2. Solvability. Moreover, subgroups of solvable groups are solvable.
3. Smoothness.
4. Unipotency.
5. affineness.
6. connectedness.
7. finiteness. Moreover, subgroups of finite groups are finite.
8. unipotency. Moreover, subgroups of unipotent groups are unipotent.

Proof:
1. This follows from the isomorphism and correspondence theorems(8.1.1.33)(8.1.1.34).
2. This follows from standard argument and correspondence theorems(8.1.1.33)(8.1.1.34).
3. Let e→ N → G→ H → e be an exact sequence of algebraic groups, then if G is smooth, then

so is H by(8.2.1.10) and the fact G/H is geo.reduced by(5.1.5.28) and(8.1.5.3). If N,H are
smooth, then so is G by the fact smoothness is stalkwise.

4. Quotient case is clear. If N is a normal subgroup of G s.t. N and G/N are both unipotent, then
(for) any non-zero linear representation V of G, V N ̸= 0, and V N is stable under G-actions,
thus G/N acts on V N , thus V G = (V N )G/N ̸= 0.

5. Notice by(8.1.1.27) and(5.1.5.29). G→ Q is affine.
6. Cf.[Mil17]P114.
7. This follows from(8.1.1.28).
8. Cf.[Mil17]P282.

□

Prop.(8.1.5.30) [Maximal Group Variety Exists]. If P is a good property of algebraic groups,
then every algebraic group G over k contains a largest normal subgroup variety H with property H.
And also G/H has contains no non-trivial such subgroups.

Proof: G contains at least one normal subgroup variety, namely e. There exists a maximal such
one, by taking the one with maximal dimension(because smooth varieties are reduced), then it is
the largest, because if H ′ is another, then HH ′ is a larger one, by(8.1.5.29) and the fact NH is a
quotient of N ⋊H.

And if G/H contains a normal subgroup variety H ′ that has P , then the inverse image of H ′ in
G is also a normal subgroup variety that has P , contradiction. □
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6 Cohomology and Extensions
Cf.[Mil17]Chap15.
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8.2 Group Schemes II: Solvable Groups

1 Group Actions

Remark(8.2.1.1).Group action of an group functor on an object is defined in(3.1.1.66).

Prop.(8.2.1.2) [Group Action].An action of an algebraic group G on an algebraic group X is
equivalent to a right Γ(G)-comodule structure on Γ(X) as Γ(G)-modules. This action will induce a
right comodule structure on Γ(X).

The action of G on itself is called the regular action of G.

Prop.(8.2.1.3).Let µ : G × X → X be an action of an group scheme G on a scheme X, then it is
faithfully flat, and it is called a smooth/finite/...action if µ is smooth/finite/..

Proof: We can see this from the commutative diagram(3.1.1.67). □

Prop.(8.2.1.4) [Image of Equivariant Map].Let G be a group functor and X,Y be non-empty
algebraic schemes on which G acts, and f : X → Y is an equivariant map.

• If Y is reduced and G(k) acts transitively on Y (k), then f is faithfully flat.
• If G(k) acts transitively on X(k), then the set f(|X|) is locally closed in |Y |, so we can let
f(X)red denote its reduced subscheme structure(5.4.1.14).

• If X is reduced and G(k) acts transitively on X(k), then f factors into

X
faithfully flat−−−−−−−−→ f(X)red

immersion−−−−−−→ Y.

Moreover, f(X)red is stable under the action of G.

Proof: Cf.[Mil17]P26.?
1:
2:
3: f factors through f(X)red because X is reduced(5.4.1.14). Then the first assertion follows

from 1 and 2. The last assertion follows from universal property again. □

Def.(8.2.1.5)[Orbit Map].Let µ : G×X → X be an action of an algebraic group G on an algebraic
scheme X. For any x ∈ X(k), the orbit map

µx : G→ X : g 7→ gx

is defined to be the restriction to µ to G× {x} ∼= G. The image of the orbit map is locally closed in
X by(8.2.1.4), and then its reduced structure subscheme is called the orbit scheme Ox of x.

Prop.(8.2.1.6) [Fixed Subscheme].Let µ : G × X → X be an action of a group functor G on a
separated algebraic scheme over k, then the functor

X̃G : R 7→ {x ∈ X(R)|µ(g, xR′) = xR′ , ∀R− algebra R′, g ∈ G(R′)}

is representable by a closed subscheme XG of X, called the fixed subscheme of this action. Then
it can be seen directly that the formation of fixed subscheme commutes with extension of base fields.
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Proof: An element x ∈ X(R) defines two functors

G(R′)→ X(R′) : g 7→ gxR′

G(R′)→ X(R′) : g 7→ xR′

which are both natural in R′. Thus we get a map X(R)→ Hom(GR, XR×XR) which is also natural
in R, thus induce a map X 7→ Hom(G,X ×X).

Then there is a Cartesian diagram

X̃G Hom(G,∆X)

X̃ Hom(G,X ×X)

closed .

The right vertical map is a closed subfunctor by(8.7.1.10), as ∆X is closed in X ×X because X is
separated. Hence X̃G is a closed subfunctor of X̃, thus represented by a closed subscheme of X,
by(8.7.1.3). □

Def.(8.2.1.7)[Isotropy Group].Let G be a group scheme acting on an algebraic scheme X, and x ∈
X(k), then the isotropy group scheme Gx is defined to be the fiber of the orbit map µx : G→ X
over x.

Prop.(8.2.1.8)[Orbit Map is Faithfully Flat].Let µ : G × X → X be an action of an algebraic
group G on an algebraic scheme X and x ∈ X(k).

• If X is reduced and G(k) acts transitively on X(k), then the orbit map µx : G→ X is faithfully
flat.

• If G is reduced, then Ox is stable under G, and the map µx : G→ Ox is faithfully flat. If G is
smooth, then Ox is also smooth.

Proof: 1: this follows from(8.2.1.4).
2: The first statement follows from(8.2.1.4)3, and then OOx → µx∗(OG) is universally injective.

Therefore if G is smooth, then OOx is geometrically reduced. Then Ox is smooth by(8.2.1.10). □

Def.(8.2.1.9) [Homogenous Space].A non-empty algebraic scheme X with an action of a group
scheme G is called a homogeneous space for G if G(k) acts transitively on X(k), and for any(some)
x ∈ X(k), µx is faithfully flat (thus surjective).

Prop.(8.2.1.10)[Smoothness for Homogenous Spaces]. If G is a group scheme and X is a gener-
ically geo.reduced G-homogeneous space, then X is smooth.

Proof: By(5.6.4.21), it has an open dense smooth locus. Now smoothness can be checked after
base change to alg.closed field(4.4.2.1), but then because G(k) acts transitively on itself, thus all the
geometric points are smooth. But geometric points are dense in G(5.4.1.26), thus G is smooth. □

Action of Algebraic Groups

Prop.(8.2.1.11) [Homogenous Space as Quotients].Let µ : G × X → X be an action of an
algebraic group G on a separated algebraic scheme X over k with a rational point x ∈ X(k), then
(X,x) is a quotient of G by Gx iff the orbit map µx : G→ X is faithfully flat.
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Proof: If (X,x) is a quotient space, then by(8.1.1.22). Conversely, if it is faithfully flat, then clearly
µx(G̃) is a fat subfunctor of X̃, thus X represents the quotient functor G̃/G̃x. □

Cor.(8.2.1.12).Let µ : G × X → X be an action of a reduced algebraic group G on a separated
algebraic scheme X over k with a rational point x ∈ X(k), then (Ox, x) is a quotient space of G by
Gx.

Proof: Because G is reduced, µx : G→ Ox is faithfully flat by(8.2.1.8), and Ox is stable under the
action of G by(8.2.1.4), thus(8.2.1.11) applies to this case. □

Prop.(8.2.1.13).Let µ : G×X → X be an action of a smooth algebraic group on an algebraic scheme.
• A reduced closed subscheme Y of X is stable under G iff Y (k) is stable under G(k).
• Let Y be a locally closed subscheme of X, then if Y is stable under G, then (Y )red and (Y \Y )red

is also stable under G.

Proof: 1: Because G is geo.reduced and Y is reduced, G×Y is reduced(5.4.3.2), thus µ : G×Y → X
factors through Y iff µ(k) factors through Y (k).

2: |Y |red(k) is the closure of Y (k) in X(k)?. So as G(k) acts continuously on X(k), if it fixes
Y (k), then it also fixes (Y )(k) and (Y \Y )(k), thus we finish by 1. □

Cor.(8.2.1.14).Let G be a smooth algebraic group acting on an algebraic scheme X and let Y be
a non-empty locally closed subscheme of X stable under the action of G of the smallest dimension,
then it is closed.

Proof: This is because dimY > dim(Y \Y )red(Because irreducible components of Y is not contained
in Y \Y ). □

Cor.(8.2.1.15)[Orbit Lemma].Let G be a smooth algebraic group acting on an algebraic group over
an alg.closed field k, then every orbit of minimal dimension is closed.

Proof: If Y is an orbit of minimal dimension, then (Y \Y )red is stable under G and has smaller
dimensions. If it is non-zero, then it contains an orbit. □

Prop.(8.2.1.16).A representation (V, ρ) of an algebraic group G induces an action of G on the affine
algebraic scheme Va, and also an action of G on the projective algebraic scheme P(V ).

Prop.(8.2.1.17).Let G ×X → X be an action of an affine algebraic group G on an affine algebraic
scheme X over k, then there exists a f.d. representation (V, ρ) of G and an equivariant closed
embedding X ↪→ Va.

Proof: Cf.[Mil17b]P145. □

Def.(8.2.1.18) [Linear Action].A linear action of an algebraic group G on an algebraic scheme
X is an action (r, V ) s.t. there exists a f.d. linear representation (V, ρ) of G and an equivariant
non-degenerate immersion X ↪→ P(V ).

Prop.(8.2.1.19). If G ×X → X is a transitive action of an affine algebraic group G on an algebraic
variety X that X(k) is non-empty, then this action is linear.

Proof: Cf.[Mil17b]P145. □
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Def.(8.2.1.20)[Grassmannian Variety].The Grassmannian variety Gra(n, k) is a scheme over
Z defined to be the quotient of GL(n) by the algebraic subgroup B fixing a subspace of dimension
k(8.1.1.21).

The Grassmannian varieties are projective by(8.7.2.16).

Remark(8.2.1.21).For an explicit construction of Gra(n, k), Cf.[Sta]089T or [Nit05]P6.

Def.(8.2.1.22)[Flag Varieties].The flag variety is a scheme over Z defined to be the quotient of
GLn by the algebraic subgroup BF fixing a flag F (8.1.1.21).

The flag varieties are projective by(8.7.2.19).

Prop.(8.2.1.23)[An Algebraic Theorem].Let F be a local field and X is an algebraic variety over
F , then the F -topology makes X(F ) into a locally profinite space(because varieties are closed, and
use(3.3.4.6)). Let G be a linear algebraic group over F and G ×X → X is a F -rational map, then
G(F )×X(F )→ X(F ) is a continuous action, and this action is constructible(3.11.1.21).

Proof: Cf.[Bernstein-Zelevinsky, Appendix]. □

Prop.(8.2.1.24)[Projectivity of Quotient Spaces].How to generally prove that a quotient space
is projective?.

2 Lie Algebras of Algebraic Groups
In this subsection, all algebraic groups G is affine over a field k.

Def.(8.2.2.1) [Lie Algebra of an Algebraic Group].Let k be a field and G a locally algebraic
group, then the tangent space at the unit element e ⊂ G define by(5.6.4.25) is isomorphic to

L(G) = ker(G(k[ε])→ G(k)), ε2 = 0.

as a vector space. For any homomorphism f : G→ H, there is a Lie algebra map

Lie(f) : Lie(G)→ Lie(H)

induced by f .
In particular, if G is affine, it is the set of homomorphisms Γ(G) → k[ε] that the composition

with k[ε]→ k is the counit map ε : Γ(G)→ k(8.1.1.2).
If G is affine, φ maps the augmentation ideal IG = ker(ε) into (ε), and thus is trivial on I2

G. So
φ factors through Γ(G)/I2

G. Now Γ(G)/I2
G
∼= k ⊕ IG/I2

G by(2.9.2.11), so

L(G) ∼= Homk(IG/I2
G, k).

And we define Lie(G) to be L(G).
In general, if R is any k-algebra, then we define g(R) = ker(G(R[ε])→ G(R)), then similarly

g(R) = HomR(IR/I2
R, R) = Homk(IG/I2

G, k)⊗R = g⊗R.

Now G(R[ε]) acts on g(R) by inner automorphism, so also does G(R). So we get a homomorphism
of algebraic groups

Ad : G→ GL(g).
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This homomorphism commutes with Lie algebra homomorphism: If f : G→ H is a homomorphism
of algebraic groups, then there is a commutative diagram

G× g g

H × h h

(x,X) 7→Ad(x)X

f Lie(f)

(y,Y ) 7→Ad(y)Y

Then we define a Lie bracket on g as follows: [X,Y ] = ad(X)(Y ) = Lie(Ad)(X)(Y ). Then this is a
Lie algebra structure on g, and it commutes with arbitrary base change.

Proof: To verify this is truly a Lie algebra, we take a faithful embedding of G into some
GLV (15.5.1.22). Thus it suffices to prove the Lie algebra of GLV is a Lie algebra. Now for
A,B ∈Mn(R), pondering the definition shows

(1 + δA)(1 + εB)(1− δA) = 1 + εB + εδ[X,Y ] ∈ k[ε, δ]/(ε2, δ2).

So in fact [X,Y ] = XY − Y X, so it is truly a Lie algebra.
To show the group structure on Lie(G) equals the structure on the tangent space, use the

Eckmann-Hilton argument, notice the hypothesis is satisfies because both composition is the mor-
phism Spec k[ε] → Spec(k[ε] ⊗ k[ε]) φ−→ G × G µ−→ G, where φ = (a, b, c, d) : k[ε] ⊗ k[ε] φ−→ G × G.
□

Cor.(8.2.2.2)[Exponential Map].As there are natural isomorphisms g(R) ∼= g ⊗ R, we can write
eεX the element of g(R) ⊂ G(R[ε]) corresponding to X ∈ g × R. Then eεX+εY = eεXeεY , and by
functoriality, for any homomorphism f : G→ H,

f(eεX) = eεLie(f)(X).

Also
x · eεY x−1 = eεAd(x)Y

and also the commutative diagram in(8.2.2.1) means

f(eεX) = eεLie(f)(X).

Cor.(8.2.2.3) [Lie algebra commutes with Limits]. It can be seen from the definition that the
Lie algebra construction commutes with limits of algebraic groups. In particular it commutes with
kernel map.

Prop.(8.2.2.4).Let H ⊂ G be algebraic groups s.t. Lie(H) = Lie(G). If H is smooth and G is
connected, then H = G.

Proof: Recall that dim g ≥ dimG, with equality iff G is smooth(8.1.4.5), so the condition forces
G to be smooth. Now G is smooth and connected thus irreducible(8.1.4.14) and dimG = dimH, so
H = G. □

Cor.(8.2.2.5).Let H1,H2 be connected algebraic subgroups of G and H1∩H2 is smooth. If Lie(H1) =
Lie(H2), then H1 = H2.
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Cor.(8.2.2.6). If G is an algebraic group over a field of characteristic 0, then the connected subgroups
of G corresponds 1 to 1 to Lie subalgebras of Lie(G), because every subgroup is smooth, by(8.1.4.2).

Cor.(8.2.2.7).Let Hi be a family of smooth algebraic subgroups of an algebraic subgroup G over a
field k. If Lie(Hi) generate Lie(G) as a Lie algebra, then Hi generates G(8.1.4.26).

Proof: Let H be the subgroup they generate, then H is smooth(8.1.4.26) and Lie(H) = Lie(G),
thus H = G by(8.2.2.4). □

Stabilizers, Centers and Centralizers

Prop.(8.2.2.8)[Lie Algebra of Stabilizer].Let G be an algebraic group and (V, r) be a representa-
tion of G, then it induces an action of g onW (8.2.2.1). LetW ⊂ V be a subspace, then the stabilizer
StabG(W ) is a subgroup of G(15.5.1.3)

Lie(StabG(W )) = Stabg(W ).

In particular, dim(StabG(W )) ≤ dim Stabg(W ), with equation iff StabG(W ) is smooth.

Proof: By(8.2.2.2),

X ∈ Lie(StabG(W )) ⇐⇒ r(eεX)W [ε] ⊂W [ε]
⇐⇒ eεLie(r)(X)WR[ε] ⊂WR[ε]
⇐⇒ (1 + εLie(r)(X))(WR + εWR) ⊂ (WR + εWR)
⇐⇒ Lie(r)(X)(WR) ⊂WR

⇐⇒ X ⊂ Stabg(W )

□

Prop.(8.2.2.9)[Lie Algebra of Center].Let G be a smooth connected algebraic group, then

dim z(g) ≥ dimZ(G),

and if equality holds, then Z(G) is smooth and Lie(Z(G)) = z(g).

Proof: There are maps
Ad : G 7→ GLg, Z(G) ⊂ ker(Ad),

ad : g→ glg, ker(ad) = z(g).

Because Lie algebra commutes with kernel(8.2.2.3), Lie(Z(G)) ⊂ Lie(ker(Ad)) = ker(ad). So

dim z(g) = dim ker(ad) = dim Lie(ker(Ad)) ≥ dim ker(Ad) ≥ dimZ(G)

with equality iff ker(Ad) is smooth and dim ker(Ad) = dimZ(G) and thus ker(Ad)0 = Z(G)0, so
Z(G) is also smooth. Finally, Lie(Z(G)) ⊂ z(g), so they are equal if they have the same dimensions.
□

Prop.(8.2.2.10)[Lie Algebra of Centralizer].Let G be an algebraic group and H a subgroup, then
H acts on g by Ad. Then

Lie(CG(H)) = gH , Lie(NG(H))/Lie(H) = (Lie(G)/Lie(H))H .
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Proof:
X ∈ Lie(CG(H)) ⇐⇒ x(eεX)Sx−1 = eεXS , ∀k[ε]→ S, x ∈ H(S)

X ∈ gH ⇐⇒ yeεXRy−1 = eεXR , ∀k → R, x ∈ H(R)

And it can be shown these two are equal. Similarly, there is a natural map Lie(NG(H)) →
Lie(G)/Lie(H), and the image lies in the fixed subgroup of H, because

X ∈ Lie(NG(H)) ⇐⇒ (eεX)Sx(eεX)−1
S ⊂ H(S) ⇐⇒ eε ad(x)XS ∈ H(S)eεXS , ∀k[ε]→ S, x ∈ H(S)

X ∈ (Lie(G)/Lie(H))H ⇐⇒ eε ad(x)XR ⊂ eε(XR+Lie(H)(R)), ∀k → R, x ∈ H(R)

Then it can be shown that X satisfies condition in 1 iff X satisfies condition in 2, thus we are
done. □

3 Groups of Multiplicative Type
Throughout this subsection, G is an affine(linear) algebraic group over a field k.

Diagonalizable Groups

Def.(8.2.3.1)[Diagonalizable Groups].An algebraic group G is called diagonalizable if the group-
like elements in Γ(G) generate Γ(G) as a k-vector space.

Prop.(8.2.3.2).An algebraic group G is diagonalizable iff it is isomorphic to the the algebraic group
corresponding to a group algebra D(M) for some commutative group M .

Proof: For the group algebra D(M), its group-like elements are just {m|m ∈M} by(2.9.2.21), and
they clearly span D(M). Conversely, if the set M of group-like elements in Γ(G) spans Γ(G), then
by(2.9.2.20) they form a basis of Γ(G), so there is an isomorphism of vector spaces D(M) → Γ(G).
But this is also a homomorphism, because they are on a basis. □

Cor.(8.2.3.3)[Diagonalizable Groups].
• The functor M 7→ D(M) is a contravariant equivalence from CAlgfgk to the category of diago-

nalizable algebraic groups, with inverse give by G 7→ X(G).
• This functor preserves exact sequences.
• Algebraic subgroups and quotient groups of diagonalizable groups are diagonalizable.

Proof: 1: By(8.2.3.2), it suffices to show that Hom(M,M ′) → Hom(D(M ′), D(M)) is an isomor-
phism. Because D sends direct sums to direct products, it suffices to check the case that M,M ′ is
cyclic. This is easy to check, just notice that a group homomorphism maps group-like elements to
group-like elements.

2: If M ′ → M is injective, then k[M ′] → k[M ] is injective, thus faithfully flat by(2.9.2.23), and
D(M)→ D(M ′) is a quotient map. Conversely, D(M)→ D(M ′) is a quotient map iff k[M ′]→ k[M ]
is faithfully flat thus injective thus M ′ → M is injective. Now the kernel of D(M) → D(M ′)
is represented by k[M ]/Ik[M ′], where Ik[M ′] is the augmentation ideal. Then it is isomorphic to
k[M/M ′].

3: Let H be an algebraic subgroup of G, then the map Γ(G) → Γ(H) is surjective, and sends
group-like elements to group-like elements, thus Γ(H) is also spaned by group-like elements, and H
is diagonalizable.



860 CHAPTER 8. ALGEBRAIC GEOMETRY III: GROUP THEORY

if D(M)→ Q is a quotient map, then its kernel is an algebraic subgroup thus equals D(M ′′) for
some quotient M ′′ of M . Let M be the kernel of M → M ′′, then D(M)→ D(M ′) and D(M)→ Q
are quotient maps with the same kernel, so they are isomorphic, by(8.1.1.24). □

Prop.(8.2.3.4)[Representation of Diagonalizable Groups].The following conditions are equiva-
lent for an algebraic group G over a field k:

1. G is diagonalizable.
2. Every representation of G is diagonalizable.
3. Every f.d. representation of G is diagonalizable.

Proof: 1→ 2: We need to show for any comodule ρ : V → V ⊗ Γ(G), V is a sum of 1-dimensional
representations, or equivalently, it is spanned by vectors u that ρ(u) ∈ ku⊗Γ(G). Let v ∈ V , we can
write ρ(v) =

∑
ui ⊗ ei where ei are group-like in G.

Applying comodule relations, we get∑
ui ⊗ ei ⊗ ei =

∑
ρ(ui)⊗ ei, v =

∑
ui(2.9.2.19).

so ρ(ui) = ui ⊗ ei and they span V .
2→ 1: The regular representation of G is diagonalizable, so Γ(G) is spanned by its eigenvectors,

for any eigenvector f ∈ Γ(G), so µ(f) = f⊗e where e is group-like. Applying ε⊗ id shows f = ε(f)e,
so G is diagonalizable.

2→ 3: trivial.
3→ 2: Every representation of G is a sum of f.d. representation, so it is a sum of 1-dimensional

representations, so it is diagonalizable by(15.5.1.17). □

Tori

Def.(8.2.3.5)[Linear Tori].Let k be a field, then a split torus over k is a linear group scheme of
the form T = Gn

m,k, and a linear torus over k is defined to be a linear algebraic group T over k
that Tk is a split torus over k.

Prop.(8.2.3.6).By(8.2.3.3), a split torus is just D(Zn) for some n, and quotient of a split torus is a
split torus.

Thus a quotient of a torus is a torus, and an algebraic subgroup of a torus is a torus iff it is a
group variety.

Prop.(8.2.3.7).Any torus over a separably closed field is a split torus. in particular, any torus split
over a finite separable extension.

Proof:
□

Def.(8.2.3.8)[Quasi-Split Tori].Let A be a f.d. separable k-algebra, then there is a linear algebraic
group G defined by G(B) = Gm(A⊗k B) = (A⊗k B)∗, denoted by resA/kGm.

This is a linear algebraic group because if we choose a basis {v1, . . . , vr} of A over k, which
induces a ring homomorphism φ : A→ Mr(k). Then f = det(φ(x1v1 + . . .+ xrvr)) is a polynomial
in x1, . . . , xr. Thus G(B) is the set of points in Ar(B) that f(x1, . . . , xr) is invertible in B. So G is
a linear algebraic variety. Moreover, as A is separable, A⊗k k ∼= ⊕ri=1Mni(k), so Gk ∼= Gr

m,k
, so G is

a torus, called a quasi-split torus over k.
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Def.(8.2.3.9)[Monoidal Transformation].For a matrix A ∈ SL(n,Z) with detA = ±1, we define
an isomorphism of Gn,k:

φA(x) = (xa11
1 xa12

2 . . . xa1n
n , . . . , xan1

1 . . . xannn ).

these isomorphisms φA is called the monoidal transformations.

Prop.(8.2.3.10).Let G be a group variety over k and T a central torus, then
• T ∩ [G,G] is finite.
• If G/T is perfect, then the sequence

e→ T ∩ [G,G]→ T × [G,G]→ G→ e

is exact.
In particular, G/[G,G] is a torus.

Proof: Cf.[Mil17]P246. □

Groups of Multiplicative Type

Def.(8.2.3.11)[Groups of Multiplicative Type].An algebraic group of multiplicative type
over a field k is an algebraic group G that GK is diagonalizable over K for some field K containing
k.

Subgroups and quotient groups of groups of multiplicative type are also of multiplicative type,
because this is true for diagonalizable groups(8.2.3.3).

Prop.(8.2.3.12)[Characterization of Groups of Multiplicative Type].The follows are equiva-
lent for an algebraic group G over k:

• G is of multiplicative type.
• G is commutative and Hom(G,Ga) = 0.
• G is commutative and Γ(G) is coétale.
• G becomes diagonalizable over ks.

Proof: Cf.[?]237. □

Cor.(8.2.3.13).An algebraic group over k becomes diagonalizable over some field extension of k iff it
becomes diagonalizable over some finite separable extension of k.

Cor.(8.2.3.14). If a group of multiplicative type splits over a purely inseparable extension of k, then
it splits over k.

Proof: Cf.[Mil17]P238. □

Cor.(8.2.3.15).A smooth commutative algebraic group G over k is of multiplicative type iff G(k)
consists of semisimple elements.

Proof: We can assume that k = k, and embed G into GLn for some n(15.5.1.22). If G is of
multiplicative type, then by(8.2.3.4), there is a basis that G ⊂ Dn, so all the elements in G(k) is diag-
onalizable hence semisimple. Conversely, if G(k) are all semisimple, then they form a commutative
family of semisimple elements, so G(k) ⊂ Dn(k) in some basis. Because G is smooth thus reduced,
G ⊂ Dn. □
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Cor.(8.2.3.16).An extension of algebraic groups of multiplicative type is of multiplicative type iff it
is commutative.

Proof: A exact sequence e → G′ → G → G′′ → e of commutative group schemes gives rise to an
exact sequence

0→ Hom(G′′,Ga)→ Hom(G,Ga)→ Hom(G′,Ga)

of Abelian groups by(8.1.1.24), thus we can use characterization(8.2.3.12). □

Prop.(8.2.3.17)[Largest Subtorus].Cf.[Mil17]P241.

Prop.(8.2.3.18) [Representation of Groups of Multiplicative Type].Let G be an algebraic
group over k, then Rep(G) is a semisimple Abelian category, and the isomorphism classes of simple
objects in Rep(G) are classified by the orbits of G(ks/k) acting on X∗(G).

Let (V, r) be a representation corresponding to an orbit Σ, and let χ ∈ Σ, then End(V, r) ∼= kχ,
where kχ is the subfield of ks fixed by the subgroup of G(ks/k) fixing χ.

Proof: The group G is split by a finite Galois extension K/k by(8.2.3.13). Let Γ = G(K/k), then
Γ acts on Γ(GK) through its action on K. Let (V, r) be a representation of GK and let ρ be the
corresponding co-action, then by(5.1.5.24), the functor V 7→ V ⊗kK induces an equivalence between
Rep(G) and Rep(GK) with a semi-linear action of Γ fixing ρ.

Let V be a representation of G over k, then K ⊗ V decomposes as a representation of GK into

K ⊗ V = ⊕χ∈X(GK)Vχ.

and an element γ ∈ Γ maps Vχ isomorphically onto Vσχ. Thus the set of χ occurring in K ⊗ V is
stable under the action of Γ.

Conversely, if Σ is an orbit of Γ in X(GK) and V is a 1-dimensional K vector space, then ⊕χ∈ΣVχ
has a natural semi-linear action of Γ, so it arises from a simple representation of G over k. □

Prop.(8.2.3.19) [Density Theorem for Groups of Multiplicative Type].Let G be a smooth
algebraic group of multiplicative type, thus G is commutative. Let Gn be the kernel of multiplication
by n on G.

• The only closed subscheme containing every Gn is G itself.
• If G is smooth, then the only closed subscheme containing Gn for n prime to characteristic of
k, is G itself.

Proof: 1: 2: Cf.[Mil17]P242.? □

Cor.(8.2.3.20).Let G be an algebraic group of multiplicative type. If two homomorphisms from G
to another algebraic group H coincides on Gn for all n ≥ 1, then they are equal.

Proof: This is because the equalizer is a closed subscheme of G, as H is separated(8.1.1.12). □

Prop.(8.2.3.21) [Rigidity Theorem for Groups of Multiplicative Type].Let G,H be diago-
nalizable groups over k, and let X be a connected group scheme over k. Let φ : X × G → H
be a morphism that for all k-algebra R and x ∈ X(R), the map g 7→ φ(x, g) : G(R) → H(R) is
a homomorphism. Then for any x0 ∈ X(k), we have φ(x, g) = φ(x0, g) for any k-algebra R and
(x, g) ∈ X(R)×G(R).

Proof: Cf.[Mil17]P243.? □
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Cor.(8.2.3.22).Every action of a connected algebraic group G on an algebraic group H of multiplica-
tive type by group homomorphisms is trivial.

Cor.(8.2.3.23).Every normal algebraic subgroup of multiplicative type of a connected algebraic group
G is contained in the center of G.

Proof: The action of G on N by inner automorphism is trivial. □

Cor.(8.2.3.24).Let H be a subgroup of multiplicative type of an algebraic group G, then NG(H)0 =
CG(H), i.e. CG(H) is an open subgroup of NG(H).

Proof: The inner action of NG(H)0 on H by inner automorphism is trivial. □

Cor.(8.2.3.25). If N is a normal subgroup of an algebraic group H that N and H/N are of multi-
plicative type, then every action of a connected algebraic group G on H by group homomorphisms
preserving N is trivial.

Proof: The action of G on N is trivial, thus the action factors through G×H/N → H, thus also
factors through G×H/N → N . Now the action is trivial, by(8.2.3.21). □

Cor.(8.2.3.26).An extension of algebraic groups of multiplicative type is of multiplicative type if it
is connected.

Proof: The adjoint action of G is trivial, by(8.2.3.25), thus G is commutative. Thus it is of
multiplicative type by(8.2.3.16). □

4 Actions of Tori

Prop.(8.2.4.1)[Białynicki-Birula Decomposition].Cf.[Mil17]P272.

5 Solvable Groups

All group schemes G in this subsection are affine and algebraic over a field k.

Prop.(8.2.5.1).Let H be an algebraic group of a solvable group variety G, then G/H doesn’t contain
a proper subscheme of dimension> 0. In particular, G = H if G/H is proper.

Proof: Cf.[Mil17]P353. □

Cor.(8.2.5.2). If G is a solvable group variety acting on a separated algebraic scheme X over k, then
no orbits of X contains a proper subscheme of dimension> 0.

Proof: By(8.2.1.12), the orbits are quotients of G. □

Cor.(8.2.5.3) [Borel Fixed Point Theorem]. If G is a solvable group variety acting on a proper
algebraic scheme X over k, then XG ̸= ∅, in particular, XG(k) ̸= ∅.

Proof: It suffices to change to k, then by(8.2.1.15) X has a closed orbit, which is then proper, thus
must be a point. □
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Triangularizable Algebraic Groups

Def.(8.2.5.4)[Triangularizable Algebraic Groups].A triangularizable algebraic group is an
algebraic group s.t. every simple representation has dimension 1. Equivalently, for any f.d. linear
representation V of G, there exists a basis that G is mapped into B(n).

Prop.(8.2.5.5)[Lie-Kolchin].Let G be a solvable group variety over an alg.closed field k, then G is
triangularizable. In particular, any solvable group variety over k is a triangularizable after a finite
field extension.

Proof: Let (V, r) be any linear representation of G, then G acts on the maximal flag variety of V .
Thus by Borel’s fixed point theorem(8.2.5.3), there is a flag in V that is fixed by G, which means G
is mapped into U(V ). □

Nilpotent Algebraic Groups
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8.3 Group Theory III: Reductive Groups
All group schemes G in this section are assumed to be linear algebraic over a base scheme S.
Main references are [Mil17]. For relative reductive group schemes, Cf.[reductive group schemes,

Conrad].

1 Borel Subgroups
Def.(8.3.1.1) [Borel Subgroups].A Borel subgroup of a group variety G is a maximal solvable
subgroup variety of G. A Borel pair is a pair (B, T ) where B is a Borel subgroup of G and T is a
maximal torus of G contained in B.

Def.(8.3.1.2)[Parabolic Subgroups].A parabolic subgroup P of a group variety G is a subgroup
variety s.t. G/P is proper.

Prop.(8.3.1.3) [Parabolic and Borel].Parabolic subgroups are exactly those containing a Borel
subgroup. In particular, if B be a Borel subgroup of G, then G/B is proper.

Proof: Cf.[Mil17]P354, P356.? □

Prop.(8.3.1.4) [Characterizing Borel Subgroups].Let G be a group variety over k, then a sub-
group B is Borel iff it is solvable and G/B is proper.

Prop.(8.3.1.5)[Borel Pairs are Conjugate].Let G be a group variety over k, then
• Any two Borel subgroups of G are conjugate by an element of G(k).
• Any two maximal tori of G are conjugate by an element of G(k).
• Any two Borel pairs are conjugate by an element of G(k).

Proof: Cf.[Mil17]P354.?
3: This follows from the first two(by applying item2 on a Borel subgroup B). □

Def.(8.3.1.6)[Split Group Variety].A split group variety is a group variety whose Borel subgroup
is split solvable.

Def.(8.3.1.7) [Cartan Subgroup].A Cartan subgroup of a group variety is the centralizer of a
maximal tori.

2 Geometric Aspects
Def.(8.3.2.1)[Simply Connected Groups].A simply-connected group variety is a group variety
G that every multiplicative isogeny(8.1.5.16) from a group variety G′ → G is an isomorphism.

Prop.(8.3.2.2) [Lifting].Let G be a simply connected group variety over k and φ : G′ → G is a
multiplicative isogeny, then φ admits a section if k is perfect or G is a perfect group.

Proof: Cf.[Mil17]P388. □

Def.(8.3.2.3)[Universal Covering].A universal covering of a group variety G is a multiplicative
isogeny π : G′ → G from a simply connected group variety G′. If such a covering exists, kerπ is
called the fundamental group π1(G) of G.
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Prop.(8.3.2.4)[Galois Theory].Let π : G̃ → G be a universal covering of a group variety over k.
If k is perfect or G is perfect, then π factors uniquely through any other multiplicative isogeny of
group varieties G′ → G.

Proof: As G̃ is a group variety, it admits no finite quotient(8.1.5.14), thus if [G,G] = G, then
[G,G] kerπ = G, thus G/[G,G] is finite, thus trivial, so G̃ is also perfect.

The map G′ ×G G̃ is surjective with finite kernel of multiplicative type, thus it has a section
by(8.3.2.2), and the composite of this section with projection to G′ is the desired lifting. If α, β are
two liftings, then α/β is a map from G̃ to ker(φ), which is finite, thus α = β. □

Prop.(8.3.2.5).Every semisimple algebraic group admits an essentially unique isogeny G̃ → G that
G̃ is simply connected.

Proof: □

3 Reductive Groups
In this subsection, k is a field.

Linearly Reductive Groups

Def.(8.3.3.1)[Linearly Reductive Groups].An algebraic group over a field is called linearly re-
ductive if every f.d. representation of G is semisimple.

Prop.(8.3.3.2).Let G be an algebraic group over k, and k′ a field containing k. If Gk′ is linearly
reductive, then so is G. Conversely, if G is linearly reductive and k′ is separable over k, then Gk′ is
linearly reductive.

Proof: Cf.[Mil17]P248. □
Prop.(8.3.3.3).A commutative algebraic group is linearly reductive iff it is of multiplicative type.

Proof: Cf.[Mil17]P248. ? □
Prop.(8.3.3.4) [Hilbert].Let G be a linearly reductive group of GL(n) and let A = k[T1, . . . , Tn],
then AG is f.g. as a k-algebra.

Proof: Cf.[Mil17]P249. ? □

Semisimple Groups

Def.(8.3.3.5) [Radicals].The radical R(G) of an algebraic group G over a field k is the largest
smooth connected solvable normal subgroup of G, which exists by(8.1.5.29) and(8.1.5.30).

G is called a semisimple algebraic group iff it is an affine group variety and R(Gk) = e.

Prop.(8.3.3.6).Let k′/k be a field extension, then an algebraic group G over k is semisimple iff Gk′

is semisimple.

Proof: Affineness, Smoothness and geo.connectedness satisfies field descent by(5.1.5.26), so it
suffices to prove for k′, k alg.closed. But if N is non-trivial normal solvable subgorup variety of Gk′ ,
it is defined on a f.g. field extension K = k(x1, . . . , xn) of k, thus NK is a normal solvable subgroup
variety of GK , and they extends to smooth group varieties G and N on some open subscheme
SpecA ⊂ Spec k[x1, . . . , xn]. But on some maximal ideal m, Nk(m) is non-zero(4.2.6.11) normal open
subgroup of Gk(m), and k(m) ∼= k as k = k, contradiction. □
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Prop.(8.3.3.7). If k′/k is a separable algebraic extension, then R(Gk′) = R(G)k′ .

Proof: R(G)k′ ⊂ R(Gk′) by definition, and it suffices to prove they are the same when k′/k is
Galois. But then this follows from Galois descent(5.1.5.19) and the fact connectedness, smoothness,
normality and solvability is reflexive(8.1.5.21). □

Cor.(8.3.3.8).Let G be a group variety over a perfect field k, then G is semisimple iff R(G) = e. In
particular, G/R(G) is semisimple, by(8.1.5.30).

Cor.(8.3.3.9).Let G be a group variety over a perfect field k, then G is semisimple iff it contains no
non-trivial commutative normal subgroup varieties.

Def.(8.3.3.10)[Simple Groups].A simple algebraic group is a semisimple non-commutative group
with no non-trivial normal algebraic subgroups.

An almost-simple algebraic group is a semisimple non-commutative group s.t. every non-
trivial normal algebraic subgroup is finite.

A geometrically (almost-)simple algebraic group is an algebraic group G s.t. Gk is (almost-
)simple.

A(n) (almost-)pseudo simple algebraic group is a non-commutative group variety G s.t.
every non-trivial normal algebraic subgroup is trivial(finite). (May not by semisimple).

Reductive Groups

Def.(8.3.3.11)[Unipotent Radicals].By(8.1.5.29) and(8.1.5.30), any algebraic group G has a max-
imal connected smooth normal unipotent subgroup Ru(G), which is called the unipotent radical
of G, denoted by Ru(G).

Let G be an affine group variety over k, then G is called a reductive group iff Ru(Gk) = e.
G is called a pseudo-reductive group if Ru(G) = e.

Prop.(8.3.3.12).Let k′/k be a field extension, then an algebraic group G over k is reductive iff Gk′

is reductive.

Proof: The proof is verbatim as that of(8.3.3.6). □

Prop.(8.3.3.13). If k′/k is a separable algebraic extension, then Ru(Gk′) = Ru(G)k′ .

Proof: R(G)k′ ⊂ R(Gk′) by definition, and it suffices to prove they are the same when k′/k is
Galois. But then this follows from Galois descent(5.1.5.19) and the fact connectedness, smoothness,
normality and unipotency is reflexive(15.5.3.2). □

Cor.(8.3.3.14).Let G be a group variety over a perfect field k, then G is reductive iff Ru(G) = e. In
particular, G/Ru(G) is reductive, by(8.1.5.30).

Prop.(8.3.3.15).Let G be a reductive group, then
• the center Z(G) is of multiplicative type.
• R(G) is the largest subtorus of Z(G).
• R(Gk′) = R(G)k′ for any field extension k′/k.
• G/R(G) is semisimple.
• G/Z(G) has trivial center.
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• Z(G) ∩ [G,G] is finite.

Proof: Cf.[Mil17]P372.
4: This is because (G/R(G))k′ = Gk′/R(G)k′ = Gk′/R(Gk′) is semisimple.
5: Cf.[Mil17]P402. □

Cor.(8.3.3.16).Central and multiplicative isogenies from a group variety are the same thing,
by(8.1.5.18).

Prop.(8.3.3.17)[Reductive Groups and Semisimple Groups].A semisimple group is reductive,
because Ru(G) ⊂ R(G) as a unipotent group is solvable. Conversely, if G is a reductive group, then
the following are equivalent:

• G is semisimple.
• R(G) = e.
• Z(G) is finite.
• G/[G,G] is finite.

Proof: 1 ⇐⇒ 2 follows from(8.3.3.15).
2 ⇐⇒ 3: As R(G) is the maximal subtorus of the group Z(G) of multiplicative type, Z(G)/R(G)

is finite(8.2.3.17). So if R(G) = e, Z(G) is finite. And if Z(G) is finite, R(G) = e because it is a
torus. □

Prop.(8.3.3.18).LetG be a group variety over a field k, then if G is reductive, then every commutative
normal subgroup variety of G is a torus, and the converse is also true if k is perfect.

Proof: If N is a commutative normal subgroup variety of G, then N ⊂ R(G), which is a torus
by(8.3.3.15) and(8.2.3.6). The converse follows from the fact Ru(G) = e because U(n) has no non-zero
subtorus by(8.3.5.4). □

Prop.(8.3.3.19). If G is reductive, then [G,G] is semisimple of rank equal to the semisimple rank of
G.

Proof: Cf.[Mil17]P402. □

Prop.(8.3.3.20) [Maximal Central Torus]. If G is a reductive group over a perfect field k, then
R(G) = Z(G)0

red, which is the maximal central torus by(8.3.3.21). In particular, G is semisimple if
and only if Z(G) is finite.

Proof: □

Prop.(8.3.3.21).Any commutative affine group variety G is of the form U × T where U is unipotent
and T is a torus.

Proof: ? □

Prop.(8.3.3.22).Let φ : G′ → G be an isogeny of group varieties. If G is reductive or semisimple,
then so is G′.

Proof: It suffices to assume k = k. Let U be a normal unipotent/solvable subgroup variety of G,
then φ(U) is also a unipotent/solvable group variety by(8.1.5.29), and it is normal because φ is a
quotient map(8.1.5.29). Thus φ(U) = e, which implies U is a finite group variety, thus trivial. □
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Prop.(8.3.3.23) [Matsushima’s Criterion]. If G is a reductive group and H a smooth algebraic
subgroup, then G/H is affine iff H0 is reductive.

Proof: Cf. [Borel, On affine algebraic homogeneous spaces]. □

Def.(8.3.3.24) [Ranks].The rank of a group variety G over k is the dimension of the maximal
torus in Gk. The semisimple rank is the rank of Gk/R(Gk).

The k-rank is the dimension of a maximal split torus in G. The semisimple k-rank of G is is
k-rank of G/R(G).

These are well-defined by(8.3.1.5).

Prop.(8.3.3.25).Let G be a reductive group, then the semisimple rank of G equals dimG−dimZ(G).

Proof: Cf.[Mil17]P402. □

Parabolic Subgroups of Reductive Groups

Prop.(8.3.3.26)[Levi Factors].Let P be a group variety over k, a Levi subgroup of P is a subgroup
variety L of P s.t. Lk → Pk/Ru(Pk) is an isomorphism. In other words, L is a reductive subgroup
of P s.t. Pk = Ru(Pk) ⋉ Lk.

Prop.(8.3.3.27).Let P be a parabolic subgroup of a reductive group G, then P has Levi subgroups,
and any two Levi subgroups of P are conjugate by a unique element of Ru(P )(k).

Proof: Cf.[Mil17]P559. □

4 Split Reductive Groups

Def.(8.3.4.1) [Split Reductive Groups].For k ∈ Field, a split reductive pair is a pair (G,T )
where G is a reductive group over k and T is a split maximal torus. A reductive group is called split
reductive if it is contained in some reductive pair. By(8.2.3.7), any reductive group is reductive
after a finite separable change of fields.

Def.(8.3.4.2)[Anisotropic Reductive Groups].For k ∈ Field, a reductive group is isotropic if it
contains a non-central split torus; otherwise, it is anisotropic. Notice for semisimple groups, any split
torus is central?.

Reductive Groups of Semisimple Rank≤ 1

Prop.(8.3.4.3)[Classifying Reductive Groups of Semisimple Rank≤ 1].Any reductive group
over k of semisimple rank 1 is isomorphic to exactly one of the groups

Gr
m × SL(2), Gr

m × PGL(2), Gr
m × PGL(2), r ∈ N.

Proof: Cf.[Mil17]P419. □
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5 Classical Groups
Def.(8.3.5.1)[Examples of Classical Groups].

• the general linear group GL(n) = Z[Tij ][1/ det] representing the group functor CAlgZ →
Grp : R 7→ GL(n,R).

• the multiplicative group Gm = SpecZ[T, T−1], which is just GL(1).
• the special linear group SL(n) is the algebraic subgroup scheme of GL(n) defined by the

ideal (det−1), representing the group functor CAlgZ → Grp : R 7→ SL(n,R).
• the orthogonal group O(n) is the algebraic subgroup of GL(2n)×Gm ⊂ GL(2n+1) generated

by the n2 entries of the equation (Tij)tCn(Tij) = TCn, where Cn =

 0 Ik 0
Ik 0 0
0 0 1

 if n = 2k+1 and

[
0 Ik
Ik 0

]
if n = 2k, representing the functor CAlgZ → Grp : R 7→ {g ∈ GL(2n,R)×R×|gtCng =

rCn}.
• the special orthogonal groups SO(n) = O(n) ∩ SL(n).
• the symplectic group Sp(2n) is the algebraic subgroup of GL(n) defined by the ideal generated

by the n2 entries of the equation (Tij)tJ2n(Tij) = J2n, where J2n =
[

0 In
−In 0

]
, representing

the functor

CAlgZ → Grp : R 7→ {g ∈ GL(2n,R)|gtJ2ng = J2n} = {
[
A B
C D

]
|AtC = CtA,AtD−CtB = I,BtD = DtB}.

• PGL(n) is the quotient group of GL(n) by its center.
• PSL(n) is the quotient group of SL(n) by its center.
• PSO(n) is the quotient group of SO(n) by its center.
• the general symplectic group GSp(2n) is the algebraic subgroup of GL(2n)×Gm ⊂ GL(2n+

1) generated by the entries of the equation (Tij)tJn(Tij) = TJn, representing the functor
CAlgZ → Grp : R 7→ {(g, r) ∈ GL(2n,R)×R×|gtJng = rJn}.

• the standard Borel subgroup B(n) is the algebraic subgroup of GL(n) representing the
upper-triangular matrices.

• the standard unipotent subgroup Unip(n) is the algebraic subgroup of B(n) representing
the unipotent matrices.

• the diagonal group D(n) is the algebraic subgroup of B(n) representing the diagonal matrices.
• unitary groups.
• special unitary groups.

Proof: By(8.1.1.3), it suffices to show Hom(−, G) is a group functor when restricted to affine
schemes. □

Prop.(8.3.5.2)[Amplitude Character].There is an amplitude character GSp2n → Gm : T 7→ T ,
which represents the natural transformation R 7→ ((g, r) 7→ r).
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Prop.(8.3.5.3)[Borel Subgroups of GL(n)]. If k = k and G = GL(n), then by Lie-Kolchin(8.2.5.5),
the Borel subgroups of G are exactly the conjugates by G(k) of B(n).

Proof: Cf.[Mil17]P354. □

Prop.(8.3.5.4).B(n) is split solvable and Unip(n) is split nilpotent.
Moreover, Unip(n) has no non-zero subtorus, by successively using(8.1.1.8).

Proof: Cf.[Mil17]P137. □

Prop.(8.3.5.5).Let G = SO(2n),SO(2n + 1) or Sp(2n), then the maximal Borel subgroup of G are
the stabilizers of the maximal totally anisotropic flags in G(of length n).

Proof: Cf.[Mil17]P354. □

Prop.(8.3.5.6)[Reductive and Semisimple Groups].GL(n),SL(n), SO(n), Sp(2n) are reductive,
as they are connected, and their standard representation is simple, by(15.5.4.1).

SL(n),SO(n),Sp(2n) are semisimple, as they have finite centers(8.3.3.17).

6 Real Reductive Groups
Main references are [Gaitsgory, Real Reductive Groups] and [Mil17b].

Def.(8.3.6.1)[Real Forms].Let G be a connected complex Lie group, then a real form of G is a
connected real Lie subgroup K ⊂ G that k⊗R C ∼= g.

Prop.(8.3.6.2)[Real Lie Groups and Algebraic Groups].Let (H, h) be a connected Lie group in
LieGrp /C, then there needs not be an algebraic group G over R that G(R)0 = H. For example, the
topological fundamental group of SL(2,R) is Z, so it has many coverings of finite degree, none of
which is algebraic, because SL2 as an algebraic group is simply connected?.

However, if H admits a f.d. representation H ↪→ GL(V ), then there exists an algebraic group
G ⊂ GL(V ) that Lie(G) = [h, h]. So if H is semisimple, then there exists an algebraic group
G ⊂ GL(V ) s.t. Lie(G) = [h, h]. When H is semisimple, this means G0 = H.

Compact Real Algebraic Groups

Def.(8.3.6.3)[Compact Real Algebraic Groups].A compact real algebraic group is an alge-
braic group G ∈ AlgGrp /R s.t. G(R) is a compact Lie group.

Prop.(8.3.6.4) [Compactness and Representations].Let G ∈ AlgGrpcntd /R. If G is compact,
then every f.d. real representation ρ : G→ GL(V ) carries a G(R)-invariant inner form. Conversely,
if a faithful f.d. real representation carries such a form, then G is compact.

Proof: If G is compact, then H = ρR(G(R)) is compact, so we can take an arbitrary inner form
on V and take average on H. The converse is easy. □

Def.(8.3.6.5) [Relevant Groups].A compact real algebraic group is called relevant iff the map
π0(G(R))→ π0(G)(R) is surjective.

Lemma(8.3.6.6).Let Z be an affine variety over R, let X be a subset of Z(R), and let IX be the
ideal of regular functions on Z that vanishes at X, then X ′ = V (IX) satisfies X ⊂ X ′(R). Also by
construction, X ′ is relevant and X intersects real points of every connected components of X ′.

Now if Z is acted on by a compact Lie group K and X is a single K-orbit, then X ∼= X ′(R).
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Proof: Cf.[Gaitsgory P17]. □

Prop.(8.3.6.7)[Compact Relevant Groups and Compact Real Lie Groups].The functor G 7→
G(R) is an equivalence of categories from the category of relevant real compact algebraic groups to
the category of compact real Lie groups.

Proof: For the fully faithfulness: given a map φ : G1(R)→ G2(R), we need to show it comes from
a unique algebraic group homomorphism. Let K ⊂ G1(R) × G2(R) be the graph of φ, then let Γ
be the subgroup of G1 × G2 corresponding to K in(8.3.6.6), then it suffices to prove that the map
Γ→ G1 is an isomorphism. It is an isomorphism after passing to real points, so isomorphism on the
level of Lie algebras. And then it is an isomorphism, because both groups are relevant?. □

Cor.(8.3.6.8).The proof actually works only if G1 is relevant compact real group. So if we choose
G2 = GL(n,C)R, then by adjointness there is a bijection

HomAlgGrp /C(GC,GL(n)C) ∼= HomLieGrp(G(R), GLn(C)).

That is, their complex representations correspond.

Complex Reductive Algebraic Groups

Prop.(8.3.6.9). If G is a real reductive group, then its complexification GC is complex reductive.

Proof: It suffices to show that Rep(G(C)) is semisimple. For this, notice Rep(G) is semisimple by
definition, so it suffices to show for any representation V of GC, if W is a G-invariant subspace, then
W is also W is GC-invariant. But the invariance condition is a vanishing of some matrix coefficients,
they vanish on G so also vanish on GC. □

Def.(8.3.6.10)[Real Form].A real form on a complex reductive algebraic group is an anti-linear
group isomorphism σ : G → G that σ2 = 1. It is called compact iff Gσ is compact real, and it is
called relevant iff Gσ is relevant compact(8.3.6.5).

Prop.(8.3.6.11) [Polar Decomposition]. If G is a complex algebraic group and K ∈ G(C) is a
compact Lie subgroup. Assume that

• g ∼= k⊗R C.
• K intersects non-trivially every connected components of G(C).

Then the group G contains a unique real structure σ that K = G(C)σ. And if p ⊂ g be the subspace
{ξ ∈ g|σ(ξ) = −ξ}, then the map

k × p→ G(C) : (k, p) 7→ k · exp(p)

is a diffeomorphism.

Proof: Cf.[Gaitsgory P18]. □

Cor.(8.3.6.12). If we denote P = exp(p), then P ⊂ P̃ = {g ∈ G(C)|σ(g) = g−1}, and there is a
diffeomorphism: ⨿

k∈K,k2=1
{k} × P ∼= P̃ .

Cor.(8.3.6.13). In the situation of(8.3.6.11), G is reductive, by(8.3.6.9).

Cor.(8.3.6.14).K → G(C) is a homotopy equivalence.
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Cartan Involutions

Def.(8.3.6.15)[Cartan Involutions].Let G ∈ AlgGrpcntd /R, an involution on G is an isomorphism
θ : G ∼= G s.t. θ2 = id.

A Cartan involution is an involution s.t. G(θ)(R) = {g ∈ G(C)|g = θ(g)} is compact.

Prop.(8.3.6.16).Cartan involution and compactness.

Example(8.3.6.17).Let G = SL(2)R and θ = ad(
[

0 1
−1 0

]
), then SL(2)(θ)(R) = SU(2) is compact,

so this is a Cartan involution on G.

Thm.(8.3.6.18)[Satake].LetG ∈ AlgGrpcntd /R, thenG admits a Cartan involution iffG is reductive.
And in this case, any two Cartan involutions differ by a conjugation by elements in G(R), i.e.
(τ = ad(g0)−1 ◦ θ ◦ ad(g0)).

Proof: Cf.[Satake, Algebraic structures of symmetric domains, volume 4 of Kano Memorial Lec-
tures, 1980]I.4.3. □

Cor.(8.3.6.19)[Satake].
• G is a connected algebraic group, then G is compact iff id is a Cartan involution on G. And in

this case, this is the only Cartan involution of G. In particular, a compact connected algebraic
group is reductive.

• If V is a f.d. real vector space and G = GL(V ), then the choice of a basis for V determines a
Cartan involution M 7→M t, and by(8.3.6.18), any Cartan involution is of this form.

• If G ⊂ GL(V ), then G is reductive iff g is stable under a Cartan involution of GL(V ). And any
Cartan involutions of G is of this form.

Proof: Cf.[Satake, Algebraic structures of symmetric domains, volume 4 of Kano Memorial Lec-
tures, 1980]I.4.4. □

Prop.(8.3.6.20)[c-Polarizations].Let G ∈ AlgGrp /R and c ∈ G(R)(equivalently c2 ∈ Z(G(R)), and
ad(c)−1 = ad(c−1)). Then for a real representation V of G, a c-polarization is a G(R)-invariant
bilinear form φ s.t. the form (u, v) 7→ φ(u, cv) is symmetric and positive-definite.

Then for such c, if ad(c) is a Cartan involution, then any f.d. real representation of G admits a
c-polarization. Conversely, if a faithful real representation of G admits a c-involution, then ad(c) is
a Cartan involution.

Proof: Cf.[Mil17b]P16. □

Maximal Compact Subgroup

Cor.(8.3.6.21).For any compact subgroup K ′ ⊂ G(R), there exists an element g ∈ P τ s.t. Adg(K ′) ∈
Kτ .

Proof: Cf.[Gaitsgory P25]. □
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Complex Reductive Lie Groups

Def.(8.3.6.22)[Complex Reductive Lie Groups].A connected complex reductive Lie group
is a connected complex Lie group G of the form ((C×)r ×Gss)/Z where Gss is semisimple and Z is
a finite central subgroup. A complex reductive Lie group is a complex Lie group G that G0 is
connected reductive and G/G0 is finite.

Def.(8.3.6.23)[Compact Part]. If G = ((C×)r×Gss)/Z is a connected complex reductive Lie group,
then Z ⊂ (S1)r×Gcss(the compact part), then we denote Gc = (S1)r×Gcss/Z the compact subgroup
of G. Then the restriction of f.d. representations of G to Gc is an equivalence by(11.7.7.3).

Example(8.3.6.24).GL(n,C) = (C∗ × SL(n,C))/µn is a complex reductive Lie group.

Prop.(8.3.6.25)[Abstract Jordan Decomposition].Let G be a connected reductive complex Lie
group. A semisimple/unipotent element of G is an element that acts on every f.d. representation
of G by a semisimple/reductive operator. By(11.7.5.5), it suffices to check for one faithful represen-
tation of G by(11.7.5.5) and(8.3.6.23)(faithful representations exist by(8.3.6.23) and(11.7.5.4)).

Then every element g ∈ G has a decomposition g = gsgu where gs is semisimple, gu is unipotent,
and gsgu = gugs.

Proof: Cf.[Etingof, P210]. □

7 Reductive Group Schemes
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8.4 Topics in Group Schemes

Thm.(8.4.0.1)[Lang-Steinberg].Let k ∈ Field, k = k,G ∈ AlgGrpcntd /k, F ∈ End(G) ∈ AlgGrp /k
s.t. the fixed point of F (k) is finite, then the Lang map

L : G→ G : g 7→ g−1F (g)

is surjective.

Proof: Cf.[Steinberg, Endomorphisms of Linear Algebraic Groups, P67].?
We only prove for the case #k <∞ and some Power of F is given by a standard Frobenius of G.
By(8.1.4.3), we can assume G is smooth. G acts on itself as g(x) = gxF (g)−1. By(8.2.1.15), it

has a closed orbit Ω. Thus it suffices to show that dim Ω = dimG. Take x ∈ Ω(k), by(8.2.1.12)
and(8.1.1.28), it suffices to show there exists only f.m. g ∈ G(k) s.t. gxF (g)−1 = x. Let Fm(x) =
x, f : G→ G : f(g) = xF (g)x−1. Notice xF (x) · F 2(x) · . . . · Fm−1(x) is contained in ker(Fm), so it
is of finite order, let’s say r. Then fmr = Fmr, which has only f.m. solutions, thus there are only
f.m. g s.t. gxF (g)−1 = x. □

1 over Finite Fields
Main references are [Representations of Finite Groups of Lie Type, Digne and Michel].

Notation(8.4.1.1).
• p ∈ P, r ∈ Z+, q = pr, k ∈ Fieldp,#k = q.

Prop.(8.4.1.2)[Orbits Contains a Rational Point].Let V ∈ Schft /k,G ∈ AlgGrpcntd /k, G acts
on V , then any G-orbits O contains a rational point.

Proof: Let v ∈ O(k), then F (v) = gv for some g ∈ G(k). Then by Lang’s theorem(8.4.0.1),
g = F (h)−1h for some h ∈ G(k). Then F (h(v)) = h(v), so h(v) ∈ O is a rational point. □

Cor.(8.4.1.3). If G ∈ AlgGrp /k, H ≤ G is a connected subgroup, then G(k)/H(k) = G/H(k).
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8.5 Formal Groups and p-Divisible Groups
Main References are [Zin84].

1 Formal Power Series
Def.(8.5.1.1)[Notations].Let X = {X1, . . . , Xn}, Y = {Y1, . . . , Yn}.

Let R be a commutative unital ring, R[[X]] be the power series ring. It is a local ring with the
maximal ideal (X).

Let i1 : R[[X]]→ R[[X,Y ]] and i2 : R[[Y ]]→ R[[X,Y ]] be the natural embeddings.
Let Ω1

R[[X]]/R be the free R[[X]]-module with basis given by dX1, . . . , dXn. And there is a universal
derivative D : R[[X]] → Ω1

R[[X]]/R given by D(f) =
∑
i
∂f
∂Xi

dXi. It satisfies the usual universal
property of Kähler differentials, but with morphisms changed to continuous morphisms.

Prop.(8.5.1.2)[Formal Sums and Products].
• Let fn ∈ R[[X]] for any n ∈ N s.t. for any m ∈ N, there exists a N(m) ∈ N s.t. fn ∈ (X)m for

any n ≥ N(m), then define the formal sum

∑
n

fn = lim−→
n→∞

n∑
k=0

fk.

In this case, we say ∑n fn is well-defined.
• Let gn ∈ R[[X]] for any n ∈ N s.t. for any m ∈ N, there exists a N(m) ∈ N s.t. gn ∈ 1 + (X)m

for any n ≥ N(m), then define the formal product

∏
n

gn = lim−→
n→∞

n∏
k=0

gk.

In this case, we say ∏n gn is well-defined.

Prop.(8.5.1.3) [Automorphisms]. If Fi are power series without constant terms that the matrix
degree 1 terms of (Fi)(the Jacobi matrix) is invertible in R, then there are unique power series Gi
without constant terms that G ◦ F = id and F ◦G = id.

Proof: It Fi induces a map F : R[[X1, . . . , Xn]]→ R[[X1, . . . , Xn]] which in turn induces a graded
map K[X1, . . . , Xn] → K[X1, . . . , Xn]. It is clear that ( ∂Fi∂Xj

)ij is invertible iff the induced graded
ring map is an isomorphism, and because K[[X1, . . . , Xn]], a map is an isomorphism iff its induced
graded map is an isomorphism. □

Prop.(8.5.1.4). If R be a torsion-free algebra, and let

f(T ) =
∞∑
n≥1

an
n!
Tn ∈ (R⊗Q)[[T ]], a1 ∈ R∗.

Then the unique g(T ) s.t. f(g(T )) = T is of the form

g(T ) =
∞∑
n≥1

bn
n!
Tn ∈ (R⊗Q)[[T ]], b1 ∈ R∗.
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Proof: Repeatedly differentiating the equation f(g(T )) = T , we get that f ′(g(T ))g(n)(T ) can be
expressed as integral polynomials in the variables

f (i)(g(T )), 1 ≤ i ≤ n, g(j)(T ), 1 ≤ j ≤ n− 1.

Then evaluating at T = 0, we get that bn ∈ R and b1 ∈ R∗, as a1 ∈ R∗. □

1-Dimensional Formal Power Series

Def.(8.5.1.5)[Formal Exponential and Logarithm].The formal exponential and formal log-
arithm is defined to be elements in Q[[x]]:

exp(x) =
∑
n≥0

xn

n!
, log(1 + x) = −

∑
n>0

(−x)n

n
.

They satisfies exp(log(1 + x)) = 1 + x, log(exp(x)) = x.

Remark(8.5.1.6).WARNING: It should be made clear that log(1+f) is defined only for f ∈ xK[[x]],
and log(1 + x) is a symbol for the function Log(x) = log(1 + x). log(x) is not defined.

Proof: It suffices to prove Exp(x) = exp(x)− 1 and Log(x) = log(1 + x) are inverse to each other.
It suffices to show log(exp(x)) = x, because then by(8.5.1.3) the inverse of Log must be just Exp
by(8.5.1.3).

We notice Exp are the unique formal power series without constant term that satisfied d(Exp) =
Exp + 1, and Log is the unique formal power series that satisfies d(Log(x)) = 1

1+x . Thus

d(log(exp(x))) = exp(x)
exp(x)

= 1,

so log(exp(x)) = x, because it has no constant term. □

Prop.(8.5.1.7)[Multiplicative Properties]. Suppose Q ⊂ R, then
• for any f, g ∈ R[[X]], exp(f + g) = exp(f) exp(g).
• If ∑n fn is well-defined(8.5.1.2), then ∏n exp(fn) is well-defined and

exp(
∑
n

fn) =
∏
n

exp(fn).

• for any f, g ∈ 1 + (X), log(f) + log(g) = log(fg).
• If gn ∈ 1 + (X) and ∏n gn is well-defined(8.5.1.2), then ∑n log(fn) is well-defined and

log(
∑
n

fn) =
∏
n

log(fn).

Proof: Brutal force calculation.? □

Def.(8.5.1.8)[Formal Powers].Let f ∈ 1 + xR[[x]], g ∈ R[[x]], fg is defined to be

exp(g log(f)).

In particular, log(fg) = g log(f) by(8.5.1.5).
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Prop.(8.5.1.9). In Q[[x]], if p ∈ P, m,n ∈ Z, (n, p) = 1, and f(x) ∈ 1 + xZ(p)[[x]], then f(x)m/n ∈
1 + xZ(p)[[x]].

Proof: If g(x) = f(x)m/n, it is easy to see g(x)n = f(x)m and g(x) ∈ 1 + xQ[[x]]. Let

f(x)m = 1 +
∑
m≥1

amx
m, g(x) = 1 +

∑
m≥1

bmx
m,

Then it is easy to use induction to show bm ∈ Z(p) for any m ∈ Z+. □

Prop.(8.5.1.10). In Q[[x]],
exp(x) =

∏
d>0

( 1
1− xd

)
µ(d)
d .

Proof: Taking log, we prove its convergence and equality at once:

∑
d>0

log(( 1
1− xd

)
µ(d)
d ) =

∑
d>0

µ(d)
d

log( 1
1− xd

) =
∑
d>0

µ(d)
d

∑
d′>0

xdd
′

d′ =
∑
n>0

xn

n

∑
d|n

µ(d) = x(24.1.3.15).

□

Prop.(8.5.1.11) [Artin-Hasse Exponential].For p ∈ P, the Artin-Hasse exponential is the
power series hexp(x) defined to be

hexp(x) = exp(x+ xp

p
+ xp

2

p2 + . . .) ∈ Q[[x]].

Then it satisfies
hexp(x) =

∏
d>0,p∤d

( 1
1− xd

)
µ(d)
d .

and in fact hexp(x) ∈ Z(p)[[x]].

Proof: Taking log, we prove its convergence and equality at once:

∑
d>0,p∤d

log(( 1
1− xd

)
µ(d)
d ) =

∑
d>0,p∤d

µ(d)
d

log( 1
1− xd

) =
∑

d>0,p∤d

µ(d)
d

∑
d′>0

xdd
′

d′ =
∑
n>0

xn

n

∑
d|n,p∤d

µ(d) =
∑
k∈N

xp
k

pk
(24.1.3.15).

Then the last assertion follows from(8.5.1.9). □

Def.(8.5.1.12)[Bernoulli Numbers].The Bernoulli numbers Bk, k ≥ 0 are defined to be

X

eX − 1
=

∞∑
k=0

Bk
Xk

k!
∈ Q[[X]].

Then Bk are all rational numbers, and

B0 = 1, B1 = −1
2
, B2k+1 = 0(k ≥ 1), B2 = 1

6
, B4 = − 1

30
, B6 = 1

42
, B8 = − 1

30
.

More numbers can be found athttps://oeis.org/wiki/Bernoulli_numbers.
For simplicity, for k ∈ Z<0, denote Bk = 0.

https://oeis.org/wiki/Bernoulli_numbers
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Def.(8.5.1.13)[Hankel Determinants].LetK be a field and f =
∑
aiT

i ∈ K[[T ]], then for k,M > 0,
define the Hankel determinants to be

Hk = det(ai+j+k), 1 ≤ i, j ≤M

Prop.(8.5.1.14) [Characterizing Rational Functions].Let f ∈ K[[T ]], then f ∈ K[T ] iff the
Hankel determinants Hk of f vanishes for k,M large.

Proof: □

Cor.(8.5.1.15). If K ⊂ L are fields, then K[[T ]] ∩ L[T ] = K[T ].

Prop.(8.5.1.16).Let P,Q ∈ Q[T ] be prime to each other with constant coefficient 1. if P/Q = Z ∈
Z[[T ]], then we have P,Q ∈ Z[T ].

Proof: Let λ be a root of Q(T ), we prove that |λ−1|p ≤ 1 for any p ∈ P: If |λ|p < 1, then Z(λ)
converges in Qp because it has integral coefficients, and then

P (λ) = Q(λ)Z(λ) = 0.

This contradicts the fact that P,Q are coprime. So λ−1 ∈ Z, and Q ∈ Z[T ]. Consequently, P (T ) =
Q(T )Z(T ) ∈ Z[[T ]] ∩Q[T ] = Z[T ]. □

Geometric Objects

Def.(8.5.1.17) [Differential Operators].A continuous R-linear mapping D : R[[X]] → R[[X]] is
called a formal differential operator of order N ≥ −1 iff

LD : R[[X,Z]]→ R[[X]] :
∑

pα(X)Zα →
∑

pα(X)D(Xα)

vanish on JN+1, where J = (Xi − Zi).
Then D is an operator of order N if fD −Df has order N − 1 for any f ∈ R[[X]].

Proof: Let D be a differential operator of order N , since f(X)− f(Z) ∈ J , for all g(X,Z) ∈ JN ,
we have LD((f(X)− f(Z))g(X,Z)) = 0, which is equivalent to LD◦f−f◦D(g) = 0, so D ◦ f − f ◦D
is an operator of order N − 1. Conversely, if D ◦ f − f ◦ D is an operator of degree N − 1, then
LD((f(X)− f(Z))g) = 0 for all g ∈ JN , then D is an operator of order N . □

Cor.(8.5.1.18).A differential operator D : R[[X]] → R[[X]] of order 1 is a linear map that satisfies
D(fg) = D(f)g + fD(g), which is just a derivative on R[[X]]. Equivalently, D =

∑
i ui(Z) ∂

∂Zi
.

Prop.(8.5.1.19)[Graded Module of Differential Operators].Let D1, D2 be differential forms of
order N1, N2, then D1 ◦D2 is a differential form of order N1 +N2, and [D1, D2] is a differential form
of order N1 +N2 − 1. The R-algebra of differential operators on R[[X]] is denoted by DO.

In particular, the graded module of differential operators

grDO = ⊕DON /DON−1

is a commutative graded ring.

Proof:
□
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Prop.(8.5.1.20) [Basis of Differential Operators].There is a representation g(X + Y ) =∑
αDαg(X)Y α for any g ∈ R[[X,Y ]], where Dα is a differential operator of degree |α|. And {Dα}

form a free K[[X]]-basis for the module of differential operators(8.5.1.19).
In fact, Dα is just mimicking ∂α

α! in all fields.

Proof: g(Z) =
∑
αDαg(X)(Z −X)α, thus if D is a differential operator of order N , then

D(g)(X) = LD(g(Z)) =
∑

|α|≤N
L((Z −X)α)Dαg(X),

which means D =
∑

|α|≤N aα(X)Dα, where aα = L((Z −X)α). □

Def.(8.5.1.21)[Tangent Space].The tangent space of K[[X]] is the K-module HomK((X)/(X)2,K).

Def.(8.5.1.22) [Formal Curves].A formal curve in K[[X]] is an n-tuple (γ1(T ), . . . , γn(T )) of
elements in K[[T ]]. The tangent space of formal curve is the map HomK((X)/(X)2,K) given
by Xi 7→ γi(T ) ∈ (T )/(T 2) ∼= K.

Prop.(8.5.1.23)[Integral Curves].For any

2 Formal Identities
Prop.(8.5.2.1). In Z[[T ]],

1
(1− T )2 =

∑
n≥0

(n+ 1)zn

Proof:
(1− T )2 ∑

n≥0
(n+ 1)zn = (1− T )

∑
n≥0

zn = 1.

□

Prop.(8.5.2.2). In Z[[T ]], ∑
n≥1

nTn

1− Tn
=
∑
n≥1

Tn

(1− Tn)2

Proof: □

Prop.(8.5.2.3). In R[[z]], if
∞∑
r=0

A(r)zr = 1
(1− α1z)(1− α2z)

,
∞∑
r=0

B(r)zr = 1
(1− β1z)(1− β2z)

,

then
∞∑
r=0

A(r)B(r)zr = (1− α1α2β1β2z
2)

2∏
i=1

2∏
j=1

1
(1− αiβjz)

.

Proof: A(n)B(n) =
∑

0≤k,j≤n α
k
i α

n−k
2 βj1β

n−j
2 , and the coefficients in the zn term of∏2

i=1
∏2
j=1

1
(1−αiβjz) is∑

0≤k,j≤n
#{(r1, r2, r3, r4)|0 ≤ ri ≤ n, r1 + r2 = a, r1 + r3 = b, r1 + r2 + r3 + r4 = n}αki αn−k

2 βj1β
n−j
2 .
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Notice

#{(r1, r2, r3, r4)|0 ≤ ri ≤ n, r1 + r2 = a, r1 + r3 = b, r1 + r2 + r3 + r4 = n} = min(a, b)− (a+ b− n).

Thus the effect of multiplying (1−α1α2β1β2z
2) reduces the coefficients of αki αn−k

2 βj1β
n−j
2 zn to 1. So

the assertion follows. □
Prop.(8.5.2.4)[Euler Identities].

• In Z[x][[q]], ∏
n≥0

(1 + xqn) =
∞∑
n=0

qn(n−1)/2xn

(1− q) . . . (1− qn)
.

• In Z[[x, q]], ∏
n≥0

(1− xqn)−1 =
∞∑
n=0

xn

(1− q) . . . (1− qn)
.

Proof: These follow from interesting combinatorial identies. □
Prop.(8.5.2.5)[Jacobi’s Triple Product Formula, [And65]]. in Z[x][[x−1q]],

∞∑
n=−∞

xnqn
2 =

∞∏
n=1

(1− q2n)(1 + xq2n−1)(1 + x−1q2n+1).

Proof: By substituting q = q2, x = xq in Euler identities1(8.5.2.4), in Z[x][[x−1q]],∏
n≥0

(1 + xq2n+1) =
∞∑
n=0

qn
2
xn

(1− q2)(1− q4) . . . (1− q2n)

= (
∏
j≥0

(1− q2j+2))−1
∞∑
n=0

qn
2
xn

∞∏
j=0

(1− q2n+2+2j)

= (
∏
j≥0

(1− q2j+2))−1
∞∑

n=−∞
qn

2
xn

∞∏
j=0

(1− q2n+2+2j)

(q = q2, x = q2n+2 in(8.5.2.4)) = (
∏
j≥0

(1− q2j+2))−1
∞∑

n=−∞
qn

2
xn

∞∑
m=0

(−1)mqm2+m+2nm

(1− q2)(1− q4) . . . (1− q2n)

= (
∏
j≥0

(1− q2j+2))−1
∞∑
m=0

(−x−1q)m

(1− q2) . . . (1− q2n)

∞∑
n=−∞

q(m+n)2
xm+n

(q = q2, x = −x−1q in(8.5.2.4)) = (
∏
j≥0

(1− q2j+2))−1
∞∏
j=0

(1 + x−1q2j+1)−1
∞∑

n=−∞
qn

2
xn.

□
Cor.(8.5.2.6)[Dedekind Eta Function]. Substitute q = q3/2 and x = q−1/2, we get:

∞∑
n=−∞

(−1)nq(3n2+n)/2 =
∞∏
n=1

(1− q3n)(1− q3n−1)(1− q3n−2) =
∞∏
n=1

(1− qn) ∈ Z[[q]].

By completing the square,
∞∑

n=−∞
(−1)nq(6n+1)2/24 = q1/24

∞∏
n=1

(1− qn) ∈ Z[[q1/24]].

the last term is known as the Dedekind eta function η(q(z)) = q1/24∏∞
n=1(1− qn) ∈ Z[[q1/24]].
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3 Formal Group Law
In this subsection, the local structure of an algebraic group scheme at the origin is studied.

Def.(8.5.3.1) [Formal Group Laws].A formal group law G of dimension n over R ∈ CAlg is a
continuous local map µG : K[[X]]→ K[[X,Y ]] given by an n-tuple of power series G = (G1, . . . , Gn)
in R[[X,Y ]] that

G(X,Y ) ≡ X + Y mod (X,Y )2, G(G(X,Y ), Z) = G(X,G(Y, Z)).

A formal R-module is a formal group law G over R together with a ring homomorphism R →
EndR(G) that [a](X) = aX + . . ..

A morphism of formal groups laws G → H is a continuous local map φ∗ : R[[X ′]]→ R[[X]] given
by an n′-tuple of power series φ = (φ1, . . . , φn′) in R[[X]] that satisfies

µG ◦ φ∗ = (φ∗ ⊗ φ∗) ◦ µH.

Or equivalently, φ(G(X,Y )) = H(φ(X), φ(Y )).

Prop.(8.5.3.2).For a formal group Law G,
• G(0, Y ) = Y ,G(X, 0) = X.
• There exists a unique inverse i(X) thatG(X, i(X)) = 0. And this i(X) satisfiesG(i(X), X) = 0,

and i2 = id.

Proof: ? □

Cor.(8.5.3.3) [Formal Group Laws and Group Schemes].WARNING: A formal group law of
dimension n is not equivalent to a group scheme structure on SpecZ[[X1, . . . , Xn]](8.1.1.1), as here
we are taking a completion.

Def.(8.5.3.4)[Multiplication Map].Let G be a commutative formal group law over R and m ∈ Z,
then we can define a group homomorphism [m] : G→ G inductively as follows:

[0](X) = 0, [m+ 1](X) = G([m](X), X), [m− 1](X) = G([m](X), i(X)).

Then it can be verified that this is well-defined and [m] is a group homomorphism.

Prop.(8.5.3.5)[Multiplications as Automorphisms].Let G be a commutative formal group law
over R and m ∈ Z, then [m](X) = mX + o(X). In particular, if m is invertible in R, then [m] is an
automorphism of G, by(8.5.1.3).

Prop.(8.5.3.6).Ga is the one-dimensional formal group with Ga(X,Y ) = X + Y , Gm is the one-
dimensional formal group with Gm(X,Y ) = X + Y +XY . Over a Q-algebra K, there is an isomor-
phism between Ga and Gm giving by X → exp(X)− 1.

Def.(8.5.3.7)[Invariant Differential Forms].An invariant differential form on a formal group
law G over R is an element ω =

∑
ai(X)dXi ∈ Ω1

R[[X]]/R that satisfies (Y 7→ G(X,Y ))∗ω = ω, i.e.

∑
j

aj(Y )dYj =
∑
i

ai(G(X,Y ))∂Gi
∂Yj

(X,Y )dYj .

If G is commutative, then this is equivalent to µ∗ω = i1∗ω + i2∗ω.
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Prop.(8.5.3.8).The mapping ω 7→ (u1(0), . . . , un(0)) is an isomorphism of the R-module of invariant
differential forms and Rn.

Proof: Cf.[Zin84]P14. □

Prop.(8.5.3.9)[Pullback of Invariant Differential Forms].Let φ : G→ H be a homomorphism of
formal group laws, then for any invariant differential form ω =

∑
ai(X)dXi onH, φ∗ω is a differential

form on G, given by expanding ∑ ai(φ(X))d(φi(X)).

Proof:

(Y 7→ G(X,Y ))∗φ∗ω =
∑

ai(φ(G(X,Y )))d(φ(G(X,Y )))

=
∑

ai(H(φ(X), φ(Y )))d(H(φ(X), φ(Y )))

=
∑
i

ai(φ(Y ))d(φ(Y ))

= φ∗ω

□

Def.(8.5.3.10)[Invariant Differential Operators].An invariant differential operator on a for-
mal group G of dimension n is a differential operator D s.t.

µ ◦D = (1⊗D) ◦ µ.

Equivalently, if D =
∑
i ui(Z) ∂

∂Zi
, it satisfies

∑
j

uj(Y )∂Gi
∂Yj

= ui(G(X,Y )).

The space of invariant operators is stable under composition. The R-algebra of invariant differential
operators on G is denoted by DOG.

Prop.(8.5.3.11).The space of invariant differential operators on G of order≤ N are in bijection with
the space of K-linear maps l : K[[X]]→ K s.t. l((X)N+1) = 0 via

Df(X) = (1⊗ l)f(G(X,Y )).

Proof: Cf.[Zin84]P22. □

Cor.(8.5.3.12) [Basis of Invariant Differential Operators].For any f ∈ K[[X]], write
f(G(X,Y )) =

∑
α(Hαf)(X)Y α.

Then Hα are differential operators of order |α|, and the space of invariant differential operators
of order N form a free R-module with basis Hα. In particular, the space of invariant derivatives is
isomorphic to Rn.

Proof: By(8.5.3.11),

Df(X) = (1⊗ l)f(G(X,Y )) = (1⊗ l)(
∑
α

(Hαf)(X)Y α) =
∑
α

l(Y α)(Hαf)(X).

□
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Cor.(8.5.3.13)[Composition of Invariant Differential Operators].Let D1, D2 ∈ DOG, then

(D1 ◦D2)f(Z) = (1⊗ l1 ⊗ l2)f(G(Z,G(X,Y ))),

in particular,
lD1◦D2(f) = (l1 ⊗ l2)f(G(X,Y )).

Proof:

(D1◦D2)f(Z) = D1(1⊗l1)f(G(Z, Y )) = (1⊗l2⊗1)(1⊗1⊗l1)f(G(G(Z,X), Y )) = (1⊗l1⊗l2)f(G(Z,G(X,Y ))).

□

Prop.(8.5.3.14) [Pushforward of Invariant Differential Operators].A homomorphism φ of
formal groups G → H induces a map from the linear maps l : K[[X]] → K to linear maps
l ◦ φ∗ : K[[X ′]]→ K, which induces a K-homomorphism of algebras φ∗ : DOG → DOH .

Proof: To show preserves algebra structure, notice for any f ∈ R[[X ′]], by(8.5.3.13),

φ∗(D) ◦ φ∗(D′)f(0) = (l ◦ φ∗)⊗ (l′ ◦ φ∗)f(H(X ′, Y ′))
= (l ⊗ l′)f(H(φ(X), φ(Y )))
= (l ⊗ l′)f(φ(G(X,Y )))
= [(l ⊗ l′) ◦ φ∗]f(G(X,Y ))
= φ∗(D ◦D′)f(0).

Thus φ∗(D) ◦ φ∗(D′) = φ∗(D ◦D′), by(8.5.3.11). □

Prop.(8.5.3.15) [Q-Theorem].Any commutative connected formal group over a Q-algebra R is a
direct sum of Ĝa.

Proof: Cf.[Zin84]P19. □

1-dimensional Formal Groups

Def.(8.5.3.16) [Normalized Invariant Differential Form].For a 1-dimensional formal group G
overR[[X]], the module of invariant differentials is isomorphic toR(8.5.3.10). An invariant differential
form ω = P (T )dT is called normalized if P (0) = 1.

Then the unique normalized invariant differential form on G is given by ωG = GX(0, T )−1dT .

Proof: We need to check GX(0, G(T, S))−1GX(T, S) = GX(0, T )−1, and this is just
G(U,G(T, S)) = G(G(U, T ), S) differentiated at U and let U = 0. □

Prop.(8.5.3.17).For a morphism φ : F → G of 1-dimensional formal groups laws over R, φ∗ωG =
φ′(0)ωF .

Proof: By(8.5.3.9), φ∗ωG is an invariant differential form, and compare their constant coefficients.
□

Cor.(8.5.3.18).Let p be a prime, then for any formal group law of dimension 1,

[p](T ) = pf(T ) + g(T p)

for some f(0) = g(0) = 0.
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Proof: If suffices to show that [p]′(T ) ⊂ pR[[T ]]. But by(8.5.3.17) and(8.5.3.5),

pω(T ) = [p]∗ω(T ) = GX(0, [p](T ))−1[p]′(T )dT

so this is true. □

Def.(8.5.3.19) [Formal Logarithm].When R is torsion-free, the formal logarithm logF for a 1-
dimensional formal group is the integration of invariant differential∫ T

0
ωF = T + c1

2
T 2 + · · · ∈ (R⊗Q)[[T ]].

Then the formal power exponential is the the unique power series expF that is the inverse of
logF . It exists uniquely by(8.5.1.3), and by(8.5.1.4), it is of the form

expF =
∞∑
n≥1

bn
n!
Tn ∈ (R⊗Q)[[T ]], bn ∈ R.

Prop.(8.5.3.20).For R is torsion-free and an 1 dimensional formal group F over R,

logF : F → Ga

is an isomorphism of formal groups laws over R⊗Z Q.
And if F is a formal R-module, then it is an isomorphism of R-modules, because from(8.5.3.17)

that ωF ◦ [a] = aωF , thus logF ◦[a] = a · logF .

Proof: From ωF (F (T, S)) = ωF (T ), we get that logF (F (T, S)) = logF (S) + logF (T ). So it is a
homomorphism. Now the inverse expF is already given, so it is an isomorphism. □

Cor.(8.5.3.21)[1-Dimensional Formal Group Law is Commutative].Any 1-dimensional formal
group over a ring R that has no torsion nilpotents is commutative.

Proof: We only prove for R torsion free?. F (T, S) = expF (logF (T ) + logF (S)). □

Lubin-Tate Formal Group Law

Notation(8.5.3.22).
• Let (K, v,OK , pv, k) ∈ p-LField.

Def.(8.5.3.23) [Lubin-Tate Formal Group Law].Let ϖ be a uniformizer for K, a Lubin-Tate
power series for ϖ is a power series φ(X) ∈ OK [[X]] s.t.

φ(X) ≡ ϖX mod X2, φ(X) ≡ Xq(mod pv).

A Lubin-Tate module G over OK is a formal OK-module(8.5.3.1) s.t. [πK ](X) is a Lubin-Tate
power series.

Prop.(8.5.3.24).Given a p-adic number field K with residue field Fq, we consider the set ξπ of all
Lubin-Tate power series for π.

If f, g ∈ ξπ and L(X) =
∑
aiXi be a linear form, then there exists a unique power series F (X)

that F (X) ≡ L(X) mod (X)2 and f(F (X)) = F (g(X)).
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Proof: Choose F consecutively, if Fr+1 = Fr + ∆r, then must

∆ ≡ f(Fr(X))− Fr(g(X))
πr+1 − π

mod degree (r + 2).

This has coefficient in O because f ≡ g ≡ Zq mod π. □
Cor.(8.5.3.25). If we let f = g, L = X + Y to get Ff and f, g, L = aX to get af,g, then

• Ff (X,Y ) = Ff (Y,X).
• Ff (Ff (X,Y ), Z) = Ff (X,Ff (Y, Z)).
• af,g(Fg(X,Y )) = Ff (af,g(X), af,g(Y )).
• afbf (Z) = (ab)f (Z).
• (a+ b)f (Z) = Ff (af (Z), bf (Z)).
• πf (Z) = f(Z).

all follow from the unicity of the last proposition.

Cor.(8.5.3.26)[Existence of Lubin-Tate Modules].We get a commutative formal O-module Ff
for every f . And this group can act on pL for an alg.ext L/K. The set of zeros Λf,n of fn in L, as
the elements annihilated by πn, is a submodule of p(f)

L .
And ug,f for any unit u ∈ O defines an isomorphism between Ff and Fg, thus this formal group

only depends on π, called Fπ. Hence Lf,n = K(Λf,n) only depends on π, with Galois group Gπ,n.

Prop.(8.5.3.27)[Different Uniformizers].For two uniformizers ϖ,ϖ′, it is proven that Fϖ and Fϖ′

are isomorphic, but isomorphic over O
K̂ur .

Thus Lϖ,n and Lϖ′,n may not be isomorphic, but Kur.Lπ,n = Kur.Lπ′,n since K̂ur.Lπ,n =
K̂ur.Lϖ′,n and both of them is the algebraic closure of K in it.

Proof: Cf.[Neukirch CFT P105].? □

Lemma(8.5.3.28).The Newton polygon of [πnK ]/πnK has vertices

(1, 0), (q,−1/eK), (q2,−2/eK), . . . .

Proof: Notice [πnK ] has no infinite edge of negative slope because all its coefficient are in OK . Now
look at its roots, it has a root 0, and q−1 roots of valuation vp(πK)/(q−1), q(q−1) roots of valuation
vp(πK)/q(q − 1), and so on. So by factor out these roots, [πnK ]/πnK is left with a power series whose
Newton polygon is a single line, which shows the desired result. □

Prop.(8.5.3.29).The formal logarithm(8.5.3.19) of the Lubin-Tate formal group Fπ satisfies:

logFϖ(T ) = lim
n→∞

[πnF ]/πnF .

Proof: By(8.5.3.20) we have

logF (T ) = logF ([πnF ])/πnF = ([πnK ] + a2/2[πnK ]2 + . . .)/πnK
and for any degree n, the coefficient of [π2n

K ]/π2n
K is bounded below by a c(n), so [π2n

K ]/πnK converges
to 0, thus the result. □

Cor.(8.5.3.30).The Newton polygon of logF (T ) has vertices (1, 0), (q,−1/eK), (q2,−2/eK), . . ..

The discussion is continued at2.
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4 Formal Groups
Prop.(8.5.4.1)[Formal Group Law as Functors].Let NilR be the Abelian category of nilpotent
commutative (non-unital)R-algebras, then the category of commutative formal group law are equiv-
alent to Abelian functors on Nil whose underlying set-theoretic functor if N 7→ Nn.

Proof: Each commutative formal group law G of dimension n defines a functor

NilR → Ab : N 7→ (Nn, G)

Conversely, if G̃ : NilR → Ab is a functor s.t. the underlying set-theoretic map is N 7→ Nn, then
G̃((X,Y )/(X, )k) ∼= [(X, )/(X,Y )k]n as sets. Suppose

(X1, . . . , Xn) + (Y1, . . . , Yn) = (Gk1(X,Y ), . . . , Gkn(X,Y ))

in G̃((X,Y )/(X,Y )k), then Gk+1
i ≡ Gki mod (X,Y )k, and their limit defines a commutative formal

group law of dimension n. Because for any nilpotent algebra N and (a1, . . . , an), (b1, . . . , bn) ∈ Nn,
there is a surjective map (X,Y )/(X, )k → N for some k that maps Xi to ai, Yi to bi, thus by
functoriality, G̃(N) ∼= G(N). □

Def.(8.5.4.2)[Formal Groups].A (commutative)formal group is an exact Abelian functors on Nil
whose underlying set-theoretic functor if N 7→ Nn and commutes with infinite direct sums.

Remark(8.5.4.3).Don’t confuse formal groups with formal schemes, they are totally different notions.

Example(8.5.4.4).Let S ∈ Nil, then the functor resS/R(Gm) is a commutative formal group.

Prop.(8.5.4.5).Let G be a commutative formal group law defined over a complete local ring (R,m),
then

• For each n, G(mn)/G(mn+1) ∼= mn/mn+1 as groups.
• Let p be the characteristic of the residue field k (p may be 0), then F(m)tor = F(m)[p∞].

Proof: 1: This is because F (x, y) ≡ x+ y mod mn.
2: This is because [m] is an automorphism by(8.5.3.5) as m is invertible in R. □

1-Dimensional Commutative Formal Groups over DVR

Prop.(8.5.4.6).Let (R,m) be a CDVR with residue field k of characteristic p, F a formal group law
over R. Then F(m)tor = F [p∞], and if x ∈ F(m) has exact order pn, then v(x) ≤ v(p)

pn−pn−1 .

Proof: If (m, p) = 1, then F(m)[m] = 0 by(8.5.3.5).
By(8.5.3.18), [p](x) = pf(x) + g(xp), where f(0) = 1. Thus it is possible only if pv(x) ≥ v(px),

which means v(x) ≤ v(p)/(p− 1).
Now if this is true for n ≥ 1, let x ∈ F(m) with order pn+1, then v([p](x)) = v(pf(x) + g(xp)) ≥

min(v(px), pv(x)). But [p](x) has order pn, thus v(p)
pn−pn−1 ≥ min(v(px), pv(x)). But n ≥ 1 and

v(x) > 0, it is impossible that v(p)
pn−pn−1 ≥ v(px), thus we have v(p)

pn−pn−1 ≥ pv(x). □

Prop.(8.5.4.7).Let (K,OK ,m, κ) be a complete valued field of mixed characteristic (0, p), F a formal
group law over K, then

• the formal logarithm(8.5.3.19) induces an homomorphism logF : F(m)→ K.
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• For r > v(p)
p−1 , logF is an isomorphism logF : F(mr) ∼= mr.

Proof: This follows from determining the convergence of logF and expF by(12.2.5.20), after which
it is a homomorphism by(8.5.3.20). □

Cor.(8.5.4.8) [Group Structure of CDVRs].Take F (X,Y ) = (1 + X)(1 + Y ) − 1, then logF is
given by log(1 +x) = x− x2

2 + x3

3 − . . . ., and it induces an isomorphism (1 +mr)× ∼= mr for r > v(p)
p−1 .

Prop.(8.5.4.9)[Zp-Multiplication].Let (R,m) be a CDVR with residue field k of characteristic p,
F a formal group law over R, then for any x ∈ F(m), limn→∞[pn](x)→ 0.

In particular, we can define [α](x) for any α ∈ Zp.

Proof: By(8.5.3.18), v([p](x)) = v(pf(x) + g(xp)) ≥ min(v(x) + v(p), pv(x)). □

5 Cartier Theory
Main References are[Zin84].

Isogenies of Formal Groups

Def.(8.5.5.1) [Heights over Positive Characterestic].Let R be a ring of characteristic p > 0,
φ : F → G be a homomorphism of formal group laws over R of dimension 1, the height of homo-
morphism ht(φ) is the largest integer h s.t. φ(T ) = g(T ph) for some h.

For a formal group law F over R, the height of formal group law ht(F ) is ht([p]F ).
By(8.5.3.18), the height is always positive.

Prop.(8.5.5.2).Let R be a ring of characteristic p > 0, f : F → G be a homomorphism of formal
group laws over R of dimension 1, then

• If f ′(0) ̸= 0, then ht(f) > 0.

• If f = g(T ph) with h = ht(f), then g′(0) ̸= 0.
In particular, the first non-zero term of f(T ) is T ph , where h is the height of f .

Proof: 1: Let ωF , ωG be the normalized invariant differential forms of F and G, then

0 = f ′(0)ωF (T ) = ωG(f(T )) = GX(0, T )−1f ′(T )dT,

thus f ′(T ) = 0, which means ht(f) > 0.
2: Let q = ph and F (q)(T ) = F (X1/q, Y 1/q)q. Then it is easy to see F (q) is another formal group

law, and g is a homomorphism from F (q) to F :

g(F (q)(Xq, Y q)) = g(F (X,Y )q) = f(F (X,Y )) = F (f(X), f(Y )) = F (g(Xq), g(Y q)).

Which means g(F (q)(X,Y )) = F (g(X), g(Y )). Thus if g′(T ) = 0, by item1, g(T ) = g1(T p), contra-
dicting h = ht(f). □

Prop.(8.5.5.3).Let F f−→ G
g−→ H be homomorphisms of formal group laws over ring R of characteristic

p > 0, then ht(g ◦ f) = ht(f) + ht(g).

Proof: Let f(T ) = f1(T pht(f)), g(T ) = g1(T pht(g)), where f1(0) ̸= 0, g1(0) ̸= 0 by(8.5.5.2), then

g ◦ f(T ) = g1(f1(T pht(f))pht(g)) = g1(f̃1(T pht(f)+ht(g)))

where g1(0)f̃1(0) ̸= 0, thus by(8.5.5.2) again, ht(g ◦ f) = ht(f) + ht(g). □
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6 p-divisible Groups

Def.(8.5.6.1)[Λ-Formal Schemes].Let Λ be a local complete Noetherian ring and AfΛ be the category
of finite length(Artinian) Λ-algebra,

Then a Λ-formal functor is a functor AfΛ → Set.
The formal completion of a functor AΛ → Set is its restriction on AfΛ. We denote the formal

completion of SpecA by Spf A.
Then a Λ-formal scheme is a filtered colimits of functors lim−→Spf Ai, or equivalently a profinite

Λ-algebra A = lim←−Ai with profinite topology.

Def.(8.5.6.2)[Λ-Formal Group Schemes].A Λ-formal group is a Λ-formal scheme with values in
groups.

Def.(8.5.6.3) [p-Divisible Formal Lie Group Schemes].A formal Lie group G over Λ is a
connected formally smooth Λ-formal group. It is necessarily isomorphic to G = Spf Λ[[X1, . . . , Xn]]
where n = dimG. The number n is called the dimension of G.

A p-divisible formal Lie group is a commutative formal Lie group G = Spf Λ[[X1, . . . , Xn]]
that multiplication by p : [p]∗ is a finite flat morphism on Λ[[X1, . . . , Xn]].

Def.(8.5.6.4) [p-Divisible Groups].Let p be a prime and S a scheme, a p-divisible group is a
commutative group functor on Schfppf/S that

• G is p-divisible: [p]G is an epimorphism.

• G is p-torsion: G = lim−→n
G(n), where G(n) = ker([p]G : G→ G).

• G(n) are representable as sheaves on Schfppf/S.
The category of p-divisible groups over S is denoted by pdiv(S).

Prop.(8.5.6.5)[Equivalent Definitions of p-Divisible Groups].Let p be a prime and S a scheme,
then a p-divisible group over S is an ind system (Gv, iv) of finite commutative groups schemes over
S s.t.

• 0→ Gv
iv−→ Gv+1

pv−→ Gv+1 is an exact sequence of group schemes over S.
• the rank of fiber of G(n) at s ∈ S is pnh(s) where h is a locally constant function on S.

and (Gv, iv) is called a p-divisible group of height h over S.

Proof: Cf.[Shatz, P61], [P-Divisible Groups, Haoran Wang]. □

Prop.(8.5.6.6)[Connected p-Divisible Groups and Formal Lie Groups].Cf.[Shatz, P62].

Def.(8.5.6.7)[Tate Module].Let G be a p-divisible group over an integral domain O with fraction
field K of characteristic 0, then the Tate module of G is defined to be

Tp(G) = lim←−
n

Gn(K),

and the Tate comodule of G is defined to be

Φp(G) = lim−→
n

Gn(K).
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Hodge-Tate Decomposition

Prop.(8.5.6.8)[Hodge-Tate Decomposition]. If O is a CDVR of mixed characteristic with perfect
residue field k and fraction field K, then there is an isomorphism of f.d. Qp-representation of GK :

Tp(G)⊗Zp Q̂p
∼= tangent⊕ cotangent spaces of G.

Proof: Cf.[p-divisible Groups, Morrow]. □
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8.6 Geometric Invariant Theory
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8.7 Moduli Problems

1 Schemes as Functors
Prop.(8.7.1.1)[Strong Yoneda Lemma].For any S ∈ Sch, the functor

SchS → Shfpqc /S → ShSet(Aff fpqc /S)→ PShSet(AffS) : X 7→ (X̃ : SpecR 7→ MorS(SpecR,X))

is a fully faithful embedding of the categories.

Proof: (5.1.2.25) applied to Aff fpqc /S → Schfpqc /S implies the restriction map Shfpqc /S →
Sh(Aff fpqc /S) is an equivalence, thus the assertion follows from Yoneda lemma and the fact
ShSet(Aff fpqc /S)→ PShSet(AffS) is fully faithful. □

Def.(8.7.1.2)[Closed Subfunctors].Let S ∈ Sch and Z be a subfunctor of X ∈ PShSet(AffS). Z
is called a closed subfunctor of X if for any T ∈ AffS , f ∈ Mor(hT , X), the functor Z ⊗X hT is
represented by a closed subscheme of T .

Prop.(8.7.1.3) [Closed Subfunctor of Schemes].Let S ∈ Sch and X ∈ SchS , then the closed
subfunctors of X̃(8.7.1.2) are exactly of the form Z̃ for a closed subscheme Z̃ of X̃.

Proof: If Z is a closed subscheme of X, then for any f : hA → X, f−1(Z) is the pullback of Z
along SpecA → X, so it is a closed subscheme of SpecA. Conversely, if Z is a closed subfunctor of
X, then for each affine open subset U of X, Z ∩ hU is represented by a quotient of O(U) by some
ideal I(U). Because of the uniqueness, I(U) and I(U ′) coincides on the intersection U ∩ U ′, thus
U 7→ I(U) defines a sheaf of ideals I on X.

Now Z = hZ′ , where Z ′ is the closed subscheme of X defined by I, because for any SpecR→ X,
the pullback of Z and Z ′ to R are the same, because they are all closed subschemes of SpecR and they
are equal on an open covering of SpecR(The pullback of the open coverings ofX). Now if SpecR→ X
is represented by an element α ∈ X(R), Z ×X hR(R) is the set {φ ∈ Hom(R,R)|X(φ)(α) ∈ Z(R)}.
So idR ∈ Z ×X hR(R) ⇐⇒ α ∈ Z(R)/ From this we see that Z(R) = Z ′(R) for any R. □

Def.(8.7.1.4)[Open Subfunctors].Let S ∈ Sch and Z be a subfunctor of X ∈ PShSet(AffS). Z is
called an open subfunctor of X if for any T ∈ AffS , f ∈ Mor(hT , X), the functor U ⊗X hT is
represented by an open subscheme of T .

Prop.(8.7.1.5)[Open Subfunctor of Schemes].Let S ∈ Sch and X ∈ SchS , then closed subfunctors
of X̃(8.7.1.2) are exactly of the form Ũ for an open subscheme Z̃ of X̃.

Proof: The proof is exactly the same as that of(8.7.1.3). □

Def.(8.7.1.6) [Open Coverings by Functors].Let S ∈ Sch, an open covering of a functor
X ∈ PShSet(SchS) is a family of open subfunctors {Ui} that for any T ∈ AffS , hT ×X Ui is an open
covering of T .

Prop.(8.7.1.7)[Open Coverings of Schemes].Let S ∈ Sch and X ∈ SchS , then open coverings of
the functor X̃ are exactly open coverings of X.

Proof: The proof is exactly the same as that of(8.7.1.3). □

Prop.(8.7.1.8).The pullback of a closed subfunctor is also a closed subfunctor. The intersection of
closed subfunctors is a closed subfunctor.
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Lemma(8.7.1.9).Let k be a field and B ∈ CAlgk, X ∈ PShSet(CAlgB), define

X∗ ∈ PShSet(CAlgk) : X∗(R) = X(R⊗k B).

Then if Z is a closed subfunctor of X, Z∗ is also a closed subfunctor of X∗.

Proof: Let A be a k-algebra, and α ∈ X∗(A). To prove Z∗ is closed in X∗, we need to show there
exists an ideal a ⊂ A that for any homomorphism φ : A→ R,

X∗(φ)(α) ∈ Z∗(R) ⇐⇒ φ(a) = 0.

Because Z is closed in X, there exists an ideal b of A⊗k B that for any φ : A→ R,

X(φ⊗B)(α) ∈ Z∗(R) ⇐⇒ (φ⊗B)(b) = 0.

Now by(4.1.1.26), there is an ideal a ⊂ A that an ideal I of A satisfies b ⊂ I ⊗ B ⇐⇒ a ⊂ I, thus
we are done. □

Prop.(8.7.1.10).Let S ∈ Sch, X ∈ PShSet(Aff /S) and Z a closed subfunctor of X. If Y ∈ SchR, then
Mor(hY , Z) is a closed subfunctor of Mor(hY , X).

Proof: If Y = hB, then Mor(Y,X)(R) = X(B ⊗ R), thus the conclusion follows from(8.7.1.9).
For a general Y , let Yi be an affine open covering of Y , then there are maps ρi : Hom(Y,X) →
Hom(Yi, X). Now Hom(Yi, Z) is closed subfunctor of Hom(Yi, X), thus we are done if we can show
that Hom(Y, Z) = ∩iρ−1

i (Hom(Yi, Z)). But this is equivalent to any map YR → XR that maps (Yi)R
into ZR maps YR into ZR, which is clear. □

Def.(8.7.1.11)[Fat Subfunctors].Let S ∈ Sch and F ∈ ShSet(Aff fppf /S), then a subfunctor D of F
is called a fat subfunctor if the shifification of D w.r.t. the fppf topology is just F .

Prop.(8.7.1.12)[Extending Group Structures].Let S ∈ Sch, F ∈ ShGrp(Aff fppf /S) and D a fat
subfunctor of F , then every group structure on D extends uniquely to a group structure on F by
shifification.

Representability

Prop.(8.7.1.13)[A Representability Criterion].Let F ∈ ShSet(SchZar) and there is a covering F =
∪Fi by open subfunctors(8.7.1.4)(8.7.1.6) that are representable by schemes, then F is representable
by a scheme.

Proof: Let (Xi, ξi) represents Fi, where ξ ∈ Fi(Xi). Because Fj ⊂ F is representable by open
immersion, there are open subsets Uij ⊂ Xi that T → Xi factors through Uij iff ξ|T ∈ Fj(T ). In
particular, ξi|Uij ⊂ Fj(Uij), and therefore there is a canonical map φij : Uij → Xj that φ∗

ijξj = ξi|Uij .
By definition of Uji this map factors through Uji.

For the rest, Cf.[Sta]01JJ.? □

Cor.(8.7.1.14)[Representing Group Functors].Let S ∈ Sch and G ∈ ShGrp(AffZar /S) and there
is an open subfunctor F ⊂ G s.t. for any SpecK ∈ AffS where K is a field and g ∈ G(K), there
exists a g′ ∈ G(k) s.t. gg′ ∈ F(K), then G is representable.
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Proof: For any g ∈ G(S), let Fg = τ∗
gF , then Fg ∼= F and are also open subfunctors of G. then

{Fg → G} is an open covering because for any T ∈ Sch and ξ ∈ Mor(hT ,G), Fg ×G hT is represented
by open subschemes of T , and it must covers T because otherwise there are some map Spec k(x)→ T
s.t. Fg×Ghk(x) are all empty, contradicting the hypothesis. Thus the assertion follows from(8.7.1.13).
□

Prop.(8.7.1.15)[Hom(E ,F) for Coherent Sheaves].Let S be a locally Noetherian scheme and X
a projective scheme over S. Let E ,F be coherent sheaves on X and F is flat, then the functor

Hom(E ,F) : SchS → Set : T 7→ HomT (ET ,FT )

is representable by a vector bundle V over S(5.5.2.21).

Proof: Cf.[Kle05]P16. □

Cor.(8.7.1.16).For any f ∈ Hom(E ,F), f corresponds to a morphism X → V, then the inverse image
of V0 ⊂ V in X is the closed subscheme X ′ with the universal property that for any φ : T → X,
φ∗f = 0 iff φ factors through X ′.

2 Hilbert & Quot Schemes
References are [Nit05]. For simplicity, we restrict to the category of locally Noetherian schemes

over S, and assume X/S is separated.

Def.(8.7.2.1)[Hilbert Functors].Let X ∈ SchS , then the Hilbert functor is the functor

HilbX/S : SchS → Set : T 7→ closed subschemes of XT that is flat over Z}.

Def.(8.7.2.2)[Quot Functors].Let S be a locally Noetherian scheme and f : X → S be a f.t. scheme
over S and E ∈ Coh(X), then for any T ∈ SchS , define a family of quotients of E parametrized
by T to be a pair (F , q) where

• F ∈ Coh(XT ) s.t. Supp(F) is proper over T .
• A surjective homomorphism of sheaves q : ET → F .

Then the Quot functor is the functor

QuotE/X/S : SchS → Set : T 7→ {isomorphism classes of family of quotients of E parametrized by T}.

Cor.(8.7.2.3)[Hilbert Functors as Quot Functors].HilbX/S = QuotOX/X/S
.

Prop.(8.7.2.4)[QuotF/X/S are Fpqc Sheaves].QuotF/X/S are fpqc sheaves.

Proof: This follows from the fact QCoh / Sch is a fpqc sheaf(5.1.5.12). □

Prop.(8.7.2.5)[Stratification by Hilbert Polynomials].Let L be a line bundle on XT , then for
any line bundle L on XT , then for any t ∈ T , the Hilbert polynomial of Ft w.r.t. the line bundle
Lt on Xt is locally constant on T , and is stable under extension of residue fields, thus we can define
QuotΦ,L

E/X/S to represent the subfunctor of QuotE/X/S consisting of pairs (F , q) s.t. Ft has Hilbert
polynomial Φ w.r.t. Lt for all t ∈ T .

Then if each QuotΦ,L
E/X/S is representable, QuotE/X/S is also representable, and there is a decom-

position
QuotE/X/S =

⨿
Φ∈Q[λ]

QuotΦ,L
E/X/S .
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Prop.(8.7.2.6) [Valuation Criterion].Let X → S be proper, then the morphism of functors
QuotΦ,L

E/X/S → hS satisfies the discrete valuation criterion for properness.

Proof: The valuation criterion says if R is a valuation ring with fraction field K with a morphism
SpecR → S, then any pairs (FK , qK) where FK ∈ Coh(XK) and qK : EK → FK a surjection can
extends uniquely to a surjective map qR : ER → FR ∈ Coh(XR) s.t. FR is flat over R.

For this, let j : XK → XR be the open immersion, take FR to be the image of the map ER →
i∗EK

i∗qK−−−→ i∗FK , then i∗FR = FK , and FR is flat over R because it is torsion-free(4.4.1.12). Notice
the properness of X/S is used to show that Supp(F) ⊂ XR is proper over R. □

Lemma(8.7.2.7)[Preliminary Reductions]. Situation as in(8.7.2.2), then
• Let ν ∈ Z, then tensoring Lν gives an isomorphism of functors QuotΦ,L

E/X/S
∼= QuotΨ,L

E(ν)/X/S ,
where Ψ(λ) = Φ(λ+ ν).

• Let φ : E → G be a surjective homomorphism in Coh(X), then the corresponding natural
transformation QuotΦ,L

G/X/S → QuotΦ,L
E/X/S is a closed subfunctor.

• If X/S is proper, let i : U → X be an open subscheme, then QuotΦ,L
i∗E/U/S is an open subfunctor

of QuotΦ,L
E/X/S .

Proof: 1 is obvious.
2: It suffices to show for any locally Noetherian scheme T ∈ SchS and a pair (F , q) ∈

QuotΦ,L
E/X/S(T ), there exists a closed subscheme T ′ of T s.t. for any locally Noetherian scheme U

and f : U → T , qU : EU → FU factors through GU iff f factors through T ′. For this, just take T ′ to
be the vanishing scheme of ker(φT )→ ET → FT (8.7.1.16)(or by direct verification).

3: Firstly the natural transformation QuotΦ,L
i∗E/U/S → QuotΦ,L

E/X/S is given by

ηT : (F , i∗ET → F) 7→ (Im(ET → i∗F), adjunction).

Notice restriction is a left inverse to this transformation. Then by inspection, this is an open
subfunctor iff for any locally Noetherian scheme T ∈ SchS and a pair (F , q) ∈ QuotΦ,L

E/X/S(T ), for any
locally Noetherian scheme Q and f : Q → T , the restriction of (F , q) to Q is in QuotΦ,L

i∗E/U/S(Q) iff
FQ → iQ∗i

∗
QFQ is injective.? □

Thm.(8.7.2.8)[Grothendieck].Let S be a Noetherian scheme and f : X → S a (quasi-)projective
morphism, L an f -very ample line bundle on X, then for any coherent OX -module E and any
polynomial Φ ∈ Q[λ], the functor QuotΦ,L

E/X/S is representable by a (quasi-)projective S-scheme.

Proof: Cf.[Nit05]P24.
For the quasi-projective case, use(8.7.2.7) and the fact any coherent sheaf can be extended. □

Remark(8.7.2.9).Cf.[Hartshorne Appendix B, 3.4.1] has an example of a 3-dimensional smooth
proper scheme over C with a free G = Z/(2)-action for which the quotient X/G is not a scheme.
Which means that HilbX/C is not representable by a scheme.

Cor.(8.7.2.10).Let S be a locally Noetherian scheme and f : X → S be H-projective, L =
OPS(V )(1)|X , E a coherent quotient sheaf of O⊕p

X (ν) where p > 0, ν ∈ Z, and Φ ∈ Q[λ], then he
functor QuotΦ,L

E/X/S is representable by an H-projective S-scheme.
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Lemma(8.7.2.11) [Altman-Kleinman].Let S be a locally Noetherian scheme and f : X → S be
a closed subscheme of some PS(V ) where V is a finite locally free sheaf on S, L = OPS(V )(1)|X ,
E a coherent quotient sheaf of f∗(W )(ν) where W is a finite locally free sheaf on S and ν ∈ Z,
and Φ ∈ Q[λ], then the functor QuotΦ,L

E/X/S is representable by a projective S-scheme that can be
embedded in PS(F ) for some finite locally free sheaf F on S that is an exterior power of W with a
symmetric power of V .
Proof: Cf.[Nit05]P24. □

Lemma(8.7.2.12).Let S be a locally Noetherian scheme and f : X = PS(V )→ S where V is a finite
locally free sheaf on S, L = OPS(V )(1), E = f∗(W )(ν) where W is a finite locally free sheaf on S and
ν ∈ Z, and Φ ∈ Q[λ], then the functor QuotΦ,L

E/X/S is representable by a projective S-scheme that can
be embedded in PS(F ) for some finite locally free sheaf F on S that is an exterior power of W with
a symmetric power of V .
Proof: Cf.[Nit05]P24. □

Examples of Quot Schemes

Prop.(8.7.2.13)[Projective Spaces].Quot1,OZ

⊕n+1OZ/Z/Z
∼= PnZ, with the universal element the tauto-

logical quotient ⊕n+1OPn → OPn(1).
Moreover, if E ∈ Cohfree(S), then Quot1,OS

E/S/S
∼= P(E), with the universal element the tautological

quotient π∗(E)→ OP(E)(1).
Proof: For any surjective map ET → L where L is a line bundle, locally H0(L) ∼= H0(ET ) is of
dimension n and thus L is basepoint-free. Now the associated map φL : T → OP(E)? pulls OP(E)(1)
to L. □

Def.(8.7.2.14)[Relative Grassmannian of a Coherent Sheaf].Let E ∈ Coh(S), define the rela-
tive Grassmannian of E to be Gra(E , k) = Quotk,OS

E/S/S .
Then if E is finite locally free, it is a quotient of the group scheme GL(n)S , and when E ∼= OnS

and S = Z, this is just the Grassmannian variety Gra(n, k) defined in(8.2.1.20).
In particular, Gra(n+ 1, 1) ∼= PnZ by(8.7.2.13).

Proof: First we prove for E finite locally free: There is a natural action of GL(n) on Quotk,OS

E/S/S , it
is clearly a quotient map, and the kernel is a closed subgroup of GL(n)S by(15.5.1.4). Thus Gra(E , k)
is a quotient of GL(n) by definition(8.1.1.21).

In general, E is a locally a quotient of a finite locally free sheaf, thus Gra(E , k) is locally projective
by(8.7.2.7). □

Prop.(8.7.2.15)[Quotient by Flat Projective Equivalence Relations].
Proof: Cf.[Nit05]P31. □

Prop.(8.7.2.16) [Grassmannian Varieties are projective].The Grassmannian variety Gra(E , k)
is locally projective, and when E is locally free, it is projective, and if E is trivial, it is H-projective.
Proof: It injects into P(∧kE) by the natural transformation

TS : (OnT → Q) 7→ (∧k(OnT )→ ∧kQ).

In particular, the corresponding very ample line bundle is just ∧kF , where f∗E → F is the universal
element and f : Gra(E , k)→ S, by(8.7.2.13). □
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Cor.(8.7.2.17) [Grassmannian Varieties and Projective Space].There is a canonical isomor-
phism G(n, n− 1) ∼= Pn−1 identifying sections with surjections from OnX .

Prop.(8.7.2.18)[Flag Varieties].The flag variety(8.2.1.22) represents the functor T 7→ { the isomor-
phism classes of flags in OnT of the given dimensions}.

Cor.(8.7.2.19)[Flag Varieties are Projective].The flag varieties are projective as they are closed
subsets of a product of Grassmannian varieties.

3 Picard Schemes
Main references are [Kle05]. For simplicity, we assume S is locally Noetherian and restrict to the

category of locally Noetherian schemes over S, and X/S is separated.
Notice a morphism X → S is said to have integral geometric fibers if for any alg.closed field k

and a morphism Spec k → S, Xk is integral.

Picard Functors

Def.(8.7.3.1)[Picard Functor].Let X ∈ SchS , the Picard functor is the functor

PicX : SchS → Grp : T 7→ Pic(XT ) = H1(XT ,O∗
XT

).

The problem of this functor is that it is not a Zariski sheaf.
Define the relative Picard functor P̃icX/S : SchS → Grp : T 7→ Pic(XT )/ pr∗

T (Pic(T )). Let the
shifification of this ring in the Zariski/étale/fppf topology denoted by PicX/S,Zar,PicX/S,ét,PicX/S .
Then there are maps of presheaves:

PicX → P̃icX/S → PicX/S,Zar → PicX/S,ét → PicX/S .

Remark(8.7.3.2). In the following we will frequently use a technical condition s.t. OS → f∗(OX) is
an isomorphism. This is true when X is a proper variety over S, by(5.10.5.2).

Prop.(8.7.3.3).Assume OS ∼= f∗OX , then the functor N → f∗N is fully faithful from the category
of finite locally free sheaves on S to the category of finite locally free sheaves on S s.t. f∗ is a left
partial inverse.

Proof: For any finite locally free sheaf N , there is an isomorphism N ∼= f∗f
∗N by checking

locally, and for any other finite locally free sheaf N ′, Hom(N ,N ′) is also finite locally free, thus
the natural map f∗Hom(N ,N ′) → Hom(f∗N , f∗N ′) is an isomorphism by checking locally. Thus
Hom(N ,N ′) ∼= Hom(f∗N , f∗N ′). □

Def.(8.7.3.4)[Rigidification].Assume f : X → S has a section g : S → X, then for any T ∈ SchS
and L ∈ Pic(XT ), a g-rigidification of L is an isomorphism u : OT ∼= g∗

TL.

Prop.(8.7.3.5).Let f : X → S be a morphism of schemes with a section g, then for any T ∈ SchS ,
the group of isomorphism classes of pairs (L, u) where L ∈ Pic(XT ) and u is a g-rigidification of L,
is isomorphism to P̃icX/S(T ).

Proof: For anyM∈ Pic(XT ), let L =M⊗ (f∗
T g

∗
TM)−1, then L =M∈ Pic(XT )/ pr∗

T Pic(T ), and
there is a canonial isomorphism g∗

TL ∼= OT .
Conversely, if u : OT ∼= g∗

TL and there exists some N ∈ Pic(T ) s.t. v : L ∼= f∗
TN , let w = g∗

T ◦ u :
OT ∼= g∗

TL ∼= N , then there are isomorphism of pairs: v : (L, u) ∼= (f∗
TN , w), f∗

Tw : (OXT , can) ∼=
(f∗
TN , w ◦ can), thus (L, u) = e. □
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Prop.(8.7.3.6) [No Automorphisms after Rigidification].Let f : X → S be a morphism of
schemes. If for any T ∈ SchS , fT : XT → T satisfies OT ∼= (fT )∗OXT , and f has a section g, then
for any (L, u) where u is a g-rigidification of L, Aut(L, u) is trivial.

Proof: For such an automorphism v : L → L, g∗
T (v) = id, Also notice Hom(L,L) =

H0(Hom(L,L)) = H0(OXT ) ∼= H0(OT ), thus v is tensoring a line bundle L from OT . Thus g∗v
is multiplying L. So L ∼= OT and v is trivial. □

Prop.(8.7.3.7) [Comparison Theorems].Let f : X → S be a morphism of schemes. If for any
T ∈ SchS , fT : XT → T satisfies OT ∼= (fT )∗OXT , then

• The morphisms P̃icX/S ↪→ PicX/S,Zar ↪→ PicX/S,ét ↪→ PicX/S are injections. In particular,
P̃icX/S is separated in the fppf topology.

• If f has a section, then P̃icX/S ∼= PicX/S,Zar
∼= PicX/S,ét

∼= PicX/S .
• If f has a section Zariski locally, then PicX/S,Zar

∼= PicX/S,ét
∼= PicX/S .

• if f has a section étale locally, then PicX/S,ét
∼= PicX/S .

Proof: 1: It suffices to show that P̃icX/S → PicX/S are injective. For this, notice first PicX/S
is also the fppf-sheaf associated to PicX , as any line bundle on T is Zariski-locally trivial. Then
if L ∈ Pic(XT ) is fppf-locally trivial, then for some fppf covering π : T ′ → T , (fT ′)∗π

∗
XL ∼= OT ′

by hypothesis. And this equals π∗(fT )∗L by flat base change. So (fT )∗L is an invertible sheaf(by
hypothesis used on fT ) and (fT )∗(fT )∗L ∼= L because it is true after f.f. base change to T ′(flat base
change used).

2: By item1, it suffices to show P̃icX/S satisfies the fppf-descent, but this follows from the fact
PicX/S is a rigid fibered category(5.1.3.5), QCoh / Sch is a stack(5.1.5.12) and line bundles satisfy the
fpqc descent(5.5.3.1).

3, 4 follow from 2 by base change. □

Prop.(8.7.3.8)[Comparison of Points].Let SpecA ∈ SchS where A is a local ring, then
• the natural maps PicX(A) ∼= P̃icX/S(A) ∼= PicX/S,Zar(A) are isomorphisms.
• If A is Artin local with alg.closed residue field, then PicX(A) ∼= PicX/S,ét(A).
• If A is an alg.closed field k, then PicX(k) ∼= PicX/S(k)

Proof: 1: Since A is local, Pic(SpecA) = 0, and it has a unique minimal point, thus 1 is clear.
2: Every étale A-algebra of f.t. is a direct product of copies of A?, thus it is clear any fppf local

scheme is a scheme.
3: In this case, any fppf covering of Spec k has a section, thus this follows from(8.7.3.7). □

Prop.(8.7.3.9). If X/S is proper of f.p., then an element in PicX/S(S) is trivial iff it is trivial Zariski-
locally on S.

Proof: Cf.[Neron Model, P202]. □

Relative Effective Divisors

Prop.(8.7.3.10) [Divisor Functor].The divisor functor DivX/S : SchS → Grp is given by T 7→
{relative effective divisors on XT /T}. This is truly a functor by(5.8.1.12).
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Thm.(8.7.3.11) [DivX/S is Representable]. If S is a locally Noetherian scheme and X → S is
projective and flat, then DivX/S(8.7.3.10) is representable by an open subscheme of the Hilbert
scheme HilbX/S .

Proof: Let H = HilbX/S and W ⊂ X ×H the universal closed subscheme. Then prH is projective
and flat. Let V be the open loci of points of W s.t. W is an effective divisor, U = H\q(W\V ), then
U is open in H and q−1U is an effective divisor on X×U/U . By definition of Hilbert scheme, for any
effective divisor D on some XT /T is the pullback of W via g. Now we show for any t ∈ D, g(t) ∈ U .
This follows from(5.8.1.10) and f.f. descent of regularness(5.1.5.28). Thus g factors through U , as U
is open. □

Def.(8.7.3.12)[Relative Abel Map].The relative Abel map is the functor

AX/S(T ) : 7→ DivX/S(T )→ P̃icX/S(T ) : D 7→ LXT (D).

Def.(8.7.3.13) [Linear System Functor].Let X ∈ SchS and L ∈ Pic(X), the linear system
functor LinSysL/X/S : SchS → Set is defined to be the inverse image of L ∈ P̃icX/S in DivX/S via
the Abel map(8.7.3.12).

Thm.(8.7.3.14)[LinSysL/X/S is Representable].Let X be a proper variety over S and L ∈ Pic(X),
then LinSysL/X/S is represented by some projective space P(Q) over S.

Proof: Cf.[Kle05]P25.? □

Prop.(8.7.3.15).Assume X/S is proper and F ∈ Coh(X), then there exists a unique Q ∈ Coh(S)
with functorial isomorphism

q : Hom(Q,N ) ∼= f∗(F ⊗ f∗N )

for any N ∈ QCoh(S).
And the formation of Q commutes with base change.

Proof: Cf.[Kle05]P24.? □

Prop.(8.7.3.16). Situation as in(8.7.3.15), if S is a local ring with closed point s, the following are
equivalent:

• The OS-module Q is locally free.
• For all N ∈ QCoh(OS), the functor N 7→ f∗(F ⊗ f∗N ) is right exact.
• For all N ∈ QCoh(OS), the natural map f∗(F)⊗N → f∗(F ⊗ f∗N ) is an isomorphism.
• The natural map H0(X,F)⊗ k(s)→ H0(Xs,Fs) is a surjection.

Proof: Cf.[Kle05]P24.? □

Prop.(8.7.3.17) [DivX/S and LinSysP/XPicX/S /PicX/S
]. If X is a proper variety over S and P̃icX/S

is representable with the universal sheaf P, then DivX/S with the relative Abel map(8.7.3.12) is
isomorphic to LinSysP/XPicX/S /PicX/S

and also P(Q) over PicX/S , where Q is the coherent sheaf
associated to P(8.7.3.15).

Proof: It follows from definitions(8.7.3.13)(8.7.3.10) and(8.7.3.12) and the definition of a universal
sheaf. The last assertion follows from(8.7.3.14). □
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Prop.(8.7.3.18) [DivX/S is Proper over PicX/S].Let X/S be locally projective flat with integral
geometric fibers, then

• AX/S : DivX/S → PicX/S(T ) is proper.

• If P̃icX/T ∼= PicX/T , then AX/S : DivX/S → PicX/S(T ) is projective.

Proof: If P̃icX/T ∼= PicX/T , then by(8.7.3.17), it is projective. For general case, notice proper
satisfies fpqc descent, so we can base change to X ×SX → X, then it has a section, i.e. the diagonal
section. Thus by(8.7.3.7), P̃icX/T ∼= PicX/T and AX×SX/X is projective, thus AX/S is proper. □

Picard Schemes

Def.(8.7.3.19)[Picard Scheme].For the 5 different presheaves on SchS in(8.7.3.1), if one of them is
representable, then all the sheaves after it are all isomorphic to it and representable, because fpqc
sites are subcanonical. So it will make no confusion to call the representing scheme the Picard
scheme.

Prop.(8.7.3.20). If PicX/S is representable, then it is locally of f.t. over S.

Proof: Because S is locally Noetherian, by(5.8.4.2), it suffices to show that for any directed inverse
system (Ti, fii′) ∈ AffS ,

lim−→
I

PicX/S(Ti) ∼= PicX/S(lim−→
I

Ti).

For the rest, Cf.[Kle05]P33.? □

Prop.(8.7.3.21)[Points of PicX/S]. If PicX/S exists, then schematic points of PicX/S corresponds to
line bundles on the geometric fibers of X/S.

Proof: This follows from the definition of schematic points and(8.7.3.8)item3. □

Thm.(8.7.3.22) [Grothendieck].Let f : X → S be locally projective, flat with integral geometric
fibers, then

• PicX/S,ét is representable by a scheme separated and locally of f.p. over S.
• If moreover S is Noetherian and X/S is projective, then PicX/S,ét is a disjoint union of open

subschemes, each an increasing union of open quasi-projective S-schemes.

Proof: Cf.[Kle05]P27.? □

Cor.(8.7.3.23). If S is Noetherian and X/S is projective flat with integral geometric fibers, then any
qc locally closed subscheme of PicX/S is quasi-projective.

Prop.(8.7.3.24) [Tangent Space of PicX/k].Let X be a scheme over a field. Assume PicX/k is
representable by a scheme and equals PicX/k,ét, then Te(PicX/k) ∼= H1(X,OX).

Proof: By(8.2.2.1), the tangent space equals ker(PicX/k(k[ε])→ PicX/k(k)).
Take the first order thickening Xk ⊂ Xk[ε] = Xε, there is an exact sequence 0 → OX → O∗

Xε
→

O∗
X → 1, where OX → O∗

Xε
: a 7→ 1 + aε. And it is split. Thus we have a split exact sequence

0→ H1(OX)→ H1(O∗
Xε)→ H1(O∗

X)→ 0.
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Now PicX/S,ét is also the shifification of P̃icX/k : T 7→ H1(XT ,O∗
XT

), thus there is a natural map

H1(OX)→ ker(PicX/k(k[ε])→ PicX/k(k)) = Te(PicX/k).

And it can be shown that this is a k-homomorphism.
To show this map is an isomorphism, by flat base change we can assume k is alg.closed. Then

by(8.7.3.8), the maps H1(O∗
X) → PicX/k(k) and H1(O∗

Xε
) → PicX/k(k[ε]) are isomorphisms, thus

H1(OX)→ Te(PicX/k) is also an isomorphism by five lemma. □

Thm.(8.7.3.25)[Grothendieck].Assume X is proper over S integral, then there exists a non-empty
open subscheme V of S s.t. PicXV /V is representable, and is a disjoint union of quasi-projective
subschemes.

Proof: Cf.[Kle05]P34. □

Cor.(8.7.3.26)[Murre-Oort/Artin].Let X be a proper scheme over a field k, then PicX/k is repre-
sentable by a disjoint union of quasi-projective subschemes.

Prop.(8.7.3.27).Let X → Y be a surjective morphism of proper schemes over a field k, then the dual
map PicY/k → PicX/k is affine.

Proof: □

Prop.(8.7.3.28). If X/S is projective and flat with integral geometric fibers, then any connected
component of PicX/S is clopen of f.t..

Proof: By(8.7.3.22), PicX/S is locally Noetherian, so each connected components are
clopen(5.4.1.23), and they are of f.t. as PicΦ

X/S are(8.7.3.40). □

Prop.(8.7.3.29) [Projectiveness of Subschemes].Let S be Noetherian and X → S be smooth
projective with irreducible geometric fibers, then every quasi-compact closed subscheme of PicX/S
over S is projective.

Proof: By(8.7.3.23), it suffices to show it is universally closed. As X → S is both proper and flat,
it suffices to show for X → S f.f.. Then we can base change via the f.f. covering X → S, thus we can
assume it has a section, so P̃icX/S ∼= PicX/S . Then we use valuation criterion: for any valuation ring
A with fraction field K, it suffices to extend a line bundle on XK to a line bundle on XA, because
Z is closed and A is reduced. By replacing L with L(n), we can assume L has a global section,
which implies L is an effective Cartier divisor D, as XK is integral. Notice A is regular and XT /T

is smooth, so XT is regular?? and thus locally factorial. Then the closure of D in XT is also a
divisor?. □

Cor.(8.7.3.30). If X is a smooth projective variety over a field k, then all connected components of
PicX/k are proper.

Proof: This follows from(8.7.3.29) and(8.1.4.16). □

Prop.(8.7.3.31)[Product Varieties]. If X,Y are two complete varieties over a field k with rational
points, then PicX×Y/k

∼= PicX/k×PicY/k, with pX×Y = pr∗
1 pX ⊗ pr∗

2 pY .

Proof: This follows from see-saw principal(5.10.1.22), the theorem of the cube(5.10.1.23)
and(8.7.3.5). □
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Pic0
X/S

Def.(8.7.3.32)[Pic0
X/S]. If PicX/S exists, then its identity component is a subgroup scheme, denoted

by Pic0
X/S .?

Prop.(8.7.3.33)[Projectiveness of Pic0
X/k].Let X be a projective variety over a field k, then Pic0

X/S

is representable(8.7.3.22) and is quasi-projective. And if X/k is geo.normal, then it is projective.

Proof: Cf.[Kle05]P37.? □

Cor.(8.7.3.34)[Subfamily and Morphisms Relations].The Poincaré class pX in Pic(X×Pic0(X))
is the unique line bundle that satisfies pb = b for a point b ∈ Pic0(X), and pP0 is trivial.

For a subfamily c of Pic0(X) parametrized by an scheme T over k, there is a morphism

T → Pic0(X) : t 7→ ct ∈ Pic0(X)(k(t))

over k.

Proof: A point b ∈ Pic0(X) is a morphism k(b)→ Pic0(X), and the restriction of p to b is just b,
by(8.7.3.22).

The second assertion follows from the first, because this subfamily corresponds to a morphism
T → Pic0(X), and the restriction of p at the. image of t in Pic0(X) is just the subfamily restricted
at t, which is ct. □

Prop.(8.7.3.35)[Pic0
X/k,red is an Abelian Variety]. If X is a smooth projective variety over a field

k, then Pic0
X/k,red is an Abelian variety.

Proof: Pic0(X) is a group scheme because it represents a group functor. Pic0
X/S,red is also a smooth

proper connected algebraic group by(8.7.3.30)(8.7.3.28), thus it is an Abelian variety. □

Prop.(8.7.3.36) [Dual Picard Map].By functoriality, if X/S,X ′/S are connected schemes s.t.
PicX/S and PicX′/S are representable, then the pullback along φ induces a dual homomorphism
of group schemes:

φ̂ : Pic0
X′/S,red → Pic0

X/S,red .

In other words, it is the unique morphism Pic0
X′/S,red → Pic0

X/S,red s.t.

(φ× idPic0
X′/S,red

)∗pX′/S = (idX ×φ̂)∗pX/S .

Prop.(8.7.3.37) [Double Picard Map].Let X/S be a connected scheme s.t. P̃icX/S,red is repre-
sentable with a Poincaré class pX ∈ Pic(X × Pic0

X/S,red), and ̂Pic0
X/S,red is representable, then pX

satisfies (pX)0 = 0, thus inducing a map X → ̂Pic0
X/S,red.

Def.(8.7.3.38)[Néron-Severi Group Scheme].Let X be a complete k-variety, the Néron-Severi
group NS(Xk) of Xk is defined to be

NS(Xk) = Pic(Xk)/Pic0(Xk) = π0(PicX/k)(k)(7.1.12.4)(7.3.1.2),

which in fact equals π0(PicXks/ks)(k
s) = Pic(Xks)/Pic0(Xks) = NS(Xks).

Also denote

N1(Xk) = Pic(Xk)/Picτ (Xk) = NS(Xk)/NS(Xk)tor(7.1.12.25) = N1(Xks).
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Prop.(8.7.3.39) [Theorem of the Base]. NS(Xk) is f.g. In particular, N1(Xk) is a finite free
Z-module, and its rank ρ(X) is called the Picard number of X.

Proof: Cf. [Kleiman, Toward a numerical theory of ampleness, P334]. □
Prop.(8.7.3.40) [PicΦ

X/S]. If X/S is locally projective, flat with integral geometric fibers, Φ ∈ Q[λ],
let PicΦ

X/S denote the subfunctor of PicX/S representing invertible sheaves L with χ(L(n)) = Φ(n),
then PicΦ

X/S are clopen subschemes of PicX/S of f.t. and form a disjoint cover of it, and forming it
commutes with base change. Moreover, if X/S is projective and S is Noetherian, then each PicΦ

X/S

is quasi-projective over S.

Proof: Cf.[Kle05]P60.?
The first assertion follows from the fact Euler character is locally constant so PicΦ

X/S form a
clopen disjoint covering of PicX/S and use(8.7.1.5) and(8.7.1.7). □

Prop.(8.7.3.41)[Quasi-Coherence and Boundedness]. If PicX/S is representable and Λ ⊂ PicX/S
be a subset with corresponding set of line bundles L, then Λ is qc iff L is bounded(7.1.12.24).

Proof: If L is bounded by T ∈ Schft /S, then there is a map θ : T → PicX/S that Λ ⊂ θ(T ). Notice
T is a Noetherian space, thus so is θ(T ), and Λ is qc.

Conversely, if Λ is qc, then it is contained in an open subscheme U ⊂ PicX/S of f.t. over S, then
U gives out a line bundle on XT for some fppf covering T of U . Such T can be chosen to be f.t. over
S as U is f.t., so L is bounded by T . □

Cor.(8.7.3.42)[Quasi-Coherence and Hilbert Polynomials]. If S is Noetherian and X/S is pro-
jective and flat, and PicX/S is representable, let Λ ⊂ PicX/S be any subset and Π the corresponding
set of Hilbert polynomials, then #Π <∞ if Λ is qc, and #Π = 1 if Λ is connected.

Proof: If Λ is qc, then L is bounded by some T ∈ Schft /S, and then by locally constancy of Hilbert
polynomials, #Π <∞.

If Λ is connected, then so is the induced reduced structure on its closure Λ. Λ gives out a line
bundle on XT for some fppf covering T of Λ. Notice T → Λ is open and Hilbert polynomial is locally
constant on T , so there is only one Hilbert polynomial type. □

Torsion Components

Prop.(8.7.3.43). If X/S is projective, flat with integral geometric fibers, then for n ∈ Z+, [n] :
PicX/S → PicX/S is of f.t.

Proof: Cf.[?]. □
Prop.(8.7.3.44). If X/S is proper and PicX/S exists, then PicτX/S is an open subgroup of f.t..

Proof: Cf.[Kle05]P59. □
Prop.(8.7.3.45). If X is a k-scheme s.t. PicX/k is representable, then PicτX/S is an open subgroup,
and forming it commutes with change of fields. Moreover, if X/S is projective, then PicτX/S is clopen
of f.t..

Proof: Using(8.1.4.17) and(8.7.3.20), it suffices to prove PicτX/S is of f.t. when X is projective
over S. For this, it suffices to prove for k = k. In this case, by(7.1.12.25) and(7.1.12.26), there is an
algebraic k-scheme T andM∈ T s.t. the corresponding map θ : T → PicX/k satisfies PicτX/S ⊂ θ(T ).
Notice T is a Noetherian space, thus so is θ(T ), and Λ is qc. □
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Cor.(8.7.3.46).Let X is a projective variety over a field k, then PicτX/k is quasi-projective. And if X
is geo.normal, then it is projective.

Proof: By(8.7.3.45)(8.7.3.23), PicX/S is quasi-projective. To show it is proper, it suffices to show
for k = k. In this case, PicτX/k is covered by f.m. translates of Pic0

X/k as it is qc, and Pic0
X/k is

projective by(8.7.3.33), so PicX/k is also proper, as it is closed so is the scheme-theoretic image of
these copies Pic0

X/k. □

Prop.(8.7.3.47).Let X/S be locally projective flat with integral geometric fibers, then PicτX/S is a
clopen subgroup of PicX/S of f.t., and forming it is compatible with base change. Moreover, if X/S
is projective with S Noetherian, then PicτX/S is quasi-projective.

Proof: Cf.[Kle05]P58. □

Cor.(8.7.3.48)[Torsion Components are Projective]. If X/S is smooth projective with integral
geometric fibers and S is Noetherian, then PicτX/S is projective.

Proof: This follows from(8.7.3.47) and(8.7.3.29). □

Prop.(8.7.3.49). If S is Noetherian and X/S is locally projective flat with integral geometric fibers,
then for any s ∈ S with residue field k(s) and an alg.closure k(s), the group

Picτ
X
k(s)/k(s)(k(s))/PicX

k(s)/k(s)(k(s))

is a finite group, and its order is uniformly bounded.

Proof: It is finite by(8.7.3.47), and the number of connected components of Picτ
X
k(s)/k(s) is constant

for a non-empty open subset of S by [EGA 4.3, 9.7.9], so it is bounded by Noetherian induction. □

4 Picard Spaces
Thm.(8.7.4.1)[Artin]. If X → S is proper flat and f.p. morphism of algebraic spaces s.t. forming
f∗OX commutes with base change, then PicX/S is representable by an algebraic space, and is locally
of f.p. over S.

Proof: □

5 Moduli of Curves
Def.(8.7.5.1)[Smooth Curves of Genus g].Given a scheme S, there is a category Mg fibered in
sets over Sch /S where Mg(T ) is the set of smooth and proper morphisms of schemes C → T that
the fibered are all geometrically connected curves of genus g.

Similarly there is a category Zg fibered in sets over Sch /S of smooth pointed curves of genus g
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8.8 Algebraic Stacks
Basic references are [Sta], [Ols16], [Vis08] and [Fibered Category to Algebraic Stacks Lamb].

Notation(8.8.0.1).
• Use notations as in Sites, Sheaves and Stacks5.1.
• Fix S ∈ Sch. A fibered category/stack over S means a fibered category/stack over

Schfppf /S(obsolete).

1 Algebraic Spaces
Def.(8.8.1.1)[Schematic Morphism].A schematic morphism of fibered categories X → Y over
S is a representable morphism of fibered categories over S(3.1.8.36).

Def.(8.8.1.2)[Properties of Schematic Morphisms].For a property P of maps of schemes which
is stable under base change, we say that P holds for a schematic map X → Y iff for any S ∈ Sch, P
holds for the map S ×Y X → S.

Def.(8.8.1.3) [Algebraic Space].An algebraic space is a sheaf F ∈ Shfppf /S that the diagonal
is schematic, and there exists some scheme U ∈ Sch /S with an étale surjective map hU → F in
Schfppf /S, called an atlas for the algebraic space F .

The category of algebraic spaces is the full subcategory of Shfppf /S, denoted by AlgSp /S.

Prop.(8.8.1.4)[Schemes is an Algebraic Space]. Sch /S is a full subcategory of AlgSp /S.

Proof: For X ∈ Sch /S, hX is a sheaf because fppf site is subcanonical by(5.1.4.34), its diagonal is
representable, and the identity idX : X → X is surjective and étale. □

Remark(8.8.1.5). In general, the quotient of a scheme by a finite group action is an algebraic space
that is not a scheme. Naively one can think of algebraic spaces as quotients of schemes by finite
groups. —–Kollar.

Def.(8.8.1.6)[Sites over Algebraic Spaces].The Zariski/étale/smooth/fppf/... sites over an alge-
braic space is defined verbatim as that of over algebraic schemes.

Prop.(8.8.1.7)[Algebraic Spaces and Étale Equivalence Relations].Cf.[Sta]02WW.

Proof: □

Prop.(8.8.1.8). If X is an algebraic space over S, then the diagonal map ∆X/S is locally of finite type,
locally quasi-finite, separated and is a monomorphism.

Proof: Cf.[Sta]02X4. □

Def.(8.8.1.9)[Underlying Space of Algebraic Spaces].For X ∈ AlgSp /S, the underlying space
|X | is a topological space whose points are the equivalence classes of morphisms SpecK → X ∈
Shfppf /S, where K ∈ Field.

Prop.(8.8.1.10).Let X ∈ AlgSp /S, T ∈ Sch /S, f : T → X ∈ AlgSp /S, then f is surjective iff
|f | : |T | → |X| is surjective.

Proof:
□
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2 Algebraic Stacks
Def.(8.8.2.1)[Representable by Algebraic Spaces].A morphism of fibered categories X → Y over
S is called representable by algebraic spaces if for any U ∈ C and a morphism C/U → Y, the
fibered category (C/U)×YX → C/U is equivalent to an algebraic space(8.8.1.3).(Notice it is a fibered
category by(3.1.8.15) and(3.1.8.16))

Def.(8.8.2.2)[Properties of Morphisms Representable by Algebraic Spaces].For a property
P of maps of schemes which is stable under base change, we say that P holds for a morphism X → Y
representable by algebraic spaces iff for every U ∈ Schfppf /S, P holds for the map of algebraic spaces
U ×Y X → S.

Def.(8.8.2.3)[2-Category of Algebraic Stack].An algebraic stack is a stack in groupoids X over
Schfppf /S that the diagonal is representable by an algebraic space(8.8.2.1), and there exists some
scheme U ∈ Sch /S with a smooth surjective map Schfppf /U → X in Stafppf /S, called an atlas for
the algebraic stack X. It is called a Deligne-Mumford stack if moreover there exists some
scheme U with a smooth étale map Schfppf /U → X in Stafppf /S.

The 2-category of algebraic(Deligne-Mumford) stacks is the full sub-2-category of Stafppf /S,
denoted by AlgSta /S(AlgStaDM /S).

Prop.(8.8.2.4). If X ,Y are categories equivalent in Sch /S and X is an algebraic/Deligne-Mumford
stack over S, then so is Y.

Proof: By(5.1.3.7), Y is also a stack in groupoid, and Cf.[Sta]03YQ?. □

Prop.(8.8.2.5) [Algebraic Stacks and Étale Groupoid Object].There is a bijection of étale
groupoid objects on a scheme with the category of algebraic stacks.

Proof: Cf.[Lamb, P39]. □

Prop.(8.8.2.6)[Algebraic Spaces and Étale Equivalence Relations].There is a bijection of étale
equivalence relations on a scheme with the category of algebraic spaces.

Proof: This is a corollary of(8.8.2.5). □

3 Sheaves on Algebraic Stacks
4 Representability
5 Artin’s Axioms
6 Quot and Hilbert Stacks
7 Properties of Algebraic Stacks
8 Morphisms of Algebraic Stacks
9 Limits of Algebraic Stacks
10 Cohomology of Algebraic Stacks
11 Derived Categories of Stacks
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8.9 Group Algebraic Spaces
Main references are [Sta]Chap76.

Notation(8.9.0.1).
• Use notations defined in Algebraic Stacks8.8.
• Fix S ∈ Sch and B ∈ AlgSp /S. AlgSp /B = (AlgSp /S)/B.

Def.(8.9.0.2)[Group Algebraic Spaces].The category GrpSp /B of group algebraic space over
B is defined to be

GrpSp /B = ShGrp
fppf /B ∩AlgSp /B ⊂ Shfppf /B.

1 Quotient of Groupoids
Main references are [Quotient Spaces Modulo Algebraic Groups, Kollar, 1997].

Def.(8.9.1.1)[Quotients of Groupoids].Let U ∈ AlgSp /B, j : R → U ×B U be a pre-relation on
U over B, φ : U → X ∈ AlgSp /B, then

• For u ∈ |U |, the R-orbit of u is the equivalent class of u ∈ |U | generated by |R| ⊂ |U | × |U |.
• For T ⊂ |U |, T is called R-invariant if s−1(T ) = t−1(T ) ⊂ |R|.
• φ is said to be R-invariant if for it equalizes the two maps s, t : R→ U .
• φ is said to be set-theoretically R-invariant if for any Spec k ∈ Sch /B, k = k, φ(k) equalizes

the two maps s, t : R(k)→ U(k).
• φ is said to separate R-orbits if it is set-theoretically R-invariant and for any Spec k ∈

Sch /B, k = k and u, u′ ∈ U(k), φ(u) = φ(u′) ∈ X(k) implies u, u′ are in the same R-orbits.
• φ is said to be an orbit space for R if it is R-invariant and surjective, and separates R-orbits.
• φ is said to be a course quotient for R if it is a categorical quotient and it is an orbit space

for R.
• If S = B,U,R,X ∈ Sch, then φ is said to be a course quotient in schemes for R if it is a

categorical quotient in schemes and it is an orbit space for R.
• If φ is R-invariant, The sheaf of R-invariant functions (φ∗OU )R as the étale OX -subalgebra

of φ∗OU which is the equalizer of two maps induced from s, t : R→ X.

Prop.(8.9.1.2). Situation as in(8.9.1.1), if R,U are locally of f.t. over B, φ is an orbit space for R iff
it is R-invariant and for any Spec k ∈ Sch /B, k = k,

U(k)/(equivalent relations generated by j(R(k)))→ X(k)

is bijective.

Proof: Cf.[Sta]04A0. □

Def.(8.9.1.3)[Good Quotients]. Situation as in(8.9.1.1), φ is said to be a good quotient if
• φ is affine, surjective, R-invariant.
• For any base change φ′ of φ, |φ′| is a closed map, and |φ|(Z1 ∩ Z2) = |φ|(Z1) ∩ |φ|(Z2) ⊂ |X|

for any closed subsets Z1, Z2 ⊂ |U |.
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• OX → (φ∗OU )R is an isomorphism.

Def.(8.9.1.4)[Geometric Quotients]. Situation as in(8.9.1.1), φ is said to be a geometric quotient
if

• φ is an orbit space for R,
• φ is universally submersive,
• OX → (φ∗OU )R is an isomorphism.

Thm.(8.9.1.5) [Kollar].Let S ∈ Sch be excellent, G ∈ AlgGrpAff /S,X ∈ AlgSpsep,ft /S. Let m :
G×X → X be a proper G-action on X, and one of the following holds:

• G is a reductive group scheme over S,
• S = Spec k where k ∈ Field, char k > 0.

Proof: then a geometric quotient φ : X → X/G exist(8.9.1.4), and X/G ∈ AlgSpsep,ft /S.
Cf.[Quotient Schemes modulo Algebraic Groups, Kollar]P35. □

2 Quotients of Schemes
Prop.(8.9.2.1).Let u0, u1 : X1 → X0 be an equivalence relation on the algebraic scheme X0 over R0.
Assume that

• u0 : X1 → X0 is locally free of rank r.
• For all x0 ∈ X, u0(u−1

1 (x)) is contained in an open affine subscheme of X0.
Then a quotient u : X0 → X exists. Moreover, u is locally free of rank r.

Proof: Cf[Mil17b]P597. □
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8.10 Higher Dimensional Geometry

1 Bend and Break
2 Cone Theorem
3 Homological Methods

Prop.(8.10.3.1)[Birkar-Cascini-Hacon-Mkernan].

4 Minimal Model Program
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9 | Algebraic K-Theory of Schemes

9.1 Algebraic K-Theory

1 Introduction

Algebraic K-theory is about natural constructions of cohomology theories/spectra from algebraic
data such as commutative rings, symmetric monoidal categories and various homotopy theoretic
refinements of these.

When applied to the stack of vector bundles then algebraic K-theory subsumes topological K-
theory and also differential K-theory.

2 K-Theory of Rings

Def.(9.1.2.1)[K-Theories of Rings].For R ∈ CRing, Let ProjfgR be the 1-category of f.g. projective
R-modules, and let ιProjfgR be the maximal subgroupoid, then it is a E∞-space. Let

K(R) = (ιProjfgR)∞−ab(3.8.2.7).

And let
K0(R) = π0(K(R)), Kj(R) = πj(K(R), 0).

Prop.(9.1.2.2)[Ring Structure].There is an E∞-Ring structure on K≥0(R), so

K∗(R) = ⊕j≥0Kj(R)

has a graded ring structure.

Prop.(9.1.2.3)[Matsumoto].For k ∈ Field, there are natural isomorphisms

KMil
i (k) ∼= Ki(k)

for i = 0, 1, 2, thus inducing a map
KMil

∗ (k)→ K∗(k)

that is not necessarily an isomorphism.

Proof: ? □
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3 K-Theory of Schemes
Thm.(9.1.3.1) [Thomason, Quillen].Let X be an affine regular and separated scheme, and X =
U ∪ V is an affine open cover, then there is a Cartesian square of spectra

K(X) K(U)

K(V ) K(U ∩ V )

Proof: □

Cor.(9.1.3.2)[Descent Spectral Sequence].There is a spectral sequence

Hp(X;πq(K))⇒ Kp−q(X).

Proof: ? □

Def.(9.1.3.3) [Graded Determinant Map].For X ∈ Sch affine or regular, let PicZ(X) =
Pic(X) ⋊ H0(X;Z), where H0(X;Z) acts on Pic(X) locally by n.L = L(−1)n . Then there is a
graded determinant map

(det, rank) : ιProjfg(X)→ PicZ

that is a morphism of E∞-rings:

det(M ⊕N) det(M)⊗ det(N)

det(N ⊕M) det(N)⊗ det(M)

∼=

∼=,(−1)rank(M) rank(N) ∼=
∼=

is commutative. Thus by universal property of group completion, we get a map

K(X)→ PicZ(X).

Thus we have maps
Kj(X) (det,rank)−−−−−−→ πj(PicZ(X)),

and the kernel is denoted by SKj(X).

Prop.(9.1.3.4).The graded determinant map(9.1.3.3) induces a surjective ring homomorphism

K0(X)→ PicZ(X).

Proof: L ⊗On−1
X is mapped to (L, n), and these generate PicZ(X). □

Prop.(9.1.3.5). If R is a local ring, then there is an isomorphism

K1(R) (det,rank)−−−−−−→ π1(PicZ(R)) ∼= R∗.

Prop.(9.1.3.6).Let X be a an irreducible regular Noetherian scheme of dimension 1, then there is an
isomorphism

K0(X) (det,rank)−−−−−−→∼=
PicZ(X).
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Proof: [Motives at p]L7P4.? □

Prop.(9.1.3.7)[Properties of K-Groups].For j ∈ Z, Kj : Schop → Ab are functors satisfying the
following properties:

• there is a rank map rank : K0(X)→ H0(X,Z), which is an isomorphism if X is a local scheme.
• If X is qcqs and X = U ∪ V is an open cover, there is a long exact sequence

· · · → Kj(X)→ Kj(U)⊕Kj(V )→ Kj(U ∩ V )→ Kj−1(X)→ · · · .

• If X is qcqs and Y → X is a closed immersion s.t. Y is regular, then there are natural maps

i∗ : Kj(Y )→ Kj(X)

that fits into a long exact sequence

· · · → Kj(Y ) i∗−→ Kj(X)→ Kj(X \ Y )→ Kj−1(Y )→ · · · .

• If X is regular, then the projection X ×A1 → X induces isomorphisms

Kj(X) ∼= Kj(X ×A1).

• If X is qcqs, there is a natural isomorphism

Kj(X){0} ⊕Kj(X){0(1)− 0} ∼= Kj(P1
X).?

Proof: ? □

Def.(9.1.3.8)[K-Groups of Schemes].For X ∈ Schqcqs, its algebraic K-theory is defined to be the
spectrum

K(X) = lim←−
SpecR→X

K(R).

It follows from(9.1.3.1) that this defines a

Conj.(9.1.3.9)[Beilinson-Parshin].For k ∈ Field,#k <∞, X ∈ SmProj /k, i > 0, Ki(X)⊗Q = 0.

Proof: □

Remark(9.1.3.10). In fact, when dimX = 0 this is done by Quillen’s computation of K-groups of
fields, Cf.[On the Cohomology and K-theory of the General Linear Groups over a Finite Field,
Quillen, 1972].

when dimX = 1, Ki(X) are in fact finite, by [Finite Generation of K-Groups of a Curve over a
Finite Field, Don 1982].
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9.2 Brauer-Grothendieck Groups

References are [Central Simple Algebras and Galois Cohomology, Gille and Szamuely] and [The
Brauer-Grothendieck Group].

1 Brauer Groups
Def.(9.2.1.1) [Brauer Groups].For X ∈ Sch, the Brauer group Br(X) is defined to be

Br(X) = H2
ét(X,Gm) = H2

fppf(X,Gm)(7.4.7.34). And for R ∈ CRing, Br(R) is defined to be
Br(R) = Br(SpecR).

Prop.(9.2.1.2). If X is a regular Noetherian scheme that is qc or integral, Br(X) → Br(R(X)) is
injective, and Br(X) is a torsion Abelian group.

Proof: The qc case reduces to the integral case, and this follows from [Brauer-Grothendieck
Groups]Chap3.5.

The second assertion follows from the first and the fact Br(R(X)) is torsion(9.2.2.3). □

Cor.(9.2.1.3). If X → Y is a birational morphism of integral regular schemes, then Br(Y ) → Br(X)
is injective.

Proof: This follows from the fact Br(Y )→ Br(X)→ Br(R(X)) = Br(R(Y )) is injective. □

Azumaya Brauer Groups

Prop.(9.2.1.4)[Azumaya Algebras of Schemes].For X ∈ Sch, an Azumaya algebra over X is a
coherent OX -algebra A s.t. Ax ̸= 0 for any x ∈ X, and satisfies the following equivalent definitions:

• There exists an étale covering {Ui → X} s.t. for each i, there exists ri ∈ Z+ s.t. A⊗OX
OUi ∼=

End(O⊗ri
Ui

).
• There exists an fppf covering {Ui → X} s.t. for each i, there exists ri ∈ Z+ s.t. A⊗OX

OUi ∼=
End(O⊗ri

Ui
).

• A ∈ VectX , and for any arithmetic point x ∈ X, Ax is isomorphic to Mat(rx, κ(x)) for some
rx ∈ Z+. And this rx is called the degree of A at x.

• A ∈ VectX , and the canonical homomorphism A⊗Aop → EndOX
(A) is an isomorphism.

In particular, this definition is compatible with the definition of Azumaya algebras over fields
in(2.4.3.2), by(2.4.3.25).

The category of Azumaya algebras over X is denoted by AzX . For n ∈ Z+, the subset of Azumaya
algebras over X of constant degree n is denoted by Azb(X).

Proof: 1→ 2→ 3→ 4 is trivial by(2.4.3.25). 4→ 1: Cf.[Milne80 Etale Cohomologies]P141.? □

Def.(9.2.1.5)[Azumaya Brauer Groups].Let X ∈ Sch, the Azumaya Brauer group BrAz(X) is
defined to be the set of equivalence class of Azumaya algebras over X under the equivalence relation
that A ∼ A′ iff there exists E , E ′ ∈ Vect(X) with positive ranks at each point s.t.

A⊗OX
End(E) ∼= A′ ⊗OX

End(E ′).

Moreover, BrAz(X) is a group under tensor product and the inverse is given by A → Aop.
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Proof: To show this is an equivalence and the group operation is well-defined, use the fact that for
E , E ′ ∈ Vect(X),

End(E)⊗OX
End(E) ∼= End(E ⊗ E ′).

And the inverse is of the form given, by(9.2.1.4). □

Lemma(9.2.1.6).Let (C,O) be a ringed site and F ,G ∈ Vect(O) s.t. End(F) ∼= End(G), then there
exists an invertible sheaf L s.t. F ⊗ L ∼= G.

Proof: Let L ⊂ Hom(F ,G) be generated as an OX -module by local isomorphisms φ : F ∼= G s.t.
the conjugation by φ coincides with the given isomorphism, then local computation and the fact all
automorphisms of Mat(n) is inner shows that L is invertible, and the evaluation map

F ⊗ L → G

is an isomorphism. □

Prop.(9.2.1.7). If A ∈ AzX has constant degree d, then [A] ∈ BrAz(X) is annihilated by d.

Proof: Choose an étale covering {Ui → X} and isomorphisms A|Ui ∼= Hom(Fi,Fi), where Fi ∈
Vectd(X), then

A⊗d|Ui ∼= End(F⊕d
i ).

Consider the maps
pi : F⊕d

i → ∧dFi ⊂ F⊕d
i ,

then p2
i = d!pi and rank(pi) = 1. We show now that these pi glue together to get a global section p

of A⊗d: by(9.2.1.6), there exist compatible invertible sheaves Lij on Ui ∩ Uj s.t.

Fi|Uij ⊗ Lij ∼= Fj |Uij .

These isomorphisms can clearly generate isomorphisms to glue {pi} together.
Then consider H = A⊗d ◦ p ⊂ A⊗d, we claim that
• dimH = dd,
• left multiplication by A⊗d induces an isomorphism A⊗d ∼= End(H).

Which will imply that d[A] = 0 ∈ BrAz(X). To show these claims, it suffices to do local calculations:
If F ∼= OXe1 ⊕ . . .⊕OXed, then A ∼= End(OdX), and

p : eσ(1) ⊗ . . .⊗ eσ(d) 7→ sgn(σ)e1 ⊗ . . .⊗ ed, σ ∈ Sd, 0 on other basis vectors

So

H = {f : F⊗d → F⊗d : eσ(1) ⊗ . . .⊗ eσ(d) 7→ sgn(σ)v1 ⊗ . . .⊗ vd, 0 on other basis vectors}

Then A ∼= End(OdX) is clear. □

Cor.(9.2.1.8)[Azumaya Brauer Groups are Torsion]. IfX ∈ Sch is qc or connected, then BrAz(X)
is a torsion Abelian group.
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Comparison of Two Brauer Groups

Prop.(9.2.1.9)[Azumaya Brauer Groups via Cohomology].Let X ∈ Sch, there exists an isomor-
phism of pointed sets

AznX ∼= Ȟ1
ét(X,PGL(n)).

Proof: As PGL(n) = Aut(Mat(n)) and any Azumaya algebra is a twist-form for Mat(n)X , any
A ∈ AznX defines a 1-cocycle for PGL(n). It is clear that if this cocycle is a coboundary, then A ∼=
Mat(n)X . Its left to show that any 1-cocycle comes from these: As PGL(n) ⊂ GL(n2), and 1-cocycle
is a 1-cocycle for GL(n2), thus by(5.1.6.1) corresponds to a vector bundle E of rank n2. By taking
a refinement, this means there is a covering {Ui → X} and isomorphisms φi : Mat(n,OUi) ∼= E|Ui
as modules such that the transformation maps φ−1

i ◦ φj ∈ PGL(n,OUij ) ⊂ GL(n2,OUij ), which
means exactly E ∈ AznX . □

Prop.(9.2.1.10)[Br(X) and BrAz(X)].Assume X ∈ Sch is qc and every finite subset of X is contained
in an affine scheme, by(5.3.2.19), the exact sequence

1→ Gm → GL(n)→ PGL(n)→ 1

of algebraic groups gives a map

Ȟ1
ét(X,GL(n))→ Azn(X) = Ȟ1

ét(X,PGL(n)) δn−→ Ȟ2
ét(X,Gm) ↪→ H2

ét(X,Gm) = Br(X).

by(9.2.1.9) and(5.3.2.14). So the kernel of δ : AznX → Br(X) is given by Azumaya algebras of the
form End(E) for E ∈ Vectn(X). These maps for various n give a map

Az(X)→ Br(X).

Then
• This map is an injective homomorphism, so BrAz(X) ⊂ Br(X).
• If X has an ample invertible sheaf, then the map induces an isomorphism

BrAz(X) ∼= Br(X)tor.

In particular, if X is a regular quasi-projective scheme over some A ∈ CRing, then by(9.2.1.2),

BrAz(X) ∼= Br(X)tor = Br(X).

For general X, this is also doable, by Gabber and de Jong?.

Proof: 1: By taking disjoint union, it suffices to show that for A ∈ AznX ,B ∈ AzmX ,

δmn(A⊗ B) = δn(A) · δm(B).

But this is clear from the description of δn: by the hypothesis and [Milne80 Etale Cohomology,
Prop4.2.19]? and(5.3.2.19), we may take an étale refinement {Ui} and assume the cocycle corre-
sponding to A is given by a cocycle cij s.t. cij ∈ Γ(Uij ,GL(n)). Then δ(A) is represented by the
2-cocycle with aijk = cjkc

−1
ik cij ∈ Γ(Uijk,Gm).

The injectivity follows from the presentation

BrAz(X) ∼= lim−→AznX / ∼= lim−→ Ȟ1
ét(X,PGL(n))/Ȟ1

ét(X,GL(n)).
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and the fact the image of Ȟ1
ét(X,GL(n)) in Ȟ1

ét(X,PGL(n)) is the class of End(n,E): a a ∈
Ȟ1

ét(X,GL(n)) corresponds to a vector bundle E of rank n with trivializations φi : OnUi ∼= E|Ui
s.t. a is represented by (φ−1

i φj). Then A = End(n, E) ∈ AznX has trivializations ψi : Mat(n,OUi) ∼=
End(n, E)|Ui , and A corresponds to the 1-cocycle

(ψ−1
i ψj) = (αij), αij(a) = φ−1

j φiaφ
−1
i φj , a ∈ Mat(n,OUij )

which is exactly the image of the class a under the map GL(n)→ PGL(n) : u 7→ conj(u).
2: Cf.[Brauer-Grothendieck Group]Chap4.? □

Prop.(9.2.1.11)[Kummer Exact Sequences].For X ∈ Sch, n ∈ Z+, the Kummer exact sequence
of algebraic groups

1→ µn → Gm
n−→ Gm → 1

gives exact sequences

0→ Pic(X)/nPic(X)→ H2
fppf(X,µn)→ Br(X)[n]→ 0,

0→ Br(X)/nBr(X)→ H3
fppf(X,µn)→ H3

ét(X,Gm)[n]→ 0.

by(7.4.7.34).

Prop.(9.2.1.12) [Mayer-Vietoris Exact Sequence].Let X ∈ Sch and X = U ∪ V be a Zariski
covering with U ∩ V = W , then by(9.2.1.2) there is an exact sequence

0→ Γ(X,O×
X)→ Γ(V,O×

X)⊕ Γ(V,O×
X)→ Γ(W,O×

X)
→ Pic(X)→ Pic(U)⊕ Pic(V )→ Pic(W )
→ Br(X)→ Br(U)⊕ Br(V )→ Br(W )→ H3

ét(X,Gm)→ . . .

And when U is locally factorial, then Pic(U)→ Pic(W ) is surjective?, so there is an exact sequence

0→ Br(X)→ Br(U)⊕ Br(V )→ Br(W )→ H3
ét(X,Gm).

Prop.(9.2.1.13)[Hochschild Spectral Sequence].

Residue Homomorphism

Prop.(9.2.1.14)[Faddeev].For k ∈ Field, there is an exact sequence

0→ Br(k)→ Br(P1
k)

res−−→
⊕

x∈closed(P1
k

)
H2(κ(x),Q/Z)→ H1(k,Q/Z)→ 0

Proof: Cf. [GS06, 6.4.5]?. □

Artin Conjecture

Conj.(9.2.1.15)[Artin].For X ∈ Sch /Z proper, # Br(X) <∞.

Proof: Cf.[Central Simple Algebras and Galois Cohomology, 6.4.5.]. □

Prop.(9.2.1.16) [Artin & Tate Conjecture].For a proper surface X/Z, the Artin conjecture for
X(9.2.1.15) is equivalent to Tate conjecture for divisors of X.
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Proof:
□

Prop.(9.2.1.17) [Artin vs. Tate-Šafarevič Conjecture].For F ∈ NField, for a regular integral
scheme X of dimension 2 that is flat proper over OF that has a section, the Artin conjecture for X
is equivalent to the finiteness of X(Jac(XF )).

Proof: □

2 Field cases
Prop.(9.2.2.1)[Indexes of Brauer Classes].For k ∈ Field, any Brauer class in BrAz(k) is repre-
sented by a unique central division ring.

So we can define the index of the Brauer class D as the ind([D]) =
√

[D : k] ∈ Z+(2.4.3.16).

Proof: The existence of this division ring follows from Wedderburn theorem(2.4.1.22), and to show
uniqueness, notice if

Mat(n;D) ∼= Mat(m;D′) = A

when we can recover D as D = D′ = EndA(V ), where V is the unique simple module, by(2.4.1.21).
□

Prop.(9.2.2.2)[Brauer Groups and Galois Cohomology].For any k ∈ Field, the Brauer group
Br(k) is defined as the profinite cohomology H2(Gal(ksep/K), (ksep)×). For a Galois extension L/k,
Br(L/k) is defined as H2(Gal(L/k), L×). Then by(10.1.2.2) we have

lim−→Br(L/k) = Br(k).

And by Hochschild-Serre spectral sequence and by Hilbert’s multiplicative theorem90:
H1(H, k∗

s) = 0, we have the low term:

0→ Br(L/k) inf−→ Br(k) res−−→ Br(L)Gal(L/k) → H3(Gal(L/k), L×)→ H3(k, (ksep)×).

So Br(L/k) is the kernel of Br(k)→ Br(L).

Proof: Cf.[Neukirch Cohomology of Number Fields Chap6.3].? □

Cor.(9.2.2.3) [Brauer Groups are Torsion].For any k ∈ Field, Br(k) ∈ Abtor, by(10.1.2.3). In
particular, BrAz(k) ∼= Br(k) by(9.2.1.10).

Cor.(9.2.2.4).For any k ∈ Field,#k <∞, Br(Fq) = 0, because the finite Galois extension are cyclic
and unramified.

Prop.(9.2.2.5)[Finite Fields]. If k ∈ Fieldfin, then for any n ∈ N, Ȟ1(k,PGL(n)) = 0, and Br(k) =
0.

Proof: This follows from(9.2.2.1) and the fact any finite division ring is commutative(2.2.1.8). □

Prop.(9.2.2.6) [Valued Fields].Let (R,K, k) be a complete DVR, then there exists a split exact
sequence

0→ Br(k)→ Brtame(K)→ H1(k,Q/Z)→ 0.

Proof: Cf.[Brauer-Grothendieck Group, P32]. □
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3 Local Field cases
Thm.(9.2.3.1)[Brauer Groups of Local Fields].For K ∈ LField,

• the invariant map(12.6.2.7) is a canonical injection

inv : Br(K) ↪→ Q/Z

whose image is 
Q/Z ,K ∈ p-LField
1
2Z/Z ,K = R

0 ,K = C

• Every Azumaya algebra over K is cyclic?.
• Every element of Br(K) has exponent equal to index.

Proof: 1: This follows from the definition of a class formation(12.6.1.1).
The rest follows from [Poonen, P25].? □

Cor.(9.2.3.2).For K ̸= C ∈ LField, there exists a unique nontrivial quaternion algebra over K, and
its the only division ring with exponent 2.

4 Global Field cases
Thm.(9.2.4.1)[Brauer-Hasse-Noether].For F ∈ NField,

• there is a canonical exact sequence

1→ Br(F )→
⊕
p∈ΣF

Br(Fp)
invF−−−→ Q/Z→ 0,

and in the characterization via Azumaya algebras(9.2.1.5)(9.2.1.10), the first map sends [D] to
the family ([D ⊗F Fv])v.

• Every Azumaya algebra over F is cyclic?.
• Every element of Br(F ) has exponent equal to index.

Proof: 1, 2: Cf.[Neukirch P146] and [Poonen, P26].?
3: It follows from item1 that for any division ring D/F , [D] ∈ Br(F )has exponent n =

lcm(ord(invv([D]))). So it follows from(9.2.3.1) that there nv| ind([D]) for any v, so n| ind([D]).
And it follows from Grünwald-Wang(12.6.4.32) and the local-global compatibility of invv that

there exists a cyclic extension L/K of degree n that splits D. Then it follows from(2.4.3.17)(9.2.2.1)
that there exists B = Mat(r;D) s.t. L ⊂ B and [B : F ] = [L : K]2. Thus [D : F ]|[L : K]2, so
ind(D) = n. □

Prop.(9.2.4.2)[Norm Groups of Division Rings, Eichler]. If F ∈ NField and D/F is a division
ring of index n, then NmD/K(D×) ⊂ F× is the set of elements that is positive under all v ∈ ΣR

F s.t.
Dv ≇ Mat(n;Fv).

Proof: Cf.[?]P38. □
Prop.(9.2.4.3) [Wang]. If F ∈ NField and D/F is a division ring of index n, then SL(1;D) =

[D×, D×].

Prop.(9.2.4.4).
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5 Severi-Brauer Varieties

References are [Severi–Brauer varieties: a geometric treatment, Kollar] and [Central Simple
Algebras and Galois Cohomology].

Def.(9.2.5.1) [Severi-Brauer Varieties].For k ∈ Field, a Severi-Brauer variety over k is a
k-variety X that is a k-form for Pnk for some n ∈ N.

If K/k is a field extension and Xk
∼= PnK , then K is called a splitting field for X.

Prop.(9.2.5.2).Let k ∈ Field and X a Severi-Brauer variety over k, then a twisted-linear sub-
variety of X is a closed subvariety of X s.t. the inclusion Yk ⊂ Xk

∼= Pn
k
embeds Yk as a linear

subvariety of Pn
k
.

Prop.(9.2.5.3)[Châtelet].For k ∈ Field and an n-dimensional Severi-Brauer variety X over k, the
following are equivalent:

• X ∼= Pnk .

• X ∼ Pnk .

• X(k) ̸= ∅.

• X contains a twisted-linear subvariety of codimension 1.

Proof: 1 → 2 is trivial. If 2 holds, then to show item3, if #k = ∞, then any Zariski open subset
of Pnk contains a k-point, and if #k <∞, clearly any Severi-Brauer variety over k splits over a finite
Galois field extension of k, so by the proof of(9.2.5.6)? shows that SBn(K) ∼= H1(k,PGL(n)) =
1(9.2.2.5). Thus X ∼= Pnk has a rational point.

4 → 1: The twisted-linear subvariety is a divisor of X?, so it defines a rational map φD into
some projective variety, and when base changed to k, it is the isomorphism of X with Pn

k
. Thus it

must be an isomorphism.
3→ 4: Cf.[Central Simple Algebras]P341.? □

Cor.(9.2.5.4)[Galois Splitting Fields].Let k ∈ Field and X a Severi-Brauer variety over k, then
X has a finite Galois splitting field.

Proof: It suffices to show that ks is a splitting field for X. But for this, by the theorem, it suffices
to notice Xks always has a rational point(5.10.1.10). □

Cor.(9.2.5.5). Severi-Brauer groups satisfy the local-global property.

Proof: Cf.[Poonen]P108. □

Prop.(9.2.5.6)[Severi-Brauer Varieties and Galois Cohomologies].For k ∈ Field, there is an
isomorphism of pointed sets H1(k,PGL(n)) ∼= SBn(L/K), where SBn(L/K) is the isomorphism
classes of Severi-Brauer varieties of dimension n− 1 that splits in L.

Proof: Cf.[Neukirch Cohomology of Number Fields P348]. □
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6 Brauer-Manin Obstruction
Prop.(9.2.6.1).For F ∈ GField and X ∈ Schsm /F , there is a natural continuous right-linear pairing

γ : X(AF )× Br(X)→ Q/Z

s.t. the restriction to X(F )× Br(X) is trivial.
Let X(AF )Br denote the left kernel of γ, then we say the Brauer-Manin obstruction is suffi-

cient for X if X(F ) ⊂ X(AF )Br is dense.

Proof: ? □

Prop.(9.2.6.2). If F ∈ GField and X ∈ SmProj /F , then if X satisfies the weak approximation, then
Brauer-Manin obstruction is sufficient.

Proof: □

7 Norm Residue Isomorphism Theorem
See Voevodsky’s work.
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10 | Condensed Mathematics and Analysis

10.1 Profinite Cohomology
Reference are [Neu15] and the giant book [Neukirch Cohomology of Number Fields].

1 Group Cohomology
Let G be a finite group.

Def.(10.1.1.1) [Group Cohomologies].For G ∈ Grpfin, the group cohomology Hn(G,A) is the
derived functor of the left exact functor

ModG → Ab : H0(G,A) = AG = HomZ[G](Z, A),

so Hn(G,A) = ExtnZ[G](Z, A).
The group homology Hn(G,A) is the left derived functor of the right exact functor

ModG → Ab : H0(G,A) = AG = Z⊗Z[G] A,

so Hn(G,A) = TorZ[G]
n (Z, A)。

Prop.(10.1.1.2).For a normal subgroup H of G, A 7→ AH is left exact from G-mod to G/H-mod and
preserves injectives ?? because it is right adjoint to the exact inclusion functor as HomG(B,A) =
HomG/H(B,AH). Dually for AH .

Prop.(10.1.1.3).For G = Z, we have a free resolution 0 → Z[t, t−1] 1−t−−→ Z[t, t−1] → Z → 0. In
particular, thus Hn(Z,Z) = Z iff n = 0, 1 and vanish otherwise.

Prop.(10.1.1.4)[Tate Cohomology].There is a standard resolution of the Z[G]-module Z:

· · · ←− X−2 ←− X−1
µ◦ε←−− X0 ←− X1 ←− · · ·

that Xq = X−q−1 are Z[G]-module generated by q-cells (σ1, . . . , σq), X0 = X−1 = Z[G].
It then can be verified that for G ∈ Abfin, Hom from this resolution gives out the Tate cohomology

Hn
T (G,A) =


Hn(G,A) n ≥ 1
AG/ trGA n = 0
trGA/IGA n = −1
H−1−n(G,A) n ≤ −2

and Hn
T is a long exact sequence.
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In particular, the Hom complex looks like:

· · · → A−2
∂−1−−→ A−1

∂0−→ A0
∂1−→ A1

∂2−→ A2 → · · ·

where A−1 = A0 = A and ∂0x = trG x, (∂1x)(σ) = σx− x,
∂2(x)(σ1, σ2) = σ1x(σ2)− x(σ1σ2) + x(σ1).

Proof: Cf.[Neukirch CFT P13]? □

Remark(10.1.1.5).From now on, consider only Tate cohomology.

Prop.(10.1.1.6).

H−2(G,Z) = Gab, H−1(G,Z) = 0, H0(G,Z) = Z/|G|Z, H1(G,Z) = 0, H2(G,Z) = χ(G).

Proof: H0 is trivial and H1(G,Z) = H0(G,Q/Z) = 0, H2(G,Z) = H1(G,Q/Z) = Hom(G,Q/Z).
H−1(G,Z) = NGZ/IGA = 0.

For H−2(G,Z), use the dimension shifting 0 → IG → Z[G] → Z → 0, = H−1(G, IG) = IG/I
2
G.

And Gab ∼= IG/I
2
G by σ 7→ σ − 1. □

Prop.(10.1.1.7) [Group Cohomologies are Torsion].For G ∈ Abfin, #G ·Hn(G,A) = 0 for any
A ∈ ModG. (True for H0 and use dimension shifting). In particular, a divisible G-module A has
trivial cohomology.

Operations

Prop.(10.1.1.8) [Dimension Shifting].There are fundamental split exact sequence 0 → IG →
Z[G] → Z → 0 and 0 → Z → Z[G] → JG → 0, thus AG = A/IGA. This can be used to ten-
sor with A and define natural dimension shifting of cohomology δ.

Lemma(10.1.1.9). If H is a subgroup of G, then by Grothendieck spectral sequence applied to
ModG

res−−→ ModH
(·)H−−→ Ab shows that for A ∈ ModG, H∗(H,A) is the same as the right derived

functor of the functor (·)H on ModG.

Def.(10.1.1.10)[Restrictions, Corestrictions and Inflations].Let H be a subgroup of G,
• The inflation is the δ-morphism H∗(G/H,A)→ H∗(G,A) on ModG/H induced by the natural

transformation? How to define it?
• The restriction are the δ-morphisms H∗(G,A)→ H∗(H,A) on ModG induced by the natural

transformation AG → AH .
• The corestriciton are the δ-morphisms H∗(H,A) → H∗(G,A) on ModG induced by the

natural transformation AH → AG : a 7→ NG/Ha.

Proof: These exist by(3.9.3.5) and(10.1.1.9). □

Cor.(10.1.1.11).Let H be a subgroup of G, then cor ◦ res = [G : H] id.

Prop.(10.1.1.12)[Kernel of Restriction]. If G is a finite group and H1,H2 are conjugate subgroups
of G and M ∈ModG, then the kernel of the restriction maps H1(G,M)→ H1(Hi,M) are identical.
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Proof: If a 1-cycle σ 7→ f(σ) is a cocycle, then it is a boundary when restricted to H1 iff f(σ) =
σ(a)− a for some a ∈M for any σ ∈ H1. Thus

f(x−1σx) = f(x−1) + x−1f(σx) = −x−1f(x) + x−1f(σ) + x−1σf(x) = x−1(σ(f(x) + a)− (f(x) + a))

is also boundary when restricted to x−1H1x. □

Prop.(10.1.1.13) [Serre-Hochschild Spectral Sequence]. If H is a normal subgroup of a finite
group G, by Grothendieck spectral sequence, the relation AG = (AH)G/H gives us a spectral sequence
E that

Ep,q2 = Hp(G/H,Hq(H,A)) =⇒ En = Hn(G,A).

The edge morphisms are:
• inflation maps Hk(G/H,AH) inf−→ Hk(G,A).
• restriction maps Hk(G,A) res−−→ Hk(H,A)G/H .
And the lower parts give us:

0→ H1(G/H,AH) inf−→ H1(G,A) res−−→ H1(H,A)G/H transgression−−−−−−−−−→ H2(G/H,AH) inf−−→ H2(G,A).

dually for homology group.
Moreover if Hk(H,A) = 0 for k = 1, . . . , n − 1, then the rows are blank, thus the above lower

part can change to dimension n.

Proof: Prove the compatibility of inflation, restriction with the definition given in(10.1.1.10).??
□

Cor.(10.1.1.14)[Hopf]. If G = F/R, F is free, then use the homology spectral sequence, H2(G,Z) ∼=
R∩[F,F ]

[F,R] . Cf.[Weibel P198].

Prop.(10.1.1.15).For an isomorphism (σ∗, σ) of a group and its cochain map in the sense that
σ∗(g)(σ(a)) = g(a), we have an isomorphism of Conjugation acts trivially on the group cohomol-
ogy, because it does on H0 because H0 = AG fixed by G, and it commutes with dimension shifting.
(Warning, if you count directly a(στσ−1)− σa(τ), you won’t get 0, but a 1-coboundary).

Prop.(10.1.1.16) [Cup Products].The cup product is defined by Cp(X,A) × Cq(X,B) →
Cp+q(X,A⊗B):

(a ⌣ b)(σ1, . . . , σp+q) = a(σ1, . . . , σp)⊗ σ1 . . . σpb(σp+1, . . . , σp+q).

It satisfies ∂(a ⌣ b) = ∂(a) ⌣ b+ (−1)pa ⌣ ∂(b), thus defines a:

⌣: Hp(G,A)×Hq(G,B)→ Hp+q(G,A⊗B)

for p, q ≥ 0. And in negative dimension this is also definable but not computable, Cf.[Neukirch
Cohomology of Number Fields P42] or [Neukirch Class Field Theory 2015 P45].

• a ⌣ b = a⊗ b for a ∈ H0(G,A), b ∈ H0(G,B).
• δ(a ⌣ b) = δa ⌣ b, δ(a ⌣ b) = (−1)p(a ⌣ δb) for a ∈ Hp(G,A).
• ⌣ is associative and skew-symmetric (follows from dimension shifting and the last one.)

Proof: □
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Prop.(10.1.1.17)[Duality and Cup Product].Let 0 → A′ i−→ A
j−→ A′′ → 0 and 0 → B′ u−→ B

v−→
B′′ → 0 be exact and there is a pairing φ : A×B → C that φ(A′×A′) = 0 hence induce a compatible
pairing on A′ ×B′′ and A′′ ×B′, then we have

δ(α) ⌣ β + (−1)pα ⌣ δ(β) = 0

for α ∈ Hp(G,A′′) and β ∈ Hq(G,B′′).
Proof: Use the definition of δ, let a, b be the preimage of α, β in A and B, and ia′ = ∂a, ub′ = ∂b,
then δ(α) ⌣ β + (−1)pα ⌣ δ(β) = a′ ⌣ vb+ (−1)pja ⌣ b′ = ∂a ⌣ b+ (−1)pa ⌣ ∂b = ∂(a ⌣ b) is
a boundary. □

Prop.(10.1.1.18)[Naturality of Cup Products].

res(a ⌣ b) = res(a) ⌣ res(b), inf(a ∪ b) = inf(a) ∪ inf(b), cor(res a ⌣ b) = a ⌣ cor b.

Proof: Cf.[Neukirch CFT P48] or [Central Simple Algebras]P100.? □
Prop.(10.1.1.19).Let σ ∈ Gab = H−2(G,Z) and a1 ∈ H1(G,A), a2 ∈ H2(G,A), then

a1 ⌣ σ = a1(σ), a2(σ) =
∑
τ

a2(τ, σ).

Cf.[Neukirch CFT P50,P51].
Prop.(10.1.1.20)[Cyclic Group Cohomologies].For cyclic group, the Tate cohomology is 2-cyclic.

In particular, if σ be a generator for Z/(n), then Hp(Z/(n), A) = AG/ tr(A) for p even and
Hp(Z/(n), A) = trA/(σ − 1)A for p odd.

Proof: There is an exact sequence 0 → Z → Z[G] σ−1−−→ Z[G] → Z → 0, and this defines an
isomorphism δ2 : H0(G,Z) ∼= H2(G,Z). And this is also true for any A when tensored with it. The
isomorphism is a 7→ δ2a = δ2(1) ⌣ a. □

Prop.(10.1.1.21)[Duality].The cup product induces an isomorphism H i(G,A∨) ∼= (H−i−1(G,A))∨,
i.e, Hn(G,A∨) and Hn(G,A) are dual to each other when n > 0, where A∨ = Hom(A,Q/Z).
Proof: We only need to verify A∗G/NGA

∗ ∼= (NGA/IGA)∗ and use dimension shifting. Should use
the injectivity of Q/Z and the compatibility of cup product with dual. □

Cor.(10.1.1.22).When A is Z-free, the cup product also induce an isomorphism H i(G,Hom(A,Z)) ∼=
H−i(G,A)∨.

Prop.(10.1.1.23)[Theorem of Cohomological Triviality].For a G-module A, if there is a q s.t.
Hq(g,A) = Hq+1(g,A) = 0 for all subgroups of G, then Hp(g,A) = 0 for any p and subgroup g.
Cf.[Neukirch CFT P57].

Prop.(10.1.1.24)[Tate’s Theorem].Assume A is a G-module that H1(G,A) = 0 and H2(g,A) is
cyclic of order |g| for any subgroup g of G, then for a generator a ofH2(G,A), there is an isomorphism

a ⌣: Hq(G,Z) ∼= Hq+2(G,A).

Cf.[Neikirch CFT P79].
Cor.(10.1.1.25). In particular, by dimension shifting, if A is a G-module that H1(G,A) = 0 and
H2(g,A) is cyclic of order |g| for any subgroup g of G this gives an isomorphism:

a ⌣: Hq(G,Z) ∼= Hq+2(G,A).

for a generator a of H2(G,A), because cup product commutes with dimension shifting.
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Miscellaneous

Prop.(10.1.1.26)[H2 and Extensions, Schreier].For a G-module A, there is a correspondence of
equivalence classes of extension of G over A that are compatible with the G action and H2(G,A).

Proof: Cf.[Weibel P183]. In fact there are also interpretations of H3(G,A) as 0→ A→ N → E →
G under some equivalences. □

Prop.(10.1.1.27)[Herbrand Quotients for Cyclic Groups].When G is a cyclic group and A is
a G-module, let f = σ − 1, g = 1 + σ + . . . + σn−1, then we can form a cyclic complex of order
2 and compute the Herbrand quotient(3.7.5.7). In this case, gf,g is just |H0(G,A)|/|H−1(G,A)|.
And by(3.7.5.9), if a G-morphism A → B has finite kernel and cokernel, then they have the same
Herbrand quotient.

2 Cohomology of Profinite Groups
Prop.(10.1.2.1) [Abelian Sheaves on TG].For G ∈ Prof, the category of Abelian sheaves on the
canonical topology(5.1.2.4) TG ofG-sets is equivalent to the the categoryModalg

G , by Z 7→ Hom(−, Z).
The inverse map is given by F 7→ lim−→F (G/H).

Proof: The task is to prove F ∼= hlim−→F (G/H). Cf.[Tamme P29].
The inverse of the Yoneda functor is the functor F 7→ F (G) as a left G-set where gs = F (·g)s.

The task is to show that F ∼= hF (G). For this, for any U we consider the covering {G φu−−→ U where
φU (g) = gu. Sheaf condition says

F (U)→
∏
u∈U

F (G) ⇒ F (G×U G)

is exact, in other words, F (U) ∼= HomG(U,F (G)). □

Prop.(10.1.2.2) [Profinite Cohomologies].The profinite cohomology is the derived functor of
A→ AG on the Abelian category Modalg

G (10.1.2.1)(It has enough injectives by(15.1.2.1)). It satisfies

H∗(G,A) ∼= H∗(C•(G,A)) ∼= lim−→H∗(G/U,AU )

where C•(G,A) is the set of continuous cochain complex of morphisms from G to A and the colimit is
taken over the transition maps defined by inflations. Moreover, for the same reason, when G = lim←−Gi,
and A = lim−→Ai, then

H∗(G,A) ∼= lim−→H∗(Gi, Ai).

Proof: The second is an isomorphism because Cn(G,A) = lim−→Cn(G/U,AU ) and direct limit is
exact.

For the first, the H0 obviously coincide, so it suffice to prove H∗(C(G,A)) form a universal
δ-functor. It is effaceable because (−)U preserves injective modules(10.1.1.2).

For the last one, we need to check Cn(G,A) = lim−→Cn(Gi, Ai). Notice G has the profinite topology,
thus must factor through some Gi, and the right through some Ai because the image of a morphism
from Gn to A has finite image. Thus the result follows. □

Prop.(10.1.2.3)[Cohomology Groups are Torsion].For G ∈ Prof,M ∈Modalg
G , i ∈ N, H i(G,M)

are torsion Abelian groups. And if G is a pro-p-group, then H i(G,M) are p-primary torsion sub-
groups.
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Proof: Notice if M ∈ Modalg
G , this follows from(10.1.2.2) and(10.1.1.7). The last assertion is

similar. □

Def.(10.1.2.4)[Restrictions, Corestrictions and Inflations].Let G ∈ Prof and H < G be a closed
subgroup, for any A ∈Modalg

G , taking colimits over all open subgroup Uα of G of the restriction maps

res : H i(G/Uα, AUα)→ H i(H/(H ∩ Uα), AUα)→ H i(H/H ∩ Uα, AH∩Uα),

by(2.1.14.6), we get a restriction map

res : H i(G,A)→ H i(H,A).

Similarly, if H is open in G, we can define a corestriction map

H i(H,A)→ H i(G,A).

And if H ◁ G is normal, we can define an inflation map

H i(G/H,AH)→ H i(G,A).

as the colimit of the inflation maps

H i(G/HUα, AHUα)→ H i(G/H,AUα).

Prop.(10.1.2.5). cor ◦ res = [G : H] for a subgroup H is also true for profinite cohomology(10.1.1.11),
if H is an open subgroup of G. This is because of(10.1.2.2).

Prop.(10.1.2.6). If H is a closed subgroup of a profinite group G, p ∈ P s.t. p ∤ [G : H], then for any
A ∈Modalg

G , i ∈ N, res : H i(G,A)→ H i(H,A) is injective on the p-primary part of H i(G,A).

Proof: This follows from(10.1.2.5) and(10.1.2.4) by taking filtered colimits. □

Lemma(10.1.2.7)[Shapiro].

H∗(G, IndGH(A)) ∼= H∗(H,A), H∗(G, indGH(A)) ∼= H∗(H,A)

because (co)induction is adjoint to exact functors, so it preserves injectives(projectives) and it is
exact because Z[G] is free Z[H]-module.

And in the finite case, this is also true for Tate cohomology using dimension shifting.

Prop.(10.1.2.8)[Serre-Hochschild Spectral sequence].The same spectral sequence as in the finite
case(10.1.1.13) also applies to profinite cohomology with H closed normal in G.

Def.(10.1.2.9) [Cup Products].For any U < G open and A,B ∈ Modalg
G , there are natural cup

product maps

H∗(G/U,AU )×H∗(G/U,BU )→ H∗(G/U,AU ⊗BU )→ H∗(G/U, (A⊗B)U ).

Then by the naturality of inflation and the fact inflation commutes with cup product(10.1.1.18), we
get a natural cup product map

H∗(G,A)×H∗(G,B)→ H∗(G,A⊗B).

Prop.(10.1.2.10).The cup products for profinite groups(10.1.2.9) is associative, graded-commutative,
and commutes with inflations, restrictions and corestrictions as in(10.1.1.18).

Proof: □
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Cohomological Dimensions

Def.(10.1.2.11)[Cohomological Dimensions].The p-cohomological dimension cdp(G) of a profi-
nite group G is defined as the smallest integer n that H i(G,A)[p∞] = 0 for any torsion G-module A.
The strict p-cohomological dimension scdp(G) of a profinite group G is defined as the smallest
integer n that the H i(G,A)[p∞] = 0 for any G-module A.

The cohomological dimension cd(G) is defined to be cd(G) = supp(cdp(G)). The strict
cohomological dimension scd(G) is defined to be supp(scdp(G)).

Prop.(10.1.2.12).For G ∈ Prof, the following are equivalent:
• cdp(G) ≤ n.
• H i(G,A) = 0 for any i > n and any p-torsion G-module A.
• Hn+1(G,A) = 0 for any simple p-torsion G-module A.

And if G is pro-p, then it suffice to check Hn+1(G,Z/pZ) = 0

Proof: For any torsion G-module A, A = ⊕pA(p), soH i(G,A(p)) is the p-primary part ofH i(G,A),
so 1 ⇐⇒ 2. For 3 → 1: use the fact cohomology commutes with colimits(10.1.2.2), reduce to the
case of A finite, and then use use the quotient tower.

The last assertion is by(2.1.14.15). □

Prop.(10.1.2.13).For any G ∈ Prof, cdp(G) ≤ scdp(G) ≤ cdp(G) + 1.

Proof: Let Ap = ker(p : A → A). There are exact sequences 0 → Ap → A
p−→ pA → 0 and

0 → pA → A → A/pA → 0. Ap and A/pA are p-torsion G-modules, so if i > cdp(G) + 1, then
H i(G,Ap) and H i−1(G,A/pA) vanish. so H i(G,A) p−→ H i(G < pA) and H i(G, pA) → H i(G,A)
are injections, so their composition H i(G,A) p−→ H i(G,A) is injective, showing (H i(G,A))p = 0, so
scdp(G) ≤ cdp(G) + 1. □

Prop.(10.1.2.14).For a closed subgroup H of a profinite group G, cdp(H) ≤ cdp(G) and scdp(H) ≤
scdp(G), and if [G : H] is relatively prime to p, then equality holds.

Proof: The first is because of Shapiro’s lemma(10.1.2.7). For the equality, use(10.1.2.6). □

Cor.(10.1.2.15). cdp(G) = cdp(Gp) = cd(Gp), scdp(G) = scdp(Gp) = scd(Gp).

Prop.(10.1.2.16). If H is a closed normal subgroup of G, then cdp(G) ≤ cdp(H) + cdp(G/H), by
Hochschild-Serre spectral sequence.

Prop.(10.1.2.17). If K is a field of char p, then cdp(GalK) = 0.
If H2(G(Ks/L),K∗

s ) = 0 for all L/K separable, then cd(G(Ks/K)) ≤ 1. In particular
H i(G(Ks/K),K∗

s ) = 0 for i ≥ 1.

Proof: LetGp be the Sylow p-subgroup ofG(Ks/K) andM = K
Gp
s . There is an exact sequence 0→

µp → Ks
xp−x−−−→ Ks → 0, and combined with the fact that H i(Gp,Ks) = H i(G(Ks/M),Ks) = 0 for

i ≥ 1(10.1.3.1), so H i(Gp,Z/pZ) = 0 for i ≥ 2. Thus by(10.1.2.12) and(10.1.2.15), cdp(G(Ks/K)) ≤
1.

For the second assertion, similarly, for l ̸= p, consider the kernel of xl, µl of l-th roots of
unity in Ks, and H2(Gl, µl(Ks)) = lim−→L

H2(G(Ks/L), µl(Ks)) = 0, so cdl(G(Ks/K)) ≤ 1. Then
cd(G(Ks/K)) ≤ 1, and scd(G(Ks/K)) ≤ 2, so H i(G(Ks/K),K∗

s ) = 0 for i ≥ 1. □
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Prop.(10.1.2.18).For L/K field extension, cdp(GalL) ≤ cdp(GalK) + tr.deg(L/K).

Proof: Cf.[Etale Cohomology Fulei P169]. □

Cor.(10.1.2.19). If k = ks and K be a function field over k, then cd(GalK) ≤ 1.
And if K is of char p > 0, H2(G(Ks/K),K∗

s ) is a p-torsion group.

Proof: Th first one is clear, for the second, for any l ̸= p, use the exact sequence µl(Ks) →
K∗
s

x→xl−−−→ K∗
s → 0, then H2(G(Ks/K), µl(Ks)) = 0, and H2(G(Ks/K),K∗

s ) l−→ H2(G(Ks/K),K∗
s ) is

injective. l is arbitrary, so H2(G(Ks/K),K∗
s ) must be a p-torsion group. □

3 Galois Cohomology
References are [Neukirch, Cohomology of Number Fields]Chap6. Should include [Galois Coho-

mology Serre].

Prop.(10.1.3.1)[Hilbert’s Additive Satz 90].For K ∈ Field, if L/K is a Galois extension, then
Hn(Gal(L/K), L) = 0 for n > 0, where L is equipped with the discrete topology.

Proof: Form the normal basis theorem??, for finite Galois extension L/K, L is an induced module
over K, thus H∗(G,L) = H∗(G,L) = 0 for ∗ ̸= 0 and H∗

T (G,L) = 0 by(10.1.2.7).
Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete

topology, the same as in the proof of(10.1.3.16). □

Prop.(10.1.3.2)[Hilbert’s Multiplicative Satz 90].H1(Gal(L/K), L×) = 0 for any Galois exten-
sion L/K, where L is equipped with the discrete topology.

Proof: This follows from(10.1.3.16). □

Prop.(10.1.3.3)[Generalized Hilbert’s Additive Satz 90].For L/K a Galois extension and k ∈
Z+, H1(Gal(L/K),W+

p,k(L)) = 0.

Proof: By linear independence of characters, if L/K is finite, then there is some x0 ∈ L s.t.
trL/K(x0) ̸= 0. Then by(4.5.3.17), x = (x0, 0, . . . , 0) is a unit in W+

p,k(L). Given any cocycle
µ : σ 7→ µσ, let

θ = trL/K(x)−1 ∑
σ∈Gal(L/K)

µσσ(x),

then for τ ∈ Gal(L/K),

θ−τ(θ) = trL/K(x)−1 ∑
σ∈Gal(L/K)

[µτσ(τσ)(x)−τ(µσ)(τσ)(x)] = trL/K(x)−1µτ
∑

σ∈Gal(L/K)
(τσ)(x) = µτ .

Thus µ is a coboundary.
Hence the same is true, for arbitrary Galois extension, when L is equipped with the discrete

topology, the same as in the proof of(10.1.3.16). □

Def.(10.1.3.4) [Galois Cohomologies].For k ∈ Field, for any M ∈ Modalg(Galk), denote
H i(k,M) = H i(Galk,M).

Prop.(10.1.3.5).Br(R) = Z/(2).
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Proof: By(10.1.1.20) and(10.1.1.4), H2(Gal(C/R),C×) ∼= {u ∈ C×|u = u}/{|u|2, u ∈ C×} ∼=
Z/(2). □

Prop.(10.1.3.6)[Kummer Cohomology].For L/K a Galois extension and char k = p ∈ P, r ∈ Z+,
then there exists an isomorphism

k×/(k×)m ∂,∼=−−→ H1(k,Z/(pr)).

Proof: This follows from the Kummer exact sequence and Hilbert’s theorem90(10.1.3.2). □

Prop.(10.1.3.7)[Restrictions and Corestrictions on H0].Let K/k be a separable field extension,
then

resKk = i : k → K, corKk = NmK/k : K → k

Proof: This follows from the definition(10.1.1.10). □

Cor.(10.1.3.8) [Change of Fields and Kummer Cohomology].Let K/k be a separable field
extension and m ∈ Z ∩ k×, then there are commutative diagrams

k× H1(k, µm)

K× H1(K,µm)

∂

res

∂

K× H1(K,µm)

k× H1(k, µm)

∂

NmK/k cor

∂

Proof: Cf.[Central Simple Algebras]P131.? □

Prop.(10.1.3.9)[Artin-Schreier Cohomology].Let k ∈ Field,m ∈ Z ∩ k×, then there exists an
isomorphism

Wp,r(k)+/(Frob− id)Wp,r(k)+ ∼= H1(k, µm).

Proof: This follows from the Artin-Schreier exact sequence(10.1.3.3) and Hilbert’s theo-
rem90(10.1.3.3). □

Prop.(10.1.3.10) [Unramified Classes].Let F be a global field and G = GalF , then for a GalF -
module M , is called a unramified class at a place v ∈ ΣF if it is trivial when restricted to
Hk(Iv,M), where Iv is the inertia group at v, which is defined only up to conjugacy, but this notion
is well-defined by(10.1.1.12).

Prop.(10.1.3.11)[Unramified Classes are Rare].Let C be a proper Dedekind domain or a complete
non-singular curve over a field k with fraction field F and G = GalF , then for any finite GF -module
M , if S is a finite set of places in F and H1(GalF ,M, S) the set of elements of H1(GalF ,M, S) that
is unramified outside S, then #H1(GF ,M, S) <∞.

Proof: By the inflation restriction exact sequence(10.1.1.13), we can reduce G to a subgroup of
finite index. And because M is a finite G-module, there is a finite index subgroup of G that acts
trivially on M . Thus we can assume M is G-trivial. But then if m > 0 s.t. mM = 0, then the
assertion follows from the fact the maximal Abelian extension of exponent m unramified outside S
is finite over K(12.6.4.4). □
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Non-Abelian Cohomology

Def.(10.1.3.12) [Non-Abelian Cohomology].Let G,M be topological groups, with a continuous
action of G on M , then we define H0(G,M) = MG.

We define Z1(G,M)=continuous maps x : G→M that

σ1(x(σ2))x(σ1σ2)−1x(σ1) = 1, i.e. x(gh) = x(g)g(x(h))

If x ∈ Z1(G,M), then xm : σ → m−1x(σ)σ(m) ∈ Z1(G,M) too. This defines an equivalence relation
on Z1(G,M), the equivalence classes are called H1(G,M). This is compatible with the commutative
case.

Prop.(10.1.3.13).Restriction map and inflation map is definable for H0 and H1, and H1(H,M) is a
G/H-set where G acts on H1(H,M) by g(c)(h) = g(c(g−1hg)).

Prop.(10.1.3.14).There is an exact sequence of pointed sets:

0→ H1(G/H,MH) inf−→ H1(G,M) res−−→ H1(H,M)G/H .

Proof: First res(H1(G,M)) ⊂ H1(H,M)G/H because g(c)(h) = c(g)−1c(h)h(c(g)) is checked so
g(c) is cohomologous to c.

res ◦inf = 0 is easy, if res(c) = 0, then c is trivial on H, hence c(gh) = c(g) and h(c(g)) = c(hg) =
c(g · g−1hg) = c(g), so c is inflated from H1(G/H,MH).

For the injectivity of inf. If c(g) = g−1g(a), then a ∈MH , so it is a coboundary in H1(G/H,MH).
□

Prop.(10.1.3.15).Let 1 → A → B → C → 1 be an exact sequence of G-groups, then there is a long
exact sequence of pointed sets

1→ AG → BG → CG
δ−→ H1(G,A)→ H1(G,B)→ H1(G,C) ∆−→ H2(G,A)

the last term is defined only when A is in the center of B.
Where δ is defined as follows: for c ∈ CG, let b be an inverse image of c in B, then aσ = b−1σ(b) ∈

A, and it defines a cocycle in H1(G,A), different choice differ by a coboundary, so it is well-defined.
∆ is defines as: for cσ a cocycle inH1(G,C), choose bs inverse images of cs, then aσ,τ = bσσ(bτ )b−1

στ

is a cocycle in H2(G,A).

Proof: Similar to (5.3.2.19), but need to show continuity? □

Prop.(10.1.3.16)[Hilbert’s Theorem 90].For L/K ∈ Gal, H1(Gal(L/K),GLn(L)) = 1, where L
is equipped with the discrete topology.

Proof: We prove any cocycle is a coboundary, for this, notice any cocycle factor through a finite
quotient, and the images of it is contained in a finite extension of K, hence it reduce to the case of
L/K finite.

By definition, this is equivalent to any B-semi-linear representation of G free of finite rank is
trivial, which is by(15.1.1.14). □

Cor.(10.1.3.17).H1(G(L/K),SLn(L)) = 1. This is seen from the exact sequence 1 → SL(n,L) →
GL(n,L)→ L× → 1.
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Interpretation of H1 and Torsors

Def.(10.1.3.18)[A-Torsors].A G-set X is a discrete set with a continuous G-action on X. Let A be
a G-group, an A-torsor is a G-set with a right A-action that is simply transitive and semi-linear in
G.

Prop.(10.1.3.19) [H1 and Torsors].We have a canonical bijection of pointed sets: H1(G,A) ∼=
TORS(A).

Proof: Let X be an A-torsor, choose x ∈ X, then σ(x) = xaσ for aσ ∈ A. Now that σ 7→ a(σ) is
checked to be a cocycle, and change of x changes to σ 7→ b−1aσσ(b). Conversely, for an a ∈ H1(G,A),
we let X = A be a right A-module, and let σ′(x) = aσσ(x), i.e. regarding coming from x = 1, then
this is a inverse map. □

Prop.(10.1.3.20)[Extension of Rings].

Prop.(10.1.3.21).There is an isomorphism of pointed sets H1(G,O(φL)) ∼= Eφ(L/K).

Proof: Cf.[Neukirch Cohomology of Number Fields P346]. □

4 Continuous Cohomologies
In this subsubsection cohomology of G-modules with topology is studied. References are [Coho-

mology of Number Fields, Neukirch Chap 2.7].

Prop.(10.1.4.1).H∗
cont(G,−) forms a long exact sequence for any 0→ A→ B → C → 0 of continuous

G-modules.

Proof: ? □

Prop.(10.1.4.2). If A is a compact G-module which is an inverse limit of finite discrete G-modules
An, then if H i(G,An) is finite for all n, then

H i+1
cont(G,A) = lim←−

n

H i+1(G,An).

Proof: Cf.[Cohomology of Number Fields Neukirch P142]. □

Lemma(10.1.4.3).Let π be a topologically nilpotent element of A which is complete in the ϖ-adic
topology and ϖ is not a zero-divisor, let R = A/(ϖ) equipped with discrete topology. Let G be a
group which acts continuously on A and fix π, then if H1(G,R) is trivial, then H1(G,A) is trivial,
and if moreover H1(G,GL(n,R)) is trivial, then H1(G,GL(n,A)) is trivial.

Proof: Cf.[Galois Representations Berger P15]. □

Prop.(10.1.4.4) [Cyclic Case]. if G is a topological cyclic group ⟨g⟩, then the map H1(G,M) →
M/(1− g) is well-defined and injective. And when M is profinite, p-adically complete, then the map
is also surjective.

Proof: The surjection: there is only one choice: c(gi) = (1 + g + . . . + gi−1)(m). And we need
to verify that it is continuous. The case of p-adic can be deduced from profinite case, because
c(γ) ∈ p−kM for some k, and p−kM is then profinite. For any finite quotient N of M , there is a k
that kM = 0, and a n that gn = id on N , so c(grkn) = 0 on N , which shows c is continuous. □
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Prop.(10.1.4.5)[Inf-Res Exact Sequence].

Prop.(10.1.4.6) [Cohomology as Extensions].Let G be a topological group acting on a field K
and W ∈ RepK(G), there exists a bijection continuous extensions

0→W →W ′ → K → 0

and H1
cont(G,W ) that is K-linear.

Proof: For any such extension, choose a K-linear splitting W ′ ∼= W ⊕K, then

g(w, c) = (g(w) + g(c)τ(g), g(c)),

where τ : G → W is a continuous 1-coboundary in H1(G,W ), and clearly changing a splitting
changes this coboundary by a 1-cocycle, and it is clearly a bijection. □
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10.2 Condensed Mathematics(Scholze)

Main references are [Condensed Mathematics, Scholze]. [Lectures on Condensed Mathematics,
Clausen-Scholze], [Lectures on Analytic Geometry, Clausen-Scholze].

Notation(10.2.0.1).
• Use notations defined in Profinite Cohomology.

1 Introduction

Remark(10.2.1.1).Delete this subsection.?
Condensed mathematics is invented to overcome the subtleties when dealing with algebra together

with topology. For example, the category of topological Abelian groups doesn’t form an Abelian
category.

2 Condensed Objects
Def.(10.2.2.1)[κ-Condensed Objects].The pro-étale site ∗pro ét of a point is isomorphic to Prof in
the standard topology. For any uncountable strong limit cardinal κ, the site Profκ is the category of
κ-small profinite sets S in the standard topology.

Then for any C ∈ Cat, we can define the category Condκ(C) of κ-condensed objects in C to be
the category Func(Profκ,C).

Prop.(10.2.2.2)[Adjointness].Given an uncountable strong limit cardinal κ, the functors

X 7→ X : Top /Grp /CAlg→ Cond(Set)/Cond(Grp)/Cond(CAlg)

are faithful, and fully faithful when restricted to the category of κ-small objects.
And there is an adjunction

X 7→ X : Top ⇌ Cond(Set) : T 7→ T (∗)top = lim−→
S∈Profκ /T

S.

In particular, X(∗)top ∼= Xκ-CG.

Proof: Firstly, X is truly a condensed set: for the sheaf condition, let S′ → S be surjective
morphism of profinite spaces, then the sheaf condition is true set-theoretically, and for any map
S → T , if S′ → S → T is continuous, then S → T is continuous, because S′ → S is a closed map.

It suffices to check the set case, and the faithfulness and fully faithfulness follows from the ad-
jointness

Homκ-Cond(Set)(T,X) = Hom(T (∗)top, X).

Notice that any s ∈ T (S) induces a map of sets s : S → T (∗) : x 7→ T (∗ x−→ S)(s), inducing the
topology of T (∗). And by definition, a morphism T → X is just a morphism T (∗)→ X that for any
S → T , the composition S → T (∗) → X is continuous. And by definition, this is just a morphism
from T (∗)top → X.

The last assertion follows from the fact any compact Hausdorff space S is a quotient space of its
Stone-Čech compactification. □
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Prop.(10.2.2.3)[Free Condensed Abelian Groups].By the adjoint functor theorem(3.1.1.34), the
forgetful functor from Cond(Ab) to Cond(Set) has a left adjoint T 7→ Z[T ]. Concretely, Z[T ] is
the sheafification of the functor that sends a compact Hausdorff space S to the free Abelian group
Z[T (S)]. In particular, by Yoneda lemma, for any compact Hausdorff space S, there is a condensed
Abelian group Z[S] that for any condensed Abelian group M , Hom(Z[S],M) = M(S).

Lemma(10.2.2.4).Consider the site of all κ-small compact Hausdorff topological spaces, then the
category of sheaves on this site is equivalent to that of Profκ(via restriction).

Proof: Use(5.1.2.25), because any κ-small compact Hausdorff space is a quotient space of a κ-small
profinite space(βS0(3.3.2.15), noticing that |βS| ≤ 22|S|

< κ). □

Lemma(10.2.2.5).Consider the site of all κ-small extremally disconnected spaces, then the category
of sheave son this site is equivalent to that of κ-small condensed sets, via restriction.

Proof: Because any κ-small compactly generated space is a quotient space of a κ-small extremally
disconnected space(βS(3.3.2.17), noticing that |βS| ≤ 22|S|

< κ). □

Cor.(10.2.2.6)[Cond(Ab) and Extremally Disconnected Spaces].The category of κ-condensed
Abelian groups is equivalent to the category of presheaves F on the category of κ-extremally discon-
nected spaces that F(∅) = 0 and F(S1

⨿
S2) = F(S1)×F(S2).

Proof: It suffices to show that the second sheaf condition is automatic: For a surjective map of
extremally disconnected spaces f : S̃ → S, there is an isomorphism

F(S) F(f)−−−→ {g ∈ F(S̃)|F(p1)(g) = F(p2)(g)}.

By(3.3.1.30), there is a section σ : S → S̃ that f ◦ σ = idS , thus F(σ) ◦ F(f) = id, thus F(f) is
injective. For the surjectivity, suppose F(p1)(g) = F(p2)(g), then

F(p2)(F(f)F(σ)(g)) = F((σ ◦ f)×S id
S̃
)F(p1)(g) = F((σ ◦ f)×S id

S̃
)F(p2)(g) = F(p2)(g)

And similarly F(p2) is injective, thus g = F(f)F(σ)(g) is in the image. □

Prop.(10.2.2.7)[Category of Condensed Abelian Groups].The category of κ-condensed Abelian
groups satisfies Grothendieck’s Axiom AB3, AB4, AB5, AB6, AB3∗, AB4∗. And also it is generated
by compact projective objects.

Proof: We use(10.2.2.6). Because all limits and colimits of Abelian groups commutes with finite
products, the limits and colimits in the category of condensed Abelian groups are just the pointwise
limits and colimits, thus the axioms follow form that of the category Ab.

By(10.2.2.3), the condensed Abelian group Z[S] for S κ-extremally disconnected satisfies
Hom(Z[S],M) = M(S), and by arguments above, M → M(S) commutes with all limits and col-
imits, thus Z[S] is compact and projective. And we show every M admits a surjection from some
direct sum of Z[S]: use Zorn’s lemma, choose the maximal object M ′ that admits a surjection, if
M/M ′ ̸= 0, then find a nonzero map Z[S] → M/M ′(because M(S) = 0 for any S implies M = 0),
then it lifts to a nonzero map Z[S]→M by projectivity, contradiction. □

Cor.(10.2.2.8).
• We can define the tensor of two condensed Abelian groups M,N as the shifification of the

presheaf S 7→M(S)⊗N(S).
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• We can define an internal Hom, which is right adjoint to tensor operator. In particular, for any
compact Hausdorff space S, Hom(M,N)(S) = Hom(Z[S]⊗M,N).

• The derived category D(Cond(Ab)) is also compactly generated, and we can define Rtensor
and RHom as in2.

Proof: Cf.[Condensed Mathematics, P13].? □

Prop.(10.2.2.9).Let κ′ > κ be uncountable strongly limit cardinals, then there is a natural functor
from the set of κ-condensed sets to the category of κ′-condensed sets by pulling back along the
morphism of sites Profκ′ → Profκ. Then this functor is fully faithful and commutes with all colimits
and λ-small limits, where λ is the cofinality of κ.

Proof: This should have something to do with(5.1.2.25), thus it is left adjoint to the restriction
functor and isis ∼= id, thus it is fully faithful and commutes with all colimits. For the limits,
cf.[Condensed Mathematics, P14].? □

Def.(10.2.2.10)[Condensed Objects].For any C ∈ Cat, define the category Cond(C) of condensed
objects in C is defined to be the filtered colimits of the category of κ-condensed sets along the filtered
poset of all uncountable limit cardinals κ.

Prop.(10.2.2.11). If X is a T1 topological space, then X is a condensed set that all maps from points
are quasicompact. Conversely, if T is a condensed set that all maps from points are quasicompact,
then T (∗)top is a compactly generated T1 space.

Proof: Cf.[Condensed Mathematics, P16].? □

Prop.(10.2.2.12)[Top and Cond(Set)].
• The functor X 7→ X induces an equivalence between compact Hausdorff space and qcqs con-

densed sets.
• A compactly generated space X is weak Hausdorff iff X is quasi-separated. For any quasi-

separated condensed set T , the space T (∗)top is compactly generated weak Hausdorff.

Proof: Cf.[Condensed Mathematics, P16].? □

Prop.(10.2.2.13).The example (R, disc)→ (R,Nat).?
In particular, enlarging topological abelian groups into an abelian category precisely forces us to

include non-quasi-separated objects.

3 Cohomologies
Prop.(10.2.3.1).For any set I, there is an isomorphism

Ȟ i(
∏
I

S1,Z) ∼=
i∧

(⊕IZ).

preserving the natural cup product.

Proof: If I is finite, this follows from the classical calculation of the cohomology of the tori. If I is
infinite, then we should use lemma(10.2.3.2) below. □
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Lemma(10.2.3.2). If Sj , j ∈ J is a filtered system of compact Hausdorff spaces and S = lim←−j∈J Sj ,
then there are natural maps

lim←−
j

Ȟ i(Sj ,Z)→ Ȟ i(S,Z)

are isomorphisms.

Proof:
□

Prop.(10.2.3.3)[Z-Cohomology].Let S be a compact Hausdorff space, then there are natural func-
torial isomorphisms

H i(S,Z) ∼= H i
Cond(S,Z).

Proof: Because the Čech and sheaf cohomology of S are equal by(5.3.5.13), it suffices to calculate
for Čech cohomology.

Firstly, if S is a profinite set, let S = lim←−j Sj where Sj are finite, then □

Prop.(10.2.3.4)[R-Cohomologies Vanish].For any compact Hausdorff space S,

H i
Cond(S,R) = 0

for i > 0, and H0(S,R) = C(S,R).

Proof: Cf.[Condensed Mathematics, P21]. □

4 LCAs

5 Solid Abelian Groups
Def.(10.2.5.1)[Solid Abelian Group].For a profinite set S = lim←−Si, define the condensed Abelian
group

Z[S]■ = lim←−Z[Si].

There is a natural map S → Z[S]■, inducing a map Z[S]→ Z[S]■.
Then a solid Abelian group is a condensed Abelian group A that for any profinite set S and

a morphism of Abelian groups Z[S]→ A extends to a morphism Z[S]■ → A.
A complex C ⊂ D(Cond(Ab)) is called a solid complex if for all profinite set S, the natural

map
RHom(Z[S]■, C)→ RHom(Z[S], C)

is an isomorphism.

Prop.(10.2.5.2)[Free Solid Abelian Group].For a profinite set S,
• Consider?

Z[S]■ = lim←−Z[Si] = lim←−Hom(C(Si,Z),Z) = Hom(C(S,Z),Z).

This means that the underlying Abelian group of Z[S]■ is the Z-valued measures on S.
• There is some set |I| ≤ 2|S|, that there is an isomorphism Z[S]■ ∼=

∏
I Z.

• Z[S]■ is solid both as a module and a complex.
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Proof: 2: Take an isomorphism C(S,Z) ∼= ⊕IZ?, then

Z[S]■ = Hom(C(S,Z), Z) ∼= Hom(
⊕
I

Z,Z) ∼=
∏
I

Z.

3: We need to show the extension property, but by2, it suffices to show for Z[S]■ = Z.? □

Prop.(10.2.5.3) [Category of Solid Abelian Groups].The category Solid ⊂ Cond(Ab) is an
Abelian subcategory that is stable under all limits, colimits and extensions. The objects ∏I Z,
where I is any set, form a family of compact projective generators. The inclusion Solid ⊂ Cond(Ab)
admits a left adjoint M 7→M■ which is the unique colimit-preserving extension of Z[S] 7→ Z[S]■.

The functor D(Solid) → D(Cond(Ab)) is fully faithful and its essential image is precisely the
solid Abelian groups, and the inclusion admits a left adjoint C → CL■ which is left derived functor
of M →M■.

6 Analytic Geometry
7 Complex Geometry
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10.3 Topological Commutative Algebra
Main references are [Hub93], [Bos15], [B-S19], [Mor19] and [Sch12].

1 Topological Abelian Groups and Rings
Def.(10.3.1.1) [Topological Rings].A topological Abelian group is an Abelian group with a
topology structure that the addition and inversion are all continuous.

A topological ring is a ring endowed with a topology structure that the addition, multiplication
and inversion are all continuous.

Similarly we can define a topological module over a topological ring.

Def.(10.3.1.2) [Topologically Nilpotent Element].Let A be a topological ring, then x ∈ A is
called topologically nilpotent iff xn → 0 when n→∞.

Def.(10.3.1.3)[Bounded Sets].A subset S in a topological ring is called bounded iff for all open
nbhd U of 0, there exists an open nbhd V of 0 that V S ⊂ U

Def.(10.3.1.4)[Strict Morphism].A strict morphism of topological rings is a continuous morphism
that the quotient topology and the subspace topology coincides on the image.

Completion of Topological Abelian Groups

Prop.(10.3.1.5)[Completion].There exists a completion functor left adjoint to the forgetful functor
from the category of complete topological Abelian groups to the category of topological Abelian
groups, given by Cauchy filters.

Proof: □

Prop.(10.3.1.6) [Subgroups and Completion].Let A be a topological Abelian group, then the
completion i : A → A∧ induces a bijection between the set of open subgroups of A and the open
subgroups of A∧, given by G 7→ i(G) = G∧.

Proof: Cf.[Mor19]P74. □

Def.(10.3.1.7) [Restricted Power Series].Let R be a topological ring, then we can define the
restricted power series over R to be

R⟨X1, . . . , Xn⟩ = {
∑

avX
v ∈ R[[X1, . . . , Xn]]| lim

v→∞
av → 0}

Adic Rings

Def.(10.3.1.8)[Adic Rings].An adic ring R is a topological ring that the topology coincides with
the a-adic topology for some ideal a of R, and any such a is called a ideal of definition.

Prop.(10.3.1.9)[Topologically Nilpotent Elements].Let A be an adic ring and x ∈ A, then the
following are equivalent:

• x is topologically nilpotent.
• There exists an ideal of definition I that the image of x in A/I is nilpotent.
• There exists an ideal of definition I that x ∈ I.
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In particular, the set A00 of nilpotent elements is an open radical ideal of A, and it is the union of
all ideals of definitions in A.

Proof: 3 → 1 → 2 is trivial. 2 → 3: if x is nilpotent in A/I, let J = I + xA, then J is an open
ideal, and Jn ∈ I, so I-adic and J-adic topologies on A coincide, so J is an ideal of definition.

The rest is easy. □

Prop.(10.3.1.10)[Adic Localization]. If R is an adic ring with an ideal of definition a, the restricted
power series R⟨ξ⟩ is complete w.r.t. the (a)-adic topology, and in fact

R⟨ξ⟩ ∼= lim←−
n

R/an[ξ].

For f ∈ R, we can define the adic completion of R at f to be the

R⟨f−1⟩ = lim←−
n

(R/an[ 1
f

]).

The the natural map R⟨ξ⟩ → R⟨f−1⟩ induces an isomorphism

R⟨ξ⟩/(1− fξ) ∼= R⟨f−1⟩.

Proof: There is an isomorphism R[f−1]/(an) ∼= (R/an)[f−1] because localization is flat, so we are
done. □

Remark(10.3.1.11).There is another canonical morphism R[f−1] → R⟨f−1⟩ which exhibits R⟨f−1⟩
as the completion of R[f−1] w.r.t. the ideal aR[f−1].

Then R⟨f−1⟩ is endowed with an a-adic topology, and if a is f.g., then R⟨f−1⟩ is complete w.r.t.
to the aR⟨f−1⟩-adic topology. Also we see R⟨f−1⟩ doesn’t depend on the choice of ideal of definition
of a.

Proof: Consider the projective system of exact sequences:

0→ (1− fξ)R/an[ξ]→ R/an[ξ]→ R/an[f−1]→ 0.

which is a surjective system so by Mittag-Leffler(3.1.1.44), lim←− is exact(4.9.3.2), and there is an exact
sequence

0→ lim←−
n

(1− fξ)R[ξ]→ lim←−
n

R[ξ]→ lim←−
n

R[f−1]→ 0.

Now lim←−n(1− fξ)R[ξ] ∼= (1− fξ) ∼= (1− fξ)R⟨ξ⟩, because (1− fξ) is not a zero-divisor in R/an, and
we get the desired isomorphism. □

Def.(10.3.1.12)[Completed Tensor Product].Let (A, a), (B, b) be two complete adic rings, then
we can define a complete tensor product ring A⊗̂B as

A⊗̂B = lim←−
n

(A/an ⊗B/bn)

this is just the (a⊗B+A⊗ b)-adic completion of the tensor product A⊗B, because (a⊗B+A⊗ b)n
and (an ⊗B +A⊗ bn) are cofinal.
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Properties of R-Algebras

Def.(10.3.1.13) [Topologically of Finite Presentation].Let R be an adic ring with an ideal of
definition I, then an R-algebra A is called

• of topologically finite type if it is isomorphic to an R-algebra R⟨ζ1, . . . , ζn⟩/a that is endowed
with the I-adic topology and a is an ideal of R⟨ζ1, . . . , ζn⟩.

• of topologically finite presentation if moreover the ideal a is f.g..
• admissible if it is of topologically finite presentation and has no I-torsion.

Prop.(10.3.1.14)[Raynaud–Gruson].Let A be an R-algebra of topologically finite type and M a
finite A-module that is flat over R. Then M is an A-module of finite presentation.

Proof: Cf.[Bos15]P165. □

Cor.(10.3.1.15).Let A be an R-algebra of topologically finite type, then if A has no I-torsion, then
A is of topologically finite presentation, in particular admissible(10.3.1.13).

Proof: Cf.[Bos15]P166. □

Prop.(10.3.1.16)[Topologically of Finite Presentation is Local].Let A be an R-algebra that is
I-adically complete and separated, f1, . . . , fr be a set of elements generating the unit ideal, then A
is of topologically finite type/topologically finite presentation/admissible iff each A⟨f−1

i ⟩ does.

Proof: Cf.[Bos15]P169. □

2 Valuation Rings
Def.(10.3.2.1) [Valuation Ring].A valuation ring is the maximum elements in the dominating
ordering of local rings in a field K, where B dominates A iff A ⊂ B and mB ∩A = mA.

A valuation ring in K is called absolutely algebraically closed if K is alg.closed.

Prop.(10.3.2.2)[Valuation is Maximal].Any local ring A in a field K is dominated by a valuation
ring with fractional field K.

Proof: Note that the dominating relation satisfies the condition of the Zorn’s lemma, so it suffices to
prove that A is not maximal if its fractional field is not K. Let t /∈ K0 = fracA. If t is transcendental
over K0, then A[t] with the maximal ideal (m, t) dominate A. If t is algebraic over K0, then there
is a a that at is integral over A, hence by(4.2.1.5) there is a maximal ideal of A[at] above A, which
proves the lemma. □

Prop.(10.3.2.3) [Valuation Ring Criterion].A is a valuation ring with field of fraction K iff for
any x ∈ K, x or x−1 is in A.

Proof: If A is a valuation ring, then for x /∈ A, we know that A[x] is a local ring, hence there is no
prime over m otherwise A[x]p is a bigger local ring, so we see mA[x] = A[x], i.e. 1 =

∑
tix

i, so x−1

is integral over A. Now A[x−1] has a m′ over m, so A = A[x−1]m′ , which shows x−1 ∈ A.
Conversely, if for any x ∈ K, x or x−1 is in A, we assume A is not K, so A is not field by the

condition. Then it has a non-zero maximal ideal, but only one, otherwise we can choose x, y that
x/y, y/x /∈ A. And A is maximal because if there is a A ⊂ A′, and a x ∈ A′, then if x /∈ A, then
x−1 ∈ A, hence also in mA, so it is in mA′ , but now x−1 cannot be in A′, contradiction. □
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Cor.(10.3.2.4).For K ⊂ L subfield, if A is a valuation ring of L, then A∩K is a valuation ring of K.
And if L/K is algebraic and A is not a field, then A∩K is not a field.(This is because the primes of
A are all over 0 so cannot contain each other(4.2.1.5) so A is a field).

Cor.(10.3.2.5).The quotient A/p at a prime is a valuation ring, and any localization of valuation
ring is a valuation ring, by this criterion.

Prop.(10.3.2.6)[Valuation Ring is Normal].Valuation ring is normal, because for x algebraic over
A, either x ∈ A, or x is a combination of x−1 thus in A, by(10.3.2.3).

Cor.(10.3.2.7)[Integral Closure and Valuation Ring].The integral closure of a subring in a field
K is the intersection of valuation rings containing A.

Proof: Valuation ring is integrally closed, so it suffices to prove if x is not algebraic over A, then
there is a valuation ring of A not containing x. This is because x /∈ B = A[x−1] otherwise x is
integral over A. Now x−1 is not a unit in B, hence x ∈ p ∈ B, hence Bp is dominated by some
valuation ring V , and x /∈ V because x−1 ∈ mV . □

Prop.(10.3.2.8)[Bezout Domain and Valuation Ring].A valuation ring is equivalent to a Bezout
local domain.

Proof: One way is because the element of minimum valuation generate the ideal. Conversely, for
f, g ∈ A, (f, g) = (h), so f = ah, g = bh, and h = cf + dg, then ab + cd = 1, hence a or b is a unit,
so f/g ∈ A or g/f ∈ A. By(10.3.2.3), A is a valuation ring. □

Prop.(10.3.2.9).A valuation ring is Noetherian iff it is discrete valuation iff it is PID.

Proof: Only need to prove Noetherian then Γ = Z. we know ideals of Γ of the form {x|x ≥ γ},
where γ > 0 has a maximal element, so there is a minimal element bigger than 0, so Γ ∼= Z. □

Prop.(10.3.2.10). In a fixed field, any inclusion relation of two valuation ring is given by localization.

Proof: Just localize at the image of the maximal idealmB∩A, then they are valuation rings(10.3.2.5)
that dominate each other, thus they are the same by definition(10.3.2.1). □

Def.(10.3.2.11) [Extension of Valuation Rings].An injective local homomorphism of valuation
rings is called an extension of valuation rings. By(4.4.1.29), it is equivalent to a f.f. morphism
of valuation rings.

3 Valuations
Def.(10.3.3.1)[Valuations].A valuation on a field K is surjective map v : K → Γ where Γ is an
ordered Abelian group(2.2.8.1), called the value group of K.

The rank of a valuation is defined as the height of its value group(2.2.8.4).

Prop.(10.3.3.2)[Valuation Ring and Valuation].Valuation rings(10.3.2.1) A of a field K is equiv-
alent to valuations on K(10.3.3.1).

The equivalence is given by K = Q(A), Γ = K∗/A∗ and that A = v−1({x ≥ 0}).

Proof: These are definitely valuation rings, and if A is a valuation ring by(10.3.2.3), then we set
Γ = K∗/A∗, where A∗ is the invertible elements of A and x ≤ y iff y/x ∈ (A − {0})/A∗. This is
totally ordered by(10.3.2.3). □
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Cor.(10.3.3.3)[Rank and Dimension].A valuation ring of rank n has Krull dimension n, because
clearly the convex subgroups of Γ is in bijection with ideals of A.

Prop.(10.3.3.4)[DVRs].For a Noetherian local domain A of dimension 1 with maximal ideal m and
residue field k that is not a field, the following are equivalent:

1. A is a valuation ring corresponding to a discrete valuation in(10.3.3.2).
2. A is normal.
3. m is a principal ideal.
4. A is regular.
5. Every nonzero ideal is a power of m.
6. There exists a x ∈ A that every nonzero ideal is of the form (xk).

Such a ring is called a discrete valuation ring or a DVR.

Proof: 1→ 2 : Valuation ring is integrally closed, by(10.3.2.6).
2→ 3: As the radical of any non-trivial ideal (a) is m, and A is Noetherian, so there is an n that

mn ⊂ a and mn−1 ⊈ a. Then choose b ∈ a−mn−1, x = a/b ∈ K, then x−1 /∈ A, then it is not integral
over A. So x−1m ⊈ m, but x−1m ⊂ A, so it equals A, which means m = (x).

3→ 4 : Clear.
4 → 5: For any ideal a, its radical is m and A is Noetherian, so mn ⊂ a. Now A/mn is Artinian

by(4.1.3.4), so by(4.1.3.6) a is a power of m.
5→ 6 : And x ∈ m−m2 will do.
6→ 1 : Define v(a) = k if (a) = (xk). □

Cor.(10.3.3.5)[Noetherian Valuation Rings are DVRs].A Noetherian valuation rings are auto-
matically DVRs.

Proof: This is implicit in the proof above. □

Prop.(10.3.3.6).Let R be a Noetherian local domain with fraction field K and R ̸= K, then there
exists a Noetherian local ring R′ of dimension 1 that dominates R s.t. R→ R′ is essentially of f.t..

Proof: Cf.[Sta]00P8. □

Cor.(10.3.3.7)[Dominance by DVRs].Let R be a Noetherian local domain with fraction field K
and R ̸= K, L/K a f.g. filed extension, then there exists a a DVR A with fraction field L which
dominants R.

Proof: First we can reduce to the case L/K is finite: If it is not finite, choose a transcendence
basis x1, . . . , xr, and replace R by R[x1, . . . , xr]mR,x1,...,xr .

In the finite case, first we can reduce to the case dimR = 1 by(10.3.3.6), and let A be the integral
closure of R in L, then by(4.1.1.50), A is Noetherian, and R→ A is integral so there exists a maximal
prime n ⊂ A that n ∩R = mR. Thus An is a DVR by(10.3.3.5). □

Valuations of Rank 1

In this subsubsection, all valuations are of rank 1.

Remark(10.3.3.8) [Real Valuations].As an ordered Abelian group of height 1 can be embedded
into R(2.2.8.5), a valuation v on a field of rank 1 is equivalent to a real-valued valuation.
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Def.(10.3.3.9)[Multiplicative Valuation].For a real continuous valuation v, we can define a mul-
tiplicative valuation | · | where |a| = exp(−v(a)). Then it is multiplicative.

Def.(10.3.3.10)[non-Archimedean Valuations].A valuation is called non-Archimedean iff |x+
y| ≤ max{|x|, |y|}. It is called Archimedean iff it is not non-Archimedean .

Def.(10.3.3.11)[Non-Archimedean field].A non-Archimedean field is a topological field that
the valuation is given by a rank1-valuation.

Prop.(10.3.3.12).A valuation is non-Archimedean iff {|n||n ∈ N} is bounded.

Proof: If it is non-archimedean, then clearly by induction and n = 1 + (n− 1) |n| ≤ 1. Conversely,
if |n| ≤ M , then consider |x + y|n = |(x + y)n| ≤

∑
|Ckn|xkyn−k| ≤ M max{|x|, |y|}, so letting n be

large, clearly |x+ y| ≤ max{|x|, |y|}. □

Cor.(10.3.3.13).Any valuation on a field of char̸= 0 is non-Archimedean.

Prop.(10.3.3.14) [Equivalent Valuations].Two valuation on a field is equivalent iff |x|1 < 1 ⇒
|x|2 < 1 and is equivalent to |x|1 = |x|s2 for some s > 0.

Proof: if two valuation are equivalent, then xn → 0 in τ1 iff xn → 0 in τ2, so |x|1 < 1⇒ |x|2 < 1.
If |x|1 < 1 ⇒ |x|2 < 1, then let y be an element that |y|1 > 1, then any element |x| = |y|α for

some α ∈ R. Let ni
mi

converges to α from above, then | xniymi |1 < 1, so | xniymi |2 < 1, so |x|2 ≤ |y|α2 .
Similarly, |x|2 ≥ |y|α2 , so |x|2 = |y|α2 . So |x|1 = |x|s2 for some s > 0.

If |x|1 = |x|s2 for some s > 0, then these two valuations are clearly equivalent. □

Cor.(10.3.3.15)[Weak Approximation]. If | · |1, . . . , | · |n be pairwise inequivalent valuations on K,
then for any a1, . . . , an ∈ K and ε > 0, there is an x ∈ K that |x− ai|i < ε.

Proof: As | · · · |1, | · · · |n are inequivalent, there are α, β that |α|1 < 1, |α|n ≥ 1, |β|n < 1, |β|1 ≥ 1
by(10.3.3.14), so let y = β/α, then |y|1 > 1, |y|n < 1.

Now we prove by induction that there is an α that |α|1 > 1, |α|i < 1 for i = 2, . . . , n. the case
n = 2 is done, for general n, if the z for n − 1 satisfies |z|n ≤ 1, then zmy will do, for m large.
if |z| > 1, then the sequence |tm|i = | zm1+zm |i converges to 1 for i = 1, n and converges to 0 for
i = 2, . . . , n− 1, so tmy will do, for m large. □

Prop.(10.3.3.16)[Gelfand].Any field K with an Archimedean valuation is a subfield of C.

Proof: We consider its completion. when it contains C, this is a corollary of??, otherwise, we
consider K ⊗ C, then it is a finite dimensional module over K thus also complete. □

Remark(10.3.3.17).Because of this, we usually don’t consider only non-Archimedean valuations, and
refer to all valuations as places, cf.(12.4.2.5).

Prop.(10.3.3.18)[Ostrowski].
1. ΣQ = P ∪ {∞}. Thus any complete Archimedean field is isomorphic to R or C by(10.3.3.16).
2. Any non-trivial valuation on Fq(t) is of the form |·|p or |·|∞, where p is an irreducible polynomial

in Fq[t].
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Proof: 1: if it is non-Archimedean, then |n| ≤ 1, and it is not trivial, so there is a minimal p that
|p| < 1. Then p is easily seen to be a prime. Then for any (a, p) = 1, a = dp + r, so |r| = 1, so
|a| = 1.

And if it is Archimedean, then we prove that in N, |m| = mλ for some λ: Let F (n) = |n| and
f = log2 F , then f(m+n) ≤ max{f(m), f(n)}+1, and ifm =

∑r
i=1 din

i, then f(m) ≤ r(1+f(n))+an,
where an = sup{f(k)|k < n}. And r ≤ logm/ logn, so

f(m)
logm

≤ a+ f(n)
logn

+ b

logn

then letting m→ mk, k →∞, and then let n→ nk, k →∞, we get f(m)
logm ≤

f(n)
logn , for any m,n.

2: Any valuation on Fq(t) is non-Archimedean(10.3.3.13), and |n| = 1 if (n, p) = 1, because
np−1 = 1. Similarly, if there is a minimal hence irreducible P that |P | < 1, then use induction and
Q = sP + r for some s, r of degree< degQ, so |Q| = 1 for all (Q,P ) = 1. Otherwise, |P | ≤ 1 for all
P , then |t| > 1, otherwise | · | is trivial, so it is easy by induction that |F (t)| = |t|degF . □

Lemma(10.3.3.19) [Continuity of Roots].For a separable polynomial f over a valued alg.closed
field K, there is a ε that every polynomial g that are closed enough to f , the roots of g is closed to
roots of f respectively.

Proof: This is easy to see by decomposition as each root of f is close to a root of g. f, g have the
same degree so the roots correspond to each other. □

Prop.(10.3.3.20)[Fundamental Inequality]. if (K, v) is a valued field and L/K be a field extension
of degree n, if wi are the valuations of L above v, then∑

wi|v
e(wi/v)f(wi/v) ≤ [L : K].

The equality holds when v is discrete and L/K is separable.

Proof: Cf.[Clark note Theorem4].? □

Def.(10.3.3.21) [Spherically Complete Valued Field].A valued field K is called spherically
complete iff each descending chain of metric balls has a nonempty intersection.

Microbial Valuations

Prop.(10.3.3.22) [Microbial Valuation].For a valuation ring R ⊂ K, a f ̸= 0 ∈ R is called
topologically nilpotent iff fn → 0 in the valuation topology of A. The following are equivalent:

• The topology on K coincides with a rank 1 topology.
• There exists a nonzero topologically nilpotent element in K.
• R has a prime ideal of height 1.

If this is the case, then the valuation defined by A is called microbial.
And in this case, for any topological nilpotent element ϖ, K = R[ϖ−1], and ϖr ∈ R for some r,

and the topology on R is ϖr-adic. And if p is a prime ideal of rank 1, then the valuation ring Rp is
of rank 1, and defines the same topology on R.
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Proof: 1 → 2: if there is a rank 1 valuation | − |′ that defines the same topology as R, then any
|x|′ < 1 will be a topological nilpotent element by(10.3.3.23).

2→ 3: if ϖ is a topological nilpotent element, then p =
√

(ϖ) is a prime ideal, and it is minimal,
because if there is another q ⊊ p, then ϖ /∈ q, but p ⊂ (ϖn) by induction: because (ϖ) ⊈ q, q ⊂ (ϖ),
and if x ∈ q, then x = ϖny, and ϖ /∈ q, so y ∈ q ⊂ (ϖn), so x ∈ (ϖn+1). Now q = 0 because ϖ is
topological nilpotent.

3 → 1: It suffices to prove that the valuation defined by Rp is the same as the topology of R.
But this is true in general, just notice that the valuation topology of a nontrivial valuation is also
defined by B(a, γ].

The final remark is clear as xϖn ∈ R ⇐⇒ |ϖn| ≤ |x−1|. □

Lemma(10.3.3.23).Let R be a valuation ring, if x ∈ R∗ is topologically nilpotent, then |x| < 1, and
the converse is also true if R has rank 1.

Proof: if |x| ≥ 1, then xN /∈ B(0, 1), so it is not topologically nilpotent. And if R has rank 1,
|x| < 1, then for any δ ̸= 0, there is some n that |δ−1| < |x−n|(2.2.8.5), so |xm| < |δ| for m large,
thus x is topologically nilpotent. □

Prop.(10.3.3.24) [Constructing Microbial Valuations]. If A is a valuation ring and f ∈ A is a
non-zero non-unit, then the f -adic Hausdorffization A = A/ ∩n fnA and the completion Â are all
microbial.

Proof: Easy, Cf.[Bhatt Perfectoid Spaces, P63]. □

4 Affinoid Algebras

Tate Algebras

Def.(10.3.4.1) [Tate Algebra].For a complete non-Archimedean field K with residue field k, we
define the Tate algebra Tn = K⟨x1, . . . , xn⟩ to be the restricted power series(10.3.1.7) consists of
elements ∑v avx

v that lim−→|v|→∞ |av| = 0. It is endowed with the norm |f | = max |av|.
The norm satisfies |fg| = |f ||g| and |f + g| ≤ |f |+ |g|.
There is a reduction map from Tn to k[x1, . . . , xn], it is surjective.

Proof: Tn is an algebra because the values of coefficients of f is bounded. |fg| ≤ |f ||g| is easy, to
show |fg| ≥ |f ||g|, we assume |f | = |g| = 1, then their reduction in K[x1, . . . , xn] is non-zero, thus
fg is non-zero, which shows |fg| ≥ 1. □

Prop.(10.3.4.2)[Maximum Principle].A formal power series f converges in Bn(K) iff it is in Tn.
And when it is in Tn, |f(x)| attains a maximum= |f | in Bn(K).

Proof: If it converges at (1, . . . , 1), then lim−→|v|→∞ |av| = 0 by(12.2.1.19). Conversely, for any
point in Bn(K), it can be considered in a finite extension field of K, thus complete, hence we can
apply(12.2.1.19) again.

For the second assertion, we assume |f | = 1, then consider its reduction to k[x1, . . . , xn], then
there is a x in the alg.closure of k that f(x) ̸= 0. Now k can be seen as the residue field of K. Then
the lifting of x to a x ∈ K has valuation 1 and |f(x)| = 1. □

Prop.(10.3.4.3). Tn is a Banach algebra(Easy).
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Cor.(10.3.4.4).An element f of norm 1 of Tn is invertible in Tn iff its reduction in k[x1, . . . , xn] is a
unit. Elements of other norms can be reduced to the case of norm 1.

Proof: One direction is trivial, the other is because |f − f(0)| < 1, hence f = f(0)(1 + g), this is
invertible by power expansion as Tn is complete. □

Def.(10.3.4.5).A restricted power series g =
∑
gvX

v
n ∈ Tn with coefficients in Tn−1 is called Xn-

distinguished of order s iff gs is a unit in Tn−1, |gs| = |g| and |gs| > |gv| for all v > s.

Lemma(10.3.4.6).For any f.m. elements fi ∈ Tn, there is a continuous automorphism of Tn that
maps Tn → Tn, Ti → Ti + Tαin that maps fi to Xn-distinguished elements.

Proof: Cf.[Rigid and Formal Geometry P16]. □

Prop.(10.3.4.7)[Weierstrass Division]. If g ∈ Tn is Xn-distinguished of order s, for any f ∈ Tn,
there is a unique form f = qg + r, where q ∈ Tn and r ∈ Tn−1[Xn] of degree r < s. Moreover,
|f | = max{|q||g|, |r|}.

Proof: Cf.[Rigid and Formal Geometry P17]. □

Cor.(10.3.4.8)[Weierstrass Preparation]. If g ∈ Tn is Xn-distinguished of order s, then there exists
uniquely a r ∈ Tn−1[Xn] of degree s and g = re, where e is a unit in Tn.

Proof: By(10.3.4.7) applied to Xs
n = qg + r with |r| ≤ 1. Then ω = Xs

n − r is Xn is the desired
polynomial, it suffice to show q is a unit. Let g be normalized that |g| = 1, then |q| = 1, by reduction
to polynomials, we see ω̃ = q̃g̃, and ω̃, g̃ are both polynomials of degree s, so q̃ ∈ k∗, so q is a unit
by(10.3.4.4).

Uniqueness: if g = eω, then Xs
n = e−1g+(Xs

n−ω), so uniqueness follows from that of Weierstrass
division. □

Prop.(10.3.4.9)[Noether Normalization].For any proper ideal a of Tn, There is a d and a finite
injection Td → Tn/a.

Proof: We may assume α ̸= 0, thus choose a g ∈ α ̸= 0, then using(10.3.4.6), we may assume g is
Xn-distinguished. Now the Weierstrass division theorem(10.3.4.7) says that Tn−1 → Tn/(g) is finite.
Hense Tn−1 → Tn/(g) → Tn/a is finite. Now we can use induction to find a Td → Tn−1/Tn−1 ∩ a
finite, thus also Td → Tn/a is finite. □

Cor.(10.3.4.10)[Residue Field of Tate Algebra].The residue field of a maximal ideal of Tn is a
finite extension field of K, because Tn/m has dimension 0, thus K → Tn/m finite injective.

Proof: Because finite injection Td → Tn/m shows Tn is a field(4.2.1.3), thus we must have d = 0.
□

Cor.(10.3.4.11).The map from Bn(K) to the set of maximal ideals of Tn are surjective.

Proof: Evaluation map defines a map Tn → K(x1, . . . , xn) that is surjective, thus the kernel is a
maximal ideal. Conversely, for any maximal ideal m ⊂ Tn, K ′ = Tn/m is finite over K, so we may
assume K ′ ⊂ K.

We show that this map φ : Tn → K is contractive, otherwise there is a |a| = 1, |α = φ(a)| > 1.
Consider the minimal polynomial p of |α|, all the conjugates of α has the same valuation as K, as
K is Henselian, thus p has ascending Newton polygon, thus by(10.3.4.4) it is invertible in Tn. But
φ(p(a)) = 0, contradiction.

So |φ(x)| ≤ |x|, then it is continuous, and (φ(T1), . . . , φ(Tn)) ⊂ Bn(Kn), so we are done. □
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Cor.(10.3.4.12)[Main Theorem]. Tn is Noetherian, UFD, Jacobson of Krull dimension n.

Proof: Noetherian: Use induction, as in the proof of(10.3.4.9), Tn−1 → Tn/(g) is finite for some
g ⊂ a, then also Tn/a is finite over Tn−1, thus Noetherian as a Tn−1 module, thus Noetherian as a
ring.

UFD: Cf.[Rigid and Formal Geometry P20].
Jacobson: We need to show that any prime ideal p is an intersection of maximal ideals. The case

of p is by(10.3.4.2). For p ≠ 0, by Noetherian normalization(10.3.4.9), there is a Td ⊂ Tn/p finite.
Then use induction and generalized Nullstellensatz(4.2.6.10), Tn/p is Jacobson, thus p = rad(Tn/p).

Dimension n: Cf.[Formal and Rigid Geometry P22]. □

Prop.(10.3.4.13).For an ideal a ∈ Tn, there are a1, . . . , ar which generate a that |ai| = 1, and any
elements in f has a representation of the form ∑

fiai with |fi| ≤ |f |.
The same assertion holds for submodules of T kn .

Proof: Cf.[Formal and Rigid Geometry P27,29].? □

Cor.(10.3.4.14).Each ideal of Tn is closed hence complete in Tn. This follows immediately
from(10.3.4.12) and(12.2.4.13).

Cor.(10.3.4.15).For any ideal a of Tn, the distance from an element to a attains minimum.

Proof: Cf.[Bos15] P28. □

Affinoid Algebras

Def.(10.3.4.16) [Affinoid Tate Algebra].A normed algebras of the form A = Tn/a are called
affinoid (Tate) algebras, so it is Noetherian and Jacobson by(10.3.4.12). An affinoid algebra has
a natural semi-norm by |f |sup = sup |f |m in A/m for a maximal ideal m of A by(10.3.4.10).

Proof: We need to show the sup is finite, for this, notice |f | = |g| for some g in the residue
norm(10.3.4.17), so for any maximal ideal m of A, the inverse is a maximal ideal n in Tn by finiteness,
thus |f |m = |g|n ≤ |g|sup = |g| = |f |, so |f |sup ≤ |f |.

For the second-last equality, notice on Tn, | · |sup and | · | equal, by(10.3.4.2) and(10.3.4.11). □

Def.(10.3.4.17)[Residue Norm].For a Tate algebra A = Tn/a, there is a natural residue norm on
it. This is a complete K-algebra norm on A, and Tn → A is continuous and open. For any f ∈ A,
the residue norm is attained at an element of Tn.

Any residue norm is bigger than the sup-norm, by the proof of(10.3.4.16).

Proof: It is a K-algebra norm is easily verified, should notice |f | = 0 iff f = 0, because a is
closed(10.3.4.14). The last assertion follows from(10.3.4.15). □

Remark(10.3.4.18).The sup norm may not even be a norm, if a is not radical, but the fact that sup
norm is smaller than any residue norm, together with(10.3.4.22), is enough for use.

Prop.(10.3.4.19).For Td → A a finite injection, assume A is a torsion-free Td-module, then for any
f ∈ A, there is a unique minimal monic polynomial P of f over Td.

In this case, |f |sup = sup |ai|1/isup where ai are coefficients of P .
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Proof: Because A is torsion-free, we reduce to the quotient field of Tn, then f has a minimal monic
polynomial, and Tn is UFD, hence Gauss lemma shows that this polynomial has coefficients in Td.
Hence Tn[f ] = Tn[X]/(p).

For the second, notice first for finite extension the Spec map is surjective, thus we may assume
A = Tn[f ] = Tn[X]/(p), and for a maximal ideal m of Tn, let Tn/m = k, then A/(m) = k[X]/(p),
then maximal ideals of A/(m) corresponds to roots αi of p in k, so

sup
φ−1(n)=m

|f |n = sup |αi| = max |ai|1/im ,

so the result follows. □

Cor.(10.3.4.20). |f |sup ∈ N
√
|K| for some N and all f ∈ A, because the minimal polynomial has

coefficients in Tn, and sup norm and Gauss norm coincide on Tn by the proof of(10.3.4.16).

Cor.(10.3.4.21)[Maximum Principle]. |f |sup = |f |m for some maximal ideal m.

Proof: Since A is Noetherian(10.3.4.12), it has f.m. minimal primes, hence |f |sup = |f |sup in A/pi
for some minimal prime of A. Hence we reduce to the case of(10.3.4.19), hence the conclusion follows
from(10.3.4.2) and the proof of(10.3.4.19). □

Prop.(10.3.4.22) [Residue Norms Equivalent].Any morphism from a Noetherian k-algebra to
an affinoid algebras A is continuous w.r.t any residue norms. In particular, any k-Banach algebra
topology on A coincides with the k-affinoid topology on A, and all residue norms on an affinoid
algebra are equivalent.

Moreover, for any morphism of k-affinoid algebras B → A, the norm on A can be replaced by an
equivalent one that makes A into a normed B-algebra.

Proof: Use(12.2.4.10), it suffices to show the condition holds, for B = {mv} where m are maximal
ideals of A: The residue field is finite by(10.3.4.10), their intersections is (0) because if f ∈ ∩m∩nmn,
Krull’s theorem(4.2.2.15)(use localization) says for each maximal ideal m there is a m ∈ m that
(1−m)f = 0, so Ann(f) = (1), so f = 0.

For the second assertion, see [non-Archimedean Analysis P229]. □

Cor.(10.3.4.23).The notion of power-boundedness and topological nilpotence is independent of
residue norm chosen.

Cor.(10.3.4.24)[Restricted Power Series].For an affinoid algebra A, the restricted power series in
A:

A⟨Xi⟩ = {
∑

avX
v| lim−→

|v|→∞
av = 0}

is an affinoid algebra, this is independent of the residue norm chosen.

Def.(10.3.4.25) [Strongly Noetherian].A is called strongly Noetherian if A⟨T1, . . . , Tn⟩ are
Noetherian for any n ≥ 0.

Lemma(10.3.4.26).The image A is dense in A⟨X⟩/(X−f)(in the residue norm, and thus in all other
norms, by(10.3.4.22)(10.3.4.17)), this is because a restricted power series can be truncated by a finite
part and a part with small norm, and the finite part is in the image of A.
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Def.(10.3.4.27)[Affinoid Generator].For a morphism of affinoid algebras A→ A′, a set of elements
hi in A′ is called a set of affinoid generator iff there is a surjection

A⟨X1, . . . , Xn⟩ → A′, Xi 7→ hi

Of course hi is power-bounded, by the residue norm given.

Lemma(10.3.4.28). If π′ : A⟨X1, . . . , Xn⟩ → A′ : Xi → h′
i is a surjective morphism of affinoid algebras

that A⟨X1, . . . , Xn⟩ is endowed with the Gauss norm and A′ is endowed with the residue norm, then
any set of elements h = (h1, . . . , hn) that |hi − h′

i| < 1 is a set of affinoid generators.

Proof: By non-Archimedean property, |hi| ≤ 1 thus also |h′
i| ≤ 1, and Let ε = max{|hi − h|} < 1.

The strategy is simple, if for each g in A′, we can find a f that |f | = |g|, |π(f) − g| ≤ ε|g|, then
by iteration, there is a f that π(f) = g. But by(10.3.4.17) and(10.3.4.15), if we choose a f that
π′(f) = g and |f | = |g|, then

|π(f)− g| = |
∑

avh
v −

∑
avh

′v| = |
∑

av(hv − h′v)| ≤ ε|f | = ε|g|.

□

Def.(10.3.4.29) [Distinguished Element].For an affinoid algebra A and an element x ∈
SpA(14.5.1.1), a element f ∈ A⟨X1, . . . , Xn⟩ is called Xn-distinguished of order s at x iff it is
distinguished in A/mx⟨X1, . . . , Xn⟩ is distinguished of order s in the sense of(10.3.4.5)(notice A/mx

is a complete valued field by(10.3.4.10)).

Prop.(10.3.4.30)[Fibererd-Pushouts].When R,A1, A2 are all affinoid algebras, the amalgamated
sum is also an affinoid algebra. In other words, the category of affinoid algebras admits amalgamated
sums(fibered pushouts by(12.2.1.15)).

Proof: Cf.[Formal and Rigid Geometry P245]. □

Prop.(10.3.4.31). Tn⊗̂Tm ∼= Tm+n. K ′⊗̂Tn,K = Tn,K′ .

Prop.(10.3.4.32).For affinoid algebras R,A1, A2 and ideals a1 ⊂ A1, a2 ⊂ A2, there is an isomor-
phism:

(A1⊗̂RA2)/(a1, a2) ∼= (A1/a1)⊗̂R(A2/a2)

Proof: Cf.[Rigid and Formal Geometry P248]. □

Prop.(10.3.4.33) [Finite Extension of Affinoid Algebras]. If B is an affinoid K-algebra and
φ : B → A is a finite ring map, then A can be provided a topology to make it an affinoid K-algebra,
and φ is continuous.

Proof: We can associate to A a Banach algebra topology induced from Bn → A → 0 that is
continuous. Now it is an affinoid K-algebra: we may assume B = Tn, then A =

∑
Tnai, and we may

assume |ai| < 1 then clearly there is a continuous extension Tn⟨Xi⟩ → A extending this map, so A is
affinoid. □

Construction of Affinoid Tate Algebras

Def.(10.3.4.34)[Affinoid Localizations].Let A be an affinoid Tate algebra, then for a finite set of
elements {fi, gj} ⊂ A, we can define the localization

A⟨fi, g−1
j ⟩ = A⟨ζ1, . . . , ζi, ξ

−1
1 , . . . , ξj⟩/(ζi − fi, 1− ξjgj).
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5 Huber Rings

Def.(10.3.5.1)[Huber Ring].A topological ring is called Huber if there exists an open subring A0
that the induced topology on A0 is I-adic for some f.g. ideal I of A. Such a A0 is called a ring of
definition, and I is called the ideal of definition. Morphisms of Huber rings are just a continuous
morphisms of topological rings.

Prop.(10.3.5.2)[Boundedness and Rings of Definition].A subring A0 ⊂ A of a Huber ring is a
ring of definition iff it is open and bounded.

Proof: Clearly a ring of definition is open and bounded, for the converse, let (A′
0, I) be a couple of

definition, and A0 is an open and bounded subset of A, then Ik ⊂ A0 for some n, and set J = IkA0.
As A0 is bounded, for any open nbhd U of 0, there exists m > 0 that IkmA0 ⊂ U , thus Jm ⊂ U .
This shows J is a fundamental system of nbhd of 0, thus A0 is J-adic and is a ring of definition. □

Cor.(10.3.5.3).Let A be a Huber ring, then
• If A0, A1 are two rings of definition of A, then so does A0 ∩A1 and A0A1.
• Every open subring B of A is a Huber ring.
• If B ⊂ C are subrings of A and B is bounded, C is open, then there is a ring of definition A0

that B ⊂ A0 ⊂ C.

Proof: 1: By(10.3.5.2).
2: Let In ⊂ B, then (B ∩A0, I

n) is a couple of definition of B.
3: By2, C is Huber, take a ring of definition A0 of C, then A0B is open and bounded in C, thus

a ring of definition. □

Lemma(10.3.5.4). If A is a Huber ring and T ⊂ A is a subset that generates an open ideal of A, then
for any open nbhd U of A, the subgroup TnU is open.

Proof: Let (A0, I) be a couple of definition. By assmption the ideal J generated by T is open,
thus Jn is also open, and contains some Im. Now we can change Im to I. Now I is f.g., so there is a
finite subset M ⊂ A that I ⊂ TnM . Notice M is bounded because it is finite, so there is an integer
r that IrM ⊂ U , thus Ir+1 ⊂ TnU , and TnU is open. □

Def.(10.3.5.5)[Tate Huber Ring].A Tate Huber ring is a Huber ring s.t. there exists an open
subring A0 that the induced topology on A0 is t-adic for some t ∈ A0 which becomes a unit in A.
Such a t is called a pseudo uniformizer.

Prop.(10.3.5.6)[Examples of Tate Huber Rings].
• If K is a complete non-Archimedean field and R is a K-Banach algebra, then R is Tate with a

ring of definition by (R≤1, t), where t is a pseudo-uniformizer of K.
• If A0 is any ring and g ∈ A0 is a nonzero-divisor, and let A = A0[g−1] equipped with the g-adic

topology, then it is an Tate Huber ring.

Prop.(10.3.5.7)[Properties of Tate Huber Rings]. If a Huber ring A is Tate with a topological
nilpotent unit g and A0 ⊂ A is any ring of definition, then there exists n large that gn ⊂ A0. And in
this case, A0 is gn-adic and A = A0[(gn)−1].

In this case, a subset S ⊂ A is bounded iff S ⊂ g−nA0 for some n.
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Proof: Because A0 is open in g, there is some n that gn ⊂ A0, and then with n even larger we can
assume g ∈ I, because g is topologically nilpotent, and gA0 is also open in A0, thus it contains Im
for some m. So now gmnA0 ⊂ Im ⊂ gnA0, which means A0 is gn-adic.

To show A = A0[(gn)−1], it suffices to notice gknx → 0 as k → ∞ for any x ∈ A, so for k large,
gknx ∈ A0.

The last assertion is easy, as open subsets of A and gknA0 are cofinal. □

Prop.(10.3.5.8)[Power-Bounded Elements and Topologically Nilpotent Elements].The sub-
set A0 of power-bounded elements in A is a subring, and it is the filtered colimit of all the ring of
definition in A, thus open. It is also integrally closed in A.

The subset A00 fo topologically nilpotent elements of A is a radical ideal of A0. But it is in
general not an ideal of A.

Recall A is called uniform if A0 is bounded(12.2.1.6), or equivalently A0 is a ring of definition,
by(10.3.5.2).

Proof: By(10.3.5.3), every power-bounded element is contained in a ring of definition, and any
ring of definition is bounded, so A0 is the union of all rings of definitions of A, and this is filtered
by(10.3.5.3).

To show A0 is integrally closed, notice by what we already proved, if a is integral over A0, then
it is integral over a ring of definition A0, but then {an} ⊂ A0[a] is bounded, so a ∈ A0.

Showing A00 is a radical ideal of A0 is easy and ommited. □

Cor.(10.3.5.9). If a Huber ring A is separated, Tate and uniform, then A is reduced.

Proof: Assume that A0 the set of power-bounded elements is a ring of ideal and g ∈ A0 is a pseudo-
uniformizer. If x is nilpotent, then g−n is nilpotent for any x, so power-bounded and g−nx ∈ A0,
which means x ∈ gnA0 for any n. But A0 is separated, so x = 0. □

Cor.(10.3.5.10).Let A be a Huber ring, then an ideal J is open iff A00 ∈
√
J .

Proof: If J is open, then clearly A00 ⊂
√
J . Conversely, if A00 ⊂

√
J and (A0, I) is a couple of

definition, then I ⊂ A00 by(10.3.1.9), so I ⊂
√
J . And I is f.g., so IN ⊂ J for some J , thus J is

open. □

Prop.(10.3.5.11). If K is a complete non-Archimedean field, then any Banach K-algebra R is a
complete Tate ring, and if K,R are perfectoids, then R00 = K00R0.

Proof: In the perfectoid case, first K00R0 ⊂ R00, and for any topological nilpotent α, αn ⊂ tR00

for a pseudo-uniformizer t. Thus R00 and K00R0 has the same radical, it suffices to show K00R0 is
radical, but the quotient R0/K00R00 is a perfect K0/K00-algebra by perfectoidness, thus it must be
radical. □

Prop.(10.3.5.12)[Complete Perfect Tate ring is Uniform, André]. If A is a complete Tate ring
of charp that is perfect, then A is uniform.

Proof: Let (A0, t) be a ring of definition, let An = A
1
pn

0 , then A∞ = colimAn = (A0)perf . We check
t

1
pnA0 ⊂ A∞ ⊂ t−1A0, which shows A0 is bounded.

If f ∈ A0, then tafN ⊂ A ⊂ A∞, and A∞ is perfect, so t
a
pn f ∈ A∞ for all n. Notice the Frobenius

is a continuous bijection of Banach spaces, so it is open by Banach theorem(10.8.2.4), so Ap0 ⊃ tmpA0,
thus tmA1 ⊂ A0, and then t

m
pnAn+1 ⊂ An. So t

∑
n
m/pnAn ⊂ A1. So tcA∞ ⊂ A0, for c large. □
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Huber Pairs

Def.(10.3.5.13) [Huber Pairs].For a Tate ring A, a ring of integral elements is an open and
integrally closed subring of A contained in A0(10.3.5.8)(for example A0 itself). A Huber pair is a
pair (A,A+) that A is a Huber ring and A+ is a ring of integral elements. A morphism of Huber
pairs should preserve the ring of integers.

A Huber ring is called an Affinoid Tate ring if A is Tate.

Prop.(10.3.5.14).A00 ⊂ A+ as an ideal for any ring of integral elements A+. In particular, A+

contains any pseudo-uniformizer, and the set of rings of integral elements is in bijection with integrally
closed subrings of A/A00.

Also, A+ is a filtered colimits of rings of definitions.

Proof: t ∈ A00 is topologically nilpotent hence tn ⊂ A+ for some n as it is open, and then t ∈ A+

as it is integrally closed. It is an ideal because it is an ideal of A0(10.3.5.8).
For the last assertion, notice that A0 is the filtered colimits of rings of definitions(10.3.5.8), and

the intersection of a ring of definition with A+ is also a ring of definition, because it is open and
bounded(10.3.5.2), the result follows. □

Def.(10.3.5.15)[Zariski, Henselian, Complete Huber Pairs].A Huber ring (A,A+) is called
• complete iff A is complete.
• Henselian iff (A+, A00) is a Henselian pair.
• Zariski iff (A+, A00) is a Zariski pair.

Prop.(10.3.5.16).An affinoid Tate ring (A,A+) with a ring of definition (A0, I) that A0 ⊂ A+ is
• Zariski iff I is in the Jacobson radical of A0.
• Henselian iff the pair (A0, I) is Henselian.
• Complete then it is Henselian.
• Henselian then it is Zariski.

Proof: 1: We prove that if t ∈ rad(A0), the for any other B0 ⊃ A0, t ∈ rad(B0). If this is true,
then as A+ is a filtered colimits of rings of definitions(because A0 does), it is clear that t lies in
the maximal ideal (check 1 + at is unit). For this, if m ⊂ B0 is maximal and t /∈ m, choose n that
tnB0 ⊂ A0, and an element b ∈ B0 that maps to t−n−1 modulo m, then a = tnb ∈ A0 is mapped to
t−1. Thus the composition A0 → B0 → B0/m is surjective: b is the image of an(tnb) ∈ A. So t is not
in a maximal ideal of A0, contradiction.

Conversely, Cf.[Bhatt Perfectoid Space P57].
2: Cf.[Bhatt Perfectoid Spaces P57].
3: A is complete then A0 is complete, hence (A0, I) is Henselian by(4.3.10.6), so it is Henselian

by item2. 4: Trivial. □

Adic Morphisms

Def.(10.3.5.17)[Adic Morphisms].A morphism of Huber rings f : A → B is called an adic mor-
phism if we can choose rings of definitions A0, B0 and an ideal of definition I of A that f(A0) ⊂ B0,
and f(I)B0 is an ideal of definition of B0.

A morphism (A,A+)→ (B,B+) of Huber pairs is called adic if A→ B is.
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Prop.(10.3.5.18).Let f : A→ B be an adic morphism between Huber rings, then:
1. f is continuous and open.
2. If A0, B0 are rings of definition s.t. f(A0) ⊂ B0, then for any ideal of definition I ⊂ A0, f(I)B0

is an ideal of definition in B0.
3. f maps bounded sets to bounded sets.

Proof: Let f(A0) ⊂ B0 and J = f(I)B0. Then In ⊂ f−1(Jn), so f is continuous.
If E is bounded in A, for any n, let m be that ImE ⊂ In, then f(E)f(I)m = f(EIm) ⊂ f(In) ⊂

Jn, thus f(E)Jm ⊂ Jn, so f(E) is bounded. □

Construction of Huber Rings

Main references are [Mor19].

Prop.(10.3.5.19)[Quotient].Let (A,A+) be a Huber ring and a be an ideal of A, then the quotient
pair (A/a, (A/a)+) where A/a is the integral closure of A+/a in A/a.

Prop.(10.3.5.20)[Completion of Huber Rings].Let A be a Huber ring and (A0, I) be a couple of
definition. Set Â = lim←−nA/I

n(as an Abelian group), then:
1. The canonical map Â0 → Â is injective and Â0 ∩A = A0.
2. If we put the unique topology on Â that Â0 is an open subgroup, then Â is complete.
3. There is a unique topological ring structure on Â that A→ Â is continuous.
4. Â is Huber with a couple of definition (Â0, IÂ0), and the canonical map A→ Â is adic.
5. Â0 ⊗A0 A→ Â is an isomorphism.

Proof: Cf.[Mor19]P72. □

Prop.(10.3.5.21).Let A be a Huber ring and i : A→ Â be the completion, then under the bijection
of(10.3.1.6),

• Â0 = Â0, Â00 = Â00.
• G ⊂ A is a ring of definition iff Ĝ ⊂ Â is a ring of definition.
• the map Cont(Â)→ Cont(A) is a bijection.

Proof: Cf[Mor19] P75. □

Prop.(10.3.5.22).Let A be a Huber ring, then under the bijection of(10.3.1.6), an open ring A0 is a
ring of integral elements of A iff A∧

0 is a ring of integral elements of A∧.

Proof: It is easy to show A0 is a ring iff A∧
0 is a ring, and by(10.3.5.21), A0 ⊂ A0 iff A∧

0 ⊂ (A∧)0.
It suffices to prove that if A0 is open and integrally closed, then A∧

0 is integrally closed in A∧.
Let x ∈ A∧ satisfy xd + ad−1x

d−1 + . . . + a0 = 0, where ai ∈ A∧
0 , because A∧

0 is open, we can find
x′ ∈ A and a′

i ∈ A0 that (x′)d+a′
d−1(x′)d−1 + . . .+a′

0 ∈ A′
0, but then x′ ∈ A0 because A0 is integrally

closed, and thus x = (x− x′) + x′ ∈ A′
0. □

Cor.(10.3.5.23)[Completion of Huber Pairs].The forgetful functor from the category of complete
Huber pairs to the category of Huber pairs has a left adjoint called completion, where (A,A+)∧ =
(A∧, (A∧)+), where (A∧)+ is the closure of the image of A∧ in A∧.
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Prop.(10.3.5.24) [Completion, Henselization, Zariski Localization].There are left adjoint to
the forgetful functors from the category of complete/Henselian/Zariski pairs to the category of pairs,
called the completion/Henselization/Zariski localization of pairs. And there are natural maps

(A,A+)→ (A,A+)Zar → (A,A+)Hens → (Â, Â+)

Proof:
□

Prop.(10.3.5.25)[Tensor Products of Adic Maps of Huber Rings].
• If (A,A+) → (B,B+) is adic, then pullback along the associated map of topological spaces

Spa(B,B+)→ Spa(A,A+) preserves rational subsets.
• Let (B,B+) ← (A,A+) → (C,C+) be a diagram of Huber pairs where both morphisms are

adic. Let A0, B0, C0 be rings of definition compatible with the morphisms, and I ⊂ A0 be an
ideal of definition. Let D = B ⊗A C and let D0 be the image of B0 ×A0 C0 in D. Make D into
a Huber ring by declaring D0 to be a ring of definition with ID0 as its ideal of definition and
D+ be the integral closure of the image of B+ ⊗A+ C+ in D. Then (D,D+) is a Huber pair,
and it is the pushout of the diagram in the category of Huber pairs.

Proof: For 1, it suffices to show that if T is a finite set of A that TA is open, then TB is open in
B: I ⊂ TA for some ideal of definition I ⊂ A0, in which case IB0 ⊂ B0 is also an ideal of definition
by(10.3.5.18), thus open, and so TB is also open as IB ⊂ TB.

2 just follows from the definition. □

Remark(10.3.5.26) [Non-Adic Morphisms].Pushouts may not exists for non-adic morphisms of
Huber rings. For example, Zp → Zp[[T ]] is not adic(10.3.5.18), and the diagram

(Zp[[T ]],Zp[[T ]])← (Zp,Zp)→ (Qp,Zp)

has no pushout in the category of Huber pairs: If there is a pushout (D,D+), then we will have a
morphism

(D,D+)→ (Qp⟨T,
Tn

p
⟩,Zp⟨T,

Tn

p
⟩)

for each n ≥ 1. But notice that T is nilpotent in D, and 1/p ∈ D< so Tn/p→ 0 ∈ D as n→∞. So
Tn/p ∈ D+ for some n, but then Tn/p ∈ Zp⟨T, T

n+1

p ⟩, which is impossible.

Def.(10.3.5.27) [Topological Polynomial Functions].Let A be a non-Archimedean topological
ring, and {Xi}i∈I be a family of indeterminates, {Ti}i∈I be a family of subsets of A that satisfies
Tni U is open for any n > 0, i and open nbhd U of A.

LetN(I) be the set of functions I → N with finite support, then for any ν ∈ N(I), let T ν =
∏
T
ν(i)
i .

For any nbhd U of A, we set

U[X,T ] = {
∑

ν∈N(I)

aνX
ν |aν ∈ T νU},

Then there exists a unique topological structure on A[X] that U[X,T ] form a fundamental system of
nbhds of 0, and denote it by A[X]T . It satisfies:

• the canonical inclusion ι : A→ A[X]T is continuous and the set {TiXi}i∈I is power-bounded.
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• ι satisfies the universal property that any continuous map f : A → B to another non-
Archimedean topological ring B that {f(Ti)Xi}i∈I is power-bounded factors through A[X]T .

Proof: Just notice that (U ∩V )[X,T ] ⊂ U[X,T ] ∩V[X,T ] and U[X,T ] ·V[X,T ] = (UV )[X,T ], so they form
a topological basis because A is topological.

The first properties are easily verified. For the second, the extension f ′ : A[X] → B exists
abstractly, and it suffices to show it is continuous. If we let E ⊂ B be the subring generated by
{f(Ti)Xi}i∈I , then E is bounded, so for any open subgroup H ⊂ B, there is some open subgroup
G ⊂ B that EG ⊂ H, and thus f−1(G) is open and contains some nbhd U , then U[X,T ] ⊂ (f ′)−1(G),
so f ′ is continuous. □

Def.(10.3.5.28)[Topological Power Series].Let A,X, T as in(10.3.5.27), then the set

A⟨X⟩T = {
∑

ν∈N(I)

aνX
ν ∈ A[[X]]|aν ∈ T νU a.e.},

is a subring of A[[X]], and there is a unique topological structure on A[[X]] that

U⟨X,T ⟩ = {
∑

ν∈N(I)

aνX
ν ∈ A⟨X⟩T |aν ∈ T νU},

form a fundamental system of nbhds of A⟨X⟩T .
Proof: The proof is not hard and similar to that of (10.3.5.27) so omitted. □

Prop.(10.3.5.29).Let A,X, T as in(10.3.5.27), then
• A[X]T is dense in A⟨X⟩T and the topology coincide.
• If A is Hausdorff and Ti is bounded for any i ∈ I, then A[X]T and A⟨X⟩T are all Hausdorff.
• If A is complete and Ti is bounded for any i ∈ I, then A⟨X⟩T is complete, so it is the completion

of A[X]T .
Proof: Only the completeness needs proof, Cf.[?]P80. □

Prop.(10.3.5.30)[Power Series is Huber].Let A be a Huber ring with a couple of definition (A0, I),
and X = {Xλ} be a finite set of indeterminates, Tλ is a family of subsets of A that TλA is open in
A, then

• A[X]T is a Huber ring with a couple of definition ((A0)[X,T ], I[X,T ]), and there is a canonical
map A→ A[X]T which is adic.

• A⟨X⟩T is Huber with a couple of definition ((A0)⟨X,T ⟩, I⟨X,T ⟩), and there is a canonical map
A→ A⟨X⟩T which is adic.

Proof: It suffices to prove for any ideal of definition J , J[X,T ] = J · (A0)[X,T ] and J⟨X,T ⟩ = J ·
(A0)⟨X,T ⟩. The first is clear. For the second, use the fact J is f.g. and {Jn} is a fundamental basis
of nbhds of 0. □

Prop.(10.3.5.31)[Example].Let A = Zp and T = p, then there is a Huber ring

Zp⟨X⟩T = {
∑
n≥0

anX
n ∈ Zp[[X]]|l−nan → 0}

with a ring of definition

(Zp)⟨X,T ⟩ = {
∑
n≥0

anX
n ∈ Zp⟨X⟩T |an ∈ pnZp}.

Notice that Zp⟨X⟩T is not adic although Zp is(because p is nilpotent but pX is not).
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Def.(10.3.5.32)[Localizations].Let A be a non-Archimedean topological ring and {Ti} is a family
of subsets of A satisfying Tni U is open for any n > 0, i and open nbhd U of A, and {si} is a family
of elements of A, which generates a multiplicative subset R ⊂ A.

Then there is a unique non-Archimedean ring structure on R−1A, denoted by A(TS ), that the
canonical map φ : A→ A(TS ) is continuous and the set { φ(t)

φ(si)} is power-bounded, and it is the initial
map for all maps A→ B satisfying this property.

Proof: Cf.[Mor19]P83. □

Cor.(10.3.5.33).Let J be the ideal of A[X]T generated by {1−siXi}, then A[X]T /J with the quotient
topology satisfies the same universal property as A(TS ), so there is a canonical isomorphism

A[X]T /J ∼= A(T
S

).

In particular, A(TS ) is a Huber ring, and the canonical map A → A(TS ) is adic. Explicitly, B0 is
the (A0)[X,T ]-subalgebra of B generated by the elements Ti

si
.

Def.(10.3.5.34). If A is Huber ring, then we denote the completion of A(TS ) by A⟨TS ⟩, which is also a
Huber ring, and the canonical map A → A⟨TS ⟩ is adic, by(10.3.5.30) and(10.3.5.33). It satisfies the
natural universal property.

Cor.(10.3.5.35). If A is complete, then we can also regard A⟨TS ⟩ as the quotient of A⟨X⟩T by the
closure of the ideal generated by {1− siXi}.

Prop.(10.3.5.36)[Example].Let A = Zp[[T ]] with the (p, T )-adic topology, then

A(p, T
T

) = Zp[[T ]][T−1]

with a ring of definition A[ pT ], and

A(p, T
p

) = Zp[[T ]][p−1]

with a ring of definition A[Tp ].
In A⟨p,TT ⟩, a ring of definition is A⟨X,T ⟩/(1− pX), which is isomorphic to

A⟨T
p
⟩ = {

∑
n≥0

an(T
p

)n|an ∈ A, an → 0}

by(10.3.5.33).

6 Analytic Points and Analytic Huber Pairs
Def.(10.3.6.1)[Analytic Huber Rings].A Huber ring is called analytic if the ideal generated by
the topologically nilpotent elements is the unit ideal. Any Tate ring is analytic.

Prop.(10.3.6.2)[Equivalent Definitions of Analytic Rings].For a Huber ring A, the following
are equivalent:

1. A is analytic.
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2. Any ideal of definition in any ring of definition of A generates the unit ideal of A.
3. Any open ideal of A is trivial.
4. For any non-trivial ideal I of A, the quotient topology on A/I is not discrete.
5. The only discrete A-module is the 0-module.
6. The set Spa(A,A+) contains no point with induced topology on the residue field trivial.

Proof: Cf.[?] P4.? □

Prop.(10.3.6.3)[Analytic Open Mapping Theorem]. If A is an analytic Huber ring, and M,N
are complete Banach A-modules, then any continuous surjective map M → N is open.

Proof: Hub94, L2.4(i).? □

Analytic Points

Def.(10.3.6.4) [Analytic Points].Let A be a Huber ring, then a point x ∈ Cont(A) is called an
analytic point if px is not open in A. The set of analytic points of Cont(A) is denoted by Cont(A)an.

If A is Tate, then Cont(A)an = Cont(A), because the only open ideal of A is A itself.

Prop.(10.3.6.5)[Characterizations of Analytic Points].Let A be a Huber ring, then for a point
x ∈ Cont(A), the following is equivalent:

1. x is analytic.
2. |A00|x ̸= 0.
3. For any ring of definition and ideal of definition (A0, I) of A, |I|x ̸= 0.

Proof: 1→ 2: px is non-open, so it cannot contain the open subset A00 of A??.
2→ 3: trivial because any ring of definition contains A00(10.3.5.8). □

Cor.(10.3.6.6).Let A be a Huber ring and I an ideal of definition with a set of generators (f1, . . . , fn),
then

Cont(A)an = ∪ni=1U(f1, . . . , fn
fi

).

Prop.(10.3.6.7)[Analytic Valuation Microbial].Let A be a Huber ring and x ∈ Cont(A)an, then
x has rank≥ 1, and the valuation | · |x on k(x) is microbial(10.3.3.22).

Proof: If x has rank 1, then Γx = 1, and px = {a ∈ A||a|x < 1} is open.
If x is analytic, then there are some a ∈ A00 that |a|x ̸= 0(10.3.3.22), thus the image of a in k(x)

is non-zero and topologically nilpotent, thus k(x) is microbial by(10.3.3.22). □

Prop.(10.3.6.8)[Adic Morphism and Analytic Points].Let φ : (A,A+)→ (B,B+) be a morphism
of Huber pairs, then:

• If x ∈ Spa(B,B+) is not analytic, then Spa(φ)(x) is not analytic.
• If φ is is adic, then Spa(φ) : Spa(B,B+) → Spa(A,A+) carries analytic points to analytic

points.
• If B is complete and Spa(φ) : Spa(B,B+) → Spa(A,A+) carries analytic points to analytic

points, then φ is adic.
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• If φ is adic, then the Spa(φ) maps rational subsets to rational subsets. In particular, Spa(φ)
is spectral.

Proof: 1: Trivial.
2: If f(x) is not analytic, then I ⊂ φ−1(px), so f(I) ⊂ px, which means px is not analytic because

f(I)A0 is open.
3: Cf.Morel P96?.
4: Only notice that (f(T )) is open if (T ) is open. □

Cor.(10.3.6.9). If A is an analytic Huber ring, then any continuous morphism f : A → B is adic,
by(14.8.4.24).

7 Huber and Banach Rings

Cf.[Ked19]1.5.

Prop.(10.3.7.1).Let A be a uniform Huber ring, then for x =
∑∞
n=0 xnT

n ∈ A⟨T ⟩ such that the
coefficients xn generate the unit ideal of A, then multiplication by x defines a strict inclusion A⟨T ⟩ →
A⟨T ⟩, i.e. |xg| ≥ |g|.

Proof: Cf.[Ked19]P25. □

8 Perfectoid Fields

Notation(10.3.8.1).Let (K,OK ,mK , k) be a non-Archimedean complete valued field.

Prop.(10.3.8.2).The valuation can in fact be constructed from K0 as |x| = sup{nk |x
k ∈ tnK0}

by(2.2.8.5), as it is a rank 1 valuation.

Def.(10.3.8.3)[Perfectoid Field]. If K has residue characteristic p, then it is called a perfectoid
field iff:

• The value group |K×| ⊂ R×
+ is not discrete.

• OK/(p) is semi-perfect.

Prop.(10.3.8.4)[Examples of Perfectoid Fields].
• K = Qp(p

1
p∞ )∧. OK = Zp(p

1
p∞ )∧, and OK/(p) ∼= [Fp(t

1
p∞ )/(t)]∧, which is clearly semi-perfect.

And its value group is Z[p−1].
• K = Cp, its value group is Q, and K = K, so OK/(p) is clearly perfect.
• if charK = p, then K is a perfectoid field iff K is perfect: if K is perfect, then it is clearly

perfectoid, and the semi-perfectness of OK implies its perfectness, so also K is perfect(multiply
by a p-power of an element in mK).

• If K is a perfectoid field and |p| ≤ |ϖ| < 1 is a pseudo-uniformizer, then K/(ϖ) is perfect hence
perfectoid.

Prop.(10.3.8.5)[Perfectoid Field and Integral Perfectoid Rings].The ring of integers OK for
a perfectoid field K is an integral perfectoid ring(7.7.3.1).
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Proof: We assume that K is of char0, then we check conditions in(7.7.3.6). It is clear that OK is
p-adically complete, p-normal. To find ϖp = pu, as |K∗| is not discrete, we find x that xp divides p,
and then there exists some y that yp ≡ xp/p mod p, thus (xy)p ≡ 1 mod p, thus ϖ = xy satisfies
the condition. □

Prop.(10.3.8.6). If K ∈ Perfd, then
• |K×| is a p-divisible Abelian group.

• m2
K = mK , and mK is flat?.

• OK is not Noetherian.

Proof: 1 : First if |p| < |x| ≤ 1, we show |x| is p-divisible: there is a y, z ∈ K0 that yp = x + pz,
so |y|p = |x|. Now because |K∗| is not discrete, so there is a |x| /∈ |p|Z, by rescaling, we may assume
|p| < |x| ≤ 1, thus p = xy for some y, and |p| < |y| ≤ 1, too. So |p| is also divisible by p, so it is clear
now |K∗| is divisible by p.

2 follows from(7.7.3.5)(10.3.8.5).
2→ 3 by Nakayama’s lemma, because otherwise K00 = 0. □

Cor.(10.3.8.7).The proof of 1 also shows that |K×| is generated by |x| that |p| < |x| < 1.

Lemma(10.3.8.8). If C♭ is a perfectoid space of residue characteristic p, then 1+mC♭ is a Qp-algebra.

Proof: Both φ and exponentiation of Z∗
p is definable, so pnt · (1 + x) = (φn(1 + x))k. □

Tilting

Prop.(10.3.8.9) [Pseudo-Uniformizers].Fix a pseudo-uniformizer |p| ≤ |ϖ| < 1, consider the
tilting(4.5.1.9) O♭K , then by(4.5.1.12), this topological group doesn’t depends on π chosen.

Remark(10.3.8.10).There are diagrams:
limx→xp OK OK

O♭K = limφK
0/(ϖ) OK/(ϖ)

∼=
♯

.

Prop.(10.3.8.11)[Tilting of OK ].There is an element t ∈ O♭K that |t♯| = |ϖ|, t maps into (π) and
gives an isomorphism O♭K/(t) ∼= OK/(ϖ).

Moreover, the t-adic topology on O♭K is complete, and coincides with the topology of O♭K given
as in(4.5.1.9).

Proof: There are canonical surjective map K0♭ → K0/p→ K0/π, and by p-divisibility of the value
group(10.3.8.6), there is a f ∈ K0 that |f |p = |π|, so in particular |f | > |π|, thus f ̸= 0 ∈ K0/π.
and choose a g ∈ K0♭ lifting f mod π, then g♯ ≡ f mod π, see diagram(10.3.8.10). so |g♯| = |f | as
|f | > |π|. Now let t = gp, then |t♯| = |f |p = |π|.

Now clearly t maps into (π), and if g maps to 0 in K0/π, then by the diagram again, g♯ ∈ (π),
and (t♯) = (π), so g♯ = at♯ for some a ∈ K0. so t|g in K0♭, as by(4.5.1.17), R0♭ is a valuation ring in
the valuation | · | ◦ ♯.

For the last assertion, just use the commutative diagrams:
K0♭/(tpn) K0♭/(tpn−1)

K0/(π) K0/(π)φ

, where

the vertical are isomorphisms, and compute their inverse limits. □
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Cor.(10.3.8.12)[Tilting of Perfectoid Fields].
• O♭K is a valuation ring of rank 1, with the field of fraction K♭ = O♭K [t−1] ∈ Perfd.

• Its maximal ideal is (t
1
p∞ ), with Krull dimension 1.

• The value group and residue field of K and K♭ is canonical isomorphic.

Proof: K0♭ has rank no more than K0 which is 1(10.3.8.3), and it is non-trivial because |t| = |π|,
so the rank is 1, and it is perfect by definition, so K is perfectoid by(10.3.8.4).

For the maximal ideal, the maximal ideal of K0♭/t is its nilradical, as it is a valuation ring of
rank 1(2.2.8.5), which is clearly (t

1
p∞ ). For the dimension, by(10.3.3.3), the Krull dimension equal

the rank, which is 1.
For the residue field, use the isomorphism(10.3.8.11), K0♭/t = K0/π and the second item just

proved, and for the value group, the same lemma(10.3.8.11) gives any |p| ≤ |π| < 1 are in the value
group of K♭, and |K×| is generated by these values by(10.3.8.7). □

Prop.(10.3.8.13)[Tilting Continuous Valuations]. If K ∈ Perfd, for any continuous valuation on
K of any rank, the function | · |♭ = | · | ◦ ♯ is a continuous valuation on O♭K , and every continuous
valuation of O♭K comes from this way.

Proof: Clearly | − |♭ is multiplicative and has trivial kernel, and it is non-Archimedean: for f =
(fn), g = (gn) ∈ K♭, f + g = (limk(fn+k + gn+k)p

k) by(4.5.1.14). So

|f + g|♭ = |(f + g)♯| = | lim
k

(fk + gk)p
k | = lim

k
|fk + gk|p

k ≤ lim
n

max{|fn|, |gn|}p
n = max{|f0|, |g0|}.

so it is non-Archimedean. It is also continuous because ♯ is continuous.
Conversely, we notice a continuous valuation on a rank 1 valuation field corresponds to valuation

rings in the residue field k, so by(10.3.8.12), we get a bijection on the continuous valuations. □

Prop.(10.3.8.14)[Almost Purity in Dimension 0]. IfK ∈ Perfd and L/K is a finite field extension,
with the natural topology, then:

• L ∈ Perfd.
• [L♭ : K♭] = [L : K].
• The map L→ L♭ defines an isomorphism Kfet

∼= K♭
fet.

Proof: This is a special case of almost purity theorem(10.3.10.1). □

Cor.(10.3.8.15).For K ∈ Perfd, GalK ∼= GalK♭ .

Lemma(10.3.8.16)[Kedlaya].For K ∈ Perfd, then K♭ is alg.closed iff K is alg.closed.

Proof: Let P (X) = Xd + ad−1X
d−1 + . . . + a0 ∈ K0[X] be a irreducible monic polynomial,

then its Newton polygon is a line, and we may assume |a0| = 1, as K0♭ is alg.closed, so |K0∗| =
|K0♭∗|(10.3.8.12) is a Q=vector space.

Next we choose a Q(X) ∈ K0♭[X] that Q(X) ≡ P [X] mod t, as K0♭/t ∼= K0/π(10.3.8.11). Now
we consider P (x + y♯), then P (y♯) is divisible by π, so its Newton polygon is now of positive slope,
so c−dP (cx+ y♯) ∈ K0[X] again, where cd = |P (y♯)| ≤ |π|. Then notice by iteration this argument,
we get a sequence of y♯n, and then y♯1 + c1y

♯
2 + c1c2y

♯
3 + . . .+ c1 . . . cny

♯
n+1 that converges to a root of

P (X). □
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Prop.(10.3.8.17)[Examples of Tilting].
• If K = Qp(p

1
p∞ )∧, then OK = Zp[p

1
p∞ ]∧, thus K♭ = ̂Fp((t))perf(4.5.1.11). And if L = K(√p),

then similarly L0 =
̂

Zp[p
1

2p∞ ], and L♭ = K♭(
√
t).

• If K = Qp(µp∞)∧, then OK = Ẑp[µp∞ ], notice there is a map Zp[ε
1
p∞ ] → Zp[µp∞ ] with kernel

(1 + ε
1
p + . . .+ ε

p−1
p ), so

OK/(p) = Fp[ε
1
p∞ ]/(ε

1
p − 1)p−1 ∼= Fp[t

1
p∞ ]/(tp−1)

with the substitution t = ε
1
p − 1. Then by(10.3.8.4), K0♭ =

̂
Fp[t

1
p∞ ], and K♭ = ̂Fp((t))perf .

Remark(10.3.8.18).Notice that K = Qp(µp∞)∧ and K = Qp(p
1
p∞ )∧ have the same tiltings, so the

tilting functor is not faithful. this is due to the fact that Qp is not perfectoid. This will not happen
over a perfectoid base field, see(10.3.9.13).

9 Perfectoid Algebras

Def.(10.3.9.1)[Perfectoid Algebra].For K a perfectoid field with tilt K♭, let t ∈ K♭ be a pseudo-
uniformizer??ith ϖ = t♯, so it has a compatible collection of pn-th roots (t

1
pn )♯. Now:

• A perfectoid algebra over K is a uniform Banach K-algebra R that R0/π is semi-perfect.
• A perfectoid algebra over K0a is a K0a-algebra A that is t-adically complete and flat over
K0a(or A∗ over K0, by(4.7.3.3)), and K0a/π → A/π is relative perfect, i.e. the Frobenius
induces an isomorphism A/π

1
p ∼= A/π.

• A perfectoid algebra over K0a/π is a K0a/π-algebra A that is flat over K0a/π(or A∗ over
K0/π, by(4.7.3.3)), and the map K0a/π → A is relatively perfect, i.e. the Frobenius induces
an isomorphism A/π

1
p ∼= A.

Remark(10.3.9.2). notice the definition regarding the relative perfectness doesn’t depends on π cho-
sen, by the power lifting theorem(24.1.3.4).

Prop.(10.3.9.3)[Faithfully flatness of Perfectoids].Nonzero flat OaK/(ϖ)-algebras are faithfully
flat, so does t-adically complete flat K0a-algebras. In particular, PerfdOa

K/(ϖ) and PerfdOa
K

are all
faithfully flat modules.

Proof: If K0a/π → A is not faithfully flat, then there is an ideal J ⊂ K0a/π that K0/J ̸= 0 but
A/J = 0. Now this implies J ⊊ I, so there is a ϖ ∈ I − J hence J ⊂ (ϖ). Hence A/ϖ = 0 as well.
Now there are exact sequences 0→ K0a/ϖn ϖ−→ K0a/ϖn+1 → K0a/ϖ → 0, so tensoring with A and
induct, we get K0a/ϖn ⊗A = 0, but |ϖn| < |π| for some n, so A = 0.

The other case is similar, now A/ϖ = 0, so use(4.7.3.3), A∗/ϖ ⊂ (A/ϖ)∗ = 0, but A∗ is also
t-adically complete, so A∗ = 0, and A = (A∗)a = 0. □

Prop.(10.3.9.4)[Examples of Perfectoid Algebras].
• If charK = p, then a K-Banach algebra is perfectoid iff it is uniform and perfect. Likewise, a
π-adically complete and π-torsion free K0a-algebra is perfectoid iff it is perfect.

• Let A = OK [x
1
p∞
1 , . . . , x

1
p∞
n ]∧, then Aa ∈ PerfdOa

K
, and R = A[π−1] ∈ PerfdK in the Banach

metric as in(12.2.4.8).
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Proof: 1: a perfectoid algebra of charp is perfect, because by semi-perfectness, x = xp1 + πz1 =
xp1 +πxp2 +π2z2 = . . ., so x = (x1 +π

1
px2 +π

2
px3 + . . .)p. In fact, uniformity is automatically implied

by perfectness, by(10.3.5.12). The case of OaK-algebra is similar.
2: Aa is K0a-flat because A∗ does, because it is a colimit of completions of polynomial algebras

over I and I is flat over K0(10.3.8.6). and R is perfectoid by(12.2.4.8) because A is totally integrally
closed in R, because K0[x

1
p∞
1 , . . . , x

1
p∞
n ] does(trivially), and use(4.7.2.10). □

Tilting Equivalence

Prop.(10.3.9.5)[Tilting Equivalence].There are canonical isomorphisms of categories:

PerfdK ∼= PerfdK0a ∼= PerfdK0a/π,

where the first map is by R 7→ R0a and A→ A∗[t−1] just as in(12.2.4.8). The second map is reduction
by π.

In particular, using tilting(10.3.8.11), there are canonical isomorphisms of categories:

PerfdK ∼= PerfdK0a ∼= PerfK0a/π = PerfK♭0a/t
∼= PerfK♭0a ∼= PerfK♭ .

If R ∈ PerfK corresponds to S ∈ PerfK♭ , then we call S = R♭ the tilting of R and R = S♯ the
untilting of S.

Proof: [PerfK ∼= PerfK0a ]
Firstly, if R ∈ PerfK , then A = R0a ∈ PerfK0a : R0/π

1
p → R0/π is surjective by definition, for

injectivity, if xp/π ∈ R0, then x/π
1
p is also power bounded, thus in R0. And by(12.2.4.8), A is

π-adically complete and π-torsion-free, hence R-flat by(4.4.1.12).
Next we show if A ∈ PerfK0a , then A∗ is π-adically complete, t-torsion free and p-root closed in

A[π−1], hence is an left inverse to the mapping R→ R0a, by(4.7.3.5). It is complete by(4.7.3.3)2,3.
For p-root closedness, by(4.7.3.3), A∗/π

1
p ⊂ (A/π

1
p )∗ ↪→ (A/π)∗ by Frobenius, and then so does

A∗/π
1
p → A∗/π. Now if x ∈ A∗[π−1] satisfies xp ∈ A∗, then y = π

k
px ∈ A∗ for some k, and we want

to lower k by 1 inductively, thus showing x ∈ A∗: As yp ∈ πA∗, y ∈ π
1
pA∗ by what we have proved,

thus π
k−1
p x ⊂ A∗.

For surjectivity of Frob: A∗/π → A∗/π, notice first it is almost surjective, because (A∗ →
A∗/π)a = A → (A∗/π)a ⊂ (A/π)a∗ = A/π is surjective by hypothesis, then by(4.7.2.3), it suffices to
show that Frob is surjective on A/IA. For some x ∈ A∗, choose 0 < 1 < c, almost surjectivity shows
that πcx ≡ yp mod πA∗, so (y/p

c
p )p ∈ A∗, thus y ∈ p

c
pA∗, thus x ≡ (y/p

c
p )p mod π1−cA∗ ⊂ IA, so

we are done.
Finally, this is also a right inverse, because we know that A∗ ∼= R0 by(4.7.3.5), thus A ∼= R0a in

ModaR. □

Proof: [PerfK0a ∼= PerfK0a/π]
Firstly the reduction is a perfectoid K0a/π-algebra: it is flat because flatness is stable under base

change, and the rest are trivial. To construct a converse is a problem of deformation theory, we need
to lift from K0a/π-algebra via K0a/πn-algebras to a K0a-algebra, suppose each lifting is unique up
to isomorphism and the lift An is flat over K0a/πn, then we can form their inverse limit, which is flat,
because it is π-torsion-free: if π(xn) = 0, then by 0 → πnK0a/πn+1 → K0a/πn+1 π−→ K0a/πn → 0
and the flatness of An+1, xn+1 ∈ πnAn+1, thus xn = 0, and x = 0.
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Now 0 ̸= A ∈ PerfK0a/π, then A is faithfully flat by(10.3.9.3), then by(4.7.1.8), A!! is faithfully
flat, and (−)!! is preserves all colimits and also Frobenius, so A!! is relatively perfect. Then we use
the above argument, and(6.1.4.1) to show that there is a Ã ∈ C which is π-adically complete and
K0-flat, then Ã = (Ã!!)a is also p-adically complete and K0a-flat, by(4.7.3.3).

And we check Ã/π = (Ã!!/π)a = (A!!)a = A as (−)!! commutes with colimits, and conversely,
if A ∈ PerfK0a , we need to show A = Ã/π, notice by hypothesis, A!! is faithfully flat K0-algebra
that is relatively flat over K0/π, now it is also complete, because A!! → A∗ is an injection(because
(−)a is exact) and almost isomorphism, so the cokernel is π-torsion, and A∗ is complete, so does
A!!, by(4.2.3.9). Now A!!/π = (A!!/π) as (−)!! commutes with colimits, so A!! is just the lift, and
(Ã!!/π)a = Aa!!

∼= A. □

Cor.(10.3.9.6) [Tilting via Fountain’s Functors].The tilt R♭ is just the Foutain’s tilting, i.e.
R♭ = R0♭[t−1], and R♭ = limx 7→xp R, R0♭ = (R♭)0.

Proof: Consider the diagram

K♭0/tp
n

K♭0/t ∼= K0/π R0/t

K♭0/t ∼= K0/π R0/t

φ−n

∼=
φn φn

Then the upper row is just the unique flat and relative perfect lifting along K♭0/tp
n → K♭0/t. Taking

inverse limit, we get the structure map K♭0 → R♭0, so after almostification, this is just the lifting we
are looking for, because it is unique. So (R0♭)a = (R♭0)a, and R♭ = R0♭[t−1] unwinding the tilting
equivalence.

For R♭, notice there is a map

R♭ ∼= ( lim
x 7→xp

R0)[t−1]→ lim
x 7→xp

(R0[π−1]) ∼= lim
x 7→xp

R

Now injectivity is clear as t is non-zero-divisor, and if (fn) ∈ limx 7→xp R, then πcfn ∈ R0 for some c,
then π

c
pn fn ∈ R0 because R0 is p-root closed(4.7.3.5), so tc(fn) ⊂ R0♭.

For the last assertion, it is true if R0♭ is totally integrally closed in R♭, by(4.7.3.5). For this, if
tcfN ⊂ R0♭, then πc(f ♯)N ⊂ R0, thus f ♯ ∈ R0. And by p-root closedness, pn-th roots of f ♯ are all in
R0, so f = (fn) ∈ limx 7→xp R is in R0♭. □

Prop.(10.3.9.7)[Fountain’s Functor θ].Given a perfectoid field K, the kernel of the Fontaine’s map
θ : Ainf(K) → K0(4.5.1.15) is generated by a non-zero-divisor, in fact, if charK = 0, the generator
can be chosen to be any element that maps to a generator of ker θ and if charK = p this diagram is
trivial. In particular, the diagram is a pushout.

Proof: See the proof of(7.7.3.6) in the p-torsionfree case. □

Prop.(10.3.9.8)[Untilting via Ainf ].For any perfect O♭K-algebra A, by deformation theory(or in fact
Witt theory) there is a unique liftingW (A) lifting it to Ainf(K0♭). And then pushout W (A)⊗Ainf(K0)
K0 is just the lifting of A/π, because the diagram above is pushout. This is in fact the method
of [Kedlaya-Liu] used to prove the tilting-equivalence without the use of almost mathematics and
deformation theory.

Cor.(10.3.9.9) [Limits and Colimits].Any of the categories in(10.3.9.5) has arbitrary limits and
colimits.
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Proof: We construct for PerfK0♭a : The limits is just the limits of topological rings, as the properties
of t-adically complete, t-torsion free and perfect is preserved by limits(4.2.3.19). For the colimit, just
use the t-adic completion of the left perfection of the colimits in the category of K0♭a-algebras, its
t-torsion is almost zero because of perfectness, thus it is almost flat(4.7.3.3). □

Remark(10.3.9.10).Note also for further reference that in the category PerfK0a , a filtered colimits
is just the π-adically completion of the filtered limits as rings, because perfectness and flatness is
preserved(4.4.1.6).

Prop.(10.3.9.11)[Tilting Equivalence Identifies Fields].R ∈ PerfdK is a perfectoid field iff its
tilt R♭ is a perfectoid field.

Proof: It is proven that if R is a perfectoid field, then R♭ is a perfectoid field. Conversely, R
is a perfectoid field if the spectral norm given by ||x|| = inf{|t|−1|t ∈ R∗, tx ∈ R0} is the Banach
valuation of R and R is a field.

For the multiplicativeness of || − ||R, notice that R♭ is a perfectoid field, so its non-Archimedean
valuation coincides with the spectral norm of || − ||R♭ , and this equals || − ||R ◦ ♯, because R0♭ = R♭0,
an element f ∈ R♭0 iff f ♯ ∈ R0. Now the norm extends that of K and commutes with scalar
multiplication, so for any f, g, we may assume f, g ∈ R0 − 0π

1
pR0, now choose a, b ∈ R♭ that

a♯ − f, b♯ − g ∈ πR0, this can be done because R♭0 = R0♭ → R0/π is surjective, then a, b, ab /∈ tR♭0
because R0♭ = R♭0. Then clearly ||f ||R = ||a||R♭ , ||g|| = ||b||R♭ , ||fg||R = ||ab||R♭ , so it is multiplicative
by the multiplicativeness of R♭.

To show R is a field, consider and f ∈ R− π
1
pR, choose a ∈ R♭ that f = a♯ + πg, then as R♭ is a

field, there is a b that ab = 1. Now ||π||R < ||π
1
p ||R ⊂ ||f ||R = ||a||R♭ ≤ 1, so we get ||πb♯g|| < 1, then

f−1 = 1
a♯ + πg

= b♯

1 + πb♯g
= b♯(

∑
(−πb♯g)k)

can be constructed in R. □

Perfectoid Affinoid Algebra

Def.(10.3.9.12)[Perfectoid Affinoid K-algebras].An affinoid K-algebra (R,R+) is just an affi-
noid Tate ring over (K,K0). It is called a perfectoid affinoid K-algebra iff R is a perfectoid
algebra.

Prop.(10.3.9.13) [Affinoid Tilting Equivalence].The categories of perfectoid affinoid alge-
bras(10.3.9.12) over K and K♭ are equivalent, where (R,R+) is identified with (R♭, R♭+) iff R♭

is the tilting of R and
R+/mR0 R♭+/m♭R♭0

R0/mR0 R♭0/m♭R♭0

∼=

∼=

.

Moreover, in this case, R+/π is semi-perfect, and R+♭ ∼= R♭+ as a subring of R0♭ ∼= R♭0.

Proof: The case R+ = R0 is already known by tilting equivalence(10.3.9.5) and(10.3.9.6).
By(10.3.5.11) and(10.3.5.14), mR0 = R00 ⊂ R+ ⊂ R0, thus R+ → R0 is an almost isomorphism

and R+ is determined by its image R+ ⊂ R0/mR0, which is integrally closed if R+ does, so the
identification is clear.
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For the semi-perfectness: as R+/mR0 is integrally closed, it is perfect. Now R+ → R0 is an
almost isomorphism, so Frob on R+/π is almost surjective because it does on R0/π by definition,
and now we know Frob is surjective on R+/π by(4.7.2.3).

To show R+♭ ∼= R+♭, we show there is a Cartesian diagram
R+♭ R♭+/m♭R♭0

R♭ R♭/m♭R♭0

, but this is the

Cartesian diagram
R+/π R+/mR0 ∼= R♭+/m♭R♭0

R0/π R0/m♭R0

applied the functor (−)perf , which preserves

limits(4.5.1.9). (Notice that R+/mR0 ∼= R♭+/m♭R♭0 is already perfect). □

Cor.(10.3.9.14).Notice that the proof also shows that R+ → R0 is an almost isomorphism, thus if R
is a perfectoid K-algebra, then R+ is automatically a perfectoid K0a-algebra by(10.3.9.1).

Cor.(10.3.9.15) [Perfectoid Affinoid Field].A perfectoid affinoid K-algebra (R,R+) is called a
perfectoid affinoid field iff R is a perfectoid field and R+ is an open valuation ring.

Notice this is equivalent to R+/mR0 is a valuation ring in R0/mR0. In particular, combining
with(10.3.9.11), affinoid perfectoid fields are preserved under tilting and untilting.

Cor.(10.3.9.16).The tilting equivalence also shows that for any perfectoid affinoidK-algebra (R,R+),
the tilting induces an equivalence of categories PerfR ∼=

Prop.(10.3.9.17)[Filtered Colimits of Perfectoid Affinoid K-Algebras].The category of per-
fectoid affinoid K-algebras has filtered colimits, and it is just the colimits in the category of
complete uniform affinoid Tate rings(14.8.2.27). In particular, the filtered colimits of (Ai, A+

i ) is
(colimiAi, colimA+

i ).

Proof: The colimit is perfectoid because the filtered colimits is exact. □

10 Almost Purity Theorem
Thm.(10.3.10.1)[Almost Purity Theorem].For R ∈ PerfdK with tilt S(10.3.9.5),

• Almost purity in characteristic p: (take (−)∗ and)Inverting t gives an equivalence S0
a fét
∼= Sfét.

• Almost purity in characteristic 0: Inverting π gives an equivalence R0
a fét
∼= Rfét.

• Tilting and untilting functors induce equivalences R0
a fét
∼= S0

a fét.
In particular, there are equivalences

Sfét
a←− S0a

a fét
b−→ (S0a/t)a fét ∼= (R0a/π)a fét

c←− R0a
a fét

d−→ Rfét,

Proof: The map a is already given in(4.7.2.14) by passing the power bounded-elements(equivalently,
S∗) and inverting t. And it is an isomorphism.

The equivalence of b and c follows from[Almost Ring theory, Thm5.3.27]?.
The functor d is given by A→ A∗[t−1]. Firstly, A is a perfectoid K0a-algebra. This is because it

is almost finite projective thus almost flat, and R0a/π → A/π is weakly relative perfect by(4.7.2.15),
so does K0a/π → A/π because relative perfect is stable under composition. And it is finite projective
thus almost direct summand of a finite free module.
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So now the tilting equivalence(10.3.9.5) shows that A∗[t−1] ∈ Rfét : it is finite etale because the
A∗ is finite projective by the right adjointness of (−)∗, and unramified is defined in terms of A∗.
The converse of d is supposed to be the functor that extract from A∗ from A∗[t−1] the total integral
closure Atic of R0, which is functorial. We already know that A∗ is totally integrally closed in A∗[t−1]
by(10.3.9.5), so Atic ⊂ A∗. Conversely, as A is almostly finitely generated over R0, for f ∈ A∗, πfN
lies in a f.g. R0-submodule of A∗, so fN is totally integral over R0, so A∗ = Atic.

It’s left to show that d is essentially surjective, but this uses perfectoid spaces. For now, we
only check that this is true for R being a perfectoid field(of char 0).For this, we show directly that
the untilting functor ♯ : K♭

fét → Kfét is essentially surjective. Now ♯ is an equivalence of categories
PerfK♭ → PerfK , and it preserves degree, at least for field extensions, so it preserves Galois extensions.
Now that finite étale algebra over fields are just disjoint of finite separable extensions(4.4.7.19), so it
suffices to show that any finite extension of K is contained in some L♯.

Consider M = K̂♭, it is alg.closed of charp so clearly a perfectoid field, and by(10.3.8.16) M ♯ is
alg.closed. M ♯ is just the colimit in the category of uniform Banach K-algebras, so its valuation ring
is just the completion of the valuation ring of L♯ for L/K♯ finite Galois. Then if N = ∪L♯, then N is
dense in M ♯, and N/K is clearly algebraic and in particular Hensel. So N ⊂ N ⊂M ♯ is dense, so by
Krasner’s lemma(12.2.1.37), N = N . Now N = ∪L♯ is an alg.closure of K, so every finite extension
of K is contained in some L♯.

The proof of the general case of the essentially surjectivity of d is continued at(14.8.7.10). □
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10.4 Real Analysis(Functions on Rn)

Basic references are [Fol99], [周 08], [?] and [谭-伍 06], [Measure theory and fine properties of
functions, Evans].

Notation(10.4.0.1).
• Use notations defined in Topology I.
• Use notations defined in Formal Power Series.

1 Measures

Def.(10.4.1.1)[σ-Algebras].Let A ∈ Set, then an algebra of subsets of A is a subset of P(A) that
is closed under finite intersections and finite unions. A σ-algebra on A is an algebra of subsets of A
that is closed under countable unions.

Def.(10.4.1.2)[Measurable Space].A measurable space is a tuple (X,M) where X is a set and
M is a σ-algebra on X.

Def.(10.4.1.3)[Measure].A measure on a measurable space (X,M) is a functionM→ [0,∞] that
• µ(∅) = 0.
• If Ei is a countable family of disjoint sets inM, then µ(∪∞

i=1Ei) =
∑∞
i=1 µ(Ei).

A measure space is a measurable space together with a measure µ. A probabilistic measure is
a measure µ on (X,M) that µ(X) = 1.

Def.(10.4.1.4)[Complex Measure].A complex measure on a measurable space (X,M) is a func-
tion ν :M→ C that

• ν(∅) = 0.
• If Ei is a countable family of disjoint sets inM, then µ(∪∞

i=1Ei) =
∑∞
i=1 µ(Ei), where the series

converges absolutely.

Def.(10.4.1.5)[Measurable Map].A measurable map f : (X,M)→ (Y,N ) is a map f : X → Y
that f−1(E) ∈M for any E ∈ N .

Def.(10.4.1.6)[Non-Singular Maps].A non-singular measurable map is a measurable map of
measure spaces that the preimage of every set of measure0 has measure0.

Def.(10.4.1.7) [Lebesgue Space].A one-point subset with positive measure is called an atom. A
Lebesgue space is a finite measure space that is isomorphic to a finite union of intervals and
countably many atoms.

Thm.(10.4.1.8)[Radon-Nikodym]. If two σ-finite measures v, µ on a measurable space satisfies v is
absolutely continuous w.r.t µ, then there is a µ-integrable function f such that

dv = fdµ.

Proof: This is a special case of the Freudenthal spectral theorem (10.10.4.18). □
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Borel Sets

Def.(10.4.1.9) [Radon Measure].Let X ∈ Top, a Borel measure on X is a measure defined on
the σ-algebra generated by open sets.

A Borel measure µ is called inner regular on a Borel set E iff µ(E) = inf{µ(K)|K ⊂ E compact}
for every Borel set E. It is called outer regular iff µ(E) = sup{µ(U)|E ⊂ U open}.

A Radon measure is a Borel measure that is finite on compact set, outer regular on Borel sets,
inner regular on open sets.

Prop.(10.4.1.10).Every Radon measure is inner regular on all of its σ-finite sets.

Proof: Cf.[Folland, Real Analysis, P216]. □

Cor.(10.4.1.11).Every σ-finite Radon measure is regular. In particular, if X is σ-compact, then every
Radon measure is regular.

Measurable Functions

Prop.(10.4.1.12)[convergences].There are three different kinds of convergences:
• almost everywhere convergence iff fn(x)→ f(x) a.e.
• almost uniform convergence iff for any δ > 0, there is a measurable subset Eδ that fn

convergent to f uniformly on E − Eδ.
• convergence in measure iff limk→∞m({x ∈ E||fn(x)− f(x)| > ε}) = 0.

Prop.(10.4.1.13)[Relations between Convergences].
• (Egoroff) If m(E) <∞ and fk converges to f a.e. then fk converges to f almost uniformly.
• If fk converges to f almost uniformly, then fk converges to f in measure.
• (Riesz) If fk converges to f in measure, then there is a subsequence fnk that converges to f

a.e..

Proof: 1: Cf.[实变函数周明强 P113].
2: Trivial.
3: Cf.[实变函数周明强 P118]. □

2 Integrations
Def.(10.4.2.1)[Simple Functions].

Def.(10.4.2.2).A measurable function f : Rn → C is called locally integrable if
∫
K |f(x)|dx < ∞

for every bounded measurable set K of R. The set of locally integrable function is denoted by
L1
loc(Rn).

Prop.(10.4.2.3).A function f is real analytic on an open set of R iff there is a extension to a complex
analytic function to an open set of C. And this is equivalent to: For every compact subset, there is
a constant C that for every positive integer k, |dkf

dxk
(x)| ≤ Ck+1k!.

Proof: Use Lagrange residue(中值定理) to show that it will converge to f . □

Prop.(10.4.2.4)[Monotone-convergence-theorem].
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Prop.(10.4.2.5)[Dominant Convergence Theorem].

Prop.(10.4.2.6).The set E of nowhere differentiable functions are of second category in C[0, 1], and
its complement set is of first category.

Proof: let An be the sets of functions f that there exists a s that for any |h| ≤ 1/n, |f(s+h)−f(s)
h | ≤ n.

It is easy to see that C[0, 1]− E ⊂ ∪nAn, so it suffices to show each An is of first category.
Firstly An is closed, because if s /∈ An, then for any s, there is a |hs| ≤ 1/n that |f(s+hs)−f(s)| >

n|hs|. So by continuity, there is a εs > 0 and some nbhd Js of s that |f(σ−hs)− f(σ)| > n|hs|+ 2εs
for all σ ∈ Js. Then there are f.m. Jsi that covers [0, 1], so let ε = min{εi}, then if ||g− f || < ε, then
g /∈ An.

And An has no interior point, because for any f ∈ An, f can be approximated by a polynomial g,
by Stone-Weierstrass theorem(10.4.8.1), and by Mean-value theorem, there is a M that |g(s + h)−
g(s)| ≤ M |h| for all s and |h| < 1/n. So if p is a pairwise-linear function that ||p|| is small and the
slopes of p are bigger than M + n, then g + p is near f but g + p /∈ An.

Finally, E is of second category by Baire theorem(3.3.9.2). □

Prop.(10.4.2.7)[Fubini-Tonelli].For two σ-finite measure spaces X,Y ,
• If f ∈ L+(X × Y ), then fx ∈ L+(Y ) and fy ∈ L+(X), and∫

X×Y
fdxdy =

∫
Y

∫
X
fdxdy =

∫
X

∫
Y
fdydx.

• If f ∈ L1(X × Y ), then fx ∈ L1(Y ) and fy ∈ L1(X), a.e. and the product formula is definable
and holds.

Proof: Cf.[Folland P67]. □

Miscellaneous

Lemma(10.4.2.8). If f : R≥1 → R is a non-decreasing function and
∫∞

1
f(t)−t
t2 dt converges, then

f(x) ∼ x, x→∞.

Proof: Let F (x) =
∫ x

1
f(t)−t
t2 dt, then the hypothesis implies that for any λ > 1 and ε > 0,

|F (λx)− F (x)| < ε for x large.
Suppose there exists λ ∈ R>1 and a sequence (xn)n∈Z+ s.t. limn→∞ xn = ∞, and f(xn) ≥ λxn

for each n, then

F (λxn)− F (xn) =
∫ λxn

xn

f(t)− t
t2

dt ≥
∫ λxn

xn

λxn − t
t2

dt =
∫ λ

1

λ− t
t2

dt = C

where C is a positive constant independent of n. This clearly contradicts the statement above.
A similar statement shows that there are no λ ∈ R>1 and sequences (xn)n∈Z+ s.t. limn→∞ xn =

∞, and f(xn) ≤ λ−1xn for each n. So f(x) ∼ x, x→∞. □

3 Differentiations
Lemma(10.4.3.1) [Vitali Covering Theorem].Let C be a collection of balls in Rn, and let U =
∪B∈CB. Then if c > m(U), then there exists disjoint B1, . . . , Bk ∈ C that ∑k

i=1m(Bk) > 3−nc.

Proof: □
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Lemma(10.4.3.2). If f ∈ L1
loc and Arf(x) = 1

Vol(B(r,x))
∫
B(r,x) f(y)dy, then Arf is continuous in both

r and x.

Proof: Cf.[Folland P96]. □

Prop.(10.4.3.3). If f ∈ L1
loc, then limr→0Arf(x) = f(x) for a.e. x ∈ Rn.

Proof: Cf.[Folland P97]. □

Differentiation on Euclidean Spaces

Prop.(10.4.3.4)[Fermat].Let x0 ∈ R, δ ∈ R+, f is a function on U(x0, δ). If x0 is an extreme point
of f , and f ‵(x0) exists, then f ‵(x0) = 0.

Proof: By changing f to −f if necessary, we can assume x0 is a supremum point. Then for
0 < h < δ, f(x0+h)−f(x0)

h ≤ 0, and for −δ < h < 0, f(x0+h)−f(x0)
h ≥ 0, so f ‵(x) = 0. □

Lemma(10.4.3.5)[Rolle’s Mean Value Theorem]. If a < b ∈ R, f ∈ C([a, b]) is differentiable on
[a, b], and f(a) = f(b), then there exists some ξ ∈ (a, b) s.t. f ‵(ξ) = 0.

Proof: As f is continuous on [a, b], which is compact, f has minimum m and maximum M on
[a, b]. If m = M , then f is constant, and any ξ ∈ (a, b) will do. If M > m, then M ̸= f(a) or
m ̸= f(a). Suppose WLOG the first case happens, then if f(ξ) = M, ξ ∈ (a, b), then f ‵(ξ) = 0 by
Fermat’s theorem(10.4.3.4). □

Thm.(10.4.3.6)[Lagrange’s Mean Value Theorem]. If a < b ∈ R, f ∈ C([a, b]) is differentiable
on [a, b], then there exists some ξ ∈ (a, b) s.t. f ‵(ξ) = f(b)−f(a)

b−a .

Proof: This follows from Rolle’s mean value theorem by considering the function

F (x) = f(x)− [f(a) + f(b)− f(a)
b− a

(x− a)].

□

Cor.(10.4.3.7)[Cauchy’s Mean Value Theorem]. If a < b ∈ R, f, g ∈ C([a, b]) is differentiable on
[a, b], and g‵ ̸= 0. then there exists some ξ ∈ (a, b) s.t. f(b)−f(a)

g(b)−g(a) = f ‵(ξ)
g‵(ξ) .

Proof: This follows from Rolle’s mean value theorem by considering the function

G(x) = f(x)− [f(a) + f(b)− f(a)
g(b)− g(a)

(g(x)− g(a))].

□

Prop.(10.4.3.8) [Commutativity of Integration].Let n ∈ Z+, n ≥ 2,Ω ⊂ Rn be open and f ∈
C(Ω). If 1 ≤ j < k ≤ n and ∂

∂xj
∂
∂xk

f, ∂
∂xk

∂
∂xj

f exist and continuous on Ω, then

∂

∂xj

∂

∂xk
f = ∂

∂xk

∂

∂xj
f.

In particular, this holds for f ∈ C2(Ω).
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Proof: For simplicity we prove for n = 2, i = 1, j = 2, and the general case is verbatim. For
x = (x, y) ∈ Ω, if ∆x,∆y is sufficiently small, define

I(∆x,∆y) = f(x0 + ∆x, y0 + ∆y)− f(x0 + ∆x, y0)
∆x∆y

− f(x0, y0 + ∆y)− f(x0, y0)
∆x∆y

and
g(x) = f(x, y0 + ∆y)− f(x, y0), h(y) = f(x0 + ∆x, y)− f(x0, y).

Then by mean value theorem(10.4.3.6),

I(∆x,∆y) = g(x0 + ∆x)− g(x0)
∆x∆y

= g‵(x0 + θ1∆x)
∆y

=
∂
∂xf(x0 + θ1∆x, y0 + ∆y)− ∂

∂xf(x0 + θ1∆x, y0)
∆y

= ∂

∂y

∂

∂x
f(x0 + θ1∆x, y0 + θ2∆y)

where θ1, θ2 ∈ [0, 1], and

I(∆x,∆y) = h(y0 + ∆y)− h(y0)
∆x∆y

= h‵(y0 + θ3∆y)
∆x

=
∂
∂yf(x0 + ∆x, y0 + θ3∆y)− ∂

∂xf(x0, y0 + θ3∆y)
∆x

= ∂

∂x

∂

∂y
f(x0 + θ4∆x, y0 + θ3∆y)

where θ3, θ4 ∈ [0, 1]. Then we get

∂

∂y

∂

∂x
f(x0 + θ1∆x, y0 + θ2∆y) = ∂

∂x

∂

∂y
f(x0 + θ4∆x, y0 + θ3∆y).

Now let ∆x,∆y → 0 and use the fact ∂
∂xj

∂
∂xk

f, ∂
∂xk

∂
∂xj

f are continuous to finish the proof. □

4 Functions of Bounded Variation
Def.(10.4.4.1)[Absolute Continuity].For a, b ∈ [−∞,∞], f ∈ C([a, b]) is called absolutely con-
tinuous on [a, b] if for any ε > 0, there exists δ < 0 s.t. for any f.m. disjoint intervals (ai, bi), i ≤ N ,

N∑
i=1

(bi − ai) < δ =⇒
N∑
i=1
|F (bi)− F (ai)| < ε.

Prop.(10.4.4.2).For a < b ∈ [−∞,∞], f ∈ C([a, b]) is differentiable and F ‵ is bounded, then F is
absolutely continuous.
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Proof: This follows from the fact |F (bi) − F (ai)| ≤ (sup |F ‵|)|bi − ai| by mean value theo-
rem(10.4.3.6). □

Thm.(10.4.4.3)[Fundamental Theorem of Calculus for Lebesgue Measure]. If a, b ∈ R and
F ∈ C([a, b]), then the following are equivalent:

• F is absolutely convergent on [a, b].
• F (x)− F (a) =

∫ x
a f(t)dt for some f ∈ L1([a, b],m).

• F is differentiable a.e. on [a, b], F ‵ ∈ L1([a, b],m), and F (x)− F (a) =
∫ x
a F

‵(t)dt.
In particular, this is the case for F everywhere differentiable and F ‵ bounded, by(10.4.4.2).

Proof: Cf.[Fol99]P106. □

5 Series
Lemma(10.4.5.1).For a sequence (an)n∈N in R+,

lim
n→∞

an+1
an
≤ lim

n→∞
a1/n
n ≤ lim

n→∞
a1/n
n ≤ lim

n→∞
an+1
an

Proof: Let limn→∞ a
1/n
n = R. If R > 0, then by definition, for any ε > 0 and M ∈ Z+, there exists

some m ≥ M s.t. a1/m
m < R + ε. Then for such M , am/a1 ≤ (R + ε)m/a1. So for some k ≤ m,

ak/ak−1 ≤ ((R+ ε)m/a1)m−1. Then if M is very large, ak/ak−1 < R+ 2ε. Thus limn→∞
an+1
an
≤ R.

Then limn→∞ a
1/n
n ≤ limn→∞

an+1
an

follows from this by considering the sequence bn = a−1
n . The

other inequality is trivial. □

Def.(10.4.5.2)[Euler’s Constant].The limit

lim
N→∞

[ N∑
n=1

1
n
− logN

]
exists, and is denoted by γ, called the Euler’s constant.

Proof: As
N∑
n=1

1
n
− logN =

N−1∑
n=1

∫ n+1

n
[ 1
n
− 1
x

]dx,

this sequence is increasing. And

N−1∑
n=1

∫ n+1

n
[ 1
n
− 1
x

]dx+ 1
N
<

N−1∑
n=1

1
n(n+ 1)

+ 1
N

= 1,

so it converges. □

Power Series

Prop.(10.4.5.3)[Cauchy-Hadamard].For any power series a0 + a1x + . . . + anx
n + . . . in R, take

1/R = lim |an|1/n, where we assume 1/0 =∞ and 1/∞ = 0, then
• The series converges absolutely for every |x| < R, and if ρ < R, then the convergence is uniform

for |x| ≤ ρ.
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• If |x| > R, the terms are unbounded, and the series diverges.
And R is called the radius of convergence of the sequence.

Proof: 1: For 0 < ρ < R, take ρ1 ∈ (ρ,R), then the definition of R implies that for some N ∈ Z+
and any n ≥ N , |an| ≤ R−n < ρ−n

1 , so |anxn| ≤ (ρ/ρ1)n, so ∑n∈N anx
n converges absolutely and

uniformly for |x| ≤ ρ.
2: For R < |x|, the definition of R implies that for any N ∈ Z+, there exists n ≥ N s.t.

|an| ≥ R−n, so |anxn| ≥ |x/R|n > 1, so this sequence cannot be convergent. □

Prop.(10.4.5.4).For any power series a0 +a1x+ . . .+anxn+ . . . in R, by(10.4.5.1), if limn→∞ |an+1
an
| =

ρ ∈ [0,∞], then the radius of convergence(10.5.3.1)R = 1/ρ, where we assume 1/0 =∞ and 1/∞ = 0.

6 Lp-space
Lemma(10.4.6.1)[Hölder]. if ∑xi = 1, xi ≥ 0, then for any ai ≥ 0∏

axii ≤
∑

aixi.

Proof: □

Prop.(10.4.6.2)[Holder’s Inequality].Let (S,Ω, µ) be a measure space, and 1 ≤ p, q ≤ ∞ satisfies
1/p+ 1/q = 1, then

||fg||1 ≤ ||f ||p||g||q
More generally, if ∑n

i=1 1/pi = 1, then

||
∏

fi||1 ≤
∏
||fi||pi

Proof: The both sides are homogenous for fi, so we may assume ||fi||pi = 1, then use Hoder’s
Lemma(10.4.6.1) for xi = q/pi. □

Prop.(10.4.6.3)[Dual of Lp(µ)].For a σ-finite measurable space (X,M, µ), for 1 ≤ p <∞

Lp(X,Ω, µ)∗ = Lq(X,Ω, µ).

Proof: Firstly, Holder inequality(10.4.6.2) shows that a g ∈ Lq(X,Ω, µ)defines a functional by
f 7→

∫
fgdµ. Conversely, if given a functional F , define a measure v(E) = F (χE) for all measurable

set E ∈ Ω. It is countably additive: first it is finitely additive, and if En is a descending sequence of
measurable sets that ∩En = ∅, then

v(En) ≤ ||F ||||χEn ||Lp = ||F ||µ(En)
1
p → 0.

(where we used the fact p <∞). And it is clearly absolutely continuous w.r.t. µ.
So by Radon-Nikodym(10.4.1.8), there is a measurable function g that v(E) =

∫
E gdµ. So for all

simple function f , F (f) =
∫
f(x)g(x). Next we want to prove ||g||q ≤ ||F ||, because any measurable

function f can be approximated by simple functions fi in Lp norm(10.4.8.4), so

|
∫

(f(x)− fi(x))g(x)dµ| ≤ ||f − fi||p||g||q ≤ ||f − fi||p||g||q

So F (f) = limF (fi) = lim
∫
figdµ =

∫
fgdµ.
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To prove this, if 1 < p, then let Et = {x||g(x)| ≤ t}, and f = χEt |g|q−2g, then∫
Et
|g|qdµ =

∫
fgdµ = F (f) ≤ ||F ||||f ||Lp = ||F ||(

∫
Et
|g|qdµ)

1
p

which is equivalent to ||gχEt||Lq ≤ ||F ||. Let t → ∞, then the monotone convergence theo-
rem(10.4.2.4) gives us the result.

If p = 1, then q = ∞. For any ε > 0, let A = {x||g(x)| > ||F ||+ ε}, Et = {x||g(x)| ≤ t}, and let
f = χEt∩A sgn(g), then ||f ||L1 = µ(Et ∩A), and

µ(Et ∩A)(||F ||+ ε) ≤
∫
A∩Et

|g|dµ =
∫
fgdµ ≤ ||F ||µ(Et ∩A)

If µ(A) ̸= 0, then let t→∞, this is a contradiction. So ||g||∞ ≤ ||F ||. □

Prop.(10.4.6.4)[Hilbert Basis for Products].For two σ-finite measure spaces M,N and Hilbert
basis(10.8.4.9) {ei} of L2(M) and {fj} of L2(N), {ei⊗fj} gives a Hilbert basis for L2(M ×N). (Use
Fubini).

Proof: It is easily verified that ei⊗fj are mutually orthogonal, and if some f ∈ L2(M×N) satisfies
(f, ei ⊗ fj) = 0 for all i, j, then ∫

M
ei(x)

∫
N
f(x, y)fj(y) = 0

for all i. But
∫
N f(x, y)fj(y) ∈ L2(M) for a.e. x(f(x, y) ∈ L2(N) a.e. x by Fubini-Tonelli), thus it

vanishes. So fx(y) = f(x, y) = 0 ∈ L2(N) for a.e. x, so by Fubini-Tonelli again, ||f ||L2(M×N) = 0,
thus f = 0. □

Prop.(10.4.6.5)[Minkowski’s Inequality].Let (X,M, µ), (Y,N , ν) be σ-finite measure spaces, and
f a (M⊗N )-measurable function on X × Y .

• If f ≥ 0 and 1 ≤ p <∞, then

[
∫

(
∫
f(x, y)dν(y))pdµ(x)]1/p ≤

∫
[
∫
f(x, y)pdµ(x)]1/pdν(y).

• If 1 ≤ p ≤ ∞, f(·, y) ∈ Lp(µ) for a.e. y, and the function y 7→ ||f(·, y)||p is in L1(ν), then
f(x, ·) ∈ L1(ν) for a.e. x, and the function x 7→

∫
f(x, y)dν(y) is in Lp(µ), and

||
∫
f(·, y)dν(y)||p ≤

∫
||f(·, y)||pdν(y).

Proof: 1: If p = 1, then this is just Tonelli’s theorem(10.4.2.7), and when 1 < p < ∞, let
q−1 + p−1 = 1, and g ∈ Lq(µ), then by Tonelli’s theorem and Holder’s inequality(10.4.6.2),∫

[
∫
f(x, y)dν(y)]|g(x)|dµ(x) =

∫ ∫
f(x, y)|g(x)|dµ(x)dν(y) ≤ ||g||q

∫
[f(x, y)pdν(y)]1/pdν(y).

So we finish by(10.4.6.3).
2 follows from 1 and Fubini’s theorem. And when p =∞, this is trivial. □
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L2-Space

Def.(10.4.6.6).Let X be a measure space, then there is a map

⋆ : L2(X ×X)× L2(X ×X)→ L2(X ×X) : (K1 ⋆ K2)(u, v) =
∫
X
K1(u, x)K2(x, v)dx.

By Schwarz inequality, ||K1 ⋆ K2||2 ≤ ||K1||2 ⋆ ||K2||2, thus ⋆ makes L2(G × G) into a Banach
algebra(without a unit).

This Banach algebra can left and right act on L2(X), also denoted by ⋆, then for K ∈ L2(X ×
X), P,Q ∈ L2(X),

(P ⊗Q) ⋆ K = P ⊗ (Q ⋆K), K ⋆ (P ⊗Q) = (K ⋆ P )⊗Q.

And also for S, T ∈ L2(X),
(P ⊗Q) ⋆ (S ⊗ T ) = (Q,S)L2P ⊗ T.

Prop.(10.4.6.7).
• An element K ∈ L2(X × X) has the form P ⊗ Q iff K ⋆ K ′ ⋆ K is proportional to K for all
K ′ ∈ L2(X ×X).

• Let K1 = P1 ⊗Q1 and K2 = P2 ⊗Q2, then P1 and P2 are proportional iff K1 ⋆ K and K2 ⋆ K
are proportional for all pure tensors K ∈ L2(X ×X). Similarly, Q1 and Q2 are proportional
iff K ⋆K1 and K ⋆K2 are proportional for all pure tensor K.

• For any uniform transformation s : L2(X × X) → L2(X × X) respecting ⋆, there exists a
unitary transformation s0 : L2(X) → L2(X) s.t. s(P ⊗ Q) = s0(P ) ⊗ s0(Q). And it can be
chosen to be invertible iff s is.

Proof: Cf.[Bump, P527].? □

L∞-Spaces

Def.(10.4.6.8)[Slowly Oscillating Functions].A slowly oscillating function on Rn is a function
f ∈ L∞(Rn) s.t. for any ε ∈ R+, there exists A, δ ∈ R+ s.t. |f(x)−f(y)| < ε whenever |x| > A, |y| >
A, |x− y| < δ.

7 Estimations

Prop.(10.4.7.1). limn→∞ n1/n = 1.

Proof: Let n1/n = 1 + δn, δn > 0, then n = (1 + δn)n ≥ 1 + n(n−1)
2 δ2

n, so δn ≤
√

2/n, and
limn→∞ δn = 0. □

Prop.(10.4.7.2).For any x ∈ (0, π2 ), 2
πx < sin x < x.

Proof: it suffices to show that sinx
x is decreasing on x ∈ (0, π2 ):

(sin x
x

)‵ = x cosx− sin x
x

,

and x cosx− sin x < 0 because

(x cosx− sin x)‵ = −x sin x < 0.

□
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8 Approximations
Prop.(10.4.8.1)[Stone-Weierstrass Approximation]. If a unital C∗-algebra A of continuous func-
tions on a compact Hausdorff space separates points, then it is dense in C(X).

Proof: This is a consequence of Bishop theorem(10.9.3.18) because in this case the real functions
in A separate points, so all A-antisymmetric sets consists of one point. □

Cor.(10.4.8.2).The polynomial functions are dense in C[−1, 1].

Prop.(10.4.8.3)[Simple Function Approximation].Let E be a measure space,
• If f(x) is a non-negative measurable function on E, then there is an ascending sequence of

simple functions (φn(x)) that converges to f point-wise.
• If f(x) is a measurable function on E, then there is a sequence of simple functions φn that
|φk(x)| ≤ |f(x)|, and converges to f pointwise.

• If f(x) is bounded, then the convergence can be chosen to be uniform.

Proof: Cf.[实变函数周明强 P110]. □

Lp-Approximation

Prop.(10.4.8.4)[Simple Function Approximation].Any function in Lp can be approximated by
compactly supported simple functions in Lp norm.

Proof: □

Prop.(10.4.8.5). for 1 ≤ p < +∞, Cc(X) are dense in Lp(X) for a Radon measure, but not for p =∞.

Proof: Use compactly supported simple function approximation(10.4.8.4) and then use outer reg-
ular approximation(10.4.1.9) and then Tietz extension. □

Prop.(10.4.8.6)[Lusin]. If f is almost everywhere finite on E, then for any δ > 0, there is a closed
subset F ⊂ E that f is continuous function on F .

Proof: First if f is a simple function f =
∑n
i=1 ciχEi , then for each Ei, choose a closed subset

Fi ⊂ Ei that m(Ei − Fi) < δ
n , and then ∪Fi satisfies the required condition.

Now if f is arbitrary, let g(x) = f(x)
1+|f(x)| to make it bounded, then by(10.4.8.3), there is a

sequence of simple functions φk converging to f , and for each k, we choose a closed subset Fk that
m(E−Fk) < δ

2k , so if we let F = ∩Fk, then φk are all continuous on F , so by the uniform convergence,
f is also continuous on F . □

Cor.(10.4.8.7). If f is measurable function on E that is a.e. finite, then for any δ, there is a continuous
function g that m({x ∈ E|f(x) ̸= g(x)}) < δ. And if E is bounded, g can be chosen to be compactly
supported.

Proof: Now that there is a closed subset F that m(E − F ) < δ and f is continuous on F , we can
use Tietze extension(3.3.6.3), there is a function g that equals f on F .

If E ⊂ B(0, R), the we can choose a bump function to multiply with g. □

Prop.(10.4.8.8). for 1 ≤ p < +∞, trigonometric polynomials are dense in Lp(T) and C(T), but not
for p =∞. So e2πinx forms an orthogonal basis in L2(T).

Thus, the Parseval’s identity holds.
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Proof: Just use the fact that Fejer kernels are an approximate identity. □

Prop.(10.4.8.9).For a integrable function u that has compact support, uδ = jδ∗u is a smooth function
of compact support that ||uδ−u||Ck → 0 when u ∈ Ck. Where jδ is the scaling of a smooth function
of compact support. So Smooth function of compact support are dense in Ck0 .

Prop.(10.4.8.10).D(Rn) is dense in Wm,p(Rn).

Proof: Use the fact that C0 are dense in Lp by(10.4.8.9). And fδ → f in Lp norm for f ∈ C0. So
we can use the three-part argument applied to Dαu to get Dα(uδ) → Dαu in Lp norm for |α| ≤ m.
Thus the result. □

9 Convolutions

Prop.(10.4.9.1).Convolution with a smooth function makes the function smooth, in particular, ∂∂x(f ∗
g) = ∂f

∂x ∗ g.

Prop.(10.4.9.2)[Young’s Inequality]. ||f ∗ g||r ≤ ||f ||p||g||q for all 1 ≤ r, p, q ≤ ∞ and

1 + 1
r

= 1
p

+ 1
q
.

In particular, ||K ∗ f ||p ≤ ||K||1||f ||p.

Proof: By Riesz representation(10.11.1.10), it suffices to show that: for 1
p + 1

q + 1
r = 2,∫ ∫

f(x)g(y − x)h(y) ≤ ||f ||p||g||q||h||r.

write the LHS as ∫ ∫
(fp(x)g(y − x)q)1− 1

r (fp(x)hr(y))1− 1
q (gq(y − x)hr(y))1− 1

p

and use Holder inequality for three functions(10.4.6.2). □

10 Examples of Calculations
Prop.(10.4.10.1).Assume Re(s) > 1/2, then∫ ∞

−∞
(1 + x2)−seik arctan − 1

xdx = (−i)k
√
π

Γ(s)Γ(s− 1
2)

Γ(s+ k
2 )Γ(s− k

2 )
.

Proof: Cf.[Bump, Automorphic Forms and Representations, P230]. □

11 Hausdorff Measures
12 Area and Coarea Formulas
13 Sobolev Spaces
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10.5 Complex Analysis I

References are [Ahl78], [S-S03], [谭-伍 06] and [李 04].

Notation(10.5.0.1).
• Use notations defined in Real Analysis(Functions on Rn).
• Let Ω be a region(10.5.1.1).

1 Basics
Def.(10.5.1.1)[Regions].A region is a nonempty connected open subset of C.

Def.(10.5.1.2)[Conjugations].The non-zero element in Gal(C/R) is denoted by c. And for z ∈ C,
c(z) is also denoted by z.

For z ∈ C, denote Re(z) = z+z
2 , Im(z) = z−z

2 i , called the real part and complex part of z resp..
So

z = Re(z) + i Im(z), z = Re(z)− i Im(z).

Prop.(10.5.1.3)[C is Complete].The natural extended value from R to C is of the form |x+ i y| =√
x2 + y2. In particular, it is easy to prove that C is a complete valued field.

Def.(10.5.1.4)[Derivatives].We introduce the following notations:

∂

∂z
= 1

2
( ∂
∂x
− i ∂

∂y
), ∂

∂z
= 1

2
( ∂
∂x

+ i ∂
∂y

), dz = dx+ i dy dz = dx− idy.

Then dz is dual to ∂
∂z and dz is dual to ∂

∂z . And for any function f ,

df = ∂f

∂x
dx+ ∂f

∂y
dy = ∂f

∂z
dz + ∂f

∂z
dz.

And also,
dzdz = 2dxdy = 2rdrdθ

Def.(10.5.1.5)[Cross Ratios].For any three pts z2, z3, z4 ∈ C, there is a unique linear transformation
that maps them to 1, 0,∞. In fact, the linear transformation is just Sz = z−z3

z−z4
/ z2−z3
z2−z4

.
Then for any for point z1, z2, z3, z4, the cross ratio (z1, z2, z3,4 ) is the image of z1 under the

linear transformation that carries z2, z3, z4 to 1, 0,∞.

Prop.(10.5.1.6).The cross ratio is invariant under linear transformation, and it is real iff z1, z2, z3, z4
are colinear or cocycle.

Proof: The first is because there is only one linear transformation that maps z2, z3, z4 to 1, 0,∞.
For the second, notice by(10.5.1.5), arg(z1, z2, z3,4 ) = arg z1−z3

z1−z4
− arg z2−z3

z2−z4
, and this is real iff

∠z4z2z3 = ∠z4z1z3 or π − ∠z4z1z3, which is equivalent to cocycle. For other degenerate cases, we
need some other argument. □

Cor.(10.5.1.7).A linear transformation maps colinear/cocycle points to colinear/cocycle points.

Lemma(10.5.1.8)[Invariant Factor]. If a, b, c, d ∈ R, then

Im(az + b

cz + d
) = ad− bc
|cz + d|2

Im(z).
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Analytic Functions

Def.(10.5.1.9)[Analytic Functions].For an open subset Ω ⊂ C, a complex-valued function f on Ω
is called analytic or holomorphic if ∂

∂zf(z) = 0 for any z ∈ Ω(10.5.1.4). Equivalently,

∂

∂x
f = − i ∂

∂y
f, i.e.

 ∂
∂x Re(f) = ∂

∂y Im(f)
∂
∂x Im(f) = − ∂

∂y Re(f)

i.e. f has the same derivative vertically and horizontally, hence in every direction.
The space of analytic functions on Ω is denoted by O(Ω). More generally, if Ω ⊂ C is any

subspace, O(Ω) = C(Ω) ∩ O(Ωo).
For f ∈ O(Ω), denote

f ‵(z) = ∂

∂z
f(z) = ∂

∂x
f(z) = − i ∂

∂y
f(z).

and for n ∈ N, denote inductively

f (0) = f, f (1) = f ‵, f (n+1) = (f (n))‵.

Lemma(10.5.1.10).Let Ω ⊂ C be a region and f ∈ O(Ω) s.t. f ‵ = 0, then f is a constant function.

Proof: This follows from the fact any two points in Ω can be connected by a path consisting of
vertical or horizontal segments, and use the fundamental theorem of calculus(10.4.4.3). □

Prop.(10.5.1.11)[∂-Equation].Let Ω ⊂ C be a region and f ∈ Ck(Ω), k ≥ 1, then locally near every
point, there exists a Ck-function g s.t.

∂

∂z
g = f.

And such a function is defined up to an analytic function.

Proof: Taking a bump function, we may assume f ∈ Ckc (Ω). Then define

g(z) = 1
2π i

∫
C

f(ζ)
ζ − z

dζ ∧ dζ = 1
2π i

∫
C

f(ζ + z)
ζ

dζ ∧ dζ.

This singular integration is convergent because h(ζ) = 1
ζ−z is locally L1(this follows from(10.5.1.4)).

And the integration is uniformly convergent in z. Then the differentiation commutes with integration
and shows g is Ck. Moreover,

∂

∂z
g(z) = lim

ε→0

1
2π i

∫
C\D(0,ε)

∂

∂ζ
f(ζ)dζ ∧ dζ

ζ − z
= lim

ε→0

1
2π i

∫
∂D(0,ε)

f(ζ) dζ
ζ − z

= f(z)

by Stoke’s formula and continuity. □

2 Complex Integration

Lemma(10.5.2.1). If f is analytic on a rectangle R minus f.m. points ζi and if limz→ζi(z−ζi)f(z) = 0,
then

∫
∂R f(z)dz = 0.
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Proof: We consider first the case that no points are omitted. Cut the rectangle R into 4 rectangles
R1, R2, R3, R4 that is similar to R, then∫

∂R
f(z)dz =

4∑
i=1

∫
∂Ri

f(z)dz.

Let |
∫
∂R f(z)dz| = T , then there exists some Ri that |

∫
∂Ri f(z)dz| ≥ 1

4T . Denote this Ri by R1.
Then we can do the same for R1 to find an R2 s.t. |

∫
∂R2

f(z)dz| ≥ 1
42T . Continuing this process, we

find a sequence R1 ⊃ R2 ⊃ . . . ⊃ Rn ⊃, and their intersection is a single point z0 as R is compact.
Now as f is analytic, for any ε > 0, for n sufficiently large, for any z ∈ ∂Rn,

|f(z)− f(z0)
z − z0

− f ‵(z0)| ≤ ε.

Notice also by direct calculating that∫
∂Rn

dz = 0,
∫
∂Rn

zdz = 0,

we have
T

4n
≤ |

∫
∂Rn

f(z)dz| = |
∫
∂Rn

[f(z)− f(z0)− f ‵(z0)(z − z0)]dz| ≤ ε
∫
∂Rn
|z − z0||dz| ≤ ε

dL

4n

where d, L are the length of the diagonal and the perimeter of R. So T ≤ ε. As ε is arbitrary, this
means T = 0.

In general, by cutting into several rectangles, it suffices to prove for the case that only one point is
omitted, and in this case, we can use what we have proved and the hypothesis to reduce the rectangle
to any small enough rectangle R0 around ζ1 s.t. for any z ∈ ∂R0,

f(z) ≤ ε

|z − ζ1|
.

And then
|
∫
∂R0

f(z)dz| ≤ ε
∫
∂R0

|dz|
|z − ζ1|

≤ 8ε

by elementary estimation. As ε is arbitrary, this means
∫
∂R0

f(z)dz = 0. □

Thm.(10.5.2.2)[Cauchy]. If Ω ⊂ C is a simply-connected region and Ω′ is the region obtained from
Ω by omitting f.m. points ζi. Suppose f ∈ O(Ω′), and limz→ζi(z − ζi)f(z) = 0, then

∫
γ f(z)dz = 0

for any closed piecewise C1 curve γ ⊂ Ω′.
Moreover, if f ∈ O(Ω′), then

∫
γ f(z)dz = 0 for any closed piecewise C1 curve γ ⊂ Ω′\{ζ1, . . . , ζi}.

Proof: Fix a z0 ∈ Ω, then for any z ∈ Ω, choose a path γ from z0 to z consisting of vertical or
horizontal segments, and let F (z) =

∫
γ f(z)dz. Then this F is well-defined: if there are two paths

γ, γ′, γ − γ′ is a sum oriented boundary of rectangles, and these rectangles must be contained in Ω
because Ω is simply-connected. Thus the above lemme(10.5.2.1) shows that F (z) is independent of
the path chosen, and it is clear that F (z) has the same derivative in both directions so analytic by
definition(10.5.1.9). So clearly

∫
γ f(z)dz = F (z)

∣∣∣γ(1)

γ(0)
= 0.

For the last assertion, any such a closed piecewise C1 curve γ ⊂ Ω′\{ζ1, . . . , ζi} can be uniformly
approximated by a path in Ω′. □
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Cor.(10.5.2.3)[Existence of Primitive]. If Ω ⊂ C is a simply connected region and f ∈ O(Ω), then
there exists a function F ∈ O(Ω) s.t. F ‵ = f .

Proof: Take z0 ∈ Ω and take F (z) =
∫
γ f(z)dz for any path γ from z0 to z. F is well-defined by

the Cauchy theorem(10.5.2.2). □

Prop.(10.5.2.4) [Generating Analytic Functions]. If φ(ζ) is continuous on an arc γ, then the
function

Fn(ζ) =
∫
γ

φ(ζ)
(ζ − z)n

dζ

is analytic on each connected component of C\γ, and its derivative is F ′
n(z) = nFn+1(z).

Proof: Use induction on n: for n = 1, firstly we prove F1 is continuous: for z0 /∈ γ, choose δ > 0
s.t. U(z0, δ) ∩ γ = ∅, then for z ∈ U(z0, δ), d(z, γ) > δ/2, and

|F1(z)− F1(z0)| = |z − z0||
∫
γ

φ(ζ)
(ζ − z)(ζ − z0)

dζ| ≤ |z − z0|
2
δ2

∫
γ
|φ||dζ|,

thus F1 is continuous. Moreover, the above argument applied to the function Φ(ζ) = φ(ζ)/(ζ − z0)
implies that

lim
z→z0

F1(z)− F1(z0)
z − z0

= lim
z→z0

∫
γ

φ(ζ)
(ζ − z)(ζ − z0)

dζ = lim
z→z0

∫
γ

Φ(ζ)
(ζ − z)

dζ =
∫
γ

Φ(ζ)
(ζ − z0)

dζ = F2(z0),

hence F ‵
1 = F2.

For n > 1, suppose we have shown F ‵
n−1 = (n− 1)Fn, then with notations as above, we have

Fn(z)− Fn(z0) = [
∫
γ

φ(ζ)
(ζ − z)n−1(ζ − z0)

dζ −
∫
γ

φ(ζ)
(ζ − z0)n

dζ] + (z − z0)
∫
γ

φ(ζ)
(ζ − z)n(ζ − z0)

dζ

= [
∫
γ

Φ(ζ)
(ζ − z)n−1dζ −

∫
γ

Φ(ζ)
(ζ − z0)n−1dζ] + (z − z0)

∫
γ

Φ(ζ)
(ζ − z)n

dζ

Then we see by induction hypothesis that limz→z0 Fn(z) − Fn(z0) = 0 and Fn is continuous for any
φ. Moreover,

lim
z→z0

Fn(z)− Fn(z0)
(z − z0)

= lim
z→z0

1
(z − z0)

[
∫
γ

Φ(ζ)
(ζ − z)n−1dζ −

∫
γ

Φ(ζ)
(ζ − z0)n−1dζ] +

∫
γ

Φ(ζ)
(ζ − z)n

dζ

= n

∫
γ

Φ(ζ)
(ζ − z0)n

dζ +
∫
γ

Φ(ζ)
(ζ − z0)n

dζ

= (n+ 1)Fn+1(z)

□

Prop.(10.5.2.5)[Index of a Point w.r.t a Curve]. If γ is a piecewise C1 curve that doesn’t pass a
point a, then 1

2π i
∫
γ

dz
z−a is an integer n(γ, a), called the index of a w.r.t γ.

And this index function is constant on each connected component of C\γ, and 0 on the unbounded
component. In particular, if γ is a circle and a is contained in the interior of this circle, then
n(γ, a) = 1.
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Proof: Cf. [?]P115.?
this index function is constant on each connected component of C\γ, and 0 on the unbounded

component by the continuity of the integral by(10.5.2.4).
For the last assertion, it suffices to show for γ = ∂D(0, R) and a = 0, by what we just said. And

in this case,
1

2π i

∫
γ

dz
z − a

= 1
2π i

∫ 2π

0

iReiθ

Rei θ dθ = 1

□

Cor.(10.5.2.6)[Cauchy Integral Formula, Cauchy1825]. if Ω ⊂ C is a simply-connected region,
f ∈ O(Ω), then for any piecewise C1 closed curve γ ⊂ Ω and a /∈ γ,

1
2π i

∫
γ

f(ξ)
ξ − a

dξ = n(γ, a)f(a)(10.5.2.5).

In particular, if γ is the boundary of a disk D contained in C, then for any a ∈ D,

1
2π i

∫
γ

f(ξ)
ξ − a

dξ = f(a).

Moreover, if f ∈ O(Ω), then this is true for any piecewise C1 closed curve γ ⊂ Ω and a /∈ γ.

Proof: Consider the function F (z) = f(z)−f(a)
z−a , then it is analytic for z ̸= a, and at a it satisfies

the condition of Cauchy theorem(10.5.2.2), so
∫
γ F (z)dz = 0 which is

∫
γ
f(z)dz
z−a = f(a)

∫ dz
z−a , and

use(10.5.2.5). □

Cor.(10.5.2.7)[Higher Derivations].For any region Ω f ∈ O(Ω), if a ∈ Ω and γ is a small circle γ
in Ω centered at a,

f(a) = 1
2π i

∫
γ

f(ζ)
ζ − a

dζ

by Cauchy integral theorem(10.5.2.6). So derivatives of f are all analytic, and satisfy:

f (n)(z) = n!
2π i

∫
γ

f(ζ)
(ζ − z)n+1dζ.

In particular, O(Ω) ⊂ C∞(Ω).

Cor.(10.5.2.8)[Morera]. If f is continuous on a region Ω and if
∫
γ fdz = 0 for any piecewise closed

curve γ ⊂ Ω consisting of vertical or horizontal segments, then f(z) ∈ O(Ω).

Proof: There is an analytic function F that F ‵ = f , by the same method of the proof of(10.5.2.2),
so f is analytic, by(10.5.2.7). □

Cor.(10.5.2.9)[Cauchy Estimate]. If f ∈ O(D(a, r)), and |f | ≤M on the boundary, then |f (n)(a)| ≤
Mn!r−n for any a ∈ D.

Cor.(10.5.2.10)[Liouville].Any bounded holomorphic function on C is constant.

Proof: if |f(z)| ≤M , then the Cauchy estimate shows that |f ‵(a)| ≤Mr−1, letting r tends to ∞,
then f ‵(a) = 0 for all a, thus f is constant. □
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Cor.(10.5.2.11)[Mean Value Property]. If f ∈ O(D), then |f(0)| ≤
∫
D |f(z)|dxdy.

Proof: |f(0)| ≤ 1
2π
∫
f(rei θ)dθ, so if multiplied by rdr and integrate, then

|f(0)| ≤
∫ ∫

f(rei θ)rdrdθ =
∫ ∫

f(z)dxdy.

□

Prop.(10.5.2.12).For any f ∈ O(D(0, R)), for z ∈ D(0, R):

f(z) = 1
2π i

∫
|ζ|=R

Re(ζ + z

ζ − z
)f(ζ)dζ

ζ
.

Proof: Let F (ζ) = f(ζ)
ζ−R2/z , then F ∈ O(D(0, R)), and by Cauchy’s theorem(10.5.2.2),

∫
|ζ|=R

f(ζ)
ζ −R2/z

dζ = 0.

And by Cauchy’s integral formula,

1
2π i

∫
|ζ|=R

f(ζ)
ζ − z

dζ = f(z).

so

f(z) = 1
2π i

∫
|ζ|=R

[ f(ζ)
ζ − z

− f(ζ)
ζ −R2/z

]dζ = 1
2π i

∫
|ζ|=R

[ ζ

ζ − z
+ z

ζ − z
]f(ζ)dζ

ζ
= 1

2π i

∫
|ζ|=R

Re(ζ + z

ζ − z
)f(ζ)dζ

ζ

□

Constructing Analytic Functions

Prop.(10.5.2.13)[Holomorphic Function Defined by Integrations].Let (X,M, µ) be a σ-finite
measure space and Ω ⊂ C be a region. For any F ∈ L1(Ω×X), if

• F (z, x) is analytic in z for any x ∈ X.

• z 7→
∫
X |F (z, x)|dx is uniformly convergent on compact subsets.

then f(z) =
∫
X F (z, x)dx is an analytic function on Ω.

In particular, item2 holds if F ∈ C(Ω×X) and X is compact.

Proof: This follows from Morera’s theorem(10.5.2.8) and Fubini-Tonelli theorem(10.4.2.7). □

Cor.(10.5.2.14)[Weierstrass]. If (fn)n∈Z+ is a sequence of holomorphic functions on Ω that converges
uniformly to f ‵ on every compact subset, then f is holomorphic on Ω. And for any k ∈ N, (f (k)

n )n∈Z+

converges uniformly on f ‵ on every compact subset.

Proof: For the last assertion, use Cauchy’s integral formula(10.5.2.6). □
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Local Properties of Analytic Functions

Prop.(10.5.2.15)[Taylor Expansions].Let Ω ⊂ C be a region and f ∈ O(Ω), then if D ⊂ Ω be a
closed disk with center z0, then for any z ∈ D,

f(z) =
∑
n∈N

f (n)(z0)
n!

(z − z0)n.

Proof: By Cauchy’s integral formula(10.5.2.6), if C is the boundary of D, then

f(z) = 1
2π i

∫
C

f(ξ)
ξ − z

dξ

But
1

ξ − z
= 1
ξ − z0

1
1− ( ξ−zξ−z0

)
=
∑
n∈N

(ξ − z)n

(ξ − z0)n+1

and the convergence is uniform on C, so by(10.5.2.7),

f(z) =
∫
C

( 1
2π i

∫
C

f(ξ)
(ξ − z0)n+1

)
(ξ − z)n =

∑
n∈N

f (n)(z0)
n!

(z − z0)n.

□

Cor.(10.5.2.16).For any region Ω ⊂ C and f ∈ O(Ω). If z0 ∈ Ω and f (n)(z0) = 0 for any n ∈ N, then
f = 0 ∈ O(Ω).

Proof: The subset E = {z0 ∈ Ω|f (n)(z0) = 0, ∀n ∈ N} is an open subset by the Taylor expan-
sion(10.5.2.15), and the complement is also an open subset as all the derivatives are continuous. So
E = Ω, and Ω is connected. □

Prop.(10.5.2.17)[Removable Singularities].Let Ω ⊂ C and Ω′ is the region obtained from Ω by
omitting f.m. points ζi, f ∈ O(Ω′), then f can be extended to an analytic function f ∈ O(Ω) iff
limz→ζi(z − ζi)f(z) = 0 for each i.

Proof: The necessary is clear. For the other direction, choose for each ζi a disk D(ζi, δ) contained in
Ω with boundary γ, then for any z0 ∈ D(ζi, δ), by Cauchy theorem(10.5.2.2) applied to the analytic
function F (z) = f(z)−f(z0)

z−z0
on D(z0, δ)\{z0, ζi}, we see∫

γ

f(ξ)
ξ − z0

dξ =
∫
γ

f(z0)
ξ − z0

= f(z0)(10.5.2.5).

But by(10.5.2.4), z 7→
∫
γ
f(ξ)
ξ−z dξ is a holomorphic function on D(ζi, δ), and it extends f(z0). So f can

be extended to an analytic function f ∈ O(Ω). □

Def.(10.5.2.18)[Orders of Vanishing].For any region Ω ⊂ C and f ̸= 0 ∈ O(Ω), then for any z0 ∈ Ω,
there exists a smallest n ∈ N s.t. f (n)(z0) ̸= 0 by(10.5.2.16). So by repeatedly using(10.5.2.17) on
f(z)
z−z0

, we get
f(z) = (z − z0)nfn(z)

on a nbhd of z0, where fn ∈ O(Ω′) and fn(z0) ̸= 0 for some nbhd Ω′ of z0 ∈ Ω. Such an n is called
the order of vanishing of f at z0.

In particular, if n > 0, fn(z) ̸= 0 on a nbhd of z0, so f(z) ̸= 0 on nbhd of z0, thus the vanishing
point of f is isolated in Ω.
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Cor.(10.5.2.19)[Uniqueness]. If the zeros of a holomorphic function f has a convergent point in the
domain of definition, then f = 0. In particular, if f, g ∈ O(Ω) satisfies f(z) = g(z) for any z ∈ E,
where E ⊂ Ω is a subset with convergence points in Ω, then f = g ∈ O(Ω).

Prop.(10.5.2.20)[Singularities]. If Ω ⊂ C is region and Ω′ is the region obtained from Ω\E where
E = {ζ1, . . . ζn, . . .} ⊂ Ω is a discrete subset. Suppose f ∈ O(Ω′), then f is said to have a singularity
at ζi. For each i, let ζ = ζi, the following are all the cases:

• limz→ζ |z − ζ|α|f(z)| = 0 for any α ∈ R. In this case, f = 0 ∈ O(Ω).

• there exists h ∈ R s.t. limz→ζ |z − ζ|α|f(z)| =
{

0 , α < h

∞ , α > h
. In this case, h ∈ Z, and z0 is

called a zero of f if h > 0 and pole of f if h < 0. And if h = 0, it is called a removable
singularity, which is discussed in(10.5.2.17).

• Neither of the above holds. In this case, z0 is called a essential singularity of f .

Proof: In case 1, f can be extended to a function on Ω′ ∪ {ζ} with f(ζ) = 0 by(10.5.2.17), and at
this point, all the derivatives of f vanish by(10.5.2.18), so f = 0 ∈ O(Ω) by(10.5.2.19).

In case 2, |z − ζ|m|f(z)| = 0 for some m ∈ Z larger than h, so (z − ζ)mf(z) can be extended to
a function on Ω′ ∪ {ζ}. As f is not identically zero, (z − ζ)mf(z) has a finite order of vanishing at
ζ, so (z − ζ)mf(z) = (z − ζ)kfk(z) for some k ∈ Z, and fk is analytic on a nbhd of ζ, by(10.5.2.18).
Thus f(z) = (z − ζ)k−mfk(z), and clearly h is an integer. □

Def.(10.5.2.21)[Meromorphic Functions]. Situation as in(10.5.2.20), if all the singularities of f on
Ω are zeros or poles, f is called a meromorphic function on Ω. Notice the poles and zeros of f
are discrete. The space of meromorphic functions on Ω is denoted byM(Ω). M(Ω) is a field.

Prop.(10.5.2.22).M(Ω) is a field, and for any f ∈ M(Ω) and z0 ∈ Ω, either f(z0) ̸= 0, or f(z) =
(z − z0)nz0g(z) for some nz0 ∈ Z and g(z) ∈M(Ω) s.t. g(z0) ̸= 0.

Proof: This follows from(10.5.2.20) and(10.5.2.17). □

Prop.(10.5.2.23)[Maximum Principle].Let f(z) be analytic and non-constant on a region Ω, then
its absolute value attains no minimum or maximum on Ω.

Proof: This follows easily from Cauchy’s integral formula(10.5.2.6). Notice if its attains an extremal
at z0 ∈ Ω, then the Cauchy integral implies that f is constant on a small circle surrounding z0, so it
is constant by uniqueness theorem(10.5.2.19). □

Prop.(10.5.2.24)[Analytic Functions on Annulus]. If 0 ≤ r < R ≤ ∞ and f is holomorphic on
{z ∈ C|r ≤ |z| ≤ R}, show that f has a series expansion

f =
∑
n∈Z

anz
n

Proof: For ζ ∈ CR,
1

ζ − z
= 1
ζ
· 1
1− z

ζ

=
∑
n∈N

zn

ζn+1 ,

and the convergence is uniform on CR, so

1
2π i

∫
CR

f(ζ)
ζ − z

dζ =
∑
n∈N

( 1
2π i

∫
CR

f(ζ)
ζn+1︸ ︷︷ ︸

an

)
zn.
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Similarly, for ζ ∈ Cr,
1

ζ − z
= 1
z
· 1
1− ζ

z

=
∑
n∈N

ζn

zn+1 ,

and the convergence is uniform on CR, so

1
2π i

∫
Cr

f(ζ)
ζ − z

dζ =
∑
n∈Z+

( 1
2π i

∫
Cr
f(ζ)ζn−1

︸ ︷︷ ︸
a−n

)
z−n.

Thus it follows form the Cauchy integral formula(10.5.2.6) that

f(z) == 1
2π i

∫
CR

f(ζ)
ζ − z

dζ − 1
2π i

∫
Cr

f(ζ)
ζ − z

dζ =
∑
n∈Z

anz
n,

and the convergence is uniform on the annulus. □

Residues

Def.(10.5.2.25)[Residues]. If Ω ⊂ C is a simply-connected region and f is a function on Ω analytic
except for isolated singularities {aj}, then for each i, if D(ai, δ) is a nbhd of ai contained in Ω and
contains no other singularities of f , then define

resz=ai f = 1
2π i

∫
γ
f(z)dz,

where γ = ∂D(ai, δ). This quantity is invariant of the nbhd chosen by Cauchy’s theorem(10.5.2.2),
and is called the residue of f at ai.

Thm.(10.5.2.26)[Residue theorem]. If Ω ⊂ C is a simply-connected region and f is a function on
Ω analytic except for isolated singularities {aj}, then for any piecewise C1 closed curve γ ⊂ Ω not
passing through the singularities,

1
2π i

∫
γ
f(z)dz =

∑
i

n(γ, ai) resz=ai f,

where the RHS is a finite sum.

Proof: This is because the interior of γ contains only f.m. singularity points, and γ is homologous
to a linear combination of cycles around each singularity with multiplicity n(γ, ai). □

Prop.(10.5.2.27).For n ∈ Z,

resz=0 z
n =

{
1 , n = −1
0 , n ̸= −1

.

In particular, if locally near z = 0, f(z) =
∑
n∈Z anz

n, then

resz=0 f(z) = a−1.
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Proof:
∫

|z|=r
zndz =

∫ 2π

0
zn(t)z‵(t)dt =

∫ 2π

0
i rn+1ei(n+1)tdt

=

 rn+1

n+1 e
i(n+1)t

∣∣∣2π
t=0

= 0 , n ̸= −1

2π i , n = −1

□

Prop.(10.5.2.28). If Ω ⊂ C is a region and f is a function on Ω analytic with singularities. If f is
analytic around z0 ∈ Ω, then for n ∈ Z+, by(10.5.2.7),

resz=z0
f(z)

(z − z0)n
= f (n−1)(z0)

(n− 1)!
.

Prop.(10.5.2.29)[Generalized Argument Principle]. If Ω ⊂ C is a simply-connected region and
f ∈ M(Ω) with zeros {ai} and poles {bi}, and g(z) ∈ O(Ω), then for any piecewise C1 closed curve
γ ⊂ Ω not passing through zeros or poles of f ,

1
2π i

∫
γ
g(z)f

‵(z)
f(z)

dz =
∑
i

n(γ, ai)g(ai)−
∑
j

n(γ, bj)g(bi)

where the RHS is a finite sum, and counted with multiplicity by the order.
Moreover, notice if Γ is the closed curve f ◦ γ, then

1
2π i

∫
γ

f ‵(z)
f(z)

dz = 1
2π i

∫
Γ

1
z
dz = n(Γ, 0).

Proof: Notice if z0 ∈ Ω and f(z) = (z− z0)hfh(z) near z0 where h ∈ Z, fh(z) is analytic on a nbhd
of z0 and fh(z0) = 0, then

g(z)f
‵(z)
f(z)

= hg(z)
z − z0

+ f ‵h(z)g(z),

so resz=z0 [g(z)f
‵(z)
f(z) ] = hg(z0) by(10.5.2.28) and(10.5.2.5). Thus the assertion follows from the residue

formula(10.5.2.26) applied to the meromorphic function F = gf ‵/f ∈M(Ω). □

Cor.(10.5.2.30)[Rouché]. If Ω ⊂ C is a region and γ ⊂ Ω is a piecewise C1 closed curve that is a
boundary of a subset of Ω homeomorphic to a D. Suppose f, g ∈ O(Ω) satisfies |f(z)− g(z)| < |f(z)|
for z ∈ γ, then f(z) and g(z) have the same number of zeros or poles on the interior of γ.

Proof: This follows from the argument principle(10.5.2.29) applied to the meromorphic function
F = f/g ∈M(Ω). Notice that n(γ, a) = 1 for any a in the interior of γ, and n(F ◦ γ, 0) = 0 because

|F (z)− 1| < 1

For z ∈ γ by hypothesis. □
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Logarithm

Def.(10.5.2.31) [Branch of Logarithm].Let Ω ⊂ C× be a region, a branch of logarithm is an
analytic function ℓ ∈ (Ω) s.t. eℓ(z) = z.

By connectedness, If no confusion is made, we will denote any branch of logarithm by log.

Prop.(10.5.2.32). If Ω ⊂ C is a simply-connected region, and f ∈ O(Ω) is non-vanishing, then there
exists some g ∈ O(Ω) s.t. f(z) = eg(z).

Proof: By(10.5.2.3), there exists ℓ ∈ O(Ω) s.t. g‵ = f ‵
f and we can assume eg(z0) = f(z0)

for some z0 ∈ Ω because exp : C → C× is clearly surjective. Then notice [f(z) exp(−g(z))]‵ =
exp(−g(z))(f ‵(z)− f(z)g‵(z)) = 0, so f(z) exp(−g(z)) = 0. □

Cor.(10.5.2.33)[Existence of Logarithm]. If Ω ⊂ C× be simply-connected region, then there exists
a branch of logarithm on Ω, and also a branch of n

√
f on Ω.

3 Series and Product Developments
Prop.(10.5.3.1)[Abel-Hadamard].For any power series a0 + a1z + . . . + anz

n + . . . ∈ C[[z]], take
1/R = lim |an|1/n, where we assume 1/0 =∞ and 1/∞ = 0, then

• The series converges absolutely for every |z| < R, and if ρ < R, then the convergence is uniform
for |z| ≤ ρ.

• If |z| > R, the terms are unbounded, and the series diverges.
And R is called the radius of convergence of the sequence. Notice the radius of convergence is
the same as that of |a0|+ |a1|z + . . .+ |an|zn + . . . in R(10.4.5.3).

Proof: 1: For 0 < ρ < R, take ρ1 ∈ (ρ,R), then the definition of R implies that for some N ∈ Z+
and any n ≥ N , |an| ≤ R−n < ρ−n

1 , so |anzn| ≤ (ρ/ρ1)n, so ∑n∈N anz
n converges absolutely and

uniformly for |z| ≤ ρ.
2: For R < |z|, the definition of R implies that for any N ∈ Z+, there exists n ≥ N s.t.

|an| ≥ R−n, so |anzn| ≥ |z/R|n > 1, so this sequence cannot be convergent. □

Cor.(10.5.3.2).By(10.4.5.4) and(10.5.3.1), for any power series a0 + a1x + . . . + anx
n + . . . in R, if

limn→∞
|an+1|

|an| = ρ ∈ [0,∞], then the radius of convergence(10.5.3.1) R = 1/ρ, where we assume
1/0 =∞ and 1/∞ = 0.

Prop.(10.5.3.3).The power series a0 + a1z + . . .+ anz
n + . . . defines an analytic function f(z) on its

disk of convergence. And also
f ‵(z) =

∑
n∈N

nanz
n−1.

In particular, f(z) is infinite differentiable in its disk of convergence.

Proof: The partial sum converges to f uniformly on compact subset of the disk of conver-
gence(10.5.3.1), so this follows from(10.5.2.14). □

Prop.(10.5.3.4).Any holomorphic function f defined on the punctured disk 0 < |z| < 1 is of the form

f(z) =
∑
n∈Z

anz
n

where limn→∞ |an|1/n ≤ 1, and limn→∞ |a−n|1/n = 0.
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Proof:
□

Prop.(10.5.3.5). If f ∈ C((0, 1]) has an expansion

f(x) =
∑
ν∈Σ

a(ν)xν

near x = 0, where Σ ⊂ R is a discrete subset bounded from below, then∫ 1

0
f(x)xsdx

x

has meromorphic continuation to all s ∈ C, and has only simple poles at s ∈ −Σ, and the residue at
s = −ν is a(ν). Moreover, for any N ∈ R, f is essentially bounded on Re(s) > −N .

Proof: For any N ∈ R, let

f(x) =
∑

ν∈Σ,ν<N
a(ν)xν +R(x), R(x) = O(xN ),

then ∫ 1

0
f(x)xsdx

x
=

∑
ν∈Σ,ν<N

a(ν)
s+ ν

+
∫ 1

0
R(x)xsdx

x
.

□

Prop.(10.5.3.6)[Trigonometric Functions].The exponential function

exp(z) =
∑
n∈N

zn

n!
(8.5.1.5)

is convergent and analytic on C, by(10.5.3.1), and it is also denoted by ez. We can also define the
trigonometric functions

cos(z) = ei z + e− i z

2
=
∑
n∈N

(−1)n z2n

(2n)!
, sin(z) = ei z − e− i z

2 i
=
∑
n∈N

(−1)n z2n+1

(2n+ 1)!
,

which are analytic on C.

Prop.(10.5.3.7)[Eulerian Identity].The smallest positive real number ρ that ei ρ + 1 = 0 is π. In
particular, the Eulerian identity eπ i + 1 = 0 holds.

Proof: □

Prop.(10.5.3.8)[Infinite Products].For a sequence (bn) ∈ C\{−1}, the infinite product ∏n∈Z+(1 +
bn) is said to converge if the sequence

Πm =
m∏
n=1

(1 + bn)

converges. It is said to converge absolutely if ∏n∈Z+ log(1 + bn) converges absolutely. Then:
• If ∏n∈Z+(1 + bn) converges absolutely, then ∏n∈Z+(1 + bn) converges to a non-zero limit.
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• ∏
n∈Z+(1 + bn) converges absolutely iff ∑n∈Z+ bn converges absolutely.

• If (an) ∈ C and ∑n∈Z+ an converges absolutely, then ∏n∈Z+(1 + an) = 0 iff ak = −1 for some
k.

Proof: 1: ∏n∈Z+(1 + bn) = exp(
∑
n log(1 + bn)).

2: It follows from the fact limz→0
log(1+z)

z = 1 that there exists a 0 < ε < 1/2 that

(1− ε)|an| < | log(1 + an)| ≤ (1 + ε)|an|

for n sufficiently large.
3: By omitting f.m. terms, this follows from item2. □

Prop.(10.5.3.9). If (Fn) is a sequence of holomorphic functions on a region Ω, and there exists con-
stants cn > 0 s.t. ∑

cn <∞, |Fn(z)− 1| ≤ cn,∀z ∈ Ω,
then

• The product ∏n Fn(z) converges uniformly on Ω to a holomorphic function F (z).
• If Fn ̸= 0 for any n, then

F ‵(z)
F (z)

=
∑
n

F ‵
n(z)
Fn(z)

.

• If Fn ̸= 0 for any n, then the zeros of F (z) are exactly zeros of Fn(z)(counting multiplicity).

Proof: 1: The proof is the same as that of(10.5.3.8), and notice that the convergence is uniform so
the resulting function is holomorphic.

2: we can omit f.m. terms, so we may assume that each Fn is non-vanishing. Let GN (z) =∏N
k=1 Fn(z), then GN (z) → F (z) uniformly on compact subsets. So by(10.5.2.14), G‵

N converges to
F ‵(N) uniformly on compact subset, and

F ‵(z)
F (z)

= lim
N→∞

G‵
N (z)

GN (z)
=
∑
n

F ‵
n(z)
Fn(z)

.

3: This is because we can omit f.m. terms and assume that each Fn is non-vanishing. Then the
resulting □

Partial Fractions

Def.(10.5.3.10).

Prop.(10.5.3.11).

π cot(πz) = 1
z

+
∑

n̸=0∈Z

( 1
z − n

+ 1
n

) = 1
z

+
∑
n∈Z+

2z
z2 − n2 = 1

z
− 2

∑
k∈Z+

ζ(2k)z2k−1.

Proof: This follows from taking logarithmic derivative of the Hadamard product of
sin(πz)(10.5.3.23). □

Cor.(10.5.3.12).
π2

sin2(πz)
=
∑
n∈Z

1
(z − n)2 .

Proof: This follows form taking derivative of(10.5.3.12). □
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Entire Functions

Thm.(10.5.3.13)[Product Development, Weierstrass].
• If f is an entire function, then the zeros of f is at most countable(counting multiplicity), and

if they can be ordered by their modules, |a1| ≤ |a2| ≤ . . . ≤ |an| ≤ with limn→∞ |an| =∞.
• If S ⊂ Z+, and (an)n∈S ⊂ C be a sequence of complex numbers, which satisfies limn→∞ an =∞

when #S = ∞, then every entire function with (an) as zeros(counting multiplicity) can be
written in the form

f(z) = zmeg(z) ∏
n∈S

[
(1− z

an
) exp( z

an
+ 1

2
( z
an

)2 + . . .+ 1
mn

( z
an

)mn)
]

for some sequence (mn)n∈S of positive integers.

Proof: Firstly, for any such sequence, the RHS converges to an entire function: for any z ∈ C, we
can discard f.m. terms s.t. |an| ≤ |z|, and for |an| > |z|,

(1− z

an
) exp( z

an
+ 1

2
( z
an

)2 + . . .+ 1
mn

( z
an

)mn) = exp(− 1
mn + 1

( z
an

)mn+1 − 1
mn + 2

( z
an

)mn+2 − . . .)

and the module of the exponent is bounded by
1

mn + 1
( |z|
|an|

)mn+1(1− |z|
|an|

)−1

So if we choose mn = n, the RHS converges in a nbhd of z, and it is entire.
Then any such function with the desired zeros differ by the RHS by an entire non-vanishing

function, which must be of the form exp(g(z)) by(10.5.2.33). □
Cor.(10.5.3.14).Any entire function on C is a quotient of two meromorphic functions.

Cor.(10.5.3.15). If S ⊂ Z+, and (an)n∈S , (An)n∈S ⊂ C be two sequence of complex numbers s.t.
am ̸= an for m ̸= n, which satisfies limn→∞ an = ∞ when #S = ∞, then there exists an entire
function f(z) which satisfies f(an) = An.

Proof: Let g(z) be an entire function satisfying g(z) has simple zeros at an, then consider

f(z) =
∑
n∈S

g(z)e
γn(z−an)

z − an
An

g‵(an)
.

□
Def.(10.5.3.16)[Genus of Entire Functions and Canonical Products].The genus of an entire
function f is the smallest h ∈ N s.t. f can be written in the form

f(z) = zmeg(z) ∏
n∈S

[
(1− z

an
) exp( z

an
+ 1

2
( z
an

)2 + . . .+ 1
h

( z
an

)h)
]

where S ⊂ N,m ∈ N, g(z) is a polynomial of degree≤ h. if no such h exists, f is said to have genus
∞.

In view of the Weierstrass theorem(10.5.3.13), this h is equal to the minimal non-negative integer
s.t. ∑

n∈Z+

|an|−h−1 <∞.

If f has finite genus, then the canonical form of f is unique.
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Def.(10.5.3.17)[Order of Growth].The order of growth of an entire function f is defined to be

λ = lim
r→∞

log log max|z|=r |f(z)|
log r

,

or equivalently the smallest number λ ∈ R ∪ {∞} s.t.

max
|z|=r

|f(z)| ≤ erλ+ε

for any ε > 0.

Lemma(10.5.3.18).Let f be an entire function with order of growth ρ.
• For r ∈ R+, let N(r) be the number of zeros of f in D(0, r), then for any ε > 0, there exists
C > 0 s.t. N(r) ≤ Crρ+ε for r sufficiently large.

• Let {an}n∈Z+ be the zeros of f , then for any ε > 0, ∑k∈N |ak|−ρ−ε <∞.

Proof: 1: dividing f(z) by a power of z, we may assume f(0) ̸= 0. Then it follows from the Jensen
formula(10.6.2.11) on the disk D(0, 2ρ) that

N(r) log 2 ≤ 1
2π

∫ 2π

0
log |f(2rei θ)|dθ − log |f(0)| ≤ (2r)ρ+ε − log |f(0)|.

2: By item1, for n large, n ≤ N(|an|) ≤ |an|ρ+ε/2, so∑
|an|−ρ−ε ≤

∑
n∈Z+

|n|−
ρ+ε
ρ+ε/2 <∞.

□

Lemma(10.5.3.19). If g is an entire function on C, ρ ∈ R+ and there is a sequence of positive real
numbers (rn) that extends to infinity, and u = Re(g) satisfies

max
|z|=rn

u(z) ≤ Crρn

for each n, then g is a polynomial of degree≤ s.

Proof: Let g(z) =
∑
n∈N anz

n, then for any k ∈ Z+, let r = rk, by Cauchy’s formula

1
2π

∫ 2π

0
g(rei θ)e− imθdθ =

{
amr

m ,m ∈ N

0 , n ∈ Z−
,

so by taking conjugation and adding,

1
π

∫ 2π

0
Re(g)(rei θ)e− inθdθ =

{
anr

n , n ∈ Z+

Re(a0) , n = 0
.

Then for n ∈ Z+,

|an| =
1
πrn
|
∫ 2π

0
[u(rei θ)− Crρ]e− inθdθ| ≤ 1

πrn

∫ 2π

0
[Crρ − u(rei θ)]dθ = 2Crs−n − 2 Re(a0)r−n.

Then letting r = rk →∞ finishes the proof. □
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Thm.(10.5.3.20)[Hadamard].The genus h and the order λ of an entire function f satisfies

0 ≤ h ≤ λ ≤ h+ 1 ≤ ∞.

(Notice if λ ∈ Z, it might not be able to determine h from λ).

Proof: It follows from the proof of Weierstrass theorem(10.5.3.13) that is f is of genus h < ∞,
then λ ≤ h+ 1(taking mn = h for each n). Conversely, if f has order of growth λ <∞, then we need
to show that h ≤ λ. Take h = ⌊λ⌋, and let (an) are zeros of f(counting multiplicity and ordered by
modulus), then firstly, we show that the product

∏
n∈S

[
(1− z

an
) exp( z

an
+ 1

2
( z
an

)2 + . . .+ 1
h

( z
an

)h)
]

converges: For this, by the proof of Weierstrass theorem(10.5.3.13), it suffices to show that∑
n∈S |an|−h−1 converges, and this follows from(10.5.3.18).
Then it’s left to show that the entire function g(z) as in(10.5.3.13) is a polynomial of degree≤ h.

For this, firstly we prove that if ε > 0 is small that ρ + ε < h + 1, and |z − an| ≥ |an|h+1 for any
n ∈ S, then there exists C ∈ R+ s.t.∣∣∣∣ ∏

n∈S

[
(1− z

an
) exp( z

an
+ 1

2
( z
an

)2 + . . .+ 1
h

( z
an

)h)|
]∣∣∣∣ ≥ e−C|z|ρ+ε

.

Deonte Eh(s) = (1− s) exp(s+ 1
2s

2 + . . .+ 1
hs

h), we use a lemma:

Lemma(10.5.3.21). there exists constant C s.t.
• If |s| ≤ 1/2, |Eh(s)| ≥ e−C|z|h+1 .

• If |s| ≥ 1/2, |Eh(s)| ≥ |(1− s)|e−C|z|h .

Proof: For |s| ≥ 1/2,

|Eh(s)| ≥ |(1− s)|e−|s|− |s|2
2 −...− |s|h

h ≥ |(1− s)|e−C|z|h .

And for |s| ≤ 1/2,

|Eh(s)| ≥ |(1− s)|e− |s|h+1
h+1 − |s|h+2

h+ −... ≥ e−C|z|h+1
.

□
Then if |an| ≥ 2|z|,

|Eh( z
an

)| ≥ e−C|z/an|h+1 ≥ e−C|z/an|ρ+ε
,

and if |an| ≤ 2|z|, by the hypothesis,

|Eh( z
an

)| ≥ |(1− z

an
)|e−C|z/an|h ≥ |an|−h−2e−C|z/an|ρ+ε

.

Thus by(10.5.3.18),∏
n∈S
|Eh( z

an
)| ≥ e−C′z

∏
|an|≤2|z|

|an|−h−2 ≥ e−C′z|2z|−(h+2)N(2|z|) ≥ e−C′′|z|ρ+ε′
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for any ε′ > ε.
Finally, we get

eRe(g(z)) = |eg(z)| = | f(z)∏
n∈S |Eh( z

an
)|
| ≤ Ceρ+ε

whenever |z − an| ≥ |an|h+1 for any n ∈ S. Then as ∑n |an|h+1 < ∞, we can apply(10.5.3.19) to
show that g is a polynomial of degree ≤ ρ+ ε < h+ 1, thus we are done. □

Cor.(10.5.3.22).For an entire function f with order λ ∈ R+ \Z+, then #f−1(a) =∞ for any a ∈ C.

Proof: As f and f − a has the same order, it suffices to show that such an f has i.m. zeros.
Suppose it has only f.m. zeros, then we can divide a polynomial P (z) and see that F (z) = f(z)/P (z)
also has the same order but no zero. Thus F (z) = eg(z) for some entire g. But then g is a polynomial
of degree λ, which is impossible. □

Example(10.5.3.23)[Canonical Forms].

sin(πz) = πz
∏
n∈Z×

[(1− z

n
)ez/n] = πz

∞∏
n=1

(1− z2

n2 ).

is of genus 1 and order of growth 1.

Proof: | sin(πz)| ≤ eπ|z|, so it has order of growth≤ 1, and it has a simple zero at z = 0, so by
Hadamard’s theorem(10.5.3.20),

sin(πz) = πzeAz+B ∏
n̸=0∈Z

[(1− z

n
)ez/n] = πzeAz+B

∞∏
n=1

(1− z2

n2 )

for some A,B ∈ C. Letting z → 0 implies that B = 0. And letting z → 1 implies that

eA = 2
∞∏
n=1

(1− 1
n2 ) = 1,

so A = 0. □

4 Analytic Continuations
Lemma(10.5.4.1)[Symmetry Principle]. If Ω ⊂ C is a region s.t. c(Ω) = Ω, denote Ω+ = Ω ∩H,

Ω− = c(Ω+), I = Ω ∩ R. Suppose f+ ∈ O(Ω+), f− ∈ O(Ω−), and f+(z) = f−(z) for z ∈ R, then
the function

f : Ω→ C : z 7→
{
f+(z) , z ∈ Ω+

f−(z) , z ∈ Ω−

is analytic on Ω.

Proof: f is clearly continuous. Thus it is easily seen to be analytic by Morera’s theorem(10.5.2.8).
□

Prop.(10.5.4.2) [Schwarz Reflection Principle]. If Ω ⊂ C is a region s.t. c(Ω) = Ω, denote
Ω+ = Ω ∩H, Ω− = c(Ω+), I = Ω ∩ R. Suppose f+ ∈ O(Ω+) satisfies f(I) ⊂ R, then f+ can be
analytically extended to an analytic function on Ω.
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Proof: For z ∈ Ω−, define f(z) = f(z), then f is a continuous function on Ω, because for z ∈ I,
f(z) = f(z). To show that f is analytic, by(10.5.4.1), it suffices to show that f is analytic on Ω−:
For any z0 ∈ Ω−, if z is close to z0, then z, z0 ∈ Ω+. By Taylor expansion of f around z0(10.5.2.15)

f(z) = f(z) =
∑
n∈N

an(z − z0)n =
∑
n∈N

an(z − z0)n.

And this is a power series around z0 with the same radius of convergence as that of z0, thus f is
analytic around z0. Because z0 is arbitrary, f is analytic on Ω−. □

Cor.(10.5.4.3). If Ω ⊂ C× is a region that is stable under the involution ι : z 7→ z−1, denote Ω+ =
Ω∩H, Ω− = ι(Ω+), I = Ω∩∂D. Suppose f+ ∈ O(Ω+) satisfies f(I) ⊂ R, then f+ can be analytically
extended to an analytic function on Ω.

Proof: For z ∈ Ω−, define f(z) = f(ι(z)), then f is a continuous function on Ω, because for z ∈ I,
f(z) = f(ι(z)). To show that f is analytic, by a similar lemma as(10.5.4.1), it suffices to show that
f is analytic on Ω−: For any z0 ∈ Ω−, if z is close to z0, then ι(z), ι(z0) ∈ Ω+. By Taylor expansion
of f around ι(z0)(10.5.2.15)

f(z) = f(ι(z)) =
∑
n∈N

an(ι(z)− ι(z0))n =
∑
n∈N

an
z0

(z − z0)n

zn
= g(1

z
),

where g(z) =
∑
n∈N(−1)nan(z− 1

z0
)n is a power series around z0 with the same radius of convergence

as that of z0, so analytic around z−1
0 . Thus f is analytic around z0. Because z0 is arbitrary, f is

analytic on Ω−. □

5 Theorems

Prop.(10.5.5.1)[Runge’s Theorem].Let K be a compact subset of C and let f be a function which
is holomorphic on an open set containing K. If A is a set containing at least one complex number
from every bounded connected component of C\K, then there exists a sequence of rational functions
which converges uniformly to f on K and all the poles of the functions are in A.

Proof: □

Prop.(10.5.5.2) [Mergelyan]. If K is compact in C and f is a continuous function on K that is
holomorphic in int(K), then f can be uniformly approximated by polynomials.

Prop.(10.5.5.3)[Weierstrass].For a ascending sequence of regions Ω1 ⊂ Ω2 ⊂ . . ., ∪nΩn = Ω, and
fn is analytic on Ωn, and fn(z) converges to a function f(z) in the compact-open topology, then f(z)
is also analytic, and moreover, f ′(z) converges to f ′(z) in the compact-open topology.

Proof: The analyticity follows from Morera’s theorem(10.5.2.8) as the integration on a closed curve
commutes with uniform convergence, the same argument applied to the limit of equations

f ′
n(z) = 1

2π i

∫
∂D(0,r)

fn(ζ)dζ
(ζ − z)2

shows that the derivative also converges, and uniformly on D(0, ρ) for ρ < r. □

Cor.(10.5.5.4)[Hurwitz].Cf.[Ahlfors P178].
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Thm.(10.5.5.5) [Montel]. If Ω ⊂ C is region and S = {fα} is a set of holomorphic functions on
Ω bounded in the topology of H(Ω), i.e. inter convex uniform convergence, then S is sequentially
compact in H(Ω). Equivalently, O(Ω) has the Heine-Borel property.

Proof: By Arzela-Ascoli(3.3.8.8) that it suffices to show that S is uniformly bounded on any
compact subset K ⊂ Ω. Choose δ small s.t.

K0 = {z ∈ C|d(z,K) ≤ 2δ} ⊂ Ω,

then |fα(z)| ≤M for any fα ∈ S and z ∈ K0 for some M . So by Cauchy’s formula, |f ‵α(z)| ≤ M
δ for

any z ∈ K, fα ∈ S. Thus it it clear S are equicontinuous on K. □

Thm.(10.5.5.6)[Little Picard Theorem].The image of a non-constant entire function f : C → C

is either C or C with one point omitted.

Proof: The modular curve Y (2) is the sphere minus three points(16.2.2.4)(16.2.4.16)(16.2.4.17),
and the linear transformations of S1 is triply transitive, thus we can assume f is a analytic map
C→ Y (2). As C is simply connected, we can lift this map to the covering of Y (2), which is H. But
H is biholomorphic to the open disk, but a bounded entire function is constant(10.5.2.10), so f is
constant. □

Thm.(10.5.5.7) [Phragmén-Lindelöf].Let f be a function that is holomorphic in the upper part
of a strip σ1 ≤ Re(s) ≤ σ2, Im(s) > c, such that f(σ + i t) = O(etα) for some α > 0 uniformly for
any σ1 < σ < σ2. Suppose further that f(σ + i t) = O(|t|b) for some b and σ = σ1 or σ2, then
f(σ + i t) = O(tb) uniformly for σ1 ≤ σ ≤ σ2.

Proof: First assume that b = 0, thus there exists M that |φ(s)| ≤ M for Re(s) = σi. Now let
m ≡ 2 mod 4 and m > α, then Re((σ + i τ)m) is a polynomial of σ and τ with highest term of τ
being −τm, so we have

Re(sm) = −τm +O(|τ |m−1), |τ | → ∞

uniformly on the strip. So Re(sm) has an upper bound N on the strip. Thus for any ε > 0,

|f(s)eεsm | ≤MeεN

on the boundary of the strip and

|f(s)eεsm | = O(e|t|α−ε|t|m)

uniformly on the strip, thus converges uniformly to 0 as | Im(s)| → ∞.
Then we can use maximum principle to see that

|f(s)eεsm | ≤MeεN

on the strip. Let ε→ 0, we get |ε(s)| ≤M , thus the theorem.
In general, if b ̸= 0, define ψ(s) = (s− σ1 + 1)b, then |ψ(s)| = |s− σ1 + 1|b ∼ |τ |b when |τ | → ∞.

Thus f1(s) = f(s)/ψ(s) satisfies the same condition as φ with b = 0, so f(s)/ψ(s) is bounded on the
strip, and thus |f(s)| = O(|τ |b). □

Remark(10.5.5.8). Some condition on the growth rate of |f(σ + it)| is necessary, otherwise we can
consider eeiz on the strip −π

2 ≤ Re(z) ≤ π
2 , then it is bounded for Re(z) = ±π

2 , but not bounded for
−π

2 < Re(z) < π
2 .



10.5. COMPLEX ANALYSIS I 999

6 Calculating Definite Integrals

1

Prop.(10.5.6.1). If f has a primitive F , then for any arc γ,∫
γ
f(z)dz = F (γ(1))− F (γ(0)).

Example(10.5.6.2).For a > 0, evaluate the integrals∫ ∞

0
e−ax cos(bx)dx,

∫ ∞

0
e−ax sin(bx)dx.

Proof: ∫ ∞

0
e−(a+b i)zdz = lim

R→∞

−1
a+ b i

e−(a+b i)z
∣∣∣R
0

= 1
a+ b i

− lim
R→∞

1
a+ b i

e−(a+b i)R.

As | 1
a+b ie

−(a+b i)R| = 1√
a2+b2 e

−aR → 0 as R→∞,∫ ∞

0
e−(a+b i)zdz = 1

a+ b i
.

Then taking the real and imaginary part, we see that∫ ∞

0
e−ax cos(bx)dx = a

a2 + b2 ,

∫ ∞

0
e−ax sin(bx)dx = b

a2 + b2 .

□

From Real to Complex

Example(10.5.6.3).Prove that for any ξ ∈ C,

e−πξ2 =
∫ ∞

−∞
e−πx2

e2π ixξdx.

Proof: Both sides are holomorphic functions in ξ, and it has been proven in Stein’s book Page42
that this is true for ξ ∈ R. Then as both sides are holomorphic functions in ξ, this is true for all
ξ ∈ C, by the uniqueness theorem.

Recall that if two holomorphic functions on a region Ω are equal on a subset E ⊂ Ω, and E has
a convergent point in Ω, then they are equal on Ω. □

Rational Functions

Prop.(10.5.6.4).Let f, g be real polynomials, and deg(g) ≥ deg(f) + 2, and g(z) has no zeros on the
real line. Then ∫ ∞

−∞

f(x)
g(x)

dx

can be calculated.

Proof: As the integral is absolutely convergent, we can take R ∈ R, and γ to be the loop which
consists of the line from −R to R and the hemisphere with origin 0 and radius R from R to −R,
then when R is large, we can assume all the zeros of g(z) in H is enclosed by γ. Then the integral
equals 2π i times the sum of residues of f(z)

g(z) at the zeros of g(z) in H. □
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Example(10.5.6.5).Evaluate the integrals ∫ ∞

−∞

1
1 + x4dx.

What are the poles of 1/(1 + z4)?

Proof: g(z) = 1 + z4 has two zeros eπ4 i and e− 3π
4 i on the upper half plane, so the integral equals

∫
γ1

(x− e
π
4 i)−1(x− e

5π
4 i)−1(x− e

7π
4 i)−1

x− e
3π
4 i

+
∫
γ2

(x− e
3π
4 i)−1(x+−

5π
4 i)−1(x− e

7π
4 i)−1

x− e
π
4 i

which equals 2π i times

( x
4 + 1

x− e
π
4 i )

−1
∣∣∣
x=e

π
4 i + ( x4 + 1

x− e
3π
4 i

)−1
∣∣∣
x=e

3π
4 i

so it equals
(2π i)[ 1

4e
3π
4 i

+ 1
4e

9π
4 i

] = π√
2

□

Prop.(10.5.6.6) [Fractional Powers].Let f, g be real polynomials, and deg(g) ≥ deg(f) + 2, and
g(z) has at most one simple zero at the origin and no other zeros, then the integral∫ ∞

0
xα
f(x)
g(x)

dx, 0 < α < 1

can be evaluated.

Proof: The integral equals 2
∫∞

0 t2α+1 f(t2)
g(t2)dt, and we can choose a branch of zα that is defined

on C \ R≤0. Then we can integrate along the loop in H that consists of two hemisphere of radius
ε,R centered at the origin, [ε,R] ∪ [−R,−ε]. Then when R→∞ and ε→ 0, the integration on the
hemisphere tends to 0, and the integration on [ε,R] ∪ [−R,−ε] tends to∫ ∞

−∞
z2α+1 f(z2)

g(z2)
dz = (1− e2π iα)

∫ ∞

0
t2α+1 f(t2)

g(t2)
dt.

□

4

Prop.(10.5.6.7).Let f, g be real polynomials, and deg(g) ≥ deg(f) + 1, and g(z) has no zeros on the
real line, then ∫ ∞

−∞

f(x)
g(x)

eixdx,
∫ ∞

−∞

f(x)
g(x)

cos(x)dx,
∫ ∞

−∞

f(x)
g(x)

sin(x)dx

can be calculated.

Proof: If deg(g) ≥ deg(f)+2, then as before we can use the same hemisphere methods to evaluate,
because on the hemisphere, we can bound

|
∫
γ

f(Rei θ)
g(Rei θ)

iRei zdθ| ≤ C
∫
γ

e−y

R
dθ ≤ C

∫
γ

1
R
dθ ≤ 2πC

R
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which converges 0 as R→∞.
But if deg(g) = deg(f)+1, this hemisphere integral is no longer converging to 0, so we try another

method: Integrate around the square with vertices

{(X1, 0), (X1, X1 +X2), (−X2, X1 +X2), (−X2, 0)}.

The integral on the vertical lines are bounded by

C

∫ X1+X2

0
e−y dy
|z|
≤ C 1

X2

∫ X1+X2

0
e−ydy ≤ C

X2

And the same is true for the left vertical lines. And the horizontal line is bounded by

C

∫ X2

−X1

e−(X1+X2)

X1 +X2
dt = Ce−(X1+X2)

and all these converge to 0 as X1, X2 →∞. □

Prop.(10.5.6.8). Show that ∫ ∞

0

sin x
x

dx = π

2
.

Proof: To do this one, we need a variation of the technique from above. Choose the semi-contour,
then it equals the half of the integral ∫

γ

ei z

z
dz = 2π i

minus the integral ∫
γ

ei z

z
dz

where γ : [0, π]→ C : t 7→ εei t. So the integral equals∫ π

0
ei z idz

which converges to π i. □

7 Biholomorphisms
Def.(10.5.7.1) [Biholomorphisms].For regions U, V ⊂ C, a biholomorphism from U to V is a
holomorphic map f : U → V s.t. there is an inverse g : V → U which is also holomorphic, and
f ◦ g = idV , g ◦ f = idU .

Prop.(10.5.7.2) [Analytic Functions are Open].Let Ω ⊂ C be a region, then any non-constant
f ∈ O(Ω) defines an open map Ω→ f(Ω).

Proof: Let z0 ∈ Ω, w0 = f(z0). by(10.5.2.19), we can find ε > 0 s.t. D(z0, 2ε) ⊂ U , and z0 is the
only zero of f −w0 in D(z0, 2ε). Let γ be the circle |z−z0| = ε, and Γ = f(γ). Then because w0 /∈ Γ,
there exists δ s.t. D(w0, δ) ∩ Γ = ∅. Then by Rouché’s theorem(10.5.2.30), for any w ∈ D(w0, δ),
f − w has a zero z ∈ D(z0, ε). Thus f(D(z0, ε)) ⊃ D(w0, δ), and this implies f is open. □

Prop.(10.5.7.3)[Local Biholomorphisms].A holomorphic map f : U → V ⊂ C is a local bijection
iff f ‵(z) ̸= 0 for any z ∈ U .
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Proof: For z0 ∈ U , by discreteness of the zeros, there exists δ > 0 s.t. D(z0, δ) ⊂ U and F (z) ̸= 0
for 0 < |z − z0| < δ. Because {F (z) : |z − z0| = δ} is compact, there exists some ε > 0 s.t.
D(f(z0), ε) ⊂ V and |F (z)| ≥ ε for any |z − z0| = δ.

If F (z) = f(z) − f(z0) has zero of order exactly 1 at z0, then for ξ ∈ D(0, ε), by Rouché’s
theorem(10.5.2.30), F (z) − ξ has exactly 1 zeros in D(z0, δ), which implies F−1(D(0, ε)) F−→ D(0, ε)
is a bijection, and z0 ∈ F−1(D(0, ε)). Thus F and also f is a local bijection z0.

If F (z) = f(z) − f(z0) has zero of order d ≥ 1 at z0, then for ξ ∈ D(0, ε), by Rouché’s theo-
rem(10.5.2.30), F (z)− ξ has exactly d zeros in D(z0, δ), which implies F−1(D(0, ε′)) F−→ D(0, ε′) is a
d-fold covering for any ε′ < ε, so F thus also f can never be a local bijection at z0.

Thus f is a local bijection at z0 iff f(z) − f(z0) has zero of order exactly 1 at z0, which is also
clearly equivalent to f ‵(z0) ̸= 0. So the assertion is true. □

Cor.(10.5.7.4). If U, V are regions of C and f : U → V is holomorphic and bijective, then f ‵(z) ̸= 0
for any z ∈ U , and the inverse of f is also holomorphic.

Proof: To show the inverse is holomorphic, notice that for w0 = f(z0) ∈ V , if w = f(z) is close to
w0, then

g(w)− g(w0)
w − w0

= 1
w−w0

g(w)−g(w0)
= 1

f(z)−f(z0)
z−z0

.

Because when z → z0, w → w0, so we conclude that g is holomorphic at w0, and its derivative is the
reciprocal of the derivative of f . □

Cor.(10.5.7.5).For regions U, V ⊂ C, any holomorphic bijection from U to V is a biholomorphism.

Def.(10.5.7.6) [Univalent Functions].A univalent function is a holomorphic function that is
injective.

Prop.(10.5.7.7).Any C1 conformal map in C is holomorphic or anti-holomorphic. In higher dimen-
sion, conformal is equivalent to ⟨dfp(v1), dfp(v2)⟩ = λ2(p)⟨v1, v2⟩.

Proof: Cf.[Ahlfors P74]. □

Prop.(10.5.7.8)[Automorphism Groups].
• The only holomorphic automorphisms of D fixing the origin are the rotations.
• Aut(D) = {ei θ α−z

1−αz , α ∈ D}. Moreover, we denote by ψα the automorphism ψα(z) = α−z
1−αz ,

then ψ2
α = id.

• Aut(H) = PSL(2,R).
• Aut(C) = PSL(2,C).
• Aut(C) = C⋉ C×.

Proof: 1: g, g−1 are both automorphisms of D that fixes the origin, so by Schwartz’s
lemma(10.6.1.3), |g(z)| ≤ |z|, |g−1(z)| ≤ |z|. Thus |g(z)| = |z| for any z ∈ D, and by Schwartz’s
lemma(10.6.1.3), g is a rotation.

2: For any f ∈ Aut(D), there exists some α ∈ D s.t. f(α) = 0. Then g = f ◦ ψα maps 0 to 0.
Then by item1, g(z) = ei θz, and f(z) = e− i θψα(z).
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3: Firstly SL(2,R) acts transitively on H it suffices to show that any z ∈ H can be mapped to

i:
[
−c−1

c

]
(z) = 1

c2z , so we may take c ∈ R s.t. M1 =
[
−c−1

c

]
maps z to z1 with Im(z1) = 1,

and then we can take some b ∈ R s.t. M2 =
[
1 b
1

]
maps z1 to i.

Then for any f ∈ Aut(H), there exists some β ∈ H s.t. f(β) = i. take some matrix γ s.t.
γ(β) = i, then g = f ◦ γ−1 preserves i. Let F : H ∼= D : z 7→ z−i

z+i be a biholomorphism, then it can
be checked that

F ◦
[

cos θ sin θ
− sin θ cos θ

]
◦ F−1 = ei θ : D→ D.

Thus by Schwartz lemma(10.6.1.3), there exists some θ ∈ R s.t. g =
[

cos θ sin θ
− sin θ cos θ

]
= κθ, and then

f = κθ ◦ γ ∈ SL(2;R).
4: For any distinct points z1, z2, z3 ∈ C ∪ {∞},

Fz1,z2,z3 : C ∪ {∞} → C ∪ {∞} : z 7→ z − z2
z − z3

/
z1 − z2
z1 − z3

satisfies Fz1,z2,z3(z1) = 1, Fz1,z2,z3(z2) = 0, Fz1,z2,z3(z3) =∞, and

Gz1,z2,z3 : C ∪ {∞} → C ∪ {∞} : w 7→
wz3

z1−z2
z1−z3

− z2

w z1−z2
z1−z3

− 1

is an inverse of fz1,z2,z3 , so fz1,z2,z3 is a bijection.
Now consider h = Ff(1),f(0),f(∞) ◦ f , then h is also a bijection and h(1) = 1, h(0) = 0, h(∞) =∞.

Thus h is entire, and by(10.5.2.22) h(z) = zL(z) for some L(z) ∈M(C) entire and L(1) = 1, L(∞) =
0, so by Liouville’s theorem(10.5.2.10), L = 1, and h(z) = z.

Thus f(z) = Gf(1),f(0),f(∞) is of the form az+b
cz+d . To show that ad− bc ̸= 0, notice if ad− bc = 0,

then f(z) is constant, contradiction.
5: Notice g(z) = (f(z)− f(0))/(f(1)− f(0)) is also injective and entire, and g(0) = 0, g(1) = 1.

But by Picard’s great theorem, g(z) is meromorphic at ∞. So g(∞) = ∞, otherwise g is entire
and bounded, contradicting Liouville’s theorem(10.5.2.10). So g(z) = z, by item4. Thus f(z) =
(f(1)− f(0))z + f(0) is linear. □

Riemann Mapping Theorem

Lemma(10.5.7.9)[Limits of Univalent Functions are Univalent].A limit of a sequence of uni-
valent holomorphic functions in the compact-open topology is univalent or constant.

Proof: If f = limn→∞ fn is non-constant and f(z1) = f(z2), we can take a Jordan curve γ
surrounding z1 and z2 s.t. 0 /∈ f(γ). Then fn converges uniformly to f on γ, and then it follows from
Rouché’s theorem(10.5.2.30) that when n is large, fn − f(z1) has two zeros inside γ, contradiction.
□

Thm.(10.5.7.10)[Riemann Mapping Theorem, Koebe].Let Ω ⊂ C be a simply-connected region
and Ω ̸= C, then for any z0 ∈ Ω, there exists a unique biholomorphism F : Ω → D s.t. F (z0) = 0
and F ‵(z0) ∈ R+.
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Remark(10.5.7.11).This theorem can be generalized to other simply-connected Riemann surfaces,
see(5.11.12.2).

Proof: For the uniqueness, if there are two such maps φ and φ′, then h = φ′ ◦ φ−1 is an automor-
phism of D s.t. h(0) = 0 and h‵(0) ∈ R+. Then it follows from(10.5.7.8) that h = id.

For the existence, let F be the space of univalent holomorphic functions on Ω with values in D.
Then F ̸= 0: Let a ̸= b ∈ ∂Ω, then by the map g(z) = z−a

z−b , we may assume that {0,∞} ⊂ ∂Ω. Then
√ has two branches on Ω, denoted by h+ and h−. Suppose w0 ∈ h−(Ω) with D(w0, δ) ⊂ h−(Ω),
then the function

f0 : z 7→ δ

h+(z)− w0
∈ F .

Let
α = sup

f∈F
|f ‵(z0)|.

If D(z0, δ1) ⊂ Ω, then by Cauchy’s formula, 0 < |f ‵(z0)| ≤ δ−1
1 , so α ∈ (0,∞), and there exists fn ∈ F

s.t. |f ‵(z0)| ≥ α− 1
n . Then it follows from Montel’s theorem(10.5.5.5) that there is a subsequence of

{fn} that converges to a holomorphic function f in compact-open topology, and |f ‵(z0)| = α > 0 by
Weierstrass theorem(10.5.5.3). Notice f is also univalent by(10.5.7.9), so f ∈ F .

It remains to show that f(z0) = 0 and f0(Ω) = ∆, as a rotation of f will satisfy the requirement.
If f(z0) = β ̸= 0, then take

f ′(z) = ψβ ◦ f

then f ′ ∈ F , and
|(f ′)‵(z0)| = | f

‵(z0)
1− |β|2

| > |f ‵(z0)|,

contradicting the maximality of |f ‵(0)|.
If w ∈ D\f(Ω), then ψ(z) = ψβ ◦ f is non-vanishing on Ω, thus √ has a branch h on ψ(Ω). Now

suppose
f ′(z) = ψh(z0) ◦ h,

then
f = ψ−1

w ◦ (z 7→ z2) ◦ ψ−1
h(w) ◦ f

′,

where Φ‵ = ψ−1
w ◦ (z 7→ z2) ◦ψ−1

h(w) is an automorphism of D that fixes 0, so |Φ‵(0)| < 1 by Schwartz’s
lemma(10.6.1.3), and

|f ‵(0)| = |Φ‵(0)||(f ′)‵| ≤ |(f ′)‵|,

contradicting the maximality of |f ‵(0)|. □

Cor.(10.5.7.12).Let Ω ⊂ C be a simply-connected region, then D is biholomorphic to exactly one of
the following:

• D, in which case #∂Ω > 1, and Ω is said to be of hyperbolic type.
• C, in which case #∂Ω = 1.
• C, in which case #∂Ω = 0.

Proof: If #∂Ω > 1, by a fractional transformation, we can assume Ω ⊂ C, and Ω ̸= C, so Ω ∼= D

by(10.5.7.10). If #∂Ω = 1, then clearly Ω = C\{z0} ∼= C. □

Cor.(10.5.7.13).Any two simply-connected regions Ω,Ω′ ⊂ C are homeomorphic.
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Injective Holomorphic Maps

Thm.(10.5.7.14)[Bieberbach Conjecture1916, de Branges1984].Let f(z) = z + a2z
2 + . . . ∈

O(D) is an injective map, then |an| ≤ n. And the equation holds iff f is a rotation composed with
the Koebe function.

Proof: Cf.[李忠]. □
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10.6 Complex Analysis II

References are [Ahl78], [S-S03], [谭-伍 06] and [李 04].

Notation(10.6.0.1).
• Use notations defined in Real Analysis(Functions on Rn).
• Let Ω be a region(10.5.1.1).

1 Poincaré Metric
Def.(10.6.1.1) [Hyperbolic Metric].For any region Ω ⊂ C of hyperbolic type??, there exists a
covering D → Ω, and different coverings differ by an automorphism of D. Thus we can define a
Poincaré metric on Ω by pushforward of the Poincaré metric dP s = ρΩ(s)|dz| on D. Then this is
well-defined and independent of the covering map.

Proof: It is well-defined because for any two local inverse map Ω → D differ by a Deck transfor-
mation which is an automorphism of D thus preserves the Poincaré metric?. And any two covering
D → Ω differ by a covering map which is also an automorphism of D, thus preserves the Poincaré
metric. □

Prop.(10.6.1.2)[Hyperbolic Metrics].
• ρH(z) = 1/ Im(z).
• ρD(0,(0,r))(z) = 1/(|z| log r

|z|).

Proof: 1: ?.
2: There is a covering map H → D(0, (0, r)) : z 7→ rei z, so we can plug in the inverse map

w = i log z into |dw|/ Imw to get the desired formula. □

Thm.(10.6.1.3)[Schwartz Lemma]. If f ∈ O(D) and satisfies |f(z)| ≤ 1, f(0) = 0, then |f(z)| ≤ |z|,
and |f ‵(0)| ≤ 1. Moreover, if |f(z)| = |z| for some z or |f ‵(0)| = 1, then f(z) = cz for some |c| = 1.

Proof: The function g(z) = f(z)/z is analytic on 0 < |z| < 1 with a removable singularity at
0(10.5.2.17) and extends to an analytic function on |z| < 1 with g(0) = f ′(0), and lim|z|→1 |g(z)| ≤ 1,
thus by maximal principle(10.5.2.23), |g(z)| ≤ 1 for any |z| < 1, thus we are done. The last assertion
also follows from(10.5.2.23). □

Lemma(10.6.1.4) [Schwartz-Pick].Let f ∈ O(D), and f(D) ⊂ D, f(0) = 0, then in the Poincaré
metric, for any z1, z2 ∈ D,

dP (f(z1), f(z2)) ≤ dP (z1, z2).

And if the equality holds for some z1 ̸= z2, then f ∈ Aut(D).

Proof: Cf.[李忠]P29. □

Prop.(10.6.1.5) [Generalized Schwartz Lemma].Let Ω1,Ω2 be regions of hyperbolic type with
Poincaré metrics ds1 = σ1(z)|dz| and ds2 = σ2(z)|dz|, then for any holomorphic map f : Ω1 → Ω2,

σ2(f(z))|f ‵(z)| ≤ σ1(z).

In particular, if Ω1 ⊂ Ω2, then σ2(z) ≤ σ1(z).
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Proof: Let h1 : D → Ω1, h2 : D → Ω2 be covering maps, then f : Ω1 → Ω2 lifts to a holomorphic
map F : D→ D. Thus Schwartz-Pick lemma implies that σD(F (z))|F ‵(z)| ≤ σD(z). And this implies
that

σ1(z) ≥ σD(F ◦ ψ1(z))|(F ◦ ψ1)‵(z)| = σD(ψ2 ◦ f(z))|(ψ2 ◦ f)‵(z)| = σ2(f(z))|f ‵(z)|.

□

Montel-Normal Family

Def.(10.6.1.6)[Montel-Normal Family]. If Ω ⊂ C is a region, then a set S = {fα} of holomorphic
functions on Ω is called a Montel-normal family if for any sequence of functions in S, there exists
a subsequence that converges uniformly in Ω to ∞ or to a holomorphic function.

Prop.(10.6.1.7)[Montel]. If Ω ⊂ C is a region, and S = {fα} is a set of holomorphic functions on Ω
s.t.

S′ = { |f ‵α(z)|
1 + |fα(z)|2

}

is a set of functions on Ω bounded in the compact-open topology, then S is a Montel-normal family.

Proof:
□

Thm.(10.6.1.8) [Montel]. If Ω ⊂ C is a region, and S = {fα} is a set of holomorphic functions
on Ω s.t. there exists a, b ∈ C s.t. f(z) ̸= a, b for any f ∈ S, z ∈ Ω, then S is a Montel-normal
family(10.6.1.6).

Proof: We may assume a = 0, b = 1. And we use ρ0,1(z)|dz| to denote the Poincaré metric on
D \ {0, 1}. For any z0 ∈ Ω, suppose D(z0, δ) ⊂ Ω, then by generalized Schwartz lemma(10.6.1.5), for
any f ∈ S,

ρ0,1(f(z))|f ‵α(z)| ≤ 2δ
δ2 − |z − z0|2

, z ∈ D(z0, δ).

By(10.6.1.9), ρ0,1(z) has a minimum m > 0 on D \ {0, 1}, so if |f0,1(z)| ≤ 1,

m|f ‵(z)| ≤ 2δ
δ2 − |z − z0|2

.

But also when |f0,1(z)| > 1, consider the automorphism w 7→ 1/w : C \ {0, 1} → D \ {0, 1},
by(10.6.1.9),

m|f ‵(z)|/|f(z)|2 ≤ 2δ
δ2 − |z − z0|2

.

Thus
m

|f ‵(z)|
(1 + |f(z)|2)

≤ 2δ
δ2 − |z − z0|2

.

Then from this it is easy to show that { |f ‵(z)|
(1+|f(z)|2)} is bounded on compact subsets, and then

by(10.6.1.7), S is a Montel-normal family. □
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ρ0,1(z)

Prop.(10.6.1.9)[ρ0,1]. Suppose the Poincaré metric on D \ {0, 1} is ρ0,1(z)|dz|, then
• ρ0,1(z) = ρ0,1(1− z).
• ρ0,1(1/z) = ρ0,1(z)/z2.
• ρ0,1(z) = ρ0,1(1− z) > 1

4|z| when |z| is small.

• ρ0,1(z) ≤ 1
|z| log | 1

z
| .

Proof: 1, 2 follows from the uniqueness of the Poincaré metric.
3 follows from [李忠]P46.?
4: This follows from(10.6.1.2) and generalized Schwartz lemma(10.6.1.5). □

Prop.(10.6.1.10).Let η = min{ρ0,1(z) : |z| = 1}, then η = ρ0,1(−1) = 4π2/Γ4(1
4) = 0.2284733.

Proof:
□

Prop.(10.6.1.11).For 0 < |z| ≤ 1,

ρ0,1(z) ≥ 1
|z|(η−1 − log |z|)

,

where η = min{ρ0,1(z), |z| = 1} > 0 by(10.6.1.9).

Proof: □

Cor.(10.6.1.12).When z → 0, ρ0,1(z) ∼ 1
|z| log | 1

z
| .

Thm.(10.6.1.13)[Landau]. If f ∈ O(D) doesn’t take the values 0, 1, then

|f ‵(0)| ≤ 2|f(0)|(η−1 +
∣∣∣ log |f(0)|

∣∣∣)(10.6.1.10).

And the equality can be achieved.

Proof: Cf.[李忠]P41. □

Thm.(10.6.1.14)[Great Picard Theorem]. If an analytic function f has an essential singularity at
a point w, then on any punctured nbhd of w, f takes any value infinitely often, except for at most
one single exception.

Proof: We may assume f : D \ {0} → C \ {0, 1}, then by generalized Schwartz lemma(10.6.1.5)
and(10.6.1.2),

ρ0,1(f(z))|f ‵(z)| ≤ 1
|z| log 1

|z|
.

We want to prove that for z ∈ D(0, e), there exists some C s.t.

− log |f(z)| < C log 1
|z|
.

When f(z) ≥ 1, this is clearly true, so we may assume f(z) < 1. Let m = max{|f(z)| : |z| = ρ}, and
let z = rei θ. Consider two cases:
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If f(teθ) ∈ D for any r ≤ t ≤ e, then by(10.6.1.11),
|f ‵(z)|
|f(z)|

[η−1 − log |f(tei θ)|]−1 ≤ 1
|z| log 1

|z|
.

Integration on t ∈ [r, ρ] implies that

log[η−1 − log |f(z)|] ≤ log log 1
|z|
− log log 1

ρ
+ log[η−1 − log |f(ρei θ)|] ≤ log log 1

|z|
+ log log e

η−1

m
,

which implies that
− log |f(z)| < C log 1

|z|
.

If r0 ∈ (r, e] is the smallest number s.t. |f(r0e
i θ)| = 1, then integration on t from r to r0 implies that

log[η−1 − log |f(z)|] ≤ log log 1
|z|
− log log 1

r0
+ log(η−1) ≤ log log 1

|z|
,

which also implies that
− log |f(z)| < η−1 log 1

|z|
.

Now notice we can do all above for f replaced by 1/f , so it implies that

log |f(z)| < C ′ log 1
|z|
,

and then f is meromorphic at z = 0. □
Thm.(10.6.1.15)[Schottky]. If f ∈ O(D) doesn’t take the values 0, 1, then

log |f(z)| ≤ [η−1 + max{log |f(0)|, 0}]1 + |z|
1− |z|

− η−1,

and the equality can be achieved.
Proof: It follows from generalized Schwartz lemma(10.6.1.5) that

ρ0,1(f(z))|f ‵(z)| ≤ 2
1− |z|2

.

For z = rei θ ∈ D, if f(tei θ) ∈ D for any t ∈ [0, r], then it follows from(10.6.1.11) that
|f ‵(z)|
|f(z)|

[η−1 − log |f(tei θ)|]−1 ≤ 2
1− |z|2

.

Integration on t ∈ [0, r] implies that
η−1 − log |f(z)|
η−1 − log |f(0)|

≤ 1 + |z|
1− |z|

.

If r0 ∈ (0, r] is the largest number s.t. |f(r0e
i θ)| = 1, then integration on t from r0 to r implies that

η(η−1 − log |f(z)|) ≤ 1 + |z|
1− |z|

1− r0
1 + r0

<
1 + |z|
1− |z|

.

So in any case we get

η−1 − log |f(z)| ≤ [η−1 + max{log |f(0)|, 0}]1 + |z|
1− |z|

.

And all the above applies to f replaced by 1/f , so we get the desired formula.
To show the equality can be achieved, Cf.[李忠]P45. □
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2 Harmonic Functions
Def.(10.6.2.1)[Harmonic Functions].A real-valued function on a region Ω ⊂ C is called harmonic
iff it is C1 and has second order derivatives and

∆u = ( ∂
2

∂x2 + ∂2

∂y2 )u = 4 ∂
∂z

∂

∂z
f = 0.

This is an elliptic differential operator, so u is automatically smooth, by(10.13.8.4).
The vector space of Harmonic functions on Ω is denoted by H(Ω) ⊂ C∞(Ω).

Prop.(10.6.2.2)[Schwarz’s Theorem].Cf.[Ahlfors P169].

Def.(10.6.2.3)[Mean-Value Property].A real valued function u on a region Ω is said to have the
mean-value property iff

u(z0) = 1
2π

∫ 1π

0
u(z0 + rei θ)dθ

whenever D(z0, r) ⊂ Ω.

Lemma(10.6.2.4) [Harmonic Mean Value]. If u is a Harmonic function between two concentric
circles, then the arithmetic mean of it over circles |z| = r is a linear function of log r:

1
2π

∫
|z|=r

udθ = α log r + β.

In particular, if u is harmonic in the disk, then by continuity, α = 0, and the mean value is a constant.

Proof: Cf.[Ahlfors P165]. □

Prop.(10.6.2.5) [Harmonicity and Mean-Value Property].A harmonic function satisfies the
mean-value property, and conversely, and continuous function satisfying the mean-value property
is harmonic.

Proof: Harmonic function satisfies the mean-value property by(10.6.2.4). Conversely, for any z0,
by Schwarz’s theorem(10.6.2.2), there is a harmonic function v(z) that is harmonic in D(z0, ρ) and
equals u(z) on ∂B(z0, ρ). Now the maximal and minimal principles apply to u − v, thus u = v is
harmonic. □

Cor.(10.6.2.6)[Maximum Principle]. If u is a harmonic function, then it attains neither maximum
nor minimum at its region of definition.

Prop.(10.6.2.7)[Real Part of an Analytic Function is Harmonic].On C, formally,

4 ∂
∂z

∂

∂z
= 4 ∂

∂z

∂

∂z
= ∆.

Thus for any open subset Ω ⊂ C, if f ∈ O(Ω), then Im f,Re f ∈ H(Ω).

Proof: By(10.5.1.4),

4 ∂
∂z

∂

∂z
= ( ∂

∂x
− i ∂

∂y
)( ∂
∂x

+ i ∂
∂y

) = ∂2

∂x2 + ∂2

∂y2 .
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4 ∂
∂z

∂

∂z
= ( ∂

∂x
+ i ∂

∂y
)( ∂
∂x
− i ∂

∂y
) = ∂2

∂x2 + ∂2

∂y2 .

If f ∈ O(Ω), then f ∈ C∞(Ω) by(10.5.2.7), then by(10.4.3.8) the formal calculation above applies to
f , and by(10.5.1.9)

∆ Re f + i ∆ Im f = ∆f = ∂

∂z

∂

∂z
f = 0,

so ∆ Re f = ∆ Im f = 0, and Im f,Re f ∈ H(Ω). □
Cor.(10.6.2.8). If Ω ⊂ C is a region and z ∈ Ω, f ∈ O(Ω) is non-vanishing, then log |f | ∈ H(Ω).

Proof: Being harmonic is local, so we may look locally and assume Ω is a disk. Then by(10.5.2.32),
there exists a g ∈ Ω(Ω) s.t.

f(z) = exp(g(z)).
Then it follows Re(g(z)) = log |f(z)|, which is harmonic by(10.6.2.7). □

Prop.(10.6.2.9)[Harmonic Functions as the Real Parts of Analytic Functions].Let Ω ⊂ C

be a simply-connected region, u ∈ H(Ω), then there exists f ∈ O(Ω) s.t. Re f = u. And any two
such f differ by a purely imaginary constant.

Proof: Let g(z) = 2 ∂
∂zu, then

∂
∂zg = 2 ∂

∂z
∂
∂zu = 1

2∆u = 0, so g ∈ O(Ω). Then by(10.5.2.3), there
exists f ∈ O(Ω) s.t. ∂

∂zf = g = 2 ∂
∂zu. So

2 ∂

∂x
u = ∂

∂x
Re f + ∂

∂y
Im f = 2 ∂

∂x
Re f, 2 ∂

∂y
u = ∂

∂y
Re f − ∂

∂x
Im f = 2 ∂

∂y
Re f.

So u−Re f is a constant function. And we may modify f to make Re f = u. For the last assertion, use
the Cauchy-Riemann equations to show that ∂

∂x(Im f−Im f ′) = ∂
∂y (Im f−Im f ′) = 0, so Im f−Im f ′

is a constant function. □

Properties

Prop.(10.6.2.10)[Poisson Formula].For u ∈ H(D(0, R)),

u(z) = 1
2π

∫ 2π

0

R2 − |z|2

|Rei θ − z|2
u(Rei θ)dθ = Re

[ 1
2π i

∫
|ζ|=R

ζ + z

ζ − z
u(ζ)dζ

ζ

]
.

for z ∈ D(0, R).
In particular, for any f ∈ O(D(0, R)), there is a constant C ∈ R s.t. for any z ∈ D(0, R):

f(z) = 1
2π i

∫
|ζ|=ρ

ζ + z

ζ − z
Re(f(ζ))dζ

ζ
+ iC.

Proof: This follows from(10.6.2.9) and(10.5.2.12). □
Cor.(10.6.2.11)[Poisson-Jensen Formula].For f ∈ Ω(D(0, R)) with no zeros on the boundary and
zeros a1, . . . , an inside(counting multiplicity), then for z ∈ D(0, R) s.t. f(z) ≠ 0,

log |f(z)| = −
∑
i

log
∣∣∣ R2 − aiz
R(z − ai)

∣∣∣+ 1
2π

∫ 2π

0

R2 − |z|2

|Rei θ − z|2
log |f(Rei θ)|dθ.

In particular, if f(0) ̸= 0, then

log |f(0)| = −
∑
i

log
∣∣∣R
ai

∣∣∣+ 1
2π

∫ 2π

0
log |f(Rei θ)|dθ.
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Proof: Firstly, this is true when f is non-vanishing on D(0, ρ), because in this case log |f | is
harmonic by(10.6.2.8) and we can use mean value theorem(10.6.2.5). In general, consider the function

F (z) = f(z)
n∏
i=1

R2 − aiz
R(z − ai)

,

then it satisfies F (z) = f(z) for |z| = R, and has no zeros on D(0, R), so

1
2π

∫ 2π

0
log |f(ρei θ)|dθ = log |F (0)| = log |f(0)|+

∑
i

log
∣∣∣ R2 − aiz
R(z − ai)

∣∣∣.
□

Prop.(10.6.2.12)[Hadamard’s Three Circle Theorem].Let f(z) be analytic in the annulus r1 <
|z| < r2, and continuous on the boundary, if M(r) denotes the maximum of |f(z)| for |z| = r, then:

M(r) ≤M(r1)αM(r2)1−α

where α = log(r2/r) : log(r2/r1).

Proof: Apply the maximum principle(10.6.2.6) for

g(z) = log |f(z)| − log(M(r1))(log(r2/|z|) : log(r2/r1))− log(M(r2))(1− log(r2/|z|) : log(r2/r1)),

it is harmonic by(10.6.2.8), then g(z) ≤ 0 on |z| = r1 and |z| = r2, so g(z) ≤ 0 on all the annulus. □

Cor.(10.6.2.13).Let f(z) be analytic in the annulus r1 < |z| < r2, then the function

s 7→ max
z=es
|f(z)|

is convex on the interval [log(a), log(b)].

Prop.(10.6.2.14)[Reflection Principle].

Proof: □

Prop.(10.6.2.15)[Harnack’s Inequality].For a positive harmonic function u on B(0, ρ),

ρ− |z|
ρ+ |z|

u(0) ≤ u(z) ≤ ρ+ |z|
ρ− |z|

u(0).

Proof: By Poisson formula,

u(z) = 1
2π

∫
ρ2 − |z|2

|ρei θ − z|2
u(ρeiθ)dθ

for |z| < ρ, so the conclusion follows from the obvious inequality

ρ− |z|
ρ+ |z|

≤ ρ2 − |z|2

|ρei θ − z|2
≤ ρ+ |z|
ρ− |z|

and Mean-value property(10.6.2.5). □
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Cor.(10.6.2.16). If E is a compact subset of a region Ω, there is a constant M , depending on E,Ω
that for any positive harmonic function u(z) on Ω, u(z2) ≤Mu(z1) for any z1, z2 ∈ E.

Proof: This is an easy consequence of Harnack inequality and the compactness of E. □
Cor.(10.6.2.17)[Harnack’s Principle].Consider a sequence of functions un(z), each harmonic in a
region Ωn, and there is a region Ω that every point has a nbhd that is contained in all but f.m. Ωn,
and in this nbhd un(z) ≤ un+1(z) for n large, then either un(z) tends to +∞ in the compact open
topology, or they tends to a harmonic function in compact open topology.

Proof: The uniform continuity follows easily from Harnack’s inequality, and for the harmonicity of
the limit function u(z) is a consequence of the Poisson formula. □

Dirichlet Problem

3 Miscellaneous

Def.(10.6.3.1)[L2(D, νk) Unit Disc].Define a density νk = 4(1−|w|2)k−2dudv
|1−w|2k (k ≥ 2) on D and define

L2(D, νk) to be the space of holomorphic functions on D that is L2(νk) bounded. Then the space
L2(D, νk) is complete.

Proof: By(10.5.2.11), the uniform norm is bounded by the local L1-norm hence also the local L2-
norm. Hence for a compact subset K, the uniform norm is also bounded by L2(νk)-norm. Thus any
Cauchy sequence in L2(D, νk) converges to a holomorphic function by Weierstrass theorem(10.5.5.3).
□

Prop.(10.6.3.2).The space L2(D, νk) has an orthogonal basis consisting of holomorphic functions

{ψn = wn(1− w)k}n≥0.

Proof: Firstly, ψn is convergent: In the polar coordinate, νk = 4(1−r2)k−2rdrdθ
|1−w|2k , so

||ψn||2 = 4
∫ 2π

0

∫ 1

0
r2n(1− r2)k−2drdθ <∞.

And if m ̸= n,∫
D
ψm(w)ψn(w)dw = 4

∫
D
wm(w)n(1− r2)k−2drdθ = 4

∫ 1

0
rm+n(1− r2)k−2

∫ 2π

0
ei(m−n)θdθ = 0.

□
Def.(10.6.3.3)[Upper Half Plane Hk].On the upper half plane H, we can define a density µk =
yk dxdy

y2 (k ≥ 2), and define L2(H, µk) to be the space of holomorphic functions on H that is L2(µk)
bounded. Then under the Cayley map z 7→ w = z−i

z+i , this density is mapped to the density νk of D
and induces an isomorphism of spaces

L2(H, µk) ∼= L2(D, νk).

In particular, L2(H, µk) is complete, and it has an orthogonal basis

{φn = (z − i
z + i

)n (2 i)k

(z + i)k
}.

by(10.6.3.1) and(10.6.3.2).
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4 Elliptic Functions
Main references are [?]Chap7, [Sil99], [Sil16].

Def.(10.6.4.1)[Doubly Periodic Function].Let Λ be a lattice of C, then a meromorphic function
f on C is called doubly periodic w.r.t. Λ if it is invariant under Λ.

Prop.(10.6.4.2).Let f be a periodic function for Λ, not identically zero, and let D be a fundamental
parallelogram for Λ that f has no zeros or poles on the boundary of D. Then

• ∑
P∈D ordP (f) = 0.

• ∑
P∈D resP (f) = 0.

• ∑
P∈D ordP (f)·P = 0.

Proof: f can be realized as meromorphic functions on the Riemann surface C/Λ, so 1, 2 are direct
consequences of(5.11.12.8) 1, 2. 3 is 2 applied to the meromorphic function zf ′(z)/f(z). □

Def.(10.6.4.3)[Order].The order of an elliptic function f is defined to be the number of poles of f
in D. Equivalently, it is the number of zeros of f in D(10.6.4.2).

Prop.(10.6.4.4).The total number of orders of a non-constant elliptic function≥ 2.

Proof: If its order is 0, then it is bounded on D and also on C thus constant by Liouville’s theorem.
If its order is 1, then it has a simple pole z0, but then Resz0(f) ̸= 0, contradicting(10.6.4.2). □

Def.(10.6.4.5)[Weierstrass ℘-Function].For a lattice Λ ⊂ C, consider the function

℘(z) = 1
z2 +

∑
ω∈Λ\{0}

( 1
(z − ω)2 −

1
ω2 )

Then it is a doubly periodic meromorphic function that has a double pole at 0, and so does its
derivative ℘′, having a triple pole at 0. Hence they descend to a rational function on C/Λ.

If Λ = Λτ , then the function ℘(z; τ) = ℘(z) is called the Weierstrass ℘-function.

Prop.(10.6.4.6).Let Gk(Λ) be given by(16.2.5.5),

℘(z) = 1
z2 +

∑
k≥1

(2k + 1)G2k+2(Λ)z2k.

Proof: This follows from(8.5.2.1). □

Prop.(10.6.4.7)[Fields of Elliptic Functions].The field of doubly periodic functions for Λ is just
C(℘, ℘′). And ℘, ℘′ also satisfies the following equation:

℘′(z)2 = 4℘(z)3 − g2℘(z)2 − g3℘(z)

where g2 = 60G4(Λ), g3 = 140G6(Λ)(16.2.5.5).

Proof: For the equational function, just notice we can calculate directly that the difference of the
two sides is a holomorphic function in z without constant terms, and they are both doubly periodic,
thus is zero.
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For the first statement, notice that any function is a sum of an odd function and an even function.
℘′ is odd, thus an odd function is ℘′ times an even function. Thus it reduces to show that any even
doubly periodic function is a rational function of ℘.

For any even periodic function f , f has the same order at z0 and −z0, also if z0 ≡ −z0 mod Λ,
the order of f at z0 must be odd. Now consider ℘(z)− ℘(z0), then it is a function with two poles at
0, so it has two zeros. If z0 ≡ −z0, then ℘(z) − ℘(z0) has a zero of order 2 at z0, and otherwise it
has simple zeros at z0 and −z0.

So for any even doubly periodic function f , we can use the product ∏(℘(z) − ℘(z0))mi to get a
function with the same order of poles and zeros as f , which implies it equals f . □

Prop.(10.6.4.8)[Uniformization Theorem].For any complex numbers A,B ∈ C that A3−27B2 ̸=
0, there exists a unique lattice Λ ∈ C that g2(Λ) = A, g3(Λ) = B(10.6.4.7).
Proof: The j-function(16.2.5.10) is surjective, thus there is a z ∈ C s.t.

1728 1

1− E2
6

E3
4

= j(z) = 1728 A3

A3 − 27B2

And if we assume A,B ̸= 0, then by(16.2.5.5)(19.6.4.1) and(8.5.1.12), assume this implies

( B

g3(τ)
)2(g2(τ)

A
)3 = 1.

Then we can scale Λ by Λ′ = αΛ s.t. g3(Λ′) = B, g2(Λ) = A.
The case that A = 0 or B = 0 is similar.
The uniqueness follows from(13.5.8.6). □

5 Multi-Variable case

Basics

Should cover the part from [Complex Analytic and Differential Geometry Demailly], [Principle
of Algebraic Geometry Griffith/Harris] and [Complex Geometry Daniel].

Def.(10.6.5.1).A function is called holomorphic in several variables iff it is holomorphic for each
indeterminate.

Def.(10.6.5.2).For a ∈ Cn, the polydisc B(a, ε) ⊂ Cn is defined to be the set {z||zi − ai| < εi}.
Prop.(10.6.5.3)[Hartog’s Extension Theorem]. If K is a compact subset in an open domain Ω of
Cn(n ≥ 2) and Ω−K is connected, then any holomorphic function on Ω−K extends to a holomorphic
function on Ω.
Proof: □

Prop.(10.6.5.4).Let ε = (δ, . . . , δ) and f be a holomorphic function on the polydisc Bε(0). Then if
f vanishes of order k at the origin and |f(z)| ≤ C, then

f(z) ≤ C( |z|
δ

)k

for all z ∈ Bε(0).
Proof: Fix z ∈ Bε(0) ̸== 0, consider the one-variable function gz(w) = w−kf(w · z|z|), then gz is
holomorphic and |gz(w)| ≤ δ−kC for |w| = δ. So maximal principle implies that gz(w) ≤ δ−kC for
all |ω| ≤ δ. Hence |z|−k|f(z)| = |gz(|z|)| ≤ δ−kC. □
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10.7 Special Functions

1 Gamma Function
Def.(10.7.1.1)[Gamma Function].For a complex number s that Re(s) > 0, the Gamma function
is defined to be

Γ(s) =
∫ ∞

0
e−tts

dt
t
.

which is convergent for any Re(s) > 0 thus an analytic function for Re(s) > 0 by(10.5.2.13).

Prop.(10.7.1.2).For Re(s) > 0, Γ(s+ 1) = sΓ(s).

Proof: For any ε ∈ R+,∫ 1/ε

ε

∂

∂t
(e−tts)dt = −

∫ 1/ε

ε
e−ttsdt+ s

∫ 1/ε

ε
e−tts−1dt.

Then letting ε→ 0 gives the desired formula. □
Cor.(10.7.1.3).Γ(s) extends to a meromorphic function for all s ∈ C, with simple poles at s ∈ Z≤0.
And for n ∈ N,

ress=−n Γ(s) = (−1)n

n!
.

Proof: In fact, for m ∈ Z+,

Fm(s) = Γ(s+m)
s(s+ 1) . . . (s+m− 1)

extends Γ(s) meromorphically to Re(s) > −m with simple poles at s = 0,−1, . . . ,−m+ 1, and

ress=−m+1 Fm(s) = Γ(1)
(−1)(−2) . . . (−m+ 1)

= (−1)m−1

(m− 1)!
.

□
Prop.(10.7.1.4).For t ∈ R+, Γ(t) is decreasing for t ≤ 1, and increasing for t ≥ 1.

Proof:
∂

∂t
Γ(t) =

∫ ∞

0
log te−tts

dt
t
.

□
Prop.(10.7.1.5).

Γ(s)Γ(1− s) = π

sin(πs)
.

Proof: By uniqueness theorem, it suffices to prove for 0 < s < 1. Then

Γ(1− s)Γ(s) =
∫ ∞

0
e−tts−1Γ(1− s)dt =

∫ ∞

0
e−tts−1

(
t

∫ ∞

0
e−vt(vt)−sdv

)
dt

=
∫ ∞

0

∫ ∞

0
e−t(v+1)v−sdvdt =

∫ ∞

0

v1−s

v(v + 1)
dv

(10.5.6.6) = π

sin(πs)

□
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Cor.(10.7.1.6).There exists constants c1, c2 s.t. for any s ∈ C,

| 1
Γ(s)
| ≤ c1e

c2|s| log |s|.

Thus 1/Γ(s) has order of growth 1.

Proof: For Re(s) > 0

Γ(s) =
∫ 1

0
e−tts−1dt+

∫ ∞

1
e−tts−1dt =

∑
n∈N

(−1)n

n!(n+ s)
+
∫ ∞

1
e−tts−1dt,

and this equality holds for all s ∈ C. Thus by(10.7.1.5),

| 1
Γ(s)
| = |sin(πs)Γ(1− s)

π
| ≤

∣∣∣ ∑
n∈N

(−1)n

n!(n+ 1− s)

∣∣∣sin(πs)
π
|+

∣∣∣ ∫ ∞

1
e−tt−sdt

∣∣∣.
Suppose k = ⌊Re(s) + 1

2⌋, then∣∣∣ ∑
n∈N

(−1)n

n!(n+ 1− s)
sin(πs)
π
| ≤

∑
n∈N,n ̸=k

∣∣∣ 1
n!(n+ 1− s)

sin(πs)
π

∣∣∣+ ∣∣∣ sin(πs)
(k − 1)!(s− k)π

∣∣∣
and the first term is bounded by eπ|s|, and the second term is bounded by a constant independent of
k, because sin(πs) has a zero at s = k.

Also, ∣∣∣ ∫ ∞

1
e−tt−sdt

∣∣∣ ≤ ∫ ∞

1
e−ttk+1dt = (k + 1)! ≤ e(k+1) log(k+1).

So the assertion follows. □

Prop.(10.7.1.7)[Special Values].

Γ(n+ 1) = n!, n ∈ N, Γ(1
2

) =
√
π.

Proof: For the first assertion, use induction: Γ(1) =
∫∞

0 e−tdt = 1, and the induction process
follows from(10.7.1.2). The second assertion follows from(10.7.1.5). □

Thm.(10.7.1.8)[Hadamard Product].For s ∈ C,
1

Γ(s)
= eγss

∏
n∈Z+

[(1 + s

n
)e−s/n],

where γ is the Euler’s constant(10.4.5.2).

Proof: By(10.7.1.6)(10.7.1.3) and(10.5.3.20),
1

Γ(s)
= eAs+Bs

∏
n∈Z+

[(1 + s

n
)e−s/n]

for some A,B ∈ C. Taking s→ 0, we get B = 0 by(10.7.1.3). And Γ(1) = 1(10.7.1.7) implies that

e−A =
∏
n∈Z+

[(1 + 1
n

)e−1/n] = lim
N→∞

elog(N+1)−
∑N

n=1 1/n = e−γ(10.4.5.2)

□
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Cor.(10.7.1.9)[Duplication Formula].

Γ(2s− 1) = 4s−1
√
π

Γ(s− 1
2

)Γ(s).

Proof: □

Cor.(10.7.1.10)[Euler’s Formula].

1
Γ(s)

= lim
n→∞

s(s+ 1) · · · (s+ n)
nsn!

Proof: This follows from the definition of the infinite product and the definition of Euler’s con-
stant(10.7.1.5). □

Prop.(10.7.1.11)[Mellin Inversion Formula].By(10.12.2.16) applied to f(x) = e−x, for any real
c > 0,

e−x = 1
2π i

∫ c+i ∞

c−i ∞
Γ(s)x−sds, x > 0.

Thm.(10.7.1.12)[Stirling’s Formula]. |Γ(σ + it)| ∼
√

2π|t|σ− 1
2 e−π|t|/2.

Proof: □

Def.(10.7.1.13)[Archimedean L-Factors].Define

LR(s) = π− s
2 Γ(s

2
), LC(s) = 2(2π)−sΓ(s) = ΓR(s)ΓR(s+ 1).

Notice LR(1) = 1, LC(1) = π−1, by(10.7.1.7).

2 Bessel Function
Def.(10.7.2.1)[Bessel Function].The Bessel function is defined to be

B(r, s) =
∫ 1

0
(1− y)r−1ys−1dy.

Prop.(10.7.2.2).
B(x, y) = Γ(x)Γ(y)

Γ(x+ y)
.

3 K-Bessel Function
Def.(10.7.3.1).The K-Bessel function is defined to be

Ks(y) = 1
2

∫ ∞

0
e−y(t+ 1

t
)/2ts

dt

t
, y > 0.

it satisfies K−s(y) = Ks(y).

Prop.(10.7.3.2). |Ks(y)| ≤ e−y/2KRe s(2) when y > 4.

Proof: This is because e−ab < e−ae−b when a, b > 2. □
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Prop.(10.7.3.3).

∂

∂y
Ks(y) = 1

2

∫ ∞

0
(−(t+ 1

t
)/2)e−y(t+ 1

t
)/2ts

dt

t
= −1

2
(Ks+1(y) +Ks−1(y))

Prop.(10.7.3.4). If Re(s) > 1/2 and r ∈ R,

( y
π

)sΓ(s)
∫ ∞

−∞
(x2 + y2)−se2π i rxdx =

{
π1/2−sΓ(s− 1

2)y1−s r = 0
2|r|s−1/2√yKs−1/2(2π|r|y) r ̸= 0

Proof: By(10.7.1.1), the LHS equals∫ ∞

−∞

∫ ∞

0
e−t( ty

π(x2 + y2)
)se2πirxdt

t
dx =

∫ ∞

0

∫ ∞

−∞
e−πt(x2+y2)/ytse2πirxdx

dt

t

where we interchanged the order of integration because it is absolutely convergent, and made a change
of variable. Also notice ∫ ∞

−∞
e−tπx2/ye2πirxdx =

√
y

t
e−yπr2/t

by Fourier inversion(10.12.2.3), so we get the final answer. □

Prop.(10.7.3.5). If Re(s) + k/2 > 1/2 and r is real,

( y
π

)sΓ(s)
∫ ∞

−∞

1
(x+ yi)k(x2 + y2)s

e−2πirxdx =
{
π1/2−sΓ(s− 1

2)y1−s r = 0
2|r|s−1/2√yKs−1/2(2π|r|y) r ̸= 0

Proof: By(10.7.1.1), the LHS equals∫ ∞

−∞

∫ ∞

0
e−t( ty

π(x2 + y2)
)se2π i rxdt

t
dx =

∫ ∞

0

∫ ∞

−∞
e−πt(x2+y2)/ytse2π i rxdx

dt

t

where we interchanged the order of integration because it is absolutely convergent, and made a change
of variable. Also notice ∫ ∞

−∞
e−tπx2/ye2π i rxdx =

√
y

t
e−yπr2/t

by Fourier inversion(10.12.2.3), so we get the final answer. □

4 Dilogarithm
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10.8 General Functional Analysis

Basic references are [Rudin Functional Analysis],[Nonarchimedean Functional Analysis].
This section only contains theorems that are applicable to both Archimedean and non-

Archimedean valuations. For theorems specialized to non-Archimedean valuations, See12.2, for theo-
rems specialized to Archimedean valuations, See10.9. Many propositions in Functional Analysis can
be transplanted in the general case, but I haven’t finish yet.

The major problem is convex is not definable, so Hahn-Banach fail, causing many to fail.

1 Topological Vector Space
Def.(10.8.1.1)[Topological Vector Spaces].A topological vector space(TVS) over a complete
valued field k is a k-vector space that the addition and scalar multiplication is continuous.

Remark(10.8.1.2). If the field k is not of char 0, then we fix a sequence of elements {an} that
lim |an| = ∞. This will be applied for example in the proof of Banach-Steinhaus theorem, but we
will just write n instead of an.

Prop.(10.8.1.3).For subsets K,C of a TVS X that K is compact and C is closed, there is a nbhd V
that (K + V ) ∩ (C + V ) = ∅.

Proof: For each x ∈ K, there are symmetric nbhd Vx that (x + Vx + Vx + Vx) ∩ C = ∅. Then
(x+ Vx + Vx) ∩ (C + Vx) = ∅. Because K is compact, there are f.m. xi that K ⊂ ∪(xi + Vxi), so let
V = ∩Vxi , then (K + V ) ∩ (C + V ) = ∅. □

Cor.(10.8.1.4)[Closed Subbasis].Every nbhd of 0 in a TVS contains a closure of another nbhd of
0. (Apply the above proposition for K = {0}.

Def.(10.8.1.5).A subset containing 0 is called balanced iff kU = U for each |k| = 1.

Prop.(10.8.1.6)[Balanced Subbasis].Every nbhd U of 0 in a TVS contains a balanced nbhd of 0.
By(10.8.1.4), we can even assume V ⊂ U .

Proof: Since scalar multiplication is continuous, there is a δ > 0 and a nbhd V that αV ⊂ U , for
each |α| < δ. Then let W = ∪|α|<δαV . □

Def.(10.8.1.7)[F-Spaces and Fréchet spaces].A space is called a F-space if its topology is induced
by a complete invariant metric. F-space is of second Baire category by(3.3.9.2)

A locally convex F-space is called a Fréchet space.

Def.(10.8.1.8)[Norm].A seminorm on a vector space X is a real-valued function p that p(x+ y) ≤
p(x) + p(y), and p(αx) = |α|p(x) for α ∈ k. It is called a norm if moreover p(x) = 0 ⇐⇒ x = 0.

A family of seminorms {pi} on X is called separating iff for each x, at least one pi satisfies
pi(x) ̸= 0.

Prop.(10.8.1.9).A TVS is metrizable by a translation-invariant metric iff it has a countable basis.

Proof: One direction is trivial, for the other, Cf.[Rudin P18]. □

Prop.(10.8.1.10). If a subspace Y of a TVS X is a F-space, then it is closed in it.
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Proof: Choose an invariant metric d compatible with its topology, Let Un be a nbhd of X that
Un ∩ Y = B(0, 1/n), and choose a symmetric nbhd Vn of X that Vn + Vn ⊂ Un, and Vn+1 ⊂ Vn.

If y ⊂ Y , then for any yn ⊂ Y ∩(y+Vn) = En, then yn−ym ⊂ Umin{m,n}∩Y = B(0, 1/n), so it is a
Cauchy sequence in Y , hence all En has a unique element y0 in common. Now if we intersect each Vn
by a nbhd W of X, the same argument shows that there is a unique element yW in Y ∩ (y+W ∩Vn),
and this must by just y0, but y − yW ⊂W , so we must have y = y0 ⊂ Y . □

Def.(10.8.1.11).A set E in a TVS is called totally bounded if for every nbhd V of 0, there is a
finite set F that E ⊂ F + V .

2 Completeness

Prop.(10.8.2.1) [Banach-Steinhaus]. Γ is a collection of continuous linear mapping between two
TVS, if the set B of x that Γ(x) is bounded is a second category set in X, then B = X and Γ is
equicontinuous (thus maps bounded sets to bounded sets).

Proof: For an open balanced nbhd W of 0, choose a balanced nbhd U s.t. U + U < W (10.8.1.6),
set E = ∩Λ∈ΓΛ−1(U), then B ⊂ ∪∞

i=1 nE, so by Baire theorem(3.3.9.2), E has a interior point thus
has a nbhd V s.t. Γ(V ) ⊂ U + U ⊂W . Thus we are done. □

Cor.(10.8.2.2)[Uniform Boundedness Theorem]. If a set Γ of continuous linear mappings from a
F-space X to Y satisfies Γ(x) is bounded for every x, then Γ is equicontinuous.

Cor.(10.8.2.3). If An is a sequence of continuous linear mapping from X to Y , if X is a F-space, then
limAn = A iff ||An|| is bounded and limAnx = Ax for x in a dense subset of X.

Proof: One direction is immediate from Banach-Steinhaus, the converse is an easy ε/3-technique.
□

Prop.(10.8.2.4)[Open Mapping theorem]. If a continuous linear mapping T from a F-space X to
Y satisfies R(T ) is of second category, then it is a surjective open mapping and Y is a F-space.

In fact, we only need T be defined on a subspace D(T ) and it is closed in the sense the graph of
it is closed.

Proof: Vn = T (B(0, r2n )) are all of second category, because ∪nnVn = R(T ), so Vn has an interior
by definition. Then also it contains a nbhd of V because Vn+1 + Vn+1 ⊂ Vn.

Now we show Vn+1 ⊂ Vn, this will show T is open. thus for a y ∈ Vn since T (Vn+1) contains a
nbhd of 0, we can consecutively choose xi ∈ B(0, r

2n+i ) s.t. y −∑n
i=1 T (xi) ∈ T (B(0, 1

2n+i+1 )). So by
completeness of X and closedness, ∑xi converges to some x ∈ D(T ), and Tx = y ∈ Vn.

And an open linear mapping must be surjective. hence Y ∼= X/N(T ), so Y is also a F-space. □

Cor.(10.8.2.5)[Banach Theorem]. If a continuous map T between F-spaces is a bijection, then it
has a continuous inverse.

Cor.(10.8.2.6). If a F-space is complete w.r.t two different topologies and one is stronger than the
other, then they are equivalent.

Cor.(10.8.2.7).For every operator between F-spaces that has closed image, we have X/N(T ) ∼= R(T ).
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Cor.(10.8.2.8)[Closed Graph Theorem]. If T is a closed linear mapping between two F-spaces, i.e.
the graph of it is closed, then it is continuous, because the metric induced by the graph is stronger
than the original one, and use Banach(10.8.2.5).

The graph is closed is equivalent to if xi → x and Txi → y, then y = Tx. This is very useful
when proving some map is continuous.

Cor.(10.8.2.9). If A,B,C are F-spaces, and f : A → B, g : B → C, if gf, g is continuous and g is
injective, then F is continuous.

Proof: Use closed graph theorem, if xi → x, f(xi) → z, then gf(xi) → g(z), so gf(x) = g(z), so
f(x) = z. □

Cor.(10.8.2.10) [Finite Codimensional Image]. If the image of a continuous linear mapping T
between F-spaces has finite codimensional image, then the image is closed and complemented.

Proof: It has finite codimension, so we can construct Kn ⊕ X/N(T ) → Y , by Banach theo-
rem(10.8.2.5) it is a homeomorphism, and the image of X/N(T ) corresponds to the image, so the
image is closed. □

Prop.(10.8.2.11)[Separate Continuous]. If a bilinear map B : X × Y → Z where X is a F-space
is separately closed, then B(xn, yn) converges to B(x0, y0).

Proof: Use Banach-Steinhaus to proveByn(x) is equicontinuous, then useB(xn−x0, yn)+B(x0, yn−
y0). ? □

3 Dual Space

Prop.(10.8.3.1)[Operator Space]. If X,Y are normed spaces then L(X,Y ) is also a normed space
with the metric ||Λ|| = sup{||Λx|||x| ≤ 1}. And if Y is Banach, then L(X,Y ) is also Banach. The
proof is easy.

In particular, if Y = K, then X∗ is a Banach space.

Prop.(10.8.3.2).For a bounded operator T ,

R(T ) = N(T ∗)⊥, Thus R(T ∗) = N(T )⊥

In particular, using Hahn Banach, R(T ) is dense in Y iff T ∗ is injective, T is injective iff T ∗ is
weak*-dense in X∗.

Prop.(10.8.3.3).Let Λ1, . . . ,Λn,Λ are linear functionals on a vector space X, let N = ∩ ker fi, the
following are equivalent:

1. Λ =
∑
αiΛi.

2. |Λx| ≤ γ|Λix|.
3. ker Λ ⊂ N .

Proof: Only need to show 3 → 1 : define π : X → kn : x 7→ (Λ1x, . . . ,Λnx), then by hypothesis
f(πi(x)) = Λ(x) defined a linear functional on π(X). This can be extended to a functional on
kn : F (u1, . . . , un) =

∑
αiui, so Λ is a linear combination of Λi. □
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Weak Convergence

Def.(10.8.3.4)[Operator Topologies].There are three topologies on L(X) for a normed space X:
• norm topology: ||Ti − T || → 0.
• strong topology: ∀x ∈ X, ||(Ti − T )x|| → 0.
• weak topology: ∀x ∈ X, f ∈ X∗, lim f(Tnx) = f(Tx).

Prop.(10.8.3.5)[Weak Convergence and Bounded]. In a normed space X, if xn → x weakly iff
{xn} is bounded and lim f(xn) = f(x) for a dense subset f ∈M∗ ⊂ X∗.

Proof: This follows from(10.8.2.3), as X∗ is a Banach space, by(10.8.3.1). □

4 Banach Space
Def.(10.8.4.1)[Normed(Valued) K-Spaces].For a complete valued field K, a normed(valued)
K-space is a TVS over K with a norm that satisfies |kv| = |k||v| for k ∈ K.

Def.(10.8.4.2)[Banach Spaces].For K complete valued field, a complete normed(valued) K-vector
space(10.8.4.1) is called a Banach space.

A K-algebra with a complete K-algebra norm is called a Banach algebra.

Prop.(10.8.4.3).The dual space of a Banach space is a Banach space. (Immediate from(10.8.3.1)).

Prop.(10.8.4.4). if A is a Banach space as well as a Topological group, then there is a norm on A
which induce the same topology and makes A into a Banach algebra.

Proof: embed A into L(A) by left multiplication, which is injective, and ||x|| = ||xe|| = ||Mxe|| ≤
||Mx||||e||, so its inverse is continuous. Now if we show the image Ã is closed in L(A), then the open
mapping theorem will show that A ∼= Ã, and Ã is clearly a Banach algebra.

To show it is closed, if T = limTi, notice Ti(y) = Ti(e)y, so take a limit, T (y) = T (e)y = MT (e)y.
□

Cor.(10.8.4.5).Every f.d. Banach algebra is isomorphic to an algebra of matrices. In particular, if
xy = e, then yx = e.

Proof: Embed A into L(A). □

Remark(10.8.4.6) [Inequivalent Banach Norms].There exists two complete norm on a vector
space that is inequivalent. For this, just choose a banach space X, and notice if we can choose a
discontinuous bijection X → X, then the induced metric is also complete, and it cannot by equivalent
by Banach theorem(10.8.2.5). For this, choose a infinite dimensional Banach space over C, and choose
a C-basis xi for it, and choose a sequence xn and maps xn to nxn, the rest are invariant, then this
is not continuous.

Hilbert Space

Def.(10.8.4.7). there are different topologies in the space of operators on a Hilbert space H.
Norm operator topology: defined by the norm ||T ||.
Strong operator topology: defined by the separating seminorms T 7→ ||Tu||, u ∈ H.
Weak operator topology: defined by the separating seminorms T 7→ (Tu, v), u, v ∈ H.
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Prop.(10.8.4.8).The strong and weak operator topology coincides on the unitary operators on H.
The sets of unitary operators that is continuous in this two topology is denoted by U(H).

Proof: If Tn converges to T in the weak operator topology, then

||(Tn − T )u||2 = ||Tu||2 + ||Tnu||2 − 2 Re(Tnu, Tu).

The right hand side is clearly bounded by the weak seminorms, so the two topologies coincide. □

Prop.(10.8.4.9)[Hilbert Basis]. If H is a Hilbert space and S = {eα} is an orthonormal basis in H,
then the following are equivalent:

1. For any x, x =
∑

(x, eα)eα,(notice the sum are in fact infinite sum).
2. There is a no nonzero element x that is orthogonal to all eα.
3. Parseval equality holds: ||x||2 =

∑
|(x, eα)|2.

If these are true, then S is called a Hilbert basis of H, a Hilbert basis always exists, by Zorn’s
lemma.

Proof: 1→ 2 : if (x, eα) = 0 for all eα, then by 1, x =
∑

(x, eα)eα = 0.
2→ 3 : Notice y = x−

∑
(x, eα)eα is orthogonal to all eα, and

||y|| = ||x||2 −
∑
|(x, eα)|2,

so Parseval equality holds.
3→ 1 : ||x−

∑
(x, eα)eα|| = 0. □

Prop.(10.8.4.10).Any symmetric operator on a Hilbert space is continuous.

Proof: Because xn → 0 implies Txn → 0 weakly, so we can use closed graph theorem(10.8.2.8).?
□

Ultranormed Banach Spaces

The ultranormed Banach spaces are defined in(12.2.4.5).

Nuclear Maps and Spaces
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10.9 Archimedean Functional Analysis

References are [Rud91]. [Rudin Functional Analysis Chap11,13] needs to be revisited.
This section contains functional analysis in characteristic 0. By Ostrowski theorem(10.3.3.18),

the base field is just R or C.

1 Topological Vector Space
Def.(10.9.1.1) [Seminorms].A sublinear functional is a function p that p(x + y) ≤ p(x) + p(y)
and p(λx) = λp(x) for λ > 0.

A seminorm is a non-negative function p that p(x + y) ≤ p(x) + p(y) and p(αx) = |α|p(x) for
all complex α.

Def.(10.9.1.2).A absorbing set is a convex set A that ∪k>0kA = X. A convex nbhd of 0 is clearly
absorbing.

Def.(10.9.1.3)[Minkowski Functional].For an absorbing set A, the Minkowski functional µA is
defined to be µA(x) = inf{t > 0, x/t ∈ A}. It satisfies:

• µA(x+ y) ≤ µA(x) + µA(y).
• µA(kx) = kµA(x) if k > 0.
• µA is a seminorm if A is balanced.
• If B = {x|µ(x) < 1}, C = {x|µ(x) ≤ 1}, then B ⊂ A ⊂ C and µA = µB = µC .

Proof: Cf.[Rudin P27]. □

Cor.(10.9.1.4)[Seminorm and Absorbing set].A seminorm on X is exactly the Minkowski func-
tional of a balanced absorbing set W , but the set may not be unique. and it is uniformly continuous
iff 0 is an interior point.

Proof: If p is a seminorm, then {x|p(x) < 1} is convex, balanced and absorbing by defini-
tion(10.8.1.8). The converse is by(10.9.1.3). The last assertion is easy. □

Prop.(10.9.1.5)[Minkowski Functional and Separating Seminorms]. If B is a convex local base
in a TVSX, then the Minkowski functionals of elements ofB forms a separating family of seminorms.

Conversely, a separation family P of seminorms on a vector space defines a convex balanced
local base for a topology τ that is locally convex. And in this topology, a sequence converges iff
p(xi − x)→ 0 for p ∈ P, a set is bounded if each p is bounded on it.

Proof: For any V ∈ B, V = {x ∈ X|µV (x) < 1}, because V is open and convex. (10.9.1.3) shows
each µV is a seminorm, and it is continuous because it is bounded on V . And they are separating
because B is a local base.

Defined V (p, n) = {x ∈ X|p(x) < 1/n}, and let these be a local subbasis at 0, and make it a
topology by translation. This is checked to be a locally convex TVS. For the last assertion, if E is
bounded, then E ⊂ kV (p, 1) for k large, so p is bounded on E, and conversely, for each nbhd U ,
there are pi and Mi and ∩V (pi,Mi) ⊂ U , so E ⊂ kU for n large. □

Prop.(10.9.1.6). IfP is a family of countable separating family of semi-norms onX, then the topology
defined in(10.9.1.5) is in fact metrizable, by a metric d(x, y) =

∑ 1
2k

pi(x−y)
1+pi(x−y) .
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Finite Dimensional Subspace

Prop.(10.9.1.7)[Finite Dimensional and Locally Compact].There is only one topological vector
space structure on a finite dimensional C-vector space and it is complete. A TVS is locally compact
iff it is f.d.

Proof: Cf.[Rudin P17].
For the second assertion, if is locally compact, then 0 has a nbhd V that is precompact, so

bounded, hence 2−nV forms a local basis. the compactness of V shows there are f.m. xi that
V ⊂ ∪(xi + 1

2V ). Let Y be the subspace spanned by xi, then it is of f.d, thus closed. Now
V ⊂ Y + 1

2V , so 1
2V ⊂ Y + 1

4V , hence continuing this way, V ⊂ ∩(Y + 2−nV ), so V ⊂ Y = Y . But
then Y = X. □

Cor.(10.9.1.8)[Finite Subspace Closed].A f.d subspace in a TVS over C is closed, because it must
be a F -space, hence it is closed by(10.8.1.10).

Prop.(10.9.1.9) [Finite Subspace in Banach Space].For a finite dimensional space V in an
Archimedean Banach space, there is a continuous projection onto it. In particular, any finite di-
mensional space in an Archimedean Banach space is complemented.

Also finite codimensional subspace in any Banach space is complemented by(10.8.2.10).

Proof: Choose a basis ei for V , consider the dual basis fi. Because a finite dimensional space only
has one topology(10.9.1.7), these fi are bounded on V . Extend them to bounded functional on X,
then consider p(x) =

∑
fi(x)ei, then this is a continuous projection onto V . □

2 Various Spaces and Duality
For a bounded connected open set Ω,

Prop.(10.9.2.1)[Various Spaces and Duality].
• Sobolev Space Wm,p(Ω) is the completion of a subspace of C∞(Ω) with the norm?

||u||m,p =
( ∑

|α|≤m

∫
Ω
|∂αu(x)|pdx)1/p.

for m > 0. And we denote Wm,2(Ω) by Hm(Ω). It is also a subspace of Lp(Ω) that satisfies
this, without completion(10.12.4.1).

• C∞
0 (Ω) is the subspace of C∞(Ω) that have compact support in Ω. Its completion Wm,p

0 (Ω)
is a closed subspace of Wm,p(Ω). And we denote Wm,2

0 (Ω) by Hm
0 (Ω) and the dual space of

Hm
0 (Ω) by H−m(Ω).

• For a locally convex space X, C(X) in the topology of compact convergence is a Fréchet
space(10.8.1.7).

• O(Ω) ⊂ C(Ω) the space of holomorphic functions in Ω is a closed subspace of C(Ω)
by(10.5.2.14), thus it is a Fréchet space. By Hausdorff theorem(3.3.8.7), Montel’s theorem
says exactly that O(Ω) has the Heine-Borel property(10.8.1.7).

• O2(D) the space of holomorphic functions on D that is also L2. It has the L2 norm.
• C∞(Ω) in the topology defined by seminorms pN (f) = max{|Dαf(x)| : x ∈ KN , |α| ≤ N}, is a

Fréchet space thus locally convex and it has the Heine-Borel property by Arzela-Ascoli.
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• For K ⊂ Ω closed, D(K) is the closed subspace of smooth functions on Ω with support in K,
thus a Fréchet space with Heine-Borel property.

• D(Ω) is the space of smooth functions with support in Ω. It has the topology generated by
translation of basis consisting of convex balanced sets W that W ∩ D(K) is open for every
compact K. This makes D(Ω) into a locally convex TVS, Cf.[Rudin P152]. It has Heine-Borel
property(10.12.1.1).

• (Schwartz Functions) The space of Schwartz functions S(Rn) is defined as smooth functions
on Rn s.t.

sup
|α|≤N,x∈Rn

(1 + |x|2)N |(Dαf)(x)| <∞

for any N > 0. And it is a Fréchet space define by these seminorms.

Dual Spaces

Prop.(10.9.2.2).
• For a σ-finite measure space (X,Ω, µ) and 1 ≤ p <∞, by(10.4.6.3),

Lp(X,Ω, µ)∗ = Lq(X,Ω, µ).

• C[0, 1]∗ = BV [0, 1] and C[X]∗ = M(X), the space of complex measure on compact X with the
norm of total variance, by Riesz representation theorem(10.11.1.10).

3 Convexity
Prop.(10.9.3.1).Every convex nbhd of 0 contains a balanced convex nbhd of 0. By(10.8.1.4), we can
even assume V ⊂ U .
Proof: If U is convex, choose W as in(10.8.1.6), then W ⊂ A = ∩|α|=1αU because it is balanced.
Then W ⊂ A◦ and A◦ is open and balanced, satisfying the requirement. □

Prop.(10.9.3.2).For a compact convex set K in a TVS X, if a set Γ of continuous linear mapping is
bounded for every x ∈ K, then Γ is equicontinuous on K.
Proof: The proof is similar to that of Banach-Steinhaus(10.8.2.1). ForK compact convex, the same
argument shows that there is a nbhd V that K∩(x0 +V ) ⊂ nE, fix p > 1 that K ⊂ x0 +pV , then for
any x ∈ K, consider z = (1−p−1)x0 +p−1x, then z ∈ K as K is convex and z−x0 = p−1(x−x0) ∈ V ,
so z ∈ nE, and since x = pz − (p− 1)x0, Λx ∈ pnW for each Λ ∈ Γ, so Γ is equicontinuous. □

Hahn-Banach

Prop.(10.9.3.3)[Real Hahn].For a sublinear functional p on a real linear space X and a subspace
X0, if a functional f satisfies f(x) ≤ p(x) on X0, then it can be extended to a functional Λ on X
that |Λ(x)| ≤ |p(x)|.
Proof: Use Zorn’s lemma, if the maximum extension is not on the whole space but on M , choose
x1 ∈ X − M , we want to define f(x1). Now let M1 = {x + tx1|x ∈ M}. Since for x, y ∈ M ,
f(x) + f(y) = f(x+ y) ≤ p(x+ y) ≤ p(x− y) + p(x1 + y), so

f(x)− p(x− x1) ≤ p(y + x1)− f(y)

for x, y ∈M . Let the maximum of the left side be α, and define f(x1) = α, then it is clear f(z) ≤ p(z)
still. □
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Prop.(10.9.3.4)[Complex Hahn].For a seminorm p (i.e. it can attain 0) on a complex linear space
X and a subspace X0, if a functional f satisfies |f(x)| ≤ p(x) on X0, then it can be extended to a
functional on X with the same condition.

Proof: Let g(x) = Re f(x) and extend it by Hahn and set f(x) = g(x)− ig(ix), then f is complex
linear, and for any x, for some |α| = 1, |f(x)| = f(αx) = g(αx) ≤ p(αx) = p(x). □

Cor.(10.9.3.5)[Hahn]. In a normed space X, a bounded linear functional on a subspace X0 can be
extended to a bounded functional on X with the same norm.

Cor.(10.9.3.6) [Extending Functional Preserving Norm]. If X is a normed space and N is a
closed subspace, if x0 satisfies d = d(x0,M) > 0, then here is a continuous functional f that f(x) = 0
and f(x0) = d and ||f || = 1.

Proof: Define f(m+ αx) = |α|d on span{M,x}, then f(m+ αx) = |α|d = |α|d(x0,M) ≤ |α|||x′

α +
x0|| = ||x′ + αx|| = ||x||. So ||f || ≤ 1, so we can use Hahan-Banach to extend it to a functional on
X. □

Prop.(10.9.3.7)[Geometric Hahn].
• If E1 and E2 are two convex set that E1 ∩ E2 = ∅ and E1 has interior point, then there is a

continuous linear functional that separate them, i.e Re f(E1) < Re f(E2). (The interior point
is here to assure f is continuous).

• In a locally convex TVS, if E1 is convex compact and E2 is convex closed, then there is a real
functional that separate them, i.e. Re f(E1) < γ1 < γ2 < Re f(E2). Thus for a set E and a
point x, x ∈ spanE ⇐⇒ for all f that f(E) = 0, f(x) = 0.

Proof: The complex case follows from the real case, so assume it is real. Consider a0 ∈ E1, b0 ∈ E2,
let x0 = a0 − b0 and let C = E1 − E2 + x0, then C is a convex nbhd of 0. Let p be the Minkowski
functional of C, then p is sublinear by(10.9.1.3) and p(x0) ≥ 1. Let f(tx0) = t on the subspace M
generated by x, then it extends to a functional Λ that≤ 1 on C, thus it is bounded by 1 on C∩ (−C),
hence continuous. For any a ∈ E1, b ∈ E2, because λ(x0) = 1 and a− b+ x0 ∈ C open, Λa < Λb.

For the second, There is a convex nbhd V of 0 that E1 + V ∩ B = φ, so the above argument
applied with E1 + V and B shows that there is a f that separate them. And f(E1 + V ) is open and
f(E1) is compact, so the conclusion follows. □

Cor.(10.9.3.8) [Banach-Saks].The weak closure of a convex set in a locally convex metric space
equals the original closure.

Thus if a sequence {xn} weakly converges to x in a metrizable locally convex space, then a convex
combination of {xn} strongly converge to x, i.e. x ∈ co({xn}), because metric space is first countable.

Proof: A weak closed set is closed, and to show the closure is weakly closed, use(10.9.3.7). □

Prop.(10.9.3.9). If Ai are compact convex sets in a TVS X, then co(A1 ∪ . . . ∪An) is compact.

Proof: Firstly, the image K of S × A1 × . . . × An, (s1, . . . , sn) × (a1, . . . , an) 7→
∑
siai is closed,

where S = {0 ≤ xi,
∑
xi = 1}. And we show K is just the convex closure: it contains all Ai, and it

is convex because each Ai is. □

Prop.(10.9.3.10). In F -space, a closed subset is compact iff it is totally bounded by(3.3.8.7).

Prop.(10.9.3.11). In a locally convex space, if E is totally bounded, then co(E) is totally bounded.
Thus in a Fréchet space, if K is compact, then co(K) is compact.
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Proof: For a nbhd U of 0, choose a convex nbhd V that V + V ⊂ U , then E ⊂ F + V for some
finite set F , hence co(E) ⊂ co(F ) + V . But co(F ) is compact by(10.9.3.9). So co(F ) ⊂ F1 + V for
some finite set F1, then co(E) ⊂ F1 + U .

If K is compact, then it is totally bounded, and then co(K) is totally bounded and co(K) is
totally bounded by(3.3.8.5), so it is compact by(10.9.3.10). □

Prop.(10.9.3.12)[Weakly Bounded and Locally Convex]. In a locally convex space, bounded⇐⇒
weakly bounded.

Proof: One direction is trivial, for the other, suppose E is weakly bounded and U is a closed nbhd
of 0. Because X is locally convex, there is a convex, balanced nbhd of 0 that V ⊂ U(10.9.3.1). Now
V = V ∗∗ the polar(10.9.4.1) by(10.9.3.8).

Now V ∗ is weak*-compact and |Λ(x)| ≤ γ(Λ) for each Λ ∈ X∗ for some γ(Λ) because E is weakly
bounded. So we can use(10.9.3.2) to show that |Λx| ≤ γ for some γ and all Λ ∈ V ∗. So we have
γ−1E ⊂ V ⊂ U . This proves that E is bounded. □

Prop.(10.9.3.13)[Markov-Kakutani Fixed Point Theorem].For a commuting family F of con-
tinuous affine maps from K to K where K is a compact convex set in a TVS, then there is a fixed
point in K for all maps in F .

Proof: Consider the semigroup F∗ generated by these maps together with their average, it is also
commutative because they are all affine. For any f, g ∈ F∗, f(K) ∩ g(K) ⊃ f ◦ g(K), so by finite
intersection property, there is a point in p ∈ K in all f(K).

For this p, consider p = 1
n(I + T + t2 + . . .+ Tn−1)(x), then p− Tp = 1

n(x− Tnx) ∈ 1
n(K −K).

as K is bounded and n is arbitrary, this means that p = Tp for all T . □
Cor.(10.9.3.14)[Invariant Hahn].For a commuting family Γ of operators on a normed space and Y
an invariant space, then for any Γ-invariant continuous functional f on Y , it has a Γ-invariant Hahn
extension.

Proof: We may assume ||f || = 1. Let K be all extensions of f that has norm≤ 1. K is obviously
convex, and it is weak*-compact by Banach-Alaoglu. The adjoint action of T is checked to be
continuous in the weak*-topology, so by(10.9.3.13), there is some F ∈ K that is invariant under Γ.
□

Krein-Milman theorem

Prop.(10.9.3.15) [Krein-Milman Theorem].For a compact convex set in a TVS that is weak-
Hausdorff(X∗ separate points), then K = co(Extreme(K)).

If K is a compact set in a locally convex space, then K ⊂ co(E(K)) = co(K).

Proof: First show that every compact extreme set S of K contains an extreme point. Notice
arbitrary intersection of compact extreme sets of K is compact extreme, because compact is closed,
because X is Hausdorff. And for any functional Λ ∈ X∗, the maximal value point in K is compact
extreme. Now we use Zorn’s lemma to find a minimal compact extreme set in S, then it must be a
point because X∗ separate points.

Now use the weak topology Hahn(10.9.4.2), if co(E(K)) ⊂ K is not K, then it is compact, then
we can find a functional that separate co(E(K)) and some point of K. This is a contradiction because
the extreme value point for any functional on K is an extreme set.

In the locally convex case, the convexity of K is not needed, and we can show using geometric
Hahn(10.9.3.7) instead that, K ⊂ co(K). □
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Prop.(10.9.3.16) [Milman’s Theorem]. If K is a compact set in a locally convex space X and if
co(K) is also compact(e.g in a Fréchet space(10.9.3.11)), then every extreme point of co(K) lies in
K.

Proof: □

Def.(10.9.3.17).For a compact Hausdorff space S and an algebra in C(S), a subset E is called A-
antisymmetric iff every f ∈ A that is real on E is constant on E. There are in fact maximal
A-antisymmetric subsets of S.

Prop.(10.9.3.18) [Bishop Theorem]. If A is a closed subalgebra of C(S). If g ∈ C(S) satisfies
g|E ∈ A|E for every maximal A-antisymmetric set E, then g ∈ A. This theorem is a generalization
of Stone-Weierstrass approximation.

Proof: The annihilator A⊥ of A consists of all regular complex Borel measure µ on S that
∫
fdµ = 0

for all f ∈ A by Riesz representation(10.11.1.10). ?Cf.[Rudin P122]. □

Prop.(10.9.3.19)[Schauder Fixed Point Theorem]. If C is a closed convex subset in a metrizable
TVS and continuous T : C → C has sequentially compact image (e.g. C is compact and X is locally
convex hence X∗ separate points), then T has a fixed point.

Proof: As T (C) is sequentially compact, for each n, there is a 1/n-net Nn = {yi} ⊂ T (C), let
En = span{Nn}.

Define a map T (C)→ co(Nn) : In(y) =
∑
yiλi(y), where λi(y) = mi(y)∑

mi(y) , and mi(y) = 1−n||y−
yi|| if y ∈ B(yi, 1/n), and 0 otherwise.

Now ||In(y) − y|| = ||
∑

(yi − y)λi(y)|| ≤
∑
||yi − y||λi(y) ≤ 1

n for each y ∈ T (C). As C is
convex, co(Nn) ⊂ C, if we let Tn = In ◦ T , then Tn has a fixed pt xn in co(Nn) by Brower fixed pt
theorem(3.13.4.2).

As T (C) is sequentially compact and C is closed, there is a subsequence Txnk that converges to
x ∈ C. And then

||xnk − x|| = ||InTxnk − x|| ≤ ||InTxnk − Txnk ||+ ||Txnk − x|| <
1
n

+ ||Txnk − x||

so xnk → x, and then by continuity, Tx = x. □

Vector-valued Integration

Def.(10.9.3.20) [Vector-Valued Integration].Given a measure space (Q,µ) and X is an
Archimedean TVS on which X∗ separate points. If f is a function from M to X that Λ ◦ f are
integrable w.r.t µ for any Λ ∈ X∗. The integration

∫
M fdµ of f w.r.t Q is an element y that

Λy =
∫
Q

(Λf)dµ

for any Λ ∈ X∗.

Prop.(10.9.3.21). If X is an Archimedean TVS on which X∗ separate points, (Q,µ) is a Radon
measure on a locally compact Hausdorff space that µ is compactly supported, and f is continuous
that co(f(Q)) is compact(e.g. when X is Fréchet(10.9.3.11)), then the integral y =

∫
Q fdµ exists,

and belongs to the closed linear span of the range of H. Moreover if µ is positive and µ(Q) = 1, then
y ∈ co(f(Q)).
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Proof: Cf.[Rudin P78]. □

Cor.(10.9.3.22). If Q is Hausdorff, dµ is compactly supported, X is Archimedean Banach and f :
Q→ X is continuous, then

||
∫
Q
fdµ|| ≤

∫
Q
||f ||dµ

Proof: Let y =
∫
Q fdµ. By(10.9.3.6), there is a ||Λ|| ≤ 1 that Λy = ||y||, so

Λy = ||y|| =
∫
Q

Λfdµ = |
∫
Q

Λfdµ| ≤
∫
Q
|Λf |dµ ≤

∫
Q
||f ||dµ

□

Prop.(10.9.3.23). If X is an Archimedean TVS on which X∗ separate points, Q is a compact subset
of X, and co(Q) is compact, then y ∈ co(Q) iff there is a regular Borel measure µ on Q that
y =

∫
Q xdµ(x).

Proof: Cf.[Rudin P79]. □

Prop.(10.9.3.24)[Continuous Action Extends to Measure].For a fixed map f : Q→ X, assume
X is a Fréchet space, then the integration functor in(10.9.3.21) induces a continuous map

Measc(Q)→ X : µ 7→
∫
µ
f

that maps δx to f(x).

Proof: It suffices to verify continuity: for any seminorm ρ, by convexity,

ρ(
∫
µ
f) ≤ (µ, ρ(f)),

thus for µ ∈ U satisfying (µ, ρ(f)) < 1, ρ(
∫
µ f) < 1. This proves continuity. □

Prop.(10.9.3.25)[Vector Valued Integration Stronger]. If V is a Banach space and µ is a Radon
measure on a locally compact Hausdorff space X. If g ∈ L1(µ) and H : X → V is bounded and
continuous, then

∫
gHdµ exists and belongs to the closed linear span of the range of H, and

||
∫
gHdµ|| ≤ sup

x∈X
||H(x)||

∫
|g(x)|µ(x)

Proof: Clearly φ(gH) ∈ L1(µ) for all φ ∈ V ∗. And µ is Radon, so there is a sequence {gn} ∈ Cc(X)
that converges to g in L1, so

∫
gnHdµ is integrable by(10.9.3.21), and∫

||gn(x)H(x)− gm(x)H(x)dx||dµ(x) ≤
∫
|gn(x)− gm(x)|dµ(x)→ 0

thus this is a Cauchy sequence, converging to some y. Now for any φ ∈ V ∗,

φ(y) = limφ(
∫
gnHdµ(x)) = lim

∫
φ ◦ (gnH)dµ =

∫
φ ◦ (gH)dµ

The last equality uses boundedness again.
Moreover, each

∫
gnHdµ belongs to the closed range of H by(10.9.3.21), hence so does

∫
gHdµ.

And last assertion is also from(10.9.3.21). □
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Holomorphic Functions

Def.(10.9.3.26) [Holomorphic Functions].Let Ω be an open set in C, and X be a TVS over C,
then A function f : Ω→ X is called:

• weakly holomorphic if Λf is holomorphic for any Λ ∈ X∗.
• strongly holomorphic if limw→z

f(w)−f(z)
w−z exists for every z ∈ Ω.

A strongly holomorphic function is clearly weakly holomorphic, and the converse is true when X is
Fréchet space, by the following proposition(10.9.3.27).

Prop.(10.9.3.27)[Weak and Strong Holomorphic].Let Ω be an open set in C, and X be a Fréchet
space over C, then f is strongly continuous, and the Cauchy integral formula(10.5.2.6) holds for f ,
and f is strongly holomorphic.

Proof: We may assume 0 ∈ Ω, then Let B(0, 2r) ⊂ Ω and Γ the boundary of B(0, 2r), since Λf is
holomorphic,

(Λf)(z)− (Λf)(0)
z

= 1
2πi

∫
Γ

(Λf)(ζ)
(ζ − z)ζ

dζ 0 < |z| < 2r.

Therefore {f(z)−f(0)
z |0 < |z| ≤ r} is weakly bounded, so it is also bounded by(10.9.3.12), so f is

strongly continuous.
The integral exists by(10.9.3.21), so f satisfies Cauchy integral formula because it satisfies this

when acting with any functional Λ, and X∗ separate points.
For the last assertion, Cf.[Rudin P84]. □

Prop.(10.9.3.28) [Liouville’s Theorem]. If X is a TVS over C on which X∗ separate points and
f : C→ X is weakly holomorphic and f(C) is weakly bounded, then f is constant.

Proof: Immediate from Liouville’s theorem(10.5.2.10). □

4 Duality Theory
Prop.(10.9.4.1)[Banach-Alaoglu].For a nbhd V of 0 in a TVS X, the set

K = {f | |fx| ≤ 1, ∀x ∈ V }

is weak*-compact in X∗, which is called the polar V ∗ of V .

Proof: Consider the Minkowski function γ of V , then for each Λ ∈ K, |Λx| ≤ γ(x). If we consider
the space P =

∏
x∈X [−γ(x), γ(x)], then P is compact by Tychonoff(3.3.2.5).

The point is that the weak*-topology coincides with the pointwise convergence topology on K,
because they have the same generating subbasis. If we show K is a closed subspace of P , this will
finish the proof that K is weak*-compact. For this, consider any f0 in its closure, then for each
x, y ∈ X, α, β ∈ K, there is a f ∈ K that is close to f0 at x, y and αx+βy. So f0 is linear. Similarly
we can show |f0(x)| ≤ 1 for x ∈ V , so f0 ∈ K. □

Prop.(10.9.4.2). If X is a TVS that X∗ separate points(e.g. locally convex), then the weak topology
Xw is a locally convex space, and (Xw)∗ = X∗.

Proof: If Λ is a functional that is continuous in Xw-topology, then |λx| < 1 for some set defined
by elements in X∗, so by(10.8.3.3), Λ =

∑
αiΛi which is continuous w.r.t the original topology. □
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Prop.(10.9.4.3)[Hahn Weak Topology case]. If X is a TVS that X∗ separate points, then if A,B
are disjoint nonempty, compact convex sets in X, then there is a Λ ∈ X∗ that separate A and B, i.e.
Re f(E1) < γ1 < γ2 < Re f(E2).

Proof: Let Xw be X with the weak topology, then the sets A and B are compact in Xw as it’s
weaker. And they are also closed because Xw is Hausdorff. Xw is convex, so we can use geometric
Hahn(10.9.3.7). Now (Xw)∗ = X∗, so the chosen functional is also continuous in the original topology.
□

Prop.(10.9.4.4)[Dual Banach Space].For a normed space X, x ∈ X can be seen as functional on
X∗, of norm exactly ||x||. And the closed ball B∗ of the dual space X∗ is weak*-compact.

Proof: The first assertion is because of(10.9.3.6), the last assertion is because of Banach-
Alaoglu(10.9.4.1). □

Prop.(10.9.4.5)[Adjoint Norm].For X,Y normed, the adjoint of T : X → Y satisfies ||T ∗|| = ||T ||.

Proof: Use(10.9.4.4), ||T || = sup{|⟨Tx, y∗⟩|||x|| ≤ 1, ||y∗|| ≤ 1} = ||T ∗||. □

Prop.(10.9.4.6)[Closed Range Theorem].Let T be continuous mapping between Banach spaces
X and Y , let U, V be open balls of X,Y particularly. then the following are equivalent:

1. ||T ∗y∗|| ≥ δ||y∗|| for some δ.
2. δV ⊂ T (U).
3. δV ⊂ T (U), i.e. T−1 is continuous.
4. T (X) = Y .
5. T ∗ is one-to-one and R(T ∗) is closed in X.

Proof: 1 → 2: If ||T ∗y∗|| ≥ δ||y∗||, first prove δV ⊂ T (U). If y0 /∈ T (U), since T (U) is convex
closed and balanced, geometric Hahn shows that there is a y∗ that |y∗(y)| ≤ 1 for every y ∈ T (U),
and |y∗(y0)| > 1. Then if follows ||T ∗y∗|| ≤ 1. So

δ < δ|y∗(y0)| ≤ δ||y0||||y∗|| ≤ ||y0||||T ∗y∗|| ≤ ||y0||

This shows δV ⊂ T (U).
2→ 3 : may assume δ = 1. Then V ⊂ T (U). Then for every y ∈ Y and every ε > 0, there is a x

that ||x|| ≤ ||y|| and ||y − Tx|| < ε. For any y1 ∈ V , pick εn > 0 that ∑ εn < 1− ||y1||, then choose
||xn|| ≤ ||yn|| that ||yn − Txn|| < εn, and let yn+1 = yn − Txn. Then is verified that x =

∑
xn ∈ U

and Tx.
3→ 1 : ||T ∗y∗|| = sup{|⟨x, T ∗y∗⟩||x ∈ U} ≥ sup{|⟨y, y∗⟩||y ∈ V } = δ||y∗||.
3 ⇐⇒ 4 : By Open mapping theorem.
4→ 5 : T ∗ is injective by(10.8.3.2). By open mapping theorem, T ∗ is a multiple of a dilation, so

R(T ∗) is closed by(3.3.8.10).
5→ 4 : R(T ) is dense in Y by(10.8.3.2), and it is closed by the proposition(10.9.4.7) below. □

Prop.(10.9.4.7)[Closed Range Theorem]. If X,Y are Banach spaces and T ∈ L(X,Y ), the follow-
ing are equivalent:

1. R(T ) is closed in Y .
2. R(T ∗) is weak*-closed in X∗.
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3. R(T ∗) is closed in X.

Proof: 1 → 2: As N(T )⊥ is the weak*-closure of R(T ∗), it suffices to prove N(T )⊥ ⊂ R(T ∗). As
R(T ) is complete, the open mapping theorem applies to X → R(T ), showing that each y ∈ R(T )
corresponds to an element x ∈ X that Tx = y and ||x|| ≤ K||y||.

For x∗ ∈ N(T )∗, define a functional Λ on R(T ) by ΛTx = ⟨x, x∗⟩, this is well-defined, and
|Λy| = ΛTx| ≤ K||y||||x∗||. So it is continuous and by Hahan=Banach some continuous functional
y∗ ∈ Y ∗ extends Λ. Then ⟨Tx, y∗⟩ = ΛTx = ⟨x, x∗⟩, so x∗ = T ∗y∗ is in the image of T ∗, so we are
done.

3 → 1 : let Z = R(T ). RT is dense in Z, so(10.8.3.2) shows T ∗ : Z∗ → X∗ is injective. And for
each z∗ ∈ Z∗, there is an extension y∗ by Hahn-Banach, and then ⟨x, T ∗y∗⟩ = ⟨Tx, y∗⟩ = ⟨Tx, z∗⟩ =
⟨x, T ∗z∗⟩, so T ∗(Y ∗) = T ∗(Z∗), which is closed by hypothesis.

Now use open mapping theorem for Z∗ → R(T ∗), then there is a c that c||z∗|| ≤ ||T ∗z∗||. So
T : X → Z is surjective, by(10.9.4.6). So R(T ) = Z is closed. □

Prop.(10.9.4.8). In a normed space, iff xn → x weakly, then lim||xn|| ≥ ||x||.

Proof: Choose a functional that ||f || = 1 and |f(x)| = 1 by(10.9.3.6), then use the definition of
weak convergence. □

Prop.(10.9.4.9) [Eberlein-Smulian].For a set A in a Banach space X, A is weak*-sequentially
compact iff its weak precompact.

Proof: ?
We prove here that the case that the closed unit ball of a reflexive Banach space is weakly*-self

sequentially compact.
To prove this, first we show that a bounded sequence has a subsequence that is weak*-convergent

in X. Let X0 = span{xn}, then X0 is reflexive by(10.9.4.13), and it is separable, so X∗
0 is separable

by(10.9.4.11). Then the result follows from(10.9.4.14).
Finally, the weak limit x is in the closed unit ball, by(10.9.4.8). □

Reflexive and Separable

Def.(10.9.4.10)[Reflective Banach Space]. If X is a Banach space, there is an isometric immersion
of X onto a closed subspace of X∗∗(closed because X is complete). X is called reflexive iff X ∼= X∗∗.

Prop.(10.9.4.11) [Separability Banach].For a normed space X, if X∗ is separable, then X is
separable.

Proof: Choose a countable dense set in X∗, then their projection to the unit sphere S∗ {gn} are
dense in S∗(easily checked), and choose for each of them a xn that ||xn|| = 1 and gn(xn) > 1

2 .
Now I claim xn are dense in X, i.e. X0 = span{xn} = X. If this is not the case, then there is a

||x|| = 1 not in X0, so by(10.9.3.6), there is a f that f(X0) = 0 and ||f || = 1 and f(x) = 1. Then
||gn − f || = sup||x||=1{|gn(x)− f(x)|} ≥ |gn(xn)− f(xn)| = |gn(xn)| ≥ 1/2, contradicting the fact gn
is dense in S∗. □

Prop.(10.9.4.12)[Duality Exact]. If X is a closed subspace of a normed space Y , and Y/X is the
quotient field, then (Y/X)∗ is a closed subspace of Y ∗, and X∗ is the quotient.

Proof: (Y/X)∗ → Y ∗ is clearly injective, and theX∗ are all functionals on Y modulo the functionals
that vanish on X. □
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Cor.(10.9.4.13)[Pettis].Closed subspace and quotient space of a reflexive normed space is reflexive.

Proof: Use the fact that 0 → X → Y → Z → 0 induces an exact sequence 0 → X∗∗ → Y ∗∗ →
Z∗∗ → 0, and there is a map X → X∗∗, so we can use snake lemma(as modules). □

Prop.(10.9.4.14)[Separable Ball Weak*-Sequentially Compact]. If a normed space X is sepa-
rable, then the closed unit ball of X∗ is weak*-sequentially compact.

Proof: Let xn be a countable dense subset of X, then by diagonal method, for each bounded se-
quence of fn ∈ X∗, there is a subsequence fnk that fnk(xm) converges for each xm. Then by(10.8.2.3),
fnk converges to some f ∈ X∗. So the theorem is finished. □

Prop.(10.9.4.15)[Reflexive Ball Weak*-Sequentially Compact]. In a reflexive Banach space X,
then a set in X is bounded iff it is weak*-sequentially compact.

Proof: If it is reflexive, then the unit ball is weak*-compact by Alaoglu, so it is weak*-sequentially
compact by Eberlein(10.9.4.9). Conversely, if it is weak*-sequentially compact, then its closure is
weak*-compact, thus bounded. □

Prop.(10.9.4.16).A closed convex set of a reflexive Banach space attains minimal norm.

Proof: By Hahn, a closed convex set is weakly closed. let d = inf{||x||}, then if d ≤ ||xn|| < d+q/n,
then {xn} is bounded, so by(10.9.4.15) it is weak-sequencially compact(10.9.4.9), thus some xn → x
weakly. and use(10.9.4.8), x must attains minimal norm d. □

5 Compact Operator & Fredholm Operator
Def.(10.9.5.1)[Compact Operators].A compact operator is an operator between Banach spaces
that maps bounded set to sequentially compact(equivalently precompact or totally bounded(3.3.8.7))
set. It is necessarily continuous because the norm function is continuous thus ||Tx|| is bounded on
the unit ball. The set of compact operators between X,Y is denoted by C(X,Y ).

Prop.(10.9.5.2)[Examples of Compact Operators].
• Let X be a compact measure space and Lu(x) =

∫
X K(x, y)u(y)dy for K ∈ C(X ×X). This is

a compact operator on C(X) by Arzela-Ascali(3.3.8.8).
• Let Ω be a σ-finite measure space and Lu(x) =

∫
ΩK(x, y)u(y)dy for K(x, y) ∈ L2(Ω×Ω). This

is a compact operator on L2(Ω), as it is Hilbert-Schmidt(10.10.5.5)(10.10.5.3).

Prop.(10.9.5.3)[Properties of Compact Operators].
1. For a continuous operator, it has f.d. image iff it is compact and the image is closed.
2. The space of compact operator is a closed subspace of L(X,Y ). Thus the limit of f.d. operators

is compact.
3. If one of A or B is compact and the other is continuous, then AB is compact, because continuous

maps bounded to bounded and compact to compact.

Proof:
1. A finite dimensional space is closed by(10.9.1.8), and a finite dimensional space is Heine-

Borel(3.3.5.2), so it maps closed ball to precompact set, as it is continuous. Conversely, if it is
compact and the image is closed, then it is an open map to its image, by open mapping theorem,
and the image is locally compact because T is compact, so it has finite dimension(10.9.1.7).
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2. S+T is continuous because sum of precompact set is precompact. To show it is closed subspace,
Use totally bounded definition, for T is the closure, let ||S − T || < r, then if S(xi) is a r-net
for S(B(0, 1)), then T (xi) is a 3r-net for T (B(0, 1)).

3. Because continuous function preserves both boundedness and (pre)compactness.
□

Prop.(10.9.5.4)[Compact and Totally Convergence].Let xn → x weakly, if T is compact, then
Txn → Tn strongly. The converse is true when X is reflexive. In particular, this applies to Hilbert
space.

Proof: Assume the contrary, if Txn doesn’t converge to Tx, there is a subsequence xnk that
||Txnk − Tx|| ≥ ε0. Now {xn} is bounded by(10.8.3.5), so by T compact, there is a subsubsequence
Txnk → z strongly. But because xni → x weakly, Txni → Tx weakly because T is continuous, and
thus z = Tx.

The converse is by Eberlein(10.9.4.9), because the bounded xn has a weak convergent subsequence,
and it is mapped to convergent sequence by T . □

Prop.(10.9.5.5). T is compact ⇐⇒ T ∗ is compact.

Proof: We need only to show that T ∗y∗
n has a uniformly convergent subsequence on the unit sphere,

but for this it suffice to prove y∗
n is sequentially compact in C(T (B(0, 1))). And we use Arzela-Ascoli

because T (B(0, 1)) is compact. For the other half, use the double dual space. □

Lemma(10.9.5.6). If there is a chain of closed subspaces M1 ⊂ M2 ⊂ . . . that T (Mn) = Mn and
(T − λnI)Mn ⊂Mn−1 for some λn ∈ σ(A)−B(0, r), then T is not compact.

Proof: There are yn ∈ Mn that ||yn|| ≤ 1 and ||yn − xn|| ≥ 1/2 for x ∈ Mn−1, so if m < n,
||Tym − Tyn|| = ||λyn − (Tym − (T − λn)yn)|| ≥ |λn|

2 ≥
r
2 , so Tyn has no convergent subsequence. □

Lemma(10.9.5.7). If A is compact and T = 1−A, then if T is not injective, then it is not surjective.
And for any r > 0, σp(A)−B(0, r) is a finite set.

Proof: We use(10.9.5.6). If R(T ) = X, then let Mn = N(Tn), then M0 ̸= 0 because there is a
Tx0 = 0, and Mn ⊂Mn+1 because there is a Tnxn+1 = x0, so xn+1 ∈Mn+1 −Mn.

If σp(A) − B(0, r) is infinite, then choose Mn to be generated by n eigenvectors, then it is clear
that a chain like above will be found. □

Lemma(10.9.5.8). If A is compact and T = 1−A, then R(T ) is closed.

Proof: it suffices to show T−1 : R(T ) → X/N(T ) is continuous, if this is not the case, then there
is a sequence ||xn|| = 1 but Txn → 0. But A is compact, so there is a subsequence that Axnk → z,
so xnk → z. So Tz = 0 so z = 0, but then xnk → 0, contradiction. □

Prop.(10.9.5.9)[Riesz-Fredholm].For a compact operator A ∈ L(X), let T = I −A. Then:
1. 0 ∈ σ(A) if X is not f.d.
2. T is Fredholm of index 0(10.9.5.17). Equivalently, σ(A)\{0} = σp(A)\{0}(because either T not

injective or T is surjective).
3. σ(A) has at most one convergent point 0 (it must attain 0 if X is a infinite-dimensional). Hence

it has at most countable spectrum.
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Proof: 1: If 0 is a regular value, then T is invertible, thus T−1T = id is compact, thus X has
f.d.(10.9.1.7).

2 : Firstly dimN(T ) <∞. This is because T |N(T ) = idN(T ), so it is compact iff it is f.d.(10.9.5.3).
by [Rudin P108]?.

3: By(10.9.5.7). □

Prop.(10.9.5.10) [Lomonosov’s Invariant Subspace Theorem]. If X is an infinite dimensional
complex Banach space, and T ̸= 0 is a compact operator in L(X), then there is a proper closed
subspace M of X that is invariant under S for any S that commutes with T .

In particular, if S commutes with some compact operator T , then S has an invariant closed
subspace.

Proof: If Γ is the subspace of all operators that commutes with T , then it is a subalgebra of L(X),
and for each y ∈ X, let Γ(y) = {Sy|S ∈ Γ}, then S(Γ(y)) ⊂ Γ(y), then so does the closure of Γ(y).
So if the proposition is false, then Γ(y) is dense in X for each y.

Pick x0 that Tx0 ̸= 0, then there is an open ball B of x0 that ||Tx|| ≥ 1
2 ||Tx0|| and ||x|| ≥ 1

2 ||x0||
for x ∈ B. Now our assumption shows that for every y ̸= 0, there is a nbhd W of it that maps into
B by some S ∈ Γ(notice Γ is a subspace).

Now K = T (B) is compact because T is compact, so there are f.m. open sets Wi whose union
cover K, and Si(Wi) ∈ B, where Si ∈ Γ. Now let µ = max{||Si||}. Consider Tx0 ∈ K, so there is a
Si1Tx0 ∈ B, then TSi1Tx0 ∈ K, so there is a Si2TSi1Tx0 ∈ B. Continuing this way, we get

1
2
||x0|| ≤ ||xN || ≤ µN ||TN ||||x0||,

so by Gelfand theorem(10.10.1.8), ρ(T ) > 0, so there is a eigenvalue λ of T (by(10.9.5.9)) that
N(T − λI) is finite dimensional, so not equal to X, and it is clearly invariant under Γ. □

Prop.(10.9.5.11)[Jordan Decomposition for Compact Operators].For a compact operator A
and all the non-zero eigenvalues λi, we can find a subspace

∞⊕
i=1

N((λi −A)pi), λi ̸= 0

on which A has a Jordan form.

Proof: Let T = 1 − A, By(2.2.4.5), we only have to prove there are some m,n that There is a
p that N(T p) = N(T p+1) and a q that R(T q) = R(T q+1), because then we have a decomposition
X = N((T − λI)p)⊕R((T − λI)p), and all these N((T − λI)p) are pairwisely disjoint.

Now q < ∞, because if R(T ) ⊃ R(T 2) ⊃ . . ., because T k is of the form 1 + compact operator,
R(T k) are all closed by(10.9.5.8), so by(10.9.5.6), this is impossible.

For p, use Riesz-Fredholm(10.9.5.9),

dimN(T q) = codimR(T q) = codimR(T q+1) = dimN(T q+1) <∞

So p ≤ q <∞. □

Prop.(10.9.5.12). If X,Y are Banach spaces and T,K ∈ L(X,Y ), K is compact and R(A) ⊂ R(K),
then A is compact.

Proof: Use(10.8.2.9), then we can lift the function to a map T̃ : X → X/N(K), which is also
continuous, so T = K̃ → T̃ is also compact. □
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Schauder Basis

Def.(10.9.5.13) [Schauder Basis].Let X be a Banach space, a sequence en is called a Schauder
basis iff for any x ∈ X, there is a unique sequence Cn(x) that x = lim

∑N
n=1Cn(x)en. Notice in this

case X is automatically separable.

Prop.(10.9.5.14). If X has a Schauder basis, then Cn(x) are continuous functional on X.

Proof: Consider the module ||x||1 = sup ||SNx||, Firstly, it is complete, because ||x|| = lim ||SNx|| ≤
||x||1, so if there is a Cauchy sequence {xi} in |·|1, then it is a Cauchy sequence in |·|, then it converges
to some x. Now CN (x) = SN (xi)−SN−1(xi) are all Cauchy sequence, uniform in N , so they converges
to some sequence cN .

It is left to verify that sN =
∑N
i=1 cnen converges to x, because then it is easy to verify that

lim ||xi− x||1 = 0. For this, choose N1 large that ||xn− x|| ≤ ε for n ≥ N1, and choose N2 large that
||Sk(xn)−sk|| ≤ ε for all k and n ≥ N2. Then for xN1+N2 , there is a N3 that ||SnxN1+N2−xN1+N2 || ≤
ε, so ||x− sk|| ≤ ||x− xN1+N2 ||+ ||SkxN1+N2 − xN1+N2 ||+ ||Sk(xN1+N2)− sk|| ≤ 3ε for k large.

Now by Banach(10.8.2.6), ||x||1 ≤M ||x|| for some M , so |Cn(x)en| ≤ 2M ||x|| and Cn is continu-
ous. □

Prop.(10.9.5.15). If X has a Schauder basis, then any compact operator is a limit of operators of f.d.
range.

Proof: Let SN (x) =
∑N
n=1Cn(x)en, it is continuous by(10.9.5.14). And it converges, so ||SN || ≤M ,

by Banach-Steinhaus(10.8.2.1).
For any compact operator, we want to find f.d. range operator Ti that Ti → T . For this, given

any ε > 0, because T (B(0, 1)) is compact, there are operators that is a ε/M2-net yi, then choose
N large enough that |SNyi − yi| ≤ ε/M2, then for any x, there is a yi that |Txi − yi| < ε/M2, so
|SNTxi − SNyi| < ε/M , and then |SNTx− Txi| < ε, and notice SNT has f.d. range. □

Prop.(10.9.5.16)[Compact Operator as Limits of F.D. Operators].Any compact operator on
a Hilbert space is a limit of f.d. operators.

Proof: Cf.[Trace Classes and Hilbert-Schmidt Operators, Thm10]. □

Fredholm Operator

Def.(10.9.5.17) [Fredholm Operator].A bounded operator between Banach space is called a
Fredholm operator if dimN(T ) < ∞ and codimR(T ) < ∞. It necessarily has closed image
by(10.8.2.10), so R(T ) = N(T ∗)⊥(10.8.3.2).

The index of a Fredholm operator is defined as ind(T ) = dimN(T ) − codimR(T ), thus for a
compact operator A, I −A has index 0, by(10.9.5.9).

Prop.(10.9.5.18).For a Fredholm operator between Banach space, we have

X = N(T )⊕R(T ) Y = Y/R(T )⊕R(T )

and X/N(T ) ∼= R(T ).

Proof: Because R(T ) and N(T ) are finite/cofinite hence closed and complemented by(10.9.1.9). If
X = N(T )⊕M1 and Y = R(T )⊕M2, then M1 ∼= X/N(T ), X/N(T ) ∼= R(T ) and M2 ∼= Y/R(T ) by
Banach theorem. □
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Prop.(10.9.5.19) [Characterizating Fredholm Operator]. T is Fredholm from X to Y iff there
exist a bounded S1, S2 from Y to X that S1T = I − A1, TS2 = I − A2, where A1, A2 is compact. If
this is the case, S1 and S2 can be chosen the same as S, then S is called the regulator of T , and S
is Fredholm as well.

So the Fredholm operator is the set of operators invertible ’modulo compact ones’.

Proof: By(10.9.5.18) T : X/N(T ) ∼= R(T ), and there is a projection of π : Y onto R(T ). Thus we
composed them to get a S = T−1 ◦ π : Y → X. And ST and TS are both 1 minus a projection with
f.d. image, hence compact(10.9.5.3).

For the converse, R(T ) ⊃ R(1 − A2) is of finite codimention because 1 − A2 is Fredholm, and
N(T ) ⊂ N(1−A1) is of finite dimension because 1−A1 is Fredholm. □

Cor.(10.9.5.20).The set of Fredholm operators is closed under composition. Index is a locally con-
stant function on it, and ind(T1T2) = ind(T1) + Ind(T2).

Proof: There is a long exact sequence(use(3.7.5.4) in the category of vector spaces)

0→ kerT2 → kerT1T2 → kerT2 → CokerT2 → CokerT1T2 → CokerT1 → 0.

which shows the composition and index is additive.
For the openness and locally constancy, use(10.9.5.19), when adding a small R, S(T + R) =

1−A1 +SR, and if when ||R|| < ||S||−1, E1 = (I+RS)−1 is bounded, so E1S(T+R) = I−E1A1, and
similarly does (T+R)SE2, so T+R is Fredholm. And indE1+indS+ind(T+R) = ind(1−E1A1) = 0,
and indE1 = 0 because it is invertible, and indS + indT = ind(1−A1) = 0, so indT = ind(T +R).
□

Cor.(10.9.5.21). If T is Fredholm and A is compact, then T +A is Fredholm, and ind(T +A) = indT
, so ind is in fact defined on the quotient of L(X,Y ) by compact operators.

Proof: It is Fredholm by(10.9.5.19), and we notice S(T + A) and ST are both 1 minus compact
operators, thus(10.9.5.20) and(10.9.5.9) gives the result. □

Cor.(10.9.5.22). If T is Fredholm, then T ∗ is Fredholm, and ind(T ∗) = − ind(T ).

Proof: The first follows from(10.9.5.19) and(10.9.5.5). For the second, use the fact R(T ) and N(T )
are all closed. □

6 Unbounded Operators
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10.10 Archimedean Banach Algebra

Main references are [Functional Analysis, Rudin].

1 Banach Algebra

Def.(10.10.1.1)[Spectrum].For a bounded operator A ∈ L(X) where X is Banach space, a λ ∈ C

is called a:
• point spectrum if λI −A is not injective;
• continuous spectrum if it is not a point spectrum and R(λI −A) ̸= X but R(λI −A) = X.
• residue point if it is not a point spectrum and R(λI −A) ̸= X.
• regular point if λI−A is injective and R(λI−A) = X, in which case (λI−X)−1 is continuous,

by Banach.
denote σ(A) = K − regular points of A the spectrum of A, and ρ(A) = sup{|λ||λ ∈ σA} is called
the spectral radius of A.

Prop.(10.10.1.2). If A is a Banach algebra and x is invertible in A, and h ∈ A satisfies ||h|| <
1
2 ||x

−1||−1, then x+ h is also invertible and

||(x+ h)−1 − x−1 + x−1hx−1|| ≤ 2||x−1||3||h||2

Proof: x+h = x(e+x−1h) and ||x−1h|| < 1
2 , so x+h is invertible by(10.10.1.14), and ||(x+h)−1−

x−1 + x−1hx−1|| = ||[(e+ x−1h)−1 − e+ x−1h]x−1|| ≤ 2||x−1||3||h||2 also by(10.10.1.14). □

Cor.(10.10.1.3). If A is a Banach algebra, then the invertible elements G(A) is an open subset of A,
and the mapping x 7→ x−1 is a homeomorphism of G(A) onto G(A).

Prop.(10.10.1.4).For T ∈ L(X) where X is Banach space, C\σ(T ) is an open set and λ→ (λI−T )−1

is a holomorphic function on C\σ(T ).
Thus for every bounded operator T on a Banach space, σ(T ) is not empty.

Proof: The first assertion is by(10.10.1.3), for the second, let f(λ) = (λe − x)−1 is defined on
Ω = C− σ(x) and(10.10.1.2) shows

||f(µ)− f(λ) + (µ− λ)f2(λ)|| ≤ 2||f(λ)||3|µ− λ|2

so limµ→λ
f(µ)−f(λ)

µ−λ = −f2(λ), which means that f is strongly holomorphic in Ω.
Now if |λ| > ||x||, then |f(λ)| = |λ−1e + λ−2x + . . . | ≤ 1

|λ|−||x|| , so σ(x) cannot be empty by
Liouville theorem(10.9.3.28). □

Cor.(10.10.1.5) [Gelfand-Mazur]. If in a Banach algebra A over C, all the nonzero element is in-
vertible, then it is isomorphic to C.

Proof: Any nonzero element x has a nonempty spectrum, so there is a λ(x) that x− λ(x)e is not
invertible, so it must be 0. That is, the mapping C → A : λ 7→ λe is bijective, so is is isomorphism
by Banach. □
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Prop.(10.10.1.6).Notice (I − T ) is invertible for ||T || < 1 and the inverse can be calculated by
definition.

In particular, for a Banach algebra A and any x ∈ A, when λ > ||x||, e − λ−1x is invertible, so
the spectrum of x is bounded. Now that its complement is open as the inverse image of G(A) by
λ 7→ λe− x, so the spectrum of x is compact.

Cor.(10.10.1.7) [Spectrum is Continuous].The spectrum of an element of a Banach algebra is
continuous, i.e. if σ(x) ⊂ Ω for some open subset Ω ⊂ C, then there is a δ > 0 that σ(x+ y) ⊂ Ω for
||y|| < δ.

Proof: As ||(λe− x)−1|| is a continuous function of λ in the complement of σ, and since the norm
tends to 0 as λ → ∞, there is a M that ||(λe − x)−1|| < M for all λ /∈ Ω. Now if ||y|| < 1/M and
λ /∈ Ω, then λe− (x+ y) = (λe− x)[e− (λe− x)−1y] is invertible. □

Prop.(10.10.1.8)[Gelfand].The spectrum radius ρ(A) = limn→∞ ||An||
1
n = inf ||An||

1
n ≤ ||A||.

This formula is remarkable, as the LHS depends only on the algebraic structure, and the RHS
depends on the metric structure.

Proof: For r > ρ(x)
xn = 1

2πi

∫
Γr
λnf(λ)dλ.

LetM(r) = max ||f(reiθ)||, then ||xn|| ≤ rn+1M(r), hence lim sup ||xn||1/n ≤ r, so lim sup ||xn||1/n ≤
ρ(x).

For the converse, if λ ∈ σ(x), then λn ∈ σ(xn), because λne− xn = (λe− x)(λn−1e+ . . .+ xn−1),
and this two commutes. So |λn| ≤ ||xn||, so ρ(x) ≤ inf ||xn||1/n. □

Prop.(10.10.1.9). σ(A) = σ(A∗).

Proof: It suffices to show if T is invertible iff T ∗ is invertible. If T is invertible, then T ∗ is invertible
with inverse (T−1)∗. Conversely, if T ∗ is invertible, then T ∗∗ is invertible, so, as the restriction of
T ∗∗, T is injective and image is closed. If the image is not X, then there is a f that vanish on the
image, so T ∗f = 0, but then f = 0. □

Prop.(10.10.1.10). In a Banach algebra A, e−xy is invertible iff e−yx is invertible, thus σ(xy)∪{0} =
σ(yx) ∪ {0}.

Proof: Let z = (e− xy)−1, then we claim e+ yzx is just the inverse of e− yx: (e− yx)(e+ yzx) =
e− yx+ yzx− yxyzx = e and (e+ yzx)(e− yx) = e+ yzx− yx− yzxyx = e. □

Lemma(10.10.1.11). If A is a Banach algebra and xn ∈ G(A) converges to x /∈ G(A), then ||x−1
n || →

∞.

Proof: If ||x−1
n || < M , choose n that ||xn − x|| < 1/M , then ||e− x−1

n x|| = ||x−1
n (xn − x)|| < 1, so

x−1
n x is invertible, so x is invertible. □

Prop.(10.10.1.12).For Banach algebra B and its closed subalgebra A, σA(x) is obtained from σB(x)
by filling some holes. So when σB(x) doesn’t separate C or σ(A) has empty interior, then σA(x) =
σB(x).

Proof: Cf.[Rudin P256]. □
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Prop.(10.10.1.13). if A is a Banach algebra over C that ||x||||y|| ≤ M ||xy|| for some fixed M , then
A is isomorphic to C.

Proof: If y is a boundary pt of G(A), y = lim yn, then ||y−1
n || → ∞. But ||yn||||y−1

n || ≤ M ||e||, so
yn → 0, so y = 0.

But any boundary point of σ(x) gives a boundary point λe− x of G(A), so x = λe, so A ∼= C. □

Complex Homomorphism

Prop.(10.10.1.14). Suppose A is a Banach algebra over C, x ∈ A satisfies ||x|| < 1, then ||(e−x)−1−
e− x|| ≤ ||x||2

1−||x|| , and |φ(x)| < 1 for any complex homomorphism φ on A. In particular, any complex
homomorphism is continuous.

Proof: ||(e− x)−1 − e− x|| = ||x2 + x3 + . . . || ≤
∑∞
n=2 ||x||n = ||x||2

1−||x|| .
For the second, notice e− λ−1x is invertible for each |λ| ≥ 1, so 1− λφ(x) ̸= 0, so φ(x) ̸= λ. □

Prop.(10.10.1.15)[Gleason-Kahane-Zelazko]. If φ is a linear functional on a Banach algebra A over
C, if φ(e) = 1 and φ(x) ̸= 0 for every invertible element x ∈ A, then φ is a complex homomorphism.

Proof: Cf.[Rudin P251]. □

Symbolic Calculus

Prop.(10.10.1.16)[Symbolic Calculus].For a Banach algebra A. For a domain Ω in C, define AΩ
as the set of x that σ(x) ∈ Ω, it is an open set by(10.10.1.7), then:

f 7→ f̃(x) = 1
2πi

∫
Γ
f(λ)(λe− x)−1dλ

for any contour Γ that surrounds σ(x), is a continuous algebra isomorphism of H(Ω) into the set of
A-valued functions on AΩ with the compact-open topology.

We have g̃ ◦ f = g̃ ◦ f̃ .

Proof: The nontrivial part is that this map is multiplicative, but for this we can use Runge’s
theorem to approximate any function on σ(x). □

This theorem makes it possible to implant complex analysis to the study of Banach Algebra.

Cor.(10.10.1.17). exp(x) is defined on A and is continuous. If σ(x) doesn’t separate 0 from ∞, then
log(x) is defined but might not be continuous.

Prop.(10.10.1.18)[Spectral Mapping Theorem]. f̃(x) is invertible in A iff f(λ) ̸= 0 on σ(x). Thus
we have σ(f̃(x)) = f(σ(x)).

Prop.(10.10.1.19). If f doesn’t vanish identically on any component of Ω, then f(σp(T )) = σp(f̃(T )).
Cf.[Rudin P266].
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Commutative Banach Algebra

Lemma(10.10.1.20).For A a commutative Banach algebra, the set of maximal ideals has codimension
1 corresponds to kernels of complex homomorphisms to C. (Consider the quotient space and use
Gelfand-Mazur). Note that a complex homomorphism is all continuous because λe − x maps to
nonzero.

λ ∈ σ(x) iff there is a complex homomorphism h s.t. h(x) = λ. (Because x is invertible iff it is
not contained in any proper ideal of A.

Proof:
□

Prop.(10.10.1.21)[Gelfand Transform].The spectrum ∆A of a unital commutative Banach alge-
bra A is defined to be the set ∆ of maximal ideals of A. It is a locally compact Hausdorff space w.r.t
to the weak*-topology and the Gelfand transform: x 7→ x̂(h) = h(x) is a continuous map of A into
C(∆). And the range of x̂ equals σ(x), so ||x̂|| = ρ(x) ≤ ||x||.

Proof: First we prove it is compact Hausdorff: As σ(A) = {h ∈ closed ball of A∗|h(e) = 1, h(xy) =
h(x)h(y)} which is a closed subset of the closed ball of A∗, so it is compact Hausdorff. The rest is
clear and follows from(10.10.1.20). □

Prop.(10.10.1.22).For A = C(X) where X is compact Hausdorff, ∆ is homeomorphic to X. (other-
wise it has finite fi ̸= 0, then ∑ |fi|2 is positive thus invertible but maps to 0). In fact, for a space
X, ∆(C(X)) is the stone-Čech compactification of X.

Prop.(10.10.1.23).For A = L∞(m), the spectrum of f is just the essential range of f .

Lemma(10.10.1.24). If Â ⊂ C(∆) with a chosen topology that makes it compact, and A separate
points, then the topology of it is the same of the weak*-topology. (Compact to Hausdorff).

Prop.(10.10.1.25).The algebra L1(Rn)⊕ δ with the multiplication by convolution has the spectrum
Rn ∩ {∞}. (Use (Lp)∗ = Lq and see when will it be homomorphism).

2 Hilbert spaces
Prop.(10.10.2.1)[Optimal Approximation].A closed convex subset in a Hilbert space has a unique
element that attains the minimum norm.

Proof: Assume 0 /∈ C, so let d = infz∈C ||z|| > 0, then there are xn that d ≤ ||xn|| ≤ d + 1/n. It
suffices to show that xn is a Cauchy sequence, because then it has a convergent point in C. Now

||xn − xm||2 = 2(||xn||2 + ||xm||2)− 4||xn + xm
2

||2 ≤ 2[(d+ 1/n)2 + (d+ 1/m)2]− 4d2 → 0.

For the unicity, if ||x1|| = ||x2|| = d, then

||x1 − x2||2 = 2(||x1||2 + ||x2||2)− 4||x1 + x2
2
||2 ≤ 4d2 − 4d2 = 0.

□

Cor.(10.10.2.2)[Orthogonal Decomposition].The orthogonal complement of a closed subspace of
a Hilbert space exists. and the projection on to a closed subspace exists. This is a good trait of
Hilbert space.
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Proof: For any element x, let y be the optimal approximation(10.10.2.1) of x, then z = x − y is
orthogonal to y. □

Prop.(10.10.2.3)[Riesz].Linear functionals on a Hilbert space over C are all of the form x 7→ (x, z)
(Choose an orthogonal of the kernel). In other words, Hilbert spaces are reflexive.

Proof: Choose a x0 orthogonal to N(f) by(10.10.2.2) and ||x0|| = 1, then any x = αx0 + y where
y ∈ N(f). Inner product with x0, we get α = (x, x0), so f(x) = αf(x0) = (x, f(x0)x0). □

Cor.(10.10.2.4).For Hilbert spaces H,K and T ∈ L(H,K), ||T || = sup{(Tx, y)|||x|| ≤ 1, ||y|| ≤ 1}.

Proof: Use(10.9.3.6) to find for each x a functional f of norm 1 that |f(Tx)| = ||Tx||, then use
Riesz theorem. In particular, if we define □

Cor.(10.10.2.5) [Reproducing Kernel].For a Hilbert space H, if elements of H are all complex
valued functions on a set S, and Jx : f 7→ f(x) is continuous functional for H, then there is a
function K(x, y) on S×S that Ky(x) = K(x, y) ∈ H, and f(y) = (f,Ky)H , called the reproducing
kernel.

And if eα is a basis for H, then K(x, y) =
∑
eα(x)eα(y).

Proof: For any y, there is a Ky ∈ H that f(y) = (f,Ky)H by Riesz representation. If we let
K(x, y) = (Ky,Kx) = Ky(x), then this is the desired kernel.

If eα is a basis, then Kx = (Kx, en)en = en(x)en, so by Parseval equality, K(x, y) =
∑
eα(x)eα(y).

□

Prop.(10.10.2.6).Let H be a Hilbert space, then a sequence xn converges to x iff xn converges to x
weakly and ||x||n → ||x||.

Proof: One direction is trivial, for the other, notice that ||xn − x||2 = ||xn||2 + ||x||2 − 2 Re(x, xn)
which converges to 0. □

Prop.(10.10.2.7)[Lax-Milgram Theorem]. If a(x, y) is a sesquilinear form on a Hilbert space H
over C that |a(x, y)| ≤ M ||x||||y||, then there is a unique continuous operator A ∈ L(H) that
a(x, y) = (x,Ay). If moreover |a(x, x)| ≥ δ||x||2, then A is bijective and ||A−1|| ≤ 1

δ .

Proof: For any y, x 7→ a(x, y) is a continuous functional, so by Riesz theorem(10.10.2.3), there is
an element Ay that a(x, y) = (x,Ay).

Now Ay depends linearly on y, and ||Ay|| = sup |a(x, y)|/||x|| ≤M ||y||.
If |a(x, x)| ≥ δ||x||2, then A is clearly injective, and R(A) is closed, because for any z = limAvn,

it is easily verified that vn is a Cauchy sequence. And R(A)⊥ = 0, because if (w,Av) = 0 for
any v ∈ H, then δ||w||2 ≤ |a(w,w)| = 0. A−1 exists by Banach theorem(10.8.2.5), and δ||x||2 ≤
|a(x, x)| = (x,Ax)| ≤ ||x||||Ax||, so δ||x|| ≤ ||Ax||. □

Cor.(10.10.2.8)[Variational Inequality]. If H is a Hilbert space that a(x, y) is an anti-symmetric
bilinear function that δ||x||2 ≤ a(x, x) ≤M ||x||2, then if u0 ∈ H, and C is a closed convex subset of
X, the function

f : x 7→ a(x, x)− Re(u0, x)

attains minimum at C.
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Proof: Similar to the proof of(10.10.2.1). f(x) ≥ δ||x||2 − ||u0||||x|| is bounded below on C. if xn
is a sequence that converse to the infimum d, then

a(xn − xm, xn − xm) = 2(a(xn, xn) + a(xm, xm))− 4a(xn + xm
2

,
xn + xm

2
)

= 2(f(xn) + f(xm))− 4f(xn + xm
2

) ≤ 2[(d+ 1/n)2 + (d+ 1/m)2]− 4d2 → 0.

So xn is a Cauchy sequence by the condition, and it contains a unique minimum. □

Cor.(10.10.2.9)[Involutions].For a Hilbert space H over C, for any T ∈ L(H), there is an operator
T ∗ ∈ L(H) that (Tx, y) = (x, T ∗y), which is called the formal adjoint or involution of T . Notice it
is defined on H, not on H∗.

Moreover, ||T || = ||T ∗|| = ||T ∗T ||1/2.

Proof: Use Lax-Milgram for a(x, y) = (Tx, y). For the last assertion, |||T || = ||T ∗|| by(10.10.2.4).
And we notice

||Tx||2 = (Tx, Tx) = (T ∗Tx, x) ≤ ||T ∗T ||||x||2,

so ||T || ≤ ||T ∗T ||1/2. □

Remark(10.10.2.10)[Examples].The dual operator of the integral operators(10.9.5.2) with kernel
K(x, y) is also an integral operator with kernel K∗(x, y) = K(y, x). This follows from Fubini-Tonelli
theorem.

3 B∗-algebra
Def.(10.10.3.1).A B∗-algebra is a Banach algebra with an involution s.t. ||xx∗|| = ||x||2.

Any B∗-algebra is isomorphic to a closed subspace of B(H) for some Hilbert space.

Proof: Cf.[Rudin P338]. □

Prop.(10.10.3.2).For a Hilbert space, the adjoint operation serves as an involution and makes B(H)
into a B∗-algebra by(10.10.2.9).

Prop.(10.10.3.3)[Gelfand-Naimark].For a commutative B∗-algebra, the Gelfand transform x 7→ x̂
is an isomorphism from A to C(∆) with ||x|| = ||x̂||∞ and x̂∗ = x̂.

Proof: First use ||xx∗|| = ||x||2 to prove that a Hermitian element is mapped to real function, and
use Stone-Weierstrass to show that the image is dense, then let y = xx∗ and ||y2m || = ||y||2m to prove
||x̂|| = ||x||, so its image is closed. □

Cor.(10.10.3.4). If A is a commutative B∗-algebra that contains an element x s.t polynomials of x, x∗

are dense in A, then x̂ is an isomorphism from ∆A to σ(x), in particular, the Gelfand transform is
an isomorphism from C(σ(x)) to A.

Proof: Cf.[Rudin P290]. □

Now we want to apply commutative algebra methods in the non-commutative case, there are two
ways.

Prop.(10.10.3.5).For a commutative set of elements S inA, its bicommutant(10.10.3.13)B = Γ(Γ(S))
is commutative, closed and contains S. And σB(x) = σA(x) for x ∈ B.
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Proof: Because S ⊂ Γ(S), Γ(Γ(S)) ⊂ Γ(S), thus Γ(Γ(S)) is commutative. And if xy = yx, then
x−1y = yx−1, so the inverse, if exists, are in B. □

Cor.(10.10.3.6). In a Banach algebra, if x, y commutes, then

σ(x+ y) ⊂ σ(x) + σ(y), σ(xy) ⊂ σ(x)σ(y).

Proof: Because σ(x) is just the range of x̂ on ∆A where A = Γ(Γ({x, y}))(10.10.3.5)(10.10.1.21).
□

The second method applies to normal elements:

Def.(10.10.3.7)[Normal]. In a Banach algebra with an involution, a set S is called normal if it is
commutative and S∗ = S. An element x is called:

• normal iff x commutes with x∗.
• unitary iff x∗ = x−1.
• Hermitian iff x∗ = x.
• positive iff x = x∗ and σ(x) ⊂ [0,∞).

Prop.(10.10.3.8).A maximal normal set B in A is a closed subalgebra and σB(x) = σA(x) for x ∈ B.

Proof: Cf.[Rudin P294]. □
Cor.(10.10.3.9)[Normalness and Spectra]. In a B∗-algebra A,

• Hermitian elements have real spectra.
• If x is normal, then ρ(x) = ||x||.
• If u, v ≥ 0, then u+ v ≥ 0.
• yy∗ ≥ 0. Thus e+ yy∗ is invertible.

Proof: Cf.[Rudin P295]. □
Def.(10.10.3.10)[Positive Functional]. In a Banach algebra with an involution, a positive func-
tional is such that F (xx∗) ≥ 0. It has the following properties.

• F (x∗) = F (x) and |F (xy∗)|2 ≤ F (xx∗)F (yy∗). (Use Swartz like trick).
• |F (x)|2 ≤ F (e)F (xx∗) ≤ F (e)2ρ(xx∗), because e = ee∗. Thus |F (x)| ≤ F (e)ρ(x) for every

normal x by(10.10.3.9), so ||F || = F (e) if A is commutative.

Proof: Cf.[Rudin P297]. □
Prop.(10.10.3.11)[Positive Functional and Measure]. If A is a commutative Banach algebra with
an involution that h(x∗) = h(x), then The map

µ→ F (x) =
∫

∆
x̂dµ

is a one-to-one correspondence between the convex set of measures µ that µ(∆) ≤ 1 to the convex
set K of positive functionals on A of norm ≤ 1, i.e. F (e) ≤ 1, so maps the extreme points, i.e. the
point mass to extremes points, thus the extreme points of K is exactly ∆. This can be used to prove
Bochner’s theorem??

Proof: Use the last prop to show that there is a functional on C(∆) and use Riesz representation.
It is positive and by Stone-Weierstrass, it is unique. □
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von Neumann Algebras

Def.(10.10.3.12)[von Neumann Algebra].A von Neumann Algebra is a B∗-algebra of operators
in L(H) that contains the identity and is closed in the weak operator topology(10.8.3.4).

Def.(10.10.3.13)[Bicommutant]. If S is a subset of L(H), then we define the commutator Γ(S)
be the algebra of operators that commutes with S ∈ S, then Γ(Γ(S)) contains S, it is called the
bicommutant of SS.

If A is a ∗-algebra in L(H), then Γ(Γ(A)) is a von-Neumann algebra.
Proof: If A is a ∗-algebra, then Γ(Γ(A)) is clearly a ∗-algebra, and it is weak-closed because if
SVi = ViS and Vix→ V x for any x, then SV x = V Sx for any x. □

Prop.(10.10.3.14)[von Neumann Density Theorem].Let A be a non-degenerate ∗-subalgebra of
L(H), then A is dense in Γ(Γ(A)) in the strong operator topology.
Proof: For any S ∈ Γ(Γ(A)) and any x1, . . . , xN ∈ H, ε > 0, we need to prove there exists A ∈ A
that ∑ ||Sxi −Axi|| ≤ ε2.

For the case N = 1 and x1 = x, consider the closure X of {Ax}, then the orthogonal projection
P onto X is an operator in Γ(A). This implies A(1 − P )x = (1 − P )Ax = 0, thus x = Px because
of non-degeneracy. Then because S commutes with P , Sx = SPx = PSx ∈ X , thus there exists an
A ∈ A that Ax is close to Sx.

For N > 1, we can just apply the result to HN . □

4 Spectral Theory on Hilbert Spaces
The most useful tool is the general symbolic calculus for normal operators.

Resolution of Identity

Def.(10.10.4.1).A resolution of identity on a Hilbert space H for a σ-algebra on a set Ω is a E
that:

1. E(∅) = 0, E(Ω) = 1.
2. E(ω) is self-adjoint projection.
3. E(ω′ ∩ ω) = E(ω′)E(ω).
4. E(ω ∪ ω′) = E(ω) + E(ω′) for disjoint ω, ω′.
5. Ex,y(ω) = (E(ω)x, y) is a complex measure on E.

Thus for any x, ω → E(ω)x is a countably additive H-valued measure.
This will generate an isometric*-isomorphism Ψ of the Banach algebra L∞(E) onto a closed

normal subalgebra A of B(H). (Define on simple function first).

Ψ(f) =
∫

Ω
fdE, (Ψ(f)x, y) =

∫
Ω
fdEx,y

Proof: Cf.[Rudin P319]. □
Prop.(10.10.4.2)[Spectral Decomposition for Normal Algebra].For any closed normal algebra
A of B(H), there is a unique resolution E of identity on the Borel subsets of ∆A that the inverse
of Gelfand transform extends to an isometric *-isomorphism Φ of the algebra L∞(E) to a closed
subalgebra B containing A.

In fact, B = Γ(Γ(A)) is normal by Fuglede theorem(10.10.4.10).
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Proof: Cf.[Rudin P322]. □
Cor.(10.10.4.3) [Generalized Symbolic Calculus for Normal Operator].For a normal opera-
tor T and the minimal closed commutative B∗-algebra A it generates, then the inverse of Gelfand
transform gets us a map Ψ : C(σ(x))→ A that Ψ(z) = x, Ψ(z) = x∗, by(10.10.3.4).

Then the above proposition says there is a resolution of identity on the Borel set of σ(T ) that Ψ
extends to a function that maps L∞(m) to B(H) and ||Ψ(f)|| = ||f ||∞.

Cor.(10.10.4.4)[Normal and Invariant Subspace].Any closed normal algebra A has many invari-
ant subspaces, just choose a decomposition of Borel sets ∆A = ω

⨿
ω′, then R(E(ω))⊕R(E(ω′)) = H.

In particular, any normal operator has an invariant subspace.

Normal Operators on Hilbert Space

Lemma(10.10.4.5).For a Hilbert space H and T ∈ L(H), T is defined by values (Tx, x).

Proof: If (Tx, x) = 0, then (Tx, y) + (Ty, x) = 0, so −i(Tx, y) + i(Ty, x) = 0, solving (Tx, y) = 0
for all x, y, so T = 0. □

Prop.(10.10.4.6)[Normal Operators].
1. An operator is normal iff ||Tx|| = ||T ∗x||. So N(T ) = N(T ∗) thus σp(T ∗) = σp(T ), and R(T )

is dense iff T is injective. And different eigenspaces are orthogonal.
2. An operator is unitary iff R(U) = H and ||Ux|| = ||x|| for every x. (Because an operator is

defined by its value (Tx, y).

Proof: ||Tx||2 = (T ∗Tx, x), ||T ∗x|| = (TT ∗x, x), and they are equal iff T, T ∗ commutes
by(10.10.4.5). In particular, for different eigenvectors, α(x, y) = (Tx, y) = (xT ∗y) = (x, βy) =
β(x, y).

For unitary, one way is obvious, for the other, if ||Ux|| = ||x||, then (U∗Ux, x) = (x, x), so
U∗U = id by(10.10.4.5), and U is a bijection. So it is invertible. □

Cor.(10.10.4.7).For a normal operator T on a Hilbert space T is invertible iff there is a δ that
||Tx|| = ||T ∗x|| ≥ δ||x||.

Proof: T is injective iff R(T ) is dense, and if ||Tx|| = ||T ∗x|| ≥ δ||x||, then R(T ) is closed
by(3.3.8.10), so it is invertible by Banach theorem. □

Prop.(10.10.4.8). If T is normal, then
1. ||T || = sup{|(Tx, x)| ||x|| = 1}.
2. T is self-adjoint iff σ(T ) is real.
3. T is unitary iff |σ(T )| = 1.

Proof: For 1, ||T || = ρ(T ) = ||z0|| for some z0 ∈ ρ(T ) by Naimark(10.10.3.3), then Urysohn lemma
to show E(U) ̸= 0 for a open U near x(because otherwise there is a continuous function supported
in U that are mapped to 0), then there are ||x0|| = 1 that E(U)x0 = x0.

Consider now f = (z − z0)iU (z), then f(T )(x0) = Tx0 − λ0x0, so

(Tx0, x0)− λ0| = |(f(T )x0, x0)| ≤ ||f(T )|| = ||f || ≤ ε

This shows that ||T || = sup{|(Tx, x)| ||x|| = 1}.
For 2, 3, by generalized symbolic calculus(10.10.4.3), T̂ = λ on σ and T̂ ∗ = λ on σ, so they are

equal iff σ(T ) is real, and TT ∗ = I iff λλ = 1 on σ(T ). □
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Prop.(10.10.4.9)[Decomposition of Operators].Every operator S ∈ L(H) on a Hilbert space H is
a linear combination of two self-adjoint operator and a linear combination of four unitary operator.

Proof: The first assertion is easy as S = (S + S∗)/2 + (S − S∗)/2. Now any self-adjoint operator
is a multiple of a self-adjoint operator of norm ||S|| ≤ 1, so 1 − S2 is positive, and we have S =
1
2(f+(S) + f−(S)), where f±(s) = s± i

√
1− s2. □

Prop.(10.10.4.10)[Fuglede]. If N1 and N2 are normal operators and A is a bounded linear operator
on a Hilbert space such that N1A = AN2, then N∗

1A = AN∗
2 .

Proof: For any S ∈ B(H), exp(S−S∗) is unitary thus || exp(S−S∗)|| = 1, exp(N1)A = A exp(N2).
Because exp(M)T = T exp(N), if we let U1 = exp(M∗ −M), U2 = exp(N −N∗), then

|| exp(N∗
1 )T exp(−N∗

2 )|| = ||U1TU2|| ≤ ||T ||

because λNi is normal. Now

|| exp(λN∗
1 )T exp(−λN∗

2 )|| = ||U1TU2|| ≤ ||T ||

also holds, thus by Liouville, exp(λN∗
1 )T exp(−λN∗

2 ) = T . Compare the coefficients of λ, we get the
result. □

Prop.(10.10.4.11).An operator T ∈ B(H) has the same spectrum w.r.t all the closed B*-algebras of
B(H) containing it.

Proof: If T is invertible, because TT ∗ is self-adjoint thus has real spectrum(10.10.4.8) so doesn’t sep-
arate C thus it is invertible in any closed B*-algebra of B(H)(10.10.1.12). so does T−1 = T ∗(TT ∗)−1.
□

Prop.(10.10.4.12).For T normal and E its spectral decomposition, then if f ∈ C(σ(T )) and ω0 =
f−1(0), then N(f(T )) = R(E(ω0)).

Proof: χω0f = 0, so f(T )R(E(ω0)) = 0, and if we let ωn = f−1([1/(n− 1), 1/n)), and let fn(λ) =
1/f(λ)χωn , then fn(T )f(T ) = E(ωn), so if f(T ) = 0, then E(ωn)x = 0, so countable additivity shows
that E(σ\ω0)x = 0, so E(ω0)x = x. These shows the desired result. □

Cor.(10.10.4.13).
1. N(T − λI) = R({λ}).
2. every isolated point of σ(T ) is point spectrum, because this point is open thus is E({x}) ̸= 0

by Urysohn lemma.
3. if σ(T ) is countable, then every x ∈ H has a unique orthogonal decomposition x =

∑
E(λi)x

and T (E(λi)x) = λiE(λi)x.

Prop.(10.10.4.14)[Normal Compact Operator].A normal operator T ∈ B(H) is compact iff σ(T )
has no limit point except possibly 0 and dimN(T − λI) <∞ for λ ̸= 0.

In particular, a normal compact operator is a limit of f.d. operators

Proof: One direction is general, by(10.9.5.9), for the other, it is a limit of operators of finite
dimensional range by general symbolic calculus(10.10.4.3). □

Cor.(10.10.4.15)[Spectral Theorem].A compact normal operator (in particular a normal operator
on a f.d linear space) is unitarily diagonalizable.
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Proof: it suffices to find a basis of eigenvectors, but this is easy, just by(10.10.4.13). □

Cor.(10.10.4.16)[Hilbert-Schimidt].For a self-adjoint compact operator A on a Hilbert space H,
there is a set of orthonormal basis that A is diagonal on it. And of course, its eigenvalues are real
and can only converges to 0(10.10.4.8).

Prop.(10.10.4.17).For a normal compact operator T ∈ L(H), then:
1. T has an eigenvalue |λ| that |λ| = ||T ||.
2. f(T ) is compact if f ∈ C(σ(T )) and f(0) = 0.
3. f(T ) is not compact if f ∈ C(σ(T )) and f(0) ̸= 0 and dimH =∞.

Proof: 1: The spectrum of maximal norm is isolated(10.9.5.9) hence a point spectrum
by(10.10.4.13). And |λ| = ||T || by symbolic calculus(10.10.4.3).

2: Cf.[Rudin P330].
3: The 2 sill show that f(0)I − f is compact, If f is compact, then f(0)I is compact, so dimH <

∞(10.9.5.3). □

Prop.(10.10.4.18)[Freudenthal Spectral Theorem].

Prop.(10.10.4.19) [Positive Equivalent Definition].A T ∈ L(H) is positive, i.e. T = T ∗ and
σ(T ) ⊂ [0,∞) iff (Tx, x) ≥ 0.

Proof: If (Tx, x) ≥ 0, then (Tx, x) = (x, Tx) = (T ∗x, x), so T = T ∗ by(10.10.4.5), so σ(T ) is
real(10.10.4.8), and for λ > 0,

λ||x||2 = (λx, x) ≤ ((T + λI)x, x) ≤ ||(T + λI)x||||x||,

so T + λI is invertible by(10.10.4.7), so σ(T ) ⊂ [0,∞).
Conversely, if T is positive, then it is normal, so (Tx, x) =

∫
σ(T ) λdEx,x ≥ 0. □

Prop.(10.10.4.20)[Polar Decomposition].
1. Every positive operator T has a positive square root, which is invertible if T is.
2. Polar decomposition exists in B(H): Any T ∈ L(H) invertible has a unique decomposition
T = UP where U is unitary and P is positive. And ||Px|| = ||Tx|| for all x.

3. Any normal operator has commuting decomposition UP , where U,P, T commutes.

Proof: 1: Use general symbolic calculus, then S =
√
λ(T ) is the square root of T . If T is invertible,

then S−1 = T−1S.
2: (T ∗Tx, x) = (Tx, Tx) ≥ 0, so T ∗T is positive(10.10.4.19), so let P =

√
T , then it is also

invertible, and U = TP−1 is unitary.
3: Use general symbolic calculus, let p(λ) = |λ|, u(λ) = λ/|λ| if λ ̸= 0, and u(0) = 0. Then

T = UP , and they are commutative. □

Cor.(10.10.4.21)[Similar Normal Operator]. Similar normal operators are unitarily equivalent.

Proof: It suffices to show that if M = TNT−1, and T = UP is the polar decomposition, then M =
UNU−1. Fuglede(10.10.4.10) shows M∗T = TN∗, so NP 2 = NT ∗T = T ∗MT = T ∗TN = P 2N , so
N commutes with any functions f(P ), in particular P . Hence M = (UP )N(UP )−1 = UNU−1. □
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5 Hilbert-Schmidt Operators and Trace Classes
Main references are [Trace Classes and Hilbert-Schmidt Operators].

Def.(10.10.5.1)[Hilbert-Schmidt Operator].Let H,K be Hilbert spaces and T ∈ L(H,K). Then
for any orthonormal basis {ek} of H and {fk} of K,∑

j

||Tej ||2K =
∑
j

||T ∗fj ||2H.

Thus we can say T is Hilbert-Schimidt iff

||T ||HS = (
∑
j

||Tej ||2K)1/2 <∞

for some/all basis ej of H. The space of all Hilbert-Schimidt between H,K is denoted by S2(H,K).

Proof: ∑
i

||Tek||2 =
∑
i

∑
j

|(Tei, fj)|2 =
∑
i

∑
j

|(T ∗fj , ei)|2 =
∑
j

||T ∗fj ||2

□

Cor.(10.10.5.2)[Properties of S2(H,K)].
• If A ∈ S2(H,K) then A∗ ∈ S2(K,H) with the same HS-norm.
• For A ∈ S2(H,K), ||A|| ≤ ||A||HS .
• S2(H,K) is a Banach space in the HS-norm.
• If H1,K1 are separable Hilbert spaces and T ∈ S2(H,K), A ∈ L(H1,H), B ∈ L(K,K1), then
BTA ∈ S2(H1,K1).

Proof: 1 follows from(10.10.5.1). 2 is because we can extend u to a basis of H.
3: ||− ||HS is clearly a semi-norm(10.8.1.8), and it is a norm by item2. To show the completeness,

if Aj is an HS-Cauchy sequence, then it is a Cauchy sequence in the operator norm, thus converges
to an operator A. Then for any ε, there is an N that for any j, k ≥ N , ||Aj − Ak||HS ≤ ε. This
implies ∑

α∈S
||(Ak −Aj)eα||2K ≤ ε2

for any finite subset S ⊂ I. Then letting k → ∞ and then letting S be any subset, we get ||A −
Aj ||HS ≤ ε. Thus A is Hilbert-Schmidt and Aj → A in HS-norm.

4: it is clear that ||BT ||HS ≤ ||B||||T ||HS , and because of the transpose invariance of HS-norm
and operator norm(10.10.2.9). □

Prop.(10.10.5.3) [Hilbert-Schmidt Operator is Compact]. If A ∈ S2(H,K) and {fk} is an or-
thonormal basis of K, and we denote πn as the projection of K onto the span of {f1, . . . , fn}, then

||πnA−A||HS → 0.

In particular, A is compact, by(10.10.5.2) and(10.9.5.3).

Proof: By(10.10.5.2), it suffices to show that ||A∗πn − A∗||HS → 0. But this norm is just∑
k>N ||A∗fk||2H, which converges to 0. □
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Prop.(10.10.5.4)[Hilbert-Schmidt Inner Product]. IfH is a Hilbert space and A,B ∈ S2(H), then
B∗A ∈ S1(H) by(10.10.5.2)(10.10.5.7), then we can define an Hilbert-Schmidt inner product on
S2(H):

(A,B) = tr(B∗A)(10.10.5.9).

Then this makes S2(H) a Hilbert space.

Proof: This follows from(10.10.5.2). □

Prop.(10.10.5.5)[Integral Operator is Hilbert-Schmidt].Let Ω be a σ-finite measure space and
K(x, y) ∈ L2(Ω × Ω), then the operator Lu(x) =

∫
ΩK(x, y)u(y)dy defined in(10.9.5.2) is a Hilbert-

Schmidt operator on L2(Ω). In fact, ||L||2 = ||K||L2 .

Proof: Let E be an Hilbert basis of L2(Ω), then we have

||L||22 =
∑

f1,f2∈E
|(Lf1, f2)|2 =

∑
f1,f2∈E

|
∫
X

∫
X
f2(y)K(x, y)f1(x)dxdy|2 =

∑
f1,f2∈E

(K, f1 ⊗ f2)2

But by(10.4.6.4) {fi ⊗ fj} form a Hilbert Basis for L2(Ω× Ω), then the equation equals ||K||22 □

Trace Classes

Def.(10.10.5.6) [Trace Classes].Let H be a Hilbert space, {ei}, {fi} are two orthonormal basis,
A ∈ B(H). Let |A| = (A∗A)1/2 which is positive, then∑

i

(|A|ei, ei) =
∑
i

(|A|1/2ei, |A|1/2ei) =
∑
i

|||A|1/2fi|| =
∑
i

(|A|fi, fi)

by(10.10.5.1), thus we can define ||A||1 =
∑
i(|A|ei, ei), and say A is a trace class if ||A||1 < ∞.

The space of trace classes is denoted by S1(H).
A trace-class A is clearly compact as |A| is a limit of f.d. range operators.(Use diagonalization,

then there are only countably many eigenvectors of |A|).

Prop.(10.10.5.7). If A ∈ B(H), then the following are equivalent:
• A ∈ S1(H).
• |A|1/2 ∈ S2(H).
• |A| is a product of two elements in S2(H).
• A is a product of two elements in S2(H).

Proof: 1→ 2→ 3 is clear, for 3→ 4: if |A| = TS, then by polar decomposition A = U |A| = (UT )S,
and UT ∈ S2(H) by(10.10.5.2), so A is a product of two elements in S2(H).

4→ 3 is similar to 3→ 4.
3→ 1: if A = BC where B,C ∈ S2(H), then B∗ ∈ S2(H) also by(10.10.5.2), and

||A||1 =
∑
i

(Aei, ei) =
∑
i

(Cei, B∗ei) ≤
∑
i

||Cei||||B∗ei|| ≤ ||C||2||B∗||2 <∞

□
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Lemma(10.10.5.8). if T is a positive trace-class and S ∈ B(H), then if xi is an orthonormal basis of
H, then ∑

i

(STxi, xi) ≤ ||S||||T ||1

is absolutely convergent, and is independent of the basis chosen.

Proof: Let ei be the basis of eigenvectors of T of eigenvalues λi > 0, then∑i λi <∞ by(10.10.5.7),
and

(STxi, xi) =
∑
j

(xi, ej)(STej , xi) =
∑
j

λj(xi, ej)(Sej , xi)

And ∑
i

∑
j

λj |(xi, ej)(Sej , xi)| ≤
∑
j

λj ||ej ||||Sej || ≤ ||S||
∑

λα <∞.

Moreover:∑
i

(STxi, xi) =
∑
i

∑
j

((xi, ej)STej , xi) =
∑
i

∑
j

(STej , (ej , xi)xi) =
∑
j

(STej , ej).

□

Prop.(10.10.5.9) [Singular Trace]. If T ∈ S1(H) and xα is an orthonormal basis of H, then∑
(Txα, xα) absolutely converges, and is independent of the basis chosen, called the singular trace

trT of T . The singular trace is a positive definite linear functional on S1(H).

Proof: Use polar decomposition T = U |T |(10.10.4.20) and notice |T | is a positive trace
class(10.10.5.7) and then use(10.10.5.8). □

Prop.(10.10.5.10)[Trace of Integral Operators].Let A,B be L2 integral operators on a σ-finite
measure space Ω with kernel K1(x, y),K2(x, y) ∈ L2(Ω × Ω), then AB is also an integral operator
with kernel ∫

K1(x, z)K2(z, y)dz,

and
tr(AB) =

∫ ∫
K1(x, y)K2(y, x)dxdy.

Proof: The formula for integral kernel is an immediate consequence of Fubini-Tonelli theorem. For
the trace, observe that A∗ is the integral operator with kernel K1(y, x)(10.10.2.10), thus

tr(AB) =
∑
i

(ABei, ei) =
∑
i

(Bei, A∗ei)

=
∑
i

∑
k

(ek, A∗ei)(Bei, ek)

=
∑
i

∑
k

(ek ⊗ ei,K∗
1 )(K2, ek ⊗ ei)

= (K2,K
∗
1 ) =

∫ ∫
K1(x, y)K2(y, x)dxdy

as {ei ⊗ ek is a Hilbert basis for Ω× Ω(10.4.6.4). □

Prop.(10.10.5.11)[Properties of Trace Classes].
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1. S1(H) is a two-sided *-ideal of L(H).
2. || · ||1 is a norm on S1(H).
3. If T ∈ S1(H), then trT ∗ = trT .
4. For any T ∈ S1(H) and S ∈ L(H), tr(ST ) = tr(TS), and | tr(ST )| ≤ ||S||||T ||1. In particular

the singular trace is a bounded linear functional on S1(H).

Proof: Let S, T ∈ S1(H), S = V |S|, T = W |T |, S + T = X|S + T | where V,W,X are unitary, then
|S + T | = X∗(S + T ) is positive compact, so it has an orthonormal eigenbasis en by(10.10.4.16), so∑

(|S + T |xi, xi) =
∑

(X∗V |S|xi, xi) +
∑

(X∗W |S|xi, xi) ≤ ||S||1 + ||T1||

by(10.10.5.8). So S + T is a trace class, and ||S + T ||1 ≤ ||S||1 + ||T ||1.
Now if U is unitary and T ∈ S1(H), then (UT )∗UT = T ∗T , so UT is a trace class, and (TU)∗TU =

U−1TU has |TU | = U−1|T |U , so TU is also a trace class. Moreover, tr(TU) =
∑

(TUxi, xi) =∑
(UTUxi, Uxi) = tr(UT ).
Then notice very S ∈ L(H) is a linear combination of four unitary operator(10.10.4.9), so the

proposition is true, and if T is a trace class, then T = V |T |, and T ∗ = |T |V ∗ is also a trace class.
4: | tr(ST )| ≤ ||SV ||||T ||1 = ||S||||T ||1 by(10.10.5.8). □

Prop.(10.10.5.12)[Trace Class as a Banach Space].Let S0(H) be the space of operators of f.d.
range, then the map

ρ : S1(H)→ S0(H)∗ : ρ(A) : C 7→ tr(CA)

is an isometric isomorphism. In particular, S1(H) is a Banach space, by(10.8.3.1).

Proof: Clearly ρ is a linear map as singular trace is. For T ∈ S1(H), ||ρ(T )|| ≤ ||T ||1 by(10.10.5.11).
If Φ ∈ S0(H)∗, g, h ∈ H, consider g⊗h∗ ∈ S0(H) that g⊗h∗(v) = (v, h)g, then B(g, h) = Φ(g⊗h∗)

is a sesquilinear form on H that is bounded by ||Φ||. Thus by Lax-Milgram(10.10.2.7), there is a
unique T ∈ B(H) that B(g, h) = (g, Th).

Now let A = T ∗ and let A = U |A| be the polar decomposition, E an orthonormal basis of H and
S ⊂ E a finite subset, define

CS = (
∑
e∈S

e⊗ e∗)U∗ =
∑
e∈S

e⊗ (Ue)∗.

Then CS is of f.d. and ||CS || ≤ 1. And:∑
e∈S

(|A|e, e) =
∑
e∈S

(U∗Ae, e) =
∑
e∈S

(e, TUe) =
∑
e∈S

B(e, Ue) =
∑
e∈S

Φ(e⊗ (Ue)∗) = Φ(CS).

So ||A||1 ≤ ||Φ||.
If C is any operator of f.d. range that C = ⊕gk ⊗ h∗

k, then

Φ(C) =
∑

Φ(gk ⊗ h∗
k) =

∑
B(gk, hk) =

∑
(Agk, hk) =

∑
tr(A(gk ⊗ h∗

k)) = tr(AC) = ρ(A)(C)

so the image is A is just Φ. This shows that ρ is surjective and moreover ||A||1 = ||ρ(A)||, so we are
done. □
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10.11 Analysis on Locally Compact Groups

Main references are [Fol15], [Bum98].
All representations in this section are assumed to be over C.

1 Locally Compact Groups
Def.(10.11.1.1) [Left and Right Regular Actions].On a topological group G, the left regular
action and right regular action are defined as follows: Lyf(x) = f(y−1x), Ryf(x) = f(xy).

Def.(10.11.1.2)[Involution].For f ∈ Cc(G) or f ∈ Lp(G) for some p, let f̃(x) = f(x−1).

Prop.(10.11.1.3) [Translation is Continuous]. If f ∈ Cc(G), then f is left and right uniformly
continuous. Equivalently, G → Cc(G) : y 7→ Ry(f) and y 7→ Ly(f) are continuous group homomor-
phisms from G to Cc(G).

Proof: Cf.[Folland Abstract Harmonic Analysis P38]. □

Prop.(10.11.1.4).Locally compact Hausdorff group is normal.

Proof: Notice that by choosing a precompact symmetric open neighbourhood U of identity, there
exists a σ-compact clopen subgroup H. So H can σ-locally refine every open cover, thus G can, too.
So by (3.3.7.2) G is paracompact. As a topological group, G is regular, thus G is normal by (3.3.7.6).
□

Prop.(10.11.1.5)[Dirac sequence].For a locally compact Hausdorff group G , a Dirac sequence
is a sequence fn ∈ Cc(G) that fn → δ1 in the weak topology of Measc(G).

Dirac sequences exist.

Proof: □

Prop.(10.11.1.6).Every locally compact group G has a subgroup G0 that is clopen and σ-compact.

Proof: Let U be a symmetric precompact nbhd of 1 in G, then let Un = Un, then Un ⊂ Un+1, so
let G0 = ∪nUn = ∪Un, then it is open because each Un does, and compact because each Un does. □

Prop.(10.11.1.7). If G is locally compact Hausdorff, and H is subgroup that is locally compact in the
induced topology, then H is closed in G.

Proof: By hypothesis there exists an open nbhd U of e ∈ G that U∩H has compact closureK ⊂ H.
But then K is also compact in G thus closed. So K is the closure of U ∩H in G. Choose a symmetric
open nbhd V of e ∈ G that V V ⊂ U , and suppose x ∈ H, then x−1 ∈ H and V x−1 ∩H ̸= ∅. Let
y ∈ V x−1 ∩H. For any nbhd Ui of e ∈ G, choose x′ ⊂ xUi ∩H, then yx′ = yx(x−1x′) ∈ yxUi and
also yx′ ∈ H, yx′ ∈ V x−1xV ⊂ U . By arbitrariness of Ui, this means yx ∈ U ∩H = K ⊂ H, thus
x ∈ H, and H is closed. □

Integration on Locally Compact Groups

Def.(10.11.1.8)[Positive Linear Functional].A positive linear functional is a linear functional I
on Cc(X) that I(f) ≥ 0 whenever f ≥ 0. How is this definition compatible with that of(10.10.3.10)?.



1056 CHAPTER 10. CONDENSED MATHEMATICS AND ANALYSIS

Lemma(10.11.1.9)[Positive Linear Functional is Continuous].For a LCH space X, a positive
linear functional(10.11.1.8) I on Cc(X) is automatically continuous, where Cc(X) is given compact
convergence topology as in(10.9.2.1).

Proof: We need to prove that for any compact subset K of X, there is a constant CK that for any
f ∈ C(G) with support in K, we have |I(f)| ≤ CK ||f ||∞.

Given any K, choose by Urysohn lemma a φ ∈ Cc(X, [0, 1]) that φ = 1 on K, so if Supp f ⊂ K,
then |f | ≤ ||f ||∞φ, thus the positivity of I shows that |I(f)| ≤ I(φ)||f ||∞. □

Prop.(10.11.1.10)[Riesz-Markov-Kakutani Representation Theorem].Let X be a locally com-
pact Hausdorff space.

• If I is a positive linear functional(10.11.1.8) on Cc(X), there is a unique Radon measure µ on
X such that I(f) =

∫
fdµ. Moreover,

µ(U) = sup{I(f) : f < U} for U open,

µ(K) = inf{I(f) : f > χK} for K compact.

• If I is a continuous linear functional on C0(X), there is a unique regular complex Borel measure
µ on X that I(f) =

∫
fdµ.

In particular if X is compact, M(X) the space of Radon measures on X is the dual space of C(X).

Proof: Cf.[Real Analysis Folland P212]. □

Prop.(10.11.1.11)[Haar Measure].A left(right) Haar measure on a topological group G is a non-
zero Radon measure(10.4.1.9) µ on G that satisfies µ(xE) = µ(E)(µ(Ex) = µ(E)). A Radon measure
µ is a Haar measure iff it satisfies

∫
Lyfdµ =

∫
fdµ for any f ∈ C+

c (G) and y ∈ G(10.11.1.3).
Every Locally compact group G possesses a unique left Haar measure µ.

Proof: If µ is a Haar measure, then
∫
Lyfdµ =

∫
fdµ by approximation by simple func-

tions(10.4.8.3). Conversely, if
∫
Lyfdµ =

∫
fdµ for any f ∈ Cc(G), then it holds for all f ∈ Cc(G),

hence µ(xE) = µ(E) by Riesz-Markov-Kakutani representation theorem(10.11.1.10).
For f, φ ∈ C+

c (G), define (f : φ) to be the infimum of all finite sms ∑n
i=1 ci that f ≤

∑n
i=1 ciLxiφ

for some x1, . . . , xn ∈ G. This makes sense because f has finite support so can be covered by f.m.
translation of any open set. This quantity satisfies the following properties:

• (f : φ) = (Lyf : φ) for any y ∈ G.
• (f1 + f2 : φ) ≤ (f1 : φ) + (f2 : φ).
• (cf : φ) = c(f : φ).
• (f1 : φ) ≤ (f2 : φ) for f1 ≤ f2.
• (f : φ) ≥ ||f ||sup/||φ||sup.
• (f : φ) ≤ (f : ψ)(ψ : φ) for any ψ ∈ C+(G).

Now choose a f0 ∈ C+
c (G) and define Iφ(f) = (f :φ)

(f0,φ) for f, φ ∈ C+
c (G). Then Iφ is left-invariant, sub-

additive, homogeneous of degree 1, and monotone. Moreover, it satisfies (f0 : f)−1 ≤ Iφ(f) ≤ (f : f0).
Let Xf be the interval [(f0 : f)−1, (f : f0)], and let X =

∏
f∈C+

c (G)Xf , then for each nbhd V of
1 ∈ G, let K(V ) be the closure in X of {Iφ| Supp(φ) ⊂ V }, then these sets satisfy finite intersection
property. So by compactness, there is an I contained in every K(V ). Which means for any nbhd
V of 1 ∈ G and ε > 0 and f1, . . . , fn ∈ C+

c (G), there exists φ ∈ C+
c (V ) that |I(fi) − Iφ(fi)| < ε.
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Then by some argument, I commutes with left translation, addition and multiplication by positive
scalars. Now extend I to a positive linear functional on Cc(G), and then use Riesz-Markov-Kakutani
representation theorem(10.11.1.10) to finish. □

Lemma(10.11.1.12).For any f1, f2 ∈ C+
c (G) and ε > 0, there is a neighborhood V of 1 ∈ G that in

the notation in the proof of(10.11.1.11), Iφ(f1) + Iφ(f2) ≤ Iφ(f1 + f2) + ε whenever Supp(φ) ⊂ V .

Proof: Let g ∈ C+
c (G) that g = 1 on Supp(f1 + f2) and δ > 0, let hi = fi/(f1 + f2 + δg), then

hi ∈ C+
c (G) and there is a nbhd V of 1 ∈ G s.t. |hi(x)− hi(y)| < δ for i = 1, 2 and y−1x ∈ V . Take

φ ∈ C+
c (G) with Supp(φ) ⊂ V . If h ≤∑ ciLxiφ, then

fi(x) = h(x)hi(x) =
∑

cjφ(x−1
j x)hi(x) ≤

∑
cjφ(x−1

j x)[hi(xj) + δ]

because whenever φ(x−1
j x) ̸= 0, |hi(x)− hi(xj)| < δ. As h1 + h2 < 1,

(f1 : φ) + (f2 : φ) ≤
∑

cj [h1(xj) + δ] +
∑

cj [h2(xj) + δ] ≤
∑

cj [1 + 2δ]

which implies

Iφ(f1) + Iφ(f2) ≤ (1 + 2δ)Iφ(h) ≤ (1 + 2δ)[Iφ(f1 + f2) + δIφ(g)].

Notice δ is arbitrary, thus we can choose δ small enough that the assertion is true. □

Prop.(10.11.1.13). If G is a locally compact group and µ is a Haar measure on G, then for any open
subset U of G, µ(U) > 0.

Proof: By inner regularity, µ(K) > 0 for some compact subset K. Suppose µ(U) = 0 for an open
subset U , then f.m. translates of U covers K, contradiction. □

Prop.(10.11.1.14). Integration of a nontrivial character on a compact group G w.r.t. the Haar mea-
sure is 0.

Proof:
∫
f(x)dµ(x) =

∫
f(yx)dµ(yx) = f(y)

∫
f(x)dµ(x). Now choose a y that f(y) ̸= 1. □

Def.(10.11.1.15) [Modular Function].For a left Haar measure µ on a locally compact group G,
µx(E) = µ(Ex) is also a left Haar measure, so there is a ∆(x) that µx = ∆(x)µ. Then the function
∆ is a group homomorphism from G to R+, which is called the modular function of G.

G is called unimodular iff ∆ = 1, i.e. a left Haar measure is also a right Haar measure.
Obviously, a locally compact Abelian group is unimodular.

Prop.(10.11.1.16).∆ is a continuous group homomorphism from G to R+, and∫
Ryfdµ = ∆(y−1)

∫
fdµ.

equivalently, dµ(xy0) = ∆(y0)dµ(x).

Proof: For the continuity of ∆, because y 7→ Ry(f) is continuous for each f(10.11.1.3), so y 7→∫
Ryfdλ is continuous, as µ is Radon measure, so by the equation just proved, ∆ is continuous.
Now for any measurable function E, χE(xy) = χEy−1(x), thus∫

χE(xy)dµ = µ(Ey−1) = ∆(y−1)µ(E) = ∆(y−1)
∫
χE(x)dµ(x),

which proves the equation for f = χE . Then the general case follows from approximating f by simple
functions(10.4.8.4). □



1058 CHAPTER 10. CONDENSED MATHEMATICS AND ANALYSIS

Prop.(10.11.1.17) [Involution Measure]. If µ is a left Haar measure and ρ is defined by ρ(E) =
µ(E−1), then ρ is a right Haar measure, and dρ(x) = dµ(x−1) = ∆(x−1)dµ(x).

Proof: Notice∫
Ry(f)(x)∆(x−1)dµ(x) = ∆(y)

∫
f(xy)∆((xy)−1)dµ(x) =

∫
f(x)∆(x−1)dµ(x),

so ∆(x−1)dµ(x) is a right Haar measure, hence cdµ(x−1) for some c. If c ̸= 1, we let U be a
precompact symmetric nbhd U of 1 that |∆(x−1) − 1| ≤ 1

2 |c − 1| on U . But then |c − 1|µ(U) =
|
∫
U (∆(x−1)− 1)dµ(x)| ≤ 1

2 |c− 1|µ(U), contradiction. □

Prop.(10.11.1.18).For a compact group K of G, ∆ is trivial on K. So compact group is unimodular,
and if G/[G,G] is compact, then it is also unimodular.

Proof: These all follow from(10.11.1.16) and the fact that a compact subgroup of R+ is {1}, and
R is Abelian. □

Prop.(10.11.1.19)[Lie Type Case]. Suppose G is an open subset of KN where K is a local field,
and the left translation is given by

xy = A(x)y + b(x)

then the Haar measure of G is given by |detA(x)|−1dx, where dx is the Lebesgue measure on RN .
Also when we want to calculate the right Haar measure, consider the right action.

Proof: Use change of variable formula, because A(xy) = A(x)A(y), and

| detA(ax)|−1d(ax) = | detA(ax)|−1d(A(a)x+ b(x)) = |detA(x)|−1dx.

□

Cor.(10.11.1.20)[Examples of Lie Group Measures].
• dx/|x| is the Haar measure on R∗.
• dxdy/x2 + y2 is the Haar measure on C∗.
• x11x

2
22 . . . x

n
nn

∏
i<j dxij(resp. xn11x

n−1
22 . . . xnn

∏
i<j dxij) are the left(resp. right) Haar measure

on the group of upper-triangular matrixes in GL(n,R).
• ∏

i<j dxij is the left and right Haar measure on the group of upper-triangular unipotent matrices
in GL(n,R).

• | detT |−ndT is the left and right Haar measure on the groupGL(n,R), where dT is the Lebesgue
measure on Mn(R) = Rn2 .

• The ax+b group G of all affine (invertible)translations of R has left measure dadb/a2 and right
Haar measure dadb/a.

Proof: Clear. □

Prop.(10.11.1.21)[Modular Function of Lie Groups]. If G is a Lie group and Ad is the adjoint
action of G on g, then ∆(x) = | det Ad(x−1)|.
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Proof: Let G be a Lie group of dimension m, then the Haar measure on a Lie group is given by
the absolute value of a left-invariant m-form ω. Now for any X ∈ g corresponding to a left invariant
vector space LX ,

d(Rg)p((LX)p) = (LAd(g−1)X)pg

by(11.7.3.5), so R∗
gω = det(Ad(g−1))ω. So ∆(g)ω = R∗

g|ω| = |det(Ad(g−1))||ω|. □

Cor.(10.11.1.22) [Unimodular Lie Groups].Any Abelian/compact/semisimple/reductive/nilpo-
tent Lie group is unimodular.

Proof: The nilpotent case follows directly from(10.11.1.21), as det Ad(x) = exp(tr ad(x)) and
ad(x) is nilpotent. The compact case is by(10.11.1.18). For the semisimple case, G = [G,G] be-
cause g = [g, g](2.5.2.4) and it is connected, so we are done by(10.11.1.18). For the reductive case:
Cf.[Kna96]P467. □

Convolutions

Def.(10.11.1.23)[Convolution of Measures]. If µ, ν are two complex(hence finite) Radon measures
on G, the map

I(φ) =
∫ ∫

φ(xy)dµ(x)dν(y)

is clearly a linear functional on Cc(G) that satisfies |I(φ)| ≤ ||φ||sup||µ||||ν||, so it defines a measure
on G by Riesz representation(10.11.1.10), called the convolution of µ and ν, denoted by µ ∗ ν, that
||µ ∗ ν|| ≤ ||µ||||ν||.

Prop.(10.11.1.24)[Measure Algebra].
• The convolution of measure is associative.
• δx ∗ δy = δxy.
• The convolution of measure is commutative iff G is commutative.
• The convolution makesM(G) into a unital Banach algebra, called the measure algebra of G.

Proof: 1: If φ ∈ Cc(G), then∫
G
φd[µ ∗ (ν ∗ σ)] =

∫ ∫
φ(xy)dµ(x)d(ν ∗ σ)(y)

=
∫ ∫ ∫

φ(xyz)dµ(x)dν(y)dσ(z)

=
∫ ∫

φ(yz)d(µ ∗ ν)(y)dσ(z)

=
∫
φd[(µ ∗ ν) ∗ σ]

by Fubini theorem, which shows µ ∗ (ν ∗ σ) = (µ ∗ ν) ∗ σ.
2: ∫ ∫

φd(δx ∗ δy) =
∫ ∫

φ(uv)dδx(u)dδy(v) = φ(xy) =
∫
φdδxy.

3: If G is commutative, then φ(xy) = φ(yx), then the commutativity follows from Fubini theorem.
The converse follows from item2.
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4 It is a Banach algebra because ||µ ∗ ν|| ≤ ||µ||||ν||(10.11.1.23). And the point measure δ1 is the
unit: ∫

φd(δ ∗ µ) =
∫ ∫

φ(xy)dδ(x)dµ(y) =
∫
φ(y)dµ(y)

shows δ ∗ µ = µ for any µ, and similarly µ ∗ δ = µ, so δ is the identity. □

Prop.(10.11.1.25)[Involution of Measure].M(G) has a canonical involution that preserves mea-
sure:

µ 7→ µ∗ : µ∗(E) = µ(E−1).

Proof: µ∗ clearly satisfies ||µ∗|| = µ∗(G) = µ(G) = ||µ||. And for any φ ∈ Cc(G),

φd(µ∗ν)∗ =
∫
φ(x−1)d(µ ∗ ν)(x) =

∫
φ((xy)−1)dµ(x)dν(y) =

∫ ∫
φ(yx)dµ∗(x)ν∗(y) =

∫
φd(ν∗∗µ∗),

which shows (µ ∗ ν)∗ = ν∗ ∗ µ∗. □

Def.(10.11.1.26)[L1 Group Algebra].Fix a Haar measure dµ on G, L1(G) embeds into the M(G)
by identifying f with the measure f(x)dµ(x), and this is an isometry.

So the convolution and involution can be defined on L1(G), and the outcome turns out to be a.e.
defined and in L1(G) too:

f ∗ g(x) =
∫
f(y)g(y−1x)dy

by Fubini-Tonelli theorem, and the involution

f∗(x) = ∆(x−1)f(x−1).

Proof:

(f ∗ g)(φ) =
∫ ∫

φ(xy)f(x)g(y)dxdy =
∫ ∫

φ(y)f(x)g(x−1y)dxdy =
∫
φ(y)(

∫
f(x)g(x−1y)dx)dy.

(fdµ)∗ = (fdµ)(x−1) = f(x−1)∆(x−1)dµ(x)(10.11.1.17).

□

Prop.(10.11.1.27).The convolution f ∗ g can be calculated in multiple ways by left invariance
and(10.11.1.17):

f∗g(x) =
∫
f(y)g(y−1x)dy =

∫
f(xy)g(y−1)dy =

∫
f(y−1)g(yx)∆(y−1)dy =

∫
f(xy−1)g(y)∆(y−1)dy.

In particular, if G is unimodular, then it can be calculated anyway you want.

Prop.(10.11.1.28).For 1 ≤ p <∞, the left and right translations of G on Lp(G) are all continuous.

Proof: Cf.[Fol15]P58. □

Prop.(10.11.1.29)[Lp-Estimate]. If 1 ≤ p <∞, f ∈ L1(G) and g ∈ Lp(G), then
• f ∗ g ∈ Lp(G), and ||f ∗ g||p ≤ ||f ||1||g||p ≤ ||f ||p||g||p.
• If G is unimodular or f has compact support, then the same as above holds for g ∗ f .
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Proof: 1: By Minkowski’s inequality(10.4.6.5),

||f ∗ g||p = |
∫
f(y)Lygdy||p ≤

∫
|f(y)|||Lyg||pdy = ||f ||1||g||p.

2: This is similar, using(10.11.1.27). □

Prop.(10.11.1.30)[Convolution].
• Suppose G is unimodular and f ∈ Lp(G), g ∈ Lq(G) with 1/p + 1/q = 1, 1 < p < ∞, then
f ∗ g ∈ C0(G), and ||f ∗ g||sup ≤ ||f ||p||g||q.

• Suppose f ∈ L1(G), g ∈ L∞(G), then f ∗ g is left uniformly continuous, and g ∗ f is right
uniformly continuous.

Proof: Cf.[Fol15]P57, P58. □

Prop.(10.11.1.31)[Approximate Identity].Let U be a neighborhood base of 1 ∈ G. A family of
L∞ functions {φU} are called an approximate identity if:

1.
∫ 1

0 ΦU (x)dx = 1.

2. sup
∫ 1

0 |ΦU (x)|dx <∞.
3. For any δ > 0,

∫
G\U |ΦU (x)|dx→ 0 as N → +∞.

For any approximate identity, if 1 ≤ p < ∞ and f ∈ Lp(G) for 1 ≤ p < ∞, or p = ∞ and f is left
uniformly continuous, then ΦU ∗ f → f ∈ Lp(G).

Proof: Cf.[Fol15]P58. □

Homogenous Spaces

Def.(10.11.1.32)[Notations]. If G is a locally compact group with left Haar measure dx and H is a
closed subgroup with left Haar measure dξ, let q : G→ G/H be the quotient map.

Prop.(10.11.1.33). If G is a σ-compact locally compact group and S is a transitive G-space that is
locally compact and Hausdorff, then if s0 ∈ S and Stab(s0) = H, then G/H ∼= S as G-spaces.

Proof: Cf,[Folland P60]. □

Lemma(10.11.1.34). If E ⊂ G/H is compact, then there is a compact K ⊂ G that q(K) = E.

Proof: Choose a precompact nbhd V of 1 in G, since q is open, the set q(xV ) is an open cover of
E, so there are f.m. xi that E ⊂ ∪q(xiV ). Then let K = q−1(E) ∩ (∪xiV ), this will suffice. □

Def.(10.11.1.35) [Fundamental Domain].A fundamental domain for a group Γ acting discon-
tinuously on a locally compact second countable Hausdorff space X is an Borel subset F ∈ X that:

• ∪γ∈ΓγF = H.
• if γ ̸= 1 ∈ Γ, then γF ∩ F = ∅.

Then fundamental domains exist.

Proof: The quotient space G\Γ is locally compact second countable, thus there is a countable
set of precompact open basis {Bi} for G\Γ, and a countable set of precompact open basis {Ci}
for X. For each x ∈ G\Γ, choose x ∈ Bi(x) and choose a preimage x ∈ X and a nbhd Ci(x) that
Ci(x) ∩ γ(Ci(x)) = ∅ for any γ ̸= 1, then there is a nbhd Bj(x) contained in the image of Ci(x). Then
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we can take a precompact preimages of Bj(x) in Ci(x)(by(10.11.1.34)), labeled by Ui. Then Ui maps
isomorphically to their images in G\Γ and covers G\Γ.

Now take V1 = W1 = U1, and Wn+1 = Un+1\ ∪γ∈Γ γ(Vn), Vn+1 = Vn ∪Wn+1. Then ∪Vi is a
fundamental domain. □

Prop.(10.11.1.36)[Projection of Functions].There is a map P : Cc(G) → Cc(G/H) : Pf(xH) =∫
H f(xξ)dµ(ξ). Pf is continuous and this map is well-defined and surjective.

And Supp(Pf) ⊂ q(Supp f), and if φ ∈ Cc(G/H), then P ((φ ◦ q)f) = φPf .

Proof: Pf is continuous because f is left uniformly continuous(10.11.1.3). By(10.11.1.37), there is
a g ≥ 0 ∈ Cc(G) that Pg = 1 on Suppφ. Let f = (φ ◦ f)g, then Pf = φ(Pg) = φ. □

Lemma(10.11.1.37). If F ∈ G/H is compact, then there is a f ∈ Cc(G) that f ≥ 0 and Pf = 1 on
F .

Proof: Let E be a precompact nbhd of F in G/H, choose a compact K ⊂ G that q(K) = E
by(10.11.1.34). Choose g ∈ Cc(G) ≥ 0 that is positive on K and φ ∈ Cc(G/H) that is 1 on F and
vanish outside E, then set

f = φ ◦ q
Pg ◦ q

g

then f ≥ 0 and Pf = (φ/Pg)Pg = φ. □

Prop.(10.11.1.38)[Quotient Measure Regular Case]. If G is a locally compact group and H is
a closed subgroup, then there is a G-invariant positive Radon measure µ on G/H iff ∆G|H = ∆H .
And if this is the case, then this measure is unique up to constant, and if suitably chose, satisfies:∫

G
f(x)dx =

∫
G/H

Pfdµ =
∫
G/H

∫
H
f(xξ)dξdµ(xH).

for any f ∈ Cc(G).

Proof: Cf.[Folland Abstract Analysis P62]. □

Cor.(10.11.1.39) [Decomposition of Measure]. If G is a unimodular locally compact group and
P,K be closed subgroups s.t. P ∩K is compact and G = PK. Let dLp, dRk be the left and right
Haar measure on P,K respectively, then a Haar measure on G is given by∫

G
f(g)dg =

∫
K

∫
P
f(pk)dLpdRk.

Proof: Consider H = P ×K and M = P ∩K embedded diagonally in H, then there is a homeo-
morphism H/M ∼= G given by (p, k) 7→ pk−1. Then we can verify both side are H-invariant quotient
measure on G ∼= H/M , so by uniqueness in(10.11.1.38), the equation is true. □

Def.(10.11.1.40)[Rho-Functions]. If G is a locally compact subgroup and H is a closed subgroup.
Let ∆ = ∆G/∆H . Let S(G,∆) be the space of continuous functions on G that satisfies

• for any h ∈ H, f(hg) = ∆(h)f(g).
• f is compactly supported in H\G.

Lemma(10.11.1.41).Let G be a locally compact group and H a closed subgroup, then there is a
continuous function f0 : G→ [0,∞) that
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• f−1
0 ((0,∞)) ∩Hx ̸= ∅ for any x ∈ G.

• Supp f0 ∩HK is compact for any compact group K of G.

Proof: Cf.[Folland, P64]. □

Lemma(10.11.1.42). If f ∈ Cc(G) and Pf = 0, then
∫
fρ = 0 for any rho-function ρ. In fact, this is

true if ρ is allowed to take value 0.

Proof: Cf.[Folland P65]. □

Lemma(10.11.1.43).There is an operator p : Cc(G)→ C(G) given by

p(f)(g) =
∫
H
f(hg)∆−1

G (h)dµH(h).

Then p is rightG-invariant, and p(ff ′) = fp(f ′) for any f ′ ∈ Cc(G) and f ∈ C(G) that isH-invariant.
• The image of p is S(G,∆), and if s ≥ 0 ∈ S(G,∆), then there is a non-negative f ≥ 0 ∈ Cc(G)

that p(f) = s.
• If p(f) = 0, then

∫
G f(x)dνG(x) = 0, where dνG is a right Haar measure on G.

Proof: 1: It is clearly that p(f)(gh) = ∆(h)p(f)(g), and let f0 be defined as in(10.11.1.41), then
s0 = p(f0) is positive-valued. Now for any s ∈ S(G,∆), p(ss−1

0 f0) = ss−1
0 p(f0) = s, and sf0 ∈ Cc(G)

by hypothesis.
2: If p(f) = 0, then∫
G

∫
H
s−1

0 (g)f0(g)f(hg)∆−1
G (h)dµH(h)dνG(g) =

∫
G

∫
H

∆(h)s−1
0 (g)f0(h−1g)f(g)dµH(h)dνG(g)

=
∫
G

[
∫
H
f0(hg)∆G(h)−1dµH(h)]s−1

0 (g)f(g)dνG(g)

=
∫
G
f(g)dνG(g)

□

Prop.(10.11.1.44)[Haar Measure on Rho-Functions].There exists a unique continuous positive
functorial νH\G on S(G,∆) that for any f ∈ Cc(G),∫

G
f(x)dνG(x) =

∫
H\G

p(f)(y)dνH\G(y) =
∫
H\G

∫
H
f(hg)∆−1

G (h)dµH(h)dνH\G.

and it is invariant under the right action of G. We denote νH\G(s) =
∫
H\G s(g)dνH\G(g) for s ∈

S(G,∆).

Proof: This follows from(10.11.1.43). □

Cor.(10.11.1.45). If G is a unimodular locally compact group and H,K be closed subgroups s.t.
H ∩K is compact and G = PK, then the the quotient measure µH\G is given by

f 7→
∫
K
f(k)dνK(k).

where dµK(k) is a right Haar measure on K, by comparison with(10.11.1.39).
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Maximal Compact Subgroup

Def.(10.11.1.46) [Maximal Compact Subgroup].A maximal compact subgroup of a locally
compact group G is a maximal object in the set of all compact subgroup of G.

Prop.(10.11.1.47)[Cartan-Iwasawa-Malcev theorem].Maximal compact subgroup exists for any
locally compact group G.

Proof: □

Locally Profinite Groups

Def.(10.11.1.48)[Locally Profinite Group].A locally profinite group is a locally profinite topo-
logical group. A profinite group is locally profinite, and any compact open subgroup of a locally
profinite group is profinite.

Cor.(10.11.1.49).A closed subgroup of a locally profinite group is locally profinite, and a quotient
group is locally profinite.

Proof: The proof is very similar to that of(2.1.14.4), as the result of(3.3.1.24) remains true, because
any connected nbhd of e is contained in any compact open subgroup. □

Prop.(10.11.1.50)[Compact Open Subgroups Form a Basis]. If G is a locally profinite group,
then the set of compact open subgroups form a basis of the nbhd of 1.

Proof: For any nbhd U of 1, choose a precompact nbhd V of 1 contained in U , then there is another
compact open subgroup contained in V , by(3.11.1.24). □

Prop.(10.11.1.51)[Quotient of Locally Profinite Group].A quotient subspace of a locally profi-
nite group is locally profinite.

Proof: Consider the H action on G, then it is regular, because the graph is the preimage of H in
the map G×G→ G : (g1, g2) 7→ g−1

1 g2. So by(3.11.1.10) G/H is Hausdorff. But clearly G→ G/H
is open and G/H is locally profinite as it has a basis of locally compact subsets. □

Lemma(10.11.1.52).Let G be a locally profinite group and H a closed subgroup, then for any open
compact subspace V ⊂ G/H, there is an open compact subspace U ⊂ G that p(U) = V .

Proof: The preimage p−1(V ) is open, so there is a covering of p−1(V ) by open compact subsets Ui.
Then p(Ui) are open and covers V , thus there are f.m. Ui that p(∪Ui) = V . □

Prop.(10.11.1.53)[Homogeneous Group].Let G is a locally profinite group that is σ-compact. If
G acts transitively on a locally profinite space X, let x0 ∈ X and Stab(x0) = H, then G/H → X is
a homeomorphism. ?Is this true for locally compact groups?

Proof: Let N be a compact open subset of N , and gi be the left coset representatives for N ,
which is countable. Now X = ∪iγ(giN)x0. Because a locally profinite space is a Baire space, some
γ(giN)x0 contains a nbhd of γ(gin)x. Now left acts (gin)−1, we see x0 is an interior point of γ(N)x0.
Now N is arbitrary, thus(10.11.1.50) shows g 7→ γ(g)x is open, thus G/H → X is open. It is clearly
continuous, thus G/H ∼= X. □
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2 Unitary Representations
Def.(10.11.2.1)[Intertwining Operators]. if π1, π2 are unitary representations of G, then the space
C(π1, π2) of intertwining operators of π1, π2 as:

C(π1, π2) = {T : Hπ1 → Hπ2 : Tπ1(x) = π2(x)T, ∀x ∈ G}.

And denote C(π1, π1) by C(π1).

Lemma(10.11.2.2).The adjoint operator S 7→ S∗ induces a bijection between the spaces C(π1, π2) ∼=
C(π2, π1).

Lemma(10.11.2.3). If Hπ is a representation of G, M is a closed subspace. Let P be the orthogonal
projection onto M , then M is invariant under π iff P ∈ C(π).

Proof: If P ∈ C(π) and v ∈ M , then π(x)v = π(x)Pv = Pπ(x)v ∈ M , so M is π-invariant.
Conversely if M is π-invariant, then so does M⊥, so π(x)Pv = π(x)v = Pπ(x)v, and also for
v ∈M⊥, so π(x)P = Pπ(x), for any x. □

Prop.(10.11.2.4)[Schur’s Lemma].
• A unitary representation π of G is irreducible iff C(π) consists only of scalar multiples of

identity.
• If π1, π2 are non-equivalent irreducible unitary representations of G, then C(π1, π2) = 0.

Proof: 1: if π is reducible, then it contains a non-trivial projection by lemma(10.11.2.3). Conversely,
if T ̸= cI ∈ C(π), then we consider A = 1

2(T +T ∗), B = 1
2i(T −T

∗), then at least one of them are not
cI. But they are normal, thus by symbolic calculus(10.10.4.3) any χE(A) for some E ⊂ R Borel is
non-trivial(because the spectrum of A is not a single point) and commutes with π, so Hπ is reducible
by(10.11.2.3) again.

2: By(10.11.2.2), for T ∈ C(π1, π2), T ∗ ∈ C(π2, π1), TT ∗ = cI, T ∗T = cI. so T = 0 or c−1/2T is
unitary, and it is an isomorphism between π1, π2. □

Cor.(10.11.2.5). if G is Abelian, then any irreducible representation of G is 1-dimensional.

Proof: If π is a representation of G, then any π(x) commutes with π, thus π(x) = cxI for some cx,
so every subspace of Hπ is irreducible, thus dimH = 1. □

Prop.(10.11.2.6) [Unitary Representation and L1(G)-Representation].Any unitary represen-
tation (π,H) of G determines a representation of L1(G) by

f 7→
∫
f(x)π(x)dx

This is a non-degenerate *-representation of L1(G).
And conversely, any non-degenerate *-representation of L1(G) arises from a unitary representation

of G.

Proof: If π is a unitary representation and f ∈ L1, let π(f) be defined as

π(f)u =
∫
f(x)π(x)udx,

where the integral is in the weak sense(10.9.3.25), and it satisfies ||π(f)|| ≤ ||f ||1.



1066 CHAPTER 10. CONDENSED MATHEMATICS AND ANALYSIS

For the ∗-algebra structure(10.11.1.26), it suffices to prove that

π(f ∗ g) = π(f)π(g), π(f∗) = π(f)∗,

which are true for formal reason:

π(f ∗ g) =
∫ ∫

f(y)g(y−1x)π(x)dydx =
∫ ∫

f(y)g(x)π(yx)dxdy = π(f)π(g),

π(f∗) =
∫

∆(x−1)f(x−1)π(x)dx =
∫
f(x)π(x−1)dx =

∫
(f(x)π(x))∗dx = π(f)∗.

and verified by supplying u, v. For the non-degeneracy, for any u ̸= 0 ∈ H, choose a precompact
nbhd V of identity that ||π(x)u− u|| < ||u|| for x ∈ V , and let f = |V |−1χV , then it can be verified
that ||π(f)u|| ̸= 0.

For the converse, Cf.[Folland P79-81]? □

Prop.(10.11.2.7).We want to consider the difference of the image of L1(G) and G under these two
representations: Let π be a unitary representation of G, then

• The bicommutant(10.10.3.13) of π(G) and π(L1(G)) are identical.
• T ∈ L(H) intertwines π iff it commutes with every π(f) ∈ π(L1(G)).
• A closed subspace M of H is invariant under π iff π(f)M ⊂M for any f ∈ L1(G).

Proof: 1: Cf.[Folland, P82].
2 follows from 1 noticing the fact that T commutes with an algebra iff it commutes with its

von-Neumann algebra.
3 follows from 2 and(10.11.2.3). □

Prop.(10.11.2.8)[Completion of Unitary Representation]. If H0 is a Hermitian inner product
space that G is a topological group acting continuously on H0 that preserves the inner product, then
if H is the Hilbert completion of H0, then the action of G extends to a continuous unitary action on
H.

Proof: The extension is clear as ||π(g)f || = ||f ||. For the continuity, if v ∈ H, g ∈ G, ε > 0, let
v0 ∈ H0 that |v−v0| < ε/6, then there is a nbhdW of g that if g1 ∈W , then |π(g1)v0−π(g)v0| < ε/3.

Then if |v1 − v| < ε/6 and g1 ∈W , then

|π(g1)v1 − π(g)v| = |π(g1)v1 − π(g1)v0 + π(g1)v0 − π(g)v0 + π(g)v0 − π(g)v|
≤ |π(g1)v1 − π(g1)v0|+ |π(g1)v0 − π(g)v0|+ |π(g)v0 − π(g)v|
= |v1 − v0|+ |π(g1)v0 − π(g)v0|+ |π(g)v0 − π(g)v|
≤ ε

which shows the action is continuous. □

Cor.(10.11.2.9).Given a locally compact group G and a discrete subgroup Γ, the right regular action
of G extends to a continuous unitary representation of G on L2(Γ\G,ω).

Proof: Because we can approximate f ∈ L2(Γ\G) by compactly supported continuous func-
tions(10.4.8.5), then the G action is uniformly continuous. □
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Lemma(10.11.2.10) [Auxiliary Compact Supported Function Approximation].Let G be a
locally compact Lie group and K a compact subgroup. If (π,H) is a unitary representation of G on
a Hilbert space, and let f ̸= 0 ∈ H, then for any ε > 0, there is a φ ∈ C∞

c (G) s.t. π(φ) is self-adjoint
and |φ(ρ)f − f | < ε.

Moreover, if f ∈ Hξ which is the decomposition part for K, we can assume φ(kg) = φ(gk) =
ξ(k)−1φ(g). In particular if Hξ is f.d., we find a φ that π(φ)f = f .

Proof: By continuity, there is a nbhd H of 1 that |π(g)f − f | < ε, then we can choose a φ positive
real valued with support in U with integral 1, then |π(φ)f−f | < ε by(10.9.3.22). We can also choose
φ(g) = φ(g−1), then π(φ) is self-adjoint.

For the second case, notice first there is a nbhd V of 1 that kV k−1 ∈ U for any k ∈ K(3.11.1.6),
so let φ1 be a positive real valued function supported in V , and let

φ0(g) =
∫
K
φ1(kgk−1)dk

then φ0 is supported in U and φ(kgk−1) = φ0(g) for any k ∈ K. Assume now that π(kθ) = eikθf ,
then we can use(10.11.1.39) for P = G to see that

π(φ0)f =
∫
G
φ0(h)π(h)fdh =

∫
G

∫
K
φ0(hk)π(hk)fdkdh =

∫
G

∫
K
ξ(k)φ0(hk)dkπ(h)fdh = π(φ)f

where
φ(g) =

∫
K
ξ(k)φ0(gk)dk =

∫
K
ξ(k)φ0(kg)dk

so φ(k) = φ(gk) = ξ−1(k)φ(g) as required. □

Functions of Positive Type

Def.(10.11.2.11)[Positive Type Function].A function of positive type on a closed compact group
G is a function φ ∈ L∞(G) that defines a positive linear functional on the B∗-algebra L1(G). In
other word, ∫

f(x)f(y)φ(y−1x)dydx ≥ 0, ∀f ∈ L1(G).

We denote by P (G) the set of continuous functions of positive type on G.

Prop.(10.11.2.12). If φ is of positive type, then so does φ. (Easy calculation).

Prop.(10.11.2.13). If π is a unitary representation of G and u ∈ Hπ, then φ(x) = (π(x)u, u) ∈ P .

Proof: φ is continuous by definition, so if f ∈ L1, then∫ ∫
f(x)f(y)φ(y−1x)dµ(x)dµ(y) =

∫ ∫
(f(x)π(x)u, f(y)π(y)u)dxdy = ||π(f)u||2 ≤ 0

□

Prop.(10.11.2.14). If f ∈ L2(G), then f ∗ f̃ ∈ P (G)(10.11.1.2).

Proof: Cf.[Folland, P84]. □

Prop.(10.11.2.15)[Cyclic Representations and Functions of Positive Type].Any function of
positive type arises from a irreducible representation and a cyclic vector ε as in(10.11.2.13)
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Proof: Cf.[Folland P84-85]. □

Cor.(10.11.2.16). If φ is a function of positive type, then φ can be chosen to be continuous.

Cor.(10.11.2.17). If φ ∈ P , then ||φ||∞ = φ(1), and φ(x−1) = φ(x).

Proof: φ(x) = (π(x)u, u) for some representation π and u ∈ H, so |φ(x)| ≤ ||u||2 = φ(1) and
φ(x−1) = (π(x−1)u, u) = (u, π(x)u) = φ(x). □

Def.(10.11.2.18).We set:
• P0(G) = {φ|||φ||∞ ≤ 1} = {φ(1) = 1}.
• P1(G) = {φ|||φ||∞ = 1} = {0 ≤ φ(1) ≤ 1}.

By Banach-Alaoglu, P0(G) and P1(G) are a weak*-compact set.

Prop.(10.11.2.19)[Extreme Points of P1].A φ ∈ P1 is an extreme point iff the representation it
corresponds is irreducible. And E(P0) = E(P1) ∪ {0}.

Proof: Cf.[Folland P86]. □

Prop.(10.11.2.20)[Two Topologies Coincide].On P1, the compact-open topology coincides with
that of the weak*-topology.

Proof: Cf.[Folland Abstract Harmonic Analysis P80]. □

Prop.(10.11.2.21).The linear span B(G) of Cc(G) ∩ P (G) includes all functions of the form f ∗ g
where f, g ∈ Cc(G). And it is dense in Cc(G) and Lp(G) for p <∞.

Denote Bp(G) = B(G) ∩ Lp(G).

Proof: By(10.11.2.14), P ∩Cc(G) includes all functions of the form f ∗ f̃ with f ∈ Cc(G), thus its
linear span includes all f ∗ g for f, g,∈ Cc(G) by polarization. Thus it is dense in Cc(G) and Lp(G)
because we can use approximate identity(10.11.1.31). □

Prop.(10.11.2.22)[Gelfand-Raikov]. If G is a locally compact group, then the irreducible represen-
tations of G separate points of G.

Proof: Cf.[Folland Abstract Analysis P91]. □

3 Locally Compact Abelian Group

Dual Group

Def.(10.11.3.1) [Dual Space]. If G is locally compact, denote Ĝ the set of all irreducible unitary
representations of G, called the dual space of G.

Def.(10.11.3.2)[Dual Group]. IfG is locally compact Abelian, the irreducible unitary representations
of G are all 1-dimensional by(10.11.2.5), so it forms a group, called the dual group of G, denoted
by Ĝ.

An element of Ĝ is called a character of G, denoted by ξ. And a continuous homomorphism
from G to C is called a quasi-character.

The topologies on Ĝ that makes it into a LCA group is given in(10.11.3.6).

Remark(10.11.3.3). R̂ ∼= R, and the quasi-characters of R are all of the form x→ esx for s ∈ C.
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Proof: If φ ∈ Ĝ, then φ(0) = 1, and there is an a > 0 that
∫ a

0 φ(t)dt ̸= 0 = A. Now Aφ(x) =∫ x+a
x φ(t)dt, so taking derivative,

φ′(x) = φ(x+ a)− φ(x)
A

= φ(a)− 1
A

φ(x),

which shows φ(x) = esx for some s ∈ C. □

Prop.(10.11.3.4)[Dual Group as Spectrum of L1(G)].The dual group Ĝ can be regarded as the
spectrum of L1(G), i.e. multiplicative homomorphism of L1(G):

ξ 7→
(
ξ(f) =

∫
(x, ξ)f(x)dx

)
.

Proof: First, ξ is multiplicative because

ξ(f ∗ g) =
∫ ∫

f(y)g(y−1x)(x, ξ)dydx =
∫ ∫

f(y)g(x)(xy, ξ)dydx = ξ(f)ξ(g).

Conversely, any continuous functional on L1 is like φ(f) =
∫
f(x)φ(x)dx for some φ ∈ L∞, and

it is multiplicative, so

φ(f)
∫
φ(x)g(x) = φ(f)φ(g) = φ(f ∗ g) =

∫ ∫
φ(y)f(yx−1)g(x)dxdy =

∫
φ(Lx(f))g(x)dx

So φ(x) = φ(Lx(f))
φ(f) , a.e., for any f . so φ(x) can be chosen to be continuous, as x → Lx(f) is

continuous(10.11.1.3). And clearly φ is multiplicative. □

Cor.(10.11.3.5). Ĝ ⊂ P1(G), because
∫

(f∗ ∗ f)φdµ = |Φ(f)|2 ≥ 0.

Cor.(10.11.3.6)[Dual Group as a LCA Group].Now we can give Ĝ the compact-open topology,
then the group operation is clearly continuous, and the topology coincides with that inherited by the
weak*-topology of the L∞ by(10.11.2.20), so Ĝ∪{0} is a compact Hausdorff space because Ĝ ⊂ P1(G)
and it is the subset of L∞ that {h(xy) = h(x)h(y)} which is weak*-closed hence weak*-compact. In
particular, Ĝ is a locally compact topological group.

Prop.(10.11.3.7)[Duality between Discrete Groups and Compact Groups]. if G is discrete,
then G∨ is compact, if G is compact, then G∨ is discrete.

Proof: if G is discrete, then there is a unit δ in L1(G), which is 1 on e and 0 otherwise. So the
spectrum of L1(G) is compact by(10.10.1.21).

If G is compact, then 1 ∈ L1, so U = {f ∈ L∞||f | > 1
2} is weak*-open, but U ∩ Ĝ = {1}

by(10.11.1.14), so Ĝ is discrete. □

Fourier Transform

Prop.(10.11.3.8)[Fourier Transforms].The Fourier transform on G is defined as in(10.11.3.4)
to be the map

L1(G)→ C(G∨) : f 7→ Ff(ξ) = f̂(ξ) =
∫
f(x)(x, ξ).

It is a norm-decreasing *-homomorphism form L1(G) to C0(Ĝ), and its range is a dense subspace of
C0(G∨).

Equivalently, the Fourier transform is just the Gelfand transform of L1(G)(10.10.1.21) composed
with an inverse map.
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Proof: Cf.[Folland Abstract Harmonic Analysis P102]. □

Prop.(10.11.3.9).There is another map from M(Ĝ) to bounded continuous functions on G:

µ 7→
(
φµ : x 7→

∫
(x, ξ)dµ(ξ)

)
.

This is a norm decreasing injection from M(Ĝ) to L∞(G), and if µ is positive, then φµ is a function
of positive type.

Proof: It suffices to prove injectivity, but if φµ = 0, then 0 =
∫ ∫

f(x)(x, ξ)dµ(ξ)dx =
∫
f̂(ξ−1)dµ(ξ)

for all f ∈ L1(G), so but this shows µ = 0 because of(10.11.3.8) and Riesz representation.
For the positive type, notice that∫ ∫

f(x)f(y)vpµ(y−1x)dxdy =
∫ ∫ ∫

f(x)f(y)(y, ξ)(x, ξ)dµ(ξ)dxdy =
∫
|f̂(ξ)|2dµ(ξ) ≥ 0

□

Prop.(10.11.3.10) [Bochner’s Theorem]. If φ ∈ P (G), there is a unique positive µ ∈ M(Ĝ) s.t.
φ = φµ.

Proof: We have the map defined in(10.11.3.9) injects M(Ĝ) into P (G)(norm-decreasing), so it
suffices to prove the existence. For this, we may assume φ ∈ P0(G). Let M0 be the set of positive
measure µ ∈M(Ĝ) that µ(Ĝ) ≤ 1, then M0 is weak*-compact in M(Ĝ). Now∫

f(x)φµ(x)dx =
∫ ∫

f(x)dµ(ξ)dx =
∫
f̂(ξ−1)µ(x)

so the mapping µ→ P0 must be continuous w.r.t their weak*-topologies, so the image is a compact
convex subset of P0. But the image contains all characters and 0(by taking the point mess), which
are the extreme points of P0, by(10.11.2.19), so it contains all the P0, by Krein-Milman(10.9.3.15).
□

Cor.(10.11.3.11). {φµ} = B(G)(10.11.2.21), by(10.11.3.10) and(10.11.3.9). Thus the inverse B(G)→
M(G) is denoted by f 7→ dµf .

Cor.(10.11.3.12) [Herglotz].A numerical sequence {an} is positive iff there is a positive measure
µ ∈M(T ) s.t. an = µ̂(n).

Prop.(10.11.3.13).The set of regular Borel probability measures on a compact X is weak*-compact
in C(X)∗. (Use Alaoglu).

Prop.(10.11.3.14) [Fourier Inversion Formula]. (special case of(10.11.3.24)) If f ∈
B1(G)(10.11.2.21), then f̂ ∈ L1(Ĝ), and if the Haar measure dξ of Ĝ is suitably normalized w.r.t.
the Haar measure of G, then dµf (ξ) = f̂(ξ)dξ(10.11.3.11), i.e. f(x) =

∫
(x, ξ)f̂(ξ)dξ. This measure

dξ is called the dual measure of dx.

Proof: Cf.[Folland Abstract Harmonic Analysis P105].? □

Cor.(10.11.3.15). If f ∈ L1(G) ∩ P , then f̂ ≥ 0, as dµf (ξ) = f̂(ξ)dξ and µf is positive, by Bochner’s
theorem(10.11.3.10).
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Prop.(10.11.3.16)[Dual Measure of Discrete Group]. If µ is the counting measure on a discrete
group, then its dual measure satisfies |Ĝ| = 1, and if G is compact and |G| = 1, then the dual
measure is the counting measure on Ĝ.

Proof: First(10.11.3.7) should be noticed. If G is compact and |G| = 1, then if g = 1, then ĝ = χ{1},
so g(x) =

∑
(x, ξ)ĝ(ξ), which shows the dual measure is counting measure by definition(10.11.3.14).

□

Prop.(10.11.3.17)[Plancherel Theorem].The Fourier transform on L1(G)∩L2(G) extends uniquely
to an isomorphism from L2(G) to L2(Ĝ) that satisfies Fourier inversion formula.

Proof: Cf.[Folland P108]. □

Cor.(10.11.3.18). If G is compact and µ(G) = 1, then Ĝ is an orthonormal basis of L2(G).

Proof: Firstly Ĝ is an orthonormal set by(10.11.1.14). And if f ∈ L2(G) is orthogonal to all ξ ∈ Ĝ,
then

∫
G fξ = f̂(ξ) = 0, thus f̂ = 0, and then f = 0 by Plancherel(10.11.3.17). □

Cor.(10.11.3.19)[Hausdorff-Young Inequality].Let 1 ≤ p ≤ 2 and p−1 + q−1 = 1. If f ∈ Lp(G),
then f̂ ∈ Lq(G), and ||f̂ ||q ≤ ||f ||p.

Proof: Cf.[Folland, P109]. □

Schrödinger Representations

Def.(10.11.3.20)[A(G)].Let G be an locally compact Abelian group, denote T = {c ∈ C||c| = 1},
A(G) = G∗ ×G×T with the group law

(v∗
1, v1, t1)(v∗

2, v2, t2) = (v∗
1 + v∗

2, v1 + v2, t1t2⟨v1, v
∗
2⟩).

Also we denote for w,w′ ∈ G∗ ×G, [w,w′] = ⟨v1, v
∗
2⟩.

Let B(G) = Aut(A(G)), B0(G) ⊂ B(G) be the group of elements fixing elements in the center
Z(A(G)).

Note the commutator

(v∗
1, v1, 1)(v∗

2, v2, 1)(v∗
1, v1, 1)−1(v∗

2, v2, 1)−1 = (0, 0, ⟨v1, v
∗
2⟩⟨v2, v

∗
1⟩−1),

thus ⟨v1, v
∗
2⟩⟨v2, v

∗
1⟩−1 defines a multiplicative skew-symmetric, bilinear and perfect pairing [·, ·] of

G∗ ×G with itself,

Prop.(10.11.3.21)[Segal-Shale-Weil].There is an unitary representation of A(G) on L2(G) given
by

(ρ(v∗, v, t)Φ)(u) = t⟨u, v∗⟩Φ(u+ v),

called the Schrödinger representation. In fact, it is the induced representation IndA(G)
G×T χ, where

χ(g, t) = t. This representation is irreducible, and for any σ ∈ B0(G), there exists uniquely up to
scalar a unitary operator ω(σ) on L2(G) s.t.

ρ(σ(h)) = ω(σ) ◦ ρ(h) ◦ ω(σ)−1.

Remark(10.11.3.22).This should be a direct consequence of the Stone-Von Neumann theorem.
Cf.[History of Stone Von-Newmann Theorem] or [Easy proof of the Stone-Von Neumann Theorem].?
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Proof: This is clearly a unitary representation. ρ induces an action of G∗ ×G on L2(G) via t = 1,
thus an action of Cc(G∗ ×G) on L2(G):

(ρ(φ)Φ)(u) =
∫
G∗×G

φ(w)(ρ(w, 1)Φ)(u)dw =
∫
G
Kφ(u, v)Φ(v)dv

where Kφ(u, u + v) =
∫
G∗ φ(v∗, v)⟨u, v∗⟩dv∗ is the Fourier transform of φ w.r.t. G∗. As Fourier

transform is L2-isometry, φ 7→ Kφ extends to an isometry λ : L2(G∗ × G) ∼= L2(G × G), whose
inverse is given by

φ(v∗, v) =
∫
G
Kφ(u, u+ v)⟨−u, v∗⟩du,

and also the action ρ extends to all φ ∈ L2(G∗ ×G).
It can be verified that ρ(φ1) ◦ ρ(φ2) = ρ(φ1 ⋆ φ2), where

(φ1 ⋆ φ2)(w) =
∫
G∗×G

φ1(w1)φ2(w − w1)[w1, w − w1]dw1.

Then by comparison with the equation above, Kφ1⋆φ2 = Kφ1 ⋆ Kφ2 , where ⋆ is defined in(10.4.6.6).
σ ∈ B0(G) is of the form σ(w, t) = (s(w), f(w)t), where w ∈ G∗ × G, f : G∗ × G → T is a map

satisfying
f(w1 + w2) = f(w1)f(w2)[s(w1), s(w2)][w1, w2]−1.

Notice s preserves Haar measure on G∗ × G: it is preserved the pairing [·, ·] as it is a commutator
and σ fixes Z(A(G)). Thus s preserves Haar measure of G∗ ×G, by(10.11.3.34).

Now we define a unitary transformation Σ of L2(G∗ ×G) by (Σφ)(w) = f(w)−1φ(s(w)), then it
can be checked? by using the equations above that

Σ(φ1 ⋆ φ2) = Σ(φ1) ⋆ Σ(φ2).

Thus by the isomorphism λ : L2(G∗ × G) ∼= L2(G × G), Σ induces a unitary transformation on
L2(G × G), also denoted by Σ and it preserves ⋆. Then by(10.4.6.7), there is a unitary map ω :
L2(G)→ L2(G) that

Σ(P ⊗Q) = ω−1(P )⊗ ω−1Q.

Next, notice for any (w, t) ∈ A(G),

tλ−1(P ⊗Q)(w) =
∫
G
P (u)tQ(u+ v)⟨u, v∗⟩du = (P, ρ(w, t)Q)L2 ,

thus

(P, ρ(σ(w, t)))L2 = (P, ρ(s(w), f(t))Q)L2 = tf(w)λ−1(P ⊗Q)(s(w))
= t(Σλ−1(P ⊗Q))(w) = tλ−1(ω−1(P )⊗ ω−1(Q))(w)
= (ω−1(P ), ρ(w, t)ω−1(Q))L2

= ((P ), ωρ(w, t)ω−1(Q))L2

Because P,Q are arbitrary, this means ρ(σ(w, t)) = ω(σ) ◦ ρ(w, t) ◦ ω(σ)−1.
It remains to show that ρ is irreducible: For any endomorphism of L2(G) commuting with ρ, it

commutes with ρ(φ) for any φ ∈ L2(G∗ × G). Take φ = λ−1(P ⊗ Q), where P,Q ∈ L2(G), then
ρ(φ)Φ = (Φ, Q)L2P , so (TΦ, Q)L2P = (Φ, Q)L2TP . Then T is a scalar. □
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Pontryagin Duality

Prop.(10.11.3.23)[Pontryagin Duality].For a locally compact Abelian group G, G→ (G∧)∧ is an
isomorphism of topological groups.

Proof: Cf.[Folland Abstract Harmonic Analysis P110]. □

Cor.(10.11.3.24)[Fourier Inversion Theorem]. If f ∈ L1(G) and f̂ ∈ L1(Ĝ) and the measure are
dual to each other(10.11.3.14), then f(x) = ̂̂

f(x−1), i.e. f(x) =
∫

(x, ξ)f̂(ξ)dξ a.e..

Proof: As
f̂(ξ) =

∫
(x, ξ)f(x)dx =

∫
(x−1, ξ)f(x)dx =

∫
(x, ξ)f(x−1)dx,

so by definition f̂ ∈ B1(Ĝ), and dµ
f̂
(x) = f(x−1)dx. Then by(10.11.3.14), f(x−1) = (f∧)∧(x). □

Cor.(10.11.3.25)[Fourier Uniqueness Theorem]. If u, v ∈ M(G) satisfy û = v̂, then u = v. In
particular, if f, g ∈ L1(G) and f̂ = ĝ, then f = g.

Proof: By(10.11.3.9)(norm decreasing), µ is uniquely determined by φµ(ξ) = µ̂(ξ−1) by Fourier
inversion. □

Lemma(10.11.3.26). If φ,ψ ∈ Cc(Ĝ), then φ ∗ ψ = ĥ where h ∈ B1(G). In particular, F(B1(G)) is
dense in Lp(Ĝ) for p <∞.

Proof: Cf.[Folland, P109]. □

Prop.(10.11.3.27). (fg)∧ = f̂ ∗ ĝ is satisfied for f, g ∈ L2(G) also.

Proof: Cf.[Folland, P112]. □

Prop.(10.11.3.28)[Duality of Subgroups]. (H⊥)⊥ = H for closed subgroup H of a locally compact
Abelian group G.

Proof: Suffices to prove (H⊥)⊥ ⊂ H. If x0 /∈ H, then Gelfand-Raikov shows that there is a
character η on G/H that η(q(x0)) ̸= 1, so x0 /∈ (H⊥)⊥. □

Prop.(10.11.3.29). If H is a closed subgroup of G, then there are natural isomorphisms of LCA
groups:

Φ : (̂G/H) ∼= H⊥, Ψ : Ĝ/H⊥ ∼= Ĥ

Proof: Φ is clearly algebraic isomorphism. If |η(q(K)) − 1| < ε, then |η(K) − 1| < ε, so Φ is
continuous in the compact-open topology. Similarly, to show Φ is open, it suffices to show a compact
subset of G/H has a compact inverse image in G, but this is just(10.11.1.34).

Now for Ψ, notice ̂̂G/H⊥ ∼= (H⊥)⊥ ∼= H by(10.11.3.28), so by Pontryagin duality theorem,
Ĝ/H⊥ ∼= Ĥ. □

Cor.(10.11.3.30)[Hahn-Banach for LCA Groups].By the surjectivity of Ψ, any character of Ĥ
extends to a character of G.

Prop.(10.11.3.31) [Poisson Summation Formula]. Suppose H is a closed subgroup of G, if f ∈
L1(G), define F (xH) =

∫
H f(xy)dy on G/H, then F ∈ L1(G/H) by(10.11.1.38), then:

• F̂ = f̂ |H⊥ , where Ĝ/H is identified with H⊥ by(10.11.3.29).
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• If f̂ |H⊥ ∈ L1(H⊥), then with the dual measure of G/H on H⊥(10.11.3.14), we have∫
H
f(xy)dy =

∫
H⊥

f̂(ξ)(x, ξ)dξ.

In particular, take x = e, then ∫
H
f(y)dy =

∫
H⊥

f̂(ξ)dξ.

Proof: Notice for ξ ∈ H⊥,

F̂ (ξ) =
∫
G/H

F (xH)(x, ξ)d(xH) =
∫
G/H

∫
H
f(xy)(xy, ξ)dyd(xH) =

∫
G
f(x)(x, ξ)dx = f̂(ξ)

by(10.11.1.38). And 2 is just(10.11.3.24) applied to F (xH) on G/H. □

Cor.(10.11.3.32). In the situation of(10.11.3.31), if H is discrete in G and G/H is compact, then both
H,H⊥ are discrete, then by considering the dual measure using(10.11.3.16), the Poisson summation
reads: ∑

H

f(xy) = 1
µ(G/H)

∑
H⊥

f̂(ξ)(x, ξ).

Perfect Pairing

Def.(10.11.3.33) [Self-Adjoint Haar Measures]. If G is a locally compact Abelian group, and
there is an isomorphism G ∼= Ĝ, or a perfect bilinear pairing G × G → C∗, then by Fourier in-
version(10.11.3.14), a Haar measure dµ on G corresponds to a Haar measure dα on Ĝ, but via the
isomorphism, dα corresponds to a measure d̃α on G. Now anyway, there is a unique dµ that dµ = d̃α,
and this is called the self-dual Haar measure on G.

Via this pairing, we define the Fourier transform as an isomorphism

L2(G) ∼= L2(G) : Φ(f)(x) =
∫
G
f(y)⟨x, y⟩dµ(y).

Then dµ is a self-dual measure is equivalent to Φ(Φ(f))(x) = f(−x), or equivalently f(y) =∫
G f̂(y)⟨x, y⟩dµ(y).

Prop.(10.11.3.34). If G is a locally compact Abelian group, and there is a perfect bilinear pairing
G × G → C∗ and σ : G → G is a group automorphism of G that preserves this pairing, then σ
preserves the Haar measure on G.

Proof: It is clear that σ∗dµ = |σ|dµ for some real constant |σ| > 1. Consider the Fourier transform
w.r.t. this pairing: Fφ(x) =

∫
G φ(y)⟨x, y⟩dy, then F(φ ◦ σ) = |σ|−1F(x). But F is an isomorphism

L2(G) ∼= L2(G), so |σ|−1 = |σ|, thus |σ| = 1. □

Prop.(10.11.3.35)[Self Duality of Topological Fields].Let K be a locally compact topological
field. If X is a non-trivial character on the additive group K+, then for any η ∈ K+, ξ 7→ X(ηξ) is
also a character, and

FX : η 7→ (ξ → X(ηξ))

is an isomorphism of topological groups of K+ and K̂+.
Then by(10.11.3.33), we find a self-dual measure Haar measure dx on K+ w.r.t. X.
In fact, such a character X does exist, by Gelfand-Raikov(10.11.2.22).
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Proof: First this is clearly a homomorphism of groups, and it is injective, because if X(ηξ) = 1 for
all ξ, then ηK+ ̸= K+(because X is nontrivial), so η = 0.

Now the image of F is dense, because if X(ηξ) = 1 for all η, then ξ = 0, so Im(F )⊥ = 1. Now
(H⊥)⊥ = H for H closed(10.11.3.28) and use Pontryagin duality(10.11.3.23), so Im f is dense in Ĝ.

Now F is open and continuous, because: for any B ∈ G compact, there is a nbhd V of 0 that
|X(V ) − 1| < ε, so there is a nbhd V ′ that V ′B ⊂ V , so if η ∈ V , |X(ηB) − 1| < ε, so F is
continuous(K̂+ has the compact-open topology). And if we choose ξ0 that X(ξ0) ̸= 1, then choose
B = B(0, |ε0

ε ) compact, if |X(ηB)− 1| < |X(ξ0)− 1|, then ξ0 /∈ ηB, which means that |η| < ε. This
means F (B(0, ε)) contains V (B, |X(ξ0)− 1|), so F is open.

So the image of F is a locally compact subgroup of Ĝ, so by(10.11.1.7) it is closed, hence equals
G as it is dense, so F is surjective, and is an isomorphism. □

4 Compact Group

Cf.[群表⽰论 notes] and [Fol15]Chap5.
In this subsection, we consider representations of a compact group over C.

Unitary Representations

Prop.(10.11.4.1)[F.d. Representation is Unitary]. If V is a real/complex f.d. representation π of
a compact group G, then there is an inner product on V that the action of G is orthogonal/unitary.

Proof: Choose an arbitrary inner product (·, ·)0 on V , then consider

(u, v) =
∫
G

(π(x)u, π(x)v)0dx.

where dx is a Haar measure on G. Then

(π(y)u, π(y)v) =
∫
G

(π(xy)u, π(xy)v)0dx = ∆(y)
∫
G

(π(x)u, π(x)v)0dx =
∫
G

(π(x)u, π(x)v)0dx

because G is compact hence unimodular(10.11.1.18). Thus this is an inner product on V that is
invariant under G. □

Cor.(10.11.4.2)[F.D. Representation of Compact Groups Totally Decomposable].Any f.d.
representation of a compact group is totally decomposable.

Proof: This is because we can assume this representation is unitary by(10.11.4.1), and then for
any subrepresentation we can take the orthogonal complement. □

Lemma(10.11.4.3). Suppose (π,H) is a continuous unitary representation of the compact group G,
let u ̸= 0 ∈ H be a unit vector, if the operator T on H is defined by

Tv =
∫
G

(v, π(x)u)π(x)udx,

then T is a positive, non-zero compact operator in C(π).
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Proof:
(Tv, v) =

∫
G

(v, π(u)u)(π(x)u, v)dx =
∫
G
|(π(x)u, v)|2dx ≥ 0,

so it is positive. Moreover, if v = u, then x 7→ |(π(x)u, v)| is a positive on a nbhd of 1, so T ̸= 0.
Finally, because G is compact, x 7→ π(x)u is uniformly continuous, so for any ε > 0, there is a

disjoint partition Ei of G and xi ∈ Ei that if x ∈ Ei, then ||π(x)u− π(xi)u|| ≤ ε/2. Then

||(v, π(x)u)π(x)u−(v, π(xi)u)π(xi)u|| ≤ |(v, [π(x)−π(xi)]u)π(x)u||+||(v, π(xi)u)[π(x)−π(xi)]u|| < ε||v||.

So consider
Tε(v) =

∑
|Ej |(v, π(xj)u)π(xj)u =

∑∫
Ei

(v, π(xj)u)π(xj)udx

then ||T − Tε|| < ε, and Tε has f.d image, thus T is compact, by(10.9.5.3).
Also T ∈ C(π) because

π(y)Tv =
∫
G

(v, π(x)u)π(yx)udx =
∫
G

(v, π(y−1x)u)π(x)udx =
∫
G

(π(y)v, π(x)u)π(x)udx = Tπ(y)v.

□

Prop.(10.11.4.4)[Unitary Representations of Compact Groups]. If G is compact group, then
every unitary representation (ρ, V ) of G is an orthogonal sum of irreducible unitary subrepresenta-
tions. Moreover, the isotopic part V π for any irreducible representation π ofG is uniquely determined.
And very irreducible representation of G is of f.d.(thus unitary by(10.11.4.1)).

Proof: By taking orthogonal complements and Zorn’s lemma, it suffices to show any unitary
representation π has an irreducible subrepresentation. Choose T as in(10.11.4.3), then T is compact
nonzero self-adjoint, so by Riesz-Fredholm(10.9.5.9) it has a finite-dimensional eigenspace, which is
π-invariant, and it clearly has an irreducible subrepresentation by taking orthogonal complements.

For the orthogonality, Let V π be the linear span of invariant subspaces isomorphic to π, for L1, L2
of type π1 ̸= π2, then consider the orthogonal projection P onto L2, then P |L1 ∈ C(π1, π2), which
vanishes by Schur(10.11.2.4), so they are orthogonal.

The final assertion follows from(10.11.4.19). □

Cor.(10.11.4.5).The cardinality of irreducible constituents of V that is isomorphic to π is independent
of the decomposition, and it is equal to dim HomG(π, ρ), and is denoted by mult(π, ρ).

Proof: Cf.[Folland, P137].? □

Cor.(10.11.4.6).Let G be a compact subgroup and H a closed subgroup, then G acts unitarily on
L2(G/H), and it decomposes as

L2(G/H) ∼= ⊕̂
π∈ĜNH(π)π

where NH(π) = dim πH the dimension of H-fixed vectors in V .

Proof: By(10.11.4.4), it suffices to determine the multiplicity of π in L(G/H), which is just dimen-
sion of HomG(π, L2(G/H)), which can be viewed as G-invariant L2 functions on G/H with values
on π∗. For any such function f , f(1) is H-invariant, and for any H-invariant vector v, g 7→ gv is
continuous, thus is L2. So the dimension of this space is just dim πH . □
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Matrix Coefficients and Peter-Weyl Theorem

Def.(10.11.4.7)[K-Finite Vectors].Let K be compact group. For an irreducible representation ρ of
K, denote V ρ = ρ⊗HomK(ρ, V ) the ρ-isotypic component in V . And let V K−fin = ⊕ρV ρ the space
of K-finite vectors in V (10.11.4.4).

Def.(10.11.4.8)[Matrix Coefficients].Firstly C(G) is a representation of G×G by ((g1, g2)f)(g) =
f(g−1

1 gg2).
For a f.d. representation (π, V ) of a topological group G, we can view End(V ) as a representation

of G×G via
(g1, g2)S = π(g1)Sπ(g−1

2 )

There is a matrix coefficient map:

MCV : End(V )→ C(G), MCV (S)(g) = MCS,V (g) = tr(Sπ(g−1)|V )

is a map of K×K-representations. And denote Eπ the image of ofMCV , and let L2
alg(G) = ⊕

π∈ĜEπ.

Prop.(10.11.4.9)[Schur Orthogonality Conditions].Let (π1, V1), (π2, V2) be f.d. continuous irre-
ducible representations of K, then∫

K
MCS1,V1(k)MCS2,V2(k) = 0

unless V2 ∼= V ∗
1 , in which case∫

K
MCS1,V (k)MCS2,V ∗(k) = 1

dimV
tr(S1 ◦ S∗

2 |V ).

In particular, Eπ is orthogonal to Eπ′ for [π] ̸= [π′], and if {ei} is any orthonormal basis of V ,√
dππij is an orthonormal basis of Eπ, and Eπ is isomorphic to End(V ) as K ×K-representations.

Proof: Cf.[Gaitsgory P3]. □

Cor.(10.11.4.10).MCS,V (k−1) = MCS∗,V ∗(k).

Prop.(10.11.4.11). Eπ is invariant under left and right translations of G, and it is a two-sided ideal
in L1(G).

Proof: It can be shown that f ⋆ φu,v = φu,π(f)v, and φu,v ⋆ f = φ
π(f̂)u,v, where f̂(x) = f(x−1). □

Prop.(10.11.4.12). If ρ is an irreducible f.d representation of K and V is a continuous representation
of K, then for any S ∈ End(ρ∗), the image of

MCS,ρµHaar ∈M(K)

acting on V (10.9.3.24) belongs to V ρ.

Proof: Cf.[Gaitsgory P7]. □

Cor.(10.11.4.13).For an irreducible representation ρ of K, the element ξρµHaar ∈ Meas(K) acts in
any continuous representation V as a projection with image equal to V ρ.

Proof: Directly from the proposition and(10.11.4.26). □
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Prop.(10.11.4.14). E is an algebra, Cf.[Folland, P141]. It is dense in C(K), and dense in Lp(K) for
p <∞.

Proof: □

Prop.(10.11.4.15)[Peter-Weyl].For a compact group K,
• ⊗̂

π∈ĜEπ = L2(K), where Eπ ∼= End(Vπ).

• L2
alg(K) = ⊗

π∈ĜEπ identifies with the K-finite vectors in L2(K) w.r.t. the left translation.

Proof: 1: By(10.11.4.4), the multiplicity of π in L2(K) is just dim π, and this is just the multiplicity
of π in Eπ by(10.11.4.9), so this is an surjection, thus an isomorphism.

2: Clearly every vector in ⊗
π∈ĜEπ is K-finite. Conversely, if some vector v is K-finite, then it

generates a finite vector space V under the left translation action of G. Now the linear function
f 7→ f(1) restricts to a linear function l on V , and then l(L∗

gv) = v(g), so v is a matrix coefficient of
V , so v ∈ L2

alg(K). □

Cor.(10.11.4.16)[Representations of Product Groups].Any irreducible representation of a the
product group G×H for G,H is of the form ρ⊠ ψ where ρ and ψ are irreducible representations of
G,H resp.

Proof: By orthogonality of characters(10.11.4.22), there representations are irreducible and differ-
ent. They are all the representations because they already form a basis in L2(G×H). □

Prop.(10.11.4.17).For any continuous representation K, the subset V K−fin is dense in V .

Proof: For any v ∈ V , choose a Dirac sequence fn, then π(fn)v → v. Then by Peter-
Weyl(10.11.4.15), we can choose K-finite functions gn that ||gn− fn||L2 < 1

n . Then gn also converges
to δ1 in the weak topology. Thus

π(gn)v → v

and(10.11.4.12) shows π(gn)v ∈ V K−fin. □

Cor.(10.11.4.18).Matrix coefficients of f.d. representations are dense in C(K). (Immediate from the
proposition and Peter-Weyl theorem(10.11.4.15).

Cor.(10.11.4.19).Every irreducible continuous representation of a compact group is of f.d..

Proof: This is because V K−fin is a sub-representation of V and it is dense in V , thus V = V K−fin

is of f.d. because it is irreducible. □

Fourier Analysis on Compact Groups

Def.(10.11.4.20)[Characters].Let V is a f.d. continuous representation ofK, let χV = MCV (IdV ) =
tr(g|V ), called the character of V , and if V is irreducible, define ξV = dimV · χV .

This definition of character is compatible the abstract definition viewed as a representation of the
group algebra C[G].

Prop.(10.11.4.21). If we take an invariant inner product on V , and ei an orthonormal basis, then

χV (g) =
∑
i

(gei, ei),

and
χV ∗(g) = χV (g−1) = χV (g), χV⊕W = χV + χW , χV⊗W = χV · χW
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Cor.(10.11.4.22)[Orthogonality of Characters].Let V,W be irreducible, then∫
K
χV (k)χW (k−1) =

∫
K
χV (k)χW ∗(k) =

∫
K
χV (k)χW (k)

so by(10.11.4.9) this equals 1 if V ∼= W and 0 otherwise.

Prop.(10.11.4.23).Let χ be a character of a representation of compact group K of dimension n, then
• χ(1) = n.
• χ(s−1) = χ(s)∗.
• χ(tst−1) = χ(s).

Proof: Notice the eigenvalues of ρ(g) all have absolute value 1, because this representation is
unitarizable(10.11.4.1) thus ρ∗(g) = ρ(g)∗. □

Prop.(10.11.4.24) [Fourier Transform on Compact Groups].Let K be a compact group and
f ∈ L2(K), then by Peter-Weyl(10.11.4.15) and(10.11.4.9),

f =
∑
π∈Ĝ

dπ∑
i,j=1

cπijπij , cπij = dπ

∫
G
f(x)πij(x)dx.

So

f(x) =
∑
π∈Ĝ

dπ∑
i,j=1

dπ

∫
G
f(y)πij(y)πij(x)dx =

∑
π∈Ĝ

dπf(y) tr(π(y−1x)) =
∑
π∈Ĝ

dπ(f ∗ χπ)(y).

Thus
f =

∑
π∈Ĝ

dπf ∗ χπ,

and dπf ∗ χπ are the projection of f onto Eπ(10.11.4.9).

Cor.(10.11.4.25). ξV ∗ ξW = 0 unless W ∼= V and ξV ∗ ξV = ξV (10.11.4.20).

Cor.(10.11.4.26).For continuous irreducible representations V,W of K, π(ξV ) ∈ EndW equals IdW
if W ∼= V and zero otherwise.

Def.(10.11.4.27) [Class Functions].A measurable function on G is called a class function iff
f(y−1xy) = f(x) a.e. (x, y) ∈ G × G. Denote ZLp(G) the space of class functions in Lp(G) and
ZC(G) the space of continuous functions on G.

Prop.(10.11.4.28).For a compact group K and 1 ≤ p <∞, the spaces Lp(K) and C(K) are Banach
algebras under convolution(10.11.1.26), and ZLp(K) and ZC(K) are their centers.

Proof: By(10.11.1.29), ||f ∗ g||p ≤ ||f ||1||g||p ≤ ||f ||p||g||p, for 1 ≤ p ≤ ∞, thus Lp(G) and C(G)
are Banach algebras.

For f ∈ Lp(K), f ∗ g = g ∗ f iff∫
K
f(xy)g(y−1)dy =

∫
K
g(y)f(y−1x)dy =

∫
K
f(yx)g(y−1)dy, a.e.x

for any g ∈ Lp(K), which is equivalent to f(xy) = f(yx) a.e. x, y. Similarly for f ∈ C(K). □
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Lemma(10.11.4.29). If f ∈ ZL1(K) and π ∈ K̂, then dπf ∗ χπ =
∫
K(fχπ)χπ.

Proof: For x ∈ G,

π(f)π(x) =
∫
K
f(y)π(yx)dy =

∫
K
f(yx−1)π(y)dy =

∫
K
f(x−1y)π(y)dy =

∫
K
f(y)π(xy)dy = π(x)π(f)

so π(f) is a scalar by Schur’s lemma(10.11.2.4). Notice f ′(g) = f(g−1) ∈ ZL1(K) also, so

dπ[f ∗ χπ](x) = dπ

∫
K
f(y−1)(trπ)(yx)dy = dπ tr(

∫
K
f(y−1)π(yx)dy) = trπ(f ′) tr(π(x))

and trπ(f ′) =
∫
K f(y−1) trχ(y)dy =

∫
K fχπ. □

Prop.(10.11.4.30) [Characters Orthonormal Basis]. {χπ|π ∈ K̂} is an orthogonal basis for
ZL2(K).

Proof: χπ ∈ ZC(K) ⊂ ZL2(K) by(10.11.4.23), and they are orthonormal by(10.11.4.22). They
are a basis by(10.11.4.29). □

Prop.(10.11.4.31).The linear spans of {χπ|π ∈ K̂} is dense in ZC(K) and ZLp(K) for 1 ≤ p <∞.

Proof: Cf.[Fol15] P148. □

Prop.(10.11.4.32) [Real Type].Let G be a topological group and V is a complex representation,
then the following are equivalent:

• V = U ⊗R C is a complexification of a real representation U of G.
• V admits a G-invariant anti-linear endomorphism S that S2 = 1.
• There is a G-invariant symmetric form B on V inducing an isomorphism V ∼= V ∗.

Proof: 1 ⇐⇒ 2 is clear.
2→ 3: By averaging there is a G-invariant Hermitian form h on V , then we can define B(u, v) =

h(u, Sv). As h′(u, v) = h(Sv, Su) is also a G-invariant Hermitian form, h(Sv, Su) = ±h(u, v), so
B(v, u) = B(u, v).

3 → 1: h induces a G-isomorphism φh : V ∼= V ∗. Then σ = φh ◦ φB is a G-isomorphism
V → V . Then σ ◦ σ : V → V is a G-isomorphism, thus by Schur’s lemma σ ◦ σ = λ for some λ ∈ C.
More explicitly, B(v, u) = H(v, σ(u)) for any u, v ∈ V . Because B is symmetric or symplectic,
B(u, v) = ±B(v, u), thus H(v, σ(u)) = ±H(u, σ(v)), and

λH(v, u) = H(v, σ2(u)) = ±H(σ(u), σ(v)) = ±H(σ(v), σ(u)) = H(u, σ2(v)) = λH(v, u).

Thus λ is real. And then we can normalize σ that σ = ±1. If σ2 = 1, then consider V0 = ker(σ− 1),
then iV0 = ker(σ + 1), and V0 ⊕ iV0 = V . If σ2 = −1, then consider the action of H on V given by
(α+ βj)(v) = αv + βσ(v). It is an action because σ is anti-linear and σ2 = −1. □

Prop.(10.11.4.33)[Quaternion Type].Let G be a topological group and V is a complex represen-
tation, then the following are equivalent:

• V = WC is a restriction of a quaternionic representation W of G.
• V admits a G-invariant anti-linear endomorphism S that S2 = −1.
• There is a G-invariant alternating form B on V inducing an isomorphism V ∼= V ∗.
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Proof: 1 ⇐⇒ 2 is clear. The proof of 2→ 3→ 1 is the same as the proof of(10.11.4.32). □

Prop.(10.11.4.34).An irreducible complex representation V of G, then V is of real/complex/quater-
nionic type iff EndR[G](V ) ∼= M2(R)/C/H

Proof: By(10.11.4.32), if V is of real type, then V ∼= U ⊗RC ∼= V ⊕V , then EndR[G](V ) ∼= M2(R).
By(10.11.4.33), if V is of quaternionic type, then it is a restriction of a quaternionic representation,

so H ⊂ EndR[G](V ). And for any R-linear endomorphism f of V , f = f+if◦i
2 + f−if◦i

2 is a sum of
C-linear and anti-linear endomorphisms of V . For an anti-linear endomorphism g, gj is C-linear,
thus f ∈ H.

If V is of complex type, then there are no invariant anti-linear endomorphisms, thus f = f+if◦i
2 +

f−if◦i
2 = f+if◦i

2 is C-linear, so EndR[G](V ) ∼= C. □

Prop.(10.11.4.35) [Types of Representations].Let V be a finite-dimensional irreducible C-
representation of a compact group G. Let dg be the Haar measure on G with

∫
G dg = 1, then:

∫
G
χ(g2)dg =


1 ⇐⇒ V is of real type
0 ⇐⇒ V is of complex type
−1 ⇐⇒ V is of quaternionic type

Proof: Notice that χ(g2) = χSym2(V )(g)−χ∧2(V )(g), so
∫
G χ(g2)dg = dim Sym2(V )G−dim∧2(V )G.

Then it is clear by(15.1.1.6). □

5 Induced Representation
Lemma(10.11.5.1). If H is a closed subgroup of a locally compact subgroup G, q : G → G/H, for
any unitary representation (σ,H) of H, let F0 be the space of continuous functions f : G→ H that
q(Supp(f)) is compact, and

f(xξ) =
√

∆H(ξ)
∆G(ξ)

σ(ξ−1)f(x).

Then if α : G→ H is continuous with compact support, then

fα(x) =
∫
H

√
∆G(η)
∆H(η)

σ(η)α(xη)dη ∈ F0

and is left uniformly continuous w.r.t G. Moreover, every element in F0 arises in this way.

Proof: Clearly q(Supp fα) ⊂ q(Suppα), and

fα(xξ) =
∫
H

√
∆G(η)
∆H(η)

σ(η)α(xξη)dη =
∫
H

√
∆G(ξ−1η)
∆H(ξ−1η)

σ(ξ−1η)α(xη)dη =
√

∆H(ξ)
∆G(ξ)

σ(ξ−1)fα(x).

For left uniformly continuity, Cf.[Folland, P164].
For the surjectivity, if f ∈ F0, by(10.11.1.37), there exists ψ ∈ Cc(G) that

∫
H ψ(xη)dη = 1 for

x ∈ Supp f . So we can let α = ψ · f , then

fα(x) =
∫
H

√
∆G(η)
∆H(η)

ψ(xη)σ(η)f(xη)dη =
∫
H
ψ(xη)f(x)dη = f(x)

□
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Remark(10.11.5.2)[Left and Right Compatibility]. If we consider the right action, then it suffices
to consider all the functions g(x) = f(x−1). Then g satisfied

g(ξx) =
√

∆G(ξ)
∆H(ξ)

σ(ξ)g(x).

Def.(10.11.5.3)[Induced Representations].Let (σ, V ) be a unitary representation of H, for any
f, f ′ ∈ indGH ρ, consider the function g 7→ (f(g), f ′(g)), then it is a function on S(G,H)(10.11.1.40),
thus

(f, f ′) 7→
∫
H\G

(f, f ′)dνH\G(g)

is a right G-invariant Hermitian inner product on indGH ρ, thus indGH ρ is unitarizable, called the
induced representation.

Prop.(10.11.5.4)[Induction and Restriction]. If (σ,H) is a unitary representation of H and (π,H′)
is a unitary representation of G, then indGH(σ ⊗ res(π)) ∼= indGH(σ)⊗ π.

Prop.(10.11.5.5)[Frobenius Reciprocity]. If G is compact group and H is a closed subgroup, π is
an irreducible unitary representation of G, ρ is an irreducible unitary representation of H, then

C(π, indGH(ρ)) = C(π|H , ρ), mult(π, indGH(ρ)) = mult(ρ, π|H).

Proof: It suffices to prove the first one, the second follows from(10.11.2.2) and(10.11.4.5).
G/H admits a G-invariant measure as ∆G = ∆H = 1. For the rest, it is semilar to that

of(15.1.5.44), Cf.[Folland, P172]. □
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10.12 Harmonic Analysis

Main reference are [Rud91], [泛函分析张恭庆] and [Harmonic Analysis: Real Variable Methods,
Orthogonality, and Oscillatory Integrals, Stein]. Notice much should be rewritten in greater generality
of Analysis on Locally Compact Groups.

1 Distributions

Def.(10.12.1.1) [Test Functions].The space D(Ω) of test functions has the induced topology
coincides with that of D(K), and any bounded subsets are in some D(K), thus it is complete and
has Heine-Borel because D(K) does.

The space of continuous linear functionals of D(Ω) is called the space of distributions D′(Ω).
It is equivalence to the restriction to every D(K) is continuous, Cf.[Rudin P155]. The order of a
distribution Λ is the minimal N that |Λφ| ≤ CK ||φ||N for every φ ∈ D(K), it might be ∞.

Def.(10.12.1.2)[Differentiation of Distributions].The differentiation of a distribution Λ is
defined as DαΛ(φ) = (−1)|α|Λ(Dαφ). The multiplication by a smooth function f is defined by
fΛ(φ) = Λ(fφ). Then

Dα(fΛ) =
∑
β≤α

Cαβ(Dα−βf)(DβΛ).

Support of a Distribution

Def.(10.12.1.3).The support of a distribution is the complement Supp(Λ) of the open sets U that
Λ(f) = 0 for any f with support in U .

If Supp(Λ) is compact, then Λ has finite order and |Λφ| ≤ C||φ||N for some N , and Λ extends
uniquely to a continuous linear functional on C∞(Ω).

Proof: This is because its support is compact so we can choose a smooth ψ that = 1 on Suppφ
and has support in W ⊂ Ω. Then by (10.12.1.1), there is a C that |Λ(ψφ)| < C||ψφ||N , and Leibniz
rule will give us the result. □

Prop.(10.12.1.4). If the support of a Λ is a pt p (thus has finite order m), then it is a linear combina-
tion of Dαδp,|α| ≤ m. (use approximate identity and show the kernel of Λ is contained in the kernel
of Dαδp.

Proof: Cf.[Rudin P165]. □

Prop.(10.12.1.5).For any distribution Λ, there exist continuous functions gα in C∞(Ω) that each
compact K intersects support of f.m gα and Λ =

∑
Dαgα. When Λ has finite order, we can use only

f.m gα.

Proof: use partition of unity. Then for a compact K, find a compact-open W , then find a bump
function between K ⊂W , thus reduce to the case of DW . For the rest, Cf.[Rudin P169]. □

Convolution on Rn

Denote D = D(Rn),D ′ = D ′(Rn).
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Def.(10.12.1.6).The translation of a distribution u is defined as (τxu)(φ) = u(τ−xφ), where
τxφ(y) = φ(y − x).

The convolution of a test function with a distribution u is defined as (u∗φ)(x) = u(τxφ̌), where
φ̌(y) = φ(−y).

Prop.(10.12.1.7)[Special Case of (10.12.1.10)].For u ∈ D′, φ ∈ D,ψ ∈ D,
• τx(u ∗ φ) = (τxu) ∗ φ = u ∗ (τxφ).
• u ∗ φ ∈ C∞ and Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ).
• u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ.

If u has compact support, then(10.12.1.3) shows that u can extend to C∞, thus convolution is defined
for φ ∈ C∞ and the first two formulae still hold, and when ψ ∈ D,

u ∗ ψ ∈ D, u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ = (u ∗ ψ) ∗ φ

Proof: Cf.[Rudin P171], [Rudin P174]. □

Cor.(10.12.1.8).L : φ 7→ u ∗ φ is a continuous linear map into C∞ that commutes with τx. And any
these map comes from a u∗:let u = (Lφ̌)(0).

Proof: It is continuous because of of closed graph theorem(10.8.2.8), lim(u ∗φi)(x) = lim u(τxφ̌) =
u(τxφ̌). □

Cor.(10.12.1.9).When u, v ∈ D′ and one of them has compact support, then similar to(10.12.1.8),
Lφ = u∗ (v ∗φ) is a continuous linear map that commutes with τx, so there is a unique convolution
distribution u ∗ v that (u ∗ v) ∗ φ = u ∗ (v ∗ φ). This convolution is compatible with the previous
one when v ∈ D.

Prop.(10.12.1.10)[Convolution of Distributions].For u, v, w ∈ D′,
• if one of u, v has compact support, then u ∗ v = v ∗ u, and Supp(u ∗ v) ⊂ Supp(u) + Supp(v).
• if two of three of u, v, w has compact support, then (u ∗ v) ∗ w = u ∗ (v ∗ w).
• Dαu = (Dαδ) ∗ u.
• if one of u, v has compact support, then Dα(u ∗ v) = (Dαu) ∗ v = u ∗ (Dαv).

Proof: Cf.[Rudin P177]. □

Def.(10.12.1.11).A approximate identity here is a h ∈ D that hk(x) = knh(kx). Then we will
have limφ ∗ hj = φ for φ ∈ D, lim u ∗ hj = u in D′.

2 Fourier Analysis on Rn

Def.(10.12.2.1)[Notations].We denote the normalized notation Rn as dm = (2π)−n/2dx and

Dα = 1
i|α|D

α = 1
i|α|

∂

∂xα
,

which will simplify many notations compared to Dα. The Fourier transform here of a function
f ∈ L1(Rn) is the function f̂ that f̂(t) =

∫
Rn fe−tdmn = (f ∗ et)(0).

See(10.12.2.12) for general Fourier transform.
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Prop.(10.12.2.2).For f ∈ L1(R),

τ̂xf = e−xf̂ , ê−xf = τxf̂ ,

f̂ ∗ g = f̂ ĝ, f̂(x/λ)(t) = λnf̂(λt).

(Note ||f ∗ g||1 ≤ ||f ||1||g||1).

Lemma(10.12.2.3).Let f = e−1/2|x|2 , then f ∈ S, f̂ = f and f(0) =
∫
f̂ .

Proof: Reduce to the 1 dimensional case, in which case, f ′ + xy = 0, and f̂ also satisfies this. □

Lemma(10.12.2.4).For f, g ∈ L1, Fubini theorem shows
∫
f̂g =

∫
fĝ.

Prop.(10.12.2.5)[Classical Fourier Transform].
• S is a Fréchet space in the topology defined by these norms.
• multiplication by g ∈ S and derivations are continuous linear map from S to S (direct calcula-

tion).

• P̂ (D)f(t) = P (t)f̂(t) and P̂ f = P (−D)f̂ .
• The Fourier transform is a continuous linear one-to-one automorphism of S, and Ψ2g = ǧ.

Proof: 1:
2:
3: use(10.12.1.10) for the first one, and for the second one, should use definition of derivative and

dominated convergence.
4:Ψf ∈ S by 3, and it is continuous by closed graph theorem. By(10.12.2.4) and(10.12.2.2),∫

f̂(t)g(t/λ) =
∫
f(t/λ)ĝ(y). If f̂ , ĝ ∈ L1, dominant convergence shows g(0)

∫
f̂ = f(0)

∫
ĝ. So we

only need one f that f(0) =
∫
f̂ , f = e−1/2|x|2 will suffice(10.12.2.3). Hence g(0) =

∫
ĝ for every such

g, and the conclusion follows by translation(10.12.2.2), and(10.11.3.14) also follows. □

Cor.(10.12.2.6). If f ∈ L1(Rn), then f̂ ∈ C0(Rn), and ||f̂ ||∞ ≤ ||f ||1, because S is dense in L1(Rn).

Prop.(10.12.2.7)[Inversion Theorem]. If f ∈ L1(Rn) and f̂ ∈ L1(Rn), then f̌ = Ψ2f a.e.

Proof: In(10.12.2.4), let g ∈ S and substitute g = Ψg and use Fubini, we get f̌ −Ψ2f is orthogonal
to every S, then every continuous function with compact support by(10.4.8.9). Thus they equal a.e.
□

Cor.(10.12.2.8). If f, g ∈ S, then f̂g = f̂ ∗ ĝ (apply Fourier one time and use(10.12.2.2)), and thus
f ∗ g ∈ S.

Prop.(10.12.2.9)[Fourier-Plancherel]. If f, g ∈ S, then∫
fg =

∫
g(x)f̂(t)eixt =

∫
f̂(t)

∫
g(x)eixt =

∫
f̂ ĝ

by inversion formula. And S is dense in L2, thus it extends to a linear isometry of L2(Rn)→ L2(Rn).
This coincides with the Fourier transform on L1 ∩ L2.
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Prop.(10.12.2.10).D injects into S and is dense.(Notice they both are complete, but the subspace
topology are different)(Use scaling, Cf.[Rudin Functional Analysis P189]). So we call a distribution
tempered iff it comes from a continuous functional of S.

From(10.12.1.3), we know any distribution with compact support is tempered. By Holder, every
f ∈ Lp(Rn), p ≥ 1 is tempered distribution, and every polynomial or functions of polynomial growth
are tempered distribution.

D ⊂ S ⊂ L2 = (L2)∨ ⊂ S ′ ⊂ D′.

S,S ′ is complete(10.8.4.3).

Prop.(10.12.2.11).A f ∈ S ′ iff f =
∑

|α|≤mDα(uα(1 + |x|2)m/2) for some m, where uα ∈ L2(Rn).

Proof: In fact,
||φ||′m = (

∑
|α|≤m

∫
(1 + |x|2)m|Dαφ|2 dx)2

is an equivalent set of norms of S ′, Cf.[泛函分析张恭庆 P182]. And each of them defines a Hilbert
space. So by Riesz we get the result. □

Prop.(10.12.2.12)[Generalized Fourier Transform].For a tempered distribution u ∈ S ′, we define
the Fourier transformation as the tempered distribution û(φ) = u(φ̂). It is easily verified that it
is compatible with previously defined Fourier transform when seen as tempered distributions by?? In
particular, this is defined for compactly supported distribution, Lp(Rn), p ≥ 1 and smooth functions
of polynomial growth(10.12.2.10).

Prop.(10.12.2.13). P̂ (D)u = Pû and P̂ u = P (−D)û. And The Fourier transformation is a continuous
linear isometry of S ′ in the weak∗ topology.

Cor.(10.12.2.14). 1̂ = δ, thus P̂ = P (−D)δ and P̂ (D)δ = P . Now(10.12.1.4) tells us a distribution
is the Fourier transform of a polynomial iff it has support in the origin.

Prop.(10.12.2.15)[Convolution of Tempered Distributions].Let u ∈ S ′ and φ,ψ ∈ S, then
• u ∗ φ ∈ C∞ of polynomial growth and Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ).
• u ∗ (φ ∗ ψ) = (u ∗ φ) ∗ ψ.
• û ∗ φ = φ̂û, û ∗ φ̂ = φ̂u.
• If P is a polynomial and g ∈ S, then Dαu, Pu and gu are all tempered.

Proof: Cf.[Rudin Functional Analysis P195] for the first 3. □

Variants

Prop.(10.12.2.16)[Mellin Inversion Formula].Given a function f : R+ → C satisfying suitable
conditions, its Mellin transformation is defined to be

M(f)(s) =
∫ ∞

0
f(t)tsdt

t
.

whenever this integral is absolutely convergent.
Notice if

∫ 1
0 f(t)ts dt

t is convergent for some s, then it converges for any bigger s, and if
∫∞

1 f(t)ts dtt
converges for some s, then it converges for any smaller s. So the domain of M(f) if nonempty, is a
vertical strip σ1 < Re(σ) < σ2 for σ1, σ2 ∈ [−∞,∞].
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Then f can be recovered from M(f): for any σ1 < σ < σ2,

f(x) = 1
2π i

∫ σ+i ∞

σ−i ∞
x−sM(f)(s)ds.

Proof: Using the isomorphism of groups t = ex : R+ → R, this is just the usual Fourier transfor-
mation on R. □

Def.(10.12.2.17)[Laplace Transformation].Let h : R+ → R be a piecewise-continuous function,
the Laplace transformation of h is the function

(Lh)(s) =
∫ ∞

0
e−sth(t)dt, s ∈ C

whenever it is convergent. It is a holomorphic function for Re(s) > c if h(t) = O(ect).

Proof: The last assertion follows from(10.5.2.13). □

Thm.(10.12.2.18).Let f : R≥0 → R be a bounded piecewise-continuous function that its Laplace
transform (Lf)(s) extends to a holomorphic function on Re(s) ≥ 0, then the integral

∫∞
0 f(t)dt

converges and equals (Lf)(0).

Proof: Cf.[Suthurland, Number Theory1, L16].? □

Paley-Wiener Theory

Prop.(10.12.2.19).For φ ∈ D(Rn) that has support in rB, the You-Know-How defined φ̂(z) is an
entire function of several variable and satisfies:

|φ′(z)| ≤ γN (1 + |z|)−Ner| Im z|.

For N ≥ 0. Conversely, any such function correspond to a φ ∈ D(Rn) that has support in rB.

Proof: Cf.[Rudin P198]. □

Prop.(10.12.2.20)[Fourier-Laplace transformation].For u ∈ D′(Rn) that has support in rB, of
order N , the û(z) = u(e−z) is an entire function of several variable and satisfies:

|f(z)| ≤ γ(1 + |z|)Ner| Im z|.

Conversely, any such function correspond to a u ∈ D′(Rn) that has support in rB.

Proof: Cf.[Rudin P199]. □

3 Tauberian Theory
Thm.(10.12.3.1) [Wiener]. If Y is a closed translation-invariant space of L1(Rn) s.t. Z(Y ) =
∩f∈Y {s ∈ Rn : f̂(s) = 0} = ∅, then Y = L1(Rn).

Proof: Cf.[Rud91]P228. □

Cor.(10.12.3.2). If φ ∈ L1(Rn) and Y is the smallest closed translation-invariant subspace of L1(Rn)
containing φ, then Y = L1(Rn) iff φ̂(t) ̸= 0 for any t ∈ Rn.

Proof: Notice Z(Y ) = ∩f∈Y {s ∈ Rn : f̂(s) = 0} = {t ∈ Rn : φ̂(t) = 0}. □
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4 Sobolev Spaces
Def.(10.12.4.1).For 1 ≤ p < ∞, the Sobolev space Wm,p(Ω) is the space of functions u that
Dαu ∈ Lp(Ω) for every |α| ≤ m, with the norm ||u|| = ∑

|α|<m
∫

Ω |Dαu(x)|2dx. The Sobolev space
Wm,p

0 (Ω) is the completion of the subspace C∞
0 (Ω).

Prop.(10.12.4.2)[Meyers-Serrin].The Sobolev spaceWm,p(Ω) is the completion of u ∈ C∞(Ω) that
Dαu ∈ Lp(Ω) for every |α| ≤ m.

Proof: Choose a countable partition of unity ψk, then as in the proof of(10.4.8.10), we can choose
δk small enough and ||ψu− (ψu)δk || < ε/2k and φ =

∑
(ψu)δk is definable. □

Prop.(10.12.4.3).We denote Hm(Ω) = Wm,2(Ω) and Hm
0 (Ω) = Wm,2

0 (Ω) and H−m(Ω) = (Hm
0 (Ω))∗

when m is an integer. Notice derivative is not applicable for H−m(Ω) unless Ω = Rn.
When Ω = Rn, D(Rn) is dense in Wm,p(10.4.8.10), thus Wm,p

0 = Wm,p. Define the Sobolev
space

Hs = {u|(1 + |y|2)s/2|û| ∈ L2}

Hs is a Hilbert space and Hs ⊂ S ′ for every s (use Holder to show û ∈ S ′). Hm coincides with
previously defined Hm when m is a positive integer thus also negative-integer. A linear operator on
H = ∪Hs is said to have order t if it maps every Hs continuously into Hs−t.

Proof: By Plancherel,

||φ||′m = (
∑

|α|≤m
||Dαu||22)1/2 and (

∫
(1 + |x|2)m|û|2)1/2

are equivalence norms on Hm. □

Lemma(10.12.4.4)[Poincare Inequality].For Ω bounded, on Cm0 (Ω) the Wm,p norm is controlled
by Lp norms of its mth order derivatives .

Proof: We may assume Ω ⊂
∏n
i=1[0, a], then for any u ∈Wm,p, u(x) =

∫ x1
0 D1u(t, x2, . . . , xn)dt, so

by Holder inequality,
|u(x)| ≤ a1/q(

∫ a

0
|D1u|pdx1)1/p.

so ∫
Ω
|u(x)|pdx ≤ aq

∫
Ω
|D1u|pdx1.

Doing the same for all other derivatives, we can see the norm is controlled by the highest(m-th)
order norms. □

Prop.(10.12.4.5).When t < s, Hs ⊂ Ht. And Hs are isometric to Ht by v̂ = (1 + |y|2)t/2û and is of
order t. Dα is of order |α|. If f ∈ S, then u→ fu is an operator of order 0.

Every distribution of compact support is in some Hs(10.12.1.3), in particular D(Ω).

Proof: Cf.[Rudin P217]. □

Prop.(10.12.4.6)[Sobolev Embedding Theorem].On a manifold of dimension n which is compact
with Lipschitz boundary or complete of positive injective radius and bounded sectional curvature，
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• if k > l be integers and
1
p
− k

n
= 1
q
− l

n

then W k,p(int(M)) ⊂W l,q(M) continuously.
• if

1
p
− k

n
= −r + α

n

then W k,p(int(M)) ⊂ Cr,α(M) continuously.
Proof: Cf.[Evans P290]. □

Cor.(10.12.4.7)[Gagliardo–Nirenberg–Sobolev].On a manifold of dimension n which is compact
with Lipschitz boundary or a complete of positive injective radius and bounded sectional curvature,
if 1

p∗ = 1
p −

1
n (Sobolev conjugate), then W 1,p(int(M)) ⊂ Lp∗(M) continuously.

Cor.(10.12.4.8).On a manifold of dimension n which is compact with Lipschitz boundary or a com-
plete of positive injective radius and bounded sectional curvature, if m > n/2, then Wm,2(int(M)) ⊂
C(Ω)(M) continuously. And the functions in Wm,2

0 are continuous and vanish at the boundary, by
C0 approximation.
Proof: The Rn case can be directly proved: because we have the equivalent norm(10.12.4.3), û ∈ L2

thus u ∈ L2, and ∫
|û| ≤ (

∫
(1 + |x|2)m|û|2)1/2 ·

( ∫
1/(1 + |x|2)m

)1/2
.

We have û ∈ L1, thus inversion formula applies that u is continuous and ||u||∞ ≤ ||û||1 ≤ C||u||Hm .
□

Cor.(10.12.4.9).∩sHs = C∞(M).
Prop.(10.12.4.10)[Rellich-Kondrechov].On a compact manifold with C1 boundary of dimension
n, if k > l and

1
p
− k

n
<

1
q
− l

n

then W k,p ⊂W l,q completely continuously.
Proof: Cf.[Distributions and Operators P199], [Evans P290]. □

Cor.(10.12.4.11).On a bounded extension domain of Rn, W 1,p ⊂ Lp completely continuously.
Proof: We prove the p = 2 case. For a sequence um in W 1,2, we have ||um−up||2 = ||Um−Up||2 =
||Ûm − Ûp||2. By(10.9.4.9), there is a subsequence that Ûm pointwise converge. Notice they are
uniformly bounded, Now apply two region argument, for |x| < r, use Lebesgue dominant convergence,
and for |x| > r, use

∫
(1 + |x|2)|Ûm − Ûp|2 is bounded to conclude ||um − up||2 → 0. □

Prop.(10.12.4.12). u ∈ D′(Ω) is a locally Hs ⇐⇒ ψu ∈ Hs for every ψ ∈ D(Ω) ⇐⇒ Dαu is locally
L2 for every |α| ≤ s.

Thus every smooth function is locally Hs for every s.
Proof: 1 → 2 use partition of unity, 2 → 1 easy, and 2, 3 are all equivalent to Dα(ψu) ∈ L2 for
every ψ ∈ D(Ω). by Leibniz+Plancherel or (10.12.4.5). □

Prop.(10.12.4.13). If r > p + n/2, then if a function f on Ω has all the distribution derivative Dk
i f

locally L2,= gis, for 0 ≤ k ≤ r, then f ∈ Cp(Ω) a.e.
Cor.(10.12.4.14). If u ∈ D′(Ω) is locally Hs, then u ∈ Cs−n/2(Ω). Thus ∩locally Hs = C∞(Ω).
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Holder Space

Def.(10.12.4.15).Holder space Ck,α(Ω) is the subspace of Ck(Ω) with the norm

||f ||Ck,α = ||f ||Ck + max
|β|=k

sup
x ̸=y∈Ω

|Dβf(x)−Dβf(y)|
||x− y||α

.

5 Fourier Analysis on Tn

Prop.(10.12.5.1). If f is a periodic function on R with period 2π and piecewise-differentiable, then
the Fourier series of f converges to 1

2(f(x+) + f(x−)) everywhere.

Proof: [武胜健 2, P264]. □

Prop.(10.12.5.2). If f is a periodic differentiable function on R with period 2π and f ′ is integrable
at [−π, π], then the Fourier series of f converges to f uniformly.

Proof: [武胜健 2, P281]. □

Prop.(10.12.5.3). If f ∈ L1(T) is absolutely continuous, then (̂f ′)(n) = 2π in·f̂(n).

Prop.(10.12.5.4). f ∈ L1(T) is determined by its Fourier coefficients.
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10.13 Differential Equations

1 ODE-Fundamentals
Prop.(10.13.1.1).

x(2) = f(x)

It can be solved.

Proof:
x

′
x(2) = f(x)x′

1
2

(x′)2 =
∫ x

f(t)dt

□

Prop.(10.13.1.2)[Wronsky].

2 ODE-Theorems
Prop.(10.13.2.1)[Existence and Uniqueness of ODE of Lipschitz Type]. If F (t, x) defined on

[−h, .h]× [η− δ, η+ δ] is a function that is locally Lipschitz: that is, ∃δ, L, s.t. if |t| ≤ h, |xi− η| ≤ δ,
then

|F (t, x1)− F (t, x2)| ≤ L|x1 − x2|.

Then the initial value problem:

(Tx)(t) = η +
∫ t

0
F (τ, x(τ))dτ

has a unique solution on the interval [−h, h] if h < min{δ/M, 1/L}, where M is the maximum of F
on [−h, .h]× [η − δ, η + δ]. Because T is a contraction.

Prop.(10.13.2.2)[Existence of ODE of continuous Type (Caratheodory)]. If F (t, x) defined
on [−h, .h]× [η − δ, η + δ] is a continuous function, then

(Tx)(t) = η +
∫ t

0
F (τ, x(τ))dτ

has a unique solution on the interval [−h, h] if h < δ/M , whereM is the maximum of F on [−h, .h]×
[η − δ, η + δ]. (Use Schauder fixed point theorem and Arzela-Ascali).

Prop.(10.13.2.3)[Existence Theorem for Complex Differential Equations].Let f(z,w) be a
holomorphic vector function in a domain D ⊂ Cn+1, then the initial value problem

w′ = f(z,w), w(z0) = w0

has exactly on holomorphic solution locally (Thus on a simply connected domain).

Cor.(10.13.2.4). So a holomorphic high-order ODE for a complex variable can be solves. And luckily
it can be solved even z appears (just regard it as a constant).∆

Proof: Cf.[Ordinary Differential Equations, P110]. □
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Prop.(10.13.2.5).For the equation:
dy
dx = Ay,

One solution basis is: 
eλ1xP(1)

1 (x), · · · , eλ1xP(1)
n1 (x);

. . . . . . . . .

eλsxP(d)
1 (x), · · · , eλsxP(1)

ns (x);

Where
P(i)
j (x) = r(i)

j0 + x

1!
r(i)
j1 + · · · ,

where r(i)
j0 is a basis of solution of (A− λiI)nx = 0, and r(i)

k+1 = (A− λiI)r(i)
k .

Proof: Cf.[常微分⽅程丁同仁定理 6.6]. □

Cor.(10.13.2.6).For the equation:

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0,

If the characteristic equation has s different roots λ1, . . . , λs and corresponding multiplicities
n1, . . . , ns, then: 

eλ1x, xeλ1x, · · · , xn1−1eλ1x;
. . . . . . . . .

eλsx, xeλsx, · · · , xns−1eλsx;

is a solution basis.

Proof: Cf.[常微分⽅程丁同仁 P198]. □

Prop.(10.13.2.7)[Lyapunov].Consider the Lyapunov stability of an autonomous system of the form:

dx

dt
= Ax+ o(|x|),

Then:
1. If A has a eigenvalue whose real part is positive, then the trivial solution is not weak stable.
2. If all eigenvalues of A has negative real part, then the trivial solution is strong stable.

Stum-Liouville

Prop.(10.13.2.8)[Stum-Liouville].The eigenvalue BVP problem of L-S equation:

Lu = (pu′)′ + qu = λu, a1u(a) + a2u
′(a) = 0, b1u(b) + b2u

′(b) = 0, σ(x) > 0.

can be solved by the method of Green’s function. For the function:

G(x, s) =
{

Cu1(x)u2(s), x < s

Cu2(x)u1(s), x > s

for some C, where u1 is a solution of the L-S equation with boundary value at a, and u2 with
boundary value at b that are linear independent (This happens when the homogenous equation has
no solution). It satisfies: LG(x, s) = δ(x− s) and satisfies the boundary conditions.
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Because L is self-adjoint, we have:

Gf(x) =
∫
f(s)G(x, s)ds, LG = id, GL = id

thus the eigenvalues of L is the reciprocal of the eigenvalues of G, and G is a compact self-adjoint
operator on L2(σ,R), so by spectral theorem, the eigenvectors are countable and form an orthonormal
basis.

And when the homogenous problem do have a solution ϕ, then we have:Lu = f has a solution iff
(f, ϕ) = 0. one way is simple and the other way is because we solve the initial problem of ODE and
find that it automatically satisfies the boundary condition. Cf.[Stum Liouville Theory].

Prop.(10.13.2.9).More generally, if there the boundary is mixed of u(a), U ′(a), u(b), u′(b), the solution
of

Lu = (pu′)′ + qu = 0, B1(u) = α,B2(u) = β.

has a unique solution for any α, β iff the homogenous equation has only non-trivial solution. (Because
the solution space is of 2 dimensional.

Prop.(10.13.2.10)[Stum Seperation Theorem].

Prop.(10.13.2.11)[Stum Comparison Theorem]. If y′′ + Ki(x)y = 0 are equations. If yi(0) = 0
and |y′

1(0)| = |y′
2(0)|, then if K1(x) ≥ K2(x), then y1(x) ≥ y2(x) until y2(x) is zero. (directly

from(11.2.4.10)).

3 Linear PDE

Def.(10.13.3.1).For a linear PDE with constant coefficients P (D)u = v, the fundamental solution
is a distribution E ∈ D′(Rn) that P (D)E = δ. This is important because if v is a distribution with
compact support, P (D)(E ∗ v) = (P (D)E) ∗ v = δ ∗ v = v(10.12.1.10), so u = E ∗ v is a distribution
solution.

Prop.(10.13.3.2).When v ∈ D′(Rn) has compact support, P (D)u = v has a solution u with compact
support iff Pg = v̂ has a solution g entire. In this case, g = û for some distribution u, and u has
support in the convex hull of the support of v.

Proof: Use(10.12.2.20), and some bound relation between g and Pg. Cf.[Rudin Functional Analysis
P212]. □

Prop.(10.13.3.3).The fundamental solution always exist when for PDE of constant coefficients.

Proof: For a φ ∈ D(Rn), there is at most one ψ that ψ = P (D)φ because ψ̂ = Pφ̂ and they are
entire function. Thus the task is to verify the functional u : P (D)φ→ φ(0) is continuous and extend
to a distribution u ∈ D′(Rn). Cf.[Rudin Functional Analysis P215]. □

4 Differential Operators on Manifolds

Prop.(10.13.4.1)[Index Theorem P109]. has a nice definition of symbol of a differential operator
on a manifold as a map form SymmT ∗M ⊗ C→ Hom(E,F ).
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5 Pseudo-Differential Operator

Def.(10.13.5.1).Denote the Japanese bracket [x] = (1 + |x|2)1/2 ∼ 1 + |x|.
Motivated by the formula (P̂ f̂)∨ = P (D)f for f ∈ S and polynomial P of ξ with coefficients

smooth functions of x?? we define the symbol class Sµ,β as the space of smooth functions a : R2n →
C that

|Dx,αDξ,βa(x, ξ)| ≤ Cα,β[x]µ[ξ]m−|β|

and denote Sm = S0,m.
We denote the symbol class Av as the space of smooth functions a : R2n → C that |Dαa| ≤

Cα[x+ ξ]v for any α. So Sµ,m ⊂ A|µ|+|m|

And we define the pseudo-differential operator of symbol a:

(a(x,D)u)(x) =
∫
ξ
eixξa(x, ξ)û

Moreover, we can define the amplitude function p(x, y, ξ) and define

Pu(x) =
∫
ei(x−y)ξp(x, y, ξ)u(y)dy.

Def.(10.13.5.2).We define the space Sd of polyhomogenous symbols of degree d as the set of all
symbols in Sd0,1 that there exists a set of pd−l homogenous in ξ of degree d− l that p =

∑
pd−l modulo

an operator in S−∞. Note that when pd−l is homogenous of degree d− l, then it is automatically in
Sd−l

0,1 .

Def.(10.13.5.3).A ψdo operator a is called elliptic if σ(a) ∈ Sm and σ(a) ≥ [ξ]−m for ξ big enough.

Prop.(10.13.5.4)[Peetre’s Inequality].For all v ∈ R, there is a constant C that

[X + Y ]v < C[X]v[Y ]v.

Proof: For v > 0, just as normal. For v < 0, use X = (X + Y ) + (−Y ) applied to −v. □
Prop.(10.13.5.5).The mapping a(x, ξ)× u(x) 7→ a(x,D)u is continuous from Av ×S → S, thus also
continuous from Sµ,m × S → S. Cf.[Pseudo Differential Operator P28].

Lemma(10.13.5.6) [Schur Test].For a function K on R2n and u ∈ Lp(Rn), let ||K||1 =
supx

∫
|K(x, y)|dy and ||K(x, y)||2 = supy

∫
|K(x, y)|dx. Let Au(x) =

∫
K(x, y)u(y)dy, then

||Au||lp ≤ ||K||
1−1/p
1 ||K||1/p2 ||u||Lp .

by Holder.

Prop.(10.13.5.7)[Calderón-Vaillancourt].There is a constant C,NCV that for u ∈ A0 and φ ∈ S,

||Op(u)φ||L2 ≤ C max
|α|+|β|≤NCV

||∂αxDβ,ξu||L∞ ||φ||L2 .

This in particular applies to u ∈ S0.

Proof: Cf.[Calderon-Vaillancourt]. □
Cor.(10.13.5.8).Sm maps Hs to Hs−m. Because by symbolic calculus(10.13.5.10), we have

Op([ξ]s−m)Op(u)Op([ξ]−s) = Op(b) ∈ S0,

thus Op(u) = Op([ξ]m−s)Op(b)Op([ξ]s) maps Hs into Hs−m.
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Symbolic Calculus

Def.(10.13.5.9) [Semiclassical Operator].For a ∈ Sµ,m and h ∈ (0, 1], we denote ah(x, ξ) =
a(x, hξ), it is also in Sµ,m.

Prop.(10.13.5.10)[Composition]. If a ∈ Sµ1,m1 and b ∈ Sµ2,m2 , there is a pseudo-differential opera-
tor (a#b)(h) ∈ Sµ1+µ2,m1+m2 for every h ∈ (0, 1] that

Op(ah)Op(bh) = Op((a#b)(h)h)

and for all J > 0, (a#b)(h) can be written as

a#b(h) =
∑
j<J

hj
( ∑

|α|=j

1
α!
∂αξ aD

α
x b
)

+ hJr#
J (a, b, h)

where r#
J (a, b, h) ∈ Sµ1+µ2,m1+m2−J and it is bilinear of a, b and equicontinuous independently of h.

Proof: Cf.[Pseudo Differential Operator P36]. □

Prop.(10.13.5.11)[Adjoint]. If a ∈ Sµ,m and u, v ∈ S, there is a pseudo-differential operator a ∗ (h)
for every h ∈ (0, 1] that

(u,Op(ah)v) = (Op(a∗(h)h)u, v)

in the L2 norm and for all J > 0, a∗(h) can be written as

a∗(h) =
∑
j<J

hj
( ∑

|α|=j

1
α!
∂αξ D

α
xa
)

+ hJr∗
J(a, h)

where r∗
J(a, h) ∈ Sµ,m−J and it is anti-linear of a and equicontinuous independently of h.

Proof: Cf.[Pseudo Differential Operator P30]. □

Def.(10.13.5.12).For u ∈ S ′, we define the action of a(x, ξ) on u by

(Op(ah)u)(φ) = u(Op(a∗(h)h)φ).

This is compatible with the definition on S.

6 General PDE
Cf.[Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order.

Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. xiv+517
pp. ISBN: 3-540-41160-7].

Direct Solution

Prop.(10.13.6.1)[Characteristic Line].Consider a 1-dimensional parabolic equation:

pt + c(p, x, t)px = r(p, x, t)

Let P (t) = p(X(t), t), this equation is equivalent to

Pt = r(X(t), t, P (t)), Xt = c(X(t), t).

an ODE equation.
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Prop.(10.13.6.2).A set of equations:
∂

∂xi
µ = Aiµ

where µ is a n-vector. It has a solution iff

[Ai, Aj ] = ∂

∂xi
Ai −

∂

∂xi
Aj .

Proof: □

Cor.(10.13.6.3).This seems to be able to derive Frobenius integrability theorem, but I cannot figure
it out.

7 Analysis on Manifolds
Prop.(10.13.7.1) [Peetre’s Theorem].For a linear operator from C∞(M) to C∞(M) that
Supp(Lu) ⊂ Supp(u) where M is a compact manifold, then on every compact subset of a coor-
dinate chart L looks like a differential operator of finite order.

Proof: The first thing is to prove on a chart Ω, L is continuous on C∞
0 (Ω). In fact, it suffice to

show it is continuous from C∞
0 (Ω) to C0

0 (Ω) because we can apply to DαL. For this, Cf.[Pseudo
Differential Operator P86].

Then we have |Lu| ≤ C max|α≤m supK |Dαφ| for every φ ∈ C0(K). And the functional φ →
(Lφ)(x) is a distribution supported on x, thus by(10.12.1.4), it is of the form

Lu(x) =
∑

|α|≤m
aα(x)Dαφ(x).

We need to show aα is smooth, which we choose a bump function χ to show a0 is smooth and then
choose xiχ applied to Lφ− a0φ to show ai is smooth, etc. □

Prop.(10.13.7.2).The property of ψdo of order d is preserved under diffeomorphism, Cf.[Distributions
and Operators P195], giving us the possibility to define ψdo differential operator on manifolds, and
the principal symbol variate in this way that it forms a function from the cotangent bundle to the
Mn(C). And the Sobolev space is defined by the property that all of its restrictions on a atlas are
Sobolev, using the partition of unity.

Prop.(10.13.7.3).All the norms of different are commensurable up to constant factor w.r.t. each
other, so it doesn’t quite matter with different norms.

Prop.(10.13.7.4).The parametrix exists for an elliptic operator on manifolds. Cf.[Distributions and
Operators P207].

8 Elliptic Operators
Prop.(10.13.8.1).Elliptic operator is a Fredholm operator. And the kernel and cokernel are smooth
functions, so it is also a Fredholm operator on C∞(Ω).

Proof: It suffice to find a left and right inverse modulo compact operators, and in fact we find it
module S−∞. Since S−∞ are all compact operators, i.e. it has a parametrix. Cf.[Distributions and
Operators, P184]. □
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Prop.(10.13.8.2)[Garding Inequality].For an elliptic operator of order d on Γ(E),

||f ||Hs ≤ C(||f ||Hs−d + ||Pf ||Hs−d)

Proof: □

Cor.(10.13.8.3)[Elliptic Regularity Theorem].The inverse image of a smooth function under an
elliptic operator is a smooth function, because the intersection of Hs(E) is C∞(E).

Cor.(10.13.8.4) [Elliptic Regularity Theorem].For L =
∑

|α|≤N fαDα, where fα ∈ C∞(Ω) and
the equation Lu = v for distributions u and v ∈ D′(Ω), when v is locally Hs, u is locally Hs+N .
Thus if v ∈ C∞(Ω), then u ∈ C∞(Ω) by(10.12.4.12)(10.12.4.14).

Proof: We prove the case when L has leading coefficients constant. For every φ ∈ D(Ω) that is 1
on some open ball B, φu has compact support thus in some Ht< and then we use a sublemma that
says if ψ is 1 on the support of φ, then if ψu is in Ht, where t ≤ s + N − 1, then φu ∈ Ht+1. In
this way, we can shrink the nbhd to reach Hs+N . The proof of the lemma is in [Rudin Functional
Analysis P220]. □

Prop.(10.13.8.5)[Analytic Ellipticity theorem]. Suppose L is an analytic elliptic differential op-
erator on a domain M ⊂ Rn, then every solution to Lφ = 0 is analytic.

Proof: □

Prop.(10.13.8.6).The formal adjoint of an elliptic operator is an elliptic operator.

Proof: □

Cor.(10.13.8.7).The index of an elliptic operator, regarded as an operator form Ls → Ls−d doesn’t
depend on s, because all the kernel of P and P ∗ are smooth.

Prop.(10.13.8.8).For an elliptic operator, It has a inverse, the Green function which is a compact
operator, so it has countable eigenfunctions consisting of smooth functions on L2 with eigenvalues
converging to ∞. Moreover, the eigenvalues satisfy |λn| ≥ Cnδ for some δ, C.

Proof: We prove for P self-adjoint. Use(10.13.8.1), kerP is all smooth, so there is a map
P (H−2d) → P (H−d) which is bijective thus an isomorphism by Banach. So the inverse of this
isomorphism composed with the Sobolev embedding H−d → L2 is a compact operator G. we notice
that this map has the same eigenfunctions as P , thus the result from that of compact operators.

For the second assertion, if suffice to prove dimN(λ) ≤ CλM . Using Garding inequality and
Sobolev embedding, we have for f ∈ N(λ), ||f ||C0 ≤ C(1 + λl)||f ||L2 for large l. So if we choose an
orthonormal basis fi, then |aifi(x)| ≤ C(1 + λl)|

√∑
|ai|2. Let ai = fi(x) and integrate over M , we

get the desired result. □

Cor.(10.13.8.9).For a self-adjoint elliptic operator P which is not a constant, L2(E) has a basis
consisting of eigenfunctions of P .

Cor.(10.13.8.10) [Stum-Liouville].This can be used to solve for example eigenvalue problem for
Liouville’s equation:

(pu′)′ + qu = λσu.

where p and σ are positive. Cf.(10.13.2.8).
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Cor.(10.13.8.11).The Hermite functions Cnex
2/2 dn

dxn e
−x2 , as the eigenvector of Ĥ = x2 − d2

dx2 , forms
a complete basis for L2(R). Because it is e−x2 times the solution of the operator (e−x2

F ′)′ − e−x2
F .

Prop.(10.13.8.12).For a formally self-adjoint elliptic operator P of degree d on E, Γ(E) = ImP ⊕
P (Γ(E)).

Proof: We know that L2(E) = P (HdE)⊕kerP , and kerP are all smooth by(10.13.8.3), so Γ(E) =
kerP ⊕ P (HdE) ∩ Γ(E). Now use Garding’s inequality(10.13.8.2), the intersection is just P (Γ(E)),
thus the result. □

Prop.(10.13.8.13)[Asymptotic Heat Equation]. In this case we have the series

ht(A∗A) =
∑
λ

e−λt dim Γλ(E)

converges and ht has an asymptotic expansion

ht =
∑
k≥−n

tk/2mUk(A∗A)

where n = dimM and Uk =
∫
M µk for a differential form on M . Cf.[Heat Equation and the Index

Theorem P297].
By the proposition above, the eigenspaces of eigenvalue non-zero neutralize, so Ind A = ht(A∗A)−

ht(AA∗), so
Ind A = U0(A∗A)− U0(AA∗) =

∫
M
µ0(A∗A)− µ0(AA∗).

The proof consists of the following propositions,

Prop.(10.13.8.14).Using the fact that an elliptic operator has a countable basis, for an elliptic
operator P , when t > 0, we let K(t, x, y) =

∑
n e

−tλnΦn(x)Φn(y), then

e−tP f(x) =
∫
K(t, x, y)f(y)dy.

K(t, x, y) is smooth. and the trace of e−tA∗A is exactly ht(A∗A) as in the last proposition. And the
trace is just

∫
M K(t, x, x), as can be easily seen.

Proof: Use Garding inequality and(10.13.8.8), we can show ||K||Ck is bounded. □
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10.14 Operator Algebras
Cf.[Princeton Companion].
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10.15 D-Modules
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10.16 Dynamical Systems

References are [Dynamical System, Katok] and [B-S02].

1 Topological Dynamical Systems

Def.(10.16.1.1)[Topological Dynamic Systems].A topological dynamic system is a topological
space X and either a continuous map f : X → X or a continuous (semi)flow f t on X.

Def.(10.16.1.2).Let f : X → X be a topological dynamic system(10.16.1.1), then
• For x ∈ X, its ω-limit points are defined to be

ω(x) = ∩n∈N∪i≥nf i(x)

• If f is invertible, for x ∈ X, its α-limit points are defined to be

α(x) = ∩n∈N∪i≤nf i(x)

• The set R(f) of (positively)recurrent points are the points x that x ∈ ω(x).
• The set NW (f) of non-wandering points are the points x that for any nbhd U of x, there

is an n > 0 that fn(U) ∩ U = ∅.
• Denote

O(x) = ∪n∈Zf
n(x), O+(x) = ∪n≥0f

n(x).

• Let X be compact, then a closed non-empty forward f -invariant Y ⊂ X is called a minimal
set for f if there is no smaller such set.

• A point x ∈ X is called almost periodic if for any nbhd U of x, {i|f i(x) ∈ U} is relatively
dense in N, i.e. appear in every k consecutive integers for some k.

Prop.(10.16.1.3).
• NW (f) is closed, f -invariant, and contains α(x), ω(x) for all x.
• Every recurrent point is non-wandering, thus R(f) ⊂ NW (f).
• Let X be compact Hausdorff, then O+(x) is minimal for f iff x is almost periodic.

Proof: item1 is easy, 2 follows from1 as x ∈ ω(x).
For3: suppose x is almost periodic and y ∈ O+(x), we need to show that x ∈ O+(y). For any

nbhd x ∈ U , there is a small nbhd x ∈ U ′ ⊂ U and a nbhd ∆ ⊂ V ⊂ X × X, that if x1 ∈ U ′ and
(x1, x2) ∈ V , then x2 ∈ U . Since x is periodic, there is a K that for any j ≥ 0, there is a f j+k(x) ∈ U ′

for some 0 ≤ k ≤ K. Let V ′ = ∩Ki=0f
−1(V ), then V ′ is open and contains the diagonal. Thus there is

a nbhd W of y that W ×W ⊂ V ′. Now choose fn(x) ∈ W by almost periodicity, and fn+k(x) ∈ U ′

for some 0 ≤ k ≤ K, then we have (fn+k(x), fk(x)) ∈ V by the definition of V ′ and W , and hence
fk(x) ∈ U . This shows x ∈ O+(y).

Conversely, if x is not almost periodic, then there is a nbhd U of x, that there is a sequence
{ai} ∈ N, that fai+j(x) /∈ U for j ≤ i. By convergence theorem and passing to a subsequence, we
assume y is a the limit of fai(x), and f j(y) /∈ U for any j > 0, thus x /∈ O+(y), showing O+(x) is
not minimal. □
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Prop.(10.16.1.4) [Minimal Set Exists on Compact Dynamic System]. If f is a topological
dynamic system on a compact space, then there exists a minimal set. In particular, there exists an
almost periodic point, in priori positively recurrent point, by(10.16.1.3).

Proof: Use Zorn’s lemma and the finite intersection property. □

Def.(10.16.1.5) [Topologically Transitive].A topological dynamic system f : X → X is called
topologically transitive if there is a point x that O(x) = X.

Prop.(10.16.1.6).Let f be a continuous map of a locally compact Hausdorff second countable space
X. Suppose that for any two non-empty open set U, V , there is n > 0 that fn(U) ∩ V ̸= ∅, then f
is topologically transitive.

Proof: For any open subset V , the hypothesis says ∪n>0f
−n(V ) is dense in X. Let Vi be a

countable basis for the topology of X, and Y = ∩i ∪n>0 f
−n(Vi), then it is non-empty, by Baire

category theorem(3.3.9.2). Now the orbit of any y ∈ Y enters every Vi, thus its orbit is dense in X.
□

Prop.(10.16.1.7).Let f : X → X be a homeomorphism of a compact metric space, and suppose X
has no isolated points, then if there is a dense orbit O(x), there will be a dense orbit O+(x).

Proof: The hypothesis that X has no isolated points shows that O(x) meets every open subset U
infinitely many times, thus we can choose fnk(x) ∈ B(x, 1/k) that |nk| → ∞. Thus fnk+l(x)→ f l(x)
for any l.

If there are infinitely many nk > 0, then we have O(x) ⊂ O+(x), hence O+(x) is dense. If
there are infinitely many nk < 0, then O−(x) is dense. Then for any open subset U, V , we can find
i < j < 0 that f i(x) ∈ U, f j(x) ∈ V , thus f j−i(U) ∩ V ̸= ∅. Hence we use(10.16.1.6) to conclude f
is topologically transitive. □

Def.(10.16.1.8)[Topological Mixing].A topological dynamic system f : X → X is called topolog-
ically mixing if for any two non-empty open subsets U, V , there is N > 0 that fn(U) ∩ V ̸= ∅ for
any n ≥ N .

Def.(10.16.1.9).A homeomorphism f : X → X is called expansive if there is a δ > 0 that for any
two distinct points x, y, there is some n ∈ Z that d(fn(x), fn(y)) ≥ δ. Similarly, we can define
positively expansive for a non-invertible continuous map f : X → X. This constant δ is called a
expansiveness constant of f .

Prop.(10.16.1.10)[Compact Metric Space not positively expansive]. If f be a continuous map
of an infinite compact metric space X, then it is not positively expansive.

Proof: First assume f is invertible. Fix ε > 0, consider all m that there are points x ̸= y that

d(fn(x), fn(y)) < ε, 0 < n ≤ m, d(x, y) ≥ ε.

If these m are infinite, then we can use convergence point theorem to find a point x, y that
d(fn(x), fn(y)) < ε for any n > 0, thus f is not expansive.

If these m are finite, let M be a maximal, then by absolute convergence, there is a δ that
if d(x, y) ≤ δ, then d(fn(x), fn(y)) < ε for any 0 ≤ n ≤ m. Then by definition of M ,
d(f−1(x), f−1(y)) < ε, and similarly d(f−n(x), f−n(y)) < ε for any n < 0.
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Now choose a finite δ/2-net {xi} of M , then for each j ∈ Z, there are two f j(xs), f j(xt) in the
same B(δ/2, xj), thus d(fn(xs), fn(xt)) < ε for n ≤ j. Now there are only f.m. pairs of elements
in M , there are some pair (xα, xβ) appeared infinitely many times for different j > 0, thus we have
d(fn(xα), fn(xβ)) < ε for any n ∈ Z.

For the non-invertible case, the proof is the same, noticing that f−1 is chosen wisely when it can
be defined. □

Cor.(10.16.1.11).Let f be an expansive homeomorphism of an infinite compact metric space X, then
there are distinct points x0, y0 that limn→∞ d(fn(x0), fn(y0)) = 0.
Proof: Let δ be an expansive constant of f , then by(10.16.1.10), there are x0 ̸= y0 ∈ X that
d(fn(x0), fn(y0)) ≤ δ for all n > 0. Suppose d(fn(x), fn(y)) ↛ 0, then by compactness in X ×X,
there is a subsequence {nk} ∈ N that fnk(x) → x′, fnk(y) → y′ with x′ ̸= y′. Then this will show
that d(fm(x), fm(y)) < δ for any m ∈ Z, contradicting expansiveness of f . □

Def.(10.16.1.12).Let f : X → X be a homeomorphism of compact Hausdorff space, then
• two points x, y are called proximal if the closure of orbits O((x, y)) under f × f intersect the

diagonal ∆ ⊂ X × X. It is called distal otherwise. f is called distal if every two distinct
points x, y are distal.

• f is called equicontinuous if the family {fn}n∈Z is equicontinuous.
Prop.(10.16.1.13).A equicontinuous homeomorphism f of a compact metric space are distal.

Proof: Suppose f is not distal, then there is a proximal pair (x, y), thus there is a sequence {nk} ∈ Z

that d(fnk(x), fnk(y)) → 0. let d(x, y) = ε, thus for any δ > 0, there is some d(fnk(x), fnk(y)) < ε,
thus contradicting the equicontinuity of f−n. □

Def.(10.16.1.14)[Almost Periodic Set].For a subset A ⊂ X and a homeomorphism f : X → X,
denote by fA the action of f on XA. Then A is called almost periodic if every z ∈ Mor(A,A) is
almost periodic for fA. Equivalently, for any finite set of points {xi} ∈ A, and nbhds xi ∈ Ui, the
set {k ∈ Z|fk(xi) ∈ Ui} is relatively dense in Z. This is compatible with the previous definition of
almost periodic point(10.16.1.2).

Def.(10.16.1.15).A homeomorphism of a compact Hausdorff space is called pointwise almost pe-
riodic if every point x is almost periodic. By(10.16.1.3), we can see that this is equivalent to X is
a union of minimal sets.

Lemma(10.16.1.16).Every almost periodic set A is contained in a maximal almost periodic set in
X.
Proof: It is because of the second definition of almost periodic set(10.16.1.14) that the sum of an
ordered family of almost periodic sets is also almost periodic. □

Prop.(10.16.1.17).Let f be a homeomorphism of a compact Hausdorff space X, then every point
x ∈ X is proximal to an almost periodic point.
Proof: If x is almost periodic, then we are done. If not, consider a maximal almost periodic set
A ⊂ X, then x /∈ A. Then for z ∈ XA with range A, consider (x, z) ∈ X ×XA, and find an almost
periodic point (x0, z0) of f × fA in O(x, z), by(10.16.1.4). Because z is almost periodic, z ∈ O(z0),
by(10.16.1.3). Thus we see (x′, z) ∈ O(x0, z0) for some x′, by the compactness of X. Then (x′, z) is
also almost periodic, and we can forget about x0, z0.

Therefore, {x′}∪Im(z) = {x′}∪A is almost periodic for f , and since A is maximal, x′ ∈ A = Im(z).
This shows (x′, x′) ∈ O(x, x′), showing x is proximal to x′. □
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Cor.(10.16.1.18)[Distal Homeomorphism is Pointwise Almost Periodic]. If f is a distal home-
omorphism of a compact Hausdorff space, then f is pointwise almost periodic.

Prop.(10.16.1.19). • A homeomorphism of a compact Hausdorff space is distal iff the product
system (X ×X, f × f) is pointwise almost periodic.

• A factor system of a pointwise almost periodic homeomorphism is pointwise almost periodic.
• A factor system of a distal homeomorphism is distal.

Proof: 1: If f is distal, then so is f × f , hence it is pointwise almost periodic, by(10.16.1.18).
Conversely, if f × f is pointwise almost periodic, then if x, y is proximal, then (z, z) ∈ O(x, y), but
since O(x, y) is minimal, by(10.16.1.3), (x, y) ⊂ O(z, z) ⊂ ∆, hence x = y.

2: This is easy.
3: if f is a factor of g, then f × f is a factor of g × g, but the latter is pointwise locally periodic,

thus the first is also locally periodic, by2, and then f is distal, by1. □

Topological Entropy

Def.(10.16.1.20)[Definitions].Let (X, d) be a compact metric space, and f a continuous map X →
X, we define

• for x, y ∈ X, dn(x, y) = max0≤k≤n−1 d(fk(x), fk(y)).
• a subset A ⊂ X is called (n, ε)-spanning if it is a ε-net in (X, dn). Similarly, we can define

(n, ε)-separated and cov(n, ε, f) the minimal number of covering of X of dn-diameter< ε.

Lemma(10.16.1.21). cov(n, 2ε, f) ≤ span(n, ε, f) ≤ sep(n, ε, f) ≤ cov(n, ε, f).

Proof: Easy. □

Prop.(10.16.1.22)[Topological Entropy].The number

lim
n→∞

1
n

log(cov(n, ε, f)) = hε(f)

is well-defined and finite. It is increasing as ε decreces, so h(f) = limε→0+ hε(f) exists, which lies in
[0,∞]. It is called the topological entropy of f .

Notice the entropy can be calculated by either cov, span or sep, by(10.16.1.21).

Proof: For this, we need to notice if U has dn-diameter< ε and V has dm-diameter< ε, then
U ∩ f−m(V ) has dm+n-diameter< ε. Hence

cov(m+ n, ε, f) ≤ cov(m, ε, f) · cov(n, ε, f).

Thus we can use(24.1.1.1) to conclude. □

Prop.(10.16.1.23).The topological entropy doesn’t depend on the metric generating the topology.

Proof: This is because d′ is a continuous function on (X×X, d×d), thus it is uniformly continuous
as X is compact, so

cov(n, ε, f) ≤ cov(n, δ(ε), f)

where δ(ε)→ 0 when ε→ 0. This shows the topological entropies are the same. □
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Cor.(10.16.1.24).Two conjugate dynamic systems have the same topological entropy.

Prop.(10.16.1.25) [Properties of Entropy].Let f : X → X be a continuous map of a compact
metric space X, g : Y → Y be a continuous map of a compact metric space Y , then

• h(fm) = m · h(f) for m > 0.
• If f is invertible, then h(f−1) = h(f).
• Let Ai be a finite family closed forward f -invariant subsets of X whose union is X, then

h(f) = max h(f |Ai).

• h(f × g) = h(f) + h(g), and if f is an extension of g, then h(f) ≥ h(g).

Proof: 1: Use two inequalities:

span(n, ε, fm) ≤ span(mn, ε, f), span(n, δ(ε), fm) ≥ span(mn, ε, f)

where δ(ε)→ 0 if ε→ 0, and(10.16.1.21).
2: Because (n, ε)-separated sets for f and (n, ε)-separated sets for f−1 corresponds via fn.
3: Use two inequalities:

span(n, ε, f) ≤
k∑
i=1

spani(n, ε, f) ≤ k ·max spani(n, ε, f),

sep(n, ε, f) ≥ max sep(n, ε, f).

4: Noticing two inequalities:

cov(n, ε, f × g) ≥ cov(n, ε, f) · cov(n, ε, g),

sep(n, ε, f × g) ≥ sep(n, ε, f) · sep(n, ε, g).

and the proof of the last assertion is similar to that of(10.16.1.23). □

Prop.(10.16.1.26).Let f : X → X be an expansive homeomorphism of a compact metric space of
expansiveness constant δ, then h(f) = hε(f) for ε < δ.

Proof: For 0 < γ < ε < δ, we show that h2γ(f) = hε(f). For this, it suffices to prove≤.
By expansiveness, if x ̸= y, then there is some i ∈ Z that d(f i(x), f i(y)) ≥ δ > ε. Since the
set {(x, y) ∈ X × X|d(x, y) ≥ γ} is compact, there is a k = k(γ, ε) that if d(x, y) ≥ γ, then
d(f i(x), f i(y)) > ε for some |i| ≤ k. Thus if A is a (n, γ)-separated set, then f−k(A) is a (n+ 2k, ε)-
separated set. Hence by(10.16.1.21), h2γ(f) ≤ hε(f). □

Application to Ramsey Theory

Def.(10.16.1.27) [IP-System].Let F be the collection of all finite non-empty subset of N. For
α, β ∈ F , write α < β if every element of α is smaller than that of β.

For a commutative group G, an IP-system in G is a map T : F → G that Ti1,...,ik = Ti1 · . . . ·Tik .

Prop.(10.16.1.28)[Furstenberg-Weiss].Let G be a commutative group acting minimally on a com-
pact topological space X, then for any open subset U of X, n > 0 and α ∈ F , and any IP-systems
T 1, . . . , Tn on G, there is a β ∈ F that α < β, and

U ∩ T 1
β (U) ∩ . . . ∩ Tnβ (U) ̸= ∅.
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Proof: Cf.[Dynamic System, P49]. □

Cor.(10.16.1.29).Let G be a commutative group acting homeomorphically on a compact metric space
X and T 1, . . . Tn be IP-systems on G, then for any α ∈ F and ε > 0, there are x ∈ X and β > α
that d(x, T iβ(x)) < ε for any i.

Proof: Just need to find a minimal closed subset of X for G, but this is easy by finite intersection
theorem. □

Cor.(10.16.1.30) [Multiple Recurrence Property].Let T be a homeomorphism of a compact
metric space X, then for any ε > 0 and q > 0, there are p > 0 and x ∈ X that d(T jp(x), x) < ε for
0 ≤ j ≤ q.

Proof: This is a special case of(10.16.1.29), by taking G = {T k}, and T iα = T i|α|, where |α| is the
sum of elements in α. □

Cor.(10.16.1.31)[Generalized van der Waerden Theorem].For each finite partition Z = ∪mi=1Sk,
one of the the subset Sk contains arbitrarily long arithmetic progressions.

More generally, let A be a finite subset of Zd, then for each partition Zd = ∪mi=1Sk, there are
some k, z0 ∈ Zd and n > 0 that z0 + na ∈ Sk for any a ∈ A.

Proof: Consider the product space Σm = {1, 2, . . . ,m}Z with the 2-adic metric with shifting σ.
Then a partition of Z can be viewed as an element ξ in {1, 2, . . . ,m}Z, with ξi = k if i ∈ Sk. Let
X = ∪∞

i=−∞σ
i(ξ). Let Ak = {ω ∈ X|ω0 = k}, then if x ∈ Ak, y ∈ X with d(x, y) < 1, then y ∈ Ak

also. Thus for any q > 0, we can use(10.16.1.30) to show that there is an ω ∈ X that d(σip(ω), ω) < 1
for 0 ≤ i ≤ q, thus there is an r ∈ Z that ξj = ω0 for j = r, r + k, . . . , r + pq. And this proves the
theorem.

The proof of the general case is similar. □

2 Symbolic Dynamics
Def.(10.16.2.1)[Subshifts].A subshift is a closed subset X ⊂ Σm that is invariant under the shift
σ and σ−1. A map between to subshifts of Σm is called a code if it commutes with σ.

Prop.(10.16.2.2).Let X be a subshift of Σm, let Wn(X) be the set of words of length n that occurs
in X, σ|X is clearly expansive of constant 1, thus we have

h(σ|X) = lim
n→∞

1
n

log |Wn(X)|.

Proof: This is because every element in Wn appears in the first n term of some ω ∈ X, and
elements in a set of dn-diameter< 1 has first n entries the same. For the other direction, notice
a (n, 1)-separated set has the first n-entries not the same, thus contribute to different elements in
Wn(X), thus sep(n, 1, σ|X) < Wn(X). □

Def.(10.16.2.3) [block code].Let X be a subshift, k, l ≥ 0, n = k + l + 1, and α be a map from
Wn(X) to {0, 1, . . . ,m′ − 1}, then a (k, l)-block code is a morphism from X to Σm′ that maps x to
the sequence aα(x) that aα(x)i = α((xi−k, . . . , xi+l)).

When {0, 1, . . . ,m′− 1} is chosen to be Wn(X) itself, then this is called a higher block presen-
tation of X.
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Prop.(10.16.2.4)[Curtis–Lyndon–Hedlund]. [Every Code is a block code] Every code c : X → Y
is a block code.

Proof: Let A be the symbol set of Y , define ĉ : X → A : x 7→ c(x)0. This is a continuous map, and
X is compact thus it is uniformly continuous, thus there is a δ > 0 that ĉ(x) = ĉ(y) if d(x, y) < δ.
Thus there is a large k that ĉ only depends on the first 2k + 1 term, and it commutes with shifting,
thus it is a block code. □

Def.(10.16.2.5)[SFT].A subshift of finite type or SFT of k-step, k > 0 is a subshift X that are
defined to be the elements in Σm that doesn’t contain some set of words of length k+1. When k = 1,
this is also called a topological Markov chain.

Prop.(10.16.2.6).Every SFT is isomorphic to a vertex shift.

Proof: For this SFT X of step k, construct a graph, whose vertices are Wk(X), and two element
of Wk(X) are connected by an edge if they adjoint to an element in Wk+1(X). □

Cor.(10.16.2.7).Every SFT is isomorphic to an edge shift. This is because every vertex shift can be
2-block isomorphic to its edge shift.

Prop.(10.16.2.8)[Perron].

Sofic Shifts and Data Transmission

Def.(10.16.2.9)[Sofic Shifts].A subshift X ⊂ Σm is called sofic if it is a factor of a subshift of finite
type.

Prop.(10.16.2.10).A subshift X ⊂ Σm is sofic iff it is isomorphic to an infinite path shift for some
directed graph Γ(Notice that different edge in Γ can be labeled the same).

Proof: Clearly such a path shift is a factor of the edge shift of Γ, thus it is sofic. Conversely, A sofic
shift is a factor of some edge shift c : Σe

A → X, by(10.16.2.7), and c is a block code, by(10.16.2.3).
Composing with the higher block code presentation, we may assume c is a (0, 1)-block code, □

3 Ergodic Theory
Prop.(10.16.3.1)[Poincaré’s Recurrence Theorem].Let T be a measure-preserving transforma-
tion of a finite measure space X, if A is a measurable set, then for a.e. x ∈ A, there is some n > 0
that Tn(x) ∈ A.

Proof: Let B be the set of points contradicting this property, B = A\ ∪k>0 T
−kA, thus all the

preimages T−kB are disjoint, measurable and have the same measure as B, thus it must has measure
0 as X has finite measure. □

Cor.(10.16.3.2) [Derivarive Transformation].Given a finite measurable space and a measure-
preserving map T : X → X and a measurable subset A of finite measure, then the derivative
transformation TA : A → A : x 7→ T k(x), where k > 0 is the first integer that T k(x) ∈ A. By
Poincaré’s Recurrence theorem, the derivative transformation is defined on a subset of full measure.

Prop.(10.16.3.3).Let X be a second countable metric space and µ a Borel probability measure on
X, and f : X → X is a measure preserving continuous map, then a.e. point x ∈ X is recurrent, i.e.
Suppµ ⊂ R(f).
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Proof: There is a countable family of basis {Ui} of nbhds of X, and for each Ui, elements in Ui
returns to Ui except for a set Xi of measure0. Then R(f) = X\

∪
iXi has full measure. □

Def.(10.16.3.4)[Ergodicity].A measure-preserving transformation T is called ergodic if any essen-
tially T -invariant measurable subset has measure 0 or full measure.

Prop.(10.16.3.5).Let T be a measure-preserving transformation on a finite measure space X and
p ∈ (0,∞], then T is ergodic iff every essentially T -invariant function f ∈ Lp(X,µ) is constant.

. Proof:
□

Prop.(10.16.3.6).Let X be a measure space and f is an essentially invariant function for a measure-
preserving map or flow Ton X, then there is a strictly invariant measurable function f̂ that f = f̂
a.e..

Proof: [Dynamic System P74]. □

Def.(10.16.3.7).A measure-preserving transformation or flow on a probability space X is called mix-
ing if

lim
t→∞

µ(T−tA ∩B) = µ(A)µ(B).

It is called weak mixing if

lim
n→∞

1
n

n∑
i=0
|µ(T−iA ∩B)− µ(A)µ(B)| = 0.

or
lim
t→∞

1
t

∫ t

0
|µ(T−tA ∩B)− µ(A)µ(B)| = 0.

Prop.(10.16.3.8).Mixing transformation is weak mixing, and weak mixing is ergodic.

Proof: For a weak mixing transformation, if A is essentially invariant, then µ(A) = µ(A)2, thus
µ(A) = 1 or 0. □

Prop.(10.16.3.9)[Mixing and Topological Mixing].Let X be a compact metric space, T : X → X
be a continuous map and µ a T -invariant Borel measure on X, then

• If T is ergodic, then the orbit of a.e. point x ∈ X is dense in Suppµ.
• If T is mixing, then T is topologically mixing on Suppµ.

Proof: 1: Let U be an open subset intersecting Suppµ, then the T -invariant subset ∪k>0T
−kU has

full measure, thus the forward orbit of a.e. x intersect U . Then take a countable open basis of X,
thus the forward orbit of a.e. x is dense in Suppµ.

2: Because limt→∞ T−t(A) ∩B → µ(A)µ(B) > 0, so does limt→∞A ∩ T t(B). □

Ergodic Theorems

Prop.(10.16.3.10)[von Neumann Ergodic Theorem]. If U ∈ L(H) is unitary and x ∈ H, then
the average Anx = 1

n(x+Ux+ . . .+Un−1x) converges to some Px, where P is the projection to the
fixed space of U .
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Proof: Define an = 1
n(1 + λ+ . . .+ λn−1) on the unit circle, and b(1) = χ{1}, then if y = b(U)x =

P (x), then ||y − Anx||2 =
∫
σ(U) |b − an|2dEx,x(λ). But this integral converges to 0 by dominated

convergence theorem. □

Prop.(10.16.3.11)[Birkhoff Ergodic Theorem]. If T is a measure-preserving transformation of a
finite measure space (X,µ), and let f ∈ L1(X,µ), then the limit

f(x) = lim
n→∞

1
n

n−1∑
i=0

f(T k(x))

exists for a.e. x and is µ-integrable and T -invariant, and satisfies∫
X
f(x)dµ =

∫
X
f(x)dµ

In addition, if f ∈ L2(X,µ), then f is just the projection of f to the subspace of T -invariant
measures.

The same thing is true for a measure-preserving flow.

Proof: Let
A = {x ∈ X|f(x) + f(T (x)) + . . .+ f(T k(x)) ≥ 0, ∃k ≥ 0}.

Then firstly we have
∫
A f(x)dµ ≥ 0: Cf.[Dynamic System, P82].? □

Cor.(10.16.3.12).A measure-preserving map T : X → X in a finite measure space (X,µ) is ergodic
iff for each f ∈ L1(X,µ),

lim
n→∞

1
n

n−1∑
i=0

f(T i(x)) = 1
µ(X)

∫
X
f(x)dµ, a.e.x.

I.e., the time average equals the space average for any L1-function.

Proof: If T is ergodic, then the function f defined in(10.16.3.11) is a constant, thus the equation.
Conversely, if this equation holds, then if f is T -invariant, the RHS is constant. □

Cor.(10.16.3.13).Taking a dense subset of L2(X,µ) in the above corollary, we see that a measure-
preserving map T : X → X is ergodic iff for any measurable subset A and a.e. x ∈ X,

lim
n→∞

1
n

n−1∑
i=0

χA(T i(x)) = µ(A)
µ(X)

.

Invariant Measure for a Transformation

4 Hyperbolic Dynamics

5 Complex Dynamics
See [Milnor, John Dynamics in one complex variable. Third edition. Annals of Mathematics

Studies, 160. Princeton University Press, Princeton, NJ, 2006. viii+304 pp. ISBN: 978-0-691-12488-
9; 0-691-12488-4].
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Iterations

Prop.(10.16.5.1).Let f(z) =
∑
k≥1 akz

k be a power series with radius of convergence R > 0, then
the point z = 0 is called a stable point of f if there exists 0 ≤ r0, r ≤ R s.t. f◦n(z) ∈ D(0, r) for
any z ∈ D(0, r0), n ∈ Z+.

Then z = 0 is a stable point iff |a1| < 1 or |a1| = 1 and the Schröder functional equation

φ(a1ζ) = f(φ(ζ))

has a solution φ(ζ) = ζ +
∑∞
k=2 ckζ

k with radius of convergence R ∈ R+.

Proof: If |a1| < 1, then for r small, if z ∈ D(0, r), then |f(z)| ≤ z. So z = 0 is clearly stable.
Suppose |a1| ≥ 1 and z = 0 is stable, let Ω = ∪n∈Z+f(D(0, r0)), then Ω ⊂ D(0, r) and is connected.
Suppose φ : D → Ω is a covering map that φ(0) = 0 by(10.5.7.10), then the map f : Ω 7→ Ω lifts
to a map F : D → D that satisfies F (0) = 0 and F ‵(0) = a1. Then by Schwartz lemma(10.6.1.3),
|a1| = 1, and F (z) = a1z, and the Schröder functional equation has a solution φ. Also it is clear if
|a1| = 1 and the Schröder functional equation has a solution φ, then z = 0 is stable. □

Prop.(10.16.5.2)[Siegel]. Situation as in(10.16.5.1),
• If a1 satisfies an1 = 1 for some n ∈ Z+, then z = 0 is stable for f iff f◦m(z) = z for some
m ∈ Z+. And if this is the case, then f◦n = 1.

• If a1 = e2π iω where |ω− m
n | = Ω(n−µ) for any m,n ∈ Z+ where µ ∈ R+, then z = 0 is a stable

point for f(z).

Proof: 1: If z = 0 is stable, then f◦n(z) = z by(10.16.5.1). Conversely, if f◦m(z) = z, then clearly
z = 0 is stable.

2: Use(10.16.5.1), the Schröder functional equation writes:

∞∑
k=2

ck(ak1 − a1)ζk =
∞∑
l=2

al(ζ +
∞∑
r=2

crζ
r)l.

Thus it is clear that c2 = a2/a1(a1 − 1), and ck is determined by c2 inductively by

ck = 1
ak1 − a1

∑
l1+...+lr=k

cl1 · · · clr .

So φ is formally determined by f . Moreover, the modulus of ck are bounded by the solution of the
functional equation

∞∑
k=2

ck|ak−1
1 − 1|ζk =

∞∑
l=2
|al|(ζ +

∞∑
r=2

crζ
r)l,

and the bound depends positively on |al| and negatively on |ak−1
1 − 1|.

We have lim |an|
1
n = 1/R, so we have |an| ≥ an−1 for some a ∈ R+ and any n ≥ 2. Notice that

the Schröder functional remains true under the transformation f(z) 7→ af(z/a), φ(ζ) 7→ aφ(ζ/a), so
we may assume that |an| ≤ 1 for n ≥ 2. Then it suffices to show the solution φ(ζ) = ζ +

∑∞
k=2 τkζ

k

of the functional equation
∞∑
k=2

ck|ak−1
1 − 1|ζk =

∞∑
l=2

(ζ +
∞∑
r=2

crζ
r)l
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has positive radius of convergence. We also denote the solution of the functional equation
∞∑
k=2

ckζ
k =

∞∑
l=2

(ζ +
∞∑
r=2

crζ
r)l

by ψ(ζ) = ζ +
∑∞
k=2 σkζ

k. Then

ψ(ζ)− ζ = ψ(ζ)2/(1− ψ(ζ)),

thus
4ψ(ζ) = ζ + 1−

√
1− 6ζ + ζ2

has radius of convergence R = 2− 2
√

2. And we can prove inductively that

σk ≤ δkτk,

where δk are defined as follows:

δ1 = 1, δk = |ak−1
1 − 1| · max

l1+...+lr≤k
δl1 · · · δlr .

But then by(10.16.5.3), σk < k−2ν2(5ν+1)(k−1)τk. So φ(ζ) has radius of convergence≥ (3−2
√

2)2−5ν−1.
□

Lemma(10.16.5.3). Situation as in(10.16.5.2), suppose |an1 − 1| ≤ (2n)ν for ν ∈ R+ and any n ∈ Z+,
then

δk ≤ k−2ν2(5ν+1)(k−1).

Proof: Cf.[Sie42]Lemma3.? □

Cor.(10.16.5.4).Let f(z) = z +
∑
k≥2 akz

k be a power series with radius of convergence R > 0, then
z = 0 is a stable point iff f(z) = z.
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11 | Differential Geometry

11.1 Geometric Analysis
References are [Lee13], [G-P74](Good) and [Geometric Analysis Jost].

Notation(11.1.0.1).
• All manifolds in this section is assumed to be smooth over R or analytic over C.

1 Smooth Manifolds
Def.(11.1.1.1)[Smooth manifolds].

Prop.(11.1.1.2)[Collar Neighborhood Theorem]. If X is a smooth paracompact manifold with
boundary, then there is a nbhd of ∂X in X which is diffeomorphic to the product ∂X × [0, 1].

Proof:
□

Prop.(11.1.1.3)[Rank Theorem].Let F : M → N be a smooth map between manifolds of dimen-
sions m and n with constant rank r. Then for any p ∈ M , there exists smooth charts centered at
p, F (p) that the coordinate representation of F is

F (x1, . . . , xr, xr+1, . . . , xm) 7→ (x1, . . . , xr, 0, . . . , 0).

Proof: Cf.[Lee13]P81. □

Def.(11.1.1.4)[Immersion].A smooth immersion of manifolds f : M → N is a smooth map that
the differential is injective at every point.

A smooth submersion of manifolds f : M → N is a smooth map that the differential is
surjective at every point.

Def.(11.1.1.5)[Local Diffeomorphism].A local diffeomorphism f : M → N is a smooth map
that for any p ∈M , there exists an open subset U that U → f(U) is a diffeomorphism.

Prop.(11.1.1.6) [Local Section Theorem].Let F : M → N be a smooth map between smooth
manifolds, then π is a smooth submersion iff each point of M is in the image of a local section of F .

Proof: If each point of M is in the image of a local section of F , the differential is surjective at
every point. Conversely, use the rank theorem(11.1.1.3). □

Prop.(11.1.1.7).A smooth submersion F : M → N is an open map, and a surjective smooth submer-
sion is a quotient map.
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Proof: Let W ⊂ M , and q = π(p) where p ∈ W , then there is a local section σ : U → M that
σ(q) = p(11.1.1.6), thus σ−1(W ) is open in N . But for any y ∈ σ−1(W ), y = π(σ(y)) ⊂ π(W ). So
p ∈ σ−1(W ) ⊂ π(U), which means π(W ) is open, and π is an open map. t The last assertion follows
as any open surjective map is a quotient map(3.3.1.9). □

Prop.(11.1.1.8)[Characteristic Property of Surjective Smooth Submersions].Let π : M → N
be a smooth submersion of manifolds, P another smooth manifold, then

• Any map F : N → P is smooth iff F ◦ π is smooth.
• Any smooth map F̃ : M → P that is constant on the fibers of π induces a smooth map
F : N → P that F̃ = F ◦ π.

Proof: 1: Use local section theorem(11.1.1.6).
2: There is a constant map F : N → P that F̃ = F ◦ π by(11.1.1.7) and universal property of

quotient maps, and it is smooth by item1. □
Def.(11.1.1.9)[Smooth Covering Space].A smooth covering space of a smooth manifold X is
a space X̃ together with a smooth map π : X̃ → X that there is a covering Uα of X that for each
α, π−1(Uα) is a disjoint union of open subsets of X̃, each of which is mapped diffeomorphically onto
Uα.

Prop.(11.1.1.10)[Proper Free Action].Let π : E → M be a smooth covering map, then with the
discrete topology, Autπ(E) is a discrete Lie group acting smoothly, freely and properly on E.

Conversely, suppose M is a smooth manifold and Γ is discrete group acting smoothly, freely and
properly on a manifold, then the quotient space M/Γ is a topological manifold, and it has a unique
smooth structure that the quotient map π : M →M/G is a smooth normal covering map.
Proof: If π : E →M is a smooth covering map, then the action is continuously, freely and properly
by(3.14.1.28). Smoothness can be seen by applying(11.1.1.8). Autπ(E) is a Lie group because it is
countable: Let q ∈ M , and U an evenly covered nbhd of q, then π−1(U) is a union of open subsets
each containing one element of π−1(q). so |π−1(q)| is countable, and because Autπ(E) acts freely, it
is also countable.

Because this action is a covering map action by(3.11.1.19), (3.14.1.31) shows this is a normal
covering map. The quotient space is locally Euclidean, and also Hausdorff by(3.11.1.12)(3.11.1.10),
so it is a topological manifold. The smooth structure is clear. □

Def.(11.1.1.11)[Smooth Embedding].A smooth embedding of manifolds f : M → N is a smooth
immersion that is also a homeomorphism onto its image.

Prop.(11.1.1.12) [Global Rank Theorem].Let F : M → N be a smooth map of manifolds of
constant tank, then:

• if it is an injection, then it is a submersion.
• if it is an surjection, then it is a submersion.
• if it is a bijection, then it is an diffeomorphism.

Proof: Cf.[Lee Smooth Manifold P83]. □
Prop.(11.1.1.13)[Local Embedding Theorem]. If F : M → N is a smooth morphism of manifolds,
then it is a smooth immersion if it is locally a smooth embedding on the source.
Proof: Let p ∈ M , then there exists a nbhd U1 of p ∈ M that F is injective. Now choose another
precompact nbhd U of p that U ⊂ V , then F |U is an injective map with compact domain, so it is a
topological embedding by(3.3.2.11). Thus F |U is a smooth embedding. □
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Submanifolds

Def.(11.1.1.14)[Submanifolds].For a smooth manifold M , an embedded submanifold S ⊂ M
is a subset S that is a manifold in the induced topology together with a smooth structure that the
inclusion is a smooth embedding of manifolds(11.1.1.11).

An immersed submanifold S ⊂M is a subset endowed with a topology and a smooth manifold
structure that the inclusion is a smooth immersion(11.1.1.4).

An weakly embedded submanifold S ⊂M is an immersed submanifold that any smooth map
F : N →M from some space N that has image in S is smooth as a map from N to S.

Remark(11.1.1.15).Examples of immersed submanifolds that is not an embedded submanifolds are
the 8-figure and the dense curve in a torus. However, an immerse submanifold is locally embedded
on the source, by(11.1.1.13).

Def.(11.1.1.16) [Slice Charts].Let U ⊂ Rn, then a k-slice of U is the set S = {(x1, . . . , xn) ∈
U |xk+1 = . . . = xn = 0}.

Let M be a manifold, a slice chart of a subset S ⊂M is a smooth char (U,φ) that φ(U ∩ S) is
a k-slice of φ(U) for some k.

Prop.(11.1.1.17)[Local Slice Criterion for Embedded Submanifolds].Let M be a smooth n-
manifold and S an embedded k-submanifold, then each point of S is contained in the domain of a
slice chart. Conversely, if S ⊂M is a subset that each point of S is contained in the domain of a slice
chart, then the induced topology makes S a topological manifold, and there is a smooth structure
on S that makes it an embedded submanifold of M .

Proof: Suppose S is an embedded submanifold, then the rank theorem(11.1.1.3) shows there exists
coordinates that the image of i(S) is contained in a k-slice of M . Shrinking the open subset a little
bit, we get a slice chart of S.

Conversely, if each point of S is contained in the domain of a slice chart, then we can use these
smooth charts to get an atlas for S, which makes S an embedded topological submanifold ofM . The
transition maps are also smooth because they are restrictions of the corresponding transition map of
M , so S is an embedded submanifold of M . □

Prop.(11.1.1.18). If M is a compact manifold, then any injective immersion f : M ↪→ M is an
embedding of submanifolds.

Proof: The topology of M is equivalent to the induced topology by(3.3.2.10). □

Prop.(11.1.1.19)[Immersed Submanifolds are Locally Embedded]. If S ⊂ M is an immersed
submanifold, then for any p ∈ S, there is a nbhd U of p ∈ S that U ⊂M is an embedded submanifold.

Proof: This follows immediately from(11.1.1.13). Notice that the topology on U must be the
induced topology, because it is a smooth embedding thus a homeomorphism onto its image(11.1.1.11).
□

Lemma(11.1.1.20). If i : S ↪→M is an immersed submanifold, if F : N →M is a smooth morphism
of manifolds that has image in S, if F : N → S is continuous, then N → S is smooth.

Proof: Let p ∈ N mapping to q = F (p). By(11.1.1.19), there is a nbhd V of q ∈ S that i|V is
an smooth embedding. Thus there is a slice chart(11.1.1.17) (W,ψ) of M that (V0, ψ̃) is a smooth
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chart for V , where V0 = W ∩ V and ψ̃ = π ◦ ψ, where π is the projection Rn → Rk onto the first k
coordinates, and also a smooth chart for S.

Let U = F−1(V0) be open in F , then there is a smooth chart of N contained in U . Now the
coordinate representation of F in the slice chart of S is just the representation of F : N → M
composed with the projection π, so it is smooth. □

Remark(11.1.1.21).N → S being continuous is a necessary condition, otherwise consider the figure
8.

Prop.(11.1.1.22)[Restricting Codomain of Smooth Morphism]. If S is an embedded submani-
fold in M , if if N →M is a smooth that has image in S, then N → S is smooth.

Proof: Because in this case, S has the induced topology, so it is easily seen that N → S is
continuous. □

Sard’s Theorem

Lemma(11.1.1.23)[Invariance of Measure Zero Sets]. If S ∈ Rn has measure zero, then for any
smooth map g : Rn → Rm, g(S) has measure zero.

Thus the notion of measure zero is definable for arbitrary smooth manifolds.

Lemma(11.1.1.24).Cf.[Pollack Appendix A].

Def.(11.1.1.25).For a map of schemes f : X → Y , a point y ∈ Y is called critical iff dfx is not
surjective, for some x ∈ f−1(y), otherwise it is called a regular value.

Prop.(11.1.1.26) [Regular Value Theorem]. If y is a regular value for a map f : X → Y , then
f−1(Y ) has a natural submanifold structure.

Proof: □

Prop.(11.1.1.27)[Stack of Records Theorem]. If y is regular value of a map f : X → Y , where X
is compact and dimX = dim Y , then f is a covering map locally on f−1(U) for some nbhd U of y.

Proof:
□

Prop.(11.1.1.28)[Sard Theorem].For a map X → Y of smooth manifolds, the set of critical values
is of measure zero Y .

Proof: Cf.[Pollack Appendix A]. □

Prop.(11.1.1.29)[Whitney Embedding Theorem].Any k-dimensional manifoldM can be embed-
ded into R2k+1.

Proof: Cf.[Pollack P51]. □

Cor.(11.1.1.30)[Whitney Immersion Theorem].Any smooth manifold M of dimension k can be
immersed into R2k.

Proof: □
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1-dimensional Smooth Manifold with Boundaries

Prop.(11.1.1.31).Any smooth manifold of dimension 1 with boundary is isomorphic to [0, 1] or S1.

Proof: Cf.[Pollack Appendix]. □

Cor.(11.1.1.32).The boundary of any smooth manifold of dimension 1 consists of points of even
number.

Simplifications

Prop.(11.1.1.33).For every vector field X and every point X(p) ̸= 0, there exists a coordinate nbhd
(x1, . . . , xn−1, t) such that X = ∂

∂t .

2 Smooth Vector Bundles
Def.(11.1.2.1)[Smooth Vector Bundle].A smooth vector bundle over a smooth manifold is a
vector bundle over X that the trivialization maps are all smooth.

Def.(11.1.2.2)[Smooth Fiber Bundle].

Tangent and Cotangent Bundles

Lemma(11.1.2.3)[Differential in Coordinates].Let F : U → V be a smooth map where U ⊂ Rn

and V ⊂ Rn, with corresponding coordinates (xi) and (yi), then

dFp(
∂

∂xi
|p) =

∑
j

∂F j

∂xi
(p) ∂

∂yj
|F (p).

Proof: for any smooth function f ,

dFp(
∂

∂xi
|p)(f) = ∂

∂xi
|p(f ◦ F ) =

∑ ∂f

∂yj
(F (p))∂F

j

∂xi
(p) = (

∑
j

∂F j

∂xi
(p) ∂

∂yj
|F (p))(f).

□

Lemma(11.1.2.4) [Change of Coordinates]. Suppose (U,φ), (V, ψ) be two smooth charts of a
smooth manifold, and the transition function on U ∩ V is denoted by

ψ ◦ φ−1(x) = (x̃1(x), . . . , x̃n(x)),

then(11.1.2.3) shows

∂

∂xi
|p = d(φ−1)φ(p)(

∂

∂xi
|φ(p)) = d(ψ−1)ψ(p) · d(ψ · φ−1)|φ(p)(

∂

∂xi
|φ(p))

= d(ψ−1)ψ(p)(
∑
j

∂x̃j

∂xi
(φ(p)) ∂

∂x̃j
|ψ(p)) =

∑
j

∂x̃j

∂xi
(φ(p)) ∂

∂x̃j
|p

Def.(11.1.2.5)[Tangent Vectors].Let M be a smooth manifolds, then a tangent vector at a point
p is a linear maps v : C∞(M)→ R satisfying:

v(fg) = f(p)v(g) + g(p)v(f).

The set of tangent vectors at p is a vector space, denoted by TpM .
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Def.(11.1.2.6)[Tangent Bundle].Let M be a n-dimensional smooth manifold, the tangent bundle
of M is defined to be the set TM =

⨿
TpM . It has a smooth manifold structure that makes it into

a 2n-dimensional manifold, and the projection π : TM → M is smooth. And it is a n-dimensional
vector bundle over M .

Proof: Let (U,φ) be a smooth chart of M , with coordinate functions φ1, . . . , φn, then we define a
map φ̃ : π−1(U)→ R2n by

φ̃(
∑

vi
∂

∂xi
|p) = (x1(p), . . . , xn(p), v1, . . . , vn).

Then for two different open subset U, V , the transition map is

ψ̃ · φ̃−1(x1, . . . , xn, v1, . . . , vn) = (x̃1(x), . . . , x̃n(x),
∑
j

∂x̃1

∂xj
(x)vj , . . . ,

∑
j

∂x̃n

∂xj
(x)vj)

which is clearly smooth. So this defines a smooth vector bundle over M , called the tangent bundle
of M . □

Def.(11.1.2.7)[Cotangent Bundle].The cotangent bundle T ∗M of a smooth manifold M is the
dual of the tangent bundle TM .

Def.(11.1.2.8)[Parallelizable manifold].A manifold is called parallelizable iff the tangent bundle
is trivial.

Vector Fields

Def.(11.1.2.9)[Smooth Vector Field].A smooth vector field on a smooth manifold is a smooth
global section of the tangent bundle TM →M(11.1.2.6).

Prop.(11.1.2.10) [Check Smoothness].Let M be a smooth manifold and X be a section of the
vector bundle TM →M , then X is a smooth vector field iff for any f ∈ C∞(M), Xf ∈ C∞(M).

Proof: If for any f ∈ C∞(M), Xf ∈ C∞(M), let U be a trivializing nbhd of M with coordinate
functions xi, then near any point p ∈ U , we can use bump function to extend xi to a smooth function
on M . Then X(xi) = Xi near p, thus the coordinates of X in this trivialization are all smooth, so
X is smooth near p, thus smooth everywhere.

Conversely, for any f ∈ C∞(M), in a trivializing nbhd U of M , Xf(x) = (
∑
Xi(x) ∂

∂xi
|x)(f) =∑

Xi(x) ∂f
∂xi

(x) is smooth. □

Def.(11.1.2.11)[Pushforward of Vector Fields].Let F : M → N be a diffeomorphism, then for
any X ∈ X(M), there exists a Y ∈ X(N) that dFp(Xp) = YF (p).

Proof: We just define Yq = dFF−1(q)(XF−1(q), it suffices to show this a smooth vector field. But
Y : N → TN is the composition

N
F−1
−−→M

X−→ TM
TF−−→ TN,

so it is smooth. □

Def.(11.1.2.12)[Lie Bracket of Vector Fields].Cf.[Lee13]P185.
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Prop.(11.1.2.13)[Pushforward of Lie Bracket].Let F : M → N be a diffeomorphism andX1, X2 ∈
X(M), then F∗[X1, X2] = [F∗X1, F∗X2](11.1.2.11).

Proof: For any f ∈ C∞(N), F∗Xi = Yi, then

[X1, X2](f◦F ) = X1X2(f◦F )−X2X1(f◦F ) = X1((Y2(f)◦F )−X2((Y1(f)◦F ) = (Y1Y2(f)−Y2Y1(f))◦F,

which means exactly F∗[X1, X2] = [Y1, Y2]. □

Tensor Fields

Def.(11.1.2.14)[Lie Derivatives of Tensor Fields].Cf.[Lee13]P321.

3 Differential Forms
Prop.(11.1.3.1)[Frobenius Theorem]. IfX is an involutive distribution on a manifoldM , then there
is a unique maximal integration manifold passing through it. Where a distribution is involutive if it
is closed under Lie bracket.

Proof: The key to the proof is to prove that involutive is equivalent to integrable, i.e. flat locally
as { ∂

∂xi
} for some local coordinate. Cf.[李群讲义 项武义 P226] □

Cor.(11.1.3.2).X,Y in a Lie algebra commute iff their corresponding vector fields commute.

Interior and Exterior Derivatives

Lie Derivatives

Def.(11.1.3.3).The Lie bracket of two vector fields X,Y is defined to be [X,Y ](f) = (XY −Y X)f ,
then if X =

∑
ai∂/∂xi, Y =

∑
bi∂/∂xi, then [X,Y ] =

∑
(X(bi)− Y (ai))∂/∂xi.

Lemma(11.1.3.4). [X,Y ] = ∂
∂t(d(ϕ−t)Y )|t=0.

Proof: For any function f ,set g(t, q) = f(ϕt(q))−f(q)
t ,g(0, q) = Xf(q). Then g is differentiable

(because g(t, q) =
∫ 1

0 Xf(ϕts(p))ds, and:

lim
t→0

d(ϕ−t)Y f(p) = lim Y f(p)− Y (fϕ−t)(ϕt(p))
t

= lim Y f(p)− Y f(ϕtp)− Y (tg(−t, ϕt(p))
t

= ((XY − Y X)f)(p)
= [X,Y ]f(p)

□

Prop.(11.1.3.5). [fu, v] = f [u, v]− df(u)v.

Proof: Direct from the definition(11.1.3.3). □

Prop.(11.1.3.6)[Derivative formula].

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).
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Proof: □

Prop.(11.1.3.7)[Cartan’s magic formula].

LXω = ιX(dω) + d(ιXω)

ι([X,Y ]) = [LX , ιY ]

Proof: Notice that four of them are derivatives (check because ιX(w∧v) = ιXw∧v+(−1)|w|w∧ιXv).
So by induction, we only has to verify them on dimension 0 and 1. □

Prop.(11.1.3.8)[Stoke’s theorem]. ∮
Ω
dω =

∮
∂Ω
i∗ω.

In a 3-dimensional Riemanian manifold, If we set:

df = ω1
gradf , dω1

A = ω2
curlA, dω2

A = (∇A)ω3,

Then:
f(y)− f(x) =

∫
l
gradf · dl.∫

l
A · dl =

∮
S
curlA · dn.∮

U
∇ · FdV =

∮
∂U
F · ndS.

Proof: □

Hodge Star

Def.(11.1.3.9)[Hodge Star Operator]. given a volume-form ω on a vector space, the Hodge star
operator ∗− is an operator from ∧k V → ∧n−k V such that:

α ∧ (∗β) = ⟨α, β⟩ω.

On a closed oriented Riemannian manifold, given a volume form ω, the star operator satisfies:

(α, β) =
∫
M
⟨α, β⟩ω =

∫
M
α ∧ ∗β.

And ∗∗ = (−1)p(n−p) on ΩpM .

Def.(11.1.3.10).For a operator d on Ω∗M , we define the adjoint d∗ = (−1)n(p+1)+1 ∗ d∗ on Ωp, which
satisfies the adjoint property by calculation:

(d∗α, β) = (α, dβ).

The laplacian ∆ = d∗d+ dd∗. It can be verified that ∆ commutes with ∗ and d.

4 Differential Topology
References are [J. W. Milnor, Topology from the differentiable viewpoint. Based on notes by

David W. Weaver University Press of Virginia, Charlottesville, Va. 1965 ix+65 pp.].
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Transversality

Def.(11.1.4.1)[Transversality].

Prop.(11.1.4.2)[Transversal Stable under Pertabations].The property of transversal for a map
f : X → Y for a compact manifold X to a fixed submanifold Z of Y is stable under smooth
deformation.

Proof: We can assume the submanifold is defined by a slice, so the transversality is in fact equivalent
to locally submersion in the vertical direction. Thus it is clearly stable under deformation. □

Prop.(11.1.4.3). If a smooth map f : X → Y is transversal to a submanifold Z ⊂ Y of codimension
r, then the preimage f−1(Z) is a submanifold of X of codimension r.

Proof: Cf.[Pollack P28]. □

Cor.(11.1.4.4). If two submanifolds are transversal at every point is again a submanifold, and the
codimension is the sum of them.

Prop.(11.1.4.5)[Parametric Transversality Theorem]. Suppose N and M are smooth manifolds,
X ⊂M is an embedded submanifold, and Fs is a smooth family of maps from N to M . If the map
F : N × S →M is transverse to X, then for a.e. s, the map Fs : N →M is transverse to X.

Proof: Cf.[Smooth Manifold Lee T6.35]. □

Prop.(11.1.4.6)[Transversality Homotopy Theorem]. Suppose N and M are smooth manifolds
and X ⊂M is an embedded submanifold. Every smooth map f : N →M is homotopic to a smooth
map g : N →M that is transverse to X.

Proof: Embed M into an Rk and take a tubular neighbourhood, then we can construct a N ×Dk

transversal to M . Cf.[Smooth Manifold Lee T6.36]. □

Prop.(11.1.4.7) [Transversality Extension Theorem].Let X is a manifold with boundary and
C ⊂ X is a closed subscheme, Z is a closed submanifold of Y . If f : X → Y is a smooth map that
is transversal to Z on C and transversal to Z on C ∩ ∂X, then there is a map g : X → Y that is
homotopic to f , and g = f on a nbhd of C.

Proof: Cf.[Pollack P72]. □

Intersection Numbers Modulo 2

Prop.(11.1.4.8) [Intersection Number Modulo 2].Let X be a compact manifold, and Z is an
closed submanifold of Y , where dimX + dimZ = dim Y , then for any smooth map f : X → Y
transversal to Z, define I2(f, Z) as the number of points of f−1(Z) modulo 2.

Prop.(11.1.4.9)[Boundary Theorem]. If X is the boundary of a smooth manifold W , Z is a closed
subscheme of Y that dimX + dimZ = dimY . If g : X → Y is a map of smooth manifolds that can
be extended to W → Y , then I2(g, Z) = 0.

Proof: Use extension theorem(11.1.4.7), (11.1.4.3) and(11.1.1.32). □

Cor.(11.1.4.10).Let X be a compact manifold, and Z is an closed submanifold of Y , where dimX +
dimZ = dim Y , then for any smooth maps f, g : X → Y transversal to Z. If f is homotopic to g,
then I2(f, Z) = I2(g, Z).
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Proof: Immediate from boundary theorem(11.1.4.9). □

Prop.(11.1.4.11)[Mod 2 Degree of Maps]. If X,Y are manifolds of the same dimension and X is
compact, then I2(f, {y}) is the same for each y ∈ Y , called the mod 2 degree of f . This number
is 0 for the boundary of a map, by(11.1.4.9).

Proof: Cf.[Pollack P80]. □

Orientable Intersection Numbers

Prop.(11.1.4.12) [Preimage Orientation].Let X,Y is orientable and Z is an orientable closed
subscheme in Y . If f : X → Y is transversal to Z, then the orientation of Z, Y, Z defines canonically
an orientation on f−1(Z), called the preimage orientation of f−1(Z).

Def.(11.1.4.13)[Intersection Number]. If X is an orientable smooth manifold, Z is an orientable
closed subscheme of an orientable manifold Y that dimX + dimZ = dim Y . If g : X → Y is a
map of smooth manifolds that is transversal to Z, then we defined the I(g, Z) to be the sum of the
orientations of f−1(Z).

Lemma(11.1.4.14)[Boundary Theorem]. If X is the boundary of an orientable compact smooth
manifold W , Z is an orientable closed subscheme of an orientable manifold Y that dimX + dimZ =
dimY . If g : X → Y is a map of smooth manifolds that is transversal to Z and can be extended to
W → Y , then I(g, Z) = 0.

Proof: The same as the proof of(11.1.4.9). □

Prop.(11.1.4.15).Homotopic transversal maps always have the same intersection number w.r.t Z.

Prop.(11.1.4.16)[Degree of Maps]. If X,Y are orientable manifolds of the same dimension and X
is compact, then I2(f, {y}) is the same for each y ∈ Y , called the degree of f . This number is 0 for
a boundary map, by(11.1.4.14).

Proof: The same as that of(11.1.4.11). □

Cor.(11.1.4.17).The only finite group G that can act freely on S2n is Z/2Z or 1.

Proof: Consider the degree map, then it is a homomorphism from G to Z, thus the image is just
±1. Now it is by Lefschetz fixed point theorem that deg(g) = −1 for g ̸= 1, thus it is injective to ±.
□

Prop.(11.1.4.18)[General Intersection Number].The intersection number can be generalized to
the case that g : Z → Y is an arbitrary map of the complementary dimension, and we can define
I(f, g). Then:

• f, g are transversal iff f × g are transversal to ∆Y .
• I(f, g) = (−1)dimZ(f × g,∆Y ).

Proof: This a simple local tangent vector calculation. □

Cor.(11.1.4.19). If f ′ ∼ f, g′ ∼ g, then I(f, g) = I(f ′, g′) if they are definable. This is because
f × g ∼ f ′ × g′.

Prop.(11.1.4.20). I(f, g) = (−1)dimX·dimZI(g, f). This is obvious from the definition.
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Cor.(11.1.4.21).This shows that the intersection number of a odd-dimensional orientable submanifold
of an orientable submanifold with itself is 0. If this fails, then the ambient space is not orientable,
for example the Möbius band with the central circle.

Prop.(11.1.4.22).The Euler character of an orientable compact manifold Y equals the intersection
of the diagonals I(∆,∆).

Proof: For this, we use the Poincare-Hopf theorem(11.1.4.24). It is clear that on a triangulation,
we can place a source on the center of each face/edge/. . ., thus producing a smooth vector fields,
thus it is clear the sum of their indices equals both the combinatorial Euler character and the defined
character. □

Cor.(11.1.4.23).The Euler character of an odd dimensional compact manifold Y is 0.

Prop.(11.1.4.24)[Poincare-Hopf Index theorem]. In a compact manifold M , any vector field V
with isolated zeros has sum of its index equal to χ(M). Where the index of a singularity is the
mapping degree of V on a surrounding sphere.

Proof: Should use Euler character defined in(11.1.4.22), Cf.[Pollack]. □

5 Flow
Def.(11.1.5.1)[Integral Curves].Let V be a vector field over a smooth manifoldM , then an integral
curve of V is a smooth curve γ : J →M that γ′(t) = Vγ(t) for any t ∈ J .

Def.(11.1.5.2) [Flow].Let M be a manifold, then a flow on M is a continuous map θ : D → M ,
where

• D ∈ R×M is an open subset.
• for any p ∈M,Dp = {t|(t, p) ∈ D} is an open interval containing 0.
• When it is defined, θ(s, θ(t, p)) = θ(s+ t, p).

If θ is a flow, we define θt(p) = θ(p)(t) = θ(t, p).
If θ is smooth, then we can define the infinitesimal generator of θ to be the vector field

Vp = θ(p)′(0).

Def.(11.1.5.3)[Complete Vector Fields].A complete vector field on a smooth manifold is a vector
field that generates a global flow.

Prop.(11.1.5.4). If θ : D → M is a smooth flow, then the infinitesimal generator V of θ is a smooth
vector field, and each θ(p) is an integral curve of V .

Proof: Cf.[Lee13]P212. □

Prop.(11.1.5.5)[Isotopy Extension Theorem].Let M be a manifold and A be a compact subset.
Then an isotopy F : A× I →M can be extended to an diffeotopy of M .

Proof: Consider F (A×I) ⊂M ×I is a compact set, and TM ×I →M ×I is a vector bundle. The
time lines generate a section F (A× I)→ TM × I, so ?? guarantees an extension M × I → TM × I,
and because manifolds are locally compact, this section can be chosen to be compactly supported,
then the flow it generates is a diffeotopy. □
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6 Distributions and Foliations
Cf.[Lee13]Chap19.

7 Spin Structures
Prop.(11.1.7.1)[Spin Structure Obstruction].For a oriented real bundle, its transformation map
can be chosen to be in SO(n), and constitute a Cech Cohomology H1(X,SO(n)), and by exact
sequence of

0→ ±1→ Spin(n)→ SO(n),
this can be lifted to a H1(X, Spin(n)) iff its image w in H2(X,Z/2Z) is 0. and then its inverse image
will be parametrized by H1(X,Z/2Z) (By the non-commutative spectral sequence of Čech).

We have w = w2, the Whitney class, (Just need to reduce to sk2X and in this case, check they
both equivalent to the bundle can be lifted). Cf.[XieYi ⼏何学专题]. Or we can use the Postnikov
system of BO(n)(3.13.5.2).
Proof: First prove that if E ⊕ Rn is spin, then E is spin, and then pull H2(X,Z/2Z) into
H2(sk2(X),Z/2Z), this in a injection, and the homology is natural, so we only have to prove this
for sk2(X). But E on sk2(X) can decompose into a E′ of dimension on more than 2, and for this,
we see E is Spin iff it is the square of another bundle, so w and w2 are the same. □

Prop.(11.1.7.2).For a Spin bundle E, the Spin-principal bundle with the Spinor representa-
tion(11.7.4.17) will generate a bundle S called the Spinor bundle. And the Ad action of Spin(n) on
Cln,0 will generate a Clifford bundle Cl(E). The Spin(n) actions are compatible, so the Clifford
bundle can act on the spinor bundle. bundle. The act of the chirality operator on the Spinor bundle
will generate two half spinor bundles S±. Then TM will maps S± → S∓ for n even,(because of
anti-commutative with Γ).

Prop.(11.1.7.3)[Spinc-structure].The group Spinc is the covering space of SO(n)× S1 (n>2) that
corresponds to the group of elements mod 0 mod 2 in Z2 ×Z, i.e. Spin(n)× S1/{±1}.

For example, Spinc(4) = {(A1, A2) ∈ U(2)× U(2)|detA1 = detA2}, and SpinC(3) = U(2).
Then a SO(n) bundle can be lift to be a Spinc-bundle if the line bundle determined by S1 is

determine the same w2 as it, i.e. w2 = c1(L) mod 2, This is equivalent to w2 is in the image of
H2(X,Z), and this is equivalent to the Bockstein image of it is zero.

Use a variant of Wu’s formula: w2(TM)[α] = α·α(mod 2) forM orientable of dimension 4, we have
any orientable manifold of dimension 4 has a Spinc-structure. Cf.[XieYi ⼏何学专题 Homework3].

There is a connection on the Clifford bundle and on the Spinor bundle induced by the Levi-Civita
connection of M(11.2.3.2). This is compatible with the Clifford action. and it is also metric because
the connection 1-form is in so(n) because the action of SO(n) preserves metric.

8 Young-Mills Euqation & Seiberg-Witten Equation
[Atiyah, M. F.; Bott, R. The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy.

Soc. London Ser. A 308 (1983), no. 1505, 523–615.].
Def.(11.1.8.1)[Yong-Mills].The Young-Mills functional on connections A on a bundle E on a com-
pact oriented space:

YM(A)2 = ||FA||2 = −
∫
X

tr(FA ∧ ∗FA)

it is a critical point when dA ⋆ FA = 0 and dAFA = 0.
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Prop.(11.1.8.2)[2-dim Case]. ⋆F ∈ Ω0(su(E)) is parallel thus its characteristic spaces is orthogonal
and a stable under parallel transport. So an irreducible YM SU(2)-connection must by flat, thus
correspond to irreducible SU(2) representation of π1(X).

Prop.(11.1.8.3) [4-dim Case]. ∗∗ = (−1)2∗2 = id on Ω2(E) on E a SU(n)-bundle, so Ω2(E) =
Ω+ ⊕ Ω−. We have

||F+
A ||

2 + ||F−
A ||

2 ≥ ||F−
A ||

2 − ||F+
A ||

2 =
∫
X

tr(FA ∧ FA) = 8π2c2(E)

Cf.[谢毅 Lecture5]. So it attains minimum at the connection that ∗FA = ±FA and dAFA =
0.((Anti)self-dual((anti)instanton)) depending on the sign of c2(E).

Prop.(11.1.8.4) [Anti-Instanton Connection on Complex Line Bundle].For a U(1)-bundle,
dAFA = dFA, so FA is harmonic, thus c1(L) = [ −1

2πiFA] ∈ H2(X,Z) ∩ H2
−(X,R), In fact, this is

equivalent to the existence of a anti-self-dual connection on this bundle.
If this is the case, then we have the ASD-connections module Gauge equivalence is isomorphic to

H1(X,R)/H1(X,Z) = T b1(X).
Proof: Because a gauge is just a X → S1, and its connected component thus equals [X,S1] =
H1(X,Z) (MacLane space), and its identity is just the map that is homotopic to id. and d(gA) =
dA− g−1dg = dA− idu, for g = exp(iu), so Ω1/G = H1(X,R/H !(X,Z) = T b1(X). □

Lemma(11.1.8.5)[Weizenbock Formula].On a Riemannian manifold M , the Laplace operator has
the form:

∆ = −∇2
eiei − ξ

i ∧ ι(ej)R(ei, ej)
where ∇2

X,Y = ∇X∇Y −∇∇XY .∫
|DAφ|2 =

∫
|∇Aφ|2 + 1

4
R|φ|2 + 1

2
⟨F+

A φ,φ⟩.

If M is a spin manifold, then the Dirac operator D satisfies:

D2 = −∇2
eiei + 1

4
R

where R is the scalar curvature form on M . If M is a Spinc manifold with a Spinc connection ∇A,
then the Dirac operator satisfies

D2
A = −∇2

A,eiei + 1
4
R+ 1

2
FA

Cf.[Geometric Analysis Jost P143,153].
Prop.(11.1.8.6)[Seiberg-Witten].The Seiberg-Witten equation functional for a unitary connection
A on the determinant bundle of a Spinc structure of M and a section of S+ is:

SW (φ,A) =
∫ (
|∇Aφ|2 + |F+

A |
2 + R

4
|φ|2 + 1

8
|φ|2

)
V ol.

=
∫ (
|DAφ|2 + |F+

A −
1
4
⟨ejekφ,φ⟩ej ∧ ek|2

)
V ol

So the Seiberg-Witten equation is the lowest topological possible value of the Seiberg-Witten
functional. It writes:

DAφ = 0, F+
A = 1

4
⟨ejekφ,φ⟩ej ∧ ek.

Cf.[Jost Chapter 7].
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Cor.(11.1.8.7). If a compact oriented Spinc manifold M has nonnegative scalar curvature, then the
only possible solution is φ = F+

A = 0. (See from the equivalence of forms of Seiberg-Witten func-
tional.)

9 Chern-Weil Theory
Prop.(11.1.9.1)[Chern-Weil].An Invariant polynomial of a the entries of Mn(k) is one that is
invariant under the conjugation action(2.2.2.29).

For any connection on E, the Chern-Weil map CW from invariant polynomial ring to H∗(X) :
P 7→ [P (Ω)] is a ring homomorphism independent on the connection A.

There are relations between ci and tr(Ωk), they can be derived formally by considering diagonal
elements.

Proof: To prove P (Ω) is closed, notice by(2.2.2.29), it suffice to show tr(Ωk) is closed. By(11.2.3.7),
d tr(Ωk) = tr(ω ∧ Ωk − Ωk ∧ ω) = 0, which is zero because Ω is of even dimension.

For the independence of connections, use(3.13.3.28). For two connection ∇i, ∇ = t∇0 + (1 −
t)∇1(you can smooth it) is a connection on the vector bundle π∗E on M × I, and the section 0 and 1
induces the connection ∇0 and ∇1. Thus s∗

0 and s∗
1 are the same map, thus CWM (p) = s∗

iCWM×I(p)
are all the same map. □

Cor.(11.1.9.2).For a complex line bundle of degree r over a complex manifold,

det(1− 1
2πi

FA) = 1 + c1 + . . .+ cr

gives out the Chern class, because it satisfies the axioms of Chern class (3.14.4.16). In other words,
ck = tr((− 1

2πiFA)k).
For a real line bundle of degree r,

det(1− 1
2πi

FA) = 1 + p1 + . . .+ p⌊ r2 ⌋

gives out the Pontryagin class, where pk ∈ H4k(X). (Notice the ω thus Ω can be chosen to be
skew-symmetric, thus for odd k the classes tr(Ωk) ∈ H2k(X) vanish).

For an oriented real bundle of degree 2r, the ω and thus Ω can be chosen to be skew-symmetric
and the transformation matrix in SO(2r), then

Pf( 1
2π

Ω) ∈ H2r(X)

is well-defined and closed and gives the Euler class e(E) (recall e(E)2 = pr(E)). (Use Pf2 = det to

get that [
∂Pf
∂Ωij

]t commutes with Ω, then calculate dPf(Ω) = 0).

Proof: In fact, the construction is natural w.r.t the connection because connection can be pulled
back and summed. Then the only task is the normality, which is direct calculation on CP1. □

Cor.(11.1.9.3).
c1(E) = c1(∧dimEE).

Direct from the formula.
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Cor.(11.1.9.4)[Whitney Product Formula].

c(E ⊕ F ) = c(E)c(F ), p(E ⊕ F ) = p(E)p(F )

Directly form the product connection on E ⊕ F .

Prop.(11.1.9.5)[Chern Character].The Chern character

ch(E) = [tr exp( i
2π
FA)]

satisfies ch(E ⊕ F ) = ch(E) + ch(F ) and ch(E ⊗ F ) = ch(E)ch(F ) by simple calculation. So it
defines a ring homomorphism from K(X) to H∗(X).

Prop.(11.1.9.6)[Chern-Gauss-Bonnet].For a 2n-dimensional orientable manifold M ,∫
M
e(TM) = χ(M).

Prop.(11.1.9.7).For a vector bundle and a flat connection dA on a manifold, i.e. d2
A = 0, we have a

deRham like cohomology, and there is a sheaf of flat sections.

H∗(X,A) = H∗(X,E).

10 Index Theorems(Atiyah-Singer)
References are [Heat equation and the Index Theorem Atiyah] and [Index Theorem].

Prop.(11.1.10.1)[Gilkey].For a natural transformation ω from the functor p : M → the Riemannian
structure on M to the functor q : M → k-forms on M , if it is homogenous of weight 0 w.r.t to metric
g(i.e. ω(λ2g) = ω(g)) and in local coordinates it has the coefficients of ω(g) generated by gij and
det g−1 and their derivatives , then is is a polynomial of Pontryagin classes of the given dimension.
(not only up to homology).

Proof: Cf.[Heat equation and the Index Theorem Atiyah P284]. □

Prop.(11.1.10.2)[Gilkey Generalized].For a natural transformation ω from the functor p : M →
Riemannian structures on M with a Hermitian bundle E with a Hermitian connection and the
functor q : M → k-forms on M , if it is homogenous of weight (0, 0) w.r.t to metric g, h and the
Hermitian structure(i.e. ω(λ2g, µ2ξ) = ω(g, ξ)) and in local coordinates it has the coefficients of
ω(g, ξ) generated by gij , hij ,deth−1, det g−1 and Γijk (the connection form) and their derivatives, then
is is a polynomial of Pontryagin classes and Chern classes of E of the given dimension. (not only up
to homology).

Proof: Cf.[Heat equation and the Index Theorem Atiyah P290]. □

Cor.(11.1.10.3).For a natural transformation ω from the functor p : M → Hermitian bundle E onM
with a Hermitian connection and the functor q : M → k-forms on M , if it is homogenous of weight
0 w.r.t to metric h and the Hermitian structure(i.e. ω(µ2ξ) = ω(ξ)) and in local coordinates it has
the form ω(g, ξ) generated by hij ,deth−1 and Γijk (the connection form) and their derivatives, then
is is a polynomial of Chern classes of E of the given dimension. Because when composed with the
forgetful functor, it gives a transformation as above. And it is obviously independent of g.
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Prop.(11.1.10.4)[Hodge].For any differential operator A from a vector bundle E to a vector bundle
F , we form two operators AA∗ and A∗A, then they are both self adjoint elliptic operators, let these
corresponding eigenspace be Γλ(E) and Γλ(F ), then A and A∗ define an isomorphism between Γλ(E)
and Γλ(F ).

Proof: □

Prop.(11.1.10.5)[Hirzebruch Signature Formula].On a 4n-dimensional orientable manifold M ,
the Poincare duality defines a bilinear pairing H2n(M)×H2n(M)→ R, its signature σ(M) is given
by:

σ(M) =
∫
M
Ln(p1, . . . , pn).

Where Ln is the degree n part of the Taylor expansion of ∏r
i=1

√
xi

tanh√xi
in terms of the symmetric

polynomial.

Proof: We consider the operator τ : α 7→ il+p(p−1) ∗ α, τ2 = 1, thus Γ∗ is decomposed into two
eigenspaces of τ . We define the signature operator A as the restriction of ∆ = d− τdτ to Γ+. ∆
anti commutes with τ thus maps Ω+ to Ω−, then we have kerA = ker ∆ ∩ Ω+, which is the positive
harmonic forms H+. So

IndA = dimH+ − dimH−.

And we notice the positive and negative harmonic forms neutralize each other unless on the 2n-forms,
so only need to consider them. In fact, if we consider 4n+ 2 manifolds, then τ is pure imaginary and
the conjugation neutralize even the 2n+ 1 forms, so there are no signature.

Now the inner product α →
∫
α ∧ ∗α is positive definite for a real form α, so this index of A is

just the signature of the intersection form defined by cup product. □

Cor.(11.1.10.6).For a 4n-dimensional M which is a boundary of a manifold, its signature is 0.

Proof: By Stokes theorem, if M is a boundary of a manifold, then all its Pontryagin numbers, i.e.∫
M

∏
pnii ,

∑
ni = n, vanish. □

Prop.(11.1.10.7) [Generalized Hirzebruch Signature Formula].Let M be a 2l dimensional
smooth manifold and E be a Hermitian bundle over M , then The index of the generalized signa-
ture operator is giving by

IndAη = 2l · ch(E)L(p1, . . . , pl).

where L(M)(pi) =
∏ xi/2

tanh xi/2
.

Prop.(11.1.10.8)[Hirzebruch-Riemann-Roch].For a n-dimensional complex line bundle L over a
compact Kähler manifold M ,

χ(M,L) =
∫
M

[ch(E)td(T 1,0M)]n.

Where χ(M,L) =
∑n
q=0(−1)q dimHq(M,E), ch is the Chern character(11.1.9.5) and td(T 1,0M) is

the Todd polynomial, i.e. Taylor expansion of ∏r
i=1

ti

1− e−ti
in terms of the symmetric polynomial,

applied to ci(T 1,0M).
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Cor.(11.1.10.9) [Riemann-Roch].For a n-dimensional complex vector bundle E over a Riemann
Surface M , let degE =

∫
M c1(E), then

χ(M,E) = H0(M,E)− dimH1(M,E) = degE + rk(E)(1− g).

Cf.[Index Theorem P115].

Hodge Theory

Prop.(11.1.10.10)[Hodge].By(10.13.8.12), if we investigate the Laplace operator ∆d on a compact
orientable Riemannian manifold, we get that

Ωi = Hi ⊕ Im ∆d = Hi ⊕ Im d⊕ Im d∗.

Thus H i can be uniquely represented by elements of Hi.
Proof: It suffice to prove ∆d is self-adjoint elliptic.

Im ∆d ⊂ Im d ⊕ Im d∗, and the result follows if we show Hi, Im d, Im d∗ are orthogonal. In fact,
let ω be harmonic, then (ω, d∗ξ) = (dω, ξ) = 0, (ω, dη) = (d∗ω, η) = 0, (dη, d∗ξ) = (ddη, ξ) = 0. □

Cor.(11.1.10.11)[Poincare Duality for deRham Cohomology]. IfM is a n-dimensional compact
orientable Riemannian manifold, then

Hp
dR(M) ∼= Hn−p

dR (M)

Induced by ∗, because ∗∗ = ±1 and ∗ commutes with ∆d(11.1.3.10), so it induce an isomorphism
Hp ∼= Hn−p.

Moreover, ∗ in fact induces a perfect pairing:
Hk
dR(M)×Hn−k(M)→ R

induced by the map
∗ : Hk(M)×Hn−k(M)→ R : (α, β) 7→

∫
M
α ∧ ∗β

As
∫
M α ∧ ∗α = ||α||2 ̸= 0.

Prop.(11.1.10.12).On a compact complex manifold, the formal adjoint of ∂ is ∗∂∗. (By direct
calculation). Also d∗ = (−1)n(p+1)+1 ∗ d∗ = − ∗ d∗.

Prop.(11.1.10.13)[Hodge].Given a compact Hermitian complex manifold (X, J, g) and a holomor-
phic line bundle E over it, there is a Hermitian metric on Ap,qE, and an operator ∂ on it. Then ∂
has a formal adjoint ∂∗, and ∆∂E

can be defined. Let Hp,qE be the kernel of ∆∂ on Ap,qE, called the
E-valued (p, q)-forms, then there is a orthonormal decomposition

Ap,qE = Hp,qE ⊕ Im ∆∂E
= Hp,qE ⊕ Im ∂E ⊕ Im ∂

∗
E

And thus Hp,q(X,E) ∼= Hp,q

∂
(X,E).

Proof: It suffice to prove ∆∂E
is self-adjoint elliptic. The rest is verbatim as the proof of(11.1.10.10).

□
Cor.(11.1.10.14)[Hodge]. In case E = OX , Hp,q(X) ∼= Hp,q

∂
(X).

Cor.(11.1.10.15)[Kodaira-Serre Duality].For a Hermitian line bundle over a compact Hermitian
complex manifold X, from Hodge theorem and(11.8.5.2), we get

Hp(X,Ωq(E)) ∼= Hn−p(X,Ωn−q(E∗))

induced by ∗E and ∗E∗ .
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11 Knots and Links
Prop.(11.1.11.1) [Linking Number].For two knots A,B in Rn, we can choose a D ∼= D2 with
boundary A, then define their linking number as the intersection number of D with B.

This can be extended to higher dimensions.

12 Others

Real Algebraic Geometry

Prop.(11.1.12.1).Any compact smooth manifolds in Rn can be approximated by a real algebraic
variety.

Proof: Cf.[Nash’s work on Algebraic Geometry]. □

Prop.(11.1.12.2).Let Y be a projective variety over R and Z ⊂ Y a closed subvariety, then there
exists a triangulation of the pair (Y (R), Z(R)).

Proof: Cf.[Hironaka1975, Triangulations of Algebraic Sets] and [Lojasiewicz1964, Triangulation of
semi-analytic sets]. □
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11.2 Riemannian Geometry

Basic references are [Riemannian Geometry Do Carmo], [Geometric Analysis Jost] and [Differentia
Geometry Loring Tu].

1 R3-Geometry

Different Coordinates

Prop.(11.2.1.1). In a polar coordinate,

g11 = 1, g12 = 0, g22 = |∂f
∂θ
|2, K = −

(√g22)ρρ√
g22

And √g22 ∼ ρ. (Use the formula relating Jacobi Field with curvature)

Moving Frame Method

Thm.(11.2.1.2)[Theorema Egregium, Gauss1827].

R1212 = K(g11g22 − g2
12)

Which is a special case of the definition of curvature.

Proof: □

Prop.(11.2.1.3)[Gauss-Bonnet].LetM be a compact oriented 2-dimensional Riemannian manifold,
then

χ(M) = 1
2π

∫
M
K Vol.

Proof: Should be an direct corollary of(11.1.9.6). □

Topology and Geometry

Prop.(11.2.1.4).Every compact orientable surface of genus p > 1 can be provided with a metric of
constant negative curvature.

Proof: □

Remark(11.2.1.5) [Hilbert Theorem].There exist complete surfaces with K ≤ 0 in R3, but the
hyperbolic surface cannot be immersed into R3.

2 Basics

Prop.(11.2.2.1). If the metric tensor on the tangent space is g in a coordinate, then it is g−1 in the
cotangent space. (Follows from??).
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3 Connections
Def.(11.2.3.1) [Affine Connection].An affine connection on a vector bundle E is a map D :

Γ(E) → Γ(E) ⊗ Γ(T ∗M) that satisfies differential-like properties, it can be written as D = d + ω,
with ω ∈ Ω1(End(E)).

Prop.(11.2.3.2) [Transformation Law]. In two coordinates e = ea for a : U → GL(r,R), dA =
d+ ω, d+ ω, then ω = a−1ωa+ a−1da.

Moreover, giving any locally compatible d + ω,ω ∈ Ω1(g) in the sense above, then for any G-
associated bundle E, where G has lie algebra g, there is a connection that locally looks like d + ω,
(where g embeds into gl(E)).

Cor.(11.2.3.3)[Local Nature of Connection].From the description of connection given above, it’s
easy to say if the is a local connection that satisfies these transformation laws, then it generate a
global connection. So by partition of unity(3.3.7.9), connection exists in any vector bundle over a
manifold.

Cor.(11.2.3.4)[Simplification]. dgA(s) = gdA(g−1(s)), So for any connection dA and any point x0,
there is a gauge transformation that makes dA = d at x0.

Proof: Just need to have s(x0) = id, ds(x0) = −A(x0). this is possible because A ∈ Ω1(AdE)
which is the fiber of the frame bundle, use exp. □

Prop.(11.2.3.5) [Induced connections].The connection action dA = d + ω on a vector bundle E
induces connection on many relevant bundles. the action on dual bundle is by

dA(s∗) = ds∗ − ωt(s∗) = ds∗ − s∗ ◦ ω.

And the connection on EndE by

dA(α) = dα+ [ω, α] = [∇, α]

And they act on Ω∗(E) by Leibniz rule thus the formula looks the same. (Note that the convention
is section write on the left of the differential forms, so for example, [ω, ω] = 2ω ∧ ω).

Proof: Cf.[Jost P110]. □

Cor.(11.2.3.6).For a line bundle L, for a connection on it with curvature Ω, the induced on the dual
line bundle L∗ has connection −Ω. (because Ω = dω and ω′ = −ω).

Prop.(11.2.3.7)[Second Bianchi’s Identity].A affine connection on E looks locally like dA = d+ω,
where ω ∈ Ω1(EndE). And FA = dA ◦ dA ∈ Ω2(End(E)) satisfies

dAFA = dFA + [ω, FA] = 0.

Proof: Notice dFA = ddω + d(ω ∧ ω) = dω ∧ ω − ω ∧ dω, and ω(dω + ω ∧ ω) − (dω + ω ∧ ω)ω =
ω ∧ dω − dω ∧ ω. □

Def.(11.2.3.8) [Christoffel Symbol].The Christoffel symbol of a connection is defined by the
equations: ∇XiXj =

∑
k ΓkijXk.

The geodesic equations is
D

dt
(
dγ

dt
) = ẍk +

∑
i,j Γkij ẋiẋj = 0 ∀k.
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Def.(11.2.3.9).The torsion tensor of a connection ∇ on TM is defined as T (X,Y ) = ∇XY −∇YX−
[X,Y ]. The connection is called torsion-free if T = 0. This is equivalent to Γki,j = Γkj,i.

A connection is called metric if it preserves metric. i.e. ∇g = 0.
Proof: T is a tensor because it is skew-symmetric, and

T (fX, Y ) = f∇XY − f∇YX − df(Y )X − (f [X,Y ]− df(Y )X) = fT (X,Y ),

where(11.1.3.5) is used. □
Prop.(11.2.3.10). If∇ is torsion-free connection on TM , then its induced connection on T ∗M satisfies

(dα)(v1, . . . , vk) =
∑

(−1)i(Dviα)(v1, . . . , v̂i, . . . , vk).

Proof: □
Def.(11.2.3.11)[Curvature Tensor].The curvature of a (affine) connection dA is FA = dA ◦ dA ∈

Ω2(End(E)). The curvature tensor it induced is

FA(Z)(X,Y ) = R(X,Y )Z = DYDXZ −DXDY Z +D[X,Y ]Z.

In particular, the curvature depends only on the point, and locally FA = dω + ω ∧ ω
In two coordinates e = ea for a : U → GL(r,R),FA = a−1FAa.
The connection is called flat if FA = 0.

Proof: To verify the equation, check first the left side is pointwise, and the third component of the
right side assures it is pointwise, too, thus we can check for a local coordinate vector field([Xi, Xj ] =
0), then because ∇s =

∑
i∇isdxi,

∇2s = ∇(
∑
i

∇isdxi) =
∑
ij

∇j∇isdxjdxi =
∑
i<j

(∇i∇j −∇j∇i)sdxi ∧ dxj

□
Prop.(11.2.3.12)[Flat coordinate].A connection on TM assumes near every point a flat coordinate,
i.e. ∇(∂/∂xi) = 0, iff it is flat and torsion-free.
Proof: One side is easy because its Christoffels vanish. On the other side, use integrability theorems
(10.13.6.2). Cf.[Jost P115]. □

Prop.(11.2.3.13).
∆⟨φ,φ⟩ = 2(⟨D∗Dφ,φ⟩ − ⟨Dφ,Dφ⟩).

Proof: Cf.[Jost P118]. □
Prop.(11.2.3.14).For a flat connection, there is a bundle isomorphism (Gauge transform) that trans-
forms dA into natural d.
Proof: Because dgA(s) = gdA(g−1(s)),dgA = d − dg · g−1 + g · ω · g−1. Solve this PDE direvtly.
(Cf.[Topics in Geometry Xie Yi week3]). □

Cor.(11.2.3.15).For a flat connection, by(11.2.3.14), the parallel transportation only depends on the
homotopy type of the loop, thus gives an action of π(X) on SO(Tp(X)) (or SU(Tp(X)). (because it
is locally constant).

In this way, connections module gauge equivalence (preserving matric) equals representation of
π(X) module conjugations. The reverse map is giving by principal bundle.
Proof: □
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Levi-Civita Connection

Def.(11.2.3.16)[Levi-Civita Connection].The Levi-Civita connection is the unique connection on
M that is metric and torsion-free:

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩, ∇XY −∇YX = [X,Y ].

It satisfies:

⟨Z,∇YX⟩ = 1/2{X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ − ⟨[X,Z], Y ⟩ − ⟨[Y, Z], X⟩ − ⟨[X,Y ], Z⟩}.

Then
Γmij = 1/2

∑
k

{gjk,i + gki,j − gij,k}gkm

Thus geodesic is a solution that only depends on the metric(11.2.3.8), so a local isometry preserves
geodesics.

Prop.(11.2.3.17).Now the Lie derivative has the form:

LX(S)(Y1, . . . , Yp) = ∇X(S)(Y1, . . . , Yp) +
p∑
i=1

S(Y1, . . . , Yi−1,∇YiX, . . . , Yp).

The exterior derivative d and its adjoint d∗ has the form:

dω(Yi) =
∑

(−1)p∇Yiω(Y̌p), d∗ω(Yi) = −
∑
∇ejω(ej , Yi)

where ei is an orthonormal basis. Cf.[Jost P140].

Prop.(11.2.3.18)[Covariant Differential Symmetry].For a parametrized surface: s : (u, v)→M ,

D

∂u

∂s

∂v
= D

∂v

∂s

∂u
.

Proof:

D

∂u

∂s

∂v
= D

∂u
(
∑ ∂si

∂v
Xi) = ∂2si

∂u∂v
+
∑ ∂si

∂v
(
∑ ∂sj

∂u
∇jXi) = ∂2si

∂u∂v
+
∑
ij

∂si
∂v

∂sj
∂u
∇jXi

But now the Levi-Civita connection is symmetric, thus ∇jXi = ∇iXj , showing the symmetry in
u and v. □

Lemma(11.2.3.19)[Gauss].Let p ∈M and v ∈ TpM s.t. expp v is defined, w ∈ TpM , then

⟨(d expp)v(v), (d expp)v(w)⟩ = ⟨v, w⟩.

Proof: Cf.[Do Carmo P69]. □

Prop.(11.2.3.20)[Geodesic Locally Minimizing]. In a normal nbhd of p, the geodesic starting at
p is the minimal line.
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Proof: And curve c(t) can be written as expp(r(t)v(t)) = f(r(t), t), where f(s, t) = expp(sv(t)), so
by Gauss lemma, ⟨∂f∂r ,

∂f
∂t ⟩ = 0. Now dc/dt = ∂f/∂rr′(t) + ∂f/∂t, so

|dc/dt|2 = |r′(t)|2 + |∂f/∂t|2 ≥ |r′(t)|2.

Integrate this will give us the desired result. □

Prop.(11.2.3.21) [Totally normal nbhd].For any point p, there exists a nbhd W and a number
δ > 0 s.t. for every q ∈ W , expq is a diffeomorphism on Bδ(0) and expq(Bδ(0)) ⊃ W . Thus, fine
cover exists in every smooth manifold, because Riemannian metric exists on these manifolds.

Proof: Cf.[Do Carmo P72]. □
• (Geodesic Frame) In a neighborhood of every point p, there exists n vector fields, orthonormal

at each point, and∇EiEj(p) = 0.(Choose normal nbhd and parallel a orthonormal basis to every
point. (WARNING: this is not a flat coordinate, it only helps when dealing with point-wise
properties).

Def.(11.2.3.22) [Killing Fields].A Killing field is a vector field which generates an infinitesimal
isometry. X is killing ⇐⇒ LX(g) = 0 ⇐⇒ ⟨∇YX,Z⟩+ ⟨∇ZX,Y ⟩ = 0 for all Y, Z, which is called
the Killing equation.

Proof: Use Lie formula,

LX(g)(Y, Z) = X⟨Y, Z⟩ − ⟨[X,Y ], Z⟩ − ⟨Y, [X,Z]⟩

. and Levi-Civita connection is torsion-free. □

Prop.(11.2.3.23).LetM be a compact Riemannian manifold of even dimension with positive sectional
curvatures, then every Killing field on M has a singularity.

Proof: Cf.[Do Carmo P104]. □

Def.(11.2.3.24)[Geometric Differential Notions].
• The gradient is defined to be ⟨gradf(p), X⟩ = X(f)(p).
• The divergence is defined to be divX(p) =trace of the linear map Y (p) → ∇YX(p) =∑

i⟨∇EiX,Ei⟩. It measures the variation of the volume and it depends only on the point.
• The Hessian is defined to be Hessf is a self-adjoint operator that (Hessf)Y = ∇Y gradf as

well as a symmetric form (Hessf)(X,Y ) = ⟨(Hessf)X,Y ⟩.
• The Laplacian is defined to be ∆f = div gradf = trace Hessf .

Prop.(11.2.3.25). In a geodesic frame,

gradf(p) =
n∑
i=1

(Ei(f))Ei

divX(p) =
n∑
i=1

Ei(fi)(p),whereX =
∑
i

fiEi.

∆f =
∑
i

Ei(Ei(f))(p).
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Cor.(11.2.3.26).
∆(f · g) = f∆g + g∆f + 2⟨gradf, gradg⟩,

because these only depends on the point.

Prop.(11.2.3.27). d(i(X)m) = (divX)m. where m is the volume form.

Proof: Choose a geodesic frame Ei, θi is a dual form of Ei, let X =
∑
fiEi, then ι(X)m =∑

i(−1)i+1fiθi, so

d(ι(X)m) =
∑

(−1)i+1dfi ∧ θi +
∑

(−1)i+1fi ∧ dθ = (
∑

Ei(fi))m+
∑

(−1)i+1fi ∧ dθ.

Notice that dθi = 0, because dθk(Ei, Ej) = Eiθk(Ej)− Ejθk(Ei)− θk([Ei, Ej ]) = 0(11.1.3.6), as it is
a geodesic frame. And ∑Ei(fi) = div(X)(11.2.3.25). □

Prop.(11.2.3.28)[Hopf theorem]. If f is a differentiable function on a compact orientable manifold
with ∆f ≥ 0, then f is constant.

Proof: Let grad(f) = X, then∫
M

∆fdm =
∫
M

div(X)dm =
∫
M
d(ι(X)dm) = 0.

So ∆f = 0. Now
0 =

∫
M

∆(f2/2)dm =
∫
M
f∆fdm+

∫
M
|grad(f)|2dm

by(11.2.3.26), thus grad(f) = 0, so f is constant. □

Def.(11.2.3.29)[Riemannian Curvatures].
• The sectional curvature K(X,Y ) = ⟨R(X,Y )X,Y ⟩

|X∧Y |2 .

• The Ricci curvature Ric(x) = Ric(x, x), where Ric(x, y) is the symmetric form of 1
n of trace

of the map z → R(x, z)y.
Thus Ricp(x) = 1

n−1
∑
⟨R(x, zi)x, zi⟩, for x a unit vector, where zi is an orthonormal basis

orthogonal to x.
• The scalar curvature K(p) = 1/n

∑Ricp(zi), where zi is an orthonormal basis.
The curvatures only depends on the point(11.2.3.11).

Lemma(11.2.3.30).

D

∂t

D

∂s
V − D

∂s

D

∂t
V = R(∂f

∂s
,
∂f

∂t
)V. (obvious because ∂

∂s
,
∂

∂t
commutes)

Proof:
□

Prop.(11.2.3.31) [Sectional Curvature Define Curvature].The curvature tensor is determined
by its sectional curvature.

In particular, if M is isotropic at a point p (The sectional curvature depends only on the point),
then

R(X,Y,W,Z) = K0(⟨X,W ⟩⟨Y, Z⟩ − ⟨X,Z⟩⟨Y,W ⟩).
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Proof: Cf.[Do Carmo P95], should use the cyclicity of the first three terms. □

Prop.(11.2.3.32) [Bianchi Identities].Recall the covariant differential ∇R(Yi, Z) = Z(R(Yi)) −∑
iR(∇ZYi, Yj)(11.2.3.5).
• (Bianchi Identity)∑(X,Y,Z)R(X,Y )Z = 0.
• (Second Bianchi Identity)∑(Z,W,T )∇R(X,Y, Z,W, T ) = 0.

Proof: 1: Cf.[Do Carmo P91], should reduce to Jacobi identity.
2: □

Prop.(11.2.3.33)[Schur’s Theorem].LetM be a manifold of dimension n ≥ 3, suppose the sectional
curvature only depends on p, then M has constant curvature.

Proof: Use the second Bianchi Identity and geodesic frame and(11.2.3.31).Cf.[Do Carmo P106]. □

Def.(11.2.3.34)[Eisenstein Curvature].A manifoldM is called a Eisenstein manifold iff its Ricci
curvature λ(p) only depends on the point. Then

• If M is connected and Eisenstein of dimension≥ 3, then it has constant Ricci curvatures every-
where every direction.

• If M is connected and Eisenstein of dimension3, then it has constant sectional curvatures.

Proof: 1: Cf.[Do Carmo P108].
2: Now it has constant Ricci curvature, then

R1212 +R1313 = λ = R1212 +R2323 = R1313 +R2323.

So we can solve these curvatures out. □

Prop.(11.2.3.35)[Riemannian Curvature Identities].
•
• R(X,Y, Z,W ) = R(Z,W,X, Y ), R(X,Y, Z,W ) = R(X,Y,W,Z).

Proof: Cf.[DO Carmo P91]. □
• B(X,Y ) = ∇XY −∇XY . It is bilinear and symmetric.
• Hη(x, y) = ⟨B(x, y), η⟩. Thus B(x, y) =

∑
Hi(x, y)Ei for an orthonormal frame Ei in X(U)⊥.

• Sη(x) = −(∇xη)T . It satisfies:⟨Sη(x), y⟩ = Hη(x, y) = ⟨B(x, y), η⟩. It is self-adjoint. When
codimension 1, it is the derivative of the Gauss mapping.

• (Gauss Formula): let x, y be orthonormal tangent vector. Then:

K(x, y)−K(x, y) = ⟨B(x, x), B(y, y)⟩ − |B(x, y)|2.

• An immersion is called geodesic at p if the second fundamental form Sη is zero for all η, (which
means ∇XY has no normal component). It is called minimal if the trace of Sη is zero.

• An immersion is called umbilic if there exists a normal unit field η s.t. ⟨B(X,Y ), η⟩(p) =
λ(p)⟨X,Y ⟩.

• If the ambient space has constant sectional curvature and the immersed manifold is totally
umbilic, then λ is constant.
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• mean curvature tensor of immersion f = 1/n
∑
i(tr Si)Ei = 1/n tr B. It is zero if f is minimal.

• normal connection ∇⊥
Xη = (∇Xη)N = ∇Xη + Sη(X).

Prop.(11.2.3.36). • (Gauss equation)

⟨R(X,Y )Z, T ⟩ = ⟨R(X,Y )Z, T ⟩ − ⟨B(Y, T ), B(X,Z)⟩+ ⟨B(X,T ), B(Y, Z)⟩.

• (Ricci equation)
⟨R(X,Y )η, ζ⟩ − ⟨R⊥(X,Y )η, ζ⟩ = ⟨[Sη, Sζ ]X,Y ⟩.

• (Codazzo equation)

⟨R(X,Y )Z, η⟩ = (∇YB)(X,Z, η)− (∇XB)(Y, Z, η). (Lie bracket)

Parallel Transportation

Def.(11.2.3.37)[Parallel Transportation].

Def.(11.2.3.38)[Holonomy Group].The holonomy group Holx(g) of a Riemannian manifold M
w.r.t to the Levi-Civita connection is defined to be the subgroup of O(Tx(M)) induced by the parallel
transportation along a loop. If M is connected, For different points, holonomy groups are conjugate,
so holonomy group is defined up to conjugation.

Prop.(11.2.3.39) [Trivial Holonomy Group]. If M is a Riemannian manifold and the holonomy
group is trivial, then for any X,Y, Z ∈ X(M), R(X,Y )Z = 0.

Proof: Cf.[Do Carmo P105]. □

Prop.(11.2.3.40)[Berger]. in fact, the groups that can be realized as a holonomy group of a simply
connected complete Riemannian manifold can be classified.

Proof: Cf.[Complex geometry Daniel P214]. □

Def.(11.2.3.41).The Geodesic flow for a connection on TM is the flow on TM whose trajectories
are t 7→ (γ(t), γ′(t)), where γ is a geodesic on M .

Prop.(11.2.3.42)[The smoothness of geodesics].For every point p, there exists a nbhd V and a
C∞ mapping

γ : (−δ, δ)× V ×B(0, ϵ)→M,

s.t. γ(t, q, v) is the geodesic passing through p with velocity v.

Prop.(11.2.3.43) [Curvature and Metric, Cartan].Let M, M̃ be two Riemannian manifold of
dimension n and let p ∈ M, p̃ ∈ M̃ . Choose a linear isometry i : Tp(M) ∼= Tp̃(M̃). Let V be a
normal neighbourhood of p that expp̃ is defined on i ◦ exp−1

p (V ). Define a mapping f : V → M̃ by
f(q) = expp̃ ◦i ◦ exp−1

p (q).
For any q ∈ V , there is a unique normalized geodesic γ : [0, t] → M that γ(0) = p, γ(t) = q.

Denote by Pt the parallel transportation along γ, and the map φt : Tq(M) → Tf(q)(M̃) by φt(v) =
P̃t ◦ i ◦ P−1

t (v).
If for all q ∈ V and all x, y, u, v ∈ Tq(M), we have

⟨R(x, y)u, v⟩ = ⟨R̃(φt(x), φt(y)φt(u), φt(v)⟩,

then f : V → f(V ) ⊂ M̃ is an isometry and dfp = i.
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Proof: Cf.[Do Carmo P157]. Use Jacobi fields. The point is that the hypothesis implies that the
map of a Jacobi field is also a Jacobi field. □

Cor.(11.2.3.44).Let M, M̃ be Riemannian manifolds with the same dimension n in which parallel
transportation preserves sectional curvature. Let p ∈ M, p̃ ∈ M̃ . If there is a linear isometry
i : Tp(M) ∼= Tp̃(M̃) s.t. K(p,E) = K(p̃, i(E)) for any 2-dimensional subspace E ⊂ Tp(M), then
there exist nbhd V of p, nbhd Ṽ of p̃ and an isometry f : V → Ṽ that dfp = i.

Cor.(11.2.3.45). If in situation(11.2.3.44), M and M̃ are moreover complete and simply connected,
then there is a unique isometry f : M → M̃ s.t. f(p) = p̃ and dfp = i.

Complete manifold

Prop.(11.2.3.46)[Hopf-Rinow theorem].The following is equivalent definition of completeness.
1. expp is defined for all of Tp(M) and all p ∈M .
2. The closed and bounded sets of M are compact.
3. M is complete as a metric space.
4. M is σ−compact and if qn /∈ Kn, d(p, qn)→∞.
5. The length of any divergent (compact escaping) curve is unbounded.

and if M is complete, then for any p, q ∈ M , there exists a minimizing geodesic between p, q. In
particular, any compact submanifold of a complete manifold is complete.

Proof: Cf.[Do Carmo P147]. □
• For any two manifold of the same constant curvature and any two orthogonal basis, there is a

local isometry (It is locally isotropic).
• Any complete manifold with a sectional curvature is like M̃/Γ, where M̃ is Hn,Rn or Sn.

Prop.(11.2.3.47)[Cartan]. in any nontrivial homotopy class in a compact manifold , there exists a
closed geodesic.

Proof: □

4 Jacobi Field and Comparison Theorems
Def.(11.2.4.1)[Jacobi Field].The Jacobi field equation along a normalized geodesic γ is defined
to be

D2J(t) +R( ˙γ(t), J(t))γ̇(t) = 0.
It is defined by its initial condition J(0) and J ′(0). It can be used to detect the sectional curvature,
the critical point of expp and calculate variation of energy.

Prop.(11.2.4.2)[Constant Curvature Case].On a manifold with constant curvature K, the Jacobi
field equation for a vector field J normal to γ is equivalent to

D2J(t) +KJ(t) = 0.

Proof: Use(11.2.3.31), we have

⟨R(γ′, J)γ′, T ⟩ = K{⟨γ′, γ′⟩⟨J, T ⟩ − ⟨γ′, T ⟩⟨J, γ′⟩} = K⟨J, T ⟩

So R(γ′, J)γ′ = KJ. □
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Prop.(11.2.4.3).The Jacobi field along a point with initial velocity 0 all has the form

J(t) = (dexpp)tγ̇(0)(tJ
′(0)).

Proof: Cf.[Do Carmo P113]. Should use uniqueness theorem of ODE. □

Cor.(11.2.4.4)[Conjugate Points]. If two points p, q are connected by a geodesic γ, and q = expp(v0),
then p, q are called conjugate along γ, if there is a non-trivial Jacobi field on γ that J(p) = J(q) = 0.

Then q is conjugate to p iff v0 is the critical point of expp, and the multiplicity of conjugacy is
equal to the kernel of (expp)v0 .

Prop.(11.2.4.5).For a Jacobi field J along γ, ⟨J(t), γ′(t)⟩ is linear in t.

Proof: Take second derivatives. □
• If J is a Jacobi field J(t) = (dexpp)tv(tw), |v| = |w| = 1, then

|J(t)| = t− 1
6
Kp(v, w)t3 + o(t3).

Prop.(11.2.4.6).There are no conjugate points on a Riemannian manifold of non-positive curvature.

Proof: Cf.[Do Carmo P119]. □

Prop.(11.2.4.7) [Killing Field is everywhere Jacobi].A Killing field is a Jacobi field along
geodesics.

And if X(p) = 0, then X is tangent to the geodesic sphere near p, because X preserves length.

Proof: □

Energy Analysis

Def.(11.2.4.8)[Energy].The energy of a geodesic γ is defined to be

E(s) =
∫ a

0
|∂f
∂t

(s, t)|2dt.

Prop.(11.2.4.9).A minimizing geodesic must minimize energy.

• (First Variation of Energy)

1/2E′(0) = −
∫ a

0
⟨V (t), Dċ(t)⟩dt+ ⟨V (a), ċ(a)⟩ − ⟨V (0), ċ(0)⟩.

A piecewise differentiable curve is a geodesic iff every proper variation has first derivative 0.
• (Second Variation of Energy) If γ is a geodesic,

1/2E′′(0) =
∫ a

0
{⟨DV (t), DV (t)⟩ − ⟨R(γ̇, V )γ̇, V ⟩}dt+ ⟨DsV (a), γ̇(a)⟩ − ⟨DsV (0), γ̇(0)⟩.

• a variation is equivalent to a vector field along the curve, and a variation that fs(t) are all
piecewise geodesics corresponds to a piecewise Jacobi field(Choose a normal partition).
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Prop.(11.2.4.10)[Rauch Comparison theorem].Let M and M̃ be manifolds, dimM̃ ≥ dim M .
If J and J̃ be two normal Jacobi fields along geodesics γ and γ̃ that |J(0)| = |J ′(0)| = 0 and
|J ′(0)| = |J̃ ′(0)|. If γ̃ has no conjugate point or focal point free and K̃(x̃, ˙̃γ(t)) ≥ K(x, γ̇) for any
vector x, x̃, then |J̃ | ≤ |J |.

Cor.(11.2.4.11)[Injectivity Radius Estimate]. If the sectional curvature of M satisfies: 0 < L ≤
K ≤ H, then the distance between any two conjugate points satisfies: π√

H
≤ d ≤ π√

L
.

Prop.(11.2.4.12). If two manifold M and M ′ satisfy K ≤ K
′ , then in a normal nbhd of a point p in

M and a nbhd of p′ that exp is nonsingular, the transformation of a curve c shortens length.
Note that this is not Toponogov thoerem, because if you try to map from a large curvature

manifold to a small curvature, then you cannot guarantee that the mapped curve is the shortest.

Cor.(11.2.4.13). In a complete simply connected manifold of non-positive curvature,

A2 +B2 − 2AB cos γ ≤ C2

thus α+ β + γ ≤ π.

Prop.(11.2.4.14) [Moore theorem].Let M be a complete simply connected manifold of sectinoal
curvature K ≤ −b ≤ 0, M a compact manifold of sectional curvature satisfying K − K ≤ b. If
dimM < dimM , M cannot be immersed into M .(use Hadamard theorem to choose the furthest
geodesic and calculate the second variation of energy and use Gauss formula).

Cor.(11.2.4.15).Let M be a complete simply connected manifold of sectinoal curvature K ≤ 0, M a
compact manifold of sectional curvature satisfying K ≤ K. If dimM < dimM , M cannot immerse
into M .

Lemma(11.2.4.16) [Klingenberg Lemma].Let M be a complete manifold of sectional curvature
K ≥ K0, let γ0, γ1 be two homotopic geodesics from p to q, then there exists a middle curve γs s.t.

l(γ0) + l(γs) ≥
2π√
K0

.

Proof: Assume l(γ0) < 2π√
K0

, otherwise we are done. Then by Rauch comparison(11.2.4.10), the
expp : TpM → M has no critical point in the open ball B of radius π/

√
K0. Now we want to lift γs

to TpM . It is clear that we cannot lift γ1, because otherwise it is not a curve. Hence for every ε > 0,
there is a curve αt(ε) that can be lifted and has a point with distance smaller than ε to the boundary
∂B, otherwise the s that can be lifted will be open and closed in [0, 1], thus containing 1.

So now if we choose a sequence of lifts curves γs converging to the boundary, then s has a
convergent point, then we have l(γ0) + l(γt0) ≥ π√

K0
. □

Prop.(11.2.4.17)[Klingenberg].LetM be a simply connected compact manifold of dimension n ≥ 3
such that 1

4 < K ≤ 1, then i(M)(The infimum of distance to the cut locus)≥ π.

Cor.(11.2.4.18). If M is a compact orientable manifold of even dimension satisfying 0 < K ≤ 1, then
i(M) ≥ π.

Prop.(11.2.4.19)[1/4-pinch Sphere Theorem].Let M be a compact simply connected manifold
satisfying 0 < 1/4Kmax < K ≤ Kmax, then M is homeomorphic to a sphere.

(Use Klingenberg Theorem, this is a special case of diameter geodesic sphere theorem).
Cf.(11.2.4.29).

It can be shown that in this case, this sphere is even diffeomorphic to Sn using Ricci flow.
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Remark(11.2.4.20). 0 < 1/4Kmax < K cannot be changed to ≥. In fact, the Funibi-Study metric
on CPn has sectional curvature 1 ≥ K ≥ 4. Cf. ??

Hessρ(X,Y ) where ρ is the distance to a fixed point, is important.

Prop.(11.2.4.21).Hessρ(X,Y ) is positive definite on the tangent space of the geodesic sphere within
the injective radius, and its principal value is |J

′

J | for a Jacobi field in that direction. And it is zero
on the normal direction.

So there would be a Riccati comparison theorem on the eigenvalue of Π2 : λ′ ≤ −K − λ2,Hess(ρ)
is bounded.

Proof: Notice that
Hessρ(X,Y ) = (∇Xgradρ, Y ) = XY ρ− (∇XY )ρ

so if choose a normal geodesic γ of initial vector X, then

Hessρ(X,X) = X⟨γ̇, dρ⟩ − (∇X γ̇)ρ = X⟨γ̇, dρ⟩ = ⟨γ̇, d⟨γ̇, dρ⟩⟩ = E
′′(0)

= Iq(X,X) = ((∇γ̇X)(q), X(q)) = ⟨J
′, J⟩
|J |2

□

Prop.(11.2.4.22)[Toponogov].LetM be a complete manifold with K ≥ H.
If a hinge satisfies γ1 is minimal and γ2 ≥ π√

H
if H > 0., then on MH the same hinge has smaller

distance of endpoints than this hinge

Proof: Cf.[Cheeger Comparison Theorems in Riemannian Geometry P42]. And there is another
triangle version: For a minimal geodesic triangle, the comparison triangle has smaller angles. NOTE
this theorem cannot be derived from Rauch Comparison Theorem. □

Critical Point for Distance Function

Prop.(11.2.4.23).The critical point for distance function on a complete manifold is that for every
direction v, there is a minimal geodesic γ s.t. ⟨γ′(l), v⟩ ≤ π

2 .
The set of regular point is open and there exists a smooth gradient like vector field (i.e. acute

angle with every minimal geodesic) on this open subset .

Prop.(11.2.4.24)[Berger’s Lemma].A maximal point for the distance function is a critical point.

Proof: If not, choose a convergent point v of the minimal geodesics with endpoint in a curve of
that direction, then exp near v will generate a Jacobi field with endpoint Jacobi is the sam of that
direction. So the distance will increase by cos θ along that direction, contradiction. □

Prop.(11.2.4.25)[Soul Lemma].Let M is a Riemannian manifold and A is a closed submanifold. If
dist(A,−) has no critical point on D(A,R)\A, then B(A,R) is diffeomorphic to the normal bundle
of A→M .

Proof: A has a normal exp radius ϵ, and we can vary the gradient-like vector field to be identical
to the normal vector near A, and use Morse lemma (the flow) to get a diffeomorphism. □

Cor.(11.2.4.26)[Disk Theorem]. If A is a point then M is diffeomorphic to a disk.
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Lemma(11.2.4.27)[Generalized Schoenflies Theorem].Easy to do, just use the fact that exp is
continuous to find a boundary sphere depending continuously on the direction (both p and q).

Prop.(11.2.4.28) [Sphere Theorem]. If M is a closed manifold and has a distance function with
only one critical point (the furthest one), then M is homeomorphic to a twisted ball.
Proof: There exists a ϵ and r that B(q, ϵ) and B(p, r) covering M , (Use the convergent point
argument). Then use the generalized Schoenflies theorem. □

Prop.(11.2.4.29)[Diameter Sphere Theorem]. If a closed manifold M satisfies sec M ≥ K > 0,
and diam(M) > π

2
√
K
, then M is homeomorphic to Sn.

Proof: First, if there are two maximal distance point, then use Toponogov to show contradiction.
Second, at other points x,

∠pxq > π

2
(Regular domain) because of Toponogov and The formula

cos α̃ = cos l − cos l1 cos l2
sin l1 sin l2

.

So the geodesic direction −→xq will serve as a geodesic-like vector field (might need paracompactness).
□

Prop.(11.2.4.30)[Critical Principle]. In a complete manifold M of sectional curvature > K, if q is
a critical point of p, then for any point x with d(p, x) > d(p, q) and any minimal geodesic from p to
x, the ∠xpq is smaller than the cosh−1

K (d(p,x)
d(p,q) ).

Proof: Use Toponogov for the hinge xpq. Then notice that there is a different minimal geodesic
from p → q that makes the ∠pqx < π/2 by the definition of critical point, thus there is another
Toponogov inequality, this two inequality contradicts. □

Cor.(11.2.4.31).For a complete open manifold whose K are lower bounded, then it is homeomorphic
to the interior of a manifold with boundary. (Use Soul lemma, otherwise there will be a sequence of
critical point whose angles are big).

Prop.(11.2.4.32). ray construction and Line construction?
Prop.(11.2.4.33) [Soul Theorem]. If M is an open manifold with K ≥ 0, then there is a totally
geodesic submanifold S that M is diffeomorphic to the normal bundle over S.
Proof: Use the ray construction to get a totally convex compact subset, hence it is a manifold or
with boundary , if it has boundary, then find to set of maximal distance to the distance to boundary,
the distance to the boundary is a convex function, so it is a smaller totally geodesic manifold. So
a S without boundary must exist and this constitutes a stratification, all the level set is strongly
convex. Thus all point outside S is not critical, hence the soul lemma applies. Cf.[GeJian Comparison
theorems in Riemannian Geometry Lecture7]. □

Prop.(11.2.4.34) [Perelman].There is a distance non-increasing contraction unto the soul, and it
must be just the projection along the normal bundle. Moreover, for any geodesic on the soul and a
parallel vector field in the normal bundle along it, it spans a flat surface (by Rauch comparison).

Cor.(11.2.4.35)[Soul Conjecture].For an open(non-compact) complete manifold M with K ≥ 0,
if it has a point p s.t. sectional curvature at p are all positive, then M is diffeomorphic to Rn. (It’s
enough to show that its soul is a point, otherwise for any point, it must has a direction that is flat,
K = 0).
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5 Curvature Inequalities and Topology

Sectional Curvature

Prop.(11.2.5.1) [Hadamard theorem].M a complete simply connected Riemann manifold of sec-
tional curvature ≤ 0, then expp : TpM → M is an isomorphism of M to Rn.(negative sectional
curvature to show exp is a local isomorphism, complete to show it is a covering map)

Prop.(11.2.5.2) [Liouville Theorem].Any conformal mapping for an open subset of Rn, n > 2 is
restriction of a composition of isometry, dilations and/or inversions, at most once.

Prop.(11.2.5.3)[Positive Curved, Closed Geodesic not Minimal]. If M is an even dimensional
orientable Riemannian manifold with positive sectional curvature, let σ : [0, 1] → M be a closed
geodesic curve, then there exists an ε > 0 that parametrized closed curves F ; [0, 1] × (−ε, ε) → M
near σ with lengths less than that of σ.

Proof: Cf.[Solution to Yau Test Geometry Individual2013 Prob5]. □

Prop.(11.2.5.4) [Synge]. f is an isometry of a compact oriented manifold Mn of positive sectional
curvature, f alter orientation by (−1)n, then f has a fixed pt.

Proof: Cf.[Do Carmo P203]. □

Cor.(11.2.5.5).M a compact manifold of positive sectional curvature, then
1. If M is orientable and n is even, then M is simply connected. So If M is compact and even

dimension, then π(M) = 1 or Z2.
2. If n is odd, then M is orientable.

(Use the universal cover and covering transformation.)

Conj.(11.2.5.6)[Hopf Conjecture]. If M is a compact Riemannian manifold of even dimension that
K > 0, then it has positive Euler characteristic.

Morse Index

Prop.(11.2.5.7) [Index Lemma].Among the piecewise differentiable vector fields along a geodesic
without conjugate point or without focal point, with initial value 0 and fixed end value, the Jacobi
field attain minimum of the index form:

Ia(V, V ) =
∫ a

0
{⟨DV (t), DV (t)⟩ − ⟨R(γ̇, V )γ̇, V ⟩}dt.

Cor.(11.2.5.8). Il(J, J) = ⟨J, J ′⟩(l) for a Jacobi field.

Prop.(11.2.5.9). a focal point is a critical value of exp⊥. For an embedded manifold, the focal point
equals x+ 1/tη, where η is a vertical vector and t is a principal value of Seta.

Prop.(11.2.5.10)[Morse Index theorem].The index of the the index form Ia(V,W ) on the space
of vector fields 0 at the endpoints, equal to the number of points conjugate to γ(0) in [0, a).

Cor.(11.2.5.11). If γ is minimizing, γ has no conjugate points on (0, a), γ has a conjugate point, it is
not minimizing.
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Prop.(11.2.5.12)[Morse]. If M is complete with non-negative sectional curvature, then π1(M) have
no finite non-trivial cyclic group and πk(M) = 0.

Proof: because universal cover of M is contractible, so the higher homotopy group vanish and
Hk(M) = Hk(π1(M)), so if a subgroup is finite cyclic, its homology is periodic, contradiction. □

Prop.(11.2.5.13)[Preissman].For a compact manifold with K < 0, any nontrivial abelian subgroup
of π1 is infinite cyclic.

Prop.(11.2.5.14). If M is compact and K < 0, π1(M) is not abelian.

Assuming M complete,
• The cut point of p along γ is the maximum γ(t) s.t. d(p, γ(t)) = t. It is either the first conjugate

point of p or the intersection of two minimizing geodesics.
• Conversely, if a point is a conjugate point of p or is intersection of two geodesics of equal length,

then there is a cut point before it. So, if intersection of two minimizing geodesics happens, it
must happen before the occurrence of conjugate point.

• thus the cut point relation is reflexive, and if q ∈ M \ Cm(p), then there exists a unique
minimizing geodesic joining p and q.

• M \ Cm(p) is homeomorphic to an open ball through exp.
• the distance of p to the cut locus is continuous, thus Cm(p) is closed.
• If M is complete and there is a p which has a cut point for every geodesic, then M is compact.
• for q the closest of Cm(p) to p, either there exists a minimizing geodesic and q is conjugate to
p or there is to minimizing geodesic connecting at q.

Prop.(11.2.5.15).The index of a geodesic will decrease when transferred to a manifold of smaller
sectional curvature K.

Prop.(11.2.5.16). In a complete manifold, if there is a sequence of points {pi} converging to a point
p, choose for each point a minimal geodesic, then a subsequence of them will converge to a minimal
geodesic to p.

Proof: The convergence is by smoothness and of exp and Hadamard. The minimality is by com-
paring distance. □

Ricci Curvature

Prop.(11.2.5.17)[Ricci Comparison].Volume comparison, Laplacian Comparison, Mean Curvature
comparison. Cf.[葛健 Week13].

Prop.(11.2.5.18) [Bishop-Gromov].Let M be an open manifold with Ric ≥ H, let M̃(H) be a
complete simply connected manifold of constant sectional curvature H, then

Vol(Br(x)) ≤ Vol(Br(p̃)),
Vol(BR(x))
Vol(Br(x))

≤ Vol(BR(p̃))
Vol(Br(p̃))

.

Cf.[葛健 Week13].
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Prop.(11.2.5.19)[Bonnet-Myer].M a complete manifold of Ricci curvature Ricp(v) ≥ 1
r2 , Then M

is compact and have diameter ≤ πr.
And if the identity is achieved, M ∼= Sn.

Proof: Use Laplacian comparison ∆r ≤ (n− 1) cot r. Cf.[葛健 week13]. □

Cor.(11.2.5.20)[Positive Ricci Finite Fundamental Groups].M is a complete manifold of Ricci
curvature ≥ δ > 0, then the universal cover is compact thus π1(M) is finite. This can be seen as an
obstruction for a compact manifold to have positive Ricci curvature.

Cor.(11.2.5.21)[Calabi-Yau].For an open manifold with non-negative Ricci curvature, for any point,
Vol(B(p, r)) ≥ cpr.

Prop.(11.2.5.22)[Milnor].Let M be an open manifold of non-negative Ricci curvature of dimension
n, then any f.g. subgroup of π1(M) has polynomial growth ≤ n. Milnor conjectured that π1(M) in
fact is f.g..

Prop.(11.2.5.23) [First Betti Number Theorem].There is a number f(n, λ,D), f(n, 0, D) =
n, f(n, λ,D) = 0 for λ > 0 that for a manifold of diameter ≤ D and Ricci curvature ≥ λ, b1(M) ≤
f(n, λ,D).

Cor.(11.2.5.24)[Splitting Theorem].The universal cover of a compact RIemannian manifold with
non-negative Ricci curvature splits isometrically as a product M̃ = N × Rk where N is a compact
manifold manifold.

Scalar Curvature
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11.3 Low Dimensional Topology

1 Morse Theory
Main references are [Supersymmetry and Morse Theory, Witten].

Morse Theory(Milnor)

Def.(11.3.1.1)[Non-Degenerate Critical Point].For a smooth map f : X → R, a critical point is
called a non-degenerate critical point iff the Hessian matrix is non-singular at x.

The notion of non-degenerate critical is independent of the coordinate chosen.

Proof: Cf.[Pollack P42]. □

Prop.(11.3.1.2)[Non-Degenerate Critical General].Non-degenerate critical points are the general
situation in the following sense: For a manifold M ⊂ Rn, for any smooth function f on M , consider
the functions fa = f +

∑
aixi, then for almost all (ai), all critical points of fa is non-degenerate.

Proof: Cf.[Pollack P43] □

Prop.(11.3.1.3)[Morse Lemma]. In a non-degenerate critical point of f , there is a coordinate that

f = f(p) + x2
1 + · · ·+ x2

n−λ − y2
1 − · · · − y2

λ.

Proof: Just extract the first order part out and reform the bilinear form one-by-one. Cf.[Milnor
Morse Theory lemma 2.2]. □

Prop.(11.3.1.4). If f is a smooth function that f−1([a, b]) is compact and have no critical points, then
Ma is a deformation retracts of M b using gradf/|gradf |2.

Prop.(11.3.1.5)[Morse Main Lemma]. If f is a smooth function with p a non-degenerate critical
point and λ downward pointing direction. If for some f−1([c − ϵ, c + ϵ]) is compact, then M c+ϵ is
homotopic to M c−ϵ gluing a λ dimensional cell.

Proof: Cf.[Milnor Prop3.2]. □

Prop.(11.3.1.6).For an embedded manifold and almost all point p, the distance to p is a morse
function. (Use Sard theorem and degenerate ⇐⇒ p is a focal point.

Cor.(11.3.1.7). smooth manifold has CW type; on a compact manifold any vector field with discrete
singular points has its index sum equal to χ(M) (Hopf-Rinow), and there exists one.

Prop.(11.3.1.8). for Ω(p, q)c the path space of energy < c, the piecewise geodesic path space B (piece
fixed), the energy function is smooth and Ba is compact and is the deformation contraction of intΩa

for a < c. E has the same critical point and same index and nullity on B and Ωc. (Just geodesicrize
any path in Ω.

So for two point not conjugate in Ba, Ωa has a finite CW complex type and a λ-dimensional cell
for every geodesic of index λ in Ba.

Prop.(11.3.1.9) [Morse Main Theorem]. If p and q are not conjugate along any geodesic, then
Ω(p, q) has a countable CW complex type and has a λ-cell for every geodesic of index λ.

If M has nonnegative Ricci curvature, then M has only finite cell for every dimension.
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Proof: Cf.[Milnor Morse Theory Prop17.3]. □
Cor.(11.3.1.10).The path space homotopy type only depend on the homotopy type of M (use the
two homotopy to id to get a composition of homotopy of the two path space), so one can get the
information of path space of M by looking at the homotopy type of M .

Prop.(11.3.1.11)[Minimal Geodesics]. If p, q in a complete manifold M has distance
√
d and the

minimal geodesics form a topological manifold, and if all non-minimal geodesic has index ≥ λ, then
for 0 ≤ i < λ, πi(Ω,Ωd) = 0.

Lemma(11.3.1.12). In SU(2m), the minimal geodesic from I to −I is homeomorphic to Grassman-
nian Gm(C2m) and and non-minimal geodesic has index ≥ 2m+ 2.

Similarly, The space of minimal geodesic from I to −I in O(2m) is homeomorphic to the space
of complex structures in R2m, and any non-minimal geodesic has index ≥ 2m− 2.
Proof: Cf.[Milnor Morse Theory Lemma23.1 Lemma24.4]. □

Lemma(11.3.1.13).Ωk+1 is homotopic to the space of minimal geodesics in Ωk from J to −J . (The
same way, calculate the index of geodesics from J to −J and use (11.3.1.11)). Cf.[Milnor Morse
Theory Prop24.5] for definition of Ωk+1.

2 Floer Homology
Def.(11.3.2.1)[Witten Complex].LetM ∈ Diffcpct and f ∈ C(M) is a Morse function, then at each
critical point P of f , the Hessian HP (f) is a non-degenerate quadratic form with signature n+

P , n
−
P .

We define the Witten complex C as follows:
• For 0 ≤ q ≤ dimM,Cq is the free group generated by the critical points with n−

P = q.
• Choose a metric on M , define the flow generated by grad f . Then for critical points P,Q with
n−
P = q, n−

Q = q − 1, the number of trajectories under grad f from P to Q is finite, and this
gives the boundary map coefficients ∂P,Q.

References are [Supersymmetry and Morse Theory, Witten].

Casson Invariants

Def.(11.3.2.2)[Casson Invariants].Let Y be a homological 3-sphere, the Casson invariant λ(Y )
of Y is defined to be the half of the number of isomorphism classes of irreducible representation
π1(Y )→ SU(2).

Prop.(11.3.2.3).For a homological 3-sphere Y , let
• A be the space of SU(2)-connections for the trivial bundle on Y ,
• G be the group of gauge transformations Y → SU(2).
• C = A/G.

Then C is an infinite-dimensional manifold, and the connection map F : A 7→ FA defines a 1-form F
on C.
Proof: □

Prop.(11.3.2.4) [Taubes]. Situation as in(11.3.2.3), the zeros of F , i.e. the set of flat connections,
corresponds to irreducible representations π1(Y ) → SU(2). And we can use Fredholm perturbation
to calculate the number, i.e. 2λ(Y ).

Proof: ? □
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Floer Homology Groups

Remark(11.3.2.5)[Relative Morse Indices].The difficulty to construct Morse theory for Y lies in
the fact that the Hessian of f : C → R/Z at critical points has both Morse indices n+, n− infinite.
The way around is to notice for critical points P,Q, the relative Morse index n−

P,Q = n−
P − n

−
Q is

finite.

Prop.(11.3.2.6)[Floer Homology Theory].Using the flow generated by grad f , we can get construct
a chain complex with (mod 8)-grading, which is a finite complex with the critical points of f as
simplexes. The corresponding homology groups are called the Floer homology of Y , denoted by
HFq(Y ), where q ∈ Z/(8).

Notice reversing the orientation of Y induces an action on HF∗(Y ) corresponding to Poincaré
duality.

Prop.(11.3.2.7) [Floer Homologies and Casson Invariants]. It is clear now that 2λ(M) =∑7
q=0 dimHF (Y ). Thus the Floer homology groups form a refinement of λ(Z).

3 Gauge Theory
4 Donaldson-Floer Theory

Main references are [Geometry of 4-Manifolds, Donaldson, ICM1987].

Prop.(11.3.4.1)[Hodge].For an algebraic surface S/C, the signature b+
2 of the intersection form on

H2(S(C)) satisfies
b+

2 = 1 + 2pg(S).

Def.(11.3.4.2) [Donaldson Invariants].Let Z be an oriented simply-connected differentiable 4-
manifold, let b+

2 , b
−
2 be the signature of the intersection form on H2(Z). Assume b+

2 > 1 is odd,
the Donaldson invariants are a sequence of integral polynomials φk on H2(Z) for k sufficiently
large, and deg(φk) = 4k = 3 b

+
2 +1

2 .?
Thm.(11.3.4.3). If Z = Z1#Z2 is a connected sum with b+

2 (Zi) ̸= 0, then φk(Z) = 0 for all k.

Proof: □

Thm.(11.3.4.4). If Z is an algebraic surface, then for k sufficiently large, φK(Z(C)) ̸= 0. In particular,
Z is essentially indecomposable.

Proof: □

Prop.(11.3.4.5)[Λ-Splitting]. Suppose the intersection form on H2(Z) decomposes as H2(Z) = A1⊕
A2, where A+

i > 0. If φk(Z) ̸= 0 for some k, then by(11.3.4.3), Z cannot be decomposed to a
connected sum Z1#Z2 having intersection form Ai. However, there exists such a decomposition
Z = Z1

⨿
Y Z2 where Y is a homotopy 3-sphere.

Proof: Cf.[Freeman and Taylor, Λ-Splitting 4-Manifolds]. □

Prop.(11.3.4.6).For a Λ-splitting Z = Z1
⨿
Y Z2, the Donaldson invariant polynomials are related to

the Floer homology groups of Y .?
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11.4 Differential Forms in Algebraic Topology(Bott-Tu)
This section is dedicated to the analysis of algebraic geometry, using the tool of differential forms.
Basic references are [Differential Forms in Algebraic Geometry Bott-Tu].

1 Basics
Prop.(11.4.1.1)[Cohomological Generator of Sphere].Let v : x 7→ x/|x| be the outward-pointing
vector field on Rn − {0}, then the differential form

ι(v)(dm) = 1
|x|
∑

xi(−1)i−1dx1 ∧ dx2 ∧ . . . d̂xi ∧ . . . dxn

restricts to a differential form on Sn−1 that is a generator of Hn−1(Sn−1).
Proof: First we calculate d(ι(v)(dm)) = div(v)dm = n−1

|r| dm(11.2.3.27). Consider using Stoke’s
formula: ∫

∂B1
ι(v)(dm)−

∫
∂Bε

ι(v)(dm) =
∫
B(0,1)−B(0,ε)

n− 1
|r|

dm = 0

Leting ε→ 0,
∫
∂Bε

ι(v)(dm) converges to 0 as |ι(v)(dm)| is bounded and V (Bε) converges to 0. And
using the polar coordinate dm = rn−1drdω, the right hand side is just∫

Sn−1

∫ 1

0
(n− 1)rn−2drdω = V (Sn−1).

□
Prop.(11.4.1.2) [Degree Formula]. If f : X → Y is an arbitrary map of two compact oriented
manifolds of dimension k, then for any k-form ω on Y ,∫

X
f∗ω = deg(f)

∫
Y
ω.

Proof: deg is defined in(11.1.4.16). Cf.[Pollack P188]?. □
Prop.(11.4.1.3) [Hopf Invariant].Let n > 1, given a map S2n−1 → Sn, let α be a generator of
Hn)Sn, then f∗α = dω on S2n−1 for some ω. Define the Hopf invariant of f to be H(f) =∫
S2n−1 ω ∧ dω, then:
• The definition of Hopf invariant is independent of ω chosen.
• For odd n, the Hopf invariant is 0.
• Homotopic maps f, g have the same Hopf invariant.

Proof: 1: If dω = dω′, then∫
S2n−1

ω′ ∧ dω′ −
∫
S2n−1

ω ∧ dω =
∫
S2n−1

(ω′ − ω) ∧ dω = ±
∫
S2n−1

d((ω − ω′) ∧ ω) = 0.

2: If n is odd, then ω is of even dimensional, thus ω ∧ dω = 1
2d(ω ∧ ω), so H(f) = 0 by Stokes.

3: If F : S2n−1 × I → Sn is a homotopy of f, g, then F ∗α = dω for some ω on S2n−1 × I. Thus
consider

H(f)−H(g) =
∫
S2n−1

ω1 ∧ dω1 −
∫
S2n−1

ω0 ∧ dω0 =
∫
∂(S2n−1×I)

ω ∧ dω =
∫
S2n−1×I

dω ∧ dω,

But dω ∧ dω = F ∗(α ∧ α), and α ∧ α = 0. □
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11.5 Symplectic Geometry

Cf.[Methods in Classical Mechanics Arnold Chapter8],[⾟⼏何讲义范辉军].

1 Basics

Symplectic Forms

Def.(11.5.1.1).A symplectic form ω is a closed 2-form that is non-degenerate on any point. A
smooth manifold with a symplectic form is called a symplectic manifold. A symplectic manifold
must be even dimensional and orientable.

Prop.(11.5.1.2).A hamiltonian phase flow preserves the symplectic form. gt∗ω = ω.

Proof: by Cartan’s magic formula,

d

dt
(gt)∗ω = LXω = ιX(dω) + d(ιXω) = d(ιXω)

because ω is closed. And by definition, d(ιXω)(η) = ω(JdH, η) = ⟨dH, η⟩, so d(ιXω) = dH, Thus
the theorem. □

For the following Cf.[⾟⼏何讲义范辉军 lecture3].

Prop.(11.5.1.3) [Moser’s Stability]. If ωt is a smooth family of cohomologous forms on a closed
manifold M , then there exists an isotopy Ψt s.t.

Ψ∗
t (ωt) = ω0.

Prop.(11.5.1.4)[Relative Moser Stability]. If M is a closed manifold and S is a compact subman-
ifold, then if two closed 2-form equals on S, then there is an open neighborhood N0, N1 of S and a
diffeomorphism Ψ : N0 → N1 that

Ψ|S = id, Ψ∗ω1 = ω0.

Cor.(11.5.1.5)[Darboux’s Theorem].Every symplectic form ω onM is locally diffeomorphic to the
standard form ω0 on R2n.

Proof: Choose S = pt and uses relative Moser stability. □

Prop.(11.5.1.6).For a compact symplectic manifold M , its even dimensional cohomology groups
doesn’t vanish, because ωk are nontrivial.

Proof: This is because ωn is a volume form on M that never vanish, so it gives M an orientation
and

∫
M ωn ̸= 0. If ωk is exact, then ωn is exact, so

∫
M ωn = 0 by Stokes’, contradiction. □
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11.6 Other Geometries

1 Hyperbolic Geometry
Prop.(11.6.1.1). Isometries of hyperbolic ball are all given by Mobius transformations, because the
distance to three non-colinear point can localize a point. Cf.[双曲⼏何 刘毅].

Def.(11.6.1.2)[Hyperbolic Disk].The hyperbolic disk is a Riemannian manifold homeomorphic
to D endowed with the Poincaré metric or hyperbolic metric

dP s = |dz|
1− |z|2

= σD(z)|dz|.

Prop.(11.6.1.3).The Poincaré metric on D is preserved by Aut(D).

Proof: Cf.[李忠, P26]. □

Prop.(11.6.1.4).For any z1, z2 ∈ D,

dP (z1, z2) = log |1− z1z2|+ |z1 − z2|
|1− z1z2| − |z1 − z2|

.

Proof: Cf.[李忠, P27]. □

2 Metric Geometry

Def.(11.6.2.1)[Hausdorff dimension]. dimH(X).

Def.(11.6.2.2).The Hausdorff distance for two subset Y1, Y2 ∈ X is the

dHX(Y1, Y2) = inf{ε|Y2 ⊂ B(Y1, ε), Y1 ⊂ B(Y2, ε)}.

The Gromov-Hausdorff metric for two metric space is

dGH(X1, X2) = inf{dHZ (i1(X1), i2(X2))}

where i1, i2 are isometry of X1, X2 into a metric space Z.
This metric makes the set of all compact metric space into a complete Hausdorff spaceMET .

Def.(11.6.2.3).A map from X to Y is called a ε-approximation iff B(f(X), ε) = Y and |d(x, y)−
d(f(x), f(y))| ≤ ε.

We have: if there is a ε approximation, then dGH(X,Y ) ≤ 3ε, and if dGH(X,Y ) ≤ ε, there is a
3ε approximation.

Prop.(11.6.2.4).Fix a function N : (0, 1) → N, the space MET (D,N) of complete metric space of
diameter bounded by D and for every ε, there is a ε-net with no more then N(ε) points. Then it is
a compact subspace ofMET .

Proof: We show it is totally bounded and closed. It is totally bounded because the space of discrete
space of no more than N(ε) is compact and it ε approximate MET (D,N) by definition. Thus we
have it is totally bounded. And □
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Prop.(11.6.2.5)[Gromov Compactness Theorem].Denote the space RICD∗,−1(n) of manifold with
Ricci curvature bounded below by −1 and diameter bounded above by D, then it is a precompact
subset ofMET .

Proof: By Bishop-Gromov(11.2.5.18), there is a N(ε) that M can only have N(ε) many balls of
radius ε, because M has bounded diameter (Packing argument). So RICD∗,−1(n) ⊂MET (D, 2N) is
precompact. □

Prop.(11.6.2.6).Any metric space X in the closure of RICD∗,−1(n) has Hausdorff dimension
dimH(X) ≤ n.

Prop.(11.6.2.7)[Gromov]. If a sequence of manifold {Mi} inMD,k
V,−k(n), then they has a limit point

X ∈ MET . Then X is a C∞ manifold and there is a C1,α-metric for every α < 1. And Mi are all
diffeomorphic to X for large X.

In particular, this implies that there are only finitely many diffeomorphic classes.

Prop.(11.6.2.8)[Peterson].MD
∗,v,k(n) has only finitely many homotopy classes.

3 Spectral Geometry
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11.7 Lie Groups
Main references are [Eti21], [Lee13], [Kna96].

1 Basics
Def.(11.7.1.1) [Lie Groups].Let K = R or C, a Lie group is a group object in the category of
smooth K-manifolds. Notice it suffices to check that multiplication is smooth. The left and right
translations Lg, Rg are all smooth morphisms hence diffeomorphisms.

A homomorphism of Lie groups is a smooth morphism that is also a group homomorphism.
By translation invariance, a group homomorphism always has constant ranks, so a homomorphism
of Lie groups that is a bijection is an isomorphism by global rank theorem(11.1.1.12).

The tangent space of G at e is denoted by g.

Proof: We show if a topological group G that is a smooth manifold satisfies m : G × G → G is
smooth, then G is a smooth manifold: consider the map F : G×G→ G×G : (g, h) 7→ (g, gh), it is
a smooth map that is bijective.

The tangent map of F at (g, h) is (X,Y ) 7→ (X, (dRh)g(X) + (dLg)h(Y )), which is surjective
because Lg is a diffeomorphism by(11.1.1.12). Then F−1 : G × G → G × G : (g, h) 7→ (g, g−1h) is
smooth, and g 7→ g−1 is smooth. □

Prop.(11.7.1.2).A connected Lie group is automatically second countable.

Proof: This follows from the fact that a connected Lie group is a manifold hence locally second-
countable and it is a union of products of a nbhd of e(3.11.1.3). □

Prop.(11.7.1.3).Any homomorphism of smooth manifolds has constant rank.

Proof: F being a homomorphism means that F ◦ Lg = LF (g) ◦ F . Taking derivative and noticing
the fact Lg, LF (g) are diffeomorphisms shows dFg0 and dFe have the same rank for any g. □

Prop.(11.7.1.4) [Discrete Subgroups].Any discrete subgroup Γ of a Lie group G is a closed Lie
subgroup of dimension 0.

Proof: Firstly Γ is countable: Let U be a nbhd of e containing no other points, choose another
nbhd of e that V V ⊂ U , then {gV }g∈Γ is a family of disjoint open subsets of G, so there are countably
many because G is second countable. Secondly Γ is closed in G, because

Γ is closed in G: Let U be a nbhd of e containing no other points, choose another nbhd of e that
V V ⊂ U , then {gV }g∈Γ is a family of disjoint open subsets of G each containing an element of Γ.
Then it is clear Γ is closed. Then(11.7.1.22) shows Γ is a closed Lie subgroup of dimension 0. □

Def.(11.7.1.5)[Adjoint Representation].For a Lie groupG, the conjugation map Cg : G→ G : h 7→
ghg−1 is a Lie group homomorphism. Let Ad(g) : g → g denote its derivative, then Ad : g 7→ Ad(g)
is an action of G on g, Bbcause Cg1g2 = Cg1Cg2 , Ad(g1g2) = Ad(g1) Ad(g2).

Prop.(11.7.1.6).Let G be a connected Lie group, and Γ ⊂ G be a discrete normal subgroup. Show
that Γ is in the center of G.

Proof: For γ ∈ Γ, consider the map G → G : g 7→ gγg−1, then it is a map with images in Γ. But
Γ is discrete, so its image must be a single point, which is γ because eγe−1 = γ. This means γ is in
the center of G. □
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Prop.(11.7.1.7)[Aut(g)].Let g be a f.d. Lie algebra, then Aut(g) is a closed Lie subgroup of GL(g),
and its Lie algebra is Der(g). Denote Int(g) = Der(g)0.

Proof: For the Lie algebra, it suffices to show for A ∈ End(g), [etAX, etAY ] = etA[X,Y ] iff
A([X,Y ]) = [A(X), Y ] + [X,A(Y )].

One direction is by taking derivative w.r.t. t, for the other, we can show y1(t) = [etAX, etAY ]
and y2(t) = etA[X,Y ] both satisfy the ordinary differential equation yi(t)′ = Ayi(t). □

Exponential Map

Def.(11.7.1.8)[One-Parameter Subgroup].A one-parameter subgroup of a Lie group G over
K is a Lie group homomorphism K→ G.

Prop.(11.7.1.9).Let X ∈ g, then there exists a unique morphism of Lie groups γ : K → G that
γ′(0) = X.

Proof: If γ is such a group homomorphism, then γ(s+ t) = γ(s)γ(t). Differentiating for s, we get

γ(t)′ = d(Lγ(s))0(X).

Thus γ is an integral curve of the left-invariant vector field on G corresponding to X(11.7.3.3), which
is unique.

Now to construct such a homomorphism, we use ODE theorems to construct a γ satisfying this
for |t| < ε, and then check γ(s+ t) = γ(s)γ(t) because they are both integral curves for t starting at
γ(s). In particular, d(Lγ(t))(X) = d(Rγ(t))(X). Now we can extend this γ to whole of K by defining
γ(2ns) = γ(s)2s , then we check by induction on n that

γ′(t) = 1
2

(d(Rγ( t2 ))γ
′( t

2
) + d(Lγ( t2 ))γ

′( t
2

))(X) = d(Rγ( t2 ))d(Rγ( t2 ))(X) = d(Rγ(t))(X).

□

Cor.(11.7.1.10)[One-Parameter Subgroup and Lie Algebras].Let G be a Lie group, then the
one-parameter subgroups of G correspond to maximal integral curves of left invariant vector fields
starting at e. In particular, the one-parameter subgroups of G corresponds to g and also Te(G).

Also, the flow of the right-invariant vector field RX is given by (g, t) 7→ exp(tX)g, and the flow
of the left-invariant vector field LX is given by (g, t) 7→ g exp(tX).

Def.(11.7.1.11)[Exponential Map].Let G be a Lie group with Lie algebra g, then we can define an
exponential map exp : g→ G that for any X ∈ g, exp(X) = γX(1), where γX is the one-parameter
subgroup of G generated by X(11.7.1.10). It can be shown that γ(sX) is the one-parameter subgroup
of G generated by X.

Prop.(11.7.1.12)[Properties of Exponential Map].
1. exp : g→ G is a smooth map which is a local diffeomorphism near 0 that exp(0) = e, exp∗ = idg.
2. exp(s+ t) = exp(s) exp(t) for s, t ∈ K.
3. For any group homomorphism φ : G→ H and X ∈ g, φ(exp(X)) = exp(φ∗(X)).
4. g exp(tX)g−1 = exp(Ad(g)X). Also, Ad∗ = ad, or equivalently by item3, Ad(exp(X)) =

exp(ad(x)) as operators.
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5. If we identify gln(K) with GLn(K), then we can check directly that the exponential map of
GLn(K) is

exp(A) =
∞∑
k=0

1
k!
Ak.

Proof: 1: The smoothness follows from the smoothness of the solution of ODE. The smooth inverse
theorem shows it is a local diffeomorphism at identity.

2: trivial.
3: Both φ(exp(tX)) and exp(tφ∗(X)) are integral curves of the vector field Lφ∗(X) and have the

same initial point.
4: The first assertion is just item3 applied to the conjugate action Cg. For the Lie algebra

homomorphism,
d(Ad)(X)Y = ∂

∂s

∂

∂t
exp(sX) exp(tY ) exp(−sX) = [X,Y ]

by(11.7.1.14). □

Prop.(11.7.1.13).Let G be a Lie group with Lie algebra g, and g = A ⊕ B a decomposition as
subspaces, then the map

F : A⊕B → G : (X,Y ) 7→ exp(X) exp(Y )

is a local diffeomorphism at 0 ∈ g.

Proof: Identify g and the tangent space of G at e, then the differential F is identity, so it is a local
diffeomorphism. □

Prop.(11.7.1.14)[Baker-Campbell-Hausdorff].Let G be a Lie group with Lie algebra g, X,Y ∈ g,
then

exp(tX) exp(tY ) = exp(
∞∑
n=1

tn

n!
µn(X,Y )).

where µn(X,Y ) can be written as Q-Lie polynomials of X and Y that is invariant of G.
In particular, µ1(X,Y ) = X + Y , µ2(X,Y ) = 1

2 t
3([X, [X,Y ]] + [Y, [Y,X]]) and so on.

Proof: By the Lie correspondence(11.7.3.15), we can first assume that G is simply-connected, then
there is a mapping of G onto some subgroup of GL(n,K) with discrete kernel. If we can prove the
formula for G = GL(n,K), then exp(

∑∞
n=1

tn

n!µn(X,Y )) exp(tY )−1 exp(tX)−1 is contained the kernel,
but it is a smooth function in t, and its value is 1 for t = 0, thus it holds for any t.

Now let TK2 = K⟨x, y⟩ be the free non-commutative algebra in variables x, y, the series exp(x) =∑∞
n=0

xn

n! can be viewed as an element in K̂⟨x, y⟩. Then we can define

µ = log(exp(x) exp(y)) ∈ K̂⟨x, y⟩,

where log(A) = −
∑∞
n=1

(1−A)n
n! . Then µ =

∑∞
n=1

µn
n! , where µ ∈ K⟨x, y⟩ are polynomials in x, y of

degree n with coefficients in Q.
Then it remains to show that µn can be written as Lie polynomials in x, y. Notice ∆(x) = x ⊗

1+1⊗x, thus ∆(exp(x)) = exp(x)⊗ exp(x), thus ∆(exp(x) exp(y)) = exp(x) exp(y)⊗ exp(x) exp(y),
and

∆(log(exp(x) exp(y))) = log(∆(exp(x) exp(y))) = log((exp(x) exp(y)⊗ 1)(1⊗ exp(x) exp(y)))
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= log(exp(x) exp(y))⊗ 1 + 1⊗ log(exp(x) exp(y)).

then by separating degrees, each µn is primitive(2.9.1.3), thus they are contained in the free Lie-
algebra generated by x, y, by(2.5.8.15) and(2.5.8.18).

The calculation is invariant of n in GL(n,R), thus it is invariant of G. □

Cor.(11.7.1.15).Let G be a Lie group with Lie algebra g, X,Y ∈ g, then

lim
n→∞

(exp( 1
n
X) exp( 1

n
Y ))n = exp(X + Y ).

Proof:
(exp( 1

n
X) exp( 1

n
Y ))n = (exp( 1

n
(X + Y ) +O( 1

n2 )))n = exp(X + Y +O( 1
n

)).

Taking n→∞, we get the desired result. □

Prop.(11.7.1.16).Let K = R or C and H,G be Lie groups over K, then
• A continuous homomorphism γ : K→ H is smooth.
• A continuous homomorphism between smooth Lie groups F : G→ H is smooth.
• There is at most one smooth structure on a Lie gx1x10nianshao x1x10roup G that makes it a

Lie group group.

Proof: 1: Let V be a nbhd of 0 ∈ h that exp is a diffeomorphism on 2V (11.7.1.12). Choose t0
small that γ(t) ∈ exp(V ) for any |t| ≤ t0, and let X ∈ V that exp(X) = γ(t0), then we can show
γ(t) = exp(tX) for any t = m

2n , so this holds for any t by continuity/analyticity, and γ is smooth.
2: By the proof of 1, we can construct a map(not necessary continuous) F∗ : g → h with

commutative diagram
g h

G H

F∗

exp exp
F

. Now using(11.7.1.15) and the continuity of F , we can show F∗

is linear:

exp(F∗(X + Y )) = F (exp(X + Y )) = F ( lim
n→∞

exp( 1
n
X) exp( 1

n
Y ))n]

= lim
n→∞

(exp( 1
n
F∗X) exp( 1

n
F∗Y ))n = exp(F∗(X + Y ))

Thus F is smooth at a nbhd of G, and smooth everywhere by translation. □

Group Aspects

Def.(11.7.1.17) [Lie Subgroup].A Lie subgroup of a Lie group G is a subgroup that is also an
immersed submanifold(11.1.1.14).

An embedded Lie subgroup of a Lie group G is a subgroup that is also an immerse submani-
fold(11.1.1.14).

Prop.(11.7.1.18) [Lie subgroup is Weakly Embedded].Any Lie subgroup of a Lie group G is
weakly embedded.

Proof: Cf.[Lee13]P506. □
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Lemma(11.7.1.19).Let G be a Lie group and H a subgroup that is also an embedded submanifold,
then H is an embedded Lie subgroup.

Proof: We need to show the multiplication and inverse on H is smooth: H × H → G is smooth
and has image in H, thus H ×H → H is also smooth, by(11.1.1.22). □

Lemma(11.7.1.20).LetG be a Lie group andH ⊂ G a Lie subgroup, ifH is an embedded submanifold
of G, then H is closed in G.

Proof: Assume H is an embedded submanifold of G, then it is locally compact in the induced
topology, so(10.11.1.7) shows H is closed in G. □

Lemma(11.7.1.21).Let G be a Lie group and H a subgroup of G that is also a closed subset of G,
then H is an embedded Lie subgroup.

Proof: By(11.7.1.20), it suffices to show that H is an embedded submanifold of G. Let g be the
Lie algebra of G, and define a subspace h ⊂ g that h = {X ∈ g| exp(tX) ∈ H, ∀t ∈ R}. By(11.7.1.15)
and the fact H is closed in G, h is a linear subspace of g.

Next we show that there exists a nbhd U of 0 ∈ g that exp is a diffeomorphism and also exp(U ∩
h) = exp(U) ∩H: Let U be any open nbhd of 0 ∈ g that exp is a diffeomorphism U → exp(U), then
exp(U ∩ h) ⊂ exp(U) ∩H by definition.

Let b ⊂ g be chosen s.t. h ⊕ b = h, then F : h ⊕ b → G : (X,Y ) 7→ exp(X) exp(Y ) is a
local diffeomorphism. Choose nbhd U of 0 ∈ g and Ũ of 0 ∈ h ⊕ b that both exp |U and F |

Ũ
are diffeomorphisms, and choose a countable nbhd basis {Ui} of 0 ∈ g. Denote Vi = exp(Ui) and
Ũi = F−1(Vi), then Vi is a nbhd basis of e ∈ G and Ũi is a nbhd basis of 0 ∈ h⊕ b. We may assume
Ui ⊂ U and Ũi ⊂ Ũ .

If exp(Ui∩h) ⊂ exp(Ui)∩H for any i, then we can choose hi = exp(Zi) ∈ H that hi /∈ exp(Ui∩h).
Because exp(Ui) = F (Ũi), set hi = exp(Xi) exp(Yi), where (Xi, Yi) ∈ Ũi. Now Yi ̸= 0, otherwise
exp(Zi) = exp(Xi), which implies Zi = Xi and h ∈ exp(Ui ∩ h). Notice exp(Yi) = exp(Xi)−1hi ∈ H.

Because Ũi is a basis of h⊕b, Yi → 0, Choose an inner product on b, and let ci = |Yi|, then c−1
i Yi

lies on the unit sphere of b. Replacing by a subsequence, we can assume c−1
i Yi → Y for some Y ∈ b.

Then |Y | = 1 by continuity.
For any t ∈ R, let ni = [ tci ], then |nci − t| ≤ ci → 0, which means niYi → tY , so exp(niYi) →

exp(tY ). But exp(niYi) = exp(Yi)ni ∈ H, so exp(tY ) ∈ H because H is closed. Thus Y ∈ h,
contradiction.

Thus in this way we can construct a slice chart φ of H at e, and for any h ∈ H, because

Lh((exp(U) ∩H)) = Lh(exp(U)) ∩H,

φ ◦ Lh−1 is a slice chart of H at h. Thus H is an embedded submanifold of G by(11.1.1.17). □

Prop.(11.7.1.22)[Closed Subgroup Theorem].Let G be a Lie group and H a subgroup of G, then
the following are equivalent:

• H is closed in G.
• H is an embedded submanifold.
• H is an embedded Lie subgroup.

Proof: 3→ 2 is trivial, 3→ 1 is(11.7.1.20). 1→ 3 is(11.7.1.21), 2→ 3 is(11.7.1.19). □

Remark(11.7.1.23).The dense line of the torus is a Lie subgroup that is not a closed Lie subgroup.
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Lemma(11.7.1.24) [One-Parameter subgroup of Subgroups].Let H ⊂ G be a Lie subgroup,
then the one-parameter subgroups of H are exactly those of G with initial velocity in Te(H).

Proof: This is because a one-parameter subgroup of H is naturally a one-parameter subgroup of
G, and two one-parameter subgroups with the same initial velocity is identical. □

Prop.(11.7.1.25).Let H ⊂ G be a Lie subgroup, then the exponential map of H is the exponential
map of G restricted to h, and

h = {X ∈ g| exp(tX) ∈ H, ∀t ∈ R}.

Proof: The first assertion is an immediate corollary of(11.7.1.24). Now if X ∈ h, then the first
assertion shows exp(tX) ∈ H for all t. Conversely, if exp(tX) ∈ H for all t, then exp(tX) is a smooth
map to H, by(11.7.1.18), thus its derivative at e is in h, which means X ∈ H. □

Prop.(11.7.1.26)[Semidirect Product].Let G acts via τ on H, then the Lie algebra of G⋉τ H is
g⋉dτ h.

Proof: Notice the differential of the action τ(g) on H defines a map G → GL(h), and then the
differential of this map gives a map dτ : g→ Der(h), so we can form g⋉dτ h(2.5.1.6).

For the rest, Cf.[Knapp, P60]. □

Prop.(11.7.1.27).Let G,H be simply-connected Lie groups with Lie algebra g, h, and let π : g →
Der(h) be a Lie algebra homomorphism, then there is an action τ of G on H by automorphisms that
dτ = π, and G⋉τ H is a simply-connected Lie group with Lie algebra g⋉π h.

Proof: Cf.[Knapp, P60]. □

Prop.(11.7.1.28) [Quotient Theorem for Lie Groups].Let G be a Lie group and H a normal
closed Lie subgroup, then the quotient G/H is a Lie group, and the quotient map π is a surjective
Lie group homomorphism with kernel H.

Proof: By(11.7.2.6), G/H is a smooth manifold that the quotient map is surjective, smooth, and
is a group homomorphism with kernel H. It suffices to show the multiplication of G/H is smooth,
which is easy by(11.1.1.8). □

Prop.(11.7.1.29)[First Isomorphism Theorem for Lie Groups].Let φ : G→ H be a Lie group
homomorphism, then there kernel of F is an closed Lie subgroup of G with Lie algebra ker(φ∗). The
image of φ has a unique smooth structure making it a Lie subgroup of H that G/ ker(F ) → Im(φ)
is a diffeomorphism, and it is a closed Lie subgroup when it is embedded in H, e.g. when φ induces
a proper action(11.7.2.3).

Proof: This follows from(11.7.2.2) and(11.7.1.22). □

Def.(11.7.1.30)[Adjoint Group].For a Lie group G, the center Z(G) of G is a closed Lie subgroup
because it the kernel of Ad(11.7.1.29). We call the group G/Z(G) the adjoint group of G, which is
an immersed subgroup of GL(g) by(11.7.1.29).



1160 CHAPTER 11. DIFFERENTIAL GEOMETRY

Lie Groups and Analytic Groups

Prop.(11.7.1.31).What condition makes a Lie group a complex Lie group?
Prop.(11.7.1.32).Any connected Lie group has a compact subgroup as deformation retraction.

Proof: □

Prop.(11.7.1.33)[Gleason; Montgomery-Zippin].A real topological group G admits a (unique)
Lie group structure iff the underlying topological space G is a topological manifold.

Proof: Cf.https://terrytao.wordpress.com/2011/06/17/hilberts-fifth-problem-and-gleason-metrics/.
□

Prop.(11.7.1.34) [Lie Groups and Analytic Groups].A real Lie group admits a unique real
analytic structure, So it is not important to distinguish between a Lie group and an analytic Lie group,
and call it analytic group if it is a connected Lie group. The uniqueness follows from(11.7.1.16).

Proof: Use(11.7.1.14) to show that in a local exp char (U,φ) of 1, U × U → U is analytic, then
we can choose an analytic atlas on G given by {(gU, φ ◦Lg−1). This is an analytic atlas, because the
transition function is φLg−1hφ

−1 on U ∩ h−1gU . Because hU ∩ gU ̸= ∅, let x = hu1 = gu2, then
Lg−1h = Lu2u

−1
1
, which is analytic.

To show multiplication is analytic w.r.t. this atlas: ? □

Cor.(11.7.1.35).The proof above can be used to show that any Ck-group manifold be upgraded
uniquely to a Lie group structure. So basically the study of C0-Group manifold and analytic groups
are the same.

2 Homogeneous Spaces

Actions of Lie Groups

Prop.(11.7.2.1)[Fundamental Theorem on Lie Group Actions].Let θ be a right smooth action
of a Lie group G on a smooth manifoldM , then we can define a complete Lie algebra homomorphism

θ̃ : g→ X(M) : θ(X)p = d

dt
|t=0p · exp(tX) = d(θ(p))e(Xe),

called the infinitesimal generator of θ. where a Lie homomorphism θ̃ : g → X(M) is called
complete iff for any X ∈ g, θ̃(X) is a complete vector field(11.1.5.3).

Conversely, if G is simply-connected and θ̃ : g→ X(M) is a complete Lie algebra homomorphism,
then there exists a unique smooth right action θ of G on M with infinitesimal generator θ̃.

Proof: θ(X) is smooth because it is the infinitesimal generator of the smooth flow R×M → M :
(t, p) 7→ p exp(tX)(11.1.5.4). θ̃ is a Lie algebra homomorphism by(11.1.2.13).? □

Prop.(11.7.2.2) [Isotropy Group and Orbits].Let θ be an action of G on a manifold M , let
θ̃x : g→ TxM be given by θ̃x(X) = θ̃(X)x. Then

• The stabilizer Gx is a closed subgroup of G with Lie subalgebra gx = ker(θ̃x).
• Gx has a unique smooth structure making it an immersed subgroup of M that G/Gx → Gx is

a diffeomorphism, and Tx(Gx) ∼= Im(θ̃x) ∼= g/gx.

https://terrytao.wordpress.com/2011/06/17/hilberts-fifth-problem-and-gleason-metrics/
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Proof: Cf.[Eti21]P48. □

Prop.(11.7.2.3). If a Lie group G acts properly on a manifold M , then each orbit is a closed subman-
ifold of M , and each isotropy group is compact, by(3.11.1.15) and(3.11.1.17).

Prop.(11.7.2.4) [Quotient Map Theorem].Let G be a Lie group that acts smoothly, freely and
properly on a manifold M , then the quotient space M/G is a topological manifold with dimension
dimM − dimG, and it has a unique smooth structure that M →M/G is a smooth submersion.

Proof: Cf.[Lee13]P544. □

Homogeneous Spaces and Fiber Bundles

Def.(11.7.2.5)[Homogeneous Spaces].Let G be a Lie group, then a homogeneous space for G
is a smooth manifold M with a smooth transitive G-action.

Prop.(11.7.2.6)[Characterizing Homogeneous Spaces].Let G be a Lie group.
• if H is a closed subgroup of G, then the left coset space G/H is a topological manifold of

dimension dimG−dimH, and has a unique smooth structure that the quotient map G→ G/H
is a smooth submersion. With this smooth structure, the left action of G on G/H turns it into
a homogeneous space.

• If M is a homogeneous G-space, and p ∈ M , then the isotropy group Gp of M is a closed
subgroup of G, and G/Gp →M is a diffeomorphism of G-spaces.

Proof: Cf.[Lee13]P551, P552. □

Cor.(11.7.2.7) [Homogeneous Space Structure on Sets]. Suppose X is a set with a transitive
action of a Lie group G that for some point p ∈ X, the isotropy group Gp is closed in G. Then X
has a unique smooth manifold structure with respect to which the given action is smooth. With this
structure, dimX = dimG− dimGp.

Proof: This is because G/Gp is a smooth manifold that is G-equivariantly isomorphism to X, and
the uniqueness also follows from the proposition. □

Prop.(11.7.2.8)[Quotients of Lie Groups by Discrete Subgroups].Let G be a Lie group and
Γ a discrete subgroup of G, then G/Γ is a smooth manifold, and the quotient map G → G/Γ is a
smooth normal covering.

Proof: (11.7.1.4) and the proof of(11.7.2.6) shows Γ acts smoothly, freely, and properly on G on
the right. Then the theorem is a consequence of(11.1.1.10). □

Prop.(11.7.2.9)[Contractible Homogeneous Space]. If X is a homogeneous G-manifold that is
contractible, x ∈ X, then G is diffeomorphic to Gx ×X.

Proof: □

Prop.(11.7.2.10) [Orientability of Homogenous Spaces].Let G be a Lie group and X be a
homogeneous manifold of G. Let x ∈ X and H = StabG(x).

1. X is orientable iff values of Ad(hi) are of the same sign for any two element h1, h2 ∈ H lying
in a same connected component of G.

2. Show that when H is connected, X is orientable.
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3. There exist a G-invariant volume form on X iff Ad(H) ⊂ SL(g/h).

Prop.(11.7.2.11)[Fiber Bundle of Homogenous Spaces].Let G ∈ LieGrpcpct, K ≤ H ≤ G be
closed subgroups, then the map G/K → G/H is a G- locally trivial fiber bundle.

Proof: ? □

Prop.(11.7.2.12)[Examples of Homogeneous Spaces].Let K = R or C.
• The Grassmannian manifold Gra(k,Kn) is defined to be the set of k-dimensional spaces in

Kn. U(n,K) acts transitively on Gra(k,Kn), and the stabilizer is U(k,K)×U(n−k,K). Thus
Gra(k,Kn) is a homogeneous U(n,K)-space by(11.7.2.7), and U(n,K)→ Gra(k,Kn) is a fiber
bundle with fiber U(k,K)× U(n− k,K) by(11.7.2.11).

• The Stiefel manifold Vk(Kn) of orthonormal k-frames in Kn is defined to be the set of
tuples (v1, . . . , vn) in Kn that (vi, vj) = δij . U(n,K) acts transitively on Vk(Kn) with stabilizer
U(n−k,K), Thus Vk(Kn) is a homogeneous U(n,K)-space by(11.7.2.7), and U(n,K)→ Vk(Kn)
is a fiber bundle with fiber U(n− k,K), and Vk(Kn)→ Gra(k,Kn) is a fiber bundle with fiber
U(k,K).

• The flag Variety.

Proof: 1: Let dimX = n. X is orientable iff there is a non-vanishing n-form on X. Because
ox : G → X is submersive, choose n left invariant vector fields X1, . . . , Xn that (dox)e(vi) generate
Tx(X), then by homogeneity, (dox)g(Xig) generate Tgx(X) for any g ∈ G. Thus X is orientable iff
there is a n-form ω on G that satisfies r∗

hω = ω, ωg = ∆(g)l∗g−1ωe for some ∆(g) ∈ R∗, and for any
h ∈ H, and ω(X1, . . . , Xn) ̸= 0.

If such a form exists, then ∆(gh)l∗(gh)−1ωe = r∗
hl

∗
g−1ωe, which is equivalent to ∆(g) Ad(h)∗ωe =

∆(gh)ωe for any h ∈ H, thus values of Ad(hi) are of the same sign for any two element h1, h2 ∈ H
lying in a same connected component of G.

Conversely, if values of Ad(hi) are of the same sign for any two element h1, h2 ∈ H lying in a
same connected component of G, then we can define ω as above, where ∆(h) = det(Ad(h)|(g/h)),
and extend ∆ to G that satisfy ∆(gh) = ∆(g)∆(h). This can be because G is a fiber bundle over
G/H.

2: When H is connected, clearly the values of Ad(H) are of the same sign.
3: The proof is the same as that of item1. In this case, all ∆(g) = 1, thus the existence of

G-invariant volume form on X is equivalent to Ad(H) ⊂ SL(g/h). □

3 Lie Theory

Lie Algebras of Lie Groups

Def.(11.7.3.1)[Invariant Vector Fields].Let G be a Lie group, then a smooth vector field X on G
is called left-invariant if d(Lg)g′(Xg′) = Xgg′ for any g, g′ ∈ G. The set of left-invariant vector fields
on G is denoted by Lie(G).

Prop.(11.7.3.2). If X.Y are left-invariant vector fields over G, then [X,Y ] is also left-invariant,
by(11.1.2.13).

Prop.(11.7.3.3)[Invariant Vector Fields and Tangent Spaces].Let G be a Lie group, then the
evaluation map Lie(G)→ g : X 7→ Xe is a vector space isomorphism.
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Proof: The inverse map is given by X 7→ (LX)g = d(Lg)e(X). This is clearly a left-invariant vector
field. It suffices to show that this X̃ is smooth. By(11.1.2.10), it suffices to show LX(f) is smooth
for any smooth function f .

LX(f)(g) = d(Lg)e(X)(f)(g) = X(Lgf)(0) = d

dt
|0f(g exp(tX))

which is a differential of a smooth map R×G→ GL : (t, g) 7→ f(g exp(tX)), so it is smooth in g. □

Cor.(11.7.3.4)[Lie Group is Parallelizable].Every Lie group admits a left-invariant smooth global
frame, thus any Lie group is parallelizable.

Prop.(11.7.3.5). If X ∈ g corresponds to a left-invariant vector field LX , then for any g ∈ G,

d(Rg)p((LX)p) = (LAd(g−1)X)pg.

Proof:

d(Rg)p((LX)p)(f)(pg) = (LX)p(Rgf) = d(Lp)e(X)(Rgf)

= X(LpRg(f)) = d

dt
|0f(p exp(tX)g)

= d

dt
|0f(p exp(tAd(g−1)X)) = (Ad(g−1X)(Lp(f))

= (LAd(g−1)X)pg(f)(pg)

□

Def.(11.7.3.6)[Lie Algebra of a Lie Group]. If G is a Lie group, Lie(G) is a Lie algebra w.r.t. the
Lie bracket(11.1.2.12). It is called the Lie algebra associated to G.

Proof: This is clear from the definition [X,Y ](f) = XY (f)− Y X(f). □

Prop.(11.7.3.7) [Induced Map of Lie Algebras].A homomorphism F : G → H of Lie groups
induces a morphism of their Lie algebras via the tangent space.

Proof: For any X ∈ Lie(G), define F∗(X)g = (dLg)e(dFe(Xe)), then this is a left-invariant vector
field, and it clearly corresponds to the tangent map via isomorphism in(11.7.3.3). This map is a Lie
algebra map by a variant of(11.1.2.13). □

Cor.(11.7.3.8). If H ⊂ G is a Lie subgroup, then there is a natural isomorphism

h ∼= {X ∈ Lie(G)|Xe ∈ TeH}.

In particular, the tangent space h of H is a Lie subalgebra of g.

Proof: There is a commutative diagram

Lie(H) h

Lie(G) g

X 7→Xe

ι∗ (ι∗)e

X 7→Xe

. □

Prop.(11.7.3.9)[Covering of Lie Groups].Let F : G → H be a homomorphism of connected Lie
groups, then the following are equivalent:
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• F is surjective with discrete kernel.
• F is a smooth covering map.
• F is a local diffeomorphism.
• The induced homomorphism F∗ : g→ h is an isomorphism.

Proof: 1→ 2: F is surjective thus H is a homogeneous G-space, so(11.7.2.6) shows H ∼= G/ ker(F ).
And G→ G/ ker(F ) is a smooth covering map by(11.7.2.8).

2→ 3 is trivial.
3 → 1: If F is a local diffeomorphism, then ker(F ) is discrete, and F is open. Thus F (G) is an

open subgroup of H, thus all of H because H is connected(3.11.1.3).
3→ 4 is trivial. 4→ 3 is by inverse function theorem. □

Cor.(11.7.3.10)[Homomorphism with Discrete Kernel].Let G→ H be a homomorphism of Lie
groups of the same dimension with discrete kernel and H connected, then it is a covering space map,
and the kernel is in the center of G, by(11.7.1.6).

Proof: This homomorphism is locally injective at 1, so it has rank dimG = dimH, so it is local
diffeomorphism. In particular, the image contains a nbhd of 1 inH, thus it contains allH by(3.11.1.3).
□

Prop.(11.7.3.11)[Universal Covering Lie Group]. If G is a connected Lie group, then its universal
covering space G̃ can be given a Lie group structure that the covering map is a group homomorphism.
Moreover, the group structure is unique up to isomorphism over G. Moreover, the kernel of G̃→ G
is a discrete central subgroup of G̃.

Proof: Because G̃ is simply connected, so does G̃ × G̃, let ẽ be an element over e, we can lift the
map G̃× G̃→ G×G m−→ G to a map m̃ : G̃× G̃→ G̃ that m̃(ẽ, ẽ) = ẽ. Similar we can lift an inverse
map ĩ that ĩ(ẽ) = ẽ. These maps are smooth because π : G̃→ G is a local diffeomorphism.

It’s left to show that (m̃, ĩ) makes G̃ into a Lie group: For example, the map Lẽ : G̃ → G̃ is a
lift of idG and it coincides with id

G̃
on a point ẽ, thus it is just id

G̃
, which means ẽ is a left identity.

The rest is easy.
For the uniqueness: By the universal property of covering, if there are two coverings, we can lift

it to a map connecting them that maps identity to identity, then show it is a group homomorphism.
The last assertion follows from(11.7.3.10). □

Prop.(11.7.3.12) [Lie Subalgebras and Subgroups].For a Lie group G, for any lie subalgebra
h ⊂ g, there exists uniquely a connected Lie subgroup H s.t. h is the lie algebra of H.

Proof: By (11.1.3.1), there is a maximal connected manifold H corresponding to h, we only need
to show that it is a group. But the left invariance of h shows that HH ⊂ H because H is maximal.
Cf.[Lee13]P506.? □

Cor.(11.7.3.13). If G1 is a simply connected Lie group and G2 is a connected Lie group, then any Lie
algebra homomorphism h̃ : g1 → g2 can be lifted to a unique Lie group homomorphism.

Proof: Consider the image of h̃ : Γ(h̃) ⊂ g1×g2, which is a Lie subalgebra. First notice a Lie group
homomorphism h is equivalent to a Lie subgroup Gh of G1×G2 that π1|Gh is a diffeomorphism onto
G1. And this Lie homomorphism induces the desired Lie algebra homomorphism iff the Lie algebra
of Gh is just h̃.
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(11.7.3.12) shows that there exists a unique Lie group G in G1 × G2 with Lie subalgebra Γ(h̃).
The projection π1|G is a diffeomorphism onto G1, because the tangent map at e is an isomorphism,
thus a local diffeomorphism and by(11.7.3.10) a covering map, so it must be an isomorphism because
G1 is simply connected and G is connected. □

Cor.(11.7.3.14)[Representations of Simply-Connected Lie Groups].The category of represen-
tations of s simply-connected Lie groups is equivalent to the category of representations of its Lie
algebra.

Thm.(11.7.3.15)[The Lie Correspondence].
• The category of finite dimensional Lie algebras is equivalent to the category of simply connected

Lie groups.
• For a f.d. Lie algebra g, the connected Lie groups with Lie algebras isomorphic to g corresponds

to G/Γ, where G is a simply connected subgroup with Lie algebra g, and Γ is a discrete central
subgroup of G.

Proof: 1: By(11.7.3.12)(11.7.3.13) together with Ado’s theorem??.
2: (11.7.3.11) and(11.7.3.9) shows any Lie group is a quotient of its universal covering Lie group

by a discrete central subgroup. Conversely, for any discrete central subgroup, G/Γ is a Lie subgroup
and π : G → G/Γ is a homomorphism with kernel Γ by(11.7.1.4) and(11.7.1.28), thus Lie(G) =
Lie(G/Γ) ∼= g(11.7.1.28). □

Prop.(11.7.3.16) [Ideals and Normal Subgroups].Let G be a connected Lie group and H a
connected Lie subgroup, then H is a normal subgroup of G iff h is an ideal of g.
Proof: Because G,H are both connected, (3.11.1.3) showsH is normal in G iff for anyX ∈ g, Y ∈ h,
exp(X) exp(Y ) exp(X)−1 ∈ H. Taking derivative w.r.t. Y , this is equivalent to d(Ad(exp(X)))(Y ) =
ad(X)Y ∈ h(11.7.1.12), by(11.7.1.25), which is equivalent to h being an ideal of g. □

Prop.(11.7.3.17)[Center].Let G be a connected subgroup with Lie algebra g and Z the center of G,
z the center of g, then Z is a closed Lie subgroup of G with Lie algebra z.
Proof: Because G is connected, g ∈ Z iff g commutes with all exp(tX), X ∈ g. Thus Z = ker Ad.
Now the assertion follows from(11.7.1.29). □

Prop.(11.7.3.18)[Chevalley’s Theorem].Let G be a complex connected Lie group and g the Lie
algebra of G, h the Cartan subalgebra of g, and W the Weyl group, then the restriction of functions
induces a graded algebra isomorphism

C[g]G ∼= C[h]W .

Proof: ? □

Classifications

Prop.(11.7.3.19)[Simply-Connected Compact Lie Groups].Any simply connected compact Lie
groups is a product of the following types:

• Spin(n) for n ≥ 3.
• SU(2) for n ≥ 2.
• Sp(n) for n ≥ 1.
• E6, E7, E8, F4, G2.

Proof: ? □



1166 CHAPTER 11. DIFFERENTIAL GEOMETRY

4 Classical Groups
In this subsection, Archimedean points of classical groups(8.3.5.1) are studied.
For more classical groups, Cf.[Classical Groups Baker].

Def.(11.7.4.1)[Examples of Classical Groups].Let K be either R,C,
• For any associative algebra K over a field, the general linear group GL(n,K) is the subgroup

of Mn(K) consisting of invertible matrices.
• The unitary group U(n) is the subgroup of GLn(C) consisting of matrices fixing a non-

degenerate Hermitian form.
• The special unitary group SU(n) = U(n) ∩ SLn(C).
• The pseudo-unitary groups U(p, q,K): If K = R, it is the subgroup of GL(n,R) consisting

of matrices preserving a bilinear form of signature (p, q). If K = C, it is the subgroup of
GL(n,C) consisting of matrices preserving a Hermitian form of signature (p, q). If K = H, it
is the subgroup of GL(n,H) consisting of matrices preserving a non-degenerate quoternionic
Hermitian form of signature (p, q)(2.3.11.7).

• The quoternionic orthogonal group O∗(2n) is the subgroup of GL(n,H) consisting of ma-
trices preserving a non-degenerate quoternionic skew-Hermitian form(2.3.11.7). SO∗(2n) is the
subgroup of O∗(2n) consisting of elements of determinant 1.

• PU(n) is the quotient group of SU(n)(or U(n)) by scalar matrices.

Proof: GLn(K) has a natural smooth structure as an open subset of Kn2 , and the multiplication
map is clearly smooth, so it is a Lie group by(11.7.1.1). The other groups are closed subgroups of
GLn(K), so they have unique smooth manifold structure making them Lie subgroups of GLn(K),
by(11.7.1.22)(11.7.1.16). Finally the quotient group by normal closed subgroups have natural Lie
group structure by(11.7.1.28). □

Prop.(11.7.4.2)[Classification of Transformations].Let α ∈ SL(2,R) and α ̸= I, then by Jordan
decomposition, α is conjugate to a matrix of one the two following types:[

λ 1
λ

]
,

[
λ

µ

]
, λ ̸= µ

according as it has repeated eigenvalues or distinct eigenvalues. In the first case, α is called
parabolic, and in the second case, if |λ/µ| = 1, it is called elliptic, If λ/µ is real and positive,
it is called parabolic, and called loxodromic otherwise.

• If α ∈ SL2(R) is parabolic, then it has a unique real eigenvector, which means it has a unique
fixed point in R ∪∞.

• If α ∈ SL2(R) is elliptic, then α has two conjugate eigenvectors, which means it has exactly
one fixed point z in H, and a second fixed point, namely z, in the lower half plane.

• If α ∈ SL2(R) is hyperbolic, then it has two real eigenvectors, which means it has two distinct
fixed points in R ∪∞.

Prop.(11.7.4.3)[Iwasawa-Decomposition].Any element of GL(2,R)+ has a unique representation
of the form(11.7.6.4):

g =
[
u

u

] [
y1/2 xy−1/2

y−1/2

]
kθ



11.7. LIE GROUPS 1167

where kθ =
[

cos θ sin θ
− sin θ cos θ

]
. So by(10.11.1.39) and(10.11.1.19) the Haar measure is calculated to be

dg = 1
2π

du
u

dxdy
y2 dθ, and it is unimodular by(10.11.1.22). (Notice the upper triangular matrix group

B ⊂ GL(2,R)+ is not unimodular).
Proof: For the calculation of Haar measure, notice that it suffices to calculate for u, x, y and it is

d(uy1/2)d(uy−1/2)d(uxy−1/2)
(uy1/2)2uy−1/2 = dxd(uy1/2)d(uy−1/2)

u2y
= dxdydu

uy2

□
Cor.(11.7.4.4).Any element of SL(2,R) has a unique representation of the form

g =
[
e
u
2 0

0 e−u
2

] [
1 x

1

]
kθ.

And the Haar measure is given by dg = 1
2πdudxdθ by similar calculation, which is unimodular.

Prop.(11.7.4.5).H is a homogenous space for PGL(2,R), and StabPGL(2,R)(i) = SO(2,R). Also it
fixes the hyperbolic metric ds2 = y−2dxdy.
Proof: This follows from the Iwasawa decomposition(11.7.4.3). □

Prop.(11.7.4.6)[SU(2)].

SU(2) = {Aα,β =
[
α β
−β α

]
, α, β ∈ C, |α|2 + |β|2 = 1}

is isomorphic to the group of unit quaternions and diffeomorphic to S3. The Lie algebra of SU(2) is
isomorphic to sl2(R).

Proof: Let A =
[
a b
c d

]
∈ SU(2), then

aa+ bb = 1, ac+ bd = 0, cc+ dd = 1, ac− bd = 1.

So (c, d) = λ.(−b, a), and we can calculate λ = 1. So the first assertion follows.
By(2.3.11.4), SU(2) is isomorphic to the group of unit quaternions, which is clearly isomorphic

to S3. □
Prop.(11.7.4.7)[Actions of SU(2)].

• There is a double covering of Lie groups SU(2)→ SO(3) with kernel {±1}.
• There is a double covering of Lie groups SU(2)× SU(2)→ SO(4) with kernel {±1}.

Proof: 1: Regard SU(2) as the unit quaternions and SO(3) the transformation group of pure unit
quaternions, then SU(2)→ SO(3) is given by

u 7→ (v 7→ uvu).

Because u · u preserves orthogonality relations, it preserves the space of pure quaternions, so it has
image in O(3). But it has image in SO(3) because SU(2) ∼= S3 is connected. Its kernel is in the
center of H, so must be ±1. Now(11.7.3.10) shows this is a covering space map.

2: Consider the action SU(2)× SU(2) on the section of unit vectors of H: (u, v)(z) = uzv−1. if
(u, v) is in the kernel of this map, then uv−1 = 1, so u = v,and u is in the center of H, so u = v = ±1.
Because dimSU(2) = 3 and dimSO(4) = 6, (11.7.3.10) shows this is a double cover. □
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Prop.(11.7.4.8).
• There is a double cover SU(4)→ SO(6,R) with kernel {±1}.
• There is a double cover SL(4,C)→ SO(6,C) with kernel {±1}.
• There is a double cover Sp(4,C)→ SO(5,C) with kernel {±1}.

Proof: 1: SU(4) acts on a 4-dimensional Hermitian space V . Then it acts on the Hermitian
space ∧2V . Consider the Hodge star operator ∗ : ∧2V → ∧2V (11.1.3.9), it is an anti-linear operator,
∗2 = id and ∗ commutes with SU(4) action. ThenW = ker(∗− id) is a real vector space of dimension
6 that SU(4) acts on. This kernel of this action is the same as the kernel of the action ∧2V , which
is {±1}.

The Hermitian form induces a symmetric form on W : Take a conjugation on V , because V =
W ⊕ iW , W = Im(∗ + id)V . So for a, b ∈ W , let a = ∗c + c, b = ∗d + d, then (a, b)ω = ((∗a, ∗b) +
(∗a, b) + (a, ∗b) + (a, b))ω = ∗a ∧ b + a ∧ b + a ∧ b + ∗a ∧ b is a real form. Then this representation
induces a map SU(4)→ SO(6)(because SU(4) is connected). Because dimSU(4) = dimSO(6) = 6,
it is a double cover by(11.7.3.10).

2: SL(4,C) acts on a 4-dimensional complex vector space V , then it acts on the spaceW = ∧2V ∗.
We construct a non-degenerate bilinear form onW given by ∧ : W ×W → ∧4V ∗ ∼= C. Then SL(4,C)
preserves this bilinear form, thus induces a map SL(4,C)→ SO(6,C). The kernel of this map is {±1},
because if A preserves all v∗

1 ∧v∗
2, then Av∗

1 ∧Av∗
2 = v∗

1 ∧v∗
2, so Av∗

1 ∧Av∗
2 ∧v∗

i = 0, so Av∗
1 ∈ {v∗

1, v
∗
2},

or Av∗
2 ⊂ {Av∗

1, v
∗
1} ∩ {Av∗

1, v
∗
2} = Av∗

1, then Av∗
1 ∧Av∗

2 = 0, contradiction. So Av∗
1 ⊂ {v∗

1, v
∗
2}. v1, v2

is arbitrary, thus A is diagonal, and it is clear A = ±1. Finally, SL(4,C) → SO(6,C) is a double
cover by(11.7.3.10).

3: The representation of SL(4,C) on W = ∧2V ∗ restricts to a representation of Sp(4,C), and it
fixes the vector σ = v∗

1 ∧v∗
2 +v∗

3 ∧v∗
4 by definition, so it also fixes the orthogonal {σ}⊥, thus inducing

a map Sp(4,C)→ SO(5,C) with kernel {±1}, which is a double cover by(11.7.3.10). □

Prop.(11.7.4.9) [SU(1, 1) and SL(2,R)].Let SL(2,C) act continuously on P1(C) by γ(z) = az+b
cz+d

where γ =
[
a b
c d

]
, then

• The stabilizer of the unit disk D is

SU(1, 1) = {
[
a b
b a

]
||a|2 − |b|2 = 1}.

• SU(1, 1) is conjugate to SL(2,R) in SL(2,C).
• The subgroup of SU(1, 1) fixing 0 ∈ D is the subgroup of rotations {diag(ei θ/2, e− i θ/2)}.

Proof: 3: This follows from Schwartz lemma(10.6.1.3).
1, 2: We first describe SU(1, 1):

SU(1, 1) = {
[
a b
c d

]
: |a|2 − |c|2 = 1, ab− cd = 0, |b|2 − |d|2 = −1, ad− bc = 1}

which means (b, d) = λ(c, a), and λ = 1.

Let C = 1√
2e2πi/4

[
1 −i
1 i

]
, then C induces an isomorphism between H and D, because z−i

z+i ∈ D

iff |z − i| < |z + i| iff z is in the upper half plane. By this isomorphism and item 3, the element of
SL(2,C) stabilizing D and fixing i is of the group SO(2,R) ⊂ SL(2,R).
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Notice that SL(2,R) preserves H by(10.5.1.8), and it acts transitively on it because √y
[
y x

1

]
maps i to x+ iy ∈ H. Now if γ ∈ SL(2,C) stabilizes H, then γg fixes i for some g ∈ SL(2,R), thus
γg ∈ SL(2,R), thus γ ∈ SL(2,R). Thus we have shown the stabilizer of H is SL(2,R). Then the
stabilizer of D is

C · SL(2,R)C−1 = { 1
2i

[
1 −i
1 i

] [
a b
c d

] [
i i
−1 1

]
|a, b, c, d ∈ R, ad− bc = 1}

= {1
2

[
a+ d+ (b− c)i a− d− (b+ c)i
a− d+ (b+ c)i a+ d− (b− c)i

]
|a, b, c, d ∈ R, ad− bc = 1}

which is exactly SU(1, 1). So we get 1 and 2. □

Cor.(11.7.4.10)[Upper Half Plane H].By(10.5.7.8), the groups GL(2,R) preserves the upper plane
H, by(10.5.1.8). The action of SL(2;R) on H is transitive and the stabilizer of i is SO(2,R), thus
we have H ∼= SL(2;R)/SO(2;R).

Prop.(11.7.4.11)[Sp(2,K) and SL(2,K)].For any field K, Sp(2,K) ∼= SL(2,K): They both consists
of linear maps preserving the differential form dx ∧ dy.

Prop.(11.7.4.12)[Center of SU(p, q)].ZU(p,q)(SU(p, q)) are all scalar matrices.

Proof: Firstly we consider ZU(2)(SU(2)), if A ∈ Z(SU(2)), then it commutes with diag(i,−i), so A
is a scalar. Similarly, If A ∈ ZU(1,1)(SU(1, 1)), then A commutes with diag(i,−i), thus A is a scalar.

If X ∈ Z(SU(p, q)) is not a scalar matrix, then it has two eigenvectors s, t with different eigen-
values. Consider the space V generated by s, t and its orthogonal complement, then X restricted to
this space is in the center of U(V ). Now SU(V ) ∼= SU(1, 1) or SU(2), both have the set of scalar
matrices as center, so X cannot have different eigenvalue, contradiction. Thus X is a scaler matrix.
□

Prop.(11.7.4.13)[PGL(2,C) ∼= SO(3,C)]. V ∼= C2 has a natural symmetric form (x, y) 7→ x∧ y ∼= C,
and this form is preserved by SL(2,C) by definition. The kernel of this map is {±1}. Thus SL(2,C)
acts on Sym2(V ), thus induces a map PGL(2,C)→ SO(3), which an isomorphism by(11.7.3.10).

Prop.(11.7.4.14) [Real and Complex Matrices].GLn(C) can be embedded into GL2n(R), with
determinant |det |2. And in this way, U(n) is mapped into O(2n,R). Also, O(n,R) embeds into
U(n) diagonally.

Proof:

X + iY 7→
[
X −Y
Y X

]
∼
[

X −Y
iX + Y X − iY

]
∼
[
X + iY Y

0 X − iY

]
□

Prop.(11.7.4.15)[Symplectic Groups].
• U(p, q,H) = Sp(2n,C) ∩ U(2p, 2q,C). U(n,H) = U(n, 0,H) is also denoted by Sp(n), called

the compact symplectic group.
• O∗(2n) = U(n, n) ∩O(2n,C).
• Sp(2n,C) = SL(n,H).
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• Sp(2n,R) ∩ O(2n,R) = Sp(2n,R) ∩ GL(n,C) = O(2n,R) ∩ GL(n,C) = U(n) =

{
[
X −Y
Y X

]
, X + iY ∈ U(n)}.

Proof: 1: By(2.3.11.9), notice that any C-linear automorphism preserving B1 and B2 is H-linear.
2: By(2.3.11.9), notice that any C-linear automorphism preserving B1 and B2 is H-linear.
3: If A ∈ Sp(2n,R) ∩ O(2n,R), then AAt = AtA = 1, AtJA = 1, then AJ = JA. The rest and

the other identities are easy by(11.7.4.14). □

Spin Groups

Prop.(11.7.4.16).Let Clr,s denote the real Clifford algebra of signature r − s, then

Cl1,0 ∼= C, Cl0,1 ∼= R⊕R, Cl2,0 ∼= H ⊂M(2,C), Cl0,2 ∼= R(2) = M(2,R),

And we have
Cln+2,0 ∼= Cl0,n ⊗ Cl2,0, Cl0,n+2 ∼= Cln,0 ⊗ Cl0,2.

by the mapping ei → ei ⊗ e′
1e

′
2, en+j → 1⊗ e′

j .
So we have

Cln+8,0 ∼= Cln ⊗R(16), Cln+2,0 = Cln+2,0 ⊗ C = Cln,0 ⊗ C(2).

because H⊗ C = C(2), and n 0 1 2 3 4 5 6 7
Cln,0 R C H H⊕H H(2) C(4) R(8) R(8)⊕R(8)
Cln,0 C C⊕ C


The Clifford algebra is a Z2-graded algebra, Cl = Cl0⊗Cl1 and Cln−1 ∼= Cl0n by the mapping ei →

ei⊗en+1. This is in fact the decomposition of the chirality operator Γ = (−1)⌊n+1
2 ⌋e1e2 . . . en,Γ2 = 1.

Prop.(11.7.4.17).For n even, C(V ) is naturally isomorphic to EndC(Λ∗W ), where W = { 1√
2(e2i−1−

ie2i)}. This isomorphism is not obvious and restrict to a Spinor representation of Spin(n) and
ρ(Γ)2 = 1 induce two representations of Cl(n)0, in particular Spin(n), called the (half Spinor
representations). This has a unique extension to representation of Spinc. ∧∗W comes with a
Hermitian metric which is preserved by the action of Pin(n) (check). So the image is SO(n) is in
SO(∧∗W ). Cf.[Jost Geometric analysis P72].

Def.(11.7.4.18) [Spin(n)]. denote Pin(n) as the group in Cln generated by vi of norm 1. Because
vi · vi = −1, it is a group. And denote Spin(n) as the subgroup of Pin(n) generated by even number
of vis.

Prop.(11.7.4.19) [Action of Spin(n)].The conjugation action Ad(v) = v(−)v =reflection w.r.t v,
maps Pin(n) to O(n) and Spin(n) to SO(n). The kernel of this mapping is {±1} when n is even.
This is a double covering of SO(n) and O(n), it is nontrivial because 1,−1 is connected by (cos te1 +
sin te2)(cos te1 − sin te2).

In particular, Spin(n) is a universal covering of SO(n) and thus simply-connected for n ≥ 3.

Proof: Let α = eiβ + γ, then β, γ ∈ Cl0 and so α = ce1 . . . en + d, and c can happen only when n
is odd. □
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Prop.(11.7.4.20)[Center of Spin(n)].Z(Spin(n)) =


S1 n = 2
Z/2Z n = 2k + 1,
Z/2Z⊕Z/2Z n = 4k,
Z/4Z n = 4k + 2,

.

Proof: □

Prop.(11.7.4.21)[Low Dimensional Accidental Isomorphisms].
• Spin(2) ∼= SO(2) ∼= U(1).
• Spin(3) ∼= SU(2) ∼= Sp(1)
• Spin(4) ∼= SU(2) × SU(2) because they are both universal coverings of SO(4), by(11.7.4.22)

and(11.7.4.19).
• Spin(5) ∼= Sp(2).
• Spin(6) ∼= SU(4).

Proof: 2: because Spin(3), SU(2) are both universal covering of SO(3), by(11.7.4.22)
and(11.7.4.19), and Sp(1) acts transitively on the set of unit vectors in H with trivial kernel. □

Fundamental Groups

Prop.(11.7.4.22).
• SU(n − 1) → SU(n) → S2n−1 shows SU(n) are connected and simply connected. Also
π2(SU(n)) ∼= π2(SU(2)) ∼= π2(S3) = 0.

• SO(n−1)→ SO(n)→ Sn−1 shows SO(n) are connected and π1(SO(n)) ∼= π1(SO(3)) = Z/2Z
for n ≥ 3 by(11.7.4.7)and(11.7.4.6). And π1(SO(2)) = Z.

• U(n− 1)→ U(n)→ S2n−1 shows U(n) are connected and π1(U(n)) ∼= Z.
• SO(n,R) is a deformation retraction of SL(n,R), and SU(n) is a deformation retraction of
SL(n,C).

• π1(PSO(n)) =


Z n = 2
Z/2Z n = 2k + 1,
Z/2Z⊕Z/2Z n = 4k,
Z/4Z n = 4k + 2,

. Because for n ≥ 3, its universal covering is

Spin(n), so π1(PS(n)) = Z(Spin(n))(11.7.4.20).
• π1(PU(n)) = Z/nZ.
• Sp(n− 1)→ Sp(n)→ S4n−1 shows Sp(n) are connected and simply connected.
• π1(Sp(2n,R)) = π1(U(n)) = Z and the determinant induces an isomorphism onto π1(S1). In

fact, this is used to define the Maslov index.

Generals

Prop.(11.7.4.23)[Finite Subgroups of SO(3,R)].Every finite subgroup of SO(3,R) is conjugate
to one of the following:

• the cyclic group Cn generated by rotation.
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• the dihedral group D2n generated by adjoining a reflection to the rotation.
• the group A4 of rotation of the tetrahedron.
• the group S4 of rotations of the octahedron.
• the group A5 of rotations of the icosahedron.

Proof: Cf.[Dornhoff, Group Representation Theory, 1971 Part A, Chap26]. □

Prop.(11.7.4.24)[Image of Exponential Maps].
• The exponential map for GLn(C) is surjective.
• The image of the exponential map for GLn(R) is GLn(R)2.
• The image of exponential map for B+ which is the subgroup of GL(n,R) consisting of upper-

triangular matrices with positive entries, is surjective.
• The exponential defines a diffeomorphism from the space of Hermitian(symmetric) matrices to

positive definite Hermitian(symmetric) matrices in GL(n,C)(GL(n,R)).
• The exponential for a compact Lie group is surjective, by(11.7.8.6) and(11.7.8.2).

Proof: 1: Use Jordan forms. Notice the logarithm of (cI +N), c ̸= 0 is definable for N nilpotent,
and it is a polynomial function of the matrix itself.

2: It is clear the image is contained in GL(n,R)2, conversely, we see from the complex case
that any B ∈ GL(n,R) is of the form exp(P (B)) for some polynomial P ∈ C[X], then T = B2 =
exp(P (B) + P (B)) ∈ exp(GL(n,R)).

3: Use Jordan forms. Notice the logarithm of (cI + N), c ̸= 0 is definable for N nilpotent and
c > 0, and it is a polynomial function of the matrix itself, so it is also upper-triangular.

4: By(2.3.8.3) it is clearly surjective. For injectivity, consider exp(X) = exp(Y ), then at least
X,Y are both unitarily conjugate to the same diagonal matrix diag(d1, . . . , dn), and we may assume
Y = diag(d1, . . . , dn), then

X = τ−1Y τ, diag(D1, . . . , Dn) = τ−1 diag(D1, . . . , Dn)τ

where Di = edi . Consequently, diag(Dk
1 , . . . , D

k
n) = τ−1 diag(Dk

1 , . . . , D
k
n)τ , and we can choose ci that∑

ciD
i
j = dj for any j, because the Vandermonde matrix is nonsingular. Hence diag(d1, . . . , dn) =

τ−1 diag(d1, . . . , dn)τ , so X = Y . □

5 Compact Lie Groups and Representations
Prop.(11.7.5.1).Any compact connected complex Lie group is Abelian. And it is a complex tori. So
we only consider only compact real Lie groups.

Proof: Mimic the proof that Abelian variety is commutative(13.5.1.5), using a similar rigidity
lemma. □

Cor.(11.7.5.2).U(n) is not a complex Lie group, in particular not a complex algebraic variety.

Prop.(11.7.5.3).Let G be a compact connected Lie group with Lie algebra g and center Z. Let Gss
be the connected subgroup of G corresponding to the Lie subalgebra [g, g](11.7.3.12), then Gss has
finite center, and Z0, Gss are closed in G, and G = Z0Gss.

Proof: Cf.[Kna96]P198. □
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Prop.(11.7.5.4)[Compact Lie Group and Representations].A compact topological group G is
a real Lie group iff it has a faithful real f.d. representation. And in this case, it is a closed subgroup
of U(n) for some n.

Proof: If it has a faithful f.d. representation, then G ⊂ GL(n,R) compact hence closed, thus a Lie
subgroup by(11.7.1.22).

Conversely, if G is a Lie group, then we can choose a small nbhd U of e ∈ G that contains no non-
trivial subgroup of G(choose exp(1

2V ) where exp is an diffeomorphism on V ). Consider kernel Kπ

for irreducible representations π of G, then ∩πKπ = ∅ by Gelfand-Raikov(10.11.2.22), in particular
∩π(Kπ − U) = ∅. But G− U is compact, hence there are f.m. πi that ∩iKπi ∈ U , but by definition
of U , ∩iKπi = {e}, which gives a f.d. faithful representation of G, by(10.11.4.4). □

Prop.(11.7.5.5)[Reduction to Faithful Representations].Let V be a faithful f.d. representation
of a compact Lie group G and Y is an irreducible f.d. representation of G, then Y is a direct summand
of V ⊗n ⊗ V ∗⊗m for some m,n ≥ 0. Moreover, if G is unimodular, we can take m = 0.

Proof: Cf.[Etingof, P175]. □

Remark(11.7.5.6).Theory of Representations of compact Lie groups are a special case of abstract
harmonic analysis10.11.

Maximal Tori

Prop.(11.7.5.7)[Tori].Any connected compact Abelian real Lie group is a torus.

Proof: By(11.7.4.24), the exponential map realizes g as the universal cover of G, and the kernel is
then a complete lattice Λ in Rn, so G ∼= Rn/Λ ∼= (S1)n. □

Prop.(11.7.5.8).The maximal tori in a compact Lie group G corresponds to the maximal Abelian
subalgebras of g.

Proof: Let T be a maximal tori, then t is maximal Abelian by fundamental theorem of
Lie(11.7.3.12). Conversely, if t is a maximal tori, then the corresponding Lie subgroup T is Abelian,
and T is also Abelian. The Lie algebra of T, T are the same by maximality of t, so T = T , and it is
a torus by(11.7.5.7), and it is clearly maximal. □

Prop.(11.7.5.9).Let G be a compact connected Lie group with Lie algebra g, then any two maximal
Abelian subalgebra of g are conjugate via Ad(G).

Proof: Let t, t′ be two maximal Abelian subalgebra of g. As g is reductive(2.5.5.3), if we choose
X ∈ t, X ′ ∈ t′ that are not zero for any roots, then Zg(X) = T,Zg(X ′) = T ′. Let (·, ·) be a
invariant inner product on g defined in(11.7.8.2), choose a g0 ∈ G that (Ad(g0)X,X ′) is maximal,
then 0 = ([Z,Ad(g0)X,X ′) = (Z, [Ad(g0)X,X ′]) for any Z ∈ g, so Ad(g0)X ∈ Zg(X ′) = t′. Thus
t′ ⊂ Zg(Ad(g0)X) = Ad(g0)Zg(X) = Ad(g0)t, and the equality holds as t′ is maximal. □

Cor.(11.7.5.10) [Maximal Tori are Conjugate].Let G be a compact connected Lie group, then
any two maximal tori of G are conjugate via Ad(G).

Prop.(11.7.5.11).Let G be a compact connected Lie group, then any element of G is connected in a
maximal torus.



1174 CHAPTER 11. DIFFERENTIAL GEOMETRY

Proof: By(11.7.4.24), this element is contained in a 1-parameter subgroup T of G, and T is also
Abelian, so is a torus by(11.7.5.7). Then choose a maximal torus containing T . □

Cor.(11.7.5.12).The center of G is contained in any maximal torus, by(11.7.5.10).

Prop.(11.7.5.13).Let S be a torus in a compact Lie group G and g ∈ G that commutes with elements
in S, then there is a torus containing both S and g.

Proof: Let A be the closure of ∪i∈Zg
iS, and A0 the identity component of A, then as A is compact,

A0 is open in A and compact, so ∪i∈Zg
iA0 = A, and also A/A0 is a cyclic group. As A0 is a torus,

we can find a ∈ A that the closure of {an|n ∈ Z} is A. By(11.7.4.24), let a = expG(X), then the
closure of the 1-parameter group generated by X is a torus containing both S and g. □

Cor.(11.7.5.14). In a compact connected Lie group G, then centralizer of a torus T is connected. In
fact, it is the union of maximal tori containing T . In particular, a maximal torus is self-centralizing.

Highest Weight Theory

Cf.[Compact Lie Groups, Sepanski].Chap7.

Examples of Representations

Prop.(11.7.5.15) [Representations of SU(2)].SU(2) ∼= S3 is simply connected with Lie algebra
sl2(R)(11.7.4.6), thus we can use(11.7.3.14) and(15.8.1.14) to see that the representations of SU(2)
are all of the form Wn, where Wn is the representation of SU(2) on the space of homogenous

polynomials of degree n in two variables x, y induced by
[
a b
c d

] [
x
y

]
=
[
ax+ by
cx+ dy

]
.

Proof: Check the central character of the induced representations of Lie algebra. □

Prop.(11.7.5.16).Let G = SO(n) for n ̸≡ 2 mod 4. Show that:
1. For any element g ∈ G, g and g−1 are conjugate in SO(n).

2. Any irreducible finite-dimensional C-representation V of G is isomorphic to its dual.

Proof: 1: By(2.3.8.16), if n = 2m + 1, g is orthogonally diagonal to a matrix of the form

diag{SO(2,R), . . . , SO(2,R), 1}. Notice SO(2,R) = {kθ, θ ∈ (0, 2π]}, where kθ =
[

cos θ sin θ
− sin θ cos θ

]
,

and k−1
θ = k−θ = ktθ. If we take W = diag{

[
1

1

]
, . . . ,

[
1

1

]
, (−1)m}, then W ∈ SO(n,R) and

WgW−1 = g−1.
If n = 4k, then g is orthogonally diagonal to a matrix of the form diag{SO(2,R), . . . , SO(2,R)}.

If we take W = diag{
[

1
1

]
, . . . ,

[
1

1

]
}, then W ∈ SO(n,R) and WgW−1 = g−1.

2: Because χV ∗(g) = χV (g−1) = χV (g) as g, g′ are in the same conjugacy class, V and V ∗ are
isomorphic, because f.d. representations are determined by characters(2.4.1.13)(applied to the group
algebra C[G]). □
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Maximal Compact Subgroup

For maximal compact subgroup of general locally compact subgroups, Cf.1.

Prop.(11.7.5.17) [Uniqueness for Semisimple Lie group].Maximal compact subgroup exists
by(10.11.1.47), and for a semisimple Lie group G, the maximal compact subgroup is unique up
to conjugation.

Proof: Cf.[Wiki]. □

Prop.(11.7.5.18)[Examples of Maximal Subgroups].
• O(n) is the maximal compact subgroup of GL(n,R).
• SO(n) is the maximal compact subgroup of SL(n,R).
• SO(m,n) is the maximal compact subgroup of S(O(m)×O(n)).
• SO(n) is the maximal compact subgroup of SL(n,R).
• SU(n) is the maximal compact subgroup of SL(n,C).
• SU(m,n) is the maximal compact subgroup of S(U(m)× U(n)).
• SO(n) is the maximal compact subgroup of SO(n,C).
• U(n) is the maximal compact subgroup of GL(n,C).
• SU(n) is the maximal compact subgroup of SL(n,C).
• Sp(n) is the maximal compact subgroup of Sp(n,C), by(11.7.4.15).
• Sp(m,n) is the maximal compact subgroup of Sp(m)× Sp(n).
• Sp(n) is the maximal compact subgroup of SL(n,H), by(11.7.4.15).
• U(n) is the maximal compact subgroup of O∗(n), by(11.7.4.15).

And the above maximal compact subgroups are also deformation retractions.

Proof: This follows from polar decomposition(11.7.6.2), notice that the projection of a compact
group is a compact group in Rn, so it is trivial. □

6 Decompositions

Prop.(11.7.6.1)[Cartan Decomposition].Let G = GL(n,R),K = O(n) or G = GL(n,R)+,K =
SO(n), then every double coset K\G/K has a unique representation of diagonal matrix D with
decreasing positive entries.

Proof: For the existence, given g, consider S = gtg = k−1
1 diag(λ1, . . . , λn)k1, where k1 ∈

SO(n)(2.3.8.3). Then consider

k2 = gk−1
1 diag(λ−1/2

1 , . . . , λ−1/2
n )

it is orthogonal and g = k2 diag(λ1/2
1 , . . . , λ

1/2
n )k1.

For the uniqueness, consider gk−1
1 diag(λ−1/2

1 , . . . , λ
−1/2
n ) is orthogonal, thus k1Sk

−1
1 is diagonal

with decreasing positive entries, thus uniquely defined. □
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Prop.(11.7.6.2)[Polar Decomposition for Linear Groups].Let G ⊂ GL(n,C) be a closed linear
group that is defined by the a family of real valued polynomials in the real and imaginary parts of
entries of G, and G is closed under conjugation. Let K = G ∩ U(n), and let p be the subspace of
Hermitian matrices in g, then the map K × p → G : (k,X) 7→ k exp(X) is a homeomorphism. In
particular, G has K as deformation retracts.

Proof: The GL(n,C) case follows from(10.10.4.20) and(11.7.4.24), and for the general case, it
suffices to show if g ∈ G and g = k exp(X), then X ∈ g: By hypothesis, g∗g = e2X ∈ G. Take a basis
that 2X = diag(a1, . . . , an) with ai real, then e2kX = diag(eka1 , . . . , ekan) are all in G. Then it can
be easily shown any polynomial that vanishes at all such e2kX vanishes on all e2tX , thus X ∈ g. □

Cor.(11.7.6.3).GL(n,R) ∼= P ·O(n), where P is the set of positive symmetric matrix, by(11.7.4.24).

Prop.(11.7.6.4)[QR-Decomposition].
• Any real matrix A has the form A = QR where Q is orthogonal and R is upper triangular with

positive diagonal entries. Moreover, if A is invertible, then the decomposition is unique.
• Any complex matrix A has the form A = QR where Q is unitary and R is upper triangular

with positive diagonal entries. Moreover, if A is invertible, then the decomposition is unique.
• Any Quaternion matrix A has the form A = QR where Q ∈ U(n,H)(11.7.4.15) and R is upper

triangular with positive diagonal entries. Moreover, if A is invertible, then the decomposition
is unique.

Proof: We only prove for GL(n,R), the rest is similar. Use Gram-Schmidt orthogonalization:
choose a basis v = {v1, . . . , vn} of V and A acts on V , then A maps {v1, . . . , vn} to a set
{w1, . . . , wn}. Then we can define an orthonormal basis {e1, . . . , en} that vk ∈ span{e1, . . . , ek}.
Now let {w1, . . . , wn} = {e1, . . . , en}R, then R is upper triangular, and Q = [e1, . . . , en]v is orthog-
onal, and A = QR. We can make diagonal entries of R positive by left multiplying a diagonal
orthogonal matrix.

To show the uniqueness when A is invertible, let A = Q1R1 = Q2R2, then AtA = Rt1R1 = Rt2R2.
Then (R2)−tRt1 = R2R

−1
1 , where the LHS is lower-triangular and the RHS is upper-triangular, which

means both of them are diagonal. Then if αi are the diagonal entries of R1 and βi are the diagonal
entries of R2, then αi/βi = βi = αi, which means αi = βi, and R2R

−1
1 = 1. □

Prop.(11.7.6.5)[Bruhat Decomposition].Let K be a field, B be the set of upper-triangular matri-
ces, N be the set of unipotent upper-triangular matrices, then

GL(n,K) = BWB = BWN

where W is the set of permutation matrices, B is the invertible upper triangular matrices, and the
decomposition is a disjoint union w.r.t. W .

Moreover, if K is a topological field, there is a lexicographical stratification 0 = W0 ⊂W1 ⊂ . . . ⊂
Wn! of GL(n,K) that Wk is closed in Wk+1 and each Wk+1\Wk is a double coset BwB.

Proof: For any matrix M ∈ GL(n,K), consider the first column, then there is a lowest term ai11
that are not zero, then we can left multiply an upper triangular matrix b1 s.t. the first column of
b1M has only one nonzero entry ai11 = 1, then consider the second column but ignore the k-th row,
we can find a lowest term ai22 that is non-zero, then left multiply an upper triangular matrix b2 that
the second column of b2b1M has only one non-zero entry a2i2 = 1. Now continuing this way, we find
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a permutation σ that only the entries aij that j ≥ σ−1(i) are non-zero. Then we can find an upper
triangular matrix c that bnbn−1 . . . b1Mc is a permutation matrix Mσ−1 .

So we proved BWB = GL(n,K). Now it suffices to show if M−1
σ1 bMσ2 ∈ B for some b ∈ B, then

σ1 = σ2: Because Mσ =
∑
i eσ(i)i =

∑
i eiσ−1(i),

Mσ−1
1
bMσ2 =

∑
ij

bσ1(i)σ2(j)eij .

This is an element in B, both its (σ−1
1 (k), σ−1

2 (k))-entry is bkk ̸= 0, thus σ−1
1 (k) ≤ σ−1

2 (k), which
implies σ1 = σ2. □

Cor.(11.7.6.6). If N is the group of unipotent upper triangular matrices, then GL(n,L) = BWN .

Prop.(11.7.6.7)[Smith Normal Form].Let R be a PID, and K its fraction field. Choose a represen-
tative P for associativity classes of any prime in R(to eliminate the distraction of units), then there
is complete set of representatives for the double cosets of GL(n,R)\GL(n,K)/GL(n,R) consisting
of diagonal matrices diag(f1, . . . , fn), where fi ∈ K are products of elements in P, and fk divides
fk+1. Notice GL(n,R) is the matrices with unit determinants in R.

Proof: For the uniqueness, clearly the row operators doesn’t change the greatest common divisor
of k × k minors of M for any k(change by a scalar but the diagonal entries are monic), thus the
entries are determined by the minors of M .

For the existence, for any g ∈ GL(n,K) there is an r ∈ R, that rg has coefficients in R, and also
r is a product of elements in P. let M be the submodule of Rn generated by the rows of rg, then by
the elementary divisor theorem(2.2.4.24), there exists a basis ξi for Rn and di ∈ R that di|di+1, and
{diξi} form a basis of M . we may assume di are products of elements in P. Then the matrix ξ with
rows ξi are in GL(n,R), and the rows of the matrix diag(d1, . . . , dn)ξ span the same module as rg.
Then

K1rg = diag(d1, . . . , dn)ξ

for some K1 ∈ GL(n,R), so g are in the same double coset as diag(r−1d1, . . . , r
−1dn). □

Prop.(11.7.6.8)[Iwasawa Decomposition].

7 Semisimple Lie Groups
Def.(11.7.7.1)[Semisimple Lie Group].A semisimple/solvable/nilpotent/simple Lie group
is a Lie group with a semisimple/solvable/nilpotent/simple Lie algebra.

Def.(11.7.7.2)[Adjoint Lie Group].An adjoint Lie group is a semisimple real Lie group(11.7.7.1)
with trivial center.

Prop.(11.7.7.3).Let G be a semisimple complex Lie group, then the center Z of G is contained in
Gc, thus the restriction of f.d. representations of G to Gc is an equivalence of categories.

Proof: Cf.[Etingof, P209] □

Maximal Tori

Prop.(11.7.7.4).Let G be a complex semisimple Lie group with Lie algebra g, compact form gc and
compact part Gc, then
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8 Analysis
Lemma(11.7.8.1).Let H be a Lie subgroup of G and g /∈ H, then there is a smooth function Φ on
G that Φ(xh) = Φ(x) for any x ∈ G,h ∈ H, and Φ(H) = 0, yet Φ(g) ̸= 0.

Proof: Because H is closed, there is a nbhd U of g disjoint from H and a function φ supported in
U . Then Φ(x) =

∫
H φ(xh)dh satisfies the desired condition. □

Bi-Invariant Metric

Lemma(11.7.8.2).Bi-invariant metric exists in a compact Lie group.

Proof: Because the Haar measure on a compact metric is bi-invariant. Choose a Riemann metric
and set

⟨V,W ⟩ =
∫
G×G
⟨Lσ∗Rτ∗(V ), Lσ∗Rτ∗(W )⟩dµ(σ)dµ(τ).

Note that L∗ and R∗ commute. □

Prop.(11.7.8.3).For a left-invariant metric on a connected Lie group G, if it is bi-invariant, then
the inner product at the origin e is invariant under g(2.5.1.13), and the converse is also true if G is
connected.

Proof: If the metric is invariant, then for any X,Y, Z ∈ g, ⟨Ad(exp(tX))Y,Ad(exp(tX))Z⟩ =
⟨X,Y ⟩, so we take derivation w.r.t. t to get

⟨ad(X)Y, Z⟩+ ⟨Y, ad(X)Z⟩ = 0

by(11.7.1.12).
Conversely, if this is invariant, then using exp(tX) = exp((t − t0)X) exp(t0X), we get

∂(⟨Ad(exp(tX))Y,Ad(exp(tX))Z⟩)/∂t = 0 for all t, thus ⟨Ad(exp(tX))Y,Ad(exp(tX))Z⟩ = ⟨X,Y ⟩,
and it is invariant under right actions by exp(tX) also. As G is generated by the elements
exp(X)(3.11.1.3), it is right-invariant under G. □

Prop.(11.7.8.4). If G is a Lie group with a bi-invariant metric, then

∇XY = 1/2[X,Y ], R(X,Y )Z = 1/4[[X,Y ], Z], K(σ) = 1/4
∣∣∣[X,Y ]

∣∣∣2.
So it has non-positive sectional curvature, and its curvature is non-negative, and all 1-parameter
subgroups are geodesics from e.

Proof: It suffices to show that ⟨Z,∇XY ⟩ = 1/2⟨Z, [X,Y ]⟩ for any Z, and this follows
from(11.2.3.16). The second follows from the first and the definition(11.2.3.11). □

Cor.(11.7.8.5).A bi-invariant Lie group with g having trivial center is compact and π1(G) finite.

Proof: The Ricci curvature has a positive lower bound, otherwise for some X, [X,Y ] = 0 for all Y ,
thus X is in the center. Hence we use Myer theorem(11.2.5.20). □

Cor.(11.7.8.6). If G has a bi-invariant metric, then the exp map g→ G is surjective.

Proof: Because exp is defined for any X ∈ g, and for any g ∈ G and v ∈ Tg(G),
expp(v) = Lg(exp(dLg−1)g(v)) because Lg is an isomorphism of Riemann manifolds. So by Hopf-
Rinow(11.2.3.46), G is complete. Thus for any q, there is a geodesic connecting e, q, which is a
1-parameter subgroup, thus q = exp(X) for some X ∈ g. □
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Prop.(11.7.8.7) [Structure of bi-invariant Lie groups].A simply-connected Lie group with a
bi-invariant metric is equal to G′ ×Rk, G′ compact.

Proof: Because the orthogonal complement of the center of g is a Lie algebra, G is like G′ × Rk,
and a simply connected abelian Lie group is Rk ?. □
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11.8 Complex Geometry
Basic References are [Voi02], [Principle of Algebraic Geometry Griffith/Harris], more advanced

stuffs to add from [Kähler Geometry] and [Huy05]. Even more advanced is [Demailly Complex
Analytic and Differential Geometry].

1 Complex Manifolds
Def.(11.8.1.1) [Complex Manifold].A complex manifold is an even dimensional manifold that
the transformation matrices are holomorphic. The category of complex manifolds are denoted by
C-Mani.

Prop.(11.8.1.2) [Andreotti-Franlcel].Let Mn ⊂ Cn ∈ C-Manin, then M is homotopic to a CW
complex of real dimension≤ n.

Proof: □

Prop.(11.8.1.3)[Adjunction Formula].The normal sheaf of a submanifold Y ⊂ X is defined the
same as the case of nonsingular varieties(5.10.1.17), then the same is true of the adjunction formula:

KY ∼= KX ⊗ detNY/X

In case Y is of codimension 1, NY/X ∼= L(Y )|Y = OY (Y ).

Prop.(11.8.1.4)[Remmert].A non-compact complex manifold admits a proper holomorphic embed-
ding into CN for some N iff it is a Stein manifold.

Proof: ? □

Prop.(11.8.1.5)[Siegel].Let X ∈ C-Manin, then the field R(X) of meromorphic functions on X has
transcendence degree≤ n over C. And in case tr.deg[R(X) : C] = n, it is a f.g. field extension of
C. Then we define the algebraic dimension of a compact connected complex manifold X to be
dimalg(X) = tr.degR(X).

Proof: It suffices to show that given any meromorphic functions f1, . . . , fn+1, there is an algebraic
relation between them.

Now for each x, there is a nbhd Ux that any fi writes as the quotient of two holomorphic functions
gi,x
hi,x

. And assume Wx ⊂ Vx ⊂ Vx ⊂ Ux are the metric balls B(x, 1
2) ⊂ B(x, 1). As X is compact,

there are N xk that X = ∪Wxk .
As on the intersections, gi,khi,k

= gi,l
hi,l

, any we can assume they are all prime, so gi,k
gi,l

= φi,kl is a unit.
Let φkl =

∏
i φi,kl, as X is compact, let C = maxk,l φkl ≥ 1.

For any homogenous polynomial F ∈ C[X1, . . . , Xn+1] of deg m, let Gk =
F ( g1,k

h1,k
, . . . ,

gn,k
hn,k

)(
∏
i hik)m. Then Gk are holomorphic and Gk = φmlkGl on the intersection. Now

I claim for any M > 0, there is a F that Gk vanishes vanishes up to at least order M at xk.
For this, just consider the dimension of all homogenous polynomials of degree m is Cmm+n+1, and

the number of desired equations of elements needs to be vanish is N ·Cm′−1
m′−1+n, so this always can be

achieved when m is sufficiently large.
By Schwartz lemma(10.6.5.4), |Gk(x)| ≤ (1

2)m′
C ′, where C ′ = max{|Gk(x)||k = 1, . . . , n, x ∈ Vk}.

If C ′ = |Gk(x)|, and x ∈Wl, then C ′ = |Gl(x)||φmlk(x)| ≤ C′

2m′ · Cm. If for some m,m′, Cm < 2m′ ,
then this shows C ′ = 0 which will finish the proof.
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Look back at the condition of m,m′, Cmm+n+1 > N · Cm′−1
m′−1+n can be achieved together with

m < λm′ for any λ, because the left hand is degree n+ 1 in m and the right hand is degree n in m′.
□

Almost Complex Structure

Def.(11.8.1.6)[Almost Complex Structures].For M a real orientable manifold of dimension 2n,
an almost complex structure is a real bundle map J : TCM → TCM satisfying J2 = −1. A
manifold with an almost complex structure is called an almost complex manifold.

A complex manifold has an almost complex structure, just define

J( ∂

∂xi
) = ∂

∂yi
, J( ∂

∂yi
) = − ∂

∂xi
.

Def.(11.8.1.7) [Complex Differentials]. Situation as in(11.8.1.6), J will define a bundle map
J : T ∗M → T ∗M , and it has two eigenvalues ± i, denoted by T ∗1,0M and T ∗0,1M . The formal
differential forms ∧kT ∗M ∼= ⊕0≤p≤k ∧p,k−p T ∗M .

Define ∂ = prp+1,q ◦d on ∧p,qT ∗M , and ∂ = prp,q+1 ◦d on ∧p,qT ∗M .

Def.(11.8.1.8)[Integrability].An almost complex structure (M,J) is called integrable iff it satisfies
the following equivalent conditions:

• dα = ∂α+ ∂α.
• dα = ∂α+ ∂α is true for α ∈ Ω1,0(M)
• [T 0,1X,T 0,1X] ⊂ T 0,1X.

• ∂
2
f = 0 for functions f .

Proof: 1 ⇐⇒ 3 is because by(11.1.3.6), if u, v ∈ T 0,1X,

dα(u, v) = u(α(v))− v(α(u))− α([u, v]) = −α([u, v]).

3 ⇐⇒ 4 is because by(11.1.3.6), if α = ∂f and u, v ∈ T 0,1X, then

∂
2
f(u, v) = u(∂f(v))− v(∂f(u))− ∂f([u, v]) = u(df(v))− v(df(u))− ∂f([u, v]) = ∂f([u, v])

□

Thm.(11.8.1.9)[Nirenberg-Newlander].Given an almost complex manifold (M,J), it is integrable
iff it comes from a complex structure.

Proof: Cf.[Foundation of Differential Geometry Kobayashi Chap9.2]. □

Cor.(11.8.1.10).For M ∈ C-Mani,

∂
2 = 0, ∂∂ + ∂∂ = 0, ∂2 = 0.

2 Deformation of Complex Structures
Cf.[Kähler Geometry] and [Complex Geometry, Daniel Chap6], should be completed as soon as

possible.
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3 Analytic Spaces and Coherence Sheaves

Cf.[Demailly] and [GAGA Serre].

Analytic Subvarieties

Def.(11.8.3.1) [Analytic subvariety].An analytic subvariety is a closed subset of a complex
manifold that is locally defined by f.m. holomorphic functions. The regular points of an analytic
subvatiety locally defined by k functions is the points that rank(( ∂

∂zj
fi)i≤k,j≤n) = k.

Prop.(11.8.3.2) [Proper Mapping Theorem]. If U,M are complex manifolds and M ⊂ U is an
analytic subvariety, then if f : U → N is a holomorphic mapping whose restriction on M is proper,
then f(M) is an analytic subvariety of N .

Proof: Cf.[Griffith/harris P395]. □

Def.(11.8.3.3)[Local Analytic Spaces].An analytic space of Cn is an analytic subvariety of Cn.
On an analytic space, there is a sheaf of holomorphic functions OU . So we can define holomor-
phic map φ as continuous functions that maps holomorphic germs to holomorphic germs, which is
equivalent to the coordinates of φ are all holomorphic.

Def.(11.8.3.4)[Analytic Spaces].An analytic space is a Hausdorff space X with a structure sheaf
OX that is locally isomorphic to an analytic space of Cn(11.8.3.3). Morphisms are continuous maps
that are locally holomorphic. Sub-analytic spaces are defined as usual.

The products of analytic spaces can be defined, and it has the product topology, unlike the case
of schemes.

Prop.(11.8.3.5)[Analytic Modules].Let (X,OX) be an analytic space(11.8.3.4), an analytic mod-
ule over X is just an OX -module. For a sub-analytic space Y , we have a sheaf of ideals IY which
is the sheaf of germs vanishing at Y , and OX/IY is a sheaf on X that is zero outside Y , and we
identify it with OY .

Def.(11.8.3.6)[Coherent Analytic Sheaves].?
Prop.(11.8.3.7) [Coherence of Structure Sheaf]. If (X,OX) is an analytic space, then OX is
coherent?, and the sheaf of ideals IY of any sub-analytic-space Y is also coherent.

Proof: First prove for X is an open subset of Cn, Cf.[GAGA Serre P4]. And by definition OX is a
OX -module of f.t., and it is also coherent?, so OX is coherent. IY is coherent because it is a kernel
of HX → HY . □

4 Positive Current

5 Hermitian Vector Bundles

Def.(11.8.5.1)[Holomorphic and Hermitian Vector Bundles].H A holomorphic vector bun-
dle is a vector bundle on a complex manifold that the transition functions are holomorphic. A
Hermitian vector bundle is a holomorphic vector bundle endowed with a Hermitian metric?.
Any holomorphic vector bundle has a Hermitian structure, by partition of unity method.
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Prop.(11.8.5.2) [Hodge Star for Hermitian bundles]. If E is a Hermitian vector bundle over a
compact complex manifold X of complex dimension n, we define a conjugate-linear operator ∗ :
Ap,q(E)→ An−p,n−q(E) : η 7→ ∗η, and a conjugate-linear functor τE → E∗ induced by the Hermitian
metric on E.

Then we can define ∗E : Ap,q(E)→ An−p,n−qE : η ⊗ s 7→ ∗(η)⊗ τ(s). It can be checked that

(α, β) ∗ 1 = α ∧ ∗Eβ,

∂
∗
E = −∗E∗∂E∗∗E , ∗E∆∂E

= ∆∂E∗∗E∗ , ∗E∗∗E = (−1)p+1 on Ωp,q(E).

Hermitian Manifold

Def.(11.8.5.3) [Holomorphic Tangent Bundle].Let M be a complex manifold, the complexified
tangent bundle TCM is defined as TM ⊗R C, the holomorphic tangent bundle T 1,0M and anti-
holomorphic bundle T 0,1M are defined to be the vectors generated resp. by ∂

∂zi
and ∂

∂zi
. The holo-

morphic cotangent bundle and anti-holomorphic cotangent bundle is defined to be the covectors
generated by dzi and dzi.

Def.(11.8.5.4)[Hermitian Metric].LetM be an almost complex manifold, aHermitian metric on
TCM is a metric that is J-invariant, that is g(Ju, Jv) = g(u, v). Notice(2.3.8.1) shows a Hermitian
metric is equivalent to a non-degenerate Hermitian form on TCM , where g appears as the real part
of the Hermitian form.

Def.(11.8.5.5) [Hermitian Manifolds].A complex manifold with a Hermitian metric is called a
Hermitian manifold.

Def.(11.8.5.6)[the Kähler Form].Given a Hermitian manifold M , define the Kahler form ωg as
ωg(u, v) = g(Ju, v). Then it is a real 2-form on M .

Notice g(u, v) = ωg(u, Jv), so g can be constructed by ωg, iff ωg is positive(11.9.6.1).

Analytic Picard Groups

Def.(11.8.5.7)[Analytic Picard Groups].The group of isomorphisms of holomorphic line bundles
on a complex manifold X is denoted by PicC(X), called the analytic Picard group of X.

Prop.(11.8.5.8)[First Chern Class].For a connected space X, there is an exact sequence

0→ Z→ OX
f→e2πif
−−−−−→ O∗

X → 0,

and it induces a map PicC(X) = H1(X,O∗
X)→ H2(X,Z), which is a just the first Chern class(same

proof as in(3.14.4.19)).
WARNING: in this case it is not necessarily isomorphism, not as in the case of topological line

bundles.
in particular, The image of the first Chern class is trivial in H2(X,OX).

Def.(11.8.5.9).The dual of the universal line bundle on CPn is called the hyperplane line bundle,
denoted by H or O(1).

Prop.(11.8.5.10).PicC(CPn) ∼= Z, with O(1) as a generator.
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Proof: As CPn is Kähler, use(11.10.2.5), then H0,k(X,C) ∼= Hk(X,OX) = Hk(X,KX ⊗O(2)) = 0
for k ≥ 1 by Kodaira vanishing(11.9.7.3), and then NS(X) = H1,1(X) = H2(X,Z) = Z by Lefschetz
(1, 1)-form theorem(11.10.2.6). It remains to prove c1(O(1)) is the generator, for this, Cf.[Demailly
P280]. □

Prop.(11.8.5.11).Let Sd be the set of homogenous polynomials of degree d, then

H0(CPn,O(d)) =
{
Sd d ≥ 0
0 d < 0

Proof: This is because it is sections that satisfy fα([z]) = ( zβzα )kfβ([z]), which says fα glue together
to give a holomorphic function homogenous of degree k on Cn \ {0}, which extends to a function on
Cn by(10.6.5.3), then it is easy to see it is a homogenous polynomial using the power series expansion.
□

Def.(11.8.5.12) [Neron-Severi Group].For a compact complex manifold X, the Néron-Severi
group NS(X) is the image of PicC(X)→ H2(X,Z). rank(NS(X)) is called the Picard number of
X.

There is a good description of NS(X) in case X is Kähler , See Lefschetz theorem(11.10.2.6).
This is compatible with the the algebraic Néron-Severi group(8.7.3.38), Cf.[G-H78]P457,

[Vak17]P484.

Chern Connection

Prop.(11.8.5.13)[Chern Connection].Given a Hermitian holomorphic bundle E →M on a complex
manifold, there is a unique Chern connection ∇ on E, that ∇ is holomorphic(i.e. the connection
matrix is holomorphic w.r.t a homomorphic frame), and it is compatible with the Hermitian metric.

Proof: Write out the requirement: if H = hij is the matrix of the Hermitian metric, so H is
Hermitian, and we need dhij = (∇ei, ej) + (ei,∇ej) =

∑
k ωikhkj +

∑
ωjkhik.ω is holomorphic, so

must
∂H = θH, ∂H = Hθ

t
.

But Ht = H so these two equations are equivalent and θ = ∂HH−1. □

Cor.(11.8.5.14).The curvature of the Chern connection is Ω = ∂(∂(h)h−1). In particular, it is a
skew-symmetric matrix of (1, 1)-forms. If it is of dimension 1, then Ω = ∂∂ log h.

Proof: Ω is locally dω+ω∧ω, so if we choose a unitary basis, then ω is skew-symmetric by definition
and ω ∧ ω is also skew-symmetric, so Ω is skew-symmetric. The calculation is direct calculation. □

Prop.(11.8.5.15).The transformation matrix of a complex manifold is holomorphic, so it is possible
to define globally ∂ operator. And locally on a nbhd, ∂ is defined as d− ∂.

Prop.(11.8.5.16)[Normal Coordinate].For a Hermitian vector bundle E over a complex manifold
X, given any coordinate frame (zj), there exists a holomorphic frame (eλ) that

⟨eλ, eµ⟩ = δλ,µ −
∑

cjkλµzjzk +O(|z|3)

where cijλµ is the coefficient of the Chern connection Ω. Such a coordinate is called the normal
coordinate frame of E at x.

Proof: Cf.[Demailly P270]. □
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6 Cohomology

Lemma(11.8.6.1)[Dolbeault Complex, ∂-Poincaré Lemma]. If X is a complex manifold of di-
mension n, and E a holomorphic vector bundle, then there is an exact sequence:

0→ Ωp,0(E) ∂E−→ Ωp,1(E) ∂E−→ . . .
∂E−→ Ωp,n−p(E)→ 0

If p = 0, it is called the Dolbeault complex of E .

Proof: Because tensoring E is exact, it suffices to show for E = CX . As ∂
2 = 0(11.8.1.10), and the

sequence is clearly exact at Ωp,0(E), it suffices to show that if α ∈ Ωp,q(X), q > 0 satisfies ∂α = 0,
then α = ∂β for some β ∈ Ωp,q−1(X). Let

α =
∑
I

∑
J

αI,JdzI ∧ dzJ =
∑
I

dzI(
∑
J

αI,J ∧ dzJ),

then it is clear it suffices to prove for (
∑
J αI,J ∧ dzJ), and the question is reduced to the case p = 0.

Suppose α =
∑
J αJ ∧ dzJ , then we use induction on k which equals the maximal number s.t.

there is a J with k ∈ J and αJ ̸= 0. Notice k ≥ q. If k = q, then

α = fdz1 ∧ . . . ∧ dzq,

and f is holomorphic in the variables zl, l > q. Then the proof of(10.5.1.11) gives us a smooth
function g s.t. ∂

∂zq
g = f that is holomorphic in the variables zl, l > q. So

∂((−1)q−1gdz1 ∧ . . . ∧ dzq−1) = fdz1 ∧ . . . ∧ dzq.

So the case k = q is proved. Suppose the assertion is true for k − 1 ≥ q, suppose

α = α1 + α2 ∧ dzk,

where only the coordinates of index< k appear in αi. Then α2 is holomorphic in the same argument
as above shows that for each J , α2,J = ∂

∂zk
β2,J that each β2,J is holomorphic in the variables zl, l > q.

Then
∂(
∑
J

β2,JdzJ) = (−1)q−1α2 ∧ dzk + α′
1

where α′
1 involves only the coordinates zl for l < k. Then we eliminated dzk and can use induction

hypothesis from now. □

Def.(11.8.6.2) [Dolbeault Cohomology].The Dolbeault cohomology group Hp,q

∂
(X, E) of a

holomorphic vector bundle E over a complex manifold X is defined to be the q-th cohomology group
of the complex

0→ Ωp,0(E) ∂E−→ Ωp,1(E) ∂E−→ . . .
∂E−→ Ωp,n−p(E)→ 0

and Hp,q

∂
(X) is defined to be Hp,q

∂
(X,CX). By(11.8.6.5), Hp,q

∂
(X, E) ∼= Hq

∂
(M,Ωp

hol ⊗OX
E).

Cor.(11.8.6.3). If X is a complex manifold of dimension n, there are exact sequences:

0→ CX
∂−→ OX

∂−→ Ω1
hol

∂−→ . . .
∂−→ Ωn

hol → 0
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Proof: This follows from the Poincaré lemma(5.3.5.10) and ∂-Poincare lemma(11.8.6.1), by apply-
ing the spectral sequence(I mean in the category of sheaves).? □

Prop.(11.8.6.4)[Holomorphic Cohomology].For X ∈ C-Mani,

Hp(X,C) = Hp(X,Ω•
hol).

Prop.(11.8.6.5)[Dolbeault].For X ∈ C-Mani and E a holomorphic bundle,

Hp,q

∂
(X, E) ∼= Hq(M,Ωp

hol ⊗OX
E),

where the left is Dolbeault cohomology and the right is sheaf cohomology. (Use the fact that smooth
sheaf is fine so adapted to sheaf cohomology(5.3.5.4), and ∂-Poincare lemma(11.8.6.1)).

Moreover, there is a spectral sequence of

Ep,q1 = Hp,q

∂
(X)⇒ En = Hn

dR(X,R)×R C.

Prop.(11.8.6.6)[Cartan].The class of Coh-Acyclic subsets of an analytic space is exactly the class
of Stein manifolds.

Proof: □

De.Rham Cohomology

Prop.(11.8.6.7).The Frölicher spectral sequence of a compact Kähler manifold generates at E1.

Proof: □

7 GAGA
Main references are [Ser55].

Analytification of Algebraic Varieties and Sheaves

Prop.(11.8.7.1) [Analytification].For any variety over C, any open affine subset is isomorphic to
an analytic space of Cn, hence can be given an analytic structure Xan called the analytification of
X. It is a locally ringed space, together with a map Xan → X of local ringed spaces.

This construction extends to a functor

Schloc.ft,sep /C→ AnSpa /C.

An algebraic analytic space is an analytic space that is in the essential image of this functor.
Notice Xan and X have in fact the same underlying sets.

Remark(11.8.7.2).There is in fact a more general analytification for any scheme locally of finite type
over C. That is, we define it as the right adjoint to the forgetful functor from analytic spaces to local
ringed spaces. Where an analytic space is a local ringed space that locally has immersions into Cn.
Should consult [Grothendieck EGA1-7].

Proof: Notice the schemes that have an analytification is stable under open subscheme, closed
subscheme and products, and we can make a glue a large space from open subschemes by the unicity.
So we only need to consider SpecC[T ], whose analytification is C. □
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Def.(11.8.7.3) [Betti Cohomologies].For any variety defined over C, and R a ring, let
H i
Betti(X,R) = H i(Xan, R) be the Betti cohomology of X with coefficients in R.

Prop.(11.8.7.4)[Transfer of Properties].
• Xan is locally compact and σ-compact.
• Xan is Hausdorff
• A morphism f : X → Y is smooth/étaleiff fan is smooth/a local isomorphism. X is smooth

over C iff Xan is a complex manifold.
• A morphism f : X → Y is proper iff Xan → Y an is proper. In particular, X is complete(proper)

iff Xan is compact.
• If X is projective and connected, then Xan is connected iff X is connected.

Proof: 1: X is qc hence covered by f.m. affine subsets hence second-countable and use(3.3.2.23).
Xan/X is flat because completion of Noetherian rings are flat(4.2.3.14).

2: Because analytification preserves products and morphisms, and separatedness of X shows that
∆(X) is closed in X ×X, hence it is also closed in the analytification.

3: This follows from the Jacobian criterion(4.4.5.24).
4: Cf.[GAGA Serre P8].
5: This follows from(11.8.7.16), as H0(X,OX) = H0(Xan,OX). □

Prop.(11.8.7.5).There is a natural map from Ox to Hx that maps mx to mxHx, thus inducing a map
θ̂ : Ôx → Ĥx. This is an isomorphism. In particular, θ : Ωx → Hx is injective.

Moreover, if Y is a locally closed subscheme of X, then the local ideal of functions vanishing at
Y maps to Ax(Y ), and Ax(Y ) is generated by θ(Ix(Y )). Moreover, Hx,Y = Hx/Ix(Y ).

Proof: [GAGA Serre P6]. □

Cor.(11.8.7.6).The inclusion Ox ⊂ Hx is flat ring extension, by(4.4.1.20) and the fact Â/A is flat.
And dimOx = dimHx because dimA = dim Â(4.2.4.16).

Cor.(11.8.7.7).Given an open and dense subscheme U of an algebraic variety X over C, Uan is dense
in Xan.

Proof: Consider the complement Y , if Uan is not dense inXan, then there exists a x thatAx(Y ) = 0,
so by(11.8.7.5), Ix(Y ) = 0, so Y is not dense near x, contradiciton. □

Cor.(11.8.7.8).For a morphism f of algebraic varieties over C, f(X)an = f(X)an.

Proof: By Chevalley theorem(5.6.1.6), there is a open dense subscheme U of f(X) that is contained
in f(X), then(11.8.7.7) shows Uan is dense in f(X)an, so f(X)an ⊂ f(X)an. The converse is obvious.
□

Def.(11.8.7.9)[Analytification of Sheaves].Denote for a sheaf F over X F ′ the inverse image sheaf
over Xan pulled back along Xan → X. Define Fan the analytification of F as the sheaf F ′⊗OX

HX .

Prop.(11.8.7.10).F → Fan is exact from the category of sheaves on X to the category of analytic
sheaves on Xan, F ′ → Fan is injective, and it maps coherent sheaves to coherent analytic sheaves.

Proof: The first two follows from the fact that HX is flat over Xan → X(11.8.7.6). For the last
assertion, notice if OpX → O

q
X → F → 0, then HpX → H

q
X → Fan → 0, so it is coherent because HX

is coherent(11.8.3.7)(5.2.2.28). □
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Prop.(11.8.7.11).Let i : Y → X be a closed subscheme, then for a coherent sheaf F on Y , (ian)∗Fan ∼=
(i∗F)an.

Proof: These two sheaves are both 0 outside Y an, consider a point of Y , their stalks are respectively
Fx ⊗Ox,X

Hx,X and Fx ⊗Ox,Y
Hx,Y . By(11.8.7.5) we notice

Hx,Y = Hx,X/Ix(Y )Hx,X = Hx,X ⊗Ox,X
Ox,Y .

So this two are equal by associativity of tensor product. □

Prop.(11.8.7.12).By Leray Spectral sequence(5.3.1.9), for an analytic sheaf G, there is a boundary
map Hk(X,G)Hk(Xan,G). So for a sheaf F on X, there is a map

ε : Hk(X,F)→ Hk(X, an∗Fan)→ Hk(Xan,Fan)

Equivalence between Algebraic Variety and Analytic Spaces

Remark(11.8.7.13)[GAGA Principle]. In principal, any complete analytic object in CPn is alge-
braic.

Prop.(11.8.7.14).Let X,Y be algebraic varieties over C and f : X → Y is morphism that is bijective,
if fan is an analytic isomorphism, then f is an isomorphism.

Proof: Cf.[GAGA Serre P9]. □

Cor.(11.8.7.15).Let X,Y be algebraic varieties over C, iff f : Xan → Y an is holomorphic map and
the image of f in Xan × Y an = (X × Y )an comes from an algebraic subscheme, then f comes from
an algebraic morphism. (Because Xan → Γ(X) is an analytic isomorphism).

Prop.(11.8.7.16)[GAGA on Coh(X)].Let X be a proper scheme over C, then F → Fan defines an
equivalence of categories between Coh(X) and Cohan(Xan).

Proof: Cf.[GAGA Serre P13], [SGA1,Chap12].. □

Prop.(11.8.7.17)[GAGA on Projective Varieties].
• (Chow)Any analytic subvariety of CPn is algebraic.

• Any meromorphic function on an algebraic variety V ⊂ CPn is rational.

• Any meromorphic differential form on a smooth variety is algebraic.

• Any holomorphic map between smooth varieties can be given by rational maps.

• Any holomorphic vector bundle on a smooth variety is algebraic, i.e. transition function can
be made rational.

Cf.[Griffith/Harris P168,170].?
Cor.(11.8.7.18). If the analytification of a variety X is a compact complex manifold, i.e. X is
smooth(11.8.7.4), then K(X) = K(Xan), as they are both morphism to P1.
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Applications

Prop.(11.8.7.19) [Generalized Riemann Existence Theorem].Let X be a normal scheme of
finite type over C. Given any finite morphism of analytic spaces(i.e. proper and has finite fibers)
form a normal complex analytic space f : X ′ → Xan, then there is a unique normal scheme X ′ and
a finite morphism g : X ′ → X that gan = f .

Proof: Cf.[SGA1, Chap12], using resolution of singularities. □

Cor.(11.8.7.20)[Algebraic Fundamental Group].

8 Algebraic Compact Complex Manifolds
Def.(11.8.8.1)[Moishezon Manifolds].A compact complex manifold is called a Moishezon man-
ifold iff tr . deg .K(X) = dimX, by(11.8.1.5) this is the highest degree it can have. When X is
an analytification of an algebraic variety Xan, K(Xan) = K(X) by(11.8.7.18), so Moishezon is a
necessary condition for a compact complex manifold to be algebraic.

Prop.(11.8.8.2)[Chow-Kodaira].Any Moishezon manifold of dimension2 is algebraic and projective.

Proof: □

Prop.(11.8.8.3)[Moishezon].Any Moishezon manifold becomes algebraic and projective after a finite
number of monoidal transformations with non-singular centers.

Proof: □

Prop.(11.8.8.4)[Artin].The category of smooth proper algebraic spaces over C is equivalent to the
category of Moishezon manifolds.

In particular, there are non-algebraic Moishezon manifolds in dimension≥ 3. Examples are given
in[Har77]P444.

Proof: □

Prop.(11.8.8.5)[Moishezon].Every Moishezon manifold that is Kähler is projective and algebraic.

Proof: Cf.[Moishezon On n-dimensional compact varieties with n algebraically independent mero-
morphic functions]. □
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11.9 Kähler Geometry
Basic References are [Voi02], [Principle of Algebraic Geometry Griffith/Harris], more advanced

stuffs to add from [Kähler Geometry] and [Huy05]. Even more advanced is [Demailly Complex
Analytic and Differential Geometry].

Notation(11.9.0.1).
• Use notations as in Complex Geometry.

1 Kähler Metric
Def.(11.9.1.1)[Kähler Manifolds].A metric g on a manifold M is called a Kähler metric if the
metric form ωg is closed. In which case, it is called the Kähler class or Kähler form of g in H2

dR(M).
A complex manifold with a Kähler metric is called a Kähler manifold.

If gij = g( ∂
∂zi
, ∂
∂zj

), then ωg =
∑
ij gijdzi ∧ dzj . Then the condition of ωg being closed can in fact

be written in derivatives of g.

Prop.(11.9.1.2). If g is Hermitian, then ωg is real, non-degenerate and 1
n!ω

n is a volume form on M .
In particular, if ω is Kähler, then it is a symplectic form.

Proof: If g =
∑
φi ⊗ φi, then ω = i

∑
φi ∧ φi, so it is clear that ω = ω. ω is non-degenerate as g

is. The last assertion follows from(2.3.8.7). □

Cor.(11.9.1.3). If M is a compact Kähler manifold, then its even dimensional cohomology group
doesn’t vanish(11.5.1.6).

Remark(11.9.1.4).Notice there are notions like almost Hermitian and almost Kähler, similar to the
definition of Hermitian and Kähler, but they are just defined using an almost complex structure on
M . And an almost Kähler structure is Kähler iff ∇J = 0, Cf.[Foundation of Differential Geometry
Kobayashi].

Example(11.9.1.5)[Kähler Manifolds].
• If M = R2n, g =

∑
dxi ∧ dxi +

∑
dyi ∧ dyi, then ωg = i

2
∑
dzi ∧ dzi is Kähler.

• The metric ωg =
∑
dzi ∧ dzi on a complex tori Cn/Λ is Kähler.

• Any Riemann surface is Kähler , because dω is a 3-form so vanish.
• if M = B(0, 1) ⊂ Cn and ωg = i ∂∂ log 1

1−|z|2 , then it is Kähler.

• The product metric on the product space M ×N of two Kähler manifold is Kähler.
• A submanifold of a Kähler manifold is Kähler, as the Kähler form is the pullback of the Kähler

form of the large manifold.

Prop.(11.9.1.6)[Fubini-Study Metric].The Fubini-Study metric form on CPn is defined locally
to be i ∂∂|s|2, for any local lifting s of the projection Cn\{0} → CPn. This doesn’t depend on the
lifting, as ∂∂(log f+log f) = 0, so they glue together to be a global form on CPn. It can be checked, ω
is translation invariant and on the coordinate (1, w1, . . . , wn)→ (w1, . . . , wn), ω|(0,...,0) =

∑
dwi∧dwi,

so it is positive definite.

Cor.(11.9.1.7).Any projective manifold is Kähler.

Prop.(11.9.1.8). the Fubini-Study metric on CPn has sectional curvature 1 ≤ K ≤ 4.
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Proof: Cf.[Do Carmo P188].? □

Prop.(11.9.1.9)[Kähler Normal Coordinate].For a Hermitian metric g on M , g is Kähler iff for
any point p of M , there is a holomorphic coordinate centered at p, ωg =

∑
gijdzi ∧ dzj satisfying

gij(p) = 0 and dgij(p) = 0. This coordinate is called Kähler normal coordinate. (Notice this is
different from Darboux theorem, because this coordinate should be holomorphic).

Proof: Cf.[Complex Geometry P210]. □

2 Geometry of Kähler Manifolds
Prop.(11.9.2.1).Let (M,J, g) be a Kähler manifold, then the complexification of the Levi-Civita
connection of g restricts to the Chern connection on T 1,0M .

Proof: Cf.[Complex Geometry note ⽯亚龙 48] and [Complex geometry Daniel Chap4.A]. □

Prop.(11.9.2.2).For a Kähler manifold, ∇J = 0.

Proof: The problem depends only on first derivative, so choosing a Kähler normal nbhd(11.9.1.9),
we may choose J to be constant, so obviously ∇J(p) = 0, P is arbitrary, so ∇J = 0. □

Cor.(11.9.2.3).∇(JX) = J∇X, so R(X,Y )JZ = JR(X,Y )Z, thus

⟨R(JX, JY )Z,W ⟩ = ⟨R(Z,W )JX, JY ⟩ = ⟨R(Z,W )X,Y ⟩ = ⟨R(X,Y )Z,W ⟩,

so R(JX, JY )Z = R(X,Y )Z.

Prop.(11.9.2.4).The curvature tensor of the complexified Levi-Civita connection on a Kähler mani-
fold can be calculated in terms of ∂i, ∂j , Cf.[Complex Geometry note ⽯亚龙 50].

3 Kähler Identities
Let X be a compact complex Kähler manifold.

Def.(11.9.3.1). Introduce some operators:
• dc = i(∂ − ∂), then ddc = 2i∂∂.
• The Lefschetz operator L(η) = ω ∧ η. Λ is defined as the formal adjoint of L as Ap,q is an

inner space. In fact, Λ = ± ∗ L∗.
• h = (k − n) on Ak(X).

Prop.(11.9.3.2). [L,Λ] = p+ q − n on (p, q)-forms.

Proof: The problem doesn’t depends on the derivatives, so using the Kähler normal coordi-
nate(11.9.1.9), it suffice to prove for Cn, for this, Cf.[Griffith/Harris P120] or [Complex Geometry
P34]. □

Prop.(11.9.3.3)[Kähler Identities].

[Λ, ∂] = i∂
∗
, [Λ, ∂] = −i∂∗.

Proof: The second one follows from the first because ω is a real form. For the first, notice only
first derivation are involved, so by using the Kähler normal coordinate, it suffice to prove for Cn, and
this is by [Complex Geometry ⽯亚龙 P61]. □
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Cor.(11.9.3.4).
[Λ, dc] = d∗, [Λ, d] = −dc∗.

Prop.(11.9.3.5).∆d commutes with both L and Λ.

Proof: L commutes with d because ω is closed, so taking adjoints, Λ commutes with d∗. Now by
Kähler identities,

Λ∆d = Λ(dd∗ + d∗d) = −dc∗d∗ + dd∗Λ− dd∗c + d∗dΛ = ∆dΛ.

So taking adjoints, ∆d also commutes with L. □

Prop.(11.9.3.6). In the Kähler case, ∆∂ = ∆∂ = 1
2∆d.

Proof:

∆d = (∂ + ∂)(∂∗ + ∂
∗) + (∂∗ + ∂

∗)(∂ + ∂) = ∆∂ + ∆∂ + (∂∂∗ + ∂
∗
∂) + (∂∂∗ + ∂∗∂)

So it suffice to prove ∂∂∗ + ∂
∗
∂ = 0(so ∂∂∗ + ∂∗∂ = 0 by conjugation), and ∆∂ = ∆∂ . For the

first, use Kähler identities, then

i(∂∂∗ + ∂
∗
∂) = ∂[Λ, ∂] + [Λ, ∂]∂ = 0

For the second, using Kähler identities,

i∆∂ = ∂[Λ, ∂] + [Λ, ∂]∂ = ∂Λ∂ + ∂∂ − Λ∂∂ − ∂Λ∂

and the same is miraculous true for ∆∂ , so the result is true. □

4 Hodge Theory
Thm.(11.9.4.1)[Hodge Decomposition for compact Kähler Manifolds].For a compact Kähler
manifold X,

Hr
dR(X,C) =

⊕
p+q=r

Hp,q

∂
(X) ∼=

⊕
p+q=r

Hq(X,Ωp)

and Hp,q

∂
(X) ∼= Hq,p

∂
(X). Moreover, this decomposition doesn’t depends on the Kähler metric.

Proof: (11.9.3.6) shows that ∆d maps Ap,q to Ap,q, so H
p+q
d ∩ Ap,q = Hp,q

∂
(X). The last assertion

is seen using the ∆d definition.
If chosen two different Kähler metric g, g′, there Hp,q(X, g) ∼= Hp,q(X) ∼= Hp,q(X, g′). If α, α′ be

g, g′ ∂-harmonic respectively, so by definition α−α′ = ∂γ for some γ, and they are both d-harmonic,
so d∂γ = 0, and ∂γ is g-orthogonal to Hk(X, g) by Hodge decomposition for ∂ with metric g, so by
Hodge theorem for d with metric g, ∂γ is d-exact, so [α] = [α′]. □

Cor.(11.9.4.2).Betti number br =
∑
p+q=r h

p,q, hp,q = hq,p. In particular, b2k+1 is always even.

Cor.(11.9.4.3)[Holomorphic Forms on Kähler Manifolds are Closed].Hp,0
∂

(X) = H0(X,Ωp).
Now a (p, 0)-form is automatically ∂∗-closed, so it is ∂-harmonic iff it is holomorphic. So we conclude
any holomorphic p-form on a Kähler manifold is d-closed, even d-harmonic.

Lemma(11.9.4.4) [∂∂-lemma].A closed differential form η on a compact Kähler manifold M is d-
exact iff it is ∂-exact iff it is ∂-exact iff it is ∂∂-exact.
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Proof: Now ∆d,∆∂ ,∆∂ are all the same, By Hodge theorem, it suffice to prove, if a form is
orthogonal to Hp,q(X), then it is ∂∂-exact(this implies other exactness).

Noe η is d-closed hence ∂ and ∂-closed, then η = ∂γ for some γ, and then γ = ∂β + ∂
∗
β′ + β′′

for β′′ harmonic. So η = ∂∂β + ∂∂
∗
β′, and then ∂η = ∂∂

∗
∂β = 0, but then inner product with ∂β

shows ∂∗
∂β = 0, so η = ∂∂β. □

Cor.(11.9.4.5)[Kodaira-Serre Duality].By(11.1.10.15), For a Hermitian line bundle over a compact
Hermitian complex manifold X, from Hodge theorem and(11.8.5.2), we get

Hp(X,Ωq(E)) ∼= Hn−p(X,Ωn−q(E∗))

induced by ∗E and ∗E∗ . Moreover, there is a perfect pairing

Hp(X,Ωq(E))×Hn−p(X,Ωn−q(E∗))→ C

induced by
Hp,q(X,E)×Hn−p,n−q(X,E∗)→ C : (α, β) 7→

∫
X
α ∧ ∗Eβ

In fact,
∫
X α ∧ ∗Eα = ||α||2 ̸= 0.

Prop.(11.9.4.6).Holomorphic 1-forms on a compact complex surface is closed.?
Prop.(11.9.4.7)[Hard Lefschetz Theorem].For a compact Kähler manifold M , the map

Lk : Hn−k(M)→ Hn+k(M)(11.9.3.1)

is an isomorphism,(notice it is defined because L commutes with ∆d(11.9.3.5)).
Define the primitive cohomology class Hn−k

prm (M) = ker(Lk+1|Hn−k), then

Hm(M) = ⊕kLkHm−2k
prm (M).

Proof: Cf.[Griffith/Harris P122], using representation theory of sl2. □

Thm.(11.9.4.8)[Hodge-Riemann Bilinear Relation].Let (X,ω) be a Kähler manifold of dimen-
sion n, then for k ≤ n, we can define a Hermitian form

H(α, β) = ik
∫
X
ωn−k ∧ α ∧ β = ik⟨Ln−kα, β⟩

on Hk(X;R). Then it satisfies:
• The Hodge decomposition(11.9.4.1) is orthogonal for H.
• If α ̸= 0 ∈ Hp,q

prm(X), then
ip−q−k(−1)

k(k−1)
2 H(α) > 0

Proof: Cf.[Griffith/Harris] or [Complex Geometry Daniel P138] or[Hodge Theory, Chap6.3.2]. □

Cor.(11.9.4.9).For a compact Kähler manifold of complex dimension 2m,

sgn(X) =
m∑

p,q=0
(−1)php,q(m)
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Proof: Cf.[Complex Geometry Daniel P140]. □

Prop.(11.9.4.10) [Hirzebruch-Riemann-Roch].By(11.1.10.8), for a n-dimensional complex line
bundle L over a compact Kähler manifold M ,

χ(M,L) =
∫
M

[ch(E)td(T 1,0M)]n.

Where χ(M,L) =
∑n
q=0(−1)q dimHq(M,E), ch is the Chern character(11.1.9.5) and td(T 1,0M) is

the Todd polynomial, i.e. Taylor expansion of ∏r
i=1

ti

1− e−ti
in terms of the symmetric polynomial,

applied to ci(T 1,0M).

Cor.(11.9.4.11) [Riemann-Roch].By(11.1.10.9), for a complex vector bundle E over a Riemann
surface M , let degE =

∫
M c1(E), then

χ(M,E) = H0(M,E)− dimH1(M,E) = degE + rk(E)(1− g).

Cor.(11.9.4.12).For other examples of corollaries of Hirzebruch-Riemann-Roch theorem, Cf.[Complex
Geometry P232].

5 Complex Tori
Def.(11.9.5.1)[Complex Tori].A complex torus is a pointed complex manifold isomorphic to the
complex manifold V/Λ, where V is a f.d. vector space over C and Λ is a complete lattice in V .

Prop.(11.9.5.2).Let X = V/Λ, X ′ = V ′/Λ′ be complex tori, then any C-linear map α : V → V ′ s.t.
α(Λ) ⊂ Λ′ defines a holomorphic map X → X ′ sending 0 to 0. And any holomorphic map X → X ′

sending 0 to 0 is of this form.

Proof: Any φ : X → X ′ lifts to a continuous map ψ : V → V ′, and it is holomorphic because
the morphisms V → X,V ′ → X ′ are locally biholomorphic, ψ is also holomorphic. For any ω ∈ Λ,
ψ(z + ω) − ψ(z) has value in Λ′ for any z, so ψ(z + ω) = ψ(z) + a(ω). From here it is easy to see
that ψ is linear. □

Def.(11.9.5.3)[Riemann Pairs].A Riemann pair is a pair (Λ, J) where Λ is a finite Z-module of
finite rank, and J is a complex structure on Λ ⊗R. A homomorphism of Riemann pairs is a group
homomorphism Λ→ Λ′ that preserves the complex structure.

Prop.(11.9.5.4)[Riemann Pairs and Abelian Varieties].There is an equivalence of the category
of Riemann pairs with AbVar /C by

(Λ, J) 7→ (Λ⊗R)/Λ.

Proof: It is fully faithful by(11.9.5.2), and it is clearly essentially surjective. □

Prop.(11.9.5.5)[Cohomology of Complex Tori].For any complex torus X = V/Λ, H1(X,Z) ∼= Λ,
so H1(X,Z) ∼= Hom(Λ,Z), and by Künneth formula,

Hn(X,Z) ∼= ∧nH1(X,Z) ∼= ∧n Hom(Λ,Z).
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Then

Hn(X,C) ∼= ∧n HomR(V,C) ∼= ∧n(HomC(V,C)⊕HomC(V ,C)) =
⊕

p+q=n
∧pV ∗ ⊗ ∧qV ∗

and
H1(X,C) ∼= Λ⊗Z C ∼= V ⊗R C ∼= V ⊗ V ∗ = Tgt0(X)⊕ Tgt0(X).

Cor.(11.9.5.6)[Complex Tori are Kähler].A complex torus(11.9.5.1) X = V/Γ is a Kähler mani-
fold. And H2(X,R) ∼= ∧2 HomR(V,R), by(11.9.5.5).

Prop.(11.9.5.7) [Hodge Theory of Complex Tori].Let X = V/Λ be a complex torus, as X is
Kähler(11.9.5.6), there is a decomposition

Hn
dR(X,C) ∼=

⊕
p+q=n

Hq(X,Ωp)

by(11.9.4.1). Then this decomposition corresponds to the decomposition in(11.9.5.5) via the isomor-
phism Hn

dR(X,C) ∼= Hn(X,C). In particular, there is a canonical isomorphism

Hq(X,Ωp) ∼= ∧pV ∗ ⊗ ∧qV ∗
.

Proof: □

Def.(11.9.5.8)[Dual Complex Tori].Let X = V/Λ be a complex torus with a Riemann form, then
we can define the dual complex torus as

X∨ = V ∗/Λ∗

where V ∗ = HomC(V,C) and Λ∗ = {f ∈ V ∗|f(Λ) ⊂ Z}.

Riemann Forms

Prop.(11.9.5.9)[Riemann Forms].For a complex torus V/Λ, it is projective iff there is a Riemann
form on V , which is an alternating bilinear form ω : V × V → R that:

• ω(iu, i v) = ω(u, v).
• ω(v, i v) > 0 for v ̸= 0.
• ω(u, v) ∈ Z for u, v ∈ Γ.

Notice ω is clearly non-degenerate.

Proof: Use(11.9.5.6). The conditions are just equivalent to ω being an integral positive Kähler
form(11.9.8.6). □

Prop.(11.9.5.10)[Dual Riemann Forms]. If X = V/Λ is a complex torus with a Riemann form,
then the dual complex torus(11.9.5.8) X∨ also has a Riemann form defined as follows: any f ∈ V ∗

corresponds to an element vf s.t. f(u) = ω(u, vf ). Thus we can define ω′(f, g) = ω(vf , vg). And
there is an isogeny(i.e. surjective isomorphism with finite kernel)

A→ A∨ : a 7→ [x 7→ ω(x, a)]

which is compatible with the Riemann forms.
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6 Positivity
Def.(11.9.6.1)[Positive Line Bundle].A 2-form ω on a Hermitian complex manifold M is called
positive iff ω(u, Ju) ≥ 0 for u ̸= 0 ∈ TM , which is equivalent to −iω(v, v) > 0 for all v ∈ T 1,0X.

A holomorphic vector bundle is called (Griffith-)positive iff there exists a Hermitian metric on
it that the curvature form Ω for the Chern connection(11.8.5.13) satisfies h(Ω(s), s)(v, v) > 0 for all
s ∈ E and v ∈ T 1,0X.

The pullback of a positive line bundle along an immersion is positive.

Prop.(11.9.6.2)[Positivity on Kähler Manifolds].On a compact Kähler manifold, being positive
is a topological property for line bundles. It is equivalent to the first Chern class of L can be
represented by a positive form in H2

dR(M).

Proof: c1(L) = [ i2πΩ], so one direction is trivial, and if c1(L) = [ i2πθ], choose an arbitrary Hermitian
metric h on L, then by ∂∂-lemma(11.9.4.4), θ = Ω + ∂∂ρ for some smooth function ρ. Then eρh has
Ω = θ by formula(11.8.5.14). □

Cor.(11.9.6.3).On a compact Kähler manifold, if L is positive, then for any other Hermitian line
bundle L′, kL+ L′ is positive.

Prop.(11.9.6.4).The hyperplane line bundle O(1)(11.8.5.9) is positive.

Proof: The hyperplane line bundle is dual to the tautological line bundle. The metric on the
tautological line bundle is given by locally gi = 1

|zi|2
∑
|zi|2. It is compatible with the transition map,

and then by(11.8.5.14), the Chern curvature is

∂∂( 1
|zi|2

∑
|zi|2) = ∂∂(

∑
|zi|2).

So by(11.2.3.6) the curvature of the hyperplane line bundle times i is just the Fubini-Study metric
form(11.9.1.6), so it is positive. □

Prop.(11.9.6.5).For X̃ → X the blowing-up of X at a point x, If L is a positive line bundle on X,
then for any integer n, there exists a k > 0 that π∗Lk − nE is a positive line bundle on X̃, where E
is the exceptional divisor.

Proof: Involves explicit metric calculation, Cf.[Kodaira Embedding Theorem P11] and [Complex
Geometry P249].. □

7 Kodaira Vanishing Theorem
Prop.(11.9.7.1)[Nakano Identities].For a holomorphic vector bundle over a compact Kähler man-
ifold (M,ω) with Hermitian metric h, introduce operators L and Λ as before. If we denote the (1, 0)
and (0, 1)-part of the Chern connection on E by D′ and D′′ = ∂, then

[Λ, ∂] = −iD′∗, [Λ, D′] = i∂
∗

Proof: The question is local, choose normal coordinate frame at x(11.8.5.16), then by the formula
of Chern connection(11.8.5.14), ∇E = d+A, A(x) = 0, and ∇E∗ = d+B, B(x) = 0. so

[Λ, ∂E ] + iD′∗ = [Λ, ∂] + i∂∗ + [Λ, A0,1] + iB0,1

where the usual Kähler identities(11.9.3.3) are used. Then it is zero when evaluated at x, Cf.[Demailly
Complex Analytic and Differential Geometry P329]. □
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Cor.(11.9.7.2)[Bochner-Kodaira-Nakano Identity].

∆∂,E −∆D′,E = i[Ω,Λ]

Proof:
−i∆D′,E = D′[Λ, ∂] + [Λ, ∂]D′ = D′Λ∂ −D′∂Λ + Λ∂D′ − ∂ΛD′

and similar calculation for i∆∂,E , so

i∆∂,E − i∆D′,E = Λ(∂D′ +D′∂)− (∂D′ +D′∂)Λ = −[Ω,Λ].

□

Prop.(11.9.7.3) [Kodaira-Akizuki-Nakano Vanishing Theorem]. If L is a positive line bundle
on a compact Kähler manifold M , then

Hp(M,Ωq(L)) = 0

for p+ q > n. In particular, Hp(M,KM ⊗ L) = 0 for p > 0.

Proof: By Hodge theorem(11.1.10.13), it suffice to prove there are no harmonic (p, q)-forms∈
Hp,q(X,L) on L.

As iΩ = ω is positive, we may endow M with the metric ω, then by(11.9.7.2) and(11.9.3.2),
∆∂ −∆D′ = [L,Λ] = p+ q − n on Ap,q.

So if s ∈ Hp,q(X,L), then (∆∂s − ∆D′s, s) = (p + q − n)||s||2 ≥ 0, but (∆∂s − ∆D′s, s) =
−(∆D′s, s) = −||D′s||2 − ||D′∗s||2 ≤ 0, so s = 0. □

Cor.(11.9.7.4) [Serre’s Theorem].Let L be a positive line bundle on a compact complex Kähler
manifold M , then for any holomorphic vector bundle E , for m large, Hq(M,Lm ⊗ E) = 0.

Proof: Same notation as in the proof of(11.9.7.3), choose Hermitian structure on E and L and
their Chern connections by ∇E ,∇L, the corresponding Chern connection on E ⊗ Lm is denoted by
∇, and make sure i

2πF∇L
is the Kähler form ω, then for any harmonic form α ∈ Hp,q(X,E ⊗ Lm),

by(11.9.7.2), i
2π ([Λ, F∇](α), α) ≥ 0, but i

2πF∇ = i
2πF∇E

+mω, so

0 ≤ i

2π
([Λ, F∇E

](α), α) +m(n− p− q)||α||2

Notice |([Λ, F∇E
](α), α)| has a bound by Schwartz inequality, then if p + q > n and m sufficiently

large, α must by 0. In this case Hp,q(X,E⊗Lm) = 0, but H0,q(X,KX⊗E⊗Lm) ⊂ Hn,q(X,E⊗Lm),
so it is 0. Now we’ve proved Hq(X,KX ⊗ E ⊗ Lm) = 0 for any E if m is large. But E is arbitrary,
so the conclusion is true. □

Cor.(11.9.7.5)[Grothendieck’s Lemma].Every holomorphic vector bundle E over CP1 is uniquely
isomorphic to a finite direct sum of O(ai).

Proof: If E has rank 1, this is the content of(11.8.5.10), so use induction on rank of E.
Choose a maximal a that Hom(O(a), E) = H0(CP 1, E(−a)) ̸= 0. This a exists because
Serre’s Theorem(11.9.7.4) shows that H1(CP1, E(−a)) = 0 for a sufficiently small, and Riemann-
Roch(11.1.10.9) shows that χ(CP1, E(−a)) = degE + rk(E)(1 − a) is positive for a sufficiently
small, so H0(CP 1, E(−a)) ̸= 0. Conversely, if a is sufficiently large, then H0(CP1, E(−a)) ∼=
H1(CP1, E∗(a− 2)) = 0(Notice KCPn = O(−n− 1)).
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So now there is an exact sequence of sheaves

0→ O(a) s−→ E → E1 → 0

I claim E1 is also a vector bundle, because s never vanishes, otherwise if it vanish at some x, then
we can divide by a linear factor sx ∈ H0(CP1,O(1)) to get a map O(a+ 1)→ E, contradicting the
maximality. So by induction E1 = ⊕O(ai), then I claim ai ≤ a, because otherwise H0(CP1, E1(−a−
1)) ̸= 0, and by the exact sequence 0→ O(−1)→ E(−a− 1)→ E1(−a− 1)→ 0, H0(CP1, E(−a−
1)) ̸= 0, contradiction.

Then we want to show the above sequence splits, this is equivalent to

0→ E∗
1(a)→ E∗(a)→ O → 0

splits, and his follows from the fact H1(CP1, E∗
1(a)) = H1(CP1,⊕O(a − ai)) = 0, by Serre duality.

So there is a section lifting O → E∗(a), which splits the sequence. □

Prop.(11.9.7.6) [Weak Lefschetz Theorem].Let X be a compact Kähler manifold and Y be a
submanifold that the line bundle L(Y ) is positive, then the canonical restriction map Hk(X,C) →
Hk(Y,C) is isomorphism for k ≤ n− 2 and injective for k = n− 1.

Proof: In fact, using Hodge decomposition, it suffices to prove on the level ofHq(X,Ωp
X). Tensoring

the exact sequence
0→ OX(−Y )→ OX → i∗i

∗
YOX → 0

with Ωp
X and taking the cohomology. By Serre duality and Kodaira vanishing(11.9.7.3), the map

Hq(X,Ωp
X)→ Hq(X,Ωpi∗i

∗
YOX) is isomorphism for p+ q < n− 1 and injection for p+ q = n− 1.

Next consider the exact sequence 0 → TY → TX → NY/X → 0. By(5.5.1.26) there is an exact
sequence

0→ ∧pTY → ∧pTX|Y → ∧q−1TYNY/X → 0

Taking dual and applying adjunction formula(11.8.1.3), it becomes:

0→ Ωq−1
Y ⊗O(−N)→ Ωq

X |Y → Ωq
Y → 0

Taking cohomology and use Serre duality and Kodaira vanishing as before, the result follows, and
the composition is also true. □

Remark(11.9.7.7).There is a topological proof of weak Lefschetz theorem in [Bott, On a Theorem
of Lefschetz].

8 Kodaira Embedding
Prop.(11.9.8.1)[Kodaira map].For a holomorphic line bundle L on a compact complex manifoldM ,
if s0, . . . , sn be a basis of H0(X,L), we try to define a map from M to CPn : x→ [s0(x), . . . , sn(x)].
This is independent of the change of coordinates because gαβ is invertible, and it is definable iff L is
basepoint-free. This map is holomorphic where it is definable.

Def.(11.9.8.2)[Ample Holomorphic Line Bundles].A holomorphic line bundle L on a compact
complex manifold X is called a

• semi-ample holomorphic line bundle iff for m large, Lm is basepoint-free.
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• very ample holomorphic line bundle iff L is basepoint-free and the Kodaira map ιL : X →
CPN is a holomorphic embedding.

• ample holomorphism line bundle iff for m large, Lm is very ample.

Lemma(11.9.8.3)[Cohomological Method for Very Ampleness].For the above Kodaira map to
be a holomorphic embedding, it suffice to show that the map is definable, injective and surjective
on cotangent space. For these, it is equivalent to H0(X,L) → Lx surjective, H0(X,L) → Lx ⊕ Ly
surjective, and L⊗ Ix → Lx ⊗ T 1,0∗(X)x surjective. And they are true if

H1(X,L⊗ Ix) = 0, H1(X,L⊗ Ix,y) = 0, H1(X,L⊗ I2
x) = 0.

respectively.

Proof: Basepoint-free at x is easily seen to be equivalent to H0(X,L)→ Lx surjective. And there
is an exact sequence of sheaves:

0→ L⊗ Ix → L→ Lx → 0

where Lx means the skyscraper sheaf. So H1(X,L⊗ I2
x) = 0 induces the result.

Injective is easily seen to be equivalent to H0(X,L)→ Lx ⊕Ly surjective. And there is an exact
sequence of sheaves:

0→ L⊗ Ix,y → L→ Lx ⊕ Ly → 0

where Ix,y is the sheave of functions vanishing at x and y, and Lx ⊕ Ly means the skyscraper sheaf.
So H1(X,L⊗ Ix,y) = 0 induces the result.

For the surjection on cotangent spaces, given any point x, choose a basis s1, . . . , sn of sections in
H0(X,L) vanishing at x, and by basepoint-free, there is a s0 not vanishing at x, then on a coordinate,
the Kodaira map is given by x→ (s1/s0, . . . , sn/s0), then it need to be checked dx(si/s0) = dx(xi)/s0
span T 1,0∗(X)x. But there are exact sequences of sheaves:

0→ L⊗ I2
x → L⊗ Ix

dx−→ Lx ⊗ T 1,0∗
x → 0

where dx is given by dx(s ⊗ f) = s(x) ⊗ dx(f)(by the universal property of skyscraper sheaf), it
suffice to give a map (L ⊗ Ix → Lx ⊗ T 1,0∗

x ), notice this is independent of the coordinate because
dx(sα) = dx(gαβsβ) = gαβdx(sβ), as sα vanishes at x, so this is truly a sheaf map, and its kernel is
L⊗ I2

x. So H1(X,L⊗ I2
x) = 0 induces the result. □

Prop.(11.9.8.4) [Ampleness and Positivity].A holomorphic line bundle L on a compact Kähler
manifold is ample iff it is positive.

Proof: If L is ample, then Lm is the pullback of the hyperplane bundle by the Kodaira map. The
hyperplane line bundle is positive by(11.9.6.4), so Lm is positive with the induced metric, so L is also
positive given the m-th roots of the induced metric (notice the metric of line bundle is just locally a
number compatible with transition map).

Conversely, using(11.9.8.3), we want to find a Lk that H1(X,Lk ⊗ Ix) = 0,H1(X,Lk ⊗ Ix,y) =
0,H1(X,Lk ⊗ I2

x) = 0. First notice it suffice to prove for single points when k is sufficiently large,
because the holomorphic embedding is an open property and X is compact so a sufficiently large k
will suffice.
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Consider the blowing-up X̃ at a point x, there is a commutative diagram

H0(X,Lk) Lkx

H0(X̃, π∗Lk ⊗ Lkx) H0(E,OE)⊗ Lkx

π∗ ∼=

The right vertical map is isomorphism as E ∼= CPn, so H0(E,OE) = C. The left exact sequence
is also isomorphism: it is injective because π is surjective, and it is surjective because: if dimX = 1,
then π = id so trivially true, and if dimX ≥ 2, then because π : X̃ −E ∼= X −{x}, any holomorphic
function on X̃ induces a holomorphic function on X − {x} and by Hartog’s theorem(10.6.5.3), it
comes from a holomorphic function on X.

Now the second horizontal line is part of the cohomology exact sequence of(5.5.3.15)

0→ π∗Lk ⊗O
X̃

(−E)→ π∗Lk → π∗Lk|E → 0

So it is reduced to prove H1(X̃, π∗Lk ⊗O(−E)) = 0, but by(5.8.2.8), π∗Lk −E = π∗Lk −E +K
X̃
−

π∗KX − (n − 1)E = K
X̃

+ (π∗Lk − E) + π∗(Lk − KX), and by(11.9.6.5)(11.9.6.3) the last two are
positive when k is large, so the conclusion follows from Kodaira vanishing(11.9.7.3).

The proof of H1(X,Lk ⊗ Ix,y) = 0 is verbatim, just use blowing-up at two different points.
To prove H1(X,Lk ⊗ I2

x) = 0, consider the blowing-up X̃ at a point x, notice there is a commu-
tative diagram

H0(X,Lk ⊗ Ix) Lkx ⊗ T 1,0∗Xx

H0(X̃, π∗Lk − E) Lkx ⊗H0(E,−E)

dx

π∗ ∼=

In fact this comes from the two commuting exact sequences twisted with π∗Lk:

0 π∗I2
x π∗Ix π∗T 1,0∗Xx 0

0 O(−2E) O(−E) OE(−E) 0

dx

The second line is(5.5.3.15) and the fact a section vanishing at x lifts to a section vanishing at E
thus equivalent to a section in the twisted sheaf −⊗O(−E). These two exact sequences commutes
because

Back to the commutative diagram, the above argument also shows that the first vertical map is
isomorphism. To show the second vertical map is isomorphism, notice by(5.8.2.7) O(−E) is just the
hyperplane line bundle on E, so H0(E,−E) ∼= T 1,0∗Xx, we need to know the vertical map is the
natural map V ∗ → H0(P(V ),O(1)). This in fact need some careful calculation using coordinates
in(5.8.2.7).?

Now the map dx is surjective iff the second horizontal map is surjective, with is part of the
cohomology exact sequence of

0→ π∗Lk ⊗O
X̃

(−2E)→ π∗LkO
X̃

(−E)→ π∗Lk|E → 0

So it is reduced to prove H1(X̃, π∗Lk ⊗ O(−wE)) = 0, which is by Kodaira vanishing theorem the
same reason as before. □
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Cor.(11.9.8.5)[Kodaira Embedding Theorem]. If a compact complex manifold M has a positive
line bundle, then it is projective.

Def.(11.9.8.6) [Hodge Manifolds].A compact Kähler manifold X is projective iff it has a closed
positive (1, 1)-form ω whose cohomology class [ω] is rational(resp. integral)(i.e. in H2(X,Q)(resp.
H2(X,Z))). In fact, a compact Kähler manifold with a Hodge metric is called a Hodge manifold.
A pair (X, [ω]) where X is a compact Kähler manifold and [ω] ∈ H2(X,Z) is called a polarized
manifold.

So compact Hodge manifolds are just those compact Kähler manifolds together with an ample
line bundle class.

Proof: if ω is rational, then a multiple of it is integral, then there is a L that c1(L) = k[ω]
by Lefschetz theorem on (1, 1)-forms(11.10.2.6), so L is positive by(11.9.6.2), which is equivalent
to ampleness by(11.9.8.4), so X is projective. Conversely, the Chern class of the pullback of the
hyperplane line bundle is positive and rational(11.9.6.4)(11.10.2.6). □

Cor.(11.9.8.7)[Compact Riemann Surfaces are Hodge Manifolds].A Riemann surface is a
complex variety of dimension 1. Any compact Riemann surface is a compact Hodge manifold.

Proof: This is because H2(X,C) = H2(X,Q) ⊗Q C ∼= C is generated by the metric form ω, so
there must be a multiple of ω that is integral. □

Cor.(11.9.8.8). if X̃ is the blowing-up of a Kähler manifold X at a point x, then if X is projective,
then X̃ is also projective, because by(11.9.6.5) π∗Lk\E is positive for k large.

Cor.(11.9.8.9).For a finite unbranched cover of compact Kähler manifolds X̃ → X, X̃ is projective
iff X is projective.

Proof: A positive rational closed (1, 1)-form on X pull backs to a positive rational closed (1, 1)-form
on X̃, and it can even be pulled forward: ω′ =

∑
y∈π−1(x)(π−1)∗ω(y), then it is also positive closed.

It is rational because
∫
X ω

′ ∧ η = 1
d

∫
X′ ω ∧ π∗η, where X̃ → X is branched of degree d. □

Def.(11.9.8.10)[the Kähler Cone].For a Kähler manifold X, the Kähler cone KX is defined to be
the set of closed real positive (1, 1)-forms. Then KX is an open convex cone in H1,1(X)∩H2(X,R).
Then(11.9.8.6) says X is projective iff KX ∩H2(X,Z) ̸= 0.

9 Fujiki Manifolds
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11.10 Hodge Theory

1 Hodge-Structures and Polarization

Cf.[Complex Geometry Daniel Chap3.A].

Def.(11.10.1.1)[Integral Hodge Structures].An integral Hodge structure of weight k ∈ Z is
given by a a finite free Abelian group Λ together with a Hodge decomposition

ΛC = ⊕p+q=kV
p,q.

satisfying V p,q = V q,p.
Given an integral Hodge structure, we can associate a Hodge filtration F •V : F pV =

⊕r≥pV r,k−r. It satisfies
VC = F pΛ⊕ F k−p+1Λ

for any p, and for any p+ q = k,
V p,q = F pΛ ∩ F qΛ.

Thus giving the Hodge decomposition is equivalent to giving the Hodge filtration.

Def.(11.10.1.2)[K-Hodge-deRham Structures].For a subfield ι : K ⊂ C, a K-Hodge-deRham
structure is a 4-tuple V = (VQ, VK , u, (V p,q)p,q∈Z) where

• VQ ∈ VectQ, VK ∈ VectK ,
• u is an isomorphism

u : VK ⊗K C ∼= VQ ⊗Q C,

endowing VK ⊗K C with a real structure,
• (Vp,q) is a finite disjoint family of subspaces of VK⊗C s.t.

VK ⊗K C =
⊕
p,q

V p,q, V p,q = V q,p

and V is called pure of weight i iff V p,q = 0 unless p+ q = i.

Def.(11.10.1.3)[Primitive Parts].

Def.(11.10.1.4)[Hodge Classes]. If Λ is an integral Hodge structure of weight 2p, define the Hodge
classes of degree 2p to be the

Hdg2p(Λ,Z) = Λ ∩ V p,p = ker(Λ→ ΛC/F
pV ).

Def.(11.10.1.5)[Polarizations].An integral polarized Hodge structure of weight k ∈ Z is given
by a Hodge structure (Λ, F pΛ) of weight k together with a Hermitian form H s.t.

• The Hodge decomposition is orthogonal for H.
• If α ̸= 0 ∈ Hp,q(X), then

ip−q−k(−1)
k(k−1)

2 H(α) > 0
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2 Abel-Jacobi map

Intermediate Jacobians

Def.(11.10.2.1)[Intermediate Jacobians].For any integral Hodge structure of weight 2k − 1, we
can define

J2k−1(Λ) = ΛC/(F kΛ⊕H2k−1(X,Z)).

This is a complex torus.

Proof: We have a decomposition
ΛC = F kΛ⊕ F kΛ,

so F kΛ ∩ ΛR = {0}, thus the map
ΛR → ΛC/F

kΛ

is an isomorphism of R-vector spaces. □

Prop.(11.10.2.2). If (Λ, F •Λ)→ (Λ′, F •Λ′) is a morphism of Hodge-structure of bidegree (r, r), then
it induces a morphism of complex tori

J2p−1(Λ)→ J2(p+r)−1(Λ′).

Def.(11.10.2.3)[Jacobian and Albanese Varieties]. If X is a compact Kähler manifold of dimen-
sion n, then J1(X) is also denoted by Jac(X), called the Jacobian variety of X, and J2n−1(X) is
denoted by Alb(X), called the Albanese variety of X.

Prop.(11.10.2.4)[Jacobian].The Jacobian Jac(X) of a compact Kähler manifold X is defined to
be H1(X,OX)/H1(X,Z), so it is a complex torus of dimension b1(X) by(11.10.2.1), it is also the
kernel of the first Chern class map by the long exact seqence(11.8.5.8), i.e.

0→ Jac(X)→ Pic(X) c−→ NS(X)→ 0

Lemma(11.10.2.5). if X is compact Kähler , then the natural map Hk(X,C) → Hk(X,OX) is just
the projection onto the (0, k)-part. In particular, the image is in H0,k(X).

Proof: By Hodge decomposition, the definition of Dolbeault cohomology and the commutative
diagram

C A0(X) A1(X) A2(X) . . .

OX A0(X) A1(X) A2(X) . . .

d

=

d

π0,1 π0,2

∂ ∂

□

Prop.(11.10.2.6) [Lefschetz theorem on (1, 1)-forms].By(11.8.5.8), the image of PicC(X) →
H2(X,Z) is trivial in H2(X,OX). And if X is compact Kähler , there is Hodge decomposi-
tion(11.9.4.1) H2(X,OX) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

So the image of PicC(X) is contained in H1,1(X,Z) = H2(X,Z) ∩ H1,1(X) by(11.10.2.5) and
daulity. Then it is also surjective, this is to say, NS(X) = H1,1(X)

Proof: Because by the long exact sequence of(11.8.5.8) and(11.10.2.5) again, an α ∈ H2(X,C) is
in H1,1(X,Z) iff α is in the image of PicC(X)→ H1,1(X,Z). □
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Abel-Jacobi Maps

Def.(11.10.2.7)[Abel-Jacobi Map].For any k ∈ Z+, there is an Abel-Jacobi map

Φk
X : Zk(X)hom → J2k−1(X).

Proof: Cf.[Voison, P292].? □

Thm.(11.10.2.8) [Griffith1968].Let X is a compact Kähler manifold, Y be a connected complex
manifold and y0 ∈ Y , Z ⊂ Y ×X a cycle of codimension k s.t. each component Zi of Z is smooth
and the projection Zi → Y is a submersion. Then the map

Y → J2k−1(X) : y 7→ Φk
X(Zy − Zy0)

is holomorphic.

Proof: Cf.[Voison, P294].? □

Def.(11.10.2.9)[Albanese Maps].Fix a base point x0 of X, by Griffith’s theorem(11.10.2.8) applied
to ∆ ⊂ X ×X, we get an Albanese map

AlbX : X → Alb(X) : x 7→ Φ2n−1
X (x− x0)

that is holomorphic and functorial in (X,x0).

Prop.(11.10.2.10). if T is a torus, then the Albanese map AlbT : T → Alb(T ) is an isomorphism.

Proof: □

Prop.(11.10.2.11)[Universal Properties].The Albanese map satisfies the following universal prop-
erty: Any complex torus T and a map f : X → T s.t. f(x0) = 0 factors through the Albanese
map.

Proof:
□

Lemma(11.10.2.12).For k ∈ Z+ sufficiently large,

Albk : Xk → Alb(X)

is surjective.

Proof: Cf.[Voison, P298].? □

Prop.(11.10.2.13). If X ∈ SmProj /C, then Alb(X) ∈ AbVar /C.

Proof: Cf.[Voison, P300].? The factorized map is

g : Alb(X) = H0(X,ΩX)∗/H1(X,Z)→ T = H0(T,ΩT )∗/H1(T,Z).

□
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3 Deligne Cohomology
Cf.[Voisin1, 2] and [Esnault-Viehweg, Deligne-Beilinson Cohomology].

Def.(11.10.3.1)[Deligne Complex].Let X be a complex manifold and p ∈ Z+, the (real)Deligne
complex RDel(p) is the complex

0→ R[0] (2π i)p−−−−→ OX
d−→ ΩX

d−→ . . .
d−→ Ωp−1

X → 0.

Similarly we can define the Deligne complex with coefficients in A for any ring A ⊂ R.

Def.(11.10.3.2) [Deligne Cohomologies].Let X be a complex manifold and p ∈ Z, k ∈
N, the Deligne cohomology Hk

Del(X,R(p)) is defined to be the hypercohomology
Hk(X,RDel(p))(11.10.3.1). Similarly we can define the Deligne cohomology with coefficients in A
for any ring A ⊂ R.

Example(11.10.3.3).For p = 1, ZDel(1) is quasi-isomorphic to O∗
X [−1], so Hk+1

Del (X,Z(1)) ∼=
Hk(X,O∗

X).
For p = 2, there is a quasi-isomorphism

(2π i)2Z OX Ω1
X

O∗
X Ω1

X

exp((2π i)−1(−)) (2π i)−1

f 7→d log(f)

,

so H1
Del(X,Z(2)) = C×, and H2

Del(X,Z(2)) corresponds to holomorphic line bundles with a holomor-
phic connection.

Prop.(11.10.3.4). If X is a compact Kähler manifold and A ⊂ R, then there is a long exact sequence

. . .→ Hk
Del(X,A(p))→ Hk(X,A)→ Hk(X,C)/FilpHk(X,C)→ Hk+1

Del (X,A(p))→ . . .

Proof: There is an exact sequence of complexes

0→ Ω≤p−1
X [−1]→ ADel(p)→ A(p)→ 0,

which induces a long exact sequence

. . .→ Hk
Del(X,A(p))→ Hk(X,A(p))→ Hk(X,Ω≤p−1

X )→ Hk+1
Del (X,A(p))→ . . . .

And the exact sequence of complexes

0→ Ω≥p
X → Ω•

X → Ω≤p−1
X → 0

and the fact Hk(X,Ω≥p
X ) ∼= FilpHk(X,C) ⊂ Hk(X,C)? implies that Hk(X,Ω≤p−1

X ) ∼=
Hk(X,C)/F pHk(X,C). □

Cor.(11.10.3.5).There is an exact sequence

0→ J2p−1(X)→ H2p
Del(X,Z(p))→ Hdg2p(X,Z)→ 0.(11.10.2.1)(11.10.1.4)
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Prop.(11.10.3.6).Let X be compact Kähler of dimension p and i < 2p, then
H i(X,R(i)) ↪→ Hk(X,C)/FilpHk(X,C).

So there are exact sequences
0→ H i−1(X,R(p))→ H i−1(X,C)/FilpH i−1(X,C)→ H i

Del(X,R(p))→ 0.

And because C = R(p)⊕R(p− 1), there are exact sequences
0→ FilpH i−1(X,C)→ H i−1(X,R(p− 1))→ H i

Del(X,R(p))→ 0

is injective.
Proof: This is because c acts as multiplication by (−1)p on the LHS, and FilpHk(X,C) ∩
FilpHk(X,C) = ⊕r,s≥pHr,s(X), so the kernel is {0}. □

Prop.(11.10.3.7) [Comparison of Complex Conjugations].For X ∈ SmProj /R, the canonical
isomorphism

HBetti(X,R)⊗R C = HBetti(X,C) IdR−−→ H i
dR(Xan) GAGA−−−−→ H i

dR(X)⊗R C

is an isomorphism that identifies the complex conjugation c∗⊗ c on the LHS with c on the RHS, so
Proof: Deligne, Prop1.4. □

Cor.(11.10.3.8).By taking the complex conjugation fixed part, we get an exact sequence

0→ FilpH i−1
Betti(X,R)→ H i−1

Betti(X,R(p− 1))c∗=(−1)p−1 → H i
Del(X/R,R(p))→ 0

Differential Characters

Def.(11.10.3.9)[Differential Characters].Let X be a differential manifold and Z∞
l be the subgroup

of closed singular differentiable chains, and Ξl∞(X) ⊂ Hom(Z∞
l ,R/Z) consisting of characters χ s.t.

there exists ω ∈ Ωl+1(X) s.t.

χ(∂φ) =
∫

∆l+1

φ∗ω ∈ R/Z, ∀φ ∈ C∞
l+1(X).

Such an ω is clearly uniquely determined by χ.
Prop.(11.10.3.10).For any χ ∈ Ξl∞(X), ωχ is an integral closed form.

Proof: Cf.[Voisin, P306].? □
Prop.(11.10.3.11). If X is a complex manifold, and µ ∈ Ωl−1

R (X), then for any closed chain φ ∈
C∞
l (X), ∫

∆l

φ∗(i ∂µ) =
∫

∆l

φ∗(−i∂µ) =
∫

∆l

φ∗(− i dµ+ i ∂µ) =
∫

∆l

φ∗(i ∂u),

so
∫

∆l
φ∗(i ∂u) ∈ R, and we can define a differential character∫

i ∂µ ∈ Ξl∞(X) : φ 7→
∫

∆l

φ∗(i ∂u).

Prop.(11.10.3.12).For a compact Kähler manifold X and p ∈ N, consider the subgroup
Ξ2p−1

∞ (X)p,p ⊂ Ξ2p
∞(X) consisting of differential characters χ s.t. ωχ is of the type (p, p). Then

H2p−1
Del (X)p,p ∼= K2p−1

∞ (X) = Ξ2p−1
∞ (X)p,p/{

∫
i ∂µ|µ ∈ Ωp−1,p−1(X)}.

Proof: Cf.[Voisin, P307].? □
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Properties of the Deligne Cohomology

Prop.(11.10.3.13)[Cup Products].There are cup products

Hp
Del(X,Z(q))×Hp′

Del(X,Z(q′))→ Hp+p′

Del (X,Z(q + q′)).

Proof: □

Prop.(11.10.3.14)[Cycle Class Maps].For X ∈ SmProj /C and p ∈ N, there are class maps

CHp(X)→ H2p
Del(X,Z)

that lifts the class [Z] ∈ H2p(X,Z)(11.10.3.4), and commutes with products and cup products.

Proof: Cf.[Voisin, P311].? □

4 Coiveau
Def.(11.10.4.1)[Coniveau].The coniveau of α ∈ H•

Betti(X,Q) is the smallest number c s.t. there is
a closed algebraic subscheme Y ⊂ X s.t. α|X\Y = 0 ∈ H•

Betti(X \ Y,Q).

Thm.(11.10.4.2)[Deligne]. If α ∈ H•
Betti(X,Q) is mapped to 0 ∈ H•

Betti(X \ Y,Q) where Y is pure
of codimension c, then α = j∗β, where j : Y → Y → X is a resolution of singularities of Y and
β ∈ H•−2c

Betti (Ỹ ,Q).
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11.11 Locally Symmetric Spaces

1 Symmetric Spaces
Main references are[Hel78], [Mil17b] and [Lan20].

Def.(11.11.1.1)[Symmetric Spaces].A Riemannian manifold is called locally symmetric at p if
∇R(p) = 0. Locally symmetric is equivalent to the fact that every local reversing map is an isometry.

A symmetric space is a Riemannian manifold that ∇R = 0 everywhere.
A symmetric space is complete because two folding is an extension of geodesics. In particular,

a symmetric space is homogenous, and to check symmetrically, it suffices to show it is homogenous
and locally symmetric at a point.

Proof: □

Prop.(11.11.1.2).A Lie group with a bi-invariant metric is a symmetric space.

Proof:
□

Prop.(11.11.1.3).The conjugate points in a symmetric space is easy to calculate, they are exp( πk√
ei
V ),

counting multiplicity, where ei is the eigenvalue of the self-adjoint operator KV (W ) = R(V,W )V at
p.

Prop.(11.11.1.4) [Lie Group of Isometries].Let M be a symmetric space, then the group of
isometries Isom(M∞, g) of M has a natural structure of a Lie group.

Proof: Cf.[Helgason, homogenous Spaces, 4.3.2]. □

Prop.(11.11.1.5)[Symmetric Space is a Homogenous Space].Let (M, g) be a symmetric space,
and p ∈M , then the subgroup Kp ⊂ Aut(M, g)0 fixing p is compact, and the natural map

Isom(M, g)0/Kp →M∞

is an isomorphism of smooth manifolds, where Isom(M, g)0/Kp is given the homogenous space struc-
ture(11.11.1.4). In particular, Isom(M, g)0 acts transitively on M .

Proof: Cf.[Mil17c]P12. □

2 Decompositions of Symmetric Spaces
3 Non-Compact Type
4 Compact Type
5 Hermitian Symmetric Spaces

Def.(11.11.5.1)[Hermitian Symmetric Spaces].A Hermitian symmetric space is a Hermitian
manifold that is a symmetric space(11.11.1.1) and that the local symmetries are all holomorphic.

Prop.(11.11.5.2)[Lie Group of Isometries].For a Hermitian symmetric space, the group of holo-
morphic symmetries Aut(M, g) is closed in the group of isometries Aut(M∞, g), which is a Lie group
by(11.11.1.4), so it is also a Lie group.
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Prop.(11.11.5.3)[Basic Hermitian Symmetric Spaces].There are three different families of Her-
mitian symmetric spaces(but not complete):

• (Non-compact Type): These spaces are non-compact and simply connected, with negative
curvatures, and Isom(M, g)0 is adjoint and non-compact.

• (Compact Type): These spaces are compact and simply-connected, with positive curvatures,
and Isom(M, g)0 is adjoint and compact.

• (Euclidean Type): These spaces have constant curvature 0.

Proof: Cf.Helgason 1978, Chap8. □

Prop.(11.11.5.4)[Decomposition].Any Hermitian symmetric space M decomposes into a product
M0 ×M+ ×M− of Hermitian symmetric spaces with M0 Euclidean, M− of non-compact type and
M+ of compact type.

Proof: □

Prop.(11.11.5.5).Any Hermitian symmetric space of Euclidean type is a quotient of Cg by a discrete
subgroup of translations.

Proof: □

Example(11.11.5.6).The projective space Pn(C) with the Fubini-Study metric is a Hermitian sym-
metric space. For any p, the (descent of) the rotation through π about the axis through p and its
polar opposite is the geodesic isomorphism at p.

Proof: See(11.9.1.6). □

6 Hermitian Symmetric Domains
Def.(11.11.6.1)[Hermitian Symmetric Domain].A Hermitian symmetric space of non-compact
type(11.11.5.3) is called a Hermitian symmetric domain. A bounded symmetric domain is
a bounded open connected symmetric subset of Cn.

Prop.(11.11.6.2).Every Hermitian symmetric domain can be embedded into Cn for some n, and the
image is bounded.

Proof:
□

Prop.(11.11.6.3)[Bergman Metric].Every bounded symmetric domain has a canonical Hermitian
metric called the Bergman metric, it is invariant under holomorphic automorphisms, and it has
negative curvatures.

Proof: Cf.[Mil17]P11 and [Hel78]8.3.3. □

Cor.(11.11.6.4).Every Hermitian symmetric domain D has a unique Hermitian metric that maps to
the Bergman metric under any isomorphism of D onto a bounded symmetric domain.

Cor.(11.11.6.5).A complex manifold is a a symmetric Hermitian domain iff it is biholomorphic to a
bounded symmetric domain.

Proof: □
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Def.(11.11.6.6) [Siegal Upper Half Plane Hg].The Siegal upper half space Hg consists of
symmetric complex g× g matrices Z = X + iY with Y positive definite. It is identified with an open
subset of Cg(g+1)/2. The symplectic group Sp(2g;R)(11.7.4.1) acts transitively on Hg via[

A B
C D

]
Z = (AZ +B)(CZ +D)−1

The matrix
[
0 −I
I 0

]
acts as an involution on Hg, and has iIg has its fixed point, so Hg is homogenous

and symmetric.
The injection into Cg is not holomorphic, so we cannot see from this that Hg is holomorphic, but

we can see from?
Proof: ? □

Cor.(11.11.6.7)[Upper Half Plane].By(11.7.4.10), the group GL(2;R) acts continuously on C by

γ(z) = az+b
cz+d where γ =

[
a b
c d

]
.

The groups GL(2,R) preserves the upper plane H, by(10.5.1.8). The action of SL(2;R) on H is
transitive and the stabilizer of i is SO(2,R), thus we have H ∼= SL(2;R)/SO(2;R), and PSL(2;R)
is the group of holomorphic automorphisms of H by(10.5.7.8).

Also, the Riemannian metric dxdy
y2 on H is fixed by the action of GL(2;R).

Def.(11.11.6.8) [Siegal Unit Disk Dg].Let Dg be the set of symmetric complex matrixes that
I−Z∗Z is positive definite, then it is identified with an open subset of Cg(g+1)/2, this is a holomorphic
embedding.

There is an isomorphism from Hg(11.11.6.6) to Dg:

Z 7→ (Z − iIg)(Z + iIg)−1.

This is an isomorphic, soDg is symmetric, andHg has an invariant metric, so they are both Hermitian
symmetric domains?.

Proof: ?. □
Prop.(11.11.6.9).Let (M, g) be a Hermitian symmetric domain, then the inclusions

Aut(M∞, g) ⊃ Aut(M, g) ⊂ AutHol(M)

induce equalities
Aut(M∞, g)0 = Aut(M, g)0 = Hol(M)0

Then Hol(M)0 acts transitively on M , the stabilizer Kp of p in AutHol(M)0 is compact, and

Hol(D)0/Kp
∼= M∞.

Proof: Cf.[Mil17b]P12. □
Prop.(11.11.6.10).The Lie group AutHol(M) in(11.11.6.9) is a real semisimple Lie group with only
f.m. connected components and trivial center.?

If G is a connected simple real algebraic group with trivial center s.t. D = G(R)0/K for some
maximal compact subgroup K ⊂ G(R)0, then Aut(D) ∩ G(R) = G(R)0, and G(R) has one or two
connected components.
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Proof: ? □

Prop.(11.11.6.11) [Rotation at a Point].Let D be a Hermitian symmetric domain and p ∈ D,
then there is a unique homomorphism up : U1 → Hol(D) that up(z) fixes p and acts on Tp(D) as
multiplication by z.

Prop.(11.11.6.12)[Classification of Hermitian Symmetric Domains].The isomorphism classes
of irreducible Hermitian symmetric domains are classified by the special nodes on connected Dynkin
diagrams.

Proof: Cf.[Mil17]P20. □

7 Locally Symmetric Varieties
Prop.(11.11.7.1)[D(Γ)].Let D be a Hermitian symmetric domain, and let Γ be a discrete subgroup
of AutHol(D)0. If Γ is torsion-free, then Γ acts freely on D, and there is a unique complex manifold
structure on Γ\D that the quotient map π : D → Γ\D is a holomorphic covering space.

In this case, denote D(Γ) = Γ\D, and D is a universal covering of D(Γ), by(11.11.5.3)
and(11.11.6.1).

Proof: Cf.[Mil17b]P32. □

Prop.(11.11.7.2).Let D be a Hermitian symmetric domain and Γ ⊂ Hol(D)0 is a discrete subgroup,
then by(11.11.6.9), Γ has finite covolume in Hol(D)0 iff Γ\D has finite covolume,

Proof: □

Prop.(11.11.7.3).D(Γ) has only f.m. automorphisms, as a complex manifold.

Proof: Cf.[Mil17b]P41. □

Thm.(11.11.7.4)[Satake-Baily-Borel Compactifications].Let D be a locally symmetric Hermi-
tian space and Γ ⊂ Hol(D)0 an arithmetic subgroup(13.4.2.1), then D(Γ) can be realized as an open
subset of a projective variety D(Γ) over C, and it is a normal algebraic variety. If moreover Γ is
torsion-free, then it is smooth, by(11.11.7.1).

Such a projective variety D(Γ) is called a locally symmetric variety.

Proof: Cf. [BAILY-BOREL, Compactification of arithmetic quotients of bounded symmetric do-
mains. 84:442–528. 1966] and [CASSELMAN, Geometric rationality of Satake compactifications,
pp. 81–103.1997].

Cf.[Mil17b]P38 for a history. □

Thm.(11.11.7.5)[Borel].Let D(Γ) be a quotient variety(11.11.7.4) of a Hermitian symmetric domain
by a torsion-free arithmetic subgroup Γ in AutHol(D)0, then for any other smooth quasi-projective
variety V over C, any holomorphism map V an → D(Γ)an comes from a morphism.

Proof: □

Cor.(11.11.7.6) [Algebraic Structure is Unique].The algebraic variety structure on D(Γ) is
unique. Any variety of the form is called a locally symmetric variety.
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Proof: If there is another structure, then by GAGA it is a smooth variety, then the holomorphic
map extends to a bijective morphism, which must be an isomorphism, by [Milne, Algebraic Geometry,
P188]?. □

Cor.(11.11.7.7)[Borel].The Satake-Baily-Borel compactification(11.11.7.4) D(Γ) is minimal in the
sense that it factors through any compactification D(Γ) ⊂ V s.t. V \D(Γ) is a divisor with only
normal crossings as singularities.

Proof: Cf.[Borel 1972]? □
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11.12 Compactifications of Locally Symmetric Spaces
Main references are [Smooth compactifications of locally symmetric varieties, Rapoport-

Scholze](contains a lot of references), [Toroidal Compactification of Siegel Spaces (1980).pdf],
[Goresky, M. 2005. Compactifications and cohomology of modular varieties, pp. 551–582. In Har-
monic analysis, the trace formula, and Shimura varieties] and [SATAKE, 2001. Compactifications,
old and new].

Def.(11.12.0.1) [Toroidal Compactifications].Cf. [BOREL, A. AND JI, L. 2006. Compactifica-
tions of symmetric and locally symmetric spaces].

For Siegel modular varieties, there is a short note in [Conrad, Mordell conjecture seminar].
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11.13 Calabi-Yau Manifolds
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11.14 Geometric and Combinatorial Group Theory
Cf.[Princeton Companion].
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12 | Algebraic Number Theory

12.1 Additive Number Theory
References are [Introduction to the theory of numbers, Hardy-Wright]. [Some Results in the

Additive prime-number theory, Long-Keng Hua].

1 Circle Methods
Prop.(12.1.1.1).For any α ∈ R \Z and M ∈ Z+,

M∑
n=1

e2π iαn ≤ 1
2{{α}}

.

Proof:

|
M∑
n=1

e2π iαn| = |e
2π iαM − 1
e2π iα − 1

| ≤ | 2
2 sin(πα)

| ≤ 1
2{{α}}

(10.4.7.2)

□
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12.2 p-adic Analysis
References are [Non-Archimedean Analysis Part A].
This section should only contain theorems that are only applicable to non-Archimedean valua-

tions. Theorems that are applicable to both Archimedean and non-Archimedean valuations should
be put into10.8.

As far as I know, all properties proved in Functional Analysis independent of complex analysis is
applicable to the non-Archimedean case, and in fact, the goal of this section is to build an analytic
theory parallel to complex analysis.

1 (Ultranormed) Valuation Theory

Ultranormed Rings

Def.(12.2.1.1) [Normed Groups].A semi-normed group is a group with a non-Archimedean
valuation, it is called a normed group iff the valuation has kernel 0, which is equivalent to Hausdorff.

A normed group is totally connected, because open balls at 0 are subgroups hence closed.
Def.(12.2.1.2)[Normed Ring].A (semi-)normed ring is a (semi-)normed additive group that

• |1| = 1. or the valuation is trivial.
• |ab| ≤ |a||b|.
A valued ring is a normed ring with |ab| = |a||b|. It is called degenerate if all non-zero valuation

value≥ 1.
Prop.(12.2.1.3).A valuation on a ring is non-Archimedean iff {|n|} is bounded. Thus any valuation
on a field with finite characteristic is non-Archimedian.

Prop.(12.2.1.4). In a normed ring, every triangle is an acute isosceles triangle. (This is because the
biggest is smaller than the maximal of the other two, thus the biggest two are equal). Hence we
have, for a circle B(O, r), any interior point P is a center of circle, because OP < r.

Def.(12.2.1.5)[Bald Rings].A normed ring R is call a B-ring if elements of valuation 1 is invertible,
it is called bald if there is a ε that no elements has valuation in (1− ε, 1).

Def.(12.2.1.6)[Uniform Rings].A non-Archimedean ring A is called uniform if the set of topolog-
ically nilpotent elements are bounded in A.

Prop.(12.2.1.7). If K is a normed field with valuation ring R, the smallest subring containing a zero
sequence a0, a1, . . . is bald(12.2.1.5).
Proof: Cf.[Formal and Rigid Geometry P25]. □

Def.(12.2.1.8) [Topologically Nilpotent Elements].An element a in a normed ring A is called
topologically nilpotent iff lim an = 0. The set of all topological nilpotent elements in A are
denoted by Ǎ or A0.

Prop.(12.2.1.9). Ǎ is a subgroup of A+, which is multiplicatively closed, then Ǎ is clopen in A. In
particular, Ǎ is complete if A is complete.
Proof: Cf.[Non-Archimedean analysis P27]. □

Prop.(12.2.1.10) [Nakayama’s Lemma]. If A is complete normed ring and M is a A-module, if
there are f.m. elements xi of M that M = N +

∑
xiM , then M = N .

Proof: The proof is verbatim as the proof of the usual Nakayama lemma. □



12.2. P -ADIC ANALYSIS 1219

Normed Modules

Def.(12.2.1.11) [Ultranormed Module].A module M over a normed ring A is called normed
module iff it is a normed additive group and |ax| ≤ |a||x| for a ∈ A, x ∈M . If A is valued and the
equality always holds, we call it faithfully normed or valued module.

If A is a valued field, any normed module is valued.

Prop.(12.2.1.12) [Ultranormed Algebra].A normed algebra is an A algebra B with A → B
bounded of norm 1.

Prop.(12.2.1.13).For two valued module over A, if A is non-degenerate, a morphisms is bounded iff
it is continuous. This is because we can multiply by elements of A to reduce to a nbhd of 0.

This applies to the case when A contains a field where the valuation is non-trivial, because we
can use(12.2.1.11).

Def.(12.2.1.14) [Completed Tensor Product].For two normed modules over a normed ring R,
there is a complete normed R-module M⊗̂N called the completed tensor product, satisfying the
following universal properties: M × N → M⊗̂N is bounded by 1, and for any complete normed
R-module T and a R-map M ×N → T bounded by a, then it factor through a R-map M⊗̂N → T
bounded by a.

It satisfies many universal properties as you can imagine.

Proof: Cf.[Formal and Rigid Geometry P238]. □

Cor.(12.2.1.15).By(12.2.1.13), when A is non-degenerate, then the amalgamated sum is just the
fibered pushout when restricted to the category of complete valued module over A with continuous
maps as morphisms, because it satisfies the universal property.

Prop.(12.2.1.16)[Amalgamated Sum].For two normed R-algebras there is an operation of amalga-
mated sum which satisfies universal properties similar to(12.2.1.14). In fact, it is just the completed
tensor product when seen as modules.

Proof: Cf.[Formal and Rigid Geometry P242]. □

Weakly Cartesian Space

Def.(12.2.1.17)[Weakly Cartesian Vector Spaces].A normed K-vector space over a valued field
K is called weakly Cartesian if?

Prop.(12.2.1.18). If K is a complete valued field, then each normed K-vector space V is weakly
Cartesian.

Proof: Cf.[Non-Archimedean Analysis P92]. □

Completeness

Prop.(12.2.1.19)[Cauchy Sequence of Non-Archimedean field].For a sequence ∑ ai in a non-
Archimedean field, it is a Cauchy sequence iff lim |ai| = 0.

In particular, convergent sequence are all absolutely convergent and for a Cauchy sequence not
converging to 0, the valuations of the terms stabilize.

Proof: One way is easy, the other way, notice |∑j
v=i ai| ≤ maxi,i+1,...j |av| < ε. □
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Prop.(12.2.1.20)[Completion of a Field].The completion of a non-Archimedean field is preferred
to choose the definition of Cauchy sequence, so we see by(12.2.1.19) that v(K̂) = v(K).

Prop.(12.2.1.21).For a complete field K and any finite vector space L, L has only one norm up to
equivalence and it is complete.

Proof: Cf.[Formal and Rigid Geometry P230]. □

Prop.(12.2.1.22).A complete valuation on a field can extend uniquely to a valuation on its alg.closure.
And in the finite case, it is |α| = |N(α)|

1
d . This is an immediate consequence of(12.2.1.33)

and(12.2.1.30), and |α| ≤ 1 iff it is integral over valuation ring R of K.

Prop.(12.2.1.23).Any infinite separable algebraic extension of a complete field is never complete.

Proof: We use Krasner’s lemma(12.2.1.34). By Ostrowski theorem(10.3.3.18), we can assume it is
non-Achimedean, otherwise it cannot by infinite dimensional. Choose an infinite linearly independent
basis of decreasing value rapidly enough, then we can see the field generated by the limit contains
all the partial sums, contradiction. □

Prop.(12.2.1.24). If K = K, then K̂ = K̂.

Proof: Let L = K̂, then we can extend to a valuation on L, now let f be a monic polynomial with
coefficients in K̂, we show its root α ∈ L can be approximated by elements in K, now let g monic in
K[X] be an approximation of f that |g(α)| ≤ εn, then there is a root β of g that |α − β| < ε, and
β ∈ K by alg.closedness. □

Prop.(12.2.1.25). If K is a complete, then Ksep is dense in K.

Proof: Assume F is non-Archimedean, then for y ∈ F alg, there is a n that ypn = α ∈ F sep. We
may assume |α| ≤ 1, then let π be an element that |π| < 1, then if yi is a root of the separable
polynomial Y pn − πiY − α = 0, then (y − yi)p

n = πiyi. So |y − yi| → 0. □

Def.(12.2.1.26)[Qp, Hensel1897].For p ∈ P, Qp is defined to be the p-adic completion of Q, called
the field of p-adic numbers. Its ring of integer is Zp, which equals the p-adic completion of Z,
called the ring of p-adic integers.

Prop.(12.2.1.27).There is a non-canonical isomorphism Qp
∼= C, not compatible the topology.

Proof: This follows from(2.2.6.5) and the fact they both have the same cardinality ℵ1. □

Cor.(12.2.1.28).The p-adic valuation on Q can be extended to C non-canonically.

Henselian Valued Fields

Def.(12.2.1.29)[Henselian Valued Field].A Henselian valued field is a valued field K that the
valuation ring OK is a Henselian local ring(4.3.10.1).

Prop.(12.2.1.30).A valued field K is Henselian(12.2.1.29) iff the valuation of K has a unique exten-
sion to any finite extension L/K.

Proof: Cf.[Algebraic Number Theory Neukirch P144]. □
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Def.(12.2.1.31) [Ramification Degrees]. If L/K is a finite extension of valued field of degree n,
then v extends uniquely to w(α) = 1

nv(NL/K(α)), now we define the ramification degree as
[w(L∗) : v(K∗)], and the inertia degree as the degree of the residue field extension.

Thus for a normal extension, x and σ(x) has the same valuation. Hence any polynomial in K[X]
has a decomposition into polynomials where all their roots has the same valuation.

Prop.(12.2.1.32)[Hensel’s Lemma Generalized].Let K be a complete valued non-Archimedean
field and OK be the valuation ring. If P,Q,R ∈ OK [X] and 0 ≤ λ < 1 that degP = m+ n,degQ =
n, degR = m, and

deg(P −QR) ≤ m+ n− 1, |P −QR|G ≤ λ| res(Q,R)|2

Where | − |G is the induced Gauss norm on K[X]. Then there exist polynomials U, V that

|U |G, |V |G ≤ λ| res(Q,R)|2, degU ≤ n− 1, deg V ≤ m− 1

and P = (Q+ U)(R+ V ).

Proof: If ρ = | res(Q,R)| = 0, then P = QR. Otherwise, the map θQ,R : Wm ⊕Wn → Wm+n
is invertible(2.2.2.9). Then we let φ(U, V ) = θ−1

Q,R(P − QR − UV ), then If U, V ∈ B(0, λρ), then
|φ(U, V )|G ≤ λρ. And it can be proved φ is a contraction map fromB(0, λρ)2 to itself with contraction
factor λ, so it has a fixed point (U, V ) by(3.3.8.9). So QU +RV = P −QR− UV . □

Cor.(12.2.1.33) [Hensel’s Lemma]. If K be a complete and A be the valuation ring. Suppose
P (X) ∈ A[X] and α0 is an element of A s.t. |P (α0)/P ′(α0)2| = ε < 1, then there exists a α ∈ A that
P (α) = 0 and |α− α0| ≤ |P (α0)/P ′(α0)|.

The usual form is when |P ′(α0)| = 1, in which case we can pass to the residue field. Equivalently,
a complete valued field is Henselian(12.2.1.29).

Proof: Let λ = |P (α0)/P ′(α0)| and res = |P ′(α0). Notice If P (X) = Q(X)(X − α0) + P (α), then
res(Q(X), X − α0) = Q(α0) = P ′(α0)(2.2.2.11). □

Prop.(12.2.1.34) [Krasner’s Lemma]. If α, β ∈ K that |α − β| < |α − σ(α)| for all σ, then
K(α, β)/K(β) is purely inseparable. So when α is separable over K, K(α) ∈ K(β).

Proof: It suffice to prove that for all field morphism τ : K(α, β)→ K fixing K(β), τ(α) = α. This
is because |τ(α)−β| = |α−β| < |α−σ(α)|, thus |τ(α)−α| ≤ max{|τ(α)−β|, |β−α|} < |α−σ(α)|.
□

Cor.(12.2.1.35). If f is a separable irreducible polynomial and α is a root, then for g closed enough
to f , there is a root β of g that K(β) = K(α). (Immediate consequence of(10.3.3.19)).

Cor.(12.2.1.36).Any finite separable extension L/K̂ is of the form L0K̂ for some finite separable
extension L0/K. (Because of primitive element theorem?).

Cor.(12.2.1.37).K ⊂ K is dense, then K = K.



1222 CHAPTER 12. ALGEBRAIC NUMBER THEORY

2 Extensions of Henselian Valued Fields

Notation(12.2.2.1).
• Let (K, v,OK , pv, ϖ, k) be a Henselian non-Archimedean valued field of residue characteristic
p, and ϖ ∈ K×, |ϖ| < 1 a uniformizer. If OK is DVR, assume (π) = pv.

Lemma(12.2.2.2)[Extension is Monogenous].For a finite extension of CDVR, if the residue field
extension λ/k is separable, then there exists a x ∈ OL that OK [x] = OL.

Proof: If x is an element of λ that generate λ over k, by primitive element theorem, then let f be
the minipoly of x, then let f, x be lifting of them, then f(x) is a uniformizer, otherwise f ′(x) has
valuation 0, so f(x+ πL) is a uniformizer. Now we see that xif(x)j is a basis of OL over OK , □

Prop.(12.2.2.3). If L/K is a finite separable extension and if I is an ideal of OL, then vK(trL/K(I)) =
⌊vK(I.DL/K)⌋.

Proof: By definition, trL/K(xOL) ⊂ OK iff x ∈ D−1
L/K , thus trL/K(I) ⊂ J iff I ⊂ D−1

L/KJ , i.e.
trL/K(I) is the smallest ideal J of OK that contains I · DL/K , thus the result. □

Unramified Extensions

Def.(12.2.2.4)[Unramified Extensions].A finite extension L/K is called unramified extension
if the residue field extension λ/k is separable and [L : K] = [λ : k]. Any algebraic extension is called
unramified iff any finite extension is unramified.

This is compatible because unramified extensions form a distinguished class. So we can talk about
the maximal unramified extension T of K, and a field extension L/K is called unramified if
all finite subextensions are unramified.

Proof: It is faithfully transitive because the field extension degree is transitive, and for base
change, as the residue field is separable, we let λ = k[α], and choose a lift α ∈ OL, the minipoly of
α is f(X) ∈ OK [X]. Then we have

[λ : k] ≤ deg f = deg f = [K(α) : K] ≤ [L : K] = [λ : k]

So L = K(α) and f is the minipoly of α. Then L′ = K ′(α), and let g(X) be the minipoly of α over
K ′, then g is a factor of f so separable, hence irreducible by Hensel’s lemma. Noe:

[λ′ : k′] ≤ [L′ : K ′] = deg g = deg g = [k′(α) : k′] ≤ [λ′ : k].

So [λ′ : k′] = [L′ : K ′]. □

Prop.(12.2.2.5) [Maximal Unramified Extension].The residue field of the maximal unramified
extension Kur/K is k, and the value group is the same as K.

Proof: The first assertion is because for any separable polynomial, it has a lift which is irreducible
has a root lifting α, contradicting the maximality. For the second, look at finite subextensions, then
it results from the fundamental inequality(10.3.3.20). □
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Tamely Ramified Extensions

Def.(12.2.2.6)[Tamely Ramified Extension].For K a Henselian non-Archimedean valued field, a
finite field extension L/K is called a tamely ramified extension if the residue field extension is
separable and ([L : T ], p) = 1, where T is the maximal unramified subextension.

Prop.(12.2.2.7).Tamely unramified extensions form a distinguished class, so we can talk about the
maximal tamely unramified extensions, and a field extension L/K is called tamely ramified if all
finite subextensions are tamely unramified.

Proof: Cf.[Algebraic Number Theory Neukirch P156]. □

Prop.(12.2.2.8).A finite extension L/K is tamely ramified iff the extension is generated by radicals
over the maximal unramified extension: L = Kur( m

√
ai), (m, p) = 1, where ai ∈ Kur, (WARNING:

make sure if ai ∈ K or not?).

Proof: Cf.[Algebraic Number Theory Neukirch P155]. □

Prop.(12.2.2.9).The value field of tamely ramified extensions. Cf.[Neukirch P157].

Totally Ramified Extensions

Def.(12.2.2.10) [Eisenstein Polynomial].Let (R,m) be a DVR, an Eisenstein polynomial in
R[T ] is a polynomial of the form

f(T ) = Tn + an−1T
n−1 + . . .+ a1T + a0

where ai ∈ m for any i and a0 ∈ m\m2.

Prop.(12.2.2.11)[Totally Ramified Extensions via Eisenstein Polynomials]. If e(T ) is an Eisen-
stein polynomial in OK [T ] and Π is a root of e(T ) inK, then L = K(Π) is a totally ramified extension
of K with uniformizer Π. Conversely, if L/K is a totally ramified and Π ∈ L is a uniformizer, then
L = K(Π) and the minimal polynomial of Π is an Eisenstein polynomial.

Proof:
□

Remark(12.2.2.12).More about totally ramified extensions are discussed in Totally Ramified Exten-
sions.

Ramification Groups

Def.(12.2.2.13)[Ramification Groups].For a Galois extension L/K of CVDRs, denote λ/k residue
fields extension of w|v, and denote pw, pv by P, p. Define:

The inertia group is I(L/K) = {σ ∈ Gal(L/K)|σ(x) ≡ x mod P}.
The ramification group is R(L/K) = {σ ∈ Gal(L/K)|σ(x)/x ≡ 1 mod P}.

Prop.(12.2.2.14).For local fields, the ramification degree e equals the order of inertia group |IL/K |.

Prop.(12.2.2.15).The residue field extension λ/k is normal and there is an exact sequence

1→ I(L/K)→ Gal(L/K)→ Gal(λ/k)→ 1.



1224 CHAPTER 12. ALGEBRAIC NUMBER THEORY

Proof: Cf.[Neukirch P172]. □

Prop.(12.2.2.16).R(L/K) is the unique pro-p-Sylow subgroup of Gal(L/K)(2.1.14.11).

Proof: Cf.[Neukirch P174]. □

Prop.(12.2.2.17).There is an exact sequence

1→ R(L/K)→ I(L/K)→ χ(L/K)→ 0

where χv(L/K) = Hom(∆/Γ, λ×) and ∆ = w(L×),Γ = v(K×). Moreover, in case L/K is a finite
extension, this exact sequence splits.

Proof: For any σ ∈ Iw, define the map χσ : ∆/Γ → λ∗ as follows: for any δ ∈ ∆/Γ, let δ =
w(x) for some x ∈ L∗, let χσ(δ) = σ(x)

x mod Pw. This is independent of x chosen, because if
w(x) ≡ w(x′) mod Γ, then w(x) = w(ax) for some a ∈ K∗, thus x = axu for some u ∈ O∗

w. Now
σ(u)
u ≡ 1 mod P as σ ∈ Iw, so σ(x)

x = σ(x′)
x′ ∈ λ∗. And the kernel of this map is Rw by definition.

The sequence is exact on the right by [Neukirch P175].? □

Higher Ramification Groups

Notation(12.2.2.18).
• Let L/K be a finite Galois extension of CDVRs.

Def.(12.2.2.19) [Higher Ramifications].For s ∈ R+, define the s-th ramification group
Gs(L/K) = {σ ∈ G|vL(σ(x)− x) ≥ s+ 1 for all a ∈ OL}.

Then we have G = G−1 ⊃ G0 ⊃ G1 ⊃ . . .. And G0 is the inertia group.

Prop.(12.2.2.20).When K has finite residue field, G1 is the ramification group Rw(12.4.2.15). In
this case, we have

Gs(L/K) = {σ ∈ G0|
σ(πL)
πL

∈ U sL}, for s ≥ 0.

So there are injective morphism Gs/Gs+1 → U sL/U
s+1
L : σ 7→ σ(πL)/πL for s ≥ 0.(This is independent

of πL chosen because units are mapped mod U s+1
L ).

Proof: G1 = Rw: one direction is trivial, for the other, we use Teichmüller representatives, then
Rw preserves all them, and σ(x)− x ≡ 0 mod P2 is true for π, so it is true for all. □

Prop.(12.2.2.21).For local fields L/K, if σ is in the inertia group, then

vL(σ(x)
x
− 1) ≥ vL(σ(πL)

πL
− 1) + δvL(x),0

for any x ∈ OL and a uniformizer πL. Equality holds when vL(x) = 1.

Proof: if L has residue field Fq, then any element of L can be written as ∑ ξnπ
n
L, where ξn are all

q − 1-th roots of unity. And because σ is inertia group, all q − 1-th roots of unity are preserved, so
σ(ξnπnL)−ξnπnL = ξnπL(σ(πL)

πL
−1)(σ(πL)n−1+σ(πL)n−2πL+. . .+πn−1

L ) has valuation≥ v(σ(πL)
πL
−1)+n.

Thus the result. □
In the sequel, we assume that the residue field extension is separable, as to use the proposi-

tion(12.2.2.2).
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Lemma(12.2.2.22).We define iL/K(σ) = vL(σx− x), where x is the generator of OL/OK .
If L/L′/K are Galois extensions that e is the ramification index of L/L′. Then

iL′/K(σ′) = 1
e

∑
σ|L′ =σ′

iL/K(σ).

Proof: Cf.[Neukirch Algebraic Number Theory P178]. □

Def.(12.2.2.23)[Upper Numbering].We define the Herbrand function φL/K(u) =
∫ u

0
dx

(G0:Gx) . It
maps {x ≥ 1} to itself and is strictly increasing.

If m ≤ s < m+ 1, then it is just φL/K(s) = 1
g0

(g1 + g2 + . . .+ gm+ (s−m)gm+1), where gi = |Gi|.
By a double counting, it is

φL/K(s) = 1
g0

∑
σ∈G

min{iL/K(σ), s+ 1} − 1.

The derivative of φL/K is φ′
L/K(s) =

|Gs|
g0

.

Let ψL/K be the inverse function of We defineGt = GψL/K(t), this is called the upper numbering.

Lemma(12.2.2.24).For L/L′/K Galois extensions, one has Gs(L/K)H/H = Gt(L′/K), where t =
φL/L′(s). Equivalently, Gs/Hs = (G/H)φL/L′ (s).

Proof: For σ′ ∈ G(L′/K), we choose a inverse image σ ∈ G(L/K) of maximal iL/K(σ),
then iL′/K(σ′) − 1 = φL/L′(iL/K(σ) − 1). To prove this, let iL/K(σ) = m, then we see
iL/K(στ) = min{iL/K(τ),m}, so by(12.2.2.22), iL′/K(σ′) = 1

e

∑
τ∈H min{iL/K(τ),m}. And e = |H0|

by(12.2.2.14). So the assertion follows from(12.2.2.23).
Now σ′ is in the image of Gs is equivalent to iL/K(σ)−1 ≥ s ⇐⇒ φL/L′(iL/K(σ)−1) ≥ φL/L′(s),

which by what proved is equivalent to σ′ ∈ Gt(L′/K). □

Cor.(12.2.2.25).For L/L′/K Galois extensions, φL/K = φL′/K ◦ φL/L′ , hence similar formula holds
for ψ.

Proof: By the proposition and multiplicity of ramification index e, we get

1
eL/K

|Gs| =
1

eL′/K
|(G/H)t|

1
eL/L′

|Hs|.

where t = φL/L′(s), which is equivalent to the derivative φ′
L/K(s) = φ′

L′/K(t)φ′
L/L′(s) = (φL′/K ◦

φL/L′)′(s), and they are equal at 0, so the conclusion follows. □

Prop.(12.2.2.26)[Herbrand’s Theorem].For L/L′/K Galois extensions, Gt(L′/K) is the image of
Gt(L/K) under the quotient.

Proof: Let r = φL′/K(t), by the above lemme and corollary,

GtH/H = GφL/K(t)H/H = G′
φL/L′ (ψL/K(t)) = G′

φL/L′ (ψL/L′ (r)) = Gr(L′/K) = Gt(L′/K)

□
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Prop.(12.2.2.27)[Hasse-Arf].For an Abelian extension of CDVRs L/K that the residue field exten-
sion is separable, the jump in the upper numbering of higher ramification group Gv must happen at
integers. (Note: The proof in the case where K is a local field is much easier by Lubin-Tate group,
See(12.6.2.30)).

Proof: The theorem is just saying that if Gs ̸= Gs+1 for s integer, then φL/K(s) is an integer.
This follows follows from the following lemma, because if G is not totally ramified, then we can

change it to the Galois field of G0, this didn’t change anything by the definition of(12.2.2.23), and
the fact φ(0) = 0. And when Gv ̸= Gv+, then we consider splitting G/Gv+ into product of cyclic
groups, thus there is one cyclic group H that the projection of Gv into H is not trivial. Now H is
a Galois group of some L′/K, and Herbrand’s theorem shows that Hv ̸= Hv+, hence v is an integer
by the following lemma. □

Lemma(12.2.2.28).For a cyclic totally ramified extension of CDVRs L/K s.t. the residue field
extension is separable, if µ is the maximal integer that Gµ ̸= 1, then φL/K(Gµ) is an integer.

Proof: Cf.[Serre Local Fields P94]. □

Example(12.2.2.29). If Kn = Qp(ζpn), then

Gals(Kn/Qp) = Gal(Fn/Ft) for pt − 1 ≤ s < pt+1 − 2.

Thus Gali(Kn/Qp) = Gal(Kn/Ki).

Proof: This is because ζpn − 1 is a uniformizer of Kn(12.2.3.21). □

3 Local Fields
Notation(12.2.3.1).

• Let p ∈ P and (K,m, κ) ∈ p-LField(12.2.3.5).

Def.(12.2.3.2)[Local Fields].A local field is a locally compact valued field. A local field is clearly
complete. The category of local fields is denoted by LField.

Prop.(12.2.3.3)[Complete Valued Fields].A complete Archimedean valued field must be R or C,
by(10.3.3.18).

Any complete non-Archimedean valued field is discretely valued, and has finite residue fields of
characteristic p ∈ P. Such a field is called a p-adic local fields. The category of p-adic local fields
is denoted by p-LField.

Proof: Cf.[Sutherland, L9].? □

Remark(12.2.3.4).The valuation ring of a p-adic local field is a DVR, thus the theory of Dedekind
domains7 applies to this case.

Prop.(12.2.3.5) [p-adic Local Fields]. p-adic local fields are precisely the finite extensions of the
field Qp or Fp((t)), called p-adic number field and p-adic function field respectively.

The category of p-adic number fields are denoted by p-NField, and the category of p-adic function
fields are denoted by p-FField.

Proof: Cf.[Neukirch Algebraic Number Theory P135]. □
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The Group Structure of Local Fields

Prop.(12.2.3.6).For m > 0, there is an isomorphism (−)m : Un ∼= Un+v(m) when n is sufficiently
large.

Proof: Let m = uπv(m). For surjectivity, we need to find x, that 1 + aπn+v(m) = −(1 + xπn)m. i.e.

−a+ ux+ πn−v(m)f(x) = 0.

This has a solution x by Hensel’s lemma. □

Cor.(12.2.3.7). (K∗)m is an open subgroup of K∗, and ∩m(K∗)m = 1. (Because if a ∈ ∩m(K∗)m = 1,
then a is a unit, thus a ∈ ∩m(U)m = 1, thus a ∈ Un for every n thus a = 1).

Prop.(12.2.3.8). [K× : (K×)m] = m · |m|−1
p · |µm(K)|.

Proof: Use the multiplicative Herbrand quotient(3.7.5.7), (K∗ : (K∗)m) = q0,m(K∗)|µm(K)|. q0,m
is additive, thus

q0,m(K∗) = q0,m(K/U)q0,m(U/Un)q0,m(Un).

q0,m(K/U) = m, q0,m(U/Un) = 1 as U/Un is finite(3.7.5.9). It For q0,m(Un), when n is large, it
equals (Un : Un+v(m)) by(12.2.3.6), which is |m|−1

p . □

Prop.(12.2.3.9)[p-adic Logarithm].For a p-adic umber field K, there is a unique p-adic logarithm
function log : K∗ → K that log(p) = 0, and for x ∈ p, it is defined to be

log(1 + x) = x− x2

2
+ x3

3
− . . . .

Moreover, for n > eK
p−1 , there is a map exp : pn → Un : which is an inverse to log on Un, so

Un ∼= pn.

Proof: This follows from(8.5.4.8). □

Remark(12.2.3.10). In fact, this map can be extended to a function from C∗
p to Cp.

Cor.(12.2.3.11).For a local field K, O∗
K thus also K× are locally compact.

Proof: For n large, Un ∼= pn is compact. □

Prop.(12.2.3.12)[Multiplicative Group Structure].For K ∈ p-LField,
• If char K = 0, then O∗

K
∼= Z/(p− 1)⊕Z/(pa)⊕Zdp, where d = [K : Qp] and a ∈ N.

• If char K = p, then O∗
K
∼= Z/(p− 1)⊕ZN

p .

Proof: Cf.[Neukirch P140]. □

Prop.(12.2.3.13).Any automorphism of R or a p-adic number field is identity.

Proof: It suffices to show that an automorphism is continuous. For R, this is because a > 0 ⇐⇒
a = b2 ⇐⇒ σ(a) = σ(b)2 ⇐⇒ σ(a) > 0, and Q is dense in R.

For a local field, we prove that σ(O∗
K) ⊂ O∗

K . O∗
K is characterized by the property that {n|yn = x}

are infinite. This is because xp = a has a root for a ∈ O∗
K for p large prime, by Henselian lemma. □

Def.(12.2.3.14)[Norm Groups].For any extension of local fields L/K, NmL/K is open, and NL/K =
NmL/K L

× ⊂ K× is called the norm group of L/K.
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Extension Fields

Prop.(12.2.3.15). [Qab,tame
p : Qab,ur

p ] <∞.

Proof:
□

Prop.(12.2.3.16).The maximal unramified extension of Fp((t)) is T = Fp((t)), and the maximal
tamely unramified extension of Fp((t)) is T ( m

√
t|m ≥ 1, (m, p) = 1}).

Proof:
□

Prop.(12.2.3.17).Any finite quotient group of GalK is solvable.

Proof: This follows from(12.2.2.16)(12.2.2.15)(12.2.2.17) and(2.1.14.12) and(2.1.7.2). □

Def.(12.2.3.18)[Tame Characters].There is an isomorphism

t̂ : IK/RK ∼= Gal(Ktame/Kur) ∼=
∏
ℓ̸=p

Zℓ

and the projection to Zℓ is called the ℓ-adic (additive)tame character of IK .
Equivalently, if ℓ ∈ P\{p}, for any compatible system of ℓ∞-th roots {ϖℓn} of ϖ in K, it is the

character tℓ of GalK that σ(ϖℓn) = ϖ
tℓ(σ)
ℓn .

Ramifications of Cyclotomic Fields

Prop.(12.2.3.19) [Unramified cases].Let #κ = q and n ∈ Z+ \ (p), consider L = K(ζn). Then
L/K is unramified of inertia degree f where f is the minimal number that qf ≡ 1 mod n. And
OL = OK [ζn].

Proof: ζn is a root of Ψn(X)|Xn − 1, which is separable in k, so Ψ and Ψ are both irreducible of
the same degree by Hensel’s lemma, so it is unramified, and λ is the minimal extension of Fq that
contains the n-th roots and are generated by it, thus the result by the theory of finite fields.

For the last assertion, notice it is unramified so OL = OK [ζn] +pOL hence the result follows from
Nakayama. □

Cor.(12.2.3.20).The maximal unramified extension of K is generated by adjoining all n-th roots
where (n, p) = 1. This is because there is an inclusion relation and their residue field Fp is already
generated by roots of unity.

Prop.(12.2.3.21)[Totally Ramified cases].Consider Qp(other local fields behave different), we have
the Q(ζpn)/Q is totally ramified of degree φ(pn) the Galois group is (Z/(pn))∗. The ring of valuation
of Qp(ζpn) is Zp[ζpn ] and 1− ζpn is a uniformizer.

Proof: Notice

Ψpn(X) = Xpn − 1
Xpn−1 − 1

≡ (X − 1)pn−1(p−1)(mod p)

and Φ(1) = p. So Nm(1 − ζpn) =
∏

(1 − σ(ζpn)) = Φ(1) = p. Thus Q(ζpn)/Q is totally ramified of
degree pn−1(p − 1) and 1 − ζpn is a uniformizer. The ring of integer is generated by a uniformizer
by(10.3.3.20) as the extension is totally ramified. □
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Prop.(12.2.3.22)[Infinite Cyclotomic Field].Let Kn = K(ζpn) and K∞ = ∪Kn and F = Qp. Let
χ be the cyclotomic character, then χ(GalK) is an open subgroup of Z∗

p, thus contains a Un for some
n. Thus there is an isomorphism of groups: χ−1(Un)∩GalK /χ−1(Un + 1)∩GalK ∼= Un/Un+1 which
has order p, for n large.

So Kn+1/Kn is totally ramified of degree p, because Kn = K · Fn, and its value group extension
is of degree p, too.

And |{Kn : Fn}| is decreasing and eventually equals to [K∞ : F∞]. This is because its order
equals χ−1(Un)/χ−1(Un) ∩ GalK ∼= χ−1(Un) GalK /GalK , which is eventually ker(χ) GalK /GalK ,
because Un ⊂ χ(GalK).

Cor.(12.2.3.23).For n large, if xi is a set of basis of OKn over OFn , then they form a basis of KN

over FN for all N ≥ n. This is because it generate KN over FN and [KN : FN ] = [Kn : Fn].

Prop.(12.2.3.24). pnvp(DKn/Fn) is bounded and eventually constant. In particular vp(DKn/Fn) con-
verges to 0.

Proof: Cf.[Galois representation Berger P20]. □

Cor.(12.2.3.25). If L/K is a finite extension, then trL∞/K∞(mL∞) = mK∞ .

Proof: By(12.2.2.3) and the fact Gal(L∞/K∞) ∼= Gal(Ln/Kn) for n large by(12.2.3.22), we have
trL∞/K∞(mLn) = mcn

Kn
, where cn = ⌊vKn(mLnDLn/Kn)⌋. By the above proposition, cn is bounded by

a c. But if x ∈ mK∞ , x ∈ mc
Kn

for n large, so x ∈ trL∞/K∞(mL∞). □

Lemma(12.2.3.26).For any δ > 0, when n is large, if x ∈ OKn+1 and g ∈ G(Kn+1/Kn), vp(g(x)−x) ≥
1
p−1 − δ. In particular, v(NKn+1/Kn(x)− xp) ≥ 1

p−1 − δ.

Proof: Choose a basis ei of OKn/OFn , then e∗
i is a basis for DKn/Fn , and if xi = trKn+1/Fn+1(xei),

then xi ∈ OFn+1 and x =
∑
xiei, by(12.2.3.23), and we have by(12.2.2.29), v(g(xi)−xi) ≥ 1/(p− 1),

so when n is large, by(12.2.3.24), v(xi) ≥ −δ, so the require is satisfied. □

Prop.(12.2.3.27). if δ > 0 and I is the ideal of elements of valuation≥ 1/(p− 1)− δ, then for n large,
there is a map x 7→ xp : OKn+1/I ∩ OKn+1 → OKn/I ∩ OKn , and it is surjective.

Proof: For n large, choose a uniformizer πn+1 of Kn+1, then πn = NKn+1/Kn(πn+1) is the uni-
formizer of Kn because it is totally ramified(12.2.3.22), so any element x ∈ OKn+1 can be written
as ∑πin+1[xi], where xi ∈ kKn+1 = kK∞ . Then xp ≡ ∑πpin+1[xi]p ≡

∑
πin[xpi ] mod I by the above

proposition. And the surjection is verbatim. □

Def.(12.2.3.28)[Tate’s Normalized Trace].The function Rn(x) = p−k trFn+k/Fn(x) is compatible
with k and defines a Fn-linear projection from F∞ to Fn, and it commutes with GF action, called
the Tate’s normalized trace.

From(12.2.3.29) it’s easily verified that Rn(OFn+k) ⊂ OFn , thus Rn(πjnOFn+k) ⊂ πjnOFn . So we
have v(Rn(x)) > v(x) − v(πn). So Rn extends by continuity to a map Rn : F̂∞ → Fn. If x ∈ F∞,
then Rn(x) = x for n large, thus Rn(x)→ x for any x ∈ F̂∞.

Now for a finite extension K/Qp, for n large, if ei is a set of basis of OKn/OFn , then for any
x ∈ OKn+k , x =

∑
xie

∗
i , where xi = trKn+k/Fn+k(xei) ∈ OFn+k , as in the proof of(12.2.3.26). So

we can define Rn(x) =
∑
Rn(xi)e∗

i . Notice this is defined only for n large, and is independent of ei
chosen, and by the following lemma, it is continuous and extends to a Kn-linear projection Rn : K̂∞
to Kn.
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Lemma(12.2.3.29).Let k ≥ 0 and n ≥ 1, then Rn(ζj
pn+k) = 1 for j = 0 and vanishes otherwise.

Proof: This is clear from the fact trFn+k/Fn(ζj
pn+k) = ζj

pn+k
∑
ηpk=1 η

j . □

Lemma(12.2.3.30). for any δ > 0, when n is large, v(Rn(x)) ≥ v(x)− δ.

Proof: We have v(xi) > v(x) − v(πn+k) by Fn+k-linearity, and v(Rn(xi)) > v(xi) − v(πn) as
in(12.2.3.28), and v(e∗

i ) ≥ −δ when n is large, by(12.2.3.24). Thus the result. □

Prop.(12.2.3.31)[Refinement of Hilbert’s Theorem90].There is a decomposition of K̂∞ = Kn⊕
Xn, where Xn = kerRn. If δ > 0, then for n large, α ∈ Z∗

p and γn that χ(γn) is a topological
generator of ΓFn , 1− αγn : Xn → Xn (because γn commutes with Rn) is invertible and

vp((1− αγn)−1x) ≥ vp(x)− 1/(p− 1)− δ,

unless α = −1 and p = 2, in which case it is only invertible on Xn+1.

Proof: As usual, xi is a basis ofOKn/Fn , then x =
∑
xie

∗
i , xi = trK∞/F∞(xei) ∈ F̂∞, and Rn(x) = 0.

Then (1− αγn) acts on xi, so it reduce to the case K = Qp.
Injectivity: If α = 1, this is Ax-Sen-Tate theorem. In other situations, (1−αγn)(Rn+k(x)) = 0 for

all k ≥ 0, so Rn+k(x) = αp
k
γp

k

n (Rn+k(x)) = αp
k
Rn+k(x), so Rn+k(x) = 0, hence x = 0 by continuity.

Surjectivity: Let F ∗
n+k = ⊕p

k−1
j=1,p∤jFnζ

j
pn+k , then Fn+k = F ∗

n ⊕F ∗
n+1⊕ . . .⊕F ∗

n+k, and Fn+k ∩Xn =

F ∗
n+1 ⊕ . . .⊕ F ∗

n+k. Now if x =
∑pk−1
j=1,p∤j xjζ

j
pn+k with xj ∈ OFn , then

x = (1− αpk−1
γp

k−1
n )

pk−1∑
j=1,p∤j

xj
ζj
pn+k

1− αpk−1ζjp
.

Now vp(1− αp
k−1

ζjp) ≤ 1/(p− 1), and

(1− αγn)−1 = 1− αpk−1
γp

k−1
n

1− αγn
(1− αpk−1

γp
k−1
n )−1,

so αn : 1− αγn : F ∗
n+k → F ∗

n+k is invertible and

vp((1− αγn)−1x) ≥ vp(x)− 1/(p− 1)− vp(ζpn − 1)

holds. And the assertion holds by uniform continuity. □

Miscellaneous

Def.(12.2.3.32)[Lattices]. If K ∈ LField and V ∈ Vectfd /K, then a lattice in V is
• a compact open OK-submodule of V if K is non-Archimedean. Equivalently, it is a f.g. OK-

submodule that contains a K-basis of V .
• a discrete subgroup Λ of V s.t. V/Λ is compact if K is Archimedean.

Prop.(12.2.3.33).Let V be a f.d. vector space over a non-Archimedean local field K and Λ be an
OK-submodule of V , then Λ is a lattice in V iff it is a finite OK-module and generate V as a K-vector
space.
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Proof: If Λ is an OK-submodule, then it clearly generates V as a K-vector space, and the f.g.
OK-submodules of Λ is a cover of Λ, which has a finite subcover as Λ is compact open, thus Λ is f.g.
over OK .

Conversely, if Λ is a f.g. OK-submodule that generate V as a K-vector space, then it is a quotient
of OnK for some n, thus compact. And let S be a K-basis of V contained in Λ, then OKS is an open
nbhd of 0 ⊂ Λ, which means it is open. □

Prop.(12.2.3.34).Let Λ be a subgroup of a f.d. real or complex vector space V , then the following
are equivalent:

• Λ is a lattice in V .
• Λ is discrete and contains an R-basis of V .
• Λ has a Z-basis that is also an R-basis of V .

Remark(12.2.3.35).WARNING: This is not equivalent to Λ is a f.g. Z-module and generated V as
an R-vector space: Consider Z{1, α} ⊂ R.

Proof: 1 → 2: Let W be a complementary subspace of Λ ⊗Z R ⊂ V , then W ∼= W is closed thus
compact in V/Λ, which implies W = 0.

2→ 3: We may assume V = Rn and Λ contains the canonical basis e1, . . . , en, then Λ is generated
by S = {λ ∈ Λ|maxi |λi| ≤ 1}. Because Λ is discrete thus closed in V , S is finite. Thus Λ is a f.g.
Z-module, and has no torsion, thus a free Abelian group. But Λ/Z{ei} is finite, thus Λ ∼= Zn. Hence
a basis of Λ must also be a basis of V .

3→ 1 is clear. □

Def.(12.2.3.36) [Dual Lattice]. If K ∈ p-Field and V is a f.d. vector space over K, B is a non-
degenerate bilinear form on V and ψ is a non-trivial character of K, then for any lattice L ⊂ V , the
dual lattice L′ = {u ∈ V |ψ(2(B(u, v))) = 1,∀v ∈ L} is also a lattice in V .

Proof: It is an open group by no-small-subgroup argument, as ψ,B are continuous. it is compact
because take any basis {v1, . . . , vn} of V that vi ∈ L, {u ∈ V |ψ(2(B(u, vi))) = 1,∀i} is compact. □

4 Ultranormed Banach Spaces

Notation(12.2.4.1).
• Let (K, v,OK , pv, ϖ, k) be a complete non-Archimedean valued field(of rank 1), K0 = pv, and
ϖ ∈ K×, |ϖ| < 1 a uniformizer. If OK is DVR, assume (ϖ) = pv.

Ultranormed K-modules

Prop.(12.2.4.2).Any normed K-module is weakly-Cartesian.

Proof: Cf.[Non-Archimedean Analysis P92]. □

Cor.(12.2.4.3).Any two valuation on a finite K-vector space are equivalent.

Proof: Cf.[Non-Archimedean Analysis P93]. □

Prop.(12.2.4.4). If V is a normed Qp vector space and V0 = {x ∈ V ||x| ≤ 1}, then V ∧ ∼= (V0)∧
p [p−1].
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Ultranormed Banach Spaces

Def.(12.2.4.5) [Ultranormed Banach Spaces]. In the non-Archimedean case, an ultranormed
Banach algebra is defined as in(10.8.4.2), but additionally |a+ b| ≤ max{|a|, |b|}.

Def.(12.2.4.6)[Uniform Banach Space].For a complete non-Archimedean field K and a Banach
algebra R, define R0 to be the ring of power bounded elements. Then it is a subring, and it is
open, as it contains the closed ball D(0, 1).

Recall R is called uniform if R0 is itself bounded in R(12.2.1.6). Notice a uniform Banach space
must be reduced, because a nilpotent element is clearly power bounded, and any scalar multiple of
it is nilpotent.

Lemma(12.2.4.7).Fix a uniformizer t in a non-Archimedean complete field K, if |K∗| is discrete,
then if A is a t-adically complete and t-torsion-free K0-algebra, let R = A[t−1], then the norm

|f | = inf{|t|n|f ∈ tnA},

then this makes R into a K-Banach space that the t-adic topology of A is the same as the metric
topology of A, so A ⊂ R≤1 ⊂ R0.

Notice if |K∗| is not discrete but there is a pseudo-uniformizer t that has a compatible system
of pn-th roots, if A is a t-adically complete and t-torsion-free K0-algebra, let R = A[t−1], then the
norm

|f | = inf{|t|
n

pk |f ∈ t
n

pkA},

then this makes R into a K-Banach space that the t-adic topology of A is the same as the metric
topology of A, so A ⊂ R≤1 ⊂ R0, and in this case R0 = A∗ = Hom((t

1
p∞ ), A)(4.7.2.2).

Prop.(12.2.4.8) [Uniform K-Banach Space and K0-Algebra].Fix a pseudo uniformizer t in a
non-Archimedean complete field K, the following category are equivalent:

• The category C of uniform Banach K-algebras R.
• The category Dtic of t-adically complete and t-torsionfree K0-algebras A with A totally inte-

grally closed(4.2.1.1) in A[t−1].

Proof: The functor F : C → Dtic : if R is uniform Banach space, then F (R) = R0: R0 is
open subring by(12.2.4.6), and R0 ∈ B(0, r] for some r > 0 by uniformity. As R is K-Banach,
∩tnB(0, r] = 0, so R0 is t-adically separated, and also it is complete. If fN ∈ t−kR0 ⊂ t−kB(0, r],
then clearly f is power bounded thus f ∈ R0, so R0 is totally integrally closed in R. R → R0 is
preserved by continuous mappings, so F is truly a functor.

Conversely, lemma above(12.2.4.7) shows R = A[t−1] is a K-Banach algebra, this is a functor
G : Dtic → C, and A ⊂ R0. We show A = R0, as this is equivalent to FG ∼= id: as the t-adic topology
and metric topology are the same(12.2.4.7), if tcfN ⊂ A for some c, thus f is totally integral over A,
thus f ∈ A by tic.

Finally, we need to show GF ∼= id, which in fact that the given Banach algebra norm on R
is equivalent to the norm | · |′ given in(12.2.4.7) w.r.t R0. R′

<1 ⊂ R0 ⊂ R≤c by uniformity, and
conversely, R≤1 ⊂ R0 ⊂ R′

≤1, thus this two norms are equivalent. □

Prop.(12.2.4.9).Let φ : A → B be a k-homomorphism between k-Banach algebras that there is a
family B of ideals of B that for each b ∈ B:

• B is closed and φ−1(b) is closed in A.
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• dimk B/b <∞.
• ∩b∈Bb = (0).

Then φ is continuous.

Proof: Consider the map A/φ−1(b)→ B/b with the residue norms, Cf.[non-Archimedean analysis
P167]. □

Cor.(12.2.4.10).Let φ : A → B be a k-homomorphism between Noetherian k-Banach algebras that
there is a family B of ideals of B that for each b ∈ B, dimk B/b < ∞ and ∩b∈Bb = (0), then φ is
continuous. (Because the closedness condition is automatic by(12.2.4.13)).

Cor.(12.2.4.11).All complete k-algebra norms on a Noetherian k-algebra B satisfying the condition
of(12.2.4.10) are equivalent.

Modules over K-Banach Spaces

Prop.(12.2.4.12). If M is a normed module over a k-Banach algebra A, if the completion of M is a
finite A-module, then M is complete.

Proof: There are morphism π : An → M̂ that are surjective continuous, so by open mapping theo-
rem(10.8.2.4), this map is open, so ∑ Ǎxi = π(An) is a nbhd of 0 in M̂ , because Ǎ is open(12.2.1.9)
and then M̂ = M +

∑
Ǎxi, because M is dense in M̌ , then we are done by(12.2.1.10). □

Cor.(12.2.4.13)[Noetherian and Submodule Closed].For a complete normed module over a k-
Banach algebra A,M is Noetherian iff all submodules ofM are closed. In particular, A is Noetherian
iff all ideals of A are closed.

Proof: If M is Noetherian, then the completion of any submodule is finite over A, so it is complete
hence closed by(12.2.4.12). Conversely, if any ideal of M is closed, then for a chain of ideals of
M : ∪Mi = M ′, M ′ is complete hence Baire space by(3.3.9.2), so some Mi must contain a nbhd of
M ′, because it is an ideal, but then Mi = M ′. □

5 p-adic Analysis
Main References are [p-adic Analysis Robert].

p-adic Fields

Def.(12.2.5.1)[p-adic Fields].For p ∈ P, a p-adic field is a CDVR (K, v,OK , pv, k) s.t. charK =
0, char k = p, k = kperf . A p-adic local field is a p-adic field(12.2.5.1).

Prop.(12.2.5.2).For b ∈ Zp, we can define a power series in Zp[[T ]] as the limit of (1+a)bn for bn → b
in Zp. So for a ∈ Cp with v(a) > 0, there can be defined an element (1 + a)b ∈ Cp, and we have
(1 + a)b =

∑
Ckb a

k.

Def.(12.2.5.3) [Topological Completion]. If p ∈ P and K is a p-adic field, then we can define
CK = K̂, which is an alg.closed complete valued field, by(12.2.1.33)(12.2.1.30) and(12.2.1.24). Also
denote Cp = CQp .

Lemma(12.2.5.4). If K a p-adic field and P (X) ∈ K[X] is a monic polynomial of degree n, and all
of its roots satisfied vp(α) ≥ c for some constant c. Let q = pk if n = pkd, d ̸= 1 or n = pk+1.

Then the derivative P (q)(X) has a root β with vp(β) ≥ c or in case n = pk+1, vp(β) ≥ c− 1
pk(p−1) .
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Proof: Let P = Xn + an−1X
n−1 + . . .+ a0, then vp(ai) ≥ (n− i)c. And

1/q! · P (q)(X) =
n−1∑
i=0

Cqn−ian−iX
−i−q.

So at lest one root β satisfies

vp(β) ≥ 1
n− q

((n− q)c− vp(Cqn)) = c− 1
pk(p− 1)

.

□

Lemma(12.2.5.5). If K is a p-adic field and α ∈ K, let ∆K(α) = infg∈GalK vp(g(α) − α), then there
exists a δ ∈ K that vp(α− δ) ≥ ∆K(α)− p/(p− 1)2.

Proof: We strengthen the assertion and use induction on n = [K(α) : K] to prove that there is a
δ that vp(α− δ) ≥ ∆K(α)−

∑m
k=0

1
pk(p−1) , where p

m+1 is the largest power of p that ≤ n.
n = 1 is sure, let the minipoly of α over K be P (X). By lemma(12.2.5.4), there is a root β of P (q)

that vp(β−α) ≥ vp(α) or minus a factor when n = pk+1. Then for any σ, vp(σ(β)−β) ≥ vp(σ(α)−α)
or minus a factor. Then ∆(β) ≥ ∆(α) or minus a factor. Now [K(β) : K] < [K(α) : K] = n, so we
can use induction hypothesis to get the result. □

Remark(12.2.5.6).The constant p/(p− 1)2 can be replaced by 1/(p− 1), and it is optimal: this is a
theorem of Le Borgne in[Bor10].

Prop.(12.2.5.7) [Ax-Sen-Tate]. If F is a p-adic field and if K ⊂ F , then F̂
GalK

= K̂. Thus
L̂Gal(L/K) = K̂ for any alg.ext L/K.

Proof: Any α ∈ F̂ can be written as ∑αn with αn ∈ F . Then ∆K(αn) → ∞, and αn can be
approximated by δn ∈ K by lemma(12.2.5.5), thus α ∈ K̂. □

Holomorphic functions

Def.(12.2.5.8).For a p-adic field L, denote by LL the set of Laurent series with coefficients in L, then
the set of valuations that a Laurent series converges Conv(f) is an interval of [−∞,+∞]. Let A(I)
denote the set of elements in L of valuation in I.

If f is bounded at r1, r2, then it is convergent on (r1, r2).

Def.(12.2.5.9).Denote LL[r1, r2] = {f |f is convergent on [r1, r2]}.
LL(r1, r2] = {f |f is convergent on (r1, r2]}.
LL]r1, r2] = {f |f is convergent on (r1, r2] and bounded at r1}.
BL(I) is the subset of bounded functions. These are all rings under addition and multiplication.

And if we define v(r)(f) as the minimum of v(an) + nr, then it is a valuation on these rings.

Proof: Cf.[Foundations of Theory of (φ,Γ)-modules over the Robba Ring P31]. □

Def.(12.2.5.10). If we set for LL]r1, r2] the the valuation v[r1,r2](f) = min{v(r1)(f), v(r2)(f)}, then
this is a valuation on it.

Prop.(12.2.5.11).LL({r}) is complete under valuation v(r). Similarly the valuation v[r1,r2](f) makes
LL[r1, r2] a Banach space unless r1 = r2 =∞.
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Proof: We let r = 0. For a Cauchy sequence of Laurent series, we see that each coefficient is a
Cauchy sequence, hence converge to some element in L, so it converge term-wise to a Laurent series
f , so it converse to f in v(r). □

Cor.(12.2.5.12).We consider LL(0, r], then it has a countable sequence of norms v1/n,r, which makes
it a locally convex space, and the last proposition shows that these valuations are complete, and a
Cauchy sequence must converge to the term-wise limit, so LL(0, r] is a complete Fréchet space in the
Fréchet topology.

Cor.(12.2.5.13).The same method shows that LL(I) is a Fréchet space for any interval I.

Def.(12.2.5.14) [Robba Ring and Overconvergent Elements].We define E as the Laurent se-
quences that are bounded at 0 and limn→−∞ v(an) = ∞, and we define the overconvergent ele-
ments E† and Robba ring R as

E† =
∪
r>0
LL]0, r], R =

∪
r>0
LL(0, r], E† ⊂ R

and equip them with the final topology w.r.t. the Fréchet topologies on LL(0, r]. And denote by
E+ = E† ∩ L[[T ]] and R+ = R∩ L[[T ]].

For more properties of Robba ring, See [Foundations of Theory of (φ,Γ)-modules over the Robba
Ring Chap4].

Def.(12.2.5.15) [Newton Polygon].For a non-Archimedean valued field K and a polynomial or
power series P (X) = a0 + a1X + · · ·+ adX

d ∈ K[X], we denote by Newton polygon as the lower
convex hull of the set of points (0, v(a0)), (1, v(a1)), . . . , (d, v(ad)).

Prop.(12.2.5.16)[Roots and Newton Polygon].Foe a non-Archimedean valued fieldK the number
of roots of P in K with valuation λ equals the horizontal width of the segment of Newton polynomial
of P of slope −λ.

Proof: We may assume P is monic, then its coefficients are elementary polynomials of roots of P .
And the conclusion follows as K is non-Archimedean. □

For Newton polynomial of power series, see[Berger Galois Representations Chap3] and Reference
[Zeros of Power Series over complete Valued Field Lazard].

Prop.(12.2.5.17). . If I =]0,+∞] and f(X) ∈ H(I), then the number of zeros of f(X) in A(I) equals
the length of the segment of NP (f) whose slope is −s, and these roots gives a Ps(X) ∈ K[X] that
f(X) = Ps(X)G(X), G(X) ∈ H(I).

Proof: Cf.[Zeros of Power Series over complete Valued Field Lazard]. □

Cor.(12.2.5.18). If f(X) ∈ H(I), then f(X) ∈ BL(I) iff it has f.m. zeros in A(I).

Proof: Let r = inf I and s = sup I. First notice that f ∈ LL(I) is in B(I) iff v(an) +nr is bounded
from below as n → +∞ and v(an) + ns is bounded below as n → −∞. And from the graph of
NP (f), this is equivalent to f has f.m. zeros in A(I). □

Prop.(12.2.5.19).H(I) is a Bezout domain.
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Formal Power Series

Cor.(12.2.5.20)[Convergence of Power Series].Let (R,m) be a CDVR of characteristic0 of residue
characteristic p, then

• If f(T ) =
∑∞
n≥1

an
n T

n ∈ (R⊗Q)[[T ]] with ai ∈ R, then f(x) converges in R for x ∈ m.

• If g(T ) =
∑∞
n≥1

bn
n!T

n ∈ (R ⊗ Q)[[T ]] with bi ∈ R, then f(x) converges in R for v(x) >
v(p)/(p− 1).

Proof: 1: v(anxn/n) ≥ nv(x) − v(n) ≥ nv(x) − logp(n)v(p) converges to ∞ for n → ∞ when
v(x) > 0.

2: v(bnxn/n!) ≥ nv(x)−v(n!) ≥ nv(x)− (n−1)v(p)/(p−1)(24.1.3.17) converges to∞ for n→∞
when v(x) > v(p)/(p− 1) □
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12.3 p-adic Lie Groups
References are [Schneider].
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12.4 Global Fields
Main references are [Neu99], [Sen80], [R-V99], [Cox89], https://math.mit.edu/

classes/18.785/2015fa/lectures.html, http://www.math.columbia.edu/~chaoli/docs/
ClassFieldTheory.html#thm:CFTlocalnorm, should also consult notes of Pete. L. Clark.

Notation(12.4.0.1).
• Use notations defined in Commutative Algebra II.
• Use notations defined in Valuations of Rank 1, all valuations are of rank1.
• Use notations defined in More on (Non-Commutative)Algebras.
• Use notations defined in p-adic Analysis.
• Let (K,OK) ∈ LField.
• Let (F,OF ) ∈ GField(12.4.2.1)(12.4.2.2).

1 Classical Problems
Remark(12.4.1.1).Propositions in this section must be stated without the language of global or local
fields.

Prop.(12.4.1.2).Let p ∈ P, then
• p can be written as the form x2 + y2 iff p = 2 or p ≡ 1 mod 4.
• p can be written as the form x2 + 2y2 iff p = 2 or p ≡ 1, 3 mod 8.

Proof:
□

2 Global Fields
Def.(12.4.2.1)[Global Fields].A global field is a finite extension of Q or Fp((t)), without a valua-
tion. The former is called a number field and the latter a function field. The set of global fields
is denoted by GField. The set of number fields is denoted by NField. The set of function fields is
denoted by FField.

Def.(12.4.2.2) [Ring of Integers].Z ⊂ Q and Fp[t] ⊂ Fp((t)) are PIDs, thus Dedekind domains,
thus for a global field F (12.4.2.1), we can define the ring of integers OF of F to be the integral
closure of Z or Fp[t] in F , which is an Dedekind domain, by(4.2.7.12) and(2.2.3.16).

Remark(12.4.2.3).The section Dedekind Domains applies to the ring of integers OF for F ∈ GField.

Def.(12.4.2.4) [Roots of Unity].Denote µ(F ) be the set of roots of unity in F , which is a finite
group.

Def.(12.4.2.5)[Places].
• Σfin

F is the equivalent classes of (non-Archimedean)valuations of F , called the finite places of
F .

• Σ∞
F is the equivalent classes of (Archimedean valuations)| · |v = − log |τ(·)| of F corresponding

to embeddings τ : K → C(10.3.3.16), called the infinite places of F .

https://math.mit.edu/classes/18.785/2015fa/lectures.html
https://math.mit.edu/classes/18.785/2015fa/lectures.html
http://www.math.columbia.edu/~chaoli/docs/ClassFieldTheory.html#thm:CFTlocalnorm
http://www.math.columbia.edu/~chaoli/docs/ClassFieldTheory.html#thm:CFTlocalnorm
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• ΣR
F is the set of infinite places v of F corresponding to embeddings F → R, called the set of

real places of F . Denote r1 = #ΣR
F if it is finite.

• ΣC
F is the set of infinite places v of F that is non-real, called the set of complex places of F .

Notice two embeddings corresponds to the same place iff they are conjugate. Denote r2 = #ΣC
F

if it is finite.
• For a maximal ideal p ⊂ OF , vp is the valuation of F corresponding to F . Most of the time we

will not distinguish between a maximal prime p and its corresponding valuation.
• For a finite extension L/F and v ∈ ΣF , Σv

L is the set of finite places over L over v.
• For v ∈ ΣF , denote Fv the completion of F w.r.t. v.

Def.(12.4.2.6)[Constant Fields].

Prop.(12.4.2.7)[Valuations].Let F be a global field, for any v ∈ ΣF , let p ∈ P∪{∞} s.t. v|p, then
define the inertia degree

fv =
{

[κ(v) : κ(p)] , v ∈ Σfin
F

[Fv : Fp] , v ∈ Σ∞
F

, ||v|| =
{

pfv , v ∈ Σfin
F

efv , v ∈ Σ∞
F

, | · |v = ||v||−v(a)

This is compatible with the definition in(4.2.7.20) when v ∈ Σfin
F .

Prop.(12.4.2.8) [Product Formula].Let F be a global field and a ∈ F×, then |a|w = 1 for a.e.
w ∈ ΣF , and ∏

w∈ΣF

|a|w = 1.

Proof: Let F0 = Q or Fp(t) be the constant field of F , then the assertion is easy to verify for F0,
and ∏

w∈ΣF

|a|w =
∏
v∈F0

∏
w|v
|a|w =

∏
v∈F0

|NmF/F0(a)|v = 1.

□

Prop.(12.4.2.9)[Artin-Whaples].Let F be a field and ΣF the set of places of F , then F is a global
field iff

• There exists representatives | · |v for v ∈ ΣF s.t. the product formula ∏v∈ΣF |a|v = 1 for any
a ∈ F×.

• For any v ∈ ΣF , Fv is a local field(12.2.3.2).

Proof: □

Prop.(12.4.2.10)[Global and Local].Let F ∈ GField, v ∈ ΣF , then for any extension Lw/Fv, there
exists a global field L/F extension s.t. Lw = LFv, and [L : F ] = [Lw : Fv].

Proof: Cf.[Sutherland, L11]. □

Def.(12.4.2.11) [Algebraic Integers].An element α ∈ Q is called an algebraic number. It is
called an algebraic integer iff it satisfies a monic polynomial equation p(X) ∈ Z[T ]. Notice the set
of algebraic integers equals

O
Q

=
∪
F⊂C

OF .

where the union is taken over all number fields F .
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Prop.(12.4.2.12). If α is an algebraic integer s.t. any of its conjugate has absolute value 1, then α is
a root of unity.

Proof: For any power αr of α, its minimal polynomial over Q has bounded degree and bounded
coefficients independent of r, so there are only f.m. such polynomial and f.m. such roots. Thus
αi = αj for some i ̸= j ∈ Z+, and α ∈ µ(Q). □

Def.(12.4.2.13)[Weil Numbers].For p ∈ P, q ∈ pZ, a q-adic Weil number of weight w is a number
α ∈ O

Q
that for any embedding ι : Q→ C, |ι(α)| = qw/2. The set of Weil q-numbers of weight w is

denoted by Weil(qw/2).

Prop.(12.4.2.14)[Sign of Discriminants]. If F ∈ NField. then d(F ) ∈ (−1)r2Z+.

Proof: d(F ) ̸= 0 by(2.2.5.34), and by definition, d(F ) = det((σαi)σ,i)2, where σ runs through
embeddings F ↪→ C, and α1, . . . , αn is a Z-basis of OF . Then notice

det((σαi)σ,i) = (−1)r2 det((σαi)σ,i),

so if r2 is odd, then det((σαi)σ,i) is purely imaginary, and if r2 is even, det((σαi)σ,i) is real. Thus
the assertion follows. □

Galois Theory of Extensions

Def.(12.4.2.15)[Ramification Groups].For a Galois extension of global fields L/K and a valuation
extension w|v, denote λ/k residue fields extension of w|v, and denote pw, pv by P, p.

Then the decomposition group is Gw(L/K) = {σ ∈ G(L/K)|w◦σ = w}. The decomposition
field Zw is the fixed field of Gw.

When w is non-Archimedean, we further define:
The inertia group is Iw(L/K) = {σ ∈ Gw(L/K)|σ(x) ≡ x mod P}. The inertia field Tw is

the fixed field of Iw.
The ramification group is Rw(L/K) = {σ ∈ Gw(L/K)|σ(x)/x ≡ 1 mod P}. The ramifica-

tion field Vw is the fixed field of Rw.
Similarly we can define for higher ramification groups Gw,s(L/F ).

Prop.(12.4.2.16) [Local and Global Ramification Groups].Let L/F be a Galois extension of
global fields, v ∈ ΣF , w ∈ Σv

L, then any embedding L→ F v induces isomorphisms

Gw,s(L/F ) ∼= Gs(Lw/Fv)

by natural restriction.

Proof: Cf.[ANT, Neukirch]. □

Cor.(12.4.2.17) [Local and Global Galois Groups].There is an embedding Gal(Lw/Fv) ↪→
Gal(L/F ) that is determined up to conjugation. In particular, there is an embedding

GalFv ↪→ GalF

determined up to conjugation.

Proof: It is determined up to conjugation because Gal(L/F ) acts transitively on the places over
v: For finite places this follows from(4.2.7.22), and for infinite places this means Gal(L/F ) acts
transitively on the extension of embedding to C, which is clearly true. □
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Prop.(12.4.2.18)[Zw].
• The restriction wZ of w to Zw extends uniquely to L.
• If v is non-Archimedean, wZ has the same residue field and value group as v.
• Zw = L ∩Kv ⊂ Lw.

Proof: Cf.[Neukirch P171]. □

Prop.(12.4.2.19). Tw/Zw is the maximal unramified subextension of L/Zw.

Proof: Cf.[Neukirch P173]. □

Prop.(12.4.2.20). Vw/Zw is the maximal tamely ramified subextension of L/Zw.

Proof: Cf.[Neukirch P175]. □

Minkowski Theory

Def.(12.4.2.21)[Global Lattices]. If F ∈ GField and V ∈ Vect /F , then an OF -lattice in V is a
f.g. OF -module Λ s.t. that generates V as a F -vector space.

In general, Λ = OFx1 ⊕OFx2 ⊕ . . .⊕OFxn−1 ⊕ axn where a ∈ Ideal(OF )(Cf. [?]P42, may have
to do with(4.2.7.15)?), and it is called a free lattice if L ∼= OnF . Notice this is always the case if
cl(OF ) = 1, e.g. when F = Q.

Prop.(12.4.2.22)[Local to Global Compatibility for Lattices].Let F ∈ NField, then
• If Λ is an OF -lattice in Fn, then for any v ∈ ΣF , its completion in Fv is an OFv -lattice in Fnv ,

and for a.e. place v, Λv = OnF,v.

• Conversely, if for any v ∈ Σf
F , Λv is an OFv -lattice in Fnv , and Λv = OnF,v for a.e. v, then there

is a unique F -lattice Λ ∈ Fn s.t. Λv is the closure of Λ in Fv. In fact, Λ = ∩
v∈ΣfF

(Fn ∩ Λv).

• Λ is determined by Λv for each v ∈ Σf
F .

Proof: 1 is easy. For 2, notice that O = ∩
v∈ΣfF

(OFv), so Λ defined as above is commensurable with
OnF , so it is clearly a lattice, because OF is Noetherian. 3 follows from 2. (I think this argument also
holds for global function fields?) □

Prop.(12.4.2.23)[Minkowski].Let a ̸= 0 ∈ Ideal(OF ) and for each τ ∈ Hom(F,C), let cτ > 0 s.t.
cτ = cτ and ∏

τ

cτ > ( 2
π

)s|dK |1/2(OK : a),

then there exists a ∈ a× s.t. for any τ ∈ Σ∞
F ,

|τ(a)| < cτ

Proof: Cf.[Neu99]P32. □

Cor.(12.4.2.24).For a ̸= 0 ∈ Ideal(OF ), there exists a ∈ a× s.t

|τ(a)| < ( 2
π

)s/n|dK |1/2n(OK : a)1/n

for any τ ∈ Hom(F,C).
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Prop.(12.4.2.25)[Regulator Map].There is a regulator map

RegF : O∗
F → [

∏
τ∈Σ∞

F

R]+

such that the kernel is µ(F ), and the image is a complete lattice in H = {(xi)|
∑
xi = 0}.

Proof: Cf.[Neukirch, P43]. □

Cor.(12.4.2.26)[Regulators].Let {ε1, . . . , εt}t=r1+r2−1 be a system of fundamental units in F , define
Reg(F ) the regular of F to be the absolute value of any t× t minor of the following matrix

Reg(1)(ε1) . . . Reg(1)(εt)
...

...

Reg(t+1)(ε1) . . . Reg(t+1)(εt)

 ,
then the volume of Reg(O∗

F ) ⊂ H is

Vol(Reg(O∗
F )) =

√
r1 + r2 Reg(F ).

Proof: Cf.[Neukirch, P43]. □

Thm.(12.4.2.27)[Bounded Ramifications are Rare].Let Σ∞
F ⊂ S ⊂ ΣF , #S < ∞, then there

are only f.m. field extensions L/F of a given degree n that are unramified outside S.

Proof: The power of a prime P in the discriminant is controlled by n by(4.2.7.35). Together
with(4.2.7.37), thus shows the power of p in the discriminant of the extension is controlled by n,
independent of the field. Also we can assume

√
−1 ∈ F , because it changes the discriminant by a

bounded factor, by(4.2.7.38). So it suffices to prove there are only f.m. field extension with fixed
degree and discriminant. By(4.2.7.38), we can assume K = Q.

For the rest, we use Minkowski’s theorem, Cf.[Neukirch, P203]?. □

Prop.(12.4.2.28)[Lower Bounds for Discriminant].The discriminant of F satisfies

|dF |1/2 ≥ nn

n!
(π
4

)n/2.

Proof: Cf.[Neukirch, P204]. □

Cor.(12.4.2.29)[Hermit’s Theorem].There are only f.m. number fields with a given discriminant.

Proof: (12.4.2.28) shows the degree is controlled by the discriminant, thus the theorem follows
from(12.4.2.27). □

Cor.(12.4.2.30)[Minkowski’s Theorem].For F ̸= Q ∈ NField, dF ̸= ±1.

Cor.(12.4.2.31).Q doesn’t have any non-trivial unramified extensions, by(4.2.7.39).
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Orders

References are [Neu99]Chap1.12 and [?]P42.

Def.(12.4.2.32) [Orders].An order is a Noetherian integral domain O of dimension 1 whose con-
ductor(4.2.7.17) is non-zero, or equivalently its integral closure in fraction field is finite over O
by(4.2.7.18). A Dedekind domain is an order.

Def.(12.4.2.33)[A-Orders]. If A is Noetherian domain with fraction field k and B ∈ Ringfd /K, then
an A-order in B is an A-lattice(12.4.2.21) in B that is also a subring.

Prop.(12.4.2.34)[Orders in Number Fields]. Situation as in(4.2.7.13), if L/K is separable, then a
subring O of L is an OK-order iff it is an order in L(12.4.2.32) with integral closure OL. in particular,
OL is the maximal OK-order in L.

In particular, if F ∈ NField, then the Z-orders of F are exactly subrings of OF that contains a
basis of F .

Proof: If O is an OK-order, then every element of O is integral over OK , by acting on O. OK is
contained in O, and O ⊗OK

K = L, so the fraction field of O is L. Thus the integral closure of O
in L is OL. Then dimO = 1 as dimOL = 1(4.2.4.14), and it is Noetherian because it is f.g. over
A(4.1.1.40). And OL is finite over OK by(4.2.7.21), thus is also f.g. over O. Thus O is an order.

If O is an order with integral closure OL, then it is f.g. over OK as it is contained in the f.g.
OK-module OL. And it contains a K-basis of L because L = KOL and aOL ⊂ O for some a ∈ O×

because O is an order. Thus O is an A-lattice in L that is a ring, so it is an A-order.
For the last assertion, notice that one direction is clear, and if OF contains a basis of F and is

contained in OF , then it must be a Z-lattice of F , as OF is free because it is finite over Z(4.2.7.21).
Then it is clear O is an order with integral closure OF . □

Cor.(12.4.2.35). If F ∈ NField and L = F (αi) where αi ∈ OL, then O = OF [αi] is an OK-order in
L.

Prop.(12.4.2.36).Let F ∈ NField and Λ is a Z-lattice in F , then the ring of multipliers

O = {α ∈ OF |αΛ ⊂ Λ}

is an order in F .

Proof: O contains (d) for some d ∈ Z+, because for any α ∈ OF , αΛ ⊂ F = Λ ⊗ Q, so for some
dα ∈ Z+, dαΛ ⊂ Λ.

Thus O contains a basis of F . And O is contained in OF : if αΛ ⊂ Λ, then α satisfies the
equation of its characteristic polynomial, which has coefficients in Z. So α ∈ OF . Thus O is an
order, by(12.4.2.34). □

Prop.(12.4.2.37).Let F ∈ NField and B ∈ Ringfd /F , then an order O ≤ B is maximal iff for each
v ∈ Σf

F , Ov ⊂ BFv is maximal.

Proof: This is clear from(12.4.2.22) and the definition(12.4.2.33). □

Lemma(12.4.2.38).For K ∈ p-LField,
• Mat(n;OK) is a maximal order in Mat(n;K).
• Any two maximal orders in Mat(n;K) are conjugate.
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• Any order O ⊂ Mat(n;K) is contained in some maximal order. And it is contained in f.m.
maximal orders.

Proof: 1: If another order contains Mat(n;OK) and also an element x, then we can clearly see that
it contains an element of the form A = diag(x1, . . . , xn) s.t. x1 /∈ OK . Then {AZ} is not bounded.

3: As O is compact and Mat(n;OK) is open, there exists f.m. xi s.t. B ⊂ ∪i(xi + Mat(n;OK)).
Then it follows that Λ = ⊕OnKxi is a lattice stable under O, thus O ⊂ Stab(Λ) is conjugate to
Mat(n;OK) thus maximal.

Next we show O is contained in f.m. maximal orders: Suppose O ⊂ C = Stab(Λ) and O ⊂
C ′ = Stab(Λ′), then there exists some α that ϖα Stab(Λ) ⊂ O ⊂ Stab(Λ′). Replacing Λ by a
constant doesn’t change stabilizer, so we may assume Λ ⊂ Λ′, and assume Λ = OK{e1, . . . , en}
and Λ′ = OK{e1, ϖ

α2e2, . . . , ϖ
αnen}. Since ϖα Stab(Λ) ⊂ Stab(Λ′), Stab(λ)(Λ′) ⊂ ϖ−αΛ′. Also

by using the matrices permuting e1 and ei, we see αi < α for each i, so ϖαΛ ⊂ Λ′, and then
ϖn Stab(Λ′)(Λ) ⊂ Stab(Λ′)(Λ′) = Λ′ ⊂ L. This implies ϖα Stab(Λ′) ⊂ Stab(Λ). From this it is clear
that there are only f.m. maximal orders containing O.

2: It follows from the proof of item3 that any order is contained in a stabilizer, then it suffices to
show that if Stab(Λ) = Stab(Λ′), then Λ = Λ′. But this is already implicit in the proof of item2: In
this case, α = 0. □

Thm.(12.4.2.39) [Maximal Orders in Semisimple Algebras over Local Fields]. If K ∈
p-LField and B is a semisimple algebra over K, then any OK-order O ⊂ B is contained in a
maximal order. And there are only f.m. maximal orders containing it.

Proof: Writing B as a product of simple algebras, it suffices to prove for B simple, and by base
change to the center L of B, it suffices to show for B central simple: This is because if two orders are
isomorphic after extension by OL, then their transformation matrix has coefficients in OL∩K = OK .
Then we need to show that there are only f.m. orders containing O. Choose a splitting field L/K
for B, it reduces to prove for B = Mat(n;K): This reason is the same as above. Then the assertion
follows from(12.4.2.38). □

Thm.(12.4.2.40)[Maximal Orders in Semisimple Algebras over Global Fields]. If F ∈ NField
and B is a semisimple algebra over F , then any order O ⊂ B is contained in some maximal order.
And there are only f.m. maximal orders containing it.

Proof: Writing B as a product of simple algebras, it suffices to prove for B simple, and by base
change to the center L of B, it suffices to show for B central simple: This is because if two orders are
isomorphic after extension by OL, then their transformation matrix has coefficients in OL∩F = OF .
Then we need to show that there are only f.m. orders containing O. Choose a splitting field L/F for
B, it reduces to prove for B = Mat(n;F ): This reason is the same as above.

And for B = Mat(n;F ), by(12.4.2.38) and(12.4.2.22), O is already maximal at a.e. place, so the
assertion follows from(12.4.2.22) and the local case(12.4.2.39). □

Orders in Imaginary Quadratic Fields

Def.(12.4.2.41)[OD].For D ∈ Z s.t. D ≡ 0, 1(mod 4), denote OD = Z[D+
√
D

2 ], which is an order in
Q(
√
D).

Def.(12.4.2.42)[Imaginary Quadratic Orders].
• Z[i] is called the ring of Gaussian integers.



12.4. GLOBAL FIELDS 1245

• Z[1+
√

−3
2 ] is called the ring of Eisenstein integers.

• Z[1+
√

−7
2 ] is called the ring of Kleinian Integers.

These are all PIDs.

3 Cyclotomic Fields
Def.(12.4.3.1)[Cyclotomic Units].A compatible system of roots of unity is a system {ζn, n ∈
Z+} ⊂ Q s.t.

• ζm ̸= 1 for m > 1.
• For k, n ∈ Z+, ζkkn = ζn.
• ζ4 = i.

We fix a choice of compatible system of unity throughout this book.

Prop.(12.4.3.2).Gal(Q(ζn)/Q) ∼= (Z/(n))∗.

Proof: We choose a prime p prime to n and show that ζpn is conjugate to ζn.
Let Xn − 1 = f(X)h(X) with f(X) minimal polynomial of ζn.If f(ζpn) ̸= 0, then h(ζpn) = 0,thus

h(Xp) = f(X)g(X). So modulo p, Xn − 1 has a multi root, which is impossible. □

Lemma(12.4.3.3).For p ∈ P, r ∈ Z+, consider Q(ζpr), then (p) = (1− ζpr)p
r−1(p−1), and

d(1, ζpr , . . . , ζp
r−1(p−1)−1
pr ) = ±ppr−1(r(p−1)−1),

where the sign is positive if pr = 4 or p ≡ 3(mod 4).

Proof: As Ψpr(X) = Xpr−1(p−1) +Xpr−1(p−2) + . . .+Xpr−1 + 1, by taking X = 1, we get

p =
∏

g∈(Z/(n))∗

(1− ζgpr).

But it is easy to see that for any g, g ∈ (Z/(n))∗, 1− ζgpr and 1− ζg
′

pr differ by a unit, so by(2.2.5.35),
if ζi are the conjugates of ζpr , then

d(1, . . . , θpr−1(p−1)−1) =
∏
i<j

(ζi − ζj)2 = ±
∏
i

Ψ‵
pr(ζi) = ±NmQ(ζpr )/Q(Ψ‵

pr(ζpr)).

Differentiating the equation
(Xpr−1 − 1)Ψpr(X) = Xpr − 1,

we get
(ζp − 1)Ψ‵

pr(ζpr) = prζ−1
pr .

Then notice as p is totally ramified in Q(ζp)(12.2.3.21),

NmQ(ζpr )/Q(ζp − 1) = (NmQ(ζp)/Q(ζp − 1))pr−1 = ±ppr−1
,

and the assertion follows. The last assertion follows from(12.4.2.14). □

Prop.(12.4.3.4).For n ∈ Z+, OQ(ζn) = Z[ζn].



1246 CHAPTER 12. ALGEBRAIC NUMBER THEORY

Proof: First consider the case n = pr a prime power. By(12.4.3.3), d(1, ζpr , . . . , ζp
r−1(p−1)−1
pr ) = ±ps

for some s ∈ Z+, so psO ⊂ Z[ζpr ] ⊂ O. Because p totally ramifies by(12.2.3.21), O = Z[ζpr ] + (1 −
ζpr)O, thus O = Z[ζ] by Nakayama.

In general, if n =
∏
i p
ri
i , for different pi, and Q(ζn) =

∏
Q(ζprii ) by Chinese remainder theorem,

and the fields Q(ζprii ) are disjoint and the discriminant are pairwisely coprime, thus by(4.2.7.16), the
products of the integral basis form an integral basis. □

Cor.(12.4.3.5).O
Q(ζn+ζ−1

n ) = Z[ζn + ζ−1
n ].

Prop.(12.4.3.6)[Ring of Integers].Let n be an integer with no repeated primes, then
• If n ≡ 3 mod 4, the ring of integers in Q(

√
n) is Z[

√
n].

• If n ≡ 1 mod 4, the ring of integers in Q(
√
n) is Z[1+

√
n

2 ].

Proof: 1: the minimal polynomial of
√
n is X2 − n, whose different is 4n, which doesn’t have a

proper divisor β that 4n/β is a square and β ≡ 0, 1 mod 4, so Z[
√
n] is the ring of integers.

2: the minimal polynomial of 1+
√
n

2 is X2 −X + 1−n
4 , whose different is n, which doesn’t have a

proper divisor β that 4n/β is a square, so Z[1+
√
n

2 ] is the ring of integers. □

Prop.(12.4.3.7).By(19.3.2.8), for p ≥ 3 ∈ P, Q(
√

(−1)
p−1

2 p) ⊂ Q(ζp).

Prop.(12.4.3.8).For p ∈ P, if ε ∈ (Z[ζp])∗, then there exists ε1 ∈ Q(ζp+ζ−1
p ) and r ∈ Z s.t. ε = ζrpε1.

Proof: The case p = 2 is clear. Assume p ≥ 3, and α = ε/ε, then any conjugate of α has absolute
value 1. Thus α is a root of unity(12.4.2.12), Assume α = ±ζap?. Let ε = b0 + b1ζp + . . .+ bp−2ζ

p−2
p ,

if α = −ζap , then

ε = b0 + b1ζ
−1
p + . . . ≡ b0 + b1 + . . . ≡ ε = −ζap ε ≡ ε(mod 1− ζp).

Then 2ε ∈ (1− ζp), which is not possible.
Thus α = ζap . Assume a ≡ 2r(mod p), and ε1 = ζ−rε, then ε1 = ε1, and ε = ε1ζ

r
p . □

Prop.(12.4.3.9). p ∈ P splits in Q(ζn) iff p ≡ 1 mod n.

Proof: First, if it splits, then fp = 1. Because the ring of integers is Z[ζn], so Xn − 1 splits in
Fp(12.4.3.4), thus p ≡ 1 mod n. And if p ≡ 1 mod n, it is unramified and Xn − 1 splits in Fp, so
fp = 1. □

Prop.(12.4.3.10). p ∈ P is ramified in Q(ζn) iff p|n.

Proof: This follows from(12.2.3.19) and(12.2.3.21). □

Cor.(12.4.3.11). If m,n ∈ Z+ are coprime, then Q(ζm) ∩Q(ζn) = Q.

Proof: This follows from Minkowski’s theorem(12.4.2.30). □

Prop.(12.4.3.12). If n ∈ Z+ has at least two prime divisors, then 1− ζn is a unit in Q(ζn).

Proof: By(2.2.2.24), Nm(1− ζn) = Ψn(1) = 1. □

Prop.(12.4.3.13).
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• If n ∈ Z+ is not of the form pr or 2pr for p ∈ P, then Q(ζn)/Q(ζn + ζ−1
n ) is unramified at finite

places.

• If p ∈ P and n ∈ pZ+ or n ∈ 2pZ+ , then Q(ζn)/Q(ζn + ζ−1
n ) is ramified at any places above p,

and unramified at other finite places.

Proof: For the first case, let p, q are two prime divisors of n(or q = 2, in which case take q =
4). Then ζp, ζq are not in Q(ζn + ζ−1

n ), so Q(ζn) = Q(ζn + ζ−1
n , ζp) = Q(ζn + ζ−1

n , ζq). But then
Q(ζn)/Q(ζn+ζ−1

n ) can only ramify at finite places that are both over p and over q, so it is unramified
at all finite places.

For the second case, use the fact that Q(ζn)/Q is totally ramified at p and unramified at other
places(12.2.3.19) and(12.2.3.21). □

Zp-Extensions

Def.(12.4.3.14)[cyclp(K)].For p ∈ P andK ∈ p-Field orK ∈ GField, DenoteKp∞ = K(ζp∞). Then
by(12.4.3.2) and(12.2.3.12), Gal(Kp∞/K) ⊂ Z∗

p
∼= Zp ⊕ G is a subgroup of finite index, where G is

a finite group. So there is a unique subextension cyclp(K) ⊂ K(µp∞) with Gal(cyclp(K)/K) ∼= Zp,
called the cyclotomic Zp-extension of K.

Also denote cyclp,n(K) ⊂ cyclp(K) the subextension of degree pn.

Prop.(12.4.3.15). If ℓ is a p is totally ramified in cyclp(Q), and any ℓ ∈ P \ {p} is unramified in
cyclp(Q).

Proof: Cf.[Washington, P265]. □

Others

Prop.(12.4.3.16).For n ∈ Z+, the sum of primitive n-th roots of unity equals µ(n)(24.1.3.14).

Proof: ? Prove that the assertion is multiplicative, and then prove for prime powers. □

Prop.(12.4.3.17).Find all n ∈ Z+ and primitive n-th roots of unity ζ1, . . . , ζ4 s.t.

ζ1 + ζ2 + ζ3 + ζ4 = 1.

Proof: By(12.4.3.16),

4µ(n) =
∑

k∈(Z/(n))∗

4∑
i=1

ζki = ϕ(n).

Thus φ(n) = 4 and µ(n) = 1. Then n can only be 5, 8, 10, 12, and n can only be 10.
Now Ψ10(X) = X4 −X3 +X2 −X + 1, so the identity ζ1 + ζ2 + ζ3 + ζ4 = 1 must be essentially

identical to this one. So the only possibility is

{ζ1, ζ2, ζ3, ζ4} = {e2π i 1
10 , e2π i 3

10 , e2π i 7
10 , e2π i 9

10 }.

□
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4 Class Numbers

Def.(12.4.4.1) [Class Groups].For F ∈ GField, the class group of F is defined to be the class
group Cl(OF ) of OF . It is denoted by Cl(F ). The cardinality of Cl(F ) is called the class number
of F , denoted by cl(F ).

Conj.(12.4.4.2).There are infinitely many number fields with class number 1.

Proof:
□

Class Number of Complex Quadratic Fields

References are [Gol85], [Sta67].

Prop.(12.4.4.3).Let ℓ ≡ 3(mod 4) ∈ P, then for D = −ℓ or −4ℓ, h(OD)(12.4.2.41) is odd.

Proof: Cf.[Cox, Prop3.11 and Thm7.7(ii)].? □

Prop.(12.4.4.4)[Gauss Class Number Problem1801, Siegel/Goldfeld-Gross-Zagier/Zhang].
There exists an effectively computable constant C > 0 s.t. for any complex quadratic field Q(

√
D)

with discriminant D < 0,

h(Q(
√
D)) > C

|D|1/2

(log |D|)2022 .

Proof: This follows from(19.3.4.3) and(19.3.3.12). □

Cor.(12.4.4.5)[Baker-Heegner-Stark].For d ∈ Z+ squarefree, cl(Q(
√
−d)) = 1 iff

d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

These numbers are called the Heegner numbers.

Proof: Cf.[Cox, P247]? □

Class Number of Cyclotomic Fields

Prop.(12.4.4.6).For p ≥ 3 ∈ P, p| cl(Q(ζp)) iff there exists some k ∈ Z+ s.t. k ≤ p−3
2 and p divides

the denominator of B2k(8.5.1.12).

Proof: ? □

Prop.(12.4.4.7)[Montgomery/Uchida].For p ∈ P, cl(Q(ζp)) = 1 iff p ≤ 19.

Proof: □
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5 Adeles and Ideles

Restricted Direct Products

Def.(12.4.5.1) [Restricted Direct Products].Let {p} be a set of indices and given a family of
locally compact Abelian groups Gp, and for a.e. p an open compact subgroup Hp ⊂ Gp. Then the
restricted direct product is defined to be

G =
′∏

(Gp,Hp) = lim−→
S∈{p},|S|<∞

∏
p∈S

Gp ×
∏
p/∈S

Hp

given the colimit space topology. And we denote ∏p∈S Gp ×
∏

p/∈S Hp = GS ,
∏

p/∈S Hp = GS .
This topology is stronger than the product topology of ∏pGp. It has an open basis N =

∏
pNp,

where Np is open in Gp and Np = Hp for a.e. p. It is locally compact because every GS does.

Prop.(12.4.5.2).Every compact subset N of G is contained in some ∏pNp, where Np is compact and
Np = Hp for a.e. p.

Proof: This is because GS is an open covering of G, and the union of f.m. GSi is also of the form
GS . So N is contained in some GS , thus its projection in the S-coordinates is compact. □

Prop.(12.4.5.3)[Quasi-Characters on G].Quasi-characters on G are all of the form ⊗pcp that cp
is trivial on Hp for a.e. p.

Proof: Let c be a quasi-character, choose a nbhd of 1 ∈ U ⊂ C that contains no subgroup, then
c−1(U) has contains an open basis ∏p∈S Np×GS , where Np are open nbhds of 1, so c(GS) = 1. Thus
c(a) =

∏
p cp(ap) is true for any a ∈ G.

Conversely, clearly ⊗pcp is a quasi-character on G, it is continuous. □

Prop.(12.4.5.4)[Dual of G]. In each G∨
p , by(10.11.3.7)Hp are compact, soH∨

p = G∨
p /H

⊥
p are discrete,

soH⊥
p is open; Hp are open, soH⊥

p = (Gp/Hp)∨ are compact. So we can define the space∏′(G∨
p ,H

⊥
p ).

Then the dual group G∨ ∼=
∏′(G∨

p ,H
⊥
p ) as a topological group.

Proof: (12.4.5.3) shows that this is an algebraic isomorphism, so it suffices to prove this is a
topological homeomorphism(10.11.3.6):

For any compact B ∈ G1 =
∏

p∈S Np×
∏

p/∈S Hp, for any ε > 0, if c ∈ ∏p∈S N
′
p×

∏
p/∈S H

⊥
p , where

N ′
p = {cp||cp(Np − 1)| < ε/|S|}, then |c(B)− 1| < ε.
Conversely, if ε is small enough, then if c(∏p∈S Np ×

∏
p/∈S Hp) − 1| < ε, then c ∈

∏
p∈S N

′
p ×∏

p/∈S H
⊥
p , where N ′

p = {cp||cp(Np − 1)| < ε} □

Prop.(12.4.5.5)[Restricted Product Measure].Let measures dαp be given on Gp that αp(Hp) = 1
for a.e. p, define a Haar measure on G as follows:

On GS , dαS =
∏

p∈S dαp · dαS , where αS is the product measure on GS .
Then these can define a functional a positive left-invariant functional I that |I(f)| ≤ ||f || for

any f that depends only on f.m. coordinates p ∈ S. Then Stone-Weierstrass theorem shows these
functions are dense in C(G), thus I can be uniquely extended to a functional on C(G), and this
defines a Haar measure on G by Riesz representation(10.11.1.10), denoted by dα =

∏′
p dαp, called

the restricted product measure.
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Prop.(12.4.5.6).For a function f on G =
∏′(Gp,Hp) measurable, if either f ≥ 0 or f ∈ L1(G), then∫

G
f(a)da = lim−→

S

∫
GS

f(a)da

as a net limit.

Proof: The second case follows from the first case, as
∫
G f = lim−→B compact

∫
B f by monotone

convergence theorem, and any B compact is contained in some GS(12.4.5.2). □

Cor.(12.4.5.7). If f(a) =
∏

p fp(ap), where fp ∈ L1(Gp) and fp = χHp a.e. p, then if

∏
p

∫
Gp

|fp(ap)|dap <∞,

then f ∈ L1(G), and ∫
G
f(a)da =

∏
p

(
∫
fp(ap)dap).

Def.(12.4.5.8)[Dual Measure].Notice if fp = χHp , then

f∨
p (cp) =

∫
Hp

cp(αp)dap = dap(Hp)χH⊥
p

(cp).

So by Fourier transform(10.11.3.24), if dcp is the dual measure on G∨
p , then χH⊥

p
=

dcp(H⊥
p )dap(H)χH⊥

p
, which means dcp(H⊥

p ) = 1, a.e.p, thus we can define a measure on G∨ as
dc =

∏′ dcp.
Then dc is the measure on Ĝ dual to da on G.

Proof: The duality is by the lemma below(12.4.5.9), applied to both f and f̂ . □

Lemma(12.4.5.9) [Fourier Transform on Product]. if fp ∈ B1(Gp) and fp = χHp a.e. p, then
f(a) =

∏
fp(ap) ∈ B1(G), and f∨(c) =

∏
f∨
p (cp).

Proof: For any character c, because

f(a)c(a) =
∏

fp(ap)cp(ap)

and every fp(ap)cp(ap) ∈ L1(Gp). So(12.4.5.7) applies and shows the equations. Similarly, because
f̂p = χH⊥

p
a.e. p, we have f̂ ∈ L1(Ĝ), so f(a) ∈ B1(G). □

Adeles

Notation(12.4.5.10)[Adeles].For S ∈ ΣF , #S <∞,
• The adele group(adele=additive element) of F is defined to be AF =

∏′
v(Fv,Ov)(12.4.5.1).

• AS,F =
∏
v∈S Fv.

• AS
F =

∏′
v/∈S(Fv,Ov), called the group of S-adeles of F .

• The finite adeles Af
F = AS∞

F =
∏′
v/∈S∞(Fv,Ov).

• The infinite adeles AF,∞ = AF,S∞ =
∏
v∈S∞ Fv.
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• For v ∈ ΣF , x ∈ Fv, let [x]⊕p be the image of x under the map Fp → AF .

Prop.(12.4.5.11)[Extension of Adeles]. If L/F ∈ GField is separable, then

AF ⊗FL ∼= AL

by diagonal embedding.

Proof: AK ⊗FL ∼=
∏′
v(Fv,Ov ⊗OF

OL), because for any element x ∈ L, |NmL/F (x)|v ̸= 0 for only
f.m. v. And there are isomorphisms by diagonal maps.

Fv ⊗F L ∼=
∏
w|v

Lw, Ov ⊗OF
OL ∼=

∏
w|v
Ow(4.2.7.26).

□

Prop.(12.4.5.12)[K Cocompact in Adele].F is discrete in AF and AF /F is compact.

Proof: Let ∞ be any prime, consider U = {a ∈ AF ||a|∞ < 1, |a|v ≤ 1}, then U ∩ K = 0
by(12.4.5.16).

Now we show AF /F is compact. By(12.4.5.11), it suffices to prove for F = Q or Fp(t). Let
U∞ = {x ∈ F∞||x|∞ ≤ 1}, and Cf.[MIT notes, 22.12].? □

Lemma(12.4.5.13)[Strong Approximation for Ga].For any S ̸= ∅ ∈ ΣF , strong approximation
holds for S. In other words, the image of F is dense in AS

F , or equivalently, FFvU = AF for any
non-empty open subset U ⊂ AS

F .

Remark(12.4.5.14). See(13.3.3.9) for more general strong approximation theorems.

Proof: Cf.[MIT notes, 22.14].? □

Ideles

Notation(12.4.5.15)[Ideles].For S ∈ ΣF , #S <∞,
• The idele group(idele=ideal element) of F is defined to be IF =

∏′
v(F×

v ,O∗
Fv

)(12.4.5.1), which
is set-theoretically just A×

F . Notice the topology on IK is stronger than the subspace topology
induced from AK .

• The ideal class group CF = IF /F×.
• IF is naturally a valuation ring with valuation | · |, called the idelic norm.
• I1

F ⊂ IF is the subgroup consisting of elements of idelic norm 1, called the set of unit ideles.
• ISF =

∏
p∈S F

×
p ×

∏
p/∈S O∗

F,p, called the group of S-ideles of F .
• IF,S =

∏
v∈S F

×
v .

• FS = O∗
F,S = F× ∩ ISF is the set of S-units of F (4.2.7.10).

• The finite ideles IfF = IΣ∞
F

F =
∏′
v/∈Σ∞(F×

v ,O∗
v).

• The infinite ideles IF,∞ = IF,S∞ =
∏
v∈S∞ F×

v .

• For v ∈ ΣF , x ∈ F×
v , let [x]v be the image of x under the map F×

v → IF or the map F×
p → AF .
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Prop.(12.4.5.16)[Product Formula]. If a ∈ F× ⊂ IF , then |a|F = 1. In other words, F× ⊂ I1
F .

Proof: Consider the restricted product measure dµ on AF , then clearly dµ(ax) = |a|dµ(x), and
multiplying by a induces an isomorphism of AF , but preserves the counting measure on F . But AF
is compact(12.4.5.12) thus has finite volume, so |a| = 1. □

Prop.(12.4.5.17). If F ∈ FField, the norm group | IF | of the Adelic norm is | IF | = qZ, where
q = #F0 and F0 is the maximal finite field contained in F .

Proof: This is because in this case, F corresponds to smooth curve over F0?. Then by Weil
conjecture(19.1.4.3), there exists a point of F0 with residue order qn for any n large. Then their
quotient gives q. □

Prop.(12.4.5.18)[Splitting of IF ].
• If F ∈ NField, take v ∈ Σ∞

F , then the exact sequence 1→ I1
F → IF

v−→ R+ → 1 splits, so there
are a non-canonical isomorphisms

IF ∼= I1
F ×R+, IF /F

× ∼= I1
F /F

× ×R+.

• If F ∈ FField, take v ∈ ΣF , then for some q = (char k)r, the exact sequence 1→ I1
F → IF

v−→
qZ → 1 splits, so there are a non-canonical isomorphisms

IF ∼= I1
F ×qZ, IF /F× ∼= I1

F /F
× × qZ.

Lemma(12.4.5.19). I1
F is closed in AF , and the subspace topologies from AF and IF are the same

on I1
F .

Proof: ? □

Lemma(12.4.5.20)[Blichfeldt-Minkowski].For F ∈ GField, there exists C > 0 s.t. for any x ∈ IF
s.t. |x|F ≥ C, let

W (x) = {y ∈ IF : |yv|v ≤ |xv|v,∀v ∈ ΣF }.

Then W (x) ∩ F× ̸= ∅.

Proof: ? □

Prop.(12.4.5.21) [F× Cocompact in I1
F ].F× is discrete in IF , and I1

F /F
× is compact. Thus

CF = IF /F× is Hausdorff and locally compact.

Proof: F× is discrete in IF because it is already discrete in AF (12.4.5.12). By(12.4.5.19), use
Minkowski(12.4.5.20), it suffices to show that for ||x||F ≥ C, W (x) ∩ I1

F → I1
F /F

× is surjective: If
y ∈ I1

F , then ||x/y|| = ||x|| ≥ C, thus there exists z ∈ K× ∩W (x/y), thus zy ∈W (x), and y is in the
image of W (x) ∩ I1

F . □

Prop.(12.4.5.22).For L/F ∈ GField, IF ⊂ IL, and IGL = IK , this is be the diagonal inclusion to all
the primes above a given prime, and the action is by (σa)P = σaσ−1P. This induces an inclusion
CK ⊂ CL and CGL = CK . The last assertion uses long exact sequence and H1(G,L∗) = 0.

Lemma(12.4.5.23).The map IF → AF ×AF : x 7→ (x, x−1) is a homeomorphism of IF onto a closed
subspace of AF ×AF .
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Proof: Compare their topological basis. □

Prop.(12.4.5.24)[Idele Groups and Extensions].For an extension of global fields L/F ,
• the diagonal embedding AF → AL induces a closed embedding, and also a closed embedding

IF → IL by(12.4.5.23), thus also a closed embedding IF /F× → IL/L
×.

• AL is a finite AK-module, thus there is a norm map NmL/K : AL → AF , which restricts
to NmL/K : IL → IF , which is compatible with NmL/K : L× → K×, thus inducing a map
NmL/K : CL → CF . Then this map is continuous, open and proper.

• [n] : CF → CF is continuous and proper.

Proof: 2: It is continuous because it is compatible with the local norms NmLP/Fp
, and

Nm−1
LP/Fp

(O×
F,p) = O×

L,P. To show it is open, use the fact the local norms are open and for un-
ramified places NmLP/Fp

OL,P = OF,p(12.2.3.14)(12.6.2.5). To show it is proper, use the splitting
CF ∼= I1

F /F
× × qZ(12.4.5.18) and the fact I1

F /F
× is proper(12.4.5.21).

3: Use the splitting(12.4.5.18). □

CF

Def.(12.4.5.25)[Hecke Character].A Hecke character over F is a character of CF .

Def.(12.4.5.26)[Unramified Places].Let χ be a Hecke character of CF , then for a.e. v ∈ Σfin
F , the

conductor of χv is O∗
v . For these v, χ is said to be unramified at v.

Prop.(12.4.5.27).Let p ∈ P, F ∈ p-FField, and ℓ ∈ P\p,E ∈ ℓ-NField, then any continuous
homomorphism χ : CF → O∗

E that is unramified outside a finite set of places is of the form χ =
χ1 · cdeg(·), where χ1 : CF → O∗

E is of finite order and c ∈ O∗
E .

Proof: Let σ ∈ Cab
F s.t. deg(σ) = 1, let c = χ(σ), and χ1 = χ · c− deg(·), then χ1(CF ) = χ1(IF ).

But as # Cl(F ) < ∞, by(12.6.4.7), it suffices to show that χ1(F×U1/F×) is finite. Then it suffices
to show that #χ(U1) < ∞. But if χ is unramified outside a finite set S of places, then it suffices
to show that #χ(

∏
v∈S O∗

v) <∞. But this is because ∏v∈S O∗
v has a pro-p-group of finite index and

O∗
E has a pro-ℓ-group of finite index. □

Def.(12.4.5.28)[Norm Groups].For an extension of global fields L/F , let NL/F = NmL/F CL, called
the norm group of L/F .

Prop.(12.4.5.29)[Connected Component of identity of CF ]. If F is a number field, let I0
F,∞
∼=

Rr1
+ × (C×)r2 be the connected component of identity of IF,∞, DF ⊂ CF the closure of I0

F,∞ ⊂ CF ,
then

• DF is the connected component of identity of CF .
• DF = ∩n∈Z+C

n
F is the group of divisible elements of CF .

• CF /DF is a profinite group.(which will be isomorphic to GalabF , as we will see in(12.6.3.27)).

Proof: I0
F,∞ is divisible, thus so does its image in CF . Then DF is also divisible as [n] : CF → CF

is continuous and proper(12.4.5.24).
Consider the map ∏

v∈Σfin
F
O∗
F,v → CF /DF , its cokernel is finite because CF /

∏
v∈Σfin

F
IF,∞ ∼=

Cl(OF ) is finite and IF,∞/I0
F,∞ is finite. But ∏v∈Σfin

F
O∗
F,v is a profinite group, thus CF /DF is also a

profinite group.
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To show DF = C0
F , firstly C0

F ⊂ DF by the fact CF /DF is connected thus totally disconnected,
and the reverse is true because DF is connected.

To show DF = ∩n∈Z+C
n
F , notice any divisible element is in DF as a profinite group CF /DF

doesn’t contain non-trivial divisible elements. □

Thm.(12.4.5.30)[Class Numbers and Unit Theorems]. If Σ∞
F ⊂ S ⊂ ΣF ,

• The S-class group Cl(OF,S) ∼= IF /F× ISF is finite. In particular, IQ = Q× ×R×
+ ×

∏
p∈P Z×

p .

• The S-unit group(4.2.7.10) O∗
F,S
∼= Z#S−1.

• For any x ∈ F , if |x|v = 1 for any v ∈ ΣF , then x ∈ µ(F ).

Proof: 1: Let (ISF )1 = I1
F ∩ISF . As O∗

F,S = F× ∩ ISF , there is an exact sequence

1→ (ISF )1/FS ∼= F×(ISF )1/F× → I1
F /F

× → (ISF )1/F×(ISF )1 → 1.

The first term is an open subset, and I1
F /F

× is compact by(12.4.5.21), thus (ISF )1/F×(ISF )1 is finite
and (ISF )1/FS is compact. There is also an exact sequence

1→ (ISF )1/F×(ISF )1 → ISF /F
×ISF

∼= Cl(OF,S)→ ||IF ||F /||ISF ||F → 1

and ||IF ||F /||ISF ||F is always finite, so # Cl(OF,S) <∞.
2, 3: Consider the regulator map

RegS :
∏
v∈S

F×
v → R#S : (xv) 7→ (− log |xv|v).

Then this map restricted to FS has image a discrete subset of the hyperplane H = {
∑
xi = 0}. In

fact the image is a full lattice in H: let n1 be the number of infinite places in S and n2 the number
of finite places in S, then RegS((

∏
v∈S F

×
v )1) ∼= Rn1−1 × Zn2 if n1 > 0 and Z#S−1 if n1 = 0. Then

notice (
∏
v∈S Fv)1/FS is finite, which is true as (ISF )1/FS is compact, so The image of FS is a full

lattice of H.
Also notice if x is in the kernel, then |x|v = 1 for any v ∈ ΣF , so {xn|n ∈ Z} is a bounded subset

in the lattice ∏v∈S F
×
v , but it is also contained in the discrete subset FS , thus it a finite subset, so

x is a root of unity. □

Cor.(12.4.5.31). If S ⊂ ΣF is sufficiently large, then IF = ISF ·F× hence CF = ISF .F×/F×.

Proof: The ideal class group is finite, hence we can find a finite set of representative for it. Only
finite set of primes are involved in it, thus we let S contain all these primes and infinite primes, then
for any a, ∏p∤∞ ap = Ai · (x), and Ai ∈ ISK , hence a ∈ ISK ·K∗. □

Cor.(12.4.5.32)[Dirichlet Characters and Hecke Characters for Q].Hecke characters of Q are
exactly of the form χ(x) = χ1(x)|x|λ for some λ ∈ iR, where χ1 a Hecke character of finite order
corresponding to a primitive Dirichlet character χ0 via(12.4.5.30).

To transit between these two, we need to use Q× to “clear the denominators”. For example, for
p prime to the conductor of χ0, χ1(pv) = χ0(p).

6 Fourier Analysis on Adeles
Main references are [Poo15], [R-V99] and [Tat65].
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Local Notations

Def.(12.4.6.1)[Normalized Valuations].Let dµ a Haar measure on K, let the valuation on K be
given by dµ(αξ) = |α|dµ(ξ). Then for k ∈ K,

|k| =


|k| K = R

|k|2 K = C
1

||p||v(k) K ∈ p-LField
.

Proof: If K = R,C, this is routine calculation. If K is non-Archimedean , then by the translation
invariance of µ, µ(αO) = µ(O)

N(α) = |α|µ(O). □

Def.(12.4.6.2)[Unramified Quasi-Character].The multiplicative group K× is also a locally com-
pact group. For a quasi-character χ of K×, it is called unramified iff χ(O∗

K) = 1.
An unramified quasi-character on K× is all of the form | · |s for s ∈ C.

Proof: An unramified quasi-character is equivalent to a continuous group homomorphism from
val(K×)→ Z. But val(K×) must be isomorphic to Z or R, so the assertion follows from(10.11.3.3).
□

Lemma(12.4.6.3)[Canonical Character of Local Fields].Consider k the closure of the base field
of K, which is R,Qp or Fp((t)) by Ostrowski(10.3.3.18). Now let

λ(x) =


x(mod 1) k = R

a rational number λ(x) that λ(x)− x ∈ Zp in Q/Z k = Qp

a−1/p = res(x)/p k = Fp((t))

Then λ is a continuous additive function on k. Now let

Λ(x) =
{
λ(trK/k(x)) number field case
λ(trKv/kv(xωv)) function field case, where ω is a chosen global meromorphic form on X.

And X(x) = e2πiΛ(x). Notice that this is just a rigorous definition of the character e2π i trK/k(x).

Cor.(12.4.6.4).F (η) = e2π i Λ(ηξ) is trivial on OK is equivalent to ξ ∈ d−1, where d = dK/k. In other
words, adopting the isomorphism of(10.11.3.35), O⊥ = d−1, (d−1)⊥ = O.

Proof: Because Λ(ηO) = 0 iff trK/k(ηO) ⊂ Ok, which is equivalent to η ∈ δ−1. □

Prop.(12.4.6.5)[Canonical Self-Adjoint Haar Measures].We can calculate the self-adjoint Haar
measure w.r.t. the canonical character on K+(12.4.6.3) as follows:

dµ =


dm K = R

2 dm K = C

the measure that µ(O) = 1
||d||1/2 others

Proof: We only calculate for the p-adic fields?.
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Let f = 1O, then

f̂(η) =
∫

O
e−2πiΛ(ξη)dµ(ξ) =

{
µ(O) η ∈ d−1

0 otherwise
= µ(O)1d−1(η)

By(12.4.6.4) and(10.11.1.14). So

IO(ξ) =
∫
G
f̂(F (η))(ξ, F (η))dµ(η) =

∫
δ−1

µ(O)e2πiΛ(ηξ)dµ(η) = µ(O)µ(δ−1)IO(η).

So µ(O)µ(δ−1) = N(δ)µ(O)2 = 1, which shows the desired result. □

Remark(12.4.6.6). In fact, if we use other characters ψ, then µ(OK) = ||cψ||1/2.

Cor.(12.4.6.7)[Quasi-Character of K×].There is a continuous morphism from K× → O∗
K : α̃ =

α/πv(α) when α is non-Archimedean or α̃ = α/|α| if K is Archimedean. So any quasi-character c is
of the form c(α) = c(α̃) times an unramified quasi-character, which is of the form | · |s, where Re(s)
is called the exponent of c. Now O∗

K is a compact group, so continuous quasi-characters c̃ on it
must be a character.

Def.(12.4.6.8)[Haar Measure on K×].Notice that if g(α) ∈ Cc(K×), then g(α)
|α| ∈ Cc(K

+\0), so if
we define Φ(g) =

∫
K+\{0} g(ξ)|ξ|−1dξ, then

Φ(ag) =
∫
K+\0

g(aξ)|aξ|−1|a|dξ =
∫
K+\0

g(aξ)|aξ|−1daξ = Φ(g).

By(12.4.6.1). So By Riesz representation, there is a Haar measure d×
1 α on K× that

∫
K× g(α)d×

1 α =∫
K+\0 g(ξ)|ξ|−1dξ, for any g ∈ Cc(K×).

But when K is non-Archimedean, renormalize d×α = (1− 1
Np)−1d×

1 α.

Remark(12.4.6.9).The reason behind this normalization is when dµ is the canonical mea-
sure(12.4.6.5), we want to make d×α(O∗) = ||d||−1/2:∫

O\0
dξ =

∞∑
k=0

∫
πkO∗

dξ = (1 + 1
Np

+ 1
Np2 + . . .)

∫
O∗
dξ = 1

1− 1
Np

∫
O∗
dξ

so ∫
O∗
d×

1 α =
∫

O∗
|ξ|−1dξ = ||p|| − 1

||p||

∫
O\0

dξ = ||p|| − 1
||p||

||d||−1/2(12.4.6.5)

Def.(12.4.6.10)[Schwartz-Bruhat Function].Define the set S(K) of Schwartz-Bruhat function
on K as Schwartz functions on K if F = R,C(10.9.2.1) and locally constant functions with compact
support if K ∈ p-LField.

Prop.(12.4.6.11) [Local Schwarz Functions].The space S(K) of Schwartz functions satisfy the
following properties: If f ∈ S(K),

• f, f∨ ∈ L1(K+).
• f(α)|α|σ, f∨(α)|α|σ ∈ L1(K×) for σ > 0.
• f∨ ∈ S(K) too.

Proof: 3: p-adic case: Let pn be the conductor of ψ, then the Fourier transform of χp−k is
V (p−k)χpn+k . Then for k large, χp−kv = V (p−k)V (pn+k)v, thus v ∈ C∞

c (F ).
Archimedean case:(10.12.2.5). □
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Global notations

Notation(12.4.6.12).
• There are natural Haar measures dµK ,d×µK on AF and IF defined by(12.4.5.5)

and(12.4.6.5)(12.4.6.8). They satisfy d×µK = 1
|−|K dµK .

• Let d = dF/Q when F ∈ NField, or d = {x| tr(res(xO)) = 0}−1 when F ∈ FField.
• Fix ψ =

∏
v ψv an additive character of AF /F , then

Def.(12.4.6.13)[Global Fourier Transform]. (10.11.3.35) shows ψ induces a canonical isomorphism

AF
∼= A∨

F : η 7→ (ξ → ψ(ηξ)),

and we choose the corresponding self-dual Haar measure dµ, then the Fourier transform and inversion
formula on AF is then written as:

f∨(y) =
∫

AF

f(x)ψ(xy)dx, f(x) =
∫

AF

f∨(y)ψ(xy)dy.

In fact dx =
∏
xp is the restricted product measure on AF (12.4.5.5), where dxp is the self-

dual measure w.r.t ψp in(12.4.6.5), then dx is the self-dual Haar measure w.r.t the global canonical
character ψ by(12.4.5.8), called the Tamagawa measure on AF .

Def.(12.4.6.14)[Global Schwartz-Bruhat Functions].For a global field F , the set S(F ) of global
Schwartz-Bruhat functions is defined to be

S(F ) =
′⊗

v∈ΣF

S(Fv)(2.4.4.13).

Prop.(12.4.6.15) [Schwartz-Bruhat Functions].A Schwartz-Bruhat function f ∈
S(AF )(12.4.6.14) satisfies:

• f(x) ∈ L1(A), f∨(x) ∈ L1(AF ) and f, f∨ is continuous.
• ∑

ξ∈K f(a(x+ ξ)) and ∑ξ∈K f̂(a(x+ ξ)) converges uniformly absolutely on compact sets of A.

• f(a)|a|σ, f̂(a)|a|σ ∈ L1(IF ) for σ > 1.

Proof: 1, 2 is the same as in(12.4.6.23), for 3:
∫

IF |f ||a|
σda =

∏
p

∫
F×
p
|fp||a|σdap, and for a.e. p,

∫
F×
p

|fp||a|σdap =
∫

O×
p

|ap|σpdap = 1
1− 1

||p||σ

∫
O∗

p

dap = 1
1− 1

||p||σ
.

Thus the global integral converges by comparison with the Dedekind Zeta function(19.2.2.1). □

Def.(12.4.6.16)[Global Canonical Character].Define the global canonical character

X : AF → C× : x 7→ e2π i Λ(x), Λ(x) =
∑
p∈ΣF

Λp(xp)(12.4.6.3).

Notice this is definable because xp ∈ Op a.e. p, thus Λp(xp) = 1 a.e..
Then X(F ) = 1.
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Proof: In the number field case,

Λ(ξ) =
∑
p

∑
p|p

λp(trp/p(ξ)) =
∑
p

λp(trK/Q(ξ))

so to show λ is an integer, it suffices to show Λ(a) is a q-adic integer for any q and any a ∈ Q, but
for this, notice ∑

λp(x) =
∑

p ̸=q,∞
λp(x) + λq(x)− x

is a q-adic integer, by definition(12.4.6.3).
In the function field case, this follows from the fact that the sum of residues of a meromorphic

1-form is 0?. □

Prop.(12.4.6.17).F⊥ = F , i.e. X(xy) = 0, ∀y ∈ F ⇐⇒ x ∈ K.

Proof: Because K⊥ ∼= Â/K and A/K is compact(12.4.5.12), K⊥ is discrete(10.11.3.7) and contains
K. So K⊥/K is discrete hence finite in A/K. But K⊥ is clearly a vector space over K, thus K⊥ = K
must be true, because |K| =∞. □

Cor.(12.4.6.18).By(10.11.3.35) and(12.4.6.17), any non-trivial character on AF /F is of the form
a 7→ X(ka) for some k ∈ K.

In particular, for any such character ψ, ψv is non-trivial.

Def.(12.4.6.19) [Unramified Places].Let χ be a Hecke character of F , then v ∈ ΣF is called
unramified if v ∈ Σfin

F , dv = 1, c(ψv) = Ov, χv is unramified(12.4.6.2). Notice a.e. place v is
unramified.

Proof: To show that for any unramified character ψ, the conductor of φv is Ov, consider the
canonical character X defined(12.4.6.16), it can be verified the conductor of Xv is Ov for a.e. v, and
ψ must be of the form ψ(x) = X(ax) for some a ∈ K by(12.4.6.13) and(12.4.6.17), thus this is also
true for ψ. □

Prop.(12.4.6.20).

V (I1
F /F

×) = 2r1(2π)r2

wF
√
|dF |

hF Reg(F )

where wF = #F×
tor, hF is the class number, and Reg(F ) is the regulator(12.4.2.26).

Proof: Cf.[Tate Thesis, P337] or[GTM186, P281].? □

Lemma(12.4.6.21)[Poisson Formula]. If F ∈ L1(AF ) and ∑ξ∈F |f∨(ξ)| <∞, then in the self-dual
Haar measure ∑

ξ∈F
f∨(ξ) =

∑
ξ∈F

f(ξ).

and V (AF /F ) = 1.

Proof: By(12.4.6.17), this is a special case of(10.11.3.31). In fact, we know it is true for a constant
V (AF /F ), but it is symmetric, so V (AF /F )2 = 1. □
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Prop.(12.4.6.22)[Riemann-Roch]. If f(ax) ∈ L1(AF ) and ∑ξ∈F |f̂(aξ)| < ∞ for any idele a ∈ IF ,
then for any a ∈ IF ,

1
|a|
∑
ξ∈F

f̂(ξ
a

) =
∑
ξ∈F

f(aξ).

Proof: Consider g(x) = f(ax), then

g∨(x) =
∫

AF

f(aη)e−2πiλ(xη)dη = 1
|a|

∫
AF

f(η)e−2πiΛ(xη/a)dη = 1
|a|
f∨(x/a).

Then apply Poisson formula(12.4.6.21) to g. □

Prop.(12.4.6.23). Schwartz-Bruhat functions(12.4.6.14) satisfy the condition in(12.4.6.22).

Proof:
∫
A |f | =

∏
v

∫
Fv

∫
|fv|dxv < ∞, noticing(12.4.6.5) and N(dv) = 1 for a.e. v. And for any

Schwartz function f and any x, the set of k that fv(xv+kv) ̸= 0 is v-bounded for v non-Archimedean
and |k|v ≤ 1 a.e., so in the function case, these k are finite because F is discrete in AF .

And in the number field case, these k is contained in some fractional ideal I, but I is then a
lattice in F∞ by Minkowski theory, so∑

ξ∈K
|f(x+ ξ)| ≤ C

∑
x∈K
|
∏

p∈S∞

|fp(x+ ξ)|

but fp is an Archimedean Schwartz function, thus this is absolutely convergent.
Now we showed that

∫
ξ∈F f

∨(ξ) <∞, because f∨ ∈ S(AF ), by(12.4.6.11). □

Prop.(12.4.6.24) [True Riemann-Roch For Function Fields].Cf.[Fourier Analysis on Number
Fields, P267].?
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12.5 Quadratic Forms over Fields
Basic references are [Lam05], [Quadratic Forms Clark] and [Algebraic and Geometric Theory of

Quadratic Forms].
All fields K in this section has char̸= 2.

1 Quadratic Forms
This subsection should be regarded as a continuation of Bilinear & Hermitian Forms. In fact,

must materials in this subsection are trivial facts.

Def.(12.5.1.1).Given a field K of char̸= 2, a quadratic form over K is a bilinear form on Kn for
some K. It is represented by a symmetric matrix.

The reason that charK ̸= 2 is because only in this case, a quadratic form q is equivalent to a
symmetric bilinear form B, and I will use this equivalence freely.

The determinant det is a function from the set of quadratic forms to K×/(K×)2 that is invariant
under congruence.

Def.(12.5.1.2)[Quadratically Closed].A field is called quadratically closed iff (K×)2 = K×, or
equivalently K has no quadratic field extensions.

Def.(12.5.1.3).The category of quadratic spaces is a category with objects as finite dimensional
spaces with a quadratic form, and its morphisms are isometric embeddings.

Def.(12.5.1.4) [Universal Quadratic Form].For a quadratic form A, let DF (A) be the set of
elements representable by A. A universal quadratic form is a quadratic form that represents
every element of K∗.

Prop.(12.5.1.5). If every binary quadratic form over K is universal, then any two non-degenerate
quadratic forms over K are isomorphic iff they have the same rank and determinant.

Proof: This is because ⟨a, b⟩ ∼= ⟨1, ab⟩ and then use induction. □

Non-Degeneracy

Def.(12.5.1.6) [Non-degeneracy].A quadratic space is called non-degenerate if v 7→ B(v, ·) is
an isomorphism from V to V ∗. Notice if dimV = ∞, this cannot happen, because dimV ∗ >
dimV (2.3.3.9). And in case dimV < ∞, dimV = dimV ∗, so it suffices to show v 7→ B(v, ·) is
injective, i.e. if v ̸= 0, then there is a w that B(v, w) ̸= 0.

Prop.(12.5.1.7)[Radical Splitting].The radical of a quadratic space is defined to be rad(V ) = V ⊥.
Then for any quadratic form V , there is an orthogonal decomposition V = rad(Y )⊕W , where W is
a non-degenerate form.

Proof: In fact, by the definition, any complement space of rad(V ) in V can be chosen as the
orthogonal complement W . □

Prop.(12.5.1.8). If W is a non-degenerate sub-quadratic space of V , then W ⊕W⊥ = V .

Proof: Since W is non-degenerate, W ∩ W⊥ = 0. and for any v ∈ V , B(v, ·) ∈ W ∗, so by
degeneracy, there is a w ∈W that B(v, ·) = B(w, ·), then z = v − w ∈W⊥ and v = w + z. □
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Prop.(12.5.1.9) [Orthogonal Complement and Non-Degeneracy]. If V is a non-degenerate
quadratic space, then for any non-degenerate subspace W , dimW + dimW⊥ = dimV , and
(W⊥)⊥ = W .

Proof: The first is immediate from the fact dim ker + dim Coker = dimV . The second is by
dimensional reason. □

Cor.(12.5.1.10).A subspace W of a non-degenerate quadratic space V is a non-degenerate quadratic
space iff W ∩W⊥ = 0.

Remark(12.5.1.11).We basically only care about non-degenerate forms, so from now on, we only
care about non-degenerate forms.

Diagonalizability

Prop.(12.5.1.12) [Quadratic Form Representable].Any quadratic forms over K of char̸= 2 is
diagonalizable, and if α ∈ K∗ is represented by K, then it is diagonalizable to a matrix with first
entry α.

We will use the notation ⟨α1, . . . , αn⟩ for the diagonal quadratic form ∑
αix

2
i .

Proof: Use(2.3.8.5), since in this case, a quadratic form is equivalent to a symmetric form. And if
α = B(v, v), then we can choose v in the first place in the proof of(2.3.8.5). □

Cor.(12.5.1.13).Over a quadratically closed field K of char̸= 2, any non-degenerate quadratic form
is congruent to x2

1 + . . .+ x2
n.

Proof: Because in this case, we can make ∑ aix
2
i into ∑(√aixi)2. □

Isotropic and Hyperbolic Spaces

Def.(12.5.1.14)[Isotropic].Given a non-degenerate quadratic space V , a vector v is called isotropic
if B(v, v) = 0. V is itself called isotropic if it is non-degenerate and there exists an isotropic vector,
otherwise it is called anisotropic.

Def.(12.5.1.15)[Hyperbolic].The hyperbolic plane H is the 2-dimensional space with quadratic
form H(x, y) = xy, which is congruent to 1

2(x2 − y2).
A quadratic space is called hyperbolic if it is isomorphic to a direct sum of hyperbolic planes.

Lemma(12.5.1.16). If V is a non-degenerate isotropic space, then there is an isometric imbedding of
the hyperbolic plane into V .

Proof: There is a u ∈ V that B(u,w) = 0. By non-degeneracy, there is a w that B(u,w) ̸= 0.
We may assume B(u,w) = 1. Now I claim there is an α that q(αu + w) = 0: in fact, q(αu + w) =
2αB(u,w) + q(w), so take α = −q(w)/2. Let v = αu+ w, then q(u) = q(v) = 0, and B(u, v) = 1, so
it is isomorphic to H. □

Prop.(12.5.1.17)[Isotropic Complement]. If V is a non-degenerate quadratic space, and W ⊂ V is
an isotropic space with basis u1, . . . , um, then there is another isotropic spaceW ′ with basis v1, . . . , vm
that B(ui, vj) = δij .
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Proof: Use induction on m. The m = 1 case is lemma(12.5.1.16) above. If this is true for n < m,
let W = {u2, . . . , um}, then if W⊥ ⊂ {u1}⊥, then u1 ∈ W by(12.5.1.9), contradiction, so there is a
v ∈ W⊥ that B(u1, v) ̸= 0, so by the same proof as(12.5.1.16), there is a αu1 + v that is isotropic,
and a H ⊂ W⊥, so by(12.5.1.9), W ⊂ H⊥, so by induction, we can find in H⊥ elements v2, . . . , vm
that satisfies the requirement. □

Cor.(12.5.1.18). ⟨a,−a⟩ ∼= H, because it is isotropic, and it has dimension 2.

Cor.(12.5.1.19)[Isotropic Form is Universal].A non-degenerate isotropic space is universal, be-
cause hyperbolic plane does.

Cor.(12.5.1.20).A maximal totally isotropic space in a non-degenerate quadratic space V has dimen-
sion at most 1

2 dimV , and equality holds if V is hyperbolic.

Prop.(12.5.1.21)[First Representation Theorem]. If q is a non-degenerate quadratic form, then
q represents α ∈ K∗ iff q ⊕ ⟨−α⟩ is isotropic.

Proof: If q represent α, then by(12.5.1.12) shows that q is equivalent to ⟨α, α1, . . . , αn⟩, so q⊕⟨−α⟩
contains a ⟨α,−α⟩ which is isomorphic to H by(12.5.1.16).

Conversely, if q⊕⟨−α⟩ is isotropic, then there is a −αx2
0 +
∑
αix

2
i = 0. If x0 ̸= 0, then q represent

α, and if x0 = 0, then q is isotropic, thus represent any element(12.5.1.19). □

Cor.(12.5.1.22).The following are equivalent:
• Any n-quadratic form over K is universal.
• Any (n+ 1)-quadratic form over K is isotropic.

Cor.(12.5.1.23) [Transform of Binary Forms].For any a, b ∈ F ∗ that a + b ∈ F ∗, ⟨a, b⟩ ∼=
⟨a+ b, (a+ b)ab⟩.

Prop.(12.5.1.24) [Isotropy Criterion].For two non-degenerate forms f, g over K, h = ⟨f,−g⟩ is
isotropic iff there is an α ∈ K∗ that is represented by both f and g.

Proof: Easy, notice to use isotropic form is universal(12.5.1.19). □

2 Witt Theory
Prop.(12.5.2.1)[Witt Cancellation Theorem]. If U1, U2, V1, V2 are quadratic spaces and V1 ∼= V2,
V1 ⊕ U1 ∼= V2 ∼= U2, then U1 ∼= U2.

Proof: We may identify V1 = V2 = V , and W = U1 ⊕ V = U2 ⊕ V .

First if V is totally isotropic and U1 is non-degenerate, then there is a matrix M =
[
A B
C D

]
that

M t

[
0 0
0 B2

]
M =

[
0 0
0 B1

]

So B1 = DtB2D. As B1 is non-singular, so is D, thus U1 ∼= U2.
Now if V is isotropic but U1, U2 are not non-degenerate, then we may assume in their diagonal-

ization, U1 has less 0s, it has r 0s, then we can extract from both Ui a zero part, thus reducing to
the above case.
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Now if dimV = 1, V = ⟨a⟩, if a = 0, then we are done by the above argument, and if a = 0, then
find q(x) = a, then by(12.5.2.13), we can find a τ ∈ O(W ) that τ(V1) = V2, so now U1, U2 as the
orthogonal complement of V1, V2, they are isometric under the map τ .

So now in general, we can cancel V out by moving its diagonal part once a time. □

Cor.(12.5.2.2). If X is a quadratic space and V1, V2 are non-degenerate subspaces of X, then any
isometry V1 ∼= V2 extends to an isometry of X.

Proof: Vi ⊕ V ⊥
i = X by(12.5.1.8). □

Cor.(12.5.2.3) [Witt’s Extension Theorem]. If X is a non-degenerate quadratic space and f :
W1 →W2 is an isometry of two subspaces of X, then f extends to an isometry of X.

Notice this also holds for symplectic spaces X, by the same method of proof.

Proof: If W1 is non-degenerate, then so does W2, and we can use(12.5.2.2). By(12.5.1.7), we
can write Wi = Ui ⊕ Vi where Ui is totally isotropic and Vi is non-degenerate. Now X,Vi are non-
degenerate, V ⊥

i is non-degenerate also, so there is an isotropic complement U ′
i ⊂ V ⊥

i (12.5.1.17). Let
Ti = ⟨Ui, U ′

i⟩Vi, then Ti is non-degenerate and W ⊂ T . As Ui is the radical of Wi, U1 ∼= U2, and then
⟨U1, U

′
1⟩ ∼= ⟨U2, U

′
2⟩. By Witt cancellation, W1 ∼= W2. So we reduced to the non-degenerate case. □

Cor.(12.5.2.4). If V is a non-degenerate quadratic space, then the group of isometries of X acts
transitively on the set of all totally isotropic subspaces of a fixed dimension d.

Prop.(12.5.2.5)[Witt’s Decomposition Theorem].For any quadratic space V , there is an orthog-
onal decomposition

V ∼= rad(V )⊕
k⊕
1

H⊕ V ′

where V ′ is anisotropic(12.5.1.14). Moreover the number k = I(V ) which is called the Witt index
of V and the isometry class of V ′ = w(V ) which is called the non-isotropic kernel is independent
of the decomposition.

Proof: The existence of the decomposition follows from(12.5.1.7) and an easy induction us-
ing(12.5.1.16). The uniqueness is an easy corollary of(12.5.1.16) and Witt’s cancellation theorem.
□

Cor.(12.5.2.6).The Witt index equals the maximal dimension of a maximal totally isotropic subspace
of W , by(12.5.1.17).

Remark(12.5.2.7).This is a good reason that we will only consider non-degenerate quadratic forms
from now on.

Cor.(12.5.2.8) [Sylvester’s Law of Nullity].Let qr,s = [r]⟨1⟩ ⊕ [s]⟨1⟩, then any non-degenerate
quadratic form q over R is congruent to exactly one of qr,s, and r − s is called the signature of q.

Def.(12.5.2.9).Two quadratic forms q1 = ⟨a1, . . . , an⟩ and q2 = ⟨b1, . . . , bn⟩ are called simply equiva-
lent iff there are two indices that ⟨ai, aj⟩ ∼= ⟨bi, bj⟩. Two quadratic forms are called chain equivalent
iff there is a chain of simply equivalence between them.

Prop.(12.5.2.10) [Witt’s Chain Equivalence Theorem].Two diagonal quadratic forms over K
are equivalent iff they are chain equivalent.
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Proof: Chain equivalent is clearly equivalent, Conversely, by Witt’s decomposition theorem, it is
easy to reduce to the non-degenerate case.

Now if q = ⟨α1, . . . , αn⟩ ∼= q′ = ⟨β1, . . . , βn⟩, any form q = ⟨γ1, . . . , γn⟩ that is chain equivalent
to q is equivalent to q′, so β1 is represented by it, choose a form that there is a minimal l that β1 is
represented by ⟨γ1, . . . , γl⟩, we prove that l = 1:

if the minimal l is not 1, then d = γ1a
2
1 + γ2a

2
2 ̸= 0(otherwise l can be smaller), so ⟨γ1, γ2⟩ ∼=

⟨d, γ1γ2d⟩ by(12.5.1.12) and invariance of det. so q ∼= ⟨d, γ3, . . . , γn, dγ1γ2⟩(notice permutation is
chain equivalence), and this is smaller, contradiction.

Now l = 1, so we may assume α1 = β1, and then Witt’s cancellation(12.5.2.1) shows that
⟨α2, . . . , αn⟩ ∼= ⟨β2, . . . , βn⟩, so we win by induction. □

Orthogonal Group

Prop.(12.5.2.11).The orthogonal group of a quadratic form q is the set of matrixes M that
g(Mx) = q(x). And it is clear detM = ±1, so we can also define O+(V ) and O−(V ).

Def.(12.5.2.12).A hyperplane reflection for a non-isotropic vector v is defines by x 7→ x− 2B(x,v)
q(v) v,

it is an element in O(V ).

Prop.(12.5.2.13). If x, y are two non-isotropic vectors that q(x) = q(y), then there is a τ ∈ O(V ) that
τ(x) = y.

Proof: First notice q(x + y) + q(x − y) = 2q(x) + 2q(y) = 4q(x) ̸= 0, so one of x + y, x − y is
non-isotropic. And it can be easily calculated that τx−y(x) = y or −τx+y(x) = y. □

Prop.(12.5.2.14)[Cartan-Dieudonné].Let V be a non-degenerate quadratic form of dimension n,
then every element of the orthogonal group O(V ) can be represented as a product of n reflections.

Proof: Cf.[Quadratic Forms Clark P22]. □

3 Witt Ring
References are [Quadratic Forms 2, Clark].

Def.(12.5.3.1)[Witt Ring].The Witt ring W (K) of K is a free commutative ring over Z generated
by equivalent classes of anisotropic(12.5.1.14) quadratic forms over K, modulo the the relations
[q1] + [q2]− [q1 ⊕ q2] and [q1] · [q2]− [q1 ⊗ q2].

There is another ring, theGrothendieck-Witt ring Ŵ (K) which is defined as the ring generated
by all non-degenerate quadratic forms over K.

Cor.(12.5.3.2)[Rank Functor].There are rank functors from Ŵ (K)→ Z, which is a ring homomor-
phism. In particular, two elements of the same rank are equal in Ŵ (K) iff they are equal in W (F ),
by Witt’s cancelation theorem(12.5.2.1).

Prop.(12.5.3.3).The rank functor is an isomorphism Ŵ (K) → Z iff K is quadratically closed. In
this case, W (K) ∼= Z/2Z.

Proof: This is equivalent to ⟨a⟩ ∼= ⟨1⟩ for any a ∈ K∗, which means K is quadratically closed. □

Prop.(12.5.3.4).The subgroup [H] generated by the hyperbolic plane is an ideal of Ŵ (K). And
Ŵ (K)/Z[H] ∼= W (K).
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Proof: Z[H] is an ideal because [H] · [⟨a1, . . . , an⟩] ∼=
∑
⟨ai,−ai⟩ which is a multiple of [H],

by(12.5.1.18). The last assertion follows from Witt’s decomposition(12.5.2.5). □

Cor.(12.5.3.5). [⟨a1, . . . , an⟩] + [⟨−a1, . . . ,−an⟩] = 0 ∈W (F ), by(12.5.1.18).

Prop.(12.5.3.6)[Presentation of the Witt Ring]. Ŵ (F ) is isomorphic to the quotient of the free
commutative ring generated by {[a]|a ∈ F ∗} module the following relations:

• [1]− 1.
• [ab]− [a]− [b].
• [a] + [b]− [a+ b](1 + [ab]), a, b, a+ b ∈ F ∗.

Proof: Cf.[Lam, P39]. □

4 Quaternion Algebras
References are [Quaternion Algebras].

Notation(12.5.4.1).
• In this subsection, let k, F ∈ Field.

Def.(12.5.4.2)[Quaternion Algebras].Let a, b ∈ F×, define a Quaternion algebra Q(a, b) as

QF (a, b) = Q⟨X,Y ⟩/(X2 − a, Y 2 − b,XY + Y X).

Denote X = i, Y = j,XY = k.

Prop.(12.5.4.3).Let a, b ∈ F×, then
• dimF QF (a, b) = 4, thus any element of QF (a, b) is of the form x+ yi+ zj + wk.
• QF (ax2, by2) ∼= QF (a, b) for x, y ∈ F ∗.
• QF (−1, 1) ∼= M(2, F ).
• QF (a, b) is a simple algebra with center F .

Proof: 1: QF (a, b)⊗F F = QF (a, b) ∼= QF (−1, 1) ∼= M2(F ) has dimension 4 over F , by item2 and3.
2: trivial.
3: The map is given by φ : QF (−1, 1)→M(2, F ) : i 7→

[
1

−1

]
, j 7→

[
1

1

]
. The verification is

straightforward.
4: Consider QF (a, b)⊗F F ∼= Mat(2, F ) is simple with center F , the center of QF (a, b) has to be

F , and also simple. □

Def.(12.5.4.4) [Pure Tensors].A quaternion element of the form yi + zj + wk is called a pure
tensor. The space of pure tensor is denoted by A0.

Let v ̸= 0 ∈ QF (a, b), then v ∈ A0 iff v /∈ F but v2 ∈ F .

Proof: By direct calculation,

(x+ yi+ zj + wk)2 = (x2 + ay2 + bz2 − abw) + 2x(yi+ zj + wk).

□
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Def.(12.5.4.5)[Bar Involution].There is an anti-involution of QF (a, b) = Q⟨X,Y ⟩/(X2 − a, Y 2 −
b,XY + Y X) given by X 7→ −X,Y 7→ −Y (thus XY 7→ (−Y )(−X) = Y X), called the bar involu-
tion.

Thus if we define the norm and trace N : x 7→ xx, tr : x 7→ x+ x, then they have images in F .
If α = x+ yi+ zj + wk, then tr(α) = 2x,N(α) = x2 − ay2 − bz2 + abw2.

Cor.(12.5.4.6).Notice the Bar involution can be defined intrinsically, by defining a pure vector to be
a vector x s.t. x2 ∈ F but x /∈ F .

Cor.(12.5.4.7).For x ∈ QF (a, b), if we let T (x) be the left(or right) multiplication by x on QF (a, b),
then the determinant of T (x) equals N(x)2.

Proof: After base change, all the values won’t change, thus it suffices to prove forM(2, F ), in which
case, it can be verified by(12.5.4.3) that det(A) = N(A), and the T (A) has determinant det(A)2. □

Prop.(12.5.4.8) [Norm Form].Define a symmetric bilinear form on QF (a, b): B(x, y) = tr(xy)/2.
Its norm form is just N(x).

Thus this symmetric space has {1, i, j, k} as an orthonormal basis. It is non-degenerate and
isomorphic to

⟨1,−a,−b, ab⟩ ∼= ⟨1,−a⟩ ⊗ ⟨1,−b⟩.

Prop.(12.5.4.9).Let A,A′ be two quaternion algebras over F , then the following are equivalent:
• A,A′ are isomorphic as quaternion algebras.
• A,A′ are isomorphic as quadratic spaces.
• A0, A

′
0(12.5.4.4) are isomorphic as quadratic spaces.

Proof: Cf.[Lam, P57]. □
Cor.(12.5.4.10).QF (a,−1) ∼= QF (a, a).

Proof: These algebras have norm forms ⟨1,−a,−1,−a⟩ and ⟨1,−a,−a, a2⟩, which are clearly iso-
metric quadratic spaces. □

Prop.(12.5.4.11)[Split or Division Ring].Let A = QF (a, b), then the following are equivalent:
1. A ∼= Mat(2, F ).
2. A is not a division algebra.
3. A is isotropic as a quadratic space.
4. A is hyperbolic as a quadratic space.
5. A0 is isotropic as a quadratic space.
6. (⟨a⟩ − 1)(⟨b⟩ − 1) = 0 in W (F )(or Ŵ (F ), by(12.5.3.2)).
7. (Hilbert’s Criterion)The binary form ⟨a, b⟩ represents 1.
8. a ∈ NmE/F (E∗), where E = F (

√
b).

Proof: 4 → 5 → 3 is clear. As QF (−1, 1) ∼= M(2, F ), 1, 4, 6, 7 are equivalent by(12.5.1.12)
and(12.5.4.9). Also 3 ⇐⇒ 4 as the the norm form of A has determinant in (F ∗)2. Also 1→ 2→ 3
is clear, as x ∈ A is invertible iff N(x) ̸= 0. Thus 1 to 7 are all equivalent.

Now we show 7 ⇐⇒ 8: Firstly assume b /∈ (F ∗)2, otherwise both are true. Let E = F (
√
b), then

NE/F (x+ y
√
b) = x2 − by2, thus 8 says a ∈ DF (⟨1,−b)⟩, which is equivalent to ⟨1,−b,−a⟩ isotropic,

which is equivalent to ⟨a, b⟩ represents 1, by representation theorem(12.5.1.21). □
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Cor.(12.5.4.12).Let a ∈ F ∗,
• QF (1,−a) ∼= QF (a,−a) ∼= M(2, F ).
• If a ̸= 1, then QF (a, 1− a) splits.
• QF (−1, a) splits iff a is a sum of two squares in F .

Proof: These follows from Hilbert’s criterion and representation theorem(12.5.1.21). □

Prop.(12.5.4.13)[Characterizing Quaternion Algebras].
• If A ̸= F is a simple algebra over F of dimension≤ 4 with center F , then A is isomorphic to a

quaternion algebra over F .
• If B ̸= F is a f.d. simple F -algebra with center F equipped with an F -algebra involution x 7→ x

s.t. x+ x ∈ F, xx ∈ F for any x ∈ B, then B is isomorphic to a quaternion algebra over F .

Proof: 1: Use Wedderburn’s theorem, then A ∼= M(n,D) where D is a division ring over F with
center F . Then A = M(2, F ) ∼= QF (1,−1) or D. If A = D, choose i /∈ F , and K = F (i) a subfield of
D. Then F ⊂ K ⊂ D, thus dimK = 2, thus we may modify i that i2 = a ∈ F . The conjugation of i
on D satisfies (ad(i))2 = id, thus A = A+⊕A− where ad(i) acts by 1 and −1 resp.. Let j ̸= 0 ∈ A−,
then ij = −ji, j2i = ij2, thus j2 ∈ A+. Now K(j) is also a quadratic field over F , thus j2 +cj−b = 0
for c, b ∈ F . Then cj = b − j2 ∈ A+ ∩ A− = 0 shows c = 0. Then A = F ⊕ Fi ⊕ Fj ⊕ Fij is the
quaternion algebra QF (a, b).

2: Use Wedderburn’s theorem, then A ∼= Mat(n,D) where D is a central division ring over F .
The hypothesis shows every element of B satisfies a degree 2 equation x2 − (x+ x)x+ xx = 0, thus
n ≤ 2. If n = 2, then consider the diagonal elements, then we get D = F . If B = D, then the same
argument as above shows we can find i, j that ij = −ji and i2 = a, j2 = b, a, b ∈ F ∗. Then j induces
an isomorphism A+ ∼= A−. If there are some l ∈ A+\F (i), then il = li = il, thus il + il = 2il ∈ F ,
contradiction. Thus A+ = F (i), and D = QF (a, b). □

Prop.(12.5.4.14) [Classifying Binary Forms].Let q = ⟨a, b⟩, q′ = ⟨a′, b′⟩ be non-singular binary
forms, then they are isomorphic iff det(q) = det(q′) and QF (a, b) ∼= QF (a′, b′).

Proof: If q ∼= q′, then ab = a′b′ ∈ F×/(F×)2, thus ⟨1,−a,−b, ab⟩ ∼= ⟨1,−a′,−b′, a′b′⟩, thus
QF (a, b) ∼= QF (a′, b′) by(12.5.4.11). The converse follows the same way by cancellation theo-
rem(12.5.2.1). □

Def.(12.5.4.15)[Hilbert Symbol].For a, b ∈ k×, define the Hilbert symbol

{a, b}k =
{

1 Qk(a, b) ∼= Mat(2; k)
−1 otherwise

.

Splitting Fields

Def.(12.5.4.16)[Splitting Fields].A quaternion algebra A over F is said to split in a field extension
K/F if A⊗F K ∼= Mat(2,K). K is said to be a splitting field for A.

Prop.(12.5.4.17).Let A = QF (a, b) and K = F (
√
c), c ∈ F×, then the following are equivalent:

• A splits over K.
• A ∼= QF (c, d) for some d ∈ F×.
• K is a subalgebra of A over F .
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Proof: 1 → 2: Consider the pure tensor space A0 ∼= ⟨−a,−b, ab⟩. If it is isotropic, then A0 ∼=
⟨−c,−d, cd⟩ for some d ∈ F×. If it is anisotropic, then because AK ∼= Mat(2,K), by(12.5.4.11), there
exists xi, yi not all zero s.t.

−a(x1 +
√
ay1)2 − b(x2 +

√
ay2)2 + ab(x3 +

√
ay3)2 = 0

Thus x is orthogonal to y and N(x) + cN(y) = 0. y ̸= 0, because otherwise N(x) = 0 and x = 0.
Thus there is an orthogonal basis {x, y, z}, and

A0 ∼= ⟨N(z), N(y),−cN(y)⟩,

and because det(A0) = 1, N(z) ∈ c(K×)2, thus item2 holds.
2→ 3: In fact, if i2 = c ∈ A, then F (i) ∼= K.
3→ 1: This follows from(2.4.3.17). □

Prop.(12.5.4.18).

5 over Local or Finite Fields
References are [Quadratic Forms 3, Clark]
In this subsection, Let F be a local field or a finite field, of char̸= 2 with a non-trivial character

ψ.

Prop.(12.5.5.1)[W (Fq)].
• If q ≡ 1 mod 4, then W (Fq) is isomorphic to Z/2Z[F ∗/(F ∗)2] ∼= Z/2Z[F2] as rings.
• If q ≡ 3 mod 4, then W (Fq) is isomorphic to Z/4Z as rings.

Proof: 1: In this case, −1 is a square, let s be a non-square, then there are only three anisotropic
forms: ⟨1⟩, ⟨s⟩, ⟨1, s⟩. Thus the assertion is clear.

2: In this case, we can take s = −1, thus any anisotropic form must be of the form ⟨1, . . . , 1⟩
or ⟨−1, . . . ,−1⟩. As ⟨1, 1⟩ is universal by(23.1.5.2), ⟨1, 1, 1⟩ ∼= ⟨−1⟩ by representation theo-
rem(12.5.1.21), thus 4[⟨1⟩] = 0. □

Prop.(12.5.5.2).Every binary quadratic form over a finite field Fq is universal.

Proof: By(12.5.5.1), if s is a non-square, there are essentially three quadratic forms,
⟨1, 1⟩, ⟨s, s⟩, ⟨1, s⟩. By(23.1.5.2), these are all universal. □

Cor.(12.5.5.3).Any quaternion algebra over a finite field splits, by Hilbert’s criterion(12.5.4.11).

Prop.(12.5.5.4)[W (R)].
• There exists two anisotripic forms at each rank n: ⟨1, . . . , 1⟩ and ⟨−1, . . . ,−1⟩.
• W (R) ∼= Z.
• (Sylvester’s Law of Inertia)Two non-degenerate forms over R are equivalent iff they have the

same rank and signature.
• Ŵ (R) ∼= Z[F2] as a ring.

Proof: Only 4 need a proof: It suffices to show [⟨1⟩] and [⟨−1⟩] are linearly independent in Ŵ (R),
because they generate all other rings. But if a[⟨1⟩] + b[⟨−1⟩] = 0, then a+ b = 0 by rank reason, but
when pass to W (F ), a− b = 0, thus a = b = 0. □
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Prop.(12.5.5.5).Let ⟨a1, . . . , an⟩F be a quadratic space over a non-Archimedean local field F , we
may assume ai ∈ OF . If ⟨a1, . . . , an⟩OF /pn is isotropic for all n, then ⟨a1, . . . , an⟩F is isotropic.

Proof: This is because we can find non-zero elements vn ∈ (OF /pn)d that q(vn) = 0 ∈ OF /pn, thus
we can find elements v ∈ OdF that q(v) = 0. □

Prop.(12.5.5.6) [Unique Quaternion Algebra]. If F ≇ C is a local field, then there is a unique
non-split quadratic algebra over F .

Proof: Cf.[Lam, P156]. □

Cor.(12.5.5.7).For this unique quaternion algebra A, the valuation |N(x)| is a valuation of A, i.e.
defines the topology.

Proof: This is because |N(·)| is bounded on the compact subset {x||x| = 1}. □

Prop.(12.5.5.8)[Hilbert Symbol].Let F be a local or finite field, then the Hilbert symbol(12.5.4.15)
(·, ·)F : F ∗/(F ∗)2 × F ∗/(F ∗)2 → {±1} satisfies

• It is symmetric and bi-multiplicative for both terms.
• It is non-degenerate: if F ≇ C is a local field, for any y ∈ F ∗\(F ∗)2, then there exists a z ∈ F ∗

that (y, z)F = −1.
• (a,−a) = 1.
• If a(a− 1) ̸= 0, (a, 1− a) = 1.

Proof: 1: To show it is multiplicative, by(12.5.4.11), (a, b)F = 1 iff a ∈ NE/F (E∗), where E =
F (
√
b). Notice NE/F (E∗) has index 1 or 2 in F ∗ by class field theory(12.6.2.10), thus a 7→ (a, b)F is

a character of a in any case.
2: Cf.[Lam, P160].?
3: By(12.5.4.12). □

Prop.(12.5.5.9)[Weil].Let (V,B) be a quadratic space over a local or finite field F of dimension d,
ψ a non-trivial character of F . Let V be identified with V ∗ via (v, v∗) 7→ ψ(−2B(v, v∗)), denote the
Fourier transform F to be compatible with this identification.

Let FB(v) = ψ(B(v, v)), then for any a ∈ F ∗, then φ ∗ FaB ∈ S(V ) for any φ ∈ S(V ), and there
is a complex number γ(aB) with norm 1 that for any φ ∈ S(V ),

F(φ ∗ FaB) = |a|−d/2γ(aB)F(φ)F−a−1B.

which means |a|−d/2γ(aB)F−a−1B is formally the Fourier transform of FaB.

Proof: We only prove for a = 1:

(Φ ∗ FB)(v) =
∫
V

Φ(u)ψ(B(v − u, v − u))du = FB(v)F(Φ · FB)(−v)

is an element of S(V ), as F(S(V )) = S(V )(12.4.6.11). Now use the last equation of(2.1.6.8) for z = 1
and the projective unitary representation ω1 of SL(2, F ) on L2(V )(16.5.4.2),

ω1(w1)ω1(n(1))ω1(w1)ω1(n(1))ω1(−1)Φ = γ(B)ω1(n(−1))ω1(w1)Φ

for some |γ(B)| = 1. Then it can be computed that the LHS equals Φ̂ ∗ FB, and the RHS equals
FB · Φ̂, thus we are done. □
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Cor.(12.5.5.10)[Analytic Interpretation of Isotropy].
• If (V1, B1), (V2, B2) are quadratic spaces, then γ(B1 ⊕B2) = γ(B1)γ(B2).
• If (V,B) is a quadratic space, then γ(−B) = γ(B)−1.
• If (V,B) is a hyperbolic quadratic space(12.5.1.15), then γ(B) = 1.
• γ is a group homomorphism W (F )→ C∗(12.5.3.1).

Proof: 1, 2 follow from taking test functions φ to be φ1 ⊗ φ2 or φ. 3 follows from the fact
γ(⟨−1, 1⟩) = γ(⟨1⟩)γ(⟨−1⟩) = 1. 4 follows from 1 and 3. □

Prop.(12.5.5.11). Situation as in(12.5.5.9),
• For any Φ ∈ S(V ),

∫
V (Φ ∗ FB)(v)dv = γ(B)

∫
V Φ(v)dv.

• If F is non-Archimedean , then for any lattice in V (12.2.3.32) sufficiently large, γ(B) =∫
L FB(v)dv.

• If F is finite, then γ(B) =
∫
V FB(v)dv.

Proof: 1 follows from(12.5.5.9) evaluated at a = 1 and v = 0.
2: Consider the dual lattice L′(12.2.3.36), if L is sufficiently large, then L′ is sufficiently small,

s.t. FB(u) = 1 for all u ∈ L′. Then

(χL′ ∗ FB)(v) =
∫
L′
FB(v − u)du = ψ(B(v, v))

∫
L′
ψ(−2B(u, v))du,

which equals V (L′)χLFB. Then let Φ = χL′ in item1, we get the desired assertion.
3: This is the same as 2, take Φ = 1. □

Prop.(12.5.5.12) [Weil’s Characterization of Hilbert Symbol].Let QF (a, b) be a quadratic
algebra over a local field F of characteristic̸= 2, let q : QF (a, b) → F be the norm form, then
γ(q) = (a, b)F (12.5.4.15).

In particular, (a, b)F = γ(⟨1,−a,−b, ab⟩).

Proof: By(12.5.5.10) and(12.5.5.8), it suffices to show for a non-split QF (a, b), γ(⟨1,−a,−b, ab⟩) =
−1.

If F is Archimedean or finite, then the existence of a non-split QF (a, b) over A shows F = R,
and a = b = −1, and γ(⟨1, 1, 1, 1⟩) = (γ(⟨1⟩))4. Let ψ : R → C : x 7→ e2πix as in(12.4.6.3), and
Φ(x) = e−πx2 , then it can be calculated using(12.5.5.9) that γ(B) is an 8-th roots of unity, thus we
are done.

If F is non-Archimedean, denote the Haar measure on A = QF (a, b) by dz, and then by(12.5.4.7)
and(10.11.1.19), the Haar measure on A∗ is of the form d×z = |N(z)|−2dz. By(12.5.5.7), for large n,
L = N−1(p−n) is a sufficiently large lattice in V , thus we can use(12.5.5.11) to evaluate the sign of

γ(N) =
∫
L\{0}

ψ(N(z))|N(z)|2d×z.

But this integrand factors through N : L\0→ p−n, thus it suffices to evaluate the sign of∫
p−n\0

ψ(x)|x|2d×x =
∫
p−n

ψ(x)|x|dx,

which is −q1−2r(1− q−1)−1, where the conductor of ψ is pr. So γ(N) = −1. □
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Cor.(12.5.5.13).Let ri ∈ F ∗, then γ(⟨ar1, . . . , ar2n⟩) = ((−1)nr1 . . . r2n, a)Fγ(⟨r1, . . . , r2n⟩).
Proof: By(12.5.5.12), it suffices to show for n = 1. γ(⟨r1, r2⟩) = (r1, r2)Fγ(⟨1, r1r2⟩), thus also
γ(⟨ar1, ar2⟩) = (ar1, ar2)Fγ(⟨1, a2r1r2⟩), so

γ(⟨ar1, ar2⟩)/γ(⟨r1, r2⟩) = (ar1, ar2)F /(r1, r2)F = (a,−r1r2)

by(12.5.5.8). □
Cor.(12.5.5.14).Let (V,B) has dimension 2n, then γ(B)2 = ((−1)n det(B),−1)F .

Proof: It reduces to n = 1, in which case, it suffices to show that γ(⟨r1, r2⟩)2 = (−1,−r1r2)F . But
(−1,−r1r2)F = γ(⟨1, 1, r1r2, r1r2⟩) = γ(⟨1, r1r2⟩)2. By(12.5.5.12), γ(⟨1,−r1,−r2, r1r2⟩)2 = 1, thus
γ(⟨1, r1r2⟩)2 = γ(⟨r1, r2⟩)2. □

6 over Global Fields
References are [Quadratic Forms over Global Fields, Clark].

Prop.(12.5.6.1).Let F = k(t) where k is alg.closed, then any binary quadratic form Q over F is
universal.
Proof: We may assume Q = ⟨1, f⟩, where f ∈ F ∗. We can assume f /∈ −(F ∗)2, otherwise this
is clearly universal. It is easy to see that the F2 vector space F ∗/(F ∗)2 has a basis {t − a|a ∈ k}.
Notice DF (Q) is a subgroup of F ∗ as it is the norm group of F (

√
−f), it suffices to show that

t − a ∈ DF (Q). After a change of variable, it suffices to show that t ∈ DF (Q), or ⟨1, f,−t⟩ is
isotropic, or equivalently −f ∈ ⟨1,−t⟩ for any f . The same argument show that it suffices to show
that ⟨1,−t, t− a⟩ is isotropic. But t− a+ (−t) + (

√
a)2 = 0. □

Cor.(12.5.6.2).Any quaternion algebra over k(t) splits, by Hilbert’s criterion(12.5.4.11).
Prop.(12.5.6.3)[Examples].

• QQ(−1,−1) ∼= QQ(−2,−3).
• QQ(−1,−1) ≇ QQ(−2,−5).
• Let p be a prime number, QQ(−1, p) splits iff p = 2 or p ≡ 1 mod 4.
• Let p be a prime number, QQ(−2, p) splits iff p = 2 or p ≡ 1, 3 mod 8.
• QQ(−3, 5) is a division ring, but splits over K = Q(

√
17).

Proof: 1: By(12.5.1.23), QQ(1, 1, 1, 1) ∼= (1, 1, 2, 2) ∼= (1, 3, 6, 2), thus QQ(−1,−1) ∼= QQ(−2,−3)
by(12.5.4.11).

2: if they are isomorphic, then ⟨2, 5, 10⟩ ∼= ⟨1, 1, 1⟩ ∼= ⟨2, 2, 1⟩, thus ⟨5, 10⟩ ∼= 1, 2, which is
impossible as 1 is not representable by ⟨5, 10⟩.

3: By Hilbert’s criterion(12.5.1.23), if QQ(−1, p) splits, then −x2 + py2 = z2 for some x, y, z ∈ Z

that (x, y, z) = 1, thus −1 is a square in Fp, which means p ≡ 1 mod 4 or p = 2. Conversely, if
p ≡ 1 mod 4, then by(12.4.1.2), p = x2 +y2 for some x, y ∈ Z, thus ⟨−1, p⟩ represents 1, so QQ(−1, p)
splits. if p = 2, then ⟨−1, 2⟩ represents 1, thus it splits.

4: By Hilbert’s criterion(12.5.1.23), if QQ(−1, p) splits, then −2x2 +py2 = z2 for some x, y, z ∈ Z

that (x, y, z) = 1, thus −2 is a square in Fp, which means p ≡ 1, 3 mod 8 or p = 2. Conversely,
if p ≡ 1 mod 4, then by(12.4.1.2), p = x2 + y2 for some x, y ∈ Z, thus ⟨−1, p⟩ represents 1, so
QQ(−1, p) splits. If p = 2, then it splits as above.

5: If it splits, then −3x2 + 5y2 = z2 for some x, y, z ∈ Z that (x, y, z) = 1. This is a contradiction
modulo3. In K = Q(

√
17), however, 5 · 22 − 3 = 17, thus QQ(

√
13(−3, 5) splits. □
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Prop.(12.5.6.4)[Hasse-Minkowski Principle]. If F ∈ GField and charF ̸= 2, and Q is a quadratic
form over F , then q is isotropic over F iff Q is isotropic over Fp for all place p.

Proof: Cf.[Lam, P170].? □

7 Algebraic Extensions
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12.6 Cohomology of Arithmetic Fields
Main references are [Neu15], [Cohomology of Number Fields, Neukirch], http://www.math.

columbia.edu/~chaoli/docs/ClassFieldTheory.html#sec28 and [Mil20] and [Arithmetic Dual-
ity Theory, Milne].

Notation(12.6.0.1).
• Use notations from Global Fields

1 Abstract Class Field Theory
Def.(12.6.1.1)[Class Formations].A profinite formation consists of a profinite group G regarded
as a Galois group of a field GalK and A ∈ TG. It is called a field formation iff for any normal
extension L/K, H1(L/K,AL) = 0.

For a field extension, by(10.1.1.13), inf is an injection on H2. We denote H2(K) as the profinite
cohomology group H2(G,A) = Br(K). Inflation should be thought of as inclusions.

It is called a class formation if moreover for every normal extension L/K, there is an canonical
isomorphism

invL/K : H2(L/K)→ 1
[L : K]

Z/Z

that is compatible with inflation and restriction in the sense that:
• If N/L/K with N/K and L/K normal, then invL/K = invN/K |H2(L/K) via inflation.
• If N/L/K with N/L and N/K normal, then invN/L ◦ resL = [L : K] · invN/K .

inv−1
L/K( 1

[L:K] + Z) ∈ H2(L/K) is called the fundamental class uL/K .

Prop.(12.6.1.2). inv also commutes with cor and conjugation:

invN/K(corKc) = invN/Lc, invσN/σK(σ∗c) = inv(c).

The first is because inv commutes with res thus res is surjective, thus there is a c′ that c = res c′.
Because of cor res=[L : k], we have corK(c) = c′[L:K]. Thus invN/K(corKc) = [L : K]invN/K(c′) =
invN/L(resLc′) = invN/L(c).

For the conjugation, Cf.[Neu15]P69?.

Cor.(12.6.1.3).From this we easily get that

uL/K = (uN/K)[N :L], resL(uN/K) = uL/K

corK(uN/L) = (uN/K)[L:K], σ∗(uN/K) = uσN/σK .

Prop.(12.6.1.4)[Class Formation Main Theorem].Tate’s theorem(10.1.1.24) tells us for a class
formation, for L/K normal extension, there is a Nakayama isomorphism

θL/K = uL/K ∪ − : Hq(Gal(L/K),Z) ∼= Hq+2(L/K).

Especially, for q = −2, there is a canonical isomorphism Galab(L/K) ∼= AK/NmL/K AL. Its inverse
is called the Artin reciprocity isomorphism and induces a norm residue symbol map (−, L/K)

1→ NmL/K AL → AK
(−,L/K)−−−−−→ Galab(L/K)→ 1.

http://www.math.columbia.edu/~chaoli/docs/ClassFieldTheory.html#sec28
http://www.math.columbia.edu/~chaoli/docs/ClassFieldTheory.html#sec28
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This norm residue symbols induce an Artin map

ArtK = (−,K) : AK → Galab
K = lim←−

L/K

Galab(L/K)

that has dense image.

Lemma(12.6.1.5).Let L/K be a normal extension, a ∈ AK and χ ∈ Galab(L/K)∨ =
H1(G(L/K),Q/Z) is a character, then

χ((a, L/K)) = invL/K(a ⌣ δχ) ∈ 1
[L : K]

Z/Z.

Proof: Cf.[Neukirch CFT P71]. □

Prop.(12.6.1.6)[Properties of Norm Residue Symbols].For formal field extensions N/L/K with
N/K normal, there are commutative diagrams:

AK Gal(N/K)ab

AK Gal(L/K)ab

(−,N/K)

id pr

(−,L/K)

AK Gal(N/K)ab

AL Gal(N/L)ab

(−,N/K)

i Ver

(−,N/L)

NmL/K i

AL Gal(N/L)ab

AσL Gal(σN/σL)ab

(−,N/L)

σ σ∗

(−,σN/σL)

Where Ver is the transfer map defined in??.

Proof: Cf.[Neukirch CFT P72].? □

Remark(12.6.1.7) [Non-Abelian Problems].For a finite normal extension L/K, NmL/K AL =
NmLab/K ALab . This is because the quotient both correspond to G(L/K)ab. So class field theory
doesn’t tell about non-Abelian extension.

Prop.(12.6.1.8) [Norm Groups and Abelian Extension].The map L 7→ NL/K = NmL/K AL
defines a inclusion reversing isomorphism between the lattice of Abelian extension L of K and the
lattice of norm groups of AK , i.e.:

NL1L2/K = NL1/K ∩NL2/K , NL1∩L2/K = NL1/K ·NL2/K .

And any group that contains a norm group is a norm group.

Proof: By the first commutative diagram of inv, if (a, Li/K) = 0, then (a, L1L2/K) is trivial
on GLi/K , thus trivial on GL1L2/K , thus a ∈ IL1L2 . so IL1 ∩ IL2 ⊂ IL1L2 , the other side is easy.
the second is because |IL1∩L2/IL1 | = |GL1/L1∩L2 | = |GL1L2/L2 | = |IL1IL2/IL1 |. Also we deduce
IL1 ⊂ IL2 ⇐⇒ L2 ⊂ L1, thus by canonical isomorphism, groups containing NmL/K AL are one-to-
one correspondence with middle fields of L/K by counting numbers. □

Remark(12.6.1.9).This shows the philosophy of CFT, i.e. the property of Abelian extensions of a
field is can be read from its multiplicative group structure. Of course, determining and characterizing
these norm groups requires some work.

Weil Groups

Main references are[A-T67].
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2 Local Class Field Theory

Notation(12.6.2.1).
• Let K ∈ p-LField.
• Let L/K be a finite extension field.

Unramified Extensions

Lemma(12.6.2.2). If L/K is unramified, then Hq(GL/K ,O∗
L) = 0 for all q.

Proof: Cf.[Neukirch P83]. □

Prop.(12.6.2.3)[Witt Residues].The unramified extensions of K form a class formation.

Proof: We first define the inv map: use the exact sequence 1 → O∗
L → L× vL−→ Z → 0, using the

lemma(12.6.2.2), we have an isomorphism

H2(Gal(L/K), L×) vL−→ H2(Gal(L/K),Z) δ−1
−−→ H1(Gal(L/K),Q/Z) = Gal(L/K)∨.

And there is an isomorphism

φ : Gal(L/K)∨ ∼=
1

[L;K]
Z/Z, φ(χ) = χ(φL/K)

where φL/K is the Frobenius which generates Gal(L/K). Then define

invL/K = φ ◦ δ−1 ◦ vL : H2(Gal(L/K), L×) ∼=
1

[L : K]
Z/Z

To verify this is a class formation, we should verify(12.6.1.1), Cf.[Neukirch P85]?. □

Prop.(12.6.2.4) [Local Norm Symbol is given by Frobenius]. If L/K is unramified, then
(a, L/K) = φ

vK(a)
L/K . The same holds for L replaces by Kur, in which case

1→ O∗
K → K× → Gal(Kur/K)→ 0

is exact. Cf[Neukirch P88].

Proof: We use(12.6.1.5), then χ(a, L/K) = invL/K(a ∪ δχ) = φ ◦ δ−1 ◦ vK(A ⌣ δχ) =
φ(δ−1(vK(a)δχ)) = φ(vK(a)χ) = vK(a)χ(φL/K) = χ(φvK(a)

L/K ), for any χ. The second assertion
follows from the last prop(12.6.2.5). □

Cor.(12.6.2.5)[Norm Group of Unramified Extensions].The norm group of an unramified ex-
tension of degree f is

O∗
K × (ϖf

K)Z.

In particular, L/K is unramified iff O∗
K ⊂ NL/K .
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Ramified Extensions

Lemma(12.6.2.6). If L/K is normal, then #H2(L/K)
∣∣∣[L : K].

Proof: Cf.[Neukirch CFT P89]. Should use the fact that GL/K is solvable and Herbrand quotient.
□

Lemma(12.6.2.7)[Invariant Maps]. If L/K is normal and L′/K is another unramified extension of
the same degree, then H2(L/K) = H2(L′/K) ⊂ Br(K). In particular, we can define an invariant
map inv : Br(K)→ Q/Z.

Proof: In view of(12.6.2.6) and(12.6.2.3), we only need to prove H2(L′/K) ⊂ H2(L/K). For this,
we let N = LL′, then there is an exact sequence(10.1.1.13)

1→ H2(L/K)→ H2(N/K) resL−−→ H2(N/L)

then we only need to prove resL(c) = 0, and this follows from invN/L(resL c) = 0. This will follow, if
we have

invN/L(resL c) = [L : K] · invL′/K c.

This follows from(12.6.2.8). □
Lemma(12.6.2.8).For two subextensions L/K, L′/K in M/L normal with L′/K unramified exten-
sion, N = LL′, for c ∈ H2(L′/K),

invN/L(resLc) = [L : K] · invL′/Kc.

Proof: Cf[Neukirch CFT P90]. □
Lemma(12.6.2.9). (GalK , (Ksep)×, invK) forms a class formation.

Proof: This almost follows from that of unramified extensions(12.6.2.3). We verify axioms(12.6.1.1)
that inf is natural and commutes with res. It is natural because it is natural on unramified extensions,
it commutes with res because we can assume c ∈ H2(L′/K) unramified and use(12.6.2.8). □

Cor.(12.6.2.10)[Local Artin’s Reciprocity Law].Let L/K be a normal extension, then the homo-
morphism

uL/K ∪ − : Hq(Gal(L/K),Z) ∼= Hq+2(L/K)
is an isomorphism.

Cor.(12.6.2.11).H3(L/K) = 1,H4(L/K) = Galab(L/K)∨, by(10.1.1.6).

Thm.(12.6.2.12)[Artin’s Reciprocity Law].By(12.6.1.4), cup product with the fundamental class
in H2(L/F ) define an isomorphism

θL/K : Galab(L/K) ∼= H−2(Gal(L/K),Z)→ H0(L/K) = K×/NmL/K L
×,

called the Nakayama map. And the reverse map is called the norm residue symbol(−, L/K)

1→ NmL/K L
× → K× (−,L/K)−−−−−→ Galab(L/K)→ 1.

This norm residue symbols induce an Artin map

ArtK = (−,K) : K× → Galab
K

with dense image.
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Cor.(12.6.2.13).By(12.6.1.6), there are commutative diagrams

K× Gal(N/K)ab

K× Gal(L/K)ab

(−,N/K)

id pr

(−,L/K)

K× Gal(N/K)ab

L× Gal(N/L)ab

(−,N/K)

i Ver

(−,N/L)

NmL/K i

L× Gal(N/L)ab

σL× Gal(σN/σL)ab

(−,N/L)

σ σ∗

(−,σN/σL)

Where Ver is the transfer map defined in??.
Cor.(12.6.2.14)[Quadratic Character]. If L/K is a quadratic extension, then NL/K is a subgroup
of K× of order 2. Let χ be the non-trivial character of K× that is trivial on NL/K , called the
quadratic character of K× attached to L/K.

Prop.(12.6.2.15)[Higher Ramification Groups].For an Abelian extension L/K, the higher princi-
pal units UnK are mapped under the higher ramification groups of GL/K under the upper numbering.
?
Proof: □

Def.(12.6.2.16) [Conductors]. If L/K is Abelian, define the conductor fL/K to be the smallest
positive integer n s.t. UnK ⊂ NL/K .

Cor.(12.6.2.17).For an Abelian extension L/K, fL/K = 1 iff L/K is unramified, by(12.6.2.5).

Characterize the Norm Groups of K×

Prop.(12.6.2.18)[Norm Group and Abelian Extension].The map L 7→ NL/K defines a inclusion
reversing isomorphism between the lattice of Abelian extension L of K and the lattice of norm groups
of K×, i.e.:

NL1L2/F = NL1/K ∩NL2/K , NL1∩L2/K = NL1/K ·NL2/K .

And any group that contains a norm group is a norm group. This follows from(12.6.1.8) and (12.6.2.9).
Prop.(12.6.2.19).The norm groups are precisely the open(closed) subgroups of finite index in K∗.
In fact finite index are itself open because it contains (K×)n which is open.
Proof: One part follows from(12.6.2.18) and the fact that (K∗)m is open(12.2.3.7). For the converse,
we only need to prove (K∗)m is a norm group. This uses Kummer theory and Cf.[Neukirch CFT
P96]. □

Prop.(12.6.2.20)[Norm Groups of Local Fields].The norm groups of K∗ are exactly the groups
containing UnK × (πf ) for some n, f .
Proof: UnK × (πf ) is a norm group because it is closed of finite index. Conversely, any norm group
contains some UnK because it is open and contains some (πf ) because it is of finite index. □

Local Weil Groups

Prop.(12.6.2.21)[Weil Groups].The Artin map ArtK : K× → Galab
K is injective because (K×)n are

all norm groups by(12.6.2.19), so the kernel is their intersection with is 1 by(12.2.3.7). It image is
just W ab

K .
Prop.(12.6.2.22)[Norm on Weil Groups].The Artin map(12.6.2.21) gives a norm |x| = |Art−1(x)|
on W ab

K , which maps a lift of the geometric Frobenius in Galκ to q−1.
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Totally Ramified Extensions

References are [L-T65].

Notation(12.6.2.23).
• Use notations defined in Lubin-Tate Formal Group Law.

Prop.(12.6.2.24) [Tate Modules].There is an isomorphism of O-modules Λf,n ∼= O/πnO,
Cf.[Neukirch CFT P101]. Thus the automorphism of Λf,n is all of the form uf for units, isomor-
phic to UK/UnK .

So we can define a Tate module TG = lim←− ker[πnK ], it is a free OK-module of rank 1.

Def.(12.6.2.25)[Lubin-Tate Character].As TG is a free OG-module of dimension 1, and GalK acts
on TG, there can be attached a Lubin-Tate character χK : GalK → O∗

K by g(α) = [χK(g)](α),
this depends on πK , but its restriction on IK doesn’t depend on πK , and is just the local CFT
isomorphism composed with x→ x−1.

Proof: [χK(g)] is, by definition, the morphism that is id on Kur and g on Lπ. So it equals g on
all Kab iff g is id on Kur, that is, g ∈ IK . So if g ∈ IK , by local CFT, (χ(g))−1 corresponds to g,
uniquely. □

Prop.(12.6.2.26).Gπ,n ∼= O∗
K/U

n
K , thus we have Gπ ∼= O∗

K . Lπ,n/K(8.5.3.26) is Abelian totally
ramified of degree pn−1(p− 1) generated by a Eisenstein polynomial with constant coefficient ϖ. In
particular, ϖ is in the norm group.

Proof: For this, first note Galois action induce an isomorphism on Λf,n, thus correspond to an
element of UK/UnK by(12.6.2.24), this is an injection because Λf,n generate Lπ,n. Then we use the
canonical polynomial f(Z) = πZ + Zq, fn = fn−1φ(n), where φ(n) is a Eisenstein polynomial, thus
Lπ,n/K is totally ramifies with |Gπ,n| = qn−1(q − 1) = |UK/UnK |, thus the result. □

Prop.(12.6.2.27)[Explicit Local Norm Residue Symbol].Now we can write the universal residue
symbol little bit more explicitly. For a = uϖm, (a,K) acts as φm on Kur, and on Lπ,n, its action is
generated by the action (u−1)f on the generating set Λf,n.

Thus the norm group of Lπ,n is just UnK by(12.6.2.26).

Proof: Cf.[Neukirch CFT P106].? □

Cor.(12.6.2.28)[Norm Groups of Totally Ramified Extensions].The norm groups of the totally
ramified Abelian extension are precisely the groups that contains some UnK×ϖZ for some uniformizer
π. And every totally ramified Abelian extension L/K is contained in some Lϖ,n.

Proof: For any totally ramified extension, choose a uniformizer, then its norm is a uniformizer ϖ
of K. And NmL/K is open, thus it contains some Un. The rest follows from local CFT(12.6.2.18). □

Cor.(12.6.2.29)[Maximal Abelian Extension of p-adic Local Fields].Let Lπ = ∪Lπ,n = K(Λf ),
where Λf = ∪Λf,n, then T · Lπ is the maximal Abelian extension of K. Hence Gab

K = GT,K ×Gπ.

Proof: This follows immediately from(12.6.2.20). □

Cor.(12.6.2.30)[Hasse-Arf].We can prove Hasse-Arf(12.2.2.27) in the case where K is a local field.
This is because we already know the maximal Abelian extension, andG(Kab/T ) ∼= G(Lπ/K) ∼= Zp for
which we know the Galois action well(12.6.2.24)(12.6.2.26), so i(σ) = v(σ(αn)−αn) = v([σ− 1](α)),
which jumps at UnK(the same pattern as K = Qp(12.2.2.29)), thus the result.
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Example(12.6.2.31)[Cyclotomic Fields].When K = Qp, we can choose f(T ) = (1 + T )p − 1, thus
Lϖ,n is just Qp(ζpn). And we have rf = (1 + T )r − 1, thus we have

(a,Qp(ζpn)/Qp)(ζpn) = ζrpn

where a = upm, and r ≡ u−1(mod pn).

3 Global Class Field Theory
Notation(12.6.3.1).

• Let F ∈ GField.

Prop.(12.6.3.2).Let P be a prime of L lying over p, then Hq(G, IpL) ∼= Hq(GP, L
∗
P). If p is a finite

unramified prime of L, then Hq(G,Up
L) = 1 for all q.

Proof: Notice IpL =
∏
σ∈G/GP

L∗
σP =

∏
σ∈G/GP

σL∗
P is an induced module, so by(10.1.2.7), we have

Hq(GP, L
∗
P), and similarly for Up, which vanish by(12.6.2.2). □

Cor.(12.6.3.3).

Hq(G, ISL) =
⊕
p∈S

Hq(GP/p, L
∗
P), Hq(G, IL) =

⊕
p

Hq(GP, L
∗
P).

And the isomorphism is natural, by restriction to components.

Proof: For this, just notice IL = ∪SISL , then use the last proposition, notice group cohomology
commutes with colimits(10.1.2.2). □

Cor.(12.6.3.4).H1(G, IL) = H3(G, IL) = 0, by(12.6.2.11).

Cor.(12.6.3.5).An idele a ∈ IF is the norm of an idele b in IL if each component ap is the norm of
an element bP ∈ L∗

P.

Prop.(12.6.3.6).The decomposition commutes with inf, res and cor. Cf.[Neukirch CFT P125].

Cyclic Class Formations

Lemma(12.6.3.7).For a cyclic extension L/F of order p, CL is a Herbrand module with Herbrand
quotient h(CL) = p.

Proof:
□

Prop.(12.6.3.8)[First Fundamental Inequality]. [CF : NmL/F CL] ≥ p

Proof: □

Prop.(12.6.3.9). If Q(ζp) ⊂ F and L/F is a cyclic extension of order p, then [CF : NmL/F CL] ≤ p.

Proof: □

Cor.(12.6.3.10)[Second Fundamental Inequality]. If L/F is a cyclic extension of order p, then
[CF : NmL/F CL] = p.
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Proof: □

Cor.(12.6.3.11)[Hasse Norm Principle].For a cyclic extension L/F and a ∈ F×, a ∈ NmL/F L
×

iff a ∈ NmL/F (IL).

Proof: Use the long exact sequence for 1 → L× → IL → CL → 1, we see that H0(G,L×) →
H0(G, IL) is an injection, which is

F×/NmL/F L
× ↪→

⊕
p

F×
p /NmLP/Fp

L×
P.

In fact, by(12.6.3.4), we say that this is equivalent to H1(Gal(L/K), CL) = 1, which is equivalent to
second fundamental inequality. □

Remark(12.6.3.12).WARNING: the Hasse norm principle is not true for non-cyclic Galois extensions,
for examples Q(

√
13,
√

17)/Q.

General Class Formations

Prop.(12.6.3.13).For L/F normal, #H2(G,CL)|[L : F ].

Proof: Cf.[Neukirch P137]. □

Prop.(12.6.3.14).

Br(F ) =
∪

L/F cyclic
H2(Gal(L/F ), L×), H2(GalK , IK) =

∪
L/K cyclic

H2(Gal(L/K), IL).

Proof: Cf,[Neukirch P127]. □

Def.(12.6.3.15)[Invariant Maps].For c = (cp) ∈ H2(GL/K , IL), define the invariant map

invL/Kc =
∑
p

invLP/Kp
cp(12.6.2.9).

Prop.(12.6.3.16). If c ∈ H2(GL/K , L×), then invL/K c = 0.

Proof: Cf.[Neukirch P141]. □

Cor.(12.6.3.17).Now we can define the inv map for CK . By the exact sequence 1 → L∗ → IL →
CK → 1, we have

1→ H2(Gal(L/K), L∗)→ H2(Gal(L/K), IL)→ H2(Gal(L/K), CL)→ H3(GL/K , L∗)

The last one is 1 if L/K is cyclic, thus tby this proposition, inv is defined for H2(GL/K , CL).

Prop.(12.6.3.18) [Reduce to Cyclic Case]. If L/K is normal and L′/K is cyclic with the same
degree, then H2(L′/K) = H2(L/K) ⊂ H2(K/K).

Proof: □

Cor.(12.6.3.19).H2(K/K) = ∪L/K cyclicH
2(L/K), thus the homomorphism H2(GalK , IK) →

H2(K/K) is surjective by(12.6.3.17).
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Proof: Why can always find such a cyclic extension?. □

Cor.(12.6.3.20).The inv map is defined for H2(K/K), and invL/K : H2(L/K) → 1
[L:K]Z/Z is an

isomorphism for every normal extension L/K.

Lemma(12.6.3.21)[Main Lemma].The formation (GalF , CF sep , invF ) is a class formation(12.6.1.1).

Proof: □

Thm.(12.6.3.22) [Artin’s Reciprocity Law, Artin1927].By(12.6.1.4), cup product with funda-
mental classes uL/F ∈ H2(L/F ) define an isomorphism

θL/F : Galab(L/F ) ∼= H−2(Gal(L/F ),Z)→ H0(L/F ) = CF /NmL/F CL,

called the Nakayama isomorphism. And the reverse map is called the norm residue symbol
map (−, L/F )

1→ NmL/F CL → CF
(−,L/F )−−−−−→ Galab(L/F )→ 1.

This norm residue symbols induce an Artin map

ArtF = (−, F ) : CF → Galab
F

Prop.(12.6.3.23)[Local-Global Compatibility].For L/F and a ∈ IF :

(a, L/F ) =
∏
p

(ap, LP/Kp) ∈ Galab(L/F )(12.6.2.12).

In particular, if v ∈ Σfin
F is unramified in L, then

([ϖp]p, L/F ) = φLP/Fp
∈ GalLP/Fp

⊂ GalF .

Proof: Cf.[Neukirch CFT P154]. □

Prop.(12.6.3.24).There are commutative diagrams:

CF Gal(N/F )ab

CF Gal(L/F )ab

(−,N/F )

id pr

(−,L/F )

CF Gal(N/F )ab

CL Gal(N/L)ab

(−,N/F )

i Ver

(−,N/L)

NmL/F i

CL Gal(N/L)ab

CσL Gal(σN/σL)ab

(−,N/L)

σ σ∗

(−,σN/σL)

Where Ver is the transfer map defined in??.

Proof: □

Cor.(12.6.3.25).By(12.6.1.8), the map L 7→ NL/F = NmL/F CL defines a inclusion reversing isomor-
phism between the lattice of Abelian extension L/K and the lattice of norm groups of CF , i.e.:

NL1L2/F = NL1/F ∩NL2/F , NL1∩L2/F = NL1/F ·NL2/F .

And any group that contains a norm group is a norm group.
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Prop.(12.6.3.26)[Existence Theorem].The norm groups of CF are precisely the (open)closed sub-
groups of finite index.

Proof: Cf.[Neukirch P162] or notes taken by Chao Li.? □

Cor.(12.6.3.27)[The Kernel of ArtF ].
• If F is a number field, the kernel ∩L/FNL/F of ArtF is exactly the connected component DF of

1 ∈ CK , which is the group of divisible elements in CK(12.4.5.29). Moreover, ArtF : CF /DF →
Galab

F is an isomorphism.
• If F is a global function field, then (−, F ) is injective but not surjective. In fact, there is an

exact sequence(? by etale fundamental group)

0 I1
F /F

× IF /F× qZ 0

0 Iab
F Galab

F Galk ∼= Ẑ 0

∼= (−,F )

thus CF can be regarded as the Weil group of F .

Proof: 1: As Galab
F is totally disconnected, it must factors through DF . But CF /DF is a profi-

nite group, thus DF is an intersection of open subgroups of finite index, thus it is in the kernel,
by(12.6.3.26).

2: The map is injective because by splitting it is a product of qZ and a profinite group, thus
the intersection of open subgroups of finite index is trivial(12.6.3.26). To show the diagram is
commutative, it suffices to show that (x, F ) acts as Frob|x|F

k on k: This is because on any finite
unramified Abelian extension L/F , (x, F ) acts via φ|xv |v

Lw/Fv
by definition(12.6.2.4), and these add up

to |x|v as L/F is cyclic. □

Cor.(12.6.3.28). 1: If F is a number field, there is an inclusion reversing isomorphism between the
lattice of Abelian extensions L/F and the lattice of closed subgroups of CF containing the image of
(I0
F,∞), by(12.6.1.8) and(12.4.5.29). To show it is surjective, notice that

4 Decomposition Law

Prop.(12.6.4.1). If L/F is an Abelian extension, then NL/K ∩K×
p = NLP/Kp

.

Proof: For the non-trivial part, notice if a ∈ NPL
∗
P is a norm times a a ∈ K∗, then it is a norm at

all primes except p, thus it is also norm at p by the multiplicative definition of the inv map(12.6.3.15).
□

Cor.(12.6.4.2)[Ramifications].Let L/K be an Abelian extension of global fields andN = NmL/K CL
be the norm group, then

• p is unramified in L iff O∗
F,p ⊂ NL/F .

• p splits completely in L iff F×
p ⊂ NL/F .

Proof: □
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Prop.(12.6.4.3) [Decomposition Law].Let L/F is an Abelian extension of degree n and p ∈ ΣF

is an unramified place of F and ϖp is a uniformizer, then if f is the smallest positive integer s.t.
[ϖp]fp ∈ NL/F , then p factors in the extension L into r = n/f distinct primes of degree f .

Notice to determine whether a place is ramified or not, we use conductors(12.6.4.17).

Proof: The degree the extension of p is just the order of the Frobenius automorphism of GP/p,
which is just the order in Gal(L/F ) ∼= CF /NmL/F CL. The Frobenius of p correspond exactly to
(. . . , 1, π, 1, . . .) by(12.6.3.23) and(12.6.2.4), so the result follows. □

Prop.(12.6.4.4) [Unramified Kummer Extensions are Rare].Let F be a global field or the
function field of a smooth curve over an alg.closed field k, and S ⊂ ΣF be a finite set of places, and
m ∈ Z∩F ∗, then there are only f.m. Kummer extensions over F that have Galois group of exponent
m and are unramified at all finite places outside S.

Proof: We may add all the m-th roots of unity to F . Then by Kummer theory(2.2.7.9), Kummer
extensions of exponent m over F corresponds to F ( m

√
a), where a ∈ F . But we can only add those

a s.t. ordv(a) ≡ 0 mod m in order to get unramified extensions, so the desired Kummer extensions
correspond to

TS = {a ∈ F×/(F×)n| ordv(a) ≡ 0 mod m,∀v ∈ Σ0
K\S}.

If F is a global field, after enlarging S, we may assume OK,S is PID, then this group is a quotient
of O∗

K,S/OmK,S , which is finite by unit theorem(12.4.5.30). If F = K(C), where C is a complete
non-singular curve, then by Riemann-Roch there is an exact sequence

0→ T∅ → TS → (Z/(m))#S → 0

And for f ∈ T∅, div(f) = mDf for some Df ∈ Pic(C)[m]. Notice # Pic(C)[m] < ∞ by(5.11.2.18),
thus the theorem follows. □

Ray Class Fields

Def.(12.6.4.5)[Notations].
• A modulus m is a a formal product ∏p∈ΣF pep where ep ≥ 0, and ep = 0 if p ∈ ΣC

F , and
ep = 0, 1 if p ∈ ΣR

F .
• For a modulus m,

Um =
∏

v∈Σ∞
F ,ev=0

F×
v ×

∏
v∈ΣR

F ,ev=1

R×
+ ×

∏
p∈Σfin

F ,ep=0

Fp ×
∏

p∈Σfin
F ,ep>0

(1 + pep) ⊂ IF

and Cm is the image of Um in CF , which is an open subgroup of finite index.

Def.(12.6.4.6)[Ray Class Fields].For a modulus m,
• Fm is defined to be the Abelian extension corresponding to Cm(12.6.3.26), called the ray class

field of m. in particular, Gal(Fm/F ) ∼= CF /C
m.

• Jm is defined to be the group of all ideals of OF relatively prime to m, Pm = F× ∩ Um, called
the ray mod m.

Def.(12.6.4.7)[Ray Class Groups].For a modulus m,

Clm(F ) = Jm/Pm ∼= CF /C
m ∼= Gal(Fm/F )

is finite, called the ray class group of m.
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Proof: This is because Clm(F ) is a quotient group of IF /Um, which is finite. □

Prop.(12.6.4.8).Any finite Abelian extension is contained in a finite

Cor.(12.6.4.9)[Cyclotomic Fields].When F = Q,m ∈ Z+ and m = m · ∞, Qm = Q(ζm).
In particular, we can think of the ray classes fields for general function fields as “generalized

cyclotomic fields”.

Proof: For any p ∈ P, let m = pep ×m′, then Q(ζm) = Q(ζpep )Q(ζm′). Notice both NQ(ζpep )/Q and
NQ(ζm′ )/Q contains (1+pep) by(12.6.2.31)(12.6.2.27) and(12.6.2.5). Thus by(12.6.3.25), the NQ(ζm)/Q
als contains (1 + pep). Thus Um is contained in NmQ(ζm)/Q IQ(ζm).

To show the reverse inclusion, we calculate (CQ : Cm). As (CQ : C1
Q) = Cl(Q) = 1,

(CQ : Cm) = (U1
QQ

× : Um∞
Q Q×) = (U1

Q : Um∞
Q )(U1

Q ∩Q× : Um∞
Q ∩Q×) = φ(m) = [Q(ζm) : Q].

□

Cor.(12.6.4.10)[Kronecker].Every Abelian extension F/Q is a subfield of Q(ζm) for some m ∈ Z+.

Def.(12.6.4.11) [Hilbert Class Fields].The ray class field mod 1 is important, it is the Hilbert
class field of F , denoted by F1. Its Galois group is isomorphic to CK/C1

K
∼= JK/PK(12.6.4.7). In

particular, [F1 : F ] = h(F ).

Conductors

Def.(12.6.4.12)[Admissible Modulus].
• For an Abelian extension of global fields L/F , an admissible modulus for L/F is a modulus

m s.t. Cm ⊂ NmL/F CL or equivalently L ⊂ Fm(12.6.4.6).
• All subgroups of Clm(F )(12.6.4.7) are called ideal groups defined mod m.
• If L/F is an Abelian extension with an admissible modulus m, then Hm

L/F = NmL/F J
m
L ·Pm

F is
called the ideal group defined mod m.

Prop.(12.6.4.13).For an Abelian extension L/F , a modulus m is admissible for L/F iff Um ⊂
NL/F (IL).

Proof: This is because NL/F ∩Kp = NLP/Kp
by(12.6.4.1). □

Cor.(12.6.4.14).The norm subgroups of CF are exactly those containing some Cm.

Proof: This is because NL/FAL is open in AK , by(12.4.5.24), so it must contain some Um. The
converse is also clear. □

Def.(12.6.4.15)[Conductors].For an Abelian extension of global fields L/F , by(12.6.4.14), there is
a minimal admissible modulus for L/F , called the conductor of L/F , denoted by fL/F .

Prop.(12.6.4.16)[Local and Global Conductors].For an Abelian extension L/F ,

fL/F =
∏

p∈ΣF

fLP/Fp
(12.6.2.16).

Proof: This follows from(12.4.5.24). □
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Cor.(12.6.4.17)[Conductor Detects Ramifications].Let L/F be an Abelian extension, then p ∈
ΣF is ramified in L/F iff p | fL/F , by(12.6.2.16).

In particular, Ram(Fm/F ) = S(m).

Prop.(12.6.4.18).For a field K, if S is a finite set of primes that contains all the infinite primes and
all the primes lying above the primes dividing n, and IK = ISK ·K∗, then CnK ·USK is a norm group. If
K contains the n-th roots of unity, then it corresponds to the Kummer extension T = K( n

√
KS/K).

Hilbert Class Fields

Prop.(12.6.4.19).The Hilbert class field F1(12.6.4.11) is the maximal unramified Abelian extension
of F , by(12.6.4.17).

Def.(12.6.4.20) [Hilbert Class Field Tower].Let F be a global field, then let F1 be the Hilbert
class field of F , and for any n ∈ Z+, let Fn+1 be the Hilbert class field of Fn, then such a series of
extensions is called the Hilbert class field tower of F .

Similarly for p ∈ P, we can consider the maximal Abelian p-extensions of F , which gives us a
series

F ⊂ F (p)
1 ⊂ F2(p) ⊂ . . . ⊂ F (p)

∞ .

Prop.(12.6.4.21).Let F be a global field, then each Fn is Galois over F , and F1 is the largest Abelian
subfield of F2/F .

Proof: For the last assertion, notice that that largest Abelian subfield of F2/F is unramified
Abelian over F , then use(12.6.4.19). □

Prop.(12.6.4.22)[Principal Ideal Theorem]. In the Hilbert class field over F , every ideal a of F
becomes a principal ideal.

Proof: As JF /PF ∼= CF /C
1
F , It suffices to show that the map i : CF → CF1 has image in C1

F1
. By

the commutative diagram(12.6.3.24)

CK Gal(F2/F )ab

0 C1
F1

CF1 Gal(F2/F1)ab 0

(−,F2/F )

i Ver

(−,F2/F1)

It suffices to show that Ver is trivial. Then this follows from(12.6.4.21) and(2.1.10.3). □

Thm.(12.6.4.23) [Brumer].Let F ∈ NField, p ∈ P, and t
(p)
F be the number of primes ℓ ∈ P s.t.

p|eL/ℓ for any prime L above ℓ, then

dimFp Cl(F )/(p) ≥ t(p)
F − 2(d− 1)

Proof: □

Prop.(12.6.4.24)[Golod-Šafarevič].Let F be a number field of degree d and p ∈ P, if [F (p)
∞ : F ] <∞,

then
dimFp Cl(F )/pCl(F ) ≤ 1 + 2

√
d+ 1.
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Proof: □

Cor.(12.6.4.25).By(12.6.4.23), if t(p)
F ≥ 2d+ 2

√
d+ 1, then [F (p)

∞ : F ] =∞.
For example, if we take F = Q(

√
d) where d is square-free with at least 8 different prime factors,

then [F (p)
∞ : F ] =∞.

Classical Formulation

Def.(12.6.4.26) [Artin Symbols].There is a homomorphism Jm → Gal(L/K) called the Artin
symbol

(L/K ). On primes p, it maps a prime p which is unramified by(12.6.4.12) to its local
Frobenius Frobp ∈ GP/p ⊂ GL/K . This is well-defined only up to conjugacy in Gal(L/K), and thus
well-defined when L/K is Abelian.

Lemma(12.6.4.27). If m is an admissible modulus for L/K, the restriction to finite part defines
isomorphism NL/F /Cm ∼= Hm

L/F /P
m.

Proof: Cf.[Neukirch CFT P176]. □

Prop.(12.6.4.28)[Classical Artin Reciprocity Law]. If L/K is an Abelian extension and m is an
admissible modulus, then there is a commutative diagram

1 NL/K CK GL/K 1

1 Hm
L/K/P

m Jm/Pm GL/K 1

(−,L/K)

(
L/K

−

)
Thus the second row is exact by(12.6.3.22), and Gal(L/K) ∼= Jm/Hm

L/K .

Proof: Cf.[Neukirch CFT, P178]. □

Prop.(12.6.4.29)[Decomposition Law].Let L/F is an Abelian extension of degree n with an ad-
missible modulus m(e.g. the conductor) and p ∤ m. then if f is the smallest number that pf ∈ Hm

L/F ,
then p factors in the extension L into r = n/f distinct primes of degree f .

Proof: The degree the extension of p is just the order of the Frobenius automorphism of GP/p,
which is just the order in GL/K ∼= Jm/Hm. The Frobenius of p correspond exactly to p by(12.6.2.4),
so the result follows. □

n-th Powers

Cf.[A-T67]Chap9,10.

Prop.(12.6.4.30)[Grünwald-Wang].Let F ∈ GField, n = 2t ·m ∈ Z+, and assume F ∈ FField or
F (ζ2t)/F is cyclic. Then a ∈ F is in Fn iff a ∈ Fnv for a.e. v ∈ ΣF .

Proof: Cf.[Chao Li’s notes] or [Mil20]P229. □

Thm.(12.6.4.31)[Grünwald-Wang].Let F ∈ GField, then for any S ⊂ ΣF finite, if for each v ∈ S,
χ′
v is a continuous character of F×

v of finite order nv, then there exists a Hecke character χ of F with
the χv = χ′

v. Moreover, if n = lcm(nv), t = ord2(n), and assume F ∈ FField or F (ζ2t)/F is cyclic,
then χ can be taken to be of order n.
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Proof: Cf.[Chao Li’s notes] or [Artin-Tate, Class Field Theory, Thm10.5].? □
Cor.(12.6.4.32)[Local-Global Compatibility for Cyclic Extensions].Let F ∈ GField and for
each v ∈ ΣF , a positive integer nv is given s.t.

• For a.e. v, nv = 1.
• For v ∈ ΣR

F , nv ∈ {1, 2}.
• For v ∈ ΣC

F , nv = 1.

Proof: The point is that we can choose χv s.t. the exceptions in(12.6.4.31) can be avoided, and
then get a Hecke character χ of F or order n which corresponds to a cyclic extension via cyclic class
formation. ?Cf.[Artin-Tate, Class Field Theory, Thm10.5, P105].? □

Higher Reciprocity Law

Cf.[Mil20]Chap8.

Prop.(12.6.4.33)[Quadratic Reciprocity].
Prop.(12.6.4.34)[Cubic Reciprocity].
Prop.(12.6.4.35)[Quadric Reciprocity].

5 L-Series and Dirichlet Density

Def.(12.6.5.1). In this subsection, for two functions f(s), g(s) : (1,∞) → C, write f 1∼ g iff f − g is
bounded on (1, 1 + ε) for some ε > 0.

Def.(12.6.5.2)[Densities].Let F be a number field and T ⊂ Σfin
K , then T is said to have

• polar density m/n ∈ Q if
ζF,T =

∏
v∈T

1
1− ||v||−s

satisfies ζnF,T extends to a nbhd of s = 1 with a pole of order n.
• Dirichlet density δ iff ∑

p∈T

1
(Np)s

1∼ δ

s− 1
.

• natural density δ if

lim
x→∞

#T ∩ {p ∈ Σ0
F |Np ≤ x}

#{p ∈ Σ0
F |Np ≤ x}

= δ.

Prop.(12.6.5.3). If the polar density exists, then so does the Dirichlet density, and they are equal. If
the natural density exists, then so does the Dirichlet density, and they are equal.

Proof: Cf.[Mil20]P194. □
Thm.(12.6.5.4)[Effective Chebotarev].Let L/F be a finite Galois extension of number fields, then
for any subset C ⊂ Gal(L/F ) that is stable under conjugation, for X > 0, let

πC(X) = {p ∈ ΣF |(p, L/F ) ∈ C, ||p|| ≤ C},

then
#πC(x) = #C

# Gal(L/F )
X

logX
+O( X

logX
).
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Proof: Cf.[Lagarias and Odlysko (Algebraic Number Fields, Ed. Frohlich, 1977)]. Cf.[Mil20]P259.
□

Cor.(12.6.5.5) [Chebotarev].Let L/F be a finite Galois extension of number fields, then for any
subset C ⊂ Gal(L/F ) that is stable under conjugation, let

T = {p ∈ Σ0
K |p unramified in L, (p, L/F ) ⊂ C},

then T has Dirichlet density δ(T ) = #C/# Gal(L/F ).

Proof: This follows from(12.6.5.4) and the prime number theorem?. □

Prop.(12.6.5.6)[Chebotarev for Function Fields].Cf.[Sta].

Splitting of Primes

Def.(12.6.5.7) [Splitting Sets].Let L/F be a finite separable extension of global fields, let
Spl(L/F ) ⊂ Σfin

F be the set of finite places of F that splits completely in L. By(4.2.7.28), If N/F is
the Galois closure of L/F , then Spl(N/F ) = Spl(L/F ).

Prop.(12.6.5.8) [Splitting in Cyclotomic Fields].Let L/Q be Galois, then L ∈ Q(ζm) for some
m ∈ Z+ by(12.6.4.10), and let Λ = NL/Q/Cm ⊂ (Z/(m))∗ corresponds to L, then p ∈ P splits in L
iff p(mod m) ∈ Λ.

Cor.(12.6.5.9) [Dirichlet’s Problem].By(12.6.5.4) and(12.6.5.8), for any m ∈ Z+ and [a] ∈
(Z/(m))×, there exists i.m. p ∈ P s.t. p ≡ a(mod m).

Prop.(12.6.5.10)[Frobenius]. If L/K is a finite Galois extension of global fields, then Spl(L/K) has
Dirichlet density 1/[L : K].

Proof: For v ∈ Σfin
F unramified, it splits in L iff (pv, L/F ) = id, by(12.6.3.23). So we can use

Chebotarev theorem(12.6.5.5) for C = {id}. □

Cor.(12.6.5.11). If L/F,L/F ′ satisfies Spl(L/F ) = Spl(L′/F ), then L = L′.

Proof: The hypothesis implies that Spl(L/F ) = Spl(LL′/F ) = Spl(L′/F ), which then implies
L = LL′ = L′, by(12.6.5.10). □

Cor.(12.6.5.12). If L/K is a finite separable extension of global fields s.t. Spl(L/K) has Dirichlet
density [L : K], then L/K is Galois, by(12.6.5.7).

Cor.(12.6.5.13). If L/K is a finite separable extension of global fields s.t. Spl(L/K) has Dirichlet
density 1, then L = K, by(12.6.5.7).

6 Explicit Construction of Class Fields
The explicit class field theory is the subject that tries to write the maximal Abelian extension of

a field K as splitting field of polynomials.

Prop.(12.6.6.1)[Known Cases].
• Qab = Q(ζ∞)(12.6.4.10).

• If F ∈ FField, the theory of Drinfeld modules gives most Abelian extensions of F?.
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• If K ∈ p-NField, Kab is given by adjoining all torsion points of Lubin-Tate formal groups over
K(12.6.2.29).

• If F ∈ NField is a CM field, then by Kronecker’s Jugendtraum(13.6.6.9), the Abelian extensions
of F are given by j-invariants and torsion points of elliptic curves over F with CM.

• If F ∈ NField is totally real, the conjecture of Stark gives all the Abelian extensions.?
7 Classical problems

p = x2 + ny2

References are [Primes of the form x2 + ny2, Cox].

Thm.(12.6.7.1).For n ∈ Z+, there is a monic irreducible polynomial fn(T ) ∈ Z[T ] of degree h(−4n)
s.t.:

For p > 2 ∈ P dividing neither n nor the discriminant of fn(T ),

p ∈ {x2 + ny2|x, y ∈ Z} ⇐⇒
(−n
p

)
= 1 ∨ {x ∈ Z|fn(x) = 0 ∈ Fp} ̸= ∅.

Moreover, fn(T ) is the minimal polynomial of a real algebraic integer α s.t. L = K(α) is ring
class field of the order Z[

√
−n] ∈ K = Q(

√
−n), and any such f is of this form.

Proof: Cf.[Cox, p = x2 + ny2]P163.? □

8 Local Field cases

Poitou-Tate Duality

Artin-Verdier Duality

9 Global Field cases

Poitou-Tate Duality

Artin-Verdier Duality

10 Inverse Galois Problem

p-adic Case

Prop.(12.6.10.1)[Abhyankar’s conjecture, Raynaud].A finite group Γ is the Galois group of an
unramified Galois covering of A1

Fp
iff it is generated by its p-Sylow subgroups.

Proof: □

Solvable Groups

Thm.(12.6.10.2)[Šafarevič].For F ∈ GField and G ∈ Abfin is solvable, then there exists a Galois
extension L/F s.t. Gal(L/F ) ∼= G.

Proof: Cf.[Cohomology of Number Fields, Neukirch]. □
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Arithmetic Statistics

Thm.(12.6.10.3).For ξ, η ∈ R, let N3(ξ, η) be the isomorphism classes of cubic fields K s.t. dK ∈
(ξ, η). Then

lim
X→∞

N3(0, X)
X

= 1
12ζ(3)

, lim
X→∞

N3(−X, 0)
X

= 1
4ζ(3)

.

Proof: Cf.[On the density of discriminants of cubic fields, Davenport-Heilbronn]. □

Thm.(12.6.10.4)[Bhargava].For ξ, η ∈ R, let Nn(ξ, η) be the isomorphism classes of cubic fields K
s.t. dK ∈ (ξ, η). Then for n = 4 or 5,

lim
X→∞

Nn(−X,X)
X

exists.

Proof: Cf.[The density of discriminants of quartic rings and fields], [The density of discriminants
of quintic rings and fields]. □
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12.7 Transcendental Number Theory

1 Transcendental Numbers

Prop.(12.7.1.1)[Lindemann1882]. If α ∈ Q, then eα /∈ Q.

Proof: □

Cor.(12.7.1.2). π and e are not in Q.

Proof: e2π i = 1, and e1 = e. □

Prop.(12.7.1.3). If α, β ∈ Q with α ̸= 0, 1 and β /∈ Q, then αβ /∈ Q.

Proof: Cf.[Sil16]P286. □

Cor.(12.7.1.4). (
√

2)
√

2 /∈ Q.

2 Periods
Main references are [Periods, Zagier].

Def.(12.7.2.1)[Algebraic Functions].Let F be a field contained in C, then an algebraic function
of degree d ∈ Z+ in n variable over F is a function f(X) ∈ C(Rn) that is continuous in its domain
and satisfies an equation P (X, f(X)) = 0 where P ∈ F [X,T ] that is of degree d in T .

Def.(12.7.2.2)[Periods].A period number is a complex number that is an integral combinations
of real numbers of the form

∫
U f(x)dx where f is an algebraic function over Q(12.7.2.1) and U

is a precompact connected open domain of Rn defined by polynomial inequalities with rational
coefficients, for some n ∈ N . The set of periods is denoted by P. The extended Period ring is
defined to be P̂ = P[ 1

2πi ].
Clearly Q ⊂ P ⊂ C, and they form an algebra. Also, #P = ℵ1.

Prop.(12.7.2.3). In defining periods, we can even consider domains defined by inequalities by algebraic
functions over Q(12.7.2.1) defined on a larger open subset.

Proof: If U satisfies f < a and f satisfies a polynomial function P (X, f(X)) = 0, then U satisfies
P (X, a) > 0 or P (X, a) < 0. We can assume the first one holds, and we can isolate the part
P (X, a) > 0, f(X) < a and the part P (X, a) > 0, f(X) > a by segments, so we are reduced to the
polynomial case. □

Prop.(12.7.2.4)[Algebraic Varieties]. If X is a smooth variety of dimension d over Q and D ⊂ X
a divisor with normal crossing, ω ∈ Ωd(X) vanishing on D, and γ ∈ Hd(X(C), D(C),Q) is a singular
n-chain with boundary in Y (C), then the integral

∫
C ω ∈ P.

In fact, any integration on a variety over Q can be reduced to this case, by resolution of singularity
and restriction of divisors, and any period number comes from these.?
Proof: Roughly because we can represent γ by a semi-algebraic chain.? □

Example(12.7.2.5).
•
√

2 =
∫

2x2<1 dx ∈ P.
• π =

∫
x2+y2<1 dxdy ∈ P.
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• log 2 =
∫ 2

1
dx
x ∈ P.

Prop.(12.7.2.6).For n ∈ Z+, n ≥ 2, ζ(n) ∈ P.
Conj.(12.7.2.7) [Non-Examples].There are no natural examples of numbers proven to be non-
period. e, 1/π and Euler-Mascheroni constant γ are conjectured to be non-periods. Notice e is
known to be transcendental but γ is not known to be rational or not yet!

Remark(12.7.2.8)[How to Distinguish Different Periods].There may be numbers that can be
written in different ways, such as√

11 + 2
√

29 +
√

16− 2
√

29 + 2
√

55− 10
√

29 =
√

5 +
√

22 + 2
√

5.

But as they are both algebraic numbers we can check this by brutal force:
1. Find polynomials satisfied by them and use Euclidean division to find their common divisor,

and use inequalities to bound its roots.
2. Calculate these two numbers to sufficiently high precision and use the fact two algebraic num-

bers of bounded degree cannot be too close to each other by Diophantine geometry.
But how to do this for periods?

Proof: They are both equal to the expression√
11 + 2

√
29 +

√
11− 2

√
29 +

√
5

by using the equality
√
a+
√
b =

√
a+ b+

√
ab. □

Conj.(12.7.2.9) [Periods Conjecture].Any two integral representations of a period can be trans-
formed to each other by means of , cut-and-paste, change of variables and Stoke’s formula.

Prop.(12.7.2.10)[Calabi].We give one indication of this conjecture by proving ζ(2) = π2/6:

(1− 1
4

)ζ(2) = 1−2 + 3−2 + 5−2 + · · · =
∫

(0,1)2

1
(1− x2y2)

dxdy.

But the change of variables
(x, y) = ( sin u

cos v
,

sin v
cosu

)

has Jacobian (1− x2y2) and maps the triangle T = {u, v > 0, u+ v < π/2} bijectively to (0, 1)2, so∫
(0,1)2

1
(1− x2y2)

dxdy =
∫
T
dudv = Vol(T ) = π2/8

Def.(12.7.2.11) [Exponential Periods].An exponential period number is a complex number
that is an integral combinations of real numbers of the form

∫
U f(x) exp(g(x))dx where f, g are

algebraic functions over Q(12.7.2.1) and U is a precompact connected open domain of Rn defined by
polynomial inequalities with rational coefficients, for some n ∈ N . The set of periods is denoted by
Pexp.

3 Periods and Differential Equations
4 Periods and L-Functions
5 Periods and Motives
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13 | Arithmetic Geometry

13.1 Pseudo-Algebraically Closed Fields
References are [Field Arithmetic].

1 Pseudo-Algebraically Closed Fields
Def.(13.1.1.1). k ∈ Field is called a pseudo-algebraically closed field or PAC field if every
variety over k has a k-point.

Example(13.1.1.2)[PAC Fields].
• Separably closed fields are PAC.
• Infinite algebraic extensions of finite fields are PAC.
• Ultraproducts of distinct finite fields are PAC.

Proof: □

2 Hilbertian Fields
Cf.[Field Arithmetics] or [Mordell-Weil Theorem notes, Serre, 1997].

Hilbert Subsets

Def.(13.1.2.1)[Hilbert Subsets].For k ∈ Field and two set of variables T1, . . . , Tr an X1, . . . , Xn,
let f1(T ,X), . . . fm(T ,X) ∈ k[X,X] that is irreducible in k(T )[X], and let g ∈ j[T ]. Then a Hilbert
subset of kr is a subset of the form

{(a1, . . . , ar) ∈ kr|g(a) ̸= 0, f(a,X) are irreducible in k[X]}.

A separable Hilbert subset is a Hilbert set of this form s.t. n = 1 and each fi is separable in
X.

Def.(13.1.2.2)[Hilbertian Fields]. k ∈ Field is called a Hilbertian field if each separable Hilbert
subset of k is non-empty. Thus a Hilbert field must be infinite.

Prop.(13.1.2.3) [Separable Extensions]. If L/K is a finite separable extension, then any Hilbert
subset of Lr contains a Hilbert subset of Kr. In particular, if K is Hilbertian, then so is L.

Proof: Cf.[Field Arithmetic, P223]. □

Remark(13.1.2.4).The converse is false, Cf.[Field Arithmetic, 13.9.5].
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Examples of Hilbertian Fields

Example(13.1.2.5)[Hilbertian Fields].
• Global fields are Hilbertian.
• If k ∈ Field and K is a f.g. transcendental extension of k, then K is Hilbertian.

Proof: Cf.[Field Arithmetic, Chap13]. □

3 Haar Measures
4 Problems
5 Frobenius Fields
6 Undecidability
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13.2 Diophantine Geometry
References are [Galois Cohomology, Serre]Chap2.4.5, [B-G06], [Fundamentals of Diophantine Ge-

ometry, Lang], [Weil50].
Arithmetic of varieties(i.e. varieties over absolutely f.g. fields) that are not necessarily Abelian

varieties are studied in this section. The Abelian variety case is studied in Arithmetic of Abelian
Varieties.

1 Geometry of Numbers

Minkowski’s Second Theorem

Cf.[B-G06].

Prop.(13.2.1.1)[Minkowski’s Second Theorem].Let F be a global number field of degree d, V a
f.d. F -vector space of dimension n, and Λ a lattice in V . For any v|∞, let Sv be a non-empty open
convex symmetric bounded subset Sv of Vv. For λ > 0 ∈ R, denote λS =

∏
v|∞ λSv ×

∏
v∤∞ λΛv. For

n ≥ 1, denote the n-th succesive minimum of S to be

λn = inf{t > 0|tS contains n linearly independent vectors of Λ over K}.

Then
(
n∏
i=1

λi) Vol(S)1/d ≤ 2N ,

where the volume is calculated w.r.t. the Adele measure given by(12.4.6.5).
Moreover, if Sv are totally symmetric, then

2dnπsn

(n!)r((2n)!)s
N(dK/Q)n/2 ≤ (

∏
i

λi)dVol(S).

Proof: Cf.[B-G06]P611. □

2 Conjectures

Weak Approximation

Prop.(13.2.2.1). If X is a smooth complete intersection of two quadrics in PNF for N ≥ 5, and
X(F ) ̸= ∅, then X satisfies weak approximation.

Proof: Cf.[Colliot-Thelene-Skorobogatov1987, R-equivalence on cubic bundles of degree 4]. □

Mazur’s Conjecture

Conj.(13.2.2.2)[Mazur].Let X/Q be a smooth algebraic scheme over a field, then the topological
closure of X(Q) in X(R) consist of a finite union of connected components.

Proof: □

Remark(13.2.2.3).As the kernel of the Brauer-pairing(9.2.6.1) vanishes on all the infinite places,
when the Brauer-Manin obstruction is sufficient, Mazur’s conjecture holds.
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Artin’s Conjecture

Def.(13.2.2.4)[Cd-Fields].A field K is called Ck or for any homogenous polynomial F (X1, . . . , Xn)
of degree d with coefficient in K that dk < n has a non-zero solution in Kn.

C0 fields are just alg.closed fields, C1 fields are also called quasi-algebraically closed.

Prop.(13.2.2.5).Algebraic extensions of a quasi-alg.closed field is quasi-alg.closed.

Proof: For a homogenous polynomial F (X1, . . . , Xn), its coefficient lies in a finite extension of K
contained in L, so we may assume L/K is finite. Then choose a basis {e1, . . . , em} of L over K, then
consider the function

f(x11, . . . , x1m, . . . , xn1, . . . , xnm) = NmL/K(F (x11e1 + . . .+ x1mem, . . . , xn1e1 + . . .+ xnmem)),

which is a homogenous polynomial of degree nm with coefficient in K, because it has values all in
K. So it has a nonzero solution in Knm by(5.10.2.3), Krull’s height theorem and k is alg.closed. □

Prop.(13.2.2.6)[Chevalley-Warning].Any finite field Fq is quasi-algebraically closed. In fact, for
any system of homogenous polynomials fi of n variables, if ∑r

i=1 deg fi < d, then the number of
solutions to this equation on Fq is divisible by p, where q is a p-power.

Proof: The number of solutions to this system is equivalent to∑
x∈Fnq

∏
(1− f q−1

i (x))

modulo p.
But notice that if i < q−1, then∑x∈Fq

xi = 0 in Fq by(24.1.3.5), but as the degree of the highest
term of ∑x∈Fnq

∏
(1 − f q−1

i (x)) modulo p is smaller than n(q − 1), some xi has power smaller than
q − 1, thus when summed over Fq, it vanishes. □

Remark(13.2.2.7).This may follow from the fact any smooth projective Fano variety over Fq has a
rational point(13.2.6.3).

Prop.(13.2.2.8) [Tsen].Algebraic function fields of dimension 1 over an alg.closed field K is quasi-
alg.closed.

Proof: By(13.2.2.5), it suffice to consider the caseK = k(t) purely transcendental. for a polynomial
F with coefficient in k(t), we can assume it has coefficient in k[t], then let δ be their maximal degree.
If substituted with Xi =

∑N
i=0 aijt

j , the function becomes a system of δ + dN + 1 homogenous
equation with n(N + 1) unknowns aij , since d < n, δ+ dN + 1 < n(N + 1) for N large. In this case,
□

Prop.(13.2.2.9). If K is quasi-alg.closed, then H2(G(Ks/K),K∗
s ) = 0.

Proof: Cf.[Etale Cohomology Fulei 5.7.15]. □

Cor.(13.2.2.10).By this and(13.2.2.5), the condition of(10.1.2.17) are satisfied. So if K is quasi-
alg.closed, then cd(G(Ks/K)) ≤ 1 and H i(G(Ks/K),K∗

s ) = 0 for i ≥ 1.

Prop.(13.2.2.11) [Ax-Kochen].For any d, there is a Nd that if p > Nd, then any homogenous
polynomial f(X1, . . . , Xn) of degree d with coefficient in Qp that dk < n has a non-zero solution in
Qn
p .

Proof: The proof uses Model theory.? □
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3 Heights
Def.(13.2.3.1)[Equivalent Height function].Let X be a projective scheme, two height functions
X(K)→ R are called equivalent iff they differ by a bounded function.

Prop.(13.2.3.2).There is a way of constructing the Weil heights as a special case of the global heights,
which are sum of local heights, Cf.[Diophantine Geometry, Chap2].

Heights on Projective Spaces

Def.(13.2.3.3)[Canonical Heights on Projective Spaces].For K ∈ LField with base field K0,
let x = (x0, . . . , xn) ∈ Kn+1 \ {0}, then for a normalized place u on K and a normalized place v of
K that u|v, suppose log(0) = −∞ and define

hu((x0, . . . , xn)) = max
i

(log |xi|u), Hu((x0, . . . , xn)) = exp(hu((x0, . . . , xn)))

hv((x0, . . . , xn)) = [Kv : (K0)v0 ]hu((x0, . . . , xn)), Hv((x0, . . . , xn)) = exp(hv((x0, . . . , xn))).

And if F ∈ GField over base field F0, for x ∈ Pn(F ), define

h(x) = 1
[F : F0]

∑
v∈ΣF

hv((x0, . . . , xn)), H(x) = exp(h(x))

• hu((x0, . . . , xn)) is invariant under finite extensions of fields K ′/K, thus this local height is
defined on all Kn+1.

• h(x) is well-defined.
• h(x) ≥ 0.
• h(x) is invariant under finite extensions of fields F ′/F , thus the height is defined on all Pn(F ).
• For σ ∈ Gal(F/F ), h(σ(x)) = h(x).

These are called canonical heights and multiplicative canonical heights on Pn.

Proof: 1 is a consequence of the product formula(12.4.5.16). 2 follows from 1 because we can divide
a constant to make a coordinate unit in K∗, thus clearly h(x) ≥ 0. 3 follows from the fundamental
identity. □

Prop.(13.2.3.4). If P1, . . . , Pr ∈ K
n, then

hu(P1 + . . .+ Pr) ≤ hu(P1) + . . .+ hu(Pr) + εu log |r|u,

where εu = 0 if u is non-Archimedean and 1 otherwise.

Def.(13.2.3.5)[Height on Affine Spaces].For F ∈ NField and x = (x1, . . . , xn) ∈ Fn, the affine
height is defined to be:

h+(x) = h([1, x] ∈ Pn(F )).

and similarly we define H+(x).
In particular, if α is an algebraic number, then the height of α is

h+(α) =
∑
v∈ΣF

max(0, log |α|v).
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Lemma(13.2.3.6).For α ∈ Q and λ ∈ Q, we have h(αλ) = |λ|h(α).

Proof: For λ > 0, this is easy. So it suffices to consider λ = −1. Notice

log |α|v = max{0, log |α|v} −max{0, log |1/α|v},

summing over all places v and use the product formula, we get the desired results. □

Lemma(13.2.3.7) [Northcott].Let F ∈ GField and C > 0, d > 0, then {x ∈ Pn(F )|h(x) ≤
C, deg(x) ≤ d} is finite.

Proof: We first reduce to the case k(x) = Q or Fp(t): for a point x with [k(x) : Q] ≤ d, consider
the point (X0, . . . , Xm) in the projective space Pm of forms of degree deg(x) in n + 1 variables
corresponding to Nm(

∑
xiTi). Notice the inverse image of any closed point in Pm is a finite set in

Pn(K), and the height of h((X0, . . . , Xm)) ≤ d!(n+ 1)h(x), so it suffices to prove for Pm(Q). In this
case, we normalize a point to a unique point with integral coordinates with no common divisors, then
maxi log |xi|p = 0 for any p, thus h(x) = h∞(x), and clearly only f.m. points has bounded heights.
□

Prop.(13.2.3.8)[Change of Coordinates].Let h1, h2 be heights of P(K) defined w.r.t. two coor-
dinates systems, then h1 ∼ h2. Thus we can consider heights in any particular coordinates that is
convenient.

Proof: The proof is straightforward. □

Heights of Polynomials

Def.(13.2.3.9)[Heights and Mahler Heights].The height of a polynomial f(T ) = x0 +x1T + . . .+
xdT

d is defined to be h+(f) = h+((x0, . . . , xd)), and similarly for H+(f).
The Mahler height of f is defined to be?

Lemma(13.2.3.10)[Gelfond].

Prop.(13.2.3.11).Let f1, . . . , fm ∈ Q[X1, . . . , Xn] of degree d, then

−d log 2 +
m∑
j=1

h(fj) ≤ h(f) ≤ d log 2 +
m∑
j=1

h(fj).

Proof: Cf.[Bombieri, P28].? □

Cor.(13.2.3.12).Let d ∈ Z+, then there exists constants C1, C2 ∈ R+ depending on d s.t. for any
α ∈ Q with deg(α) = d, if fα ∈ Z[T ] be a minimal polynomial of α with coprime coefficients, then

dh+(α)− C1 ≤ h(fα) ≤ dh+(α) + C2.

Arakelov Heights

Def.(13.2.3.13)[Arakelov Heights].For a local fieldK with base fieldK0, let x = (x0, . . . , xn) ∈ Kn,
then for a normalized place u on K and a normalized place v of K that u|v, define

hAru ((x0, . . . , xn)) =

log maxi(|xi|u) ,K ∈ p-Field

log
√∑n

j=0 |xj |2u ,K = R orC
, HAr

u ((x0, . . . , xn)) = exp(hAru ((x0, . . . , xn)))
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hArv ((x0, . . . , xn)) = [Kv : (K0)v0 ]hu((x0, . . . , xn)), HAr
v ((x0, . . . , xn)) = exp(hArv ((x0, . . . , xn))).

And if F is a global field over base field F0, for x ∈ Pn(F ), define

hAr(x) = 1
[F : F0]

∑
v∈ΣF

hv(x), HAr(x) = exp(hAr(x)).

Then hAr(x),HAr(x) are well-defined, positive, and invariant under finite extensions of fields
for the same reason as(13.2.3.3). Then they extends to the algebraic closure, called the Arakelov
heights and multiplicative Arakelov heights on Pn.

Cor.(13.2.3.14).The Arakelov height is the height associated to the locally bounded metrized line
bundle on OPn(1) with Fubini-Study metrics in the Archimedean places and standard metric in the
non-Archimedean places, so it is equivalent to the canonical height.

Def.(13.2.3.15)[Arakelov Heights on Matrices].The Arakelov heights induces a height function
on the Grassmannians by the canonical embedding, and for any matrix A ∈ Mn×m(F ) of rank m,
let the Arakelov heights of A be defined as the height of the point in the Grassmannian Grm(F )
associated to the space spanned by the columns of A. And if A ∈ Mm×n(F ) of rank m, then its
Arakelov height is defined to be HAr(A) = HAr(At).

Equivalently, it is the height of the point in P(nm)−1(F ) represented by the m ×m-minors of A.
And we can also define the local heights of A in this form.

Prop.(13.2.3.16).Let K = R or C and A ∈ Mn×m(K) has rank m, then Hu(A) = det(A∗A)1/2, by
Binet’s formula(2.3.10.11).

Prop.(13.2.3.17).Let K be a local field and A = [B,C] ∈Mn×m(K) has rank m, then

HAr
u (A) ≤ HAr

u (B)HAr
u (C).

Prop.(13.2.3.18).Let F ∈ GField and W be a subspace of Fn and W⊥ ∈ (Fn)∗ ∼= Fn be the
annihilator of W , then hAr([W ]) = hAr([W⊥]).

Proof: Cf.[B-G06]P68. □

Prop.(13.2.3.19).Let K be a local field and V,W be subspaces of Kn, then

hAru ([V +W ]) + hAru ([V ∩W ]) ≤ hAru ([V ]) + hAru ([W ]).

Proof: Cf.[B-G06]P69. □

Prop.(13.2.3.20)[Metric on Projective Space].Let K be a local field, for a normalized place u
on K and a normalized place v of K that u|v, for x, y ∈ (K)n\{0}, define

δu(x, y) = HAr
u (x ∧ y)

HAr
u (x)HAr

u (y)
, δv(x, y) = δu(x, y)[Kv :(K0)v0 ],

then δ(x, y) ∈ [0, 1] by(13.2.3.19), and defines a metric on Pn(K), called the projective metric on
Pn. In the complex case, it is just the Fubini-Study metric.

And if F is a global field over base field F0, for x, y ∈ Pn(F ), define

δ(x) =
∏
v

δv(x, y)
1

[F :F0] .
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Proof: Cf.[B-G06]P70. □

Prop.(13.2.3.21).Let F be a global field and x, y ∈ P1(F ), then
• If O = [0, 1], then HAr(x) = 1

δ(x,O) .

• If x = [1, α], y = [1, β], then δ(x, y) = 1
HAr(α)HAr(β) .

Heights on Abelian Varieties(Weil)

Prop.(13.2.3.22).Let X be a complete variety over K and φ : X → Pk, ψ : X → Pl are two K-
morphisms. If φ∗(OPk(1)) ∼= ψ∗(OPl(1)), then the induced height function hφ − hψ is bounded on
X(K).

Proof: Let φ∗(OPk(1)) ∼= ψ∗(OPl(1)) ∼= L, then L is very ample. Consider a basis {s0, . . . , sn} of
Γ(X,L), then it induces a closed embedding χ : X → Pn : x 7→ [s0(x), . . . , sn(x)] and χ∗(OPn(1)) ∼=
L. Then it suffices by symmetry to prove hφ ∼ hχ.

We may assume φ(X) is not contained in any proper linear subspace of X, so we can choose a
basis T0, . . . , Tk of φ∗(Γ(Pk,OPk(1))), and let s0, . . . , sk = T0, . . . , Tk. Let x ∈ X(K), let (x0, . . . , xn)
be the coordinate of χ(x) and (x0, . . . , xk) the coordinates of φ(x). Then by the formula(13.2.3.3)
clearly hφ ≤ hχ.

For the converse, let I be the homogenous ideal corresponding to X ⊂ Pn, then X has coordinate
ring R = K[T0, . . . , Tn]/I. The T0, . . . , Tk generates a radical ideal equal to (T0, . . . , Tn), because
they have no common zero on X. Now there is an integer q and homogenous ideals Fij that

T qk+i −
k∑
j=0

Fij(T0, . . . , Tn)Tj ∈ I

so
q log |xk+i|v ≤ (q − 1) max

j≤n
log |xj |v + max

j≤k
log |xj |v + Cv

where Cv = 0 unless v is Archimedean. Hence

max
j≤n

log |xj |v ≤ max
j≤k

log |xj |v + Cv ⇒ hχ ≤ hφ + C.

□

Prop.(13.2.3.23)[Weil Heights].Let X be a projective variety over a number field K, then for each
element L ∈ Pic(X), we can assign a unique Weil height hL, determined up to equivalence, that

• hL1⊗L2 ∼ hL1 + hL2 .
• If X = Pn, then hO(1) is the height defined in(13.2.3.3).
• For any K-morphism φ : X → Y and L ∈ Pic(Y ), hφ∗(L) ∼ hL ◦ φ.

Proof: The uniqueness follows from the fact that Pic(X) is generated by very ample line bundles
because X is projective. For the existence, we may take item3 as definition, extend it to all Pic(X),
and it is essential to verify item1.

Let L1 = φ∗(O(1)), L2 = ψ∗(O(1)), where φ : X → Pk, ψ : X → Pl. Denote σ : Pk × Pl →
Pkl+k+l the Segre embedding, then L1⊗L2 ∼= χ∗(OPkl+k+l(1)) where χ : X (φ,ψ)−−−→ Pk×Pl

σ−→ Pkl+k+l.
And we check hχ ∼ hφ + hψ. □
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Thm.(13.2.3.24) [Northcott].Let X be a projective variety over a global field F and let hc be a
height function associated to an ample class L ∈ Pic(X), then the set

{P ∈ X(K)|hL(P ) ≤ C, [K(P ) : K] ≤ d}

is finite for any constant C, d.

Proof: There is a m > 0 that mc is very ample. Because mhL is the height function associated
to mL, we can assume that L is very ample, thus reducing to X = Pn and L = O(1) by(13.2.3.23).
This follows from(13.2.3.7). □

Prop.(13.2.3.25).Let X be a projective smooth variety over F and c ∈ Pic(X) an ample line bundle,
c′ ∈ Pic0(X), then

hc′ = O(|hc|1/2 + 1).

Proof: By base change of fields, we may assume X has a rational point P0. Consider the double
Picard map φ : X → ̂Pic0(X) = Â. Viewing c′ as a rational point of A, consider c′′ = (pA)c′ ∈ Pic(Â),
then φ∗(c′′) = (id×φ)∗(pA)|c′ = (pX)c′ = c′. Thus hc′ ∼ hc′′ .

Let ĉ be an even ample line bundle on Â(13.5.1.27), then for for some n large, nc − φ∗(ĉ) is
base-point-free, thus by(13.2.3.23), hĉ ◦φ = O(|hc|+ 1). Thus it suffices to prove for c′, c changed to
c′′, ĉ, which is true by(13.5.12.11). □

Prop.(13.2.3.26)[Weil Heights in Intersection Theory].Cf.[B-G06]P44?
Bounded Sets

Def.(13.2.3.27)[Bounded Sets].Let K be a field and | · | a valuation on its alg.closure K, X be a
variety over K. Then:

• If X is an affine variety, then a subset E ⊂ X(K) is called bounded if for any f ∈ K[X], |f |
is bounded on E.

• If X is arbitrary, then a subset E ⊂ X(K) is called bounded if there is a finite open affine
covering Ui of X and sets Ei ⊂ Ui(K) that Ei is bounded in Ui and E = ∪Ei.

Prop.(13.2.3.28)[Properties of Bounded Sets].
• For a bounded set E in X and any finite open affine covering Ui of X, there is a division of E:

E = ∪Ei, Ei ⊂ Ui(K)

and Ei being bounded in Ui.
• If E is bounded in X and Y is a closed subscheme of X, then E ∩ Y (K) is bounded in Y .
• The image of a bounded set under a morphism is also bounded.
• Pn(K) is bounded in Pn.
• The inverse image of bounded set under a proper morphism is bounded. In particular, if X is

a complete variety over a field K, then X(K) is bounded in X.

Proof: 1: Because X is separated, it suffices to prove for X affine. And we can also take a
refinement of the covering, thus assuming Ui = Xhi . Suppose ∑ gihi = 1, and let Ei = {P ∈
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E||hi(P )| = maxk |hk(P )|}, then Ei ⊂ Ui(K). To show Ei is bounded in Ui, it suffices to show |1/hi|
is bounded in Ei. But this is clear, because |gi| is bounded on E.

2: Use local coordinates.
4: Use the affine open covering Xi = {xi ̸= 0}, and let Ei = {|xi| = maxj=0,...,n |xj |}, then clearly

Ei is bounded in Xi.
5: Cf.[Diophantine Geometry, P55], may use Chow’s lemma?. □

Prop.(13.2.3.29) [M-Bounded].We can define the notion of M -boundedness similar to that
of(13.2.3.27), whereM is a set of places on K that for any α ̸= 0 ∈ K, only f.m. ofM have nontrivial
valuation. Then (Eu) is said to be M-bounded in an affine variety X if for any f ∈ K[X],

Cv(f) = sup
u∈M,u|v

sup
P∈Eu

|f(P )|u

is finite for any v ∈MK and Cv(f) > 1 for only f.m. v.
Then similar properties as in(13.2.3.28) hold for M -bounded sets.

Def.(13.2.3.30).A real function f on X(K) is called locally bounded if f(E) is bounded for every
bounded set E in X.

Distance Functions

Def.(13.2.3.31) [Distance Function on Curves].Let C be a curve over a valued field K, let for
P,Q ∈ C(K), the v-adic distance function dv(P ;Q) be defined to be dv(P ;Q) = min(|tQ(P )|1/ev , 1),
where tQ is a function with only one zero of order e at Q.

To understand this definition, it is just same as the pullback of the local height via tQ. It is a
special case of local heights.

Prop.(13.2.3.32).Let C be a curve over a valued field K and F ∈ K(C), then

lim−→
P∈C(K),dv(P,Q)→0

log |F (P )|v
log dv(P,Q)

= ordQ(F ).

Proof: In taking limit, scaling tQ by a constant doesn’t matter, so If we change hO(−Q) to h
1/k
O(−kQ),

the limit won’t change, so we will do so and assume k is large enough s.t. there is a function that
has only zeros at P of order k, so f∗O(1) = O(−kP ), and thus we may change O(kP ) to f∗O(1) and
then we see fordQ(F )/F k is regular and non-vanishing at Q, thus we can easily get the desired result.
□

Prop.(13.2.3.33). If φ : C1 → C2 is a non-constant map of curves over a valued field K, then for
Q ∈ C1,

lim−→
P∈C(K),dv(P,Q)→0

log dv(φ(P ), φ(Q))
log dv(P,Q)

= eQ(φ).

Proof: Similar as that of(13.2.3.32). In fact(13.2.3.32) can be derived from this one. □
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Metricized Line Bundles

Chevalley-Weil Theorem

Prop.(13.2.3.34)[Local Chevalley-Weil].LetK be a non-Archimedean valued field. Let φ : Y → X
be a finite unramified morphism of K-varieties and E a bounded set in X(K). Then there is an
α ≠ 0 ∈ OK that α ∈ δ̂P/Q whenever P ∈ Y (K) and Q = φ(P ) ∈ E.

Proof: An unramified map is locally of the form a closed embedding of a standard étale morphism?,
thus there are f.m. Ui, Vi covering X,Y respectively that Vi → Ui is closed embedding Vi → Wi

of a standard étale morphism Wi → Ui. Because φ is finite hence proper, φ−1(E) is bounded
by(13.2.3.28), thus there is a decomposition of φ−1(E) into bounded sets E′

i ⊂ Vi. Then it suffices
to prove for standard étale morphisms, because we can then multiply them.

The image of Ei in Wi is also bounded. Let Wi → Ui : Spec(A[t]/f)→ SpecA, where

f = td + a1t
d−1 + . . .+ ad, ai ∈ A.

By boundedness, there is an a ̸= 0 ∈ R that

max
i=1,...,d

sup
P∈E′

|ai(φ(P ))| ≤ |a|−1.

Then ξ = atP is a root of the polynomial

gQ(t) = td + aa1(Q)td−1 + . . .+ adad(Q),

and it is easily verified that |ξ| ≤ 1 thus ξ ∈ RP . Now let gξ be the minimal polynomial of ξ over
K̂(Q), then gQ = gξh, h ∈ K̂(Q)[t]. By Gauss lemma in fact gξ, h ∈ R̂Q[t].

Now the elements 1, ξ, . . . , ξd̂−1 form a basis of K̂(P )/K̂(Q), so the discriminantDgξ ∈ δK̂(P )/K̂(Q).

By?? and(4.2.7.37), |Dgξ | = |NK̂(P )/K̂(Q)(g
′
ξ(ξ))| = |g′

ξ(ξ)|d̂. But

g′
ξ(ξ)h(ξ) = g′

Q(ξ) = ad−1f ′
Q(ξ) = ad−1f ′

Q(tP ) = ad−1f ′(P ).

Because f ′ is unit, we have |D−1
gξ
| is bounded on E′. So there is an α ̸= 0 ∈ R that |Dgξ | ≥ |α|,

independent of P . Then we are done, as Dgξ ∈ δK̂P /K̂Q . □

Lemma(13.2.3.35)[Global Chevalley-Weil].Let Σ be a set of discrete valuations of a field F that
any element α has only f.m. nonzero valuations, φ : Y → X be an unramified finite F -morphism
of complete K-varieties, and (Eu)u∈Σ is an Σ-bounded family in X(13.2.3.29), then for every v ∈ Σ
there is a nonzero αv ∈ OF,v that αv ∈ δ̂uP/Q whenever u|v and P ∈ Y (K) with φ(P ) = Q ∈ Eu.
Moreover, αv = 1 for a.e. v ∈ Σ.

Proof: The proof is exactly the same as that of(13.2.3.34), noticing that a, α depend only on v but
not u|v, and also a = α = 1 for a.e. v.(13.2.3.29). □

Lemma(13.2.3.36) [Global Chevalley-Weil Theorem for Discrete Valuations].Let ΣK be a
set of discrete valuations of a field K that any element α ∈ K∗ has only f.m. nonzero valuations,
φ : Y → X be an unramified finite K-morphism of complete K-varieties, then there are a finite set
S ⊂ MK and for any v ∈ S a nonzero element αv ∈ mv s.t. for any P ∈ Y (F ), Q = φ(P ) and any
place w0|v of K(Q), K(P )/K(Q) is unramified outside S and if v ∈ S, αv ∈ δw0

P/Q.
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Proof: We may assume φ is surjective because it is closed(finite is proper). Notice X(K) is M -
bounded in X(13.2.3.28), where M is the set of valuations of K extending that of MK . Then we can
use global Chevalley-Weil theorem(13.2.3.35) to find elements αv for v ∈MK . Now notice

δw0
P/Q =

∏
w|w0

(δ̂wP/Q ∩ OQ,v)

by(4.2.7.40), and the number of w ∈ MK(P ), w|w0 is bounded by [K(P ) : K(Q)], which is further
bounded by deg(f) as in(13.2.3.34). Hence we can take αv = α

deg(f)
v to finish the proof. □

Prop.(13.2.3.37).Let F be a global field or the function field of a non-singular curve over a field k,
and let φ : Y → X be a finite unramified morphism of F -varieties. If X is complete, then there is
an α ̸= 0 ∈ OF that for any P ∈ X(F ) that Q = φ(P ), the discriminant δP/Q contains α.

Proof: By(5.11.1.14), we can use the above lemma(13.2.3.36) to Σ = ΣF . Notice because δP/Q =∏
w0∈Σ0

k(Q)
(δw0
P/Q ∩ OX,Q), we can assume αv ∈ OX,Q, then take α =

∏
v∈S αv. □

Thm.(13.2.3.38) [Chevalley-Weil].Let F be a global field or the function field of a non-singular
curve over a field k, φ : Y → X be a finite unramified morphisms of F -varieties. If X is complete,
then there is a finite extension L/K that P ∈ Y (L) for any P ∈ Y (K) that φ(P ) ∈ X(K).

Proof: By Chevalley-Weil theorem(13.2.3.37), there is an α ∈ OF that α ∈ δP/Q for any P ∈ Y (F s)
that φ(P ) ∈ X(K), thus K(P )/K(Q) is unramified outside S(α). But then(12.4.2.27) shows there
are only f.m. possibilities of k(P ). Thus we are done. □

4 Small Points on Gn
m

References are [Sch96] and [B-G06].

5 Approximations of Algebraic Numbers

Subspace Theorem

References are [B-G06], [Sch70], [E-S02], [Eve96] and [F-W94].

Lemma(13.2.5.1).

Thm.(13.2.5.2)[Subspace Theorem, Schmidt/Vojta].For F ∈ NField and S ⊂ ΣF a finite subset
of places, n ∈ N, ε ∈ R+. For v ∈ S, let {Lv0, . . . , Lvmv} be a set of linear forms in Kv[X0, . . . , Xn]
in general position. Then

• If Σ∞
F ⊂ S, then there are f.m. rational linear hyperspaces T1, . . . , Th of An+1

F s.t.

{
x ∈ On+1

F,S \ {0}
∣∣∣ ∏
v∈S

mv∏
i=0
|Lvi(x)|v < H([x])−ε

}
⊂ T1 ∪ . . . ∪ Th.

• There exists f.m. rational hyperplanes T1, . . . , Th of PnF s.t.

{
[x] ∈ Pn(F )

∣∣∣ ∏
v∈S

mv∏
i=0

|Lvi(x)|v
Hv(x)

< H([x])−n−1−ε
}
⊂ T1 ∪ . . . ∪ Th.
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Proof: 2: Firstly, it suffices to prove for mv = n for any v: We may assume mv ≥ n by adding
coordinate functions. And after partitioning into f.m. cases and reordering, we may assume that

|Lv0(x)|v ≤ |Lv1(x)|v ≤ . . . ≤ |Lvmv(x)|v.

As Lv0, . . . , Lvn are linearly independent, they form a basis for OPn(1), so there are constants Cv s.t.

Hv(x) ≤ Cv max
0≤i≤n

|Lvi(x)|v = Cv|Lvn(x)|v ≤ Cv|Lvk(x)|v, ∀k > n.

Thus ∏
v∈S

n∏
i=0

|Lvi(x)|v
Hv(x)

≤ C
∏
v∈S

mv∏
i=0

|Lvi(x)|v
Hv(x)

,

and the assertion follows from the case mv = n, as the constant C can be eliminated by applying
Northcott’s theorem(13.2.3.24).

Secondly, item2 implies item1: For x ∈ On+1
F,S ,

H([x]) =
∏
v∈ΣF

Hv(x) ≤
∏
v∈S

Hv(x),

so [x] is in the set considered in item2. And any two x, x′ with [x] = [x′] are contained in the same
hyperplane.

Conversely, item1 implies item2: We may assume that S is sufficiently large that Σ∞
F ⊂ S and

cl(OF,S) < ∞, because if we add a place v and take Lvi(x) = xi, then |Lvi(x)|v ≤ Hv(x) for each i.
Then for any [x] satisfying the inequality of item2, take the fractional ideal

X =
∑

xiOF,S ,

then X = (δ) for some δ ∈ K×. And If v /∈ S, we can see that |δ|v = maxi |xi|v = Hv(x). So
we may change x to x′ = δ−1x, in which case, x′ ∈ On+1

F,S \ {0}, and Hv(x′) = 1 for v /∈ S. So∏
v∈S Hv(x′) = H([x′]) = H([x]), and the inequality in item2 implies x′ is in the subset in item1.

Thus we are done.
Thus it suffices to prove item1: For this, Cf.[B-G06]P197.? □

Cor.(13.2.5.3)[Schmidt].Let α0, . . . , αn ∈ Q, then for any ε ∈ R+, there are only f.m. x ∈ Zn+1 s.t.

0 < |α0x0 + . . .+ αnxn| ≤ H(x)−n−ε.

Proof: Use induction on n. For n = 0, this is trivial. For n ≥ 1, the subspace theorem(13.2.5.2)
with

F = Q, S = {∞}, Lv0 = α0X0 + . . .+ αnXn, Lvi = Xi, 1 ≤ i ≤ n

implies that the desired set is contained in f.m. rational linear subspaces of An+1
Q . Thus we can

assume that the desired set all satisfy a linear relation of the form ∑
j AjXj = 0, with An ̸= 0. Then

with βn = αi − αnAi/An,

0 < |α0x0 + . . .+ αnxn| = |β0x0 + . . .+ βn−1xn−1| ≤ H(x)−n−ε ≤ H(x)−n+1−ε.

Thus the assertion follows from induction hypothesis. □
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Cor.(13.2.5.4)[Schmidt].Let α ∈ Q and d ∈ Z+, ε ∈ R+, then there exists only f.m. ξ ∈ Q with
deg(ξ) = d and

|α− ξ| ≤ H+(ξ)−d(d+1)−ε,

Proof: For any such ξ, |ξ − α| ≤ 1, and we may assume that ξ is not conjugate to α, so fξ(α) ̸= 0.
Suppose fξ = x0 + x1T + . . . + xdT

d ∈ Z[T ] with coprime coefficients, then H(fξ) = Θ(H+(ξ)d)
by(13.2.3.12). Thus by mean-value theorem,

0 < |fξ(α)| = |x0 + x1α+ . . .+ xdα
d| ≤ Cα|α− ξ|H(fξ) ≤ H(fξ)−d− ε

d = H(x)−d− ε
d .

So the assertion follows from(13.2.5.3). □

Prop.(13.2.5.5)[Absolute Subspace Theorem, Evertse-Schlickewei]. [B-G06]P228.?
Roth’s Theorem

Lemma(13.2.5.6)[Roth’s Lemma].

Thm.(13.2.5.7)[Roth].Let F ∈ NField and Σ∞
F ⊂ S ⊂ ΣF be finite, and for each v ∈ S a number

αv ∈ Fv. Then for any ε > 0, there are only f.m. β ∈ F that∏
v∈S

Hv(β − αv) =
∏
v∈S

min(1, |β − αv|v) ≤ H+(β)−2−ε(13.2.3.5).

Moreover, αv can be ∞ as well, in the sense that |β − αv|v = |β|−1
v .

Proof: It is clear that it suffices to show that there are only f.m. β ∈ F s.t.∏
v∈S
|β − αv|v ≤ H+(β)−2−ε, |β − αv|v < 1.

Let x = [1, β] ∈ P1(K) and let Lv0 = X1 − αvX0(If αv =∞, take Lv0 = X0), then for any such β,

∏
v∈S

|Lv0(x)|v
Hv(x)

=
∏
v∈S
|β − αv|v max(1, |β|v)−1 ≤ H+(β)−2−ε.

Thus the assertion follows from the subspace theorem(13.2.5.2).
□

Remark(13.2.5.8).The exponent in Roth’s theorem is the best possible, by(13.2.5.22).
This theorem is ineffective in the sense it doesn’t give a maximal bound on H(β) for a solution

β, but it is effective in the sense it gives a bound for the number of solutions.

Remark(13.2.5.9).This is not true for function fields, as if we choose F to be the splitting field of
the separable polynomial xq − x + t over Fp(t), then there is a valuation w over the valuation v

corresponding to (t) s.t. Fw = Fp((t)), and α = t+ tq + tq
2 + . . .. Take βk = t+ tq + . . .+ tq

k , then
|βk − α|v = c−qk+1 with H(βk) = cq

k = H(β)−q, thus cannot have a Roth’s theorem.

Proof: □

Cor.(13.2.5.10)[Classical Roth’s Theorem].For any α ∈ Q and ε > 0, there are only f.m. p/q ∈ Q

s.t. |p/q − α| ≤ |q|−2−ε.
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Proof: Take F = Q, S = {∞} and α∞ = α, then use Roth’s theorem(13.2.5.7). □

Cor.(13.2.5.11).For an element α ∈ Qp and ε > 0, there are only f.m. n ∈ Z s.t. |n− α|p ≤ |n|−1+ε.

Proof: Take F = Q, S = {∞, p} and α∞ =∞, αp = α, then use Roth’s theorem(13.2.5.7). □

Cor.(13.2.5.12)[Another Interpretation].Let F ∈ GField and v a valuation of F , C be a complete
curve over F and Q ∈ C(F ), then for f ∈ K(C)∗,

lim
P∈C(F ),dv(P,Q)→0

log dv(P ;Q)
logHF (f(P ))

≥ −2.

Proof: Replacing f by 1/f if necessary, we can assume f(Q) ̸=∞. Let f − f(Q) has order e at Q,
then by(13.2.3.32),

lim−→
P∈C(F ),dv(P,Q)→0

log |f(P )− f(Q)|v
log dv(P,Q)

= e.

And Roth’s theorem implies
HK(f(P ))2+ε|f(P )− f(Q)|v ≥ 1

for a.e. P . Thus by taking limit and varying ε, the conclusion follows. □

Cor.(13.2.5.13)[Thue’s Equation].Let F (x, y) ∈ Z[x, y] be a homogenous polynomial that has at
least three different linear factors in C[x, y], then for any m ∈ Z×, there are only f.m. solutions of
F (x, y) = m in Z2.

Proof: Let F1, . . . , Fr be non-isomorphic irreducible polynomials in Z[x, y] dividing F , suppose
there are i.m. solutions to F (x, y) = m, then there are inf.m. rational points xn/yn converging
but not equal to a root of Fi for each i. Thus r = 1, and degF1 ≥ 3 by hypothesis. And it is
clear that for some root α of F1 and some constant C > 0, there are i.m. rational points n s.t.
|xn/yn − α| ≤ C|yn|−3, contradicting Roth’s theorem(13.2.5.10). □

Prop.(13.2.5.14)[Quantitative Bounds for Roth’s Theorem].Cf.[B-G06]Chap6.5.

Prop.(13.2.5.15) [Liouville].Let α ∈ Q, deg(α) ≤ 2, then there is a constant C > 0 s.t. for all
p/q ∈ Q, |p/q − α| ≥ C/qd. Notice only the d = 2 case is not covered by Roth’s theorem(13.2.5.10).

Proof: We can assume α ∈ R, because otherwise C = Imα works. Let f(T ) ∈ Z[T ] be a minimal
polynomial of α over Q, then f has no roots in Q. Suppose C1 is the maximum of |f ′(t)| for
t ∈ [α − 1, α + 1]. Suppose |p/q − α| ≤ 1, then |f(p/q)| = |f(p/q) − f(α)| ≤ C1|p/q − α|, and
also qdf(p/q) ∈ Z thus |qdf(p/q)| ≥ 1. Thus we get |p/q − α| ≥ 1/C1q

d. Thus for general p/q,
C = min(C−1

1 , 1) works. □

Warning’s Problem

Def.(13.2.5.16)[Warning’s Problem].For k ≥ 1, let g(k) ∈ Z+ be the smallest number s.t. every
positive integer is a sum of at most g(k) positive k-th powers.

Prop.(13.2.5.17). Situation as in(13.2.5.16), g(k) ≥ ⌊2k⌋+ ⌊(3
2)k⌋ − 2.

Proof: This is because the number ⌊(3
2)k⌋2k − 1 requires ⌊(3

2)k⌋ − 1 powers 2k and 2k − 1 powers
1k. □
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Prop.(13.2.5.18)[Dickson-Niven-Pillai-Rubugunday]. Situation as in(13.2.5.16),

g(k) =

2k + ⌊(3
2)k⌋ − 2, ⌈(3

2)k⌉ − (3
2)k ≥ (3

4)k

?, otherwise
.

In particular, g(1) = 1, g(2) = 4, g(3) = 9, g(4) = 19.

Proof:
□

Cor.(13.2.5.19)[Mahler]. Situation as in(13.2.5.16), g(k) = 2k + ⌊(3
2)k⌋ − 2 a.e. k.

Proof: Apply Roth’s theorem(13.2.5.7) with K = Q, S = {∞, 2, 3} with α∞ = 1, α2 =∞, α3 = 0,
and βk = 3k/n2k with n = ⌈(3

2)k⌉. Then |β − α2|2 ≤ 2−k, |β − α3|3 ≤ 3−k|n|−1
3 , and H(βk) = 3k|n|3.

Thus Roth’s theorem says for any ε > 0,

|1− 3k/n2k|∞ ≤ 2k3k|n|3(3k|n|3)−2−ε

holds for only f.m. k. Which implies that ⌈(3
2)k⌉ − (3

2)k ≥ 3−εk holds for a.e. k. Thus we can
apply(13.2.5.18). □

Remark(13.2.5.20).Notice it is not known for how large k this is true, due to the ineffectiveness of
the proof of Roth’s theorem(13.2.5.7).

Diophantine Approximation on Abelian Varieties

Prop.(13.2.5.21)[Product Theorem, Faltings]. Suppose k ∈ Field0, k = k, m,n1, . . . , nm ∈ Z+,
P = Pn1

k × . . . × Pnmk , for any f ∈ Γ(P,OP (d1, . . . , dm)) \ {0} where d1 > d2 . . . > dm are positive
integers, denote

Zσ(f) = {x ∈ P (K) : ∂

∂α
f = 0, ∀α, α/d < σ}, σ ∈ R+.

Then for any ε ∈ R+, there exists C > 0 satisfying the following: If dh/dh+1 ≥ C for h =
1, 2, . . . ,m − 1, then for any σ ∈ R+, any irreducible component Z of Zσ ∩ Zσ+ε is of the form
Z = Z1 × . . . Zm, where Zi are closed subvarieties of PniK with deg(Zi) bounded in terms of ε and
n1 + . . .+ nm only.

Proof: ? □

Approximations by Algebraic Numbers

Prop.(13.2.5.22) [Dirichlet-Hurewitz].Let α ∈ R \ Q, then there are infinitely many p
q ∈ Q s.t.

|pq − α| ≤
1√
5q2 .

Proof: Cf. [G. H. Hardy and E. M. Wright. An introduction to the theory of numbers]Thm194?.
We prove here for a weaker result:

For N > 0, consider the sets {{qα}|q = 0, . . . , N}, where {β} are the fractional part of β. Then
by pigeonhole principle gives two 0 ≤ q1 < q2 ≤ N s.t. |(q1 − q2)α − p| ≤ 1/N ≤ (q2 − q1). Let
q = q2 − q1, then |p/q − α| ≤ 1/q2. □
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Prop.(13.2.5.23)[Dirichlet-Hurewitz/Davenport-Schmidt].For d ∈ Z+, let kd ∈ [−1,∞] be the
supremum of numbers w ∈ R+ s.t. for any α ∈ R not an algebraic number of degree≤ d and any
ε ∈ R+, there exists a constant C = C(α, ε) s.t. there are inf.m. real algebraic number ξ of degree d
satisfying

|α− ξ| ≤ CH+(ξ)−dkd+ε.

Then
• k1 = 2 by(13.2.5.22).
• k2 = 3.
• kd ≤ d+ 1.

Proof: 2: One direction is by(13.2.5.4), the other by [Davenport-Schmidt, Approximation to real
number by quadratic irrationals]?.

3 follows from(13.2.5.4). □

Prop.(13.2.5.24)[Dirichlet-Hurewitz/Davenport-Schmidt/Roy].For d ∈ Z+, let kd ∈ [−1,∞]
be the supremum of numbers w ∈ R+ s.t. for any α ∈ R not an algebraic integer of degree≤ d and
any ε ∈ R+, there exists a constant C = C(α, ε) s.t. there are inf.m. real algebraic number ξ of
degree d satisfying

|α− ξ| ≤ CH+(ξ)−dkd+ε.

Then
• k1 = −1 trivially.
• k2 = 3.
• k3 = 3+

√
5

2 .

• ⌊d+1
2 ⌋ ≤ kd ≤ d+ 1.

Proof: 2: One direction is Roth’s theorem, the other is [Davenport-Schmidt, Approximation to
real number by algebraic integers].

3: [Davenport-Schmidt, Approximation to real number by algebraic integers] and [Approximation
by cubic algebraic integers, Roy].

4: (13.2.5.4) and [Davenport-Schmidt, Approximation to real number by algebraic integers] and
[Approximation by cubic algebraic integers, Roy]. □

6 Rational Points

Prop.(13.2.6.1) [Esnault].Let p ∈ P, q ∈ pZ, X ∈ SmProjVar /Fq s.t. CH0(X
R(X)) = Z, then

#X(Fq) ≡ 1(mod q). In particular, X has a rational point.

Proof: Cf.[Weil 1 Proof]. □

Cor.(13.2.6.2).Any rationally chain connected varieties over a finite field k = Fq s.t. CH0(X
R(X)) =

Z, then X(K) ≡ 1 mod q. In particular, X has a rational point.

Cor.(13.2.6.3)[Manin-Lang]. If X/Fq is a smooth projective Fano variety, then X(K) ≡ 1 mod q.

Proof: This is because by(5.10.4.4), any Fano variety is rationally chain connected. □
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Lang’s Conjecture

Conj.(13.2.6.4)[Lang].Let F ∈ NField and X is a variety over F of general type?, then there are
f.m. subvarieties Xi ⊂ X of lower dimensions s.t. X(F ) = ∪iXi(F ).

Proof: □

Thm.(13.2.6.5) [Mordell Conjeture, Faltings].By(13.14.4.4), for F ∈ NField and C/F be a
complete non-singular curve of genus g ≥ 2, then #C(F ) <∞.

7 Integral Points

Diophantine Sequences

Def.(13.2.7.1) [Diophantine Sequences].For m ∈ Z+, a sequence of positive integers a1 ≤ a2 ≤
. . . ≤ an is called a Diophantine sequence of length m if for any 1 ≤ i < j ≤ n,

aiaj + 1 ∈ (Z)2.

Prop.(13.2.7.2)[Baker-Davenport]. (1, 3, 8, x) is a Diophantine sequence iff x = 120.

Proof: Cf.[A. Baker and H. Davenport, The equations 3x22 = y2 and 8x27 = z2. Quart. J. Math.
Oxford Ser. (2) 20 (1969), 129–137.].? □

Thm.(13.2.7.3)[Bo-Alain-Volker].There are no Diophantine sequences of length 5.

Proof: Cf.[There is no Diophantine quintuple. (English summary) Trans. Amer. Math. Soc. 371
(2019), no. 9, 6665–6709.] □

Siegel’s Theorem

References are [C-Z02] and [Sie35].

Thm.(13.2.7.4)[Siegel]. If F ∈ NField and C/F ⊂ An
F is an affine curve with normalization Csm,

and let C be the completion of Csm. Suppose g(C) > 0 or #C̃ \ Csm ≥ 3, then for any finite set of
places Σ∞

F ⊂ S, #C(OF,S) <∞.

Proof: Firstly, it suffices to prove for C smooth: As the normalization is finite and bira-
tional(5.4.2.7), by omitting f.m. points, we may assume that all rational points of C lift to rational
points of C. Moreover, if Γ(Csm) = Γ(C)[f1, . . . , fr], where fi are integral over Csm. We can en-
large S s.t. C has an integral model over OF,S , and each fi is integral over Γ(C/OF,S). Then each
OF,S-points of C lifts to Csm, and the assertion reduces to Csm.

For g(C) ≥ 2, this is a special case of Faltings’ Theorem(13.2.6.5).
For g = 1, the assertion follows from(13.9.8.2).
For g = 0, then #C̃ \Csm ≥ 3(in fact, any other cases can be reduced to the case #C̃ \Csm ≥ 3,

Cf.[B-G06]P184.) Then
□
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abc-Conjecture

Conj.(13.2.7.5)[Strong abc-Conjecture, Masser-Oesterlé1985].Given F ∈ NField, for any ε >
0, there is a constant Cε that for any a, b, c ∈ OF that a+ b = c,

HF ([a, b, c]) ≤ Cε|NmK/Q(
∏
p|abc

p)|1+ε.

Proof: □

Hilbert’s 10-th Problem

Conj.(13.2.7.6) [Hilbert’s 10-th Problem].Let K be a global number field, X be a projective
scheme over OK , it there an algorithm to determine in a finite number of operations whether this
curve has a K-rational point.

Proof: □

Remark(13.2.7.7)[Mazur-Rubin]. If the BSD conjecture holds for all elliptic curves over any number
fields, then Hilbert’s 10-th problem has a negative answer for any number field.

Proof:
□

Others

Prop.(13.2.7.8)[Fermat’s Equation in Function Case]. If n ≥ 2, then any non-trivial solutions
to the equation in C[T ] of

Xn + Y n = Zn

are of the form n = 2, X = (a2 − b2)/2, Y = ab, Z = (a2 + b2)/2, where a, b, c ∈ C[T ].

Proof: The n = 2 case is easy. If n > 2, we show there are no non-trivial solutions: Differentiate
it to get:

Xn−1X ‵ + Y n−1Y ‵ = Zn−1Z ‵,

And cancelling Xn−1, we get

Y n−1(X ‵Y − Y ‵X) = Zn−1(X ‵Z − Z ‵X).

Now X ‵Z − Z ‵X ̸= 0 because X,Z are not linearly equivalent, and Y, Z is coprime, so Y n−1|X ‵Z −
Z ‵X. But then if we assume dimY ≥ dimX, then (n− 1) dim Y ≤ 2 dim Y − 1, which implies n ≤ 2,
contradiction. □
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13.3 Arithmetic of Algebraic Groups
Main references are [Algebraic Groups and Number Theory], [Mil17b].

Notation(13.3.0.1).
• Use notations from Group Schemes I: Structure Theory.
• Use notations from p-adic Analysis.

1 over p-adic Number Fields
Notation(13.3.1.1).

• Let (K,OK , k) ∈ p-NField.

Prop.(13.3.1.2). If G ∈ Schft /OF , then G(OF ) is compact.

Prop.(13.3.1.3). If G is a reductive group over K, then G(OK) is a maximal compact subgroup of
G(K).

Proof:

Prop.(13.3.1.4)[Reductive Groups are Unimodular]. If G/K is a reductive group, then G(K) is
unimodular.

Proof: □
□

Cor.(13.3.1.5).GL(n,OF ) is a maximal compact subgroup of GL(n, F ), and any compact subgroup
of GL(n, F ) is conjugate to GL(n,OF ).

Proof: GL(n,OF ) is compact by(13.3.1.2).
For maximality, for any compact subgroup Γ, consider the standard representation of GL(n), it

suffices to find an OL-lattice that is stable under Γ-action. Notice ρ(Γ)∩GL(n,OL′) is open in ρ(Γ),
thus is of finite index, so Γ(OnL) is a lattice that is stable under Γ(12.2.3.32). □

Prop.(13.3.1.6).SL(n,Qp) has two maximal subgroups

SL(n,Zp),
[
p

1

]−1

SL(n,Zp)
[
p

1

]

up to conjugacy.

Proof: □

2 over Global Fields
Def.(13.3.2.1) [Groups of Non-Compact Types].Let G ∈ AlgGrp /Q be semisimple, then G is
said to be a group of compact type if G(R) is compact, and said to be a group of non-compact
type if it doesn’t contain a non-trivial normal subgroup of compact type.

Prop.(13.3.2.2)[Real Approximation]. If G ∈ AlgGrp /Q satisfies each connected components of
G contains a rational point, then G(Q) is dense in G(R).

Proof: Cf.[Mil17]P54. □
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Congruence Subgroups

Def.(13.3.2.3) [Congruence Subgroups].Let G ∈ AlgGrp /Q with an embedding G → GL(n)Q,
for N ∈ Z+, define Γ(N) = G(Q) ∩ {g ∈ GL(n;Z)|g ≡ 1(mod GL(n;N))}, and a congruence
subgroup of G(Q) is any subgroup of G(Q) that contains some Γ(N) as a finite index subgroup.

The notion is compatible with that defined in(13.3.3.13). In particular, the set of congruence
subgroups of G doesn’t depend on the embedding?.

Prop.(13.3.2.4)[Congruence Subgroup Problem].Let G be a reductive group over Q,
• If G is split simply connected other than SL(2), then every arithmetic subgroup of G is a

congruence subgroup.
• If G = SL(2) or non-simply connected, there are many arithmetic subgroups of G that is not

congruence subgroups.

Proof: Cf.[MATSUMOTO 1969. Sur les sous-groupes arithmétiques des groupes semi-simples de
́ploye ́s. Ann. Sci. Ecole Norm. Sup. (4) 2:1–62.].[SURY, B. 2003. The congruence subgroup
problem, volume 24 of Texts and Readings in Mathematics. Hindustan Book Agency, New Delhi.]
□

Prop.(13.3.2.5).The image of a congruence subgroup may not be a congruence subgroup.

Proof:
□

Prop.(13.3.2.6)[Minkowski].The congruence subgroup 1+pGL(n;Z) is torsion-free for p ∈ P\{2}.

Proof: Cf.[?]P232. □

3 over Adeles
Notation(13.3.3.1).

• In this subsection, let F ∈ GField and G ∈ AlgGrp /F .

Def.(13.3.3.2) [Adele Groups].Let G ⊂ GL(V ) ∈ AlgGrp /F , where V ∈ VectF , G(AF ) is called
the group of Adele points of G. Let Λ be a OF -lattice of V , for any place v ∈ Σfin

F , let Kv be the
stabilizer of Λv = Λ ⊗OF

Ov in G(Fv), then Kv are compact open subgroups of G(Fv). Define the
adelic group of G

G(AF ) =
′∏
v

(G(Fv),Kv),

which is a locally compact topological group. These Kv are called hyperspecial compact sub-
groups, and they are maximal subgroups of G(Kv) for a.e. v if G is reductive(13.3.1.3). We can
modify the remaining v s.t. Kv are special maximal compact subgroups?, and denote

K = KfK∞, Kf =
∏

v∈Σfin
F

Kv, K∞ =
∏

v∈Σ∞
F

Kv.

Proof: To show G(AF ) is independent of Λ, notice |G(AF )| is clearly invariant, and if Λ′ is another
lattice, then d−1Λ ⊂ λ′ ⊂ dΛ for some d ∈ Z+, so Kv are the same for v ∤ d.

Kv are compact open subgroups of G(Fv) because they are the intersection of GL(Λv) ∼=
GL(n,Ov) with G(Fv). To show they are maximal, for any other compact subgroup K′ of G(Fv), as
Kv ∩K is open, K′/K ′ ∩Kv is a finite set, thus ? □
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Cor.(13.3.3.3).G(AF ) = G(AF,S)×G(AS
F ).

Prop.(13.3.3.4).For a closed embedding of algebraic groups G ⊂ G′ ∈ AlgGrp /F , the inclusion
G(AF ) ⊂ G′(AF ) is a closed embedding. But for open immersions, the induced inclusion may not
be immersions. For example, the embedding Gm ⊂ A1 doesn’t induce immersion IF ⊂ AF .

Proof: ? □

Example(13.3.3.5)[GL(n)].Fix the following compact subgroup of GL(n,A):

K =
∏

Kv, Kv =


O(n) v real
U(n) v complex
GL(n,Ov) v non-Archimedean

.

then K is the maximal compact subgroup of GL(n,AF ) in the sense that any compact subgroup can
conjugate into K.

gln,∞ =
∏
v∈S∞ gl(n, Fv), then we can define (gln,∞,K∞)-modules.

Prop.(13.3.3.6).GL(F ) is discrete in GL(AF ).

Proof: □

Prop.(13.3.3.7)[Fundamental Domain].GL(F )\GL(AF ) has a fundamental domain which can be
covered by a sufficiently large Siegel sets Gc,d.

Proof: □

Prop.(13.3.3.8).GL(F )\GL(AF ) has finite volume if G is semisimple, and it is compact if G is
anisotropic.

Proof: □

Def.(13.3.3.9)[Strong Approximation Property].Let S be a finite set of places containing Σ∞
F ,

a group G is said to satisfy the strong approximation for S if it satisfies the following equivalent
conditions:

• The image of G(F ) is dense in G(AS),
• G(F )G(AS) is dense in G(A).
• For any compact open subgroup US ⊂ G(AS), G(A) = G(F )G(AS)US .

In particular,
Γ\G(AS) ∼= G(F )\G(A)/US .

where Γ is the image of G(F ) ∩ (G(AS)× US) in G(AS).

Thm.(13.3.3.10) [Strong Approximation].Assume G is a simply-connected semisimple
group(8.3.2.1) and G(AS) is non-compact for some finite subset Σ∞

F ⊂ S ⊂ ΣF , then G satisfies
strong approximation for S.

Proof: Cf.[Algebraic Groups and Number Theory, P427]. □

Remark(13.3.3.11).This is not true for non-semisimple or non-simply connected: for Gm, Q× is not
dense in A×

Q,f .
For PGL(2), the determinant of PGL(2,Q) is Q×/(Q×)2 and the determinant of PGL(2,AQ,f )

is A×
Q,f/(A

×
Q,f )2, which is not dense.
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Cor.(13.3.3.12)[Strong Approximation for SL(n)].Let F ∈ NField, then
• SL(n)F satisfies strong approximation for Σ∞

F .
• Let K0 be an open compact subgroup of GL(n,Af ), then

GL(n, F )GL(n,A∞)K0T1(A) = GL(n,A).

• LetK0 be an open compact subgroup of GL(n,Af ) that the image ofK0 under the determinant
map is ∏v∈Σfin

F
O∗
v , then

det : GL(n, F )GL(n,A∞)\GL(n,AF )/K0 → F× IF,∞ \IF /
∏

v∈Σfin
F

O∗
v = Cl1(F )

is an isomorphism.

Proof: 1 is a direct consequence of(13.3.3.10).
2 is a direct consequence of 1.
3: det is clearly surjective. To show it is injective, if det(a) = det(b) ∈ Cl1(F ), then

det(a) = det(g1g∞bk0) where g1 ∈ GL(n, F ), g∞ ∈ GL(n,AF,∞), k0 ∈ GL(n,AfF ) by hypothesis.
Then g1g∞bk0a

−1 ∈ SL(n,AF ), and by item1 it is of the form h1h∞k0 where h1 ∈ SL(n, F ), h∞ ∈
SL(n,AF,∞), k1 ∈ a(K0 ∩ SL(n,Af

F ))a−1. Then the assertion follows. □

Prop.(13.3.3.13)[Passage From Archimedean to Adele via Congruence Subgroups]. If F ∈
GField, UΓ ⊂ G(Af

F ) a compact open subgroup and Γ the image of G(F )∩ (G(A∞)×UΓ) in G(A∞),
called a congruence subgroup of G. If G satisfies strong approximation for S = Σ∞

F (13.3.3.9),
then

Γ\G(A∞) ∼= G(F )\G(A)/UΓ.

In general, for any open compact subgroup U ⊂ G(Af ),

#G(F )\G(A)/G(A∞)U <∞.

Thus if {gi} ⊂ G(Af ) is a set of double coset representatives,

G(F )\G(A)/U =
⨿
i

Γi\G(A∞)

where Γi is the image of (giUg−1
i ×G(A∞))∩G(F ) in G(A∞). Thus the passage from Archimedean

to adele is not seriously affected by the lack of strong approximation.

Proof: The double coset is finite because for any (gv) ∈ G(AfF ), by strong approximation for Ga,
we can choose a g ∈ G(F ) s.t. g−1gv ∈ Kv for any v ∈ Σfin

F , then the image is finite as U is compact
open and ∏vKv is compact. □

4 Integral Models

Groups over Z

References are [Groups over Z, Gross].
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13.4 Arithmetic Subgroups
Main references are [Mor15] and [V. Platonov and A. Rapinchuk: Algebraic Groups and Number

Theory.]

1 Arithmetic Subgroups
Def.(13.4.1.1) [Arithmetic Subgroups].For G ∈ LinAlgGrp /Q, an arithmetic subgroup Γ ≤
G(Q) is a subgroup that is commensurable with G(Q)∩GL(n,Z) for some embedding G ↪→ GL(n)Q.
This notion is independent of the embedding chosen.

If G ⊂ GL(V ) and L ⊂ V be a lattice, then the arithmetic subgroup G(Q) ∩ GL(n,Z) is also
denoted by G(Z;L), called the group of units of G. If no confusion is make, it is also denoted by
G(Z).

Proof: Cf.[P-R94]P171. □

Lemma(13.4.1.2)[Invariance of Arithmetic Subgroups].For φ : G → G′ ∈ LinAlgGrp /Q, the
kernel of an arithmetic subgroup is an arithmetic subgroup.

Proof: □

Cor.(13.4.1.3). If G = H⋉N ⊂ GL(V ) ∈ LinAlgGrp /Q, then H(Z)⋉N(Z) ⊂ G(Z) has finite index.

Proof: Let pr : G→ H be the projection, then H(Z) ⋉N(Z) = pr−1(H(Z)). □

Prop.(13.4.1.4). If φ : G→ G′ ∈ LinAlgGrp /Q is surjective, then φ maps an arithmetic subgroup to
an arithmetic subgroup.

Proof: ? □

Prop.(13.4.1.5).There exists arithmetic subgroups not of the form G(Z;L).

Proof: ? By the proof of(13.4.1.2), any GLZ must contain some congruence subgroup GZ(d), but
there are examples of subgroups of finite index of SL(2,Z) not of this form, Cf.[P-R94]Chap9.5. □

Prop.(13.4.1.6).Let G ∈ LinAlgGrp /Q and Γ be an arithmetic subgroup, then for any f.d. represen-
tation ρ ∈ Repfd

Q(G), there exists a Γ-invariant lattice.

Proof: Cf.[P-R94]P173. □

Reduction Theory

Prop.(13.4.1.7).Let G ∈ LinAlgGrp /Q and Γ be an arithmetic subgroup, then Γ is finitely presented.

Proof: ? □

Prop.(13.4.1.8).Let G ∈ LinAlgGrp /Q, then there exists only f.m. conjugacy classes of finite sub-
groups of GZ.

Proof: ? □

Thm.(13.4.1.9)[Borel Density Theorem].Let G ∈ LinAlgGrp /Q be semisimple of non-compact
type, then any arithmetic subgroup Γ is Zariski-dense in G.

Proof: Cf.[P-R94]P205.? □
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Compactness of G(R)/G(Z)

Prop.(13.4.1.10).Let S ∈ LinAlgGrp /Q be a torus, then the following are equivalent:
• S is Q-anisotropic.
• S(R)/S(Z) is compact.

Proof: Cf.[P-R94]P205.? □

Prop.(13.4.1.11).Let G ∈ LinAlgGrp /Q, then the following conditions are equivalent:
• G(R)/G(Z) is compact.
• The reductive part of G0 is anisotropic over Q.

Proof: Cf.[P-R94]P210.? □

Prop.(13.4.1.12)[Mahler’s Criterion].A subset Ω ⊂ GL(n;R) is compact modulo GL(n;Z) iff it
satisfies:

• {det(g)|g ∈ Ω} is bounded.
• [Ω.(Zn \ {0})] ∩ U = ∅ for some nbhd U of 0 ∈ Rn.

Proof: Cf.[P-R94]P211.? □

Finiteness of the Volume of G(R)/G(Z)

Prop.(13.4.1.13).For G ∈ LinAlgGrp /Q, G(R)/G(Z) has finite volume iff G0 doesn’t have non-
trivial characters defined over Q.

Proof: Cf.[P-R94]P213. □

Prop.(13.4.1.14). If G ∈ LinAlgGrp /Q is semisimple, and Γ is an arithmetic subgroup, then G(R)/Γ
has finite volume.

Proof: Cf.[P-R94]P220. □

Finite Arithmetic Groups

Conj.(13.4.1.15). If G ⊂ GL(n)Q ∈ AlgGrp /Q is of compact-type, then for any totally real extension
F/Q, G(OF ) = G(Z).

Proof: □

Remark(13.4.1.16).By(13.4.1.17), it suffices to prove this conjecture for O(V ) for any inner space
V/Q.

Prop.(13.4.1.17). If G ⊂ GL(n) ∈ AlgGrp /Q satisfies G(R) is compact and Zariski dense in G, then
G preserves a quadratic definite quadratic form f .

Proof: Cf.[P-R94]P230. □

Prop.(13.4.1.18)[Bartels-Kitaoka].Let F/Q be a totally real nilpotent Galois extension, and Γ ≤
GL(n;O) is a finite Gal(F/Q)-invariant subgroup, then Γ ⊂ GL(n;Z).

Proof: Cf.[P-R94]P234. □
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Prop.(13.4.1.19).Let V/Q be an inner space and A = (aij) ∈ GL(n;Z) be an integral Gram matrix
for V . If aii ≤ 4λ for any i, where λ is the smallest eigenvalue of A, then for any totally real extension
F/Q, O(V ;OF ) = O(V ;Z).

Proof: Cf.[P-R94]P236. □

2 Arithmetic Subgroup of Lie Groups
Def.(13.4.2.1)[Arithmetic Subgroups].Let H be a connected real Lie group, then an arithmetic
subgroup Γ ⊂ H is a subgroup s.t. there exists an algebraic group G ∈ AlgGrp /Q, a surjective
homomorphism G(R)0 → H with compact kernel, and Γ0 ⊂ G(Q) an arithmetic subgroup(13.4.1.1)
s.t. Γ0 ∩G(R)0 is mapped to Γ.

Prop.(13.4.2.2).Let H be a semisimple real Lie group that admits a faithful f.d. representation, then
every arithmetic subgroup of H is discrete of finite covolume, and contains a torsion-free subgroup
of finite index.

Proof: Cf.[Mil17b]P34. □

Prop.(13.4.2.3). In any connected real Lie group there are only countably many arithmetic subgroups
up to conjugacy.

Proof: Cf.[Mor15]5.1.20. □

Thm.(13.4.2.4) [Margulis].Every discrete subgroup of finite volume in a non-compact simple real
Lie group H is arithmetic unless H is isogenous to SO(1, n) or SU(1, n).

Note that SL(2,R) is isogenous to SO(1, 2), so the theorem doesn’t apply to it.

Proof: Cf.[Mor15]5.2.? □
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13.5 Arithmetic of Abelian Varieties
Main references are [Sta], [Abelian Varieties notes Conrad], [Mil08], [B-G06], [Abelian Variety

van der Geer], [BLR90]. See [Bhatt’s notes] for everything done in the relative setting. A history of
Abelian varieties can be found in [Mil08]P125.

1 Basics
Def.(13.5.1.1)[Abelian Schemes].An Abelian variety A over a field k is a group variety over k
that is a complete variety over k.

For S ∈ Sch, an Abelian scheme over S is a proper smooth group scheme A ∈ Sch /S s.t. all the
fibers As are Abelian varieties over the resp. residue field κ(s). Denote AbVar /S the subcategory
of AlgGrp /S consisting of Abelian schemes over S.

Being an Abelian scheme is stable under base change of fields, by(5.10.1.3).

Prop.(13.5.1.2). If X is an Abelian variety, any global tangent vector on a group variety is left
invariant.

Proof: Because Γ(X,OX) = k(5.10.1.12), so by(8.1.4.35), Γ(X,OX⊗TX,e) = TX,e are all generated
by left invariant vectors(left and right translation commutes). □

Prop.(13.5.1.3) [Abelian Varieties are Projective, Weil].Abelian varieties are projective,
by(8.1.4.8) and(5.4.5.3).

Prop.(13.5.1.4) [Rigidity Theorem].Let f : X → Y be a morphism of an Abelian varieties to a
group variety, then it is a group homomorphism followed by a translation tf(eX).

Proof: Set y = iY (f(eX)) and consider h = ty ◦ f , then h(eX) = eY , and consider the morphism:

g : X ×X → Y : (x, x′) 7→ h(xx′)(h(x)h(x′))−1.

then g(eX , X) = g(X, eX) = eY , so the rigidity lemma(5.10.1.20) shows g is constant with value eY .
Thus h ◦mX = mY ◦ (h× h), thus a group homomorphism. □

Cor.(13.5.1.5)[Abelian Varieties are Commutative].
• Let X be a variety over k, then there is at most one one structure of Abelian variety on X.
• The group law of an Abelian variety is commutative, justifying the name.

Remark(13.5.1.6).The completeness of X is essential for the proof. In fact, there are many non-
commutative group varieties, like GL(n).

From now, use the additive notation for Abelian varieties.

Proof: 1: If there are two structure (m, i), (n, j), then consider X × X → X → X : (x, y) 7→
m(x, y)(n(x, y)−1), then it is constant on eX ×X and X × eX , thus it is constant, so m = n. And
i = j is also clear by the associativity.

2: The inverse i is a group homomorphism by(13.5.1.4), thus it is Commutative. □

Prop.(13.5.1.7)[Rigidity of Morphism from Smooth Varieties]. If X is an Abelian variety over
a field K, then any rational map from a smooth K-variety Y extends to a morphism Y → X.

Proof: By(8.1.4.34), V is regular, thus by(5.4.5.15), a rational map is defined on a set whose
complement has codimension≥ 2, but then(8.1.1.20) shows it must be defined on all of X. □
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Cor.(13.5.1.8) [Quotient by Finite Subgroups].Quotients of an Abelian variety A are also an
Abelian varieties.

Proof: It is a group variety of dimension 1 with a rational point by(8.1.5.29). And it is complete
by(5.4.5.3). □

Remark(13.5.1.9).WARNING: it is not true that the quotient of an Abelian variety by any finite
group of automorphisms is an Abelian variety, as the quotient by the hyperelliptic involution(i.e.
−1) is just P1.

Cor.(13.5.1.10)[Even Functions].Let E be an elliptic curve, then f ∈ K(E) is even iff f ∈ K(x).

Proof: Write f(x, y) = g(x) + h(x)y, then the condition says (2y + a1x + a3)h(x) = 0 for any
(x, y) ∈ E(K). Thus h(x) = 0, otherwise E is degenerate, which is not possible. □

Pseudo-Abelian Varieties

Def.(13.5.1.11)[Pseudo-Abelian varieties].A pseudo-Abelian variety is a group variety with
no non-trivial affine normal group subvarieties.

Prop.(13.5.1.12).Abelian varieties are pseudo-Abelian varieties.

Proof: Every normal group subvariety is closed thus complete, hence if it is affine, it equals e. □
Prop.(13.5.1.13).Being a pseudo-Abelian variety is stable under separable base change of fields.

Proof: Cf.[Mil17]P149. □
Prop.(13.5.1.14).Let G be a group variety over k, then there exists a unique affine normal group
subvariety N s.t. G/N is a pseudo-Abelian variety. And this N is stable under base change.

Proof: This follows from(8.1.4.34) and(8.1.5.30)(8.1.5.29). □
Prop.(13.5.1.15)[Barsotti-Chevalley].Let k be perfect, then any pseudo-Abelian variety over k is
complete hence is an Abelian variety.

Proof: Cf.[Mil17]P154. □
Cor.(13.5.1.16). If G is a group variety over a perfect field k, then unique affine normal group subva-
riety N s.t. G/N is an Abelian variety, by(13.5.1.14).

Prop.(13.5.1.17)[Algebraic Groups are Extensions of Abelian Varieties].LetG be a connected
algebraic group over a field k, then there is a connected affine normal algebraic subgroup N(not
necessarily smooth) s.t. G/N is is an Abelian variety.

Proof: Cf.[Mil17]P155. □
Cor.(13.5.1.18).Every pseudo-Abelian variety G is commutative.

Proof: As G is smooth and connected, so is [G,G](8.1.4.27), so it is a group variety(8.1.4.34). Let
N be given by(13.5.1.17), then because G/N is an Abelian variety, [G,G] ⊂ N . Thus [G,G] is affine,
which implies [G,G] = e. □

Prop.(13.5.1.19)[Totaro(2013)].Any pseudo-Abelian variety is an extension of a connected unipo-
tent group variety U by an Abelian variety A in a unique way.

Proof:
□
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Line Bundles

Remark(13.5.1.20).As Abelian varieties are regular, Cl(X) ∼= Pic(X), by(5.5.3.15).

Prop.(13.5.1.21)[Theorem of the Cube]. If X is an Abelian variety, and L is a line bundle over
X, then

Θ(L) = pr∗
123(L)⊗ pr∗

12(L−1)⊗ pr∗
13(L−1)⊗ pr∗

23(L−1)⊗ pr∗
1(L)⊗ pr∗

2(L)⊗ pr∗
3(L)

is trivial.

Proof: This is trivial on 0×X ×X,X × 0×X,X ×X × 0, so it is trivial, by(5.10.1.23). □

Cor.(13.5.1.22).There is a form of morphisms from a scheme to X, just by considering (f, g, h) :
Y × Y × Y → X ×X ×X, i.e.

(f + g + h)∗L⊗ (f + g)∗L−1 ⊗ (f + h)∗L−1 ⊗ (g + h)∗L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

is trivial.

Cor.(13.5.1.23) [Theorem of the Square].Let A be an Abelian variety that L is a line bundle,
then for any x, y ∈ A,

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL ∈ Pic(Ak(x)k(y)).

Notice this isomorphism is defined under the field generated by the residue fields of x and y.

Proof: Apply the theorem of the cube(13.5.1.22) for f = idX and g, h the function with constant
value x, y. □

Cor.(13.5.1.24).For a line bundle L on an Abelian variety X, then the map φL : X → Pic(X) : x 7→
[t∗xL⊗ L−1] is a homomorphism.

Cor.(13.5.1.25).For any line bundle L,

[n]∗L ∼= Ln(n+1)/2 ⊗ [−1]∗Ln(n−1)/2.

Proof: Use(13.5.1.22) in case f = [n], g = [1], h = [−1], then we have:

n∗L2 ⊗ (n+ 1)∗L−1 ⊗ (n− 1)∗L−1 ∼= (L⊗ [−1]∗L)−1.

So we can use induction. □

Def.(13.5.1.26)[Even Line Bundle].Consider the involution [−1] of X and its action on the line
bundles, then a even/odd line bundle is defined to be a line bundle L that [−1]∗L ∼= L(resp. L−1).

Prop.(13.5.1.27).On an Abelian Variety, there is an even very ample line bundle.

Proof: Abelian variety is projective by(13.5.1.3), thus there is a very ample line bundle L, and
[−1]∗L is also very ample, so L⊗ [−1]∗L is even and very ample, by(5.5.4.21). □

Prop.(13.5.1.28).For an Abelian variety over a number field K and any line bundle c ∈ Pic(X),
there are an odd line bundle c− and an even line bundle c+ that c = c− + c+.
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Proof: Consider 2c = (c + [−1]∗(c)) + (c − [−1]∗(c)). c − [−1]∗(c) is odd thus is in Pic0(X)
by(13.5.4.8), thus by(13.5.6.14), there is a c∗ ∈ Pic0(X) that 2c∗ = c−[−1]∗(c). Then c = (c−c∗)+c∗

satisfies the requirement. □

Lemma(13.5.1.29).Let A be an Abelian variety over K and pri : A×A→ A be the projections and
m be the multiplication, then the following are equivalent:

• m∗(c) ∼= pr∗
1(c) + pr∗

2(c).
• τ∗

a (c) ∼= c for a ∈ A.
And if these are satisfied, c is even.

Proof: The equivalence is a consequence of the formula (m∗(c)−pr∗
1(c)−pr∗

2(c))|A×{a} = τ∗
a (c)− c

and the see-saw principle(5.10.1.22). the last assertion is a consequence of the first equation pulled
back via the morphism

A→ A×A : a 7→ (a,−a).

□

Prop.(13.5.1.30)[Projective Embeddings].No Abelian varieties of dimension g can be embedded
into P2g−1. No Abelian variety except for elliptic curves and Abelian surfaces of degree 10 in P4 can
be embedded into P2g.

Proof: Cf.[Van de Geer P26], where algebraic topologies are used. □

2 Formal Groups

Def.(13.5.2.1)[Formal Group Law of Abelian Varieties].Given an Abelian variety A over a field
K, the group structure on A induces a homomorphism OA,e → (OA,e ×OA,e)e×e, whose completion
is a formal group law of dimension n.

3 over Alg.Closed Fields

All Abelian variety X in this subsection is over an alg.closed field k.

Prop.(13.5.3.1).There is a closed pt 0 in X that corresponds to 0 in the group X(k), if we denote
Ω0 the cotangent space at 0, it is the stalk of the differential ΩX/k at 0(5.5.5.6).

Def.(13.5.3.2) [Fields of Moduli].Let k be a field, the field of moduli of an Abelian variety A
over k is the fixed field of {σ ∈ Gal(k/k)|Aσ ∼= A}.

Def.(13.5.3.3)[Fields of Definition].Let k be a field, the field of moduli of an Abelian variety A
over k is the minimal field k ⊃ k′ ⊃ k s.t. A is defined over k′.

Remark(13.5.3.4).Generally, the field of definition is bigger than the field of moduli.

Prop.(13.5.3.5).For any Abelian variety A over a field k = k of dimension g, dimkH
1(A,OA) ≤ g.

In fact, equality holds by(13.5.4.12).

Proof: This follows from Borel’s classification of Hopf-algebras(2.9.1.15). Cf.[Van de Geer P94] or
[Conrad Notes, P45].? □
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p-Divisible Groups

Prop.(13.5.3.6).For k ∈ Field, char k = p,A ∈ AbVar /k, A(ksep) is an Abelian group and its ln
torsion is isomorphic to (Z/(ln))2g and its pn torsion is isomorphic to (Z/(pn))r for some r ≥ 1.

Prop.(13.5.3.7).There is an isomorphism

Hm
t (ΛKsep ,Ql) ∼=

m∧
Ql

(Vl(A))∗.

Cf.[Grothendieck Monodromy theorem].

4 Dual Abelian Varieties

Def.(13.5.4.1)[Dual Abelian Variety].For an Abelian variety A, the dual Abelian variety Â is de-
fined to be its Picard variety Pic0

A/k, which represents P̃ic
0
A/k and is a projective scheme by(8.7.3.33).

We will see it is an Abelian variety in(13.5.4.12).

Prop.(13.5.4.2)[A→ Â Induced by a Line Bundle]. If A is an Abelian variety over k, for any line
bundle c, there is a line bundle on A×A given by the Mumford line bundle

Λ(c) = m∗c− pr∗
1 c− pr∗

2 c,

where m : A×A→ A is the product. It is in Pic0(A) because Λ(c)|e×A = 0 and Λ(c)|A×a = τ∗
a c− c.

Then by definition, this line bundle corresponds to a morphism φc : A→ Â over k, and by(8.7.3.34)
φc(a) = τ∗

a c−c ∈ Â(k(a)). This is also a homomorphism of Abelian variety, by(13.5.1.4), as φc(e) = e.

Cor.(13.5.4.3) [φ-Construction]. It is clear from the definition above that L 7→ φL is a group
homomorphism Pic(A) 7→ Hom(A, Â).

Cor.(13.5.4.4).For x ∈ A(k), φτ∗
xL = φL.

Proof: This follows from see-saw lemma, by observing that stalks of the line bundles in(13.5.4.2)
are τ∗

a+xL − τ∗
xL and τ∗

aL − L resp.. □

Cor.(13.5.4.5). (1, φL)∗pA = L ⊗ [−1]∗L.

Proof:

(1, φL)∗pA = (x 7→ (x,−x))∗(1,−φL)∗pA = (x 7→ (x,−x))(−m∗L+ pr∗
1 L+ pr∗

2 L) = L ⊗ [−1]∗L.

□

Prop.(13.5.4.6)[Poincaré Class is Even].Let p ∈ Pic(A× Â) be the Poincaré class of A, then p is
even in Pic(A× Â).

Proof: Let b ∈ Â, then

([−1]∗(p))|A×{b} = [−1]∗(p|A×{−b}) = [−1]∗(−b) = b.

and
([−1]∗(p))|{0}×Â = [−1]∗(p|{0}×Â) = 0.

Thus [−1]∗p ∼= p by(8.7.3.34) and the see-saw principle(5.10.1.22). □



1324 CHAPTER 13. ARITHMETIC GEOMETRY

Lemma(13.5.4.7). If b ∈ Pic(A) that φb = 0, then for any ample c ∈ Pic(A), there is some a ∈ A(K)
that b = τ∗

a (c)− c.

Proof: [Mumford, P77]. □

Prop.(13.5.4.8) [Characterizing Â].For c ∈ Pic(A), [−1]∗(c) − c ∈ Pic0(A), the following are
equivalent:

1. b ∈ Pic0(A).
2. ker(φb) = A.
3. For every ample line bundle c, there is an a ∈ A that b ∼= τ∗

a (c)− c.
4. There is an ample line bundle c and an a ∈ A that b ∼= τ∗

a (c)− c.
5. c is odd.
6. For any scheme X, the map Mor(X,A)→ Pic(X) : φ 7→ φ∗(c) is linear.

Proof: 2→ 3 is by the lemma(13.5.4.7). 4→ 1 is by(13.5.4.2).
1 → 2: By(8.7.3.22), It suffices to prove for K alg.closed. Firstly we shows there is a morphism

underlying the map
φ : A× Pic0(A)→ Pic0(A) : (a, b) 7→ τ∗

a (b).

For T = A×Pic0(A), consider the line bundle c = (m× idPic0(A))∗(p) on A×T . Notice the restriction
of m× idPic0(A) on A× {a} × {b} is given by τa,

c|A×{a}×{b} = τ∗
a (b),

and also c|{0}×T = p, so the family c − pr∗
2(p) of Pic0(A) parametrized by T gives an morphism

T → Pic0(A) extending φ.
Next, because φ(A×{0}) = 0, by rigidity lemma(5.10.1.20) we have τ∗

a (b) ∼= b for any line bundle
b.

6 → 5 is trivial, and 6 is clearly equivalent to the assertion when X = A, and it is equivalent to
2 by(13.5.1.29).

We next prove [−1]∗(c)− c ∈ Pic0(A): because [−1]τa = τ−a[−1], we have

τ∗
a ([−1]∗(c))− [−1]∗(c) = [−1](τ∗

−a(c)− c).

since τ∗
−a(c)− c ∈ Pic0(X) by(13.5.4.2), the equation is equal to c− τ∗

−a(c) by implication1→ 2→ 6.
and this further equals τ∗

a (c)− c by the theorem of square(13.5.1.23). Then

τ∗
a ([−1]∗(c)− c)− ([−1]∗(c)− c) = 0.

Hence [−1]∗(c)− c ∈ Pic0(A) by the implication 2→ 3→ 4→ 1.
5→ 1: Let c be an odd element, then −2c = [−1]∗(c)− c ∈ Pic0(A) by what just proved, we have

c ∈ Pic0(A), then φc has image in the kernel of [2] on Â, by the implication 1→ 2, thus it has trivial
image, by(13.5.6.14). □

Cor.(13.5.4.9).L 7→ φL induces an injective map

NS(Ak) = Pic(Ak)/Pic0(Ak) ↪→ Homk(Ak, Âk).
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Cor.(13.5.4.10)[Abelian Varieties are Finite Torsion-Free].For an Abelian variety A, NS(Ak)
is a finite free Z-module. (Although this is true for any complete variety).

Proof: This follows from(13.5.4.9) and(13.5.6.9). □

Prop.(13.5.4.11)[Ample Implies Non-Degenerate].A class L ∈ Pic(A) is ample iff kerφL is finite
and H0(A,nc) ̸= 0 for some n > 0.

In particular, an effective line bundle on A is ample iff kerφL is finite.

Proof: Cf.[Diophantine Geometry, P253] or [Conrad notes].? □

Cor.(13.5.4.12)[Dual Abelian Variety].Let k ∈ Field and A ∈ AbVar /k, then

A∨ = Pic0
X/S = Pic0

X/S,red = PicτX/S

is also an Abelian variety, and dimA = dim Â = dimkH
1(A,OA).

Proof: Take an ample line bundle L on A, then φL : A→ Â has finite kernel, thus dim Â ≥ dimA,
but by(13.5.3.5) and(8.7.3.24), dimkH

1(A,OA) = Te(Â) ≤ dimA, thus it is regular by(4.3.5.17).
PicτX/S = Pic0

X/S as we can pass to the k = k, and use the fact Abelian varieties are torsion-
free(13.5.4.10). □

Def.(13.5.4.13)[Non-degenerate Line Bundles].A non-degenerate line bundle on an Abelian
variety is a line bundle L s.t. K(L) = kerφL is a finite group scheme, i.e. φL is an isogeny.

Prop.(13.5.4.14)[Ample Line Bundles induce Isogenies].For any ample line bundle c on A, the
morphism φc : A→ Â is an isogeny, because it is surjective by(8.1.5.14).

Lemma(13.5.4.15).For k ∈ Field and A ∈ AbVar /k, L ∈ Pic(A), consider the double Picard
map(8.7.3.37) κA : A→ ̂̂

A, then φL = φ̂L ◦ κA : A→ Â.

Proof: Cf.[van Der Geer, P100]. □

Prop.(13.5.4.16)[Double Duality Theorem].For k ∈ Field and A ∈ AbVar /k, the double Picard
map(8.7.3.37) A→ ̂̂

A is an isomorphism.

Proof: Cf.[van Der Geer, P101].? □

5 Cohomology of Line Bundles
Prop.(13.5.5.1).Hn(A×A∨, pA) = δn,g.

Proof: Cf.[Conrad, P62]. □

Prop.(13.5.5.2)[Riemann-Roch].Let A be an Abelian variety of dimension g, and L ∈ Pic(A), then
χ(L) = c1(L)g/g! and χ(L)2 = deg(φL).

Proof: Cf.[Van de Geer, P131]. □

Cor.(13.5.5.3).Let f : X → Y be an isogeny of Abelian varieties, then χ(f∗L) = deg(f)χ(L).

Proof: □
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Prop.(13.5.5.4)[Index]. If L is a non-degenerate line bundle on an Abelian variety A over a field k,
then there is a unique integer 0 ≤ i ≤ g s.t. H i(X,L) ̸= 0. Such an i is called the index of L.
Notice index0 just means it is effective.

Proof: □

Thm.(13.5.5.5)[Kempf-Mumford-Ramanujam].Let L be a line bundle on an Abelian variety A,
and fix an ample line bundle H on A, let Φ be the Hilbert polynomial of L w.r.t. H, then

• The multiplicity of 0 in Φ equals dimK(L).
• If L is non-degenerate, then all roots of Φ in C are real, and the number of positive roots equals
i(L).

Proof: Cf.[Van de Geer, P139,140]. □

Cor.(13.5.5.6).Let L be a non-degenerate line bundle on A and f : B → A is an isogeny of Abelian
varieties, then i(L) = i(f∗L).

Proof: This follows from the relation of Hilbert polynomial resulted from(13.5.5.3) and the above
theorem(13.5.5.5). □

6 Isogenies and Tate Modules

Isogenies

Prop.(13.5.6.1)[Isogenies of Abelian Varieties].Let k ∈ Field and f : X → Y ∈ AbVar /k, the
following are equivalent:

• f is an isogeny.
• f is surjective and dimX = dim Y .
• ker f is a finite group scheme and dimX = dim Y .
• f is finite.

The set of isogenies from X to Y is denoted by Isog(X,Y ). Isog(X,X)∪ {0} is denoted by Isog(X).

Proof: This follows from the theory of algebraic groups. □

Def.(13.5.6.2)[Isogenous Abelian Varieties].For k ∈ Field and A,B ∈ AbVar /k, write A ∼ B
to mean that A,B is isogenous. This is an equivalence relation.

Prop.(13.5.6.3) [Separable Isogenies].Let f : X → Y be an isogeny of Abelian varieties over k,
then

• For any Q ∈ Y (k), #f−1(Q)(k) = degs(f), and for any P ∈ X, eP (f) = degi(f).
• The map: X[f ]→ Gal(K(Xk)/φ

∗(K(Yk))) : P 7→ τ∗
P is an isomorphism of groups.

• f is unramified iff it is étale iff it is separable, and in this case, K(Xk)/K(Yk) is an Abelian
Galois extension of degree deg(f).

Proof: 1: By(5.10.3.4), this holds for Q in a dense open subset of Y , thus by homogeneity, it holds
for all Q. The second assertion follows from the fact after shrining f is finite locally free of rank
deg(f) by using homogeneity on X.

2: This is clearly a group homomorphism. By Galois theory, it suffices to show it is injective,
which is clear.

3: This follows from(13.5.6.1) and generic unramifiedness(5.6.5.9). □
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Prop.(13.5.6.4) [Isogenous is an Equivalence Relation]. If k ∈ Field, X, Y ∈ AbVar /k and
f ∈ Isog(X,Y ), d = deg(f), then there exists g ∈ Isog(Y,X) s.t. g ◦ f = [d]X , f ◦ g = [d]Y .

Proof: As ker(f) is a finite group scheme of rank d, [d] ker(f) = 0, so [d] factors through f via
g : Y → X, so g ◦ f = [d]X . Then also [d]Y ◦ f = f ◦ [d]X = f ◦ (g ◦ f) = (f ◦ g) ◦ f , thus [d]Y = f ◦ g
as f is a quotient map. □

Prop.(13.5.6.5) [Dual Isogenies].Let A,A′ ∈ AbVar /k and φ ∈ Hom(A,A′), then we get a dual
homomorphism φ̂ ∈ Hom(Â′, Â). Then:

• ̂̂φ = φ.
• deg(φ̂) = deg(φ).

• φ̂+ ψ = φ̂+ ψ̂.

• [̂m]E = [m]
Ê
.

Proof: 1: This is formal.
2: [Conrad, P66].?
3: This is clear from the modular description of Â.
4: This follows from 3. □

Hom(X,Y )

Def.(13.5.6.6)[Simple Abelian Varieties].A simple Abelian variety is an Abelian variety that
has no non-trivial Abelian subvarieties.

Prop.(13.5.6.7)[Poincaré’s Complete Reducibility Theorem].Let B be an Abelian subvariety
of A, then there exists an Abelian subvariety C of A that the addition gives an isogeny

B × C → A.

Proof: Choose an ample line bundle c on A, let ι : B → A be the inclusion and ι̂ : Â→ B̂ the dual
map, then

(ι̂ ◦ φc)|B = φι∗(c).

Since ι∗(c) is also ample, φι∗(c) is an isogeny, thus has finite kernel. Let C = ker(ι ◦ φc), then we
have C ∩B is finite, whence B ×C → A has finite kernel. The dimension theorem(8.1.4.36) applied
to ι ◦ φc shows

dimC + dim B̂ = dim Â.

and this together with(13.5.4.12) shows B × C → A is a surjection, because A is irreducible. Thus
it is an isogeny. □

Cor.(13.5.6.8).For k ∈ Field, A ∈ AbVar /k, there are simple Abelian subvarieties B1, . . . , Bn of A
that the inclusions give an isogeny

B1 × . . .×Bn → A.

Prop.(13.5.6.9)[Hom(A,A′) is Torsion-Free and F.g.].Let k be a field and A,A′ ∈ AbVar /k, then
Hom(A1, A2) w.r.t. the addition is a f.g. torsion-free Abelian group of rank at most 4g2.

Proof: Assume [m] ◦φ = 0, then φ ◦ [m] = 0, and use the fact [m] is surjective(13.5.6.14). The last
assertion follows from(13.14.1.1). □
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Def.(13.5.6.10)[Quasi-Isogenies].For A,A′ ∈ AbVar /k, HomQ(A,A′) = Hom(A,A′) ⊗ Q is called
the set of quasi-isogenies from A to A′.

Define the category Isog /k to be the category consisting of Abelian varieties over k with mor-
phisms Mor(A,A′) = Hom(A,A′) ⊗ Q. Notice f : A → A′ ∈ AbVar /k is an isogeny iff f is an
isomorphism in Isog /k, by(5.4.4.20).

Thus by(13.5.6.8), Isog /k is a semisimple Q-linear Abelian category.

Prop.(13.5.6.11).For A,A′ ∈ AbVar /k, if A ∼ A′, then EndQ(A) = EndQ(A′). Moreover, EndQ(A)
is a semisimple Q-algebra, and it is simple iff A is simple.

Proof: These follow from(13.5.6.8). □

Tate Modules

Prop.(13.5.6.12).Let S ∈ Sch be locally Noetherian, and A ∈ AbVarg /S, n ∈ Z+, then A[n] is a
finite locally free S-group scheme of order n2g.

Proof: ? □

Cor.(13.5.6.13).For an Abelian variety X and any n > 0, the group of geometric points of order n
in X is finite.

Prop.(13.5.6.14) [Multiplication Map, Weil].Let k ∈ Fieldp, A ∈ AbVar /k, and n ∈ Z ∩ k×,
then [n] : A→ A is finite faithfully flat of degree n2 dimA. In particular it is an isogeny(13.5.6.1), and

• If n ∈ Z ∩ k∗, then [n] is finite étale and A[n] ∼= (Z/nZ)2 dimA.
• If n = 0 ∈ k, then [n] is not separable.
• If p > 0, then ker([p]) ∼= (Z/pZ)r × α2g−2r

p × µrp for some 0 ≤ r ≤ g. In particular, A[pe] =
(Z/(pe))r for any e ≥ 0. This r is called the p-rank of A. It is invariant under isogenies.

Proof: 1, 2: Let Z = ker([n]), then it is proper. By(13.5.1.25), choose an ample line bundle
L = L(D) ∈ Pic(A), then OZ = Ln(n+1)/2

Z ⊗ [−1]∗Ln(n−1)/2
Z . As LZ and [−1]∗LZ are both ample, OZ

is ample. Now(5.4.4.20) shows Z is finite. Thus by dimension equation, [n] is finite and faithfully
flat.

The action of [n] on the tangent space at the origin is given by multiplying by n by(8.2.2.1),
thus it is unramified at the origin iff n ∈ Z ∩ k∗ by(5.6.5.12), and also on any other closed points by
homogeneity. Thus if n ∈ Z ∩ k∗, [n] is finite étale, and otherwise [n] is not separable, by(5.6.5.12),
as it is not generically unramified.

To calculate A[n] in the étale case, notice [n]∗D = n2D, and the intersection number formula

n2g(D ·D · . . . ·D) = ([n]∗D · [n]∗D · . . . · [n]∗D) = deg([n])(D ·D · . . . ·D)

where the intersection is g-fold, thus (D ·D · . . . ·D) equals the degree of the projection embedding
of X via L(D) thus positive, so we get deg([n]) = n2g = #A[n] as [n] is finite étale. To see the
structure of A[n], notice this is true for any m|n.

3: ?Cf.[Conrad]. The last assertion follows from the fact the fact [p] is surjective and the structure
theory of Abelian groups. □
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Def.(13.5.6.15)[Tate Modules].Let k ∈ Field, A ∈ AbVar /k. For ℓ ∈ P\ char k, define Tℓ(A) =
lim←−n≥0A[ℓn], called the Tate module of A. Then it is naturally a Zℓ-module and isomorphic to Z

2g
ℓ

by(13.5.6.14).
Thus we can define Vℓ(A) = Tℓ(A) ⊗Zℓ Qℓ. There are Galk actions on them, as [ℓn] is étale and

Galk preserves A[ℓn] because O is Galk-invariant.
For ℓ = char k = p > 0, we can also define Tp(A), which is isomorphic to Zrp for some 0 ≤ r ≤ g

by(13.5.6.14), but there is not Galois action on it.
Def.(13.5.6.16)[Adelic Tate Modules]. Situation as in(13.5.6.15), if char k = 0, define the Adelic
Tate module to be

Tf (A) =
∏
ℓ∈P

Tℓ(A), Vf (A) =
′∏

ℓ∈P
(Vℓ(A), Tℓ(A)).

Prop.(13.5.6.17) [Étale Cohomology and Tate Modules].Let k = ks and A ∈ AbVar /k, and
ℓ ∈ P\ char k, then

• There is a canonical isomorphism H1
ét(A,Zℓ) ∼= HomZℓ(Tℓ(A),Zℓ). Thus H1

ét(A,Zℓ) ∼= Z
2g
ℓ

by(13.5.6.14).
• The cup product define isomorphisms ∧rH1

ét(A,Zℓ) ∼= Hr(A,Zℓ) for any r > 0.

Proof: Cf.[Mil08]P55.? □
Cor.(13.5.6.18).There is a natural Galk-invariant pairing ∧rTℓ(A)×Hrét(A,Zℓ)→ Zℓ.
Prop.(13.5.6.19)[Semisimplicity].Let F ∈ GField, ℓ ∈ P\ charF,A ∈ AbVar /F , then the action
of GalF on Vℓ(A) is semisimple.
Proof:

□

7 Polarizations and Weil Pairings

Polarizations and Rosati Involutions

Def.(13.5.7.1)[Polarizations].Let k ∈ Field, a polarization of an Abelian variety A ∈ AbVar /k
is an isogeny λ : A → Â that λk = φL for some ample invertible sheaf L ∈ Pic(Ak). A principal
polarization of an Abelian variety is a polarization of degree1.

The category of Abelian varieties over k of dimension g together with a polarization of degree d
is denoted by AbVardim=g,polar=d /k.

Prop.(13.5.7.2)[Zariski’s Trick].For any k ∈ Field and A ∈ AbVar /k, (A × A∨)4 is canonically
principally polarized.
Proof: Cf.[Mil08]P60. □

Prop.(13.5.7.3) [Finitely Many Polarizations].Let k ∈ Field and A ∈ AbVar /k, then for any
d ∈ Z+, there are only f.m. isomorphism classes of polarizations on A of degree d.
Proof: Cf.[Mil08]P63. □

Def.(13.5.7.4)[Rosati Involution].
Prop.(13.5.7.5).Let k ∈ Field and (A, λ) ∈ AbVar /k, then

• # Aut((A, λ)) <∞.
• for any n ≥ 3, any automorphism of (A, λ) acting trivially on A[n] is the identity.
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Weil Pairings

Prop.(13.5.7.6)[Weil Pairing for Elliptic Curves].Let E ∈ Ell /k, then for any m ∈ Z∩ k∗, there
is a non-degenerate pairing

em : E[m]× E[m]→ µm

that is alternating, non-degenerate and Galk-invariant.
Moreover, emm′(S, T ) = em([m′]S, T ) for S ∈ E[mm′] and S ∈ T [m]. In particular, for ℓ ∈

P\ char k, we can define a Weil pairing on the Tate module

e : Tℓ(E)× Tℓ(E)→ µℓ∞ .

Proof: Let T ∈ E[m], then by(13.9.1.21), there exists some f ∈ K(E)∗ s.t. div(f) = m[E]−m[O].
Let T ′ ∈ E[m2] s.t. mT ′ = T , then there exists a function g ∈ K(E)∗ s.t.

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]
([T ′ +R]− [R]).

Notice f ◦ [m] and gm have the same divisor, so we may assume f ◦ [m] = gm. Then for any S ∈ E[m]
and X ∈ E, g(S +X)m = f(mX) = g(X)m, so E → P1 : g(X + S)/g(X) is constant and has value
in µm, denote it by e(T, S).

For bilinearity, Cf.[Sil16]P94?.
For alternating, Cf.[Sil16]P94?.
For non-degeneracy, if em(S, T ) = 1 for any T ∈ E[m], then g is E[m]-invariant, which implies

g = h◦ [m] for some h ∈ K(E)∗ by(13.5.6.3) and the fact [m] is separable. Then (h◦ [m])m = f ◦ [m],
so f = hm, and div(h) = [T ]− [O], so T = O.

Galois invariance is clear.
The last assertion follows by taking g′ = g ◦ [m′] and f ′ = fm

′ . □

Cor.(13.5.7.7)[Primitive Pairing].Let E ∈ Ell /k, then for any m ∈ Z ∩ k∗, µm ⊂ K(E[m]), and
there exists some S, T ∈ E[m] s.t. em(S, T ) is a primitive m-th roots of unity.

Proof: If the subgroup generated by all em(S, T ) is µd, then em([d]S, T ) = 1 for any S, T ∈ E[m],
so [d]S = 0 by non-degeneracy, so d = m because #E[m] = (Z/(m))2. Then the Galk-invariance of
e shows µm ⊂ K(E[m]). □

Prop.(13.5.7.8)[Duality with Isogenies].Let φ : E1 → E2 be an isogeny between elliptic curves
over a field k, m ∈ Z ∈ k∗, then for S ∈ E1[m], T ∈ E2[m],

em(S, φ̂(T )) = em(φ(S), T ).

In particular, for S ∈ Tℓ(E1) and T ∈ Tℓ(E2), e(S, φ̂(T )) = e(φ(S), T ).

Proof: Cf.[Sil16]P97?. □

Prop.(13.5.7.9).Let E ∈ Ell /k and φ ∈ End(E), φ ∈ End(E), ℓ ∈ P\ char k, then det(φℓ) =
deg(φ), tr(φℓ) = 1 + deg(φ)− deg(1− φ).

Proof: For any v, v′ ∈ Tℓ(E), use the Weil pairing:

e(v, v′)deg(φ) = e([deg(φ)]v, v′) = e(φℓv, φℓv′) = e(v, v′)det(φℓ),

thus deg(φ) = det(φℓ). The latter equality follows from the identity tr(A) = 1 + det(A)− det(1−A)
for any A ∈M2(R). □
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8 Over Archimedean Local Fields
Prop.(13.5.8.1) [Complex Abelian Varieties and Complex Tori].By(11.9.5.9) and
GAGA(11.8.7.17), the category of Abelian varieties over C is the same as the category of complex
tori V/Λ with a Riemann form ω.

Such a complex tori V/Λ with a Riemann form ω is called a polarizable integral Hodge
structure.

Prop.(13.5.8.2)[Rosati Involutions are Positive].Let X = V/Λ ∈ AbVar /C, then for any α ∈
EndQ(X), there exists α′ ∈ EndQ(X) s.t.

ω(αx, y) = ω(x, α′y).

And this determines an involution on EndQ(X), called the Rosati involution. Notice this is com-
patible with that defined in(13.5.7.4), by using(11.9.5.10).

Then this is a positive involution on EndQ(X).

Proof: Notice the form ωJ : (x, y) 7→ ω(x, Jy) is symmetric and positive, and

ωJ(αx, y) = ω(αx, Jy) = ω(x, α′Jy) = ω(x, Jα′y) = ωJ(x, α′y).

So this involution is positive by(13.6.2.19). □

Thm.(13.5.8.3) [Frobenius-Lefschetz-Poincaré-Riemann-Weierstrass].The functor A 7→
H1(A,Z) defines an equivalence from AbVar /C to the category of polarizable integral Hodge struc-
tures of type {(−1, 0), (0,−1)}.

Proof: ? □

Elliptic Curve Case

Prop.(13.5.8.4)[Complex Tori as Elliptic Curves].Let Λ be a complete real lattice of C, then we
can make C/Λ into a Riemannian surface as the quotient space of C. Then it is positive by??t is a
smooth curve of genus 1 with the origin as the rational point, which means it is an elliptic curve.

Prop.(13.5.8.5)[Elliptic Curve as Complex Tori].For an elliptic curve C/Λ over C, by(10.6.4.7),
the Weierstrass functions(10.6.4.5) P,P′ are just the rational functions in(13.9.1.6), so the map

z 7→ [P(z),P′(z), 1]

is biholomorphic from C/Λ to the elliptic curve defined by the Weierstrass equation y2 = 4x3 −
g2(Λ)x− g3(Λ) that g3

2 − 27g2
3 ̸= 0. And it also preserves the group structure.

Proof: To show that the homomorphism preserves group structure, notice that if z1, z2, z3 maps
to three points that is colinear, then they satisfy a equation

f(z) = aP(z) + bP′(z) + c.

If b ̸= 0, then this is a meromorphic function with three poles, thus three zeros, which is exactly
z1, z2, z3, so by(10.6.4.2), z1 + z2 + z3 ≡ 0 mod Λ. If b = 0, then z3 = 0, which corresponds to the
point (1, 0, 0) ∈ P2, then the same argument shows z1 + z2 + 0 ≡ 0 mod Λ. □
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Lemma(13.5.8.6)[Isogenies and Homogeneities]. If E1, E2 are elliptic curves in P2 corresponding
to Λ1,Λ2 via(13.5.8.5) resp., then the natural map

{isogenies E1 → E2} → {non-constant holomorphic maps φ : C/Λ1 → C/Λ2, φ(0) = 0}

is a bijection.

Proof: By(11.9.5.2), it suffices to show for any lattices Λ1,Λ2 and α ∈ C∗ that αΛ1 ⊂ Λ2, the map

[P(z,Λ1),P′(z,Λ1), 1]→ [P(αz,Λ2),P′(αz,Λ2), 1]

is a morphism. For this, notice P(αz,Λ2) is an elliptic function for Λ1, thus by(10.6.4.7), it is a
rational function of P(z,Λ1) and P′(z,Λ1). □

Lemma(13.5.8.7).Let E/C be an elliptic curve in P2 defined by a Weierstrass equation, then there
exists a lattice Λ ⊂ C, unique up to homothety, that the embedding given in(13.5.8.5) induces an
isomorphism C/Λ ∼= E(C).

Proof: This is a consequence of(10.6.4.8) and(13.9.1.13). □

Prop.(13.5.8.8)[Elliptic Curves and Complex Tori].The following categories are equivalent:
• Category of elliptic curves over C with morphisms given by isogenies.
• Category of complex tori with morphisms homomorphisms preserving 0.
• Category of lattices in C with homotheties as morphisms.

Proof: This is a consequence of(13.5.8.5)(13.5.8.6) and(11.9.5.2). □

Prop.(13.5.8.9)[Complex Multiplication].Let E/C be an elliptic curve, and let ω1, ω2 be a gener-
ator of the lattice Λ corresponding to E(13.5.8.8), then one of the following is true:

• End(E) ∼= Z.
• Q(ω2/ω1) is an imaginary quadratic extension of Q and End(E) is isomorphic to an order of

Q(ω2/ω1).

Proof: Cf.[Sil16]P176.? □

Prop.(13.5.8.10).Let E/C be an elliptic curve and Λ a lattice in C that E(C) ∼= C/Λ, then
• there is a natural isomorphism H1(E(C),Z) ∼= Λ : γ 7→

∫
γ dz.

• There is a natural isomorphism H1(E(C),Z/(m)) ∼= E[m].

Proof: Cf.[Sil16]P176. □

Over R

Prop.(13.5.8.11).Let E ∈ Ell /R, then there exists a unique τ in the set

C = {i t|t ≥ 1} ∪ {ei θ|π/3 ≤ π/2} ∪ {1/2 + i t|t ≥
√

3/2}.

s.t. j(τ) = j(E). And by(13.9.6.3), each τ ∈ C corresponds to exactly two isomorphism classes of
elliptic curves over R.
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Proof: Firstly these τ satisfies j(τ) ∈ R because by the power expansions of j(τ)(16.2.5.10), for
τ = it or 1/2 + it, q ∈ R, thus j(τ) ∈ R. For τ = eiθ, j(eiθ) = j(−e−iθ) = j(eiθ) as j ∈M0(Γ(1)).

Next it can be proven j(i∞) = +∞ and j(1/2+ i∞) = −∞, and j is injective on C by(16.2.5.10).
Thus the assertion follows by continuity. □

Remark(13.5.8.12).Notice by action of α =
[
0 −1
1 −1

]
∈ SL(2,Z) on {eiθ|π/3 ≤ π/2}, we can also

replace C by
C′ = {i t|t ≥ 1} ∪ {1/2 + i t|t > 1/2}.

9 char k > 0 Case

Prop.(13.5.9.1). If k ∈ Field,#k <∞, then for any g, d > 0,#AbVardim=g,polar=d2
/k <∞.

Proof: Cf.[Mil08]P54. □

Prop.(13.5.9.2).Let p ∈ P, q ∈ pZ, and (A, λ) ∈ AbVarpolar /Fq with Rosati involution † ∈ End(A)Q,
then

Frob†
q,A ◦Frobq,A = [q].

Proof: Cf.[Mil08]P76.? □

Honda-Tate Theory

References are [Tat66] and [Hon68].

Prop.(13.5.9.3)[Weil Conjecture for Abelian Varieties].For p ∈ P, r ∈ Z+, q = pr, ℓ ∈ P\ℓ, and
A ∈ AbVarg /Fq, let φA = φr be the Frobenius of A, and let Pφ(X) be the characteristic polynomial
of the action of φA on Tℓ(A), then

• PA,ℓ(X) ∈ Z[X], and is invariant of ℓ chosen. Thus we omit ℓ from now on.

• PA(X) =
∏2g
i=1(X − αi), where αi ∈ C and |αi| = q1/2.

• #A(Fqm) =
∏2g
i=1(1− αmi ).

In particular,
|#A(Fqm)− qmg| ≤ 2gqm− 1

2 + (4g − 2g − 1)qm(g−1).

Proof: These follow from(13.5.6.17) and Weil conjecture(13.12.2.6)(19.1.4.4). □

Thm.(13.5.9.4)[Honda-Tate].For p ∈ P, q ∈ pZ+ and A ∈ AbVarg /Fq simple, by(13.5.9.3), for any
embedding Q(φA) ↪→ C, ι(α) is a Weil q-number(12.4.2.13), and we get a map of sets

A 7→ [φA] : {simple Abelian varieties/Fq}/(∼ isogenies)→Weil(q1/2)/(∼ conjugations).

Then this is a bijection.

Proof: The injectivity follows from(13.14.1.3) and the irreducibility of the action of φA on Vℓ(A)?,
and the surjectivity is proven by Honda???(or [Chai-Oort]). □

Thm.(13.5.9.5)[Description of End(A)Q in terms of φA].For p ∈ P, q ∈ pZ+ and A ∈ AbVarg /Fq
be simple, let D = End(A)Q, ϖ = φA ∈ D, then
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• D is a central division ring over Q(ϖ).

• For any v ∈ ΣQ(ϖ), invv(D) = ordv(ϖ)
ordv(q) [Q(ϖ)v : Qp] ∈ Q/Z. In particular, for v /∈ Σp∞

Q(ϖ),
∈v (D) = 0.

• [D : Q]red = 2 dimA.

Proof: Cf.[Tat66] or [Waterhouse and Milne, 1971].? □

10 Reductions

over DVRs

Prop.(13.5.10.1) [Good Reductions].Let (R,K, k) be a DVR and A ∈ AbVar /K, then A has
good reduction over R(13.8.1.2) iff there exists A ∈ AbVar /R with generic fiber A. In this case,
A(K) ∼= A(R)→ Ã(k) is a surjective map of Abelian groups.

It will be shown in(13.5.15.7) that a good reduction is unique if it exists.

Def.(13.5.10.2)[Conductor].Let E be an elliptic curve over F , then the conductor of E is defined
in [Sil99]P380.?

If F = Q, then the conductor NE =
∏
p∈P p

fp , where

fp =


0, E has good reduction at p
1, E has multiplicative reduction at p
2, E has additive reduction at p & p ̸= 2, 3
2 + δp, E has additive reduction at p & p = 2, 3

where 0 ≤ δ2 ≤ 6, 0 ≤ δ2 ≤ 3.

Proof: □

Prop.(13.5.10.3)[Semistable Reduction Theorem].
• If K ′/K is a finite extension, and E has stable or semistable reduction, then the reduction type

of EK′ is the same as that of E.
• If K ′/K is a finite unramified extension, then the reduction type of EK′ is the same as that of
E.

• There exists a finite extension K ′/K s.t. EK′ is of stable or split semistable reduction type.

Proof: 1: For these two cases, c4 and ∆ cannot be reduced anymore to another minimal Weierstrass
equation by(13.9.4.4).

2: It suffices to consider the additive reduction case: ? The short Weierstrass equation case is
clear, for the general case, use Tate’s algorithm.

3: Use the Legendre or Deuring form(13.9.1.16)(13.9.1.17) to analyze ∆ and c4. □

Thm.(13.5.10.4)[Néron-Ogg-Shafarevich Criterion].Let (R,K, k) be a DVR and A ∈ AbVar /K,
ℓ ∈ P\ char k, then the following are equivalent:

• A has good reduction.
• The module |A[m]| is unramified as a GalK-module, for all m ∈ Z\ char k.
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• The Tate module Tℓ(A) is unramified for all(some) primes ℓ ∈ P\ char k.
• The module A[m] is unramified for infinitely many m ∈ Z\ char k.

Proof: 2→ 3→ 4 are obvious.
For the rest, Cf.http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.

pdfP20 or [Mil08]P141.?
1→ 2: Let K ′ be the finite extension of K generated by E[m], then (13.5.10.3) implies EK′ has

the same reduction type as E. Then by(13.9.4.20), E[m] → ẼK′(k′) is an injection. So clearly Iv
acts trivially on E[m].

4 → 1: Let m ∈ Z\ char k s.t. E[m] is unramified and m > #E(Kur)/E0(Kur), where
#E(Kur)/E0(Kur) <∞ by(13.9.4.16). Then because E[m] ∼= (Z/(m))2 ⊂ E(Kur), E0(Kur) contains
some subgroup isomorphic to (Z/(ℓ))2 for some ℓ ∈ P\ char k, thus by(13.9.4.20), Ẽsm(k) contains
some subgroup isomorphic to (Z/(ℓ))2. But by(13.9.1.15), this is possible only when Ẽsm = Ẽ. Thus
EKur has good reduction, so E also has good reduction by(13.5.10.3). □

Cor.(13.5.10.5). If 0 → A′ → A → A′′ → 0 are exact sequences of Abelian varieties over K and A
has good reduction, then A′, A′′ also have good reductions.

Cor.(13.5.10.6)[Isogeny and Good Reductions].Let (R,K, k) be a DVR and A→ A′ ∈ AbVar /K
is an isogeny, then A has good reduction iff A′ does.

Proof: Use(13.5.10.4) and the fact if ℓ ∈ P is prime to char k and degφ, then φℓ : Tℓ(A)→ Tℓ(A′)
is an isomorphism of GalK-modules. □

Prop.(13.5.10.7). If K ∈ p-LField, ℓ ∈ P\p and A ∈ AbVar /K satisfies ρℓ,A(GalK) has finite image,
then A has potential good reduction.

Proof: It follows from class field theory that the image of IK is a quotient of O∗
K , which contains

a pro-p-group of finite index, and End(Tℓ(A)) contains a pro-ℓ-group of finite index, so the image is
finite. Then A has potential good reduction by(13.5.10.4). □

Thm.(13.5.10.8)[Néron-Ogg-Shafarevich Criterion for Elliptic Curves].Let K be a CDVR,
ℓ ∈ P\ char k and A ∈ AbVar /K, then

• A has good reduction iff Tℓ(A) is an unramified GalK-module.
• A has good or semistable reduction iff IK acts unipotently on Tℓ(A).
• A has potential good reduction iff Tℓ(E) is potentially unramified, i.e. ρℓ,A(IK) is finite.

Proof: 1 follows from(13.5.10.4).
2: We only prove for dimA = 1 case?: As IK acts trivially on det(Tℓ(E)) by(15.3.4.3), it acts

unipotently on Tℓ(E) iff it has a fixed vector. If it has a fixed vector, then Ẽsm(k) contains a subgroup
isomorphic to Z/(ℓ), which is possible only if E has semistable or good reduction, by(13.9.1.15)
and(13.5.10.3). The converse is proved the same way as that of(13.5.10.4).

3 follows from(2.2.5.11). □

Cor.(13.5.10.9). If K is a CDVR with residue characteristic p and φ : E → E′ is an isogeny of degree
p of elliptic curves over K, then E has good reduction of ordinary type/supersingular type iff E′

does.

http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf
http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf
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Proof: By(13.5.10.6) we can assume both E,E′ have good reductions, then their minimal Weier-
strass equations are their Néron models, thus by definition φ extends to a map φ̃ : Ẽ → Ẽ′. Let
ψ = φ̂, then we also have ψ̃ : Ẽ′ → Ẽ s.t. ψ̃ ◦ φ̃ = [p]

Ẽ
, and φ̃ ◦ ψ̃ = [p]

Ẽ′ . Thus [p]
Ẽ′ ◦ φ̃ = φ̃ ◦ [p]

Ẽ
,

which implies degs([p]Ẽ) = degs([p]Ẽ′), thus we are done by(13.9.3.5). □

Prop.(13.5.10.10) [Isogeny and Semistability]. If A,B ∈ AbVar /k are isogenous, then A is
semistable iff B is semistable.

Proof: ? □

over Dedekind Domains

Def.(13.5.10.11)[Conductor].For an elliptic curve E over a F ∈ GField, the conductor of E is
defined to be the integral ideal of F given by

NE/F =
∏
v∈Σ0

F

pfvv

where fv is the local conductors(13.5.10.2).

Conj.(13.5.10.12)[Szpiro].For any ε > 0, there exists Cε > 0 s.t.

|NK/Q(∆E)| ≤ Cε|NK/Q(NE)|6+ε

for any E ∈ Ell /Q, where NE is the conductor of E.

Proof: □

Prop.(13.5.10.13)[No Everywhere Good Reduction over Q].There are no elliptic curve E over
Q with everywhere good reductions. There are 24 elliptic curves over Q with good reductions away
form 2, and 784 elliptic curves over Q with good reduction away from 2, 3.

Proof: Let E : y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6 be an elliptic curve over Q with ai ∈ Z and

∆ = ±1, then a1 must be odd, otherwise ∆ ≡ 5b2
6 ≡ ±1 mod 8 is impossible. Thus c4 = b2

2− 24b4 ≡
1 mod 8. And c3

4 − c2
6 = (±12)3 shows that c4 ± 12 is a square or 3 times a square, which are both

impossible by modulo 8.
For good reduction away from 2, 3? □

Prop.(13.5.10.14).Let F be a number field and A,B ∈ AbVar /F , and S ⊂ ΣF is a finite set of
places of F containing Σ∞

F and all places s.t. A or B has bad reduction, then for any ℓ ∈ P s.t.
S(ℓ) ∩ S = ∅, there exists a finite set T = T (S, ℓ, g) ∈ Σ0

∞ s.t. T ∩ (S ∪ S(ℓ)) = ∅, and

Pℓ(Ãv, t) = Pℓ(B̃v, t)⇒ A ∼ B

Proof: Cf.[Mil08]P142. □

Prop.(13.5.10.15)[Reduction Theorem].For any number field F and A ∈ AbVar /F , there exists
a finite extension L/F s.t. AL is semistable.

Proof: ? □
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11 Galois Cohomologies
Prop.(13.5.11.1) [Fundamental Exact Sequence].Let φ : X → X ′ be an étale isogeny between
Abelian varieties over a field k, then there is an exact sequence

0→ ker(φ)(ks)→ X(ks)→ X ′(ks)→ 0

by(8.1.5.5), thus taking Galois cohomology, there is an exact sequence

0→ X ′(k)/φ(X(k)) δ−→ H1(Gk, X[φ])→ H1(Gk, X)[φ]→ 0.

Cor.(13.5.11.2).By(13.5.6.14), if n ∈ Z ∩K×, then there is an exact sequence

0→ X(ks)/nX(ks) δ−→ H1(Gk, X[n])→ H1(Gk, X)[n]→ 0.

And the first map is described as follows: for P ∈ X(ks), let [n]Q = P where Q ∈ K(ks), then P is
mapped to the 1-cocycle f(σ) = σ(Q)−Q.

Prop.(13.5.11.3).Let F be a global field or the function field of a non-singular smooth curve over an
alg.closed field k, φ : X → X ′ ∈ AbVar /F an étale isogeny, then by restriction(10.1.1.10), there is
an exact sequence

0 X ′(F )/φ(X(F )) H1(GalF , X[φ]) H1(GalF , X)[φ] 0

0
∏
v∈Σfin

F
X ′(Fv)/φ(X(Fv))

∏
v∈Σfin

F
H1(GalFv , X[φ])

∏
v∈Σfin

F
H1(GalFv , X)[φ] 0

res res
.

Where v are extended to Ks arbitrarily.

Def.(13.5.11.4)[(Classical)Selmer Groups].Let F be a global field or the function field of a non-
singular smooth curve over an alg.closed field k, φ : A → A′ ∈ AbVar /F an étale isogeny, the
φ-Selmer group of A/F is a subgroup of H1(GalF , A[φ]) defined by

Selφ(A/F ) = ker
(
H1(GalF , A[φ])→

∏
v∈ΣF

H1(GalFv , A)[φ]
)
.

Notice the kernel is independent of the extension of v to F s, because any two such extensions induce
conjugate groups GalFv in GalF and use(10.1.1.12).

Def.(13.5.11.5)[Shafarevich-Tate Group].The Shafarevich-Tate group of A ∈ AbVar /F is the
subgroup of H1(GalF , A[φ]) defined by

X(A/F ) = ker
(
H1(GalF , A)→

∏
v∈Σ0

F

H1(GalFv , A)
)
.

Notice the kernel is independent of the extension of v to F s, because any two such extensions induces
conjugate groups GalFv in GalF and use(10.1.1.12).

For f : A→ B ∈ AbVar /F , there is a natural map f∗ : X(A/F )→X(B/F ).
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Prop.(13.5.11.6)[Selmer Groups and Shafarevich-Tate Groups].Let C be a proper Dedekind
scheme or a non-singular curve over a field k with fraction field F , φ : A → A′ an étale isogeny of
Abelian varieties over F , then there is an exact sequence

0→ A′(K)/φ(A(K))→ Selφ(A/K)→X(A/K)[φ]→ 0.

Proof: This exact sequence is a consequence of(13.5.11.3) and(13.5.11.4)(13.5.11.5). □
Remark(13.5.11.7)[Computability]. It is difficult to characterize A′(K)/φ(A(K)) ⊂ Selφ(A/K).

Prop.(13.5.11.8)[Selφ(A) is Finite].Let F be a global field or the function field of a non-singular
smooth curve over an alg.closed field k, φ : A → A′ an étale isogeny of Abelian varieties over F ,
then if S is a finite set of places of F containing all the places dividing deg(φ), and the places that
A has bad reductions, then any element in Selφ(A/F ) is unramified at all finite places outside S. In
particular, Selφ(A/F ) is finite, by(10.1.3.11).

Proof: By definition of Selφ and(13.5.11.3), if ξ ∈ Selφ(A/F ), then for any v ∈ Σ0
F , there is some

P ∈ A(F sv ) s.t. ξσ = σ(P ) − P ∈ A[φ] for any σ ∈ Gv. But if A has good reduction at v and
σ ∈ Iv, then σ(P )− P mapsto Õ ∈ Ãv. But notice A[φ] ⊂ A[m] which maps injectively into Ãv(kv)
by(13.9.4.20) if v is not dividing deg(φ). Thus in this case, ξσ = 0 for any σ ∈ Iv. □

Cor.(13.5.11.9) [ℓ∞-Selmer Groups]. If ℓ ∈ P\ charF , then the ℓ-primary part X(A/F )[ℓ∞] =
lim−→n≥1 X(A/F )[ℓn] is isomorphic to (Qℓ/Zℓ)δℓ × Tℓ for some δℓ ∈ N and Tℓ ∈ Abfin. And define

Selℓ∞(A/F ) = lim−→
n≥1

Selℓn(A/F ),

called the ℓ∞-Selmer group. Then by taking limits of the exact sequence in(13.5.11.6), there is an
exact sequence

0→ A(F )⊗Qℓ/Zℓ → Selℓ∞(A/F )→X(A/F )[ℓ∞]→ 0.
If we define the ℓ∞-Selmer rank rankℓ(A/F ) = rank(A/F ) + δℓ, then

Selℓ∞(A/F ) = (Qℓ/Zℓ)rankℓ(A/F ) · X̃(A/F )[ℓ∞],

where #X̃(A/F )[ℓ∞] <∞. Notice rankℓ(A/F ) is a cohomological number.

Conj.(13.5.11.10)[Tate-Shafarevich].For A ∈ AbVar /F , #X(A/F ) <∞.

Proof: □
Prop.(13.5.11.11)[Cassels-Tate Pairing].Let A ∈ AbVar /F and Â its dual, then there is a bilinear
Cassels-Tate pairing X(A/K) ×X(Â/K) → Q/Z and the kernel on both sides are the set of
divisible elements.

Proof: Cf.[Birch and Swinnerton-Dyer Conjecture, P10].? □
Cor.(13.5.11.12) [Principally Polarized Case]. If K ∈ AbVar /F has a principal polarization λ
that comes from a rational divisor D, then the pullback pairing X(A/K) ×X(A/K) → Q/Z is
alternating. In particular, if #X(A/F ) <∞, then it is a perfect square, by(2.1.4.17).

In particular, if E ∈ Ell /F and #X(E/F ) <∞, then it is a perfect square.

Proof: □
Remark(13.5.11.13).This is not right for general Abelian varieties.

The discussion of Selmer groups and ranks are continued in BSD Conjecture19.5.
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12 Néron-Tate Heights
Prop.(13.5.12.1) [Néron-Tate Heights].Let X be an Abelian variety over a global field K, L ∈

Pic(X), then there are uniquely defined bilinear form bL, additive homomorphism lL on X(K) s.t.

ĥL(x) = 1
2
bL(x, x) + lL(x) ∼ hL(x),

called the Néron-Tate height of L.

Proof: We want to use(2.1.4.13) for the Weil height(13.2.3.23) hL on X(K): apply the theorem of
the cube(13.5.1.21) to the projections πi : X×X×X → X and pullback to X via the diagonal map,
then taking the Weil heights, we will get the desired relation

hL(
3∑
i=1

xi)−
∑

1≤i<j≤3
hL(xi + xj) +

3∑
i=1

hL(xi) ∼ 0.

□

Cor.(13.5.12.2).The Néron-Tate height is a refinement of Weil heights(13.2.3.23) made for Abelian
varieties:

• The map ĥ : Pic(X) 7→ RX(K) : L 7→ ĥL is an additive homomorphism.
• (Symmetry)If φ : A→ B is a homomorphisms of Abelian varieties, then ĥφ∗(L) = ĥL ◦ φ.

• (Positivity)Let L ∈ Pic(X) be even. If L is base-free or ample, then ĥL ≥ 0.
• (Boundedness)Let L ∈ Pic(X) be even and ample(such an L exists by(13.5.1.27)), then ĥL

induces a symmetric bilinear form on X(K) satisfying {x ∈ X(K)|deg(x) ≤ d, (x, x) < C} is
finite for all C > 0

Proof: 1, 2 follow from the corresponding property of Weil heights(13.2.3.23) and the uniqueness
in(2.1.4.13).

3: Notice that the fact L is even implies ĥL = 1
2b(x, x). The ample case reduces to the base-free

case, because there is a multiple mL that is very ample, and then ĥmL = mĥL. For the base-free
case, c is the pullback of O(1) for some morphism X → Pn, thus hL is non-negative by(13.2.3.3),
and hL ∼ ĥL, thus ĥL must also be non-negative.

4 follows from Northcott’s theorem(13.2.3.24). □

Cor.(13.5.12.3)[Positive Definiteness].For any ample line bundle L ∈ Pic(A), bL induces a positive
definite symmetric bilinear form on A(K)⊗Z R

Proof: We want to use(2.1.4.14). Notice bL is just 2ĥL⊗[−1]∗L, thus satisfies the conditions
by(13.5.12.2). □

Prop.(13.5.12.4)[Tate’s Limiting argument].

Proof: Cf.[Diophantine Geometry, P285].? □

Cor.(13.5.12.5).Tate’s limiting argument gives another way of constructing Néron-Tate heights.
More generally, for any projective variety X over a global field K, if φ : X → X a morphism
over K, L a line bundle on X and k, l ∈ Z, |k| > |l| that

lφ∗(L) = kL,
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then there is a unique function ĥφ,L in the equivalent class of hL that

lĥφ,L(φ(x)) = kĥφ,L(x).

In particular, the Néron-Tate heights on an Abelian variety for an even or odd line bundle is
obtained by taking φ = [m] for some m ≥ 2.

Proof: Assume l ̸= 0, consider the subgroup N = {λr|r ∈ N}, where λ = k/l, and N acts on X(K)
by λr · x = φr(x), then hL is quasi-homogenous of degree 1, so Tate’s limiting argument(13.5.12.4)
shows

ĥφ,L(x) = lim
r→∞

λ−rhL(φr(x))

satisfies the requirement. And similarly, it is non-negative if c is ample or base-free. □

Prop.(13.5.12.6) [Zero of Heights and Torsion]. If F is a global field, A ∈ AbVar /F and L is
ample, then ĥφ,L(x) = 0 iff x is preperiodic, i.e. the sequence {x, φ(x), φ2(x), . . .} is finite.

In particular, ĥL(x) = 0 iff x is torsion.

Proof: Assume l ̸= 0. If x is preperiodic, then clearly ĥφ,L(x) = limr→∞ λ−rhL(φr(x)) = 0.
Conversely, if ĥφ,L(x) = 0, then ĥφ,L(φr(x)) = 0 for any r, then |hL(φr(x))| ≤ |ĥφ,L(φ(x))| +
C(φ,L) = C(φ,L) is bounded and also φr(x) ∈ X(k(x)), thus has bounded degree. So by Northcott’s
theorem(13.2.3.24), there are only f.m. such points. □

Cor.(13.5.12.7)[Kronecker].The height(13.2.3.5) of a ζ ∈ Q equals 0 iff it is a root of unity.

Proof: This is a special case of(13.5.12.6), where φ : P1 → P1 : [x, y] 7→ [xn, yn] and L = O(1),
thus the preperiodic points are just 0,∞ and all the roots of unity. □

Prop.(13.5.12.8)[Néron-Tate Pairings].Let K be a number field and A ∈ AbVar /K, then A× Â
is also an Abelian variety with the even Poincaré class p(13.5.4.6), thus generating a function:

ĥ
A×Â,p : A(K)× Â(K)→ R.

Then in fact this pairing is bilinear, called the Néron-Tate pairing ⟨·, ·⟩A,K .
The Weil-Tate pairing satisfies the functoriality property: If f : A → B is a homomorphism of

Abelian varieties, then ⟨f(a), b⟩B,K = ⟨a, f̂(b)⟩A,K .

Proof: Use functoriality of heights for A → A × Â, then ĥ
A×Â,p((a, 0)) = ĥA,0(a) = 0. Similarly,

⟨0, a⟩A,K = 0. Thus ĥ
A×Â,p is bilinear by(2.1.4.8).

The last assertion follows from(8.7.3.36). □

Prop.(13.5.12.9).Let L ∈ Pic(A) and φL : A→ Â the associated homomorphism(13.5.4.2), then for
any a, a′ ∈ A(K),

• ĥτ∗
a′ L(a) = ĥL(a) + b(a, a′).

• ĥL(a) = ⟨a,L⟩A,K .

• bL(a, a′) = ⟨a, φL(a′)⟩A,K = ĥφL(a′)(a).
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Proof: 1: bL(a, a′) = ĥL(a+a′)− ĥL(a)− ĥL(a′) = ĥL(τa′a)− ĥL(a)− ĥL(a′). Then b(·, a′)+ ĥL is a
representative in the class hτ∗

a′ (L) by functoriality. And it is a quadratic function, thus by uniqueness,
we are done.

2: Because the pullback of p to A×{L} is L by(8.7.3.34), and thus this follows from functoriality
and(13.5.12.8).

3: By(13.5.4.2) and item1, b(a, a′) = ĥφL(a′)(a). Thus we are done by item2. □

Cor.(13.5.12.10) [Regulator].The Néron-Tate pairing induces a non-degenerate pairing
A(K)/A(K)tor × Â(K)/Â(K)tor → R. The discriminant of this pairing is called the regulator
of A, denoted by R(A/K).

Proof: Let L ∈ Pic(A) be ample, then φL : A → Â is an isogeny, thus φL : A(K)/A(K)tor →
Â(K)/Â(K)tor is injective, and by(13.13.1.7), the image is a subgroup of Â(K)/Â(K)tor of the same
rank, thus we are done by(13.5.12.9) item3 and(13.5.12.3). □

Cor.(13.5.12.11).Let A be an Abelian variety, c ∈ Pic(A) an even ample class, c′ ∈ Pic(A), then
ĥc′ = O(ĥ1/2

c ).

Proof: By(13.5.4.14), φc is isogeny thus surjective, thus we can assume c′ = φc(a′) for some
a′ ∈ A(K). Then by(13.5.12.9), ĥc′(a) = bc(a, a′). Because bc is positive semi-definite by(13.5.12.2),
by Cauchy-Schwartz(2.1.4.7), |ĥc′(a)|2 ≤ b(a, a)b(a′, a′) = 4ĥc(a)ĥc(a′). □

Hilbert’s Irreducibility Theorem

Prop.(13.5.12.12)[Runge’s Theorem].

Prop.(13.5.12.13)[Hilbert’s Irreducibility Theorem].Let C be a smooth irreducible projective
curve over a number field K and let f : C → P1 be a surjective rational function on C over K, then
for all n ∈ N except for a set of natural density 0, the divisor f∗[n] is a prime divisor over K.

Proof: Cf.[Diophantine Geometry, P319]. □

Local Height Pairings

Cf.[Sil99]Chap6 or [Local Heights on Curves, Gross, in Arithmetic Geometry] and [B-G06] or
[Introduction to Diophantine Geometry, Lang].

13 Jacobians of Curves
Prop.(13.5.13.1)[Picard Schemes of Curves].Let C be a smooth complete precurve over a field
k of genus g with a rational point, then

• PicC/k is representable by a disjoint union of smooth complete varieties PicdC/k, d ∈ Z where
PicdC/k corresponds to relative line bundles of degree d.

• Pic0
C/k is an Abelian variety over k.

• for d ≥ 0, the Abel map DivdC/k → PicdC/k is surjective for d ≥ g and smooth for d ≥ 2g − 1.

• The morphism DivgC/k → PicgC/k is birational.

Proof: Cf.[Sta]0BA0 or [Neron Models] or(13.5.13.2)?. item1 follows from(7.1.12.5) □
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Prop.(13.5.13.2)[Picard Scheme of Relative Curves]. If X/S is locally projective, flat with fibers
all curves, m ∈ Z, let PicmX/S denote the subfunctor of PicX/S representing invertible sheaves L with
deg(L) = m, then

• PicmX/S are clopen subschemes of PicX/S of f.t. and form a disjoint cover of it, and forming it
commutes with base change.

• Pic(0)
X/S = Pic0

X/S = PicτX/S , and each PicmX/S is a fppf-torsor under Pic0
X/S .

• If X/S is projective and S is Noetherian, then each PicmX/S is quasi-projective over S.

Proof: Cf.[Kle05]P60.? □

Def.(13.5.13.3)[Jacobians of Curves].For a smooth complete precurve over a field k, its Jacobian
variety Jac(C) is just its Picard variety Pic0

C/k(13.5.13.1).

Cor.(13.5.13.4).For a smooth complete precurve C over a field with a rational point, x ∈ PicC/k is
in Jac(C) iff the corresponding line bundle x on Ck(x) has degree 0, by(13.5.13.1).

Prop.(13.5.13.5). If C is a smooth complete curve of dimension g, then Jac(C) has dimension g,
by(8.7.3.24) and(8.7.3.22).

Def.(13.5.13.6)[Symmetric Product].Let C be a smooth curve, then the symmetric product C(r) =
Cr/Sr is a smooth variety of dimension r by considering the symmetric functions.

Prop.(13.5.13.7)[Generic Riemann-Roch].

Prop.(13.5.13.8)[Polarization of Jacobians].

Prop.(13.5.13.9) [Push and Pull].For a non-constant morphism φ : C1 → C2 of pointed smooth
curves over k, the push and pull induce maps

φ∗ : Jac(C1)→ Jac(C2), φ∗ : Jac(C2)→ Jac(C1).

s.t. φ∗ ◦ φ∗ = [deg(φ)].

Proof:
□

Prop.(13.5.13.10) [Abel-Jacobi].Let X be a smooth curve over C with a rational point x0, then
Jac(C) is isomorphic to Ω1

hol(X)∨/H1(X,Z) as complex manifolds via

L(
∑
x

nxx) 7→
∑
x

nx

∫ x

x0
.

Proof: □

Prop.(13.5.13.11).Let k ∈ Field, C be a smooth complete curve over k, P ∈ C(k), then for any
ℓ ∈ P, the map fP : C → Jac(C) induce isomorphisms

H1(Jac(C),OJac(C)) ∼= H1(C,OC), H1(Jac(C),Zℓ) ∼= H1(C,Zℓ).

Proof: Cf.[Mil08]P114. □
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Prop.(13.5.13.12) [Surjection by Jacobians].Let k ∈ Field and A ∈ AbVar /k, there exists a
smooth complete curve C over k and a surjection Jac(C)→ A.

Proof: We only prove for #k =∞. For k finite, Cf.[Gabber, On space filling curves and Albanese
varieties], [Poonen, Bjorn, Bertini theorems over finite fields. Ann. of Math].?

Since elliptic curves are their own Jacobians, we can assume that dimA > 1. Choose a projective
embedding A → Pnk , then by Bertini and the fact #k = ∞, there is a hyperplane cut A ∩ H that
is also a smooth complete k-variety. By repeating dimA− 1 dimes, we get a k-curve C on A. This
curve gives a map Jac(C)→ A by(13.5.13.8) and double duality(13.5.4.16). The image is an Abelian
subvariety of A. If it is not the whole of A, then by Poincaré ’s reducibility theorem(13.5.6.7),
there exists another Abelian subvariety A2 ⊂ A s.t. Jac(C) × A2 → A is an isogeny. In particular,
Jac(C) ∩A2 is finite.

Using the embedding C ⊂ Jac(C), C is regarded as a subscheme of Jac(C). Take n ∈ Z ∩ k∗

large, the composition Jac(C) × A2
(1,n)−−−→ Jac(C) × A2 → A is finite, and the inverse image of C

projects to [n]−1(A1 ∩ A2) ⊂ A2, which is finite and disconnected. So the inverse image of C is not
connected, which contradicts the fact it is an ample divisor by(5.5.4.12) and(5.8.6.25). □

Conj.(13.5.13.13)[Resolution Conjecture].Let k ∈ Field, k = k, and A ∈ AbVar /k, we can find
a surjective homomorphism J1 → A where J1 is a Jacobian of a curve by(13.5.13.12). Then the
identity component of the kernel is also an Abelian variety. Then we can do the same process again.

is it possible to choose the Jacobians s.t. the process terminate after finite steps?

Proof: □

Thm.(13.5.13.14) [Tonelli].Let k ∈ Field and k = k, and (C,P ), (C ′, P ′) be pointed complete
smooth curves over k. Let f : C → Jac(C) and f ′ : C ′ → Jac(C ′) be the maps corresponding to
P, P ′. Then if β : (Jac(C), λ) ∼= (Jac(C ′), λ′) is an isomorphism of polarized Jacobians, then

• There exists an isomorphism α : C → C ′ s.t. f ′ ◦ α = ±β ◦ f + c for some c ∈ Jac(C ′)(k).
• If g(C) ≥ 2 and C is non-hyperelliptic, then α,±1, c are determined by β, P, P ′. And if
g(C) ≥ 2, then ±1 can be arbitrary, and α, c is determined by β,±1, P, P ′.

Proof: Cf.[Mil08]P120. □

Cor.(13.5.13.15).
• If k ∈ Field, C, C ′ are complete smooth curves over k with rational points s.t. their polarized

Jacobians are isomorphic, then C,C ′ are isomorphic over k.
• If k ∈ Field is perfect, C,C ′ are complete smooth curves of genus≥ 2 over k, then if their

polarized Jacobians are isomorphic, then C,C ′ are also isomorphic over k.

Proof: Let β : (Jac(C), λ) ∼= (Jac(C ′), λ′) is an isomorphism, for any P ∈ C(k), P ′ ∈ C ′(k), there
is a unique isomorphism α : Ck ∼= C ′

k
s.t. fP ′ ◦α = ±β ◦fP +c, and if C is hyperelliptic, take ± = +.

Then if Q,Q′ are different points, fP = fQ+d, fQ′ = fP
′ +e for some d ∈ Jac(C)(k), e ∈ Jac(C ′)(k).

So α is invariant of the points P, P ′ chosen. In particular,

fσ(P ′) ◦ α = σ(fP ′) ◦ α = ±β ◦ σ(fP ) + σ(c) = ±βfσ(P ) + σ(c).

for any σ ∈ Galk. So α is invariant under Galk, which means C,C ′ are isomorphic over k. □
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Prop.(13.5.13.16). If F is a global field and C is a complete smooth curve over F with good reduction
at a place P of F , then Jac(C) has good reduction at P .

Proof: The hypothesis implies C extends to a smooth proper curve C over SpecRP . Then the
Picard scheme J of C/SpecRP (13.5.13.2) has generic fiber Jac(C), which implies Jac(C) has good
reduction at P . □

14 Abelian Schemes
Prop.(13.5.14.1)[Rigidity Lemma].

Proof: □

Cor.(13.5.14.2).Any morphism of Abelian schemes in AbVar /S preserving the zero section is a
homomorphism. Thus the group structure is determined by the zero section, and any Abelian
scheme is commutative.

Prop.(13.5.14.3)[Dual Abelian Schemes]. If X/S is a projective Abelian scheme, then
• Pic0

X/S = PicτX/S is a projective Abelian scheme over S, called the dual Abelian scheme of
X/S.

• the double Picard map(8.7.3.37) A→ A∨∨ is an isomorphism.

Proof: By reducing to the fiber, these reduces to the case that S is a field, and this case follows
from(13.5.4.12) and(13.5.4.12). □

15 Néron Models
Main references are [Serre/Tate, Good Reduction of Abelian Varieties], [BLR90] and http://

virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf.

Def.(13.5.15.1) [Néron Models].Let (R,K) be a DVR and X ∈ Schsm,sep,ft /K, then a Néron
model for X/K is a scheme X ∈ Schsm,sep,ft /R satisfying the following universal property: For any
smooth scheme Y over R and any morphism f : YK → X, there exists a unique morphism Y → X
extending f .

In particular, the natural map X (R)→ X(K) is a bijection.

Prop.(13.5.15.2) [Étale Valuation Criterion for Group Schemes].Let (R,K) be a DVR and
X ∈ Schsm,sep,ft /K, then if X/R is a Néron model for X, then X satisfies valuation criterion for any
R′ that is the integral closure of R in an unramified field extension K ′/K.

Conversely, if X is a group scheme overK, then the converse is also true: If G is a smooth R-group
scheme of f.t., then G is a Néron model of its generic fiber iff the natural map G(RsH) → G(KsH) is
an isomorphism.

Proof: Cf.[BLR90]Prop. 7.1.1. □

Prop.(13.5.15.3)[Unramified Base Change].Let (R,K) be a DVR and X ∈ Schsm,sep,ft /K, K ′/K
an unramified field extension, R′ the integral closure of R in K ′, then if X is a Néron model for X,
then XR′ is a Néron-model for XK′ .

http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf
http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf
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Proof: Because R′/R is smooth(by(5.6.4.6) and the definition of unramifiedness(12.2.2.4)), for any
Y ′/R′ smooth,

MorR′(Y ′,XR′) = MorR(Y ′,X ) = MorK(Y ′
K , X) = MorK′(Y ′

K′ , XK′).

□
Prop.(13.5.15.4)[Étale Descent].Let (R,K) ⊂ (R′,K ′) ⊂ (RsH,KsH) be DVRs. If G is a smooth
K-group scheme of f.t. over K s.t. GK′ has a Néron model G′/R′, then G′ descends to a Néron model
G/R of G.

Proof: Cf.[BLR90]Prop. 6.5.4. □
Cor.(13.5.15.5).Let (R,K) ⊂ (R′,K ′) be an unramified extension of DVRs, and G is a smooth
K-group scheme of f.t. over K, then G has a Néron model iff GK′ has a Néron model.

Proof: Cf.[BLR90]Prop. 6.5.4. □
Prop.(13.5.15.6)[Néron Model of Abelian Varieties].Let (R,K, k) be a DVR and A ∈ AbVar /K
with Néron model A/R, then A is an R-group scheme by universal property. The relative identity
component A0 of A is defined to be the open subgroup of A deleting all non-identity components
of Ak.

Prop.(13.5.15.7)[Good Reduction of Abelian Varieties].Let (R,K) be a DVR, A ∈ AbVar /K
and A ∈ Sch /R is proper smooth with generic fiber A, then the group structure extends to A,
making it the Néron model of A.

In particular, the good reduction of A is unique if it exists.

Proof: Cf.[BLR90]Prop. 7.2.1 of [Milne, CM, P49].
To show the group structure extends, Cf.[Koizumi, On specializations of the Albanese and Picard

Varieties] or might be somewhere in [BLR90]. □
Cor.(13.5.15.8).Let (R,K, k) be a DVR, A ∈ AbVar /K with Néron model A/R, then the following
are equivalent:

• A is an Abelian scheme.
• A has good reduction over R.
• The identity component A0

k of Ak is proper hence an Abelian variety over k.

Proof: 1 → 2, 1 → 3 is clear. 2 → 1 follows from the proposition. 3 → 1: By(5.10.5.3) A0 is an
Abelian scheme, so A0 = A is the Néron model by the proposition. □

Prop.(13.5.15.9)[Exactness].Let (R,K) be a DVR with mixed characteristic (0, p) and ramification
index e < p − 1. If 0 → A′ → A → A′′ → 0 is an exact sequence in AbVar /K, and A has good
reduction, then so does A′ and A′′ by(13.5.10.4). Then the Néron models

0→ A′ → A→ A′′ → 0

for an exact sequence.

Proof: Cf.[BLR90]Prop7.5.4.. □
Prop.(13.5.15.10)[Extending Polarizations].Let (R,K) be a DVR and A ∈ AbVar /K has good
reduction over R, then any polarization λ : A → A∨ extends to a polarization on A.

Proof: See [Artin 1986, 4.4 in Arithmetic Geometry], and [Chai and Faltings 1990].? □
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Prop.(13.5.15.11)[Néron Model for Abelian Varieties].Let X be an Abelian variety over K and
A be any ring of integers in the field K, then there exists an open subset Y = SpecAS ⊂ SpecA,
and a scheme X̃ projective over Y , and morphisms m̃ : X̃ × X̃ → X̃ over Y and ẽ : Y → X that:

• The fiber of X̃ over a generic point of Y with the morphisms m̃, ẽ are Abelian varieties isomor-
phic to X.

• X̃ is a group scheme over Y , and its fiber over any closed point of Y with the morphisms m̃, ẽ
are Abelian varieties.

• The mapping in item1 induces an isomorphism of groups X̃(Y ) ∼= X(K).

Proof: 1: Consider for any qc scheme over a field K, it is glued together from f.m. affine schemes,
and these glueing involves f.m. polynomials and rational transition functions, and the coefficients of
them are contained in a subring AS ⊂ K of f.t. over A. Thus this variety can be seen as a variety
over AS with the same equations, satisfying item1. The situation is similar for morphisms between
qc schemes, in particular m̃ and ẽ, thus constructing X̃.

2: Cf.[Mumford, P265].?
3: Cf.[Mumford, P265].? □

Cor.(13.5.15.12).Let x ∈ X̃(Y ), consider x as a closed subscheme of X̃ and denote n−1(x) the
closed subscheme in X̃ the inverse image of x under the morphism [n]Y . Then the natural projection
n−1(x)→ Y is étale over all points y ∈ Y that char k(y) ∤ n.

Proof: [Mumford, P265].? □

Thm.(13.5.15.13)[Existence of Néron Models].Let (R,K) be a DVR and A ∈ AbVar /K, then
A admits a Néron model A/R.

Proof:
□

Def.(13.5.15.14)[Tamagawa Numbers].Let (R,K, k) be a DVR and A ∈ AbVar /K with Néron
model A/R, define the component group of A to be π0(Ak), denoted by Φ(A). And #Φ(A) <∞
is called the Tamagawa number of A.

Then c(A) equals the number of geo.connected components of Ak. And if k is finite, it also equals
the connected components of Ak with a rational point.

Proof: Cf.[Liu Qing, 10.2.21(a)]. □
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13.6 Complex Multiplication Theory
Main references are [Mil20b], [Lang, Complex Multiplication], [Abelian varieties with complex

multiplication and modular functions, Shimura(1998)] and [The Fundamental Theorem of Complex
Multiplication, Milne, 2007].

Notation(13.6.0.1).
• Use notations defined in Arithmetic of Abelian Varieties.

1 Introduction
Abelian varieties with complex multiplication correspond to special points on the moduli variety of

abelian varieties, and their arithmetic is intimately related to that of the values of modular functions
and modular forms at those points.

2 CM-Algebras and CM-Types
Def.(13.6.2.1) [CM-Fields].A CM-field is a number field that is a totally imaginary quadratic
extension of a totally real field.

Prop.(13.6.2.2)[Characterizing CM-Fields].For E ∈ NField, then E is a CM-field or totally real
iff there exists exactly one cE ∈ Aut(E) s.t. for any ρ ∈ Hom(E,C), ρ ◦ cE = c ◦ρ. And it is CM iff
cE ̸= idE .
Proof: If ρ ◦ cE = c ◦ρ for any ρ ∈ Hom(E,C), then ρ ◦ c2

E = ρ, so c2
E = id. if F is the fixed field

of cE , then [E : F ] = 2, and clearly F is totally real. Conversely, if E is a CM-field or totally real,
then clearly there exists a unique such cE , which is the identity if E is totally real and the unique
involution fixing the totally real subfield F .

In this case, if cE ̸= idE , then ρ(E) ⊊ R for any ρ ∈ Hom(E,C), thus E is totally imaginary.
And if cE = idE , then E is also totally real. □

Cor.(13.6.2.3).A finite composite of CM-fields is a CM-field. In particular, the Galois closure of a
CM-field is a CM-field.

And the composite of all CM-fields in C are the field Qcm ⊂ Q corresponding to the subgroup of
GalQ generated by all the elements {[σ, c]|σ ∈ GalQ}, which is a normal subgroup.
Proof: The complex involutions on these CM-fields is compatible on their intersections, thus defines
a complex involution on their composite. □

Cor.(13.6.2.4).Any CM-field E is of the form E = F (α), where F is totally real, α2 ∈ F , and
ρ(α2) ∈ R− for any homomorphism ρ : F → C.
Proof: If F is the totally real field contained in E and α ∈ E generates E over F , then by
completing the square, we can assume α2 ∈ F . Then ρ(α2) ∈ R− for any ρ : F → C, otherwise E is
not totally imaginary. □

Def.(13.6.2.5)[CM-Algebras].A CM-algbera is a finite product of CM-fields.
Def.(13.6.2.6) [CM-Types].A CM-type for a CM-algebra E is a subset Φ ⊂ Hom(E,C) s.t.

Hom(E,C) = Φ
⨿

ΦcE .
A pair (E,Φ) where E is a CM-algebra and Φ is a CM-type on E is called a CM-pair.
More generally, if E is an étale algebra over Q, then a CM-type on E is a subset Φ ⊂ Hom(E,C)

s.t. Hom(E,C) = σΦ
⨿

c ◦σΦ for any σ ∈ GalQ.
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Prop.(13.6.2.7).Let E be an étale algebra over Q and F the product of the largest totally real
subfields of the factors of E, then choosing a CM-type is equivalent to choosing an extension ρ′ to E
of any homomorphism ρ : F → R. Thus a CM-pair (E,Φ) defines an isomorphism

E ⊗Q R
Φ−→∼=

∏
ρ:F→R

C ∼= CΦ : a⊗ r 7→ (ρ′(a)r)ρ, Φ = {ρ′|ρ : F → R}

Def.(13.6.2.8) [Primitive CM-Fields]. If E0 is a CM-field and E/E0 is a finite extension, then a
CM-type Φ0 on E0 extends to a CM-type on E(13.6.2.6) by defining

Φ = {φ ∈ Hom(E,C)|φ|E0 ∈ Φ0}.

A primitive CM-field is a CM-pair(13.6.2.6) (E,Φ) where E ∈ Field and there doesn’t exist
a proper subfield E0 ⊂ E s.t. Φ is the extension of a CM-type on E0.

Prop.(13.6.2.9).Every CM-pair (E,Φ) where E is a field is an extension of a unique primitive CM-
pair (E0,Φ0) s.t. E0 ⊂ E. Moreover, for any Galois CM-field E1 containing E, E is the fixed field
of E defined by the subgroup

H = {σ ∈ Gal(E1/Q) : Φσ
1 = Φ1},

where Φ1 is the extension of Φ to E1.

Proof: If E is Galois over Q, and E0 is defined as above, then Φ cE = c Φ ̸= Φ, so cE /∈ H, thus cE
acts non-trivially on E0. And cE preserves E0: We need to show that σ cE a = cE a for any a ∈ E0.
For which it suffices to show that cE σ cE ∈ H. For this, notice

Φ cE σ cE = c Φσ cE = c Φ cE = Φ.

Thus E0 is CM-subfield of E. And Φ0 = Φ|E0 is a CM-type on E0, because if φ′|E0 = cφ|E0 for
different φ,φ′ ∈ Φ, then cφ ∈ φ′H ⊂ Φ, contradiction.

And if E0 is extended from another CM-subfield E′, then any σ ∈ Gal(E/Q) fixing E′ will fix Φ
and lies in H. This shows E0 ⊂ E′. So (E0,Φ0) is primitive.

For the general case, it suffices to notice that this E0 is contained in E because any σ ∈ Gal(E1/Q)
fixing E will fix Φ1 thus fixes E0 by definition. And Φ clearly extends Φ0. □

Cor.(13.6.2.10).A CM-pair (E,Φ) where E is a field is primitive iff there exists a Galois CM-field
E1 containing E s.t. E is the fixed field of E defined by the subgroup

H = {σ ∈ Gal(E1/Q) : Φσ
1 = Φ1},

where Φ1 is the extension of Φ to E1.

Prop.(13.6.2.11) [Shimura-Taniyama].Let E be a CM-field, F = EcE (13.6.2.2) and E = F (α)
where α2 ∈ F is totally negative. Then

Φ = {φ ∈ Hom(E,C) : Im(φ(α)) > 0}

is a CM-type on E. And (E,Φ) is a primitive CM-pair iff
• E = Q(α).
• σ(α)/α is not totally positive for any σ ∈ Gal(E/Q).
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Proof: Φ is a CM-type on E because for any φ ∈ Φ, φ cE /∈ Φ because Im(φ cE(α)) = − Im(φ(α)) <
0.

Let F1 be the Galois closure of F and E1 = F1(α), and Φ1 is the extension of Φ to E1, then

Φ1 = {φ ∈ Hom(E1,C) : Im(φ(α)) > 0}.

and if
H = {σ ∈ Gal(E1/Q) : Φσ

1 = Φ1},

then H is exactly the group of σ ∈ Gal(E1/Q) s.t. σ(α)/α ∈ R+. Then the assertion follows
from(13.6.2.10). □

Reflex Fields

Def.(13.6.2.12)[Reflex Fields of CM Pairs].Let (E,Φ) be a CM-pair, then the reflex field E∗

of (E,Φ) is the subfield of Q generated by the elements {∑φ∈Φ φ(a)|a ∈ E}.

Prop.(13.6.2.13).Let (E,Φ) be a CM-pair with reflex field E∗, then
• E∗ is the fixed field of the group {σ ∈ GalQ |σ(Φ) = Φ}.
• E∗ is a CM-field.
• If (E1,Φ1) is an extension of (E,Φ)(13.6.2.8), then the reflex field of (E1,Φ1) is just E∗.

Proof: 1: This group is clearly in the fixed group of E∗, and if σ is in the fixed group of E∗, then∑
φ∈Φ

φ(a) =
∑
φ∈Φ

σφ(a),

so σ(Φ) = Φ by the linear independence of characters.
2: For σ ∈ GalQ and a ∈ E,

cσ(
∑
φ∈Φ

φ(a)) = c
∑
φ∈Φ

σφ(a) =
∑
φ∈Φ

σφ(cE(a)) = σ
∑
φ∈Φ

φ(cE(a)) = σ c(
∑
φ∈Φ

φ(a)).

Thus E is a CM-field or totally real by(13.6.2.2). The latter case is not possible because of the linear
independence of characters and the fact c(Φ) ̸= Φ.

3 is trivial. □

Def.(13.6.2.14)[Reflex CM-Pairs].Let (E,Φ) be a CM-pair that E is contained in Q, let E1 be the
Galois closure of E, and Φ1 the extension of Φ to E1. Then (E1,Φ−1) is also a CM-pair. Then the
primitive subfield (E∗,Φ∗) satisfies E∗ is the reflex field of (E,Φ).

(E∗,Φ∗) is called the reflex CM-pair of (E,Φ).

Classification of Primitive CM-Pairs

Prop.(13.6.2.15).Milne, Prop1.30.?
Cor.(13.6.2.16).Milne, Prop1.31.?
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Positive Involutions

Def.(13.6.2.17) [Positive Involutions].Let B be a f.d. Q-algebra, and tr : B → Q is a Q-linear
functional, then a positive involution w.r.t. tr is an involution ι on B s.t.

tr(x) = tr(ι(x)), tr(x · ι(x)) > 0

for any nonzero x ∈ B.

Prop.(13.6.2.18)[Positive Involutions are Semisimple]. If B is a f.d. Q-algebra with a positive
involution ι, then B is semisimple. And if Z is the center of B, then Z =

∏
iKi where Ki ∈ NField,

and each Ki are stable under ι.

Proof: By(2.4.2.8), it suffices to show that B is Jacobson semisimple: If a is a nonzero nilpotent
two-sided ideal of B, a ̸= 0 ∈ a is nilpotent, then b = aι(a) ̸= 0 because tr(aι(a)) > 0. Thus b ̸= 0 ∈ a,
and ι(b) = b. So by the same reason b2 ̸= 0, and so on, so b is not nilpotent, contradicting(2.4.2.6).

The center is clearly invariant under the isomorphism given, so it is also semisimple, which is then
a product of fields. To show each factor is stable under ι, notice that if 1 =

∑
i ei is a decomposition

w.r.t. this product, then 1 =
∑
i ι(ei), so {ι(ei)} = {ei}. Moreover, ι(ei) = ei for each i, because

otherwise eiι(ei) = 0, and tr(eiι(ei)) = 0. □

Prop.(13.6.2.19).Let B be a f.d. Q-algebra an ι an involution on B, then the following are equivalent:
• There is a faithful B-module V with a positive definite symmetric Q-bilinear form (−,−) :
V × V → Q s.t.

(bu, v) = (u, ι(b)v), b ∈ B, u, v ∈ V.

• For any f.d. B-module V , there exists a positive definite symmetric Q-bilinear form (−,−) :
V × V → Q s.t.

(bu, v) = (u, ι(b)v), b ∈ B, u, v ∈ V.

• There exists a Q-linear functional tr on B s.t. ι is positive w.r.t. tr.

Proof: 1→ 2: As B is semisimple, any f.d. B-module is a direct summand of a direct sum of the
faithful module V .

2→ 3: Apply item2 to the B-module B itself, then we find a positive definite symmetricQ-bilinear
form (−,−) on B, and an orthonormal basis (e1, . . . , en) of B. Then we define

tr : B → Q : tr(b) =
∑
i

(bbi, bi)

then tr(b) = tr(ι(b)), and

tr(bι(b)) =
∑
i

(bι(b)bi, bi) =
∑
i

(ι(b)bi, ι(b)bi) > 0.

3 → 1: B is semisimple by(13.6.2.18), and then we can take V = B, and the positive definite
symmetric Q-bilinear form

(x, y) 7→ tr(ι(y)x).

then (bx, y) = tr(ι(y)bx) = tr(ι(ι(b)y)x) = (x, ι(b)y). □

Prop.(13.6.2.20)[Commutative Positive Involutions].Every f.d. commutative Q-algebra with a
positive involution ι is a product of the following two:
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• F is a totally real field and ι = idF .
• E is a CM-field and ι = cE .

Proof: Firstly, any product of these two are positive involutions. Conversely, if (B, tr) is a f.d.
Q-algebra with a positive involution, then by(13.6.2.18), B is semisimple, thus a finite product of
number fields. Then by(13.6.2.18), each factor is fixed by the involution, so it suffices to consider the
case B ∈ NField. Let F be the fixed field of ι. Because the trace form trB/Q is non-degenerate, we
can assume tr(x) = tr(αx) for some α ∈ B×.

If F = B, then F is totally real: if there exists a non-real embedding σ : F → C, then we can
use weak approximation to find x ∈ F× s.t. σ(αx2) is near −1 and φ(αx2) is near 0 for any other
embedding φ : F → C. Then clearly tr(αx2) < 0, contradiction.

If F ̸= B, then [B : F ] = 2, and trB/Q(αxι(x)) > 0 for any x ∈ B×. Take x = 1, we see trB/Q(α) >
0. In particular, α+ ι(α) ̸= 0 ∈ F . Then in particular, trB/Q(αxι(x)) = trF/Q((α+ ι(α))xι(x)) > 0.
So by the argument above, F is totally real. And B is totally imaginary: If there exists a real
embedding σ : B → C, then σ and σ ◦ ι corresponds to different places, and by weak approximation,
we can find x ∈ B s.t. σ((α + ι(α))x) is near −1 and σ(ι(x)) is near 1, and φ(x) is near 0 for any
other φ : B → C. Then trF/Q((α + ι(α))xι(x)) < 0, contradiction. So in this case B is a CM-field,
and ι = cB. □

Cor.(13.6.2.21).There exists uniquely a positive involution on any CM-algebra, which is cE .

Weil q-Integers

Prop.(13.6.2.22) [Weil q-Integers and CM Fields]. If p ∈ P, q ∈ pZ and ϖ ∈ Weil(q1/2), then
Q(ϖ) is either isomorphic to Q or Q(√q) or a CM-field.

Proof: For any embedding ρ : Q(π)→ C,

ρ(π)ρ(π) = q = ρ(π)ρ(q/π),

so (ρ(π)) = ρ(q/π), and E = Q(π) is a CM-field with the endomorphism cE : π 7→ q/π. □

Prop.(13.6.2.23).Let p ∈ P, q ∈ pZ, F ∈ NField and π, π′ ∈ F ∩Weil(q1/2). If ordv(π) = ordv(π′)
for any v ∈ Σp

F , then π/π′ is a roots of unity in E.

Proof: This is because there is an endomorphism of F (the conjugation) taking π to q/π, so for
any v /∈ Σp

F , ordv(π) = 0. Since the same is true for π′, and ordv(π) = ordv(π′) for v ∈ Σ∞
F too,

by the definition of Weil q-integers. Thus |π/π′|v = 1 for any v ∈ ΣF , and the assertion follows
from(12.4.5.30). □

3 CM Abelian Varieties
Def.(13.6.3.1)[Complex Multiplications].For k ∈ Field and A ∈ AbVar /k,

[EndQ(A) : Q]red ≤ 2 dimA.

And A is called an Abelian variety with complex multiplication or a CM Abelian variety if the
equality holds.

Proof: Take ℓ ∈ P \ {char k}, then EndQ(A) acts faithfully on Tℓ(A,Qℓ) by(13.14.1.1), which has
dimension 2 dimA(13.5.6.15), so we finish by(13.5.6.11) and(2.4.3.24). □
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Prop.(13.6.3.2).For k ∈ Field and A ∈ AbVar /k, the following are equivalent:
• A is CM.
• EndQ(A) contains an étale subalgebra of rank 2 dimA over Q.
• For any Weil cohomology H ∗ with coefficients in Ω ∈ Field0, the centralizer of EndQ(A) in

EndΩ(H1(A)) is commutative (and equals Z(EndQ(A))⊗ Ω).

Proof: 1 ⇐⇒ 2 follows from the fact the maximal étale subalgebra of EndQ(A) has degree
[EndQ(A) : Q]red(2.4.3.23).

2 ⇐⇒ 3 follows by noticing dimΩ(H 1(A)) = 2 dimA, and EndΩ(A) acts faithfully on it?. Then
use(2.4.3.24). □

Lemma(13.6.3.3).Let A ∈ AbVar /C and F ⊂ EndQ(A). If F has a real place, then [F : Q]| dimA.

Proof: ? □

Prop.(13.6.3.4).For k ∈ Field and A ∈ AbVar /k,
• if A is simple, then A is CM iff EndQ(A) is a CM-field of degree 2 dimA over Q.
• If A is isotopic, then A is CM if EndQ(A) contains a CM-field of degree 2 dimA over Q, which

is invariant under some Rosati involution.
• A is CM iff EndQ(A) contains an étale CM-algebra of degree 2 dimA over Q, which is invariant

under some Rosati involution. And in this case, for ℓ ∈ P \ {char k}, Tℓ(A) is free of rank 1
over this algebra.

Proof: We use(13.6.3.2).
1: It suffices to show that if EndQ(A) is a field of degree 2 dimA, then it is CM.?
2: ?
3 follows from 2. □

Prop.(13.6.3.5)[Tate1966].Every Abelian variety over a finite field has CM.

Proof: ? □

Complex CM Abelian Varieties

Prop.(13.6.3.6)[CM-Types of Complex Abelian Varieties].Let E be a CM-algebra of degree
2g, A ∈ AbVarg /C and E ⊂ EndQ(A), then the action of E on Tgt0(A) is faithful, so

Tgt0(A) ∼= ⊕φ∈ΦCφ

where Φ is a set of homomorphisms from E to C. Then from the decomposition

H1(A,R) ∼= Tgt0(A)⊕ Tgt0(A)

and the fact H1(A,Q) is a free E-module of rank 1(13.6.3.4), we see Φ
⨿

c Φ = Hom(E,C). So Φ is
a CM-type on E.

Thus A is said to have CM-type (E,Φ) if Φ is a CM-type on E and

Tgt0(A) ∼= CΦ

as E-algebras.
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Def.(13.6.3.7)[Reflex Field of a CM Abelian Variety].Let A ∈ AbVar /C be CM, then if E0 is
the center of EndQ(A), by(13.6.3.4) and(13.6.3.6), E0 is a CM-algebra, and there exists a CM-type
Φ0 on E0 s.t. for any CM-pair E s.t. A is of CM-type (E,Φ), there Φ is the extension of Φ0 to E.

Then the reflex field of (E0,Φ) equals that of (E,Φ) for any (E,Φ), called the reflex field of A.
?

Prop.(13.6.3.8)[Abelian Varieties attached to CM-Pairs].Let (E,Φ) be a CM-pair and Λ is a
Z-lattice in E, then

Λ⊗Z R ∼= E ⊗Q R
Φ−→∼= CΦ(13.6.2.7).

Thus Λ ⊗Z R has a complex structure and we get a Riemann pair (Λ, JΦ), which corresponds to a
complex torus AΦ.

Then R = {x ∈ E|aΛ ⊂ Λ} ⊂ End(AΦ) is an order in E(12.4.2.36), and then E ⊂ EndQ(AΦ).
Then there is a Riemann form on (Λ, JΦ) whose associated positive Rosati involution(13.5.8.2)

stabilizes E(and thus equals cE on E by(13.6.2.21)). In particular, AΦ is a complex Abelian vari-
ety(13.5.8.1).

Proof: To give such a Riemann form, by(11.9.5.9), it suffices to give a non-degenerate bilinear form
ψ : E × E → Q that satisfies

1. ψ(ax, y) = ψ(x, ay) for a, x, y ∈ E.
2. ψ(x, y) = −ψ(y, x) for x, y ∈ E.
3. ψ(JΦx, JΦy) = ψ(x, y) for x, y ∈ E ⊗Q R.
4. ψ(x, JΦx) > 0 for any non-zero x ∈ E ⊗Q R.
Now because the trace form tr : E × E → Q is non-degenerate, non-degenerate Q-bilinear forms

of E are exactly of the form
ψ(x, y) = trE/Q(yαx), α ∈ E×.

And the conditions (1) is automatic, and (3) is automatic because in the isomophism

E ⊗Q R
Φ−→∼=

∏
ρ:F→R

C ∼= CΦ : a⊗ r 7→ (ρ′(a)r)ρ, Φ = {ρ′|ρ : F → R}, (13.6.2.7)

ψR corresponds to
ψ′((xφ), (yφ)) =

∑
φ∈Φ

trC/R(φ(a)yφxφ)

and JΦ corresponds to the isomorphism

(xφ)φ∈Φ 7→ (ixφ)φ∈Φ.

Thus it suffices to choose α s.t. φ(α) ∈ iR+ for any φ ∈ Φ.
By(13.6.2.4), there exists α ∈ E× s.t. E = F (α) s.t. φ(α) ∈ iR for any φ ∈ Φ, and we can then

use weak approximation on F to modify α s.t. φ(α) ∈ iR+ for any φ ∈ Φ. So this α clearly exists.
Moreover, any other element α′ is α times some element a ∈ F that is totally positive. □

Prop.(13.6.3.9)[Classifying Complex CM Abelian Varieties up to Isogeny].The map (A, i)→
(E,Φ) defines a bijection between the set of isogeny classes of CM Abelian varieties A/C with an
embedding i : E → EndQ(A) and the set of isomorphism classes of CM-pairs (E,Φ), with inverse
(E,Φ) 7→ (AΦ, iΦ) which is the Abelian variety corresponding to the lattice Λ = OE(13.6.3.8), called
the principally-CM Abelian variety of type (E,Φ).
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Proof: Notice in(13.6.3.8), any two choice of the lattice a give isogenous Abelian varieties, and
because H1(A,Q) is free of rank 1 over E, let e ∈ H1(A,Q) be a basis vector, then ae = H1(A,Z)
for some lattice a ⊂ E. Then this e defines an isomorphism

Ee ∼= H1(A,Z)⊗Q = H1(A,Q)

thus the isomorphism

A ∼= H1(A,C)/H1(A,Z) e−1
−−→∼= E ⊗Q C/a

Φ−→∼= CΦ/Φ(a) ∼ CΦ/Φ(OE).

This is clearly a bijection. □

Prop.(13.6.3.10)[Classifying Simple Complex CM Abelian Varieties].Let A be a simple com-
plex Abelian variety over C with CM and E = EndQ(A), then E is a CM-field, and the map
A 7→ (E,ΦA) defines a bijection between the set of isomorphism classes of simple complex Abelian
varieties with CM and the set of isomorphism classes of primitive CM-paris.

Proof: E ∈ Field by(13.6.3.4), and if it is not primitive, then (E,Φ) is extended from a primitive
CM-field (E0,Φ0), and a choice of E0-basis of E defines an embedding E ⊂ Mat([E : E0], E0) ⊂
End0(A[E:E0]

Φ0
), and

E ⊗Q R = E ⊗E0 (E0 ⊗Q R) ∼= E ⊗E0 (CΦ0) ∼= CΦ

shows A[E:E0]
Φ0

is also of type (E,Φ). Thus A ∼ A
[E:E0]
Φ0

by(13.6.3.9), contradicting the fact A is
simple. □

Cor.(13.6.3.11).The simple Abelian varieties with complex multiplications are classified up to con-
jugacy by the GalQ-orbits of CM-types on Qcm, by(13.6.2.16).

Good Reductions

Prop.(13.6.3.12)[Potential Good Reduction of CM-Abelian Varieties].Let E ∈ NField, A ∈
AbVar /C has complex multiplication by E, then A is defined over some number field F . And F can
be chosen s.t. AF has good reduction.

Proof: Cf.[Milne, Abelian Varieties, P55].? □

4 Mumford-Tate Groups

5 Fundamental Theorem

Thm.(13.6.5.1) [Fundamental Theorem of Complex Multiplication, Shimura-Taniyama].
Let A ∈ AbVar /Fq be the reduction from an complex Abelian variety of CM-type (E,Φ), then the
Weil-q-integers of A can be constructed as follows:

Proof: Cf.[Milne, Abelian Varieties, P83].? □
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6 Elliptic Curves
References are [Deu58] and [Ser67].

Prop.(13.6.6.1).By(13.9.1.27), if E ∈ Ell /C has CM(13.6.3.1), then End(E) is an Z-order in an
imaginary quadratic field K/Q, which must be of the form OK,f = Z + fOK for some f ∈ Z+?.

Proof: □

Thm.(13.6.6.2).Given any imaginary quadratic field K and an Z-order OK,f ⊂ K, the isomorphism
classes of elliptic curves over C with maximal CM by OK,f is in bijection with Pic(OK,f ), denoted
by EllC(OK,f ).

In particular, #EllC(OK,f ) < ∞. The j-values of elliptic curves with maximal CM by OK,f are
called associated to OK,f .

Proof: If E ∼= C/Λ, then Λ is a projective OK,f -module of rank 1?. □

Thm.(13.6.6.3)[Weber-Fueter].Let Ell ∈ Ell /C with maximal CM by OK,f , then
• j(E) ∈ O

Q
, and K(j(E)) is the ray class field Kf of K.

• Gal(Kf/K) acts transitively on the j-values associated to OK,f (13.6.6.2).

Proof: Cf.[Serre] or [Sutherland]L21. □

Cor.(13.6.6.4).There are 13 elliptic curves E ∈ Ell /C with complex multiplication and j(E) ∈ Q,
namely they are associated to OK,f with

• f = 1,K = Q(
√
−d) with d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}, with corresponding j-invariances

j = 26·33, 26·53, 0, −33·53, −215, −215·33, −218·33·53, −215·33·53·113, −218·33·53·233·293.

• f = 2,K = Q(
√
−d) with d ∈ {1, 3, 7}, with corresponding j-invariances

j = 23 · 33 · 113, 24 · 33 · 53, 33 · 53 · 173.

• f = 3,K = Q(
√
−3) with corresponding j-invariances j = 215 · 3 · 53.

Proof: □

Thm.(13.6.6.5)[Hasse].For [Λ] ∈ Pic(OK,f ), denoted j(Λ) = j(C/Λ), then if p is a prime ideal of
OK prime to the conductor and pf = p ∩ OK,f , then

Frobp(j(Λ)) = j(Λ·pf ).

Proof: ? □

Prop.(13.6.6.6) [CM j-Invariants are Integral].For K ∈ p-LField and E ∈ Ell /K with CM,
j(E) ∈ OK .

Proof: □

Prop.(13.6.6.7) [CM j-Invariants are Integral]. If F ∈ NField and E ∈ Ell /F has CM, then
j(E) ∈ OF .

Proof: Cf.[Sil99]P447. □
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Prop.(13.6.6.8). If k ∈ Fieldp, and E ∈ Ell /k has CM, then j(E) ∈ Fq ∩ k, by(13.9.3.5).

Thm.(13.6.6.9) [Kronecker’s Jugendtraum].Let K be an imaginary quadratic field and E ∈
Ell(OK), then

Kab = K(j(E), {xtor(E)}),

where {xtor(E)} is the set of x-coordinates of torsion points of E.

Proof: ? □

CM-Lifting

Thm.(13.6.6.10) [Honda/Chai-Conrad-Oort2014].For any A ∈ AbVar /Fq, there exists an
isogeny A ∼ B0 s.t. B0 admits a CM lift to characteristic 0.

Proof: □

Thm.(13.6.6.11)[Deuring CM-Lifting Lemma].Let p ∈ P and E ∈ Ell /Fp, and α0 ∈ End(E0)\Z,
then there exists F ∈ NField, E ∈ Ell /OF and α ∈ End(E), p ∈ Σp

F s.t.

E
κ(p)
∼= E0

s.t. α
κ(p) corresponds to α0.

Proof: Cf.[Suw19]P5? □

Hilbert Class Polynomials

Def.(13.6.6.12)[Hilbert Class Polynomials].Let O be a order in an imaginary quadratic field K,
the Hilbert class polynomial associated to O is defined to be

HO(X) =
∏

E∈EllC(O)
(X − j(E)).

For D ∈ Z, D ≡ 0, 1(mod 4), the Hilbert class polynomial of discriminant D is the class
equation for the order OD.

Lemma(13.6.6.13).For ℓ ≡ −1(mod 4) ∈ P \ {3} and D = −ℓ or −4ℓ, HD(1728) ≡ 0(mod ℓ).

Proof: Consider the curve E : y2 = x3 − x, it is supersingular by(13.9.3.12) or(13.6.6.19), and has
j-invariant 1728. Thus φ2

E = −ℓ by (13.9.3.9)(13.9.3.3). Notice E[2] = {∞, (0, 0), (±1, 0)}, which are
all defined over Fp, so 2|(1 + F ), and Z[1+φE

2 ] ∼= Oℓ. Thus by Deuring CM-lifting lemma(13.6.6.11),
there is an elliptic curve over some OF with maximal CM by O−ℓ whose j-invariant is mapped to
1728(mod ℓ), so H−ℓ(1728) ≡ 0(mod ℓ).

Similarly, E has endomorphism I : (x, y) 7→ (−x, i y), I2 = −1, IF = −FI, so we can lift IF to get
an elliptic curve over some OF with CM by O−4ℓ. And it is maximal CM, because 1+IF

2 /∈ End(E),
as (1 + IF )(P = (1, 0)) = (1, 0) + (−1, 0) ̸= O. □

Lemma(13.6.6.14).For ℓ ≡ −1(mod 4) ∈ P \ {3} and D = −ℓ or −4ℓ, let KD be the ray class field
of OD, then for any root x0 of HD(X) s.t. x0 ≡ 1728(mod ℓ), there exists a unique l ∈ Σℓ

KD s.t.
x0 − 1728 ∈ l. The j-invariant of this elliptic curve is mapped to 1728(mod ℓ), so H−ℓ(1728) ≡
0(mod ℓ).
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Proof: The existence follows from(13.6.6.13), and if there are two primes l, l′ that divides x−1728,
then there exists σ ̸= id s.t. x1 = σ(x1) ≡ 1728(mod ℓ). Then there are two elliptic curves
E1, E2/Q with j-invariants x0, x1 that reduces to the elliptic E/Fℓ : y2 = x3 − x. Then we get a
degree-preserving injection Hom(E1, E2) ↪→ End(E

Fℓ
) = A.

For the rest, see[Suw19]P8? □

Prop.(13.6.6.15).For ℓ ≡ −1(mod 4) ∈ P \ {3}, there exists R,S ∈ Z[X] s.t.

H−ℓ(X) = (X − 1728)R(X)2, H−4ℓ(X) = (X − 1728)S(X)2.

Proof: Notation as in(13.6.6.14), there exists an involution τ of KD s.t. σ(x0) = x0. Thus by the
lemma, τ(l) = l, and f(l/ℓ) is odd because Gal(KD/K) does(12.4.4.3). So σ acts trivially on κ(l).
But τ doesn’t fix any roots x of HD(X) other than x0(because xi corresponds to ideal classes of OD
where x0 corresponds to the trivial class, and τ acts by [I] 7→ [I]−1), so the other roots come in pairs,
and the assertion follows. □

Prop.(13.6.6.16).For ℓ ≡ −1(mod 4) ∈ P \ {3}, the only real roots of Hℓ(X) and H4ℓ(X) are
j(1

2(1 +
√
−ℓ)) and j(

√
−ℓ) resp..

Proof: For D = ℓ or −4ℓ, since the complex conjugation is compatible with the correspondence
in(13.6.6.2), and because II = Nm(I)OD, so the fixed points of c are just 2-torsions in Pic(OD). But
Pic(OD) is odd by(12.4.4.3), thus the only real j-value corresponds to the trivial class. □

Cor.(13.6.6.17).For any j ∈ R, for ℓ ≡ −1(mod 4) ∈ P \ {3} sufficiently large, H−ℓ(j) > 0 and
H−4ℓ(j) < 0.

Proof: This is because j(1
2(1 +

√
−ℓ)) → −∞ and j(

√
−ℓ) → ∞ as ℓ → ∞, by the power

expansion(16.2.5.10). □

Supersingular Primes

References are [Elk87] and [Suw19].

Lemma(13.6.6.18).Let k ∈ Fieldp and E ∈ Ell /k, E is supersingular iff there exists an order O of
an imaginary quadratic field K s.t. O ⊂ End(E) and p doesn’t split in K.

Proof: By(13.9.3.6), if it is ordinary, then End(O) is a Z-order in an imaginary quadratic field K.
Then consider the p-adic representation

K ⊗Qp = End(E)⊗Qp → EndQp(Vp(E)) ∼= Qp.

Then this map has a kernel, so K ⊗Qp is not a field, and p splits in K. □

Thm.(13.6.6.19)[Supersingular Criterion for CM Elliptic Curves, Deuring].Let F ∈ NField
and E ∈ Ell /F with CM by an imaginary quadratic field K. If p ∈ Σp

F is a good reduction for E,
then Ẽ/κ(p) is ordinary/supersingular iff p is split/non-split in K.

Proof: Cf.[Lang, Elliptic Functions, Thm13.12].? □

Cor.(13.6.6.20)[Supersingular Reductions for CM Elliptic Curves].For E ∈ Ell /Q with CM
by K, then

#{p ∈ P, p ≤ X|Ẽ/Fp is supersingular elliptic} = X

2 logX
+O( X

logX
).
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Proof: This follows from the effective Chebotarev density theorem(12.6.5.4). □

Prop.(13.6.6.21)[Elkies].For any E ∈ Ell /Q, there are infinitely many p ∈ P s.t. Ẽ/Fp is supersin-
gular elliptic. (This is also true if Q is replaced by a real field, Cf.[Elkies, 1989]).

Proof: By Deuring’s CM-lifting lemma(13.6.6.11), for D = −ℓ or −4ℓ, Ẽ/Fp has CM by OD iff
HD(j(E)) = 0 ∈ Fp. So by(13.6.6.18), p is a supersingular prime for E if

• H−ℓ(j(E)) ∈ pZp or H−4ℓ(j(E)) ∈ pZp, and
• ordp(ℓ) is odd or −ℓ is a quadratic non-residue modulo p.

Suppose that there is a finite set S containing all the supersingular primes of E, assume 2 ∈ S. By
Dirichlet’s theorem, there exists ℓ ∈ P sufficiently large s.t.

ℓ ≡ 3(mod 4),
(p
ℓ

)
= 1, p ∈ S.

Then by quadratic reciprocity, if p ∈ P and H−ℓ(j(E)) ∈ pZp or H−4ℓ(j(E)) ∈ pZp, then p ̸= ℓ and(
p
ℓ

)
= 1, otherwise there would be a new supersingular prime for E that is not in S.
As H−ℓ,H−4ℓ ∈ Z[X], for any p ∈ P,

H−ℓ(j(E))−1 ∈ pZp ⇐⇒ j(E)−1 ∈ pZp ⇐⇒ H−4ℓ(j(E))−1 ∈ pZp,

and if j(E)−1 ∈ p, then

ordp(H−ℓ(j(E))−1) + ordp(H−4ℓ(j(E))−1) = ordp(j(E)−1) · (deg(H−ℓ) + deg(H−4ℓ))

which is even by(13.6.6.15). And H−ℓ(j(E))H−4ℓ(j(E)) < 0 by(13.6.6.17). So H−ℓ(j(E))H−4ℓ(j(E))
would be a quadratic non-residue modulo ℓ by our hypothesis. But this contradicts(13.6.6.15). □

Without CM case

Thm.(13.6.6.22)[Serre].For F ∈ NField and E ∈ Ell /F without CM, ρE(GalF ) ⊂ GL(2; Af ) has
finite index.

Proof: Cf.[Abelian l-adic representations and elliptic curves, Serre]. or [Bounds for Serre’s open
image theorem for elliptic curves over number fields]. □

Conj.(13.6.6.23)[Lang-Trotter].For E ∈ Ell /Q without CM,

#{p ∈ P, p ≤ X|Ẽ/Fp is supersingular elliptic} ∼
√
X

logX
.

Proof: □

Prop.(13.6.6.24)[Serre-Elkies].For E ∈ Ell /Q without CM,

#{p ∈ P, p ≤ X|Ẽ/Fp is supersingular elliptic} ≤ X3/4+ε.

In particular, supersingular primes have density 0.

Proof: [N. D. Elkies. Distribution of supersingular primes. Asterisque, (198-200):127–132 (1992),
1991. Journe ́es Arithme ́tiques, 1989]. □
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Conj.(13.6.6.25) [Sato-Tate].Let F ∈ NField and E ∈ Ell /F without CM, then for any place v,
define av = qv+1−#Ẽv(κv), then by Weil conjecture, |av| ≤ 2√qv, Let av/2

√
qv = cos θv, 0 ≤ θ ≤ π,

then {θv} for places v leveled by qv has distribution density 2
π sin2 θ.

Remark(13.6.6.26)[Clozel-Harris-Shepherd-Barron-Taylor]. If E ∈ Ell /Q with j(E) /∈ Z, then
the Sate-Tate conjecture(13.6.6.25) is true.

Proof: [Clozel-Harris-Taylor, Automorphy for some ℓ-adic lifts of automorphic mod ℓ representa-
tions], [A family of Calabi-Yau varieties and potential automorphy]. □

Cor.(13.6.6.27) [Birch].Given p ∈ P, for any E ∈ Ell /Fp, define av(E) = p + 1 − #Ẽv(Fp) and
av(E)/2√p = cos θp(E), 0 ≤ θ ≤ π, then the distribution density of {θp(E)} for E ∈ Ell /Fp tends to
2
π sin2 θ for p→∞ when p→∞.

Proof: ? □
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13.7 Surfaces and Arithmetic Surfaces
Main references are [Sil99], [Liu Qing].

Notation(13.7.0.1).
• In this section, let S ∈ Sch be a Dedekind scheme with generic point η or a spectrum of a field,

and η = S.

1 Over Fields
Main references are [Liu Qing, Algebraic Geometry and Arithmetic Curves].

Prop.(13.7.1.1)[27-Lines].Any smooth cubic surface in P3
k
contains exactly 27 lines.

Proof: □

Prop.(13.7.1.2).Any birational transformation of non-singular surfaces will be factorized into f.m
blowing-ups and blowing-downs of points.

Proof: □

Prop.(13.7.1.3).Any smooth surface over a field k is projective.

Proof: Cf.[Badescu, Algebraic Surfaces]Thm1.28. □

Prop.(13.7.1.4)[Non-Projective Smooth Proper Threefold].Cf.[Vak17]P671.

Proof:
□

Resolution of Surfaces

Cf.[Sta]Chap51.

Regular Surfaces

2 Fibered presurfaces
Def.(13.7.2.1) [fibered presurfaces].Let S ∈ Sch be Dedekind, a fibered presurface over S is
proper? flat S-scheme integral of dimension 2.

Prop.(13.7.2.2).Let S ∈ Sch be Dedekind, X a fibered presurface over S, then Xs has dimension 1
for any s ∈ S, and Xη is a precurve.

Proof: Cf.[Qing Liu]P348. □

Example(13.7.2.3).Let q ∈ Z+ be a square-free integer, then C = Proj(Z[X,Y, Z]/(Xq + Y q +Zq))
is a normal fibered presurface over SpecZ.

Proof: Cf.[Qing Liu]P455. □

Prop.(13.7.2.4)[Horizontal and Vertical Divisors].Let S ∈ Sch be Dedekind, X a fibered presur-
face over S, then
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• If x is a closed point of Xη, then {x} is an integral closed subscheme of X that is finite surjective
over S, called a horizontal divisor.

• If D ⊂ X is a prime Weil divisor, then D is either a horizontal divisor, or an integral component
of a special fiber, called a vertical divisor.

• If x0 ∈ X is closed, then dimOX,x0 = 2.
Moreover, call a Weil divisor D on X horizontal or vertical if it consists of horizontal or vertical
prime divisors.
Proof: Cf.[Qing Liu]P349. □

Prop.(13.7.2.5)[Generically Smoothness].Let S ∈ Sch be Dedekind and π : X → S be a fibered
presurface s.t. Xη is smooth, then there is a dense open subscheme V ⊂ S s.t. π−1(V ) → V is
smooth.
Proof: Cf.[Qing Liu]P352. □

Regular Fibered Presurfaces

Prop.(13.7.2.6) [Regular Fibered Presurfaces are Projective].Let S be affine and X/S be a
flat morphism with fibers of dimension 1, then X/S is projective. In particular, a regular fibered
presurface is projective.
Proof: Cf.[Qing Liu]P353. □

Prop.(13.7.2.7)[Sections are Regular].Let π : C → S be a regular fibered presurface and s ∈ S,
then

• If s ∈ S is closed and x ∈ Cs is closed, then Cs is regular at x iff π♯(ps) ⊈ m2
x.

• If P : U → C is a rational section, then Cp is smooth at P (s) for s ∈ U .
Proof: 1: This is because OCs,x = OC,x/π

♯(ps), mCs,x = mC,x/π
♯(ps) and use the definition of

regularity.
2: We show that π♯(ps) ⊈ m2

x: Suppose otherwise, then

ps = (π ◦ P )♯(ps) ⊂ π♯(m2
x) = p2,

which is impossible. □
Cor.(13.7.2.8).Let C/S be a regular fibered presurface, then C(S) = Csm(S). If moreover C/S is
proper, then C(S) = Csm(S) = Cη(K).

Example(13.7.2.9).
• C ⊂ P2

Z defined by the equation y2 = x3 + 2x2 + 6 is a regular fibered presurface over Z with
3 singular points.

• C ⊂ P2
Z defined by the equation y2 = x3 + 2x2 + 6 is not regular at (x, y, 2).

Proof: 1: The determinant ∆ = −26 · 3 · 97, so it is has three singular fibers C2, C3, C97:

C2 : y2 = x3, C3 : y2 = x2(x+ 2), C97 : y2 = (x+ 66)2(x+ 64).

By(13.9.1.15), they are singular at a single point, and we check these points are regular in C:
For C2, the singular point is defined by (x, y, 2), and has residue field F2. To show it is regular, it

suffices to show that (x, y, 2)/(x, y, 2)2 is generated by 2 elements x, y: 2 = 3−1(y2 − x3 − 3x2). The
C3, C97 cases are similar. □
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3 Arithmetic Surfaces
Def.(13.7.3.1)[Arithmetic Surfaces].An arithmetic surface is a flat of f.t. over S that is integral
normal and excellent, such that its generic fiber is a non-singular projective curve, and its special
fibers are unions of curves.

Prop.(13.7.3.2).Any arithmetic surface is regular in codimension 1.

Prop.(13.7.3.3)[Mordell-Weil for Function Fields].Let E → C be an elliptic surface defined over
a field k. Let E/K(C) be the generic fiber. If k is a number field or E/C is not split, then E(K(C))
is a f.g. Abelian group.

Proof: Cf.[Sil99]P230. □

4 Intersection Theory
Def.(13.7.4.1)[Canonical Divisors].KX/S , Cf.[Qing Liu]P389.

Def.(13.7.4.2)[Vertically Nef].Let X/S be a regular fibered presurface, then D ∈ Cl(X) is called
vertically nef if D · C ≥ 0 for any vertical divisor C.

Prop.(13.7.4.3)[Factorization Theorem].Any birational morphism of regular fibered presurfaces
over S is a finite composition of blowing-up along a single closed point.

Proof: Cf.[Qing Liu]P395. □

Arithmetic Surfaces

Prop.(13.7.4.4)[Intersection between Vertical Divisors].Let X/S be an arithmetic surface and
s ∈ S a closed point, then for any Γ ∈ Divs(X), Γ ·Xs = 0. In particular, if Γ1, . . . ,Γr are irreducible
components of Xs of multiplicities d1, . . . , dr, then

Γ2
i = −dj

di

∑
j ̸=i

Γi · Γj ≤ 0.

5 Minimal Arithmetic Surfaces
Def.(13.7.5.1) [Exceptional Divisors].Let X/S be a regular fibered presurface, then an excep-
tional divisor or (−1)-curve E ⊂ X is a prime divisor s.t. there is a morphism of regular fibered
presurfaces f : X → Y s.t. f(E) is a closed point. Notice an exceptional divisor must be a vertical
divisor.

Prop.(13.7.5.2) [Castelnuovo’s criterion, Lichtenbaum/Shafarevich].Let X/S be a regular
fibered presurface, E ⊂ Xs a vertical prime divisor. Let k′ = H0(E,OE), then E is an exceptional
divisor iff E ∼= P1

k′ . And this is the case if E2 = −[k′ : k(s)].

Proof: Cf.[Qing Liu]P416. □

Prop.(13.7.5.3)[Characterizing Exceptional Divisors].Let X/S be a regular fibered presurface,
then for a vertical prime divisor E on X,

• E is exceptional iff KX/S · E < 0(13.7.4.1) and E2 < 0. And in this case, KX/S · E = E2.
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• If dimS = 0 and H0(X, [ωX/S ]q) ̸= 0 for some q ≥ 1 or dimS = 1 and pa(Xη) > 0, then E is
exceptional iff KX/S · E < 0.

Proof: Cf.[Qing Liu]P417. □

Def.(13.7.5.4) [Minimal Surfaces].A relatively minimal surface over S is a regular fibered
presurface C/S s.t. for any other such regular fibered presurface C′ and any birational morphism
C → C′ is an isomorphism. Equivalently, C is a regular proper model that doesn’t contain an
exceptional curve of the first kind, i.e. cannot be blown down by(13.7.4.3). Cf.[Sta]0C21.

A minimal surface over S is a regular fibered presurface C/S s.t. for any other such regular
fibered presurface C′ and any birational map C′ → C is a birational morphism. In particular, a
minimal surface C/S is relatively minimal, and AutS(C) ∼= AutK(Cη) is an isomorphism.

Cor.(13.7.5.5). If a relatively minimal arithmetic surface over S is birational to a minimal surface
over S, then they are isomorphic over S.

Prop.(13.7.5.6)[Étale Descent].Let X/S be an arithmetic surface with pa(Xη) > 0, and S′ → S
is an étale covering or S = SpecR where R is a DVR and S′ = Spec R̂, then X/S is minimal iff
X ×S S′/S′ is minimal.

Proof: Cf.[Qing Liu]P423. □

Cor.(13.7.5.7).Let X/S be an arithmetic surface with pa(Xη) > 0 and T → S is a smooth morphism,
then for any ξ ∈ T of codimension 1, X ×S OT,ξ is a minimal regular surface over OT,ξ.

Proof: Cf.[Qing Liu]P424. □

Minimal Models

Prop.(13.7.5.8)[Minimal Models].Let C/S be a normal fibered presurface, then a regular model
for C/S is a regular fibered presurface C′/S with a birational map C′ → C over S. Notice C′

η → Cη is
a birational map of regular projective precurve, thus an isomorphism.

A (relatively)minimal model for C/S is a regular model for C/S that is (relatively) minimal.
Notice if a minimal model exists, it is unique up to a unique isomorphism.

Lemma(13.7.5.9). If X/S is an arithmetic surface, then there exists only f.m. fibers Xs containing
an exceptional divisor.

Proof: Cf.[Qing Liu]P420. □

Prop.(13.7.5.10) [Blowing Down to Relatively Minimal Surfaces]. If X/S is an arithmetic
surface, then X is a finite blowing-up of relatively minimal arithmetic surface over S.

Proof: The number of exceptional divisors decreases along contractions? □

Prop.(13.7.5.11)[Lichtenbaum/Shafarevich].Let X/S be an arithmetic surface with pa(Xη) ≥ 1,
then X admits a unique minimal model over S.

Proof: Cf.[Qing Liu]P422. □

Remark(13.7.5.12).This is not true for pa(Xη) = 0, Cf.[Qing Liu]P422.
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Cor.(13.7.5.13)[Minimal and Relatively Minimal Surfaces]. If X/S is an arithmetic surface s.t.
pa(Xη) > 1, then X is minimal iff it is relatively minimal iff KX/S is vertically nef, by(13.7.5.5)
and(13.7.5.4)(13.7.5.3). ? In the field case, why the hypothesis is satisfied?

Cor.(13.7.5.14). If X/S is a smooth arithmetic surface, then X/S is relatively minimal by(13.7.4.4)
as in this case Xs is a disjoint union of irreducible curves. And if p(Xη) > 0, then X is minimal.
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13.8 Reductions

1 Semistable Reductions
Def.(13.8.1.1) [Models].Let S be a Dedekind domain with function field K and X an algebraic
K-scheme, a model over S for X is a proper flat f.t. S-scheme X s.t X ×S K ∼= X.

Def.(13.8.1.2) [Good Reduction].Let (R,K, k) be a DVR and X ∈ Schft /K, X is said to have
good reduction over R if there is a smooth model X for X. If this is the case, then X̃ = Xk is a
smooth scheme over k, called the reduction of X.

In this case, the reduction map X(K) ∼= X (OK)→ X̃(k) is surjective, by valuation criterion and
formal smoothness criterion.

2 Reduction of Curves
Main references are [Sta]Chap55 and [Qing Liu].

Def.(13.8.2.1)[Semistable and Stable Unions of Curves].Let k ∈ Field, k, C an algebraic union
of curves over k, then C is called a semistable union of curves iff Ck is reduced and the singular
points of Ck are all ordinary double points. C is called a stable union of curves if moreover it
satisfies:

• Ck is connected and projective, with pa(C) ≥ 2.
• Let Γ be an integral component of C that is isomorphic to P1

k, then it meets other integral
components at at least 3 points.

Minimal Models

Def.(13.8.2.2) [Minimal Models].Let R be a DVR with fraction field K. Let C be a smooth
projective curve over K, then a minimal model for C is a regular proper model C for C s.t. for
any other such model C′, any birational map of models C → C′ is an isomorphism.

Equivalently, C is a regular proper model that doesn’t contain an exceptional curve of the first
kind, i.e. cannot be blown down? Cf.[Sta]0C21.

Prop.(13.8.2.3)[Resolution of Singularities for Arithmetic Surfaces].Let (R,K) be a DVR,
C a smooth projective curve over K of genus g. Then there exists a proper regular model for C.

Proof: Cf.[?] □

Prop.(13.8.2.4)[Minimal Model Theorem].Let (R,K) be a Dedekind domain and C a smooth
projective precurve over K, then of genus≥ 1, then there exists a minimal model for C.

Proof: Cf.[?] □

Prop.(13.8.2.5)[Semistable Reductions].Let (R,K) be a DVR, for a smooth complete curve C
over K, the following are equivalent:

• There exists a proper model of C that is at-most-nodel of relative dimension 1 over R.
• There exists a minimal model of C that is at-most-nodel of relative dimension 1 over R.
• Any minimal model of C that is at-most-nodel of relative dimension 1 over R.

If this is the case, then C is said to have semistable reduction.
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Proof: Cf.[Sta]0CDG. □

Prop.(13.8.2.6)[Good Reductions].Let R be a DVR with fraction field K, for a smooth projective
curve C over K, the following are equivalent:

• C has good reduction over R.
• There exists a minimal model of C that is smooth over R.
• Any minimal model of C is smooth over R.

Proof: Cf.[Sta]0CDI. □

Good Reduction for Curves

Prop.(13.8.2.7)[Reduction of Morphisms].For any morphism φ : C → C ′ of smooth projective
curves over Q with good reduction at p and g(C ′) > 0, there exists a unique reduction morphism
φ̃ : C̃ → C̃ ′ that commutes with the reduction map(13.8.1.2). This defines a functor from the
category of smooth projective curves of positive genus with good reduction to the category of smooth
curves over Fp.

Moreover, deg(φ) = deg(φ̃), and by(13.8.1.2), if φ is surjective, φ̃ is also surjective. And φ is an
isomorphism iff φ̃ is an isomorphism.

Proof: Cf.[BLR90]Prop 9.5.1? □

Cor.(13.8.2.8). If φ : E → E′ is an isogeny of elliptic curves over Q with good reduction at p, then
the reduction morphism φ̃ : Ẽ → Ẽ′ is also an isogeny.

Proof: Because it maps ÕE to ÕE′ and is surjective, this follows from(13.5.1.4). □

Prop.(13.8.2.9)[Pushforward of Divisors].Let C be a smooth projective curve over Q with good
reduction at p, then the reduction map X(K)→ X̃(F p) induces a map

Div0(X)→ Div0(X̃)

that maps principal divisors to principal divisors, so inducing a map φ∗ : Pic0(C)→ Pic0(C ′), which
is compatible with pushforward of divisors along morphisms of curves: if h : C → C ′ is a morphism of
smooth projective curves over Q with good reductions at p, then the following digram is commutative:

Pic0(C) Pic0(C ′)

Pic0(C̃) Pic0(C̃ ′)

h∗

h̃∗

Proof: Cf.[BLR90]Prop 9.5.1? □

Classification of Special Fibers of the Minimal Regular Models of Curves of Genus 2

Cf.[Y. Namikawa, K. Ueno, The complete classification of fibers in pencils of curves of genus two,
Manuscripta Math. 9 (1973), 143–186.] and [A. P. Ogg, On pencils of curves of genus two, Topology
5 (1966), 355–362.].
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13.9 Arithmetic of Elliptic Curves

Main References are [Sil16] and [Sil99], [Sil11]. Should add Sutherland’s noteshttps://math.
mit.edu/classes/18.783/2017/lectures.htmlL2-11, 13-14, 17-24. and Snowden’s noteshttp://
www-personal.umich.edu/~asnowden/teaching/2013/679/index.htmlL5,6,7,9,11, 14, 15, 17-23.

Notation(13.9.0.1).
• Use notations defined in Arithmetic of Abelian Varieties.
• Use notations defined in Global Fields.

1 Basics

Def.(13.9.1.1)[Elliptic Curves].An elliptic curve E is a complete non-singular curve of genus 1
over a field k, together with a specified rational pt O. In(13.9.1.9), we will see an elliptic curve is
smooth.

Let S ∈ Sch, then an elliptic scheme over S is a proper smooth scheme over S with a section
e : S → E s.t. all the fibers are elliptic curves over the resp. residue field k(s) with the origin given
by e. The category of elliptic schemes over S is denoted by Ell /S.

Remark(13.9.1.2).Elliptic curves are Abelian varieties by(13.9.1.9). Thus the theory of Abelian
varieties apply to elliptic curves.

Weierstrass Theory

Def.(13.9.1.3)[Weierstrass Equations].A Weierstrass equations is an equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Def.(13.9.1.4)[Important Identities].Let k ∈ Field, E ∈ Ell /k, given any Weierstrass equation as
in(13.9.1.3), we can define

• b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4.
• ∆ = −b2

2b8− 8b3
4− 27b2

6 + 9b2b4b6 the discriminant of E, to determine whether E is singular.
• the quantity c4 = b2

2 − 24b4, used in the singular case to determine iff it has a node or cusp.
• the quantity c6 = −b3

2 + 36b2b4 − 216b6, used to determine twisted elliptic curves.
• the j-invariant j = c3

4/∆, which is used to in the non-singular case to characterize E.
They satisfy the equations:

4b8 = b2b6 − b2
4, 1728∆ = c3

4 − c2
6.

Prop.(13.9.1.5) [Reduced Weierstrass Equations].Let k ∈ Field, E ∈ Ell /k, given any Weier-
strass equation as in(13.9.1.3),

• If char k ̸= 2, we can replace (x, y) by (x, y− (a1x+ a3)/2) to eliminate a1, a3 to transform the
original Weierstrass equation to

y2 = x3 + b2x
2 + 2b4x+ b6

4
.

https://math.mit.edu/classes/18.783/2017/lectures.html
https://math.mit.edu/classes/18.783/2017/lectures.html
http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
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• If char k ̸= 2, 3, then we can further replace (x, y) to ((x − 3b2)/36, y/216) to eliminate b2 to
transform the Weierstrass equation to

y2 = x3 − 27c4x− 54c6.

In particular, E has a Weierstrass equation of the form

y2 = x3 + a4x+ a6, ∆ = −16(4a3
4 + 27a2

6), j = 1728 4a3
4

4a3
4 + 27a2

6

• If char k = 3, then E has a Weierstrass equation of the form

y2 = x3 + a2x
2 + a6, ∆ = −a3

2a6, j = −a3
2/a6, or y2 = x3 + a4x+ a6, ∆ = −a3

4, j = 0

• If char k = 2, then E has a Weierstrass equation of the form

y2+xy = x3+a2x
2+a6, ∆ = a6, j = 1/a6, or y2+a3y = x3+a4x+a6, ∆ = a4

3, j = 0.

Prop.(13.9.1.6) [Explicit Embedding of Elliptic Curves].Any E ∈ Ell /k is isomorphic to the
plane curve in P2

k defined by an affine Weierstrass equation in k[x, y].
And any isomorphism between elliptic curves defined by affine Weierstrass equations over k and

fixes [0, 1, 0] are linear maps of the form

(X,Y ) 7→ (u2X + r, u3Y + su2X + t), u ∈ k∗, s, r ∈ k.

Proof: If E is an elliptic curve over k, consider a rational point O ∈ E(k), Riemann-Roch(5.11.2.9)
tells l(nP ) = deg(nP ) = n for n ≥ 1. Now L(kP ) = k by Riemann-Roch(5.11.2.9). So we choose a
basis 1, x for OX(2O), and extend it to a basis 1, x, y of L(3P ). Since L(6O) = 6, there is a linear
relation between the seven elements 1, x, x2, xy, y2, x3. And y2, x3 must occur by observing the pole
order at P . Thus by rescaling, we can write the relation as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

So x, y defines a rational map of E to P2 : a 7→ (x(a), y(a), 1). This map extends to an embedding
of E into P2, by(5.11.1.15). Moreover, by the above proof, if E′ is another Weierstrass form, then
1, x′ are basis for OX(2O) and 1, x′, y′ are basis for OX(3O). Thus we have the linear relation between
(X,Y ) and (X ′, Y ′).

To define an Abelian structure on E, first notice that

E(k)→ Cl0(E) : Q 7→ [Q]− [P ]

is an isomorphism. Using Riemann-Roch, it is injective because l(Q) = 1 for Q ∈ E(k), and for
any divisor A of degree 0, L(A + P ) > 0, so there exists an effective divisor that is equivalent to
A+P , but this must be a rational point Q ∈ E(k). Thus we can endow E(k) with a group structure
inherited from Cl0(E). By(13.9.1.8), there is a group variety structure prolonging this construction,
so E is a group scheme. □

Remark(13.9.1.7).There is a more advanced way to prove that this is a group action, in [Qing
Liu]P492.?
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Lemma(13.9.1.8)[Explicit Group Structure].Let E be an elliptic curve given by a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

then the group addition on E\O is given by
• −(x0, y0) = (x0,−y0 − a1x− a3).
• (x1, y1) + (x2, y2) = O iff x1 = x2 and y1 + y2 + a1x2 + a3 = 0. Otherwise

(x1, y1) + (x2, y2) = (λ2 + a1λ− a2 − x1 − x2,−(λ+ a1)x3 − ν − a3)

where

λ =
{
y1−y2
x1−x2

x1 ̸= x2
3x2+2a2x1+a4−a1y1

2y1+a1x1+a3
x1 = x2

, ν =


y2x1−y1x2
x1−x2

x1 ̸= x2
−x3

1+a4x1+2a6−a3y1
2y1+a1x1+a3

x1 = x2

• (Doubling Formula) x([2]P ) = x4−b4x2−2b6x−b8
4x3+b2x2+2b4x+b6

.
Thus the group actions defined in(13.9.1.6) are all morphisms. In particular, E is a group variety.

Proof: Cf.[Sil16]P53. □

Cor.(13.9.1.9)[Elliptic Curves and Abelian Varieties]. If X is an Abelian variety of dimension
1, then X is an elliptic curve. The converse is also true, by(13.9.1.6). In particular, the theory of
Abelian varieties13.5 applies to elliptic curves. And we will use notations for Abelian varieties.

Proof: By(8.1.4.35)(8.1.4.34), the tangent space TX/k is trivial of rank 1, thus it is a curve of genus
1 by(5.11.1.24). it is also regular, by(5.6.4.16). □

Prop.(13.9.1.10) [Normalized Invariant Differential Form].Let k ∈ Field, E ∈ Ell /k defined
by a Weierstrass equation W : y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6. Then the differential form
given by

ω = dx

2y + a1x+ a3
= dy

3x2 + 2a2x+ a4 − a1y

is a non-zero section of KE . It is normalized s.t. at the origin, with the uniformizer z = −x/y, it has
value 1.

Moreover, it is invariant under translation. It is called the normalized invariant differential
form on E w.r.t W .

Proof: Firstly we show div(ω) = 0: consider a finite point P0 = (x0, y0), then it cannot have pole,
otherwise P0 is singular. Because x − x0 ∈ L(2O), ordP0(x − x0) ≤ 2, and if ordP0(x − x0) = 2,
ordP0(y − y0) ≥ 2 also by inspecting the Weierstrass equation. Thus ordP (ω) = 0. Also consider the
situation at ∞, ordO(x) = −2, ordO(y) = −3, thus ordO( dx

2y+a1x+a3
) = 0 except possibly charK = 2.

But the same calculation shows ordO( dy
3x2+2a2x+a4−a1y

) = 0 except possibly charK = 3. Thus we are
done.

Now any translation action induces a map τ∗
xω = a(x)ω, where a ∈ K(C)×. But a(x) has no

pole and zeros, thus a(x) ∈ k×. But then a(x) is rational function with no zero and poles, thus
a(x) = a(O) = 1. □

Cor.(13.9.1.11). [m]∗Eω = pr∗
1 ω + pr∗

2 ω.

Proof: It follows from this and the see-saw principal that m∗
EKE ∼= pr∗

1KE ⊗ pr∗
2KE . □
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Prop.(13.9.1.12)[Change of Variables].A change of variables of the form (x, y) replaced by (u2x+
a, u3y + bx+ c) changes c4 to u−4c4, c6 to u−6c6, ∆ to u−12∆, and preserves j.

Proof: This is just a equation of identities, so it suffices to prove for k of characteristic 0, then
in this case, by(13.9.1.5), c4, c6 is just the coefficients of the Weierstrass equation transformed into
the reduced form(times a constant). So it suffices to prove for transformation between reduced
Weierstrass equations. In this case, a = b = c = 0, and the assertion is clear. □

Prop.(13.9.1.13)[Characterizing Singularities].Let k ∈ Field, then
• The plane cubic E over k defined by a Weierstrass formula f is never singular at O = [0, 1, 0],

and it is a curve.
• – E is smooth iff its determinant ∆ ̸= 0. And in this case it is an elliptic curve by genus

formula.
– E has a node iff ∆ = 0 and c4 ̸= 0.
– E has a cusp iff ∆ = c4 = 0.

• For E,E′ ∈ Ell /k, Ek ∼= E′
k
iff j(E) = j(E′). In fact, they are isomorphic over a separable

field extension k′/k of degree 24, and if j ̸= 0, 1728, then they are isomorphic over a separable
field extension k′/k of degree 2.

Proof: 1: Firstly, E is never singular at [0, 1, 0]: On U(z), the curve is given by z + a1xz + a3z
2 =

x3 + a2x
2z + a4xz

2 + a6z
3, which is not singular at (0, 0). Secondly, E has genus 1. Finally it is a

curve by(2.2.3.13) and checking f doesn’t has a root y ∈ k(x): This is true by degree reasons using
reduced Weierstrass equations(13.9.1.5).

2: (1): By(13.9.1.9), non-singular is equivalent to smoothness. So we may base change to k. If
P is non-singular, linearly transform it to (0, 0), then by Jacobian criterion, ∂

∂xf = ∂
∂yf = 0, so

a3 = a4 = a6 = 0, and it can be verified that ∆ = 0. Conversely, if ∆ = 0, then use the reduced
Weierstrass equations and argue case by case, we can find a singular point.

(2), (3): In this case, assume a3 = a4 = a6 = 0, then c4 = (a2
1 + 4a2)2, and E : y2 + a1xy− a2x

2−
x3 = 0, so the assertion is clear.

2: We use the reduced Weierstrass equations, derive an equation between their coefficients, and
take a suitable change of variables. Details are omitted. □

Prop.(13.9.1.14)[Fields of Moduli].For any element j0 ∈ k, there exists an elliptic curve over k(j0)
with j-invariant j. In particular, any elliptic curve over k is defined over k(j(E)), by(13.9.1.13).

Proof: If j0 ̸= 0, 1728, then we can take the curve

E : y2 + xy = x3 − 36
j0 − 1728

x− 1
j0 − 1728

with ∆(E) = j3
0

(j0−1728)3 , j(E) = j0.
If j = 0 or 1728, we can take one of the curves

E : y2 + y = x3, ∆ = −27, j = 0

E : y2 = x3 + x, ∆ = −64, j = 1728.

Notice for char k = 2 or 3, 0 = 1728, and at least one of these are elliptic curves. □
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Prop.(13.9.1.15)[Singular Weierstrass]. If k ∈ Field is perfect or char k ̸= 2, 3, E ∈ P2
k is a plane

cubic given by a Weierstrass equation W is singular, then
• E has a unique singular point, and it is a rational point.
• E is birational to P1

k, i.e. its non-singular projective model is P1(5.11.1.18).
• Esm is a commutative k-group under the group action given in(13.9.1.8) with origin O = [0, 1, 0],

and Esm ∼= Gm if E has a split node, and Esm ∼= Ga if E has a cusp.

Proof: 1: By(13.9.1.13), the singular points must be a finite point, and ∆ = 0. Over k, the
singular points of E is characterized by the equations W = ∂

∂xW = ∂
∂yW = 0. Then we can use the

reduced Weierstrass equations(13.9.1.5): If char k ̸= 2, 3, then clearly (x0, y0) ∈ k2. The perfect case
is similar.

2: Because the curve is never singular at O by(13.9.1.13), by a linear change, we can assume that
one of the singular point is (0, 0). Then by Jacobian criterion, it must be of the form

y2 + a1xy = x3 + a2x
2.

Then the projection along (0, 0) is an isomorphism? this is wrong!

E\{0,∞} → P1
k\{[0 : 1]} : (x, y) 7→ [x : y]

with inverse
[1, t] 7→ (t2 + a1t− a2, t

3 + a1t
2 − a2t).

Esm is a group scheme because we can verify on closed points, and the fact any line through (0, 0)
has multiplicity more than 1. To determine the group structure, Cf.[Sil16]P56?. □

Prop.(13.9.1.16)[Legendre Forms].Let charK ̸= 2, then
• every elliptic curve over K is isomorphic to an elliptic curve in Legendre form

Eλ : y2 = x(x− 1)(x− λ), λ ̸= 0, 1 ∈ K.

• ∆(Eλ) = 16λ2(λ− 1)2, j(Eλ) = 28 (λ2−λ+1)3

λ2(λ−1)2 , c4 = 16(1− λ(1− λ)).

• If K is a valued field, we may take v(λ) ≥ 0 as j(Eλ) = j(Eλ−1).
• The map K → K : λ 7→ j(Eλ) is 6 to 1 except above the points 0 and 1728, where for

charK ̸= 2, 3, #j−1(0) = 2, #j−1(1728) = 3, and for charK = 3, j−1(0 = 1728) = 1.

Proof: 1: put the Weierstrass equation of E in the reduced form(13.9.1.5), then it is of the form

y2 = (x− e1)(x− e2)(x− e3)

in K[x, y], and because ∆ = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 ̸= 0, so e1, e2, e3 are pairwise distinct.
Thus the linear transform

x 7→ (e2 − e1)x′ + e1

makes the Weierstrass equation in the Legendre form with λ = e3−e1
e2−e1

.
2: Direct calculation.
3: Directly calculating the differential of j.? □
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Prop.(13.9.1.17)[Duering Normal Form].Every elliptic curve over K, except possibly charK = 3
and j(E) = 0, is isomorphic to an elliptic curve in Deuring normal form

Eα : y2+αxy+y = x3, α ∈ K, ∆(Eα) = α3−27 ̸= 0, j(Eα) = α3(α3 − 24)3

α3 − 27
, c4 = α(α3−24).

And if K is a valued field, we can take v(α) > 0.

Proof: Use(13.9.1.13), it suffices to show that j(α) can take any value j ∈ K.
The last assertion is because if v(α) < 0, then the product of roots of x(x−24)3

x−27 = α3(α3−24)3

α3−27 other
than α is −723/(α− 27) has positive valuations. □

Prop.(13.9.1.18)[Automorphism Group].Let E be an elliptic curve over a field k, then the the
automorphic group of E is

Aut(E) ∼=



µ2(k) j(E) ̸= 0, 1728
µ4(k) j(E) = 1728, char k ̸= 2, 3
µ6(k) j(E) = 0, char k ̸= 2, 3
D12 j(E) = 0 = 1728, char k = 3, k = k

C3 ⋉Q8 j(E) = 0 = 1728, char k = 2, k = k

Proof: Any automorphism of E is defined by a linear maps of the form

(X,Y ) 7→ (u2X + r, u3Y + su2X + t), u ∈ k×, s, r ∈ K.

If char k ̸= 2, 3, use the reduced Weierstrass form E : y2 = x3 + Ax + B, so it is of the form
(X,Y ) 7→ (u2X,u3Y ), which is possible iff u−4A = A, u−6B = B. Thus by arguing case by case, we
are done.

The char k = 2, 3 cases are similar, use reduced Weierstrass forms(13.9.1.5) and argue case by
case. □

Prop.(13.9.1.19)[Dual Elliptic Curves].An elliptic curve E is canonically isomorphic to its dual
Ê, by the mapping P 7→ L(P −O).

Proof: This morphism is induced by the ample line bundle L(O)(13.5.4.2), and it is an isomorphism
because it has degree 1, by Riemann-Roch(13.5.5.2). □

Cor.(13.9.1.20).For any L ∈ Pic(E) of degree d, φL = [d] : E → E via the canonical duality, because
Pic0(E) induces trivial maps by(13.5.4.8) and(7.1.12.5).

Cor.(13.9.1.21)[Characterizing Principal Divisors].Let E ∈ Ell /k and D =
∑
ni[Pi] ∈ Div(E),

where Pi are rational points, then D is a principal divisor iff ∑ni = 0 and ∑[ni]Pi = O.

Proof: Of course ∑ni = 0. In this case, ∑[ni]Pi is mapped to the line bundle corresponding to
[D] ∈ Ê via E → Ê, so [D] = 0 iff ∑[ni]Pi = O. □
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Isogenies

Prop.(13.9.1.22).Let φ,φ′ : E′ → E be isogenies of elliptic curves over k, and let ω be an invariant
differential on E, then by(13.9.1.11),

(φ+ φ′)∗ω = φ∗ω + (φ′)∗ω.

Cor.(13.9.1.23). [m]∗ω = mω.

Cor.(13.9.1.24)[End(E) is Commutative in Characteristic 0].Let E ∈ Ell /k with the normalized
invariant differential form ω, then there is a ring homomorphism

End(Ek)→ k : φ 7→ aφ,where φ∗ω = aφω.

And the kernel is the set of inseparable endomorphisms of Ek. In particular, if char k = 0, then
End(Ek) is commutative.

Proof: Cf.[Sil16]P79.? □

Prop.(13.9.1.25)[Dual Isogenies].Let k ∈ Field, E,E′ ∈ Ell /k and φ ∈ Hom(E,E′), then under
the canonical isomorphism(13.9.1.19), the dual map φ̂ can be regarded as a map φ̂ : E′ → E. Then

φ̂ ◦ φ = [deg(φ)]E , φ ◦ φ̂ = [deg(φ)]E′ .

End(E)→ End(E) : φ 7→ φ̂ is additive, and defines an involution on End(E).

Proof: Let d = deg(φ). By unwinding definition, φ̂ ◦ φ : E → E′ → Ê′ → Ê is just φφ∗L(O).
But for elliptic curves, φL only depends on deg(L), thus φφ∗L(O) = φL(dO) = [d]φL(O). The second
assertion follows by noticing φ = ̂̂φ and deg(φ) = deg(φ̂)(13.5.6.5). □

Cor.(13.9.1.26)[End(E)].Let k be a field and E ∈ Ell /k, then End(E)⊗Q is a division ring.

Prop.(13.9.1.27)[Classification of End(E)].Let k ∈ Field, E ∈ Ell /k, then End(E) has the follow-
ing three possibilities:

• Z.
• an Z-order in an imaginary quadratic extension over Q.
• an Z-order in a definite quaternion algebra over Q.

And the third case won’t happen in characteristic0, by(13.9.1.24).

Proof: This follows from(2.4.5.1) and(13.14.1.1). □

2 Formal Groups of Elliptic Curves
In this subsection, the formal group structure of an elliptic is studied.
In this subsection, E is an elliptic curve over a field K given by Weierstrass equation y2 + a1xy+

a3y = x3 + a2x
2 + a4x+ a6.

Prop.(13.9.2.1)[Calculation of Formal Group Law].Make a change of variable z = −x/y, w =
−1/y to the Weierstrass equation of E, the equation becomes

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w2 + a6w

3 = f(z, w).

Then
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• ÔE,O ∼= K[[z]].
• There is a unique power series w(z) ∈ Z[a1, . . . , a6][[z]] satisfying w(0) = 0 and w(z) =
f(z, w(z)).

• w(z) = z3(1 +A1z+A2z
2 + . . .), where An is a homogenous polynomial in a1, . . . , a6, where ai

has weight i.
•

x(z) = z/w(z) = z−2 − a1z
−1 − a2 − a3z − (a4 + a1a3)z2 + . . . ∈ Z[a1, . . . , a6][[z]]

y(z) = −1/w(z) = −z−3 + a1z
−2 + a2z

−1 + a3 + (a4 + a1a3)z + . . . ∈ Z[a1, . . . , a6][[z]]

• The formal group law of E(13.5.2.1) is given by

F (z1, z2) = z1 + z2 − a1z1z2 − a2(z2
1z2 + z1z

2
2)

+ (−2a3z
3
1z2 + (a1a2 − 3a3)z2

1z
2
2 − 2a3z1z

3
2) + . . . ∈ Z[a1, . . . , a6][[z1, z2]].

• The normalized invariant differential form(13.9.1.10)

ω(z) = dx(z)
2y(z) + a1x(z) + a3

=[1 + a1z + (a2
1 + a2)z2 + (a3

1 + 2a1a2 + 2a3)z3

+(a4
1 + 3a2

1a2 + 6a1a3 + a2
2 + 2a4)z4 + . . .]dz ∈ Z[a1, . . . , a6][[z]]dz

•
i(z) = x(z)

y(z) + a1x(z) + a3
= z−2 − a1z

−1 + . . .

−z−3 + 2a1z−2 + . . .
∈ Z[a1, . . . , a6][[z]].

In particular, this formal group law is defined over Z[a1, . . . , a6].

Proof: ω(z) ∈ Z[a1, . . . , a6][[z]]dz by(8.5.3.16).
For F (z1, z2): ? □

Prop.(13.9.2.2)[Inseparable Degree and Heights].Let K be a field of characteristic p > 0 and
E1/K,E2/K be two elliptic curves, and φ : E1 → E2 a non-zero isogeny of elliptic curves over K,
and let φ̂ : Ê1 → Ê2 be the homomorphism of formal group schemes, then

degi(φ) = pht(φ̂).

Proof: Cf.[Sil16]P134.? □

Cor.(13.9.2.3).Let K be a field of characteristic p > 0, then ht(Ê) = 1 or 2, because deg([p]E) =
p2(13.5.6.14).

3 char k > 0 case
Notation(13.9.3.1).

• Let k ∈ Fieldp,
• Let E ∈ Ell /k be given by a Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.

Prop.(13.9.3.2).Let k = Fq, #E(k) ≡ 0 mod 4.
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Proof: There are two involutions on E: (x, y, z) 7→ (x,−y, z), (x, y, z) 7→ (z, y/x, x). The fixed
points of these elements contain

(0, 1, 0), (0, 0, 1), (ε1, ε2
√

2ε1, 0), (ε3
√
−1, 0, 1).

Considering either cases s.t. −1 ∈ F2
q or 2 ∈ F2

q , the number of these points are divisible by 4, thus
we are done. □

Prop.(13.9.3.3)[Hasse-Weil].Let p ∈ P, q = pr, k = Fq and E ∈ Ell /k, then
• If a = 1+q−#E(Fq), α, β be the two roots of T 2−aT+q = 0, then #E(Fqn) = 1+qn−αn−βn.
• |#E(Fq)− 1− q| ≤ 2√q.
• The Frobenius map φE : E → E satisfies φ2 − aφ+ [q] = 0.
• a = 1 + q − deg(1− φ), and [a] = φ+ φ̂.

Proof: 1, 2 are special cases of(13.5.9.3). 3, 4 follow from(13.5.7.9) and(13.5.6.17). □

Cor.(13.9.3.4).Let k = Fq, p ̸= 2 and E is given by y2 = x3 + a2x
2 + a4x+ a6, then

|
∑
x∈Fq

(x
3 + a2x

2 + a4x+ a6
Fq

)| ≤ 2√q.

Proof: This is because #E(Fq) =
∑
x∈Fq

(1 + (x3+a2x2+a4x+a6
Fq

)). □

Supersingular Elliptic Curves

Main references are [Igu58].

Def.(13.9.3.5)[Supersingular Elliptic Curve].Let k ∈ Field, char k = p > 0, FE/k,r : E → E(pr)

the relative Frobenius(5.2.10.1), and F̂E/k be its dual. Then the following are equivalent:
• E[pr] = 1 for all r ≥ 1.
• E[pr] ≇ Z/prZ for some r ≥ 1.

• F̂E/k,r is purely inseparable for one(thus all) r.
• [p] : E → E is purely inseparable, and j(E) ∈ Fp2 .
• End(E) is an order in a quaternion algebra.
• The formal group Ê/K associated to E has height 2( ̸= 1).

Such curves are called supersingular elliptic curves, otherwise E is called an ordinary elliptic
curve.

Being supersingular is stable and reflective under base change.

Proof: Cf.[Silverman P144].? □

Prop.(13.9.3.6) [Ordinary Elliptic Curves].Let k ∈ Field, char k = p > 0, E ∈ Ell /k be an
ordinary elliptic curve, then

• If j(E) ∈ Fp, then End(E) is an order in an imaginary quadratic field. In particular, this is
the case when k is a finite field.

• If j(E) /∈ Fp, then End(E) ∼= Z.
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Proof: 1: If j(E) ∈ Fp, then E is defined over some Fq. Let φ be the Frobenius, then if φr ∈ Z,
φr = [±qr], so #E[φr] = degs(φr) = 1 by(13.5.6.3), contradicting the fact E is ordinary. Thus the
assertion follows from(13.9.1.27).

2: ? □
Cor.(13.9.3.7).For E ∈ Ell /Fp, E is ordinary iff End(E) is an order in an imaginary quadratic field,
and E is supersingular iff End(E) is an order in a quaternion algebra.

Def.(13.9.3.8)[Hasse Invariant].The Hasse invariant for E is a number which is 0 if E is super-
singular and 1 if E is ordinary. The definition of it is in [Katz, p-adic Modular Forms].?

Prop.(13.9.3.9) [Supersingular and Trace].Let E ∈ Ell /Fq and φE be the Frobenius of E/Fq,
then

• E is supersingular iff #E(Fq) ≡ 1 mod p, iff ap = α+ β ≡ 0 mod p in(13.9.3.3).
• If q = p ≥ 5 is a prime, then E is supersingular iff #E(Fp) = p+ 1. This is false for p = 2 or
p = 3.

Proof: 1: By(13.9.3.3), let a = 1 + q−#E(Fq), then φ̂E = [a]−φ is separable iff a = 0 ∈ Fq by??.
Thus the assertion follows from(13.9.3.5).

2: Because |α+ β| ≤ 2√p < p in this case. □
Cor.(13.9.3.10).Let p ≥ 5 and E ∈ Ell /Fp be supersingular, then

#E(Fpn) =
{
pn + 1 n = 2k + 1
(pn/2 − (−1)n/2)2 n = 2k

Proof: This is because α = −β = √pi. □
Prop.(13.9.3.11)[Supersingular in Characteristic2].Let k be a field of characteristic2, then E/k
is supersingular iff j(E) = 0. In particular, y2 + y = x3 is the only supersingular elliptic curve over
k.
Proof: We use the condition #E(F2) = 2. We use the reduced Weierstrass equations in(13.9.1.4).
By doubling formula(13.9.1.8), this is equivalent to the non-existence of a point (x, y) ∈ E(k)\O s.t.
a1x+ a3 = 0. And it can be checked this is true iff j(E) = 0. □

Prop.(13.9.3.12)[Supersingulars over Finite Fields, Igusa].Let p ∈ P and E ∈ Ell /Fp.
1. If p = 2, the only supersingular elliptic curve over F2 is isomorphic to y2 + y = x3.
2. If p ≥ 3 and E is given by a Weierstrass form y2 = f(x), then E is supersingular iff

Coef(f(x)(p−1)/2

xp−1 ) = 0 ∈ Fp.
3. If p ≥ 3 and E is given by a Legendre form y2 = x(x− 1)(x− λ), then E is supersingular iff

Hp(λ) =
(p−1)/2∑
i=1

( (p−1)
2
i

)2

λi = 0.

4. If p ≥ 3, the polynomial Hp has distinct roots in Fp, and the number of isomorphism classes
of supersingular elliptic curves over Fp is

1 , p = 3
[ p12 ] , p ≡ 1 mod 12
[ p12 ] + 1 , p ≡ 5, 7 mod 12
[ p12 ] + 2 , p ≡ 11 mod 12
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5. (Mass Formula) ∑
E/Fp supersingular

1
Aut(E)

= p− 1
24

.

Remark(13.9.3.13).This has relations to the class number of normal quaternion algebras over Q

ramified at p, Cf.[Igu58].

Proof: 1: This follows from(13.9.3.11).
2: Let E ∈ Ell /Fq, denote Aq = Coef(f(x)(q−1)/2

xq−1 ), then

#E(Fq) ≡
∑
x∈Fq

(1 + (x
3 + a2x

2 + a4x+ a6
Fq

)) ≡ 1−Aq mod p.

Then Aq ≡ aE mod p, and the assertion follows from(13.9.3.9).
Finally, it can be seen from the equation f(x)(pr+1−1)/2 = f(x)(pr−1)/2[f(x)(p−1)/2]pr that Apr+1 =

AprA
pr
p . So by an induction argument, Aq = 0 iff Ap = 0.

3:

Coef((x(x− 1)(x− λ))(p−1)/2

xp−1 ) = Coef((x− 1)(p−1)/2(x− λ)(p−1)/2

x(p−1)/2 ) =
(p−1)/2∑
i=1

( (p−1)
2
i

)2

λi = Hp(λ)

4: Consider the Picard-Fuchs differential operator

D = 4t(t− 1) ∂
2

∂t2
+ 4(1− 2t) ∂

∂t
− 1,

then direct calculation shows

DHp(t) = p

(p−1)/2∑
i=1

(p− 2− 4i)
( (p−1)

2
i

)2

ti = 0.

Thus possible multiple roots of H can only be 1 or 0. But Hp(0) = 1, and Hp(1) =
(p−1
p−1

2

)
= (−1)

p−1
2 ,

thus Hp(t) has no multiple roots.
Let εp(j) = 1 if the elliptic curve E with the indicated j-invariant is supersingular, and εp(j) = 0

otherwise. Notice for p ≥ 5, j : λ → j(Eλ) is 6 to 1 except #j−1(0) = 2 and #j−1(1728) = 3, thus
by counting the number of zeros of Hp(λ), the number of supersingular elliptic curves is

1
6

(p− 1
2
− 2εp(0)− 3εp(1728)) + εp(0) + εp(1728) = p− 1

12
+ 2

3
εp(0) + 1

2
εp(1728).

Thus the assertion follows from determining elliptic curves of j-invariants 0 and 1728 are supersingular
or not, which is done by(13.9.3.14).

5: It follows from the proof of item4 that this number is 1/2 of number of roots of Hp(λ) = p−1
24 .

□
Lemma(13.9.3.14)[Examples of Supersingular Elliptic Curves].

• For p ≥ 5, the elliptic curve E : y2 = x3 +1 with j-invariant 0 is supersingular iff p ≡ 2 mod 3.
• For p ≥ 3, the elliptic curve E : y2 = x3 + x with j-invariant 1728 is supersingular iff p ≡

3 mod 4.

Proof: These follows form calculating the xp−1-term of (x3 + 1)(p−1)/2 or (x3 + x)(p−1)/2

and(13.9.3.12) item2. □
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4 Reduction of Elliptic Curves
Main references are [Liu02].
In this subsection, let S be a Dedekind scheme with generic point η and function field K.

Prop.(13.9.4.1) [Minimal Models of Elliptic Curves].Let E ∈ Ell /K and E/S be a minimal
model for E, then

• Esm(S) = E(S) = E(K).
• The automorphism (m, pr2) : E ×K E → E ×K E extends to an automorphism t : E ×S Esm →
E ×S Esm.

• t induces an automorphism Esm ×S Esm → Esm ×S Esm, and pr1 ◦E makes Esm a smooth group
scheme over S extending that of E.

Proof: Cf.[Liu02]P492. □

Prop.(13.9.4.2)[N = Esm].Let (R,K) be a DVR, E ∈ Ell /K with minimal model E(13.8.2.4), then
Esm is a Néron model for E.

Proof: To show universal property, let X/S be smooth, and f : Xη → E be a morphism considered
as a rational morphism X → Esm. Let ξ ∈ X be a point of codimension 1, and T = SpecOX,ξ,
then by(13.7.5.7) and the proof of(13.9.4.1), E ×S T → T is an arithmetic surface with smooth locus
N ×S T?, so by(13.7.2.8), N (T ) = NT (T ) = E(K), which means f can be extended to ξ. Then in
fact f is a morphism by(8.1.1.20). □

over DVRs

In this subsubsection, let (R,K,m, k) be a DVR, S = SpecR.

Def.(13.9.4.3)[Minimal Weierstrass Equation].Let E ∈ Ell /K, then a minimal Weierstrass
equation for E is an Weierstrass equation for E in R[X,Y ] with determinant ∆ with minimal
valuation.

Prop.(13.9.4.4)[Uniqueness of Minimal Weierstrass Equations].Let E ∈ Ell /K, then E has a
minimal Weierstrass equation, and it is unique up to change of variables of the form

(X,Y ) 7→ (u2X + r, u3Y + su2X + t), u ∈ R∗, r, s, t ∈ R.

Moreover, given any Weierstrass equation, then any change of coordinates that is used to produce
a minimal Weierstrass equation is of the form

(X,Y ) 7→ (u2X + r, u3Y + su2X + t), u, r, s, t ∈ R.

Proof: Cf.[Sil16]P186.? □

Cor.(13.9.4.5)[Weierstrass Models].Let E ∈ Ell /K, a minimal Weierstrass of E defines a model
W/R of E, and it is invariant of the Weierstrass equation chosen, called the Weierstrass model of
E. Denote Ẽ =Wk.

Cor.(13.9.4.6)[Néron Differentials].Let E ∈ Ell /K, a minimal Weierstrass equation of E defines
an invariant differential on W/R by(13.9.1.10), called the Néron differential of E.
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Prop.(13.9.4.7) [Weierstrass Model of Elliptic Curves].Let (R,K) be a DVR, if E ∈ Ell /K,
then a Weierstrass equation with ai ∈ R defines a scheme W ∈ P2

R. Then
• BothWsm andW has generic fiber E. If E has good reduction andW is a minimal Weierstrass

equation, then W =Wsm is smooth.
• The natural map W(R)→ E(K) is a bijection. If W is regular, then Wsm(R)→W(R) is also

a bijection.
• The group structure on E/K extends to a group structure onWsm/R, and the addition further

extends to a group action of Wsm/R on W/R.

Proof: Cf.[?]P321. □

Prop.(13.9.4.8)[Weierstrass Model and Minimal Models].Let (R,K) be a DVR, if E ∈ Ell /K
with minimal model E , then any minimal Weierstrass model W can be obtained by blowing down
the finitely many components of Ek which are disjoint from the closure in E of OE . In particular,
by(13.9.4.2), Wsm is isomorphic to the relative identity component N0 of the Néron model of E.

Proof: Cf.[Liu Qing, Thm. 9.4.35] □

Def.(13.9.4.9) [Reduction Types].Let (R,K, k) be a DVR with k perfect or char k ̸= 2, 3, and
E ∈ Ell /K with minimal Weierstrass model W, then by(13.9.1.15), Ẽ is a geo.irreducible cubic in
P2 with at most one rational singular point, and E is called

• a good reduction or stable reduction if Ẽ ∈ Ell /k.
• a multiplicative reduction or semistable reduction if Ẽ has a node. And it is called

a split multiplicative reduction if the node is split, otherwise it is called a non-split
multiplicative reduction.

• a additive reduction or unstable reduction if Ẽ has a cusp.
By(13.9.1.15), exactly one of the above is true.

Moreover, E is called a potentially good reduction if ẼK′ ∈ Ell /K ′ for some finite extension
K ′/K.

Cf.http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf P19.?
Def.(13.9.4.10)[Redution Modulo].Let E be an elliptic curve over a CDVR K, letW be a minimal
Weierstrass equation for E, then W defines a projective scheme W in P2

R. By valuation criterion
of properness, the natural map W(R) → E(K) is an isomorphism. Let Ẽ = W ⊗R k, called the
reduction modulo of E. Then there is a natural map E(K)→ Ẽ(k), let

E0(K) = {P ∈ E(K), P̃ ∈ Ẽsm(k)}, E1(K) = {P ∈ E(K), P̃ = Õ},

then by(13.9.1.15), E0(K) and E1(K) are Abelian groups, and E0(K) → Ẽsm(k) is a group homo-
morphism. E1(K) is called the kernel of the reduction.

Proof: To see Ẽ is well-defined, use(13.9.4.4). □

Prop.(13.9.4.11).There is an exact sequences of Abelian groups

0→ E1(K)→ E0(K)→ Ẽsm(k)→ 0.

http://virtualmath1.stanford.edu/~conrad/mordellsem/Notes/L11.pdf
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Proof: Only the right surjectivity needs to be proved: Let P̃ ∈ Ẽns(k). If P̃ = Õ, then it is in the
image, so we assume P̃ is a finite point (x0, y0). Then the minimal Weierstrass equation f(x, y) of E
satisfies ∂f

∂x0
̸≡ 0 mod m or ∂f

∂y0
̸≡ 0 mod m. We may assume the first case occurs. Let x0 be a lift of

x0, then the equation f(x0, y) ∈ K[y] has a simple root y0 in R, then by Hensel’s lemma(4.3.10.6),
it has a root y0 in R lifting y0. Then P = (x0, y0) ∈ E(K) is a lift of P̃ . □

Prop.(13.9.4.12)[Formal Group is the Kernel].Let E be given a minimal Weierstrass equation,
then with notations as in(13.9.2.1),

Ê(m)→ E1(K) : z 7→ [z,−1, w(z)]

is an isomorphism of groups.

Proof: By(13.9.2.1), ω(z) ∈ z3R[[z]], and by the definition of w(z), [z,−1, w(z)] ∈ E1(K), and it
is a group homomorphism by the definition of formal group law associated to E. It remains to prove
that this map is surjective:

Clearly O is in the image, suppose (x0, y0) ∈ E1(K), then v(x0) < 0, v(y0) < 0, thus by inspecting
the Weierstrass equation, v(x0) = −2r, v(y0) = −3r for some r > 0 ∈ Z. Then z0 = x0/y0 ∈ m, and
(x0, y0) is the image of z0. □

Prop.(13.9.4.13) [Characterizing Reductions].Let E/K be an elliptic curve over K given by a
Weierstrass equation E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6, then by(13.9.1.13),
• Ẽ is a good reduction iff ∆ ∈ R∗.
• Ẽ is a multiplicative reduction iff ∆ ∈ m and c4 ∈ R∗.
• Ẽ is an additive reduction iff ∆, c4 ∈ m.

Prop.(13.9.4.14)[Characterizing Potentially Good Reduction].E has potentially good reduc-
tion iff j(E) ∈ R.

In particular, an elliptic curve with complex multiplication overK has potentially good reduction.

Proof: If Ek has good reduction, then j(E) = (c′
4)3/∆′ ∈ R′. Conversely, if j(E) ∈ R, use Legendre

form or Deuring form(13.9.1.16)(13.9.1.17), the equation

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2 or j = α3(α3 − 24)3

α3 − 27

implies λ ∈ R∗, λ(λ− 1) ∈ R∗(or α ∈ R∗, α3 − 27 ∈ R∗), so Ek has good reduction. □

Prop.(13.9.4.15) [Tamagawa Numbers].Let (R,K, k) be a DVR and E ∈ Ell /K with minimal
model E/R, then c(E) equals the number of geo.integral components occuring with multiplicity 1 in
Ek.

Proof: Cf.[Liu Qing, 10.2.24]. □

Prop.(13.9.4.16) [Tamagawa Numbers].Let E ∈ Ell /K. If E has split multiplicative reduction
over K, then E(K)/E0(K) is a cyclic group of order v(∆) = −v(j). And in other cases, the group
is finite and has order at most 4.

Proof:
□
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Cor.(13.9.4.17). If K ∈ p-Field and E ∈ Ell /K, then E(K) contains a subgroup of finite index that
is isomorphic to OK .

Proof: Because E(K)/E0(K) and E0(K)/E1(K) ∼= Ẽns(k) are all finite by(13.9.4.16), it suffices to
prove that E1(K) ∼= Ê(m) has a subgroup of finite index that is isomorphic to OK . But this follows
from the fact Ê(mr) ∼= mr for r large(8.5.4.7). □

Tate Algorithm

Prop.(13.9.4.18)[Kodaira-Néron].Let (R,m) be a DVR with fraction field K and alg.closed residue
field k. Let E/K be an elliptic curve, and C/R a minimal proper regular model for E over R, then
the special fiber of C has one of the following Forms:

• (Type I0) An elliptic curve.
• (Type I1) A rational curve with a node.
• (Type In, n ≥ 2) n smooth rational curves intersecting transversally at a single point one-by-one

in the shape of a n-gon.
• (Type II) A rational curve with a cusp.
• (Type III) Two non-singular rational curves which intersects tangentially at a single point.
• (Type I∗0) A non-singular rational curve of multiplicity 2 with 4 non-singular rational curves of

multiplicity1 attached.
• (Type I∗n) A chain of n+ 1 non-singular rational curves of multiplicity2, with two non-singular

curves of multiplicity1 attached at each end.

• (Type IV∗) ?
• (Type III∗) ?
• (Type II∗) ?

Proof: Cf.[?]P354. □

Figure (13.9.4.1): Kodaira Types

Prop.(13.9.4.19)[Tate Algorithm].There is an algorithm that determines if a Weierstrass equation
for E is minimal.?
Torsion Points

Prop.(13.9.4.20)[Controlling Torsion Points].Let m ∈ Z ∩ k×, then
• E1(K)[m] = O

• The reduction map E0(K)[m]→ Ẽsm(k)[m] is injective.
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• If E has good reduction and K = Ksep, then it is also an isomorphism.

Proof: 1: By(13.9.4.12), E1(K)[m] ∼= Ê(m)[m], which has only one element because [m]
Ê

is an
isomorphism(8.5.3.5).

2 follows from 1 and the exact sequence in(13.9.4.11).
3 follows as they have the same cardinality. □

Prop.(13.9.4.21)[Controlling Torsion Points].Let charK = 0 and char k = p > 0, let E be given
by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ∈ R[X,Y ].

Let P = (x0, y0) ∈ E(K) be a torsion point of exact order m, then
• If m is not a p-power, then x0, y0 ∈ R.
• If m = pn, then v(x) ≥ −2⌊ v(p)

pn−pn−1 ⌋, v(y) ≥ −3⌊ v(p)
pn−pn−1 ⌋.

Proof: Change the Weierstrass equation to a minimal Weierstrass equation, then by(13.9.4.3), the
coordinates in the new equation satisfies v(x′) ≤ v(x0), v(y′) ≤ v(y0), thus it suffices to prove for
minimal Weierstrass equations.

If v(x0) ≥ 0, then v(y0) ≥ 0. Suppose v(x0) < 0, then v(y0) < 0, and v(x0) = −2r, v(y0) = −3r
for some r > 0. thus P ∈ E1(K) and thus corresponds to z ∈ Ê(m)(13.9.4.12). Then the theorem
follows from(8.5.4.6). □

Over Dedekind Domains

Def.(13.9.4.22) [Canonical Heights].For a number field F and E ∈ Ell /F , by(13.5.13.4)
and(13.5.4.8), ĥL only depends on deg(L). And by(5.11.2.20), any degree 1 line bundle is ample,
and the Néron-Tate bilinear form ⟨·, ·⟩N-T given by this line bundle is called the canonical height
pairing of E. It is a positive-definite quadratic form on E(K)⊗R by(13.5.12.3). And for P ∈ E(K),
⟨P, P ⟩N-T is called the canonical height of P .

In particular we can take the line bundle O(O), then ⟨O,O⟩N-T = 0, and for any P ̸= 0 ∈ L(O),

⟨P, P ⟩N-T = lim
n→∞

h(x([2n]P ))/4N .

Proof: For the final assertion, apply(13.2.3.23) to the morphism φ : E → P1 associated to the
rational function x:

⟨P, P ⟩N-T = lim
n→∞

ĥO(2O)([2n]P )/4N = lim
n→∞

hO
P1 (1)(φ([2n]P ))/4N = lim

n→∞
h(x([2n]P ))/4N .

□
Prop.(13.9.4.23) [Elliptic Regulator].Let F be a number field and E ∈ Ell /F , then the el-
liptic regulator is the volume of a fundamental domain of E(K)/E(K)tor computed using the
canonical height. In particular, it is the discriminant of (⟨Xi, Xj⟩E,F )i,j where {Xi} is a basis for
E(K)/E(K)tor.

Def.(13.9.4.24)[Minimal Discriminant].For an elliptic curve E over a global field F , define the
minimal discriminant ∆min

E/F to be ∆min
E/F =

∏
v p

ord(∆v)
v , where ∆v is the discriminant of a minimal

Weierstrass equation for Ev.
Then for any Weierstrass equation W for E, by(13.9.1.12), DE/F = ∆min

E/F ·(aW )12 for some ideal a
of F , and the ideal class of a∆ is stable under change of Weierstrass equations, called theWeierstrass
class of E, denoted by aE/F .
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Prop.(13.9.4.25) [A Curve Related to Fermat’s Last Theorem].Let a, b, c ∈ Z× satisfy
(a, b, c) = 1, let E be the elliptic curve defined by the Weierstrass equation

E : y2 = x(x+ a)(x− b),

then
• the minimal discriminant(13.9.4.24) ∆min

E/K of E is either 24|abc|2 or 2−8|abc|2.
• E has semistable reduction for any odd prime.

Proof: By calculation

DW = 24(abc)2, c4 = 24(a2 + ab+ b2), c6 = −25(2a3 + 3a2b+ 3ab2 + 2b3),

(22a2 − 8ab− 8b2)c4 + (a+ 2b)c6 = 288a2, −(8a2 + 8ab− 22b2)c4 − (2a+ b)c6 = 288b2.

1: Any change of variable of E to the minimal Weierstrass equation satisfies u4|c4, u
6|c6, so

u4|(288a2, 288b2)

so u = 1 or 2, and ∆min
E = u−12DW = 24|abc|2 or 2−8|abc|2.

2: If p ∈ P\{2} and p|∆min
E , then p divides a or b or c. In each case, p ∤ c, so E has multiplicative

reduction at these p(13.9.4.13). □

Prop.(13.9.4.26)[Global Minimal Weierstrass Equation].For a global field F and E ∈ Ell /F ,
E has a global minimal Weierstrass equation if its Weierstrass class is trivial.

In particular, if Cl(F ) = 1, e.g. F = Q, then any E ∈ Ell /F has a global minimal Weierstrass
equation.

Proof: Choose any Weierstrass equation for E over K, let

x = u2
vx+ rv, y = u3

vy + svu
2
vx+ tv, uv, rv, sv, tv ∈ OK,v

be the local change of variable to get the minimal Weierstrass equation at place v, then by hypothesis,
(uv)v is principal, which means there is some u ∈ K s.t. v(u) = v(uv) for any v. Then choose by
Chinese remainder theorem r, s, t ∈ OK that is closed to rv, sv, tv for each relevant v, then the change
of variables

x = u2x+ r, y = u3y + su2x+ t

changes the coordinates to a minimal Weierstrass equation. □

Cor.(13.9.4.27).Let F be a global field with class number prime to 6 and E/K is an elliptic curve
over F with everywhere good reduction, then E has a minimal model.

Proof: Because in this case the Weierstrass class a∆ is a 12-torsion in Cl(F ), which implies it is
trivial. □

Cor.(13.9.4.28). If F ∈ NField and S is a finite set of places of K s.t. Cl(OF,S) = 1, then any elliptic
curve over F has a minimal Weierstrass equation of the formW : y2 = x3 +Ax+B with A,B ∈ OK,S
satisfying DWOF,S = ∆min

E/FOF,S .

Proof: The proof is easier than that(13.9.4.26). □



1384 CHAPTER 13. ARITHMETIC GEOMETRY

Prop.(13.9.4.29). If F ∈ NField with Cl(F ) ̸= 1, there exists an elliptic curve over F with no global
minimal Weierstrass equations.

Proof: Cf.[Weierstrass equations and the minimal discriminant of an elliptic curve”, Mathematika
31 (1984), no. 2, 245–251]. □

Prop.(13.9.4.30)[Density of Global Minimal Models].

Proof: Cf.[The density of elliptic curves having a global minimal Weierstrass equation”, J. Number
Theory 109 (2004), no. 1, 41–58.]. □

5 Tate Curves
Def.(13.9.5.1)[Formal Power Series].Define power series

sk(q) =
∑
n≥1

σk(n)qn =
∑
n≥1

nkqn

1− qn
∈ Z[[q]],

a4(q) = −5s3(q), a6(q) = −5s3(q) + 7s5(q)
12

∈ Z[[q]],

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2 − 2s1(q), Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3 + s1(q) ∈ Z[u][[q]].

Prop.(13.9.5.2).
s1(q) =

∑
n≥1

qn

(1− qn)2 ∈ Z[[q]],

X(u, q) = u

(1− u)2 +
∑
n≥1

[ qnu

(1− qnu)2 + qnu−1

(1− qnu−1)2 −
2qn

(1− qn)2 ] ∈ Z[u][[q]],

Y (u, q) = u2

(1− u)3 +
∑
n≥1

[ (qnu)2

(1− qnu)3 + qnu−1

(1− qnu−1)3 + qn

(1− qn)2 ] ∈ Z[u][[q]],

Thus
X(qu, q) = X(u, q) = X(u−1, q), Y (qu, q) = Y (u, q) ∈ Z[u, u−1][[q]].

Proof: The first one follows from(8.5.2.2). □

Prop.(13.9.5.3)[Relation to Weierstrass P-Functions].Let ℘(z; τ) be the Weierstrass P-function
associated to the lattice Λz = span{1, τ}(10.6.4.5), then X(e2πiz, q(τ)), Y (e2πiz, q(τ)) converges and
uniformly and absolutely on C\Λz in C to holomorphic functions, and

1
(2π i)2P(z; τ) = X(e2πiz, q(τ)) + 1

12
,

1
(2πi)3℘(z; τ)′ = X(e2πiz, q(τ)) + 2Y (e2πiz, q(τ)).

Proof: The convergence of X,Y is clear. By(13.9.5.1), X(e2πiz, q(τ)) is {1, τ}-doubly periodic, and
clearly it has a double pole at the origin. Also the Laurent part of X(e2πiz, q(τ)) at z = 0 is the
Laurent part of e2πiz

(1−e2πiz)2 , which is 1
(2πi)2z2 − 1

12 . Then by comparison with that of P(z; τ)(10.6.4.6)
and use Liouville’s theorem.

The second identity follows from applying ∂
∂z . □
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Prop.(13.9.5.4)[Tate Curve over C].Notation as in(13.9.5.1), then for q ∈ C, 0 < |q| < 1,
• Eq : y2 + xy = x3 + a4(q)x+ a6(q) is an elliptic curve over C, and

φ : C∗/qZ → Eanq : u 7→ [X(u, q), Y (u, q), 1]

is a complex analytic isomorphism.
• The discriminant of Eq is given by

∆(Eq) = ∆(q) : q
∏
n≥1

(1− qn)24(16.2.5.8), j(Eq) = j(q)(16.2.5.10)

• For any elliptic curve E/C, there exists a q ∈ C∗, |q| < 1 s.t. E is isomorphic to Eq.

Proof: Cf.[Sil99]P410.? □

Prop.(13.9.5.5)[Formal Identities].There are identities
1.

−a6(q) + a2
4(q) + 72a4a6 − 64a3

4 − 432a3
6 = ∆(q) ∈ Z[[q]].

2.
Y (u−1, q) = −Y (u, q)−X(u, q) ∈ Z[u, u−1][[q]].

3.
Y (u, q)2 +X(u, q)Y (u, q) = X(u, q)3 + a4(q)X(u, q) + a6(q) ∈ Z[u][[q]].

4.

(X(u2, q)−X(u1, q))2X(u1u2, q) = (Y (u2, q)− Y (u1, q))2 + (Y (u2, q)− Y (u1, q))(X(u2, q)−X(u1, q))
− (X(u2, q)−X(u1, q))2(X(u2, q) +X(u1, q))

(X(u2, q)−X(u1, q))Y (u1u2, q) = −[(Y (u2, q)− Y (u1, q)) + (X(u2, q)−X(u1, q))]X(u1u2, q)
− (Y (u1, q)X(u2, q)− Y (u2, q)X(u1, q))

Proof: Verify these in the complex analytic case.?
3: By(10.6.4.7) and(13.9.5.3)(16.2.5.5),

P′(z)2 = 4P(z)3 − g2P(z)2 − g3P(z)

implies the desired equation.
□

Cor.(13.9.5.6) [Tate Curve].Eq : y2 + xy = x3 + a4(q)x + a6(q) is an elliptic scheme over Z[[q]],
called the Tate curve. The discriminant of Eq is given by

∆(Eq) = ∆(q) : q
∏
n≥1

(1− qn)24(16.2.5.8), j(Eq) = j(q)(16.2.5.10).

Prop.(13.9.5.7) [Tate Curve over R].Let E/R be an elliptic curve, then there exists a unique
q ∈ R, 0 < |q| < 1 s.t.

• E is isomorphic to Eq : y2 + xy = x3 + a4(q)x+ a6(q) over R.
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• the isomorphism composed with

φ : C∗/qZ ∼= Eanq : u 7→ (X(u, q), Y (u, q))

as in(13.9.5.9) induces an isomorphism of complex Lie groups ψ : C∗/qZ → EanC that commutes
with complex conjugation. In particular, ψ induces an isomorphism of real Lie groups

ψ : R∗/qZ ∼= ER−an.

Proof: 1: By(13.5.8.11) and(13.5.8.12), there are exactly on τ ∈ C′ = {it|t ≥ 1}∪{1/2+it|t > 1/2}
s.t. j(τ) = j(E) ∈ R, and

J = {it|t > 0} ∪ {1/2 + it|t > 0}.

corresponds to q ∈ R, 0 < |q| < 1 via τ 7→ q = e2πiτ . Also there are identifications[
−1

1

]
{it|t > 1} = {it|t < 1},

[
1 −1
2 −1

]
{1/2+it|t > 1/2} = {1/2+it|t < 1/2},

[
−1

1 −1

]
(i) = 1

2
+ i

2
,

thus it suffices to show that for any two q, q′ ∈ J with q ̸= q′, Eq ≇ Eq′ . It suffices to show for the
twists, where we can use(13.9.6.3) to show that their c4, c6 changed sign, so they are not isomorphic
over R.

2: This follows from(13.9.5.9). □

Cor.(13.9.5.8)[Connected Components].Let E ∈ Ell /R, then

E(R) ∼=
{
R/Z ∆(E) < 0
R/Z×Z/(2) ∆(E) > 0

as real Lie groups.

Proof: Notice sgn(∆) = sgn(q) by(13.9.5.9). The q > 0 case is clear. For q < 0, notice there is an
isogeny Eq2 → Eq with kernel q, so ER−an ∼= [R/Z×Z/(2)]/(1/2,−1) ∼= R/Z. □

Prop.(13.9.5.9) [over Complete Valued Fields].Notation as in(13.9.5.1), let K be a complete
non-Archimedean valued field, then for q ∈ K, 0 < |q| < 1,

• Eq : y2 + xy = x3 + a4(q)x+ a6(q) ∈ Ell /K. The discriminant of Eq is given by

∆(Eq) = ∆(q) : q
∏
n≥1

(1− qn)24(16.2.5.8), j(Eq) = j(q)(16.2.5.10)

•
φ : K× → Eq(K) : u 7→ [X(u, q), Y (u, q), 1]

is a continuous surjective homomorphism with kernel qZ, and it is GalK-invariant, thus for any
K ⊂ L ⊂ K inducing a continuous surjective homomorphism

φ : L× → Eq(L)

with kernel qZ.
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Proof: 1: This follows from(13.9.5.6) by base change.
2: Clearly X(u, q), Y (u, q) converges for any u ∈ K×/qZ, and by(13.9.5.1) it suffices to consider

the case |q| < |u| < |q|−1. In this case, the formal power series for X(u, q), Y (u, q) are convergent in
the complete field K(u), and it follows from(13.9.5.5) that φ(K∗) ∈ E. It is clearly continuous for
u ̸= 1, and if u converges to 1, X(u, q)/Y (u, q)→ 0 by the expansion in(13.9.5.5), so φ(1) = O.

To show φ is a homomorphism, it suffices to verify for 1 < |u1| < |q|−1, |q| < |u2| < 1 that
φ(u1) + φ(u2) = φ(u1u2). Notice by the argument above, φ(u) = O iff u = 1. If u1 = 1 or
u2 = 1, then φ(u1) + φ(u2) = φ(u1u2) is clear, and if u1u2 = 1, then φ(u1) + φ(u2) = O by the
identities in(13.9.5.5) and(13.9.1.8). When u1 ̸= 1, u2 ̸= 1,1 u2 ̸= 1, φ(u1) ̸= φ(u2), φ(u1) +φ(u2) are
determined by polynomial equations with coordinates of φ(u1), φ(u2), and we can show this equation
holds for φ(u1u2) because it holds in the complex case(13.9.5.9). For the case φ(u1) = φ(u2), notice
that Im(φ) is infinite, as for |t| < 1, |X(1 + t)| = |t|−2 by the formula in(13.9.5.5). Now this case
follows from(2.1.3.14).

Next, we show φ : L× → Eq(L) is surjective. As K is arbitrary, we may assume L = K. For this,
Cf.[Tate, a review of non-Archimedean Elliptic Functions]?. □

Lemma(13.9.5.10).Let α ∈ K with |α| > 1, then there exists a unique q ∈ K s.t. |q| < 1 s.t.
j(q) = α. Moreover, q ∈ Z[[ 1

α ]].
Proof: Let f(q) = j(q)−1 ∈ q + q2Z[[q]], thus by(8.5.1.3) there exists a g ∈ qZ[[q]] s.t. f(g(q)) =
q = g(f(q)). So if f(q) = 1

α , then q = f( 1
α). And this q do satisfies j(q) = α. □

Thm.(13.9.5.11) [p-Adic Uniformization, Tate].Let K be a complete valued field, E ∈ Ell /K
with |j(E)| > 1, then

• There exists a unique q ∈ K s.t. EK ∼= (Eq)K .
• For this q, the following are equivalent:

– E ∼= Eq.
– γ(E) = 1(13.9.6.3).
– E has split multiplicative reduction.

Proof: 1 follows from(13.9.5.10) and(13.9.1.13).
2: Firstly γ(Eq) = 1, because

c4(Eq) = 1− 48a4(q) = 1 + 240s3(q), −c6(Eq) = 1− 72a4(q)− 864a6(q) = 1− 504s5(q)

are all of the form 1 + 4α, |α| < 1, thus they are both squares in K×, as 1 + 4α = [(1 + 4α)1/2]2??
Next, |a4(q)|, |a6(q)| ≤ 1, so Ẽq : y2 + xy = x3 has split multiplicative reduction. Then 1 ⇐⇒ 2

by(13.9.6.3), and to show 1 ⇐⇒ 3, it suffices to show that if E has split multiplicative reduction,
then γ(E) = 1: Let the valuation ring of K be R with maximal ideal m and residue field k. Let
y2 + a1xy + a3 = x3 + a2x

2 + a4x + a6 be a minimal polynomial. We may assume the singular
point is (0, 0) ∈ Ẽ(k), then a3 ≡ a4 ≡ a6 ≡ 0 mod m, thus b4 = a1a3 + 2a4 ≡ 0 mod m, and
c4 = b2

2 − 2b4 ≡ b2
2 mod m. Thus b2 ∈ R∗, and

γ(E) = −c4
c6

= 1
b2

1− 24b4/b
−2
2

1− 36b4/b2
2 + 216b6/b3

2
mod (K×)2.

So by??gain, γ(E) ∼= b2 mod (K×)2.
Because E has multiplicative split reduction, y2 + a1xy − a2x

2 = (y − αx)(y − βx) ∈ k, α ̸= β.
Thus by Henselian lifting, y2 +a1xy−a2x

2 = (y−αx)(y−βx) ∈ K for some α, β, and b2 = a2
1 +4a2 =

(α− β)2 ∈ (K×)2. □
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Cor.(13.9.5.12). If γ(E) ̸= 1, let L = K(
√
γ(E)), then EL ∼= (Eq)L, and

E(K) ∼= {u ∈ L∗/qZ|NL/K(u) ∈ Z}.

Proof: Cf.[Sil99]P444. □

6 Galois Cohomology

Prop.(13.9.6.1) [Twists of Elliptic Curves].Because the category of smooth curves with a fixed
point is an algebraic stack, thus the set Twist(E/k) of twisted curves of an elliptic curve over k is in
bijection with H1(Gk, Isom(Ek)) by(5.1.5.2).

Also the category of elliptic curves over k with the origin fixed is an algebraic stack, thus
the set Twist((E,O)/k) of twisted elliptic curves of an elliptic curve over k is in bijection with
H1(Gk,Aut(Ek)).

Remark(13.9.6.2). [?]P318,342 has a direct proof, and can find the twist corresponding to a cocycle
explicitly.?

Prop.(13.9.6.3) [Twist((E,O)/k)].Let k be a field s.t. char k ̸= 2, 3, E ∈ Ell /k. Denote n =
# Aut(Ek), then

• Twist((E,O)/k) is canonically isomorphic to K×/(K×)n.
• For E/k with Weierstrass equation y2 = x3 + Ax + B, the twisted elliptic curve of E corre-

sponding to D mod (K×)n has the Weierstrass equation

ED :


y2 = x3 +D2Ax+D3B, j(E) ̸= 0, 1728
y2 = x3 +DAx, j(E) = 1728
y2 = x3 +DB, j(E) = 0

.

• In case j(E) ̸= 0, 1728, n = 2, define γ(E) = −c4/c6 ∈ K×/(K×)2, which equals A/B in the
short form, then for E,E′ ∈ Ell /k with j(E), j(E′) ̸= 0, 1728,

E ∼= E′ ⇐⇒ j(E) = j(E′) & γ(E) = γ(E′).

Proof: This is because the Kummer sequence and(13.9.1.18) implies H1(Gk,Aut(Ek)) ∼=
H1(Gk, µn(k)) = K×/(K×)n. For the corresponding elliptic curve, Cf.[Sil16]P343.? □

Def.(13.9.6.4)[Weil-Châtelet Groups].Define the Weil-Châtelet Group WC(X/k) of an elliptic
curve X/k to be the isomorphism classes of X-torsors on Schét / Spec k.

Prop.(13.9.6.5)[Torsors for E].For any E-torsor X, choose a geometric point(exists by definition),
then we see that X is a smooth curve of genus 1, and is a twist of A.

In fact, there is an isomorphism of pointed set WC(E/k) ∼= H1(k,E), by[Sil16]P325.?
Proof:

□

Prop.(13.9.6.6). If C is an étale torsor for E/k, then Jac(C) ∼= E.
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Proof: Because C is a smooth curve, let p ∈ C be a geometric point, and take the line bundle
µ∗L(p)− pr∗

2 L(p)− pr∗
1 L(O), where µ : E ×C → C is the action. Then after a base change to k(p),

this map corresponds to the canonical isomorphism E ∼= Ê(13.9.1.19), thus it is also an isomorphism
because SchX is a prestack over Schfpqc. □

Prop.(13.9.6.7).Let E ∈ Ell /R, then

WC(E/R) ∼=
{

0 ∆(E) > 0
Z/(2) ∆(E) < 0

.

Proof: By(13.9.6.5) and(13.9.5.7), the Galois cohomology of the exact sequence 1→ qZ → C× →
E(C)→ 1 says

0→WC(E/R)→ H2(Gal(C/R), qZ)→ H2(Gal(C/R),C×),

and H2(Gal(C/R), qZ) ∼= qZ/q2Z,H2(Gal(C/R),C×) ∼= R×/(R×)2 by(10.1.3.5)(10.1.1.20). So we
are done by observing sgn(∆) = sgn(q) by(13.9.5.9). □

Conj.(13.9.6.8).The Shafarevich-Tate group is finite.

Proof: □

Remark(13.9.6.9).There are still no elliptic curve E over Q with rankan(E/Q) ≥ 2 s.t. X(E/Q)
can be shown to be finite.

Prop.(13.9.6.10).For F ∈ NField, E ∈ Ell /F, p ∈ P, and E has good ordinary reduction over all
primes lying over p. Assume F∞ = ∪nFn is a Zp-extension of F , then the natural map

Sel(E/Fn)p → Sel(E/F∞)Gal(F∞/Fn)
p

has finite kernels and cokernels of bounded orders as n→∞.

Proof: Cf.[Mazur’s Control Theorem for Elliptic Curves]. □

7 Rational Points

Ranks

Conj.(13.9.7.1)[Unboundedness Conjecture].For F ∈ GField, the rank of elliptic curves over F
can take arbitrary large values.

Proof: □

Remark(13.9.7.2).For function fields, this is proven by Tate-Shafarevich.

Prop.(13.9.7.3)[Lang Conjecture].For any ε > 0, there exists a constant Cε > 0 s.t. for any elliptic
curve E over Q, there exists a basis {P1, . . . , Pr} of the free part of E(Q) satisfying

max
i≤i≤r

ĥ(Pi) ≤ Cr
2
ε |DE/Q|

1
12 +ε.

where DE/Q is the minimal discriminant of E/Q and ĥ is the canonical height.
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Conj.(13.9.7.4)[Rank Distribution].The distribution of elliptic curves ordered by height(13.9.4.22)
satisfies

Prank(r) =


50% r = 0
50% r = 1
0 r ≥ 2

.

In particular, E(r) = 0.5

Prop.(13.9.7.5)[Bhargava-Shankar].E(r) ≤ 0.99, if it exists.

Proof: □

8 Integral Points
Thm.(13.9.8.1) [Siegel].Let E/K be an elliptic curve with #E(K) = ∞. Let v be an absolute
valuation of K, Q ∈ E(K) and f ∈ R(E)× which corresponds to a morphism φ : E → P1 : P 7→
[1, f(P )], then

lim−→
P∈E(K),h(φ(P ))→∞

log dv(P ;Q)
h(φ(P ))

= 0.(13.2.3.31)

Proof: Cf.[Sil16]P276. □

Cor.(13.9.8.2)[Finiteness of Integral Points]. If C/K is a complete smooth curve of genus 1 and
f ∈ R(C)×, S ⊂ ΣK a finite set, then {P ∈ C(K)|f(P ) ∈ OK,S} is a finite set.

Proof: By a finite base change of fields, we may assume φ−1(∞) contains a rational point O, and
this point makes C into an elliptic curve. Let φ : E → P1 : P 7→ [1, f(P )]. It follows from the
definition that there is some v ∈ S s.t.

h(φ(P )) ≤ #S log |f(P )|v

for any P ∈ C(K) s.t. f(P ) ∈ OK,S . Then if #{P ∈ C(K)|f(P ) ∈ OK,S} = {P1, . . . , Pn, . . .} is
infinite, it follows from Northcott’s theorem(13.2.3.7) that h(φ(Pi)) → ∞, and |f(Pi)|v → ∞ for a
specific v ∈ S. Suppose eO(φ) = e, then ? □

9 Twists of Elliptic Curves
See Chao Li’s Work and Ye Tian’s Work.

Congruence Number Problem

References are [A classical Diophantine problem and modular forms of weight 3/2, Tunnell],
[Explicit application of Waldspurger’s theorem].

10 Elliptic Surfaces
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13.10 Moduli of Elliptic Curves
References are[K-M85].

1 Moduli Problems
Def.(13.10.1.1)[Γ(N)-Structure].Let S ∈ Sch and E ∈ Ell /S, a

• Γ(N)-structure on E/S is a homomorphism φ : (Z/(N))2 → ker([N ])(S) s.t. there is an
equality of effective Cartier divisors

E[N ] =
∑

(a,b)∈(Z/(N))2

[φ((a, b))].

• Γ1(N)-structure on E/S is a homomorphism φ : Z/(N) → ker([N ])(S) s.t. the effective
Cartier divisor ∑

a∈Z/(N)
[φ(a)].

is a subgroup scheme of E.
• balanced Γ1(N)-structure on E/S is an exact sequence

0→ K → E[N ]→ K ′ → 0

of group schemes over S s.t. K,K ′ both has rank N over S.
• Γ0(N)-structure on E/S is a finite subgroup scheme K ⊂ E[N ] over S cyclic of rank n.

Prop.(13.10.1.2)[Functors].

Prop.(13.10.1.3)[Weil-Pairing].Let S ∈ Sch and E ∈ Ell /S with a Γ(N)-structure,

Prop.(13.10.1.4)[Moduli Interpretation of Modular Curves].The functor Sch /Q → Set that
maps S to the isomorphism classes of elliptic curves over S with a Γ(N)-structure is representable
by

Def.(13.10.1.5)[Atkin-Lehner Involutions].

2 Modular Equations
Def.(13.10.2.1)[Modular Equations].

Thm.(13.10.2.2).For E,E′ ∈ Ell /C, there exists a cyclic isogeny α : E → E′ of degree m iff
Φm(j(E), j(E′)) = 0.

Proof: Cf.[Cox, P213]. □
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13.11 Arithmetic of K3 Surfaces
References are [Arithmetic and Geometry of K3 surfaces and Calabi-Yau Threefolds].
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13.12 ℓ-adic Étale Cohomologies over Finite Fields
Basic References are [Conrad Seminar note in Stanford], [Seminar on Gross-Zagier over Function

Fields, Lei Fu], [Seminar notes on Weil 2 Bhatt], [Weil conjectures Perverse Sheaves and l-adic
Fourier Transform Kiehl/Weissauer], [Etale Cohomology and Weil Conjecture], [A course on Weil
Conjectures, Szamuely], [Deligne’s proof of the Weil Conjecture, Jannsen].

Notation(13.12.0.1).
• p ∈ P, r ∈ Z+, q = pr, k ∼= Fq. Denote kn the unique extension of k of degree n in k.
• ℓ ∈ P\p.
• X0 ∈ Schft /k, X = X0 ⊗k k is its base change.
• If F0 is a sheaf on X0, then F = F0 ⊗k k.
• If x0 ∈ X0(k), x = x0 ⊗κ(x) k, and x ∈ x is a point over x0.
• Fix a CDVR (Λ,K,m, k) of characteristic (0, ℓ).
• For a Noetherian ring A with a distinguished ideal I ⊂ A, let An = A/In.

1 Weil Sheaves

Weil Sheaves

Def.(13.12.1.1)[Weil Groups].Cf.[Conrad, L19].?
Def.(13.12.1.2)[Weil Sheaves].By Galois descent, the pullback induces an equivalence of categories
between the category of constructible Qℓ-sheaves on X0 to the category of constructible Qℓ-sheaves
on X with an specified G(X/X0) = G(k/k) ∼= Ẑ-actions. In practice, sometimes it is hard to verify
the action of Z ⊂ Ẑ is continuous, which leads to the following definition:

The category WShℓ(X0) of Weil-sheaves on X0 consists of pairs G0 = (G, FG) where G0 on
an algebraic scheme X0 over k consists of a constructible Qℓ-sheaf G on X and an isomorphism
FG : F ∗

XG → G(5.2.10.1). Notice F ∗
X is not k-linear! There are natural definition of morphisms of

Weil-sheaves. A lisse Weil-sheaf is a Weil-sheaf that G is lisse.

Prop.(13.12.1.3)[Constructible Qℓ-Sheaves as Weil Sheaves].For any constructible Qℓ-sheaf F0
on X0, the canonical F ∗

X pr∗F0 ∼= (pr ◦FX)∗F0 = pr∗F0 makes F into a Weil-sheaf.

Prop.(13.12.1.4).
• WShℓ(X0) is an Abelian category, and contains the category of lisse Qℓ-sheaves form as an

Abelian subcategory.
• The constructions like Rif∗, R

if!, f
∗ is functorial thus is definable on WShℓ(X) by(7.4.2.19).

• The specified isomorphism FG0 : F ∗
XG → G gives us an action F ∗

X of FX on H i
ét,c(X,G), just

like in(7.4.2.28).
• (Stalkwise Description)Let x0 ∈ X0(k), x = x0 ⊗κ(x) k, x ∈ x, there is an action F ∗

x0 of FX
on Gx, by pulling back G0 to a Weil-sheaf on x0, and given as follows: F ∗

xGx ∼= Gx gives an
isomorphism GF i+1(x)

∼= GF i(x), whose composition Gx ∼= GFdeg(x0)−1(x)
∼= . . . ∼= GF (x) ∼= Gx. For

different choice of x, the actions are conjugate.
In the case G0 is a constructible sheaf on X0, this map is just the inverse of (the base change
of)φκ(x0) on (G0)x0 , by(7.4.2.29), as .
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Prop.(13.12.1.5) [Weil Sheaves and Representation].When X0 is geo.connected, there is an
equivalence of categories

WShℓ(X0) ∼= Repℓ(W (X0, x)) : G0 7→ (G0)x,

and the correspondence defined in(7.4.7.27) is a sub-correspondence of this.
Thus the notion of geometric irreducible/semisimple is definable for Weil-sheaves.

Proof: Because by the correspondence(7.4.7.27), G corresponds to a representation of π1(X,x), and
π1(X,x) acts trivially on the Galois cover X/X0. Now a representation of W (X0, x) is equivalent to
an automorphism ρ(σ)( where σ ∈W (X0, x) satisfies deg(σ) corresponds to the geometric Frobenius)
that ρ(σ)ρ(π1(X,x))ρ(σ−1) = ρ(σπ1(X,x)σ−1), which is equivalent to an isomorphism F ∗

XG → G. □
Prop.(13.12.1.6)[Weil Sheaves and Eigenvalues]. If X0 is geo.connected, a lisse Weil-sheaf G0 on
X0 is a usual Qℓ-sheaf iff some deg1 element σ in W (X,x) acts on G0x with eigenvalues which are
ℓ-adic units.
Proof: This is purely a Galois representation problem, concerning whether the representation of
W (X0, x) can be extended to a representation of π1(X0, x), and it is a continuity problem.

Firstly the representation of π1(X,x) stabilizes a lattice OnE for some E/Qℓ finite, and then
extends E to contain coefficients of ρ(σ) and even its rational form. Then notice π1(X0, x) is the
profinite completion of W (X0, x), thus it suffices to see if the image ρ(W (X0, x)) is compact, and
this is equivalent to eigenvalues of ρ(σ) are units. □

Prop.(13.12.1.7) [Determinential Criterion]. If X0 is a normal variety, then a irreducible lisse
Weil-sheaf on X0 is an actual Qℓ-sheaf iff its determinant bundle is.
Proof: Use geometric monodromy group. Cf.[Conrad L19 P7].

First assume that G0 is geometrically irreducible, then(13.12.4.4) shows that there is a nonzero
power σm = gz where g ∈ Ggeo(Qℓ) and z ∈ Z(G(Qℓ)). Now Ggeo is a semisimple algebraic
group(13.12.4.4), so the determinential character maps Ggeo(G(Qℓ)) to a finite group, because con-
nected semisimple algebraic group has no nontrivial character as [G,G] = G?. So the determinant
of g is an l-unit, and det(σm) = det(z) is a unit. But z is a scalar by Schur’s lemma, thus z is an
l-adic unit. Now it suffices to show the eigenvalue of g are all l-units.

Now consider ρ(π1(X,x)) is a compact group in End(V ), thus it generates a finite OE-submodule
A , which is full-rank lattice in End(V ) by Jacobson density theorem? and the fact ρ is absolutely
irreducible. g normalized A, because σ and z both normalizes ρ(π1(X,x)), so the eigenvalue of the
conjugate action of g are all l-units, but its eigenvalue are of the form λiλ

−1
j where λk are eigenvalues

of g, so this together with the fact det(g) is l-units shows that all λi are l-units.
For the general case, Cf.[Conrad L19 P7].? □

Cor.(13.12.1.8)[Filtration of Weil Sheaf]. If X0 is a normal variety, then for any irreducible lisse
Weil-sheaf G0, there is some b ∈ Q

×
ℓ and a lisse Weil-sheaf F0 that G0 ∼= F0 ⊗ Lb, where Lb is the

Weil-sheaf corresponding to the character W (X0, x) → Q
×
ℓ : x 7→ bdeg(x), which is a pull back from

SpecFq.
More generally, for any lisse Weil-sheaf, there is a filtration that each quotient is of the form

F (i)
0 ⊗ Lbi for some bi ∈ Q

×
ℓ and F (i)

0 lisse Qℓ-sheaves.
Proof: Just choose b = χdet(σ)1/n, where deg(σ) = 1, then

∧(G0 ⊗ Lb−1) ∼= ∧(G0)⊗ L−1
χdet(σ)

which has unit eigenvalues thus is a lisse Qℓ-sheaf. □



13.12. ℓ-ADIC ÉTALE COHOMOLOGIES OVER FINITE FIELDS 1395

2 Trace Formulae

Def.(13.12.2.1)[Zeta-Functions].For F ∈WSh(X0), the Zeta-function associated to F0 is defined
to be

Z(X0,F0;T ) =
∏

x0∈|X0|0

det(1− F ∗
x0T

deg(x)|Fx)−1 ∈ 1 + TΛ[[T ]],

where F ∗
x0 is defined in(13.12.1.4). Notice if F0 ∈ Sh((X0)ét), then F ∗

x0 = φ−1
κ(x0) by(13.12.1.4).

Prop.(13.12.2.2). Situation as in(13.12.2.1),

Z(X0,F0;T ) = exp(
∑
n≥1

∑
x∈X0(kn)

tr(F ∗
x |Fx)T

n

n
)

Proof: By(2.3.10.22),

Z(X0,F0;T ) =
∏

x0∈X(k)

exp(
∑
n≥1

tr((F ∗
x0)n|Fx)T

ndeg(x)

n
)

= exp(
∑
n≥1

∑
x0∈X0(k)

deg(x) tr((F ∗
x0)n|Fx)T

n

n
)

= exp(
∑
n≥1

∑
x0∈X0(kn)

tr(F ∗
x0 |Fx)T

n

n
)

where in the last equality, notice there are exactly deg(x0) many points in X0(k) over x0 ∈ X0(kn).
□

Cor.(13.12.2.3). If F = Qℓ, then

Z(X0,Qℓ;T ) =
∏

x0∈|X0|0

1
1− T deg(x0)

is just the Z-function defined in(19.1.4.1).

Lemma(13.12.2.4)[Weil Trace Formula].Let X0 ∈ Schsep,ft /k, A be a Noetherian Z/(ℓn)-algebra,
F0 ∈ Db

ctf (X0, A), then ∑
x0∈X0(k)

tr(F ∗
x0 |Fx) = tr(F ∗

X |[RΓc(X,F)])

Proof: Cf.[Fu11]P596?. □

Prop.(13.12.2.5) [General Trace Formula for Frobenius].Let X0 ∈ Schsep,ft /k,F0 ∈
Db

const(X0,Qℓ), then ∑
x0∈X0(k)

tr(φ−1
κ(x)|(F)x) = tr(F ∗

X |[RΓc(X,F)]).

Proof: Cf.[Fu11]P596?. □
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Prop.(13.12.2.6) [Grothendieck-Lefschetz Trace Formula for Weil Sheaves].For S0 ∈
Schft /k, f0 : X0 → S0 ∈ Schsep,ft /S,F0 = (F , FF ) ∈WSh(X0)(13.12.1.2),

Z(X0,F0;T ) =
2 dimX0∏
n=0

Z(S0, R
nf0!F0;T )(−1)n .

In particular, for S = Spec k,X0 ∈ Schsep,ft /k, by base change and(13.12.1.4),

Z(X0,F0;T ) =
2 dimX0∏
n=0

det(1− F ∗
XT |Hn

ét,c(X,F))(−1)n+1

Notice by(7.4.5.7), the higher proper pushforwards just vanish.

Proof: Use the filtration in(13.12.1.8), notice that the trace is additive for a filtration, so we can
reduce to the case G0 = F0 ⊗ Lb and Gx = Fx ⊗ Lb,x, then the Euler factors are

det(1− bdeg(x)φ−1
κ(x)T

deg(x)|Fx)

and the cohomology factor is

det(1− F ∗
XT |H i

ét,c(X,F ⊗ Lb)) = det(1− bF ∗
XT |H i

ét,c(X,F))

where the projection formula(7.4.5.8) is used, noticing the Lb is pulled back from SpecFq. Then the
assertion is clear from(13.12.2.5) and(13.12.2.2)(13.12.1.4). □

Cor.(13.12.2.7).Z(X0,F0;T ) is a rational function in T .

3 Weights and Purity

Determinantial Weights

Prop.(13.12.3.1)[Structure of Weil Group of Curves]. If X0 is a smooth curve over Fq, then the
image of π1(X,x) in W (X0, x)ab is a product of a finite group and a pro-p group.

Proof: Let K be the function field of X0, X0 be the regular completion of X0, with S0 = X0−X0,
then we have an isomorphism π1(X0, x) ∼= GK Cf.[Étale Cohomology Lei Fu P136]?. So we can use
global class field theory:

π1(X,x)ab π1(X0, x)ab Gk ∼= Ẑ 0

0 IK W (X0, x)ab ∼= W (K, k) W (k) ∼= Z 0

0 K∗\(A∗
K)1/

∏
vO∗

v K∗\A∗
K/
∏
vO∗

v qZ 0

∼= ∼= ∼=

So the image of π1(X,x) factors through π1(X,x)→ π1(X,x)ab → K∗\A∗
K/
∏
vO∗

v which is the class
number of K, is finite.

In this diagram, W (X0, x) corresponds to K∗\A∗
K/
∏
v/∈S0 O

∗
v , so

0→ ker(W (X0, x)→W (X0, x))→ Im(π1(X0, x))→ Im(π1(X0, x))→ 0

But the kernel is a quotient of ∏v∈S0 O
∗
v , which is a pro−p group times a finite group, so finally

Im(π1(X0, x)) is a product of a pro-p-group times a finite group. □
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Lemma(13.12.3.2)[Curve Rank 1 case]. If X0/k is a smooth curve and χ : W (X0, x) → Q
×
ℓ be a

continuous character, then there exists a c ∈ Q
×
ℓ that χ is a product of a character of finite order

and the character σ 7→ cdeg(σ).
In particular, the Weil-sheaf corresponding to χ is punctually ι-pure of weight 2 logq |ι(c)|.

Proof: By(15.3.1.3), the image of χ is in O∗
E for some E ∈ ℓ-LField, so by(13.12.3.1), it has an

open subgroup which is pro-p and pro-ℓ so trivial, thus π1(X0, x) is mapped to a finite group.
In particular there is an n that χn = id on π1(X0, x), so there is some b that χn = bdeg(σ), hence

if c is an n-th roots of b and we let χ′ = χ/cdeg(σ), then (χ′)n = 1. □

Cor.(13.12.3.3)[Rank 1 Lisse Sheaf is Pure]. If X0/k is a smooth curve, then any lisse Weil-sheaf
of rank 1 is pure.

Def.(13.12.3.4)[Determinential Weight].Let F0 be a lisse Weil-sheaf on a geometrically connected
smooth scheme X0, and 0 = Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 be a filtration of lisse sheaves that the quotients
are irreducible, we define the determinential ι-weights of F0 to be that of the ι-weights of the top
wedge products of the successive quotients divided by their ranks, which exists by(13.12.3.3).

Notice that the determinential ι-weights are unchanged when F0 is replaced by its semisimplifi-
cation Fs0 = ⊕i≥0(Fi/Fi−1).

Purity

Def.(13.12.3.5)[Purity].For an embedding ι : Qℓ → C, F0 ∈ WSh(X0) is called ι-pure of weight
w if for any closed point x ∈ X, the Qℓ-eigenvalues of FG on the stalks Fx are algebraic and satisfy
|ι(αi)| = (qdeg(x))w/2.

It is called pure of weight w iff for any closed point x ∈ X, the Qℓ-eigenvalues are qdeg(x)-Weil
numbers of weight w(12.4.2.13), i.e. ι-pure for any embedding ι : Qℓ → C.

It is said to be (ι-)mixed with weights w1, . . . , wn if it has a filtration of constructible Qℓ-sheaves
that each quotient is pure of weight wi respectively.

Example(13.12.3.6).Qℓ(r) is pure of weight −2r.

Proof: This is because the geometric Frobenius φ−1
κ(x) acts by 1/qdx-th power, which is additively

multiplying by (qdx)−2/2. □

Prop.(13.12.3.7)[Permanence Properties].
• f0 : X0 → Y0 is a morphism, and G0 is a Weil-sheaf on Y0, then if G0 is ι-pure, then f∗

0G0 is
also ι-pure, and the converse is also true if f is surjective.

• If f0 : X0 → Y0 is finite, and G0 is a Weil-sheaf on X0, then if j∗
0(G0) is ι-pure, then G0 is ι-pure.

• Let k′/k be a finite field extension, then a Weil-sheaf G0 on X0 is pure of weight β iff (G0)k′ is
on (X0)k′ .

Proof: 1 is because the stalk corresponds.
2: This is because the stalks can be calculated, by?.
3: ? □
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Semicontinuity of Weights

Def.(13.12.3.8)[Maximal Weight].For a general Weil-sheaf G0 on X0, we can also define the max-
imal ι-weight of G0 as

w(G0) = sup
x∈|X0|

sup
αi

2 logN(x)(|ι(αi)|).

Lemma(13.12.3.9). |X0(kn)| = O(qn dimX)

Proof: We can pass to the reduced structure of X0, then we can use excision to pass to the integral
case. Then choose an open affine dense subset U0 of X0, then by Noetherian normalization, it factors
through a finite map f : U0 → AdimX0

kn
, so

|U(kn)| ≤ (deg f)qn dimX0

Then we can use induction on dimension, because dim(X0 − U0) < dimX0. □

Lemma(13.12.3.10).Let G0 be a Weil-sheaf on X0 and β be a real number that β ≥ w(G0), then the
L-function

ι(L(X0,G0, t)) =
∏

x∈|X0|
ι(det(1− tdxFx,G0,x)−1)

converges for |t| < q−β/2−dimX0 and has no zero or pole there.

Proof: We can show that it has no zero or pole using the fact that the logarithmic derivative has
no poles(when it is convergent). We suppress the isomorphism ι : Qℓ → C and calculate:

d log
dt

L(X0,G0, t) =
∑

x∈|X0|

∑
n≥1

dx(tr(Fnx ))tdxn−1?? =
∑
n≥1

∑
x∈|X0|,dx|n

dx(tr(Fn/dxx ))tn−1

Notice by assumption on β, | tr(Fn/dxx )| ≤ rqnβ/2, where r = maxx∈|X0| dim
Qℓ
G0,x is finite because

it has a stratification by(7.4.7.15), so

|d log
dt

L(X0,G0, t)| ≤
∑
n≥1

∑
x∈|X0|,dx|n

dxrq
nβ/2tn−1 =

∑
n≥1
|X0(kn)|rqnβ/2tn−1

converges for |t| < q−β/2−dimX0 by(13.12.3.9). □

Lemma(13.12.3.11) [Semicontinuity of Weights for Curves]. If X0/k be a smooth curve and
U0

j0−→ X0 be a nonempty open with S0 = X0 −U0. Let G0 be a Weil-sheaf on X0 s.t. the restriction
j∗

0G0 is lisse and H0
S(X,G) = 0, then w(j∗

0(G0)) ≤ β implies w(G0) ≤ β.

Proof: For any point x, consider an affine open subset of X0, then reduce to the affine case, and
because H0

S(X,G) = 0 and the excision sequence(7.4.5.5), we have G ↪→ j∗j
∗G, so the weights of G0

are no more than that of j∗j∗G, and replacing G0 with j0∗j
∗
0G0, we can assume G0 = j0∗j

∗
0G0. Then

H0
c (X,G) = H0

c (X, j∗j∗G) = H0
c (U, j∗G) = 0

by Poincare duality and the fact j∗ is exact because it is finite.
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Now by Grothendieck-Lefschetz trace formula,

L(X0,G0, t) = L(U0, j
∗
0(G0), t) ·

∏
s∈|S0|

det(1− tdsFs,Gs)−1 =
det(1− FXt|H1

ét,c(X,G))
det(1− FXt|H2

c (X,G))

Denote F0 = j∗
0G0, then

H2
c (X,G) = H2

c (U,F) = (Fx)π1(U,x)(−1)

So the weights of eigenvalues of FX on H2
c (X,G) ≤ weights of F + 2, hence the L-function converges

for |t| < q−β/2−1. Now the LHS has L(U0, j
∗
0(G0), t) converges for |t| < q−β/2−1 because w(F0) ≤ β,

and so for the points in S0, we also have det(1− tdsFs,Gs) has no zero there, which means they have
weights≤ β + 1. Now consider replacing G0 with G⊗k

0 and let k →∞, then their weights≤ β. □

Prop.(13.12.3.12)[Semicontinuity of Weights].Let X0 be geo.normal, G0 be a lisse sheaf on X0
and j0 : U0 → X0 be an open dense subscheme, then

• w(G0) = w(j∗
0G0).

• If j∗
0(G0) is ι-pure of weights β, then G0 is also ι-pure of weights β.

• Let X0 be irreducible and normal, and G0 is irreducible, then if j∗
0G0 is ι-mixed, then G0 is

ι-pure.

Proof: 1: The weights is local so we may assume X0 is irreducible, and then for any closed point
x, we can connect it with U0 with a curve(choose an affine open and use Noetherian Normalization
to choose an irreducible component of an arbitrary curve in An). Notice H0

S(X,G) = 0 because it is
lisse thus H0(X,G) is determined by stalk thus H0(X,G)→ H0(U,G|U ) is injective. So we finish by
the curve case(13.12.3.11).

2: Apply item1 to G0 and G∨
0 .

3: It is ι-mixed so it has ι-pure Weil-sheaf constituents. Now by(7.4.7.15) we can find an open
dense U0 that restriction to U0 has constituents ι-pure lisse sheaves. But it is also irreducible because
π1(U0, a)→ π1(X0, a) is surjective?, so it is ι-pure and item2 shows G0 is ι-pure. □

L2-Norms and Maximal Weights

Def.(13.12.3.13).As in(13.12.8.1), for any G0 ∈ Db
cons(X0,Qℓ), we have a a function

fG0 : X0(Fqn)→ Qℓ : x 7→
∑
i

(−1)i tr(Fn/dxx |(H i(G0))x),

Fix an arbitrary isomorphism Qℓ
∼= C, we can consider the usual L2-norm for functions on X0(kn),

denoted by (f, g)n.

Def.(13.12.3.14).Notice the equation form(13.12.3.10) can be rewritten as

d log
dt

L(X0,G0, t) =
∑
n≥1

∑
x∈|X0|,dx|n

dx(tr(Fn/dxx ))tn−1 =
∑
n

(fG0 , 1)ntn−1.

Now we define another closed related function

φG0(t) =
∑
n

||fG0 ||2ntn−1,

which works better with Fourier transform we are about to define later.
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Lemma(13.12.3.15).There is a constant C that ||fG0(x)||2 ≤ Cqn(w(G0)+dimX0), so φG0(t) converges
for |t| ≤ q−w(G0)−dimX0 .

Proof: The proof is similar to that of(13.12.3.10) thus omitted. □

Def.(13.12.3.16)[Norm of a Weil Sheaf].Define the Norm of a Weil-sheaf as

||G0|| = sup{ρ| lim sup
n

||fG0 ||2n
qn(ρ+dimX0) > 0}

Then q−||G0||−dimX0 is just the radius of convergence of the function φG0(t), and ||G0|| ≤ w(G0) by
lemma(13.12.3.15) above.

Prop.(13.12.3.17)[Radius of Convergence].Let G0 be a ι-mixed sheaf on a smooth curve X0 over
k, and H0

ét,c(X,G) = 0, then ||G0|| = w(G0) = β.

Proof: It suffices to show w(G0) ≤ ||G0||. First notice we can assume X0 is reduced because the
nilpotents corredsponds to zero Frobenius eigenvalues, and also it is connected, because the function
fG0 is additive in X. Now we study by cases:

1: If G0 is a lisse ι-pure sheaf on a smooth affine curve X0, we may assume G0 ̸= 0, then
G0 ⊗ G0(13.12.5.2) is ι-real of weight 2β and (fG0⊗G0 , 1)n = ||fG0 ||2n, so φG0(t) is just the logarithmic
derivative of the L-function L(X0,G0⊗G0, t), thus(13.12.3.10) shows its convergence radius≥ q−β−1.
And notice the H0

c terms vanish so the poles can only appear as the zeros of H2
c term, so(13.12.5.3)

shows the poles of the L(X0,G0 ⊗ G0, t) has weight 2β + 2, thus the poles can only appear on
|t| = q−β−1.

Now consider each local Euler factor det(1 − Fxtdx |(G0 ⊗ G0)x)−1 has non-negative coefficients,
they have poles because G0 ̸= 0, and their poles have weight β because of purity, thus their product
also has (real)poles, by previous argument, the pole has weight β+ 1, thus it has convergence radius
at most q−β−1, so we are done.

2: If G0 is a ι-mixed, consider its semisimplification Gss0 = F0 ⊕H0, where F0 is ι-pure of weight
w(G0), and w(H0) ≤ w(F0).

Then fG0 = fF0 + fH0 , and

φG0(t) = φF0(t) +
∑
n≥1

2 Re(fF0 , fH0)ntn−1 + φH0(t)

then by item1 φF0(t) has convergence radius q−w(G0)−1, and by(13.12.3.15) φH0(t) has radius at least
q−w(H0)−1 > q−w(G0)−1, and by Cauchy inequality the middle term satisfies

|2 Re(fF0 , fH0)n| ≤ 2||fF0 ||n||fH0 ||n ≤ Cqn(w(F0)+w(H0)/2+1)

So the middle term has convergence radius> q−w(G0)−1, so their sum has convergence radius
q−w(G0)−1. □

4 Geometric Monodromy

Def.(13.12.4.1)[Notations].Let X0 be a geometrically connected normal scheme over k = Fq in this
subsection.
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Def.(13.12.4.2)[Geometric Monodromy Group].Let G0 be a Weil-sheaf associated to a represen-
tation (V, ρ) = GL(Gx) of W (X0, x), the geometric monodromy group Ggeo associated to G0 is
the Zariski Closure of ρ(π1(X,x)) ⊂ GL(V ).

Every element in ρ(W (X0, x)) normalizes Ggeo by continuity, so choosing an arbitrary generator
σ ∈ W (k/k), we have an action of W (k/k) on Ggeo. Define G = W (k/k) ⋉ Ggeo the arithmetic
monodromy group of G0.

Lemma(13.12.4.3). If Ggeo is connected, then there is a positive integer N that the semidirect se-
quence

1→ Ggeo → deg−1(NZ) deg−−→ NZ→ 1

is direct, i.e. deg−1(NZ) ∼= Ggeo ×Z.

Proof: Choose a deg(g) = 1. The representation Ggeo splits as a characters of Z(G), and then
some gn stablizes these characters, hence stablizes Z(G), which then it descends to an action on
Gadj , whose automorphism is the automorphism of the Dynkin diagram?, so finite, so some gm
fixes Gadj after changing a semidirect product, thus induces a map Hom(Gadj , Z(G)), but Gadj is
semisimple(8.3.3.19), so the connected component is mapped to 1 in Z(G)(8.3.3.17), so there are
only f.m. such homomorphism, showing gk is 1, so the product is exact for N = k. □

Prop.(13.12.4.4) [Geometric Monodromy Group is Semisimple].Let G0 be a geometrically
semisimple lisse Weil-sheaf(13.12.1.5), then

• Ggeo and G0
geo are semisimple algebraic group.

• Let Z = Z(G(Qℓ)), then the map ψ : Z →W (k/k) has finite kernel and cokernel. In particular,
Z contains an element of finite degree, and it is surjective after a finite base change of fields.

And notice in fact if G0 is semisimple, then it is automatically geometrically semisimple
by(15.1.2.10).

Proof: 1: L Ggeo is semisimple iff G0
geo is semisimple. Pass to a finite étale covering, we may assume

Ggeo = G0
geo. Let R(G0

geo) be the radical and Ru(G0
geo) be the unipotent radical, then R is normal in

G0 and G0 is normal in G, so by(15.1.2.10) V = GL(Gx) is irreducible R(G0
geo) representation, but it

is solvable, so V is a direct sum of 1-dimensional representations, and Ru(G0
geo) is trivial, in particular

G0
geo is reductive. So it is semisimple if the maximal Abelian quotient Gabgeo is finite(8.3.3.17).
let T1 be the maximal central torus of G0

geo, then lemma(13.12.4.3) shows after a finite base change
of fields, we may assume G = Ggeo×Z, consider the compositeW (X0, x)→ Ggeo×Z→ Ggeo → Gabgeo,
then π1(X,x) is Zariski dense in Gabgeo, and (13.12.3.3) shows clearly Gabgeo has no maximal torus thus
finite.

2: kerψ ⊂ Z(Ggeo(Qℓ)) is finite since Ggeo is semisimple. To find an element in Z(G) of positive
degree, we may use the same method as before to find an element ζ that commutes with G0

geo, and
pass to a power, we may assume it acts trivially on Ggeo/G0

geo.
For any g ∈ Ggeo, consider vpg(n) = gζng−1ζ−n ∈ G0

geo, so φg(m + n) = φg(n)ζnφg(m)ζ−n =
φg(n)φg(m), thus it is a homomorphism, and if g′ ∈ G0

geo, then

φg = φg(g−1g′g) = φg′g = g′φg(g′)−1

so φg has image in Z(G0
geo), which is finite, so φg(n) = 1 for some n, then ζn commutes with Ggeo

so ζn ∈ Z(G). □



1402 CHAPTER 13. ARITHMETIC GEOMETRY

Cor.(13.12.4.5)[Weights and Center Element Actions].Let G0 be a semisimple lisse Weil-sheaf
on X0, if z ∈ Z(G(Qℓ)) satisfies deg(z) = n ̸= 0, which exists by(13.12.4.4), then if z acts on V with
eigenvalues αi, then 2

n logq(|ι(αi)|) is just the determinential ι-weights of G0.

Proof: z is in the center, thus by Shur’s lemma, it acts on each irreducible part of G0 by a constant.
Thus the determinential weights are clear, by definition. □

Cor.(13.12.4.6)[Properties of Determinential Weights].Let X0/k be a smooth curve, F0,G0 be
lisse Weil-sheaves on X0, then

• If αi are the determinential ι-weights of F0 and βj be that of G0, then αi + βj are those of
F0 ⊗ G0 with multiplicity.

• For γ ∈ R, let r(γ) be the sum of ranks of all irreducible constituents of F0 which have
determinential weight γ w.r.t ι, then the determinential weights of ∧rF0 are the numbers∑
γ n(γ)γ with ∑n(γ) = r and 0 ≤ n(γ) ≤ r(γ), n(γ) ∈ Z with multiplicity.

Proof: Firstly notice the determinential weight is unchanged when we change F0,G0 to their
semisimplification Fss0 ,Gss0 (13.12.3.4). And notice (F0 ⊗ G0)ss = ((F0)ss ⊗ (G0)ss)ss, thus the deter-
minential weights of F0 ⊗ G0 are also unchanged. Similarly for the wedge product.

2: We may assume F0,G0 are irreducible, and let H0 = (F0 ⊗ G0)ss, G⊕
geo, G

ss
geo be the geometric

monodromy group of π1(X,x) in GL(Fx ⊕ Gx) and GL(Hx) correspondingly, then G⊕
geo → Gssgeo is

surjective because they are both the geometric monodromy group of Hx. So also G⊕ → Gss is
surjective. So if g be an element in the center of G⊕ that has nonzero degree, then it maps to the
center of Gss of nonzero degree. And the action of g on each factor Fx,Gx is a constant, so action
on Hx is also a constant, so we are done.

3: Easy from2. □

5 Real Sheaves
Def.(13.12.5.1) [ι-Real Sheaf].Let F0 be a Weil-sheaf on X0, then F0 is called ι-real if for any
x ∈ |X0|, the characteristic polynomial ι(det(1− Fxt;Fx)) of Fx real coefficients.

Prop.(13.12.5.2).Any ι-pure Weil-sheaf of weight w is a direct sum of a ι-real ι-pure Weil-sheaf. In
fact, F0 ⊕F∨

0 (−w) = F0 ⊕F0 is ι-real.

Lemma(13.12.5.3)[Eigenvalue of Cohomology and Stalk in Curve case].LetX0/k be a smooth
curve, F0 ∈ WSh(X0) is lisse, then the eigenvalues of FX on H0(X,F) or H2

ét,c(X,F) is related to
the determinential weights of F0 and the eigenvalue of Fx on Fx.

Proof: Let V = Fx, then

H0(X,F) = V π1(X,x), H2
c (X,F) = Vπ1(X,x)(−1).

Then the base change sheaf of the sheaf V π1(X,x) or Vπ1(X,x)(−1) on Spec k is the maximal sub-
sheaf/quotient lisse sheaf of F0 that is constant on X. Then it has determinential weights just the
action of FX on the stalk by(13.12.4.5), which are also determinential weights of F0 by(13.12.4.6).
□

Lemma(13.12.5.4) [Rankin-Selberg Method].Let X0/k be a smooth curve, F0 ∈ WSh(X0) is
lisse, and w be the largest determinential weight of F0, then for any x ∈ |X0|, wN(x)(α) ≤ w.
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Proof: By the arbitraryness of x, we can replaceX0 by an affine open nbhd of x. ThenH0
c (X,G) = 0

by Artin vanishing(7.4.2.12). By Grothendieck trace formula,∏
x∈|X0|

ι det(1− tdxFx| ⊗2k Fx)−1 = ι det(1− tF ∗
X |H1

c (X,⊗2kF))
ι det(1− tF ∗

X |H2
c (X,⊗2kF))

Now the weight of root t0 of det(1−tF ∗
X |H2

c (X,⊗2kF)) has weight≤(determinential weight of G⊗2k
0 )+

2(13.12.5.3) ≤ 2kw + 1(13.12.4.6), so |t0| ≥ q−kβ−1.
Now by the formula?? and noticing tr(Fnx ,⊗2kFx) = (tr(Fx,Fx))2k, so (1− tdxFx| ⊗2k Fx)−1 has

non-negative coefficients, which means their convergence radius are no less than q−kβ−1, equivalently,
(1− tdxFx| ⊗2k Fx) has no zeros with eigenvalue< q−kβ−1.

So for any eigenvalue α of Fx acting on Fx, |ι(α−2k/dx)| ≤ q−kβ−1, or equivalently,

|ι(α)|2 ≤ N(x)β+1/k.

Now let k →∞, we are done. □
Lemma(13.12.5.5)[Real Sheaf Mixed Curve case].Let X0/k be smooth curve and F0 ∈WSh(X0)
is ι-lisse, then all irreducible constituents of F0 is ι-pure, and their ι-weights coincides with their
determinential weights.
Proof: For β ∈ R, let F0(β) be the sum of constituents of F0 of determinential weight β, and let
n(β) = rank(F0(β)), then we need to show that wN(x)(αi(β)) = β for any eigenvalue of Fx on F(β)x.

By definition of determinential weight, for each γ, we have ∑wN(x)(αj(γ)) = n(γ)γ. Now let
N =

∑
γ>β n(γ), then any determinential weight of ∧N+1F0 has weight≤ β +

∑
γ>β n(γ)γ: This is

clear by(13.12.4.6) as the determinential weights of ∧N+1F0 is of the form
∑
γ a(γ)γ that 0 ≤ a(γ) ≤ γ

and ∑γ a(γ) = N + 1.
But now αi(β)

∏
γ>β

∏n(γ)
i=1 αj(γ) is an eigenvalue of (∧N+1F0)x, but by lemma(13.12.5.4),

wN(x)(αi(t)) ≤ t. Thus we must have equality wN(x)(αi(β)) = β. □
Prop.(13.12.5.6)[Real Sheaf is Mixed]. Let X0 be an algebraic scheme over Fq, then

• Any ι-real Weil-sheaf on X0 is ι-mixed.
• If X0 is irreducible and normal, any irreducible constituent of a lisse of an ι-real sheaf is ι-pure.

Proof: Cf.[Bhatt P28], [KW, P36].
We have the following devissages:
• Choose an open subset j0 : U0 ↪→ X0, S0 = X0 − U0 and consider the fundamental excision

sequence(7.4.5.4), we can reduce to an open affine subscheme U0 ⊂ X0.

• We may base change to a finite field extension.?
• So we may reduce to the case X0 is smooth, irreducible affine, and G0 is lisse, with all the irre-

ducible constituents geometrically irreducible(by base change, because they are geometrically
semisimple(13.12.4.4)). And we may assume dimX0 > 1 because the curve case is proven.

• Change k to the alg.closure of k in the function field of X0, we can assume X0 is geometrically
irreducible by(5.4.3.16).

Embed X0 in some projective space PN0 , then by a suitable Bertini theorem, the linear subspaces
of codimension dimX−1 that intersects X with a non-empty smooth irreducible curve CL is dense in
the Grassmannian. Now the closed points in any CL is a pure-point for the any irreducible component
F0 of G0 of the same weights. Now let L vary, then there is a dense subset of a finite extension of
X0 that F0 is pure. So we are done. □
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6 Deligne’s Purity Theorem
Thm.(13.12.6.1)[Deligne’s Purity Theorem]. If f : X0 → Y0 is a separated morphism of algebraic
scheme over k, and F0 is a lisse Qℓ-sheaf on X that is mixed weights≥ n, then for any integer i ≥ 0,
the sheaf Rif!F is also ι-mixed of weights≤ n+ i.

Moreover, each ι-weight of of Rif!F is equivalent modulo Z to an ι-weight of F . In particular, if
all ι-weights of F is integral, then so is Rif!F .

Proof: This follows from(13.12.6.6). □

Cor.(13.12.6.2). If X0 is a smooth separated algebraic scheme over k, F0 is mixed of weight ≥ n,
then Hiét(X,F) is mixed of weights ≥ n+ i.

Proof: By Poincaré duality(7.4.8.11), H2d−n
ét,c (X,F∨(d)) = (Hnét(X,F))∨ as Galois representation,

and F∨(d) is still a lisse sheaf pure of weight −w−2d, thus Deligne’s purity theorem(13.12.6.1) shows
that H2d−n

ét,c (Xk,F
∨(d)) has weight ≤ (−w − 2d) + (2d− n) = −w − n, thus we are done. □

Cor.(13.12.6.3)[Weil’s Conjecture].Let X0 be a smooth separated algebraic k-scheme, and F0 is a
lisse Qℓ-sheaf which is pure of weight w, then the image of Hn

ét,c(X,F) in Hnét(X,F) is pure of weight
w + n.

Proof: The morphism Hn
ét,c(X,F) → Hnét(X,F) defined in(7.4.5.6) is compatible with Frobenius,

so from(13.12.6.2) we know the image has weights≥ w + n, so combined with Deligne’s purity theo-
rem(13.12.6.1), we know it is pure of weight w + n. □

Cor.(13.12.6.4). If f0 : X0 → Y0 is a smooth proper map of algebraic schemes and F0 is ι-pure of
weight β, then Rif0,∗F0 is ι-pure of weight β + i.

Proof: Use proper base change of(7.4.5.5) to reduce to the case of(13.12.6.3). Notice in the proper
case, Rf∗ = Rf!. □

Cor.(13.12.6.5)[Riemann Hypothesis]. If X0 ∈ SmPrpr /k, then Hnét(X;Qℓ) as a Weil-sheaf over
Spec k, is pure of weight n.

Reduction to Curve case

Prop.(13.12.6.6).Deligne’s purity theorem(13.12.6.1) can be reduced to case that X0 is a smooth
geometrically connected affine curve⊂ A1

Fq
and F0 a lisse Qℓ-sheaf.

Proof: We have the following dévissages:
• It is trivial in case f0 is quasi-finite. This is because of(7.4.5.7), as the fiber has dimension 0.
• We can replace X0 by an affine open U0 ⊂ X0 by Noetherian induction and excision se-

quence(7.4.5.5), which commutes with Frobenius action.
• If the conclusion is true for g0, h0, then it is true for f0 = g0 ◦ h0, this follows from the Leray

spectral sequence(7.4.5.5), which is Frobenius equivariant by(7.4.2.27).
• We can replace Y0 with an affine open U0 ⊂ Y0: If the image f0 is not dense, then trivial, if it is

dense, then choose any affine open U0, then it suffices to prove for f0 : f−1
0 (U0)→ Y0 by item2,

then then by item3 it suffice to prove for f0 : f−1
0 (U0) → U0, because U0 ↪→ Y0 is quasi-finite

and use item1.
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Now we claim we can reduce to the case of f0 : X0 → Y0 surjective affine smooth with the fibers
being geometrically irreducible curves: By devissage2 and 4, we may assume X0, Y0 is affine, thus
f0 is affine. Take a generic point η of Y0, then (X0)η → Spec k(η) is affine hence by Noetherian
normalization(4.2.4.22) there is a finite map Xη → An

k(η), and this spread out to a finite morphism
f−1

0 (U0) → U0 for some affine open U0 ⊂ Y0 because f0 is of f.t.. Then by Devissage1 and 3 we are
reduced to the case A1

Y0
→ Y0. Now by(7.4.7.15), there is an affine open U0 ⊂ A1

Y0
that F0|U0 is lisse,

so by Devissage2 we may change X0 to U0.
That is we reduced to the case that F0 is lisse and X0 is open in A1

Y0
so f0 is smooth affine, in

particular open(5.6.4.4), so we can replace Y0 by f(X0) and assume f0 is surjective. Then the fiber
are all geometrically irreducible curves.

Then the assertion about weights are clear from proper base change(7.4.5.5) and the curve case.
For the ι-mixedness, we may use(13.12.5.2) and(13.12.5.6) to reduce to showing that Rif! maps

ι-real sheaves to ι-real sheaves.
for a geometric point x → x → X0, let C → C0 be the fiber, which is affine irreducible, so

H0
c (X,F) = 0 by Poincaré duality(7.4.8.11) and Artin vanishing theorem(7.4.2.12), so

ιL(C0,G0, t) = ι det(1− tF ∗
X |H1

c (C,G|C))
ι det(1− tF ∗

X |H2
c (C,G|C))

by Grothendieck-Lefschetz formula(13.12.2.6). Now we can use Poincare duality and the definition
that G0 is pure of weight β, we knowH2

c (C,G|C) is pure of weight β+2, by(13.12.5.3). AndH2
c (C,G|C)

has weights smaller than β + 1 by the curve case, so the two polynomial is coprime, and both has
constant coefficient 1, which shows they are both real. And then by proper base change(7.4.5.5), this
just says Rif0!G0 is ι-real. □

Third Reduction

Prop.(13.12.6.7). If X0 is a smooth affine curve⊂ A1
Fq

and F0 a lisse Qℓ-sheaf, the Deligne’s purity
theorem is true.

Proof: We have the following devissages:
• We only need to check for H1

c (X,F), because H0
c vanish by Poincaré duality(7.4.8.11) and

Artin vanishing theorem(7.4.2.12) and , H2
c (X,F) is dealt with in(13.12.5.3).

• We are free to pass to finite base change.
• We may assume F0 is geometrically irreducible: By(13.12.4.4), all the irreducible constituents

of F0 are geometrically semisimple, so pass to a finite base change, we may assume that its
irreducible filtration is just the geometric irreducible filtration, then because H0

c = 0, H1
c is left

exact.
• We can assume that F0 can be extended to a lisse sheaf on ∞. This is because we can choose

a closed point and move it to ∞ by using Möbius transform, after a finite base change.
• We can assume F0 is not geometrically constant: if F0 ∼= Qℓ, then let i : U0 → P 1

Fq
and

Z0 = P 1
Fq
− U0, then there is a short exact sequence

0→ j0!(Qℓ)→ j∗(Qℓ)→ Q→ 0

where Q is supported at S, so its higher compact cohomology vanish, and weights of H0(Q) =∏
s∈S(j0∗(F0))s is no more than the maximal weight of Qℓ on X0, which is 0, by semicontinuity



1406 CHAPTER 13. ARITHMETIC GEOMETRY

of weights for curves(13.12.3.11). And j∗(Qℓ) is also geometrically constant, thus its cohomology
is Pic(P1)[n] = 0 by(7.4.8.2), so H1(P 1, j0!(X0)) has weights zero.

The actual proof will use the following lemma(13.12.6.8). After that, notice by(13.12.8.8)

(Tψ(G0))|{0} = RΓc(A1,G)[1] = RΓc(U,F)[1] = H1
c (U,F)

Then to understand the Frobenius eigenvalues of H1
c (U,F), it suffices to understand the weights of

Tψ(G0), i.e.
w(Tψ(G0)) ≤ w + 1

Then we use(13.12.3.17), notice the condition is satisfied by lemma(13.12.6.8), so w(Tψ(G0)) =
||Tψ(G0)||, and also w(G0) = ||G0|| for the same reason as H0

c (A1,G) = H0
c (U,F) = 0 by Poincare

duality. Now(13.12.8.12) gives the result.
□

Lemma(13.12.6.8) [Key Assertions of Weil Proof]. If G0 = j0!(F0) where j0 : U0 ↪→ A1
Fq
, ψ :

Fq → Qℓ is a fixed non-trivial additive character, then
• Tψ(G0) is a sheaf placed at degree 0.
• H0

c (A1, Tψ(G0)) = 0.
• Tψ(G0) is ι-mixed.

Proof: 1: By(13.12.8.8), we need to show H i(A1,G0 ⊗ L(ψa)) = 0 for i ̸= 1, and this is equivalent
to

H i(A1, j!F ⊗ L(ψa)) = H i(U,F ⊗ L(ψa)) = 0.

Notice by vanishing resultproper-pushforward-to-direct-image-sheanomqsk, only need to show i =
0, i = 2, i = 0 case is done by Poincare duality(7.4.8.11) and Artin vanishing(7.4.2.12) because it is
smooth and F is lisse.

H2
c (G0 ⊗ L(ψa)) = Vρ⊗χa |π1(U,x)(−1) by(13.12.5.3), and ρ ⊗ χa irreducible as ρ does, so if

Vρ⊗χa |π1(U,x) ̸= 0, then ρ ⊗ ψa is trivial representation. Then G ∼= Lψ−a on P1
k
as an étale sheaf

on A1 ∪ {∞} = P1 by our reduction, so we have the character ψ−a factors through π1(P1, x), i.e.

π1(A1, x) π1(P1, x) = 0

π1(A1
0, x) π1(P1

0, x) Qℓ
ψ−a

.

But this is in contradiction with the fact the Artin-Schreier cover is geometrically irreducible?.
2: Denote Tψ(G0) = K0, then by(13.12.8.7) and Fourier inversion(13.12.8.10):

H0
c (A1,K) = H−1((Tψ−1(K0))0) = H−1(Tψ−1 ◦ Tψ(j0!(F0))0) = H−1(j0!(F0)(−1))0 = 0

because F0 is placed at degree 0.
3: To show ι-mixed, the only thing we can do it show it is embedded in a ι-real sheaf: Consider

the ι-real sheaf

H0 = pr∗
2(j0!F0)⊗m∗(L(ψ))⊕ pr∗

2(j0!F∨
0 )⊗m∗(L(ψ−1))(−w)
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Then

(Riπ1
! (H0))x = H i({x} ×A1,H0) = H i(j0!F0 ⊗ L(ψx))⊕H i(j0!F∨

0 ⊗ L(ψ−1
x−1))(−w)

which we proved to vanish for i ̸= 1. So using Poincare duality on {x} ×A1,

det(1−tF dxx |(R1π1
! (H0)x)) = det(1−tFX |H1

c ({x}×A1,H0|{x}×A1)) =
∏

y∈Fqn

det(1−tF dyy |(H0)(x,y))
−1

which is real, so by(13.12.5.5), the direct summand Tψ(G0) is ι-mixed. □

Remark(13.12.6.9). If we use the machinery of perverse sheaf and show that Fourier transform
preserves perversity, then item1, 2 will be a direct consequence, Cf.[Bhatt notes, P39]. In fact, this
is just the bigger picture, given in [Weil conjectures Perverse Sheaves and l-adic Fourier Transform
Kiehl/Weissauer].

7 Semisimplicity and Hard Lefschetz

Prop.(13.12.7.1)[Semisimplicity Theorem]. If X0 is smooth and F0 is a lisse and ι-pure Qℓ-sheaf,
then F0 is semisimple, thus geometrically semisimple by(13.12.4.4) .

Proof: Let F ′ be the sum of irreducible lisse subsheaves of F , then it is the largest semisimple
subsheaf of F . It is stable under G(Fq/Fq), thus can be descended to a lisse subsheaf F ′

0 of F0, and
let F ′′ = F0/F ′

0, we want to show the exact sequence

0→ F ′
0 → F0 → F ′′

0 → 0

splits geometrically. Notice this exact sequence defines an element in Ext1
X(F ′′,F ′) = H1(X, (F ′′)∨⊗

F ′)?. F0 is pure, hence so does (F ′′
0 )∨ ⊗F ′

0, thus H1(X, (F ′′)∨ ⊗F ′) is ι-mixed of weights≥ 1. But
the exact sequence is compatible with Frobenius action, it defines a Frobenius fixed element, which
then must vanish. □

Cor.(13.12.7.2). If f : X → Y is proper between smooth algebraic schemes, then the sheaves Rif∗Qℓ

are semisimple.

Hard Lefschetz

Def.(13.12.7.3).The setup is k is a finite field, F ∈ Field0 and H is a cohomology theory
SmProj /k → CRinggr /F which satisfies

• (Poincaré duality)H i(X) ⊗F H 2n−i(X) → H 2n(X) is a perfect pairing, and the Frobenius
F ∗
X = qn on H 2n(X).

• (Weak Lefschetz)If L is an ample line bundle on X and H ⊂ X is a smooth divisor in |L|, then

f∗ : H i(X)→H i(Y )

is an isomorphism for i = n− 2 and injective for i = n− 1.
• (Zeta Function)Let P i(X;T ) = det(1− F ∗

XT |H i(X)), then the Hasse-Weil zeta function

Z(X;T ) =
2n∏
i=0

P(X;T )(−1)i+1
.
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Prop.(13.12.7.4).Crystalline and ℓ-adic cohomologies satisfy the hypothesis(13.12.7.3).

Proof: □
Prop.(13.12.7.5). Situation as in(13.12.7.3), then P i(X;T ) = P iét(X;T ).

Proof: ? □
Cor.(13.12.7.6).

• The characteristic polynomial Pét(X;T ) is independent of ℓ chosen.
• dimF H i(X) = dimQℓ Hiét(X).
• (Hard Lefschetz)If L is an ample line bundle on X, then

H n−i(X) c1(L)i−−−−→H n+i(X)

is an isomorphism.

Cor.(13.12.7.7).
bd ≥ bd−2 ≥ . . . , bd−1 ≥ bd−3 ≥ . . .

Prop.(13.12.7.8)[Hard-Lefschetz].Cf.[Bhatt P42].

8 Fourier Transformation

Sheaf to Functions Correspondence

Def.(13.12.8.1)[Sheaf to Functions Correspondence].For a complex K0 ∈ Db
cons(X0,Qℓ), we can

associate a function

fK0 : X0(Fqn)→ Qℓ : x 7→
∑
i

(−1)i tr(Fn/dxx |(Hi(K0))x)

Prop.(13.12.8.2).We can use Grothendieck formula for a constructible sheaf(13.12.2.6) to relate the
function fK0 to the compact cohomologies of HiK0, and we can translate many know theorems:

• ff
∗K0 = fK0 ◦ f .

•
fK0 · fT0 = fK0⊗LT0?

• (Base Change)(7.4.5.5) asserts that given a Cartesian diagram

X ′ X

Y ′ Y

g′

f ′ f

g

then it says in case Y ′ is a closed point of Y ,

fRf!K0(y) =
∑

x∈Xy(Fqn )
fK0(x)

where y ∈ Y (Fqn), and more generally∑
x′∈X′

y′

fK0(g′(x′)) =
∑

x∈Xg(y′)

fK0(x)
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• The projection formula(7.4.5.8) turns out to say something trivial:∑
x∈Xy

(fK0(f(x)) · fT0(x)) = fK0(y) · (
∑
x∈Xy

fT0(x))

Artin-Schreier Sheaves

Prop.(13.12.8.3)[Characters].Any character ψ : Fq → Q
×
ℓ can be extended to Fqn by

Fqn
tr−→ Fq

ψ−→ Q
×
ℓ ,

also denoted by ψ.

Prop.(13.12.8.4)[Artin-Schreier Sheaf].Let yqn−y−x ∈ A2
0 be the finite Galois cover of A1

0 via x
coordinates, with the Galois group isomorphic to Fq with 1 7→ (x 7→ x+1). Then we get a surjection
π1(A1

0, x)→ Fq, when composed with ψ, we get a rank1 étale sheaf L0(ψ) called the Artin-Schreier
sheaf on A1

0.

Prop.(13.12.8.5). fL0(ψ)(x) = ψ(−x).

Proof: If k(x) = Fqn , then consider the arithmetic Frobenius σ : (x, y) 7→ (xqn , yqn), then if
yq

n − y = x, then we have

yq = y + x, yq
2 = yq + xq = y + xq + x, . . . , yq

n = y + x+ xq + . . .+ xq
n−1 = y + trFqn/Fq(x)

So in the correspondence(13.12.8.4), we know Fx acts on Lψ by multiplication by ψ(trFqn/Fq(x)) =
ψ(x), so the geometric Frobenius acts by ψ(−x). □

Def.(13.12.8.6)[Deligne-Fourier Transform].Consider the multiplication map A0×A′
0 → A0, let

the sheaf L(ψ) be placed at A0, and K0 ∈ Db
c(A′

0,Qℓ) be placed at A′
0, then define the Deligne-

Fourier transform

Tψ : Db
c(A′

0,Qℓ)→ Db
c(A0,Qℓ) : K0 7→ Rπ1

! (pr∗
2K0 ⊗L m∗L0(ψ))[1]

Lemma(13.12.8.7).We have fTψK0(x) = −
∑
y∈Fqn

fK0(y)ψ(−xy) for any x ∈ Fqn .

Proof: Use(13.12.8.2), we have

fTψK0(x) =
∑
y∈Fqn

f (pr∗
2 K0⊗Lm∗L0(ψ))[1]((x, y))

= −
∑
y∈Fqn

fpr∗
2 K0((x, y)) · fm∗L0(ψ)((x, y))

= −
∑
y∈Fqn

fK0(y)ψ(−xy).

□

Prop.(13.12.8.8).Let a be a geometric point of A1
0, then

(Tψ(K0))a = RΓc(K ⊗L L(ψa))[1]

where ψa : Fqn → Q
×
ℓ maps x 7→ ψ(ax). In particular, Hi((Tψ(K0))0) = H i

ét,c(A1,K), so we placed
the complex into a family of deformations.
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Proof: By base change(7.4.5.5),

(Tψ(K0))a = RΓc((pr∗
2K0 ⊗L m∗L0(ψ)|{a}×A1)[1] = RΓc(K ⊗L L(ψa))[1].

□

Lemma(13.12.8.9). If δ0 = i0∗Qℓ be the skyscraper sheaf, where i0 : {0} ↪→ A1, then

Tψ(Qℓ[1]) = δ0(−1).

Proof: For the Artin-Schreier cover P : x 7→ xq − x, we have

P∗Qℓ
∼= ⊕x∈FqL(ψx)?

and P is finite thus proper and P∗ is exact(7.4.1.18), so using the Leray spectral sequence(7.4.5.5),
we can calculate

H1
c (A1,L(ψx)) = 0 = H1

c (A1,Qℓ), H2
c (A1,L(ψx)) = 0(7.4.5.7), H2

c (A1,L(ψx)) = δ0(x)Qℓ(−1)(13.12.5.3)

So
(Rπ1

! (m∗L0(ψ)[1])[1])x = RΓc(L(ψx))[2] = δ0(−1).

□

Prop.(13.12.8.10)[Fourier Inversion]. Tψ−1TψK0 = K0(−1).

Proof: Consider
A1

0 ×A1
0 ×A1

0 A1
0 ×A1

0 A1
0

A1
0 ×A1

0 A1
0

A1
0

pr23

pr12

pr2

pr1

pr2

pr1

And we will use the following Cartesian diagrams:

A3
0 A2

0

A2
0 A1

0

α:(x,y,z) 7→(y,z−x)

π13 pr2

β:(x,z)7→z−x

,

A1
0 ∗

A2
0 A1

0

∆ i0

β

Then

Tψ−1TψK0 (Tψ−1Tψf)(x)

= Rπ1
! (pr∗

2Rπ
1
! (pr∗

2K0 ⊗m∗L0(ψ))⊗m∗L0(ψ−1))[2] =
∑
y

(
∑
z

f(z)ψ(−yz))ψ(xy)

By base change(7.4.5.5) :
= Rπ1

! (Rπ12
! pr∗

23(pr∗
2K0 ⊗m∗L0(ψ))⊗m∗L0(ψ−1))[2]

By projection formula(7.4.5.5) :
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= Rπ1
! Rπ

12
! (pr∗

23(pr∗
2K0 ⊗m∗L0(ψ)⊗ pr∗

12m
∗L0(ψ−1)))[2] =

∑
y

∑
z

f(z)ψ(−yz)ψ(xy)

Combine the character:
= Rπ1

! Rπ
12
! (pr∗

23 pr∗
2K0 ⊗ α∗m∗L0(ψ))[2] =

∑
y

∑
z

f(z)ψ(−y(z − x))

Change order of summation:
= Rπ1

! Rπ
13
! (π13∗ pr∗

2K0 ⊗ α∗m∗L0(ψ))[2] =
∑
z

∑
y

f(z)ψ(−y(z − x))

By projection formula:
= Rπ1

! (pr∗
2K0 ⊗Rπ13

1 α
∗m∗L0(ψ))[2] =

∑
z

f(z)
∑
y

ψ(−y(z − x))

By base change:
= Rπ1

! (pr∗
2K0 ⊗ β∗Rπ2

! (m∗L0(ψ))[2] = Rπ1
! (pr∗

2K0 ⊗ β∗TψQℓ[−1])[2]
By(13.12.8.9) :

= Rπ1
! (pr∗

2K0 ⊗ β∗δ0[−2])[2] = Rπ1
! (pr∗

2K0 ⊗ β∗δ0(−1)) =
∑
z

f(z)qnδ0(z − x)

Use base change and noticingi0is finite thus proper and exact:
= Rπ1

! (pr∗
2K0 ⊗R∆!Qℓ(−1)) =

∑
z

∑
x=z

qn

By projection formula:
= Rπ1

! R∆!(∆∗ pr∗
2K0 ⊗Qℓ)(−1) = qn

∑
{z|z=x}

f(z)

= K0(−1) = qnf(x)

□

Prop.(13.12.8.11)[Plancherel Formula].

||fTψ(K0)||n = qn/2||fK0 ||n.

Proof: By definition and using(13.12.8.7),

||fTψ(K0)||2n =
∑

x∈Fqn

fTψ(K0)(x)fTψ(K0)(x)

=
∑
x,y,z

fK0(y)fK0(z)ψ(−xy)ψ(xz)

= qn
∑
z=y

fK0(y)fK0(z)

= qn(f, f)n

□

Cor.(13.12.8.12).Notice by the definition of norm of a Weil-sheaf G0, we have

||Tψ(K0)|| ≤ ||K0||+ 1
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9 Integrality Problems
Def.(13.12.9.1)[Integral Sheaves].Let X0 be a separated algebraic scheme over k and F0 a lisse
constructible sheaf on X0, then F0 is called an integral lisse sheaf if for all x0 ∈ X0, all the
eigenvalues of F ∗

x acting on Fx are algebraic integers.

Prop.(13.12.9.2)[Deligne]. If F0 is an integral lisse sheaf(13.12.9.1) on X0, then all coefficients of
H i

ét,c(X,F) are integral.

Proof: Cf.[Weil 1 Proof, P21]. □

Cor.(13.12.9.3).All eigenvalues of H i
ét,c(X,F) are algebraic integers.
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13.13 Rational Points on Abelian Varieties

Main references are [Sta], [Abelian Varieties notes Conrad], [Mil08], [B-G06], [Abelian Variety
van der Geer], [BLR90], [Sil16] and [Sil99], [Sil11], http://www-personal.umich.edu/~asnowden/
teaching/2013/679/index.html.

1 Mordell-Weil Theorem

Prop.(13.13.1.1)[Local Chevalley-Weil Theorem for Abelian Varieties].Let S be a Dedekind
scheme with function field F , Let A be an Abelian variety over F and m ∈ Z ∩ F ∗. Let s ∈ S be
a closed point s,t. A has good reduction over OS,s and m ̸= 0 ∈ κ(s), then for any P ∈ A(F ), the
extension κ(P )/κ([m]P ) is unramified at all places over v.

Proof: By base change, we may assume Q = [m]P is a rational point. Let w be a place of κ(P )
that w|vs with valuation ring Rw. As A has good reduction in v, A extends to an Abelian scheme
A over OS,s, then the valuation criterion of properness shows P extends to a Rw-valued point of A.
Now the theorem follows from(13.5.6.14) and(5.6.5.16). □

Cor.(13.13.1.2).Let F be a global field, X ∈ AbVar /F and n ∈ Z ∩ F ∗, L = K(X[n](F )), i.e. the
composite of all fields in F obtained by adjoining [n]−1x, x ∈ X(F ), then L is a finite field extension
of F .

Proof: This follows from the proposition and(12.4.2.27). □

Lemma(13.13.1.3)[Weak Mordell-Weil Theorem].Let F be a global field and X be an Abelian
variety over K, then for n ∈ Z ∩ F ∗, X(F )/nX(F ) is finite.

Proof: This follows from the finiteness of the Selmer group(13.5.11.8) and(13.5.11.6). □

Prop.(13.13.1.4)[Mordell-Weil Theorem].Let F be a global field, then the group X(F ) of rational
points of an Abelian variety X is f.g.

Proof: Because of(13.13.1.3) and(13.5.12.2), this follows from(2.1.4.15) applied toM = X(K ′) and
the symmetric bilinear form on X(K ′) given by(13.5.12.2). □

Remark(13.13.1.5)[Computability].The difficulty of computing X(F ) lies entirely at computing
X(F )/nX(F ) for some n, for which, see(13.5.11.7).

Cor.(13.13.1.6)[Rank].X(F ) ∼= Zr ⊕X(F )tor, where X(F )tor is a finite group, and r is called the
rank of X.

Cor.(13.13.1.7)[Isogenous Varieties have the same Rank].Let F be a global field and X,X ′ ∈
AbVar /F are isogenous, then rank(X) = rank(X ′). In particular, rank(X) = rank(X̂).

Proof: The isogeny implies X(F )/X(F )tor → X̂(F )/X̂(F )tor is injective. Thus rank(X) ≤
rank(X̂). The converse follows from(13.5.6.4). □

http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
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2 Lang-Néron Theorem

Main references are[Con06].

Def.(13.13.2.1) [Regular Extensions].A field extension K/k is called primary if k is separably
closed in K. It is called regular if it is separable and primary.

Prop.(13.13.2.2).Let K/k be a primary extension, then
• If A ∈ AbVar /k, then any Abelian subvariety of AK is defined over k.
• If A,B ∈ AbVar /k, then any homomorphism AK → BK is defined over k.

Proof:
□

Prop.(13.13.2.3)[K/k-Images and K/k-Traces].For a field extension K/k, the K/k-image is a
functor ImK/k : AbVar /K → AbVar /k left adjoint to the base change functor, and K/k-trace is a
functor trK/k : AbVar /K → AbVar /k right adjoint to the base change functor.

Then for K/k primary, ImK/k and trK/k exist, and are resp. left and right inverses to the base
change functor. Also there is a natural isomorphism

̂ImK/k(A) ∼= trK/k(Â).

The adjunction maps are denoted by

τA,K/k : trK/k A→ A, λA,K/kA→ ImK/k A.

Proof: It suffices to prove for ImK/k, and trK/k follows by double duality theorem(13.5.4.16). For
this, Cf.[Con06]P16?. □

Prop.(13.13.2.4).Let K/k be a primary extension and A ∈ AbVar /K, the unique map trK/k A →
ImK/k A descending λA,K/k ◦ τA,K/k is an isogeny.

Proof: Cf.[Con06]P22?. □

Prop.(13.13.2.5).Let K/k be a regular extension, then for any A ∈ AbVar /K, the finite group
ker(τA,K/k) is connected and coconnected. In particular, τA,K/k(K) : trK/k(A)(K) → A(K) is
injective.

Prop.(13.13.2.6)[Lang-Néron].Let K/k be a f.g. regular extension, then A(K)/ trK/k(A)(k) is a
f.g. Abelian group.

Proof: Cf.[Con06]P23?. □

Prop.(13.13.2.7)[Grothendieck].Let K be an alg.closed field with prime field k, then any Abelian
variety of CM-type over K is isogenous to an Abelian variety defined over a finite extension of k.

Proof: Cf.[Oort, The isogeny class of a CM-type abelian variety is defined over a finite extension
of the prime field]. □
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3 Elliptic Curve Case
Prop.(13.13.3.1) [Controlling Torsion Points].Let K be a number field, let E be given by a
Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ∈ OK [X,Y ].

Let P = (x0, y0) ∈ E(K) be a torsion point of exact order m, then
• If m is not a p-power, then x0, y0 ∈ OK .
• If m = pn, then for any place v of K, v(x) ≥ −2⌊ v(p)

pn−pn−1 ⌋, v(y) ≥ −3⌊ v(p)
pn−pn−1 ⌋.

Proof: This follows by base change E to each OK,v and use(13.9.4.21). □

Cor.(13.13.3.2)[Integrality of Torsion Points in Q].Let E ∈ Ell /Q and P = (x0, y0) ∈ E(Q) a
torsion point of exact order m. then if m is not a p-power, x0, y0 ∈ Z. If m = pn, then ⌊ v(p)

pn−pn−1 ⌋ = 0
unless p = 2 and n = 1. Thus x0 ∈ 1

4Z, x0 ∈ 1
8Z, and if m ≥ 3, x0, y0 ∈ Z.

The former case can occur, for example

E : y2 + xy = x3 + 4x+ 1, (−1
4
,
1
8

) ∈ E(Q)[2].

Prop.(13.13.3.3)[Nagell–Lutz].Let F be a number field and E ∈ Ell /F be given by a Weierstrass
equation

E : y2 = x3 +Ax+B ∈ Z[x, y],

Let P = (x0, y0) ∈ E(Q)tor, then
• x0, y0 ∈ Z.
• Either y0 = 0, i.e. [2](P ) = O or y2

0 divides 4A3 + 27B2.

Proof: 1: Let P has exact order m. If m = 2, then y0 = 0, and then x0 ∈ Z as it is integral over
Z. If m ≥ 2, the results follows from(13.13.3.1).

2: Suppose [2](P ) = (x1, y1) ̸= O, then y0 ̸= 0, and x0, y0, x1 ∈ Z. Now(13.9.1.8) shows
x1 = φ(x0)/4ψ(x0) where

φ(X) = X4 − 4AX2 − 8BX +A2, ψ(X) = X3 +AX +B.

And they satisfy a polynomial equation

f(X)φ(X)− g(X)ψ(X) = 4A2 + 27B2

where f(X) = 3X2 + 4A, g(X) = 3X3 − 5AX − 27B. Then because y2
0 = x3

0 +Ax0 +B, we get

y2
0(4f(x0)x1 − g(x0)) = 4A2 + 27B2.

□

Prop.(13.13.3.4). If p ∈ P and E ∈ Ell /Q has a rational torsion point of order p, then E is isogenous
to E′/Q with a rational point of order p and Q(E′[p]) is a ramified extension of Q(µp).

Proof: Cf.[Elliptic Curves, Group Schemes and Mazur’s Theorem, P26]?. □
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Prop.(13.13.3.5). If p > 13 ∈ P and E ∈ Ell /Q has a rational torsion point of order p, then Q(E[p])
is an unramified extension of Q(µp).

Proof: Cf.[Elliptic Curves, Group Schemes and Mazur’s Theorem, P29]?. □

Lemma(13.13.3.6)[Mazur-Tate].For E ∈ Ell /Q and p > 7 ∈ P and p ̸= 13, E doesn’t contain a
rational torsion point of order p.

Proof: Cf.http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html. □

Lemma(13.13.3.7).For E ∈ Ell /Q, E doesn’t contain a rational torsion point of order 13.

Proof: Cf.http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html. □

Lemma(13.13.3.8)[Kubert]. If E ∈ Ell /Q, then
• E doesn’t contain a rational torsion point of exact order N where N ∈
{14, 15, 16, 18, 20, 21, 24, 25, 27, 35, 49}.

• E(Q)tor doesn’t contain a subgroup isomorphic to Z/(2)×Z/(10) or Z/(2)×Z/(12).

Proof: Cf.[Kubert. Universal bounds on the torsion of elliptic curves.]?
Firstly, notice for N ∈ {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49}, X0(N) has genus 1(16.2.4.19).

And by taking the cusp as the origin, X0(N) is an elliptic curve. Then Kubert finds that
rank(X0(N)) = 0, and can find all the rational points. Only for N = 21 or N = 27 there are
non-cusp rational points. So it suffices to show that for X0(21) and X0(27), the quadratic twists
of the elliptic curves corresponding to the rational non-cusp points of X0(N) don’t have rational 21
torsion-points.

For N = 21, the non-cusp rational points of X0(N) are given by quadratic twists of

y2 = x3 + 45x− 18

y2 = x3 − 75x− 262

y2 = x3 − 1515x− 46106

y2 = x3 − 17235x− 870894.

For N = 27, the non-cuspidal rational points of X0(N) are given by quadratic twists of

y2 + y = x3 − 30x− 5.

For the second case, let P be a generator of Z/(2) and Q a generator of Z/(10) or Z/(12), then
the dual map E/P → E → E/Q is a cyclic isogeny, thus corresponds to a rational point on Y0(20)
or Y0(24), which in fact has no rational point.

For N = 16, ?
For N = 18, ?
For N = 25, ?
For N = 35, let E = X0(35)/w5, where w5 is the Atkin-Lehner involution. Then E is an elliptic

curve, and E(Q) ∼= Z/(3). Then Kubert computed that the preimages of these points are cusps. □

Thm.(13.13.3.9)[Mazur].For E ∈ Ell /Q, E(Q)tor can only be isomorphic to one of the following 15
groups:

http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
http://www-personal.umich.edu/~asnowden/teaching/2013/679/index.html
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• Z/(n) for n ≤ 10 or n = 12,
• Z/(2)⊕Z/(2n) for n ≤ 4.

Moreover, each of these groups occur, by(13.13.3.11).

Proof: This follows from(13.13.3.6)(13.13.3.7) and(13.13.3.8). Notice the existence of elliptic curves
with these torsion groups can also be shown using modular curves, as they parametrize elliptic curves
with torsion points.? □

Thm.(13.13.3.10) [Uniform Bound of Torsion Groups, Merel].For any d ∈ Z+ there is a
constant N(d) s.t. for any number field F/Q of degree d and all elliptic curves E over K,

#E(F )tor ≤ N(d).

Proof: □

Prop.(13.13.3.11)[Bounding Torsion Points].The proposition(13.9.4.20) is useful in controlling
torsion points of E, for example: If E/Q is an elliptic curve with Weierstrass equation

• E : y2 + y = x3 − x+ 1, then ∆ = −13 · 47, so E has good reduction modulo 2. But it can be
calculated that Ẽ(F2) = Õ, E(Q)[2] = O, thus E(Q)tor = O.

• E : y2 = x3 + 3, then ∆ = −24 · 35, so E has good reduction modulo p for p ≥ 5. But it can be
calculated that #Ẽ(F5) = 6,#Ẽ(F7) = 13, so E(Q)[p] = O for any prime p, and E(Q)tor = O.
In particular, (1, 2) ∈ E(Q) has infinite order.

• E : y2 = x3 + x, then ∆ = −26, so E has good reduction modulo p for p ≥ 3. But it can be
calculated that Ẽ(F3) ∼= Z/(4), Ẽ(F5) ∼= Z/(2)×Z/(2), thus E(Q)tor ∼= 0 or Z/(2). The latter
case is right, as (0, 0) ∈ E(Q).

• E : y2 = x3 + 2.
• E : y2 = x3 + 8.
• E : y2 = x3 + 4.
• E : y2 = x3 + 4x.
• E : y2 − y = x3 − x2.
• E : y2 = x3 + 1.
• E : y2 = x3 − 43x + 166. then ∆ = −219 · 13, thus E has good reduction modulo 3, 5. But it

can be calculated that #Ẽ(F3) = 7 = #Ẽ(F3), thus E(Q)tor ∼= 0 or Z/(7). By(13.13.3.3), for
any torsion point (x, y), y|27, thus we can find rational points

{(3,±8), (−5,±16), (11,±32)}.

And using doubling formula(13.9.1.8) for P = (3, 8),

x([2](P )) = −5, x([4](P )) = 11, x([8](P )) = 3.

Thus P must have order 7, and E(Q)tor ∼= Z/(7).
• E : y2 + 7xy = x3 + 16x.
• E : y2 + xy + y = x3 − x2 − 14x+ 29.
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• E : y2 + xy = x3 − 45x+ 81.
• E : y2 + 43xy − 210y = x3 − 210x2.
• E : y2 = x3 − 4x.
• E : y2 = x3 + 2x2 − 3x.
• E : y2 + 5xy − 6y = x3 − 3x2.
• E : y2 + 17xy − 120y = x3 − 60x2.
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13.14 Mordell-Lang Conjecture(Faltings Theorem)
References are [Mordell Seminar notes, Bhatt], http://virtualmath1.stanford.edu/~conrad/

mordellsem/, [Fal86] and [Mil08].

1 Tate’s Hom Conjecture
References are [Fal86] and [Tat66].

Lemma(13.14.1.1).Let k be a field, A1, A2 ∈ AbVar /k, and ℓ ∈ P\ char k, then the natural map

Hom(A1, A2)⊗Zℓ → HomZℓ(Tℓ(A1), Tℓ(A2))

is injective.

Proof: Same as the proof of the Elliptic case? Cf.[Silverman]. □

Thm.(13.14.1.2) [Tate’s Hom Conjecture, Tate/Faltings].Let k ∈ Fieldfin or k ∈ GField,
ℓ ∈ P \ {char k}, A1, A2 ∈ AbVar /k, then

Hom(A1, A2)⊗Zℓ → HomGalk(Tℓ(A1), Tℓ(A2))

is an isomorphism.

Proof: Firstly notice that

Hom(A1, A2)Qℓ → HomGalk(Vℓ(A1), Vℓ(A2))

is injective, and it suffices to show this is surjective: This follows from(13.14.1.1) and the fact Qℓ is
flat over Zℓ and

Coker
(

Hom(A1, A2)⊗Zℓ → HomGalk(Tℓ(A1), Tℓ(A2))
)

is torsion-free, because if [f ] ∈ HomGalk(Tℓ(A1), Tℓ(A2)) satisfies n[f ] = [g] for g ∈ Hom(A1, A2)⊗Zℓ,
then we may assume n ∈ ℓZ+ , and then g vanishes on A1[n], then g = nf for some f ∈ Hom(A1, A2).

? □

Cor.(13.14.1.3).Let k ∈ Fieldfin or k ∈ GField, ℓ ∈ P \ {char k}, A1, A2 ∈ AbVar /k, then A1, A2
are isogenous iff Tℓ(A1) ∼= Tℓ(A2) as Galk-modules.

2 Heights of Abelian Varieties
Def.(13.14.2.1) [Faltings Heights].Let F be a number field and A ∈ AbVar /F , take the Néron
model A/OF , then KA/OF

is an invertible sheaf, and thus Ms−1KA/OF
is an invertible OF -sheaf,

represented by a fractional ideal M ⊂ F , and M ⊗R F = Γ(A,KA/F ) by(8.1.1.14).
We define a norm on M ⊗F Fv = Γ(Av,KAv/Fv) for each v ∈ Σ∞

F :

||ω||v =
(
( i
2

)g
∫
A(F v)

ω ∧ ω
)1/2

.

This make M̃ a metrized line bundle on OF (18.2.1.1).

http://virtualmath1.stanford.edu/~conrad/mordellsem/
http://virtualmath1.stanford.edu/~conrad/mordellsem/
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Then we define the Faltings height of A:

H(A) = H((M̃, | · |))(18.2.1.2), h(A) = 1
[F : Q]

logH(A).

More explicitly, take a non-zero holomorphic g-form ω on A, and for v ∈ Σ0
F , let ωv be a Néron

differential ωv on Av(i.e. corresponding to an element in Kv of valuation 1), then

H(A) = 1∏
v∈Σ0

F
|ω/ωv|v ·

∏
v∈Σ∞

F

(
( i2)g

∫
A(F v) ω ∧ ω

)[Kv :Qv ]/2

Def.(13.14.2.2) [Stable Faltings Height].Let F be a number field and A ∈ AbVar /F , then
by(13.5.10.15) there exists a finite extension L/F s.t. AL is semistable. Then the Néron model of
AL are stable under base change?. Then we can define the stable Faltings height hs(A) = h(AL),
which is invariant of L chosen.

Prop.(13.14.2.3).Let F be a number field and A ∈ AbVar /F , then h(A) = h(A∨).

Proof: Cf.[Szpiro, La Conjecture de Mordell, Séminaire Bourbaki, 1983/84]. □

Thm.(13.14.2.4).

Modular Heights

Def.(13.14.2.5) [Modular Heights].Consider the Siegel modular varieties Mg,d/Q parametrizing
Abelian schemes(17.1.3.1), then for any number field K, (A, λ) ∈ AbVardim=g,polar=d /K defines a
K-point j((A, λ)) of Mg,d. Then we can define the modular height hM (A, λ) to be h(j((A, λ))),
where h is the Weil height associated to the canonical ample divisor on Mg,d(17.1.3.2), which is
defined up to a bounded function onMg,d.

Prop.(13.14.2.6) [Comparison of Heights].Let F be a number field, then there are constants
c1, c2, c3 s.t. for any (A, λ) ∈ AbVarpolar /F ,

|hF (A)− c1hM (A, λ)| < c2 log hM (A, λ) + c3.

Proof: ? Hard. Cf. [Chai and Faltings, 1990]. □

Prop.(13.14.2.7) [Height I].Let F be a number field and g, d, C ∈ Z+, then up to isomorphism,
there are only f.m. semistable (A, λ) ∈ AbVardim=g,polar=d /k s.t. hM (A, λ) < C.

Proof: By the definition of Siegel modular varieties, two objects in (A, λ) ∈ AbVardim=g,polar=d /F
corresponds to the same point ofMg,d(13.14.2.5) iff they are isomorphic over F . And by Northcott’s
theorem(13.2.3.24) the image of polarized Abelian varieties with bounded modular heights is finite.
Thus the assertion follows from(13.14.3.2). □

Cor.(13.14.2.8)[Height II].Let F be a number field and g, C ∈ Z+, then up to isomorphism, there
are only f.m. semistable A ∈ AbVarg /F s.t. h(A) < C, by(13.14.2.6).

Proof: By the proposition(13.14.2.7) and(13.14.2.6), the set of isomorphism classes of semistable
Abelian varieties (B, λ) ∈ AbVardim=g,polar=d /F is finite. Now notice for any A ∈ AbVar /F , B =
(A×A∨)4 is principally polarized by(13.5.7.2), and h(B) = 8h(A) by(13.14.2.3), so we are done. □
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3 Finiteness Theorems
Prop.(13.14.3.1).Let L/F be a Galois extension of number fields, then for any A ∈ AbVar /F , there
exists f.m. isomorphism classes of B ∈ AbVar /F s.t. AL ∼= BL.

Proof: Cf.[Conrad note, L14]? □

Prop.(13.14.3.2) [Finiteness Theorems].Let F be a number field and (A, λ) ∈
AbVardim=g,polar=d /F , then there exists only f.m. isomorphism classes of (B, λ′) ∈
AbVardim g,polar=d /F s.t. (AF , λ) ∼= (BF , µ).

Proof: Firstly, by(13.5.10.10), any such B is also semistable, so the set of good reductions are
stable under base change, thus the set of good reductions of A and B in ΣF are the same.

Then by(13.13.1.1) and(12.4.2.27), for ℓ ∈ P\{2}, there is a finite extension L/F s.t. every
ℓ-torsion points of such B are in B(L).

Now any such B are isomorphic to A over L as above: Given any isomorphism α : (AF , λ) ∼=
(BF , µ), for α ∈ GalL, α and σ(α) has the same action on ℓ-torsion points, as all these points are
L-rational, so σ(α)−1 ◦ α acts trivially on A[ℓ], which implies by(13.5.7.5) that σ = α(σ), so σ is
defined over L and we are done.

Finally we finish using(13.14.3.1) and(13.5.7.3). □

Thm.(13.14.3.3)[Finiteness of Heights in an Isogeny class].Let F be a number field and A ∈
AbVar /F be semistable, then the set of Faltings height of B ∈ AbVar /F isogenous to A is finite.

Proof: This is the hardest part of the proof.? Cf.[Conrad Seminar, L20]. □

Thm.(13.14.3.4) [Finiteness I].Let F be a number field and A ∈ AbVar /F , then there are only
f.m. isomorphism classes of Abelian varieties B ∈ AbVar /k isogenous to A.

Proof: If A is semistable, then by(13.5.10.10), any B ∈ AbVar /k isogenous to A is also semistable.
Then we are done by(13.14.2.8) and(13.14.3.3).

For a general A, there exists a finite extension L/K s.t. AL is semistable by(13.5.10.15). Then
the general case reduced to the semistable case by using(13.14.3.1). □

Thm.(13.14.3.5) [Finiteness II, Shafarevich/Faltings].Let F be a number field, S ⊂ ΣF be a
finite set of places, then there are only f.m. isomorphism classes of A ∈ AbVardim=g /F having good
reduction at all finite places outside S.

Proof: By(13.14.3.4), it suffices to show that there are only f.m. isogeny classes of A ∈
AbVardim=g /F having good reduction at all finite places outside S. But then we can use(13.5.10.14)
and the fact there are only f.m. such polynomials Pℓ(Av, t) because of Weil conjecture. □

4 Curves
Prop.(13.14.4.1)[Genus 0 Curves].For F ∈ GField of characteristic̸= 2 and any smooth complete
curve C/F genus 0 is a conic in P2. Thus by(5.11.8.2), it is isomorphic to P1 iff it has a rational
point. But by Hasse-Weil principle, this is equivalent to it having a rational point over each local
field of F , and this can be understood via Hilbert symbol.

Thm.(13.14.4.2)[Shafarevich’s Conjecture, Faltings].Let F be a global field, S ⊂ ΣF be a finite
set of places, g ∈ Z+, then there are only f.m. isomorphism classes of smooth curves over k of genus
g having good reduction at all non-Archimedean places outside S.
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Proof: This follows from(13.5.13.16)(13.5.13.15) and(13.5.7.3)(13.14.3.5). □

Prop.(13.14.4.3)[Kodaira-Parshin].Let F ∈ NField and S is a finite set of places of F containing
all places over 2, then for any complete non-singular curve C/F of genus≥ 1 having good reduction
at non-Archimedean places outside S, there exists a finite extension L/F and a constant N , s.t.: For
any P ∈ C(F ), there exists a complete smooth curve CP over L and a finite map φP : CP → CL,
that satisfies

• CP has good reduction at places not above S.
• g(CP ) ≤ N .
• φP is ramified exactly at P .

Proof: Cf.[Mil08]P115, 145.? □

Thm.(13.14.4.4) [Mordell Conjeture, Faltings].Let F ∈ NField and C/F be a complete non-
singular curve of genus g ≥ 2, then C(F ) is finite.

Proof: Using the construction of Kodaira-Parshin(13.14.4.3), there is a finite extension L/F s.t.
any P ∈ C(F ) corresponds to a curve CP over L and a map φP : CP → CL. By Shafarevich’s
conjecture applied to L(13.14.4.2), there are only f.m. isomorphism classes of CP . But for different
P,Q s.t. CP ∼= CQ, the maps φP , φQ are non-isomorphic, as they are ramified at different places.
So we are done by de Franchis’ theorem(5.11.1.34). □

Conj.(13.14.4.5) [Mordell-Lang].Let X be a closed geometrically integral subvariety of a semi-
Abelian variety A defined over a field K of characteristic 0. Let Γ be a f.g. subgroup of A(K) and
Γ′ be a subgroup of the divisible hull of Γ. If X is not a translate of a semi-Abelian subvariety of A,
then X(K) ∩ Γ′ is not Zariski dense in X.

Proof: □

Cor.(13.14.4.6)[Manin-Mumford].Let F ∈ NField and C/F be a complete non-singular curve of
genus g ≥ 2, and J the Jacobian of C. Fix an embedding C ↪→ J over F , then #C(F )∩J(F )tor <∞.

Proof: □
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13.15 Tate Conjecture & Hodge Conjecture

Main references are [Tat91], [Tat65b], [RECENT PROGRESS ON THE TATE CONJECTURE,
Totaro] and [Tate Conjecture over Finite Fields, Milne].

1 Statements

Prop.(13.15.1.1) [ℓ-adic Cycle Classes].Let k ∈ Field and X ∈ SmProjVar /k, X = X ⊗k ks,
ℓ ∈ P\ char k, then there exists a cycle map

cr : CHr(X)→ H2r
ét (X,Qℓ(r)),

as étale cohomology is a Weil cohomology theory?. Let Arét,ℓ(X) be the image, and Arét,ℓ(X) be the
image of CHr(X) ⊂ CHr(X) under this map. Then there are maps

Arét,ℓ(X)⊗Qℓ ⊂ H2r(X,Qℓ(r)), Arét,ℓ(X)⊗Qℓ ⊂ H2r(X,Qℓ(r))Galk .

Conj.(13.15.1.2)[Tate]. Situation as in(13.15.1.1), if k is f.g. over its prime field, then
(T r(X/k), ℓ): Arét,ℓ(X)⊗Qℓ = H2r(X,Qℓ(r))Galk .
(Er(X/k), ℓ): Arét,ℓ(X) ∼= GHr(X). In particular, Arét,ℓ(X) doesn’t depend on ℓ.
(Sr(X/k), ℓ): FrX acts semisimply on the 1-eigenpart H2r

ét (X,Qℓ(r))1.

Proof: □

Conj.(13.15.1.3)[Integral Tate Conjecture]. Situation as in(13.15.1.1), if k is f.g. over its prime
field, then we may ask if

Arét,ℓ(X)⊗Zℓ = H2r(X,Zℓ(r))Galk .

Cf.[Tate Conjecture, Milne, P3].

Prop.(13.15.1.4) [(E1) Holds].The Kummer exact sequence of étale sheaves on X : 0 → µℓn →
Gm

ℓn−→ Gm → 0 induces an injection Pic(X)/ℓn Pic(X) ↪→ H2(X,µℓn). Taking limits gives an
injection Pic(X)⊗Qℓ ↪→ H2(X,Qℓ(1)). And c1 is just

c1 : Z1(X)→ Pic(X)→ Pic(X)⊗Qℓ ↪→ H2
ét(X,Qℓ(1)).

Thus the kernel of c1 is just the Pic(X) modulo ℓ∞-divisible elements and torsion elements,
but Pic0(X) is ℓ∞-divisible as it is the ks-points of an Abelian variety over ks. And also
Pic(X)/Picnum=0(X) → Pic(Xk)/Picτ (Xk) = N1(Xk) is injective by[Sta]0CC5?, and N1(Xk) is
finite free, so Picnum=0(X) = Pic(X)tor, and A1

ét,ℓ(X) = GH1(X).

Remark(13.15.1.5)[Hodge & Tate Conjecture]. In characteristic 0, we can embed k into C and
use étale-singular comparison to see the Hodge conjecture implies the Tate conjecture.?

Prop.(13.15.1.6). Situation as in(13.15.1.2), let X,Y ∈ SmProjVar /k, then (T 1(X ×k Y )) ⇐⇒
(T 1(X)) + (T 1(Y )).

Proof:
□
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Prop.(13.15.1.7). Situation as in(13.15.1.2), let f : X → Y ∈ SmProjVar /k be a dominant rational
map, then (T 1(X/k))⇒ (T 1(Y/k)).

Proof:
□

Cor.(13.15.1.8).The Fermat curve Sn : zn0 + zn1 + zn2 + zn3 = 0 is dominated by the product of two
curves

C1 : xn0 + xn1 = xn2 , C2 : yn0 + yn1 = −yn2

by
C1 × C2 → S : ([x0, x1, x2], [y0, y1, y2]) 7→ [x0y2, x1y2, y0x2, y1x2],

so (T 1(Sn)) holds.

2 over Finite Fields

Main references are [Milne, Tate Conjecture over Finite Fields], and [Endomorphisms of abelian
varieties over finite fields, Tate, 1966].

Prop.(13.15.2.1)[(T 1)].Let #k <∞ and X ∈ SmProjVar /k, Tate proved that H2r(X,Qℓ(r))Galk ∼=
H2r

ét (X,Qℓ(r)), and the Kummer sequence gives an exact sequence?
Proof: □

Connection with B-S.D

Prop.(13.15.2.2)[Tate].Let #k <∞, X ∈ SmProjVar /k, then (T r(X/k)) and (Er(X/k)) hold iff

ords=r(Z(X, s)) = − rankGHr(X).

Proof: □

Prop.(13.15.2.3)[(T 1) and BSD].Let #k <∞ and C a smooth complete curve over k with function
field K, E/C is a regular elliptic surface with generic fiber E ∈ Ell /K, then (T 1(E/k)) is equivalent
to the BSD conjecture for E/K.

Proof: □

Prop.(13.15.2.4)[Grothendieck].Let #k <∞ and C a smooth complete curve over k with function
field K, E/C is a regular elliptic surface with generic fiber E ∈ Ell /K, then

Br(E/k) ∼= X(E/K).

ḱ

Proof: Cf.[Grothendieck, Alexander, Le groupe de Brauer. III. 1968]. □
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3 K3 Surfaces
Main references are [The Tate Conjecture For K3 Surfaces In Odd Characteristic, Pera], [The

Tate Conjecture For K3 Surfaces—A Survey Of Some Recent Progress], [2-adic integral canonical
models and the Tate conjecture in characteristic 2].

Thm.(13.15.3.1)[Pera]. (T 1(X)) holds if X is a K3 surface.

Proof: Cf.[The Tate Conjecture For K3 Surfaces In Odd Characteristic, Pera] and [2-adic integral
canonical models and the Tate conjecture in characteristic 2].? □

Cor.(13.15.3.2)[Lieblich-Maulik-Snowden].There are only finitely many isomorphism classes of
K3 surfaces over a finite field of characteristic≥ 5.

Proof: [Finiteness Of K3 Surfaces And The Tate Conjecture, Lieblich-Maulik-Snowden]. □

Kuga-Satake construction

4 Hodge Conjecture
Main references are [Hodge cycles on abelian varieties, Deligne].

Def.(13.15.4.1)[Hodge Classes].For X ∈ SmProj /C, define Hdg2k(X) = H2k
Betti(X,Q)∩Hk,k

Betti(X),
called the Hodge classes of X of degree 2k.

Prop.(13.15.4.2). If X ∈ SmProj /C and Z ⊂ Zr(X), then [Z] ⊂ Hdgk(X).

Proof: ?? □

Conj.(13.15.4.3)[Hodge].For X ∈ SmProj /C, every Hodge class is algebraic.

Proof: □

Arithmetic Theory

Thm.(13.15.4.4)[Deligne].Let k ∈ Field0, k = k, X ∈ AbVar /k, and let t ∈ H2p
A (X)(p). Then if t

is a Hodge cycle w.r.t. one embedding σ : k → C, then it is absolutely Hodge.

Proof: □

Def.(13.15.4.5)[Hodge Classes].Let k ∈ Field0, k = k, and X ∈ SmProj /k, then for any embed-
ding σ : k ↪→ C, Hn

dR(X/k) satisfies

Hn
dR(X/k)⊗k,σ C ∼= Hn

dR(X,C) ∼= Hn
Betti(X,C).??

Thus we can define the space Hdg2k(X) ofHodge cycle onX of degree 2k w.r.t. σ as the subspace of
elements in H2k

dR(X/k) that are mapped to (2π i)k times a Hodge class of σX of degree 2k(13.15.4.1).
This notion is independent of the embedding σ.

Proof: ? □
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13.16 Logarithmic Geometry
Main references are [DLLZ19], [LOG p-DIVISIBLE GROUPS].
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13.17 Arithmetic Topology & Arithmetic Dynamics
Main references are [Knots and Primes, an Introduction to Arithmetic Topology, Masanori

Morishita], [Knots and Primes, Chao Li], [Kapranov, M.: Analogies between number fields and
3-manifolds. Unpublished Note (1996)], [Kapranov, M.: Analogies between the Langlands corre-
spondence and topological quan- tum field theory. In: Progress in Math., vol. 131, pp. 119–151.
Birkhäuser, Basel (1995)], [Manin, Y., Marcolli, M.: Holography principle and arithmetic of alge-
braic curves. Adv. Theor. Math. Phys. 5(3), 617–650 (2001)], [Reznikov, A.: Three-manifolds
class field theory (Homology of coverings for a nonvir- tually b1-positive manifold). Sel. Math. New
Ser. 3, 361–399 (1997)], [Reznikov, A.: Embedded incompressible surfaces and homology of ramified
coverings of three-manifolds. Sel. Math. New Ser. 6, 1–39 (2000)].

1 Knots and Primes
2 Arithmetic Dynamics

References are [Arithmetic of Dynamical Systems, Silverman].

Dynamical Mordell-Lang Conjecture

References are [Poo14].

Prop.(13.17.2.1)[p-adic Interpolation of Iterates, Poonen].LetK be a valued field s.t. |p| = 1/p,
and f ∈ OK⟨X1, . . . , Xd⟩d satisfies f(X) ≡ X(mod pc) for some c > 1/(p − 1). Then there exists
g ∈ OK⟨X1, . . . , Xd, T ⟩ s.t. g(X,n) = f◦n(n) ∈ OK⟨X⟩d for any n ∈ N. Moreover, g(X,T + 1) =
f(g(X,T )) holds.

Proof: The hypothesis implies that h(f(X)) ≡ f(X)(mod pc) for any h(X) ∈ OK [X]d, and by
taking limits this is also true for any h ∈ OK⟨X⟩d. Thus if we define the linear operator

∆(h)(X) = h(f(X))− f(X),

then for any m ∈ N, ∆m maps OK⟨X⟩d into pmcOK⟨X⟩d. Then because |m!| > p−m/(p−1)(24.1.3.17),
so the Mahler series

g(X,T ) =
∑
m∈N

(
T

m

)
∆m(X)

converges in OK⟨X⟩d. And

g(X,n) =
n∑

m=0

(
n

m

)
∆n(X) = (∆ + id)n(X) = f◦n(X).

For the last assertion, the equation clearly holds for T ∈ N, so by comparing coefficients, it holds for
any T . □
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14 | p-Adic Geometry

14.1 Fp-Schemes

1 Perfect Schemes
Def.(14.1.1.1)[Perfect Schemes].An Fp-scheme is called perfect if the Frobenius is an isomorphism
on it. Equivalently, this means every affine subscheme is the spectrum of a perfect scheme.

Let Perf be the category of perfect qcqs Fp-schemes endowed with the V-topology(5.1.4.43).

Def.(14.1.1.2)[Perfection].There is a perfection functor X 7→ Xperf from the category of schemes
to the category of perfect schemes, it is defined as the glueing of the perfection R → Rperf (4.5.1.3)
as it commutes with colimits.

Prop.(14.1.1.3)[Perfection and Properties].Let f : X → Y be a morphism of Fp-schemes, then
the following properties holds true for f iff it holds true for fperf :

1. Qco.
2. Quasiseparated.
3. Affine.
4. Separated.
5. Integral.
6. Universally closed.
7. Universal homeomorphism.

The following properties holds for fperf if it holds for f :
1. Closed immersion.
2. Open immersion.
3. immersion
4. Étale
5. (Faithfully)Flat.

Proof: Cf.[Projectivity of Witt Vectors Affine Grassmannian, 3.4]. □

Prop.(14.1.1.4). If X is an Fp-scheme and L is a line bundle on X, then L is ample iff the pullback
to Xperf is ample.

Proof: Cf.[Projectivity of Witt Vectors Affine Grassmannian, 3.6]. □

Prop.(14.1.1.5). If X is an Fp-scheme, then Xét → Xperf,ét : Y → Yperf is an equivalence of sites.
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Proof: □

Prop.(14.1.1.6) [Perfectly Finitely Presented Morphisms].Let f : X → Y be a morphism in
Perf(14.1.1.1), then f is called a perfectly finitely presented morphism if it satisfies the following
equivalent conditions:

• Any open affine subscheme SpecB ⊂ X mapping to an open affine subscheme SpecA ⊂ Y ,
A→ B is perfectly f.p.(4.5.1.5).

• There is an open affine covering SpecAi → X mapping to an open affine covering SpecBi → Y
that Bi → Ai are all perfectly f.p.

• For any cofiltered system {Zi} ∈ Perf/Y with affine transition maps, there is a bijection
colim HomY (Zi, X) ∼= HomY (limZi, X).

In particular, perfectly finitely presented is local on the base and target.

Proof: Cf.[Projectivity of Witt Vectors Affine Grassmannian, 3.11]. □

Prop.(14.1.1.7)[Perfect Base Change]. If

X ′ X

Y ′ Y

g′

f ′ f

g

is a pullback diagram of perfect Fp-schemes, then for any complex K• of Qco sheaves on X, the base
change map(5.3.3.18)

Lg∗Rf∗K → Rf ′
∗Lg

′K

is an isomorphism.

Proof: It is clearly we need only check for the affine case, then let X = SpecB, Y = SpecA, Y ′ =
SpecA′, and X ′ = SpecB ⊗A A′, then it suffices to prove that

K ⊗LA A′ ∼= K ⊗LB B′.

This follows from the fact B ⊗A A′ = B ⊗LA A′, by(4.5.1.7). □

Prop.(14.1.1.8)[Cartier Isomorphism]. If

Proof: □

Cor.(14.1.1.9)[Affine Line case].Let R be an Fp-algebra and
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14.2 Fargues-Fontaine Curve

Basic references are [FF curves Lurie], [FF Curve Johannes], [The Fargues-Fontaine Curve and
Diamonds Mathew Morrow], [Laurent Fargues and Jean-Marc Fontaine. Courbes et fibrés vectoriels
en théorie de Hodge p-adique]

1 Fontaine’s Period Rings

References are

Fontaine’s Ring Ainf

Def.(14.2.1.1)[Fontaine’s Ring Ainf ].Let C♭ be a perfectoid field of characteristic p, for any untiltK
of C♭, the Fontaine’s ring Ainf = Ainf(OK) is defined to be the ring of Witt vectorsW (OC♭)(4.5.1.15).
Also denote Binf = Ainf [1

p ].
the set of all the char0 untilts K of C♭ is denoted by Y . and Y[a,b] denotes those untilts that

a ≤ |p|K ≤ b.

Prop.(14.2.1.2).By(10.3.9.7), if K ∈ Perfd, charK = 0, with tilt C♭, then there is a diagram

Ainf OK

OC♭ OK/(p)

θ

♯

.

Then θ is surjective, and ker θ is generated by some distinguished element ξ = [t] − pu where
u ∈ Ainf is invertible. Moreover, any distinguished element in the kernel is a generator.

Proof: θ is surjective by(4.5.1.16). By(10.3.8.11), there exists t ∈ Ainf s.t. t♯ = pu′ for some u′

invertible in OK . Thus u′ = θ(u) for some invertible u ∈ Ainf , then θ([t]− pu) = 0. And ξ generates
the kernel because it generates after modulo ϖ, and and use the fact OK is p-complete.

For the last assertion, use(14.2.1.4), which shows that if ξ′ is another distinguished element in
ker θ, Ainf/(ξ′) is an integral domain of dimension 1. So (ξ) = (ξ′) as OK is not a field. □

Lemma(14.2.1.3). If R is a commutative ring, x, y ∈ R, if x is not a zero-divisor in R and R is
x-adically complete Hausdorff, and y is not a zero-divisor in R/x and R/x is y-adically complete
Hausdorff, then the same is true with x, y interchanged.

Proof: ? □

Prop.(14.2.1.4)[Untilts and Distinguished Elements]. (14.2.1.2) shows that for any untilt K of
C♭, the kernel is generated by a distinguished element. Conversely, for any distinguished element ξ,
Ainf/(ξ) can be identified with the valuation ring OK of a perfectoid field K. and

O♭C = Ainf/p→ Ainf/(ξ, p) ∼= OK/p

exhibits K as an untilt of C♭.
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Proof: May assume ξ = [t]− up and t ̸= 0. Consider the mapping θ : Ainf → Ainf/(ξ) = OK , and
denote θ([x]) by x♯.

Firstly, we can apply lemma(14.2.1.3) to ξ and p to conclude that Ainf is ξ-complete and ξ-torsion-
free, and OK is p-adically complete and p-torsion-free.

Now for any y ∈ OK is p-adically complete, there is a x ∈ O♭C that (y) = (x♯): multiplying
p-power, we can assume y is not divisible by p, and there is a x that y ≡ x♯ mod p, thus x is not
divisible by t. Now t = xx′ for some x′ ∈ m♭

C , thus y = x♯ + t♯w = x♯(1 + x′w), and 1 + x′w is
invertible in OK .

Next we prove OK is an integral domain: It suffices to show any y ̸= 0 ∈ OK is not a zero-divisor.
We can assume y = x♯, by what just proved, and then x divides tn for some n, so it suffices to
consider y = tn♯ = pn, and pn is not a zero-divisor by what just proved.

Now we can endow OK with the valuation |y| = |x|C♭ for y = x♯u, and extend it to the quotient
field K. Then this is a Non-Archimedean valuation and the residue field has char p because |p| < 1,
and K has char0, because p ̸= 0 in K. And it is p-adically complete.

Finally, OK/pOK ∼= Ainf/(ξ, p) = OC♭/π, so the Frobenius is surjective, thus K = K(OK) is a
perfectoid field. □

Cor.(14.2.1.5).The correspondence ξ 7→ Frac(Ainf/(ξ)) induces a bijection

{Distinguished elements}/units ∼= {Untilts of C♭}/isomorphisms.

Prop.(14.2.1.6)[Ainf as Holomorphic Function in p].Any element in Ainf can be written uniquely
as a unique Teichmuller representation [c0] + [c1]p+ [c2]p2 + . . .+. Now we can regard these elements
as holomorphic functions on B(0, 1), and any untilts K of OC♭ can be regarded as points in B(0, 1),
where Ainf take value c♯0 + c♯1p+ . . . ∈ OK at the point K.

This map can in fact be extended to Ainf [ 1
[t] ,

1
p ] s.t.

Ainf ↪→ Ainf [
1
[t]

] ↪→ Ainf [
1
[t]
,
1
p

]→ K.

called the evaluation map.

Fontain’s Ring B

Def.(14.2.1.7)[Fontaine’s Ring B]. If compared to the complex case, the elements of Ainf are just
elements ∑ anz

n that |an| ≤ 1, this are not all the holomorphic functions on B(0, 1), which is

{
∑
n∈Z

anz
n| lim sup

n>0
|an| ≤ 1, lim

n→∞
|a−n|1/n = 0}.

This leads to a enlargement of Ainf :
For 0 < a ≤ b < 1 in the value group of C♭, πa, πb ∈ C♭ with |πa| = a, |πb| = b, define

B[a,b] = Ainf [
[πa]
p
,
p

[πb]
]∧[p−1],

this is definable at any untilts K that a ≤ |p|K ≤ b.
Then B[a,b] is an algebra over Ainf [ 1

[t] ,
1
p ], and define B = lim←−B[a,b].
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Prop.(14.2.1.8) [Gauss Norm].Any element f in Ainf [ 1
[t] ,

1
p ] is of the form ∑

n>>−∞[cn]pn, where
{|cn|} is bounded. So we can define the valuation |f |ρ = sup{|cn|ρn}, it is realizable by some term
|an|ρn. Notice that for an until y = (K, ι), if ρ = |p|K , then |f(y)| ≤ |f |ρ.

Then this is a non-Archimedean valuation on Ainf [ 1
[t] ,

1
p ].

Proof: Firstly |f + g|ρ ≤ max{|f |ρ, |g|ρ} for every ρ that is generic for f + g and in the value group
of C♭: In this case,

|f + g|ρ = |(f + g)(y)| ≤ max{|f(y)|, |g(y)|} ≤ max{|f |ρ, |g|ρ}

for some point y by(14.2.1.8), then by continuity and(14.2.1.9), this is true for any ρ.
The same method shows that |f |ρ|g|ρ = |fg|ρ. □

Lemma(14.2.1.9) [Generic Norms]. ρ is called generic for f iff the valuation is realized exactly
once. Notice if ρ is generic for f and in the value group of C♭, then |f |ρ = |f(y)| for some y(Choose
K = Ainf/([c]− p) where |c|C♭ = ρ).

For any f , the numbers ρ that ρ is not generic for f is discrete in ρ.

Proof: Consider the Newton polygon of f , then only the slopes of the Newton polygon are not
generic. □

Lemma(14.2.1.10). If y = (K, ι) ∈ Y and |p|K = ρ, then |f(y)| ≤ |f |ρ, and equality holds if either ρ
is generic or f is invertible.

Prop.(14.2.1.11)[Valuation Map].For 0 < a ≤ b < 1 in the value group of C♭, |πa| = a, |πb| = b,

Ainf [
[πa]
p
,
p

[πb]
] = {f ∈ Ainf [

1
[t]
,
1
p

]||f |a ≤ 1, |f |b ≤ 1} = V0,

Thus the ring B[a,b] is identified with the completion of Ainf [ 1
[t] ,

1
p ] w.r.t the valuation | · |a + | ·

|b(12.2.4.4). In particular, for any point y that a ≤ |p|K ≤ b, the valuation map(14.2.1.6) can be
extended to a map

B[a,b] → K.

Proof: Notice V0 is a subring by(14.2.1.8), so clearly Ainf [ [πa]
p , p

[πb] ] ⊂ V0.
For the reverse containment, notice that {|cn|} is bounded, so there is an m that πmb cn ∈ C♭ for

any n. Now
f =

∑
n<m

[cn]pn + (
∑
n≥0

[cn+mπ
m
b ]pn)( p

[πb]
)m,

so it suffices to prove the case f has finite presentation. Now cnπ
n
a , cnπ

n
b ∈ O♭C , thus [cn]pn =

[cnπna ](πnp )−n = [cnπnb ]( pπb )
n ∈ Ainf [ [πa]

p , p
[πb] ], where n ≥ 0 or n ≤ 0. Thus the inverse containment is

true. □

Prop.(14.2.1.12)[Topology of B].For 0 < a ≤ c ≤ b < 1, |f |c ≤ max{|f |a, |f |b}(trivial), thus the
Fontaine’s ring B can be realized as the completion of Ainf w.r.t. all these norms, and endowed with
the topology of p-adic Fréchet space.

Proof: Cf.[Conrad, P65].? □
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Prop.(14.2.1.13) [Teichmuller Expansion].An infinite sum f =
∑

[an]pn converges in B iff it
converges in any norm | · |ρ for 0 < ρ < 1, which is equivalent to

lim sup
n>0
|cn|1/nC♭

≤ 1, lim
n→∞

|c−n|1/nC♭
= 0.

This is analogous to the complex case(10.5.3.4). However, for now, we don’t know iff every element
of B is of this form, and whether the representation is unique?.

Prop.(14.2.1.14) [Frobenius Action].Notice the Frobenius action of C♭ extends to a Frobenius
action on the Witt victor Ainf , and it satisfies

|φ(f)|ρp = (|f |ρ)p,

Thus induces an isomorphism B[a,b] ∼= B[ap,bp]. Passing to the limit, we get an automorphism of B,
denoted also by φ.

the Field BdR

Prop.(14.2.1.15)[Untilts with Roots of Unity].Let Qcycl
p = Qp(µp∞)∧, and ε = (1, µp, µp2 , . . .) be

a compatible pn-th roots of unity that is an element of (Qcycl
p )♭. Then ε− 1 is a pseudo-uniformizer

of (Qcyc
p )♭, For any untilts K of C♭ and an embedding of Qcycl

p in K, the tilting maps ε − 1 to a
pseudo-uniformizer of C♭. This induces a bijection:

{Untilts (K, ι) of C♭ with an embedding Qcycl
p ↪→ K} ∼= {x ∈ C♭|0 < |x− 1| < 1}.

Proof: In fact, the left hand side is equivalent to K has a compatible pn-th roots of unity, and
we want to prove that for any x in the right hand side, there is a unique untilts K that (x

1
pk )♯ is a

compatible primitive roots of unity, and this is equivalent to (x
1
p )♯ satisfies 1 + x + . . . + xp−1 = 0,

and further equivalent to θ : Ainf → OK annhilalates 1 + [x
1
p ] + . . .+ [x

p−1
p ].

It suffices to show ξ = 1 + [x
1
p ] + . . . + [x

p−1
p ] is distinguished(14.2.1.5). Let ξ =

∑
[cn]pn,

consider reducing to the residue field: W (OC♭) → W (OC♭/mC♭), then x = 1, and ξ = p, thus
|c0| < 1, |c1 − 1| < 1, so it is distinguished(4.5.4.20). □

Cor.(14.2.1.16).Considering different pn-th roots of unities, there is a correspondence:

{Char 0 Untilts (K, ι) of C♭ with a compatible pn-th roots of unity} ∼= {x ∈ C♭|0 < |x− 1| < 1}/Z∗
p.

where Z∗
p acts by exponentiation(10.3.8.8).

Furthermore, there is a correspondence:

{Char 0 Untilts (K, ι) of C♭ with a compatible pn-th roots of unity}/φZ
C♭
∼= {x ∈ C♭|0 < |x−1| < 1}/Q∗

p.

where the inverse is given by x 7→ the vanishing locus of log([x]) ∈ B.

Proof: The only thing needed to be proven is the inverse is given by N(log([x])). Notice for any
untilts K, |(xpn)♯−1| < |p|1/(p−1)

K for n large, then log((xpn)♯) = 0 iff (xpn)♯ = 1 by Newton polygon.
Now x♯ ̸= 1 because x ̸= 1 and ♯ is injective. Hence composing φn for some unique n, we can assume
x♯ = 1, x

1
p ̸= 1, thus it corresponds an untilt as in(14.2.1.15). □
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Def.(14.2.1.17)[B+
dR]. p is not a zero-divisor in Ainf/(ξn), as in the proof pf(14.2.1.4), so we can define

B+
dR = lim←−

n

Ainf/(ξn)[1
p

]

Prop.(14.2.1.18)[Fontaine’s Ring BdR].B+
dR is a CDVR with ξ a uniformizer and the residue field

K. Hence we can define BdR = Frac(B+
dR).

Proof: Firstly ξ is not a zero divisor in B+
dR, because if ξx = 0, x = (xn), then for any n > 0, and

some k that pkxn ∈ Ainf/(ξn), so pkxn is annihilated by ξ in Ainf/(ξn), thus pkxn = ξn−1yn for some
yn, because ξ is a non-zero-divisor in Ainf(14.2.1.4). So pn−1xn−1 = 0 ∈ Ainf/(ξn), thus xn−1 = 0,
because p is non-zero-divisor in Ainf/(ξn)(14.2.1.4).

Next there is a map B+
dR/(ξm)→ Ainf/(ξm)[p−1]. This is an isomorphism: it is clearly a surjection,

and if x = (xn) is mapped to 0, then for each n ≥ m, we choose pk(n)xn = 0 ∈ Ainf/(ξn), then
pk(n)xn = ξmyn for a unique yn ∈ Ainf/(ξn−m). So x = ξm · ( yn

pk(n) ) ∈ ξmBdR.(Notice the uniqueness
of yn shows ( yn

pk(n) ) is an element in B+
dR).

Then it follows B+
dR
∼= lim←−mB

+
dR/(ξm), which shows that B+

dR is ξ-adically complete, and m = 1
shows the residue field is equal to K. □

Remark(14.2.1.19).Ainf/(ξn)[1
p ] = Ainf/(ξn)[ 1

[t] ], so if char k = p, then B+
dR is just W (C♭).

Thus B+
dR should be thought as the completed local ring at the point y = (K, ι).

Prop.(14.2.1.20)[Topology on BdR].The Gauss norms give Ainf a topology, giving BdR a topology.
Then BdR is complete in this topology, and BdR → K is continuous.

With this topology, BdR is abstractly isomorphic to Cp((T )), but not topological isomorphic to
it.

Proof: Cf.[Conrad, P65] or [p-adic Period Rings]P42.?
BdR is abstractly isomorphic to Cp((T )) by Cohn structure theorem?, but [Colmez, Une con-

struction de BdR] proved that K is dense in BdR, so it cannot by topological isomorphic to Cp((T )).
□

Prop.(14.2.1.21) [The Stalk Map].Notice Ainf = lim←−nAinf/(ξn) as ξ is distinguished, thus there
is a natural injection Ainf → B+

dR, whose composition with B+
dR → B+

dR/ξ
∼= K maps p, [t] to p, t♯,

which shows p, [t] are invertible in B+
dR, so there is a map

e : Ainf [
1
p
,

1
[t]

]→ B+
dR.

In case a ≤ |p|K ≤ b, this can be further extended to a map e : B[a,b] → B+
dR(The stalk map).

Proof: It suffices to prove for a = |p|K = b because the topology is stronger. In this case, choose
t = p♭ ∈ C♭, then |t|C♭ = |p|K , thus en determined a map

Ainf [
[t]
p
,
p

[t]
]→ B+

dR/(ξ
n) ∼= (Ainf/ξ

n)[p−1],

It suffices to prove the image is contained in p−k(Ainf/ξ
n) for some k = k(n), because then en

is p-adically continuous, and extends to map of B[a] = (Ainf [ [t]
p ,

p
[t] ])̂p → (Ainf/(ξn))[p−1], which is

compatible w.r.t n, thus gives a map B[a] → B+
dR.
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For this, consider f = en( [t]
p ), g = en( p[t]), then their reduction under B+

dR/(ξn) → B+
dR/ξ

∼= K is
in OK ∼= Ainf/(ξ), thus

f = f1 + ξ

pc
f2, g = g1 + ξ

pc
g2

for f1, f2, g1, g2 ∈ Ainf/(ξn) for some c. Then any

fm = (f1 + ξ

pc
f2)m =

n−1∑
i=0

Cimf
m−i
1 ( ξ

pc
f2)i ∈ p−nc(Ainf/(ξn)).

Thus en(Ainf [ [t]
p ,

p
[t] ]) ∈ p

−nc(Ainf/(ξn)). □

Cor.(14.2.1.22).The stalk map e : B[a,b] → B+
dR composed with the map B+

dR/(ξ) ∼= K are in fact
equivalent to the valuation map(14.2.1.11).

Bcrys

Cf.[Notes on p-adic Hodge, Serin Hong].

Def.(14.2.1.23)[Bcrys].

Bst, Be

2 Fargues-Fontaine Curve
Def.(14.2.2.1) [Fargues-Fontaine Curve].The sum ⊕nBφ=pn is a graded ring. In fact, it is non-
negatively graded(14.2.2.33), and we define the Fargues-Fontaine curve as the scheme

Proj(⊕n≥0B
φ=pn).

Def.(14.2.2.2)[Formal Logarithm].For x ∈ 1+mC♭ , [x]−1 = [x−1]+
∑
n>0[cn]pn, thus |[x]−1|ρ ≥

|x− 1| > 0, thus the formal logarithm

log([x]) =
∑
k>0

(−1)k+1

k
([x]− 1)k

converges for every Gauss norm | · |ρ, thus converges to some element in B. And clearly φ(log([x])) =
p log([x]), thus log([x]) ∈ Bφ=p. And log([xy]) = log([x]) log([y]).

Prop.(14.2.2.3)[Artin-Hasse Exponential].There is another way of constructing elements in Bφ=p,
which is

T : a ∈ mC♭ 7→
∑
n

[apn ]
pn

.

We want to relate this one to the formal logarithm:
There is a bijection of sets mC♭

∼= 1 + mb
C♭

that log([E(a)]) = T (a), which is defined by the
Artin-Hasse exponential

E(x) =
∏

(d,p)=1
( 1
1− xd

)
µ(d)
d .
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Proof: Firstly, it has coefficients in Z(p), because (1−xd)
1
d =

∑
(−1)kCk1

n

xkd has coefficient in Z(p).

And [1− x] = limk(1− [xp−k ])pk , so

log([
∏

(d,p)=1
( 1
1− xd

)
µ(d)
d ]) =

∑
(d,p)=1

µ(d)
d

log( 1
[1− d]

) =
∑

(d,p)=1
µ(d)

∑
α∈p−nZ

[xdα]
dα

Notice the right hand side stablizes for any term [xβ], and if β ̸= 1
pk
, it will vanish, thus for x ∈ mC♭ ,

it converges, and the sum equals ∑n
[xpn ]
pn . □

Cor.(14.2.2.4).The set of elements of the form ∑
n

[apn ]
pn is closed under addition.

Valuation Function

Def.(14.2.2.5) [Exponential Valuation].For any positive real number s, define a valuation on
Ainf [1

p ,
1
[t] ] by the formula vs(f) = − log |f |exp(−s), then it is a valuation by(14.2.1.8).

If f has a Teichmuller expansion ∑n>>−∞[cn]pn, then

|f |ρ = sup{|cn|C♭ρ
n}, vs(f) = inf{v(cn) + ns}.

Prop.(14.2.2.6).For any f ̸= 0 ∈ Ainf [1
p ,

1
[t] ], s 7→ vs(f) is a concave function in s which is piecewise

linear with integral slopes.

Proof: Consider the Newton Polygon. □

Lemma(14.2.2.7). If s > 0 and fn is a Cauchy sequence in Ainf [1
p ,

1
[t] ] for the norm | · |exp(−s) and

doesn’t converge to 0, then the sequences

vs(fn), ∂−vs(fn), ∂+vs(fn)

stablize.

Proof: Easy, Cf.[ff Curve Lurie P44]. □

Prop.(14.2.2.8). If 0 < a ≤ b < 1, and fn is a Cauchy sequence in Ainf [1
p ,

1
[t] ] and doesn’t converge to 0

for either the norm |·|a or |·|b, then the sequence of functions s 7→ vs(f) stablizes on [− log(b),− log(a)].

Proof: Assume fn doesn’t converge to 0 for the form | · |b, then by(14.2.2.7), the sequences
vs(fn), ∂+vs(fn) converges, thus vs(fn) is bounded uniformly, thus vs(f) is bounded.

Then choose N large that |f−fm|ρ very small for any m > N and a ≤ ρ ≤ b, then vs(f) = vs(fm)
for any a ≤ s ≤ b, thus it stablizes. □

Cor.(14.2.2.9).Let f be a non-zero element in B, then the construction s 7→ vs(f) is a concave
function in s with piecewise linear function with integral slopes. This is analogous to the Hadamard
three circle theorem(10.6.2.13).

Proof: This is true for f ∈ B[a,b], because any f is a limit of a sequence fn in both the norm | · |a
and | · |b, so by the proposition, there for n large, vs(f) = vs(fn) on [− log(b),− log(a)], thus the
conclusion is true by(14.2.2.6). And for f ∈ B, for any interval [a, b] we can do the same, thus the
conclusion is true on each interval, thus it is true. □



1438 CHAPTER 14. P -ADIC GEOMETRY

Metric Structures on Y

Def.(14.2.2.10)[Metric on Y ].Let Y = Y ∪ {0} be the isomorphism classes of untilts of C♭, where
0 corresponds to C♭ itself.

(14.2.1.5) show Y corresponds to distinguished elements in Ainf up to units. So for any x, y ∈ Y ,
we let d(x, y) = |ξx(y)|Ky ≤ 1. Then this is a metric, and it is non-Archimedean.

Proof: Firstly, if d(x, y) = 0, then ξx divides ξy, which is equivalent to (ξx) = (ξy), by(4.5.4.21).
Secondly, for any x, y, since C♭ is alg.closed, we can assume ξx(y) = c♯ for some c ∈ C♭. Notice

ξ(y) = t♯ + pu(y) is in mK , thus c ∈ mC♭ . So ξx − [c] is also a distinguished element and vanishes at
y, so we may assume that ξy = ξx − [c] by(4.5.4.21) again. Then

d(y, x) = |ξy(x)|Kx = |c♯|Kx = |c|C♭ = |c♯|Ky = d(x, y).

Finally it is non-Archimedean because any valuation field K is non-Archimedean. □

Prop.(14.2.2.11)[Y is Complete]. Y is complete w.r.t this metric.

Proof: Given a Cauchy sequence of points yn in Y , as in the proof of(14.2.2.10), we can assume
that ξyn = ξyn−1 + [cn] for some cn ∈ mC♭ , and |cn|C♭ = d(yn−1, yn). Now Ainf is [t]-adically complete
for a uniformizer t ∈ C♭, thus ∑[cn] is definable in Ainf , and ξ = ξ0 +

∑
[cn] is also distinguished,

and corresponds to a point y which yn clearly converges to. □

Divisors

Lemma(14.2.2.12).B[a,b] is an integral domain.

Proof: By(14.2.2.9), the valuation function vs(f) and vs(g) are bounded, thus it is clear that vs(fg)
is also finite, so fg ̸= 0. □

Prop.(14.2.2.13)[Divisors].Assume C♭ is alg.closed, then for any f ∈ B[a,b] and y = (K, ι) ∈ Y[a,b],
we define the order of vanishing ordK(f) ∈ Z ∪ {∞} as the valuation of eK(f) ∈ B+

dR(K). Then
• if f ̸= 0 ∈ B[a,b], then ordK(f) < ∞ for each K ∈ Y[a,b], and there are only f.m. K that

ordK(f) ̸= 0. In particular, B[a,b] is an integral domain.
• if x, y ̸= 0 ∈ B[a,b], then x divides y iff ordK(x) ≥ ordK(y) for each K ∈ Y[a,b].

Thus for each f ∈ B[a,b], we can define the divisor of K as the formal sum ∑
K∈Y[a,b]

ordK(f)K, and
this is also definable for f ∈ B, but it may be an infinite but locally finite sum.

Proof: Firstly, by(14.2.2.17) and(14.2.2.18), if div(f) ∩ Y[a,b] ̸= 0, then there is a distinguished
element ξ that f = ξf1. And we can iterate this, and eventually end up with f = ξ1 . . . ξnfn that
div(fn) ∩ Y[a,b] = 0, by(14.2.2.19), so by(14.2.2.20), fn is invertible in f , so div(f) is finite. And if
div(g) ≥ div(f), then g also divides ξ1 . . . ξn, so g divides f . □

Remark(14.2.2.14).Notice by(14.2.1.22), for a f ∈ B[a,b], ordK(f) > 0 iff f(y) = 0 ∈ K.

Cor.(14.2.2.15)[B is Integral Domain].B is an integral domain, and if C♭ is alg.closed, then x is
divisible by y if and only if div(x) ≥ div(y).

Cor.(14.2.2.16).B is integrally closed.
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Proof: B is an integral domain by(14.2.2.15), it is integrally closed because if f/g is integral over
B, then there image in B+

dR(y) is integral over B+
dR(y) for all y ∈ Y , thus in B+

dR(y) because it is a
valuation ring, and then f is divisible by g by(14.2.2.15). □

Prop.(14.2.2.17)[Examples of Divisors].
• For a distinguished element ξ, if ξ = up, then ξ is invertible in B, thus div(ξ) = 0. Otherwise ξ

defines a char0 untilts K of C♭, and ξ is a uniformizer of B+
dR(K), and it doesn’t divides other

distinguished elements(4.5.4.21), thus div(ξ) = K.
• div(log([x])) =

∑
n∈Z φ

n(K).

Proof: 2: log([x]) vanishes at a single φ-orbits of Y , and one of them is given by the distinguished
element ξ = 1 + [x1/p] + . . .+ [xp−1/p] = [x]−1

[x1/p]−1 . Notice [x1/p]− 1 is mapped to an invertible element
in K, thus it is invertible in B+

dR(K), so [x]− 1 is associated to ξ, and notice

log([x]) =
∑
k>0

(−1)k+1

k
([x]− 1)k ≡ [x]− 1 mod ([x]− 1)2,

so ordK(log([x])) = 1, and because φ(log([x])) = p log([x]), ordφn(K)(log([x])) = 1 for any n, so we
are done. □

Lemma(14.2.2.18).Let C♭ be alg.closed. If ξ is a distinguished element of Ainf vanishes at a point
y ∈ Y[a,b] and g ∈ B[a,b] also vanishes at y, then g is divisible by ξ in B[a,b].

Proof: If g ∈ Ainf [1
p ,

1
[π] ], then this is easy by(14.2.2.14) and Ainf/(ξ) = OK(14.2.1.4).

Now generally g is a limit of gn ∈ Ainf [1
p ,

1
[π] ], so g(y) is the limit of gn(y) ∈ K. Now g(y) = 0,

so limn gn(y) = 0. Now K is alg.closed by(10.3.8.16), so we can let gn(y) = c♯n, so ci converges to 0
in C♭. So {[cn]} converges to 0 in norm | · |a and | · |b, so we can replace gn by gn − [cn] and assume
gn(y) = 0.

Now the first part shows gn = ξhi, and now hi is a Cauchy sequence for both | · |a and | · |b, so
converges to some h, and then g = ξh. □

Lemma(14.2.2.19).Given this lemma(14.2.2.18), we have a strategy of proving(14.2.2.13), that is,
decomposing f, g into distinguished elements, but we need to show this decomposition is finite. And
this is true:

If f ̸= 0 ∈ B[a,b], denote β = − log(b), α = − log(a) and let N = ∂−vβ(f)− ∂+vα(f) ≥ 0, then f
cannot be divisible by a product of ξ1, . . . , ξN+1 of N + 1 distinguished elements.

Proof: By(4.5.4.20), if ξ is distinguished, then vs(ξ) = max{s, v(v0)}. Now v(v0) = v(t♯) = v(|p|K)
in OK = Ainf/([t]−up), so if K corresponding to ξ belongs to Y[a,b], then v(v0) ∈ [β, α], so ∂−vβ(ξ) =
1, ∂+vα(ξ) = 0.

So if f = ξ1, . . . , ξN+1u, then N(f) ≥
∑
N(ξi) ≥ N + 1. □

Lemma(14.2.2.20)[Valuation Funtion And Invertibility].Let C♭ be alg.closed and f ̸= 0 ∈ B[a.b],
then the following are equivalent:

• f is invertible.
• ∂−vβ(f) = ∂+vα(f).
• div(f) ∩ Y[a,b] = ∅.
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Proof: 2→ 3: by(14.2.2.19).
1→ 2: Because N(f) +N(f−1) = 0, and N(f) ≥ 0, N(f−1) ≥ 0, so N(f) = 0.
2 → 1: Assume first that f =

∑
n>>−∞[cn]pn ∈ Ainf [1

p ,
1

[π] ], then the hypothesis just says that
s→ vs(f) is linear in a small nbhd of [β, α], that is, there is a n0 that v(cn) + ns > v(cn0) + n0s for
all n ̸= n0 and s ∈ [β, α].

Now we can normalize f that n0 = 0 and c0 = 1, so |f − 1|ρ < 1 for all ρ ∈ [β, α], so f − 1 is
topologically nilpotent in B[a,b], and thus f is invertible.

Generally, f is a limit of a sequence fn ∈ Ainf [1
p ,

1
[π] ], and by(14.2.2.8) we can assume the hypoth-

esis holds for all fn. Then fn is invertible, and it is easily shown that f−1
n is a Cauchy sequence in

B[a,b], so converges to some f−1.
3→ 2: Firstly, if ∂−vβ(f) > ∂+vα(f), then we must have ∂−vρ(f) > ∂+vρ(f) for some s, so wlog,

we can assume a = b = s, and we need to show f vanishes at some point in Yexp(s). Now combining
with(14.2.2.18) and(14.2.2.19), this is equivalent to another statement that any element y ∈ B[ρ,ρ]
has a decomposition y = gξ1 . . . ξn where ξk corresponds to points in Yρ and g is invertible in Bρ.
The proof is finished at(14.2.2.30). □

Primitive Elements and the Proof of 3→ 2 of The Lemma on Valuation Function and
Invertibility

Def.(14.2.2.21).Let C♭ be alg.closed, an element in B[ρ,ρ] is called good iff it has a decomposition
as in the proof of 3→ 2 of(14.2.2.20).

Prop.(14.2.2.22)[Approximating Zero]. If f is a good element having n-zeros on Yρ, and g ∈ Bρ
that |f − g|ρ < |f |ρ, then for any zero y of g on Yρ, there exists a zero y′ of f on Yρ that d(y′, y) <
ρ( |f−g|ρ

|g|ρ )1/n.

Proof: |f − g|ρ ≥ |(f − g)(y)|K = |f(y)|K . Now f = gξ1 . . . ξn, and ξ corresponds to yi, then

|f(y)|K = |g(y)|K |ξ1(y)|K . . . |ξn(y)|K = |f |ρ∏
i |ξi|ρ

∏
i

d(yi, y) = |f |
∏
i

d(yi, y)
ρ

.

(Notice |g|ρ = |g(y)|K because g is invertible(14.2.1.10)) and d(yi, y) ≤ ρ. So at least one ξ satisfies
the desired inequality. □

Cor.(14.2.2.23). If f ∈ Bρ is given by a Cauchy sequence of good elements, and ∂−vρ(f) > ∂+vρ(f),
then f has a root on Yρ.

Proof: By(14.2.2.7), passing to a subsequence, we may assume

vs(f) = vs(fn), ∂−vs(f) = ∂−vs(fn), ∂+vs(f) = ∂+vs(fn), |fn+1 − fn|ρ < |f |ρ.

Let n = ∂−vs(f) − ∂+vs(f) > 0, then each fi has exactly n roots on Yρ, and applying(14.2.2.22),
we can find successively roots yn of fn that d(yn+1, yn) ≤ ρ( |fn+1−fn|ρ

|f |ρ )1/n, so the sequence {yn} is
Cauchy and converges to some point y ∈ Y , so

|fi(y)|K ≤ |fi|ρ
d(yi, y)
ρ

= |f |ρ
d(yi, y)
ρ

→ 0.

so f(y) = 0. □
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Def.(14.2.2.24)[Primitive Elements].An element f =
∑
n≥0[cn]pn ∈ Ainf is called primitive of

degree d if c0 ̸= 0, |cd| = 1 for some smallest element d.
Clearly an element is distinguished of degree 1 iff it is distinguished and corresponds to an untilts

of X♭ of char0.

Prop.(14.2.2.25).
• Any element f ∈ Ainf of finite Teichmuller expansion can be written uniquely as a f = pm[c]g,

where c ∈ C♭ and g is primitive.
• For an element f ∈ Ainf [1

p ,
1
[t] ], f can be written as pm[c]g iff vs(f) consists of f.m. line segments

iff sup{|cn|} is achieved by some n.
• If f = gh in Ainf is primitive, then g, h are also primitive, and deg(f) = deg(g) + deg(h).

Prop.(14.2.2.26).Let f =
∑

[cn]pn ∈ Ainf be primitive of degree d > 0, and let λ ∈ (0, 1) be the
number that s = − log(λ) is the minimal number that vs(f) is non-differentiable at, i.e. s is −1 times
the slope of the line segment on the left of v(cd). Then f has a zero on Yλ.

Proof: By(14.2.2.27) there is a y ∈ Yλ that |f(y1)| ≤ λd+1, and then(14.2.2.28) shows we can find
successively yn that

d(yn, yn+1) ≤ λ1+ d
n , |f(λn)| ≤ λd+m.

So yn is a Cauchy sequence thus converges to some y, and then f(y) = 0. □

Lemma(14.2.2.27)[Lemma for Approaching a Zero]. If C♭ is alg.closed and f ∈ Ainf is primitive
of degree d > 0, and let λ as in(14.2.2.26), then there is a point y ∈ Yλ that |f(y)|Ky ≤ λd+1.

Proof: Let f =
∑

[cn]pn, we may assume cd = 1, and let F = xd + cd−1x
d−1 + . . . + c0, then the

largest valuation of the roots of F on C♭ is λ, by Newton polygon. Let r be such a root, then ci is
divisible by rd−i, and let ξ = p− [r] be a distinguished element of Ainf and corresponds to an untilt
K, then |p|K = λ, and

p−df(y) =
∑
n≥0

c♯np
n−d ≡

d∑
i=0

( ci
rd−i )

♯ mod p = (r−dF (r)) mod p = 0

thus f(y) is divisible by pd+1, which is equivalent to |f(y)|K ≤ λd+1. □

Lemma(14.2.2.28) [Lemma for Approaching a Zero]. Situation as in(14.2.2.27), if y ∈ Yλ and
|f(y)| = λd · α, then there is a y′ that d(y, y′) ≤ λ · α1/d that |f(y′)| ≤ λd+1α.

Proof: Since Ainf is ξ-complete and every element of Ainf/ξ ∼= OK belongs to the image of ♯ :
O♭C → OK , thus by induction, we can write f =

∑
n≥0[cn]ξn. Because f is primitive of degree d, we

may assume cd = 1, and |c0|C♭ = |f(y)|K = λdα.
Let F (x) = c0 + c1x + . . . + cd−1x

d−1 + xd, because C♭ is alg.closed, let r be a root of minimal
absolute value, then |r|m

C♭
|cm|C♭ ≤ λnα, in particular |r|C♭ ≤ λα1/n. So let ξ′ = ξ − [r], then ξ is also

distinguished, and d(y′, y) = |r|C♭ ≤ λα1/n(14.2.2.10), and d(0, y′) = λ, and ξ(y′) = r♯.
Now

(f(y′))♯

c♯0
=
∑
n≥0

c♯n

c♯0
ξ(y′)n =

∑
n≥0

(cnr
n

c0
)♯ ≡

n∑
i=0

(cnr
n

c0
)♯ mod p = (F (r)

c0
)♯ = 0,

So |f(y′)|K′ ≤ |c♯0|K′ |p|K′ = |c0|C♭λ = λd+1α. □
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Cor.(14.2.2.29)[Primitive Elements Decompose as Distinguished Elements]. If f ∈ Ainf is a
primitive element of degree d > 0, then f admits a factorization as products of distinguished elements
ξ corresponding to points in Y .

Proof: Use induction on d. If d = 1, then f is distinguished by(14.2.2.24), and if d > 1, then
by(14.2.2.26), f = ξg, so g is primitive of degree d− 1 by(14.2.2.25), so induction is finished. □

Prop.(14.2.2.30) [Finite Teichmuller Expansion is Good].Any element of finite Teichmuller
expansion is good.

In particular, because any element of Bρ can be approximated by elements in Ainf [1
p ,

1
[t] ], and such

element can be approximated by elements of finite Teichmuller expansion, by(14.2.2.23), we finishes
the proof of 3→ 2 of(14.2.2.20).

Proof: If f has finite Teichmuller expansion, then f = pm[c]g, where g is primitive of degree d.
If d = 0, then g is invertible in Ainf , thus f is invertible in Bρ. Otherwise, we can use(14.2.2.29)
to factorize g into distinguished elements, and the elements that corresponds to points outside Yρ is
invertible in Bρ because vs(ξ) = max{s, v(v0)} and 2→ 1 of(14.2.2.20), so f is good. □

Bounded Meromorphic Functions

Prop.(14.2.2.31). If f ∈ B, then f ∈ Ainf iff |f |ρ ≤ 1 for any 0 < ρ < 1.
Easily we can get characterization of f being in Ainf [1

p ], Ainf [ 1
[t] ] or Ainf [1

p ,
1
[t] ].

Proof: One direction is trivial, for the other, by(14.2.2.32), we can find successively fn that f =∑
i<n[ci]pi + fn, and |fn|ρ ≤ ρn for all 0 < ρ < 1. So fn converges to 0 in any norm ρ, thus it

converges to 0 in B, and f =
∑
n≥0[cn]pn ∈ Ainf . □

Lemma(14.2.2.32). If f ∈ B satisfies |f |ρ ≤ ρm for all 0 < ρ < 1, then there is a c ∈ OC♭ that
f = [c]pm + g that |g|ρ ≤ ρm+1 for all 0 < ρ < 1.

Proof: Replace f by f
pm , we may assume m = 0. Choose a sequence fi in Ainf [1

p ,
1
[t] ] converging to

f in B, where fi =
∑
n>>−∞[cn,i]pn.

Firstly we want to truncate fi with the positive part f+
i . Notice for each ρ and any 0 < ε < 1,

because lim |fi − f |ερ = 0, thus for i large, |fi|ερ = |f |ερ ≤ 1, thus |c−n,i|C♭ρ−n ≤ εn < ε ≤ ε, so
|fi − f+

i |ρ < ε for i large, so lim f+
i = f also in B.

Secondly, |c0,i − c0,j |C♭ ≤ |fi − fj |ρ for each ρ, thus c0,i is Cauchy in C♭ thus converges to some
c ∈ C♭, and when i is large, |c0,i|C♭ ≤ |fi|ρ = |f |ρ ≤ 1, so c ∈ OC♭ . Now let gi =

∑
n>0[cn,i]pn, then

gi is also Cauchy in B for any norm |ρ| and converges to some g, and f = g + [c].
It’s left to check |g|ρ ≤ ρ: each vs(gi) has positive slopes, then so does vs(g) because by(14.2.2.7),

vs(gi) stablizes to vs(g) uniformly on compact intervals. So if vs(g) < s − ε for some s, then
vε(g) ≤ vs(g)− (s− ε) < 0, but this cannot happen because vε(g) ≤ max{vε(f),− log |c|C♭} ≥ 0. □

Eigenspaces of Frobenius

Prop.(14.2.2.33).
• The vector space Bφ=pn vanish for n < 0.
• The canonical map Qp → Bφ=id is an isomorphism.
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Proof: 1: Consider vps(φ(f)) = pvs(f)(14.2.1.14), vs(pnf) = ns+ vs(f), so if φ(f) = pnf , then

pvs/p(f) = vs(φ(f)) = vs(pnf) = ns+ vs(f).

Let h(s) = ∂+vs(f), then h(s/p) = n+ h(s), but h must by non-increasing(14.2.2.6), so n ≥ 0.
2: Firstly we prove Bφ=id is a field: by(14.2.2.15), it suffices to show that div(f) = 0 for f ̸=

0 ∈ Bφ=id. If div(f) ̸= 0, because f is fixed by φ, so div(f) ≥
∑
n∈Z φ

n(y) for some y, and∑
n∈Z φ

n(y) = div(log([ε]) for some ε ∈ 1 + mC♭ because K is alg.closed and by (14.2.1.16). So
by(14.2.2.15) again f = g log([ε]), and g ∈ Bφ=p−1 by(14.2.2.2), then g = 0 by item1.

3: From(14.2.2.34) and(14.2.2.31), f ∈ Ainf [1
p ], thus f =

∑
n>>∞[cn]pn, so φ(f) = f shows

cpn = cn, which is equivalent to cn ∈ Fp. So f ∈W (Fp)[1
p ] = Qp. □

Lemma(14.2.2.34). If f ̸= 0 ∈ Bφ=id, then there is an integer n that |f |ρ = ρn.
Proof: Notice |f |pρ = |φ(f)|ρp = |f |ρp , so vps(f) = pvs(f), differentiation shows that ∂−vps(f) =
∂−vs(f). This is for all s < 0, and ∂−vs(f) is non-decreasing, thus it is constant, and vps(f) = pvs(f)
shows vs(f) = ns for some integer n. □

Cor.(14.2.2.35).For n ≥ 0, any element f ∈ Bφ=pn factors uniquely up to action of Q∗
p as

λ log([ε1]) . . . log([εn]) where λ ∈ Bφ=id, 0 < |εi − 1| < 1.
Proof: The existence is by(14.2.2.30)

For the uniqueness: it suffices to prove log([ε]) is a prime element in ⊕n≥0B
φ=pn . For this, notice

for any f ∈ Bφ=pn , div(f) is fixed by φ, and div(log([ε])) is a single orbit of φ, thus by(14.2.2.15), if
log([ε]) divides fg, then log([ε]) divides f or g. □

Applications

Cor.(14.2.2.36). If C♭ is alg.closed, then every untilts K of C♭ belongs to the vanishing locus of
log([x]) for some x ∈ C♭ that 0 < |x− 1| < 1, and the map

ψ : 1 + mC♭ → K : y 7→ log(y♯)

is surjective with kernel generated by x (as a Qp-subspace of 1 + mC♭).
Proof: By(10.3.8.16), any untilts of C♭ is alg.closed, thus it has a compatible pn-th roots of unity.
So it belongs to some locus of log([x]) by(14.2.1.16). Now if |z| < |p|1/(p−1)

K , then z = log(exp(z)),
and exp = y♯ for some y because K is alg.closed. So ψ contains sufficiently small elements, but it is
a map of Qp-vector spaces, thus it is surjective. For the kernel, if log(y♯) = 0, then log([y]) vanish
on K, thus by(14.2.1.16), y, x is in the same Qp-vector space. □

Cor.(14.2.2.37). If C♭ is alg.closed, then the map

1 + mC♭
log([x])−−−−→ Bφ=p

is an isomorphism.
Proof: Firstly any untilts of C♭ is alg.closed by(10.3.8.16). It is injective because of the correspon-
dence(14.2.1.16), and for the surjectivity, for each f ∈ Bφ=id, if f = 0, then f = log([1]), and if f ̸= 0,
then notice div(f) ̸= ∅, because in this case f is invertible in B by(14.2.2.15), thus f−1 ∈ Bφ=p−1 ,
so f−1 = 0 by(14.2.2.33), contradiction.

Now if ordK(f) ≥ 1, then ordφn(K)(f) ≥ 1 for any n ∈ Z since φ(f) = pf . Consider
div(log([x])) =

∑
n∈Z φ

n(K)(14.2.2.17), then f is divisible by log([x]) by(14.2.2.15), f = log([x])g,
then g ∈ Bφ=id, then g ∈ Q∗

p by(14.2.2.33), thus f = log([xg]). □
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Cor.(14.2.2.38)[Filtration on BdR].By(14.2.2.17) and(14.2.2.36), we see that for any untilt K of
C♭, there is a unique up to Qp-constant ε that t = log([ε]) is the uniformizer of BdR(y). In fact, this
ε can be to be ε = (1, ξp, . . . , xpn , . . .), where ξpn is a compatible roots of unity in the alg.closed field
K.

Now we prefer to use the filtration Filn = t−nB+
dR on BdR because it is GQp invariant, as ε does.

Prop.(14.2.2.39).Let C♭ be alg.closed, then any point x of the Fargues-Fontaine curve XFF

that is not the generic point corresponds to the prime xK = (log([ε]))(14.2.2.35) where K ∈
div(log([ε]))(14.2.2.36). And the residue field of xK can be identified to K.

Proof: By(14.2.2.35), we can cover XFF by affine schemes of the form Spec(Rf = B[f−1]φ=id)
for f ∈ Bφ=p, now for any prime p ⊂ Rf , let g

fn ∈ p, then g = λ log([ε1]) . . . log([εn]), thus some
log([ε])
f ∈ p. Let K be a point that log([ε]) vanish(14.2.1.16), then we claim (log([ε])/f) is maximal.
In fact, we may assume f doesn’t vanish on K, otherwise log([ε])/f is a unit, then there is a map

ρ : B[f−1]φ=1 ⊂ B[f−1] → K, and this map is surjective with kernel (log([ε])/f): it is surjective
even on f−1Bφ=p by(14.2.2.36), and if log([ε1])/f is mapped to 0, then log([ε1]) differs from log([ε])
by some Q∗

p by(14.2.1.16). □

Cor.(14.2.2.40). If C♭ is alg.closed, there is a bijection of sets:

Y/φZ
C♭
∼= {Closed points of XFF }.

by(14.2.1.16).

Cor.(14.2.2.41).XFF is a Dedekind scheme(5.4.2.14).

Proof: Let Spec(Rf = B[f−1]φ=id), two elements f = log([ε]), g = log([µ]) can cover it. The
proof of(14.2.2.39) shows that every prime ideals of Rf is maximal principal, in particular f.g, thus
by(4.1.1.47), it is Noetherian. And it has Krull dimension 1 and it is regular because all of its
maximal ideals are principal, hence normal(4.3.5.32). So XFF is a Dedekind scheme. □

3 Line Bundles and Filtrations
Def.(14.2.3.1).By(14.2.2.35), the graded algebra ⊕n≥0B

φ=pn is generated over Qp by Bφ=p, so we
can define the Serre twisting sheaf O(1) on XFF , which is a line bundle, and on an open affine scheme
U = X − {x}, where x corresponds to log([ε]), O(1)(U) = (B[ 1

log([ε]) ])φ=p. Similarly we can define
O(m), and O(m) = O(1)m.

Lemma(14.2.3.2).There is an isomorphism Div(X)→ Pic(X) that maps each x to the inverse of its
ideal sheaf(5.5.3.15)(4.3.5.20). And there is also a degree map Div(X)→ Z. Then:

Div(X) Z

Pic(X)

deg

ρ

commutes.

Proof: It suffices to show that any O(x) is isomorphic to O(1). As log([ε]) is a global section of
O(1) that vanishes of order 1 at x, it induces an isomorphism O(1) ∼= O(x) by(5.5.3.15). □
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Lemma(14.2.3.3)[Cohomology of Line Bundles].For any integer m, Bφ=pm → H0(X,O(m)) is
an isomorphism and H i(X,O(m)) = 0 for i > 0,m > 0.

Proof: This is trivial using Cech cohomology, as ⊕n≥0B
φ=pn is PID, so X is separated. □

Prop.(14.2.3.4).The construction induces an isomorphism ρ : Z ∼= Pic(X) : m 7→ O(m).

Proof: By lemma(14.2.3.2), ρ is surjective because Div(X) → Pic(X) does, and it is injection
because if O(m) ∼= O(n), then tensoring O(−m), we can assume O ∼= O(−k), but they have different
global sections by lemma(14.2.3.3) and(14.2.2.33)(14.2.2.35). □

Harder-Narasimhan Filtration of Vector Bundles

Prop.(14.2.3.5)[Harder Narasimhan Formalism for BunX ].For a vector bundle L on X, we can
define deg(L) = n iff L ∼= O(n)(14.2.3.2), and for a vector bundle E, define deg(E) = deg(∧(E)). And
define the generic rank on the category of coherent sheaves on X. Then this is a Harder-Narasimhan
formalism on C = BunX with A = VectK(X).

Proof: Only the last axiom needs proof, but if E ′ ⊊ E , notice ∧E ′ ⊊ ∧E(The stalks are PID), so
by taking their top exterior power product, we reduce to the case of line bundles.

But O(m) cannot map into O(n) if m > n and must by isomorphism if m = n, by tensoring
O(−m) and looking at global sections(14.2.3.3), so the assertion is true. □

Cor.(14.2.3.6).Every vector bundle E on X has a unique functorial Harder-Narasimhan filtration,
by(3.2.4.22).

4 Base Change of Fields

Prop.(14.2.4.1) [Base Change].Let C♭ be alg.closed. For any finite extension E of Qp of degree
n, SpecE → SpecQp is finite étale, and finite locally free of degree n, so does XE = X ⊗Qp E →
X(5.6.2.24).

In particular, XE is also a Dedekind scheme?. For any closed point x of X corresponding to an
untiltK of C♭, which is alg.closed, the fiber ofXE over x is identical to the spectrum of E⊗QpK

∼= Kn

as K is alg.closed.
In this situation and use(14.2.2.40), we see that the closed points of XE are in bijection with

isomorphism classes of (K, ι, u) module φ-actions, where (K, ι) is an untilt of C♭, and u : E → K is
an embedding of E into K over Qp, isomorphism classes of these triples are denoted by YE .

Prop.(14.2.4.2).By(14.2.4.1) and flat base change(5.7.5.1), we knowH0(XE ,OXE ) = E, in particular
XE is connected.

Lemma(14.2.4.3). If E is unramified of degree n over Qp, then E ∼= W (Fpn)[1
p ]. In particular,

HomQp(E,K) ∼= HomZp(W (Fpn),OK) ∼= HomFp(Fpn ,OK/p) ∼= OC♭/[t]) ∼= HomFp(Fpn , C)

where the last isomorphism is by Henselian lemma.
Therefore, YE ∼= Y ⊗HomFp(Fpn , C), and

Closed points of YE ∼= YE/φ
Z ∼= (Y ⊗HomFp(Fpn , C))/φZ ∼= Y/φnZ.
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Prop.(14.2.4.4). If E is unramified of degree n over Qp and U ̸= X is an affine open defined by a
homogenous element t, then

UE = Spec((B[t−1]⊗Qp E)φ=id) = Spec(B[t−1]φn=1).

where φ acts trivially on E.

Proof: Each u ∈ HomFp(Fpn , C♭) induces a map W (Fp) → W (OC♭) = Ainf → B, which extends
to a map u : E → B[t−1]. and induces a map qu : B[t−1]⊗Qp E → B[t−1]. Now

B[t−1]⊗Qp E →
∏

HomFp (Fpn ,C)
B[t−1]

is an isomorphism, which is just because xpn − x splits in B[t−1].
And under this isomorphism, the action of φ is

φ((f0, . . . , fn−1) = (φ(fn−1), φ(f0), . . . , φ(fn−2)),

so proposition is clear. □

Cor.(14.2.4.5).Fix now a finite extension E/Qp with uniformizer π that has ramification degree e
and inertia degree d, and E0 is the maximal unramified subextension, then there are maps E0 → B
by(14.2.4.4), fix forever one of them pu, this induces a map

B[1
t
]⊗Qp E → B[1

t
]⊗E0 E

and this induces an isomorphism

(B[1
t
]⊗Qp E)φ=id = (B[1

t
]⊗Qp E0)φ=id ⊗E0 E = (B[1

t
]⊗E0 E)φd=id

Def.(14.2.4.6)[Y 0
E].Define Y 0

E ⊂ YE = triples (K, ι, u), where (K, ι) is an untilt of C♭, and u : E → K
is an embedding that u|E0 is identical to eK ◦ pu : E0 → B → K. Notice Y 0

E is not stable under the
Frobenius, but it is stable under φd, and induces an isomorphism

Y 0
E/φ

dZ ∼= YE/φ
Z.

Prop.(14.2.4.7).Notice for an element y of Y 0
E , the map u : E → Ky = B+

dR(y)/ξ extends uniquely
to a map E → B+

dR(y) that is compatible with eK ◦ pu : E0 → B+
dR(y), because E is separable over

E0. i.e.
E0 B+

dR(y)

E K

eK◦pu

u

ũ

Then this defines a map B ⊗E0 E → B+
dR(y), also called the stalk map.

Prop.(14.2.4.8).For any finite extension E/Qp, the degree map deg : Pic(XE) ∼= Z is an isomorphism.
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Proof: It suffices to show that OXE (x) ∼= OXE (x′) for each pair of closed points x, x′ of XE .
We attempt to construct a line bundle OXE (1) on XE that OXE (1)(UE) = (B[1

t ] ⊗E0 E)φd=π,
because OXE (UE) = (B[1

t ]⊗E0 E)φd=1.
We show simultaneously that OXE (1) is a line bundle and it is isomorphic to OXE (x) for any

closed point x ∈ XE : For any x ∈ XE corresponding to a φd-orbit of Y 0
E , let f be the element

constructed by lemma(14.2.4.9) below, we show that for any affine open U = D(t), multiplying by
f : OXE (x)(UE)→ OXE (1)(UE)(⋆) is an isomorphism:

Notice B ⊗E0 E is free over B, let N(f) ∈ B be its norm, the norm is local, so for each y ∈ Y ,
N(f)y =

∏
y fy, where y ∈ YE are over y, so it vanishes with order 1 in a φd-orbit of Y (order 1 because

f only vanishes at y in the orbit corresponding to x), and then N(f)φ(N(f)) . . . φd−1(N(f)) vanishes
at a single φ-orbit of Y with order 1, thus equals u log([ε]) for some ε ∈ mC♭ , by(14.2.2.17)(14.2.2.13).
In particular, y divides log([ε]).

Now if x /∈ UE , then log([ε]) divides t, so f divides t, thus f is invertible in B[1
t ]⊗E0 E, thus (⋆)

is an isomorphism.
Otherwise if x ∈ UE , then choose some x′ not in UE , then the same argument shows that f ′

is invertible in B[1
t ] ⊗E0 E, so f/f ′ ∈ (B[1

t ] ⊗E0 E)φ=id that vanishes with a single zero at x, so
multiplying by f ′/f defines an isomorphism OXE (UE) ∼= OXE (x)(UE), so it suffices to show the
composition

OXE (UE) f ′/f−−−→ OXE (x)(UE) f−→ OXE (1)(UE)

is an isomorphism, but this reduces to the first case. □

Lemma(14.2.4.9)[Uniformizer Existence]. If x be a closed point of XE corresponding to an orbit
of φ in YE thus an orbit S of φd in Y 0

E , then there is an element f ∈ (B⊗E0 E)φd=π that ordy(f) = 1
if y ∈ S, and 0 otherwise.

Proof: The map defined (14.2.4.18) composed with the Teichmuller section(14.2.4.16) in fact has
image in (B ⊗E0 E)φn=π because [π] = πt + tp

n = φn on OC♭ , and it is an isomorphism of OE
modules. Now there are commutative diagrams:

GLT (OC♭) GLT (Ainf ⊗OE0
OE) B ⊗E0 E

GLT (OK) K

σ logG

logG

The map GLT (OC♭) → GLT (OK) has kernel OEu for some u, thus we can let f = logG(σ(u)), then
the image of f ∈ K is 0, which means f has a zero at the point y ∈ Y 0

E . And(14.2.4.13) shows the
the zeros of f is just the φd-orbit containing y. □

Lubin-Tate Formal Groups and the Proof of the Lemma of Uniformizer

Prop.(14.2.4.10).The ring B ⊗E0 E is an integral domain.

Proof: Cf.[Lurie P95]. In fact this is the ramified Witt vector, which is by the same reason as
before an integral domain, Cf.[FF Curve Johannes]. □

Cor.(14.2.4.11). If f ̸= 0 ∈ B ⊗E0 E, then NE/E0(f) ̸= 0 ∈ B, in particular, the vanishing locus of f
is finite.
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Cor.(14.2.4.12). If f, g ∈ B ⊗E0 E, then f is divisible by g iff for each y ∈ Y 0
E , ordy(f) ≥ ordy(g).

Proof: If ordy(f) ≥ ordy(g), suppose NE/E0(g) = gh, then multiplying by h, we can assume g ∈ B.
Now f is written uniquely as f0 + f1π + . . . + fe−1π

e−1 where fk ∈ B, thus it suffices to show fi
is divisible by g, which is equivalent to ordy(f) ≥ ordy(g) for each y ∈ Y , by(14.2.2.15). Now if
ordy(g) = n, the hypothesis shows f vanishes in∏

y→y

B+
dR(y)/ξn = (B+

dR(y)/ξn)⊗E0 E = B+
dR(y)/ξn + πB+

dR(y)/ξn + . . .+ πe−1B+
dR(y)/ξn

thus ordy(f) ≥ n = ordy(g). □

Cor.(14.2.4.13). If f ∈ (B ⊗E0 E)φn=π, then the vanishing locus of f is a single φd-orbit, and all
zeros are simple.

Proof: Set NE/E0(f) = f ′ and NE/E0(π) = π′, then f belongs to Bφd=π′ , and its divisor is just the
image of divisor of f in Y 0

E . So it suffices to show that f ′ vanishes on a single φdZ-orbit.
Now for 0 < ρ < 1,

ρp
d |f ′|

ρpd
= |π′f ′|

ρpd
= |f ′φd |

ρpd
= |f ′|pdρ ,

thus
pds+ vpds(f ′) = pdvs(f ′)

for each s > 0, differentiating, we get

1 + ∂−vs(f ′) = ∂−vs(f ′)

Now the divisor of f ′ is φdZ-invariant, and it has exactly one zero on any annulus (ρn, ρ](14.2.2.19),
thus its divisor is a single φd-orbit. □

Def.(14.2.4.14)[Universal Lubin-Tate Formal Group].Recall that if E is a finite extension of Qp
with uniformizer π, for a OE-algebra A complete w.r.t π, GLT (A) is the Lubin-Tate formal group,
with elements the topological nilpotent elements of A3.

Now we define the universal cover of Lubin-Tate formal group G̃T as the functor

A 7→ lim{· · · [π]−→ GLT (A) [π]−→ GLT (A)}.

Prop.(14.2.4.15).
• Notice for K an alg.closed extension of E, GLT (OK) is in bijection with mK , and the kernel of

[πn] on GLT (OK) has order OE/πn, thus the kernel of G̃LT (OK)→ GLT (OK) is a 1-dimensional
OE-module.

• If π vanishes on A and A is perfect, then [π] = πt + tq = tq on A, so it is just the Frobenius,
and G̃LT (A)→ GLT (A) is a bijection.

• G̃LT (A)→ G̃LT (A/I) is an isomorphism for π ∈ I and A is I-adic.
• G̃LT (A) → G̃LT (A/I) is an isomorphism for any ideal I that I + (π) ̸= (1), because both of

them is isomorphic to G̃LT (A/(I + (π)).
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Proof: For 3, it suffices to prove that G̃LT (A/In+1) → G̃LT (A/In) for n ≥ 1. Notice F (u, v) ≡
u+ v mod I2n, so we have an exact sequence

0→ In/In+1 → GLT (A/In+1)→ GLT (A/In)→ 0.

In particular the kernel is annihilated by π, so there is a commutative diagram

· · · GLT (A/In+1) GLT (A/In+1)

· · · GLT (A/In+1) GLT (A/In+1)

π π

π π

which show that G̃LT (A/In+1) ∼= G̃LT (A/In). □

Cor.(14.2.4.16)[Teichmuller Section].Consider the OE-algebra Ainf ⊗OE0
OE . Because there are

isomorphism OE0/p
∼= OE/π, we have an isomorphism

C♭ ∼= Ainf/p ∼= (Ainf ⊗OE0
OE)/π

Now(14.2.4.15) shows the diagram

G̃LT (Ainf ⊗OE0
OE) G̃LT (OC♭)

GLT (Ainf ⊗OE0
OE) GLT (OC♭)

∼=

∼=

So the lower horizontal map is surjective, and it even has a canonical section σ, called the Teich-
muller section.

Cor.(14.2.4.17).Given a point of Y 0
E which corresponds to an untilt of C♭ together with a E0-map

E → K, then this gives a commutative diagram

G̃LT (Ainf ⊗OE0
OE) G̃LT (OK)

GLT (Ainf ⊗OE0
OE) GLT (OK)

∼=

where the right vertical arrow is surjective with kernel free of rank 1 over OE . So this together
with(14.2.4.16) shows there is a surjection GLT (OO

C♭
)→ GLT (OK) with kernel a rank-1 OE-module.

Prop.(14.2.4.18).There is a canonical OE-module map

GLT (Ainf ⊗OE0
OE) logG−−−→ B ⊗E0 E.

and it is equivariant w.r.t φ.

Proof: GLT (Ainf ⊗OE0
OE) are in bijection with the maximal ideal of Ainf ⊗OE0

OE , and logG(x)
is of the form x+ c2

2 x
2 + . . .+ cn

n x
n + . . ., with cn ∈ OE .

Now for x ∈ GLT (Ainf ⊗OE0
OE), we show that logG(x) converges in B ⊗E0 E = B + πB +

. . .+ πe−1B: Let cnxn =
∑
an,iπ

i, then we need to show an,i/n converges to 0 for each of the norm
| · |ρ. And this is because if x = x0 + πy0, then for n ≥ em, |x|ρ ≤ max{|x0|emρ , ρm, which decays
exponential in n, and | 1n |ρ decays linearly in n. □
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Prop.(14.2.4.19).The map logG(σ(·)) : GLT (OC♭) → (B ⊗E0 E)φn=π as in(14.2.4.9) is an isomor-
phism.

Proof: For surjectivity, as any f ∈ (B⊗E0 E)φn=π vanishes at a single φdZ-orbit, then by(14.2.4.9)
we can find a logG(u) that vanishes at the same locus, so f = log(u)λ where λ is a unit in B ⊗E0

E(14.2.4.12), so

λ ∈ (B ⊗E0 E)φn=id = (B ⊗Qp E)φ=id(14.2.4.5) = Bφ=id ⊗Qp E = E.

For injectivity, we proved in(14.2.4.9) that each logG(σ(u)) only vanishes at a single φd-orbit in
Y 0
E , so it cannot by 0, which vanishes at all points. □

Cor.(14.2.4.20).There are canonical bijections

{Closed Points of XE} ∼= {φdZorbits of Y 0
E} ∼= ((B ⊗E0 E)φn=π − {0})/E∗ ∼= (GLT (OC♭)− {0}/E

∗

by(14.2.4.9)(14.2.4.19),(14.2.4.12).

Vector Bundles and Base Change

Prop.(14.2.4.21)[Vector Bundles on the Cover].Let π : XE → X be the covering map, for any
vector bundle E on XE , π∗(E) is a vector bundle on X, and this induces an isomorphism

{XE-Bundles} ∼= {X − Bundles with an E-action}.

Now define deg(E) = deg(π∗E), and slope(E) = deg(E)
rank(E) = 1

nslope(π∗E).
Then E is semistable of slope λ iff π∗E is semistable of slope λ/n.

Proof: One direction is clear, for the other, if F = π∗E is not semistable, choose its HN-filtration,
then λ1 > λ/n. Now the action of E on F preserves the HN-filtration, thus F1 is an E-vector bundle,
thus by the correspondence above, F1 = π∗E ′ for some subbundle E ′ ⊂ E , and clearly this contradicts
the semistablity of E . □

Cor.(14.2.4.22).For any integral number d, n with n > 0, there exists a semistable vector bundle on
X with rank n and degree d.

Proof: Let E be an extension of Qp of degree n, then π∗(OXE (d)) is semistable of rank n and
degree d, by(14.2.4.1)(5.6.2.23), because OXE (d) is a line bundle(14.2.4.8) so clearly semistable, and
it is of degree d because ?. □

Isocrystals and Classification of Semistable Vector Bundle over X

Remark(14.2.4.23).Recall the Dieudonné-Manin Classification(7.6.4.10)(7.6.4.13): Any isocrystal
over k is a finite sum of modules pure of slopes λi. And if k is alg.closed, then any isocrystal over k
has a unique decomposition as sums of Eλi .

Prop.(14.2.4.24).Let k = Fp ∈ C♭, then there is an inclusion W (k) → Ainf , which extends to a
map K → B. Now given an isocrystal V over k, denote EV the coherent sheaf on X defined by
the graded module ⊕n≥0 HomK(V,B)φ=pn . In other words, on an affine open subscheme U = D(t),
EV (U) = {φ− equivariant K-linear maps V → B[1

t ]}.
And when V = Em/n is the simple isocrystal, then EV is denoted by O(mn ).
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Prop.(14.2.4.25). In fact we have O(mn )(U) ∼= (B[t−1])φn=pm = (ρ∗O(m))(U), where ρ : XE → X,
and E is an unramified extension of Qp.

Prop.(14.2.4.26)[Classification of Semistable Vector Bundles over X].For every vector bundle
on X, the HN-filtration splits non-canonically, and the construction V → EV induces an equivalence
of categories between

{Isoclinic Isocrystals of slope µ}op → {Semistable vector bundles on X of slope µ}

Proof: Cf.[FF Curve Johannes].? □
Cor.(14.2.4.27).Any two semistable vector bundles of slope λ over X is isomorphic, and a semistable
vector bundle of slope 0 is trivial.

Prop.(14.2.4.28). If E , E ′ be semistable vector bundles on X of slopes µ, µ′, then E ⊗ E ′ is semistable
of slope µ+ µ′.
Proof: We can assume E = ρ∗OXE (d) for an unramified extension E/Qp by(14.2.4.27), and then
E ⊗E ′ = ρ∗(OX(d)⊗ ρ∗E ′). Since ρ∗, ρ

∗ preserves semistability(by(14.2.4.21) and?). So it suffices to
prove O(d)⊗− preserves semistablity, but this is clear, as O(d) shifts degree. □

Diamonds Definitions

Def.(14.2.4.29)[Diamond].Let Perf denote the site of perfectoid spaces of characteristic p equipped
with the pro-étale topology. A diamond X is a sheaf (of sets) on Perf of the form X =
HomPerf (, Z)/R, where Z ∈ Perf and R ∈ Z × Z is a reasonable representable equivalence re-
lation.

Prop.(14.2.4.30)[Scholze].Let R = (R,R+) be a Huber pair, then
Spd(R) = Z 7→ {untilts ofSpa(R) over Z}

is a diamond.
And this construction can be glued to give diamond X⋄ of any adic space X, which is a sheaf.

Def.(14.2.4.31)[Adic Fargues-Fontaine Curve].Let Y be the adic space Spa(Ainf) removing the
vanishing locus of p and [t], then by what we proved, the Frobenius act totally discontinuous on Y,
thus the quotient XFF is an adic space, the FF-curve.

Prop.(14.2.4.32).There is an isomorphism of diamonds:
Y⋄ ∼= Spd(C♭)× Spd(Qp), XFF,⋄ ∼= Spd(C♭)/φZ × Spd(Qp)

More generally, over any Huber pair R, there is a relative FF-curve which is defined by
Spd(R)× Spd(Qp)/φZ

Proof: C♭ is a perfectoid of charp, so for a perfect Huber pair, S point of C♭ is just a morphism
u : (C♭,OC♭ → (S, S+). And a Qp point is just a char0 untilts T of S.

So for each pairs (T, u), we need to find a morphism Ainf [1
p ,

1
[t] → T . For this, consider

Ainf = W (OC♭)→W (S+) ∼= W (T ♭) θT−→ T

This is a bijection, as we proved in the beginning(14.2.1.2). □
Prop.(14.2.4.33).There is a morphism of ringed spaces XFF → XFF that regard XFF as the rigid
analytification of X , so they have the same category of vector bundles and cohomology, prove by
Kedlaya-Liu.
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5 Applications
Prop.(14.2.5.1).The FF curve X is geometrically simply connected, i.e. the projection defines an
isomorphism of étale groups π1(X)→ π1(SpecQp) = GalQp .

Equivalently, the pullback defines an equivalence of étale sites.
Proof: Let X̃ → X be an finite étale morphism, we want to prove that X̃ = X ⊗SpecQp Spec(E)
for some étale Qp-algebra. Let A = ρ∗OX̃ , and E = H0(X,A) = H0(X̃,O

X̃
). Now it suffices to

show A = E ⊗Qp OX , which shows X̃ = X ⊗SpecQp Spec(E), and forces E be an étale Qp-algebra
by fpqc descent?. Equivalently, A is trivial, and this is equivalent to A being semistable of slope 0
by(14.2.4.27).

Because ρ is finite étale, the trace pairing A×A → A tr−→ OX is non-degenerate(check on stalks),
which induces an isomorphism A ∼= A∨, so deg(A) = 0, and if A is not semistable, let A′ be the first
term of the HN-filtration of A, then it is of slope λ > 0, So A′ ⊗A′ is of slope 2λ by(14.2.4.28), so
the composite A′ ⊗ A′ ↪→ A⊗A → A must by 0(3.2.4.32), which is impossible, because if U is an
affine open that A has a section, then this says U ⊗X X̃ has a section s that s2 = 0. But U ⊗X X̃ is
reduced(check on stalks). □

Cor.(14.2.5.2).
• The projection map induces equivalence of categories between Finite Abelian groups with
Gal(Qp)-action and étale Local system on X.

• If M is a finite Abelian group with a Gal(Qp)-action, then

H∗(Gal(Qp),M)→ H∗
ét(X,u∗M)

is an isomorphism for ∗ = 0, 1.
Proof: 1 is trivial, and 2 Cf. [Lurie P102]. □

6 Weakly Admissible⇒Admissible

Def.(14.2.6.1) [Notations].Let K be a finite extension of Qp, and K0 = W (k)[1
p ] be the maximal

unramified subextension in K, let C = K̂ and F = C♭. Denote by ∞ ∈ X the closed point
determined by C, which is just the vanishing locus of the Galois stable line Qpt, where t = log([ε])
and ε = (1, ξp, ξp2 , . . .) ∈ C♭(14.2.2.36).

Notice GK acts on Qp log([ε]) by the cyclotomic character χcycl. Recall

B+
dR = ÔX(∞), B+

crys, Bcrys = B+
crys[t−1], Be = H0(X − {∞},OX) = (Bcrys)φ=id

Def.(14.2.6.2)[Equivariant Action of GK on Vector Bundles].Recall an equivariant action of
GK on a bundle E on X is a data of isomorphisms σ∗(E) ∼= E that cστ = cτ ◦ τ∗(cσ). Notice any
equivariant action of GK on E induces a semilinear GK action on E∧

∞ = E ⊗OX
B+

dR, and here we
require this action is continuous. The category of equivariant GK-bundles are denoted by BunGKX .

Cor.(14.2.6.3).By the slope 0 case of the classification of vector bundles on X(14.2.4.26)
and(15.4.5.1), we see that the functor:

RepQpGK → BunGKX : V 7→ V ⊗Qp OX

is fully faithful with essential image the category BunGK ,sst,0X of all GK vector bundles on X that the
underlying bundle is semistable of slope 0, i.e. trivial(14.2.4.27).
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Prop.(14.2.6.4).There is a pullback diagram of categories:

φ− FilModK/K0 φ−ModK0

BunGKX RepBe GK

E(−) V

Where E(−) maps a φ-filtered module (D,φD, F il) to the bundle that is the bundle ˜(D,φD)
modified so that the fiber at ∞ is Fil0(DK ⊗K BdR).

Proof: 1: By lemma(15.4.4.9), φ− FilModK/K0 is equivalent to a φ-module V with a GK-stable
B+

dR-lattice in (V ⊗K0 K)⊗K B+
dR = V ⊗K0 B

+
dR.

2: By(15.4.7.5), φ-Mod is a full subcategory of RepBeGK , where the GK-stable B+
dR-lattice is

choose to be V ⊗K0 B
+
dR.

3: Clearly there is a functor

BunGKX → RepBeGK : E → H0(X − {∞}, E).

, and(5.4.2.15) says in this case BunGKX is equivalent to a Be-module with continuous GK-actions
and and a B+

dR-module with continuous GK-actions that they corresponds as a BdR-module with
continuous GK-actions.

4: The compatibility in 3 just says that the B+
dR-lattice choosen in the definition of(15.4.4.11)

just comes from that of 2, so this diagram is clearly a pullback. □

Lemma(14.2.6.5).Let FilV ∈ V ectF ilK and W = Fil(V ⊗K BdR), if V ⊗ B+
dR = {e1, . . . , en} and

Fil0(V ⊗K BdR) = {t−a1e1, . . . , t
−anen}, then the Hodge polygon of FilV has slopes (a1, . . . , an).

Proof: Use(15.4.4.9), notice (taB+
dR)GK = 0 for a > 0, as in the proof of(15.4.4.8). □

Lemma(14.2.6.6).The functor

E(−) : φ− FilModK/K0 → BunGKX

defined in(14.2.6.4) preserves degree and HN-filtration, where the HN-filtration on the RHS is induces
by the HN-filtration on BunX by canonicity.

Proof: deg(E((D,φD, F il)) = deg(E(D,φD))− dimK [D ⊗K0 B
+
dR : Fil0(DK ⊗K BdR)]

= deg(DK , F il)− deg(D,φD).
Now the degree correspond, for the invariance of HN-filtration, it suffices to prove the subobjects

are in bijection: Given a subobjects of E(V ), we want to show it is a E(V ′), but this is because on the
affine open Spec(Be), by(15.4.7.5) any subbundle is also crysatalline, i.e. comes from φ−ModK0 . □

Prop.(14.2.6.7)[Weakly Admissible implies Admissible].The category of crystalline Galois rep-
resentations of GK is equivalent to the category φ − FilModwaK/K0

of weakly admissible filtered
φ-modules for K.

Proof: By definition of weakly admissible and(14.2.6.6), there is a pullback diagram

φ− FilModwaK/K0
φ− FilModK/K0

RepQpGK ∼= BunGK ,sst,0X BunGKX

E(−)
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Adjunction with(14.2.6.4), we get another pullback diagram

φ− FilModwaK/K0
φ− FilModK/K0 φ−ModK0

RepQpGK ∼= BunGK ,sst,0X BunGKX RepBeGK

E(−) V

But this pullback is just the category of crystalline representations: by(14.2.6.3), for V ∈
RepQpGK , the condition V(D)(M) ∼= M in(15.4.7.5) is just saying that V is in the image of V
iff

(V ⊗Qp Bcrys)φ=id ⊗Be Bcrys ∼= V ⊗Qp Bcrys

which is equivalent to V being crystalline. □
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14.3 p-adic Hodge Theory
Main references are [Berger, Galois representations and (φ,Γ)-modules], [Car19]. and [notes on

p-adic Hodge, Conrad]. [notes on p-adic Hodge, Serin Hong].

Notation(14.3.0.1).
• Use notations from p-adic Local Galois Representations.

1 CdR-Theorem
Thm.(14.3.1.1) [CdR, Faltings/Tsuji]. If X ∈ Schsm,proper /K, then for any r ∈ N, there exists a
canonical isomorphism

γdR(X) : BdR ⊗K Hr
dR(X/K) ∼= BdR ⊗Qp Hrét(XK ,Qp).

which identifies filtrations and GalK-actions on both sides. Moreover γdR is functorial in X.

Proof: Cf.[Faltings, p-adic Hodge Theory]. or [p-adic Hodge for Rigid Analytic Varieties, Scholze],
[BMS18]P104. □

Cor.(14.3.1.2) [deRham Comparison for Étale Cohomologies].Hrét(XK ,Qp) ∈ RepdR
Qp

(GalK),
and

Hr
dR(X) ∼= DBdR(Hrét(XK ;Qp)), Hn−p(X; Ωp

X) ∼= grpHr
dR(X).

Also by taking the gradation of(14.3.1.1), by(15.4.5.5), there is a Hodge-like decomposition

CK ⊗Qp Hrét(XK ,Qp) ∼=
⊕
a+b=r

CK(−a)⊗K Hb(X,Ωa
X).

This shows we can recover the de Rham cohomology of X from the étale cohomology, and the
Hodge-Tate weights of Hrét(XK ,Qp) lies in in [−r, 0].

Example(14.3.1.3) [Elliptic Curve Case, Tensoring CK Lost Informations].For E ∈ Ell /K
with multiplicative reduction and j(E) > 1, by(13.9.5.11) and(13.9.5.9),

E(K) ∼= K
×
/qZ

as GalK-representations for some q ∈ K×. Thus Tp(E) ∼= qQp/Zp and there exists an exact sequence

0→ Zp(1)→ Tp(E)→ Zp → 0.

Then this sequence doesn’t split when tensoring K, but split when tensoring CK , by(14.3.2.3).

Proof: Suppose it splits ofter tensoring K, then it splits after tensoring some finite extension K ′.
Then by projection of K ′ onto Q, we see

0→ Qp(1)→ Vp(E)→ Qp → 0

is splitting as a GalK′-representations. But this is not true, as any system of roots of p □
CdR-theorem(14.3.1.1) implies any representation of GalK of the form Hrét(XK ,Qp) is deRham,

thus it is natural to consider the converse:
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2 Ccrys-Theorem
Thm.(14.3.2.1) [Hyodo-Kato Isomorphism]. If X ∈ Schsm,proper /K has good reduction X/OK ,
let X = Xk, then for any r ∈ N, Hr

crys(X ) ∈ φ-ModW (k), and there is an isomorphism

K ⊗W (k) Hcrys(X ) ∼= Hr
dR(X).

Then this isomorphism descends Hr
dR(X) to K0, and this K0-structure is independent of the smooth

model X/OK .

Proof: □

Thm.(14.3.2.2)[Ccrys, Faltings]. If X ∈ Schsm,proper /K has good reduction X/OK , let X = Xk, then
for any r ∈ N, there exists a canonical isomorphism

γdR(X) : BdR ⊗K Hr
dR(X/K) ∼= BdR ⊗Qp Hrét(XK ,Qp).

which respect GalK-actions and Frobenius-actions on both sides. Moreover γcrys is functorial in X,
and BdR ⊗ γcrys = γdR(14.3.1.1).

Proof: Cf.[Faltings, Crystalline Representations and p-adic Galois Representations].? □

Cor.(14.3.2.3) [Crystalline Comparison for Étale Cohomologies]. If X ∈ Schsm,proper /K has
good reduction X/OK , let X = Xk, then for any r ∈ N, Hrét(XK ,Qp) ∈ RepdR

Qp
(GalK), and

Hr
crys(X ) ∼= Dcrys(Hrét(XK ,Qp)).

?
3 Rigid Analytic Varieties

Main references are [Scholze, p-adic Hodge on Rigid Analytic Varieties] and [P. Scholze, p-adic
Hodge theory for rigid-analytic varieties—corrigendum. Forum Math. Pi 4 (2016), e6, 4 pp.].
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14.4 p-adic Modular Forms
Main references are [p-adic Modular Forms]
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14.5 Formal and Rigid Geometry

Main references are [Bos15] and [BGR84], but there are other approaches, such as given by
Berkovich, or given by Huber, and used in Scholze’s work, which is most natural because it behaves
well w.r.t. the formal model.

1 Affinoid K-Spaces

Def.(14.5.1.1)[Affinoid K-Space]. an affinoid algebra A can be viewed as the function ring on the
space SpA of maximal ideals of A with the usual Zariski topology called the affinoid K-space
associated to A. A morphism of affinoid algebras induce a map on their SpA. This is because
residue fields of maximal ideals are finite over K. So we define the category of affinoid K-spaces as
the opposite category of affinoid K-algebras.

Cor.(14.5.1.2).The category of affinoid spaces admits fiber products, because of(10.3.4.30).

Prop.(14.5.1.3).By the properties of a Jacobson space(3.11.3.24)(3.11.3.21), the affinoid K-space
has good properties w.r.t. closed, open hence irreducible compared to SpecA in Zariski topology. In
particular, it is a Noetherian space.

Def.(14.5.1.4)[Canonical Topology].The affinoid K-space has another topology, called the canon-
ical topology, generated by X(f, ε) = {x|f(x) ≤ ε} as a subbasis. And this topology is in fact
generated by X(f) = X(f, 1) as a subbasis.

Proof: For the last assertion, notice f(x) assume value in |K|, which is dense in R+, so we can
assume ε ∈ |K|(by approximation from below), hence εn = |c|, where c ∈ K, so X(f, ε) = X(fn, c) =
X(c−1fn). □

Prop.(14.5.1.5). {x|f(x) = ε} is open in SpA.

Proof: We let f(x) = ε and k = A/mx, let the minipoly of f in A/mx be P of degree n, and let
g = P (f), then g(x) = 0, and if |g(y)| < εn, then |f(y)| = ε, otherwise |f(y) − αi| ≥ |αi| = ε for
every root αi of P , hence |P (f(y))| ≥ εn, contradiction. □

Cor.(14.5.1.6).By the proof, we have, X(f1, . . . , fr), fi ∈ mx forms a basis of x in SpA.(Replace
every X(fi) by {y||fi(y)| = ε}, then by some X(gi) for gi ∈ mx.

Def.(14.5.1.7) [Affinoid Subdomain].For an affinoid K-space X, a subset U is called a affinoid
subdomain of X if there is an closest affinoid space map X ′ → X with image in U , i.e. any other
these maps factor through it. The definition is weird but the situation is clarified by the following
proposition.

Prop.(14.5.1.8).For an affinoid subdomain i : X ′ → X,
• i is injective and Im i = U .

• i∗ induce an isomorphism A/mk
i(x)
∼= A′/mk

x.

• mx = mi(x)A
′.
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Proof: Consider a point y ∈ U , there is a commutative diagram
A A′

A/mn
y A′/mn

yA
′

i∗

α
σ

. Then

there is a map α : A′ → A/mn
y that makes the upper diagram commutative by universal property of

subdomain, and the lower triangle is commutative by universal properties again. Then we see σ is
surjective and notice the kernel of the projection is myA

′ is in the kernel of α, thus σ is injective.
Now the case n = 1 shows myA

′ is maximal, hence i is surjective and the inverse image is just
one point. □

Prop.(14.5.1.9) [Special Subdomains].There are three special affinoid subdomain of X: Weier-
strass domain X(f1, . . . , fr), Laurent domain X(f1, . . . , fr, g

−1
1 , . . . , g−1

s ), rational domain
X(f1

f0
, . . . , frf0

) = {x||fi(x)| ≤ |f0(x)|} for (f0, . . . , fr) = (1). They are all open by(14.5.1.5).

Proof: The Weierstrass domain corresponds to A→ A⟨X1, . . . , Xr⟩/(Xi − fi).
The Laurent domain corresponds to A→ A⟨X1, . . . , Xr+s⟩/(Xi − fi, 1−Xr+jgj).
The rational domain corresponds to A→ A⟨X1, . . . , Xr⟩/(fi − f0Xi).
They are affinoid subdomains is in fact, easily checked. □

Lemma(14.5.1.10).Weierstrass domain are Laurent, and Laurent domain are rational, this is because
intersection of rational domains are rational.

Any rational domain is a Weierstrass domain of a Laurent domain.

Proof: Notice a Laurent subdomain is a finite intersections of X(f1 ) and X(1
g ), so it is rational.

For a rational domain U , f0 is a unit in O(U), hence its inverse has a bounded value, then |cf0| > 1
for some c ∈ K∗. Hence U is Weirerstrass in X((cf0)−1). □

Cor.(14.5.1.11) [Pullback & Composition of Affinoid Subdomain].The pullback(hence inter-
sections) of affinoid subdomains is affinoid subdomain and it is just the set-theoretic inverse image,
and specialness are preserved.

The affinoid subdomain of an affinoid subdomain is affinoid subdomain, and Weierstrassness and
rationalness are preserved(while Laurentness not).

Proof: Pullback: fiber product exist in the category of affinoid K-spaces, then the universal
property is checked. The set-theoretic property follows from(14.5.1.8).

Speciality: Clear.
Transitivity: Clear by universal property.
For the speciality, if V = X(fi), U = V (gj) is Weierstrass, then because by(10.3.4.26) A is dense

in A⟨fi⟩, we can replace gj by elements from A, by adding elements of small sup-norm, because
valuation is non-Archimedean. Then U = X(fi, gj). For the rational subdomain V = X(f1

f0
, . . . , frf0

),
use(14.5.1.10), it suffices to prove for U = V (g) or U = V (g−1). For this, notice the image of A[f−1

0 ]
is dense in A⟨f1

f0
, . . . , frf0

⟩, by(10.3.4.26), so as before, we change g that it g0f
n
0 g ∈ A for some n. Now

V (g) = V ∩ {x ∈ X||g0(x)| ≤ |fn0 (x)|}, V (g−1) = V ∩ {x ∈ X||g0(x)| ≥ |fn0 (x)|}.

But now fn0 is a unit in A⟨f1
f0
, . . . , frf0

⟩, so |f(x)|sup ≥ |c| for some c ∈ K∗, so

V (g) = V ∩X( g0
fn0
,
c

fn0
), V (g−1) = V ∩X(f

n
0
g0
,
c

g0
).

is rational in X. □
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Cor.(14.5.1.12).For a special subdomain U of X, the canonical topology induces the canonical topol-
ogy of U , by the transitivity property of affinoid subdomains and(14.5.1.10). In fact, by(14.5.1.14),
any affinoid subdomain is open and the topology coincides.

Prop.(14.5.1.13).Let φ : Y = SpB → X = SpA be a morphism, if x is a point of X that A/mx →
B/mxB is a surjection, then there is an affinoid nbhd U of x that φ restricts to a closed immersion
on φ−1(U). If A/mn

x
∼= B/mn for all n, then there is an affinoid nbhd U of x that φ restricts to an

isomorphism φ−1(U) ∼= U .

Proof: Cf.[Rigid and Formal Geometry P57]. □

Cor.(14.5.1.14).Every affinoid subdomain of X is open and has the restriction topology of
X(canonical topology), because it satisfies the second condition of(14.5.1.13), by(14.5.1.8).

Lemma(14.5.1.15). If f ⊂ A⟨X1, . . . , Xn⟩ is Xn-distinguished of order ≤ s for each element of SpA,
then the set of elements that f is Xn-distinguished of exact order s is a rational subdomain of A.

Proof: Let f =
∑
fvX

v
n, let the constant coefficient of fv be av, then the set is in fact U = {x ∈

SpA||av(x)| ≤ |as(x)|}. This is because, if f is distinguished of order sx at x, then asx ̸= 0 because
fsx is a unit, and |av|x ≤ |fv| ≤ |fsx | = |asx |x for v ≤ sx and strict inequality holds for v > sx. In
particular, a0, . . . , as cannot have a common zero, so it is truly a rational subdomain. □

Prop.(14.5.1.16). If f ⊂ A⟨X1, . . . , Xn⟩ is Xn-distinguished of order s for each element of SpA, then
the map

A⟨X1, . . . , Xn−1⟩ → A⟨X1, . . . , Xn⟩/(f)

is finite.

Proof: Cf.[Rigid And Formal Geometry P79]. □

Presheaf of Affinoid Functions

Def.(14.5.1.17).The weak Grothendieck category(affine topology) on an affinoid space X has
coverings defined by the finite cover by affinoid subdomains, called affinoid covering.

The strong Grothendieck category(fpqc topology) on an affinoid space X is defined by:
objects are unions of affinoid subdomains U = ∪Ui that for any morphism from an affinoid space
φ : Z → U ⊂ X, the pullback covering ∪φ−1(Ui) has a finite subcover by affinoid subdomains. A
covering is defined by the same finiteness property.

The strong Grothendieck topology satisfies completeness conditions G0, G1, G2 defined
in(5.1.1.10), as easily verified.

The weak Grothendieck topology is a temporary notion, it will be obsolete after Tate’s acyclicity
theorem is proved. Admissible opens and admissible covers are notions w.r.t. the strong Grothendieck
topology.

Proof: The weak Grothendieck category is a Grothendieck category by(14.5.1.11). The strong
Grothendieck category is a Grothendieck category because: the finiteness condition lifts along base
change, and also for base change, because we can first choose a finite subcover, then choose a finite
subcover of the base change covering of that finite covering. □

Def.(14.5.1.18).For n functions f1, . . . , fn without common zeros, the rational subdomains Ui =
X(f1

fi
, . . . , fnfi ) is an affinoid covering, called the rational covering. For n functions f1, . . . , fn, there

is a Laurent covering X(
∏
f εii ), εi = ±1.
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Prop.(14.5.1.19).Morphisms of affinoid spaces are continuous in weak Grothendieck topology
by(14.5.1.11). It is also continuous in the strong Grothendieck topology, as one can check the
finiteness conditions.

Prop.(14.5.1.20).Let X be an affinoid K-space, for any f ∈ OX(X), consider the following sets:

U1 = {x||f(x)| < 1}, U2 = {x||f(x)| > 1}, U3 = {x||f(x)| > 0}.

Then any finite union of sets of the form is admissible, and any finite cover by finite union of sets of
the form is an admissible covering.

Proof: We first show that U1 is admissible open, the others are similar. Let εn be an ascending
sequence of elements in

√
|K∗| converging to 1, then U1 = ∪nX(ε−1

n f) is a union of open subsets
because εn ∈

√
|K∗|. Now for any affinoid space Z mapping into U1, |φ∗(f)(z)|sup < 1 for all z ∈ Z,

thus by maximal principle(10.3.4.21), |f |sup < 1, thus the cover U1 = ∪nX(ε−1
n f) can be refined by

a finite cover, thus it is admissible open.
For the admissibility of covering, the proof is similar, but use the following lemma(14.5.1.21). □

Lemma(14.5.1.21).For any affinoid K-algebra A, if fi, gj , hk are system of functions on A that: for
every x ∈ A, either |fi(x)| < 1, |gj > 1 or hk(x) > 0, then we can replace >,< by ≥,≤ and elements
in
√
|K∗| that the same condition is true.

Proof: Cf.[Rigid and Formal Geometry P97]. □

Cor.(14.5.1.22).The strong Grothendieck category is finer than the Zariski category, because any
standard affine open set is of the form U3 and also Zariski covering is open covering because Sp(A)
is Noetherian(10.3.4.16).

Def.(14.5.1.23) [Presheaf of Affinoid Functions].There is a presheaf of affinoid functions
defined on the weak Grothendieck topology because of the universal property of the affinoid subdo-
mains.

Then the stalk OX,x are local ring with maximal ideal mxOX,x. Hense let X = SpA, the stalk
map factor thorough A→ Amx ↪→ Ox,X , and

A/mn
x
∼= Amx/m

n
xAmx

∼= OX,x/mn
xOX,x

so it induces isomorphisms between their mx-adic completions.

Proof: By(14.5.1.8), there is an isomorphism K ′ = OX(X)/mx
∼= OX(U)/mxO(U). Take the

converse and pass to direct colimit(it is exact), OX,x/mxOX,x ∼= K ′. This map will be regarded as
evaluation at x. The kernel mxOX,x is a maximal ideal. There are no other maximal ideals in OX,x
because if f in not in the kernel, then f(x) ̸= 0, and multiply by an element in K∗, it can be made
|f(x)| ≥ 1, and then U(f−1) is an affinoid subdomain containing x that f is invertible in it.

For the second assertion, for an affinoid subdomain SpA′, there are maps

A/mn → A′/mn → OX,x/mnOX,x.

We first show these are isomorphisms: the first map is an isomorphism by(14.5.1.8), then take direct
colimit, the composition map is also isomorphism.

A/mn
x
∼= Amx/m

n
xAmx is classical.

Amx ↪→ Ox,X is injective because by Krull’s intersection theorem(4.2.2.15), Amx ↪→ Ox,X →
ÔX,x ∼= Âm is injective. □
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Cor.(14.5.1.24). f ∈ A = OX(X) vanish iff it vanish at every stalk, this is because A → ∏
mAm →∏

OX,x is injective.

Cor.(14.5.1.25).Giving a covering of affinoid subdomain of an affinoid spaceXi → X, then OX(X)→∏
OXi(Xi) is an injection. (This is because the kernel vanishes at each stalk.)

Cor.(14.5.1.26).For a subdomain of an affinoid space X, the corresponding ring map is flat.

Proof: Cf.[Formal and Rigid Geometry P68]. □

Prop.(14.5.1.27).The stalk OX,x is Noetherian, in particular it is m-adically separated by Krull’s
intersection theorem(4.2.2.15).

Proof: First it is m-adically separated, because by(14.5.1.23), for a f ∈ ∩mnOX,x, we can choose
an affinoid subdomain SpA that f ∈ A(14.5.1.8), then f ∈ mnA, so by Krull’s intersection theo-
rem(4.2.2.15), we have f = 0 in Am.

In the same way, any f.g. ideal a of OX,x is m-adically closed, this is because it is generated by
an ideal in the affinoid algebra of a nbhd, and then Ox,X/a is separated as the stalk of an affinoid
algebra A′/a′.

Now pass a chain of f.g. ideals to their completion, then that chain is stationary because ÔX,x =
Âmx is Noetherian(4.1.1.42). And now this chain is also stationary because ideals are closed in m-adic
topology. □

Locally Closed Immersions

Def.(14.5.1.28)[Immersions].A morphism of affinoid spaces is called a closed immersion iff the
corresponding ring map is surjective. It is called a locally closed immsetion iff it is injective
and the stalk map are all surjective. It is called an open immersion iff it is injective and the
corresponding stalk maps are isomorphism. All these notions are stable under compositions.

An affinoid subdomain is an open immersion by(14.5.1.8)(14.5.1.23) and(14.5.1.27).

Lemma(14.5.1.29).Base change by affinoid subdomain of closed/locally closed/open immersions are
of the same type.

Proof: This is obvious for locally close and open, because affinoid subdomains are open(14.5.1.14),
for the closed immersion, use(10.3.4.32). □

Prop.(14.5.1.30).A closed immersion of affinoid spaces is equivalent to a locally closed immersion
that the corresponding ring map is finite.

Proof: Cf.[Rigid and Formal Geometry P70]. A closed immersionX ′ → X is a locally closed immer-
sion because the canonical topology of SpA restricts to the canonical topology on SpA/a(14.5.1.4),
then use(10.3.4.32), and the fact direct limit is exact. □

Prop.(14.5.1.31)[Clopen Immersion].The image of an open and closed immersion is Zariski closed
and open. In particular, it is a Weierstrass subdomain.

Proof: Cf.[Rigid and Formal Geometry P71]. □

Def.(14.5.1.32).ARunge immersion is a closed immersion followed by an open immersion of Weier-
strass subdomain. Runge immersion is table under base change of affinoid subdomains by(14.5.1.29)
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Prop.(14.5.1.33) [Equivalent Definition of Runge Immersions].For a morphism σ : A → A′,
SpA′ → SpA is a Runge immersion iff σ(A) is dense in A′ iff σ(A) contains a set of affinoid generator
of A′ over A.

Proof: For a Runge immersion, σ(A) is dense in A′, because this is true for Weierstrass subdomain
and closed immersion.

If σ(A) is dense in A′, then by(10.3.4.28), we can modify a set of affinoid generators by a set of
affinoid generators in σ(A).

If hi is a set of affinoid generators in σ(A), then A→ A⟨hi⟩ → A′ is a Runge immersion. □

Cor.(14.5.1.34).Runge immersion is stable under composition.

Prop.(14.5.1.35).An open and Runge immersion is an immersion of Weierstrass subdomain.

Proof: By localizing on this Weierstrass subdomain, and notice Weierstrass subdomain is stable
under composition(14.5.1.11), we reduce to clopen immersion case, and result follows by(14.5.1.31).
□

Lemma(14.5.1.36) [Extension of Runge Immersion].For a morphism of affinoid spaces X ′ →
X = SpA, if f1, . . . , fn, g generate A, for ε ∈

√
{|K∗|}, denote Xε = {x||fi(x)| ≤ ε|g|}, this is a

rational subdomain. The inverse image of Xε is X ′
ε, then if X ′

ε0 → Xε0 is a Runge immersion for
some ε0, then there is a ε > ε0 that X ′

ε → Xε is also a Runge immersion.

Proof: Cf.[Rigid and Formal Geometry P73]. □

Prop.(14.5.1.37)[Gerritzen-Grauert].For a locally closed immersion φ : X ′ → X, there is a finite
cover of X of rational subdomains Xi that φ−1(Xi)→ Xi are Runge immersions.

Proof: Cf.[Formal and Rigid Geometry P79]. □

Cor.(14.5.1.38)[Gerritzen-Grauert].Any affinoid subdomain is equivalent to a finite union of ra-
tional subdomains.

Proof: An affinoid subdomain is an open immersion by(14.5.1.28), so φ−1(Xi) → Xi is open and
Runge, so it is Weierstrass by(14.5.1.35). In particular, X ∩Xi is rational in X by transitivity, thus
the result. □

Tate’s Acyclicity

Lemma(14.5.1.39)[Reduction of Weak Grothendieck Topology].
• Every affinoid covering has a refinement of rational covering.
• For every rational covering, there is a Laurent covering {Vi} that restriction on each Vi is

rational covering generated by units.
• Every rational covering generated by units has a refinement of Laurent covering.

Proof: 1: By(14.5.1.38), we can assume the covering consists of rational subdomains Ui =
X(fi1,...,fiikfi0

), then consider the elements fv1...vn =
∏n
i=1 fivi , where at least some vi = 0. Denote

the set of these elements by I.
Firstly, these elements has no common zero on X, thus generating a rational covering of X: for

any x ∈ Ui, fi0 doesn’t vanish at x, thus the product ∏j ̸=i fjvj vanishes for all choices of vj , but this
is impossible because for each j, ({fik}k) = (1).
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Secondly, this is a refinement of Ui: We show Xfv1...vn
⊂ Uk where vk = 0. For this, consider

x ∈ Xfv1...vn
, then x ∈ Uj for some j. If j = k, we are done, otherwise,

|fv1...µk...vn(x)| ≤ |fv1...0...µk...vn(x)| ≤ |fv1...vn(x)|.

Where the last inequality is because (v1, . . . , 0, . . . , µk, . . . , vn) has a 0, thus fv1...0...µk...vn ∈ I.
2: For a rational covering, fi is invertible in the ring of U = X(f0

fi
, . . . , fnfi ), thus it has a inverse

that attains maximum value on U(10.3.4.21). Hence there is a c ∈ K∗ that |c|−1 < inf(max{|fi(x)|}).
I claim the Laurent covering w.r.t. the elements cf0, . . . , cfn satisfies the requirement. Because

for example, on V = X((cf0) · · · (cfs)(cfs+1)−1 · · · (cfn)−1), |fi(x)| < |fj(x)| for i ≤ s < j, so the
covering restricted to V is just the rational covering generated by fs+1, . . . , fn, and they are all
invertible in O(V ).

3: In fact the Laurent covering generated by the element fif−1
j for i < j is a refinement of the

rational covering generated by f1, . . . , fn, because in any one of this Laurent subdomains V , for any
two i, j, either |fi(x)| < |fj(x)| or |fj(x)| < |fi(x)| for all x ∈ V , so there is a maximal one fs, then
V ⊂ X(f0

fs
, . . . , fnfs ). □

Prop.(14.5.1.40) [Tate’s Acyclicity Theorem].The presheaf of affinoid functions on an affinoid
space X = SpA is a sheaf w.r.t the weak Grothendieck category. In fact, for any A-module M , the
presheaf M̃ = M⊗AOX is a sheaf w.r.t. the weak Grothendieck topology, called the quasi-coherent
sheaf on X.

Moreover, for any finite cover of affinoid subdomains, the Čech cohomology group Ȟq(SpA, M̃)
vanish for q ̸= 0.

Proof: It suffices to prove the last assertion. First reduce to the case of Laurent covering
by(14.5.1.39) and(5.3.2.10)(5.3.2.11). Noticing the base change invariance of the specialities of affi-
noid subdomains(14.5.1.11). Even more, by(5.3.2.12) and an induction process, it suffices to prove
for the simple Laurent covering X(f), X(f−1).

It suffices to prove for the sheaf of affinoid functions OX , because for any Qco sheaf M̃ , choose
a free resolution of M , then use dimension shifting, notice the covering is finite(the flatness of the
algebra map(14.5.1.26) is used to deduce the long exact sequence).

For the sheaf OX , the main tool is the following commutative diagram:

0 0

(X − f)A⟨X⟩ × (1− fY )A⟨Y ⟩ (X − f)A⟨X,X−1⟩ 0

0 A A⟨X⟩ ×A⟨Y ⟩ A⟨X,X−1⟩ 0

0 A A⟨f⟩ ×A⟨f−1⟩ A⟨f, f−1⟩ 0

δ′′

ε′ δ′

ε δ

where δ′ is given by (h1(X), h2(Y )) 7→ h1(X)− h2(X−1), and δ′′ is induced by δ′. The columns are
all exact, and the first row and the second row are exact. ε is injective by(14.5.1.25). Then the last
row is also exact, by spectral sequence. □

Prop.(14.5.1.41) [Strong/Weak Topos The same]. If X is an affinoid K-space, the category of
sheaves w.r.t the strong Grothendieck topology is equivalent to the category of sheaves w.r.t. the
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weak Grothendieck topology by pushforward and pullback of sheaves by(5.1.2.25) because the strong
and weak Grothendieck category satisfies the conditions.

In particular, this applies to the case OX by(14.5.1.40), the resulting sheaf is called the sheaf of
rigid analytic functions on X, also denoted by OX .

2 Rigid Analytic Spaces
Def.(14.5.2.1).A G-ringed K-space is a pair (X,OX) where X is a G-topological space and OX is
a sheaf of K-algebras. It is called local G-ringed K-space if the stalks are all local rings. Their
morphisms are defined routinely.

Prop.(14.5.2.2) [Morphisms Between Affinoid Spaces].An affinoid K-space with the sheaf of
analytic functions (X,OX)(14.5.1.41) is an example of local G-ringed K-space(14.5.1.23).

A continuous homomorphism of rings induces a local G-ringed morphism. And all morphisms
come from these.

Moreover, an affinoid K-space is a complete G-ringed K-space(i.e. rigid)(5.1.1.10).

Proof: It is a G-space by(14.5.1.40)(14.5.1.41), morphisms by(14.5.1.19), notice the mx generate
the maximal ideal of OX,x(14.5.1.23), so the morphism is local.

To show all morphisms are like these, we need to show a morphism σ : A→ B gives at most one
SpB → SpA: the morphism is local, so it maps mφ(x) to mx, and from the commutative diagram

A/mφ(x) B/mx

Oφ(x),SpA/mφ(x)Oφ(x),SpA Ox,SpB/mxOx,SpB

∼= ∼=

(14.5.1.23) shows mφ(x) is mapped into mx, so mφ(x) = (σ∗)−1mx, which shows φ is unique set-
theoretically, and on the level of structure sheaf, the uniqueness of OSpA(V ) → OSpB(φ−1(V )) is
unique by the definition of affinoid subdomain(14.5.1.7). □

Def.(14.5.2.3)[Rigid Spaces].The category of rigid (analytic) space is a full subcategory of local
G-ringed K-spaces that it is complete G0, G1, G2, and it has an admissible covering {Xi → X} that
(Xi,OX |Xi) are affinoid K-spaces.

It follows easily that an admissible open subset of a rigid space is again rigid.

Prop.(14.5.2.4)[Glueing Rigid Spaces].Glueing rigid analytic spaces is legitimate, so does glueing
morphisms on the source.

Proof: First glue the set, then use(5.1.1.12) to glue G-topology, finally the glue of structure sheaf
is similar to(5.1.5.3). □

Cor.(14.5.2.5) [Spectrum Adjointness]. If X is rigid and Y is affinoid, then Hom(X,Y ) ∼=
Hom(OY (Y ),OX(X)). This follows from(14.5.2.2) and glue(14.5.2.4).

Prop.(14.5.2.6)[Fiber Products].Fiber products exist in the category of rigid analytic space. This
is fiber product of affinoid spaces are affinoid so we can glue them by universal property, the same
as(5.2.7.15).

Prop.(14.5.2.7).An affinoid space is connected in the weak Grothendieck topology iff it is connected
in the strong Grothendieck topology iff it is connected in the Zariski topology.
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Proof: Firstly the weak and strong are equal because any strong covering of X has a refinement
of weak covering, and a weak covering is a strong covering. So it suffices to prove the equivalence of
the last two.

One direction is trivial, for the other direction, use Tate’s acyclicity, if X1, X2 → SpA, X1∩X2 =
0, then A = OX(X1)×OX(X2), so SpecA is not connected, neither do SpA. □

Prop.(14.5.2.8).We can define the connected components of X as the equivalence classes of elements
that can be reached using connected admissible open subsets of X. Then the connected components
are admissible and forms an admissible cover of X.

Proof: Notice that there exists a finite covering consisting of connected Zariski subsets, by(14.5.2.7)
and the fact SpA has f.m. connected components because SpecA does as A is Noetherian(10.3.4.12)
and(14.5.1.3).

Thus we are done, because by(14.5.1.22), a Zariski covering is admissible, and clearly the con-
nected components of X are just this Zariski covering. □

Rigid GAGA

Lemma(14.5.2.9).Let Z be an affine scheme algebraic over K, and Y a rigid K-space, then the set
of morphisms of local G-ringed spaces (Y,OY )→ (Z,OZ) corresponds to K-algebra morphisms from
OZ(Z) to OY (Y ).

Proof: Cf.[Formal and Rigid Geometry P111]. □

Def.(14.5.2.10)[Rigid Analytification].There is a partial functorXrig from the category of schemes
X locally algebraic over a valued field K to the category of rigid K-spaces that are right adjoint to
the forgetful functor from the category of rigid K-spaces to local ringed K-space, called the GAGA
functor.

The existence of this functor is proven in(14.5.2.14).

Def.(14.5.2.11)[Analytification of Affine Schemes].Let Tn(r) be the elements ∑ avζ
v in Tn that

lim avr
|v| = 0. Then choose a c ∈ K, |c| > 1, define T (i)

n = Tn(|c|i). Then T (i)
n = K⟨c−iX1, . . . , c

−iXn⟩,
so clearly Sp(T (i)

n ) is an affinoid subdomain of Sp(T (i+1)
n ) by(14.5.1.9). Thus there is a chain of

inclusions of affinoid subdomains:

Bn = Sp(T (0)
n ) ↪→ Sp(T (1)

n ) ↪→ Sp(T (2)
n ) ↪→ . . .

Then we can use(14.5.2.4) to glue them together as An,rig
K .

Prop.(14.5.2.12).The maximal spectrum Max(K[Xi]) = ∪nSpa(T (i)
n ) as sets.

Proof: It suffices to show the following two.
• For any maximal ideal m ⊂ Tn, m′ = m ∩K[Xi] is maximal.

• For any maximal ideal m′ ⊂ K[Xi], there is some N that m′T
(i)
n is maximal in T (i)

n for all i > N .
For 1: Consider the K ⊂ K[Xi]/m′ ⊂ Tn/m, Tn/m is a finite extension of K by(10.3.4.10), then so
does K[Xi]/m′, by(4.2.1.3). To prove m′ = m ∩K[Xi], consider the following diagram:

K[Xi]/m′ Tn/m
′Tn

K[Xi]/m′ Tn/m
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As K[Xi]/m′ is finite over K, it is complete, but K[Xi] is dense in Tn, thus the horizontal maps
are surjective. But then the lower horizontal is isomorphism, then the upper horizontal is also
isomorphism, and then the vertical map is isomorphism, thus we are done.

For 2, K[Xi]/m′ is a finite extension of K, thus has a unique valuation, let N be large that
|Xi| ≤ |c|N , then for i > N , the quotient map factors uniquely as K[Xi]→ T

(i)
n → K/m′. Then the

kernel m of T (i)
n is a maximal ideal(same reason as before) that satisfies m ∩K[Xi] = m′. Then we

finish by item1. □

Cor.(14.5.2.13) [Analytification for Affine Schemes]. Similarly, for an affine scheme Z =
SpecK[Xi]/a of f.t over K, we construct its analytification Zrig as the glue of the inclusions:

Sp(T (0)
n /a) ↪→ Sp(T (1)

n /a) ↪→ . . .

Then Zrig is the analytification of K[Xi]/a.
And we see from the proof of(14.5.2.12) the maximal spectrum Max(K[Xi]/a) = ∪nSpa(T (i)

n /a)
as sets.

Proof: The canonical map K[Xi]/a → T
(i)
n /a glue together to be a morphism OZ(Z) →

OZrig(Zrig), which by(14.5.2.9) corresponds to a map Zrig → Z of local ringed spaces.
Now any other morphism Y → Z from a rigidK-space Y to Z, choose an affinoidK-space covering

Yi of Y , then the map Yi → Z corresponds by(14.5.2.9) to a morphism σ : K[Xi]/a→ OYi(Yi), thus
if we choose i large enough that |σ(Xi)| ≤ |c|i, then σ can be extended uniquely to

K[Xi]/a→ T (i)
n /a

σ−→ OYi(Yi),

By the universality of affinoid subdomains. This σ corresponds to a morphism Yi → Sp(T (i)
n )→ Zrig,

and these clearly glue together to give a morphism Y → Zrig, thus proving the universal property.
□

Prop.(14.5.2.14)[General Analytification].For any locally algebra scheme X over K, choose an
affine covering Zi, consider the analytification of Zi by(14.5.2.13), then Zi ∩ Zj obviously has the
inverse image as the rigid analytification by universal property, thus unique, so the analytifications
of Zi can be glued to an analytification of X.

Moreover, the underlying set of Xrig is identified with the closed pts of the scheme X, because
this is the case of Zi(14.5.2.11).

Prop.(14.5.2.15).Rigid analytification preserves fiber products.

Proof: This follows from the construction of fibered product of schemes(5.2.7.15), so we only need
to prove the affine case. For this, Cf.[U. Köpf, Über eigentliche Familien algebraischer Varietäten
über affinoiden Räumen. Schriftenr, Satz 1.8]. □

Prop.(14.5.2.16)[Stalks].For a point z ∈ Zrig, the completion of OZrig ,z and OZ,z are the same.

Proof: Cf.[U. Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen.
Schriftenr, Satz 2.1]. □
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3 Coherent Sheaves on Rigid Spaces
Prop.(14.5.3.1).For an affinoid K-space X, there is a Qco module construction M → M ⊗A OX as
in(14.5.1.40) in the weak Grothendieck topology, and it extends uniquely to a sheaf w.r.t. the strong
Grothendieck topology by(14.5.1.41), also denoted by M ⊗A OX . This is a faithfully exact, fully
faithful functor between Abelian categories from Ab to OX -modules, and it preserves tensor product
and direct sums.

Proof: Because Γ(X,M ⊗A OX) = M and obviously fully faithful, this map is fully faithful, and
it is exact because the restriction map of an affinoid subdomain is flat(14.5.1.26), and shifification is
exact. □

Def.(14.5.3.2)[Coherent Sheaves].For an OX -module F on a rigid space X, finite type, of finite
presentation, coherence are defined w.r.t the strong topology as X is a ringed site. All these
notions are stable under passing to an admissible open subspaces.

Proof: For the passing of coherence to admissible open subspaces, use the fact that restriction
maps are flat(14.5.1.26). □

Cor.(14.5.3.3).Notice OnX = An ⊗A OX , by(14.5.3.1) and the fact A is Noetherian, passing to a
refinement covering, F is coherent iff there is an admissible affinoid covering U : Xi → X that F |Xi
is associated to a finite OXi-module. In this case, F is said to be U-coherent. Thus the coherent
sheaves form a weak Serre subcategory of OX -modules.

In particular, OX is coherent.

Prop.(14.5.3.4). If F ,G are all U-coherent modules, then:
• F ⊗OX

G and F ⊕ G are U-coherent,
• if F → G is a OX -module morphism, then the kernel and image are all U-coherent.
• If I is a U-coherent sheaf of ideal of OX , then IF is U-coherent.

Proof: The first and the second are consequences of(14.5.3.1), noticing Ai is Noetherian. The third
is an image of I ⊗OX

F . □

Lemma(14.5.3.5). If F is U coherent for a simple Laurent covering U, then H1(U,F) = 0.

Proof: The goal is to show any element in F(U1 ∩ U2) can be represented by u1 + u2, where
ui ∈ F(Ui). Let U1 = SpA⟨f⟩, U2 = SpA⟨f−1⟩, U1 ∩ U2 = SpA⟨f, f−1⟩. Now A⟨f⟩ = A⟨X⟩/(X −
f), A⟨f−1⟩ = A⟨Y ⟩/(Y f − 1), A⟨f, f−1⟩ = A⟨X,Y ⟩/(X − f, Y f − 1), and we endow them with the
residue norm.

Now we want to give norms to M1 = F(U1),M2 = F(U2),M12 = F(U1 ∩ U2). Mi are finite
OX(Ui)-modules, so there are elements vi, wj , i ≤ m, j ≤ n that generate M1,M2 respectively. So
there are attached morphisms

(A⟨f⟩)m →M1, (A⟨f−1⟩)n →M2, (A⟨f, f−1⟩)m →M12

And endow them with the residue norm, which is complete..
Notice that to prove the assertion, it suffice to show for each ε > 0, there is an α that for each

u ∈12, there are u1 and u2 in Mi respectively that |ui| < α|u| and |u− u1 − u2| < ε|u|, because then
we can use iteration and completeness to get the result.



14.5. FORMAL AND RIGID GEOMETRY 1469

Giving β > 1, any g ∈ A⟨f, f−1⟩ can be lifted to an element ∑ cijX
iY j that |cij | ≤ β|g|. Then

by regrouping terms that i ≥ j or i < j, there are two element g+ ∈ A⟨f⟩ and g− ∈ A⟨f−1⟩ that
g+ + g− restricts to g on U1 ∩ U2, and |g+|, |g−| ≤ β|g|.

Now that F is coherent, so vi and wj both generate M12 separately. Then there are equa-
tions vi =

∑
cijwj and wi =

∑
dijvj , where cij , dij ∈ A⟨f, f−1⟩. The image of A⟨f⟩ is dense in

A⟨f, f−1⟩(10.3.4.26), so there are elements c′
ij ∈ A⟨f−1⟩ s.t. maxijl |cij − c′

ij ||djl| < β−2ε.
Now I claim the above approximation process is true for α = β2 max(|c′

ij | + 1). For this, notice
for any u =

∑
aivi with ai ∈ A⟨f, f−1⟩, which we may assume |ai| ≤ β|u| by the definition of the

norm on M12, then ai = a+
i + a−

i , that |a∗
i | ≤ β|ai|. Consider the following element

u+ =
∑

a+
i vi ∈M1, u− =

∑
a−
i

∑
c′
ijwj ∈M2

Then it is easily verified that |u∗| < α|u|, and

u− u− − u+ =
∑∑

a−
i (cij − c′

ij)wj =
∑∑∑

a−
i (cij − c′

ij)djlvl.

which has norm smaller than max |a−
i (cij − c′

ij)djl| ≤ β2|u| · β−2ε = ε|u|, finishing the proof. □

Prop.(14.5.3.6)[Kiehl].An OX -module F on an affinoid K-space SpA is coherent iff it is associated
to a finite A-module.

Proof: The converse is obvious, for the other direction, by(14.5.1.39), it suffices to prove for U a
Laurent covering, and further, it suffices to prove for the simplest Laurent covering X(f), X(f−1)→
X because: U(f, g) ∪ U(f, g−1) ∪ U(f−1, g) ∪ U(f−1, g−1) = (U(f, g) ∪ U(f, g−1)) ∪ (U(f−1, g) ∪
U(f−1, g−1)).

Thus the above lemma shows that H1(U,F) = 0. Now I prove that for any finite affinoid covering
U = ∪SpAi, if H1(U,F) = 0 for any coherent sheaf F , then any U-coherent sheaf F is associated to
a finite A-module, this will finish the proof.

Consider any maximal ideal mx of A, mx ⊗A OX is a coherent sheaf as mx is finite because A is
Noetherian, so there is a short exact sequence

0→ mxF → F → F/mxF → 0

of U-coherent sheaves, because A/mx is a field, thus flat.
Now for any affinoid space U ′ in Ui for some i, the section of this exact sequence is exact, because

the ring morphism associated to an affinoid subdomain is flat(14.5.1.26). In particular, this can be
applied to any intersections of Ui, in particular the Čech complex of these sheaves. Then the long
exact sequence and the fact H1(U,mxF) = 0 shows

0→ mxF(X)→ F(X)→ F/mxF(X)→ 0

Next we want to show F/mxF(X)→ F/mxF(Ui) is isomorphism for any x ∈ Ui. To prove this, first
for any affinoid subspace U ′ = SpB contained in some Uj , let U ′ ∩ Ui = SpBi, F|U ′ = M ′ ⊗A OU ′ ,
we show F/mxF(U ′) ∼= F/mxF(U ′ ∩ Ui), this is equivalent to

M ′/mxM
′ →M ′/mxM

′ ⊗B Bi = M ′/mxM
′ ⊗B/mxB Bj/mxBj

is an isomorphism. But B/mxB ∼= Bj/mxBj : This is true when x ∈ U ′ by(14.5.1.8), and they are
both trivial ring if x /∈ U ′. Then look at the morphism of Čech complex induced by F/mxF →
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F/mxF|Ui , then it is an isomorphism, by what we just proved, so its H0 is also isomorphism, which
is F/mxF(X) ∼= F/mxF(Ui).

Finally, by the commutative diagram
F(X) F/mxF(X)

F(Ui) F/mxF(Ui)

, the right vertical arrow is iso-

morphism, so if denote F(Ui) by Mi, then F(X) generate Mi/mxMi for every x, then consider
L = Mi/F(X), then mxL = L for every x, then by Nakayama, for each maximal ideal m, there is a
m ∈ m that (1 +m)L = 0, so Ann(L) = (1), so L = 0, i.e. F(X) generate Mi for each i.

Now choose fi in F(X) that generate Mi simultaneously, then the map OnX → F is a surjection
of U-coherent sheaves, its kernel G is also coherent by(14.5.3.4), now all the above argument works
for G, so there is a surjection OmX → G, so OmX → OnX → F → 0, so F is associated to the cokernel
of the map Am → An. □

Cor.(14.5.3.7).Coherence for a OX -module on a rigid K-space is affinoid local on the target.

Cohomology on Rigid Analytic Spaces

Lemma(14.5.3.8).The category of OX -modules on a rigid K-space is a Grothendieck category
by(3.7.3.29).

Def.(14.5.3.9)[Derived Cohomologies].Consider the right derived functor for Γ and more general
f∗, these are left exact by(5.1.2.9). Then Rpf∗F = (f∗Hp(F))♯ by Grothendieck spectral sequence.

The Cech-to-Derived spectral sequence(5.3.2.13) is applied: Hp({Ui → U},Hq(F )) ⇒
Hp+q(U,F ), Ȟp(U,Hq(F ))⇒ Hp+q(U,F ) and Ȟ1(U,F ) ∼= H1(U,F ).

In particular, if Hq(Ui0i1...ir ,F) = 0, q > 0, then Hp({Ui → U},F) = Hp(U,F)(5.3.2.15). And it
is enough to have Ȟq(Ui0i1...ir ,F) = 0, q > 0 by(5.3.2.16).

Cor.(14.5.3.10).A Qco sheaf on an affinoid space has vanishing higher sheaf cohomology by Tate’s
acyclicity(14.5.1.40) and(5.3.2.16).

Properties of Rigid K-Spaces

This subsubsection is strongly suggested to read after reading the parallel part of schemes.

Def.(14.5.3.11).A morphism is called a closed immersion if there is an admissible affinoid covering
that it restricts to a closed immersion of affinoid spaces(It is compatible with definition(14.5.1.28)
before by(14.5.3.15)). It is called an open immersion iff it is injective and the corresponding stalk
maps are isomorphisms. The (quasi-)separatedness, quasi-compactness, finiteness are defined
similarly as for schemes.

Lemma(14.5.3.12) [Nike’s Trick]. In a rigid analytic K-space X and SpA, SpB be affinoid sub-
spaces, then there is an admissible affinoid covering of SpA ∩ SpB.

Proof: This is analogous to the scheme case(5.4.1.1), but the proof is different: X has an admissible
covering, this restricts to an admissible covering of SpA ∩ SpB, and any admissible covering can be
refined by an affinoid admissible covering. □

Prop.(14.5.3.13)[Affinoid Communication Theorem].A property P of affinoid open subsets of X
is called affiniod local if: SpA has P ⇒ all affinoid subdomains of SpA has P , and any admissible
affinoid cover of SpA has P ⇒ SpA has P . Notice a stalk-wise property is obviously affine-local.
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Now if we call X has P̃ if there is an admissible affinoid covering Ai → X that Ai has P . Then
the following are equivalent:

• all open affinoid subsets of X has P .
• all open subspace of X has P̃ .
• X has a cover of open subspaces that has P̃ .
• X has P̃ .

Proof: The proof is the same as the scheme case(5.4.1.2). □

Prop.(14.5.3.14). Separated morphism is quasi-separated because closed immersion is affinoid hence
quasi-compact(14.5.1.3).

Prop.(14.5.3.15)[Finite Morphism].For a morphism φ : X → Y of rigid K-spaces
• It is finite iff the inverse image of any affinoid space is affinoid, and φ∗OY is a coherent OX -

module. In particular, finiteness is local on the target because coherence do.
• It is closed immersion iff it is finite and OY → φ∗OX is surjective, this shows the definition of

closed immersion is compatible with before.

Proof: Coherence is affinoid local on the target by Kiehl’s theorem, so it suffices to prove the
inverse image of any affinoid space is affinoid for a finite morphism: Consider any affinoid subdomain
U ⊂ X with inverse image φ−1(U), by Kiehl’s theorem, B = OX(f−1(U)) is finite over A = OY (U),
thus can be given an affinoid K-algebra structure(10.3.4.33). Now

φ−1(U) χ−→ SpB ρ′
−→ SpA

χ is locally an isomorphism, as ρ is finite, so χ is an isomorphism.
The second assertion is because locally OY , φ∗OX are both Qco so surjectivity is equivalent to

the global section is surjective(14.5.3.1). □

Prop.(14.5.3.16).Closed/Open immersion, quasi-compactness, (quasi-)separatedness are all local on
the target, and stable under base change.

Proof: Closed immersion is local on the target because finiteness do and surjectiveness of OY →
φ∗OX is checked locally. Open immersion is local on the target because stalk and injectivity are all
checked locally.

Then Closed/Open immersion are stable under base change because the affinoid case is
true(14.5.1.29).

Quasi-compact is easily seen local on the target and stable under base change.
(Quasi-)Separateness is local on the target because closed immersion and quasi-compact do.
(Quasi-)Separateness is stable under base change because closed immersion and quasi-compact

do, because diagonal commutes with base change(3.1.1.48). □

Prop.(14.5.3.17).Morphisms between affinoid K-spaces are separated. Moreover, because of local-
ness, any finite morphism is separated.

Proof: The diagonal is SpA→ SpA⊗̂BA, whose ring map is surjective. □

Prop.(14.5.3.18).By(3.1.1.50), for X → S and Y → S, the map X = X ×Y Y → X ×S Y is an
immersion. It is closed immersion if Y → S is separated, and it is qc if Y → S is quasi-separated.
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Cor.(14.5.3.19). If s : S → X is a section of f : X → S, the above proposition applies to this case,
because S = S ×X X → S ×S X = X.

Prop.(14.5.3.20).A morphism is quasi-separated iff there is an admissible affinoid covering Wi that,
for any two affinoid open U, V that are mapped to an affinoid open, their intersection is quasi-compact.
This is because quasi-compact is local on the target.

A morphism is separated iff there is an admissible affinoid covering Wi that, for any two
affinoid open U, V that are mapped to an affinoid open, their intersection is affinoid open and
O(U)⊗̂O(Wi)O(V ) → O(U ∩ V ) is surjective. This is because closed immersion is local on the tar-
get(14.5.3.16).

Cor.(14.5.3.21). If g ◦ f is (quasi-)separated, then so is f .
Cor.(14.5.3.22). If X is (quasi-)separated, then X → Y is (quasi-)separated.

4 Proper Mapping Theorem
Def.(14.5.4.1).For a rigid space X over affinoid space Y , if U ⊂ U ′ ⊂ X be affinoid subspaces, U is
called relatively compact in U ′ iff there is a set of affinoid generators fi of OX(U ′) over OY (Y )
that |fi(x)| < 1 on U . This is denoted by U ⋐Y U ′.

Prop.(14.5.4.2). If X1, X2 are affinoid spaces over an affinoid space Y , and Ui are affinoid space of
Xi, then

• if U1 ⋐Y X1, then U1 ×Y X2 ⋐X2 X1 ×Y X2.
• if Ui ⋐Y Xi, then U1 ×Y U2 ⋐Y X1 ×Y X2.
• If Ui ⋐Y Xi, and Xi are affinoid subspaces of a rigid space separable over Y , then U1 ∩ U2 ⋐Y

X1 ∩X2.
• If U1 ⋐Y X1, and i : T → X1 is a closed immersion, then i−1(U1) ⋐Y i−1(X1).

The proof is easy. For the last one, should notice |f(x)| = |f(i(x))|, because it is closed immersion,
so the residue field is the same.

Def.(14.5.4.3)[Proper Morphism].A proper morphism φ : X → Y of rigidK-spaces is a separated
morphism that there is an admissible affinoid covering Yi of Y that there are two admissible affinoid
coverings Xij , X

′
ij of φ−1(Yi) that Xij ⋐Yi X

′
ij for any i, j.

Prop.(14.5.4.4).Properness is stable under base change and composition
Proof: The base change follows directly from(14.5.4.2).

For the composition, Cf.[Formal and Rigid Geometry P131](difficult). □
Prop.(14.5.4.5).Properness is local on the target.

Proof: This is because separatedness is local on the target(14.5.3.16) and the second condition of
properness is itself local. □

Prop.(14.5.4.6). If g ◦ f : X → Y → Z is proper and g is separated, then f is proper.
Proof: By(14.5.3.18), τ : X → X ×Z Y is closed immersion, and f is separated by(14.5.3.21). Now
proper is local, so we may assume Z is affinoid, so there are two admissible covering Xi, X

′
i of X

that Xi ⋐Z X ′
i, and choose an admissible affinoid covering Yi → Y , then Xj ×Z Yi, X ′

j ×Z Yi are
admissible coverings of Yi that is Xj ×Z Yi ⋐Yi X

′
j ×Z Yi. And it can be pulled back to an affinoid

admissible coverings of f−1(Yi) that τ−1(Xj×Z Yi) ⋐Yi τ
−1(X ′

j×Z Yi), because τ is closed immersion.
So X → Y is proper. □
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Prop.(14.5.4.7).Finite morphism is proper, in particular, closed immersion is proper.

Proof: Finite morphism is separated by(14.5.3.17), and locally, assume both space are affinoid,
X = SpB → SpA = Y , then B is a finite A-module, in priori a f,g, A-algebra, so there is a set of
generators fi of B over A that (by multiplying a constant in K∗) |fi|sup < 1(10.3.4.21), so X ⋐Y X,
hence it is proper. □

Prop.(14.5.4.8)[Proper and Analytification].For a morphism between schemes locally of f.t. over
K, it is proper iff its rigid analytification is proper.

Proof: Cf.[U. Köpf, Über eigentliche Familien algebraischer Varietäten über affinoiden Räumen.
Schriftenr. Math. Inst. Univ. Münster, 2. Serie, Heft 7 (1974) Satz 2.16]. □

For the following: Cf.[Formal and Rigid Geometry P132].

Prop.(14.5.4.9)[Proper Mapping theorem, Kiehl].The higher direct images of a proper map of
rigid analytic spaces takes coherent sheaves to coherent sheaves.

Proof: □

Prop.(14.5.4.10).For a scheme X locally of f.t. over K, an OX -module F on X gives rise to an
OXrig -module on Xrig, and it is coherent iff F is coherent.

Proof: □

Prop.(14.5.4.11).For a proper scheme over K, Hq(X,F) ∼= Hq(Xrig,Frig) for F coherent.

Proof: □

Prop.(14.5.4.12).When X is proper, coherent sheaves on Xrig corresponds to coherent sheaves on
X. This gives an analog of Chow’s theorem when applied to X = PnK and F ′ is a sheaf of ideals in
OXrig .

Proof: □

5 Formal Geometry
Main references for this subsection is [Bos15], [Hartshorne] and [Topics in Algebraic Geometry,

Illusie].

Def.(14.5.5.1)[Formal Spectrum Spf A].Let A be a complete adic ring(10.3.1.8) with an ideal of
definition a that the A is a-adically complete and separated. Then we let Spf A be the ringed space
with underlying topological space Spec(A/a)(open primes of A), and the structure sheaf O that
O(D(f)) = A⟨f−1⟩(10.3.1.10).

Proof: To construct this sheaf, we first check that O(D(f)) = A⟨f−1⟩ = lim←−n(A/an[f−1]) defines
a sheaf on the site of subspaces of Spf A of the form D(f): For any open covering {D(fi)} of D(f),
there are exact sequences:

0→ (A/an)f →
∏
i

(A/an)fi →
∏
i,j

(A/an)fifj

by(4.4.2.3). Then we take inverse limit, which is exact by Mittag-Leffler(4.9.3.2), to get an exact
sequence, which is just the sheaf condition of O. Then, we can use(5.1.2.25) to extend this sheaf to
a sheaf on Spf A. □
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Prop.(14.5.5.2)[Stalks of Spf A].Let x ∈ Spf A correspond to a prime px in A. Then the stalk of
Spf A at x is just Ox = lim−→x∈D(f)A⟨f

−1⟩, which is a local ring with maximal ideal mx containing
pxOx. Moreover, mx = pxOx iff a is f.g.. So Spf A is a local ringed space, called the affine formal
scheme of A.
Proof: Cf.[Bos15]P159.? □

Remark(14.5.5.3). In many case, for example in Scholze’s treatment of the p-adic geometry, the ideal
of definition a is assumed to be f.g., because we need this to show that the a-adic completion of A[f−1]
is (a)-adically complete(4.2.3.6), so that we can interpret D(f) ⊂ Spf A as an affine formal scheme
Spf(A⟨f−1⟩)(10.3.1.11).

Another way to get around this finiteness condition is to consider formal spectrum for a larger
class of rings, called the admissible rings, which is a complete and separated topological ring with
a basis consisting of open ideals, and with an ideal of definition a that an → 0 for n→ 0.

Prop.(14.5.5.4)[Affine Formal Adjointness].Morphisms between local topologically ringed spaces
Spf B → Spf A corresponds to continuous homomorphisms A→ B.

Def.(14.5.5.5)[Formal Schemes].The category of formal schemes is the full subcategory of the
category of local topologically ringed topological spaces (X,OX) consisting of objects that is locally
isomorphic to an affine formal scheme Spf A.

The category of formal schemes contains the category of schemes, by mapping SpecA to Spf A,
where A is endowed with the discrete topology.

Prop.(14.5.5.6)[Glueing and Fiber Products].Formal Schemes can easily be glued, and also spec-
trum adjointness holds as in(14.5.2.5). Finally there are fibered products, constructed as in(5.2.7.15),
where the affine case corresponds to completed tensor product(10.3.1.12).

Def.(14.5.5.7)[Formal Completion of Schemes Along a Closed Subscheme].LetX be a scheme
and Y a closed subscheme of X defined by a Qco ideal I ⊂ OX , then consider the sheaf OY defined
by restricting the projective limit lim←−nOX/I

n to Y , then (Y,OY ) is a locally topologically ringed
space, called the formal completion of X along Y .

Noetherian Adic Formal Schemes

Cf.[Hartshorne Chap2.9] and [Sta]30.23. and Illusie.
Def.(14.5.5.8)[Noetherian Formal Adic Schemes].
Def.(14.5.5.9)[Coherent Sheaves on Noetherian Formal Adic Schemes].
Prop.(14.5.5.10).Let A be a Noetherian ring and I an ideal, let X be a proper scheme over A and
F a coherent sheaf on X, then for any p ≥ 0, the inverse systems (Hp(X, InF)) and (InHp(X,F))
are isomorphic pro-A-modules.
Proof: Cf.[Sta]02OA. □

Thm.(14.5.5.11)[Theorem of Formal Functions].Let A be a Noetherian ring with an ideal I, X
be a proper scheme over A and F a coherent scheme on X. Then for any p ≥ 0, the system of maps

Hp(X,F)/InHp(X,F)→ Hp(X,F/InF)

induce an isomorphism of limits

Hp(X,F)∧ ∼= lim←−
n

Hp(X,F/InF).
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Proof: Cf.[Sta]02OC. □

Prop.(14.5.5.12)[Grothendieck’s Existence Theorem].Cf.[Sta]0883.

Prop.(14.5.5.13)[Grothendieck’s Algebrization Theorem].Cf.[Sta]089A.

6 Admissible Formal Schemes
Remark(14.5.6.1)[Setup].For a good theory of Admissible formal schemes, let the base ring R be
an adic ring with an ideal of definition I that satisfies either one of the following situation:

• R is an adic valuation ring with a principal ideal of definition.
• R is Noetherian and has no I-torsion.

Def.(14.5.6.2)[Admissible Formal Schemes].Let R be an adic ring, then a formal R-scheme X is
called locally of topologically finite type/finite presentation/admissible if there is an open
affine covering Spf Ai of X that Ai satisfies those properties(10.3.1.13).

X is called topologically of finite type if it is locally of topologically finite type and quasi-
compact. It is called topologically of finite presentation if it is locally of topologically finite
presentation, quasi-compact and quasi-separated.

Prop.(14.5.6.3)[Induced Admissible Formal Subscheme].Let X be a formal R-scheme that is
locally of topologically finite type, and let OX be its structure sheaf. Then we can look at the ideal
sheaf I ⊂ OX consisting of all elements locally killed by a power of In. This is a qco sheaf, as
I(U) = {f ∈ O(U)|Inf = 0 for some n}, because the quotient by the RHS is locally topologically of
finite type and has no I-torsion, thus admissible, by(10.3.1.15), and admissibility is local(10.3.1.16).

In particular we can take the closed subscheme Xadm ⊂ X corresponding to I, then it is an
admissible formal scheme, called the induced admissible formal subscheme of X.

7 Formal Models
Prop.(14.5.7.1)[Generic Fiber Functor].Let R be a complete valuation ring of height 1 with field
of fraction 1 with field of fraction K, then the functor A 7→ A⊗RK from the category of R-algebras
topologically of finite type to the category of affinoid K-algebras

Proof: Cf.[Bos15]P174. □

Def.(14.5.7.2)[Formal Models]. In view of(14.5.7.1), one would like to describe all formal R-schemes
that the generic fiber Xrig is isomorphic to a given rigid K-space XK . But first notice A 7→ A⊗RK
kills all R-torsion, in particular the generic fiber functor only depends on the induced admissible
formal scheme Xadm(14.5.6.3). So given any rigid K-space XK , any admissible formal R-scheme X
satisfying Xrig

∼= XK is called a formal R-model of XK .

Def.(14.5.7.3)[Admissible Formal Blowing-up].
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14.6 p-adic Uniformizations

1 Mumford Curves
References are [Schottky Groups and Mumford Curves, 1980], [Mihran Papikian, Non-

archimedean uniformization and monodromy pairing].

Def.(14.6.1.1)[p-adic Schottky Groups].For p ∈ P, a p-adic Schottky group is a discrete, f.g.
free subgroup Γ ⊂ PGL2(Qp).

Prop.(14.6.1.2).A subgroup Γ ⊂ PGL(2,Qp) is a p-adic Schottky group if it is discrete, f.g. and
torsion-free.

Proof: Γ acts on the Bruhat-Tits building ∆ of PGL(2,Qp), and the stabilizer is Γ∩ PGL(2,Zp),
which is a finite group as Γ is discrete and PGL(2,Zp) is compact. Thus it is trivial as Γ is torsion-
free. Thus Γ acts freely on ∆, so Γ must be a free group.? □

Def.(14.6.1.3).A p-adic Schottky group Γ acts on P1(Cp). Denote LΓ is the set of limit points of this
action, ΩΓ = P1(Cp)− LΓ.

Thm.(14.6.1.4) [Mumford].Let Γ is a p-adic Schottky group of rank g, then there is a smooth
complete curve XΓ/Qp of genus g with an analytic isomorphism ΩΓ/Γ ∼= XΓ(Cp). Such a curve XΓ
is called a p-adic Mumford curve.

Proof:
□

Thm.(14.6.1.5)[Mumford].Let Γ is a p-adic Schottky group of rank g ≥ 2, then the corresponding
Mumford curve XΓ has split degenerate stable reduction. Conversely, and smooth complete curve
over Qp with split degenerate stable reduction is a Mumford curve.

Where split degenerate reduction means that the normalization of all components of X̃ are Fp-
rational, and all nodes are Fp-rational with two Fp-rational branches.

Proof:
□

Prop.(14.6.1.6)[Herrlich]. Suppose p ∈ P and X/Qp is a Mumford curve with genus g ≥ 2, then

# Aut(X) ≤


84(g − 1) , p = 2
24(g − 1) , p = 3
30(g − 1) , p = 5
12(g − 1) , p = 3

Proof: □
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14.7 Rapoport-Zink Spaces
Main references are [Period Spaces for p-Divisible Groups, Rapoport-Zink], [Kot85], [On the

Classification and Specialization of F-Isocrystals with Additional Structure, Rapoport-Richartz, 1996]
and [Rap95].

Notation(14.7.0.1).
• Use notations from15.4.

1 B(G) and Isocrystals with Structures
Notation(14.7.1.1).

• Let L = K0E where E ∈ p− LField. Thus e(L) = e(E).
• Let G ∈ AlgGrp /Qp be a linear algebraic group.

Remark(14.7.1.2).The σ-conjugacy classes of GL(n;K0) are in bijection with the isomorphism
classes of n-dimensional isocrystals, so the Dieudonné-Manin classification of isocrystals can be trans-
lated to a classification of σ-conjugacy classes of GL(n;K0). And this generalizes to other connected
reductive group G/K as well, and the description of the set of σ-conjugacy classes B(G) are useful
in studying the points mod p of Shimura varieties.

Def.(14.7.1.3)[B(G)].Denote B(G) = H1(⟨σ⟩, G(K0)), which is equal to the set of φ-conjugate classes
of G(K0), i.e. x ∼ y ∈ G(K) iff x = gxσ(g)−1 for some g ∈ G(K).

The Newton Map

Def.(14.7.1.4)[Equivalent Pairs].Two pairs (µ, b), (µ′, b′) as in(14.7.1.24) are called equivalent if
there exists g ∈ G(K0) s.t. b′ = gbσ(g)−1, and the cocharacters µ′, gµg−1 define the same filtration
on RepQp(G). Equivalent, Ib,µ = Ib′,µ′ .

Def.(14.7.1.5) [Slope Morphisms].Let D = SpecQp[{T 1/k}k∈Z] = D(Q)Qp be the pro-algebraic
torus over Qp with character group Q, and b ∈ G(K0), then there is a morphism νb : DK0 → GK0 ,
called the slope morphism associated to b, which is defined as follows:

For any (ρ, V ) ∈ RepQp(G), there is an associated isocrystal defined in(14.7.1.20), then there
is a morphism νρ ∈ HomK0(D,GL(V )) that D acts on the isotypical component Vλ of V by the
character λ ∈ Q = X∗(D). Then for any x ∈ D(R), the mapping ρ→ νρ(x) gives an automorphism
of the standard fiber functor on RepQp(G), so by Tannakian duality corresponds to a unique element
y ∈ G(R) that ρ(y) = νρ(x) for any ρ. The homomorphism x 7→ y is functorial in R and thus defines
an element ν ∈ HomL(D, G).

Remark(14.7.1.6).Notice the group Q∗ acts on D, and for s ∈ Q∗ and v ∈ HomK0(D, G), denote by
vs the composite DK0

s−→ DK0
v−→ GK0 , and D→ Gm the natural morphism, then for any v, there is a

suitable s that sv factors through a morphism also denoted by νs : Gm,K0 → GK0 , as G is algebraic.

Prop.(14.7.1.7) [Characterizing the Slope Morphism].The slope morphism associated to b ∈
G(K0) can be characterized intrinsically to be the unique morphism ν ∈ HomL(D, G) s.t.: There
exists some s ∈ Z+, c ∈ G(L) that

• sν ∈ HomL(Gm, G),
• cνsc−1 is defined over Qps .
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• c(bσ)sc−1 = cνs(p)c−1σs.

Proof: Cf.[Kottwitz, P13]. □

Cor.(14.7.1.8). σ acts on νb ∈ HomK0(D, G), and it satisfies the following properties:
• νσ(b) = σ(νb).
• νgbσ(g)−1 = gνbg

−1.
• bνσb−1 = ν.

Proof: 1 follows from the fact (V ⊗Qp K0, bσ) σ,∼=−−→ (V ⊗Qp K0, σ(b)σ).
2 follows from the fact (V ⊗Qp K0, bσ) ρ(g),∼=−−−−→ (V ⊗Qp K0, gbσ(g)−1σ)by(14.7.1.20).
3 follows from 2 as b = bσ(b)σ(b)−1. □

Cor.(14.7.1.9)[Newton Map]. If G/F is a connected reductive group with a maximal torus T and
Weyl group WT , we get a map of sets

ν : B(G)→ N (G) = (int(G(K0))\HomK0(D, G)⟨σ⟩) = (X∗(T )Q/WT )GalQ

called the Newton map, and it is functorial in G. It follows from the Dieudonné-Manin classifica-
tion(7.6.4.13) that when k = k and G = GL(n), this Newton map is injective.

Def.(14.7.1.10) [Kottwitz-Decent Elements]. [b] ∈ B(G)(14.7.1.3) is called Kottwitz-decent if
there is some s ∈ Z+ and some b ∈ [b] that νsb : D→ G factors through D→ Gm and

(bσ)s = νsb (p)σs ∈ G(K0) ⋊ ⟨σ⟩.

it can be verified that this doesn’t depends on the choice of b.

Prop.(14.7.1.11). If G is connected, then any [b] ∈ B(G) is Kottwitz decent(14.7.1.10).

Proof: Cf.[Kottwitz]. □

Prop.(14.7.1.12). If b ∈ G(K0) satisfies the descent condition for s in(14.7.1.10), then b ∈ G(Qps)
and ν is defined over Qps .

Proof: Set bs = bσ(b) . . . σs−1(b), then iterating(14.7.1.8), bsνσ
s
b−1
s = ν. And we have bs = νs(p),

so νσs = ν, so ν is defined over Qps .
To show the first assertion, notice (bσ)(bσ)s = (bσ)s(bσ) shows

νs(p)σsbσ = bσνs(p)σs = νs(p)bσs+1(14.7.1.8).

and then bσs = σsb. □

Cor.(14.7.1.13). If b1, b2 ∈ [b] are Kottwitz-decent w.r.t the same s ∈ Z+, then they are conjugate
w.r.t. G(K0 ∩Qps).

In particular, for any descent b ∈ G(Qps) and any V ∈ RepQp(G), the induced isocrystal(14.7.1.20)
is defined over the field Qps , and it only depends on [b] ∈ B(G).

Proof: Suppose b2 = gb1σ(g)−1, then ν2 = gν1g
−1, and the descent equations are

(b1σ)2 = sν1(p)σs, g(b1σ)sg−1 = gsν1(p)g−1σs.

Comparing these two, g commutes with σs, so g ∈ G(K0 ∩Qps). □
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Prop.(14.7.1.14)[Scheme J and Conjugacy Classes].For b1, b2 ∈ G(K0), then the functor

J(R) = {g ∈ G(R⊗Qp K0)|g(b1σ) = (b2σ)g}

is representable by a smooth affine scheme over Qp. When b1 = b2 = b, denote the scheme by Jb.
Assume b1, b2 ∈ G(W (k′)[1

p ]) where k′ = k′ ⊂ k, and J ′ the corresponding smooth affine scheme,
then J ′ → J is an isomorphism. In particular, B(G)→ B′(G) is injective, and it is surjective if G is
connected and k = k.

Proof: Choose an embedding G ⊂ GL(n)Qp and let G be defined by functions f1, . . . , fk, consider
the functor:

F (R) = {g ∈ Mat(n;R⊗Qp K0)|g = bσ(g)b−1},

then it is representable by an affine space by(14.7.1.15) applied to the σ-linear map g 7→ bσ(g)b−1.
So there is a f.d. Qp-vector space W ⊂ Mat(n;K0) that F (R) = W ⊗Qp R. Choose a basis (Ai)

of W , then J(R) is just the subfunctor of ri ∈ R that

fk(
∑

riAi) = 0, det(
∑

riAi) ̸= 0.

Taking a basis of K0 over Qp, then these are polynomials with coefficients in Qp. It is automatically
smooth by Cartier’s theorem(8.1.4.2).

The assertion about base change follows from(14.7.1.15).
The surjectivity follows from(14.7.1.11) and(14.7.1.12). □

Lemma(14.7.1.15).Let N be a f.d. isocrystal over K0 w.r.t. σs for some s ̸= 0, then the following
functor

F : CRingQp → Ab : R 7→ (V ⊗Qp R)φ=id

is representable by a vector space over Qp.

Proof: F (R) = V φ=id ⊗Qp R, so it suffices to show dimQp V
φ=id < ∞. Firstly assume that L is

alg.closed, then this is a consequence of Dieudonné-Manin classification(7.6.4.13). This functor F
doesn’t depend on k as long as k = k: if k′/k is a field extension and k′ = k′, then the correspond-
ing functor F ′ defined by N ⊗W (k)[ 1

p
] W (k)[1

p ] coincide with F .(This is also by Dieudonné-Manin
classification.) □

Cor.(14.7.1.16).Assume [b] ∈ B(G) is Kottwitz-decent for s ∈ Z+(14.7.1.10), then Jb is a Qps/Qp-
inner form of the centralizer Gνs(p)(14.7.1.12).

Proof: The descent equation shows bs = sν(p), so the adjoint bad : g 7→ (bσ)g(bσ)−1 = bσ(g)b−1

defines an element in H1(G(Qps/Qp),Aut(Gsν(p)(Qps))), because

σkbad : g 7→ ((σ(bσ−1(g))b−1)) = σk(b)σ(g)σk(b)−1.

so
bad ◦ σ(bad) ◦ . . . ◦ σs−1(bad) : g 7→ bsgb

−1
s = sν(p)g(sν(p))−1 = g.

So it defines an inner form, which is just

J ′(R) = Gsν(p)(Qps)badσ = {g ∈ Gsν(p)(R⊗Qp Qps)|g(bσ) = (bσ)g}

Now it suffices to show J ′(R) is just J(R) defined in(14.7.1.14). For this, notice any g ∈ J(R)
commutes with bσ thus commutes with sν(p) by(14.7.1.8), and the descent condition (bσ)n = sν(p)σn
shows it commutes with σn, so g ∈ J ′(R). □
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Prop.(14.7.1.17) [Basic Elements].Let G be a connected reductive group and k = k, then the
following are equivalent for b ∈ G(K0):

• The slope morphism ν factors through the center Z(G) of G.
• b is σ-conjugate to an element in T (K0) where T is an elliptic maximal torus of G.
• Jb in(14.7.1.14) is an inner form on G.

In this case, b and its conjugacy class b are called Kottwitz-basic. The set of Kottwitz-basic classes
in B(G) is denoted by B(G)b.

Proof: Cf.[Kottwitz]. □

Prop.(14.7.1.18). Situation as in(14.7.1.17), if [G,G] is simply-connected, then G → Gab induces a
bijection B(G)b ∼= B(Gab). In particular, B(G)b is trivial if G is semisimple and simply-connected.

Proof: Cf.[Kottwitz, P17]. □

F-Isocrystals with G-Structures

Def.(14.7.1.19) [Isocrystals with G-structures].Given S ∈ Schp, an Isocrystal with G-
structures over S is an exact faithful tensor functor(3.1.6.2)

M : RepQp(G)→ F-Isoc(S)(7.6.4.2).

The category of isocrystals with G-structures over S is denoted by F-IsocG(S).

Prop.(14.7.1.20)[Associated Isocrystals with G-Structure].For b ∈ G(K0), there is a functor

Ib : RepQp(G)→ F-Isoc(k) : V 7→ (V ⊗Qp K0, ρ(b) ◦ (id⊗σ)).

this is an isocrystal with G-structures over K0 associated to b.
If g ∈ G(K0) and b′ = gbσ(g)−1, then multiplying by g implies a natural isomorphism between

Ib and Ib′ .

Cor.(14.7.1.21) [Isocrystals and B(G)].From any isocrystal with G-structures on S, we get a
function

S → B(G) : s 7→ [b]s.

And if k = k and S = Spec k, then the isomorphism classes of isocrystals with G-structure over
S are in bijection with B(G).

Proof: ? Cf.[RR96, P171]. □

Prop.(14.7.1.22) [Newton Map Constency]. If S is connected locally Noetherian, and M ∈
F-IsocG(S) s.t. ν ◦ bM is constant, then bM is constant.

Proof: Cf.[RR96, P173].? □

Cor.(14.7.1.23). If S is locally Noetherian, then M ∈ F-IsocG(S), and [b0] ∈ B(G)b, then

{s ∈ S|[bM (s)] = [b0]} ⊂ S

is closed.

Proof: □
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Weakly-Admissible Pairs

Prop.(14.7.1.24) [Associated Filtered Isocrystals].Let K be a field extension of K0, and µ :
Gm,K → GK be a cocharacter over K, then the associated isocrystal over K0 prolongs to a filtered
isocrystal over K(15.4.6.22),

Ib,µ : RepQp(G)→ φ-Mod FilK : V 7→ (V ⊗Qp K0, ρ(b) ◦ (id⊗σ),Fil•µ),

where the filtration comes from µ by weight-filtrations(because Gm is diagonalizable(8.2.3.1)).

Def.(14.7.1.25) [Weakly-Admissible Pairs].Let G be a reductive group, then a pair (µ, b) as
in(14.7.1.24) is called a (weakly)admissible pair if for any V ∈ RepQp(G), the filtered isocrys-
tal Ib(V ) is weakly admissible??(15.4.4.10).

It suffices to check this condition for one faithful representation V .

Proof: This is because for a faithful representation V , any Qp-representation appears as a direct
summand of V ⊗n ⊗ V̂ ⊗m(15.5.1.16). Then the assertion follows from the fact direct summands and
tensor products of weakly admissible filtered isocrystals are weakly admissible(15.4.6.26). □

2 Period Domain
Def.(14.7.2.1) [Associated Partial Flag Variety].Let [µ] : Gm → G be a conjugacy class of
cocharacters defined over a finite extension field E/Qp(15.5.2.5), then there is associated a faithful
tensor functor

RepQp → grZE → FilE
Now call two cocharacters equivalent if their associated functor are isomorphic. Consider the

functor

CRingE → Set : R 7→ {the equivalence classes in the G(R)-conjugacy class of µR}

and also consider the closed algebraic subgroup P (µ) ⊂ G over E:

P (µ)(R) = {g ∈ G(R)|gµRg−1 is equivalent to µR}

then the functor above is representable by the GE-homogenous variety F = GE/P (µ) ∈ Sch /E.

Prop.(14.7.2.2).F is a projective variety, or equivalently, P (µ) is a parobolic subgroup.

Proof: If V is a faithful representation in RepQp(G), we denote Flag(V ) the partial flag variety
over Qp which associates to any Qp-algebra R the filtration Fil• of V ⊗Qp R s.t. gri(R) are direct
summands and rank Fili = dimE Filiµ(VE). Then Flag(V ) is a projective variety, by classical results,
and there is a closed immersion

F ↪→ Flag(V )E
because the isocrystal on other representations are determined by this faithful representation. □

Def.(14.7.2.3)[p-adic Period Space].Let Ĕ = E(Qur
p )∧ be the completion of the maximal unramified

extension of E, then there is a rigid-analytic structure on F̆ = FĔ . define the p-adic period space
(F̆weak. adm

b )rig ⊂ F̆ rig associated to (G, b, [µ]) the set of points ξ conjugate to µ that (ξ, b) is weakly
admissible.



1482 CHAPTER 14. P -ADIC GEOMETRY

Let Jb be the algebraic group associated to b as in(14.7.1.14), then Jb(Qp) ⊂ G(K0) acts on F̆ rig,
and it preserves the set (F̆weak. adm

b )rig.
(F̆weak. adm

b )rig has a natural structure of an admissible open subset of F̆ rig. if b′ = gbσ(g)−1,
then µ 7→ g−1µg induces an isomorphism from (F̆weak. adm

b )rig to (F̆weak. adm
b′ )rig. Moreover, if b is

Kottwitz-decent w.r.t. s ∈ Z+, then this admissible open subset is defined over EQps .

Proof: Cf.[Rapoport Zink, P26]. □

3 Groups of EL/PEL Types
Def.(14.7.3.1)[Algebraic Groups of EL/PEL Types].Let F be a finite étale algebra over Qp, B
a finite central algebra over F , and V ∈Modfg

B .
An algebraic group of EL type over Qp is an algebraic group of the form GLB(V ). They are

related to the classification of p-divisible groups with an endomorphism and level structures.
Let (−,−) be a non-degenerate alternating Qp-bilinear form on V together with a formal involu-

tion ∗ on B that
(bv, w) = (v, b∗w).

Let F0 be the field of elements of F fixed by ∗.
An algebraic group of PEL type over Qp is an algebraic group over Qp given by

G(R) = {g ∈ GLB(V ⊗Qp R)|∃c ∈ X(G), (gv, gw) = c(g)(v, w), ∀v, w}

Prop.(14.7.3.2)[Setups]. If G is an algebraic group of EL/PEL type, K0 = W (Fp)[1
p ], b ∈ G(K0),

then we associate to b and the natural representation of G on V the isocrystal

(N(V ),Φ) = (V ⊗Qp K0, b(1⊗ σ)).

This isocrystal is equipped with an action of B, and in the PEL case an alternating bilinear form

ψ : N(V )⊗N(V )→ 1(n).

where n = vp(c(b)). In fact, we can find some unit u that c(b) = pnuσ(u)−1, then the pairing is
defined as

ψ(v, v′) = u−1(v, v′),

any other choices of u multiplies ψ by an element in Z∗
p.

We will fix in addition a conjugacy class of cocharacters µ : Gm → G defined over a field E, and
the associated homogenous algebraic variety F defined over E of filtrations(14.7.2.1). F is equipped
with a B-action, as G ∈ GLB(V ).

Notice in the PEL case, these filtrations satisfy F i = (Fm−i+1)⊥, where m = c ◦ µ ∈
Hom(Gm,Gm) ∼= Z. This is due to the fact (kv, kw) = km(v, w) and the fact the pairing is non-
degenerate.

Prop.(14.7.3.3) [Shimura Field].Fix a conjugacy class of cocharacters {µ} defined over E and
µ0 ∈ {µ}, its corresponding filtration F•

0 , The field E in(14.7.3.2) can be described as the field of
definition of the isomorphism class of F•

0 as a B-invariant filtration, or equivalently as the finite
extension of QP generated by the traces

tr(d; griF0(V ⊗Qp Qp)), d ∈ B, i ∈ Z.
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And the filtration F is described as the functor that for any E-algebra R, F(R) is the set of
filtrations F• of V ⊗Qp R by R-modules that are direct summands that

tr(d; griF (V ⊗Qp R)) = tr(d; griF0(V ⊗Qp Qp)).

and moreover in the PEL case satisfies F i = (Fm−i+1)⊥.

Proof: 1: The field of definition E of the conjugacy class {µ} is determined by Tannakian duality,
so it suffices to check over which field these two filtrations are isomorphic as G-filtrations, but G is
just the group fixing the B-module structure, so it suffices to show they are equivalent as B-modules,
which is then determined by the traces, by(2.4.1.27).

2: It suffices to show F is a homogenous space under G. We restrict to the PEL case, the EL
case is simpler. After base change from Qp to Qp, the data decomposes to the following types:

• (A) : B = End(W )× End(W∨) where W is a f.d. Qp-vector space and (u, v)∗ = (vt, ut).
And V = W ⊗ V ′⊕W∨ ⊗ V ′∨ where the pairing is natural and makes the sum orthogonal.

G = {(1⊗ g, c · (1⊗ g−t)|g ∈ GL(V ′), c ∈ X(G)}

• (C) : B = End(W ) where W is a f.d. Qp-vector space equipped with a symmetric bilinear form
(−,−)W and ∗ is the transposition w.r.t it.
And V = W ⊗ V ′ where V ′ is equipped with an alternating form (−,−)V ′ that (−,−)V =
(−,−)W ⊗ (−,−)V ′ .

G = {cg|g ∈ Sp(V ′), c ∈ X(G)}

• (BD): As in (C), except that (−,−)W is skew-symmetric and (−,−)V ′ is symmetric.

G = {cg|g ∈ SO(V ′), c ∈ C(G)}

Under this decomposition, the functor F in the proposition is represented by products of partial
flags of V :

• (A) : F i = W ⊗ (F ′)i
⊕
W∨ ⊗ ((F ′)m+1−i)⊥ and the correspondence F• 7→ (F ′)• identifies F

with the partial flag variety of V ′ with fixed dimensions dim((F ′)i).
• (B,CD) : F• = W ⊗ (F ′)• and F is identified with the partial flag variety of V ′ of fixed

dimensions dim((F ′)i) and (F ′)i = ((F ′)m+1−i)⊥.
The (A) case G clearly acts transitively on F , and the (B,CD) case (F ′)i is isotropic for
i ≥ (m + 1)/2, and it determines all other components, so G acts transitively, by Witt’s
theorem(12.5.2.3).

The reason is(2.4.3.27) and the fact representations of B is semisimple, then contemplating on
the pairing condition. □

Prop.(14.7.3.4)[Examples of PEL Type].Let B = D be the quaternion algebra over Qp and ∗ be
the involution, i.e.

D = Qp2 [Π], Π2 = p, Πa = σ(a)Π

and
a∗ = σ(a), a ∈ Qp2 , ,Π∗ = Π.

Let (V, ι) be a free D-module of rank n with a non-degenerate bilinear form satisfying the conditions
in(14.7.3.1). Then G is a non-trivial inner form of the group GSp2n of symmetric similitudes:
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Firstly Qp2 ⊗ K0 ∼= K0 ⊕ K0, then Qps acts on K0 ⊕ K0 by a(x, y) = ax, σ(a)y). As V is a
Qp2-vector space, there is a decomposition

V = V0 ⊕ V1

where Qp2 acts on Vi by a(v) = v.σi(a), then GK0 is just GSp2n,K0 , and G ̸= GSp2n as the Galois
action σ on Qp2 ⊗K0 and K0 ∼= K0 ⊕K0 are different.

Take b ∈ G(K0) the element with c(b) = p and the corresponding isocrystal (N,Φ) is isotypical
of slope 1/2. N decomposes as N0 ⊕N1. Notice now Π and Φ = bσ interchanges Ni, and ΠΦ = ΦΠ.
Also Ni is isotropic: For v, w ∈ Ni, a ∈ Qp2 ,

a(v, w) = (av, w) = (ι(σi(a))v, w) = (v, ι(σi+1(a))w) = (v, σ(a)w) = σ(a)(v, w)

so (v, w) = 0.
We can define a new non-degenerate alternating form

⟨−,−⟩ : N0 ×N0 → K0 : ⟨v, v′⟩ = (v,Πv′)

and also a σ-linear endomorphism of N0: Φ0 = Π−1 ◦Φ|N0 . From the condition, vp(det Φ0) = 0, and
Φ has all the slopes 0. Also ⟨Φ0v,Φ0w⟩ = σ(⟨v, w⟩), as

⟨Φ0v,Φ0w⟩ = (Π−1Φv,Φw) = (Π−1bσv, bσw) = σ(v,Πw) = σ(⟨v, w⟩).

so this alternating form is defined over Qp, denoted by (V0, ⟨−,−⟩), and Φ0 corresponds to σ. Then
Jb = GSp(V0, ⟨−,−⟩).

Next we consider
(0) = F2

0 ⊂ F1
0 ⊂ F0

0 = V ⊗Qp

be a filtration where F1
0 be a D-invariant Lagrangian subspace. This corresponds to a cocharacter

µ→ G, and F is just the Qp2 variety of D-invariant Lagrangian subspaces of VQp2 . By(14.7.3.3), the
Shimura field is Qp.

Let F ⊂ F(K) where K/K0 is a field extension, then

F = F0 ⊕F1

where Fi ∈ N0 ⊗K0 K, as F is Π-invariant. Now F0 is also a Lagrangian subspace of (V0, ⟨−,−⟩).
F(K) identifies the K-points of the Grassmannian of Lagrangian subspaces of (V0, ⟨−,−⟩).

Cor.(14.7.3.5).Under the above identification, the subset Fwa(K) of the Grassmannian of Lagrangian
spaces F of (V0 ⊗K, ⟨−,−⟩) is characterized by F satisfying the the following conditions:

For all totally isotropic subspaces W0 ⊂ V0, we have dimK F ∩ (W0 ⊗K) ≤ 1/2 dimW0.
Proof: It’s clear µ(N,Φ,F) = 0, so weakly-admissibility is equivalent to semi-stability. The
uniqueness of the HN-filtration of F implies its D-invariance, thus semi-stability is equivalent to the
fact that for any subspace P ⊂ N stable under Φ and D-action, we have

dimK(F ∩ (P ⊗K0 K)) ≤ vp(det(Φ;P )).

Now Φ is isotypical with slope 1/2, vp(det(Φ;P )) = 1
2 dimP , and the D-invariance of P is equivalent

to P = P0 ⊕ P1 and the Φ-invariance of P is equivalent to the Φ0-invariance of P0, i.e. P0 is a
Qp-rational subspace W0 ⊂ V0.

Finally we show it suffices to check for totally isotropic subspaces: Let W ′
0 be the radical of W0,

then there is a non-singular alternating form on W0/W
′
0, then the image of F ′

0 ∩ (P ⊗K0 K) in this
quotient is a totally isotropic space, thus has dimension≤ 1

2 dim(W0/W
′
0). then it suffices to check

the condition for W ′
0. □
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14.8 Adic Spaces and Perfectoid Spaces(Scholze)
Main References are [Hub93], [Hub96], [Mor19], [Bha17], [Wed14], [S-W20], and [Sch12].

1 (Continuous)Valuation Spectrums
Main references are [Mor19]. Notice this should be prior to the definition of adic spaces.

Def.(14.8.1.1)[Riemann-Zariski Space].Let K be a field and A be a subring, the Riemann-Zariski
space RZ(K,A) is defined to be the set of all valuation subrings of K containing A that has the
topology generated by

U(x1, . . . , xn) = {P ∈ RZ(K,A)|x1, . . . , xn ∈ P}.

RZ(K, 0) is also denoted by RZ(K). RZ(K,A) is just isomorphic to Spa(K,Aitc), so it is spectral
by(14.8.2.24).

Cor.(14.8.1.2).Clearly the specialization relations of RZ(K,A) is identical to inclusion relations.

Def.(14.8.1.3)[Valuation Spectrum].Let A be a ring, the valuation spectrum Spv(A) is the set
of equivalent classes of valuations on A, topologized by the open subsets

Spv(A)(f
g

) = {x ∈ Spa(A)||f(x)| ≤ |g(x)| ̸= 0}.

Spv(A) is spectral, with sub-basis generated by Spv(fg )
There is a kernel map ker : Spv(A) → SpecA sending a valuation to its kernel(support). Then

this map is continuous, and the fiber of this map over p is just isomorphic to the Riemann-Zariski
space RZ(k(p)).

Moreover, the map ker : Spv(A)→ SpecA is spectral, as the kernel of D(f) is U(ff ).

Specialization Relations in Spv(A)

Def.(14.8.1.4)[Vertical Specializations].Let x, y ∈ Spv(A). We say that x is a vertical specializa-
tion of y if x is a specialization of y and px = py.

Valuations with Support Conditions

Def.(14.8.1.5)[Spv(A, J)].We define a space Spv(A, J) ⊂ Spv(A) by

Spv(A, J) = {x ∈ Spv(A)|r(x) = x} = {x ∈ Spv(A)|cΓx(J) = Γ}.

with the subset topology from Spv(A).

Prop.(14.8.1.6).
• Spv(A, J) is a spectral space.
• A basis of quasi-compact open subsets for the topology is given by the sets U(f1,...,fn

g ) where
J ⊂

√
(f1, . . . , fn).

• The retraction r : Spv(A)→ Spv(A, J) is a spectral map.

Proof: Cf.[Mor19]P52. □
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Continuous Valuation Spectrum

Def.(14.8.1.7) [Continuous Valuations].Let A be a Huber ring, then we define Cont(A) as the
subspace of Spv consisting of continuous valuations on A, then

Cont(A) = {x ∈ Spv(A,A00A)|x(A00) < 1}

Proof: Cf.[Mor19]P64. □

Cor.(14.8.1.8) [Cont(A) is Spectral].For any Huber ring A, Cont(A) is a spectral space, with a
basis of quasi-compact open subsets given by U(f1,...,fn

g ), where A00 ⊂
√

(f1, . . . , fn), or equivalently
(f1, . . . , fn) is open??.

Proof: This is because
Cont(A) = Spv(A,A00A)−

∪
g∈A00

U(1
g

),

which is an open subset of Spv(A,A00A), thus the assertion follows from(14.8.1.6) and(3.11.4.7). □

2 Adic Spectrums

Def.(14.8.2.1)[Adic Spectrums].Let (A,A+) be a Huber ring, the adic spectrum is defined to be

Spa(A,A+) = {x ∈ Cont(A)||A+|x ≤ 1}

For a Huber ring A, denote SpaA = Spa(A,A0), where A0 is the ring of power-bounded ele-
ments(10.3.5.8).

The shape of these open sets is dictated by the desired properties that both {x|f(x) ̸= 0} and
{x|f(x) ≤ 1} be open. These desiderata combine features of classical algebraic geometry and rigid
geometry, respectively.

Prop.(14.8.2.2).The adic spectrum construction defines a contravariant functor from the category
of Huber pairs to the category of topological spaces. And for any ring of integers A+, SpaA =
Spa(A,A0) ↪→ Spa(A,A+) is an immersion of spaces, by(10.3.5.13).

Def.(14.8.2.3)[Kernel map].Taking kernels of valuations gives a map ker : Spa(A,A+) → SpecA.
This map is continuous, as the inverse image of D(f) is Spa(A,A+)(ff ). We call a subset a Zariski
open subset of Spa(A,A+) iff it is open in the initial topology along ker.

Def.(14.8.2.4)[Rational Subsets].A rational subset of Spa(A,A+) is defined to be

Spa(A,A+)(f1, . . . , fn
g

) = {x ∈ Spa(A,A+)|x(fi) ≤ x(g)},

where (fi) is an open ideal.

Prop.(14.8.2.5)[Adic Spectrums are Spectral].The adic spectrum Spa(A,A+) is spectral, and a
basis of quasi-compact open subsets are given by rational subsets. And the Spa functor is naturally
a functor from the category of Huber rings to the category of spectral spaces.
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Proof: Firstly Spa(A,A+) is closed in the constructible topology of Cont(A): for any a ∈ A,

{x ∈ Cont(A)||a|x ≤ 1} = U(1, a
1

)

is a quasi-compact open subset of Cont(A), so constructible, thus Spa(A,A+) = ∩a∈A+{x ∈
Cont(A)||a|x ≤ 1} is closed in the constructible topology.

So the assertions follow from(3.11.4.7) and(14.8.1.8). □

Remark(14.8.2.6). In spite of the proposition that adic spaces are spectral, it is very different
from classical algebraic geometry. For example, the generalizations of a point y is totally or-
dered(localization of the valuation ring), but this nearly never happen for an affine variety.

Remark(14.8.2.7).The rational subsets forms a basis for the topology of Spa(A,A+). But in general
Spa(fg ) is not quasi-compact, in particular, ker : Spa(A,A+)→ SpecA is not quasi-compact.

Def.(14.8.2.8)[Specialization Map].The specialization map

Sp : Spa(A,A+)→ Spec(A+/A00)

that maps a point x to the inverse image of the maximal ideal of Rx along the valuation map
A+ → Rx it corresponds. It clearly lies in Spec(A+/A00) as any pseudo-uniformizer is mapped to a
pseudo-uniformizer in Rx thus in the maximal ideal.

This map is continuous and spectral, unlike that the kernel map(14.8.2.23): the inverse image
of a D(f) for f ∈ A+ is the set of points x ∈ Spa(A,A+) that x(f) is a unit, i.e. |x(f)| = 1. As
|x(f)| ≤ 1 for all f ∈ A+, this set is just Spa(A,A+)( 1

f ), so specialization map sp is both continuous
and spectral.

Completed Residue Fields

Def.(14.8.2.9) [Completed Residue Fields].Let x ∈ Spa(A,A+), then we denote by k(x) the
fraction field of A/px, with a valuation ring k+(x). If x is not analytic, we set κ(x) = k(x), κ+(x) =
k+(x). If x is analytic, we set κ(x) = k(x)∧, κ+(x) = k+(x)∧. (κ(x), κ(x)+) is called the completed
residue field of x.

Prop.(14.8.2.10)[Vertical Generalizations].The morphism

Spa(κ(x), κ(x)+)→ Spa(A,A+)

induces a homeomorphism onto the set of vertical generalizations of x.
x is analytic iff κ(x) is microbial.

Proof: For the first assertion, if x is not analytic, then Spa(k(x), k(x)+) ∼= RZ(k(x), k(x)+) is
homeomorphic to the vertical generalizations of x.

If x is analytic, then by(14.8.2.17), Spa(κ(x), κ(x)+) → Spa(k(x), k(x)+) is a homeomorphism.
And now we need to check more that if R ∈ RZ(k(x), k(x)+) corresponds to a vertical generalization
y, then | · |R is continuous iff | · |y is continuous. For this, see[Mor19]107.

The second assertion follows from(10.3.6.7). □

Prop.(14.8.2.11)[Residue of Rational Subsets].Let f : (A,A+) → (A⟨Ts ⟩, A⟨
T
s ⟩

+) be a rational
subset, and y ∈ Spa(A⟨Ts ⟩, A⟨

T
s ⟩

+) with x = Spa(f)(y), then the canonical map (k(x), k(x)+) →
(k(y), k(y)+) induces an isomorphism of Huber pairs (κ(x), κ(x)+) ∼= (κ(y), κ(y)+) after completion.
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Proof: Cf.Morel P108.? □

Def.(14.8.2.12)[Adic Points].An adic point is Spa(K,K+) where (K,K+) is a Huber pair that
K is either a complete non-Archimedean field or a discrete field, and K+ is an open and bounded
valuation subring(hence integrally closed). An analytic adic point is one that K is complete
non-Archimedean.

Prop.(14.8.2.13).The adic point is not a point in general. In fact, if K is non-Archimedean,
Spa(K,K+) is totally ordered by inclusion?, with a unique closed point corresponding to K+ and a
unique generic point corresponding to OK .

Prop.(14.8.2.14)[Valuation Ring Characterization of Spa].For a Huber pair (A,A+), there is a
natural bijection between Spa(A,A+) and the set of maps φ : (A,A+)→ (K,K+) that Spa(K,K+)
is an adic point where Kx = κ(x) and x corresponds to the image of the closed point of Spa(K,K+)
under the map Spa(φ). And x is analytic iff the corresponding adic point Spa(K,K+) is analytic.

Proof: Let φ : (A,A+) → (K,K+) be a map of Huber pairs, then correspond the maps gives a
continuous valuation on A which is in Spa(A,A+) and px = ker(φ). Notice x is the image of the
closed point of Spa(K,K+). And we get a map k(x)→ K such that k(x)+ = k(x)∩K+, and that has
dense image by assumption, so after completion(when non-Archimedean) induces an isomorphism
(κ(x), κ(x)+) ∼= (K,K+). Thus this is a bijection of sets. □

Prop.(14.8.2.15)[Uniformity]. If A is uniform, then the map

A→
∏

x∈Spa(A,A+)
κ(x)

is a homeomorphism of A onto its image, where κ(x) is the completed residue field(14.8.2.9).

Proof: Berkovich, Étale cohomology for non-Archimedean analytic spaces.? □

Cor.(14.8.2.16).Let ÕX be the sheafification ofOX , then if A is uniform, A→ H0(X, ÕX) is injective.

Proof: In fact, A→ H0(X, ÕX)→
∏
x κ(x) is injective. □

Properties of Adic Spectrums

Prop.(14.8.2.17)[Properties of Adic Spectrums].
• The completion map (A,A+) → (Â, Â+) induces an homeomorphism on the adic spectrums

that preserves rational subsets.
• Spa(A,A+) vanishes iff its completion Â vanishes.
• (Adic Nullstellensatz)A+ = {f ∈ A|x(f) ≤ 1, ∀x ∈ Spa(A,A+)}.
• If A is complete, then f ∈ A is a unit iff |f |x ̸= 0 for all x ∈ Spa(A,A+).
• If A is Tate, then f is topologically nilpotent iff |f |nx → 0 for any x ∈ Spa(A,A+).)

Proof: 1: Use the valuation ring characterization(14.8.2.14), a point of x determined a continuous
map (A,A+)→ (K,K+). Now this extends to a map under completion, thus determines a point of
Spa(Â, Â+), so the Spa map is surjective. And injectivity follows from the fact A is dense in Â.
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For the homeomorphism, just notice that if fi − f ′
i , g − g′ ∈ tN+1Â, then

Spa(f1, . . . , fn
g

) = Spa(f
′
1, . . . , f

′
n

g′ ).

where fn = tN . So now A is dense in Â, if we choose fi, g ∈ A, then this rational subset is clearly
induced from A.

2: Cf.[Mor19]P104.
3: Cf.[Mor19]P91.
4: Cf.[Mor19]P106.
5: Cf.[Mor19]P106. □

Cor.(14.8.2.18)[Generalizations in Adic Spectrum].The above proposition shows that the gen-
eralization relations of Spa are easily determined, for an element y, all generalizations of y are in
bijection with Spec(Ry/(t)) as a poset, thus totally ordered, and each y has a unique generic point
as generalization, because it is microbial.

Moreover, Spa(A,A0) is closed under generalization in Spa(A,A+), and they have the same set
of generic points.

Proof: The last assertion is because the generalizations of a point y is just valuation rings containing
Ry, and Ry contains A0/py, so does its generalizations. And for any generic point x ∈ Spa(A,A+),
A0 is mapped to the valuation ring Rx, because it is a rank 1 valuation, so if tkfN ⊂ Rx, then f ∈ Rx
because otherwise we have |t| < |f−n| for n large. □

Def.(14.8.2.19)[Specialization Map].The specialization map

Sp : Spa(A,A+)→ Spec(A+/A00)

that maps a point x to the inverse image of the maximal ideal of Rx along the valuation map
A+ → Rx it corresponds. It clearly lies in Spec(A+/A00) as any pseudo-uniformizer is mapped to a
pseudo-uniformizer in Rx thus in the maximal ideal.

This map is continuous and spectral, unlike that the kernel map(14.8.2.23): the inverse image
of a D(f) for f ∈ A+ is the set of points x ∈ Spa(A,A+) that x(f) is a unit, i.e. |x(f)| = 1. As
|x(f)| ≤ 1 for all f ∈ A+, this set is just Spa(A,A+)( 1

f ), so specialization map sp is both continuous
and spectral.

Prop.(14.8.2.20)[Maximal Hausdorff Quoteint].Let X = Spa(A,A+) be an affinoid Tate space,
the if X is the quotient of X by the equivalence relation generated by specialization, then X is the
Hausdorffization of X, i.e. X is Hausdorff.

Proof: To show X is Hausdorff, if x, y ∈ X is not mapped to the same point in X, then
by(14.8.2.18), we may assume x, y is generic in X, and {x} ∩ {y} = ∅. Now we must find two
disjoint open subsets of x, y that is stable under specialization. Cf.[Bhatt Perfectoid Spaces P75]. □

Spectrality of Adic Spectrums

Def.(14.8.2.21)[Rational Subsets].A rational subset of Spa(A,A+) is defined to be

Spa(A,A+)(f1, . . . , fn
g

) = {x ∈ Spa(A,A+)|x(fi) ≤ x(g)},

where (fi) = (1).
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Prop.(14.8.2.22).Rational subsets are stable under intersection(Easy).

Prop.(14.8.2.23).The rational subsets forms a subbasis for the topology of Spa(A,A+).? But
in generally Spa(fg ) is not quasi-compact, in particular, Spv(A) → Spa(A,A+) is not quasi-
compact(proper).

Prop.(14.8.2.24)[Adic Spectrums are Spectral].The adic spectrum Spa(A,A+) is spectral, and
a basis of quasi-compact open subsets are given by rational subsets. And the Spa functor is naturally
a functor from the category of Huber rings to the category of spectral spaces.

Proof: Firstly Spa(A,A+) is closed in the constructible topology of Cont(A): for any a ∈ A,

{x ∈ Cont(A)||a|x ≤ 1} = U(1, a
1

)

is a quasi-compact open subset of Cont(A), so constructible, thus

Spa(A,A+) = ∩a∈A+{x ∈ Cont(A)||a|x ≤ 1}

is closed in the constructible topology.
So the assertions follow from(3.11.4.7) and(14.8.1.8). □

Remark(14.8.2.25). In spite of the proposition that adic spaces are spectral, it is very different
from classical algebraic geometry. For example, the generalizations of a point y is totally or-
dered(localization of the valuation ring), but this nearly never happen for an affine variety.

Cor.(14.8.2.26) [Detecting Nilpotence Locally]. If (A,A+) is an affinoid Tate ring and f ∈ A,
then f ∈ A00 iff |f(x)|n → 0 for all x.

Proof: If f is topological nilpotent, then fN ∈ tA+ for some n, so |f(x)|nN ≤ |t(x)|n → 0 because
x is continuous. Conversely, if |f(x)|n → 0 for all x, then X = ∪nX(f

n

t ). But X is quasi-compact,
so |f(x)|n ≤ |t(x)| for all x, for some n. So by(14.8.2.17) fn ∈ tA+. Now A+ is a filtered colimits of
rings of definitions(10.3.5.14), so fn ∈ tA0 for some tA0, which shows that f ∈ A00. □

Constructions of Adic Spectrums

Prop.(14.8.2.27)[Direct Limits of Uniform Affinoids].The direct limits exists in the category of
uniform affinoid Tate rings. and A+ = colimA+

i .
Moreover,

|Spa(A,A+)| ∼= lim←−
i

|Spa(Ai, A+
i )|

as a homeomorphism of spectral spaces, and each rational subset of Spa(A,A+) is pulled back from
some rational subset of Spa(Ai, A+

i ).
The same conclusion also hold in the category of complete uniform affinoid Tate rings(For the

homeomorphism, (14.8.2.17) is used).

Proof: Suppose the colimit index has a minimal element i0, let t be a pseudo-uniformizer, then
each A+

i is a ring of definition with pseudo-uniformizer t. Now we set A = colimAi with ring of
definitions A+ = colimA+

i , then A+ is integrally closed in A, thus (A,A+) is truly a uniform affinoid
Tate ring. Now we check it is the colimit: For any compatible map (Ai, A+

i ) → (B,B+), there is a
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map f : (A,A+)→ (B,B+) as abstract rings. We check it is continuous: we may assume B+ is the
ring of definition, then tnA+ ⊂ f−1(tnB+), thus it is continuous.

For the adic spectrum, now a point x ∈ Spa(A,A+) is determined by the map of uniform affinoid
Tate rings (A,A+) → (k(p), Rx), and by the universal property, it is defined by a compatible set of
maps (Ai, A+

i )→ (k(p), Rx). Now it is easy to see the desired bijection of topological spaces, as the
elements defining rational subsets are pullbacks from some Ai. □

Prop.(14.8.2.28) [Perfection of Adic Spectrum].Let (A,A+) be an affinoid Tate ring of charp,
then

• The Frobenius map induces a homeomorphism on the adic spectrum of (A,A+).
• If (A,A+) is uniform, then there is a perfection functor, which is left adjoint to the forgetful

functor from the category of perfect uniform affinoid Tate rings to the category of affinoid Tate
rings. And it is just (Aperf , A+

perf ).

• The natural map (A,A+)→ (Aperf , A+
perf ) induces a homeomorphism on the adic spectrum.

Proof: 1: The Frobenius pulls a valuation a multiple of itself, thus equals itself.
2: Clearly A+

perf is integrally closed in A+ and is in A0
perf . It suffices to show (Aperf , A+

perf ) is
uniform, but this is because A0

perf = (Aperf )0 ⊂ (t−nA0)perf = t−n(A0)perf .
3: The Spa map is checked to be continuous and injective, for the converse, using the microbial

valuation ring characterization, a point x of Spa(A,A+) corresponds to a map A+ to a complete
field k+(x), thus a map A+

perf → k+(x)perf , now k+(x) → k+(x)perf is faithfully flat that preserves
pseudo-uniformizers, thus it is a point y that maps to y. □

3 Structure Presheaf and Adic Spaces

Lemma(14.8.3.1)[Functions on Rational Subsets]. If X = Spa(A,A+) is a Huber ring, and U is
a rational subset, then there is a unique complete affinoid Tate ring (OX(U),O+

X(U)) over (A,A+)
that the the Spa map

Spa(OX(U),O+
X(U))→ Spa(A,A+)

is universal in all the complete affinoid Tate algebras that has image in U .
And in this case, this Spa map is a homeomorphism identifying the rational subsets contained in

U to rational subsets of Spa(OX(U),O+
X(U)). In particular, U is quasi-compact.

Proof:
? See Hub94 P1.3 for the proof in the Huber ring case.
Choose a ring of definition (A0, t), and U = Spa(A,A+)(f1,...,fn

g ) for fi, g ∈ A0, and fn = t??,
and let B = A[g−1] and B0 = A0[ fig ]. Then B = B0[t−1](notice that A0[t−1] = A). So B is a Tate A-
algebra with ring of definition (B0, t). Now if B+ is the integral closure of the subring of B generated
by A+[ fig ], then (B,B+) is an affinoid Tate ring. Set (OX(U),O+

X(U)) to be its completion.
By construction Spa(OX(U),O+

X(U)) maps into U , because x(g) ̸= 0 because g is a unit, and
|x(fi)| ≤ |x(g)| as fi/g ∈ B+.

Now check universal property: if Spa(C,C+) maps into U , then g is a unit in C by(14.8.2.17),
and then fi/g ∈ C+ by(14.8.2.17) again. Now C0 is the filtered colimit of all rings of definition, so
there is a ring of definition C0 that contains A0 and all fi/g((10.3.5.17) is used). Then this gives
a map of affinoid Tate rings that maps B0 into C0, and when passed to completion, induces a map
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OX(U) → C of Tate algebras. Now also B+ is mapped into C+ because C+ is integrally closed, so
we are done.

For the last assertion, by(14.8.2.17), we only have to prove Spa(B,B+)→ U is a homeomorphism
preserving rational subsets, for this, the injectivity is clear as B is a localization of A. And the
surjectivity follows immediately from the valuation ring characterization and universal property.
Continuity is also clear.

For the openness, for any rational subset X(f1,...,f
g ) of X = Spa(B,B+), because B = A[g−1], g is

unit in B, we can assume that fi, g ∈ A0. Now we show U ∩ Spa(A,A+)(f1,...,f
g ) is rational, for this,

it suffices to add a tN to fi, and this is possible, as X(f1,...,f
g ) is quasi-compact by(14.8.2.24). (This is

in fact similar to the proof that continuous bijection from compact to Hausdorff is homeomorphism).
□

Remark(14.8.3.2).The proof goes through with complete replaced by Zariski or Henselian, because
we only use item5 of(14.8.2.17), which is true for all Zariski pairs.

And by looking at the construction, if a rational subset U has a representation X(f1,...,fn
g ), then

fi ∈ O+
X(U), and g is invertible in OX(U).

Stalks

Def.(14.8.3.3)[Stalks].The stalks of an affinoid adic space is defined as in the case of schemes,
i.e. the colimit of the function ring of rational subsets containing x, without topology, and similarly
for the integral stalk. notice that the function rings are defined by universal property w.r.t to
complete Huber pairs, so the stalks only depend on the completion of (A,A+).

Lemma(14.8.3.4).Let U be an open subset of X = Spa(A,A+) and f, g ∈ OX(U), then V = {x ∈
U ||f |x ≤ |g|x ̸= 0} is an open subset of X.

Proof: Cf. Morel P116.? □

Prop.(14.8.3.5) [Valuations on the Stalks].Let X = Spa(A,A+) be an affinoid adic ring, and
x ∈ X, then:

• There is a valuation x on OX,x extending that on A, and O+
X,x = {f ∈ OX,x||f(x)| ≤ 1}.

• OX,x is local with maximal ideal mx = kerx, and O+
X,x is local with maximal ideal {f ∈

OX,x||f(x)| < 1}.
• If k(x) is the residue field of OX,x and k(x)+ be the image of O+

X,x in k(x), then k+(x) is
naturally a valuation ring, and (k, k+) is an affinoid field over (A,A+). In particular, there is
an isomorphism between the residue fields of O+

X,x and k+(x).

• If φ : (A,A+) → (B,B+) is a morphism of Huber pairs and y ∈ Spa(B,B+) is a point that
Spa(φ)(y) = x, then the morphism of rings Spa(φ)♭x : OX,x → OY,y induced by Spa(φ) is such
that | · |x ◦ Spa(φ)♭x = | · |y. In particular, Spa(φ)♭x is a morphism of local rings. Also it sends
O+
X,x to O+

Y,y and this is a morphism of local rings.
If moreover A is Tate, then we have:

• The ring O+
X,x is t-adically Henselian, and O+

X,x → k+(x) induces an isomorphism after t-adic
completion.

• The pairs (O+
X,x,mx) and (OX,x,mx) are Henselian.
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Proof: ? Morel P115.
1: Consider the t-adic completion of the valuation ring Rx corresponding to x, then (k̂(px), R̂x)

is an affinoid Tate ring over (A,A+) that is mapped to x(and its generalizations), thus by universal
property, there are unique maps from every rational subsets containing x to (k̂x, R̂x), thus inducing
a map (OX,x,O+

X,x)→ (k̂x, R̂x), which induces the desired valuation. And also we have O+
X,x ⊂ {f ∈

OX,x||f(x)| ≤ 1}, for the converse, if |f(x)| ≤ 1, then U(f,11 ) is rational subsets in U containing x,
so by(14.8.3.2), f ∈ OX(V )+, thus f ∈ O+

X,x.
2: for g not in mx, |g(x)| > |t(x)|n for some n, so g is invertible in U( tng ) by(14.8.3.2), hence

invertible in OX,x. Similarly for O+
X,x, as g is invertible in U(1

g ).
3: This is clear from the construction of the valuation on OX,x in item1.
4:
5: As filtered colimits of Henselian pair is Henselian(4.3.10.3) and the function ring is complete,

the stalk is Henselian. As for the completion, notice mx ⊂ O+
X,x and is t-divisible, thus O+

X,x has the
same t-adic completion as k+(x).

6: We first prove (O+
X,x, t) is Henselian, for this, it suffices to prove (O+

X(U), t) is Henselian,
by(4.3.10.3). And O+

X(U) is a filtered colimits of rings of definitions(10.3.5.14) and they are t-adically
complete hence Henselian, so we are done by(4.3.10.3) again. Then so does (OX,x,mx) because the
property of being Henselian only depends on I(4.3.10.10). □

Cor.(14.8.3.6).By the construction of the valuation on the stalk, we have an inclusion of rings
k(px) ⊂ k(x) ⊂ k̂(x) that has the same completions, where the first is induced by the compatible
map A→ OX(X)→ OX(U).

Def.(14.8.3.7)[Huber’s Presheaf].Now by the universal property of function ring, we have a map
between them induced by inclusion of rational subsets, so we can define the structure presheaf to
be

OX(W ) = lim
U⊂W rational

OX(U),

and similarly for the integral structure sheaf O+
X .

Then there is a valuation of a point on OX(W ) by passing to the stalk, and

O+
X(W ) = {f ∈ OX(W )||f(x)| ≤ 1,∀x ∈W}.

because this is true for all rational subsets by adic nullstellensatz(14.8.2.17).
A Huber ring (A,A+) is called sheafy iff the structure sheaf OX on X = Spa(A,A+) is a sheaf.

In this case, O+
X is also a sheaf by the above formula, so sheafyness is a property that only depends

on A.

Criterion for Sheafyness

Def.(14.8.3.8)[Stably Uniform Huber Pair].Let (A,A+) be a Huber pair that A is analytic, then
it is called stably uniform if OX(U) is uniform for all rational subsets U ⊂ X = Spa(A,A+).

Prop.(14.8.3.9).Let A → B be a continuous map of Huber rings which splits in the category of
topological A-modules, then A is stably uniform.

Proof: The splitting means the map is strict(10.3.1.4), so A is also uniform. Also the splitting is
preserved under completed tensor product with rational localization, so A is stably uniform. □
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Prop.(14.8.3.10)[Examples of Sheafy Huber Rings]. Let (A,A+) be a complete Huber pair,
1. (Schemes)If A is discrete, then A is sheafy.
2. (Formal Schemes)If A has a Noetherian ring of definition, then A is sheafy.
3. (Rigid Spaces, Fargues-Fontaine Curves)If A is Tate and Strongly Noetherian(10.3.4.25), then
A is sheafy.

4. (Perfectoid Spaces)A is analytic and (A,A+) is stably uniform(14.8.3.8), then A is sheafy and
acyclic.

Proof: Cf. Hub94 T2.2, [Ked19]1.7.
We use the arguments following(14.8.4.30).
If A is analytic and (A,A+) is stably uniform. Firstly the ideals (f − gT ), (g − fT ) are closed in

their rings, Cf.[Ked19]L1.5.26.
Then we have a diagram

0 0 B⟨T ⟩ ⊕B⟨T−1⟩ B⟨T, T−1⟩ 0

0 B B⟨T ⟩ ⊕B⟨T−1⟩ B⟨T, T−1⟩ 0

0 B B⟨fg ⟩ ⊕B⟨
g
f ⟩ B⟨fg ,

g
f ⟩ 0

0 0 0

·+T−1·

(f−gT,g−fT−1) ×(f−gT )
·−·

where the columns and the first two rows are exact, thus the third row are exact in the middle and
right by spectral sequence. Also it is exact at the left by(14.8.2.16). □

Remark(14.8.3.11).Notice that these contains nearly everything of interest, so Scholze comments
that we can somehow pretend that non-sheafy Huber rings doesn’t appear in nature.

Remark(14.8.3.12). Stably uniform is hard to check in practice, so a recent paper of Hansen-Kedlaya
[Sheafyness Criterion for Huber Rings] studied another class of sousperfectoid rings which can be
splitly embedded into a perfectoid ring, and another class of diamaintine rings, which involves a
condition on the cohomology of pro-étale site of A, closely related to properties of diamonds.

Prop.(14.8.3.13)[Non-examples of Sheafy Huber Rings].Cf. Hub94 end of section1.?
4 Adic Spaces

Def.(14.8.4.1) [Huber category].The category Vpre is a category that the objects are triples
(X,OX , vx) that X is a topological space, OX is a , and OX has the structure of sheaf of complete
topological rings, and vx are continuous valuations on the stalk OX,x with support mx.

And a morphism in V pre is a pair (f, f ♭) where f : X → Y is a map of topological spaces and
f ♭ : OX → f∗OY is a morphism of presheaves of topological rings, and the induced morphism of f ♭
on the stalks are compatible with the valuations.

The Huber category V is the full subcategory of V pre whose objects are triples (X,OX , vx) in
V pre that OX is a sheaf.



14.8. ADIC SPACES AND PERFECTOID SPACES(SCHOLZE) 1495

Def.(14.8.4.2)[Open Immersions].An open immersion in V pre is a homeomorphism onto an open
subset that induces an isomorphism of presheaves.

Def.(14.8.4.3)[Adic Spaces].The category of affinoid adic spaces is the full subcategory of the
Huber category whose objects are isomorphic to Spa(A,A+) for some Huber pair (A,A+), and the
category of adic spaces is the full subcategory of Huber category whose objects are locally isomorphic
to an affinoid adic space.

Prop.(14.8.4.4)[Adic Spectrum Adjointness].For any affinoid adic space X = Spa(R,R+) and
Y an arbitrary adic space, then there is a natural isomorphism

Hom(Y,X) ∼= Hom((R,R+), (OY (Y ),O+
Y (Y ))).

Proof: It suffices to show for Y = (S, S+) affine, because an morphism from Y → X is glued from
local morphisms, and OY is a sheaf.

For this, Cf.Huber94 Prop2.1(2).? □

Def.(14.8.4.5)[Uniform Adic Spaces].An adic space X is called uniform if for all open affinoid
U = Spa(R,R+) ⊂ X, the Huber ring R is uniform.

Cartier Divisors and Closed Immersions

Def.(14.8.4.6)[Cartier Divisors].Let X be a uniform analytic adic space, then a (effective)Cartier
divisor on X is an ideal sheaf I ⊂ OX that is locally free of rank 1. The support of a Cartier divisor
is Supp(OX/I).

The support Z of a Cartier divisor is a nowhere dense closed subset of X, and the map I 7→ I =
iOX induces a bijection between invertible ideals I ⊂ R that V (I) is nowhere dense in X and Cartier
divisors on X.

Proof: By(14.8.4.21), any Cartier divisor is of the form I ⊗R OX for some invertible ideal I ⊂ R.
We need to show that φ : I ⊗R OX → OX is injective iff V (I) ⊂ X is nowhere dense.

By restriction, we can assume I = (f) is principle, and if V (f) contains an open subset, then on
an open rational subset, f = 0 by uniformity(14.8.2.15), so φ is not injective. Conversely, if if V (f)
is nowhere dense, we show f is a nonzero-divisor: if fg = 0 and g ̸= 0, then U = U(gg ) is contained
in V (f) and is open, so U = 0, which implies g = 0 by uniformity(14.8.2.15), contradiction. □

Prop.(14.8.4.7).Let X be a uniform analytic adic space and I ⊂ OX a Cartier divisor with support
Z and j : U = X\Z → X. There are injective maps of sheaves

OX ↪→ lim−→
n

I−n ↪→ j∗OU .

Proof: This is local, it suffices to check this is for any affine subscheme of X, so we can assume
X = Spa(R,R+) and I = fOX for some nonzero-divisor f ∈ R whose vanishing locus Z is nowhere
dense, and check the global sections:

R→ R[ 1
f

]→ Γ(U,OU ).

Then it suffices to show R→ Γ(U,OU ) is injective. But if g vanishes on U , then the vanishing locus
of g is a closed subset containing U , which implies that it is all of X as Z is nowhere dense, so g = 0
by uniformity(14.8.2.15). □
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Def.(14.8.4.8)[Meromorphic Along the Cartier Divisor].A function f ∈ H0(U,OU ) is mero-
morphic along the Cartier divisor I ⊂ OX if it lifts to H0(X, lim−→n

I−n).

Def.(14.8.4.9)[Closed Cartier Divisors].On a uniform analytic adic space X, a closed Cartier
divisor is a Cartier divisor I ⊂ OX with support Z that (Z,OX/I, | · |x, x ∈ Z) is an adic space.

Prop.(14.8.4.10)[Closed Cartier Divisor and Closed Immersion].On a uniform analytic adic
space X, a Cartier divisor I ⊂ OX is closed iff the map I(U) ↪→ OX(U) has closed image for all
open affinoid U ⊂ X. In this case, for all open affinoid U = Spa(R,R+) ⊂ X, the intersection
U ∩ Z = Spa(S, S+) is an affinoid adic space, where S = R/I and S+ is the integral closure of the
image of R+ in S.

Proof: The property of having closed image can be checked locally as affinoid subspace is quasi-
compact. The fact OX/I is a (OX/I)(Ui) is separated for an open covering {Ui} of X, so at I(Ui)
is closed in OX(Ui).

Conversely, if I(U) ↪→ OX(U) has closed image for all open affinoid U ⊂ X, we want to show
(Z,OX/I, | · |x, x ∈ Z) is an adic space: We can construct this locally, so if X = Spa(R,R+),
S = R/I is separated and complete, thus a complete Huber ring, and consider the quotient Huber
ring(10.3.5.19) (S, S+), then Spa(S, S+) → Spa(R,R+) is a closed immersion of topological spaces
with image V (I).

What’s left to show is that the map of presheaves OX/I → OZ is an isomorphism, and also
OX/I(U) = OX(U)/I(U). To show this, we first show the presheaf OX/I is a sheaf: this is by
3× 3-lemma: I is locally (f), and for a rational covering Ui → X,

OX(X)/f →
∏
i

OX(Ui)/f ⇒
∏
ij

OX(Uij)/f

is exact.
And to show OX/I → OZ is an isomorphism, it suffices to notice taking localization and taking

quotient commutes, because they are both defined by universal properties.(10.3.5.19)(10.3.5.32). □

Remark(14.8.4.11).Even if A is Tate and stably uniform, and f ∈ A is a nonzero-divisor that fA ⊂ A
is closed, it may not be true that O = fOX ↪→ OX is a closed Cartier divisor on X = Spa(A,A+).
This is because there may be rational localization (A,A+) → (B,B+) that fB is not closed in B.
Cf. [Ked19]P16.

Examples of Adic Spaces

Prop.(14.8.4.12)[Examples of Adic Spaces].
• (Adic Closed Unit Disk) The space Spa(Z[T ]) = Spa(Z[T ],Z[T ]) represents the functor X 7→
O+
X(X).

• (Adic Affine Line) The functor X 7→ OX(X) is also representable, by Spa(Z[T ],Z). Notice for
any non-Archimedean field K,

Spa(Z[T ],Z)× SpaK = ∪n≥1 SpaK⟨ϖnT ⟩ = lim−→
n,T 7→ϖT

SpaK⟨T ⟩.

This is because For any Huber pair (R,R+) over (K,OK), R = ∪nϖ−nR+ because ϖ is
topologically nilpotent.
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• (The Open Unit Disk) Let D = SpaZ[[T ]], then for any non-Archimedean field K, DK =
D × SpaK represents the functor that maps a K-algebra R to all its elements of norm ≤ 1.
Then this the open disk over K. And DK is also represented by

∪n≥1 SpaK⟨T, T
n

ϖ
⟩.

• (The Punctured Open Unit Disk) Let D∗ = SpaZ((T )), then

D∗
K = D∗ × SpaK = DK⟨

T

T
⟩ = DK\{0}

Prop.(14.8.4.13)[The Open Unit Disk over Zp].Consider X = Zp[[T ]] with the (p, T )-adic topol-
ogy, there is exactly one non-analytic point x = xFp . Let X = Spa(Zp[[T ]]) and Y = X\{xFp}, then
for a point x ∈ Y, T (x) and p(x) cannot both be 0 by(10.3.6.2).

Then there exists a unique continuous map

κ : |Y| → [0,∞]

characterized by the following property: For any rational number m/n < r, |T (x)|n > |p(x)|m, and
for any rational number m/n > r, |T (x)|n < |p(x)|m. This map κ is surjective.

Proof: Let x̃ be a maximal vertical generalization of x, then it has rank 1 and we can assume x̃ is
real valued by(10.3.3.8). Now we define

κ(x) = log |T (x̃)|
log |p(x̃)|

,

This is definable as T (x̃) and p(x̃) cannot both be 0.
The uniqueness of κ(x) follows from the fact |T (x)|n > |p(x)|m implies to |T (x̃)|n ≥ |p(x̃)|m

because x̃ is a generalization of x.
To show κ satisfies the condition, if m/n < r, then |T (x̃)|n > |p(x̃)|m, so |T (x)|n > |p(x)|m

because x, x̃ define the same topology. And it is continuous because

κ−1((−∞, r)) = ∪m/n<rU(T
n

pm
).

To show the surjectivity, if κ = [x0 : x1], define the valuation as

v(
∑

aijp
iT j) = sup

aij ̸=0
e−x0i−x1j

where (aij)p = 1. □

Construction of Adic Spaces

Def.(14.8.4.14)[Fiber Products of Adic Spaces and Schemes].Cf.[Wed14]P91.

Def.(14.8.4.15)[Adic Spaces attached to Schemes].

Def.(14.8.4.16)[Adic Spaces attached to Formal Schemes].Cf.[Wed14].

Def.(14.8.4.17)[Adic Spaces attached to Rigid Analytic Spaces].Cf.[Wed14].
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Sheaves and Vector Bundles

Def.(14.8.4.18).Let (A,A+) be a Huber pair andX = Spa(A,A+), let M̃ = M⊗AOX be the presheaf
on X.

Prop.(14.8.4.19). If A is sheafy, then for any finite projective A-moduleM , the presheaf M̃ is a sheaf
on X = Spa(A,A+), and H i(U,F) = 0 for any rational subset of X and i > 0.

Proof: Because M is a direct sum of a finite free A-module, then we reduce to the case OX is
sheafy. □

Remark(14.8.4.20).This is a partial analogy with Tate’s acyclicity theorem in rigid analytic geome-
try(14.5.1.40)(14.5.3.10), but it only holds for f.p. modules, not even f.g. modules. One impediment
is that the rational localization map are generally not flat. To get around this, Kedlaya defined a
category of pseudo-coherent modules, with the property that even when flatness fails, tensoring is
also exact in this category.

Prop.(14.8.4.21) [Vector Bundles].Let (A,A+) be a sheafy analytic Huber pair and X =
Spa(A,A+), then the functor M → M̃ from the category of finite projective A-modules to the
category VectX of locally finite free OX -modules is an equivalence of categories. In particular, VectX
only depends on A.

Proof: Cf.[Ked19].P40? □

Pre-Adic Spaces

Main references are [S-W20]L3 and [Ked19].

Def.(14.8.4.22)[Pre-Adic Spaces].

Remark(14.8.4.23).Pre-adic spaces is an approach to work around the failure of sheafyness of general
Huber pair, with techniques from algebraic stacks.

Analytic Points

Prop.(14.8.4.24)[Analytic and Tate Rings].Let (A,A+) be a complete Huber pair, then
• The Huber ring A is analytic iff all points of Spa(A,A+) are analytic.
• A point x ∈ Spa(A,A+) is analytic iff there is a rational nbhd U ⊂ Spa(A,A+) that OX(U) is

Tate.

Proof: 1: x is non-analytic iff A00 ⊂ px by(10.3.6.5), so all points are analytic iff A00A = A, which
means A is analytic.

2: Let x be an analytic point, then there exists f ∈ I where I is an ideal of definition that
|f |x ̸= 0. Now {g ∈ A||g(x)| ≤ |f(x)} is open(because | · |x is continuous), so contains some In. Now
let In = (g1, . . . , gk), then U(g1,...,gk

f ) is a rational subset. Then in OX(U), f is a unit, but also it is
topologically nilpotent, because it is contained in I.

Conversely, if x ∈ X has a rational nbhd U = U⟨Ts ⟩ such that OX(U) is Tate, and x is not
analytic, then px contains an ideal of definition I ⊂ A0. Now let f ∈ OX(U) be a topologically
nilpotent unit, then there exists m ≥ 1 that fm lies in the closure of IA0[t/s|t ∈ T ] in OX(U). Since
x ∈ U , the valuation | · |x extends to OX(U), and since | · |x is continuous, |fm(x)| = 0, contradiction,
as f is a unit in OX(U). □
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Def.(14.8.4.25) [Analytic Points].Let X be a pre-adic space, then a point x ∈ X is called an
analytic point if there is some open affinoid nbhd U = Spa(A,A+) ⊂ X of x that A is Tate. And
X is called analytic if all of its points are analytic.

Prop.(14.8.4.26).Let f : X → Y be a map of analytic pre-adic spaces, then |f | : |X| → |Y | is
generalizing. If f is quasi-compact and surjective, then |f | is a quotient map.

Proof: Cf.[Hub96]1.1.10. and [Étale Cohomology of Diamonds, L2.5].? □

Def.(14.8.4.27).A map f : Y → X of pre-adic spaces is called analytic if it carries analytic points
to analytic points.

Proof of Acyclicity and Sheafyness by Cech Reduction

Def.(14.8.4.28) [Standard Rational Coverings].Let X = Spa(A,A+) and f1, . . . , fn ∈ A which
generates the unit ideal, then the sets X(f1,...,fn

fi
) covers X, called the standard rational covering

of X. And if n = 2, it is called a standard binary rational covering of X.
There are special types of standard binary rational coverings: if f1 = f, f2 = 1, then it is called

a simple Laurent covering. If f1 = f, f2 = 1− f , then it is called a simple balanced covering.

Lemma(14.8.4.29)[Reduction of Coverings].Let A be an analytic Huber ring,
• (Huber) Every open covering of X can be refined by some standard rational covering.
• (Gabber-Ramero) Every open covering of a rational subspace of X can be refined by some

compositions of simple Laurent coverings and simple balanced coverings.

Proof: 1: Cf.[Ked19]P28.
2: Cf.[Ked19]P29. □

Prop.(14.8.4.30)[Cech Reduction].By a Cech cohomological argument the same as Tate’s acyclicity
theorem in rigid geometry(14.5.1.40), it suffices to prove any presheaf is a sheaf or any sheaf is acyclic
on simple Laurent coverings and simple balanced coverings.

That is, for every rational localization (B,B+) over (A,A+), every pair f, g ∈ B that g = f or
1− f , if the sequence

0→ B → B⟨f
g
⟩ ⊕B⟨ g

f
⟩ → B⟨f

g
,
g

f
⟩ → 0,

• is exact at exact at left and middle, then OX is sheafy.
• is exact, then OX is acyclic.

Also remember the following equations:

B⟨f
g
⟩ = B⟨T ⟩/(f − gT ), B⟨ g

f
⟩ = B⟨T ⟩/(g − fT ), B⟨f

g
,
g

f
⟩ = B⟨T, T−1⟩/(f − gT )

Prop.(14.8.4.31)[Properties of (Finite)Étale Maps].
• (Finite)Étale maps are invariant under compositions and pullbacks.
• If g and gf are (finite)étale, then so does f .
• f is (finite)étale iff f ♭ is (finite)étale.

Proof: Cf.[S-W20]P65. □
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5 Perfectoid Spaces

Affinoid Perfectoid Spaces and Tilting

Prop.(14.8.5.1) [Tilting Rational Subsets].For a perfectoid affinoid K-algebra (R,R+) over a
perfectoid field K,

• The ♯ map induces an isomorphism X = Spa(R,R+) ∼= X♭ = Spa(R♭, R♭0) that identifies
rational open subsets.

• For a rational subset U with tilting U ♭, the complete affinoid Tate algebra (OX(U),O+
X(U)) is

perfectoid over R with tilt (OX♭(U ♭),O+
X♭(U ♭)).

Proof: This follows from(14.8.5.5). □

Lemma(14.8.5.2) [Huber’s Presheaf in Char p].Assume charK = p and U = X(f1,...,fn
g ) is a

rational subset that fi, g ∈ R+ and fn = πN , then:
• Consider the subring R+[(fig )

1
p∞ ], its π-adic completion (R+⟨(fig )

1
p∞ ⟩)a is a perfectoid K0a-

algebra.

• The map R+[X
1
p∞
i ]→ R+[(fig )

1
p∞ ] has kernel containing and almost equal to I = (g

1
pmX

1
pm

i −

f
1
pm

i ).

• OX(U) is a perfectoid K-algebra and OX(U)0a ∼= (R+⟨(fig )
1
pm ⟩)a.

Proof: 1: The ring R+[(fig )
1
p∞ ] is perfect and π-torsion-free, and R+ is semi-perfect, thus its

completion is clearly a perfectoid K0a-algebra by(10.3.9.1).
2: Clearly I ⊂ ker and notice R+[(fig )

1
p∞ ][π−1] = R[g−1] as fn = πN , so I[π−1] = ker[π−1]. Now

consider the mapping

P0 = R+[X
1
p∞
i ]/I → R+[(fi

g
)

1
p∞ ]

Now this map is an isomorphism ofter inverting π, so the kernel is π∞-torsion. But we have I = I [p]

because R+ is semi-perfect, so P0 is perfect, so the kernel must be almost zero.
3: Consider the inclusion R+[ fig ] ↪→ R+[(fig )

1
p∞ ], we show the cokernel is killed by πnN : as

fn = πN ,

πnN
n∏
i=1

(fi
g

)
1
pai =

n∏
i=1

(f
1
pai

i g
1− 1

pai )fn
g
∈ R+[fi

g
].

So these two ring has the same π-adic completion, the first one is just OX(U) by the construc-
tion(14.8.3.1), so OX(U) is perfectoid K-algebra, and the isomorphism is by tilting equivalence
PerfK ∼= PerfK0a(10.3.9.5). □

Lemma(14.8.5.3)[Huber’s Presheaf in Char 0].Let U = X(f1,...,fn
g ) is a rational subset that fi, g

are perfect elements in R+, fi = a♯i, g = b♯, and fn = πN , so fi, g have compatible pn-th roots, then
let U ♭ = X♭(f1,...,fn

g ) be the tilting of U , U is the inverse image of U ♭ along the map X → X♭. Then
the conclusion of(14.8.5.2) is also true, and moreover, (OX(U),O+

X(U)) tilts to (OX♭(U ♭),O+
X♭(U ♭)).
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Proof: 1, 2 of(14.8.5.2): Notation as before, there is a map P0 = R+[X
1
p∞
i ]/I → R+[(fig )

1
p∞ ], and

an inclusion R+[(fig )
1
p∞ ] → O+

X(U). Now write (S, S+) for the untilt of the perfectoid (R♭, R♭+)-
algebra (OX♭(U ♭),O+

X♭(U ♭)), then by the tilting process(10.3.9.13), Spa(S, S+) maps into U , so by
the universal property, there is a map

µ : (OX(U),O+
X(U))→ (S, S+).

Consider the composition
P0

a0−→ R+[(fi
g

)
1
p∞ ] d0−→ S+,

we prove their completion gives the same K0a-algebras(notice S+ is already complete): a0 is sur-
jective, thus so does its completion, the map d0 ◦ a0 is almost isomorphism modulo π by(14.8.5.2)
item2 and tilting equivalence, so does its completion. Now(4.7.3.2) tells us the completion of d0 ◦ a0
is almost isomorphism, so does a and d as a is surjective.

By the way, we know that R+⟨(fig )
1
p∞ ⟩[π−1] is the untilt of O+

X♭(U ♭).
3 of(14.8.5.2) is proved as before.
For the tilting, by the above, we already know R+⟨(fig )

1
p∞ tilts to the perfectoid K♭0a-algebra

OX♭(U ♭)0a, and by item3 OX(U) tilts to the perfectoid K♭-algebra OX♭(U ♭). Now the question is
the tilt of O+

X(U), notice as in the proof of item1, there is a natural map

(R+⟨(fi
g

)
1
p∞ ⟩[π−1], R+⟨(fi

g
)

1
p∞ ⟩)→ (OX(U),O+

X(U)),

whose tilting gives by university of Huber’s presheaf a map

ξ : (OX♭(U ♭),O+
X♭(U ♭))→ (OX(U),O+

X(U))♭.

These two map µ, ξ are inverse to each other, showing that the tilting of (OX(U),O+
X(U)) is

(OX♭(U ♭),O+
X♭(U ♭)). □

Lemma(14.8.5.4) [Approximation Lemma].Assume R = K⟨T
1
p∞

0 , . . . , T
1
p∞

0 ⟩, f ∈ R0 is homoge-
nous of degree d ∈ N[p−1], then for any c > 0, ε > 0, there exists some gc,ε ∈ R♭0 homogeneous of
degree d that

|(f − g♯)(x)| ≤ |π|1−ε max{|f(x)|, |π|c}.

In particular, if ε < 1, then

max{|f(x)|, |π|c} = max{|g♯c,ε(x)|, |π|c}.

Proof: Cf.[Sholze Perfectoid Spaces, Lemma6.5]?. □

Prop.(14.8.5.5).For an arbitrary perfectoid K-algebra R,
• The same conclusion of(14.8.5.4) holds.

• For f, g ∈ R, there exist a, b ∈ R♭ that X(f,π
c

g ) = X(a
♯,πc

b♯
). In particular, any rational subsets

U of X comes from X♭, thus(14.8.5.3) applies for U .

• For any x ∈ X, the non-Archimedean field k̂(x) is perfectoid.
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• X → X♭ is a homeomorphism preserving rational subsets.

Proof: 1: Using the tilting equivalence, we can write f = g♯0 + πg♯1 + . . . + πcg♯c + fc+1π
c+1, let

f0 = g♯0 + πg♯1 + . . .+ πcg♯c. Then notice that the solution gc,ε for f0 is suitable for f as well. So now
if we consider the mapping

µ : K⟨T
1
p∞

0 , . . . , T
1
p∞
n ⟩ → R : Ti → g♯i ,

together with its tilting

µ♭ : K♭⟨T
1
p∞

0 , . . . , T
1
p∞
n ⟩ → R♭.

Then for the approximation g♯c,ε for f ′ =
∑
πiTi, µ♭(g) is what we are searching for.

2: Using 1, we find a, b ∈ R♭ that |(g − b♯)(x)| < max{|g(x)|, πc} and max{|f(x)|, |π|c} =
max{|a♯(x)|, |π|c} for all x ∈ Spa(R,R+). Then it is routine to check that X(f,π

c

g ) = X(a
♯,πc

b♯
).

3: By(14.8.3.5), k̂+(x) equals the completion of the colimit colimO+
X(U) over rational subsets

U containing x. As these are all perfectoid K0a-algebras(10.3.9.14), and completion of the filtered
limits of perfectoid K0a-algebras is perfectoid(10.3.9.10), we know that k̂+(x) is perfectoid over K0a,
thus inverting π shows k(x) is also perfectoid over K.

4: this is injective because X is T0 and a rational subset is the untilt of a ratinal subset of X♭ by
item2. For surjectivity, a point of X♭ determines a continuous map (R♭, R♭+)→ (k̂(x), k̂+(x)), thus
by untilting(10.3.9.13) corresponds to a map (R,R+) → (L,L+), then (L,L+) is a perfectoid field,
by(10.3.9.15), so it sorresponds to a point y ∈ X. Then it is clear that y maps to x, because the

diagram
R♭ R

k̂(x) L

♯

♯

is commutative. □

Def.(14.8.5.6)[Perfectoid Space].Now for any perfectoid affinoid K-algebra R, we associated to it
an affinoid adic space Spa(R,R+), called an affinoid perfectoid space.

Tate’s acyclicity(14.8.6.19) shows that the adic spectrum of a perfectoid affinoid K-algebra is
sheafy, so we can defined the category of perfectoid spaces is defined to be the full subcategory of
adic spaces that is locally isomorphic to an affinoid perfectoid space.

Remark(14.8.5.7).Notice that it is not true that if (A,A+) is a Huber pair over a perfectoid field
K and Spa(A,A+) is a perfectoid space, then A is a perfectoid ring. Thus there is ambiguity to the
term affinoid perfectoid spaces. But we always use this to mean the affinoid adic space associated to
a perfectoid Huber pair.

Proof: Cf.[Ked19]P62. □

Prop.(14.8.5.8).The absolute product of two perfectoid spaces of char p is also a perfectoid space.

Proof: Cf.[Sch17]P71. □

Prop.(14.8.5.9)[Fiber Products of Perfectoid Spaces].The category of perfectoid spaces over K
admits fiber products.
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Proof: Perfectoid spaces are constructed by glueing, thus it suffices to show that the category of
perfectoid K♭-algebras has fiber pushouts, by tilting equivalence. For this, if X = (A,A+), Y =
(B,B+), Z = (C,C+), define X ⊗Y Z = (D,D+), where D is the completion of A⊗B C, and D+ is
the completion of the integral closure of A+ ⊗B+ C+ in D. Then D is a perfect K♭-algebra, and it
is truly the filtered colimits, by(10.3.5.23).

Notice that we don’t even need a base field K, Cf.[Ked19]P57. □

Prop.(14.8.5.10)[Tilting Equivalence for Perfectoid Spaces].Fix a perfectoid field K, then for
any perfectoid space X/K, there is a unique perfectoid space X♭/K♭ that satisfies: X(R,R+) ∼=
X♭(R♭, R♭+) functorially, called the tilt of X. Moreover, this X♭ satisfies naturally |X| ∼= |X♭|.

When X is an affinoid perfectoid space, this tilting coincides with that of(14.8.5.1).
And this tilting induces an equivalence between the category of perfectoid spaces over K and

perfectoid spaces over K♭.

Proof: Firstly, the universal property truly determines the tilt X♭ uniquely: if there are two tilts
X1, X2, as they are locally affinoid perfectoid like Spa(R♭, R♭+) by(14.8.5.1), the immersion map
Spa(R♭, R♭+) → X1 determines via the functorial isomorphism a morphism Spa(R♭, R♭+) → X2.
Now X1 has a sheaf structure, so these morphisms glue to give a morphism X1 → X2. The same
argument shows conversely there is a morphism X2 → X1, and they are clearly converse to each
other, so X1 ∼= X2.

The construction of X is just the glueing of the tilting of the affinoid perfectoid spaces, as the
tilting defined in(14.8.5.1) is a functor. The universal property is verified by just checking on the
affinoid perfectoid spaces, as we can glue using the sheaf property. For the affinoid case, we should
use(14.8.4.4). The last assertion is by(14.8.5.1). □

6 Properties of Perfectoid Spaces

Totally Disconnected Spaces

Def.(14.8.6.1) [Totally Disconnected Spaces].A perfectoid space X is called totally discon-
nected if it is qcqs and any open covering {Ui → X} splits, i.e. ⨿Ui → X splits, or equivalently,
there is a refinement covering {Vi → X} that X ∼=

⨿
Vi.

A perfectoid space X is called strictly totally disconnected if it is qcqs and every étale cover
splits.

Prop.(14.8.6.2).Let X be a qcqs perfectoid spaces, then X is totally disconnected iff all its connected
components are of the form Spa(K,K+) where (K,K+) are perfectoid affinoid fields. And it is strictly
totally disconnected if moreover K are all alg.closed.

Proof: Cf.[Sch17].P29, P35. □

Prop.(14.8.6.3). if X is a totally disconnected perfectoid space, then X is affinoid.

Proof: Cf.[Sch17].P30.? □

Injections

Def.(14.8.6.4)[Injections].A map f : X → Y of perfectoid spaces is called an injection if for any
perfectoid space Z, f∗ : Hom(Z,X)→ Hom(Z, Y ) is an injection.
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Prop.(14.8.6.5)[Residue Field Map is Injection].Let X be a perfectoid space and x ∈ X, giving
rise to a map of residue fields

ix : Spa(κ(x), κ(x)+)→ X,

then ix is an injection of perfectoid spaces.

Proof: To show this, firstly we can replace X with an affinoid nbhd of X. Then notice that
Spa(κ(x), κ(x)+) is the filtered limit over all rational nbhds U of x in X, and for each U , U → X is
an injection by definition(14.8.3.1), so ix is also an injection. □

Prop.(14.8.6.6)[Characterizations of Injections].Let f : Y → X be a map of perfectoid spaces,
then the following conditions are equivalent:

• f is an injection.
• For any perfectoid adic field (K,K+), the map of sets f∗ : Y (K,K+) → X(K,K+) is an

injection.
• The map |f | : |Y | → |X| is injective, and for all rank 1 point y ∈ Y with image f(y) = x ∈ X,

the map of completed residue fields κ(x)→ κ(y) is an isomorphism.
• The map |f | : |Y | → |X| is injective, and f is final in the category of maps Z → X that
|Z| → |X| factors through the map |Y | → |X|.

In particular, by item4, an injection of perfectoid spaces is determined by its topological map.

Proof: 4→ 1→ 2 is trivial. For the rest, Cf.[Sch17]P21. □

Prop.(14.8.6.7)[Injection and Base Change].
• Let f : Y → X be an injection of perfectoid spaces, and X ′ → X any map of perfectoid spaces,

then the pullback f ′ : Y ′ = Y ×X X ′ → X ′ is also an injection, and the induced map

|Y ′| → |Y | ×|X| |X ′|

is a homeomorphism.
A map of perfectoids spaces is an injection iff it is universally injective.

Proof: Cf.[Sch17]P24. □

Immersions

Def.(14.8.6.8)[Immersions].A map of perfectoid spaces f : Y → X is called an immersion if f is
an injection and |f | : |Y | → |X| is a locally closed immersion. If |f | is moreover closed or open, then
it is called closed/open immersion.

Def.(14.8.6.9)[Zariski Closed Immersion].Let f : Z → X be a map of perfectoid spaces where
X = Spa(R,R+) is affinoid perfectoid, then

• the map f is called Zariski closed immersion if f is a closed immersion and |Z| = V (I) ⊂ |X|,
where I ⊂ R is an ideal.

• the map f is called strongly Zariski closed immersion if Z = Spa(S, S+) is affinoid perfectoid,
R→ S is surjective, and S+ is the closure of R+ in S.

Prop.(14.8.6.10).
• If f is strongly Zariski closed, then f is Zariski closed, in particular a closed immersion.
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• If f is Zariski closed, then Z is affinoid.
• If X is of characteristic p, and f is Zariski closed, then f is strongly Zariski closed.

Proof: Cf.[Sch12] Section2.5. □

Prop.(14.8.6.11).For any map of perfectoid spaces Y → X, the diagonal map ∆f : Y → Y ×X Y is
an immersion.

Proof: Clearly ∆f is an injection, thus it suffices to show that |∆f | identifies Y with a locally closed
subset of |Y ×X Y |. This can be checked locally on the target, so we can assume X = Spa(R,R+) and
Y = Spa(S, S+), then the diagonal map is strongly Zariski closed, as S⊗̂RS → S is surjective and
maps the integral closure of S+⊗̂R+S+ → S+ onto S+. Thus by(14.9.1.11), ∆f is a closed immersion
in this case. □

Def.(14.8.6.12)[Separated Map].A map f : Y → X of perfectoid spaces is called separated if ∆f

is a closed immersion.

Prop.(14.8.6.13)[Valuation Criterion].Let f : Y → X be a map of perfectoid spaces. The following
are equivalent:

• f is separated.
• |∆f | : |Y | → |Y ×X Y | is a closed immersion.
• |f | is quasi-separated, and for any perfectoid adic field (K,K+) and any diagram

Spa(K,OK) Y

Spa(K,K+) X

f ,

Almost Acyclicity

Def.(14.8.6.14)[p-Finite Tate Ring].Denote L = ̂Fp[[t]]perf [t−1], an Fp[t] algebra A+ is called al-
gebraically admissible if it is f.p., reduced, t-torsion-free, and integrally closed in A+[t−1]. A per-
fectoid affinoid L-algebra (R,R+) is called p-finite if it is the completion of the perfection(14.8.2.28)
of a uniform Tate ring of the form (A+[t−1], A+), where A+ is algebraically admissible.

Lemma(14.8.6.15)[Tate’s Acyclicity for Classical Affinoid Algebra]. If A+ is an algebraically
admissible Fp[t]-algebra, then (A+[t−1], A+) is a uniform affinoid Tate algebra(because it is finite),
and:

• For any rational subset U ⊂ X, the structure presheaf (OX(U),O+
X(U)) is also uniform, and

it is a perfection of an algebraically admissible Fp[t]-algebra, so O+
X(U) = OX(U)0.

• For any covering U : Ui → X of rational subsets, the Čech cohomology groups H i(U,O+
X) are

all killed by tN for N large.
• (A,A+) is sheafy, with H i(X,O+

X) being t∞-torsion for all i.

Proof: ? □

Lemma(14.8.6.16) [Tate’s Acyclicity for p-Finite Perfectoid Algebras].Let (R,R+) be a p-
finite perfectoid L-algebra that comes from the completion of perfection of (A,A+), then:
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• The map X = Spa(R,R+)→ Y = Spa(R,R+) is a homeomorphism.
• For rational subset V ⊂ Y with preimage U ⊂ X, (OX(U),O+

X(U)) is the completion of the
perfection of (OY (V ),O+

Y (V )).
• For any covering U : Ui → X of rational subsets, the Čech cohomology groups H i(U,O0

X) are
all almost zero.

• (R,R+) is sheafy, with H i(X,O+
X) almost zero for all i > 0.

Proof: 1: This is because the adic spectrum is insensitive for perfection(14.8.2.28) and comple-
tion(14.8.2.17).

2: This is by the universal property, as these two are both the universal elements for the complete
and affinoid adic spaces mapping to X that factors through U .

3: The complex calculatingH i(U,O0
X) is just the complex calculatingH i(U,O+

Y ) under completion
of perfection((14.8.2.27) used). So(14.8.6.15) and(14.8.6.17)(applied to every element) shows that the
perfection makes the complex almost acyclic, and this is preserved under completion as (−)a is exact.

4: The complex calculating H i(U,OX) is just the complex calculating H i(U,O+
X) inverting t, thus

they are all 0 as localization is exact. For the second, it is because of item3 and the fact O+
X is almost

isomorphic to O0
X(10.3.9.14). □

Lemma(14.8.6.17).Let A be a ring with an element t that admits compatible pn-th roots, then for
an A-module M that tNM = 0, consider the Frobenius pushforward M → F∗M , then the colimit
colimF∗ F

n
∗ M is naturally a module over Aperf , and it is annihilated by t

1
pn for all n.

Proof: The Aperf structure is natural, and notice F k∗ M is annihilated by t
N

pk , thus naturally the
colimit is annihilated by t

1
pn for all n. □

Prop.(14.8.6.18)[Noetherian Approximation in Charp]. If K is a perfectoid field of charp with
pseudo-uniformizer t, then K is an extension of L = ̂Fp[[t]]perf [t−1], and If A is an K0-perfectoid
algebra that is integrally closed in A[t−1], then:

• A is a completion of a filtered colimit ̂colimiBi that Bi are p-finite, that induces an homeomor-
phism

Spa(A[t−1], A) ∼= lim
i

Spa(Bi[t−1], Bi)

that each rational subset of Spa(A[t−1], A) comes from a rational subset of some
Spa(Bi[t−1], Bi).

• If Ui ⊂ Spa(Bi[t−1], Bi) is a compatible system of rational subsets that corresponds to U ⊂
Spa(A,A+) = X, then

(OX(U),O+
X(U)) ∼= lim−→

j

(Oj(Uj),O+
j (Uj))̂.

Proof: 1: A = colimiAi, where Ai are all the f.p. Fp[t]-algebras in A. Then each Ai is reduced(as A
is complete and integrally closed in A[t−1]) and t-torsion-free, and we can assume they are integrally
closed in Ai[t−1] because A does, by passing to their integral closure.

Then applying the (−)perf functor gives colimi(Ai)perf = A, as A is perfect, and applying the
completion gives

(colimi Âi)̂ = A,
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as A is already complete, so we are done.
2: This is immediate from 1 and(14.8.2.27).
3: This is because by universal property for Huber presheaves, there are pushouts diagrams

(Bi[t−1], Bi) (Bj [t−1], Bj) . . . (A[t−1], A)

(OXi(Ui),O
+
Xi

(Ui)) (OXj (Uj),O
+
Xj

(Uj)) . . . (OX(U),O+
X(U))

So the conclusion follows as colimits commutes with colimits. □

Prop.(14.8.6.19)[Almost Acyclicity for Perfectoids].Fix a perfectoid field K and a perfectoid
affinoid K-algebra (R,R+) with adic spectrum X = Spa(R,R+), then

• (R,R+) is sheafy, i.e. OX and O+
X are sheaves.

• O+
X(X) = R+, and H i(X,O+

X) is almost zero for i > 0.
• OX(X) = R, and H i(X,OX) = 0 all i > 0.

Proof: As in the proof of(14.8.6.16), it suffices to prove O0
X is almost exact w.r.t any covering U.

For this, notice each term is π-adically complete and flat by(14.8.5.1), so it suffices to prove it is
almost exact modulo π(4.7.3.2). Then by the tilting equivalence, it suffices to prove for X♭. So we
may assume at first that K is of charp. Then we may replace K by L = ̂Fp[[t]]perf [t−1].

But then Noetherian approximation(14.8.6.18) shows that the rational subrings are completion
of filtered colimits of p-finite K-algebras((14.8.2.27) used), and then we reduced to the p-finite case,
as in the proof of(14.8.6.16). □

7 Étale Site of Perfectoid Spaces

Def.(14.8.7.1)[Finite Étale Map of Adic Spaces].A map of Huber pairs (A,A+) → (B,B+) is
called finite étale if A→ B is finite étale, and B+ is the integral closure of A+ in B.

A map f : X → Y of adic spaces is called finite étale if there is a cover of Y by affinoids V ⊂ Y
that U = f−1(V ) are all affinoids, and the map (OY (V ),O+

Y (V ))→ (OX(U),O+
X(U)) is finite étale.

Write Yfét for the category of all such maps.

Def.(14.8.7.2) [Étale Maps].A map X = Spa(A,A+) → Y = Spa(B,B+) of adic spaces is called
étale iff for any x ∈ X, there exists an open x ∈ U and open f(U) ⊂ V together with an adic space
W that f : U → V factors through an open immersion U →W and a finite étale map W → V .

Cf.[?]P65.

Def.(14.8.7.3)[Strongly Finite Étale].For convenience, in case of perfectoid affinoid K-algebras,
we call a map of Huber pairs (A,A+)→ (B,B+) strongly finite étale if it is finite étale and B+a

is almost finite étale over A+a.
A map f : X → Y of adic spaces is called strongly finite étale if there is a cover of Y by

affinoids V ⊂ Y that U = f−1(V ) are all affinoids, and the map (OY (V ),O+
Y (V ))→ (OX(U),O+

X(U))
is strongly finite étale. Write Ysfét for the category of all such maps.

Finally we will prove that if (A,A+) is perfectoid, then any finite étale map (A,A+) → (B,B+)
is strongly finite étale.
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Prop.(14.8.7.4)[Strongly Finite Étale Maps Form a Stack]. If f : X → Y is a strongly finite
étale map that Y = Spa(A,A+) is an affinoid perfectoid, then X is also affinoid perfectoid, and the
structure map (OX(X),O+

X(X))→ (OY (Y ),O+
Y (Y )) is strongly finite étale.

Proof: By(14.8.7.9), it suffices to prove in charp. Then we can replace K by L = ̂Fp[[t]]perf [t−1].
Then by Noetherian approximation(14.8.6.18), we can assume that Y is a limit of p-finite affinoids
Spa(Bi, B+

i ). As both rational subsets and finite étale algebras pass through filtered colimit, and adic
spectrum is quasi-compact(14.8.2.24), we can assume that a finite étale cover of Y arises through
base change of some Spa(Bi, B+

i ). So it suffices to prove the proposition in case of Y p-finite. Then
Y is a completion of perfection of some algebraically admissible ring over Fp[t]. Then by the above
argument again, we can assume that Y is algebraically admissible.

Now a classical theorem(Cf.[Étale cohomology of rigid analytic varieties and adic spaces, Huber
1.6.6(2)]) shows that the finite étale cover of Y is global finite étale Spa(S, S+) → Spa(R,R+) in
this case. Notice the strongness is not needed because we are working in char p, where almost purity
theorem is already proven. □

Cor.(14.8.7.5).For an affinoid perfectoid space Y = Spa(R,R+), the functor X 7→ O+
X(X) defined

an equivalence of categories Ysfét ∼= R+a
afét, and the functor X 7→ OX(X) gives a fully faithful functor

Ysfét → Rfét.

Def.(14.8.7.6)[Étale Site of Perfectoid Spaces].Let X be a perfectoid space, then the étale site of
X is the category Xét of perfectoid spaces that is étale over X, and coverings are given by topological
coverings. We also consider the following subcategories:

• Xaff
ét , the category of affinoid perfectoid spaces étale over X.

• Xét,qcqs, the full subcategory of qcqs perfectoid spaces étale over X.
• Xét,qc,sep, the full subcategory of qc separated perfectoid spaces étale over X.

Prop.(14.8.7.7)[Gabber-Ramero]. If A is a finite K0-algebra that is π-adically Henselian, then

A[π−1]fét ∼= Â[π−1]fét.

Proof: Cf.[Almost Ring Theory P5.4.53]. □

Cor.(14.8.7.8) [Finite Étale Covers and Direct Limits of Complete Uniform Rings].Let
(Ai, A+

i ) be a filtered system of complete uniform affinoid K-algebras, and (A,A+) be their colimit
in the category of complete uniform affinoid Tate rings, then

2− colimiAi,f ét ∼= Afét

as categories.

Proof: By(14.8.2.27), A+ is the π-adic completion of the algebraic colimit B+ of A+
i , and

A = A+[π−1]. Each Ai is complete and π-torsion-free, thus the colimit is Henselian and π-torsion-
free(4.3.10.3)(4.3.10.6). Then the proposition(14.8.7.7) shows that B+[π−1]fét ∼= Afét. Now it re-
mains to show that

2− colimiAi,f ét ∼= B+[ 1
π

]fét,

which is because étale sites commutes with taking filtered colimits □
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Final Proof of Almost Purity Theorem

Prop.(14.8.7.9).We have an equivalence of categories Xsfét
∼= X♭

sf ét. For this,
use(14.8.7.5),(14.8.5.10) and the proven part of(10.3.10.1) and notice that

A+a
afét = A0a

afét
∼= A♭0aafét = A♭+aafét,

and the integral closure clearly corresponds.(It get around the problem that R0a
fét → Rfét hasn’t been

proven essentially surjective).

Prop.(14.8.7.10)[Proof of Almost Purity Theorem].Fix a perfectoid affinoid K-algebra (R,R+),
if S ∈ Rfét, then the integral closure of S+ in R+ lies in R+a

afét, and this gives an inverse to the
morphism d in(10.3.10.1), thus finishing the proof of almost purity theorem.

Proof: Continuing the proof of(10.3.10.1), it suffices to show that d : R+a
afét → Rfét is essentially

surjective, because S+ → S ⊂ R+ is the only possible inverse, by the almost purity theorem in
charp and tracing the tilting equivalence(10.3.9.6). Given(14.8.7.5), it suffices to prove that for X =
Spa(R,R+), the prestacks Xsfét

∼= Xfét, where Xsfét(U) = O+a
X (U)sfét, and Xfét(U) = OX(U)fét.

We use(5.1.3.22), firstly Xsfét is a stack, by(14.8.7.4), and for each U , Xsfét(U)→ Xfét(U) is fully
faithful by almost purity theorem(10.3.10.1). Xfét is separated by(14.8.4.21), because the structure
section of an element S ∈ Xfét is determined its value on the stalk.

Its left to prove that their stalks are equal, for this, use the formula

colimx∈U (OX(U),O+
X(U)) = (k̂(x), k̂+(x))

in the category of complete uniform affinoid K-algebras(they are all perfectoids(14.8.5.1) thus uni-
form), by definition. So we get by(14.8.7.8):

colimx∈U OX(U)fét ∼= k̂(x)fét,

and by(14.8.7.8) together with the proven part of almost purity theorem(10.3.10.1):

colimx∈U O+
X(U)afét ∼= colimx♭∈U♭ O

♭+
X (U ♭)afét ∼= κ+(x♭)afét ∼= κ+(x)afét.

Now we have already proved the almost purity over fields(10.3.10.1) which says κ(x♭)afét ∼=
κ+(x)afét, so their stalks are the same. □

Cor.(14.8.7.11) [Invariance of Étale Site under Tilting].There is a natural isomorphism of
categories Xét

∼= X♭
ét, by almost purity theorem(10.3.10.1) and the localness of étale maps.

Prop.(14.8.7.12) [Almost Acyclicity].For any perfectoid space X, the functor U 7→ OX(U) is a
sheaf on Xét, and H i(Xét,O+

X) is almost zero if X is affinoid perfectoid.
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14.9 Pro-Étale Sites on Perfectoids and Diamonds
Main references are [Sch17] and [Notes on Diamonds, David Hansen].

1 Properties of Perfectoid Spaces

Totally Disconnected Spaces

Def.(14.9.1.1) [Totally Disconnected Spaces].A perfectoid space X is called totally discon-
nected if it is qcqs and any open covering {Ui → X} splits, i.e. ⨿Ui → X splits, or equivalently,
there is a refinement covering {Vi → X} that X ∼=

⨿
Vi.

A perfectoid space X is called strictly totally disconnected if it is qcqs and every étale cover
splits.

Prop.(14.9.1.2).Let X be a qcqs perfectoid spaces, then X is totally disconnected iff all its connected
components are of the form Spa(K,K+) where (K,K+) are perfectoid affinoid fields. And it is strictly
totally disconnected if moreover K are all alg.closed.

Proof: Cf.[Sch17].P29, P35. □

Prop.(14.9.1.3). if X is a totally disconnected perfectoid space, then X is affinoid.

Proof: Cf.[Sch17].P30. □

Injections

Def.(14.9.1.4)[Injections].A map f : X → Y of perfectoid spaces is called an injection if for any
perfectoid space Z, f∗ : Hom(Z,X)→ Hom(Z, Y ) is an injection.

Prop.(14.9.1.5)[Residue Field Map is Injection].Let X be a perfectoid space and x ∈ X, giving
rise to a map of residue fields

ix : Spa(κ(x), κ(x)+)→ X,

then ix is an injection of perfectoid spaces.

Proof: To show this, firstly we can replace X with an affinoid nbhd of X. Then notice that
Spa(κ(x), κ(x)+) is the filtered limit over all rational nbhds U of x in X, and for each U , U → X is
an injection by definition(14.8.3.1), so ix is also an injection. □

Cor.(14.9.1.6). In particular, if X is qcqs and has a unique closed point x ∈ X, then X =
Spa(κ(x), κ(x)+), as in this case X is the only quasi-compact open subset containing x.

Prop.(14.9.1.7)[Characterizations of Injections].Let f : Y → X be a map of perfectoid spaces,
then the following conditions are equivalent:

• f is an injection.
• For any perfectoid adic field (K,K+), the map of sets f∗ : Y (K,K+) → X(K,K+) is an

injection.
• The map |f | : |Y | → |X| is injective, and for all rank 1 point y ∈ Y with image f(y) = x ∈ X,

the map of completed residue fields κ(x)→ κ(y) is an isomorphism.
• The map |f | : |Y | → |X| is injective, and f is final in the category of maps Z → X that
|Z| → |X| factors through the map |Y | → |X|.
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In particular, by item4, an injection of perfectoid spaces is determined by its topological map.

Proof: Cf.[Sch17]P21. 4→ 1→ 2 is trivial. □

Prop.(14.9.1.8)[Injection and Base Change].
• Let f : Y → X be an injection of perfectoid spaces, and X ′ → X any map of perfectoid spaces,

then the pullback f ′ : Y ′ = Y ×X X ′ → X ′ is also an injection, and the induced map

|Y ′| → |Y | ×|X| |X ′|

is a homeomorphism.
• A map of perfectoids spaces is an injection iff it is universally injective.

Proof: Cf.[Sch17]P24. □

Immersions

Def.(14.9.1.9)[Immersions].A map of perfectoid spaces f : Y → X is called an immersion if f is
an injection and |f | : |Y | → |X| is a locally closed immersion. If |f | is moreover closed or open, then
it is called closed/open immersion.

Def.(14.9.1.10)[Zariski Closed Immersion].Let f : Z → X be a map of perfectoid spaces where
X = Spa(R,R+) is affinoid perfectoid, then

• the map f is called Zariski closed immersion if f is a closed immersion and |Z| = V (I) ⊂ |X|,
where I ⊂ R is an ideal.

• the map f is called strongly Zariski closed immersion if Z = Spa(S, S+) is affinoid perfectoid,
R→ S is surjective, and S+ is the closure of R+ in S.

Prop.(14.9.1.11).
• If f is strongly Zariski closed, then f is Zariski closed, in particular a closed immersion.
• If f is Zariski closed, then Z is affinoid.
• If X is of characteristic p, and f is Zariski closed, then f is strongly Zariski closed.

Proof: Cf.[?] Section2.5. □

Prop.(14.9.1.12).For any map of perfectoid spaces Y → X, the diagonal map ∆f : Y → Y ×X Y is
an immersion.

Proof: Clearly ∆f is an injection, thus it suffices to show that |∆f | identifies Y with a locally closed
subset of |Y ×X Y |. This can be checked locally on the target, so we can assume X = Spa(R,R+) and
Y = Spa(S, S+), then the diagonal map is strongly Zariski closed, as S⊗̂RS → S is surjective and
maps the integral closure of S+⊗̂R+S+ → S+ onto S+. Thus by(14.9.1.11), ∆f is a closed immersion
in this case. □

Def.(14.9.1.13)[Separated Map].A map f : Y → X of perfectoid spaces is called separated if ∆f

is a closed immersion.

Prop.(14.9.1.14)[Valuation Criterion].Let f : Y → X be a map of perfectoid spaces. The following
are equivalent:

• f is separated.
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• |∆f | : |Y | → |Y ×X Y | is a closed immersion.
• |f | is quasi-separated, and for any perfectoid adic field (K,K+) and any diagram

Spa(K,OK) Y

Spa(K,K+) X

f ,

there exists at most one dotted arrow making the diagram commutative.

Proof: The equivalence of 1 and 2 is by(14.9.1.12).
2 → 3: If |∆f | is a closed immersion, then it is in particular quasi-compact, thus f is quasi-

separated. Now if there are two dotted-arrow making this diagram commutative, they define a point
z ∈ (Y ×X Y )(K,K+) s.t. z|Spa(K,OK) ∈ ∆f (Y )(K,OK). But |∆f |(|Y |) is closed in |Y ×X Y |, so z
maps Spa(K,K+) into |∆f |(|Y |) iff it maps Spa(K,OK) into |∆f |(|Y |), as Spa(K,OK) ⊂ Spa(K,K+)
is dense??. Now ∆f is an injection, so by(14.9.1.7), z factors through ∆f thus the two maps are
equal.

3 → 2: The condition implies that |∆f | : |Y | → |Y ×X Y | is a quasi-compact locally closed
immersion of locally spectral spaces which is moreover specializing. But because |∆f | is quasi-
compact, the image of |∆f | is pro-constructible, and it is also closed under specialization, thus it is
closed, Cf.[Sch17]P25. □

2 Pro-Étale Site and v-Site

Prop.(14.9.2.1). if (R,R+) is the completed filtered colimit of perfectoid Huber pairs (Ri, R+
i ), Xi =

Spa(Ri, R+
i ), X = Spa(R,R+), then base change induce equivalences of categories:

• 2− limiXi,f ét
∼= Xfét.

• 2− limiX
aff
i,ét
∼= Xaff

ét .
• 2− limiXi,ét,qcqs

∼= Xét,qcqs.
• 2− limiXi,ét,qc,sep

∼= Xét,qc,sep.

Proof: Cf.[Sch17]P27.
1 follows from almost purity theorem. □

Def.(14.9.2.2)[Pro-étale Morphism].A map of perfectoid Huber pairs (A,A+)→ (B,B+) is called
pro-étale iff it is the completed filtered colimit of étale ring maps (A,A+)→ (Ai, A+

i ).
A morphism of perfectoid spaces is pro-étale if there is an affinoid covering Vi = Spa(Ri, R+

i ) of
X that f−1(Vi) have coverings Uij = Spa(Rij , R+

ij) that (Ri, R+
i )→ (Rij , R+

ij) are all pro-étale.
In fact, by(14.9.2.7), if this is true for one affinoid covering Vi of X, then this is true for any

affinoid covering of X.

Prop.(14.9.2.3). If S is a profinite set and X is a perfectoid space, then we can define a new perfectoid
space X × S as the inverse limit of X × Si, where S = lim←−Si. Then X × S is pro-étale over X.

Prop.(14.9.2.4) [Immersion are Pro-Étale]. If f : Z ↪→ X be a Zariski closed immersion with
image V (I), then f is affinoid pro-étale. Then f(Z) can be written as the intersection of rational
subsets

Uf1,...,fn = {|f1|, . . . , |fn| ≤ |ϖ|}
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for various n and f1, . . . , fn ∈ I. Then Z = lim←−Uf1,...,fn → X, as it is a closed immersion thus an
injection(14.9.1.11), which shows Z → X is pro-étale.

In particular, an immersion is also pro-étale because pro-étale can be checked analytically locally.

Cor.(14.9.2.5) [Diagonal Map is Pro-Étale]. If f : Y → X is a map of perfectoid spaces, then
∆f : Y → Y ×X Y is pro-étale, by(14.9.1.12).

Prop.(14.9.2.6). If X is an affinoid perfectoid space, then the functor

Pro(Xaff
ét )→ Xaff

proét : lim←−
i

(Xi) 7→ lim←−
i

Xi

is an equivalence of categories.

Proof: This map is essentially surjective by definition, To show it is fully faithful, it suffices to
show that for Y = lim←−i Spa(Yi, Y +

i ), Z = lim←−j Spa(Zj , Z+
j ),

HomX(Y, Z) = lim←−
j

lim−→
i

Hom(Yi, Zj).

We need to show for any Z → X,

HomX(Y, Z) = lim−→
i

Hom(Yi, Z).

Because 2− limiXi,ét,qcqs
∼= Xét,qcqs(14.9.2.1), we have

HomX(Y, Z) = HomY (Y, Y ×X Z) = lim−→
i

HomYi(Yi, Yi ×X Z) = lim−→
i

HomX(Yi, Z).

□

Prop.(14.9.2.7)[Properties of Pro-Étale Morphisms].
• (Affinoid)Pro-Étale maps are stable under composition and pullbacks.
• Let f : Y → X, f ′ : Y ′ → X be (affinoid)pro-étale, then any map g : Y → Y ′ over X is also

(affinoid)pro-étale.

• For any affinoid perfectoid space X, the category Xaff
pro−ét has all finite limits.

Proof: 1: Composition is obvious. pro-étale maps are stable under pullbacks because étale maps
do.

2: We can factor g as a section of the map Y ×X Y ′ → Y and the projection map Y ×X Y ′ → Y ′.
Thus it suffices to show a section of a pro-étale map is pro-étale. But if Y = lim←−i Yi → X is pro-étale,
then a section is given by compatible sections si : X → Yi. Then X = lim←−i(X ×Yi Y ) → X is
pro-étale.

3: This is becauseXaff
ét has finite limits, because it has a final object and fiber products(10.3.9.17).

□

Def.(14.9.2.8)[Big Pro-Étale Site].Consider the following categories:
• Perfd, the category of perfectoid spaces.
• Perf, the category of perfectoid spaces of characteristic p.
• Xproét, the category of perfectoid spaces pro-étale over X, where X is a perfectoid space.
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• Xaff
proét, the category of affinoid perfectoid spaces pro-étale over X.

The big pro-étale site is the category Perfd endowed with the topology that a family of maps
{fi : Yi → X} is a covering if all fi are pro-étale and for any quasi-compact open subset U ⊂ X,
there is a finite set J ⊂ I and quasi-compact opens Vj ⊂ Yj that U = ∪j∈Jfj(Vj).

These truly form sites by(14.9.2.7).

Cor.(14.9.2.9).The presheaf O : X 7→ OX(X),O+ : X 7→ O+
X(X) on the big étale site are sheaves.

If X is affinoid perfectoid, then H i(Xproét,O) = 0 for i > 0, and H i(Xproét,O+) is almost zero for
i > 0. Moreover, the big pro-étale site is subcanonical.

Proof: Firstly we can assume X is affinoid because we already know O,O+ are sheaves w.r.t. the
analytic topology. Let Y → X be an affinoid pro-étale covering of X, where Y = Spa(R∞, R

+
∞),

(R∞, R
+
∞) = (lim−→i

(Ri, R+
i ))∧. Then fixing a pseudo-uniformizer ϖ of R, the complexes

0→ R+/ϖ → R+
j /ϖ → · · ·

is almost exact, because H i(Xét,O+
X/ϖ) is almost zero for i > 0. Now take a direct limit over i, then

0→ R+/ϖ → R+
∞/ϖ → · · ·

is almost exact. Now by induction on n, we can prove

0→ R+/ϖn → R+
∞/ϖ

n → · · ·

is almost exact. Then by passing to the direct limit ,

0→ R+ → R∞
∞ → · · ·

is almost exact. Then by inverting ϖ,

0→ R→ R∞ → · · ·

is exact. These give us the desired results. Notice O+ is a sheaf because it is the elements of
valuations≤ 1 everywhere by(14.8.3.7).

For the final assertion, if {Yi → Y } is a pro-étale covering of Y , and gi : Yi → X are maps that
agree on Yi ×X Yj , then firstly we can glue these maps together topologically to a map |Y | → |X|.
So this problem can be considered locally on X, so we may assume X = Spa(R,R+) is affinoid,
and maps (R,R+) → (O(Yi),O+(Yi)) that agree on the overlap(14.8.4.4), then they glue to a map
(R,R+)→ (O(Y ),O+(Y )), as O,O+ are all sheaves, and this gives a morphism Y → X. □

Prop.(14.9.2.10) [Strictly Totally Disconnected Pro-Étale Cover].Let X be an affinoid per-
fectoid space, then there is an affinoid perfectoid space X̃ with an affinoid pro-étale surjective and
universally open map X̃ → X that X̃ is strictly totally disconnected.

Proof: Cf.[Sch17]P35. □

Prop.(14.9.2.11).The presheaf O,O+ are sheaves w.r.t. the v-topology. Moreover, the v-site is
subcanonical.

Proof: Cf.[Sch17]P40. □

Prop.(14.9.2.12).Let X be an affinoid perfectoid space, then H i
v(X,O) = 0 for i > 0, and H i

v(X,O+)
is almost zero for i > 0.

Proof: Cf.[Sch17]P41. □
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Descent on Pro-Étale Site

Prop.(14.9.2.13)[Descent May Fail].The question is whether the fibered category over Perfd:

X 7→ {Perfectoid Spaces Y → X}

is a stack for the pro-étale toplogy. This fails in general. An evidence is that the fibered category

X 7→ {Affinoid Perfectoid Spaces Y → X}

is not a stack on the category of affinoid Perfectoid spaces with the analytic topology, let along the
pro-étale topology:

Let X = SpaK⟨x, y⟩, and V ⊂ X be {(x, y)||x| = 1 or |y| = 1}, then V is covered by two
affinoids, but is not an affinoid itself: H1(V,OV ) =

⊕̂
m,n>0Kx

−my−n ̸= 0. But there is a standard
rational covering X = ∪iX(f1,f2,f3

fi
), where f1 = ϖ, f2 = x, f3 = y, and

U0 ∩ V = ∅, U1 ∩ V = {|x| = 1} ⊂ U1, U2 ∩ V = {|y| = 1} ⊂ U2

are all affinoid. There is a similar example in the perfectoid case, thus

X 7→ {Affinoid Perfectoid Spaces Y → X}

is not a stack.
Prop.(14.9.2.14)[Pro-étale is not Pro-étale Local].There is an example of a non-pro-étale map
that is pro-étale locally pro-étale.
Proof: Cf.[S-W20]P66. □

Prop.(14.9.2.15)[Characterization of Locally pro-étale Maps].Let f : X → Y be a morphism
of affinoid perfectoid spaces, then the following are equivalent:

• There exists an affinoid pro-étale cover Y ′ → Y s.t. the base change X ′ = X ×Y Y ′ → Y ′ is
pro-étale.

• For all geometric points SpaC → Y , X ×Y SpaC = SpaC × S for some profinite set S.
Proof: Cf.[S-W20]P66. □

Prop.(14.9.2.16)[Descent].Descent data of the the fibered category

X 7→ {Perfectoid Spaces Y → X}

of a perfectoid space Y ′ → X ′ along a pro-étale cover X ′ → X is effective in the following cases:
• If X,X ′, Y ′ are affinoids and X is totally disconnected.
• if f is separated and pro-étale and X is strictly totally disconnected.
• If f is separated and étale. In particular, the fibered category

X 7→ {separated étale X → Y }

is a stack over the category of perfectoid spaces with the pro-étale topology.
• If f is finite étale. In particular, the fibered category

X 7→ {finite étale X → Y }

is a stack over the category of perfectoid spaces with the pro-étale topology.
Proof: Cf.[Sch17]P9.3, 9.6, 9.7. □
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3 Morphisms of v-Stacks

Def.(14.9.3.1)[Étale Morphism of Stacks].Let f : Y ′ → Y be a map of pro-étale stacks on the
category Perfd,

• Assume f is locally separated(i.e. there is an open cover of Y ′ over which f becomes separated),
then f is called quasi-pro-étale if for any strictly totally disconnected perfectoid space X and
a map X → Y , the pullback Y ′ ×Y X is representable and Y ′ ×Y X → X is pro-étale.

• Assume f is locally separated, then f is called étale if for any perfectoid space X and a map
X → Y , the pullback Y ′ ×Y X is representable and Y ′ ×Y X → X is étale.

• f is called finite étale if for any perfectoid space X and a map X → Y , the pullback Y ′×Y X
is representable and Y ′ ×Y X → X is finite étale.

4 Diamonds
Remark(14.9.4.1) [Motivation of Diamonds].The idea of diamonds is that there should be a
functor

⋄ : {analytic adic spaces over Zp} → {diamonds}
that forgets the structure morphism to Zp. For a perfectoid space X, X 7→ Xf lat has this property,
so this functor should coincides on these objects. Now any analytic adic space X over Zp is pro-étale
locally perfectoid:

X = Coeq(X̃ ×X X̃ ⇒ X),

where X̃ → X is a pro-étale perfectoid cover. The equivalence relations R = X̃ ×X X̃ is also
perfectoid, so this functor should send X to Coeq(R♭ ⇒ X̃♭).

For example, if X = Spa(Qp), then a pro-étale cover of X is Spa((Qcycl
p )∧), and then R = X̃ ×X

X̃ = X̃×Z∗
p by Galois theory, and then Q⋄

p should be defined as the coequalizer of Spa((Qcycl
p )♭)/Z∗

p,
whose meaning is explained in(14.9.4.10).

Def.(14.9.4.2)[Diamonds].A diamond is a pro-étale sheaf D on Perf that can be written as D =
X/R, where X ∈ Perf and R is a pro-étale equivalence relation in X ×X(i.e. an equivalence relation
that the maps s, t : R→ X are pro-étale), and also R is representable.

Prop.(14.9.4.3).Let X ∈ Perf and R ⊂ X ×X a representable pro-étale equivalence relation, then
• The quotient sheaf Y = X/R is a diamond.
• The natural map of sheaves R→ X ×Y X is an isomorphism.
• Let X̃ → X be a pro-étale cover by a perfectoid space X̃, and R̃ = R ×X×X (X̃ × X̃) the

induced equivalence relation, then R̃ is a representable pro-étale equivalence relation of X̃, and
the natural map Ỹ = X̃/R̃→ Y = X/R is an isomorphism.

• The map X → Y is quasi-pro-étale(14.9.3.1).

Proof: 1 is by definition.
For 2, firstly R → X ×Y X is injective as subsheaves of X × X. Next, if Z → X ×Y X is

any map from a perfectoid space Z, then we have two maps a, b : Z → X that their composition
with X → Y agree. This means after passing to a pro-étale covering Z̃ → Z, the composition map
Z̃ → Z → X × X factors through R. Now this map Z̃ → R descends to a map Z → R, because
pro-étale site is subcanonical and the two projection maps Z̃ ×Z Z̃ → R coincides because they do
after compositing with R ↪→ X ×X.
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3: Firstly R̃ is representable as fiber products of representable objects(14.8.5.9), and the two
projections are pro-étale, as they are compositions of base changes of pro-étale morphisms. Also the
mop Ỹ → Y of pro-étale sheaves is surjective, as the composition X̃ → X → Y is.

To show Ỹ → Y is injective, let Z be a perfectoid space with two maps Z → Ỹ that coincide
after compositing with Ỹ → Y , we need to show a = b. Now because pro-étale site is subcanonical,
it suffices to show this after replacing Z with a pro-étale cover Z̃, such that a, b factors over ã, b̃ :
Z → X̃. The associated map Z → X̃ × X̃ → X ×X factors through R by item2, so we get a map
Z → R×X×X (X̃ × X̃) = R̃, which means ã, b̃ induces the same map Z → Ỹ . So we are done.

4: By 3, we can replace X by X̃ =
⨿
i Ui → X, where Ui is an affinoid cover of X̃, and R by the

the induced equivalence relation in X̃× X̃, and to pro-étale is analytically local. In this way, we may
assume R ⊂ X ×X and X ×X → X are separated.

Let X ′ be a strictly totally disconnected perfectoid space and X ′ → X be a map. Because X → Y
is surjective as sheaves on Perf, there is a pro-étale cover X̃ ′ → X ′ and a map X̃ ′ → X lying over
X ′ → Y . We can assume X̃ ′ is affinoid. Let W = X ′ ×Y X → X ′ be the fiber product, then

X̃ ′ ×X′ W = X̃ ′ ×X (X ×Y X) = X̃ ′ ×X R

is representable and pro-étale over X̃ ′, and also separated. So by(14.9.2.16), W is also representable,
pro-étale and separated over X. □

Cor.(14.9.4.4)[Equivalent Characterization of Diamonds].Let Y be a pro-étale sheaf on Perf,
then Y is a diamond iff there is a surjective quasi-pro-étale morphism X → Y from a perfectoid
space X. If X is a disjoint union of strictly totally disconnected spaces, then R ⊂ X ×Y X ⊂ X ×X
is a representable pro-étale equivalence relation with Y = X/R.

Proof: If Y is a diamond, then X → Y is quasi-pro-étale by(14.9.4.3). Conversely, if there is a
quasi-pro-étale morphism X → Y , by(14.9.2.10), we can assume that X is a disjoint union of strictly
disconnected spaces. In this case, by the definition of auasi-pro-étale, R is representable and the
projections R = X ×Y X → X is pro-étale, and X/R ∼= Y : it suffices to show this map is injective:
if a, b : Z → X are two maps that coincide after composing with X → Y , then after replacing to
a pro-étale covering Z̃ → Z, we can lift to maps (ã, b̃) : Z̃ → R. And this map descend to a map
Z → R, because the pullback to Z̃×Z Z̃ → R coincides as they do after composing with R ↪→ X×X.
So X/R→ Y is injective. □

Cor.(14.9.4.5).
• Let Y be a pro-étale sheaf on Perf and there is a quasi-pro-étale map Y ′ → Y , where Y ′ is a

diamond, then Y is also a diamond.
• Let f : Y ′ → Y be a quasi-pro-étale map of pro-étale sheaves on Perf and Y is a diamond, then
Y ′ is also a diamond.

Proof: 1: By(14.9.4.4), we can choose a quasi-pro-étale map X → Y ′ where X is a perfectoid
space, then X → Y ′ → Y is also quasi-pro-étale, so Y is a diamond by(14.9.4.4) again.

2: Choose a surjective quasi-pro-étale map X → Y where X is a perfectoid space, then X ′ ×X Y
is representable and X ′ → Y ′ is quasi-pro-étale and surjective, thus Y ′ is a diamond by(14.9.4.4). □

Lemma(14.9.4.6).The absolute product of two perfectoid spaces of char p is also a perfectoid space.

Proof: Cf.[Sch17]P71. □
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Prop.(14.9.4.7)[Absolute Product of Diamonds].Let D,D′ be diamonds, then the product sheaf
D ×D′ is also a diamond.

Proof: Let D = X/R and D′ = X ′/R′, then R × R′, X × X ′ are also representable by(14.9.4.6),
R × R′ → (X × X ′) × (X × X ′) is also an injection, and the projections are pro-étale. Thus
D ×D′ = (X ×X ′)/(R×R′) is a diamond, by(14.9.4.3). □

Prop.(14.9.4.8)[Fiber Products].Fiber products exist in the category of diamonds.

Proof: Let Y1 → Y2 ← Y3 be a diagram of diamonds. Choose representations Yi = Xi/Ri, and after
replacing X1, X2 with a pro-étale covering using(14.9.4.3), we can assume there are maps Xi → X3
lying over Yi → Y3. Moreover, we can replace Xi by Xi ×Y3 X3 to assume that Xi → Y1 ×Y3 X3 is
surjective in the pro-étale topology.

In this case, the map X1 ×X3 X2 → Y1 ×Y3 Y2 is surjective in the pro-étale topology, and the
equivalence relation R4 = X4×Y4 X4 can be calculated to be R4 = R1×R3 R2, which is representable.
It remains to see that R4 → X4 is pro-étale. But R1 × R2 → X1 ×X2 is pro-étale, so does its base
change R1 ×X3 R2 → X1 ×X3 X2 = X4, and also R4 = R1 ×R3 R2 → R1 ×X3 R2 is pro-étale because
it is the base change of R3 → R3 ×X3 R3, which is pro-étale by(14.9.2.5). □

Prop.(14.9.4.9).Let Y be a diamond, then Y is a sheaf for the v-topology.

Proof: Cf.[Sch17]P54. □

Spd(Qp)

Prop.(14.9.4.10).Let Spd(Qp) be defined as

Spa((Qcycl
p )♭)/Z∗

p = Spa(Fp((t1/p
∞)))/Z∗

p,

where Z∗
p acts on Fp((t1/p

∞)) via γ(t) = (1 + t)γ − 1(10.3.8.17). To be precise, it is the coequalizer of

Zp
∗ × Spa(Fp((t1/p

∞)))⇒ Spa(Fp((t1/p
∞)))

where one map is projection and the other map is the group action. To show this is diamond, we
first need to verify this is an injection thus an equivalence relation, which is by(14.9.4.11).

Lemma(14.9.4.11).Consider the map

g : Zp∗ × Spa(Fp((t1/p
∞)))⇒ Spa(Fp((t1/p

∞)))× Spa(Fp((t1/p
∞)))

where the first map is group action and the second map is projection, then this is an injection map.

Proof: For any perfectoid affinoid field (K,K+), Z∗
p acts freely on the topological nilpotent elements

of K, thus the map is an injection, by(14.9.1.7). □

Prop.(14.9.4.12) [Torsor over Affinoid Perfectoid Space].Let G be a profinite group and f :
F ′ → F be a G-torsor, with G profinite, then for any affinoid X = Spa(B,B+) and any morphism
X → F , the pullback F ′ ×F X is representable by a perfectoid affinoid X ′ = Spa(A,A+), where
(A,A+) is the completed filtered colimit of (AH , A+

H), where for each open normal subgroup H of G,
AH/B is a finite étale G/H-torsor.
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Proof: If H is an open normal subgroup of G, then F ′/H → F is a G/H-torsor, and F ′ =
lim←−H F

′/H, thus we reduce to the case G is finite. But for this case, we use the fact {perfectoid
spaces finite étale over X} is a stack(14.9.2.16), and the definition of G-torsor. □

Prop.(14.9.4.13) [Description of Spd(Qp)]. If X = Spa(R,R+) is an affinoid perfectoid space of
characteristic p, then (SpdQp)(X) is the set of isomorphism classes of data of the following shape.

• A Z∗
p-torsor R→ R̃, i.e. R̃ = (lim−→i

Ri)∧, where Rn/R is finite étale with Galois group (Z/pnZ)∗.

• A topological nilpotent unit t ∈ R̃ s.t. for all γ ∈ Z∗
p, γ(t) = (1 + t)γ − 1.

Proof: Notice Spa(Qcycl
p )♭ → Spd(Qp) is a Z∗

p-torsor by definition, so for any morphism X →
Spd(Qp), the pullback Spa(Qcycl

p )♭×Spd(Qp)X → X is also a Z∗
p-torsor, so it is isomorphic to a torsor

Spa(R̃, R̃+) → Spa(R,R+) by(14.9.4.12), and the map Spa(Qcycl
p )♭ ×Spd(Qp) X → X → Spa(Qcycl

p )♭

is an Z∗
p-equivariant map, which is equivalent to a topologically nilpotent element t ∈ R̃ that is

equivariant, i.e. γ(t) = (1 + t)γ − 1.
Conversely, for any such a Z∗

p-torsor R → R̃, an equivariant element t ∈ R̃ descends to a map
X → Spd(Qp). □

Prop.(14.9.4.14).The category of perfectoid spaces over Qp is equivalent to the category of perfectoid
spaces X of characteristic p equipped with a structure morphism X → Spd(Qp).
Proof: Consider the category of triples (X♯, X, ι), where X♯ is a perfectoid space over Qp, X is
a perfectoid space of characteristic p, ι : X♯♭ ∼= X is an isomorphism. A map of triples is a tuple
(f ♯, f) : (X♯, X, ι)→ (Y ♯, Y, ι′) that ι′ ◦ f ♯♭ = f ◦ ι.

This category is equivalent to the category of perfectoid spaces over Qp by the forgetful functor,
where the quasi-inverse is given by X♯ 7→ (X♯, X♯♭, idX♯♭). And this category is also fibered in
equivalent relations over Perf. So it is equivalent to a presheaf UntiltQp which maps X to the
isomorphism classes of untilts (X♯, ι) over Qp, where ι : X♯♭ ∼= X is an isomorphism, by(3.1.8.31).

Similarly we can show define a functor Untilt which maps X to the isomorphism classes of untilts
(X♯, ι)(of whatever characteristic), where ι : X♯♭ ∼= X is an isomorphism.

Let X = Spa(R,R+) be an affinoid perfectoid space of characteristic p. If X♯ = Spa(R♯, R♯+)
is an untilt. Let X̃♯ = X♯⊗̃QpQ

cycl
p , then X̃♯ → X♯ is a pro-étale Z∗

p-torsor, whose tilt X̃ → X

is a pro-étale Z∗
p-torsor equipped with a Z∗

p-equivariant map X̃ → Spa(Qcycl
p )♭ this is a morphism

X → Spd(Qp) by(14.9.4.13).
Conversely, let X̃ → X be a pro-étale Z∗

p-torsor and X̃ → Spa(Qcycl
p )♭ a Z∗

p-equivariant map,
then by tilting equivalence there exists a morphism X̃♯ → Spa(Qcycl

p ) which is also Z∗
p-equivariant.

The equivariance means that it is a descent datum along X̃ → X, so it descends to an untilt X♯ of
X over Qp.

Finally, for general affinoid perfectoid space X, as UntiltQp and Spd(Qp) are all sheaves on Perf,
the above construction can be glued to give an isomorphism between them. □

Prop.(14.9.4.15)[Untilts is a Sheaf].Untilt is a v-sheaf on the site Perf. So does UntiltQp , because
the invertibility of p can be verified locally as O is sheaf.
Proof: Firstly Untilt is clearly an analytic sheaf, so it suffices to show that if X = Spa(R,R+) is
a perfectoid space of characteristic p with a v-cover Y = Spa(S, S+)→ X and Y ♯ = Spa(S♯, S♯+) is
an untilt of Y that the corresponding two untilts of Z = Y ×X Y agree, then there is a unique untilt
X♯ = Spa(R♯, R♯+) whose pullback to Y is Y ♯.

Cf.[Sch17]P86. □
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15 | Representation Theory

15.1 Classical Representation Theory
In this section the representation theory over field C are studied(at least over a topological field

of characteristic0). Modular representations are studied in Modular Representations.
For classical representations, the theory of semisimple algebras should be kept in mind.

1 Topological Representations
Def.(15.1.1.1)[Representations].Let G be a topological group, R be a topological ring with a G-
action, then an R-representation of G is a topological R-module V with an R-covariant action of G
on M s.t. G×M →M is continuous. The category of such representations is denoted by RepR(G).

An irreducible representation is a representation that has no non-trivial invariant closed
subspaces. An indecomposable representation is a representation that is not a direct sum of two
subrepresentations.

Def.(15.1.1.2) [Free Representations]. Situation as in(15.1.1.1), V ∈ RepR(G) is called a free
R-representation if V is free over B. And it is trivial iff V ∼= Bn ∈ RepB(G).

Def.(15.1.1.3) [Constructing Representations].Dual representations, tensor product, and sym-
metric and exterior tensors.

Def.(15.1.1.4)[Projective Representations].A projective representation of a topological group
G on a TVS V is a continuous map G×P (V )→ P (V ), where the topology on P (V ) is induced from
V \{0} ⊂ V .

Prop.(15.1.1.5)[F.D. Schur’s Lemma].Let (π1, V1), (π2, V2) be an irreducible f.d. C-representation
of a topological group G, then C(π1, π2) = C if π1 ∼= π2, and 0 otherwise.

Proof: This is because πi are irreducible as representations with discrete topology of G: Any
subspace of Vi is closed. So we reduce to(15.1.1.10). □

Def.(15.1.1.6) [Types of Representations].Let V be an irreducible f.d. C-representation of a
topological group G, then there are three possibilities:

• V ≇ V ∗, called a representation of complex type.
• There is an invariant symmetric form on V inducing an isomorphism V ∼= V ∗, called a repre-

sentation of real type.
• There is an invariant alternating form on V inducing an isomorphism V ∼= V ∗, called a repre-

sentation of quaternion type.
The category of representation of K-type is denoted by Rep(G)K.
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Proof: By Schur’s lemma(15.1.1.5), either V ≇ V ∗ or there is a unique isomorphism V ∼= V ∗ up to
scalar, which is equivalent to an invariant form B on V . The two coordinate of this invariant form
induces two isomorphisms V ∼= V ∗, which must be proportional, so B(x, x) = cB(x, x), so c = 0 or
B(x, x) = 0 for all x, which means B is symmetric or alternating. □

Def.(15.1.1.7)[Unitary Representations].Usually we consider unitary representations on a Hilbert
space. A unitary representation of a topological group G on a Hilbert space H is defined to be
a homomorphism from G to the group U(H) of unitary operators of H continuous in the strong
operator topology(10.8.4.7). Notice by(10.8.4.8), this is equivalent to the unitary and continuous in
the weak operator topology.

The category of unitary representations of G is denoted by Rep uni(G).

Def.(15.1.1.8)[Projective Unitary Representation].A projective unitary representation of
a topological group G on a Hilbert space H is defined to be a continuous homomorphism from G
to the group PU(H) of unitary operatoes of H, where the topology of PU(H) is induced from the
strong operator topology of U(H)(10.8.4.7). Notice by(10.8.4.8), this is equivalent to the unitary and
continuous in the weak operator topology.

Def.(15.1.1.9) [Character].Let ρ : G → GL(n, V ) be a linear representation of f.d of a group G.
Then the character of χρ is defined to be χρ(g) = tr(ρ(g)).

Prop.(15.1.1.10) [Schur’s lemma]. If (π, V ) is an at most countable dimensional irreducible C-
representation of a topological C-algebra, then EndA(V ) ∼= C. In particular this holds for dimA
countable.

Proof: First the dimension of dimC End(V ) is at most countable, because V is acyclic by irreducibly,
so dimC End(V ) ≤ dimC V . And End(V ) is a skew field, by irreducibility. So the result follows
from(2.2.1.10). □

Cor.(15.1.1.11).Any irreducible representation of a commutative group has dimension 1.

Cor.(15.1.1.12)[Index 2 Subgroup].Let G be a topological group and H an open (normal)subgroup
of index 2, G = H ⋊ {σ}. Let (π, V ) be an irreducible representation of H of at most countable
dimensional, then

• resGH indGH π ∼= π ⊕ πσ.
• π ∼= πσ iff π is the restriction of an irreducible representation of G, called type I. And there

are exactly two such extensions to G.
• π ≇ πσ iff indGH π is an irreducible representation of G, called type II.

All these are true for unitarizable representations.

Proof: 1: This is clear.
2: If π is a restriction of an irreducible smooth representation of G, then σ intertwines π and πσ.

Conversely, if π ∼= πσ, then there is an operator A on V that intertwines π and πσ, and then A2 = id
by Schur’s lemma(15.1.1.10). Let σ acts by A, then this representation extends to G.

3: If π extends toG, then clearly π appear in indGH π but not surjective, so indGH π is not irreducible.
Conversely, if indGH π is not irreducible, notice resGH indGH π ∼= π ⊕ πσ, thus π ∼= πσ, otherwise any
G-invariant subspace can only be π or πσ, so π or πσ extends to representations of G, contradicting
2. □
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Prop.(15.1.1.13).For any topological G a topological ring B with a G-action, d ∈ N, there is a
bijection between the set of equivalence classes of trivial B-representations V of G of rank d and the
category of H1(G,GL(d,B)). Moreover, V is trivial iff it is mapped to the distinguished point of
H1(G,GL(d,B)).

Proof: This follows by taking the matrix of g ∈ G w.r.t. a B-basis of V . □

Cor.(15.1.1.14).Let L/K be a Galois extension of fields, then any f.d. L-representation of Gal(L/K)
is trivial.

Proof: This follows from Hilbert’s theorem90(10.1.3.16). □

Admissible Representations

Def.(15.1.1.15) [Admissible Representations].Let G ∈ Grptop and E a topological field that G
acts trivially and B a topological E-algebra s.t. B ∈ RepE(G). Then V ∈ Repfd

E (G) is called a
B-admissible representation if B ⊗E V ∈ RepB(G) is trivial.

The category RepB-adm
E (G) is the full subcategory of RepE(G) consisting of f.d. B-admissible

E-representations of G.

Prop.(15.1.1.16)[Inclusions and Admissibility].Let G ∈ Grptop and E a topological field that G
acts trivially and B1, B2, B a topological E-algebra s.t. B1, B2, B ∈ RepE(G), and B1 ⊂ B,B2 ⊂ B,
B1 ∩B2 = B0, and BG ⊂ B0, then

RepB1-adm
E (G) ∩ RepB2-adm

E (G) = RepB0-adm
E (G).

Proof: The RHS is contained in LHS trivially. For the converse inclusion, if V ∈ RepB1-adm
E (G) ∩

RepB2-adm
E (G), there exists elements {ui} ⊂ (B1 ⊗E V )G and {vi} ⊂ (B2 ⊗E V )G s.t.

B ⊗E V = Bu1 ⊕ . . . Bun = Bv1 ⊕ . . . Bvn.

Then the transformation matrix from {ui} to {vi} is an element in GL(n;B) that is invariant under
G, so contained in GL(n;BG). Thus it is clear that

{vi} ⊂ (B2 ⊗E V )G ∩ (B1 ⊗E V )G = (B0 ⊗E V )G,

and then B0 ⊗E V = B0v1 ⊕ . . . B0vn, and V is B0-admissible. □

GalK-Regularity

Def.(15.1.1.17)[G-Regularity]. Situation as in(15.1.1.15), we want to establish a numerical criterion
for recognizing B-admissible representations. B is called G-regular if it satisfies the following three
conditions:
H1 : B is a domain.
H2 :(Frac(B))G = BG, in particular, BG is a field.
H3 : if b ̸= 0 ∈ B and Eb is stable under G-action, then b ∈ B∗.

Notice a field is clearly G-regular.
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Cor.(15.1.1.18).Notice that (H3) implies BG ∈ Field, because for b ∈ BGalK , Eb is clearly stable
under G-action, thus b is invertible.

Also the morphism
αB(W ) : B ⊗BG WG →W

is injective for all finite freeW ∈ RepB(G). In particular, this is true forW = B⊗E V, V ∈ Repfd
E (G),

and we get a functor
DB : VectE → VectBG

such that
dimBG DB(V ) ≤ dimE V.

Proof: To show αW is injective, it suffices to show a linear basis {ei} of WG over BG is linearly
independent over B: Suppose ∑ aiei = 0, where ai ∈ B, with the number of nonzero coefficients
minimal, and a1 ̸= 0, then dividing a1 ∈ Frac(B), we assume a1 = 1, and then acting by g − id, we
get ∑

(g(ai)− ai)ei = 0

and this has smaller non-zero elements, unless ai is fixed by g for any g ∈ G, so ai ∈ Frac(B)G = BG

by (H2), contradiction. □

Prop.(15.1.1.19)[B-Admissible Representations]. If B is G-regular(15.1.1.17), V ∈ Repfd
E (G) and

W = B ⊗E V , then the following are equivalent:
• W is trivial, i.e. V is B-admissible.
• αB(W )(15.1.1.18) is an isomorphism.
• dimBG DB(V ) = dimE V .

Proof: 1, 2 are equivalent by(15.1.1.18), as BGalK is a field. Also 2→ 3 is clear.
3 → 2: αW : B ⊗BG WG → B ⊗E V is a B-linear morphism of two finite free B-modules, then

it suffices to show the determinant map is an isomorphism. Let v1, . . . , vd be a E-basis of V and
w1, . . . , wd a BG-basis of WG. Let b be the unique element of B that

αW (v1) ∧ . . . ∧ αW (vd) = bw1 ∧ . . . ∧ wd

then gb = ηb for g ∈ G where η is determined by the identity αW (gv1)∧ . . .∧ αW (gvd) = ηαW (v1)∧
. . . ∧ αW (vd). Now the E-space of v1, . . . , vd is V , which is stable under G action, thus η ∈ E, and
then by (H3) b ∈ B∗, so we are done. □

Cor.(15.1.1.20)[RepB−adm
E (G)]. If B is GalK-regular, then

• RepB−adm
E (G) ⊂ RepE(G) is stable under subobjects and quotients.

• DB : RepBE(G)→ VectBG is exact and faithful.
• RepB−adm

E (G) ⊂ RepE(G) is stable under taking dual and tensor products. And if V, V1, V2 ∈
RepB−adm

E (G), then there is a natural isomorphism

DB(V1)⊗DB(V2) ∼= DB(V1 ⊗ V2)

and
DB(V )⊗DB(V ∨) ∼= DB(V ⊗ V ∨)→ DB(E) = BG

is a perfect pairing between DB(V ) and DB(V ∨).
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Proof: 1: Given an exact sequence 0 → V1 → V → V2 → 0 ∈ RepE(G), tensoring B and taking
G-fixed points, we get an exact sequence

0→ DB(V1)→ DB(V )→ DB(V2)

from which we derive the inequality dimBG DB(V ) ≤ dimBG DB(V1) + dimBG DB(V2). Now we have
dimBG DB(Vi) ≤ dimE Vi by(15.1.1.18), so

dimBG DB(V ) ≤ dimBG DB(V1) + dimBG DB(V2) ≤ dimE V1 + dimE V2 = dimE V.

But this is an equality because V is B-admissible, thus V1, V2 are all B-admissible, and the exact
sequence is in fact an isomorphism by dimension reason.

2: DB is faithful because B ⊗BG DB(V ) ∼= B ⊗E V .
3: There is a natural map

DB(V1)⊗BG DB(V2) = (B ⊗E V1)G ⊗ (B ⊗E V2)G → (B ⊗E (V1 ⊗E V2))G = DB(V1 ⊗E V2),

and dimBG DB(V1 ⊗E V2) ≤ dimE(V1) · dimE(V2), so it suffices to show that this map is injective.
For this, notice that DB(V1 ⊗E V2) ⊂ B ⊗E (V1 ⊗E V2), and after tensoring B,

DB(V1)⊗BG DB(V2) ⊂ B⊗BG (DB(V1)⊗BG DB(V2)) ∼= (B⊗E V1)⊗B (B⊗E V2)→ B⊗E (V1⊗E V2)

is an isomorphism.
To show for the dual preserves B-admissibility, notice that RepB−adm

E (G) is also stable under ex-
terior products, as exterior products are quotient of tensor products. Notice there is an isomorphism

∧(V ∨)⊗ ∧dimV−1V ∼= V ∨,

so it suffices to show for dimV = 1. Let v0 be an E-basis of V , g(v0) = η(g)v0, then DB(V ) = BG(b⊗
v0) for some b ̸= 0 ∈ B. Thus b/g(b) = η(g). And it is easy to show that DB(V ∨) = BG(b−1 ⊗ v0),
and the natural pairing is perfect. In general, the pairing is also perfect because perfectness of a
pairing can be checked after passing to the determinant space. □

Unitary Representations of Locally Compact Groups

For unitary representations of locally compact groups, see10.11.

2 Smooth Representations
Prop.(15.1.2.1)[Smooth Representations].A smooth representation of a locally compact group
G on a complex vector space is a continuous representation w.r.t the discrete topology.

The category Repalg(G) of smooth representations is a full Abelian subcategory of the category
of continuous representations, and there is a right adjoint to the forgetful functor:

Rep(G)→ Repalg(G) : V 7→ V ∞ =
∪

K⊂G compact open
V K

So it preserves injectives andM(G) has enough injectives.

Def.(15.1.2.2)[Equivariant Sheaves].Let G be a locally compact group acting on a space X, let
p : G ⊗ X → X be the projection and a : G × X → X be the action, then a equivariant sheaf
on X is a pair (F , ρ), where F is a locally constant complex sheaf on X and ρ is an isomorphism of
sheaves p∗(F) ∼= a∗(F) that:
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• ρ is identity on e⊗X.
• p∗

23ρ ◦ (idG×a)∗ρ = (m× idX)∗ρ on G×G×X.

Prop.(15.1.2.3). If X is a pt with the trivial G-action, then a equivariant sheaf on X is equivalent to
a representation of G.

Proof: For any equivariant sheaf on X, the pullback are just locally constant functions of G with
value in V . Then ρ on each stalk g defines an action of g on V . Compatibility with the G-action
shows that this is a group action. And consider the stalk at e, because ρ is id at e, for each v, there
is an open nbhd U that ρ(u)v = v on for u ∈ U , thus it is smooth. The converse is obvious. □

Def.(15.1.2.4)[Coinvariants].The Jacquet functor JG : Rep(G)→ VectC is the functor mapping
a representation V of G to V/V (G), where V (G) is spanned by π(g)v − v. It is equivalent to the
functor V 7→ V ⊗G C.

Let ψ be a character of G, then we can more generally define JG,ψ : Rep(G) → VectC is the
functor mapping a representation V of G to V/VG,ψ, where VG,ψ is spanned by π(g)v − ψv. It is
equivalent to the functor V 7→ V ⊗G Cψ, or equivalently JG,ψ = JG ◦ (ψ−1⊗).

Prop.(15.1.2.5). If G is compact, then eGV = V G = V/V (G).
And if G is a union of increasing family of compact groups, then JG is exact, so is JG,ψ.

Proof: JG is clearly right exact. And if G is compact, eGV = V G = V/V (G): if π(G)v = v, then
v = eGv, and if eGv = 0, then because v is smooth, ∑hi∈G/K hiv = 0, thus v = 1

[G:K](v − hiv) is in
V (G).

If G is a union of compact groups Ki, then V/V (G) = colimV/V (Ki) is exact. □

Prop.(15.1.2.6). If G is a union of increasing family of compact open subgroups {Kα}, then v ∈
V (G,ψ)(ψ can be trivial) iff for some Kα,

∫
Kα

ψ−1(h)π(h)vdh = 0.

Proof: We can assume ψ is trivial. If v = π(h)w − w and h ∈ Kα, then
∫
Kα

ψ−1(h)π(h)vdh =
0. Conversely, by the proof of(15.1.2.5), V (G) = ∪V (Kα) = ∪ ker(eKα), which is equivalent to∫
Kα

π(h)vdh = 0. □

Def.(15.1.2.7) [Contragradient Representation].For a smooth representation V of G, the con-
tragradient smooth representation V ∧ = (V ∗)∞ is the smooth part of V ∗.

Prop.(15.1.2.8).Let E be a smooth or f.d. representation of a topological group G, then
• E has an irreducible subquotient.
• If E is f.g., then it has an irreducible quotient.

Proof: 2: Use Zorn’s lemma for the set of proper G-subspaces of U , the union of a chain of proper
G-subspaces is proper, because it is f.g.. So it has a maximal proper G-space, thus the quotient is
irreducible.

1 follows from 2 by choosing a f.g. submodule. □

Prop.(15.1.2.9) [Induced Representation].The induced and compactly induced representations
have the following equivalent forms:

IndGH(V ) = HomZ[H](Z[G], V ), indGH(V ) = Z[G]⊗Z[H] V.

I.e., if H acts on V by ρ, then indGH(ρ) is the space ⊕γ∈G/HVγ where Vγ ∼= V ∈ModH , and that
for vγ ∈ Vγ , (Ind(ρ)g)vγ = ρ(h)vγ′ ∈ Vγ′ where gγ = γ′h that γ′ ∈ G/H, h ∈ H.
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Proof: Choose a set of left coset representatives Γ of G/H, then Γ−1 is a set of right coset
representatives for H\G. Now Z[G] = ⊕γ∈ΓZ[H]γ−1, and we define the space Vγ ∼= V of maps from
Z[G] to V determined by: vγ(g) = ρ(gγ)v ∈ V if g ∈ Hγ−1 and 0 otherwise.

Then Ind(ρ)(V ) = ⊕γ∈ΓVγ that for vγ ∈ Vγ , (Ind(ρ)g)vγ is the map Z[G] to V determined
by: ((Ind(ρ)g)vγ)(g′) = ρ(g′γ′h)v ∈ V if g′ ∈ H(γ′)−1, and 0 otherwise, where gγ = γ′h. Then
(Ind(ρ)g)vγ = ρ(h)vγ′ , which is the same as the formula for Ind(ρ) as in(15.1.2.9). So the map
vγ → vγ : Ind(ρ)→ Ind(ρ) is an isomorphism in Z[G]−Mod. □

Prop.(15.1.2.10)[Clifford’s Theorem]. If ρ : G → GL(V ) is a semisimple smooth or f.d. represen-
tation and H is a normal subgroup of G, then ρ|H is also semisimple.

In particular, a normal Abelian subgroup acts by scalars on any irreducible C-representation of
G, by(15.1.1.11).

Proof: Use definition(2.4.1.4), we reduce to the case ρ is simple. Now an H-subrepresentation is
simple iff it has no proper H-subrepresentations, so clearly G maps a simple H-subrepresentation to
another simple H-subrepresentation. So if W is the sum of all simple H-subrepresentations, then G
preserves W , which shows W = V , and V is H-semisimple by(2.4.1.4). □

Prop.(15.1.2.11) [Restriction]. If G is a group and H is an open normal subgroup of G of finite
index n. Let (π, V ) be a smooth representation of G of f.d. over a field of characteristic p ∤ n, then

• If π|H is completely reducible, then π is also completely reducible.
• If (π, V ) is irreducible, then π|H = π1 ⊕ . . .⊕ πk where π are irreducible representations of H

and k ≤ [G : H].
• If (π, V ) is irreducible, the isotopy parts of H are all of the same dimension, and if there are

more than 1 isotropy classes, then G is an induced representation.
Moreover, item2, 3 are also true for H open normal in G s.t. HZ(G) is of finite index n.

Proof: Let g1, . . . , gn be a coset representation of G/H.
1: If V1 is a G-submodule of V , then V1 has a complementary H-submodule V ⊥

1 . Let P0 be the
projection of V onto V1 along V ⊥

1 , then P = 1
p

∑
π(gi)P0π(gi)−1 is a projection of V onto V1 that

commutes with G-action. Therefore the kernel of P is a G-submodule of V that is complementary
to V1.

2: Let v ∈ V , then {π(gi)v} generates V as a H-representation, thus by(15.1.2.8) there is an
H-submodule V ′ ⊂ V that V/V ′ is irreducible. Let Vi = π(gi)V ′, then V/Vi are also irreducible
representations of H. Consider the H-invariant map V 7→ ⊕V/Vi, its kernel is G-invariant, thus
trivial, thus V is a submodule of ⊕V/Vi, and the assertion follows.

3: The G-action permutes with isotopy classes. And if there are more than 1 classes, choose the
stabilizer Gρ of one V ρ, then V = IndGGρ V

ρ by(15.1.2.9). □

Prop.(15.1.2.12)[Kolchin].Let G be a discrete group acting on a f.d. vector space V s.t. each g ∈ G
acts via a unipotent endomorphism, then there is a basis s.t. G is mapped into U(n, T ).

Proof: Cf.[Mil17]P279. □

3 Linear Representation of Finite Groups

Basic references are [Ser77], [A-B95]. [群表⽰论 notes 薛航].
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Remark(15.1.3.1).The representations in this subsection is assumed to be of f.d. over a field of
char0, in particular, over a subfield of C. In particular, there is no need to consider topologies.

Because a finite group is compact, all results of compact groups apply to a finite group, see4.
Because a finite group is locally profinite, all results of locally profinite groups apply to finite

groups2.

Prop.(15.1.3.2)[Orthogonality of Characters].The characters χi of irreducible representations of
G form a basis of ZL2(G) by(10.11.4.30). Also, for s ∈ G, let c(s) be the number of elements in the
conjugacy class of s, then:

•
∫
i |χi(s)|2 = g/c(s).

• If t is not conjugate to s, then ∑i χi(s)∗χi(t) = 0.

Proof: The last assertion follows from the first one, if you consider a matrix with conjugacy classes
as column and characters as rows, and place

√
c(s)/gχi(s) in the entries, then it is an orthogonal

matrix. □

Cor.(15.1.3.3) [Representations Determined by Characters].A representation of G over C is
determined by its character, by(2.4.1.13).

Cor.(15.1.3.4) [Number of Representations]. If G is a finite group, then the cardinality of Ĝ is
equal to the number of conjugates of G, and ∑

π∈Ĝ d
2
π = |G|.

Proof: Both {χπ} and the characteristic functions of the conjugate classes of G are basis for
L2(G). And the second assertion follows from the Peter-Weyl theorem(10.11.4.15) as ∑

π∈Ĝ d
2
π is the

dimension of L2(G). □

Cor.(15.1.3.5).G is Abelian iff every irreducible representation of G is of dimension 1.

Proof: This follows immediately from the equation ∑
π∈Ĝ d

2
π = |G|(15.1.3.4), as G is Abelian iff it

has |G| conjugacy classes iff |Ĝ| = |G| iff dπ = 1 for any π. □

Prop.(15.1.3.6). If G is a finite p-group and A is a nonzero p-torsion G-module, then AG ̸= 0.

Proof: We may consider A generated by a single element. Because A is p-torsion, |A| = pn for
some n. Now consider the orbit, then if the orbit is not a single element, then its order is divisible
by p, so |AG| is divisible by p. But 0 is fixed, so AG ̸= 0. □

Group Algebra C[G]

Prop.(15.1.3.7)[Maschke’s Theorem]. If F is a field of char p and G is a finite group of order prime
to p, then for any representation U of F [G] and a submodule V , there exists a complement of V in
U .

Proof: Choose an arbitrary projection π of U to V , and let ρ(v) = 1/|G|
∑
g−1π(g(v)), then it can

be checked ρ commutes with G-actions, thus its kernel is also a G-modules, and it is identity on V ,
so U = V ⊕ k ker ρ. □

Cor.(15.1.3.8)[Totally Decomposable].Any such representation of G is a direct sum of irreducible
representations.

Prop.(15.1.3.9)[Brauer-Nesbitt].For a finite group G, if two finite dimensional semisimple repre-
sentations over a field has the same char poly for every element g of G, then they are isomorphic.
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Proof: Just use the irreducible representations are orthogonal and that they have the same and
for char p, we can use divide by p and the char poly becomes p-th power and we can do this forever,
contradiction. □

Prop.(15.1.3.10). Integral properties of characters.

Prop.(15.1.3.11)[Dimensions Divisor Order].The dimension of the irreducible representations of
G divides the order of G.

Proof: □

Cor.(15.1.3.12).The dimension of the irreducible representations of a p-group G is a p-power.

Prop.(15.1.3.13)[Burnside’s Theorem].Any group of order n that n has only two prime divisors
are solvable.

Proof: □

Induced Representations and Mackey Theory

Remark(15.1.3.14).When G is a finite group, the induced representation IndGH(15.1.2.9) is the same
as the (compact)induction in(15.1.5.41). In particular, all the results there holds in the finite group
case.

Prop.(15.1.3.15)[Character of Induced Representations].Character of induced representations,
Cf.[Serre, P30].

Rationality Problems

Def.(15.1.3.16)[Ring RK(G)].We want to consider the representations over a subfield K of C.
Let RK(G) be the Z-module generated by the characters of the representations of G over K, then

it is a subring of R(G) = RC(G). And define the Z-module RK(G) to be the elements of R(G) with
values in K. Clearly RK(G) ⊂ RK(G).

Prop.(15.1.3.17) [Induction and Restriction Morphism].Let H be a subgroup of G, then the
induction induces a Abelian group homomorphism R(H) → R(G), and restriction induces a ring
homomorphism R(G) → R(H). The formula Ind(φ · res(ψ)) = Ind(φ) · ψ shows the image of Ind is
an ideal of R(G). Also by Frobenius reciprocity(15.1.5.44), Ind and Res are dual to each other:

(φ, resψ)H = (Indφ,ψ)G.

Prop.(15.1.3.18).Let ρi be the isomorphism classes of all irreducible linear representations of G over
K and χi there characters. Then

• χi form a basis of RK(G).
• χi are mutually orthogonal.

Proof: □

Cor.(15.1.3.19).A representation of G over C is realizable over K iff its character belongs to RK(G).

Proof: One direction is trivial, for the other, if χ ∈ RK(G), then χ =
∑
niχi, and (χ, χi) =

ni(χi, χi). As (χ, χi) ≥ 0 as they are representations of G, we have ni ≥ 0, thus ρ =
∑
niρi is

realizable over K, by(15.1.3.3). □
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Def.(15.1.3.20)[Schur Indices].K[G] is called quasisplit if the Di are all commutative, or equiva-
lently, all mi = 1.

Prop.(15.1.3.21). If L/K is finite and L[G] is quasisplit, then [L : K] is divisible by each of the Schur
indices mi.

Proof: □

Prop.(15.1.3.22).The characters ψ = χi/mi form a basis of RK(G).

Proof:
□

Cor.(15.1.3.23).RK(G) = RK(G) iff K[G] is quasisplit.

Cor.(15.1.3.24)[Brauer]. If m is the least common multiples of the orders of the elements of G and
K contains the m-th roots of unity, then RK(G) = R(G).

Proof:
□

Cor.(15.1.3.25). If m is the least common multiples of the orders of the elements of G, then all the
Schur indices of G over any field K divides the Euler function φ(m).

Proof: This follows from(15.1.3.24) and(15.1.3.21) by considering the field K[µm] over K. □

Def.(15.1.3.26)[Galois-Action on G].Let L = K(µm), where m divides the order of any element
in G, then L/K is Galois and G(L/K) = ΓK is a subgroup of (Z/mZ)∗. Then this group can act on
G by σt(x) = xn as a set, and we call two elements s, s′ ∈ G ΓK-conjugate iff they are in the same
ΓK orbits of G.

Prop.(15.1.3.27).A class function f on G with values in L belongs to K ⊗Z R(G) iff

σt(f(s)) = f(st)

for σt ∈ ΓK and s ∈ G.

Proof: Cf.[Serre, P95]. □

Cor.(15.1.3.28).A class function f on G with values in K belongs to K ⊗Z RK(G) iff it is constant
on the ΓK-orbits of G.

Proof: Because the □

Prop.(15.1.3.29).For a finite group G, all representations of G has characters in Q iff it all represen-
tations have characters in G, iff every two element generating the same subgroup of G is conjugate.

Proof: Cf.[Serre P103]. □

Cor.(15.1.3.30). representations of Sn all has characteristic in Z.



15.1. CLASSICAL REPRESENTATION THEORY 1531

Artin’s Theorem & Brauer’s Theorem

Prop.(15.1.3.31)[Generalized Artin Theorem].Let X be a family of subgroups of a finite group
G. Let Ind : ⊕H∈XRK(H) → RK(G) be the ring homomorphism induced by induction, then the
following properties are equivalent:

• G is the union of conjugates of the subgroups in X.
• the cokernel of Ind is finite.

Proof: 2 → 1: By the character of induced representations(15.1.3.15), any function in the image
of Ind vanishes outside the union of conjugates of the subgroups in X, so if this is not G, then the
cokernel cannot by finite.

1→ 2: Notice the duality of Ind and Res(15.1.3.17), it suffices to show that Res is injective, but
this is clear. □

Cor.(15.1.3.32) [Artin Theorem].Choose X as the family of cyclic subgroups of G, then every
character of G is a rational combination of characters induced from cyclic subgroups of G.

Proof:
□

Prop.(15.1.3.33)[Brauer’s Theorem].Let G ∈ Abfin, then K0(Rep(G)) is generated by IndGHi(χi),
where Hi ≤ G,χi ∈ Ĥi.

Proof: □

Prop.(15.1.3.34)[Generalized Brauer’s Theorem].

Proof: □

Important representations

Prop.(15.1.3.35) [Q8].There is a 2-dimensional representation of the quadratic group Q8 =
{±1,±i,±j,±k}:

i 7→
[
1 0
0 −1

]
, j 7→

[
0 1
−1 0

]
, k 7→

[
0 1
1 0

]

Prop.(15.1.3.36).There is a representation of Sn on the n− 1-dimensional hypersurface ∑xi = 0.

4 Symmetric Groups
Main references are [The Symmetric Group, Sagan].

5 Locally Profinite Groups

Structure Sheaf and Distributions

Cf.[Representations of the Group GL(n,F) over Local Fields Bernstein/Zelevinsky] and [Bernstein,
Representation of p-adic Groups, Bernstein].

Remark(15.1.5.1).For structure theory of locally profinite groups, Cf.1.
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Def.(15.1.5.2)[Structure Sheaf and Distributions].For a locally profinite space X, the structure
sheaf C∞(X) on X is defined to be the locally constant sheaf C of X.

The space C∞
c (X) = Cc(X) of test functions on X is the set of locally constant continuous

functions with compact supports.
The space S∗ of distribution on X consists of linear functionals on C∞

c (X).

Prop.(15.1.5.3). If X is locally profinite space and F is a C∞ sheaf, then for any open subset U ⊂ X,
Z = X\U , there is an exact sequence:

0→ Γc(U,F)→ Γc(X,F)→ Γc(Z,F)→ 0.

So if we define D(X,F) the space of distributions on F on X to be the space of linear functional
on Γc(X,F), then there is an exact sequence

0→ D(Z,F)→ D(X,F)→ D(U,F)→ 0.

Proof: The left exactness is clear. To show the right surjectivity, let f ∈ Γc(Z,F), then for each
x ∈ Supp(f), there is a compact open nbhd Ux that f restricts to an element of Γ(Ux,F). Then
these Ux cover Supp(f), then by(3.3.4.7), there is a disjoint finite cover {Ui} of Supp(f) that f are
induced by fi ∈ Γ(Ui,F). Now we can replace Ui by Ui\∪j<i Uj to let Ui be disjoint, then f extends
to an element of ∪Ui. □

Cor.(15.1.5.4).For X locally profinite and U ∈ X open, Z = X − U , there is an exact sequence:

0→ C∞
c (U)→ C∞

c (X)→ C∞
c (Z)→ 0,

Thus also an exact sequence

0→ S∗(Z)→ S∗(X)→ S∗(U)→ 0,

Proof: The first is the exact sequence(15.1.5.3) applied to the constant sheaf(structure sheaf of
X). The second is the dual of the first. □

Prop.(15.1.5.5). If X,Y are both locally profinite, then

C∞
c (X × Y ) = C∞

c (X)⊗C C
∞
c (Y )

Proof: Because the subspaces of the form U × V for U, V open form a subbasis of X × Y , so any
compact open subset of X × Y is a disjoint union of sets of the form U × V . □

Def.(15.1.5.6)[Cosmooth C∞
c (X)-Modules].A cosmooth C∞

c (X)-module is a C∞
c (X)-module

M that for any m ∈M , there exists some compact open U ⊂ X that m = χUm.

Prop.(15.1.5.7)[Cosmooth C∞
c (X)-Module and C∞(X)-Sheaves].Let F be a C∞-sheaf on X,

then the space Γc(X,F) is a cosmooth C∞
c (X)-module(15.1.5.6), and this defines an equivalence of

categories between the category of non-degenerate C∞
c (X)-modules and C∞(X)-sheaves.

Notice that in this case, a C∞
c (X)-module M being non-degenerate is equivalent to: for any

m ∈M , there is a compact open subset U that χUm = m.
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Proof: For any non-degenerate C∞
c (X)-module M , define a sheaf FM of the compatible stalks in∏

x∈XM/M(x), where
M(x) = {m ∈M |χUm = 0 for some x ∈ U}.

Then we show these two functors are inverse to each other: One direction is clear, as the sheaf F
is just the sheaf of compatible stalks in ∏x∈X Fx, and it is easy to see Fx ∼= M/M(x). For the other
direction, any element in Γc(X,FM ) is induced from fi ∈ Γ(Ui,FM ), where Ui are pairwise disjoint
compact open subsets, by(3.3.4.7), and it is easy to see Γ(Ui,FM ) = χUM . Thus Γc(X,FM ) =
C∞
c (X)M , and the non-degeneracy of M shows Γc(X,FM ) ∼= M . □

Remark(15.1.5.8).Notice that M(x) can be equivalently defined to be the space spanned by the
elements

{gm|g ∈ C∞
c (X), g(x) = 0,m ∈M}.

Prop.(15.1.5.9). If G is a locally profinite group, any φ ∈ C∞
c (G) is K-bi-invariant under some

compact open subgroup K.

Proof: φ must be of the form ∑
aiχUi , where each Ui is open compact. Then for each element

x ∈ Ui, there is an open compact group Ux that Uxx∪xUx ⊂ Ui, by(10.11.1.50). Now because Supp f
is compact, f.m. of the Uxx ∩ xUx covers Suppφ, thus we consider their intersection ∩Uxi , which is
a compact open subgroup K0 that φ is K0-bi-invariant. □

Lemma(15.1.5.10).Let G be locally profinite and H a closed subgroup, then G/H is locally profinite
space by(10.11.1.51). Then the projection P : Cc(G) → Cc(G/H) defined in(10.11.1.36) restricts to
a projection P∞ : C∞

c (G)→ C∞
c (G/H), and it is surjective.

Proof: Firstly P maps C∞
c (G) into C∞

c (G/H) because if φ is left invariant under K, then Pφ
is also left invariant under K. For the surjectivity, let φ ∈ C∞

c (G/H), then V = Suppφ is open
compact, then by(10.11.1.52) there is an open compact subspace V that p(V ) = U , Then we can
define

ψ(x) = χV (x)φ(p(x))/P (χV )(p(x)),

then it is supported on V , and P (ψ) = φ. Also, it is locally constant, as is easily verified. □

Prop.(15.1.5.11)[Left Invariant Distribution].Let G be a locally profinite group and T is a left
invariant distribution on G, then it is the restriction of a unique Haar measure.

Proof: Any element f ∈ C∞
c (G) is of the form ∑

aiλ(hi)eK for some K, by(15.1.5.9), where
eK = µ(K)−1χK . Because T is left-invariant, T (f) =

∑
aiT (eK), and

∫
fdµ =

∑
ai. Thus to show

T is a multiple of dµ, it suffices to show T (eK) is independent of K.
If K1 ≤ K2, then K2 =

⨿n
i=1 aiK1, where n = [K2 : K1], so eK2 = µ(K1)/µ(K2)

∑n
i=1 λ(ai)eK1 .

Also µ(K2) = nµ(K1) by left invariance. Now it is clear T (eK1) = T (eK2) by left invariance of
T . Then for any two K,K ′, we can find an open compact group K ′′ in their intersection, thus
T (eK) = T (eK′). □

Cor.(15.1.5.12). If T is a distribution on G that satisfies λ(g)T = ξ(g)−1T for g ∈ G, then there is a
unique Haar measure dµ that T (f) =

∫
G ξ(g)f(g)dµ(g).

Proof: Consider the distribution T ′(f) = T (ξ−1f), then it is left invariant. □
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Cor.(15.1.5.13) [Invariant Quotient Distribution].Let G be a locally profinite group and H a
closed subgroup. then left H-invariant measures on G are identified with measures on G/H.

And if there exists a left G-invariant distribution D on G/H, then G/H admits a G-invariant
measure(10.11.1.38), whose restriction to C∞

c (G/H) is D.

Proof: Consider the distribution D ◦ P∞, which is a left invariant linear functional on C∞
c (G),

(15.1.5.11) shows that it’s the restriction of a Haar measure on G.
Then we can use the same method as in(10.11.1.38) to show ∆G|H = ∆H , and the surjectivity of

P∞(15.1.5.10) shows D is a quotient measure on G/H. □

Prop.(15.1.5.14)[Gelfand Pairs].Let G be a locally profinite group and H a closed subgroup s.t.
∆(G)|H = ∆H . Suppose ι is an involution on G that leaves H invariant and acts trivially on those
distributions on G with are H-bi-invariant, then for any smooth irreducible representation V of G,
dim(V ∗)H · dim((V ∨)∗)H ≤ 1.

Proof: Given two H-invariant maps l : C → C,m : V ∨ → C, by Frobenius reciprocity, we
get two maps l′ : C∞

c (H\G) → V,m′ : C∞
c (H\G) → V ∨ that are surjective, and give rise to

B : C∞
c (H×H\G×G)→ V × V ∨ → C.

ThenB satisfies B(f, g) = B(i(g), i(f)), where i(f)(x) = f(x−1): There is a commutative diagram

G×G G

G×G G

(x,y) 7→xy−1

(x,y) 7→(ι(y)−1,ι(x)−1) ι

(x,y) 7→xy−1

and the horizontal arrows identify left H-invariant right G-invariant distributions on G with left
H ×H-invariant distributions on G×G.

By the surjectivity of l′,m′, ker(l′), ker(m′) are left and right radicals of B resp., and the above
formula shows they determine each other, and l′,m′ are determined by their kernels, thus we are
done. □

Prop.(15.1.5.15)[Bernstein-Zelevinsky?]. If p : X → Y is a continuous map of locally profinite
groups, F be a cosmooth C∞-sheaf on X??. Let G be a group acting on X and the sheaf F that
p(gx) = p(x), and χ a character of G. Then

• Let Γc(X,F)(χ) be the C∞
c (X)-submodule of Γc(X,F) generated by gf − χ(g)−1f, g ∈ G, f ∈

Γc(X,F). Then Γc(X,F)/Γc(X,F)(χ) is a non-degenerate C∞
c (Y )-module by composing p, so

we can define G the sheaf on Y corresponding to this submodule by(15.1.5.7). Then if y ∈ Y
and Z = p−1(y), the stalk

Gy ∼= Γc(Z,F)/Γc(Z,F)(χ).

• Assume there are no non-zero distributions D ∈ D(p−1(y),F|p−1(y)) that satisfies gD = χ(g)D
for any y ∈ Y , then no such D exists in D(X,F).

Proof: 1: Firstly Γc(X,F)/Γc(X,F)(χ) is a C∞
c (Y )-module because φ ◦ p fixes Γc(X,F)(χ):

(φ ◦ p)(gf − χ(g)−1f) = g((φ ◦ p)f)− χ(g)−1((φ ◦ p)f),

which uses the condition p(gx) = p(x). The non-degeneracy is also clear, by(15.1.5.7).
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Secondly Γc(Z,F) ∼= Γc(X,F)/Γc(U,F) by(15.1.5.3), so Γc(Z,F)/Γc(Z,F)(χ) is isomorphic the
quotient of Γc(X,F) by Γc(U,F) and Γc(X,F)(χ), because Γc(U,F) is stable under action of f 7→
gf − χ(g)−1f(this uses the condition p(gx) = p(x)).

We claim the space Γc(U,F) is the space L generated by elements of the form (φ ◦ p)f , where
φ ∈ C∞

c (Y ), φ(y) = 0, f ∈ Γc(X,F): L is clearly contained in Γc(U,F), and if f ∈ Γc(U,F), then
Supp f is compact and disjoint from Z, so there is an open compact subset U ⊂ Y containing
p(Supp f) but not y. Let φ = χU , then f = (χU ◦ p)f ∈ L.

Then by(15.1.5.7), the stalk Gy is isomorphic to M/M(y), where M = Γc(X,F)/Γc(X,F)(χ). So
M(y) is just the image of the space L in M by(15.1.5.8), hence Gy is exactly Γc(Z,F)/Γc(Z,F)(χ).

2: this follows from 1, as gD = χ(g)D is just saying D(g−1f − χ(g)f) = 0, or that D annihilates
Γc(Z,F)/Γc(Z,F)(χ) = Gy by item1. So this is equivalent to Gy=0 for any y, which is equivalent to
G = 0, as G is a sheaf. □

Cor.(15.1.5.16)[Invariant Distribution On Orbits].Let γ be an action of a locally profinite group
G on a locally profinite space X and a C∞(X)-sheaf. Assume the action is constructible(3.11.1.21)
and there are no G-invariant distribution on any G-orbit in X, then there are no non-zero G-invariant
distribution on X.

Proof: Firstly, by(3.11.1.22) and(3.3.4.6) any orbit is locally profinite. If there is a G-invariant
distribution on X, we may change X to SuppT , which is G-invariant, thus by(3.11.1.22) there is an
open subset U ⊂ X that G acts regularly, thus we reduce to the regular action case.

Then we can consider X → X/G, X/G is locally profinite by(3.11.1.10), so Bernstein-
Zelevinsky(15.1.5.15) can be used. □

Prop.(15.1.5.17)[Gelfand-Kazhdan]. If G is a locally profinite group, and γ is an action of G on a
locally profinite space X, σ is a homeomorphism X ∼= X, F is a C∞-sheaf on X, and we assume:

• γ is constructible,
• for each g ∈ G, there is a gσ ∈ G that γ(g)σ = σγ(gσ).
• For some n ≥ 0 and g0 ∈ G, γn = γ(g0).
• If there is a non-zero G-invariant F-distribution T on a G-orbit S, then σ(S) = S and σ(T ) = T .

Then any G-invariant distribution on X is invariant under σ.

Proof: Let T be a G-invariant F-distribution that σT ̸= T , then n > 1, and for any n-th root of
unity ξ, consider Tξ =

∑
ξ−iσi(T ). Then

σTξ = ξTξ,
∑
ξ

Tξ = nT,
∑

ξTξ = nσ(T ).

so ∑ξ(ξ − 1)Tξ = n(σ(T ) − T ) ̸= 0, which shows there is a root ξ ̸= 1 that Tξ ̸= 0. Notice Tξ is
G-invariant by condition2. Consider the action σxi = ξ · σ, then Tξ is invariant under σξ.

Let G′ be the semi-direct product of G with σξ, under the action of σ−1
ξ gσξ = gσ, then G′ is

locally profinite and acts on X,F . Clearly this action is also constructible.
Now for any G′-orbit S′, we prove there are no G′-invariant distribution on S′, because it is in

priori G-invariant, so some distribution exists on some G-orbit S ⊂ S′, but then condition4 shows σ
fixes S, then S = S′ and σ(T ) = T . But σξ(T ) = T , contradiction. Finally,(15.1.5.16) shows there
are no G′-invariant distribution on X, contradicting Tξ. □

Cor.(15.1.5.18)[Gelfand-Kazhdan]. If G is a locally profinite group that is σ-compact, and γ is an
action of G on a locally profinite space X, σ : X ∼= X is a homeomorphism, and we assume:
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• γ is constructible,
• for each g ∈ G, there is a gσ ∈ G that γ(g)σ = σγ(gσ).
• For some n ≥ 0 and g0 ∈ G, σn = γ(g0).
• For any x, x and σ(x) are in the same G-orbit.

Then any G-invariant distribution on X is invariant under σ.

Proof: We use(15.1.5.18) and take F to be just C∞(X). Then we need to check condition4: for any
G-orbit S of X let s ∈ S and Stab(s) = H, S ∼= G/H by(3.11.1.22) and(10.11.1.53). Then(15.1.5.13)
shows T is just the G-invariant measure on G/H : Tφ =

∫
G/H φ(γ(g)s). Now condition4 and2 shows

σT is also G-invariant, thus σT = cT . Clearly c ≥ 0, and condition3 shows cn = 1, thus c = 1. □

Hecke Algebra

This is a continuation of Hecke Algebras.

Def.(15.1.5.19)[Hecke Algebras of Locally Profinite Groups].The algebra H(G) of test func-
tions(15.1.5.2) on a locally profinite group G under convolution is an algebra, called the Hecke
algebra of G. And for a compact open subgroup K of G, HK is the subspace of K-bi-invariant
functions in H(G).

Notice H = ∪KHK by(15.1.5.9). Also HK has a unit eK = µ(K)−1χK . This is easily verified.
Then HG is an idempotented algebra(2.4.4.2).

Proof: Define the set E of idempotents in H(G) as eK , where K is compact open in G. The fact
that H is an idempotented algebra follows from(15.1.5.20) and(15.1.5.22). □

Prop.(15.1.5.20)[Point Measure].Consider the point measure δg for g ∈ G, it is not an element in
H(G), but it can convolute on H(G): (δg ∗ φ)(x) = φ(g−1x), (φ ∗ δg)(x) = φ(xg). Then

• If g ∈ K, then δg ∗ eK = eK ∗ δg = eK .
• δg ∗ eK ∗ δg−1 = egKg−1 .
• If K = K1K2 is an open subgroup, then eK1 ∗ eK2 = eK . In particular, eK ∗ eK = eK .

Remark(15.1.5.21). In fact we should define the Hecke algebra as locally constant distributions on
G, then there equations are more natural. This algebra is equivalent to Hecke algebra by f 7→ fµG.

Prop.(15.1.5.22).HK = eK ∗ H ∗ eK = H[eK ].

Proof: Notice by(15.1.5.20), functions in eK ∗ H ∗ eK is clearly K-bi-invariant. For the other
direction, notice if φ is left and right K-invariant, then φ = eK ∗ φ = φ ∗ eK = eK ∗ φ ∗ eK . □

Prop.(15.1.5.23)[Smooth Representations and H-Modules].For a smooth representation (π, V )
of G, for any v, g 7→ π(g)v can be regarded as a locally constant function with value in V , thus
for any φ ∈ HG, g 7→ φ(g)π(g)v is locally constant with compact support, thus we can define a
representation of the Hecke algebra HG by

π(φ)v =
∫
G
φ(g)π(g)vdg

which just has nothing to do with integration, and this is compatible with convolution by formal
reason. Then this is a smooth HG-module, and this gives an equivalence between the category of
smooth(admissible) representations of H(G)(2.4.4.4) and the category of smooth(admissible) repre-
sentations of G.
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Proof: For any v ∈ V , there is an open compact subgroup K that v ∈ V [eK ], thus eKv = v, so
V is smooth. For the equivalence of categories, for any H(G)-module V , we can define a G-action
by linearly extending the action π(g)eKv = (δg ∗ eK)v. Notice by associativity of representation
and smoothness, this is well-defined on all of V , and is a representation of G. Also it is continuous
because v = eKv for some K thus π(g)v = (δg ∗ eK)v = eKv = v for any g ∈ K. Finally these two
functors are inverse to each other is also easily checked. □

Cor.(15.1.5.24). (−)K , (−)∞(15.1.2.1) are both exact, by(2.4.4.3).

Cor.(15.1.5.25).Let (π, V ) be a non-zero smooth representation of a locally profinite group G, then
the following are equivalent by(2.4.4.6) and(15.1.5.23):

• π is irreducible.
• V is simple as H-module.
• V K0 is either zero or simple as a HK0-module for all open compact subgroups K0 of G.

Prop.(15.1.5.26) [Fourier Transform]. If G is a locally profinite Abelian group, then the Fourier
transform induces an isomorphism

H(Ĝ) ∼= C∞
c (G) : φ 7→ φ̂(ξ) =

∫
G
φ(y)⟨ξ, y⟩dy.

Proof: By(10.11.3.8) this is an algebra homomorphism. It remains to show that the image are all
locally compact, and this is clear from the fact Ĝ is given the compact-open topology(10.11.3.6). □

Admissible Smooth Representations

Prop.(15.1.5.27).
• For any compact open subset K of G, V K = ((V ∧)K)∗.
• HomG(V,W∧) = Hom(W,V ∧).
• V ↪→ (V ∧)∧ is an injection.

Proof: 1: Using(15.1.5.23), because (Ṽ )K = V ∗K . There is a homomorphism V ∗K → V K∗, it is
injective, because if f(v) = 0 for each v ∈ V K , then f(w) = f(eKv) = 0. It is also injective, because
for each f ∈ V K∗, the inverse image is g(w) = g(eKw).

2: Hom(V, W̃ ) = Hom(V,W ∗) = Hom(V ⊗W,C).
3: by the proof of item1,

˜̃
V = ∪K((∪KV ∗K)∗K) = ∪K((∪KV ∗K)K∗) = ∪K(V ∗K∗) = ∪K(V K∗∗).

So the filtered colimits of the injections V K → (V K)∗∗ gives an injection ∪K(V K∗∗). □

Cor.(15.1.5.28)[Contragradient Functor is Exact].The contragradient functor V 7→ V̂ is exact.
Because (−)∗, (−)∞ are all exact(15.1.5.24).

Cor.(15.1.5.29). If P is projective inM(G), then P̃ is injective in M(G).

Proof: Hom(X, P̃ ) = Hom(P, X̃), and notice that the contragradient functor is exact(15.1.5.28).
□



1538 CHAPTER 15. REPRESENTATION THEORY

Def.(15.1.5.30)[Admissible Representations].An admissible smooth representation of a lo-
cally profinite group G is a smooth representation that for any compact open subgroup K of G, V K

is of f.d.. The category of admissible smooth representation of G is denoted by Repadm(G).
Then a smooth representation is admissible iff V ∼= (V ∧)∧. In particular, the contragradient of

an admissible representation is admissible.

Proof: If V K is of f.d. for each K, then by the proof of item3 of(15.1.5.27), V ∼= ˜̃
V . Conversely, if

V ∼= ˜̃
V , then V K ∼= V K∗∗, thus V must be finite, by(2.3.3.9). □

Cor.(15.1.5.31).For an irreducible admissible representation, the contragradient is also irreducible
admissible.

Extensions of admissible representations are admissible, by(15.1.5.24).

Prop.(15.1.5.32) [Decomposition of Admissible Representations].Let K be a compact open
subgroup of G, then any smooth representation of G decomposes as

V =
⊕

ρ∈Rep(K)
V ρ,

and V is admissible iff each V ρ are all of f.d. In particular, this shows the two notations of admissi-
ble(locally compact group and locally profinite groups) are compatible for smooth representations.

Remark(15.1.5.33).WARNING: The decomposition theorem of compact groups cannot be directly
used, as representation may not be of f.d. so may not be unitarizable.

Proof: Firstly V ⊂∑
ρ∈K̂ V (ρ), because any v ∈ V is fixed by some compact open subgroup K0 of

K, and we can choose K0 to be normal in K by(3.11.1.6), so for Γ = K/K0,

v ∈ V K0 = ⊕
ρ∈Γ̂V (ρ) ⊂

∑
ρ∈K̂

V (ρ).

Also this sum is direct, because otherwise∑ρ∈S cρvρ = 0, but letK0 be the intersection of kernels of ρ,
then this is an equation of elements in representations of Γ = K/K0 finite, so contradicting(15.1.3.8).

If π is admissible, then V (ρ) ⊂ V ker ρ is of f.d.. Conversely, if V is not admissible, then V K0 is
of infinite dimensional for some K0 compact compact normal, so V K0 decomposes as direct sums of
V (ρ) for ρ ∈ K̂/K0, thus one of these space must be of infinite dimensional. □

Def.(15.1.5.34)[Character of Admissible Representations].Let (π, V ) be an admissible repre-
sentation of G, then for any φ ∈ H, φ ∈ HK for some compact open subset of G, by(15.1.5.19),
so Im(π(φ)) ⊂ V K , which is of f.d., so we can define the trace of φ as tr(π(φ)|V K). Notice this is
independent of K chosen by linear algebra reasons. And this defines a distribution on H : φ 7→ tr(φ),
called the character of V .

Cor.(15.1.5.35).M(G) has enough injectives.

Proof: AsM(G) has enough projectives(2.4.4.9)(15.1.5.23), there is a surjection P → X̃, thus an
injection ˜̃

X ↪→ P̃ (15.1.5.28). Now X ↪→ ˜̃
X by(15.1.5.27). □



15.1. CLASSICAL REPRESENTATION THEORY 1539

Irreducible Admissible Representations

Prop.(15.1.5.36) [Separation Lemma]. If G is a σ-compact locally profinite group, then for any
0 ̸= h ∈ H(G), there is an irreducible representation ρ that ρ(h) ̸= 0.

Proof: Cf.[Bernstein, P20], [Bernstein-Zelevinsky, P19].? □

Prop.(15.1.5.37)[Shur’s Lemma].
• If G is a σ-compact locally profinite group, then any irreducible smooth representation V is of

at most countable dimension, thus EndG(V ) = C by(2.2.1.10).
• If G is a locally profinite group, then any irreducible admissible representation V of G satisfies

EndG(V ) = C.

Proof: 1: If it is of at most finite dimension because if ξ generate V , then notice its stablizer is
compact open, and G is σ-compact, so V is at mots countable.

2: Let K0 be a small open compact subgroup that V K0 ̸= 0, then V K0 is of f.d. and preserved
under T ∈ EndG(V ), thus T has an eigenvalue c, thus T = cI on V . □

Prop.(15.1.5.38).Let (π1, V1), (π2, V2) are two irreducible representations of a locally profinite group
G. If V K

1
∼= V K

2 ̸= 0 as HK-module for some compact open subgroup K of G, then π1 ∼= π2. This
follows immediately from(2.4.4.7).

Prop.(15.1.5.39) [Characters Determine Irreducible Admissible Representations].Let
π1, . . . , πn be inequivalent irreducible admissible representations of a locally profinite group G, then
their characters tr(πi) are linearly independent. In particular, an irreducible admissible representa-
tion is determined by its character.

Proof: Choose K that V K
i ̸= 0 for any i, the hypothesis together with(15.1.5.38) shows V K

i ≇ V K
j .

Then we finish by(10.11.4.22). □

Prop.(15.1.5.40)[Representations of Product Group]. If G1, G2 are all locally profinite groups
and (πi,Mi) are irreducible admissible representations ofGi, thenM1⊗M2 is an irreducible admissible
representation of G1×G2, and any irreducible admissible representations of G1×G2 comes like this.

Proof: By(15.1.5.23) and(2.4.4.15), this follows if we have HG1⊗G2
∼= HG1 ⊗HG2 . And this fact is

easily deduced from(15.1.5.5). □

Induced Representations and Mackey Theory

Def.(15.1.5.41)[Smooth Induced Representations].Let G be a locally profinite group and H is
a closed subgroup, (π, V ) be a smooth representation of H, we can define the smooth induced
representation IndGH π as the space of locally constant f on G with values in V

f(hg) =
√

∆G(h)
∆H(h)

π(h)f(g).

with the natural right G-representation. Notice this is similar to that of unitary representations of
locally compact groups, in(10.11.5.3).

the induced representation IndGH π has a subrepresentation indGH consisting of functions that is
compactly supported in H\G, called the compactly induced representation.
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Remark(15.1.5.42).The normalized factor here is used to make the induction of a unitarizable rep-
resentation unitarizable(15.1.5.52).

Prop.(15.1.5.43)[Description of the Induced Representations]. Situation as in(15.1.5.41). Let
K ⊂ G be an open compact subgroup, and Ω ⊂ G be a system of coset representations of H\G/K.
For each g ∈ G, denote Ng = H ∩ gKg−1 the compact open subgroup of H, then the restriction of
functions from G to Ω induces an isomorphism of (IndGH(V ))K with the ∏g∈Ω V

Ng . And in this way,
(indGH(V ))K is mapped to ⊕g∈Ω V

Ng .

Prop.(15.1.5.44).Let G be a locally profinite group, H a closed subgroup of G, and B a closed
subgroup of H, then

• IndGH and indGH are both exact functors Repalg(H)→ Repalg(G).
• IndGH ◦ IndHB = IndGB and indGH ◦ indHB = indGB.
• IndGH(σ)∨ = indGH(σ∨).
• (Smooth Frobenius Reciprocity)If (π,W ) ∈ Repalg(G), (ρ, V ) ∈ Repalg(H), then there are

functorial isomorphisms

HomG(π, IndGH(ρ)) = HomH(π|H , ρ⊗
√

∆G

∆H
), HomG(indGH(σ), π) = HomH(ρ⊗

√
∆H

∆G
, (π∨|H)∨)

Proof: 1: This follows from the description in(2.4.4.3) and(2.4.4.3) by taking colimits.
2: For simplicity we prove for G,H,B unimodular. An element in IndGH ◦ IndHB (V ) is an element

φ : G 7→ Hom(H,V ) that satisfies φ(hg)(h′) = (π(h)φ(g))(h′) = φ(g)(hh′), thus φ(g)(h) = φ(hg)(1).
Let Φ(g) = φ(g)(1), then Φ satisfies Φ(bg) = π(b)Φ(g). So φ 7→ Φ is an isomorphism. ind case
follows from item3.

3: For f : G → V ∈ IndGH(σ), f ′ ∈ G → V ∨ ∈ indGH(σ∨), ⟨f, f ′⟩ is compactly supported in H\G,
and ⟨π(h)f, π(h)f ′⟩ = ∆G(h)

∆H(h)⟨f, f
′⟩, thus we can define a G-invariant pairing

⟨f, f ′⟩ =
∫
H\G
⟨f(g), f ′(g)⟩dµH\G(g)(10.11.1.44).

This map is a perfect pairing on the K-fixed part for any compact open K using description
in(15.1.5.43), thus we are done.

4: Given a Φ : W → IndGH V , we have a map φ : W → V : φ(w) = Φ(w)(1), then it is verified
that φ ∈ C(π|H , ρ⊗

√
∆G
∆H

). Conversely, if (φ : W → V ) ∈ C(π|H , ρ⊗
√

∆G
∆H

) is given, we can define
Φ;W → IndGH V : Φ(w)(g) = φ(π(g)w), then Φ(w) ∈ IndGH V and this is linear in w(remember to
check smoothness). Finally, it is easily verified these maps are inverse to each other. The second
assertion follows from item3 and(15.1.5.27). □

Cor.(15.1.5.45). If H\G is compact, then IndGH = indGH , and they map admissible representations to
admissible representations, by the description in(2.4.4.3), as H\G/K is both compact and discrete
thus finite.

Prop.(15.1.5.46). If H is normal in G and for any ρ ∈ Rep(H), let ρg be ρ twisted by conjugation of
g ∈ G, then IndGH(ρ) ∼= IndGH(ρg), and indGH(ρ) ∼= indGH(ρg)

Proof: □
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Prop.(15.1.5.47).Let H ≤ G,K ⊴ G, ρ ∈ Rep(H), then

(IndGH(ρ))K ∼= IndG/KH/H∩K(ρH∩K) ∈ Repalg(G/K)

Proof: □

Prop.(15.1.5.48).Let G be a locally profinite group and H is a closed subgroup, (π, V ) be a smooth
representation of H, then there is a G-invariant map Pπ : C∞

c (G)⊗ V → indGH(π) :

Pπ(φ, v)(g) =
∫
H
φ(b−1g)

√
∆G(b)
∆H(b)

π(b)vdb.

And if dim π < ∞ and there is an open compact subgroup K of G that G = HK, then this map is
surjective.

Moreover,
P (λ(b)−1φ, v) =

√
∆G(b)∆H(b)P (φ, π(b)v), b ∈ H

Proof: It can be verified that Pπ(φ, v)(bg) =
√

∆G(b)
∆H(b)π(b)Pπ(φ, v).

If H\G is compact, by(10.11.1.52), there is a compact open subset K of G that G = HK, then
for any f ∈ IndGH(π) =

∑
vi ⊗ fi, consider φi = χK−1fi, then

∑
P (φi, vi) =

∑
V (H ∩ K)fivi =

V (H ∩K)f . □

Prop.(15.1.5.49)[Mackey’s Decomposition].Let H,K be closed subgroups of a locally profinite
group G, ρ is a smooth representation of H. If s ∈ G, then we can define a new representation of
Hs = K ∩ sHs−1 as ρs(g) 7→ ρ(s−1gs). Then if we use unnormalized induction,

• If either H or K is open in G, then

resGK indGH ρ ∼=
⊕

s∈H\G/K
indKHs ρ

s

• If K is open in G, then
resGK IndGH τ ∼= (

∏
s∈H\G/K

IndKHs τ
s)∞

Proof: Cf.[Yam22]. □

Cor.(15.1.5.50)[Mackey’s Intertwining Theorem].Let H be a closed subgroup of a locally profi-
nite group G, K an open subgroup of G, σ(resp. τ) be a smooth representation of K(resp. H),
define τ s as in(15.1.5.49), then if we use unnormalized induction,

•
HomG(indGK σ, IndGH τ) ∼=

∏
s∈H\G/K

HomHs(σ, τ s).

• If moreover H\HgK ∼= Hs\K is compact for any g ∈ G(e.g. K is compact) and σ is f.g. over
K, then

HomG(indGK σ, indGH τ) ∼=
⊕

s∈H\G/K
HomHs(σ, τ s).
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Proof: 1: This is a direct consequence of Mackey’s decomposition(15.1.5.49) and Frobenius reci-
procity(15.1.5.44):

HomG(indGK σ, IndGH τ) ∼= HomK(σ, resGK IndGH τ) ∼= HomK(σ, (
∏

s∈H\G/K
IndKHs τ

s)∞)

∼= HomK(σ,
∏

s∈H\G/K
IndKHs τ

s) ∼=
∏

s∈H\G/K
HomK(σ, IndKHs τ

s)

∼=
∏

s∈H\G/K
HomHs(σ, τ s).

2 is similar. □

Cor.(15.1.5.51)[Compact Induction Admissible]. If H is a subgroup of G that H\G is compact,
then IndGH takes admissible representations to admissible representations.

Proof: For any compact open subgroup K ⊂ G, H\G/K is finite, as H\G is compact and K is
open, then by Mackey’s decomposition(15.1.5.49), (IndGH ρ)K = ⊕s∈H\G/Kρ

s−1Ks∩H is of f.d. if ρ is
admissible. □

Unitarizable Admissible Representations

Prop.(15.1.5.52).The induction of a unitarizable representation is unitarizable, by(10.11.5.3).

Prop.(15.1.5.53)[Converse of Schur’s Lemma]. If (π, V ) is a unitarizable admissible representation
of a locally profinite group G that HomG(V, V ) = C, then π is irreducible.

Proof: Cf.[Bump, P523].? □

Compact Representations

Def.(15.1.5.54)[Compact Representations].For a locally profinite group G, a compact repre-
sentation is a smooth representation of G s.t. for every ξ ∈ V and every compact open subgroup
K ⊂ G, the function Dξ,K : G→ V : g 7→ π(eK)π(g−1)ξ has compact support.

Prop.(15.1.5.55). V ∈ Repalg(G) is compact iff every matrix coefficient of V is compactly supported.
And every f.g. compact representation is admissible.

Proof: If V is compact, for any ξ ∈ V, ξ∧ ∈ V ∧, ξ∧ ∈ (V ∧)K , then Suppφξ,ξ∧ ∈ SuppDξ,K is
compact.

For the converse, Cf.[Bernstein Zelevinsky, P26]. □
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15.2 Modular Representations
Main references are [Ser77] and [Bon11].

1 Block Theory
See [Bon11].

2 Unequal Characteristic
3 Equal Characteristic

Prop.(15.2.3.1).The only irreducible representation of a p-group over a a field of char p is the trivial
representation.

Proof: For any v ∈ V , consider the additive subgroup generated by g(s)v, then it is a finite group
of prime power order. Then(2.1.7.4) shows it has a element other than 0 fixed by all G, thus it is not
irreducible unless trivial representation. □
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15.3 Galois Representations(Basics)
Main references are [Theories of p-adic Galois Representations, Fontaine/Yi Ouyan], [Local Lang-

lands for GL(n), Zijian Yao]. [Con06], [R. Taylor, Galois representations, long version of the talk
given at the iCM 2002].

Notation(15.3.0.1).
• Use notations defined in Classical Representation Theory.
• Use notations defined in Cohomology of Arithmetic Fields.

Remark(15.3.0.2).For K ∈ Field, E ∈ Fieldtop, the theory of Galois representations study the
category RepE(GalK).

1 Basics
Def.(15.3.1.1)[Galois Representations].For any K ∈ Field, p ∈ P,

• an Artin representation of K is a f.d. smooth C-representation of GalK .
• a p-adic Galois representation of K is a f.d. continuous Qp-representation of GalK . If
K ∈ p-LField, this is called a p-adic local Galois representation(of K).

• a p-adic integral Galois representation of K is a f.d. continuous Qp-representation of
GalK . If K ∈ p-LField, this is called a p-adic local integral Galois representation(of K).

• if K ∈ p-LField, ℓ ∈ P\{p}, then an ℓ-adic Galois representation of K is a f.d. continuous
Qℓ-representation of GalK .

Cor.(15.3.1.2)[Artin Representations as ℓ-adic(or p-adic) Representations].A choice of iso-
morphism(12.2.1.27) Qp

∼= Qℓ
∼= C induces a bijection between Artin representations and ℓ-adic(or

p-adic) representations with open kernels.

Prop.(15.3.1.3) [Compact Groups Stabilize a Lattice].Let Γ be a compact group and let ρ :
Γ → GL(n,Qp) be a continuous homomorphism, then there exists a finite extension L/Qp that
ρ(Γ) ⊂ GL(n,L), and up to conjugation, ρ(Γ) ⊂ GL(n,OL), or equivalently, Γ fixes a OL-lattice.

Proof: Notice ρ(Γ) is compact and Hausdorff, so by Baire category theorem, now that GL(n,L)
is closed in GL(n,Qp) for all L/Qp finite, and all this extensions are countable by primitive element
theorem, so there is an L that ρ(Γ) ∩ GL(n,L) contains an open subset of ρ(Γ), so it is an open
subgroup, thus of finite index, hence by adding all the coset representations into L, we get an L′

finite.
For the second assertion, notice ρ(Γ) is compact in GL(n,L), thus by(13.3.1.5), it is conjugate to

GL(n,OL). □

Prop.(15.3.1.4)[Brauer-Nesbitt]. If two n-dimensional representations have the same char polyno-
mial and char k = 0, or char k > n and they have the same character, then their semisimplification
are the same.

Proof: The proof is not hard, use the Artin-Wedderburn theorem, and the fact the representation
may not by semisimple. □

Def.(15.3.1.5)[Restricted Galois Representations].By(12.4.2.17), if F ∈ GField, for any v ∈ ΣF ,
a Galois representation ρ of F can be restricted to a Galois representations ρv of GalFv , called the
restricted Galois representation.
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Def.(15.3.1.6) [Cyclotomic Characters and Tate Twists].For K ∈ Field, p ∈ P, the p-adic
cyclotomic character χp of GalK is the character corresponding to the 1-dimensional p-adic Tate
module of Ga,K .

For any (ρ, V ) ∈ RepZp(GalK) or (ρ, V ) ∈ RepQp(GalK) and n ∈ Z, we can define the Tate
twist ρ(n) as the representation twisted by n-th power of the cyclotomic character χnp .

Def.(15.3.1.7)[Tate Duals].For a p-adic representation V of the Galois group of a field K, the Tate
dual V D of V is defined to be V D = V ∨(1). Similarly for p-adic integral representations.

Def.(15.3.1.8)[Properties of Galois Representations].Let ρ be a representation of GalQ on some
topological ring A, then

• ρ is called an odd representation if ρ(c) = −1, and an even representation otherwise.
• For p ∈ P, ρ is said to be unramified at p if Ip ⊂ ker(ρ|GalQp ).
• For p ∈ P, ρ is said to be flat at p if for any Artinian quotient A/I of A, the quotient

representation ρ|GalQp is isomorphic to the representation of GalQp on the geometric points of
a finite flat group scheme over Zp.

2 ℓ-adic (Local)Galois Representations
Def.(15.3.2.1)[Notations].

• Let p ∈ P, q ∈ pZ+ , K ∈ p-NField with residue field Fq.
• Let ℓ ∈ P \ {p}.
• tℓ : IK/RK → Zℓ be the ℓ-adic tame character(12.2.3.18).
• Let σ be a fixed lift of Frob ∈ GalFq .

• Let χ = χℓ be the unramified cyclotomic character(15.3.1.6) Ẑ ∼= GalK /IK → Zℓ : σ 7→ q.

Prop.(15.3.2.2). If ρ : Γ → GL(n, k) = GL(V ) is a representation, then it has a filtration 0 = V0 ⊂
V1 ⊂ . . . ⊂ Vn = V where Vi+1/Vi is irreducible, then there is a semisimplification of ρ, which is
ρss = ⊕Vi+1/Vi.

Def.(15.3.2.3)[Residential Representation]. If L/Qp finite, we may take a Γ-stable OL-lattice Γ,
then the residual representation ρL is defined by Γ → GL(Λ/πΛ). Then the semisimplification
of ρL is independent of Λ chosen.?

Prop.(15.3.2.4)[Induced Galois Representations].Let F be a local field with residue character-
istic p. Let (n, q) = 1, then any irreducible representation (ρ, V ) of GalF of dimension n is induced
from a character χ of K∗ for a field extension K/F of degree n.

Proof: Suppose χ factors through a normal subgroup G(L/F ). It suffices to show ρ is an induced
representation from a subgroup, then use induction. Suppose it is not, then consider the filtration
of Galois groups Rv ⊂ Iv ⊂ GF . Rv is a pro-p-group, thus all irreducible f.d. representations
are p-powers, by(15.1.3.12), thus it is 1-dimensional. Now Rv is a normal subgroup, by(15.1.2.10),
Rv acts by scalars on V . Now the exact sequence 1 → Rv → Iv → Iv/Rv → 0 is a split exact
sequence(12.2.2.17), and Iv/Rv is cyclic, thus ρ|Iv also contains a character, and the same argument
as above shows Iv acts by characters. Then a twist of ρ factors through G/Iv, which is a cyclic group,
contradiction. □
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Thm.(15.3.2.5).Let K be a p-adic field with residue field k and k = k, then any ρ ∈ Reppot. st
Qℓ

(GalK)
comes from geometry.

Proof: Cf.[Fontaine, Galois Rep]P12.? □

Weil Representations

References are [Yao17].

Prop.(15.3.2.6)[Primitive Weil Representation]. π ∈ Repalg(WK) is called primitive if it is not in-
duced from a representation of a proper subgroup. Then for any primitive representation ofWF , it fac-
tors through CE/F for some finite extension E/F by continuity, and by Clifford’s theorem(15.1.2.10),
the normal subgroup CE acts by scalars, so the image of WE/F in GL(V ) is a finite group.

Def.(15.3.2.7)[Twisting Character of WK ].For s ∈ C, define the quasi-character ωs : WF → C× :
x 7→ ||x||s.

Prop.(15.3.2.8) [Twisting of Weil Representation].For any ρ ∈ Irralg(WF ), there exists some
s ∈ C that ωs ⊗ ρ factors through WF → GF . And for this s, (ωs ⊗ ρ)(WF ) is a finite subgroup of
GL(V ).

Proof: ker(ρ|IF ) is an open subgroup of IF . Conjugation by σ induces a permutation on the finite
subgroup ρ(IF ), so there is some n that ρn = id on ρ(IF ), which means ρ(σn) commutes with each
elements of WF , thus it is a scalar by Schur’s lemma. Thus we can chose s that (ωs ⊗ ρ)(σn) = 0,
then ωs ⊗ ρ is trivial on U = ⟨σn, ker(ρ|IF )⟩, which is a subgroup of WF of finite index. Thus the
image is finite.

Also the closed subgroup U = ⟨σn, ker(ρ|IF )⟩ ⊂ GalK if of finite index, and U ∩WF = U , thus
WF /U ∼= GalF /U , and this representation extends to GalK . □

Cor.(15.3.2.9) [Galois-Type Representations].As WK is dense in GalK , Repalg(GalK) ⊂
Repalg(WK) is a subcategory. The representations in this subcategory are called representations
of Galois-type.

(15.3.2.8) shows Repalg(GalK) are almost the same as Repalg(WK). ρ ∈ Repalg(WK) is of Galois-
type iff it has a finite image.

Prop.(15.3.2.10).Let ρ be a representation of WK that ρ(IK) is finite, the following are equivalent:
• ρ(σ) is semisimple for any σ ∈WK .
• ρ(φ) is semisimple.
• ρ is a semisimple representation.

Proof: Cf.[Yao17]P4. □

Def.(15.3.2.11)[ℓ-Integral Representations].For ρ ∈ Rep
Qℓ

(WK), by(15.3.2.8), the eigenvalues of
r are ℓ-adic units iff the eigenvalues of ρ(σ) ∈ O∗

Qℓ
, iff the characteristic polynomial of ρ(σ) are in

O
Qℓ

[T ] and |det(ρ(σ))| = 1. Such a representation is called an ℓ-integral representation.

Def.(15.3.2.12)[Types of 2-Dimensional Representations].By(15.3.2.6), any 2-dimensional rep-
resentation of WF has finite image in PGL(2,C) ∼= SO(3,C)(11.7.4.13). Thus by conjugacy into
SO(3,R), the image is isomorphic to a cyclic, dihedral, tetrahedral, octahedral or icosahedral group
by(11.7.4.23), called the type of this Weil representation.
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Def.(15.3.2.13)[Dihedral Representation].A dihedral Weil representation is a representation
WF → GL(2,C) that is induced from a quasi-character of WE for some quadratic extension E/F .
(What’s the relation with(15.3.2.12)?)

Prop.(15.3.2.14) [Induced Weil Representations]. If (p, n) = 1 and K ∈ p-NField, then any
irreducible representation WK → GL(n,C) is induced from a quasi-character of WE(equivalently
E×) where E is a n-dimensional field extension E/F .

Proof: By(10.11.5.4), the class of such induced extensions are stable under twisting by ωs, thus us-
ing(15.3.2.8), we can assume that the representation factors through G(F/F ), thus through G(K/F )
for some finite extension K/F , thus the assertion follows from(15.3.2.4). □

Def.(15.3.2.15)[Artin Conductor].For (ρ, V ) ∈ Repalg(WK), define the Artin conductor

f(ρ) = f(χρ) =
∑
i>0

1
[G0 : Gi]

dim(V/V Gi)

where Gi are the higher ramification groups of G.

Def.(15.3.2.16) [Artin Conductors].Let L/F be a Galois extension of global fields and (ρ, V ) ∈
Rep(Gal(L/F )), for v ∈ Σfin

F , let Gv = Gv,0 ⊃ Gv,1 ⊃ . . . ⊃ Gv,m = 0 be higher ramification groups
at v, then the Artin conductor of ρ is defined to be the ideal in OF :

f(ρ) =
∏

v∈Σfin
F

pavv , av =
∑
i≥0

dim(V/V Gv,i) #Gv,i
#Gv,0

.

And we also define the Swan conductor

b(ρ) =
∏

v∈Σfin
F

pbvv , bv =
∑
i≥1

dim(V/V Gv,i) #Gv,i
#Gv,0

.

Prop.(15.3.2.17) [Conductor-Discriminant-Formula].For any Galois extension of global fields
L/F ,

dL/F =
∏

ρ∈Irr(Gal(L/F ))
f(F, ρ)χρ(1)

Proof: Cf.[Neu99]P534. □

Deligne-Weil Representations

Def.(15.3.2.18)[Weil-Deligne Groups].TheWeil-Deligne group WDK is the group schemeWK⋉
Ga ∈ Grp /Q given by the action

wxw−1 = |w|x.

Def.(15.3.2.19) [Deligne-Weil Representations].For L ∈ Field0, the category wdL(WK) of
Deligne-Weil representations of WK over L consists of triples (ρ, V,N), where (ρ, V ) ∈
Repalg

L (WK) and N ∈ End(V ) s.t.

ρ(x)Nρ(x)−1 = |x|·N, x ∈WK .

Equivalently, a Deligne-Weil representation is a smooth representation (ρ, V ) of WK together
with a WK-map V 7→ V (1)(15.3.1.6).
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Equivalenly, a Deligne-Weil representation is a representation of the group scheme
WDK(15.3.2.18) over L, by??.

N is necessarily nilpotent, and for an irreducible Deligne-Weil representation, N = 0.
wdC(WK) is also denoted by wd(WK).

Proof: Because σNσ−1 = q−1·N , N has no non-zero eigenvalues, so N is nilpotent. □

Remark(15.3.2.20).Deligne-Weil representations are exactly the continuous representations of WK ,
as will be illustrated in(15.3.2.26).

Def.(15.3.2.21).Define tensor product and inner Homs: (ρ1, V1, N1)⊗(ρ2, V2, N2) = (ρ3, V3, N3) where

V3 = V1 ⊗ V2, ρ3(x)(v1 ⊗ v2) = ρ1(x)v1 ⊗ ρ2(x)v2, N3(v1 ⊗ v2) = N1(v1)⊗ v2 + v1 ⊗N2(v2).

and also Hom((ρ1, V1, N1), (ρ2, V2, N2)) = (ρ3, V3, N3) where

V3 = Hom(V1, V2), (ρ3(x)φ)(v1) = ρ2(x)(φ(ρ1(x)−1(v1))), (N3φ)(v1) = N2(φ(v1))− φ(N1(v1)).

And also the dual ρ∨ = Hom(ρ,1).

Def.(15.3.2.22) [F-Semisimple Representations]. ρ = (ρ0, V,N) ∈ wdL(WK) is called F-
semisimple if (ρ0, V ) is semisimple.

Prop.(15.3.2.23)[Spm(ρ)]. If (ρ, V ) ∈ Repalg(WK) and m ≥ 0, we can define Spm(ρ) ∈ wd(WK) given
by Spm(ρ) = V ⊕ V (1) . . . ⊕ V (m − 1) and N maps V (i) isomorphically to V (i + 1) for i < m − 1,
and trivial on V (m− 1).

Then any representation that

Thm.(15.3.2.24) [Grothendieck’s ℓ-adic Monodromy Theorem].For ℓ ∈ P \ {p} and ρ ∈
RepQℓ

(WK),
• There exists an open subgroup I ′

K ⊂ IK and a uniquely determined nilpotent operator N ⊂
End(V ) s.t. for all σ ∈ I ′

K , ρ(σ) = exp(tℓ(σ)N).
• For any element x ∈WK ,

ρ(x)Nρ(x−1) = |·N.

Proof: Cf.[Fontaine, P12].? □

Cor.(15.3.2.25)[Potentially Unramified]. If ρ is a semisimple ℓ-adic continuous representation of
WK , then #ρ(IK) <∞ .

Proof: Choose a finite extension K ′/K s.t. IK′ ⊂ I ′
K , then ρ|IK′ is both unipotent and semisim-

ple(15.1.2.10). □

Thm.(15.3.2.26) [ℓ-adic Deligne-Weil Representations, Deligne].There is an equivalence of
categories

WD = WDp : Repfd(WK) ∼= wd(WK)

(ρ, V ) 7→ (ρσ, V,N), ρσ(σnx) = ρ(σnx) exp(−tℓ(x)N),

where N is given in(15.3.2.24).
Moreover, by(15.3.2.9) and (15.3.2.11), this map identifies

WD : Repfd(GalK) ∼= wdℓ-int(WK),

and ρ is unramified iff WD(ρ) is unramified.
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Proof: ? This is a Weil-Deligne representation by(15.3.2.24). WD is a functor and is an equivalence
by the uniqueness of N(15.3.2.24). □

Cor.(15.3.2.27). In the above situation, for ρ ∈ RepL(GalK), the following are equivalent:
• ρ is semisimple.
• ρ is F-semisimple and ρ(IK) is finite.
• ρ′ is F-semisimple and N = 0.

3 Mod ℓ Local Galois Representations
Notation(15.3.3.1).Use notation as in(15.3.2.1).

Def.(15.3.3.2)[Decomposed Generically].Let K ∈ p− LField with residue field Fq and ℓ ∈ P\p,
an unramified representation

ρ : GalK → GL(n,Fℓ)

is called decomposed generically if the eigenvalues {λ1, . . . , λn} of ρ(φ) satisfies λi/λj /∈ {1, q} for
any 1 ≤ i ̸= j ≤ n.

4 Representations from Geometry
Prop.(15.3.4.1).Let k ∈ Field and E ∈ Ell /k, then for any N ∈ Z ∩ k×, there is an action of Galk
on E[N ] ∼= (Z/(N))2, giving a representation

ρE,N : Galk 7→ GL(2,Z/(N)).

Let ρE,N denote the representation Galk 7→ GL(2,Z/(N))/{±1}. Then ρE,N is surjective iff ρE,N is
surjective.

Proof: Notice if ρE,N is surjective, then either
[
−1

1

]
or
[

1
−1

]
is in the image, thus −1 is in

the image. □

Def.(15.3.4.2)[Tate modules].For ℓ ∈ P, the action of Galk on the Tate module Tℓ(E)(13.5.6.15)
is denoted by ρE,ℓ∞ .

Prop.(15.3.4.3) [Determinant of Tate Modules]. If (K, k) be a CDVR and E ∈ Ell /K, then
det(ρE,ℓ∞) is the ℓ-cyclotomic character χℓ∞(15.3.1.6), by Weil pairing(13.5.7.6).

Prop.(15.3.4.4) [Serre].Assume E ∈ Ell /Q is non-CM, then there exists N0 ∈ Z+ s.t. ρE,N is
surjective for any N ≥ N0.

Proof: □

Conj.(15.3.4.5) [Serre’s Uniformity Problem].There exists a number N0 ∈ Z+ s.t. for any
E ∈ Ell /Q non-CM, ρE,N is surjective for any N ≥ N0.

Proof: □

Deformation of Galois Representations(Mazur)
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15.4 p-adic Local Galois Representations

Main references are [Berger, Galois representations and (φ,Γ)-modules], [Car19]. and [notes on
p-adic Hodge, Conrad], [notes on p-adic Hodge, Serin Hong].

Notation(15.4.0.1).
• This is a continuation of the section Galois Representations(Basics).
• Use notations defined in Classical Representation Theory.
• Use notations defined in Fargues-Fontaine Curve.
• Let K be a p-adic field with (perfect) residue field k,
• K0 = W (k)[1

p ] its maximal unramified subextension.
• The Frobenius action on K0 is denoted by σ.
• K∞ = K(µp∞), Γ = Gal(K∞/K).

1 CK-Admissibility

CK-Admissibility

Prop.(15.4.1.1)[Variant of Hilbert’s Theorem90].Any V ∈ Repfd
K̂ur(Gal(Kur/K)) is trivial. In

particular, any unramified f.d. representation of GalK is K̂ur-admissible thus Cp-admissible, which
is a special case of(15.4.1.2).

Proof: Denote by O the ring of integers of K̂ur and m the maximal ideal, LetW be a f.d. K̂ur-semi-
linear representation, (v1,0, . . . , vd,0) a basis of W over K̂ur and OW the O-span of (v1,0, . . . , vd,0),
then we are going to construct a sequence of tuples (v1,n, . . . , vd,n) that vi,n+1 ≡ vi,n mod mn and
Frobq(vi,n) ≡ vi,n mod mn for all i and n.

Use induction on n: the case n = 1 follows from the fact OW /mOW is trivial as a k-semi-linear
representation of Galk. To prove this, notice there is a finite extension l of k and an l-semi-linear
representation WL of Gl/k that k ⊗l Wl

∼= OW /mOW , then the assertion follows from Hilbert’s
theorem90(10.1.3.16).

For general n, we are looking for vectors w1, . . . , wd ∈ OW that Frobq(vi,n + πnwi) ≡ vi,n +
πnwi mod mn+1, which is equivalent to Frobqwi − wi = Frobqvi,n−vi,n

πn in OW /mOW . To prove this,
notice Frobq − id is surjective on OW /mOW , which follows from the fact OW /mOW is trivial as
proved above and Frobq − id is surjective on k.

Now vi,n are Cauchy sequences and they converges to a tuple vi that GKur/K acts trivially and it
is an O-basis of OW , as its reduction modulo m is a basis of OW /mOW , so it is a K̂ur-basis of W . □

Prop.(15.4.1.2)[Cp-Admissibility].For (ρ, V ) ∈ Repfd
Qp

(GalK), the following are equivalent:
• V is Cp-admissible.
• #ρ(IK) <∞.
• V is LK̂ur-admissible for some finite extension L/K.

Proof: Cf.[p-adic Period Rings Intro, P18].?
2→ 3: This follows from(15.4.1.1). □
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Cor.(15.4.1.3)[H0
cont(GalK ,Cp(ψ)), Sen-Tate].H0

cont(GalK ,Cp(ψ)) =
{
K ,#ψ(IK) <∞
0 ,#ψ(IK) =∞

. In par-

ticular,

H0
cont(GalK ,Cp(m)) =

{
K ,m = 0
0 ,m ̸= 0

.

Proof: This follows from(15.1.1.19) and(15.4.1.2). For the last assertion, the cyclotomic extension
of K thus also the cyclotomic character of GK is infinitely unramified, thus χscycl factors through a
finite quotient iff s = 0. And H0(GalK ,Cp) = K by Ax-Sen-Tate(12.2.5.7). □

Cor.(15.4.1.4)[Potentially Unramified]. If η : GalK → Z∗
p is a character and there is y ∈ C×

K that
η(g) = g(y)/y, then there exists a finite Abelian extension L of K that η|GL is unramified, i.e. η is
potentially unramified.

Cor.(15.4.1.5).For any n,m ∈ Z,

HomRepCK
(GalK)(CK(n),CK(m))

is of one-dimensional over K if n = m, and vanishes otherwise.

Proof: Let W = HomCp(CK(n),CK(m)) = CK(m− n), then the desired space is WGalK , and the
assertion follows from(15.4.1.3). □

H1
cont of GalK-Actions on Cp(ψ)

Def.(15.4.1.6) [Notations].Let K ∈ p-NField, K∞ is an Abelian extension of K that the Galois
group Γ has a subgroup Γ0 of finite index that Γ0 ∼= Zp, and HK = GalK∞ . The natural examples
is K∞ = K(p

1
p∞ ).

Let Γm = Γm0 and Km the fixed field of Γm.
Decompose Γ = Σ× Γ0 and let γ be a topological generator of Γ0, then every element of Γ0 can

be written as γt for some t ∈ Zp. Denote γs = γp
s .

ψ : GK → Γ→ Z∗
p be a character factoring through Γ, then we can form a representation Cp(ψ)

of GK on Cp that ρ(σ)(x) = ψ(σ)σ(x). This is an action because GK acts trivial on Z∗
p.

Lemma(15.4.1.7).Giving an σ ∈ Gal(K/Qp), if x, y ∈ mCp that x ≡ y mod πnK , then [πK ]σ(x) ≡
[πK ]σ(y) mod πn+1

K , where fσ is given by action of σ on the coefficients.

Proof: This is because the coefficients of [πK ]σ are divisible by πK except for degree q, where it is
xq − yq = (x− y)(xq−1 + xq−2y + . . .+ yq−1) which is divisible by πn+1

K because the residue field of
K is of order q. □

Prop.(15.4.1.8). If we let the action of σ ∈ Gal(K/Qp) on the residue field giving by σ : kK →
Fp : x 7→ xqσ , where qσ = pnσ is a p-power, given an element η = (η0, η1, . . .) ∈ TG, we
have ηqσ ≡ [πK ]σ(ηqσn+1) mod πK , hence the above lemma(15.4.1.7) shows that [πnK ]σηqσn ≡
[πn+1
K ]σ(ηqσn+1) mod πn+1

K , so [πnK ]σ(ηqσn ) is a Cauchy sequence, converging to an element µσ(don’t
care about η).

If g ∈ GK , then g(ηn) = [χK(g)](ηn), hence take qσ-th power, g(ησn) ≡ [χK(g)]σ(ηqσn ) mod πK ,
then

[χK(g)]σ[πnK ]σ(ηqσn ) ≡ [πnK ]σg(ηqσn ) = g([πnK ]σηqσn ) mod πK .

hence by limiting, g(µσ) = [χK(g)]σ(µσ).
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Lemma(15.4.1.9).

vp(µσ) =


qσ

eK(q−1) + 1
eK

n(σ) ̸= 0
1

eK(q−1) + vp(σ(πK)− πK) n(σ) = 0

Proof: By(8.5.3.28), we know the Newton polygon of [πnK ]σ. When n(σ) ̸= 0, v(ηqσ1 ) = qσ
eK(q−1) >

1
eK(q−1) , so the valuation of [πK ]σ(ηqσ1 ) equals the valuation of its degree 1 term, which is v(πKηqσ1 ) =

qσ
eK(q−1) + 1

eK
. Now we have by(15.4.1.8), we have [πK ]σηqσ ≡ [π2

K ]σ(ηqσ2 ) mod π2
K , and qσ

eK(q−1) + 1
eK

<

2/eK , so valuation already stable at degree 1, and v(µσ) = v([πK ]σ(ηqσ1 )).
If qσ = 1, it’s more delicate, because degree 1 and degree q term has the same minimal valuation,

so they may jump to higher valuations. Notice [πnK ](ηn) = 0, so [πnK ]σ(ηn) = ([πnK ]σ − [πnK ])(ηn).
And we have by(12.2.2.21), for x ∈ OK , v(σ(x) − x) ≥ v(x) + v(σ(πK)

πK
− 1) + δv(x),0v(πK), with

equality when vp(x) = q/eK . So by the Newton polygon, the minimum valuation of the coefficient
of [πnK ]σ − [πnK ] appear at degree pn−1 and possibly pn. The valuation of ηn is too small( 1

eKpn−1(p−1))
that we don’t need to consider other degrees but can assure that degree pn−1 is of minimum valuation,
which is v(ηpn−1

n ) + v(σ(πL)− πL) = 1
eK(q−1) + vp(σ(πK)− πK). □

Prop.(15.4.1.10).For any σ ∈ Gal(K/Qp)\{id}, there is an element ασ ∈ C∗
p that σ ◦ χK(g) =

g(ασ)/ασ for all g ∈ GalK , where χK is the Lubin-Tate character.
Proof: We let ασ = logσFπ(µσ), by(15.4.1.9), 1/eK < µσ < ∞, so by the Newton polygon analysis
of logFπ(8.5.3.29), ασ has the same valuation of µσ, in particular, ασ ̸= 0. Then

g(ασ) = logσFπ(g(µσ)) = (logF ◦[χK(g)])σ(µσ) = (χK(g) · logFπ)σ(µσ) = σ(χK(g)) · ασ.

□
Cor.(15.4.1.11). logp(σ(χK(g))) = g(log(ασ))− logp(ασ).
Prop.(15.4.1.12)[H1

cont(GalK ,Cp(ψ)), Sen-Tate].There is an inf-res exact sequence

0→ H1
cont(ΓK , K̂∞(ψ))→ H1

cont(GalK ,Cp(ψ))→ H1
cont(HK ,Cp(ψ)),

and

H1
cont(HK ,Cp(ψ)) = 0, H1

cont(GalK ,Cp(ψ)) =
{

0 ,#ψ(IK) =∞
a K-vector space of dimension 1 ,#ψ(IK) <∞

.

Proof: For the first assertion, ψ is trivial on HK , so Cp(ψ) ∼= Cp as HK-representation, so it suffice
to show for ψ = id. Let f be a cocycle, as HK is compact, f(HK) ∈ p−kOCp for some integer k.
So the lemma below(15.4.1.13) shows that we can move f cohomologouly to higher valuation, i.e.
f(g) =

∑
xi − g(

∑
xi), so f is a coboundary.

For the second assertion, we assume ΓK ̸= Z∗
p, for this case, see remark(15.4.1.14) below.

let γ be a topological generator of ΓK = 1 + pkZ∗
2, k ≥ 0, because Z∗

p are all topological cyclic
groups except for Z∗

2
∼= Z/2Z⊕ Z2, and γn be a topological generator of ΓFn which is also a power

of γ. By(10.1.4.4) we know H1(ΓK , K̂∞(ψ)) = K̂∞(ψ)/1− γ.
For n large, we have a decomposition K̂∞(ψ) = Kn(ψ) ⊕ Xn(ψ) by(12.2.3.31), and 1 − γn is

invertible on Xn(ψ). Now 1− γn = (1− γ)(1 + γ + . . .+ γk−1), so 1− γ is also invertible in Xn(ψ).
And on Kn(ψ), if ψ is of infinite order, then 1−γ is injective, otherwise x = ψ(γ)NγN (x) = ψ(γ)Nx.
So it is also surjective because it is a K-linear mapping of Kn. So K̂∞(ψ)/1 − γ = 0. If ψ is of
finite order then Kn(ψ) ∼= Kn as ΓK-module when n is large enough that γ factors through ΓKn ,
by(10.1.3.1). So Kn/1− γ = Kn/ ker(trKn/K) = K. □
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Lemma(15.4.1.13). If f : HK → pnOCp is a continuous cocycle, then there exists a x ∈ pn−1OCp that
the cohomologous cocycle g 7→ f(g)− (x− g(x)) has values in pn+1OCp .

Proof: pn+2OCp is open in pnOCp , so there is a finite extension L/K that f(HL) ∈ pn+2OCp .
By(12.2.3.25), there is a z that trL∞/K∞(z) = p, so there is a y ∈ p−1OL∞ that trL∞/K∞(y) = 1.

Now for a set of representatives Q of HK/HL, denote xQ =
∑
h∈Q h(y)f(h), then for g ∈ HK ,

g(Q) is also a set of representative, and g(xQ) =
∑
h∈Q gh(y)gf(h) =

∑
h∈Q gh(y)(f(gh) − f(g)) =

xg(Q) − f(g), as tr(y) = 1. So f(g)− (xQ − g(xQ)) = xg(Q) − xQ. The RHS is in pn+1OCp , because:
if we let ghi = hg(i)ai, where ai ∈ HL, then xg(Q) − xQ =

∑
hg(i)(y)f(hg(i)ai)−

∑
hg(i)(y)f(hg(i)) =∑

hg(i)(y)hg(i)(f(ai)), which is in pn+1 because hg(i)(y) ∈ p−1OCp and f(ai) ∈ pn+2OCp by the choice
of L. □

Remark(15.4.1.14). In case ΓK = Z∗
2,

0→ H1
cont({±1},K(ψ))→ H1

cont(Z∗
2, K̂∞(ψ))→ H1

cont(1 + 2Z∗
2,Cp(ψ))

H1({±1},K(ψ)) = 0 whether ψ(−1) = 1 or −1. And by the same proof as above, possibly replace
Xn with Xn+1, to remedy the singularity of p = 2, H1(1 + 2Z∗

2,Cp(ψ)) = K, with generator [g 7→
χ(g)−1
γ−1 (a)] for some a. This cocycle extends to a cocycle of Z∗

2, so the map is surjective.

Prop.(15.4.1.15).The 1-dimensional K-vector space H1
cont(GalK ,Cp) is generated by the cocycle

[g 7→ logp χ(g)].

Proof: By the proof of(15.4.1.12), we know that H1(ΓK ,Kn) f−→ H1(GK ,Cp) is an isomorphism.
for α ∈ K, if χ(g) = γk, then f(α)(g) = (1 + γ + . . . + γk−1)(α) = kα = α · logp(χ(g))/ logp(γ). So
by continuity, f is a multiple of [g 7→ logp(χ(g))]. □

Lemma(15.4.1.16).And f ∈ Hom(Iab
K ,Qp) is of the form f(g) = trK/Qp(βf logp χK(g)) for some

βf ∈ K.

Proof: By(12.6.2.25), χK is a canonical isomorphism IabK
∼= O∗

K . Any f ∈ Hom(O∗
K ,Qp) is of the

form f(y) = trK/Qp(βf logp(y)) for some βf ∈ K, because: by(12.2.3.9), when n is large, logp is a
bijection between UnK and πnKOK .

πnKOK → Qp can be extended to a map K → Qp as Qp is divisible. Now trace is a invertible
bilinear form on K, so the assertion is true on UnK for some n, and because UnK is of finite index in
O∗
K and Qp is of char 0, this is true for all O∗

K . □

Prop.(15.4.1.17).The map H1(GalK ,Qp)→ H1(GalK ,Cp) is given as follows: as f ∈ H1(GalK ,Qp)
must factor through Galab

K , if the restriction of f to Iab
K corresponds to βf , then f maps to βf [g 7→

logp χ(g)].

Proof: f(g) = trK/Qp(βf logp χK(g)) on IK , but this map extends to map on GK . So f(g) =
trK/Qp(βf logp χK(g)) + c(g) for a unramified map c on GK .

Now by(10.1.4.3), H1(G, Q̂ur
p /Qp) vanish becauseH1(G,Fp) vanish(10.1.3.1), so there is a z ∈ Q̂ur

p

that c(g) = g(z)− z. And

trK/Qp(βf logp χK(g)) =
∑
σ

σ(βf logp χK(g)) = βf trK/Qp(logp χK(g))+
∑
σ

(σ(βf )−βf )σ(logp χK(g)).

Notice(15.4.1.10) gives a βσ that σ(logp χK(g)) = g(βσ) − βσ, and trK/Qp(logp χK(g)) = logp χ(g)
because (NK/QpχK(g))−1 = (χ(g))−1, as they both correspond via local CFT to the element in GabK
which acts by g on Lπ and id on Kur. Thus the result. □
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2 Hodge-Tate Representations
References are [Sen80] and [Car19].

Hodge-Tate Representations

Def.(15.4.2.1) [BH-T].Let BH-T = CK [t, t−1], B′
H-T = CK((t)), and let GK acts on it by g(ati) =

g(a)χcycl(g)iti. In addition, there is a filtration on B′
H-T given by FilmB′

H-T = tmCp[[t]], then the
graded ring of B′

H-T is isomorphic to BH-T. (15.4.1.3) shows that BGalK
H-T = (B′

H-T)GalK = K.
BH-T and B′

H-T are GalK-regular(15.1.1.17).
Proof: B′

H-T is GalK-regular because it is a field. For BH-T, BH-T ⊂ Frac(BH-T) ⊂ B′
H-T, taking

GalK-fixed points shows (H2). For (H3), if Qpx is stable under GalK and x is not of the form ati,
then we can get a non-trivial GalK-fixed point of CK(j − i), which is impossible by(15.4.1.3). □

Cor.(15.4.2.2)[Hodge-Tate Representations].Let W ∈ RepCK
(GalK). For k ∈ Z, let

W{k} = {x ∈W |g(x) = χkcycl(g)x} ⊂W (−k)

then ⊕
k∈Z

(CK(k)⊗K W{k})→W

is injective. W is called a Hodge-Tate representation if this is an isomorphism.
Proof: Notice BH-T ∼=

⊕
m∈ZCK(m) ∈ RepCK

(GalK), so

BH-T ⊗K (BH-T ⊗CK W )GalK ∼= BH-T ⊗K
⊕
m∈Z

(CK(m)⊗K W{m}) ↪→ BH-T ⊗CK W.

is injective by(15.1.1.18). □
Cor.(15.4.2.3) [Hodge-Tate Representations].Let K be a p-adic field, then V ∈ Repfd

Qp
(GalK)

is called a Hodge-Tate representation if it is BH-T-admissible. The category of Hodge-Tate
representations are denoted by RepH-T

Qp
(GalK).

Then V ∈ Repfd
Qp

(GalK) is Hodge-Tate iff it is B′
H-T-admissible iff CK ⊗Qp V is Hodge-Tate thus

decomposes as
CK ⊗Qp V

∼= CK(n1)⊕ . . .⊕ CK(nd) ∈ RepCK
(GalK).

Proof: If CK⊗Qp V is Hodge-Tate, then clearly dimK(BH-T⊗Qp V )GalK = dimQp V , thus V is BH-T-
admissible(15.1.1.19). Conversely, dimK(BH-T ⊗Qp V )GalK = dimQp V = d implies V is Hodge-Tate
by(15.4.2.2). The equivalence with B′

H-T-admissibility is similar. □
Def.(15.4.2.4)[Hodge-Tate Weights].For V ∈ RepH-T

Qp
(GalK), V is said to have Hodge-Tate weights

i with multiplicity di if dimKW{i} = di.
In particular, Qp(n) has a single Hodge-Tate weight n.

Prop.(15.4.2.5). If K ′ ∈ Field,K ′ ⊂ K, then for W ∈ Repfd
CK

(GalK), the natural maps

K ′ ⊗K DK(W )→ DK′(W ), K̂ur ⊗K DK(W )→ D
K̂ur(W )

are isomorphisms. In particular,

Repfd
Qp

(GalK) ∩ RepH-T
Qp

(GalK′) = Repfd
Qp

(GalK) ∩ RepH-T
Qp

(IK) = RepH-T
Qp

(GalK)

Proof: For K ′ ⊂ K, DK(W ) = DK′(W )Gal(K′/K), thus the isomorphism follows from Galois
descent(15.1.1.14). For K̂ur, Cf.[Conrad, P20]? □
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3 Sen-Tate Theory

Colmez-Sen-Tate Conditions

Sen’s Theory

Remark(15.4.3.1). Sen’s theory goes further than RepH-T
Qp

(GalK) and to study Repfd
CK

(GalK).

Prop.(15.4.3.2)[Hilbert’s Theorem90 for GalK∞].Any W ∈ Repfd
Cp

(GalK) is trivial as a Cp-semi-
linear representation of GalK∞ . In particular, there is an isomorphism

CK ⊗K̂∞
WGalK∞ ∼= W ∈ RepCK

(GalK∞).

Proof: The proof is similar to that of(15.4.1.1).
Let OW be any OCp-lattice in W . Firstly we construct a Cp-basis w1, . . . , wd of W that wi ∈ OW

and gwi ≡ wi mod p2OW for all g ∈ GalK∞ and pOW ⊂ OCpw1 ⊕ . . .⊕OCpwd.
By continuity there is a finite Galois extension L/K that ? Cf.[p-adic Hodge Intro, P23]. □

Prop.(15.4.3.3).By(15.4.3.2), the next step of Sen’s theory is to study W ∈ Rep
K̂∞

(ΓK). To this
attempt, Sen considers the subspace of ΓK-finite vectors in W , they form a vector space W0 ⊂ W
over K∞. Then there exists an integer r and a basis (v1, . . . , vd) of W that the Kr-span of vi are
stable under ΓK-actions.

Obviously, these vi are GK-finite, thus in particular

K̂∞ ⊗K∞ W0 ∼= W.

Proof: Cf.[p-adic Hodge Intro, P25].? □

Cor.(15.4.3.4)[Sen’s Operator].Combining the previous two propositions, let W ∈ Repfd
Cp

(GalK),
denote Ŵ∞ = W

G
K/K∞ and W∞ the set of ΓK-finite vectors of Ŵ∞, then

Cp ⊗K∞ W∞ ∼= W.

Let v1, . . . , vd be given by(15.4.3.3), Wr = ⊕Krvi. For g ∈ GK , let ρW (g) be the endomorphism of
Wr given by action of g, then ρW (γs) is linear when s ≥ r, and because γs converges to id, log ρW (γs)
is defined for s large. Then Sen’s operator ΦW is defined to be ΦW = log ρ(γs)

ps , or equivalently
ΦW (v) = limt→0

γt(v)−v
t .

Sen’s operator is defined over K, as it commutes with ΓK seen from the limit form, and its kernel
is the Cp-subspace of W generated by elements invariant under ΓK .

Proof: It is evident that fixed points of ΓK are killed by ΦW . Conversely, the kernel of ΦW on
W∞ is stable under action of GK , thus is a sub-representation of ΓK in W∞, and because W∞
consists of finite vectors, the GK-action is continuous w.r.t the discrete topology, and Hilbert’s
theorem90(10.1.3.16) shows this subspace is generated by elements invariant under GK . □

Prop.(15.4.3.5) [Sen’s Category].Let Sen(K,K∞) be the category of f.d. K∞-vector spaces
equipped with an endomorphism defined over K, then the construction sending W to (W∞,ΦW )
induces a functor

Sen : Repfd
Cp

(GalK)→ Sen(K,K∞).
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This functor commutes with direct sums, and also under tensor products, with the Sen’s operator
given by

ΦW⊗W ′ = ΦW ⊗ idW ′ + idW ⊗ΦW ′ .

This functor is faithful, but in general not full. However, it reflects isomorphisms.

Proof: This functor is faithful because W∞ generates W as a Cp-vector space. To show it reflects
isomorphism, Let f : W∞ →W ′

∞ be an isomorphism commuting with Sen’s operator, then it extends
by linearity to an isomorphism of Cp-vector spaces W → W ′, and f is Γs-equivariant for some s by
the definition of Sen’s operator. Then considering the space of Γs-equivariant Cp-linear morphisms
fromW toW ′, Hilbert’s theorem90 shows there is a basis fi consisting of GK-equivariant morphisms.
Then it remains to show there exists a linear K-combination of fi that is invertible. This is possible
because it is true for Ks, as f is invertible, and K is an infinite field. □

Cor.(15.4.3.6).W ∈ RepfCp(GalK) is trivial iff ΦW = 0.

Proof: As S reflects isomorphisms, compare with the trivial representation Cdp. □

Prop.(15.4.3.7) [Hodge-Tate Representations and Sen’s Operators].A representation V ∈
Repfd

Qp
(GK) is Hodge-Tate iff the Sen’s operator ΦCp⊗QpV

is semisimple with eigenvalues in Z. For a
general V , the eigenvalues of ΦCp⊗QpV

is called the generalized Hodge-Tate weights of V .

Proof: If V is a Hodge-Tate representation, then clearly ΦW (v) = limt→0
γt(v)−v

t acts by k on
Cp(k), thus it is semisimple with eigenvalues in Z. Conversely, on the i-eigenspace of Φ, tensoring
χ−i
cycl, Φ acts trivially, then because the kernel of Φ are the fixed points of ΓK(15.4.3.4), thus this

eigenspace is isomorphic to Cp(i)d, so V is Hodge-Tate. □

4 Fontaine’s Rings

Notation(15.4.4.1). In this subsection, we denote BdR, Bcrys etc. to denote Fontaine’s ring w.r.t. the
perfectoid field CK defined in1.

Lemma(15.4.4.2).Let ε = (. . . , ε1, ε0) ∈ O♭CK s.t. ε0 = 1 and ε1 ̸= 1, then |ε− 1| = p
p−1 .

Proof:

|ε− 1| = |(ε− 1)♯|CK = | lim
n→∞

(εn − 1)pn |CK = lim
n→∞

pn|εn − 1| = lim
n→∞

pn

pn−1(p− 1)
= p

p− 1

□

Prop.(15.4.4.3)[Qp-Line in BdR]. θ([ε]− 1) = ε0 − 1 = 0, so [ε]− 1 ∈ ker θ, and we can define

tε = log([ε]) =
∑
n≥1

(−1)n−1 ([ε]− 1)n

n
∈ B+

dR.

Then this is a uniformizer in the CDVR B+
dR. Moreover, any other choice of ε is of the form ε′ = εa

for a ∈ Zp, then tε′ = atε, and γ(tε) = χcycl(γ)t for any γ ∈ GalK .
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Proof: tε is a uniformizer because [ε]− 1 is: [ε1/p]− 1 is a unit in BdR, and

η = [ε]− 1
[ε1/p]− 1

= 1 + [ε1/p] + . . .+ [ε(p−1)/p]

is distinguished, because if η =
∑

[cn]pn, consider reducing to the residue field: W (OC♭K
) →

W (OC♭K
/t), then ε = 1 by(15.4.4.2), and η = p, thus |c0| < 1, |c1 − 1| < 1, so it is distin-

guished(4.5.4.20), thus a uniformizer by(14.2.1.2).
For the last assertion, by the formal property of log, it suffices to show that if ai → a ∈ Zp, then

[εai ]→ [εa] ∈ BdR. Then it suffices to show that for a ∈ Zp, |a| small,

|[εa]− 1| → 0.

And this can be done with the topology given in(14.2.1.20)? □
Cor.(15.4.4.4). gr(BdR) ∼= BH-T.
Cor.(15.4.4.5).BdR is GalK-regular, but B+

dR is not GalK-regular.
Proof: BdR is GalK-regular because it is a field. B+

dR is not GalK-regular because Qptε is stable
under GalK-action but tε is not invertible in B+

dR. □
Prop.(15.4.4.6) [Galois Actions].GalK acts on OCK/(p) thus acts on OC♭K

and on Ainf . Then
Fontaine’s functor θ : Ainf → OCK is GalK-equivariant, thus ker θ is GalK-stable, so GalK-acts on
B+

dR and BdR, and BdR → CK is GalK-equivariant.
Prop.(15.4.4.7).There is a canonical lifting of K → CK along B+

dR → CK , and it is GalK-equivariant.
However, this embedding is not continuous, thus there is no embedding CK ⊂ B+

dR.
Proof: K0 = W (k)[1

p ] ⊂ W (O♭CK )[1
p ] = Binf ⊂ BdR, and it follows from Hensel’s lemma that any

element in K lifts uniquely to an element of B+
dR, so K ⊂ B

+
dR, and is GalK-invariant, by uniqueness

and the fact BdR → CK is GalK-equivariant(15.4.4.6).
For the last assertion, if the embedding is continuous, the B+

dR → CK has a section, and the
filtration splits so BdR ∼= BH-T. □

Prop.(15.4.4.8).
• K = (B+

dR)GalK = BGalK
dR

• K0 = BGalKcrys , and the canonical morphism K ⊗K0 Bcrys → BdR is injective.

• Qp = BGalK
e .

• Qp = (Fil0Bµ)GalK for µ = crys or µ ≥ 1.
Proof: 1: Firstly K ⊂ BdR and is invariant under GalK by(15.4.4.7). On the other hand, the exact
sequence

0→ Film+1BdR → FilmBdR → Cp(m)→ 0(15.4.4.13).
induces an injection

BGalK
dR ∩ FilmBdR/B

GalK
dR ∩ Film+1BdR ↪→ Cp(m)GalK .

Thus BGalK
dR = BGalK

dR = K.
2: The injectivity ofK⊗K0Bcrys → BdR Cf.[Laurent Fargues and Jean-Marc Fontaine Prop10.2.8].
3: From 2 and notice Be = Bφ=id

crys .
4: Cf.[Period Rings, P45].? □
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Lemma(15.4.4.9).Let W ∈ Vectfd
K , then the map:

{Filtrations on W} → {GalK -stable B+
dR-lattice in W ⊗K BdR} : Fil 7→ Fil0(W ⊗K BdR)

is bijective and the inverse is given by Γ 7→ {(tnΓ)GalK ⊂ (BdR ⊗B+
dR

Γ)GalK = W}n∈Z.

Proof: Cf.[Laurent Fargues and Jean-Marc Fontaine Prop10.4.3].? □

deRham and Crystalline Representations

Def.(15.4.4.10) [deRham, Crystalline and Semistable Representations]. Situation as
in(15.4.4.8), for V ∈ Repfd

Qp
(GalK),

• V is called a deRham representation iff V is BdR-admissible??, or equivalently

dimK(BdR ⊗Qp V )GalK = dimQp V.

The category of deRham representations of GalK are denoted by RepdR
Qp

(GalK).
• V is called a crystalline representations iff V is Bcrys-admissible, or equivalently

dimK0(Bcrys ⊗Qp V )GalK = dimQp V.

The category of crystalline representations of GalK are denoted by Repcrys
Qp

(GalK).

Def.(15.4.4.11)[Rep′
Be(GalK)].Denote by Rep′

Be(GalK) the category of finite locally free Be-modules
M with a semi-linear GalK-action that there exists a GalK-invariant B+

dR-lattice Γ ∈ M ⊗Be BdR
that GK acts continuously.

Summary

Prop.(15.4.4.12)[Diagram of Inclusions].

B+
inf B+

µ B+
crys B+

µ B+
max B+

dR

Bµ
(µ>p−1)

Bcrys Bµ
(1≤µ≤p−1)

Bmax
=B+

1

BdR

Prop.(15.4.4.13)[Properties of BdR].
• BdR is a discretely valued field with residue field CK and valuation ring B+

dR.

• BdR is an algebra over K̂ur = KK̂ur but not over CK .
• BdR has a special uniformizer tε s.t. Qptε ∼= Qp(1) ∈ RepQp(GalK).

• BdR has a filtration {FilmBdR = tmε B
+
dR}, and B

gr
dR
∼= BH-T as graded rings.

• BGalK
dR = K.

Proof: 1 follows from(14.2.1.18), 2 follows from(15.4.4.7). 3 follows from(15.4.4.3). 4 follows
from(15.4.4.4). 5 follows from(15.4.4.8). □

Prop.(15.4.4.14)[Properties of Bcrys].



15.4. P -ADIC LOCAL GALOIS REPRESENTATIONS 1559

• Bcrys is an algebra over K̂ur.
• Bcrys has a Frobenius endomorphism φ.
• There is a canonical embedding Bcrys ⊗K0 K ↪→ BdR, and tε ∈ Bcrys.
• BGalKcrys = K0.

• (Bcrys ∩B+
dR)φ=1 = Qp.

Proof: ? □

5 deRham Representations
Lemma(15.4.5.1).Let V be a finite Qp-vector space with an action of GalK , then the action is
continuous iff the induced action on V ⊗Qp B

+
dR is continuous.

Proof: This is because the action of GalK on B+
dR is continuous, and V has the induced topology

in V ⊗Qp B
+
dR. □

Prop.(15.4.5.2) [CK-admissible Representations are deRham].RepCK -adm
Qp

(GalK) ⊂
RepdR

Qp
(GalK).

Proof: For V ∈ RepCK
Qp

, by(15.4.1.2), there exists a finite extension L/K s.t. V is LK̂ur-admissible.
Thus V is deRham as LK̂ur ⊂ BdR(15.4.4.13). □

Prop.(15.4.5.3)[Potentially deRham are deRham].Let K ′ ⊂ CK be another p-adic field, then

RepQp(GalK) ∩ RepdR
Qp

(GalK′) = RepdR
Qp

(GalK).

In particular, being deRham is not sensible to ramifications, which is a bad feature compared to
being crystalline or semistable.

Proof: Because K̂ur ⊂ (̂K ′)ur is of finite degree, it suffices to prove for two cases: K ′/K is finite or
K ′ = K̂ur. But the finite case follows from Galois descent the same as??. The second case follows
from [Conrad, P80]? □

Prop.(15.4.5.4)[Filtered DdR].For V ∈ Repfd
Qp

(GalK), there is a finite filtration Fil on DdR(V ) s.t.

FilmDdR(V ) = (tmBdR ⊗E V )GalK ⊂ DdR(V ).

Prop.(15.4.5.5)[deRham Representations are Hodge-Tate].For V ∈ Repfd
Qp

(GalK),
• there is an injection of graded vector spaces

gr(DdR(V )) ↪→ DH-T(V ),

• If V ∈ RepdR
Qp

(GalK), the map in item1 is an isomorphism, and V is Hodge-Tate.

• If V ∈ RepdR
Qp

(GalK),
BdR ⊗K DdR(V ) ∼= BdR ⊗Qp V

identifies filtrations.
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Proof: 1: Consider the exact sequences

0→ Film+1BdR → FilmBdR → Cp(m)→ 0(15.4.4.13).

Tensoring V and taking GalK-invariants give injections

h : grm(DdR(V )) ↪→ V (m)GalK ,

giving the injection gr(DdR(V )) ↪→ DH-T(V ).
2: If V ∈ RepdR

Qp
(GalK), this is an isomorphism by dimension reason, and V is Hodge-Tate by

dimension reason.
3: Firstly notice Film(BdR ⊗K DdR(V )) ⊂ Film(BdR ⊗Qp V ) is trivial, thus it suffices to show

that the induced map

f : gr(BdR ⊗K DdR(V ))→ gr(BdR ⊗Qp V ) = BH-T ⊗Qp V

is an isomorphism. But notice

BH-T ⊗ gr(DdR(V )) g−→ gr(BdR ⊗K DdR(V )) f−→ BH-T ⊗Qp V

equals BH-T ⊗ h, so g is an isomorphism because it is surjective, and thus f is also an isomorphism.
□

Cor.(15.4.5.6). 1-dimensional Hodge-Tate representations are deRham.

Proof: This is because if V ∼= Qp(ψ) where ψ is a character of GalK , and Cp ⊗E V ∼= Cp(m), then
by Sen-Tate(15.4.1.3), ψ(−m) is potentially unramified, thus Cp-admissible by(15.4.1.2), and thus
deRham(15.4.5.2). □

Remark(15.4.5.7)[DdR Insensitive to Ramifications].DdR is far from fully faithful. In fact, any
unramified representation V is deRham by(15.4.5.3), and DdR(V ) is a simple filtration with graded
ring Kd[0], but V can be different from trivial representation.

Prop.(15.4.5.8).The functor DdR : RepdR
Qp

(GalK) → FilVectK is faithful and exact, and commutes
with taking tensor products and duals. Moreover, the perfect pairing in(15.1.1.20) is a perfect pairing
of filtered vector spaces.

Proof: Let 0 → V1 → V → V2 → V ∈ RepdR
Qp

(GalK) be an exact sequence, then Vi are also
Hodge-Tate by(15.4.5.5), so there is an exact sequence

0→ gr(DdR(V1))→ gr(DdR(V ))→ gr(DdR(V2))→ 0,

showing that
0→ DdR(V1)→ DdR(V )→ DdR(V2)→ 0

is an exact sequence of filtered vector spaces.
For tensor product, it suffices to show that

gr(DdR(V1)⊗DdR(V2))→ gr(DdR(V1 ⊗ V2))

is an isomorphism, which reduces to

DH-T(V1)⊗DH-T(V2) ∼= DH-T(V1 ⊗ V2)(15.1.1.20).
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For perfect pairing, it suffices to show that the map

DdR(V ∨)→ DdR(V )∨

is an isomorphism of filtered vector spaces. But then it reduces to the isomorphism

DH-T(V ∨) ∼= DH-T(V )∨(15.1.1.20).

□

Prop.(15.4.5.9)[Extensions of deRham Representations]. If 0→ V1 → V → V2 → 0 is an exact
sequence in Repfd

Qp
(GalK) s.t. V1, V2 are deRham, and the Hodge-Tate weights of V1 are strictly

larger than that of V2, then V is deRham.
In particular, any upper-triangular representation with diagonal (Qp(a1),Qp(a2), . . . ,Qp(an))

with a1 > a2 . . . > an is deRham.

Proof: By twisting, we may assume that all Hodge-Tate weights of V1 are positive and Hodge-Tate
weights of V2 are non-positive. There is an exact sequence

0→ DdR(V1)→ DdR(V )→ DdR(V2) = Fil0DdR(V2)

so it suffices to show that Fil0DdR(V ) → Fil0DdR(V2) is surjective. But it follows from(10.1.3.15)
that there is an exact sequence

Fil0DdR(V )→ Fil0DdR(V2)→ H1
cont(GalK , B+

dR ⊗Qp V1).

So it suffices to show that H1(GalK , BdR ⊗Qp V1) = 0. The exact sequence

0→ tm+1
ε BdR ⊗Qp V1 → tmε BdR ⊗Qp V1 → Cp(m)⊗Qp V1 → 0

induces a surjection H1
cont(GalK , tm+1

ε BdR ⊗Qp V1) ↠ H1
cont(GalK , tmε BdR ⊗Qp V1) by hypothesis.

Notice B+
dR is tε-complete, so we can use approximation technique similar to(10.1.4.3) to show that

H1
cont(GalK , tmε BdR ⊗Qp V1) = 0. □

Remark(15.4.5.10).For an example of V ∈ RepH-T
Qp

(GalK) that is not deRham, Cf.[Conrad, P78].

BdR-Representations

Fontaine in [Arithmétique des représentations galoisiennes p-adiques, 2004] studied RepBdR(GalK)
in similar spirit of Sen’s theory. He firstly showed that any BdR-representations descends to a
K∞((t))-representation W , and similar to Sen’s operator, Fontaine defined a K∞-linear derivative
∇W : W →W .

6 (φ, Γ)-Modules
Main References are [Fontaine90: Représentations p-adiques des corps locaux],[Fontaine94a: Le

corps des périodes p-adiques] and [Fonatine94b: Repésentations p-adiques semi-stables]. [Founda-
tions of Theory of (φ,Γ)-modules over the Robba Ring] is used and I’m mostly following [Berger,
Galois representations and (φ,Γ)-modules].
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Def.(15.4.6.1)[φ-module].Let M be a A-module and σ : A → A is a ring map. Then an additive
map φ : M →M is called σ-semi-linear iff φ(am) = σ(a)φ(m) for a ∈ A. A φ-module over (A, σ)
is an A-moduleM with a σ-semi-linear φ. The category of φ-modules over A is denoted by φ-ModA.

Giving a A-module M and a φ : M →M , there is a map Φ : A⊗σ,AM = σ∗M →M : λ⊗m→
λφ(m), which is a A-module map iff φ is σ-semi-linear.

If we define a ring Aσ[φ] as the free group A[X] modulo the relation Xa = σ(a)X and ring
relations in A, then it is a ring. Then a φ-module over (A, σ) is equivalent to a left Aσ[φ]-module.

Thus φ-ModA is a Grothendieck Abelian category with tensor products, and moreover, the kernel
as Aσ[φ]-module is the same as the kernel as a A-module.

Def.(15.4.6.2). If there is a map α : (A1, σ1) → (A2, σ2) that commutes with σi, then we have a
pullback from ΦM1 to ΦM2: α∗(M) = (A2)σ2 [φ]⊗(A1)σ1 [φ] M(15.4.6.1).

Def.(15.4.6.3)[Étale φ-Modules]. If A is Noetherian, then a φ-module M is called étale iff it is f.g
and the corresponding Φ : σ∗M →M in(15.4.6.1) is a bijection. The subcategory of étale φ-modules
is denoted by φ-Modét)(A).

In case when σ is a bijection, Φ is a bijection iff φ is a bijection.

Proof: Note that in this case σ∗M →M is a bijection by λ⊗m→ σ−1(λ)m, so the rest is easy. □

Prop.(15.4.6.4). If A is Noetherian and Aσ is flat, then φ-Modét(A) is a Tannakian category.

Proof: 0 is the zero object, the canonical sum&product are clearly étale . And we need to check
the kernel and cokernel are étale . But we have an exact sequence 0→ ker→M → N → Coker→ 0
so we tensor with Aσ to get a morphism of sequences that σ∗M →M,σ∗N → N are both bijective,
so by 5-lemma, it is bijection at kernel and cokernel, so they are étale . □

Def.(15.4.6.5) [Dual Étale φ-Modules].For E ∈ Field,M ∈ φ-Modét(E), the isomorphism Φ :
Mφ
∼= M induces an isomorphism

Φt : M∨ ∼= (Mφ)∨ = M∨
φ .

Thus the dual Φ−t : M∨
φ
∼= M∨ shows M∨ is also an étale φ-module.

Prop.(15.4.6.6)[Fp-Representations and Étale φ-Modules].Let E ∈ Fieldp, then
• For any V ∈ Repfd

Fp
(GalE), V is Esep-admissible, and

DEsep(V ) = (Esep ⊗ V )GalE

has a φ-action, and it is an étale φ-module.
• For any M ∈ φ-Mod(E),

V(M) = (Esep ⊗E M)φ=id

is a Fp-representation of GalE , and there is an injection

αM : Es ⊗Fp V(M) ↪→ Es ⊗E M.

• These two functors define an equivalence of Tannakian categories(3.1.6.13)

DEsep : RepFp(GalE) ∼= φ-Modét(E) : V.
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Proof: 1: V is Esep-admissible by(15.1.1.14). To show it is étale , it suffices to show that φ :
DEsep(V ) → DEsep(V ) is bijective. Let e1, . . . , en be a basis of DEsep(V ), and v1, . . . , vn be a basis
of V , then e = vB for some matrix B ∈ GL(n;Esep). Then if [φ]e = Ae for A ∈ Mat(n;E), then
A = B−1φ(B), and det(A) = det(B)p−1 ̸= 0, so φ is bijective.

2: It suffices to show that if v1, . . . , vh ∈ V(M) are linearly dependent over Esep, then they are
dependent over Fp. For this, we use induction on h: Suppose ∑λivi = 0, we may assume that
vh = −1, so vh =

∑h−1
i=1 λivi, and by an action of φ, then ∑h−1

i=1 (λpi − λi)vi = 0, so by induction
hypothesis, λi ∈ Fp.

3: For V ∈ RepFp(GalE), because E is Esep-admissible,

V(DEsep(V )) = (Esep ⊗E DEsep(V ))GalE ∼= (Esep ⊗Fp V )GalE = V.

Conversely, there is a
To show these are isomorphisms of Tannakian categories, one can easily show that both DEsep

and V preserve tensor products and they identify identity elements Fp and E. □

Cor.(15.4.6.7). Isomorphism classes of d-dimensional p-adic representations of GalE are in bijection
with the isomorphism classes of matrixes in GL(d;E) where

A ∼ B ⇐⇒ ∃P ∈ GL(d;E), B = P−1Aφ(P ).

Galois Representations and Étale φ-Modules

Notation(15.4.6.8).Let E ∈ Fieldp, denoted OE = Coh(E)(4.5.3.27), and E = Frac(OE) = OE [1
p ].

E has a natural Frobenius.

Prop.(15.4.6.9).By the functoriality of Cohen rings?, if OEur = Coh(E)Eur = OEur [1
p ], then there

is a bijection Gal(Eur/E) ∼= GalE . Thus there are GalK-action and φ-action on OEur , Eur and by
continuity extends to actions on OÊur , Êur, and

(OÊur)GalE = E , (Eur)GalE = OE , (OÊur)φ=id = Qp, (Eur)φ=id = Zp.

Proof: ? □

Prop.(15.4.6.10).For M ∈ φ-Modft(OE), M is étale over OE iff M/(p) is étale over E.

Proof: This is because étale is equivalent to the matrix of φ is a bijection, which is equivalent to
its reduction modulo p is a bijection. □

Def.(15.4.6.11) [Effective φ-Modules].An effective φ-module over E is a φ-module (D,φ) ∈
φ-ModE s.t. there is a complete OE-lattice M of D that φ(M) ⊂M .

Def.(15.4.6.12)[Stably-Étale φ-Modules].A stably-étale φ-module over E is a φ-module over
E s.t. there exists a φ-stable OE -lattice in E that is an étale φ-module over OE . Then the category
of stably-étale φ-modules is a Tannakian category, denoted by φ-Modst . ét(OE).

Proof: For OE this follows from(15.4.6.4), and for E , notice if D = M [1
p ], D′ = M ′[1

p ], then

HomφModét(E)(D,D
′) = HomφModét(OE )(L,L

′)[1
p

]

and p : D′ → D′ is an isomorphism, so it follows that φModét(OE) is also Abelian. □
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Prop.(15.4.6.13).Any V ∈ RepO
Êur

(GalE) is trivial.

Proof: Cf.[Fontaine-Ouyang]P34.? □

Thm.(15.4.6.14)[Classification of RepZp(GalE)].For V ∈ RepZp(GalE),

M(V ) = (OÊur ⊗Zp V )GalE

is an étale φ-module over OE , and for any M ∈ φ-Modét(OE),

V(M) = (OÊur ⊗OE M)φ=id

is a Zp-representation of GalE . And these two functors define an equivalence of categories:

M : RepZp(GalE) ∼= φ-Modét(OE) : V.

Proof: To show M(V ) is étale , Cf.[Fontaine]P35.
By(15.4.6.15), we have an isomorphism

OÊur ⊗Zp V(M) ∼= OÊur ⊗OE M,

and by(15.4.6.13),
OÊur ⊗OE M(V ) ∼= OÊur ⊗Zp V.

Thus
V(M(V )) = (OÊur ⊗OE M(V ))φ=id ∼= (OÊur ⊗Zp V )φ=id = V (15.4.6.9),

M(V(M)) = (OÊur ⊗Zp V(M))GalE ∼= (OÊur ⊗OE M)GalE = M(15.4.6.9).

□

Lemma(15.4.6.15). Situation as in(15.4.6.14),

OÊur ⊗Zp V (M) ∼= OÊur ⊗OE M.

Proof: Cf.[Fontaine-Ouyang]P36.? □

Thm.(15.4.6.16)[Classification of RepQp(GalE)].
• For V ∈ RepQp(GalE),

D(V ) = (Êur ⊗Qp V )GalE

is an stably-étale φ-module over E , and there is a natural isomorphism

Êur ⊗E D(V ) ∼= Êur ⊗Qp V.

• for any D ∈ φ-Modsst. ét(E),
V(D) = (Êur ⊗E D)φ=id

is a Qp-representation of GalE , and there is a natural isomorphism

Êur ⊗Qp V(D) ∼= Eur ⊗E D,
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• These two functors define an equivalence of Abelian Tannakian categories(3.1.6.13):

M : RepQp(GalE) ∼= φ-Modsst. ét(E) : D.

Proof: For any V ∈ Repfd
Qp

(GalE), by(15.3.1.3), there exists a stable Zp-lattice, thus

Êur ⊗Qp V = (OÊur ⊗Zp T )[1
p

], D(V ) = D(T )[1
p

] = E ⊗OE D(T ).

and for any D ∈ φ-Modst . ét(E), there exists an OE -lattice stable under φ, which is an étale φ-module
over OE . Thus

Êur ⊗E D = (OÊur ⊗OE M)[1
p

], V(D) = V (M)[1
p

] = Qp ⊗Zp V(M).

Thus it is clear that the assertion follows from that of(15.4.6.14). □

Cor.(15.4.6.17).Étale modules over E of rank d are of the form MA = ⊕di=1Eei with

φ : M →M : φ(λej) = λp
d∑
i=1

aijei.

Isomorphism classes of d-dimensional Qp-representations of GalE are in bijection with the isomor-
phism classes of matrixes in GL(d;OE) where

A ∼ B ⇐⇒ ∃P ∈ GL(d; E), B = P−1Aφ(P ).

(φ,Γ)-Modules

Def.(15.4.6.18)[(φ,Γ)-modules]. If A is a topological ring with a Frobenius φ, and A has an action
of a topological group Γ that commutes with σ, then a (φ,Γ)-module M is a φ-module M over A
with a semi-linear action of Γ that commutes with φ.

If A is complete and φ is flat, then an étale (φ,Γ)-module M is a (φ,Γ)-module that the
φ-module structure is étale (15.4.6.3).

Similar to φ-modules, (φ,Γ)-modules forms a Tannakian category.?
Thm.(15.4.6.19)[Classification of RepQp(GalK)].

Overconvergent (φ,Γ)-Modules

Filtered (φ,N)-Modules

Def.(15.4.6.20) [(φ,N,Gal(L/K))-Modules].Let L/K be a Galois extension with residue field kL
and L0 = L ∩K0.

Then the category (φ,N)-ModL/K of (φ,N,Gal(L/K))-modules consists of f.d. L0-spaces V0
with

• a σ-semi-linear endomorphism,
• a L0-linear endomorphism N ,
• a semi-linear continuous action of Gal(L/K) (w.r.t the discrete topology).

That satisfies:
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• Nφ = pφN ,
• N,φ commutes with Gal(L/K)-actions.

Notice that the condition implies N maps the subspace of φ-slope l to the subspace of φ-slope l− 1,
in particular, N is nilpotent.

Prop.(15.4.6.21). Situation as in(15.4.6.20), (φ,N)-ModL/K is an Abelian Tannakian category, where
the actions on the tensor is defined to as follows:

φ(v ⊗ w) = φ(v)⊗ φ(w), N(v ⊗ w) = N(v)⊗ w + v ⊗N(w), g(v ⊗ w) = g(v)⊗ g(w).

Def.(15.4.6.22)[Filtered (φ,N,Gal(L/K))-Modules].The category (φ,N)-FilModL/K of filtered
(φ,N,Gal(L/K))-module consists of tuples

(V, φ,N,Gal(L/K),Fil•)

where
• (V, φ,N,Gal(L/K)) ∈ (φ,N)-ModL/K(15.4.6.20),
• (V ⊗L0 L,Fil•) ∈ FilL.

The category φ-FilModL/K of filtered φ-modules(isocrystals) over K is the Abelian subcategory
of (φ,N,Gal(L/K))-FilModL/K with N = 0. φ-FilModK/K is also denoted by φ-FilModK .

Prop.(15.4.6.23) [HN-Formalism for Filtered φ-Modules].The category
φ-FilModL/K(15.4.6.22) is a HN-formalism where A is the Abelian category φ-Mod(L0)(15.4.6.20),
the rank is defined as usual and

deg((V, φ,Fil•)) = tH-T(VL,Fil•)− tN (V, φ)

where tH-T is the Hodge-Tate degree(3.2.4.27) and tN = vp(det(φ;V )). This is a HN-formalism.

Proof: The proof is clear, the same as that of(3.2.4.27). □

Def.(15.4.6.24) [Weakly Admissible φ-Modules].The cateogory φ-FilModweak. adm
L/K of weakly

admissible φ-modules is the subcategory of φ-FilModL/K consisting of objects that are semistable
of slope 0 w.r.t the HN-formalism(15.4.6.23). It is an Abelian category by(3.2.4.33).

Prop.(15.4.6.25)[Faltings].The subcategory (φ,N)-FilModweak. adm
L/K ⊂ (φ,N)-FilModL/K is stable

under tensor products. In particular, (φ,N)-FilModweak. adm
L/K is an Tannakian category.

Proof: [Tensor Products in p-adic Hodge, Totaro, P9,12]. □

Cor.(15.4.6.26).The subcategory φ-FilModweak. adm
K ⊂ φ-FilModK is stable under tensor products

and duals.

Cor.(15.4.6.27).Tensor product of semistable filtered isocrystals in (φ,N)-FilModL/K is also
semistable.

Proof: This is because shifting the filtration of a semistable filtered isocrystal of slope c down by
c gives a weakly admissible filtered isocrystal. □
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7 Crystalline Representations
References are [Crystalline Representations and F -crystals, Kisin].

Thm.(15.4.7.1).The Tannakian category of crystalline representations of GalK is equivalent to the
Tannakian categories of weakly admmisible filtered isocrystals.

Proof: □

Prop.(15.4.7.2).Let L/K be a finite field extension, then

RepQp(GalK) ∩ Repcrys
Qp

(GalL) = Repcrys
Qp

(GalK).

Proof: Cf.[Period Rings, P52].? □

Prop.(15.4.7.3)[Unramified Representations are crystalline].

Repfd,ur
Qp

(GalK) ⊂ RepCp-adm + crys
Qp

(GalK).

Proof: By(15.4.1.1), any unramified V ∈ Repfd
Qp

(GalK) is K̂ur-admissible, thus Bcrys-admissible as
K̂ur ⊂ Bcrys(15.4.4.14). And V is also Cp-admissible by(15.4.1.1).

To show the converse inclusion, use(15.4.1.2)(15.1.1.16) and the fact LK̂ur ∩Bcrys = K̂ur
0 ?. □

Remark(15.4.7.4).For examples of V ∈ RepdR
Qp

(GalK) that is not crystalline, Cf.[Period Rings,
P52].?

Prop.(15.4.7.5)[Crystalline Representation].The functor

D : RepBe(GK)′ → φ-ModK0 : W 7→ (W ⊗Be Bcrys)GalK

are left adjoint to the functor

V : φ-ModK0 → RepBe G
′
K : (D,φD) 7→ (D ⊗K0 Bcrys)φD⊗φ=id

Moreover, V is fully faithful, id ∼= D ◦ V, V ◦ D ↪→ id, and M ∈ RepBe(GalK) is in the image of V iff
V(D(M)) ∼= M .

Proof: Cf.[Laurent Fargues and Jean-Marc Fontaine Prop10.2.12]. □

Cor.(15.4.7.6). In particular, a Be-representation is crystalline iff it is in the image of V. Now we
define a Vector bundle E on X to be crystalline iff the H0(X\{∞}, E) is crystalline.

8 Semistable Representations
Thm.(15.4.8.1) [deRham ⇐⇒ potentially Semistable(Fontaine’s Potentially Semistable
Theorem), Colmez/André-Kedlaya-Mebkhout]. V ∈ RepQp(GalK) is deRham iff it is poten-
tially semistable.

Proof: □



1568 CHAPTER 15. REPRESENTATION THEORY

Cor.(15.4.8.2).For V ∈ RepQp(GalK), we have the following implications:

unramified = Cp-adm +crystalline crystalline semistable

Cp-adm = pot.unramified = Hodge-Tate with weights 0 pot.crys de Rham = pot.semistable

Hodge-Tate

Prop.(15.4.8.3).A potentially semistable representation defines an isomorphism class of Weil-Deligne
representations WDq → GL(d,Qℓ).
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15.5 Representations of Algebraic Groups
References are[Mil17].

1 Basics
Throughout this subsection, G is an affine algebraic group over a field k if not said.

Def.(15.5.1.1) [Linear Representations of Algebraic Groups].Let R be a ring and V a free
R-module, let GL(V ) be the group functor

CAlgR → Grp : R′ 7→ Aut(V ⊗R R′).

Then a linear representation (r, V ) of an algebraic group G over R is a homomorphism of group
functors r : G → GL(V ). It is called faithful representation if r is a monomorphism as natural
transformation of functors.

If V is of f.d., this is equivalent to a homomorphism G→ GL(V ). And by(8.1.5.6), it is faithful
iff G→ GL(V ) is a closed embedding.

For a linear representation (r, V ), let End(V ) = Aut(r).

Prop.(15.5.1.2)[Representations and Co-modules].A representation of G on V is equivalent to
a right Γ(G)-comodule structure on V (2.9.1.10).

Proof: Let A = Γ(G). For any representation r : G → GL(V ), it induces a map G(A) →
GLA(V ⊗ A), which maps idA to a map ρ : V → V ⊗ A. Now if ρ(ej) =

∑
ei ⊗ aij , then by

funtoriality, the map G(R′)→ GLR(V ⊗R′) is given by g 7→ (ej 7→ ei ⊗ aij(g)).
And it can be verified that this is a group homomorphism iff the comodule condition is satisfied.

□

Def.(15.5.1.3)[Stabilizers].Let (r, V ) be a representation of an affine group scheme G over R, W a
subspace of V , consider the functor

StabG(W ) : R′ 7→ {g ∈ G(R′)|g(WR′) = WR′},

then if V is of f.d., StabG(W ) is representable by a closed subgroup of G, called the stabilizer group
scheme of W in V .

Proof: Let ρ : Γ(G)→ V ⊗ Γ(G) be the comodule action corresponding to r, let {ei}i∈I be a basis
for W , and extends it to a basis {ei}J⨿ I of V , and

ρ(ej) =
∑

ei ⊗ aij , aij ∈ Γ(G).

Let g ∈ Hom(Γ(G), R′), then gej =
∑
ei⊗g(aij), and then clearly GW is represented by the quotient

of Γ(G) by the ideal generated by {aij |i ∈ I, j ∈ J}. □

Cor.(15.5.1.4). If S is a scheme and G is an affine group scheme over S, V a locally free sheaf on S
and W a locally free subsheaf of V, then similarly StabG(W) is representable by a closed subgroup
of G over S, by considering affine-locally.

Cor.(15.5.1.5).Let (ρ, V ) be a f.d. representation of G and S ⊂ G(k) be a subset schematically dense
in G, then a subspace W ⊂ V is stable under G iff it is stable under S.
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Prop.(15.5.1.6)[Fixed Subspace].Let (r, V ) be a linear representation of an algebraic group, define
the fixed subspace by G:

V G = {v ∈ V |gvR = vR, ∀R ∈ CAlgk, g ∈ G(R)}.

Then for any R ∈ CAlgk, V G ⊗ R is the submodule of V ⊗ R that is fixed by elements of G(R′)
for any R′ ∈ CAlgR.

Proof: Cf.[Mil17]P96. □

Cor.(15.5.1.7).The fixed subspace is compatible with base change of fields.

Def.(15.5.1.8) [Subrepresentations].A subspace W of a linear representation V of an algebraic
group G is called a subrepresentation of V if G̃ = StabG(W ).

A linear representation is called simple if has no non-trivial subrepresentations.

Prop.(15.5.1.9).Let U be a normal subgroup of an algebraic group G, then for any representation V
of G, V U is a subrepresentation of V .

Prop.(15.5.1.10)[Union of F.D. Subrepresentations].Let (r, V ) be a linear representation of G,
then V is a filtered union of its f.d. subrepresentations.

Proof: It suffices to consider comodules and prove any vector v ∈ V is contained in a f.d. subco-
module. Let {ei} be a basis of Γ(G), let

∆(ei) =
∑
i,k

rijkej ⊗ ek, ρ(v) =
∑
i

vi ⊗ ei, vi ∈ V.

Because (idV ⊗∆) ◦ ρ = (ρ⊗ idΓ(G)) ◦ ρ(2.9.1.10), thus∑
i,j,k

rijkvi ⊗ ej ⊗ ek =
∑
k

ρ(vk)ek

which means
ρ(vk) =

∑
j,k

rijkvi ⊗ ej .

Thus span{ei} is a f.d. comodule of V containing v. □

Cor.(15.5.1.11).Any simple representations of an algebraic group is of f.d.

Prop.(15.5.1.12)[Schur’s Lemma].Let (V, r) be a simple representation of an algebraic group G,
then End(V ) is a f.d. division algebra D over k. In particular, if k = k, then End(V ) = k.

Prop.(15.5.1.13)[Simple Representations of Product Groups].Let G1, G2 be algebraic groups
and V1, V2 are simple representations of G1, G2 resp., then V1 ⊗ V2 is a simple representation of
G1 ×G2.

Conversely, if End(V ) = k for any simple representation (V, r) of G1, then any simple representa-
tion of G1 ×G2 is of this form.

Proof: Cf.[Mil17]P91. □
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Def.(15.5.1.14)[Semisimple Representations].A linear representation (r, V ) of an algebraic group
is called semisimple if it is a direct sum of simple representations. Equivalently, it is a sum of simple
subrepresentation.(The proof is the same).

Or equivalently, every submodule has a complement.

Prop.(15.5.1.15)[Base Change].Let (V, r) be a f.d. linear representation of an algebraic group over
a field k, k′/k a field extension, then (V ′, r′) = (V, r)⊗k k′ is a representation of Gk′ , and

• If (V ′, r′) is simple, and (V, r) is simple.
• If (V, r) is simple and End(V ) = k, then (V ′, r′) is simple.
• If (V, r) is semisimple and k′/k is separable or End(V ) is a separable algebra over k, then (V ′, r′)

is semisimple.

Proof: Cf.[Mil17]P90. □

Prop.(15.5.1.16)[Constructing All F.D. Representations].Let V be a faithful f.d. representation
of G, then every f.d. representation of G is a subquotient of V m ⊗ (V ∨)n.

Proof: Cf.[Mil17]P88. □

Def.(15.5.1.17)[Diagonalizable Representation].A representation of an algebraic group is called
diagonalizable if it is a direct sum of 1-dimensional representations.

Let G be an algebraic group over a field k and r : G→ GL(V ) be a representation. If V is a sum
of 1-dimensional representations, then r is diagonalizable(15.5.1.17).

Proof: Let V =
∑
χ∈X(G) Vχ. If the sum is not direct, then there is are some relation v1 +v2 + . . .+

vm = 0 for vi ∈ Vχi . Applying ρ shows

0 = v1 ⊗ a(χ1) + . . .+ vma(χm)

so any coordinate of vi is 0 by(8.1.1.13). □

Prop.(15.5.1.18)[Chevalley].Let G be an algebraic group, then every algebraic subgroup H ⊂ G
arises as the stabilizer of a 1-dimensional subspace in a f.d. representation of G.

Proof: Cf.[Mil17]P94. □

Cor.(15.5.1.19).LetG be an algebraic group over a field of characteristic0, then an algebraic subgroup
H of G is normal in G iff for any linear representation V of G and a character χ ∈ X(H), the
eigenspace Vχ is stable under G.

Proof: □

Prop.(15.5.1.20).Let G be an algebraic group over a field k s.t. the order of π0(G) is prime char k,
then any representation V of G is semisimple iff it’s semisimple when restricted to G0.

Linear Algebraic Group

Def.(15.5.1.21)[Linear Algebraic Groups].Let k be a field, then a linear algebraic group over
k is a closed subgroup scheme of GLn for some n.

Notice a linear algebraic group over a field of characteristic 0 is automatically smooth, by Cartier
theorem(8.1.4.2).
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Prop.(15.5.1.22) [Affine Algebraic Group is Linear]. If G is an affine group scheme, then the
regular representation(8.2.1.2) contains a faithful f.d. subrepresentation. In particular, the regular
representation is itself faithful.

Proof: Let ei be a generator of Γ(G) as a k-algebra, let V be a f.d. subrepresentation of the regular
representation containing ei(15.5.1.10), let vi be a basis for V , and suppose ∆(ej) =

∑
ei⊗ aij , then

the image of Γ(GL(V ))→ Γ(G) contains aij . Now because ε : A→ k is the counit,

ej = (ε⊗ id)∆(ej) =
∑

ε(ei)aij ,

so the image contains V , so it contains Γ(G), so this is a closed immersion, thus a faithful represen-
tation, by(15.5.1.1). □

2 Tannakian Duality
In this subsection, let G be an affine group scheme, and k is a field.

Lemma(15.5.2.1).Let G be an affine group scheme over ring R corresponding to a Hopf algebra A.
If u is an R-endomorphism of A that the following diagram commutes:

A A⊗A

A A⊗A

∆

u 1⊗u
∆

,

then there exists a g ∈ G(R) that u = rA(g), where rA is the regular action of G on A.

Proof: Let φ : G→ G be the morphism corresponding to u, then the commutative diagram shows
φS(xy) = xφS(y) for x, y ∈ G(S). Then φS(x) = xgS where gS = φS(e).

Then for f ∈ A, x ∈ G(R), x(uf) = φR(x)(f) = (xg)(f) = x(rA(f)), thus u = rA(g). □

Prop.(15.5.2.2).Let G be an algebraic group over k and R is a k-algebra. Suppose that for any f.d.
representation (V, rV ) of G, we are given an R-linear map λR : VR → VR that satisfies:

• λV⊗W = λV ⊗ λW .
• λ1 = id.
• For G-invariant maps u : V →W , λW ◦ uR = uR ◦ λV .

then there exists a unique g ∈ G(R) that λV = rV (g) for any V .

Proof: Cf.[Milne, P164].? □

Cor.(15.5.2.3)[Reconstruction Theorem].Let ω : Repk(G)→ V ectk be the forgetful functor, and
for any k-algebra R, let ωR = R ⊗ ω, then this proposition says the canonical morphism G(R) →
End⊗(ωR) is an isomorphism. Now if Aut⊗(ω) is the functor R 7→ End⊗(ωR), then G ∼= Aut⊗(ω).

Cor.(15.5.2.4).Let G,G′ be affine algebraic groups over k and let F : Repk(G′) → Repk(G) be a
tensor functor that ωG ◦ F = ωG

′ , then there exists a unique homomorphism f : G → G′ that
F = ωf .

Proof: Such a tensor functor defines a homomorphism

F ∗ : Aut⊗(ωG)(R)→ Aut⊗(ωG′)(R)

functorial in R, thus defines a homomorphism f : G→ G′ by Yoneda lemma and(15.5.2.4). □
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Lemma(15.5.2.5).Let µ be a cocharacter Gm → G over Qp, then the conjugacy class {µ} of µ is
defined over a finite extension E/Qp.

Proof: By Tannakian duality, two cocharacters are conjugate over a field K iff the filtrations they
defined on V ⊗Qp for some faithful V ∈ RepQp(G) are isomorphic by an action of G(K). Now this
action of G(Qp) on V

Qp
is defined over a f.d. field extension E/Qp, so the filtrations are isomorphic

by an action of G(E). □

Prop.(15.5.2.6)[Abstract Jordan Decompositions].Let G be an algebraic group over a perfect
field k and g ∈ G(k), then there exists unique elements gs, gu ∈ G(k) that for any representation
(V, rV ) of G, rV (gs) = rV (g)s and rV (gu) = rV (g)u. Furthermore,

g = gsgu = gugs.

The elements gs, gu are called the semisimple and unipotent parts of g, and this decomposition is
called the abstract Jordan decomposition of g. g ∈ G(k) is called a semisimple or unipotent
element if g = gs or g = gu.

Proof: This follows from the functoriality of Jordan decompositions(2.3.6.7) and the reconstruction
theorem(15.5.2.2). □

Cor.(15.5.2.7).To check a decomposition is Jordan decomposition, it suffices to check for a single
faithful representation of G.

Remark(15.5.2.8).Let G be a group variety over an alg.closed field k. In general, the set G(k)s of
semisimple elements in G(k) is not closed for the Zariski topology, but the set G(k)u of unipotent
elements are closed for the Zariski topology. To see this, embed G into GLn for some n, then the
set of unipotent elements are the matrices with characteristic polynomial (T − 1)n, and this is a
polynomial condition.

Tannakian Reconstruction

Prop.(15.5.2.9) [Tannakian Reconstruction].Let (C,⊗) be a rigid Abelian tensor category that
k = End(1) and ω : C→ Vectk an exact faithful k-linear tensor functor, then the functor Aut⊗(ω) is
representable by an affine groups scheme G, and C ∼= Repk(G).

Proof: Cf.[Milne, Tannakian category, P21].? □

Cor.(15.5.2.10) [Tannakian Reconstruction].Let C be a k-linear Abelian category where k is a
field, and ⊗ : C×C → C a k-bilinear functor. Suppose there are given a faithful exact k-linear functor
C → Vectk and functorial isomorphisms φX,Y,Z : X⊗(Y⊗Z)→ (X⊗Y )⊗Z and ψX,Y : X⊗Y → Y⊗X
that

• F commutes with ⊗, and maps φ and ψ to the natural associativity and commutativity iso-
morphism in V ectk.

• There exists an identity object 1 ∈ C that k → End(1) is an isomorphism and F (1) has
dimension 1.

• Any object L ∈ C that F (L) has dimension 1 is an invertible object.
Then C is equivalent to Repk(G) for some affine group scheme G over k. In fact, G ∼= Aut⊗(ω) as
in(15.5.2.3)
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Proof: The proof of(15.5.2.9) shows F defines an equivalence of categories C → Repk(G) where G
is an affine monoid scheme representing End⊗

k (ω). Thus we may assume C = Repk(G). For the rest,
Cf.[Tannakian Categories, Milne, P24]. □

Cor.(15.5.2.11) [Real Algebraic Envelope].Let K be a topological group, then the category
RepR(K) of f.d. continuous real representations, together with the forgetful functor satisfies the
hypothesis of(15.5.2.10), thus there is an algebraic group K̃ over R, called the real algebraic en-
velope of K, and an equivalence of categories

RepR(K̃)→ RepR(K)

induced by a homomorphism K → K̃(R), which is an isomorphism when K is compact?.

Cor.(15.5.2.12) [Hochschild-Mostow Group]. Similar as(15.5.2.11), if G is a complex Lie group
or a f.g. abstract group, and C the category of f.d. complex representations, then it satisfies the
hypothesis of(15.5.2.10), thus it is the category of representations of an affine group scheme A(G)
over C, together with a homomorphism P : G → A(G), called the Hochschild-Mostow group of
G.

Prop.(15.5.2.13).Let C be a small k-linear Abelian category, and let ω : C → Vectk be an exact
faithful k-linear functor, then there exists a coalgebra C s.t. C is equivalent to the category of
C-comodules of f.d.

Proof: Cf.[Mil17] P175. □

Properties of G and Repk(G)

Prop.(15.5.2.14).Let G be an affine group scheme over k, then
• G is finite iff there exists an object X ∈ Repk(G) that every object of Repk(G) is isomorphic

to a subquotient of Xn for some n > 0.
• G is algebraic iff there exists an object X ∈ Repk(G) that every object of Repk(G) is isomorphic

to a subquotient of Xn ⊗ (X∨)m for some m,n ≥ 0.

Proof: Cf.[Milne, Tannakian categories, P25]. □

Prop.(15.5.2.15).Let f : G→ G′ be a homomorphism of affine group schemes over k, and let ωf be
the corresponding functor Repk(G′)→ Repk(G). Then

• f is faithfully flat iff ωf is fully faithful and each ωf induces an equivalence of subobjects of X ′

and ωf (X ′).
• f is a closed immersion iff every object of Repk(G) is isomorphic to a subquotient of an object
ωf (X ′).

Proof: Cf.[Milne, Tannakian categories, P25]. □

Cor.(15.5.2.16).Let k has characteristic 0, then G is connected iff for any non-trivial representation
X of G, ⟨X⟩ is not stable under ⊗.

Proof: Cf.[Milne, Tannakian categories, P25]. □
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3 Unipotent Groups
Def.(15.5.3.1)[Unipotent Groups].A unipotent algebraic group is an algebraic group G s.t. for
any non-zero linear representation V of G, V G ̸= 0. Equivalently, every such representation sends G
into Unip(n) in some coordinates.

Prop.(15.5.3.2).Let G be an algebraic group over k and k′/k a field extension, then G is unipotent
iff Gk′ is unipotent.

Proof: This follows from the fact that for any representation V ofG, (V ⊗k′)Gk′ = V G⊗k′(15.5.1.7).
□

Prop.(15.5.3.3).For an affine algebraic group G over a field k, the following are equivalent:
• G is unipotent.
• G is isomorphic to a subgroup of Unip(n) for some n.
• The Hopf algebra Γ(G) is coconnected.

Proof: Cf.[Mil17]P281. □

Prop.(15.5.3.4). If U is a normal unipotent subgroup of an algebraic group G, then for any semisimple
representation V of G, U acts trivially.

Proof: Consider a simple subrepresentation W of V , then WU ̸= 0 is a subrepresentation of G
by(15.5.1.9), thus U acts trivially on W . As V is a sum of simple representations(15.5.1.14), U acts
trivially on V . □

Prop.(15.5.3.5).Representations of Ga over a field of characteristic 0 corresponds to locally nilpotent
endomorphisms.

Proof: https://qchu.wordpress.com/2017/11/26/the-representation-theory-of-the-additive-group-scheme/.
□

4 Reductive Groups
Prop.(15.5.4.1).A group variety G is reductive if it has a faithful representation that is semisimple
over k, by(15.5.3.4).

Prop.(15.5.4.2).Let k ∈ Field0, G ∈ AlgGrp /k is connected, then the following are equivalent:
• G is a reductive group.
• Every f.d. representation of G is semisimple(15.5.1.14).
• Some faithful representation of G is semisimple(15.5.1.14).

Proof: □

https://qchu.wordpress.com/2017/11/26/the-representation-theory-of-the-additive-group-scheme/
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15.6 Complex Representations of Finite Groups of Lie Type

Main references are [Bon11], [Introduction to Deligne-Lustig Theory, David Schwein], [Represen-
tations of finite groups of Lie type, Dign/Michel, 1991].

Notation(15.6.0.1).
• Use notations defined in Étale Cohomology Theory.

• Let p ∈ P, q ∈ pZZ+ , k ∈ Field,#k = q,G ∈ AlgGrp /k.

• Let ℓ ∈ P\p, K an ℓ-adic local field with ring of integers OK and residue field k.

1 Finite Groups of Lie Type

Def.(15.6.1.1) [Finite Groups of Lie Type].For a reductive group G/k, if F ∈ End(G) satisfies
the fixed point of F (k) is finite, then its fixed points GF is called a finite group of Lie type.

If G is defined over some finite subfield k, i.e. G = G0 ×k k, and F = FrG0 , then GF = G0(k)
is called a Chevalley group. If moreover G0 ∈ AlgGrp /k is reductive and simply-connected, then
G0(k) is called a universal finite group(of Lie type).

If G is a a finite group of Lie type that is not a Chevalley group, then it is called a twist group(of
Lie type).

Prop.(15.6.1.2)[Steinberg]. If G ∈ AlgGrp /k is simple reductive group, and F ∈ End(G) satisfies
the fixed point of F (k) is finite, then there are exactly two cases:

• (Chevalley Groups)F is a standard Frobenius: An, Bn, Cn, Dn, G2, F4, E6, E7, E8.

• (Steinberg Groups)2An,
2Dn,

3D4,
2
6.

• (Suzuki Groups)2B2, p = 2.

• (Ree Groups)2G2, p = 3.

• (Ree Groups)2F4, p = 2.

Proof: □

Examples

Prop.(15.6.1.3)[SL(n)].PSL(n,Fq) is simple except for n = 2 and q = 2 or 3.
SU(n)Fq is a twist of SL(n)Fq , denoted by 2An−1(Fq2).

Proof: □

Prop.(15.6.1.4).

2 Conjugacy Classes

3 Deligne-Lustig Varieties

Def.(15.6.3.1)[Deligne-Lustig Varieties].
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Affineness of Deligne-Lustig Varieties

4 Deligne-Lustig Theory

Main references are [Finite Groups of Lie Type, Carter], [P. Deligne and G. Lusztig, Representa-
tions of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no.1, 103–161.], [D-L76],
https://www.dpmms.cam.ac.uk/~dbms2/deligne_lusztig/.

Deligne and Lustig used the ℓ-adic étale cohomology theory to construct all cuspidal representa-
tions of G(Fq).

Remark(15.6.4.1).Because G(Fq) is finite and C ∼= Qℓ, we can consider representations
Rep(G(Fq)) = {θ : G(Fq)→ GL(Qℓ).

Def.(15.6.4.2)[Induction Pairs].A induction pair for G(Fq) is a pair (T, θ), where T ⊂ G is a
maximal torus and θ is an ℓ-adic character T (Fq)→ Q

×
ℓ .

Deligne-Lustig Inductions

Def.(15.6.4.3)[Deligne-Lustig Inductions].Let (T, θ) be an induction pair(15.6.4.2), the action of
G(Fq) and T (Fq) on X̃S commutes, so for any θ ∈ Irr(T (Fq)), the θ-isotopic part of H i

ét,c(X̃T ,Qℓ)
is G(Fq)-invariant, thus we can define a Deligne-Lustig Induction map that on Irr(G(Fq)) is
defined by

RGT : Irr(T (Fq))→ K0(Rep(G(Fq))) : θ 7→
∑
i

(−1)iH i
ét,c(XT ,Qℓ)θ.

Prop.(15.6.4.4).Let (T, θ) be an induction pair, if θω ̸= θ for any w ∈W , then RGT (θ) ∈ Irr(G(Fq)).

Proof: □

Prop.(15.6.4.5). If (T, θ), (T ′, θ′) are two induction pairs that are note G(Fq)-conjugate, then
(RGT (θ), RGT ′(θ′)) = 0.

Proof: □

Def.(15.6.4.6)[Geometrically Conjugate Pairs]. If (T, θ), (T ′, θ′) are two induction pairs, they are
called geometrically conjugate if (Tk′ , θ ◦Nmk′/k), (T ′

k′ , θ′ ◦Nmk′/k) are G(k′)-conjugate for some
finite extension k′/Fq.

Prop.(15.6.4.7). If (T, θ), (T ′, θ′) are two induction pairs that are not geometrically conjugate, then
RGT (θ), RGT ′(θ′) are disjoint.

Proof: Cf.[D-L76]Cor6.3. □

Def.(15.6.4.8)[Dual Groups].

Prop.(15.6.4.9).The geometric conjugacy classes of induction pairs of G corresponds to the geometric
conjugacy classes of semisimple elements of G∗(15.6.4.8).

Proof: □

https://www.dpmms.cam.ac.uk/~dbms2/deligne_lusztig/
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Def.(15.6.4.10) [Lustig Series].Let S be a semisimple conjugacy class of G∗, the Lustig series
E(G,S) is the set of irreducible representations of G occurring in RGT (θ) for any (T, θ) in the geometric
conjugacy class corresponding to S via(15.6.4.9). By(15.6.4.7),

Irr(G(Fq)) =
⨿

S∈G∗
ss-conj

E(G,S).

E(G, (1)) is called the set of unipotent representations, which are all the irreducible represen-
tations appearing in RGT (1) for various T .

5 Howlett-Lehler Theory
This theory decomposes Deligne-Lustig inductions into irreducible components.

6 Character Sheaves(Lustig)
References are [Introduction to character sheaves, Lustig], [Algebraic And Geometric Methods In

Representation Theory, Lustig, 2014].

Remark(15.6.6.1).Let (S, θ) be an induction pair(15.6.4.2), there is in fact an isomorphism

H i
ét,c(X̃S ,Qℓ) ∼= H i

ét,c(XS ,Fθ) ∈ Rep(G(Fq))

where Fθ is the ℓ-adic local system on XS corresponding to the S(Fq)-torsor and θ. Thus much of
the Deligne-Lustig theory can be interpreted in the language of sheaves, called character sheaves.

7 Gelfand-Graev representations

8 Alvis-Curtis Duality
Cf.[Duality for representations of a reductive group over a finite field, I, II, Deligne-Lustig].

9 Deligne-Lustig Varieties
Prop.(15.6.9.1).Let

10 GL(n)

Notation(15.6.10.1).The notation is the same as in(15.11.0.1).

Principal Series Representations

Prop.(15.6.10.2).Let (π, V ) ∈ Repfd(GL(2, k)), then
• if the representation (π1, V ) is defined by π1(g) = π(g−t), then π1 ∼= π̂.
• if n = 2 and (π, V ) is irreducible, let ω be the central character of π. If (π2, V ) is defined by
π2(g) = ω(deg g)−1π(g), then π2 ∼= π̂.

Proof: The proof of(15.11.1.15) applies to this case, noticing a finite group is profinite hence locally
profinite. □
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Lemma(15.6.10.3).Let χ1, χ2, µ1, µ2 be characters of F ∗, consider the principal representations
B(χ1, χ2),B(µ1, µ2) of GL(2, k) defined in(15.11.4.6), then

dim HomGL(2,k)(B(χ1, χ2),B(µ1, µ2)) = δχ1,µ1δχ2,µ2 + δχ1,µ2δχ2,µ1 .

Proof: Let χ, µ be characters of B(k) defined as in(15.11.4.6), then by??, the dimension is just the
dimension of space of functions ∆ : GL(2, k)→ C that

∆(b2gb1) = µ(b1)∆(g)χ(b1), b1, b2 ∈ B(k).

Then by the Bruhat decomposition(11.7.6.5), ∆ is determined by its values on 1 and w0. Notice that
if χ1 ̸= µ1 or χ2 ̸= µ2, we can use this condition to show ∆(1) = 0, and if χ1 ̸= µ2 or χ2 ̸= µ1, we
can use this condition to show ∆(w0) = 0, and also the construction of ∆ is clear in other cases. □

Prop.(15.6.10.4)[Principal Series Representations].Let χ1, χ2, µ1, µ2 be characters of F ∗, then
B(χ1, χ2) is an irreducible representation of degree q = |F | + 1 unless χ1 = χ2, in which case it is
the direct sum of two irreducible representations having degree 1 and q. And B(χ1, χ2) ∼= B(µ1, µ2)
iff {χ1, χ2} = {µ1, µ2}.

Proof: Use(15.6.10.3), then

dim EndGL(2,k)(B(χ1, χ2)) = 1 + δχ1,χ2 .

Now by Peter-Weyl, if a representation V is isomorphic to ∑ diπi, where π1 are irreducible, then
dimG(V ) =

∑
d2
i (10.11.4.5). Then we now B(χ1, χ2) decomposes into two representations if χ1 = χ2

and is irreducible if χ1 ̸= χ2.
In case χ1 = χ2, there is an invariant subspace of dimension 1, generated by the function f(g) =

χ(deg g). so the rest representation is of dimension q, because G(2, k)/B(k) = q + 1. □

Def.(15.6.10.5)[Steinberg Representation].We call the q-dimensional subrepresentation of B(1, 1)
the Steinberg representation. It is verified that the q dimensional subrepresentation of B(χ, χ) is
the twist of the Steinberg representation.

Weil Representations

Prop.(15.6.10.6)[Weil Representation for SL(2, k)]. In situation(16.5.4.5), let W = L2(E), define
the modified Fourier transform w.r.t. ψ as in(10.11.3.33):

Φ̂(x) = q−1 ∑
y∈E

Φ(y)ψ(tr(xy)).

Then there is a Weil representation ω : SL(2, k)→ End(W ) :

(ω(t(a))Φ)(x) = Φ(ax), w(n(z)Φ)(x) = ψ(zN(x))Φ(x), (ω(w1)Φ)(x) = εΦ̂(x).

where we are using the presentation as in6, and ε = 1 is E/F is split, and −1 if it is anisotropic.

Remark(15.6.10.7).When F has characteristic̸= 2, this is just the Weil representation in(16.5.4.3).

Proof: This follows from direct verification, Cf.[Bump, P407]. □
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Prop.(15.6.10.8)[Dihedral Weil Representations for GL(2, k)]. Situation as in(16.5.4.5), Define

W (χ) = {Φ ∈W |Φ(yx) = χ(y)−1Φ(x), y ∈ E∗
1},

then by considering the order of E∗
1 , dimW (χ) = q+ ε. Also it is verified that W (χ) is stable under

the Weil representation of SL(2, k)(15.6.10.6).
Now we want to extend this representation to GL(2, k) by defining

(ω(
[
a

1

]
)Φ)(x) = χ(b)Φ(bx)

where b is arbitrary that N(b) = a.

Remark(15.6.10.9).This is related to(16.5.4.7) and Howe duality.

Proof: It must be shown that this is truly a representation of GL(2, k), it suffices to show that

ω(
[
a

1

]
)ω(g)ω(

[
a−1

1

]
) = ω(

[
a

1

]
g

[
a−1

1

]
),

where g is a generator of SL(2, k). This is clear for g = t(a), and also clear for g = n(z). For g = w1,
it suffices to check

ω(
[
a

1

]
) ◦ ∧ ◦ ω(

[
a−1

1

]
)Φ(x) = Φ̂(ax)

which is subtle but also clear. □

Prop.(15.6.10.10)[Split Weil Representation]. In the split case, the character χ of E∗ is of the
form χ((x, y)) = χ1(x)χ2(y), and then condition in(16.5.4.5) just says χ1 ̸= χ2. Then:

(π(χ),W (χ)) ∼= B(χ2, χ1)

Proof: The intertwining operator is given by

L : W (χ)→ B(χ2, χ1) : (LΦ)(g) = (ω(g)Φ)((1, 0)).

Firstly LΦ ∈ B(χ2, χ1) by direct verification for t(a), T1(k) and n(z). Then it is an intertwining
operator is clear.

Then this is an isomorphism because both are of dimension q + 1(15.6.10.8) and B(χ2, χ1) is
irreducible(15.6.10.4). □

Def.(15.6.10.11)[Cuspidal Representation]. (π, V ) ∈ Repfd(GL(2, k)) is called a cuspidal repre-
sentation if the Jacquet module J(V ) = 0. Notice in this finite case, this is equivalent to V has no
N(k)-fixed vector, because the contragradient is well-known as Rep(G) is semisimple, and the trivial
isotropic parts correspond, unlike the p-adic case.

Lemma(15.6.10.12). If (π, V ) is a cuspidal representation of GL(2, k), then the dimension of V is a
multiple of q − 1.
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Proof: Because N(k) ∼= F , any character of N(k) is of the form ψa(n(x)) = ψ(ax). Now decompose
the contragradient representation V ∗ of G into isotypic parts of N(k):V ∗ = ⊕a∈FV

∗(a), then the
hypothesis implies V ∗(0) = 0.

Notice that the group T1(k) acts transitively on the spaces V ∗(a), a ̸= 0 by π̂(
[
t

1

]
)l, because

[
t

1

] [
1 x/t

1

]
=
[
1 x

1

] [
t

1

]
.

So the dimension of V is a multiple of q − 1. □

Prop.(15.6.10.13)[Anisotropic Representation]. In the anisotropic case, the Weil representation
(π(χ),W (χ)) is cuspidal and irreducible.

Proof: Suppose it is not cuspidal, then it contains a non-zero N(k)-fixed vector Φ0(15.6.10.11),
which means Φ0(x) = w(n(z)Φ0)(x) = ψ(zN(x))Φ(x). Now Φ0(0) = 0 because χ is nontrivial on
E∗

1 , and if x ̸= 0, then there is a z that ψ(zN(x)) ≠ 1 because ψ is non-trivial, so Φ0(x) = 0 also, so
Φ0 = 0, contradiction.

Finally, subrepresentation of cuspidal representation is cuspidal by(15.6.10.11), then (π(χ),W (χ))
is irreducible, by the fact it is of dimension q − 1(15.6.10.8) and lemma(15.6.10.12). □

Prop.(15.6.10.14)[Classification of Representations of GL(2, k)].There is a list of all irreducible
representations of GL(2, k):

• q − 1 1-dimensional representations χ(deg g), where χ is a character of k×.

• (q−1)(q−2)
2 principal series representations of dimension q + 1.

• q − 1 Steinberg representations(with twists) of dimension q.

• q(q−1)
2 cuspidal Weil representations of dimension q − 1.

Proof: All these are irreducible representations by(15.6.10.4)(15.6.10.5) and(15.6.10.13). It suffices
to show they are not isomorphic. Notice different kind of representation have different dimensions,
thus it suffices to compare the same representations.

For principal series representations B(χ1, χ2), χ1 ̸= χ2, their isomorphisms are known
by(15.6.10.4). For Steinberg representations, twisting are clearly different. For cuspidal Weil repre-
sentations, there are qq − q way of choosing χ(16.5.4.5) and ? Cf.[Local Langlands For GL(2)].

Finally, they are all the irreducible representations by the fact ∑ d2
σ = |G| = (q − 1)2q(q +

1)(15.1.3.4). □

Whittaker Models

Def.(15.6.10.15) [Whittaker Functionals & Whittaker Models].Let (π, V ) be an irreducible
representation of GL(2, k), then the notion of Whittaker functional and Whittaker model is
defined as in(15.11.3.1).

Prop.(15.6.10.16)[Existence and Uniqueness of Whittaker Models].Let G be the representa-
tion of GL(2, k) induced from the character ψN (n(z)) = ψ(z) on N(k), then it is multiplicity-free, and
every irreducible representation of dimension> 1 occurs in it. Notice that this is just the existence
and uniqueness of Whittaker models.
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Proof: To show multiplicity free, it suffices to show EndGL(2,k)(G) is commutative, by Shur’s
lemma(10.11.2.4). Then we use??, which says this ring is isomorphic to the ring of functions ∆ on
G that

∆(n2gn1) = ψN (n2)∆(g)ψN (n1).

where the multiplication is convolution??.
Notice it follows from the the Bruhat Decomposition(11.7.6.5) that the double coset

N(k)\GL(2, k)/N(k) is uniquely represented by matrices with exactly two non-zero entries. Then it
is clear a diagonal coset can support a function ∆ iff it is a scalar multiple of I. In other words, the
representatives are [

a
a

]
,

[
b

c

]
.

Consider the involution of G given by

ι(g) = w1g
tw−1

1 ,

then it is an anti-involution of G and it induces isomorphism on N(k), so it induces an anti-involution
of order two on the ring of functions ∆ by ι(∆)(g) = ∆(ι(g)). Notice this is an anti-involution
because of(10.11.1.27) and the fact a finite group is unimodular. But this anti-involution fixes
the representatives as above, so it is in fact identity on these ∆, which proves the convolution is
commutative.

For the last assertion, just notice the dimension of G is (q − 1)(q2 − 1), and the sum dimensions
of irreducible representations of dimension> 1 is just (q − 1)(q2 − 1) by(15.6.10.14). □

Cor.(15.6.10.17).Frobenius reciprocity(10.11.5.5) implies that the space of Whittaker functionals is
of dimension 1 for any irreducible representation of dimension> 1.

11 SL(n)

Def.(15.6.11.1) [Drinfeld Curves].The Drinfeld curve is defined to be the affine plane curve
Dri /A2

q

Dri : xqy − xyq = 1

with completion Dri = Dri∪{∞} ⊂ P2
q .

Prop.(15.6.11.2).There is a natural µq+1 × SL(2,Fq)-action on Dri, which induces a map on
H∗

ét,c(Dri,Qℓ). Then we get the Deligne-Lustig induction

RGT ′ : µ∗
q+1 → K0(Repfd(SL(2,Fq)).

Proof: □
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Reps\Classes
[
1

1

] [
−1

−1

] [
−1

1

] [
1 1

1

] [
1 −1

1

] [
−1 1

−1

] [
−1 −1

−1

]
size 1 1 6 4 4 4 4
1 1 1 1 1 1 1 1
χ 1 1 1 ω ω2 ω2 ω

χ2 1 1 1 ω2 ω ω ω2

ρ rational quaternionic 2 -2 0 -1 -1 1 1
χρ 2 -2 0 −ω −ω2 ω2 ω

χ2ρ 2 -2 0 −ω2 −ω ω ω2

π 3 3 -1 0 0 0 0

Figure (15.6.11.1): Character Table of SL(2,F3)

12 GL(n)

References are [Representations of the Finite Classical Groups, Zelevinsky, 1981].

Thm.(15.6.12.1)[Irreducible Characters of GL(n,Fq), Green].

13 Sp2n

Thm.(15.6.13.1)[Irreducible Characters of Sp(2n,Fq), Green].



1584 CHAPTER 15. REPRESENTATION THEORY

15.7 Bruhat-Tits Theory

1 Buildings
Main references are [Serre, Trees].

2 Bruhat-Tits Buildings
Main references are [Reductive Groups over Local Fields, Tits] and [A Compatification of the

Bruhat-Tits Building], [the Bruhat-Tits Buildings of a p-adic Chevalley Group and an Application
to Representation Theory, Rabinoff].

Def.(15.7.2.1)[Bruhat-Tits Buildings].For a Chevalley group G = G(F ), the Bruhat-Tits build-
ing B(G) is a building that

• vertices of B(G) corresponds to the set of compact open subgroups of G.
• B(G) is a union of subcomplexes called apartments, corresponding to the set of split maximal

tori T of G.
•

Prop.(15.7.2.2)[B(SL(2,Qp))].The Bruhat-Tits building B(SL(2,Qp)) is a (p+1)-regular tree where
• vertices of B(SL(2,Qp)) corresponds to homothety classes of lattices [Λ] in Q2

p.
• edges of B(SL(2,Qp)) corresponds to adjacent pairs of lattices in Q2

p.

3 Compactifications
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15.8 Representations of Semisimple Lie Algebras and Category O
Main references are[Eti21] and[Car05].
This section studies representations of split semisimple Lie algebras. For a split semisimple Lie

algebra (g, h), we use notations as in(2.5.3.30).

1 Semisimple Representations
Lemma(15.8.1.1). If g is a semisimple Lie algebra over k, then every 1-dimensional representation of
g is trivial.

Proof: Such a representation vanishes at [g, g], which equals g by(2.5.2.4). □

Prop.(15.8.1.2)[Weyl].For a Lie algebra g over a field k,
• If the adjoint representation g→ glg is semisimple, then g is semisimple.
• If g is semisimple and k has characteristic 0, then Rep(g) is semisimple.

Proof: If the adjoint representation of g is semisimple, then every ideal of g has a complement,
thus if g is not semisimple, it has a dimension 1 quotient. But notice the Lie algebra k of dimension

1 has non-semisimple representations, for example c 7→
[
0 0
c 0

]
, contradiction.

Semisimplicity of a Lie algebra is invariant under base change, also does simplicity of the category
of representations(15.8.1.4), so we can assume that k is alg.closed. Now we need to show that any
proper submodule W of a g-module V has a complement.

Assume first that dimV/W = 1 and W is a simple g-module. This implies g acts trivially on
V/W by(15.8.1.1). Let cV be the Casimir element of V (2.5.9.11), then cV is also trivial on V/W .
And cV acts as a nonzero scalar on W as W is simple, by(2.5.9.11). Then the kernel of cV is of
1-dimensional, and is a g-complement of W in V .

Next if dimV/W = 1 but W is not simple g-module, then there is a submodule W ′ ⊂ W . By
induction, the g-submodule W/W ′ has a complement V ′/W ′ in V/W ′. Then V ′/W ′ has dimension
1, thus by induction, V ′ = W ′ ⊕ L for some 1-dimensional g-module. Then L is complementary to
W in V .

Finally for the general case, let g acts on Homk(V,W ), consider the subspaces V1,W1 of
Homk(V,W ), where V1 is the subspace of maps that restriction to W is a constant multiple of iden-
tity, and W1 is the subspaces of W consisting of maps vanishing on W . They are both g-modules
and dimV1/W1 = 1. Then the above case shows V1 = W1 ⊕ L for some 1-dimensional g-module L.
Because g acts trivially on L(15.8.1.1), this means L = Ff consists of g-homomorphisms. But f |W
is non-zero constant, so the kernel of f is a complement of W in V . □

Cor.(15.8.1.3).Let (V, ρ) be a representation of a semisimple Lie algebra g and f : g → V a linear
map that

f([x, y]) = ρ(x)f(y)− ρ(y)f(x),

then there exists a v0 ∈ V that f(x) = ρ(x)v0.

Proof: The condition on f is equivalent to (f, ρ) : g → af(V )(2.5.1.11) is a homomorphism of Lie
algebras. And this induces a representation ρ′ of g on V ′ = V ⊕ k that ρ′(x)(V ′) ⊂ V for all x ∈ g.
Because g is semisimple, there is a line L ⊂ V ′ that V ′ = V ⊕ L and g acts trivially on L(15.8.1.1).

In other words, there is a vector (−v0, 1) that ρ′(x)(−v0, 1) = 0 for all x ∈ g. So f(x) = ρ(x)(v0)
for all x. So we are done. □
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Prop.(15.8.1.4)[Semisimplicity and Extension].Let g be a Lie algebra over a field k. If Rep(gK)
is semisimple for some extension field K/k, then also is Rep(g).

Proof: This is because for any representation (V, ρ) of g, K ⊗k End(ρ) ∼= End(ρK), because
this is true for End(V ), and being g-equivariant is a linear condition. Then we can use(2.4.1.25)
and(2.4.1.26). □

Prop.(15.8.1.5)[Semisimple Representations].The following conditions on a representation g→
glV are equivalent:

• ρ is semisimple.
• ρ(g) is reductive and its center consists of semisimple endomorphisms.
• ρ(r) consists of semisimple endomorphisms.
• The restriction of ρ to r is semisimple.

Proof: 1→ 2: If ρ is semisimple, then ρ(g) is reductive by(2.5.4.4). Its center consists of semisimple
endomorphisms by [Mil13]P60?.

2→ 3: This is because if ρ(g) is reductive, then its center equals its radical and contains ρ(r), so
ρ(r) consists of semisimple endomorphisms.

3→ 4: [Mil13]P60?.
4→ 1: [Mil13]P60?. □

Cor.(15.8.1.6).Let ρ and ρ′ be representations of g. If ρ and ρ′ are semisimple, then so are ρ ⊗ ρ′

and ρ∨.
In particular, the category Repss(g) of semisimple representations of a Lie algebra g form a

Tannakian category, thus there is an algebraic group G that Repss(g) = Rep(G).

Proof: Use the third criterion, for any x ∈ r, as ρ(x), ρ′(x) are semisimple, so is ρ(x) ⊗ ρ′(x), so
ρ⊗ ρ′ is also semisimple by(15.8.1.5). □

representations of sl2(C)

Def.(15.8.1.7)[Primitive Element].Let V be a sl2-module, an element v ∈ V is called primitive
of weight λ if it is non-zero and Xe = 0,He = λe.

Prop.(15.8.1.8).Every non-zero f.d. sl2-module contains a primitive element.

Proof: en element e is primitive iff the line generated by e is stable under the action of {X,H}: if
Xe = λe and He = µe, then using the [H,X] = 2X, we see that 2λ0, thus λ = 0, and e is primitive.
So each f.d. sl2-module contains a primitive element, by Lie’s theorem(2.5.1.24). □

Prop.(15.8.1.9) [Submodule Generated by Primitive Element].Let V be a sl2-module and
e ∈ V a primitive element of weight λ. Let en = Y ne/n!, and e−1 = 0, then we have

Hen = (λ− 2n)en, Y en = (n+ 1)en+1, Xen = (λ− n+ 1)en−1.

Proof: By induction on n,

HY ne = ([H,Y ] + Y H)Y n−1e = (λ− 2(n− 1)− 2)Y ne = (λ− 2n)e.

Y en = (n+ 1)en+1 is obvious.
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And

nXen = XY en−1 = [X,Y ]en−1 + Y Xen−1

= Hen−1 + (λ− n+ 2)Y en−2

= (λ− 2n+ 2 + (λ− n+ 2)(n− 1))en−1

= n(λ− n+ 1)en−1

□

Cor.(15.8.1.10).Only two cases arise: either
• The elements {en} are linearly independent.
• The elements e0, e1, . . . , em are linearly independent, and em+1 = em+2 = . . . = 0, and weight
λ of e equals m.

And if V is f.d., then case 1 cannot happen, and the subspaceW generated by e0, . . . , em is a g-module
and it is irreducible.

Proof: Because each ei has different eigenvalue under action of H, thus if they are all nonzero, then
they are linearly independent. If e0, e1, . . . , em are linearly independent, and em+1 = em+2 = . . . = 0,
then by the proposition,

Xem+1 = (λ−m)em
and em+1 = 0 with em ̸= 0, thus λ = m. Now the formulas in(15.8.1.9) shows that W is a g-module.
And if W ′ ⊂W is a subspace invariant under g, then it contains some eigenvalues ek of H, and then
the formulas in(15.8.1.9) shows it contains all e0, e1, . . . , em, thus W ′ = W . Thus W is irreducible.
□

Prop.(15.8.1.11) [Irreducible Representations of sl2(C)].Let Wm = {e0, . . . , em} be a m + 1-
dimensional vector space and sl2 acts on Wm by

Hen = (m− 2n)en, Y en = (n+ 1)en+1, Xen = (m− n+ 1)en−1.

Then Wn is a f.d. irreducible representation of sl2, and any f.d representation of sl2 of dimension
m+ 1 is isomorphic to one of Wm.

Proof: The first assertion follows from(15.8.1.10) and the fact e0 is a primitive element. For
the second assertion, notice any f.d. representation W of g contains a primitive element(15.8.1.8)
thus by(15.8.1.10) generates an irreducible sl2-submodule Wn, thus this submodule equals W , and
n+ 1 = m+ 1, thus n = m. □

Remark(15.8.1.12).Notice this is special case of(15.8.2.15).

Cor.(15.8.1.13).W0 is the just trivial action of sl2, W1 is isomorphic to the natural action of sl2 on
C2, and W2 is isomorphic to the adjoint action of sl2 on itself.

Proof: In fact, W1 can be identified with the vector space C{x, y} where

Hx = x,Hy = −y, Y x = y, Y y = 0, Xy = x,Xx = 0.

Then the m-th symmetric tensor of W1 is isomorphic to the vector space of polynomials in x, y of
degree m, and by(2.5.9.2),

H(Ckmykxm−k) = (m− 2k)(Ckmykxm−k),
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Y (Ckmykxm−k) = (k + 1)(Ck+1
m yk+1xm−k−1),

X(Ckmykxm−k) = (m− k + 1)(Ck−1
m yk−1xm−k+1).

So it is isomorphic to Wm+1. □

Cor.(15.8.1.14)[Representations of sl2(K)].Let K = R or C,
• Any f.d. representation V of sl2(K) is isomorphic to a direct sum of Wms, and Thus

• The endomorphism on V induced by H is diagonalizable and with integral eigenvalues. if ±n
are eigenvalues of H, then so are n− 2, n− 4, . . . , 4− n, 2− n.

• For any n ≥ 0, the linear maps

Y n : V n → V −n, Xn : V −n → V n

are isomorphisms. In particular, V −n and V n have the same dimensions.

Proof: by Weyl’s theorem(15.8.1.2), any representation of sl2(K) is isomorphic to a direct sum of
irreducible representations, and the irreducible representations of sl2(C) clearly comes from real rep-
resentations of sl2(R), thus irreducible representations of sl2(R) must be of the same form(otherwise
tensor with C and decompose, and use conjugation).

Because we can assume V is one of Wm, so the other assertions are clear. □

2 Verma Modules

Def.(15.8.2.1) [Weights].Let (g, h) be a semisimple Lie algebra with root system R and V is a g-
module. If λ ∈ h∗, a vector v ∈ V is said to have weight λ iff hv = λ(h)v for any h ∈ h. The
space of vectors in V of weight λ is denoted by V [λ]. An integral weight is a weight λ of the form
λ =

∑
niα

∨
i , where αi ∈ R, equivalently its values on hi are all integers.

V is said to have a weight decomposition if V = ⊕λ∈h∗V [λ].

Prop.(15.8.2.2).Any f.d. g-module V has a weight decomposition, and the weights are all integral.

Proof: For any i, V is a si = {ei, hi, fi}-module(2.5.3.20), so by the representation theory of sl2,
hi acts semisimply on V , and the eigenvalues are integers. Thus h acts semisimply on V , thus there
is a weight decomposition, and the weights are all integral. □

Def.(15.8.2.3) [Highest Weight Representations].A vector v ∈ V is called a highest weight
vector if it is a weight vector and n+v = 0, or equivalently eiv = 0 for any ei. A highest weight
representation with highest weight λ is a representation that is generated by a highest weight
vector of weight λ.

Prop.(15.8.2.4).Any f.d. g-module contains a highest weight vector, thus any irreducible f.d g-
representation is a highest weight representation.

Proof: Let P =
∑
i α

∨
i , and choose a weight λ that (λ, P ) is maximal, then eiv has weight λ+ αi,

thus eiv = 0 for any i. □
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Verma Modules

Def.(15.8.2.5)[Verma Modules].Let λ ∈ h∗, Iλ ⊂ U(g) be the left ideal generated by the elements
h − λ(h) and ei, then the Verma module Mλ = U(g)/Iλ. has a weight decomposition, and it is a
highest weight representation with highest vector vλ = 1 with weight λ.

Prop.(15.8.2.6)[Mλ is Noetherian].Mλ satisfies ascending chain condition on f.d. submodules.

Proof: This is because U(g) is left Noetherian(2.5.8.16) and Mλ = U(g)/Iλ. □

Prop.(15.8.2.7).The map φ : U(n−)→Wλ : φ(x) = xvλ is an isomorphism of left U(n−)-modules.

Proof: This follows from PBW theorem. □

Cor.(15.8.2.8).Mλ has a weight decomposition with P (Mλ) = λ−Q+, and weight spaces of Mλ are
all of f.d..

Prop.(15.8.2.9). If V is a g-module and v ∈ V is a highest weight vector, then there is a unique
homomorphism Mλ → V of g-modules that maps vλ to v.

Cor.(15.8.2.10).Every highest weight representation has a decomposition into f.d. weight spaces.
And they have a unique highest weight vector up to a scalar.

Prop.(15.8.2.11) [Quotient of Verma Modules].Mλ has a unique irreducible quotient Lλ. In
particular, Lλ is a quotient of every highest weight representation of g with weight λ, by(15.8.2.9).

Proof: As Mλ has a weight decomposition, any submodule Y of Mλ has a weight decomposition,
and cannot has weight λ, otherwise it generates Mλ by(15.8.2.10). Then the sum Jλ of all proper
submodules of Mλ also cannot have weight λ, thus also proper. Then Lλ = Mλ/Jλ is the unique
irreducible quotient of Mλ. □

Cor.(15.8.2.12) [Classification of Irreducible Highest Weight Representations].Any irre-
ducible highest weight representation of g is of the form Lλ where λ ∈ h∗.

Prop.(15.8.2.13)[Composition Factors of Verma Modules].The Verma module Mλ has a finite
composition series Mλ = N0 ⊃ N1 ⊃ . . . ⊃ Nr = 0 that each Ni/Ni+1 is irreducible and isomorphic
to Lω(λ+ρ)−ρ for some ω ∈W .

Proof: We can find a(not necessarily finite) series of submodules of Mλ that the subquotients are
irreducible as Mλ satisfies ascending chain condition on submodules(15.8.2.6). □

Lemma(15.8.2.14).Let V be a g-module with weight decomposition into f.d. weight spaces. If V is
a sum of f.d. si-modules for each i, then for each λ ∈ P and w ∈W , dimV [λ] = dimV [wλ].

Proof: As W is generated by si, it suffices to prove for w = si, dimV [λ] = dimV [wλ].
If (λ, α∨

i ) = m ≥ 0 for some i, consider the operator fmi : V [λ] → V [siλ] is an isomorphism by
hypothesis and the representation theory of sl2. Similarly, if (λ, α∨

i ) = −m ≤ 0, then emi : V [λ] →
V [siλ] is an isomorphism. □

Prop.(15.8.2.15) [Classification of F.D. Irreducible Representations].F.d. irreducible repre-
sentations of g are classified by their highest dominant integral weights λ ∈ P+ via the bijection
λ 7→ Lλ. Moreover, for any µ ∈ P and w ∈W , dimLλ[µ] = dimLλ[wµ].
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Proof: Firstly if V is a f.d. g-module, then λ ∈ P+ by(15.8.2.2). Now if λ ∈ P+, then in
Lλ, f

λ(hi)+1
i vλ = 0 for any i, because by(15.8.1.9), eifλ(hi)+1

i vλ = 0, and ejfλ(hi)+1
i vλ = 0 for j ̸= i

as vλ is a highest weight vector. So fλ(hi)+1
i vλ generates a proper submodule of Lλ, which must be

0 as it cannot contain vλ, and Lλ is irreducible.
Thus vλ generate the si-module of highest weight λ(hi), and any element of g generate a f.d.

si-module, so V is a sum of f.d. si-modules for each i, thus by lemma(15.8.2.14), dimLλ[µ] =
dimLλ[wµ]. To show Lλ is of f.d., first notice P (Lλ) ∩ P+ is finite, and WP+ = P (2.7.2.16), and
the fact P (Lλ) is W -invariant. □

Prop.(15.8.2.16).L∗
λ = L−w0λ.

Proof: It suffices to show the lowest weight of Lλ is w0λ: w0λ is a weight by(15.8.2.15), and if
λ′ < w0λ, then w0λ

′ > λ. □

Lemma(15.8.2.17).The representation Ln of sl2 is of real type if n is even and of quaternion type if
n is odd.

Proof: Ln = Symn L1, thus we can take the bilinear form SymnB, where B is the alternating form
on L1 ∼= C2, which is symmetric if n is even and alternating if n is odd. □

Prop.(15.8.2.18)[Type of Irreducible Representations].Let λ ∈ P+ that λ = −w0λ, so Lλ is
self-dual by(15.8.2.16), and it is of real type if n = (2ρ∨, λ) is even and of quaternion type if (2ρ∨, λ)
is odd.

Proof: The number n is the eigenvalue of h on vλ, where {h, e, f} is the principal sl2-subalgebra,
and the other eigenvalues are all smaller. Then Lλ ∼= Ln ⊕

⊕
−i<n Lmi , so the invariant form on Lλ

restricts to a non-zero invariant form on Ln, so the assertion follows from(15.8.2.17). □

Fundamental Representations

Prop.(15.8.2.19) [Fundamental Representations].The following are equivalent for a dominant
integral weight ω of a split semisimple Lie algebra g:

• ω is minuscule(2.7.3.15).
• All weights of the representation Lω belongs to the orbit Wω.
• The restriction of Lω to si is a direct sum of 1-dimensional and 2-dimensional subrepresenta-

tions.
Such a representation Lω is called a fundamental representation of g.

Proof: 1 → 2: By(15.8.2.15), for any weight µ of Lω, there is a w ∈ W that wµ is dominant and
ω − wµ ∈ Q+. Thus wµ = ω by(2.7.3.17), and µ ∈Wω.

2→ 1: If ω is not minuscule, then there is some positive α that (ω, α∨) > 1, so 2(ω, α) < (α, α),
and ω − α is a weight of Lω(the weight of fαvω, and it is not conjugate to ω, as (ω − α, ω − α) =
(ω, ω)− 2(α, ω) + (α, α) < (ω, ω).

2 ⇐⇒ 3: If ω is minuscule and v ∈ Lω be a highest weight vector for si, then hαiv = ω(hα) =
(ω, α∨) = 0 or v(2.5.3.21). Thus we get 4 by the representation theory of sl2. The reverse argument
is also true. □

Cor.(15.8.2.20).The character for a fundamental representation Lω is

χω =
∑
w∈W

ewω.
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Prop.(15.8.2.21).Let ω be a minuscule weight, then for any dominant integral weight λ,

Lω ⊗ Lλ ∼= ⊕w∈W,λ+wω∈P+Lλ+wω.

Proof: By Weyl’s character formula and(15.8.2.20),

χLω⊗Lλ =
∑
µ∈Wω

∑
w∈W ε(w)ew(λ+ρ)+µ

∆
=
∑
γ∈Wω

∑
w∈W ε(w)ew(λ+ρ+γ)

∆

If λ+γ /∈ P+, then (λ+γ, α∨
i ) < 0 for some i. But (γ, α∨

i ) ≥ −1 as ω is minuscule, so (λ+γ, α∨
i ) = −1,

and (λ+ γ + ρ, α∨
i ) = 0. Then for such γ, in the summand the w term cancels with wsi term. Thus

the summand equals the character for ∑w∈W ewω. Then we finish by(15.8.3.3). □

Prop.(15.8.2.22)[Fundamental Representations for Simple Lie Algebras].By(2.7.3.20),
• for Bn, the fundamental representation corresponding to the minuscule weights ωn is called the

Spin representation, denoted by S.
• for Cn, the fundamental representation corresponding to the minuscule weights ω1 is the stan-

dard representation of sp2n.
• for Dn, the fundamental representation corresponding to the minuscule weights ω1, ωn−1, ωn

are the standard representation and two Spin representations S+, S−.

• for E7, the unique fundamental representation has dimension 56?.

• for E6, the two fundamental representations are dual, and have dimensions 27?.

Prop.(15.8.2.23)[Bott Periodicity for Spin Representations].Let g = som, then the behavior
of the spin representation of g is

• S is of real type if m ≡ 1, 7 mod 8.
• S is of quaternionic type if m ≡ 3, 5 mod 8.
• S+, S− are of real type if m ≡ 0 mod 8.
• S∗

+
∼= S− are of complex type if m ≡ 2, 6 mod 8.

• S+, S− are of quaternionic type if m ≡ 4 mod 8.

Proof: We use(15.8.2.18). If g = so2n, then ρ∨ = ρ = sumωi = (n − 1, n − 2, . . . , 1, 0), so
(2ρ∨, ωn−1) = (2ρ∨, ωn) = n(n−1)

2 .
If g = so2n+1, then it can be verified that ρ∨ = (n, n− 1, . . . , 0), so (2ρ∨, ωn) = n(n+1)

2 .
Also we need to consider w0, so so4n+2 are of complex type. □

3 Weyl Character Formula
Def.(15.8.3.1) [Central Characters of a Representation].Let V = ⊕µ∈PV [µ] be a f.d. repre-
sentation of a split semisimple Lie algebra g, the central character is an analytic function on h
that

χV (h) =
∑
µ∈P

dimV [µ]eµ(h).

In fact χ is an element in Z[eα1 , . . . , eαr , e−α1 , . . . , e−αr ].
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Thm.(15.8.3.2)[Weyl Characteristic Formula, Weyl1925].Let λ ∈ P+, then the character χλ =
χLλ of the f.d. irreducible representation Lλ of g(15.8.2.15) is given by

χλ =
∑
w∈W ε(w)ew(λ+ρ)

∆
.

where ∆ is the Weyl denominator(15.8.4.3).

Proof: We already know that ∆χλ
∑
µ∈P cµe

µ is W -anti-invariant, cλ+ρ = 1, and cµ = 0 unless
µ ∈ λ+ ρ−Q+, so it suffices to show cµ = 0 if µ ∈ P+ ∩ (λ+ ρ−Q+) and µ ̸= λ+ ρ.?

□

Cor.(15.8.3.3) [Characters Determine Representations].F.d. representations of a semisimple
Lie algebra is determined by its characters, as the maximal exponent of χλ are different for different
λ.

Cor.(15.8.3.4).For sl2(C), χWn(z) = enz + e(n−2)z + . . .+ e−nz = e(n+1)z−e−(n+1)z

ez−e−z . Notice these func-
tions are linearly independent, so by(15.8.1.14), representations of sl2(C) are determined by their
characters.

Cor.(15.8.3.5)[Weyl Denominator Formula].

∆ =
∑
w∈W

ε(w)ewρ.

Proof: This follows from the Weyl character formula by setting λ = 0. □

Prop.(15.8.3.6) [Kostant’s Multiplicity Theorem].Let g be a split semisimple Lie algebra and
λ ∈ P+, then

dimLλ[γ] =
∑
w∈W

ε(w)P(w(λ+ ρ)− ρ− γ).

where P is the Kostant’s partition function(2.7.2.19).

Proof: This follows from the formula

∆−1 = e−ρ 1∏
α∈R+(1− e−α)

= e−ρ ∑
α∈Q(R)

P(α)e−α.

applied to Weyl’s character formula(15.8.3.2). □

Prop.(15.8.3.7)[Steinberg’s Multiplicity Formula].Let λ, µ ∈ P+, then

Lλ ⊗ Lµ ∼=
∑
ν∈P+

cλµνLν ,

where
cλµν =

∑
w,w′∈W

ε(w)ε(w′)P(w(λ+ ρ) + w′(µ+ ρ)− (ν + 2ρ)).

where P is the Kostant’s partition function(2.7.2.19).

Proof: Cf.[Cartar, P265]. □
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Cor.(15.8.3.8)[Clebsch-Gordan Rule].The tensor products of representations of sl2(C) satisfy

Wm ⊗Wn
∼=

min(m,n)⊕
i=0

W|m−n|+2i.

Proof: This follows from(15.8.3.7) or from(15.8.3.4). □

Prop.(15.8.3.9)[Weyl Dimension Formula].Let g be a split semisimple Lie algebra and λ ∈ P+,
then

dimLλ =
∏
α∈R+(α, λ+ ρ)∏
α∈R+(α, ρ)

Proof: Choose an element hρ ∈ h that corresponds to ρ ∈ h∗ via the Killing form, then

χλ(2thρ) =
∑
w∈W ε(w)e2t(w(λ+ρ),ρ)∏
α∈R+(et(α,ρ) − e−t(α,ρ))

.

The crucial fact is that we can use Weyl’s denominator formula(15.8.3.5) on the nominator, to get

χλ(2thρ) =
∏
α∈R+(et(α,λ+ρ) − e−t(α,λ+ρ))∏

α∈R+(et(α,ρ) − e−t(α,ρ))
.

Now taking limit t→ 0, we get the desired formula. □

Remark(15.8.3.10).The Weyl dimension formula can be used to determine a representation V is
irreducible or not: First calculate the maximal weight, then used the Weyl dimension formula to
calculate the dimension to see if it is equal to the dimension of V .

4 Category O
Def.(15.8.4.1)[Oint].Let (g, h) be a split semisimple Lie algebras, the category Oint is the category
of representations V of g that with weight decomposition into f.d. weight spaces that the weights
P (V ) is contained in the union of sets λi −Q+ for f.m. weights λ1, . . . , λN ∈ P∨(R).

Def.(15.8.4.2)[Characters].The character for a f.d. representation can be extended to category Oint
as a formal Laurent series

χ ∈ Z[[e−α∨
1 , . . . , e−α∨

r ]][eα∨
1 , . . . , eα

∨
r ] : χV (h) =

∑
dimV [µ]eµ(h).

Prop.(15.8.4.3).The character of Mλ is given by

χMλ
= eλ∏

α∈R+(1− e−α)
= eλ+ρ

∆
, ∆ =

∏
α∈R+

(eα/2 − e−α/2).

where ∆ is called the Weyl denominator of g.
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15.9 Representations of (Non-Compact)Lie Groups

Remark(15.9.0.1)[Non-compact Lie Groups].The feature of representations of non-compact Lie
groups is most intersecting representations are ∞-dimensional and involves topologies. The vector
space V is assumed to be Hausdorff, second countable and complete, locally convex, and separable.

1 Basics

Prop.(15.9.1.1)[Left Invariant Differential Operators].For a connected Lie group G, consider
its left and right regular action λ, ρ on C∞(G)(10.11.1.1). We will write dX for X ∈ g as the
representation of Lie algebra of G via ρ, then it commutes with λ. So it induces a map of U(g) to
the ring of left G-invariant differential operators on G.(2.5.8.1).

Prop.(15.9.1.2)[Center element Bi-invariant]. If G is a connected Lie group with Lie algebra g
and D ∈ Z(U(g)), then the differential operator D defined in(15.9.1.1) is invariant under both left
and right regular representations of G.

Proof: The left invariance is general from(15.9.1.1), for the right invariance, BecauseG is connected,
it suffices to prove invariance for a nbhd of identity of G, thus suffices to prove

ρ(gt)D = Dρ(gt), gt = exp(tX).

For this, let φ(g, t) = (ρ(gt)D −Dρ(gt))(g) and take derivative w.r.t t, then it reads:

∂/∂tφ(g, t) = (DdXρ(gt)f − dXρ(gt)Df)(g) = dXφ(g, t)

because dX commutes with D. And also φ(g, 0) = 0, so by lemma(15.9.1.3), φ(g, t) = 0 for any t, g.
□

Lemma(15.9.1.3). If G is a connected Lie group with Lie algebra g, and φ ∈ C∞(G×R) satisfies

∂

∂t
φ(g, t) = dXφ(g, t)

for some X ∈ g and φ(g, 0) = 0, then φ = 0.

Proof: Let φg(u, v) = φ(g exp(uX), v), then the condition says

∂

∂u
φg(u, v) = ∂

∂v
φg(u, v),

which means φg(u, v) = F (u+ v), and the fact φg(u, 0) = 0 shows F = 0. □

Cor.(15.9.1.4). If G = GL(2,R)+, then g = gl2(R), and the Casimir element(2.5.8.20) ∆ =
−1/2(1/2h2 + ef + fe) corresponds to a bi-invariant differential operator on C∞(G), and it is called
the Laplace-Beltrami operator.
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Differential Vectors

Def.(15.9.1.5) [Smooth Vectors].Let V be a continuous representation of G on a locally convex
TVS. we define the space V ∞ of smooth vectors of V as V ∞ = ∩nV n where

V 0 = {v ∈ V n−1,
d

dt
exp(tξ)v exists,} V n = {v ∈ V n−1, Tξ(v) ∈ V n−1, ∀ξ ∈ g}.

And V ∞ is given the inverse limit topology.

Prop.(15.9.1.6) [Action of Distribution on Smooth Vectors].There is a continuous action of
Distrc(G) on V ∞: T 7→ π(T ) compatible with the convolution structure on Distrc(G).

Proof: For v ∈ V ∞, define F v(g) = g(v). For T ∈ Distrc(G), define

π(T )v = (T, F v)

. For example,
• π(δx) = π(x).
• π(u) = u for u ∈ U(g).
• π(fdg)v =

∫
G f(g)π(g)vdg for f ∈ Cc(G).

• π(f ∗ g) = π(f)π(g).
□

Cor.(15.9.1.7). If f ∈ C∞
c (G), then for any v ∈ V , the vector TfµHaar(v) ∈ V ∞.

Proof: Notice Xπ(f)v = π(X ∗ f)v, and we calculate X ∗ f :

(X ∗ f, v) =
∫

d

dt
π(etXy)vf(y)dy = d

dt

∫
f(y)π(etXy)vdy = d

dt

∫
f(e−tXy)π(y)vdy = π(fX)v

where fX(g) = d
dt(e

−tXg)|t=0 is smooth. Iterating, we can show π(f)v ∈ V ∞. □

Cor.(15.9.1.8)[Smooth Vectors Dense]. V ∞ is dense in V .

Proof: Choose a Dirac sequence {fn}, then TfnµHaarv ∈ V ∞ converges to v, by(15.9.1.6). □

Cor.(15.9.1.9). If V is a f.d. vector space, then V ∞ = V .

Prop.(15.9.1.10)[Smooth Vectors in S1].Let K = S1 and ρ be the regular representation on the
Hilbert space L2(K) = L2[0, 2π], then the smooth vectors in ρ are just precisely the elements of
C∞(K).

Proof: Take a Fourier expansion f(x) =
∑
ane

2πinx. Suppose f is a C1 vector, then there is a
g(x) =

∑
bne

2πinx that lim 1
t (ft − f) = g, so

lim
∑
n

|1
t
(e2πint − 1)an − bn|2 = 0.

which means bn = 2πinan.
So if f is a C∞ vector, then |an| decay rapidly, and f and all its derivatives converge absolutely

so f is smooth. Conversely, integration shows the Fourier coefficients of any smooth function f decay
rapidly. □
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Examples

Prop.(15.9.1.11)[Store-Newmann].The Heisenberg representation of H acting on L2(R) is unitary
and irreducible, where π(pa) = eiax·, and π(rb) = Tb.

Prop.(15.9.1.12)[S̃L2(R)].Let S̃L2(R) be the universal covering of SL2(R). Then Repf (S̃L2(R)) =
Repf (SL2(R)). In particular, S̃L2(R) admits no f.d. faithful representations, and the only quotient
groups of it that admit f.d. faithful representations are SL2(R) and PSL2(R).

Proof: Let ρ : S̃L2(R) → GL(n,R) be a representation inducing a real Lie algebra representa-
tion ρ∗. Consider its complexification ρ ⊗ C : S̃L2(R) → GL(n,C). Because SL(2,C) is simply
connected(11.7.4.22), ρ∗ ⊗ C corresponds to a complex representation ρ′ : SL(2,C) → GL(n,C)
by(11.7.3.13). Now because S̃L2(R) is simply connected, so there is a real Lie group homomorphism
γ : S̃L2(R)→ SL(2,C) that ρ′ ◦ γ = ρ. But because ρ, ρ′ both commutes with conjugation, so does
γ. Thus the image of γ is in GL(2,R), and ρ factors through SL(2,R).

There is a quotient map π : S̃L2(R)→ PSL2(R), and PSL2(R) has trivial center, so the center
of S̃L2(R) is contained in ker(π), which is isomorphic to π1(PSL2(R)) = Z, and is central in S̃L2(R)
by(11.7.1.6). so the center of S̃L2(R) is just Z. By what has been proved, for any representation
of other covering space of PSL2(R), the induced representation on S̃L2(R) factors through SL2(R),
thus trivial on the subgroup 2Z ⊂ Z, and the original representation factors through SL2(R) or
PSL2(R). So the only possibility of faithful representation is SL2(R) or PSL2(R). For PSL2(R),
take the □

Prop.(15.9.1.13)[F.D. Representations of SL2(K)].Let K = C or R, then the representations of
SL(2,K) are isomorphic to direct representations (ρn, Vn), where Vn =homogeneous polynomials of
degree n in indeterminants x, y, and

ρn(
[
a b
c d

]
)(xkyn−k) = (ax+ by)k(cx+ dy)n−k.

Proof: We can check these representations truly induce irreducible representations of their Lie
algebras sl2(K). Notice SL(2,C) is simply connected(11.7.4.22), so(15.9.1.12) and(11.7.3.13) gives
the result. □

2 Finite-Dimensional Representations
Prop.(15.9.2.1).Finite dimensional representations of a semisimple Lie group is completely reducible.

Proof: This is because its Lie algebra representation is completely reducible(15.8.1.2), and each
subrepresentation corresponds to a Lie group subrepresentation. □

3 (g, K)-Modules

(g,K)-Modules

Def.(15.9.3.1)[(g,K)-Modules]. If G is a Lie group that may not be connected, and K ⊂ G be a
maximal compact Lie subgroup(8.3.6.11), then K acts on g. Then a (g,K)-module is a C-vector
space that has a K-finite action and a g action that satisfies:



15.9. REPRESENTATIONS OF (NON-COMPACT)LIE GROUPS 1597

• for k ∈ K, η ∈ g, TkTηTk−1 = TAdk(η).
• The action of k on V induced by K agrees with the restriction of the action of g.
A (g,K)-module is called admissible iff every V ρ is of f.d..

Def.(15.9.3.2)[Contragradient (g,K)-Module]. If M is an admissible (g,K)-module, then we can
define its contragradient (g,K)-module as

M∨ = (M∗)∞ = ⊕ρ(Mρ)∗,

which is the K-finite part of the usual dual of M , and g clearly acts on it.

(g,K)-Modules and g-Modules

Def.(15.9.3.3).Let K0 be the unital component of K, then there are forgetful functors

Mod(g,K) →Mod(g,K0) →Modg .

Prop.(15.9.3.4).The functor (g,K0) − mod → g − mod is fully faithful, and its essential image is
stable under taking submodules.

Proof: Cf.[Gaitsgory P39]. □

Cor.(15.9.3.5). If M ∈ (g,K)−mod is irreducible as a g-module, then it is irreducible.

Prop.(15.9.3.6).The functor Mod(g,K) →Modg sends f.g. objects to f.g. objects.

Proof: By(15.9.3.4), it suffices to consider the functor (g,K) −mod → (g,K0) −mod. Let M be
f.g. (g,K)-module, and ∪Mi = M be a chain of (g,K0)-submodules. Pick k ∈ K for each element
of π0(K)(f.m.), then each M ′

i =
∑
k k(Mi) is a (g,K)-submodule, thus M ′

i = M for some i. Now
we can choose j large that k(Mi) ∈ Mj for any k, then Mj = M(because we may choose Mi be f.g.
(g,K0)-modules)?. □

Cor.(15.9.3.7).The category Mod(g,K) is Noetherian.

Proof: If M ∈ (g,K) −mod is f.g. and M1 ⊂ M , then M is f.g. as g-module, then M1 is f.g. as
g-module by(2.5.8.16). So clearly it is also f.g. as a (g,K)-module. □

Prop.(15.9.3.8).For an irreducible (g,K)-moduleM , the underlying g-module is a direct sum of f.m.
irreducibles.

Proof: By(15.9.3.4), it suffices to prove M is a direct sum of f.m. irreducible (g,K0)-modules.
M is f.g. as a (g,K0)-modules by the proof of(15.9.3.6), so it has a maximal submodule M ′ that
N = M/M ′ is irreducible. Pick k ∈ K for each component of K, consider

M ′′ = ∩kk(M ′)

which is a proper (g,K)-submodule of M , so it is 0, Hence the map

M → ⊕(N)k

is injective, where Nk is N twisted by conjugate action of k, so it is a submodule of a semisimple-
module, thus semisimple. □
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Properties of (g,K)-Modules

Cor.(15.9.3.9)[Schur’s Lemma]. Schur’s lemma holds for irreducible (g,K)-modules.

Proof: It suffice to show any endomorphism S of an irreducible (g,K)-moduleM has an eigenvalue.
But S preserves Mρ for any ρ, and Mρ is of f.d, thus it has an eigenvalue over C. □

Cor.(15.9.3.10) [Irreducible Unitary Representation Determined by Finite Part]. If V1, V2
are two irreducible unitary representations of G that are infinitesimal equivalent, then they are
isomorphic.

Proof: Firstly they are admissible by(15.9.4.7), so we can talk about their corresponding (g,K)-
modules Mi, then Vi are the Hilbert space completion of Mi by(15.9.3.24).

NowMi has Hermitian forms, soMi
∼= (M∗)alg, and if S : M1 ∼= M2, then S∗S is an automorphism

of M1, thus by(15.9.3.25)(15.9.3.9) it is a scalar map, so after a scalar change, we may assume S
preserves Hermitian structure thus induces an isomorphism of vector spaces V1 ∼= V2, so by(15.9.3.24)
it is an isomorphism of G-representations. □

Prop.(15.9.3.11).Any irreducible (g,K)-module has a Banach space structure.

Proof: □

Action of Z(U(g))

Prop.(15.9.3.12).Let M be an admissible (g,K)-module, then

M ∼= ⊕χ∈Spec(Z(g))Mχ

s.t. Z(g) acts on each Mχ with a generalized character χ.
Now let (g,K) − Modχ be the full subcategory of (g,K)-modules on which Z(g) acts with a

generalized character χ.? Cf.[Gaitsgory P42].

Proof: Z(g) commutes with G thus K action, so it preserves each Mρ, which are of f.d.. □

Prop.(15.9.3.13).The category (g,K) −Modχ has only f.m. isomorphism classes of irreducible ob-
jects.

Proof: Cf.[Gaitsgory]. □

Prop.(15.9.3.14). If M is a f.g. (g,K)-module, then for any ρ of K, Mρ is f.g. over Z(g).

Proof: Cf.[Gaitsgory P43]. □

Prop.(15.9.3.15).For M ∈ (g,K)−modχ, the following are equivalent:
• M is f.g..
• M is of finite length.
• M is admissible.

Proof: 2→ 1 is trivial, 1→ 3 is by(15.9.3.14).
For 3→ 2: Use(15.9.3.13), there are only f.m. irreducible classes ρα, let ρ = ⊕αρα, then if there

is a chain of length n, then there are at least n linearly independent morphisms in HomK(ρ,M).
Thus n is bounded, because dimK HomK(ρ,M) is finite because M is admissible. □
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Cor.(15.9.3.16).The category (g,K)−modχ is Artinian(3.7.3.19).

Cor.(15.9.3.17).Every irreducible (g,K)-module is admissible.

Proof: Firstly irreducible module are in (g,K) −modχ for some χ, and then use the proposition
and(15.9.3.8). □

Cor.(15.9.3.18) [Harish-Chandra Modules].For a (g,K)-module, the following conditions are
equivalent:

• M is f.g. and admissible.
• M is f.g. and its support over Spec(Z(g)) is finite.
• M is admissible and its support over Spec(Z(g)) is finite.
• M is of finite length.

Then such modules are called a Harish-Chandra module.

Proof: ? □

Real Reductive Groups

Def.(15.9.3.19)[Admissible Representation].Let G be a connected real reductive group(which is
relevant, thus the complex representations of G and G(R) are the same(8.3.6.8)), Let K ⊂ G(R) be
a maximal compact subgroup. Define V ∞, V ρ, V K−fin as in(10.11.4.7)(15.9.1.5).

An admissible representation of G is a representation V that for any f.d. irreducible repre-
sentation ρ of K, V ρ is of f.d.

Prop.(15.9.3.20).For any ρ, V ∞ ∩ V ρ is dense in V ρ.

Proof: ? □

Cor.(15.9.3.21). If V is admissible, then V K−fin ⊂ V ∞ by(15.9.1.9).

Prop.(15.9.3.22). If V is admissible, then V K−fin is a (g,K)-module(15.9.3.1), and the map V 7→
V K−fin induces a functor

Rep(G)adm → (g,K)−modadm.

And we call two admissible representations V1, V2 of G infinitesimal equivalent iff they are
isomorphic after this functor.

Proof: By(15.9.3.21), g can act on V K−fin, and U(g) fixes V K−fin: if f ∈ V K−fin, let R be a f.d.
K-subspace of V containing f , then kf ∈ R. Let R1 be the f.d. vector space spanned by gR, then
R1 is invariant under k: for X ∈ k, Y ∈ g, φ ∈ R

X(Y φ) = [X,Y ]φ+ Y (Xφ) ∈ R1

so R1 ⊂ V K−fin, so g fixes V K−fin.
Also we check

TkTηTk−1 = TAdkη

which is by definition, and the second condition in(15.9.1.9) is also obvious. □

Lemma(15.9.3.23).Let V be an admissible representation of G, and v ∈ V K−fin, then for any
η ∈ V ∗, the function g 7→ η(g(v)) is real analytic.
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Proof: Cf.[Gaitsgory P37]. □

Prop.(15.9.3.24)[Repadm(G) and (g,K)-Modules].
• If V1, V2 be two admissible representations of G, if S : V1 → V2 is a continuous map of TVS.

Assume S(V K−fin
1 ) ⊂ V K−fin

2 and induces a (g,K)-module map, then the initial S is a map
of G-representations.

• If V ∈ Rep(G)adm,M = V K−fin, then the functors

(V1 ⊂ V ) 7→ (V1)K−fin ⊂M ; (M1 ⊂M) 7→M1 ⊂ V

induces mutually inverse bijections between closed G-subrepresentations of V and (g,K)-
submodules of M .

Proof: 1: It suffices to show for v1 ∈ V K−fin, TgS(v1)STg(v1). So by Hahn-Banach it suffices to
show for any η ∈ V ∗

2 ,
η(TgS(v1)) = η(STg(v1)).

Both sides are analytic in g by(15.9.3.23), so it suffices to show all their derivatives at 1 are equal, and
use the fact π0(K) → π0(G) is surjective(8.3.6.11). And the derivatives equal because S commutes
with g-action.

2: Firstly M1 is a G-representation: because M1 = ((M1)⊥)⊥ by Hahn-Banach. so it suffices to
show for v1 ∈ M1, η(g(v1)) = 0 for any η ∈ (M1)⊥. Then this uses analyticity(15.9.3.23) as above
and the fact M1 is a (g,K)-subrepresentation.

For the bijection, notice V K−fin
1 is dense in V1 by(10.11.4.17). Conversely, for a submodule M1,

it suffices to show the image of TξρµHaar(M1) ⊂ Mρ
1 by(10.11.4.13). However TξρµHaar(M1) ∈ Mρ

1
by(10.11.4.13), so this is true by continuity. □

Cor.(15.9.3.25)[Irreducibility of (g,K)-Modules].An admissible G-representation V is irreducible
iff V K−fin is irreducible as (g,K)-modules.

Irreducible Admissible (g,K)-Modules of GL(2,R)

Prop.(15.9.3.26) [Lie Theory].Let V be an irreducible admissible (g,K)-module for GL(2,R)+,
then

• V k is the space of all vectors x ∈ V that Hx = kx.
• If x ∈ V k, then Rx ∈ V k+2, Lx ∈ V k−2.
• If 0 ̸= x ∈ V k, then Cx = V k,CRnx = V k+2n,CLnV k−2n and

V = Cx⊕
⊕
n>0

CRnx⊕
⊕
n>0

CLnx.

• Suppose ∆ = λ on V , then if x ∈ V k, then

LRx = (−λ− k

2
(1 + k

2
))x, RLx = (−λ+ k

2
(1− k

2
))x.

Proof: 1: Let W = iH. If x ∈ V k, then

Wx = d

dt
π(etW )x = d

dt
π(kt)x = d

dt
eiktx = ikx
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thus Hx = kx. And we know V decomposes as direct sums of representations of K(10.11.4.4), thus
the result follows.

2: clear from(2.5.2.11).
3: Because the RHS is a g-submodule, by representation of slz(C)(15.8.1.11). And it is also a

K-subrepresentation, by item1.
4: By(15.8.1.11). □

Cor.(15.9.3.27) [Non-Discrete Case].For any λ, µ ∈ C that λ ̸= k
2 (1 + k

2 ) for k even/odd, there
exists at most one isomorphism class of irreducible admissible even/odd (g,K)-module V on which
∆, I acts by λ, µ respectively, and the K-type is one vector fk for each k ∈ Z.

Proof: This follows from the classification of representation of sl2(C)(15.8.1.11). Notice the action
of K is controlled by(15.9.3.26) item1. □

Cor.(15.9.3.28)[Discrete Case].Let k ≥ 1 be an integer and λ = k
2 (1 + k

2 ). Let V be an irreducible
admissible (g,K)-module with parity equals k, Let Σ be the K-types of V , then Σ is one of the
following sets:

• Σ+(k) = {l ∈ Z|l ≡ k mod 2, l ≥ k}
• Σ−(k) = {l ∈ Z|l ≡ k mod 2, l ≤ −k}
• Σ0(k) = {l ∈ Z|l ≡ k mod 2,−k < l < k}

And there are at most one isomorphism class with each Σ.

Proof: This follows from the classification of representation of sl2(C)(15.8.1.11). Notice the action
of K is controlled by(15.9.3.26) item1. □

Def.(15.9.3.29)[H(s1, s2, ε)]. If λ ≥ 1/4, let s− 1/2 be the square root of 1/4−λ which is imaginary,
and let s1, s2 be determined that µ = s1 + s2, s = 1

2(s1 − s2 + 1).
Consider the 1-dimensional representation σ of B(R)+ that

σ(
[
y1 x

y2

]
) = sgn(y1)ε|y1|s1 |y2|s2 ,

If s1, s2 are purely imaginary(i.e. µ is purely imaginary), then this representation is unitary, and
we can consider the induced representation on GL(2,R)+(10.11.5.3), then it is a unitary representa-
tion of GL(2,R)+. For f ∈ indGB(R)+ ,

f(
[
y1 x

y2

]
g) = sgn(y1)|y1|s1+1/2|y2|s2−1/2f(g)

and
(f1, f2) = 1

2π

∫ 2π

0
f1(kθ)f2(kθ)dθ.

so H(s1, s2, ε) is identical to L2[−π/2, π/2] by Iwasawa decomposition(11.7.4.3). Then its K-finite
vectors can be determined, which are sums of

fl(g) = us1+s2yseilθ, l ≡ ε mod 2.

so H(s1, s2, ε) is admissible.
Even if µ is not purely imaginary, we can still define H(s1, s2, ε) as above, and we consider its

smooth vectors H∞(s1, s2, ε), which are just the smooth functions in H(s1, s2, ε), by(15.9.1.10).
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Prop.(15.9.3.30).We can define the regular action of G on H(s1, s2, ε)(but may not be unitary), and
the subspace H∞(s1, s2, ε) is the space of smooth vectors for this representation.

Proof: It suffices to define the regular action of G on H∞(s1, s2, ε) and show it is a bounded
operator, so that it can be extended to H(s1, s2, ε) by continuity.

By Cartan decomposition(11.7.6.1), G is generated byK and diagonal matrices of positive entries.
ρ(K) clearly preserves the inner product, so it suffices to consider these matrices.

By(16.1.1.20) and the calculation dθ′ = y1y2D(θ)−2dθ, we have∫ 2π

0
|π(diag(y1, y2))f(kθ)|2dθ = (y1y2)s1−1/2

∫ 2π

0
D(θ)−s1+s2+1|f(kθ′)|2dθ′.

where
θ′ = arctan(y1

y2
tan θ), D(θ) =

√
y2

1 sin2 θ + y2
2 cos2 θ.

D(θ) is bounded above and below, thus π(diag(y1, y2)) is a bounded operator. Also to show this
representation is continuous, it suffices to show for |f |2 small and y1, y2 small, |π(diag(y1, y2))f |2 is
small. And this is also a consequence of the above formula. □

Lemma(15.9.3.31).For fl ∈ H(s1, s2, ε) as in(15.9.3.29), we have

Hfl = lfl, , Rfl = (s+ l

2
)fl+2, Lfl = (s− l

2
)fl−2,∆fl = λfl, Ifl = µfl

Proof: Clear from(16.1.1.1) and definition of fl(15.9.3.29). □

Prop.(15.9.3.32)[Existence of (g,K)-Modules].Let s = 1
2(s1− s2 + 1), λ = s(1− s), µ = (s1 + s2),

then (subquotients) of the (g,K)-module H of H(s1, s2, ε) afford classes in(15.9.3.27) and(15.9.3.28).
More precisely, ∆ and I acts by scalars λ, µ respectively, and

• If s is not of the form k/2, k ≡ ε mod 2, then H is irreducible.
• If s ≥ 1/2 and s = k

2 where k ≥ 1 is an integer that k ≡ ε mod 2, then H has two irreducible
invariant subspaces H+,H− with K-types Σ+,Σ− respectively, and the quotient H/H+⊕H− is
irreducible and has K-type Σ0(k).

• If s ≤ 1/2 and s = 1 − k
2 where k ≥ 1 is an integer that k ≡ ε mod 2. Then H has

an invariant subspace H0 with K-types Σ0(k) and the quotient H/H0 decomposes into two
irreducible invariant subspaces H+,H− with K-types Σ+,Σ− respectively.

Proof: The action of H,R,L,∆, I is all clear from(15.9.3.31), and the decomposition and irre-
ducibility is all clear from the representation theory of sl2 and(15.9.3.27)(15.9.3.28). □

Prop.(15.9.3.33) [List of Irreducible Admissible (g,K)-Modules for GL(2,R)+].Every irre-
ducible admissible (g,K)-module may be realized as the space of K-finite vectors in an admissible
representation of G on a Hilbert space. Let λ, µ ∈ C, and ε = 0, 1.

• If λ is not of the form k
2 (1 − k

2 ), where k ≡ ε mod 2, then there exists a unique irreducible
admissible (g,K)-module of parity ε on which ∆, I acts by scalars λ, µ, denoted by Pµ(λ, ε).
These are called the principal series.

• If λ = k
2 (1 − k

2 ) for some 1 ≤ k ≡ ε mod 2, then there exists three(two for k = 1) irreducible
admissible (g,K)-module of parity ε on which ∆, I acts by scalars λ, µ. Their K-types are
Σ±, Σ0 respectively. The irreducible admissible (g,K)-modules of K-types Σ± are denoted by
D±
µ (k). If k > 1, D±

µ (k) are called discrete series and for k = 1 they are called limits of
discrete series.
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Proof: This is a consequence of(15.9.3.27)(15.9.3.28) and(15.9.3.32). □

Prop.(15.9.3.34)[List of Irreducible Admissible (g,K)-Modules for GL(2,R)].Let µ ∈ C, and
ε = 0, 1.

• The f.d. representations are obtained by tensoring the symmetric powers of the standard
representation of G with the 1-dimensional representation of the form χ ◦ det.

• If χ1, χ2 are quasi-characters of R∗ that χ1χ
−1
2 is not of the form y 7→ sgn(y)ε|y|k−1, where

k ≡ ε mod 2, then there is a irreducible (g, O(2,R))-module π(χ1, χ2).
• If µ ∈ R and k ≥ 1 is an integer, then there are representations Dµ(k) = (D+

µ (k) ⊕ D−
µ (k)),

called discrete series if k ≥ 2 and limits of discrete series if k = 1.

Proof: Use(15.1.1.12) on SO(2,R) ⊂ O(2,R). It turns out Pµ(λ, ε) can be extended in two ways to
a representation of O(2,R): H(s1, ε1, s2, ε2), corresponding to item2. It is unitarizable as H(s1, s2, ε)
is unitarizable.

The (limits of) discrete series are conjugate in pairs and combined to give a representation of
O(2,R), which is item3. It is unitarizable as it is just H(s1, s2, ε)/H0.

The case D0
µ(k) are also of type I and can be extended, and this irreducible representation are

exactly the smooth parts of the symmetric representation of GL(2,R) twisted by χ ◦ det. □

Cor.(15.9.3.35)[Contragradient].Let G = GL(2,R),K = O(2,R), (π, V ) be an irreducible admis-
sible (g,K)-module, then the contragradient π̂ is isomorphic to the (g,K)-module T ′

k = Tk−t and
T ′
X = TX−t .
And it is also isomorphic to π ⊗ (ω ◦ det).

Proof: This is a consequence of the classification of irreducible (g,K)-modules(15.9.3.33), where
the K-type are unchanged, eigenvalues of ∆ are unchanged, and eigenvalue of I is changed to −µ,
so they are isomorphic. □

4 Unitary Representations

The theory of abstract harmonic analysis applies in this case10.11.

Lemma(15.9.4.1)[Auxiliary Compact Supported Function Approximation].LetG be a locally
compact Lie group and K a compact subgroup. If H is a unitary representation of G on a Hilbert
space, and let f ̸= 0 ∈ H, then for any ε > 0, there is a φ ∈ C∞

c (G) s.t. π(φ) is self-adjoint and
|φ(ρ)f − f | < ε.

Moreover, if f ∈ Hξ which is the decomposition part for K, we can assume φ(kg) = φ(gk) =
ξ(k)−1φ(g). In particular if Hξ is f.d., we find a φ that π(φ)f = f .

Proof: By continuity, there is a nbhd H of 1 that |π(g)f − f | < ε, then we can choose a φ positive
real valued with support in U with integral 1, then |π(φ)f−f | < ε by(10.9.3.22). We can also choose
φ(g) = φ(g−1), then π(φ) is self-adjoint.

For the second case, notice first there is a nbhd V of 1 that kV k−1 ∈ U for any k ∈ K(3.11.1.6),
so let φ1 be a positive real valued function supported in V , and let

φ0(g) =
∫
K
φ1(kgk−1)dk
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then φ0 is supported in U and φ(kgk−1) = φ0(g) for any k ∈ K. Assume now that π(kθ) = eikθf ,
then we can use(10.11.1.39) for P = G to see that

π(φ0)f =
∫
G
φ0(h)π(h)fdh =

∫
G

∫
K
φ0(hk)π(hk)fdkdh =

∫
G

∫
K
ξ(k)φ0(hk)dkπ(h)fdh = π(φ)f

where
φ(g) =

∫
K
ξ(k)φ0(gk)dk =

∫
K
ξ(k)φ0(kg)dk

so φ(k) = φ(gk) = ξ−1(k)φ(g) as required. □

Unitary Irreducible Representation is Admissible

G appearing in this subsubsection are assumed to be a Lie group.

Prop.(15.9.4.2). If V is an irreducible unitary representation of G, then the image of the induced
action of Measc(G) is dense in End(V ) in the strong topology(10.8.3.4).

Proof: This follows immediately from the von Neumann theorem(10.10.3.14) and Schur’s
lemma(10.11.2.4): if we denote the algebra generated by Measc(G) by A, then

A = (Ac)c = (C)c = End(V ).

□

Prop.(15.9.4.3). If V Is a representation of G that the image of the induced action of Measc(G) is
dense in End(V ) in the strong topology, then

dim(V ρ) ≤ dim(ρ)2.

Proof: Follows directly from the following two lemmas(15.9.4.5)(15.9.4.6). □

Cor.(15.9.4.4)[Irreducible Unitary Representation is Admissible].For any irreducible unitary
representation of G, the K-finite part is an irreducible admissible (g,K)-module, and dim(V ρ) ≤
dim(ρ)2.

Proof: Follows directly from(15.9.3.25),(15.9.4.2) and(15.9.4.3). □

Lemma(15.9.4.5).For any ρ ∈ Irrep(K), let Aρ = ξρ ·Measc(G) · ξρ, this is an algebra that acts on
V ρ by(10.11.4.13). Then there exists a family of f.d. representations π of Aρ that:

• Each π is of dimension≤ n = dim(ρ)2.
• For every element a ∈ Aρ, there exists a π that π(a) is non-trivial.

Proof: Consider the set of all irreducible f.d. representations of G, and πρ their ρ-isotopic parts.
Then these are representations of Aρ, and for any φ ∈ Measc(G), there is a π that Tφ ̸= Id?, and
each πρ has dimension≤ dim(ρ)2?. Cf.[Gaitsgory P46]. □

Lemma(15.9.4.6). If A is an associative algebra equipped with a family of f.d. modules satisfying
conditions in(15.9.4.5), then if V is a representation of A that the image of A is dense in End(V ) in
the strong topology, then dimV ≤ n.
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Proof: For an associated algebra A, consider the minimal integer r that the property P (r):∑
σ∈Σr

sgn(σ)aσ(1) · · · aσ(r) = 0

for any a1, . . . , ar, then Amitsur-Levitski showed that for A = GL(n,C), r = 2n(2.5.11.7).
Now the condition of A in(15.9.4.5) shows that P2n is true for A. If dimV ≥ n + 1, then the

image of A satisfies P (2n), so also End(V ) satisfies P (2n) because A is dense in End(V ). But V
contains a subgroup GL(n+ 1,C), so it cannot satisfy P (2n) by(2.5.11.7), contradiction. □

Cor.(15.9.4.7).Let V be an irreducible unitary representation of G, then for any ρ ∈ Irrep(K),

dim(V ρ) ≤ dim(ρ)2.

In particular, every unitary irreducible representation of G is admissible.

Proof: Directly from Lemmas(15.9.4.2) and(15.9.4.3) above, as the action of Aρ on V ρ is also have
dense image in the strong topology. □

Prop.(15.9.4.8). If M is an irreducible (g,K)-module equipped with an invariant inner product
((km1, km2) = (m1,m2), (ξm1,m2)+(m1, ξm2) = 0), then the Hilbert space completion ofM carries
a unique unitary G-representation s.t. V K−fin = M as (g,K)-modules.

Proof: By(15.9.4.9), the Hermitian form can be extended continuously to the Banach space com-
pletion of M , It suffices to prove the extended Hermitian form is continuous, because them we can
choose its completion w.r.t. (−,−).

For the invariance, consider f(g) = (gm1,m2) − (m1, g
−1m2), then notice (a,−) are continuous

functional on V , thus by(15.9.3.23) and similar analytic method as in(15.9.3.24) using the invariance
of inner product. □

Lemma(15.9.4.9). Situation as in(15.9.4.8), M has a Banach norm that (m,m) ≤ ||m||2.

Proof: (15.9.3.11) shows M does have a Banach norm. Then let M ∼= V K−fin and M∗alg ∼=
(V ∗)K−fin. However the Hermitian form induces M ∼= M∗alg, thus we can form

M
∆−→M ⊕M → V ⊕ V ∗

let V ′ be the closure of the image of M , then it is a G-representation by(15.9.3.24), and then

(m,m) ≤ ||i1(m)||||i2(m)|| ≤ (||i1(m)||+ ||i2(m)||)2.

□

Cor.(15.9.4.10).The above proposition(15.9.4.8) is true for M admissible.

Hecke Algebras

Prop.(15.9.4.11)[Hecke Algebras of Lie Groups].
• If K is a compact Lie group, then the Hecke algebra HK is defined to be the ring of smooth

functions on K that is K-finite under both left and right translations, where the algebra is
given by convolution. By Peter-Weyl theorem, these functions are dense in C(K) and L2(K),
and it is an idempotented algebra over C? Cf.[Bump, P309].
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• If G is a real reductive group and K is a maximal compact subgroup, then the Hecke algebra
HG is defined to be HG = HK ⊗U(kC)U(gC), where the right action of U(kC) on HK is given by

f ∗D = ρ(D)f,

? Cf.[Bump, P312].

Proof: □

Prop.(15.9.4.12)[Equivalence of Representations Lie Group Case].
• For a compact Lie group K, the categoryM(K) of smooth representations of HK is equivalent

to the category of unitary representations of K.
• For a real reductive group G and a maximal compact subgroup K, the category of (admissi-

ble)(g,K)-modules is equivalent to the category of smooth(admissible) modules of HG.

Proof: Cf.[Cohomological Induction and Unitary Representations, P75]. □

Irreducible Unitary Representations of GL(2,R)+

Lemma(15.9.4.13)[Finite Dimensional Case].The only irreducible f.d. unitary representations of
the group GL(n,R)+ are the 1-dimensional characters g 7→ det(g)r where r is purely imaginary.

Proof: Such a representation defines a continuous map of GL(n,R)+ into the compact unitary
group U(n). Now it induces a Lie algebra map sln(R) → um. This map must be trivial because
otherwise this is an embedding because sln(R) is simple. But this is impossible because the adjoint
action of sln(R) has real eigenvalues but the adjoint action of um are all purely imaginary by(2.5.5.4).
So the action is trivial on SL(n,R)+, so induces an irreducible representation of det(g), which is
clearly 1-dimensional. □

Lemma(15.9.4.14).Because for a unitary representation H of G, for X ∈ g, we have

(Xu, v) = −(u,Xv),

so (Xv,w) = −(v,Xw) when complexified. So

(Rv,w) = −(v, Lw)

for any v, w ∈ H, by(16.1.0.1).

Lemma(15.9.4.15)[Principal Series].For the principal series Pµ(λ, ε) of GL(2,R)+, there exists an
irreducible unitary representation in this class if µ is purely imaginary and λ ≥ 1/4 real.

Proof: Consider the unitary representation H(s1, s2, ε) defined in(15.9.3.29), then it is irreducible
and its class is Pµ(λ, ε) by(15.9.3.32) and(15.9.3.25). □

Lemma(15.9.4.16)[Possibilities of Unitary Representations].Let H be a unitary representation
of GL(2,R)+. Assume ∆, I acts by scalars λ, µ respectively, then

• µ is purely imaginary and λ is real.
• If the (g,K)-module type of H is a principal series Pµ(λ, ε), then λ > 0, and if ε = 1, λ > 1/4.
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Proof: 1: This follows from(15.9.4.14), as action of I is skew-symmetric and action of ∆ is sym-
metric.

2: By(15.9.3.27), V k ̸= 0 for k ≡ ε mod 2, let fk ∈ V k. Because −4∆−H2+2H = 4RL(16.1.0.1),
take k = ε, then

(−4λ− ε2 + 2ε)fε = 4RLfε.

But by(15.9.4.14),
(4RLfε, fε) = −4(Lfε, Lfε) < 0

thus 4λ > 2ε− ε2. □

Cor.(15.9.4.17)[Reduction of µ].The infinitesimal equivalence class of representations Pµ(λ, ε) or
D±
µ (k) contains an irreducible unitary representation iff µ is purely imaginary and the corresponding

class P (λ, ε) or D±(k) contains an irreducible unitary representation.

Proof: µ must be purely imaginary by the proposition. And we may tensoring a unitary represen-
tation by a deg(g)r, it is also unitary iff r is purely imaginary, and this increases the value of action
of I by 2r and doesn’t affect µ and ε because ∆ has nothing to do with u(16.1.1.1). □

Prop.(15.9.4.18)[Intertwining Integral].Let s = 1
2(s1 − s2 + 1), define for f ∈ V ,

M(s) : H∞(s1, s2, ε)→ H∞(s2, s1, ε) : (M(s)f)(g) =
∫
N(F )

f(w0ug)du.

Then if Re(s1 − s2) > 0, the integral is absolutely convergent, and commutes with the action of G.

Proof: Replacing f with ρ(h)f , we see that the convergence of M(s)(f)(h) is equivalent to the
convergence of M(s)(ρ(h)f), so we assume h = 1.

We use the identity [
−1

1

] [
1 x

1

]
=
[
∆−1
x −x∆−1

x

∆x

]
kθx

similar to(16.1.1.20) where

∆x =
√

1 + x2, θ(x) = arctan(−1/x).

Then
(M(s)f)(1) =

∫ ∞

−∞
(1 + x2)−sf(kθ(x))dx

which convergences for s > 1/2, that is Re(s1 − s2) > 0.
To show M(s)f ∈ H(s2, s1, ε), we check

(M(s)f)(
[
1 ξ

1

]
g) = (M(s)f)(g), (M(s)f)(

[
y1

y2

]
g) = sgn(y1)ε|y1|s2+ 1

2 |y2|s1− 1
2 (M(s)f)(g).

The first one is an easy consequence of change of variable, for the second,

(M(s)f)(
[
y1

y2

]
g) =

∫
f(
[
−1

1

] [
1 x

1

] [
y1

y2

]
g)dx

=
∫
f(
[
−1

1

] [
y1

y2

] [
1 y−1

1 y2x
1

]
g)dx
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= y1
y2

∫
f(
[
y1

y2

] [
−1

1

] [
1 x

1

]
g)dx

= y1
y2

sgn(y1)ε|y1|s2− 1
2 |y2|s1+ 1

2

∫
f(
[
−1

1

] [
1 x

1

]
g)dx

= sgn(y1)ε|y1|s2+ 1
2 |y2|s1− 1

2 (M(s)f)(g)

To check M(s)f is smooth, notice that the restriction of M(s)f to K equals

(M(s)f)(kt) =
∫ ∞

−∞
(1 + x2)−sf(kθ(x)+t)dx.

The convergence is uniform in t, thus is smooth in t.
The commutativity of M(s) with G-action is immediate, because left and right action commutes.

□

Prop.(15.9.4.19).Let fk,s be the function fk in H(s1, s2, ε)(15.9.3.29) where Re(s1 − s2) > 0 and
s = 1

2(s1 − s2 + 1), then

M(s)fk,s = (−i)k
√
π

Γ(s)Γ(s− 1
2)

Γ(s+ k
2 )Γ(s− k

2 )
fk,1−s

Proof: Because M(s) commutes with G-action, M(s)fk,s is a multiple of fk,1−s, thus it suffices to
calculate (M(s)fk,s)(1), which is

(M(s)f)(1) =
∫ ∞

−∞
(1 + x2)−seikθ(x)dx, θ(x) = arctan(−1/x)

by(15.9.4.18).
This integral then is calculated to be the expression above, by(10.4.10.1). □

Lemma(15.9.4.20)[Complementary Series].For µ purely imaginary and 0 < λ < 1/4 and ε = 0,
there exists an irreducible unitary representation in this class of the (g,K)-module Pµ(λ, 0).

Proof: Let s1, s2 be complex numbers, we construct first a Hermitian pairing

H(s1, s2, ε)fin ×H(−s1,−s2, ε)fin → C : (f, g′) 7→
∫
K
f(k)g′(k)dk

which is invariant under action of G by(10.11.1.45). Now let s2 = −s1, then s = 1
2(s1− s2 + 1) is real

and µ = s1 + s2 is purely imaginary. Then composing this pairing with iεM(s) : H(s1, s2, ε)fin →
H(s2, s1, ε)fin = H(−s1,−s2, ε)fin, then

(f, f ′) =
∫
K
f(k)iεM(s)f ′(k)dk.

is G-invariant. We will show that it is positive definite if ε = 0 and 1/2 < s < 1.
It can be seen from(15.9.4.19) that an orthogonal basis for H(s1, s2, 0)fin under this pairing is

fk,s for k even. And by(15.9.4.19),

(fk,s, fk,s) = (−1)k/2√π
Γ(s)Γ(s− 1

2)
Γ(s+ k

2 )γ(s− k
2 )



15.9. REPRESENTATIONS OF (NON-COMPACT)LIE GROUPS 1609

which is positive for 1/2 < s < 1. Now we obtain a unitary representation of G on the Hilbert
completion of this space(10.11.2.8).

Now we have constructed a unitary representation in the infinitesimal equivalence class Pµ(λ, 0)
with λ = s(1− s), s = 1

2(s1 − s1 + 1), so any 0 < λ < 1/4 is possible. □
Lemma(15.9.4.21).For any integer k, there is a bijection between holomorphic functions φ on H and
smooth functions Φ on GL(2,R)+ that is invariant under Z(R)+ and

Φ(gkθ) = eikθΦ(g), LΦ = 0.

Proof: The bijection is given by

φ(z) = y−k/2Φ(
[
y x

1

]
), Φ(g) = ((yk/2φ)[g]k)i.

and the proof is a combination of formal calculation in(16.1.2.9) and(16.1.1.19) forgetting Γ:

Lk(yk/2f(z)) = −(z − z) ∂
∂z
− k

2
(yk/2f(z)) = −2iy(k+2)/2 ∂

∂z
f(z).

□
Lemma(15.9.4.22) [Discrete Series]. if k > 1, then there exists a unitary representation in the
infinitesimal equivalence class D±(k), more precisely,

• Let L2(H, µk) be the L2-space of holomorphic functions f on the upper plane H w.r.t the
measure µk = yk dxdy

y2 (10.6.3.3). Then the left action

πk(g)f = f [g−1]k.

of G is unitary and this representation πk is in the infinitesimal equivalence class D−(k).
• Consider the automorphic of GL(2,R)+:

ι(
[
a b
c d

]
) =

[
a −b
−c d

]

then the representation πk ◦ ι is in the infinitesimal equivalence class D+(k)

Proof: The second one follows from the first one, as ι interchanges the action of K thus the
K-types.

For the first one, firstly it is a unitary representation: for z′ = g(z) = x′ + iy′, we have

y′ = ad− bc
|cz + d|2

y

and µz = µz′ , thus

||π(g−1)f ||2 =
∫

H
|f(z′)|2 (ad− bc)k

|cz + d|2k
ykµz =

∫
H
|f(z′)|2(y′)kµz′ = ||f ||2.

For the infinitesimal equivalence class, we consider the orthogonal basis φn = ( z−i
z+i)

n (2i)k
(z+i)k and prove

π(k−1
θ )φn = e2πi(k+2n)θφn.

Then this will determine the K-type of πk. This can be proven by direct calculation, Cf.[Ngo, P39].
□
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Cor.(15.9.4.23).By(15.9.4.21) and the measure µk we choose, it is clear that there is an isometry
between L2(H, µk) and a subspace of L2(G/Z) that is compatible with the left G action on L2(G), but
the left and right action on L2(G/Z) is isomorphic, as f(t) 7→ f(t−1) intertwine them, because G/Z
is unimodular. So this representation is square integrable, i.e. it can be embedded in L2(G/Z).

Lemma(15.9.4.24) [Limits of Discrete Series].There exists a unitary representation in the in-
finitesimal equivalence class D±(1).

Proof: These two classes already appear in the unitary representation H(0, 0, 1), by(15.9.3.32). □

Prop.(15.9.4.25)[List of Irreducible Unitary Representations of GL(2,R)+].Let µ be purely
imaginary,

• The 1-dimensional representation g 7→ | deg(g)|µ.
• The unitary principal series Pµ(λ, ε), where ε = 0, 1 and λ ≥ 1/4.
• The complementary series representations Pµ(λ, 0) where 0 < λ < 1/4.
• The holomorphic discrete series D0

µ(k)(k ≥ 2) and limits of discrete series (k = 1) D±
µ (k).

Notice each of these infinitesimal equivalence classes of irreducible representations has a unique
representative that is a unitary representation by(15.9.3.10).

Proof: By(15.9.3.25) and(15.9.3.10), the conclusion follows from the classification of (g,K)-
modules(15.9.3.33) and determining which infinitesimal class has a unitary representative, which
follows from(15.9.4.13)(15.9.4.16), (15.9.4.15)(15.9.4.17), (15.9.4.20)(15.9.4.22), (15.9.4.24). □

Cor.(15.9.4.26). Similar as in(15.9.3.34), by(15.9.3.25), we can classify all irreducible unitary repre-
sentations of GL(2,R).
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15.10 Cuspidal Representations

1 GL(n)

References are [Local Langlands Correspondence for GL(2)], [Bushnell and P. Kutzko. The ad-
missible dual of GL(N) via compact open subgroups].

Prop.(15.10.1.1) [Bushnell-Kutzko].All cuspidal representations of GL(n, F ) can be constructed
by induction from open subgroups.

Proof: Cf.[Bushnell, C. and P. Kutzko, The admissible dual of GL(N) via compact open subgroups,
Princeton University Press, Princeton (1993).] □

2 SL(n)

[Bushnell and P. Kutzko.The admissible dual of SL(N)]
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15.11 Admissible Representations of GL(n) over p-Adic Number
Fields

Main references are [Bum98], [Representation theory of GL(n) over non-Archimedean local fields,
Prasad],[B-Z76], [C.J. Bushnell and P.C. Kutzko, The admissible dual of GL(N) via compact open
subgroups, Princeton university press, Princeton, (1993).]

Notation(15.11.0.1).
• Use notations defined in Classical Representation Theory.
• Let K be a p-adic local field or a finite field.
• Use group-theoretic notations as in(16.3.0.3).
• Fix a non-trivial character ψ of K with conductor p−n(ψ).
• Choose the Haar measure dx on K that is self-dual w.r.t. ψ as in(10.11.3.33).
• For α ∈ An−1(K), let ψN,α be a character of N(K) given by ψN (g) =

∑
i ψ(αigi,i+1).

Def.(15.11.0.2)[p-adic Local Fields]. If K is a p-adic local field, let OK the ring of integers in K,
p the maximal ideal in OK , and ϖ a fixed uniformizer of p.

Denote K = GL(n,OK), G0
n = det−1(O∗) ⊂ GL(n,K).

Define subgroups Unipk(n,K) of Unip(n,K) as Unipk(n,K) is the group of unipotent matrices
that v(eij) ≥ k(i− j). Then ∪k>0 Unipk(n,K) = Unip(n,K). In particular, Unip(n,K) is exhausted
by compact open subgroups.

For any character χ of O∗
K , by continuity, there is a minimum v that c(1 + pv) = 1, and pv is

called the conductor of χ.

1 Basics
References are [Representations of p-adic Groups Bernstein]. [Bum98]Chap4.

Geometry

Prop.(15.11.1.1).GL(n,K) is unimodular, and the modular function of B(K) is ∆B(
[
x y

z

]
) = z

x

by(10.11.1.20). Also denote δ = ∆−1
B .

Def.(15.11.1.2)[Unramified Quasi-Characters].A unramified quasi-character on F is a quasi-
character χ that χ(O×

K) = 0.
Define α(χ) = χ(ϖ) if χ is unramified and 0 otherwise, called the Satake parameter of χ.

Prop.(15.11.1.3) [Diagonal Quasi-Characters].Let χ1, . . . , χn be quasi-characters of K∗, then
define two quasi-characters χ, χ′ on T (K):

χ(diag(y1, . . . , yn)) = χ1(y1) . . . χn(yn), χ(diag(y1, . . . , yn)) = χn(y1) . . . χ1(yn).

When n = 2, the quasi-character χ on T (K) is called regular if χ1 ̸= χ2, and dominant if
|χ1(ϖ)| < |χ2(ϖ)|.

Prop.(15.11.1.4)[Iwasawa Decomposition].GL(n,K) = B(K)K, in particular, B(K)\G is com-
pact.
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Proof: Prove by induction on n. n = 1 is clear. Given a g ∈ GL(n,K), we consider its bottom
row, as let xnk be the term of minimal multiplicative valuation, then we can right multiply by a
permutation matrix w ∈ K that xnn is of minimal valuation. Now right multiply by a matrix k,
which is 1 on the diagonal and kni = −xix−1

n on the bottom row, then k ∈ K, and gk has bottom
row= en. Thus we can induct and find a k0 ∈ K that gk0 ∈ B(K). □

Prop.(15.11.1.5)[p-adic Cartan Decomposition].A complete set of double coset representatives

for K\GL(n,K)/K consists of diagonal matrices {
[
ϖa

ϖb

]
, a ≤ b ∈ Z}.

Proof: This follows directly from Smith normal form(11.7.6.7). □

Cor.(15.11.1.6).GL(n,K) is σ-compact.

Def.(15.11.1.7)[Principal Congruence Subgroups].There is a map π : K → GL(n,OK/(ϖm)),
the kernel of which is called the principal congruence subgroup of level m, denoted by Km.

Def.(15.11.1.8)[Partition and Groups].Let α = (n1, . . . , nk) be a partition of n, define

GLα = GL(n1)× . . .×GL(nk), Kα = K ∩GLα(F ), Bα = B ∩GLα, Dα = D ∩GLα

And for a principal congruence subgroup Km of GL(n,K), Km ∩ GLα(F ) is called a principal con-
gruence subgroup of GLα(F ).

Denote Uα the subgroup of Un That aij = 0 for i, j in the same segment of α and i ̸= j. Let
Pα = GLα⋉Uα be the parabolic subgroup corresponding to .

For β ≺ α, denote

Uβ(α) = Uβ ∩GLα, Pβ(α) = Pβ ∩GLα = GLβ ⋉Uβ(α).

Let N = Km ∩Gα be a principal congruence subgroup, denote

N+
β (α) = N ∩ Uβ(α), N−

β (α) = N ∩ Uβ(α), N0
β(α) = N ∩GLβ(F ).

Moreover, define K0(a) = π−1(B(OF /a)),K1(a) = π−1(N(OF /a)). In particular, K0(p) are
called the Iwahori subgroup, a vector is called Iwahori fixed iff it is K0(p)-fixed.

Prop.(15.11.1.9)[Iwahori Factorizations]. If a ̸= O, there are Iwahori factorizations

K0(a) = N−(a)T (O)N(O), K1(a) = N−(a)T (a)N(O)

N = N−
β (α)N0

β(α)N+
β (α) = N+

β (α)N0
β(α)N−

β (α)

Proof: This is by column and row reduction. Cf.[Bernstein-Zelevinsky 1, P32].? □

Cor.(15.11.1.10).Denote K0 = K0(a) or K1(a), and T0 = T (O) or T (a) respectively, then we can
decompose the Haar measure on K0 as∫

K0
φ(k)dk =

∫
N−(a)

∫
T0

∫
N(O)

φ(n−t0n)dndt0dn− =
∫
N−(a)

∫
T0

∫
N(O)

φ(nt0n−)dndt0dn−.

Proof: Use(10.11.1.39), noticing all groups here are compact. □
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Cor.(15.11.1.11)[Iwahori-Bruhat Decomposition].

GL(2,K) = B(K)K0(p)
⨿

B(K)w0K0(p).

? How about the general case?

Proof: By pulling back the Bruhat decomposition of GL(2,O/p) to K = GL(2,O), we have

K = K0(p) ∪K0(p)w0K0(p).

The Iwahori factorization shows K0(p) = (K0(p) ∩B(K))N−(p). Then this implies

K = K0(p) ∪ (K0(p) ∩B(K))w0K0(p),

because w−1
0 N−(p)w0 ∈ K0(p). Then Iwasawa decomposition G = BK gives the desired result.

Notice this decomposition is clearly disjoint. □

Prop.(15.11.1.12).
• Any open normal subgroup of GL(2,K) must contain SL(2,K).
• If a subgroup of GL(2,K) containsN(K) and an open subgroup, then it must contain SL(2,K).

Proof: 1: this normal subgroup contains
[
1 a

1

]
for |a| small enough, and it is also a group, but[

t
t−1

]−1 [
1 a

1

] [
t
t−1

]
=
[
1 at−1

1

]
, thus it contains all N(K). and then by item2 it contains

SL(2,K). Now for any f.d. irreducible smooth representation of GL(2,K), choose a basis v1, . . . , vn,
then there is an open normal subgroup fixing all vi, thus SL(n, F ) acts trivially on V , and then it
factors through det : GL(2,K)→ K×, and any irreducible representation of K× is of 1-dimensional
by Schur’s lemma, so V must be 1-dimensional.

2: It contains some matrix that is not upper-triangular, so it contains SL(2,K) by(2.1.6.9). □

Hecke Algebras

Prop.(15.11.1.13)[Spherical Idempotents].The Hecke algebra HGL(n,K)(15.1.5.19) has a spherical
idempotent(2.4.4.10) eK, where the anti-involution is given by transposition.

Then via the correspondence(15.1.5.23), (π, V ) ∈ Irradm(GL(n,K)) is called a spherical repres-
netation if its corresponding HGL(n,K)-module is spherical(2.4.4.11). Equivalently, it contains a
K-fixed vector. And the dimension of spherical vectors is≤ 1 by(2.4.4.11).

Proof: For the invariance of H[eK], notice that H[eK] = HK is the subspace of K-bi-invariant
functions on G, but we have the p-adic Cartan decomposition(15.11.1.5), so the value of φ ∈ H[eK]
are determined by restriction on the diagonal matrices, but they are invariant under transposition.
This shows eK is spherical. □

Prop.(15.11.1.14)[Transpose Invariant Distribution]. If D is a distribution on GL(n,K) that is
invariant under conjugation, then it is also invariant under transpose.

Proof: This follows from(15.1.5.18), as we look at the conjugate action of G on itself, with σ being
the transposition. Conjugate action is constructive, by(8.2.1.23), and gσ = g−t, and a matrix is
conjugate to its traspose(2.3.4.18). □
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Prop.(15.11.1.15)[Gelfand-Kazhdan]. If (π, V ) ∈ Irradm(GL(n,K)), then:
• If π1 is defined by π1(g) = π(g−t), then π∨ ∼= π1.
• suppose n = 2 and ω is the central character of π, then if π2 = π ⊗ (ω−1 ◦ deg), then π∨ ∼= π2.

Proof: 1: It is clear that the character(15.1.5.34) of a representation is conjugation invariant, thus
by(15.11.1.14) it is transpose invariant.

Now the character of π1 is χ1(φ) = χ(φ′′), where φ′′(g) = φ(g−t), and this equals χ(φ′) where
φ′(g) = φ(g−1), because the character is transpose invariant. It is also clear that φ̂′ = π(φ)t on a
finite space V K , then χ̂(φ) = χ(φ′) = χ1(φ), so by(15.1.5.39) π ∼= π1.

2: If n = 2, we use further the property that if g =
[
a b
c d

]
, then

g−1 = (deg g)−1
[
d −b
−c a

]
= (deg g)−1

[
1

−1

]
gt
[

1
−1

]−1

then the assertion is clear using item1. □

Cor.(15.11.1.16).Let π be an admissible representation of GL(n,K), then π is irreducible iff π∨ is
irreducible.

Smooth Representations

Def.(15.11.1.17)[Twists].Let (π, V ) ∈ Irradm(GL(n,K)), for any quasi-character χ of K×, denote
π(χ) the representation π ⊗ (χ ◦ det). And for s ∈ C, denote π(s) the representation of π tensored
by the 1-dimensional representation g 7→ | det(g)|s

Prop.(15.11.1.18) [Admissible Representation of GN
m(K)].Any non-zero (π, V ) ∈

Repadm(GN
m(K)) contains a 1-dimensional invariant subspace.

Proof: Consider the restriction on Gn
m(OK), by(15.1.5.32), V = ⊕

χ∈ ̂(O∗
K)k

Vχ, and dimVχ <∞. As
(1, . . . , ϖ, . . . , 1) commutes with Gn

m(OF ), it preserves Vχ for each χ. And these elements commute,
so they have a common eigenvalue, which means V has a 1-dimensional invariant subspace. □

Lemma(15.11.1.19).Let (π, V ) ∈ Repalg(GL(n,K)), then π|G0
n
splits into a finite direct sum of

irreducible representations of G0
n.

Proof: This follows from(15.1.2.11). □

Lemma(15.11.1.20). If (π, V ) ∈ Repalg(GL(n,K)) satisfies V is generated by V Km , then for any
submodule V ′, V ′ is generated by V N ∩ V ′.

Proof: Cf.[B-Z76]P38. □

Prop.(15.11.1.21)[Irreducible Smooth Representation is Admissible].For any connected re-
ductive group G over a p-adic number field F , Irralg(G(F )) = Irradm(G(F )).

Proof: ? We only prove for G = GL(n).
By(15.11.2.9)(15.11.2.10) and(15.11.2.8), it suffices to prove for π quasi-cuspidal. But then this

follows from(15.11.2.12)(15.11.1.19) and(15.1.5.55). □
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Prop.(15.11.1.22)[Howe].Let (π, V ) ∈ Repalg(GL(n,K)), then π is of finite length iff it is admissible
and f.g..
Proof: A finite length representation is admissible by(15.11.1.21) and(15.1.5.31). For the converse,
as V is f.g., take N compact open s.t. V is generated by V N , and dimV N <∞ as V is admissible.
Then by(15.11.1.19): V ′ → V ′ ∩ V N is an injection from the set of subrepresentations of V to the
set of subspaces of V N , thus V is of finite length. □

Finite dimensional Representations

Prop.(15.11.1.23).Any π ∈ Irradm(GL(2,K)) has dimension 1.
Proof: By the no-small-subgroup argument, the kernel of this representation contains an open
normal subgroup. But any open normal subgroup of GL(2, V ) contains SL(2, V ) by(15.11.1.12),
thus this is a representation of K×, which must be of 1-dimensional by(15.11.1.18). □

Lemma(15.11.1.24)[2-Dimensional Smooth Representation of K×].Any ρ ∈ Repadm,dim=2(K×)
is one of the following form:

• ρ(t) = diag(ξ(t), ξ′(t)), where ξ, ξ′ are two quasi-characters of K×.

• ρ(t) = ξ(t)
[
1 v(t)

1

]
, where ξ is a quasi-character of K×.

Proof: There exists a 1-dimensional invariant subspace spanned by x by(15.11.1.18), on which K×

acts by a quasi-character ξ, and consider the quotient space, on which K× acts by a quasi-character
ξ′. choose y that is linearly-independent of x, then ρ(t)y = ξ′(t)y + λ(t)x, and

λ(tu) = ξ′(u)λ(t) + λ(u)ξ(t)

which is symmetric in t, u.
If ξ ̸= ξ′,

λ(t)(ξ(u)− ξ′(u)) = λ(u)(ξ(t)− ξ′(t))
therefore λ(t) = C(ξ(t)− ξ′(t)), so z = y − Cx is fixed by ρ(K×).

If ξ − ξ′, then λ/ξ is an additive character of K×, thus it is trivial on O∗, so λ(t) = cv(t). □

Zelevinsky Segments

Def.(15.11.1.25) [Zelevinsky Segments].For π ∈ Irradm(GL(n,K)), a Zelevinsky segment
∆(π,m) is an ordered m-tuple (π, π(1), . . . , π(m− 1)) of cuspidal representations of GL(n,K).

For two segments ∆(π1,m) and ∆(π2, n), ∆(π1,m) precedes ∆(π2, n) if ∆(π1,m)∩∆(π2, n) = ∅
and (∆(π1,m),∆(π2, n)) is another segment. They are called linked segements if one precedes
another.

Def.(15.11.1.26)[Dual Segments].For a segment ∆(π,m) = (π, π(1), . . . , π(m− 1)), its dual seg-
ment ∆∨ is the segment (π∨(1−m), π∨(2−m), . . . , π) = ∆(π∨(1−m),m).

Def.(15.11.1.27)[π(∆)].Let ∆ = ∆(π,m) be a Zelevinsky segment of length m and degree mn, we
can define an admissible representation π(∆) of GL(mn,K) given by

π(∆) = π × π(1)× . . .× π(m− 1) = I
GL(mn,K)
P (n,n,...,n)(⊗πi)

Def.(15.11.1.28) [Zelevinsky Conditions].A tuple of Zelevinsky segments ∆1, . . . ,∆r is said to
satisfy the Zelevinsky condition if for each i < j, ∆i doesn’t precedes ∆j .
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2 Cuspidal Representations

Jacquet Functors

Def.(15.11.2.1) [Jacquet Functors].Let P = LU be a parabolic subgroup of G, if (π, V ) be a
representation of G(F ), then VU = V/(span{ρ(u)v − v|u ∈ U}) = V/V (U) is naturally a L ∼= P/U
representation, so we can define the Jacquet functor:

JGP : Repalg(G(F ))→ Repalg(L(F )) : V 7→ VU .

Given a character ψ of U(F ), similarly VU,ψ = V/(span{ρ(u)v−ψ(u)v|u ∈ U}) = V/V (U,ψ) is a
Z(K)-module, we can also define similarly the twisted Jacquet functor

JGP,ψ : Repalg(G(F ))→ Repalg(Z(K)) : V 7→ VU,ψ.

For convenience, define the normalized Jacquet functor: rGP =
√

∆P
∆G
⊗ JGP .

JGP , J
G
P,ψ, r

G
P are exact functors, by(15.1.2.4).

Prop.(15.11.2.2).For the the minimal parabolic subgroup P = B(K), JN,ψa,N (V ) ∼= JN,ψU (V ) for
a ∈ Gn−1

m (F )× 1.

Proof: This is because π(a) maps V (N,ψa,N ) isomorphically to V (N,ψN ), thus induces an isomor-
phism JN(K),ψa,N (V ) ∼= JN(K),ψN (V ). □

Prop.(15.11.2.3). JGP , JGP,ψ, rGP map smooth representations of finite length to smooth representations
of finite length(because it is f.g.).

Proof: If V is a f.g. G-module, then it is a f.g. P -module, because G = PK, and Kvi is of f.d. for
any v ∈ V . Thus the quotient VU of V is also f.g..

For finite length?, Cf.[Bernstein-Zelevinsky2, P8]. □

Lemma(15.11.2.4)[Jacquet]. If (π, V ) is a smooth representation of GL(n,K), then using the no-
tation as in(15.11.1.10), where a is a proper ideal, V K0 and V N−(a)T0 have the same image in the
Jacquet module J(V ).

Proof: One inclusion is trivial, for the other, if x ∈ V N−(a)T0 then x1 =
∫
K0
π(k)xdk lies in V K0 ,

so it suffices to show x and x1 have the same image in J(V ). But by(15.11.1.10)

x1 =
∫
N−(a)

∫
T0

∫
N(O)

π(nt0n−)xdndt0dn− =
∫
N(O)

π(n)xdn

and notice p(π(n)x) = p(x). □

Prop.(15.11.2.5) [Jacquet Modules are Admissible].Let (π, V ) be a smooth representation of
GL(2,K), then

• Using the notation as in(15.11.1.10), if a is a proper ideal, then the projection map p : V 7→ J(V )
induces a surjection of V K0 → J(V )T0 .

• If (π, V ) is admissible, then J(V ) is also admissible representation of T (F ).
? For GL(n,K) case, Cf.[Bernstein-Zelevinksy1, P33].?
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Proof: 2 follows from 1 because we can choose T0 = T (a) to be arbitrarily small, then it is of f.d.,
thus admissible.

For 1, notice fist that any x ∈ J(V )T0 is an image of a x1 ∈ V T0 , because p(π(t)x) = π(t)p(x) =
p(x), thus we can choose x1 = 1

V (T0)
∫
T0
π(t)xdt.

Thus for any f.d. subspace U of J(V )T0 , we can find a f.d. U ⊂ V T0 that is mapped isomorphically
onto U . Now U is fixed by some N−(pn) for n large, so U is fixed by N−(pn)T0. Notice a = pm for
some m, and

π(d)N−(pn)T0π(d)−1 = N−(a)T0, d =
[
ϖn−m

1

]
,

so π(d)U is stabilized by N−(a)T0. Hence by lemma(15.11.2.4), π(d)p(U) = p(π(d)U) ⊂ p(V K0), so
the dimension of U is bounded by dimension of V K0 , so we can choose U just to be J(V )T0 . Now
π(d) commutes with T (F ), so we have π(d)J(V )T0 = J(V )T0 ⊂ p(V K0). The reverse containment is
clear. □

Parabolic Induction

Def.(15.11.2.6) [Parabolic Induction].Let P = LU be a parabolic subgroup of G, let pr : P →
P/U ∼= L, the parabolic induction functor IGP is the functor

IGP : Repalg(L)→ Repalg(G) : ρ 7→ IndGP (ρ ◦ pr)(15.1.5.41).

Prop.(15.11.2.7)[Parabolic Induction and Jacquet Functor].For any parabolic subgroup P , IGP
is right adjoint to the normalized Jacquet functor rGP .

Proof: For σ ∈ Repalg(L), ρ ∈ Repalg(G),

HomP/U (
√

∆P

∆G
⊗ (resGP (σ))U , ρ) ∼= HomP (resGP (σ),

√
∆G

∆P
⊗ (ρ ◦ pr)) = HomG(σ, IndGP (ρ ◦ pr)).

□

Prop.(15.11.2.8). IGP maps admissible representations to admissible representations and maps finite
length representations to finite length representations.

Proof: By(15.1.5.51) and Iwasawa decomposition.
For finte length? □

Cuspidal Representation

Main references are [The Local Langlands Correspondence: The non-Archimedean case, 1994],
[Induced Representations of Reductive p-Adic Groups, Berstein Zelevinsky].

Def.(15.11.2.9) [Cuspidal Representations]. (π, V ) ∈ Repalg(G(F )) is called a quasi-cuspidal
representation if for any proper parabolic subgroup P = LU of G, rGP (V ) = 0. A cuspidal
representation is a representation that is both quasi-cuspidal and admissible. The category of
cuspidal representations is denoted by Repcusp(G(F )).

Prop.(15.11.2.10) [Cuspidal Dichotomy]. If π ∈ Irralg(G(F )), then either π is (quasi-)cuspidal,
or π is a subrepresentation of IGP (ρ), where P = LU is a proper parabolic subgroup of G, and
ρ ∈ Irralg(L(F )) is (quasi-)cuspidal.
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Proof: If π is not (quasi-)cuspidal, choose a minimal parabolic P that rGP (π) ̸= 0. As rGP (π) is
f.g.(15.11.2.3), by(15.1.2.8), it has an irreducible subquotient σ. Then

0 ̸= HomM (rGP π, σ) = HomG(π, IGP σ).

And by minimality, σ is (quasi-)cuspidal by(15.11.2.5). □

Prop.(15.11.2.11) [Representation from Finite Case].Let (π0, V0) be an irreducible cuspidal
representation of GL(2,Fq), then it is representation of K by the projection K → GL(2,Fq), with
central character ω0. Extend ω0 to a character ω of K×, then extend π0 to a representation of
KZ(K) with central character ω. Finally let (π, V ) = indGL(2,K)

KZ(K) π0. Then π is a unitarizable
cuspidal irreducible admissible representation of GL(2,K).

Proof: To show it is admissible, we use Mackey’s intertwining formula(15.1.5.50). By(15.1.5.32),
it suffices to show for any ρ ind Irradm(K), dim HomK(π0, ρ) < ∞. By p-adic Cartan decomposi-

tion(15.1.5.50), a representative set for K\G/KZ(K) is {
[
1

ϖn

]
, 0 ≤ n ∈ Z}. Notice π0 is of f.d.,

thus it suffices to show that only f.m. HomK0(pn)(π0, ρ
ϖn) ̸= 0. For this, notice that by continuity,

for n large, ρϖn(
[
1 b

1

]
) = id for any b ∈ O, thus any φ ∈ HomK0(pn)(π0, ρ

ϖn) ̸= 0 factors through

the Jacquet module of π, which is 0 as π0 is cuspidal.
By(15.1.5.52), π is unitarizable. And then by(15.1.5.53), it suffices to show that dim End(π) = 1.

By Mackey theory again,

HomG(π, π) ⊂ HomG(π, IndGL(2,K)
KZ(K) π0) =

∏
n≥0

HomK0(pn)(π0, ρ
ϖn)

by the same reason as above, for n > 0, this is 0, and for n = 0, this has dimension 1 because π0 is
an irreducible representation of K.

It remains to show π is cuspidal: Use Mackey theory again. By Iwasawa decomposition,

a representative set for K\G/KZ(K) is {
[
1

ϖn

]
, 0 ≤ n ∈ Z}. Now it suffices to show

HomUnip(2,K)(π0, 1) = 0. But this is because π0 is cuspidal. □

Thm.(15.11.2.12)[Harish-Chandra]. then for (π, V ) ∈ Repalg(GL(n,K)), the following are equiva-
lent:

• π is quasi-cuspidal.
• For any principal congruence subgroup Km, the function Dξ,K : G → V : g 7→ π(eK)π(g−1)ξ

has compact support modulo Z(K).
• Every matrix coefficient of π is compactly supported modulo Z(K).
• The restriction of π to G0

n is compact.

Proof: 2→ 3 is verbatim as that of(15.1.5.55), 3→ 4 is easy. 4→ 2 follows from the definition of
compact representations and the fact GL(n,K)/G0

nZ(K) is finite.
1 ⇐⇒ 2: Cf.[Bernstein-Zelevinsky, P34].? □

Cor.(15.11.2.13) [Contragradient of Cuspidal Representations].For π ∈ Repcusp(GL(n,K)),
π̂ ∈ Repcusp(GL(n,K)) too.
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3 Whittaker Models

Def.(15.11.3.1)[Whittaker Functionals & Whittaker Models].For (π, V ) ∈ Irralg(GL(n,K)),
• a Whittaker functional on V is a Unip(n,K)-map λ : V → ψN .(Compare with(16.1.3.9).)

• a Whittaker model is a subrepresentation of IndGL(n,K)
Unip(n,K)(ψN ) that is isomorphic to π and

consists of functions φ of moderate growth.
An irreducible smooth representation having a Whittaker functional is called a generic represen-
tation.

Remark(15.11.3.2).Generic representations are important because for any global number field F
and π ∈ Irrauto(GL(n)/F ), all the local components πv are generic, by(16.3.3.7).

Whittaker models are important because we can use it to attach local Euler factors for such
representations.

Prop.(15.11.3.3).
• The definition of generic is independent of ψ, by(15.11.2.2).

• π is generic iff π∨ is generic.?
• For a quasi-character χ of K×, π is generic iff π(χ) is generic, as JUnip(n,K),ψN (π) =
JUnip(n,K),ψN (π(χ)).

Prop.(15.11.3.4)[Transpose Invariant Distribution]. If ∆ ∈ D(GL(n,K)) is a distribution that
satisfies

λ(u)∆ = ψN (u)−1∆, ρ(u)∆ = ψN (u)∆,
where ψ is defined in(16.1.3.9), then ∆ is stable under involution ι : GL(n,K)→ GL(n,K) : ι(g) =
w0gtw0(15.11.0.1).
Proof: Firstly notice that ι fixes N(K), and ψN (ι(g)) = ψN (g), so ι(∆) also satisfies these equa-
tions, so we can replace ∆ by ∆− ι(∆), then assume ι(∆) = −∆ and prove ∆ = 0.

Consider the group G that is a semi-direct product

1→ N(K)×N(K)→ G→ F2

and ι ∈ F2 acts on N(K)×N(K) by (u1, u2) 7→ (ι(u2)−1, ι(u1)−1).
Define a character χ on G by χ((u1, u2)) = ψN (u1)−1ψN (u2), χ(ι) = −1, then G acts on GL(n,K)

by
σ((u1, u2)) = λ(u1)ρ(u2), σ(ι) = ι

then the conditions are summarized into a single condition:

σ(g)∆ = χ(g)∆.

We only prove for n = 2:?
Consider the action of N(K)×N(K) on GL(2,K) by left-right action, then we can use(15.1.5.17)

and(15.1.5.18), because the action is constructive, by(8.2.1.23), and ιN(K)ι = N(K), and ι preserves
orbits except for diag{a, d}, a ̸= d.

But there are no desired distribution on this orbit: this orbit is homeomorphic to N(K) via
u 7→ udiag(a, d), and the distribution is transferred to a left invariant distribution, thus by(15.1.5.11)
it is just the Haar measure

∆(f) = c1

∫
N(K)

f(u
[
a b

d

]
)ψN (u)du.
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We notice using a right-invariant version of(15.1.5.11) that

∆(f) = c2

∫
N(K)

f(
[
a b

d

]
u)ψN (u)du = c2

∫
N(K)

f(u
[
a b

d

]
)ψN (

[
a b

d

]−1

u

[
a b

d

]
)du

as N(K) is unimodular. Notice now c1ψN (u) = c2ψN (
[
a b

d

]−1

u

[
a b

d

]
) cannot happen for all u, as

this implies c1 = c2 by choosing u = I, and then ψ(x) = ψ(ax/d), which is impossible by(10.11.3.35).
So if some u this is not equal, then we find a function supported at a nbhd of u, then this two
distributions cannot be equal. □

Prop.(15.11.3.5)[Local Multiplicity One Theorem].For (π, V ) ∈ Irradm(GL(n,K)), the space of
Whittaker functionals has dimension≤ 1.

Proof: Define another representation π′(g) = π(ι(g)−1), then this representation is isomorphic to
π1 defined in(15.11.1.15)(π(w0) is an isomorphism), which is isomorphic to the contragradient of π,
so there is a pairing on V that

(π(g)ξ, η) = (ξ, π(ι(g))η).

Now for any smooth functional Λ, there is an element [Λ] that (ξ, [Λ]) = Λ(ξ).
Now for any linear functional Λ on V and φ ∈ HG, we can define another smooth linear function

(Λ ∗ φ)(ξ) = Λ(π(φ)ξ). Then clearly φ ∗ (φ1 ∗ φ2) = (Λ ∗ φ1) ∗ φ2. We need the following lemma:

Lemma(15.11.3.6).
• π(g)[Λ ∗ φ] = [Λ ∗ ρ(ι(g)−1)φ].
• If L is a smooth functional, [L ∗ φ] = π(ι(φ))[L].
• If L is a Whittaker functional, [Λ ∗ λ(u)φ] = ψN (u)[Λ ∗ φ].

Proof: 1:

(ξ, π(g)[Λ ∗ φ]) = (π(ι(g))ξ, [Λ ∗ φ]) = (Λ ∗ φ)(π(ι(g))ξ)

=
∫
G

Λ(π(h)π(ι(g))ξ)φ(h)dh =
∫
G

Λ(π(h)ξ)φ(hι(g)−1)dh = (ξ, [Λ ∗ ρ(ι(g)−1)φ]).

2: (ξ, [L ∗ φ]) = (L ∗ φ)(ξ) = L(π(φ)ξ) = (π(φ)ξ, [L]) = (ξ, π(ι(φ))[L]).
3:

(ξ, [Λ ∗ λ(u)φ]) = (Λ ∗ λ(u)φ)(ξ) =
∫
G

Λ(π(g)ξ)φ(u−1g)dg

=
∫
G

Λ(π(u)π(g)ξ)φ(g)dg

= ψN (u)(Λ ∗ g)(ξ) = ψN (u)(ξ, [Λ ∗ φ])

□
Now if Λ1,Λ2 are two Whittaker functionals, we will show they are propositional: we define a

distribution ∆ on G that ∆(φ) = Λ1([Λ1 ∗ φ]), then by the lemma above, (15.11.3.4) can be applied
to ∆ so we have ∆ = ι(∆).

Next we show for any linear functional Λ, V = {[Λ ∗ φ]|φ ∈ H}: Notice the RHS is G-invariant
by(15.11.3.6), and it is not empty by smoothness technique. To go further, need another lemma:
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Lemma(15.11.3.7). If φ ∈ H satisfies Λ1 ∗ φ = 0, then Λ2 ∗ φ = 0.

Proof: Firstly, all Λ1 ∗ π(g)φ = 0, which follows from(15.11.3.6) item1. Hence,

Λ2([Λ1 ∗ λ(g)ι(φ)]) = ∆(ι(ρ(ι(g)−1)φ)φ) = ∆(ρ(ι(g)−1)φ) = Λ2([Λ1 ∗ ρ(ι(g)−1)φ]) = 0.

hence by linearity, for any σ ∈ H, Λ2([Λ1 ∗ σ ∗ ι(φ)]) = 0, which by(15.11.3.6) item2 is equivalent to
Λ2(π(φ)[Λ1 ∗ φ]) = 0 = (Λ2 ∗ φ)[Λ1 ∗ φ], because Λ1 ∗ σ is smooth. But we know [Λ ∗ φ] can be any
v ∈ V , thus Λ2 ∗ φ = 0. □

By the lemma, we can define a map T : V → V : T ([Λ1∗φ]) = [Λ2∗φ], which is aG-homomorphism
by(15.11.3.6), and it is defined on all of V , so Tξ = cξ for some c, then we see Λ2 = cΛ1, by a
smoothness technique. □

Cor.(15.11.3.8)[Local Multiplicity One].For (π, V ) ∈ Irralg(GL(n,K)), there exists at most one
Whittaker model for π.

Proof: A Whittaker model is equivalent to a GL(n,K)-homomorphism V → IndGL(n,K)
Unip(n,K)(CψN ),

which by smooth Frobenius reciprocity(15.1.5.44) is equivalent to a N(K)-homomorphism V → CψN ,
which is just a Whittaker functional. So this proposition is equivalent to(15.11.3.5). □

Prop.(15.11.3.9).A Whittaker functional for (π, V ) is the same as a linear functional on
JUnip(n,K),ψN (V ).

Cor.(15.11.3.10).For (π, V ) ∈ Irradm(GL(n,K)), dim JUnip(n,K),ψN (V ) ≤ 1, by(15.11.3.5).

Existence of Whittaker Models

Def.(15.11.3.11)[Sheaf on F associated to V ].As Unip(2) ∼= A1, any smooth representation V of
Unip(2,K) corresponds to a smooth H(F )-module by(15.1.5.23), thus we can view it as a C∞

c (F )-
module by

φ(v) =
∫

Unip(2,K)
φ̂(x)π(u)vdx.

Then this module is smooth thus non-degenerate by(15.1.5.23), then we can define S(V ) the sheaf
associated to V , as in(15.1.5.7).

Cor.(15.11.3.12).Let V be a smooth B(K)-sheaf and let a ∈ K, then the stalk

S(V )a ∼=
{
J(V ) a = 0
Jψa(V ) ∼= Jψ(V ) a ̸= 0

.

Proof: By definition(15.1.5.7), the stalk is V modulo the subgroup consisting of elements v that
χU · v = 0, where U = a + pk for some large k. Back the definition of S(V ), consider the Fourier
transform

χ̂a+pk(x) = ψ(ax)V (pk)χpn−k(x)

where pn is the conductor of ψ. Thus

χa+pkv = C

∫
pn−k

ψ(ax)π(
[
1 x

1

]
)vdx = 0

for large k, which is equivalent to v ∈ VN,ψa by(15.1.2.6). Finally, Jψa(V ) ∼= Jψ(V ) by(15.11.2.2). □
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Cor.(15.11.3.13)[Existence of Whittaker Functional]. (π, V ) ∈ Repadm(GL(2,K)) has a Whit-
taker functional unless it factors through the determinant map. In particular, if π is irreducible, then
dim Jψ(V ) = 1 iff it is not 1-dimensional, or to say, it is ∞-dimensional.

Proof: The existence of a Whittaker functional is equivalent to the fact Jψ(V ) ̸= 0, which is the
stalk of the sheaf S(V ). If it vanishes, then S(V ) is a skyscraper sheaf by(15.11.3.12), and by the
correspondence of S(V ) and V (15.1.5.7), V equals Γ(F,S(V )) = J(V ), thus Unip(2,K) acts trivially
on V .

So also all the conjugates of Unip(2,K) acts trivially, so SL(2,K) acts trivially, by6, thus the
representation factors through the quotient K×, the rest is clear.

Finally, if it is irreducible, then it factors through the determinant map iff V ∼= C and π(g) =
χ(det(g)), by(15.11.1.18). So Jψ(V ) = 0 as ψ is non-trivial. □

Prop.(15.11.3.14)[GL(n) Case]. In fact, π = Q(∆1, . . . ,∆k) ∈ Irradm(GL(n,K)) is generic iff no two
of ∆i are linked, in which case

π = Q(∆1)× . . .×Q(∆k).

In particular, π is generic iff its Gelfand-Kirillov dimension is maximal among those irreducible
admissible representations with the same cuspidal supports.

Proof: Cf.[Induced Representations of Reductive p-Adic Groups, Zelevinsky(1980)].? □

Kirillov Model

Def.(15.11.3.15) [Kirillov Model].For (π, V ) ∈ Irralg(GL(n,K)), a Kirillov model K(π) is a
subrepresentation of IndPn−1,1(F )

Unip(n,K)(ψ) that is isomorphic to π|B1(F ), and consist of functions on B1(F )
that φ is compactly supported on T1(Notice this condition is automatic by(15.11.3.19)).

When n = 2, it is equivalently a subspace of C∞(K×) with an action of B1(F ) that satisfies

[π(
[
a b

1

]
)φ](x) = ψ(bx)φ(ax)

and isomorphic to (π, V ) via the isomorphism v 7→ φv.

Proof: The last assertion is because B1(F ) = Unip(2,K)T1(F ), thus the value of a function in
IndB1(F )

N(K) (ψ) is determined by its restriction on T1(F ) ∼= K×. □

Prop.(15.11.3.16).The action of B1(F ) on C∞
c (K×) as defined in(15.11.3.15) is irreducible.

Proof: Let U be a non-zero invariant subspace of C∞
c (K×), we will show that for any a ∈ K×,

U contains χU for any sufficiently small nbhd U of a. Let φ ∈ U and φ(b) ̸= 0, then by action of[
b/a

1

]
, we may assume φ(a) ̸= 0.

If f ∈ C∞
c (F ), f acts on φ via

π(f)φ =
∫
F
f(x)π(

[
1 x

1

]
)φdx,

which in fact a finite sum of elements in N(K)v. Then π(f)φ(y) =
∫
F f(x)ψ(xy)φ(y)dx = f̂(y)φ(y).

By the isomorphism HF ∼= C∞
c (F )(15.1.5.26), we can choose f that f̂ = φ(a)−1χU for a small nbhd

U of a that φ is constant on U , then π(f)φ = χU . □
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Lemma(15.11.3.17).For (π, V ) ∈ Irradm(GL(2,K)), if dimV =∞, then V Unip(2,F ) = 0.

Proof: Cf.[Bump, P464]?
The stabilizer of v is open, thus by(15.11.1.12) it is fixed by all SL(2,K). Also it is fixed by

the center Z(K). Now GL(2,K)/SL(2,K)Z(K) ∼= K×/(K×)2 which is finite by(12.2.3.6), thus the
invariant subspace generated by v is of f.d., contradiction. □

Lemma(15.11.3.18). If (π, V ) ∈ Irradm(GL(2,K)), and Λ is a Whittaker functional on V , then for

v ̸= 0 ∈ V , there exists some a ∈ K× that Λ(π(
[
a

1

]
)v) ̸= 0.

Proof: For any a ∈ K×, it is clear that the kernel of the map v 7→ Λ(π(
[
a

1

]
)v) contains VN,ψa??

but by local multiplicity one(15.11.3.5), dim Jψa(V ) ≤ 1, and this map is non-trivial because Λ is
non-trivial, thus the kernel is exactly VN,ψa .

Thus if Λ(π(
[
a

1

]
)v) = 0, then v is the section of S(V ) that vanishes at all a ̸= 0, thus for any

x ∈ F , v′ = v − π(
[
1 x

1

]
)v vanishes at every a ∈ F , thus v′ = 0. Then v = 0 by(15.11.3.17). □

Prop.(15.11.3.19)[Kirillov Model and Whittaker Model].For (π, V ) ∈ Irradm(GL(2,K)), if it
has a Whittaker functional Λ, then it has a Whittaker model W consisting of functions Wv(g) =
Λ(π(g)v), and we can define functions on K× by

φv(a) = Wv(
[
a

1

]
).

Then G acts on K(π) by acting on the subscript. Then it is a Kirillov model for V , and consists of
functions that is compactly supported on F .

Conversely, if {φv|v ∈ V } is a Kirillov model for (π, V ), then we can construct functions on
GL(2,K) by Wv(g) = φπ(g)v(1). Then this is a Whittaker model for V .
Proof: The equations can be checked by hand. To given an action π(φv) = φπ(g)v on {φv|v ∈ V },
we need to show that Wv 7→ φv is injective, which is true by(15.11.3.18). Then v 7→ πv is an
isomorphism.

It remains to show that φv ∈ C∞
c (K×). As π is a smooth representation, for any v, Wv is stable

under N(pk) for some k, thus by equation above, φv(a) = ψa(n)φv(a) for all a and n ∈ N(pk). Then
if |a| is sufficiently large, ψa(n) ̸= 0 for some n ∈ N(pk), implying φv(y) = 0. □

Prop.(15.11.3.20)[Kirillov Model and Jacquet Functor].Let V be a generic irreducible admis-
sible representation of GL(2,K), thus having a Kirillov model by(15.11.3.19), thus we can identify
V with a space of functions on K×, and there is an exact sequence of vector spaces

0→ C∞
c (K×)→ K(π)→ JUnip(2,K)(π)→ 0.

Proof: VN is generated by elements of the form v′ = π(
[
1 x

1

]
)v − v. Notice φv′(y) = (ψ(xy) −

1)φv(y), as ψ is continuous, when |y| is small, φv′(y) = 0.
To show that if C∞

c (K×) ⊂ VN , notice VN is non-zero, because dimV = ∞ but dim J(V ) is
finite(15.11.4.20). Notice VN is stable under B(K) action, thus it must be C∞

c (K×) by(15.11.3.16).
□
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Prop.(15.11.3.21). If (π, V ) is an irreducible generic admissible representation of GL(2,K) thus hav-
ing a Kirillov model. If χ is a quasi-character of T (F ) that π(t)φv = (δ1/2χ)(t)φv ∈ J(V ), then for
|t| small, φv(t) is a constant multiple of |t|1/2χ1(t).

Proof: Let t0 ∈ p\p2, then

π(
[
t0

1

]
)φ− |t0|1/2χ1(t0)φ ∈ VN ,

thus by(15.11.3.20), there exists some ε(t0) > 0 that

φ(tu)− |t|1/2χ1(t)φ(u) = 0

for t = t0 and |u| ≤ ε(t0). Because both sides are locally constant on t, by the compactness of p\p2,
there exists some ε > 0 that for the equation is true for all t ∈ p\p2 and |u| ≤ ε.

Now any element t ∈ p can be factored into product of elements in p\p2, so by induction this is
true for any t ∈ p. Thus we are done. □

Lemma(15.11.3.22)[Gelfand Uniqueness Principle].Let (π, V ) ∈ Irradm(GL(2,K)), and let χ be
a quasi-character of K×, then there are at most two essentially different values of s that there are at
least two linear functionals L : V → C that satisfies

L(π(
[
y

1

]
)v) = χ(y)|y|sL(v).

Remark(15.11.3.23). In fact, for any s, there exists at most one such linear functional?.

Proof: If dimV = 1, this is trivial. Otherwise dimV = ∞ and (π, V ) has a Kirillov model.
Identify V with its Kirillov model. Suppose L1, L2 are two linear functionals that satisfies the
equation, consider their restriction to VN = C∞

c (K×), on which B1(F ) acts, thus L1, L2 are linearly
dependent when restricted to VN by(15.1.5.12). Thus there exists constants c1, c2 that c1L1 + c2L2
factors through J(V ). dim J(V ) ≤ 2 by(15.11.4.20). So by(15.11.1.24) for all but two possible choices
of s, c1L1 + c2L2 = 0, thus there are two linear functionals only for possibly two choices of s. □

4 Bernstein-Zelevinsky Classification
Thm.(15.11.4.1)[Bernstein-Zelevinsky].

1. For any Zelevinsky segment ∆ of length m, the representation π(∆) has length 2m−1.
2. Let ∆ be a Zelevinsky segment, then π(∆) has a unique irreducible subrepresentation Z(∆)

and a unique irreducible quotient representation Q(∆).
3. Let (∆1, . . . ,∆r) be a tuple of Zelevinsky segments satisfying the Zelevinsky condi-

tion(15.11.1.28), then Q(∆1) × . . . × Q(∆r) ∈ Repadm(GL(
∑
nimi, F )) admits a unique ir-

reducible quotient Q(∆1, . . . ,∆r). Moreover, Q(∆1, . . . ,∆r) is independent of the order of
∆1, . . . ,∆r(also need to satisfy the Zelevinsky condition).

4. Any irreducible representation (π, V ) of GL(n,K) is isomorphic to one of the form π ∼=
Q(∆1, . . . ,∆r) where ∆i = ∆(πi,mi) and ∑

nimi = n. for a unique tuple of segments
(∆1, . . . ,∆r) satisfying Zelevinsky condition up to permutation.
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5. Let (∆1, . . . ,∆r) be a tuple of segments satisfying the Zelevinsky condition, then Q(∆1, . . . ,∆r)
is irreducible iff no two elements are linked.

6. Q(∆1, . . . ,∆r)∨ = Z(∆∨
1 , . . . ,∆∨

r ).
7. Dual statement of item3− 6 holds for Z(∆1)× . . .×Z(∆r), which admits a unique irreducible

subrepresentation Z(∆1, . . . ,∆r).

Proof: □

Cor.(15.11.4.2)[Principal Series].B(χ1, χ2) is irreducible except the following two cases:
• If χ2 = χ1(1), then B(χ1, χ2) has a 1-dimensional invariant subspace and the quotient repre-

sentation is irreducible.
• If χ2 = χ1(−1), then B(χ1, χ2) has an irreducible invariant subspace of codimension 1.

In these cases, the infinity-dimensional irreducible representations are called the Steinberg repre-
sentations σ(χ1, χ2), and the one-dimensional representation is denoted by Z(χ1, χ2).

Proof: Firstly we prove if B(χ1, χ2) has a non-trivial subspace, then it has a non-trivial subspace
of dimension 1 or codimension 1: Let V ′ be the invariant subspace and V ′′ the quotient space, by the
exactness of Jacquet functor(15.11.2.1) and(15.11.3.10), at least one of Jψ(V ′), Jψ(V ′′) vanishes. If
Jψ(V ′) = 0, then by(15.11.3.13) it factors through the determinant map, thus it has a 1-dimensional
invariant space. If Jψ(V ′′) = 0, then we can use(15.11.4.9) and(15.1.5.28) to dualize.

Next, if B(χ1, χ2) has a 1-dimensional subspace V = {f}, then π(g)f = ρ(det(g))f for some quasi-
character ρ of K×. Now consider the fact f ∈ B(χ1, χ2), take b = diag(y, y−1), then (δ1/2χ)(b) = 1,
showing χ1χ

−1
2 = | · |−1. The codimension1 case is dual by(15.1.5.28) and(15.11.4.9), so B(χ1, χ2) is

irreducible except when χ1χ
−1
2 = | · |±1.

Finally, if χ1χ
−1
2 = | · |−1, let χ1 = χ| · |−1/2, then f(g) = χ(det(g)) is an invariant 1-dimensional

subspace, and this is the only 1-dimensional invariant subspace that factors through the determinant
map, because if f(g) = χ′(det(g)) ∈ B(χ1, χ2), then χ′ = χ1| · |1/2 = χ2| · |−1/2 = χ.

Also the quotient representation is irreducible because the same argument by Jacquet module
shows if it is non-irreducible, then it has an invariant subspace of dimension 1 that G action factors
through the determinant map or of codimension 1, which means there are two invariant 1-dimensional
subspace that the G-action factors through the determinant map, or a invariant subspace of codi-
mension1 of B(χ1, χ2), the latter case contradicting the argument above. For the former case,
we get a 2-dimensional subrepresentation of B(χ1, χ2) that factors through the determinant map.
The argument above shows it is generated by χ(det()) and some function f , but f must satisfy
f(g) = χ(det(g))f(1) + a, which is possible only if a = 0, so f = χ ◦ det, contradiction.

The codimension 1 case is dual by(15.1.5.28) and(15.11.4.9). □

Cor.(15.11.4.3) [Steinberg Representation].Consider the segment ∆(| · |
1−n

2 , n) of length n and
degree n, then (π(∆), V ) is the space of functions B\G→ C. Thus Z(∆) is the trivial representation,
and Q(∆) is called the (standard)Steinberg representation, denoted by Stn. It is self-dual.

If n = 2, then π(∆) has length 2, thus there are an exact sequences,

0→ 1→ | · |−1/2 × | · |1/2 → St2 → 0, 0→ St2 → | · |1/2 × | · |−1/2 → 1→ 0

Cor.(15.11.4.4) [Classification of Irradm(GL(2,K))].The n = 2 case is particularly clear: any
π ∈ Irradm(GL(2,K)) has the following possibilities:

1. π is cuspidal.
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2. π = Q(χ| · |−1/2, χ| · |1/2), which equals St2(χ).
3. π = χ1 × χ2, where χ1, χ2 are not linked, which is the principal series.
4. π = Q(χ| · |1/2, χ| · |−1/2), which equals 1(χ).

Def.(15.11.4.5) [Cuspidal Supports].For a π = Q(∆1, . . . ,∆r) ∈ Irradm(GL(n,K)), where ∆i =
(πi,mi), define the cuspidal supports of π as the set

Supp(π) = {πi(j)}1≤i≤r,1≤j≤mi−1.

Principal Series Representations

Def.(15.11.4.6)[Principal Series Representations].Given a diagonal quasi-character χ of T (F ),
define the principal series representation of G as

B(χ1, . . . , χn) = I
G(F )
B(K)(χ)(15.1.5.41) = {f ∈ C∞(G)|f(

y1 ∗
. . .

yn

 g) = χ1(y1) . . . χn(yn)|yn−1
1 yn−3

2 . . . y−n+1
n |1/2f(g)}

It is admissible of finite length by(15.11.2.8). If it is irreducible, its isomorphism class is denoted by
π(χ1, χ2).

Lemma(15.11.4.7).By(15.1.5.48), we have a map P : C∞
c (G(F ))→ B(χ1, . . . , χn):

(Pφ)(g) =
∫
B(K)

φ(b−1g)(δ1/2χ)(b)db

Then this map is intertwining and surjective. Moreover, we have

P (λ(b)−1φ) = (δ−1/2χ)(b)P (φ), b ∈ B(K)

Prop.(15.11.4.8).The representation B(χ1, . . . , χn) admits at most one Whittaker functional. In
other words, dim Jψ(B(χ1, . . . , χn)) ≤ 1. in fact, it is exactly one, as will be shown by(15.11.4.2)
and(15.11.3.13).
Proof: Let Λ : V → C be a Whittaker functional, then we define a distribution ∆ on GL(2,K) as
∆(φ) = Λ(Pφ). Then

λ(b)∆ = (δ−1/2χ)(b)∆, b ∈ B(K), ρ(n)∆ = ψN (n)−1∆, n ∈ N(K)

by(15.11.4.7). Because P is surjective(15.11.4.7), it suffices to show that these ∆ are unique up to
scalar.

Consider the left-right action of B(K)×N(K) on G(F ), then there are n! orbits B(K)WN(K) by
Bruhat decomposition(11.7.6.6). For w ̸= 1, the orbit B(K)wN(K) is isomorphic to B(K)×N(K)
via (b, n) 7→ bwn−1, thus the restriction of ∆ on B(K)wN(K) must be of the form

∆1(φ) = C

∫
B(K)

∫
N(K)

φ(bwn−1)ψN (n)(δ1/2χ−1)(b)dbdn

by(15.1.5.11). This is the unique map that satisfies the condition.
As for the distribution on B(K), the same reasoning shows the restriction of ∆ on B(K) must

be of the form
∆2(φ) = C

∫
B(K)

φ(b)(δ1/2χ−1)(b)db,

but it satisfies ρ(n)∆2 = ∆2, so there are no distribution on B(K). Finally, (15.1.5.3) gives us the
result. □
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Cor.(15.11.4.9).The contragradient of χ1 × . . .× χn is χ−1
1 × . . .× χ−1

n .

Proof: If f ∈ B(χ1, χ2), f ′ ∈ B(χ−1
1 , χ−1

2 ), then the pairing (f, f ′) =
∫
K f(k)f ′(k)dk is G-invariant

by(10.11.1.45), so this defines a smooth functional lf ′ , and it is non-degenerate, the mapping f ′ 7→ lf ′

is injective(by letting f = 1/f ′ on a B(K)-orbit that f ′ is non-zero) from B(χ−1
1 , χ−1

2 ) to B(χ1, χ2)∨.
Now by symmetry the other side is also injective, and we are done because (V ∨)∨ =∼= V (15.1.5.30).
□

Cor.(15.11.4.10).Hom(B(χ1, . . . , χn),B(µ1, . . . , µn)) ̸= 0 only if {χ1, . . . , χn} = {µ1, . . . , µn}.

Proof: By smooth Frobenius reciprocity(15.1.5.44),

HomG(B(χ1, χ2),B(µ1, µ2)) ∼= HomB(K)(B(χ1, χ2), δ1/2µ).

The proof below is similar to that of(15.11.4.8): For such a map Λ, we define a distribution ∆(φ) =
Λ(P (φ)), then

λ(b)∆ = (δ−1/2χ)(b)∆, ρ(b)∆ = (δ−1/2µ−1)(b)∆, b ∈ B(K).

So by the exact sequence(15.1.5.3), such distribution exists on one of the orbits B(K)wN(K).
If such a distribution exists on B(K)wN(K) for w ̸= 1, then noticing ρ(n)∆ = ∆ for n ∈ N(K),

by(15.1.5.11)
∆(φ) =

∫
B(K)

∫
N(K)

φ(bwn−1)(δ1/2χ−1)(b)dbdn,

then we apply ρ(t) with t diagonal, then

(δ−1/2µ−1)(t)∆(φ) = (ρ(t)∆)(φ) =
∫
N(K)

∫
B(K)

φ((bwt−1w−1)w(tnt−1)−1)(δ1/2χ−1)(b)dbdn

= δ(t)−1(δ−1/2χ−1)(wtw−1)∆(φ)

via change of variables(10.11.1.16). Notice that δ(t) = δ(wtw−1)−1, thus µ(t) = χ(wtw−1), which
means χi = µw(i).

Similarly, if such a distribution exists on B(K), then

∆(φ) =
∫
B(K)

φ(b)(δ1/2χ−1)(b)db.

Apply ρ(b), then δ−1/2χ(b) = (δ−1/2µ)(b), so χi = µi. □

Intertwining Integrals and Whittaker Functional

Prop.(15.11.4.11)[Intertwining Integral].Let ξi be two characters ofK×, and χi = |·|siξi, (π, V ) =
B(χ1, χ2), (π′, V ′) = B(χ2, χ1). Define for f ∈ V ,

Mf : GL(2,K)→ C : Mf(g) =
∫
N(K)

f(w0ug)du

then if Re(s1 − s2) > 0, the integral is absolutely convergent, Mf ∈ V ′, and M is a nonzero
intertwining, so V ∼= V ′ if they are both irreducible.
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Proof: Should compare this proof with(15.9.4.18).

For the convergence, it suffices to check for
[
1 x

1

]
, |x| large, but then

f(
[
−1

1

] [
1 x

1

]
g) = f(

[
x−1 −1

x

] [
1
x−1 1

]
g) = |x|−1(χ−1

1 χ2)(x)f(
[

1
x−1 1

]
g)

and because f is locally constant, when |x| is large, f(
[

1
x−1 1

]
g) = f(g), thus the convergence on

the unbounded region is dominated by∫
|x|>qN

|x|−1|(χ−1
1 χ2)(x)|dx =

∫
|x|>qN

|x|−s1+s2−1dx,

which converges for Re(s1 − s2) > 0.
To show Mf ∈ V ′, we need to check

Mf(
[
1 x

1

]
g) = Mf(g), Mf(

[
y1

y2

]
g) = |y1/y2|1/2χ2(y1)χ1(y2)Mf(g).

The first is trivial and for the second:

Mf(
[
y1

y2

]
g) =

∫
F
f(
[
y2

y1

] [
−1

1

] [
1 y2y

−1
1 x
1

]
g)dx

so it is clear.
Finally M is clearly intertwining, and it is not trivial by looking at the function f :

f = |y1/y2|1/2χ1(y1)χ2(y2)χOF
(x), where g =

[
y1 z

y2

] [
−1

1

] [
1 x

1

]

and vanish if g ∈ B(K). Notice the representation of g is unique by Bruhat decomposition. Then
Mf(1) = 1. □

Prop.(15.11.4.12)[Analytic Continuation of Intertwining Integral].Let ξi be two characters
of K×, χi = | · |siξi, (πs1,s2 , Vs1,s2) = B(χ1, χ2), (π′

s2,s1 , V
′
s2,s1) = B(χ2, χ1).

Notice that by Iwasawa decomposition(15.11.1.4), an arbitrary f ∈ B(χ1, χ2) is determined by
its restriction on K, and if a function f0 on K satisfies

f0(
[
y1 x

y2

]
k) = ξ1(y1)ξ2(y2)f0(k), y1, y2 ∈ O∗,

then f0 can extends uniquely to an element fs1,s2 ∈ Vs1,s2 for any s1, s2, called the flat sections of
f0.

Then the intertwining integral Mfs1,s2 defined in(15.11.4.11) is analytic for the dominant χ in
the flat family, and has an analytic continuation to all s1, s2 that χ1 ̸= χ2, and defines a nonzero
operator Vs1,s2 → V ′

s2,s1 .
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Proof: The proof is parallel to that of(15.11.4.11).

Mfs1,s2(g) =
∫

|x|≤qN
fs1,s2(

[
−1

1

] [
1 x

1

]
g)dx+

∫
x≥qN+1

|x|−s1+s2−1(ξ−1
1 ξ2)(x)dxfs1,s2(g)

the first term can easily be extended, and the second term vanishes if ξ−1
1 ξ2 ramifies, and equals

something like a multiple of (χ−1
1 χ2(ϖ))N+1

1−χ−1
1 χ2(ϖ) , which extends unless χ1 = χ2.

For the intertwining property, it is because equalities maintain along analytic continuation, in
particular, it is non-trivial as Mfs1,s2(1) = 1. □

Cor.(15.11.4.13).Z(χ1, χ2) ∼= Z(χ2, χ1), σ(χ1, χ2) ∼= σ(χ2, χ1). If B(χ1, χ2) is irreducible, then
π(χ1, χ2) ∼= π(χ2, χ1). Moreover, there are no other isomorphisms between these representations.

Proof: It suffices to show there are no other isomorphisms, and this is by(15.11.4.10). □

Prop.(15.11.4.14) [Whittaker functional of B(χ1, χ2)].There is a Whittaker functional on
B(χ1, χ2) defined by

Λ(f) =
∫
F
f(w0

[
1 x

1

]
)ψ(−x)dx.

This integral is absolutely convergent if χ is dominant and is analytic for the flat family of χ, by
method the same as in the proof of(15.11.4.11). And this can also be extended to all χ(as flat
section(15.11.4.12)) by defining

Λ(f) = lim
k→∞

∫
p−k

f(w0

[
1 x

1

]
)ψ(−x)dx.

Remark(15.11.4.15).Compare with(16.3.3.3).

Proof: This makes sense because it stabilize as k →∞: when k is large,∫
p−k−1\p−k

f(w0

[
1 x

1

]
)ψ(−x)dx = q−k−1f(1)

∫
p−k−1\p−k

ψ(−x)(χ−1
1 χ2)(x)dx

By continuity(See the proof of(15.11.4.11)). If ψ(t) ̸= 0, choose k large that χ−1
1 χ2(x) = χ−1

1 χ2(x+ t)
for any x ∈ p−k−1\p−k, thus this integral vanishes. □

Remark(15.11.4.16).For general n, this method won’t work, and another method is used
in??Bernstein, J., Letter to Piatetski-Shapiro (1985). To appear in Cogdell and Piatetski-Shapiro
(book in preparation).] to extend analytically.

Prop.(15.11.4.17). If B(χ1, χ2) is irreducible, with the notations in(15.11.4.11), the intertwining in-
tegral M : B(χ1, χ2)→ B(χ2, χ1) satisfies

Λ′ ◦M = ξ1ξ
−1
2 (−1)γ(1− s1 + s2, ξ

−1
1 ξ2, ψ)Λ,

where Λ is the Whittaker functional defined in(15.11.4.14), and γ(s, χ, ψ) is the local constant defined
in(19.2.2.8).

Proof: Cf.[Bump, P485].? □
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Cor.(15.11.4.18) [Composition of Intertwining Integrals]. If B(χ1, χ2) is irreducible, M :
B(χ1, χ2) → B(χ2, χ1),M ′ : B(χ2, χ1) → B(χ1, χ2) are intertwining integrals, then M ′ ◦M is the
scalar γ(1− s1 + s2, ξ

−1
1 ξ2, ψ)γ(1 + s1 − s2, ξ1ξ

−1
2 , ψ).

If B(χ1, χ2) is reducible, M ′ ◦M = 0.

Proof: The irreducible case follows from the proposition. For the reducible case, let χ1χ
−1
2 = |·|, the

intertwining integral B(χ2, χ1)→ B(χ1, χ2) is non-zero, so the image is ether B(χ1, χ2) or π(χ1, χ2).
In the first case, B(χ2, χ1) has a infinite dimensional proper quotient, contradiction. The intertwining
integral B(χ1, χ2)→ B(χ2, χ1) is non-zero, so the image is either B(χ2, χ1) or σ(χ1, χ2). In the first
case, B(χ1, χ2) has a 1-dimensional quotient, contradiction. □

Jacquet Module

Prop.(15.11.4.19)[Jacquet Module of B(χ1, . . . , χn)].Let χi be quasi-characters of K×, then the
Jacquet module of χ1 × . . .× χn has dimension n!.

And if n = 2, the representation of T (F ) on the Jacquet module is isomorphic to the representation

t 7→



[
(δ1/2χ)(t)

(δ1/2χ′)(t)

]
, χ1 ̸= χ2

(δ1/2χ)(t)
[
1 v(t1/t2)

1

]
, χ1 = χ2 = χ

.

Proof: Firstly we show dim J(B(χ1, χ2)) = 2: Let Λ : V → C be a functional that Λ(ρ(n)v) = Λ(v)
for n ∈ N(K), then we define a distribution ∆ on GL(2,K) as ∆(φ) = Λ(Pφ). Then

λ(b)∆ = (δ−1/2χ)(b)∆, b ∈ B(K), ρ(n)∆ = ∆, n ∈ N(K)

by(15.11.4.7). Because P is surjective(15.11.4.7), it suffices to show that there are exactly two linearly
independent such ∆.

Consider the left-right action of B(K)×N(K) on GL(2,K), then there are n! orbits B(K)WN(K)
by Bruhat decomposition(11.7.6.6). For w ̸= 1, the orbit B(K)wN(K) is isomorphic to B(K)×N(K)
via (b, n) 7→ bwn−1, thus the restriction of ∆ on it must be of the form

∆1(φ) = C

∫
B(K)

∫
N(K)

φ(bwn−1)(δ1/2χ−1)(b)dbdn

by(15.1.5.11).
As for the distribution on B(K), the same reasoning shows the restriction of ∆ on B(K) must

be of the form
∆2(φ) = C

∫
B(K)

φ(b)(δ1/2χ−1)(b)db,

and it truly satisfies ρ(n)∆2 = ∆2. Finally, (15.1.5.3) gives us the result.
Next we consider J(V ) as a 2-dimensional T (F )-representation must be of the two forms

in(15.11.1.24), it suffices to distinguish these two cases.
Denote V = B(χ1, χ2). Consider for any quasi-character µ of T (F ),

HomT (F )(J(V ), δ1/2µ) ∼= HomB(K)(V, δ1/2µ) ∼= HomGL(2,K)(V,B(µ1, µ2))

So(15.11.4.10)(15.11.4.13) can be used, so if χ1 ̸= χ2, there are two µ that can make the Hom group
non-vanish, so it is the first case. If χ1 = χ2, then V is irreducible, and there is only one µ that
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makes this Hom group non-vanish, and the Hom group is of dimension1 by Schur’s lemma, so it is
the second case. □

Prop.(15.11.4.20) [Jacquet Module is Finite Dimensional].For (π, V ) ∈
Irradm(GL(n,K)),dim JUnip(n,K)(V ) ≤ n!, and if it is nonzero, then π is a subrepresentation
of some B(χ1, . . . , χn).

Proof: By(15.11.2.10), π is isomorphic to a subrepresentation of some B(χ1, . . . , χn). Then by
exactness of Jacquet functor(15.11.2.1), J(V ) is a subspace of J(B(χ1, . . . , χn)), which has dimension
n!(15.11.4.19). □

Prop.(15.11.4.21) [Jacquet Functor of σ(χ1, χ2)]. Suppose χ1, χ2 are characters of K× that
χ1χ

−1
2 = | · |−1, then B(χ1, χ2) is reducible, then the Jacquet modules of π(χ1, χ2) and σ(χ1, χ2)

are 1-dimensional, and the characters of T (F ) they afford are δ1/2χ and δ1/2χ′.

Proof: Clearly the Jacquet module of a representation 1(χ) is of dimension 1, so by the exactness
of Jacquet functor(15.11.2.1) and(15.11.4.19), the Jacquet functor for σ(χ1, χ2) is also of dimension
1.

For the determination of the Jacquet module, notice for any representation (π, V ) of GL(2,K),

HomT (F )(J(V ), δ1/2µ) ∼= HomB(K)(V, δ1/2µ) ∼= HomGL(2,K)(V,B(µ1, µ2)).

So for π = π(χ1, χ2), HomT (F )(J(V ), δ1/2µ) = C for µ = χ, so J(π(χ1, χ2)) is δ1/2χ. For π =
σ(χ1, χ2), then HomT (F )(J(V ), δ1/2µ) = C for µ = χ′ by(15.11.4.13), so J(σ(χ1, χ2)) is δ1/2χ′. □

Kirillov Modules of Principal Series

Prop.(15.11.4.22)[Kirillov Model of Principal Series].Let π(χ1, χ2) be an irreducible principal
series,

• If χ1 ̸= χ2, then the Kirillov model of π(χ1, χ2) consists of smooth functions φ on K× that
is compactly supported on F and φ(t) is a linear combination of the function |t|1/2χ1(t) and
|t|1/2χ2(t) when |t| is small.

• If χ1 = χ2, then the Kirillov model of π(χ1, χ1) consists of smooth functions φ on K× that
is compactly supported on F and φ(t) is a linear combination of the function |t|1/2χ1(t) and
v(t)|t|1/2χ1(t) when |t| is small.

Proof: First assume that χ1 = χ2, then by(15.11.4.19), there are two functions φ1, φ2 that satisfies

π(t)φ1 = (δ1/2χ)(t)φ1, π(t)φ2 = (δ1/2χ)(t)φ2 + v(t1/t2)(δ1/2χ)(t)φ1.

Then by(15.11.3.21), φ1(u) = C|u|1/2χ1(u) for |u| small, and because φ1 ̸= 0 ∈ J(V ), C ̸= 1
by(15.11.3.20), and we can assume that C = 1. Then for any t0 ∈ p\p2,

π(
[
t0

1

]
)φ2 − |t0|1/2χ1(t0)[φ1 + φ2] ∈ VN .

Thus by(15.11.3.20), there exists some constant ε(t0) that

φ2(tu) = |t|1/2χ1(t)φ2(u) + |tu|1/2χ1(tu).
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is true for t = t0 and |u| ≤ ε(t0). Notice both sides are locally constant on t, so this is true for t near
t0. Because p\p2 is compact, there is a ε that this is true for any t ∈ p\p2 and |u| ≤ ve.

Now any element t ∈ p can be factored into product of elements in p\p2, so by induction

φ2(tu) = |t|1/2χ1(t)φ2(u) + v(t)|tu|1/2χ1(tu).

for any t ∈ p and |u| ≤ ε. So the theorem is true for φ1 and φ2, thus true for any other function
because they differs from a linear combination of these two by an element in VN , which vanishes for
|t| small, by(15.11.3.20).

Case1 is similar and easier. □

Prop.(15.11.4.23)[Kirillov Model of Steinberg Representations].Let σ(χ1, χ2) be a Steinberg
representation of GL(2,K), where χ1χ

−1
2 = | · |−1, then the Kirillov model of σ(χ1, χ2) consists of

smooth functions φ on K× that is compactly supported on F and φ(t) is a constant multiple of
|t|1/2χ2(t) when |t| is small.

Proof: The proof is the same as that of(15.11.4.22), with(15.11.4.21) used instead of(15.11.4.19).
□

5 Spherical Representations

Def.(15.11.5.1)[Normalized Spherical Vector].Let χ1, . . . , χn be nonramified quasi-characters of
K×, then B(χ1, . . . , χn) contains a K-fixed vector φK that is defined to be

φK(bk) = (δ1/2χ)(b), b ∈ B(K), k ∈ K

Notice this is well-defined, because for u ∈ B(K) ∩K, (δ1/2χ)(u) = 1. φK is K-spherical, and we
refer to it the normalized spherical vector in V . Such a B(χ1, . . . , χn) is called a unramified
principal series if it is irreducible.

Notice when n = 2 and χ2 = χ1| · |, this spherical vector just spans the 1-dimensional invariant
subspace in(15.11.4.2).

Prop.(15.11.5.2)[Satake Isomorphism].There is an isomorphism

S : HK ∼= C[t1, t−1
1 , . . . , tn, t

−1
n ]W .

s.t. if φ ∈ HK , for any spherical principal series π(χ1, . . . , χn) and a spherical vector v, π(φ)v =
S(φ)(α1, . . . , αn), where αi = χ(χi) are the Satake parameters of χi.

Remark(15.11.5.3).For general Satake isomorphism, Cf.(15.12.0.3).

Proof: Cf.[Spherical representations and the Satake isomorphism]? □

Cor.(15.11.5.4).When n = 2, under the Satake isomorphism, the Hecke operators T (p) =
[
ϖ

1

]
and Rp = ϖI are mapped to

q1/2(t1 + t2), t1t2,

resp.
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Proof: For any unramified spherical representation with Satake parameters α1, α2, using the rep-

resentative of K
[
ϖ

1

]
K over K as in(16.2.3.9),

(T (p)φK)(1) =
∫
K

[
ϖ

1

]
K

φK(g)dg =
∑

γ∈K

[
ϖ

1

]
K/K

φK(γ)

= (∆1/2χ)(
[
1

ϖ

]
) + q(∆1/2χ)(

[
ϖ

1

]
) = q1/2(α1 + α2)

and similarly for R(p). □

Cor.(15.11.5.5) [Spherical Representation of GL(n,K)].Every irreducible admissible spherical
representation (π, V ) of GL(n,K) is of the form Q(∆1,∆2, . . . ,∆n) where ∆i = (χi, 1), χi are
unramified quasi-characters.

Proof: Use the Satake isomorphic to find Satake parameters of unramified quasi-characters χi that
makes the representation of HK ∼= C[t1, t−1

1 , . . . , tn, t
−1
n ]W isomorphic to that of π, then by(2.4.4.3),

χ1 × χ2 × . . .× χn has a unique irreducible subquotient that has the came spherical character as π,
then by(2.4.4.12), this subquotient is isomorphic to π. Now use the fact we can change the order of
χi s.t. it is just Q(∆1,∆2, . . . ,∆n). □

Prop.(15.11.5.6)[Intertwining Operator on Spherical Vector].For χ1, χ2 unramified with Sa-
take parameter αi, consider M : B(χ1, χ2)→ B(χ2, χ1), then

MφK,χ = 1− q−1α1α
−1
2

1− α1α
−1
2

φK,χ′ .

Proof: Clearly this equation is true up to scalar becauseM is intertwining, so it suffices to calculate
(MφK)(1). For this, we assume χ is dominant(15.11.5.2) because we can use analytic continuation.
Then

(MφK)(1) =
∫
F
φK(w0

[
1 x

1

]
)dx.

The integral is 1 on O, and for m > 0, on p−m\p−m+1, by(15.11.4.11), it equals q−mαm1 α
−m
2 qm(1−

q−1), so the total sum is 1 + (1− q−1)α1α
−1
2 /(1− α1α

−1
2 ). □

Prop.(15.11.5.7). If χ1, χ2 are nonramified, V = B(χ1, χ2), K0(p) is the Iwahori subgroup(15.11.1.8),
then the composition

V K0(p) ↪→ V → J(V )

is an isomorphism. In particular, it is of dimension 2.

Proof: Firstly notice V K0(p) has dimension≤ 2, because of the decomposition(15.11.1.11) and
definition, and J(V ) has dimension2 by(15.11.4.19), so it suffices to show the map is surjective. The
image is just J(V )T (O) by(15.11.2.5). But by(15.11.4.19) and the fact χi are nonramified, all of J(V )
are T (O)-fixed, thus J(V )T (O) = J(V ). □
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Cor.(15.11.5.8)[Casselman Basis].When χ1 ̸= χ2, we can easily find a basis of V K0(p), that is

L1(φ) = φ(1), L0(φ) = (Mφ)(1)

where M is intertwining integral defined in(15.11.4.12). These are N(K)-invariant, thus define func-
tionals on J(V ) ∼= V K0(p). They are linearly independent checked on T (F ).

Then the dual basis φ0, φ1 ∈ V K0(p) are called the Casselman basis.
φ0 has a simple form: using Iwahori-Bruhat decomposition(15.11.1.11),

φ0(g) =
{

(∆1/2χ)(b) g = bw0k ∈ B(K)wK0(p)
0 otherwise

.

Proof: It is easily verified that this formula is well-defined and defines a Iwahori-fixed vector, so it
suffices to valuate it by Li. Clearly L1(φ0) = 0, and for L0(φ0), notice that

w0

[
1 x

1

]
∈ B(K)w0K0(p)

iff x ∈ O, so L0(φ0) = 1. □

Lemma(15.11.5.9).When χ1 ̸= χ2 nonramified and m ≥ 0, the function

Fm(g) =
∫

O
φK(g

[
1 x

1

]
am)dx, am =

[
ϖm

1

]

is an Iwahori-fixed vector, and

Fm = q−m/2αm2 M(φK)(1)φ0 + q−m/2αm1 φ1

Proof: ∫
K0(p)

π(kam)φKdk =
∫
N−(p)

∫
T (O)

∫
N(O)

φK(gn−t0nam)dndt0dn−(15.11.1.9)

noticing that a−1
m t0n−am ∈ K as m ≥ 0, so the integrand is independent of t0, n− and equals Fm,

and it is clearly Iwahori-fixed. And

c1 = L1(Fm) = Fm(1) = φK(am) = (∆1/2χ)(am) = q−m/2αm1 .

Similarly, for χ dominant,

c0 = L0(Fm) =
∫
N(K)

Fm(w0n)dn =
∫
N(K)

∫
N(O)

φK(w0nn
′am)dn′dn.

By Fubini, the n′ can be omitted, thus it equals (MφK)(am) = (∆1/2χ′)(am). □

Spherical Whittaker Function and Spherical Functions

See [Casselman, W., The unramified principal series of p-adic groups I: the spherical function,
Compositio Math. 40 (1980), 387-406.] and [Casselman, W. and J. Shalika, The unramified principal
series of p-adic groups II: the Whittaker function, Compositio Math. 40 (1980), 207-231.] for more
general calculations.



1636 CHAPTER 15. REPRESENTATION THEORY

Def.(15.11.5.10) [Spherical Whittaker Function].The spherical Whittaker function of a
generic spherical representation is the spherical vector W 0 in the Whittaker model normalized that
W0(1) = 1?.

For n = 2, we can define another normalization W0(g) = Λ(π(g)φK), where Λ is the Whittaker
functional defined in(15.11.4.14) and φK is the normalized spherical vector defined in(15.11.5.1).

Prop.(15.11.5.11).We may assume that the conductor of ψ is O, because any other character is of
the form x 7→ ψ(ax), thus

W0(g, ψa) =
∫
F
φK(w0

[
1 x

1

]
g)ψ(−ax)dx = |a|−1/2χ2(a)W0(

[
a

1

]
g, ψ),

(and also by analytic continuity). In particular, µ(O) = 1(12.4.6.6).
Notice that

W0(
[
1 x

1

] [
z

z

]
gk) = ψ(x)ω(z)W0(g), z ∈ K×, k ∈ K,

where ω = χ1χ2, so to calculate W0, it suffices to compute W0(
[
ϖm

1

]
= am).

Remark(15.11.5.12).We want to calculate the spherical Whittaker function W0 explicitly because
it is used to evaluate the local part of the global L-function(19.2.6.3).

Lemma(15.11.5.13) [Calculating W0].For B(χ1, χ2) with Satake parameters α1, α2, the spherical
Whittaker function satisfies

W0(1) = 1− q−1α1α
−1
2 , W0(am) = 0

for m < 0.

Proof: As in the proof of(15.11.4.11), because φK is K-invariant, we have
∫

O
φK(w0

[
1 x

1

]
)ψ(−x)dx = 1,

∫
p−1\O

φK(w0

[
1 x

1

]
)ψ(−x)dx = q−1α1α

−1
2

∫
p−1\O

ψ(−x)dx = −q−1α1α
−1
2 ,

∫
p−k−1\p−k

φK(w0

[
1 x

1

]
)ψ(−x)dx = q−k−1αk+1

1 α−k−1
2

∫
p−k−1\p−k

ψ(−x)dx = 0, k ≥ 1

For W0(am), choose x ∈ O that ψ(ϖmx) ̸= 1, then

W0(am) = W0(am

[
1 x

1

]
) = W0(

[
1 ϖm

1

]
am) = ψ(ϖmx)W0(am)

so W0(am) = 0. □

Lemma(15.11.5.14) [Functional Equation].For fixed g, W0(g) is an analytic function of α1, α2,
and (1− q−1α1α

−1
2 )−1W0(g) is symmetric in α1, α2.
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Proof: The Whittaker functional is defined by calculated by continuation(15.11.4.14), and for χ
dominant,W0 is analytic(15.11.4.14), thus by calculation in(15.11.5.13), its value at 1 is identically 1,
thus so does its analytic continuation. Then to check after switching α1, α2 it is the same meromorphic
function, it suffices to show for all irreducible principal series B(χ1, χ2). But in this case, B(χ1, χ2) ∼=
B(χ2, χ1), so their Whittaker model thus spherical Whittaker function differ only by a scalar, thus
the same. □

Prop.(15.11.5.15)[Calculating W0].

(1− q−1α1α
−1
2 )−1W0(am) =

q−m/2 α
m+1
1 −αm+1

2
α1−α2

m ≥ 0
0 m < 0

Proof: By?? we can assume χ is dominant and use analytic continuation.

W0(am) =
∫
F
Fm(w0

[
1 x

1

]
)ψ(−x)dx,

by(15.11.4.14)(15.11.5.9) and a change of variable. Then use(15.11.5.9), we see that

W0(am) = C1q
−m/2αm1 + C0q

−m/2αm2

where
C0 = (MφK)(1)

∫
F
φ0(w0

[
1 x

1

]
)ψ(−x)dx

And
∫
F φ0(w0

[
1 x

1

]
)ψ(−x)dx = 1, by the same consideration as in the proof of(15.11.5.8).

Finally, (MφK)(1) can be calculated by(15.11.5.6), and the requirement of(15.11.5.14) will deter-
mine C1. □

Prop.(15.11.5.16)[Spherical Function].For a spherical irreducible admissible representation (π, V )
of GL(2,K), its contragradient V̂ is also spherical(2.4.4.11). Then we define the spherical function

σ(g) = (π(g)v, v̂)

where v, v̂ are spherical and normalized that ⟨v, v̂⟩ = 1. This is bi-invariant under K-action
By(15.11.5.5).

By(15.11.5.5), (π, V ) is of the form χ(det(g)) or π(χ1, χ2) for πi nonramified. In the former case
the spherical function is just χ ◦ det. Now we only consider the latter interesting case, for which
there is a spherical functional v̂ : φ 7→

∫
K φ(k)dk, and it is 1 on the normalized spherical vector

v(15.11.5.1), and
σ(g) =

∫
K

(π(g)φK)(k)dk =
∫
K
φK(kg)dk

Prop.(15.11.5.17) [Macdonald Formula].The spherical function for unramified principal series
behave well under Z(K)-action and is K-binvariant, so in order to compute it, it suffices to compute
its value on am. We have:

σ(am) = q−m/2

1 + q−1 [αm1
1− q−1α2α

−1
1

1− α2α
−1
1

+ αm2
1− q−1α1α

−1
2

1− α1α
−1
2

]
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Proof: First notice that∫
K
Fm(k)dk =

∫
K

∫
O
φK(k

[
1 x

1

]
am)dxdk =

∫
K
φK(kam)dk

by a change of variable. Then by(15.11.5.9), this equals

[
∫
K
φ0(k)dk]q−m/2αm2

1− q−1α1α
−1
2

1− α1α
−1
2

+ [
∫
K
φ1(k)dk]q−m/2αm1 .

Next we calculate
∫
K φ0(k)dk directly: By(15.11.5.8), this equals the volume of K ∩

(K0(p)w0K0(p)) = K0(p)w0K0(p). K/K0(p) ∼= GL(2,Fq)/B(Fq) has cardinality q + 1, and by
pulling back the Bruhat decomposition of GL(2,Fq), K0(p)w0K0(p) consists of q left cosets of K0(p).
So ∫

K
φ0(k)dk = q

1 + q
.

Finally the expression is symmetric in α1, α2, because the spherical vectors in V, V̂ are
unique(2.4.4.11), and ̂B(χ1, χ2) = B(χ2, χ1). Also, the expression is a combination of αmi and the
coefficient is independent of m, so it can be determined as above. □

6 Unitarizable, Tempered & L2 Representations
Def.(15.11.6.1)[L2-Representations].An admissible irreducible representation (π, V ) of G is called
essentially square-integrable if for any v ∈ V and λ ∈ V ∨, the matrix coefficients cv,λ is L2 on
K.

It is called square-integrable if moreover the central character ωπ is unitary.

Remark(15.11.6.2)[Casselman].For any smooth representation of GL(n,K), there exists a unique
real-valued quasi-character χ that the central character of π ⊗ (χ ◦ det) is unitary.

Def.(15.11.6.3) [Tempered Representations].Let G be a reductive group over F and π an ad-
missible representation of G(F ), then π is called an essentially tempered representation if the
matrix coefficients of π are all contained in L2+ε(K) for any ε > 0.

It is called a tempered representation if moreover the central character ωπ is unitary.

Prop.(15.11.6.4)[Jacquet, Zelevinsky].
• π ∈ Irradm(GL(n,K)) is essentially square-integrable iff it is of the form Q(∆) for a single

Zelevinsky segment ∆.
• π ∈ Irradm(GL(n,K)) is square-integrable iff it is of the form Q(∆) for a single Zelevinsky

segment, and the central character of σ(m−1
2 ) is unitary, where ∆ = ∆(σ,m).

• π ∈ Irradm(GL(n,K)) is tempered iff π = Q(∆1, . . . ,∆r), where each Q(∆i) is square-
integrable.

Proof: Cf.[Generic Representations, Jacquet(1977)]. □

Cor.(15.11.6.5)[Classification of Irreducible tempered representations of GL(2)]. Irreducible
tempered representations of GL(2,K) are one of the following form:

• Cuspidal representation with unitary central characters.



15.11. ADMISSIBLE REPRESENTATIONS OF GL(N) OVER P -ADIC NUMBER FIELDS 1639

• Steinberg representations with unitary central characters.
• Principal representations B(χ1, χ2) with χ1, χ2 unitary.

Proof: Cf.[G-H11]P365. □

Cor.(15.11.6.6)[Tempered Representation is Generic]. Irreducible tempered representations are
precisely generic ones Q(∆1)× . . .×Q(∆r) s.t. each Q(∆i) has a unitary central character.

Proof: It suffices to show that no two ∆i,∆j are linked. But notice if ∆i = (σi,mi), then σ(i)(mi−1
2 )

is the central character, so there are no chance that they are linked. □

Unitarizable Representations

Lemma(15.11.6.7) [Possibility of Unitarization of Principal Series]. If B(χ1, χ2) admits an
invariant non-degenerate Hermitian pairing, then either χ1, χ2 are all characters or χ1 = χ2

−1.

Proof: There is an anti-linear GL(2,K)-map B(χ1, χ2)→ B(χ1, χ2) which is conjugation, so if there
is a GL(2,K)-invariant Hermitian pairing on B(χ1, χ2), (f1, f2) 7→ (f1, f2) will be a non-degenerate
GL(2,K)-invariant bilinear pairing

B(χ1, χ2)× B(χ1, χ2)→ C.

So B(χ1, χ2) ∼= B(χ1
−1, χ2

−1), so χi are characters or χ1 = χ2
−1 by(15.11.4.10). □

Lemma(15.11.6.8). If χ1, χ2 are characters, then B(χ1, χ2) is unitarizable, by(15.1.5.52).

Lemma(15.11.6.9).Let χs = χ0| · |s, where χ0 is a character of F . If s ̸= 0, 1/2 is a real number (so
that B(χs, χ−s) is irreducible), then B(χs, χ−s) is unitarizable iff −1/2 < s < 1/2.

Proof: Because B(χs, χ−s) = χ0 ⊗ B(| · |s, | · |−s), we can assume χ0 = 1. Let Ms : B(χs, χ−s) →
B(χ−s, χs) be the intertwining integral(15.11.4.12), then we see the sesquilinear pairing

(f1, f2) =
∫
K

(Msf1)(k)f2(k)dk

is G-invariant and non-degenerate by the proof of(15.11.4.9). For an irreducible representation, such
a pairing must be unique, so we are reduced to checking this representation is positive/negative
definite.

Consider the Iwahori-fixed vector f0 = ∆s+1/2(b) for g = bk as defined in(15.11.5.8), then as s
varies, f0 forms a flat section. We calculate (f0, f0) for s > 0 and then use continuation:

In this case,

(f0, f0) = V (K0(p))
∫
F
f0(w0

[
1 x

1

]
)dx

and [
−1

1

] [
1 x

1

]
∈ B(K)K0(p)

iff x /∈ O, in which case [
−1

1

] [
1 x

1

]
=
[
x−1 −1

x

] [
1
x−1 1

]
.
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So
(f0, f0) = 1

q + 1

∫
|x|>1

|x|−1−2sdx = 1− q−1

1 + q

q−2s

1− q−2s .

We then consider the spherical vector φK(15.11.5.1), then(15.11.5.6) shows

(φK , φK) = 1− q−1−2s

1− q−2s .

which is positive if |s| > 1/2. So if B(χs, χ−s) is unitarizable, |s| < 1/2.
Now for |s| < 1/2, we show B(χs, χ−s) is unitary: Modify the intertwining operator M∗

s =
(1− q−2s)Ms, then it is definable for s = 0, by calculation in(15.11.4.12), so the modified Hermitian
product

(·, ·)∗ = (1− q−2s)(−,−)

is defined at s = 0, and is positive/negative definite, because in this case it is irreducible and
unitarizable(15.11.6.8). The eigenvalue of this Hermitian form deforms continuously, and it is never
zero because it is non-degenerate as said above(only when s ̸= 1/2 because we need Ms to be
isomorphism), so it is always definite and B(χs, .χ−s) is unitarizable. □

Prop.(15.11.6.10)[Unitarizable Principal Series].An irreducible principal series B(χ1, χ2) is uni-
tary iff either χ1, χ2 are all characters, or there is a unitary character χ0 and −1/2 < s < 1/2 that
χ1 = χ0| · |s, χ1 = χ0| · |−s, called complementary series representations.

Proof: Follows immediately from the lemmas above(15.11.6.8)(15.11.6.7)(15.11.6.9). □
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15.12 Local Langlands for GL(n) over p-Adic Fields
Main references are [?], [Bus19] and [The Local Langlands correspondence, the Non-Archimedean

Case, Kudla(1994)].

Notation(15.12.0.1).
• Let K ∈ p-LField.

Prop.(15.12.0.2). If G/K is a split almost simple algebraic group, then it is isogenous to one of the
following groups: SL(n), SO(n), Sp(n), G2, F4, E6, E7, E8.

It is false in general that maximal compact subgroups of G are conjugate. However, there are
special maximal compact subgroups, and an irreducible admissible representation of G(F ) is
called spherical if it is fixed by the special maximal compact subgroup.

Proof: ? □

Prop.(15.12.0.3)[Langland’s Formation of the Satake Isomorphism]. If G is split, then HK is
isomorphic to ring generated by the characters of irreducible analytic f.d. representations of LG, and
the spherical representations of G(K) are parametrized by the semisimple conjugacy classes in LG0.

If G is non-split but splits over an unramified Galois extension Ω/K, let Φ be the Frobenius
element in G(Ω/F ), and consider the cosets Ĝ ⊂ LG, then HK is isomorphic to the ring of functions
on the this coset that are generated by the restrictions of characters of irreducible representations of
LG, and the spherical representations of G(F ) are parametrized by the semisimple conjugacy classes
in LG in this coset.

1 Local Langlands for p-adic GL(n)

References are [M. Harris, R. Taylor: The geometry and cohomology of some simple Shimura
varieties], [The Local Langlands Correspondence for GL(n) over p-adic Fields, Wedhorn], [Yao17].

Cor.(15.12.1.1)[LLC for GL(1)].
Local class field theory told us that W ab

K is isometric to K×, And notice by Schur’s lemma, any
smooth representation of K× is 1-dimensional and factors through some UK .

And a Weil-Deligne representation is now a continuous W ab
K → C∗. but it must factor through

some UK , so these two are equivalent.

Lemma(15.12.1.2)[Jacquet-Langlands].Let E/K be a quadratic extension and χ a quasi-character
of WE , ρ : WF → GL(2,C) the induced representation of WF , then π(ρ) in(16.4.1.10) exists.

Proof: Cf.[Bump, P556].? □

Thm.(15.12.1.3)[LLC for GL(n)].There exists a unique collection of bijections recn between sets:

recn : Irradm(GL(n, F )) ∼= wdφ−ss
dim −n(WF ).

satisfying the following properties:
• For a quasi-character χ of K∗, rec1(χ) = χ ◦Art.
• For every pair π1, π2 ∈ Irradm(GL(n, F )),

L(π1 × π2, s) = L(recn1(π1)⊗ recn2(π2), s), ε(π1 × π2, s) = ε(recn1(π1)⊗ recn2(π2), s).
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• For a quasi-character χ of K∗ and π ∈ Irradm(GL(n,K)), recn((χ◦det)⊗π) = recn(π)⊗rec1(χ).
• For any π ∈ Irradm(GL(n, F )) with central character ω, det ◦ recn(π) = rec1(ω).
• For any π ∈ Irradm(GL(n, F )), recn(π∨) = recn(π)∗.

Moreover, these bijections also preserves two more invariants:
• Conductor: c(π) = c(recn(π)).
• Depth: d(π) = d(recn(π)).

Proof: Cf.[Harris-Taylor] and [Laumon, G., M. Rapoport and U. Stuhler, D-elliptic sheaves and
the Langlands correspondence, Invent. Math. 113 (1993), 217-338.] □

Lemma(15.12.1.4) [Plan of Proof].By Bernstein-Zelevinsky classification(15.11.4.1), it suffices
to construct recn for irreducible cuspidal representations, then for any π = Q(∆1, . . . ,∆r) ∈
Irradm(GL(n, F )), where ∆i = ∆i(πi,mi),

∑
nimi = n, we can define

recn(π) = ⊕ri=1 Spmi(recni(πi)).

By work of Henniart, it suffices to prove there exist maps recn on irreducible cuspidal represen-
tations that satisfies these properties, because it will be automatically bijective and unique. His
method is to use the numerical local Langlands correspondence.

Remark(15.12.1.5). it seems Scholze’s approach bypasses Henniart numerical local Langlands corre-
spondence.

Prop.(15.12.1.6).Under the local langlands correspondence(15.12.1.3), π ∈ Irradm(GL(n, F )) is
• supercuspidal iff recn(π) is irreducible.
• essentially square integrable iff recn(π) is indecomposable.
• generic iff L(ad ◦ recn(π), s) has no pole at s = 1.

Proof: □

Prop.(15.12.1.7)[Inertia Correspondence].Under the local langlands correspondence(15.12.1.3),
for π, π′ ∈ Irradm(GL(n, F )),

• π|K ∼= π′|K iff recn(π)|IF ∼= recn(π′)|IK .
• (Paskunas)Let τ be a Weil-Deligne inertia type of IK that extends to an n-dimensional irre-

ducible F-semisimple representation of WK , then there exists a unique irreducible smooth rep-
resentation στ of K s.t. for any irreducible infinite-dimensional representation π of GL(n, F ),
π|K contains στ iff recn(π)|IF ∼= σ.

Proof: □

Prop.(15.12.1.8)[LLC for GL(2)].Under the classification of Irradm(GL(2, F )) given in(15.11.4.4),
the corresponding Weil-Deligne representations are

1. For π supercuspidal, rec2(π) = (ρ, 0), ρ irreducible, by(15.12.1.6).
2. For principal series χ1 × χ2, rec2(π) = (χ1 ⊗ χ2, 0).
3. For 1(χ), rec2(π) = (χ⊕ χ(1), 0).
4. For π = St2(χ), rec2(χ) = Sp2(χ) = (χ⊕ χ(1), N), where N sends χ to χ(1).

Proof: □
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2 Cuspidal Representations
3 Simple Characters
4 Tame Lifting
5 Description of the Langlands Correspondence
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16 | Automorphic Representations & Global
Langlands Conjecture

16.1 Automorphic Representations over Archimedean Local Fields
Main References are [Bum98], [Bor97], [Automorphic Forms and L-Functions for the Group

GL(n,R), Goldfeld] and [A Course given by Liang Xiao]. Notice that [?] has many gaps, and
these gaps can be filled by [Bor97] or [P-R94].

Notation(16.1.0.1).
• Let K = R or C.
• G = GL(n,K)+, G1 = SL(n,K),K = SO(n,K).
• Use notations defined in Arithmetic of Algebraic Groups.
• Use notations defined in Arithmetic Subgroups.
• B is the upper triangular matrices, N(K) the group of unipotent upper triangular matrices in
G, T the group of diagonal matrices, Z(K) the group of scalar matrices.

• Define right regular action ρ of G on C∞(G), and also the left regular action λ. We will write
dX for X ∈ g as the representation of Lie algebra of G via ρ, then it commutes with λ. So it
induces a map of U(g) to the ring of left G-invariant differential operators on G(15.9.1.1).

• Fix a character ψ of K, define a character ψN on N(K) by

φN (u) = ψ(
n−1∑
i=1

ui,i+1).

Notation(16.1.0.2). If n = 2,
• G acts onH through linear fractional transformation(11.7.4.10) and fixes the measure y−2dxdy.

We will denote a, b, c, d the linear functionals on Mat(2,R) s.t. for γ ∈ Mat(2,R), γ =[
a(γ) b(γ)
c(γ) d(γ)

]
.

• Use the Lie algebra notations(2.5.2.11):

H =
[
0 −i
i 0

]
, R = 1

2

[
1 i
i −1

]
, L = 1

2

[
1 −i
−i −1

]
W =

[
0 1
−1 0

]
= iH.

and the Casimir element in Z = Z(U(g)):

∆ = −1
4

(H2 + 2RL+ 2LR).
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• Let Γ be a discrete subgroup of G that the volume of Γ\H is finite, we may also assume that
−1 ∈ Γ ⊂ SL(2,R).

• Let χ be a character of Γ and ω be a character of the center Z(R) ⊂ G(the scalar matrices).
Assume that ω(−1) = χ(−1).

1 Basics
Prop.(16.1.1.1). In the coordinate(11.7.4.3), we have the following equation:

∂

∂R
= e2iθ(iy ∂

∂x
+ y

∂

∂y
+ 1

2i
∂

∂θ
), ∂

∂L
= e−2iθ(−iy ∂

∂x
+ y

∂

∂y
− 1

2 i
∂

∂θ
), ∂

∂H
= −i ∂

∂θ

So in particular

∆ = ∂2

∂∆2 = −y2( ∂
2

∂x2 + ∂2

∂y2 ) + y
∂2

∂x∂θ
.

Proof: H = −iW , and exp(tW ) = kt =
[

cos t sin t
− sin t cos t

]
, so dW = ∂/∂θ is clear.

For dR, first notice that
kθ exp(tR) = exp(e2tiθR)kθ,

as

kθ exp(tR)k−θ = C−1
[
eiθ

e−iθ

]
exp(te)

[
e−iθ

eiθ

]
C = C−1

[
eiθ

e−iθ

] [
1 t

1

] [
e−iθ

eiθ

]
C

= C−1
[
1 e2iθt

1

]
C

= exp(e2iθtR)

where C is the Cayley transformation, notation as in(2.5.2.11),
Now

(dRf)(g) = d

dt
f(bkθ exp(tR)) = d

dt
f(b exp(e2iθtR)kθ) = e2iθ d

dt
f(b exp(tR)kθ)

Then notice

R = 1/2H +
[
0 i
0 0

]
+ 1/2

[
1 0
0 −1

]
, exp(tR) ∼ kt/2 +

[
1 it

1

]
+
[
et/2

e−t/2

]

so we get the desired result.
For dL the calculation is similar to that of dR. □

Def.(16.1.1.2)[Cusps].A cusp of Γ is a point in P1(R) whose stablizer in Γ contains a non-trivial
parabolic element(11.7.4.2).

Let ∞ be a cusp, then {±1}Γ∞ = {±1}⟨
[
1 r

1

]
⟩ for some r > 1. Then if Γ∞ = ⟨−

[
1 r

1

]
⟩, then

it is called an irreducible cusp, otherwise it is called a regular cusp. Similarly, for any other cusp
a = ξ(∞), where ξ ∈ SL(2,R), we called a is regular/irregular cusp iff ∞ is regular/irregular cusp
w.r.t. Γ′ = ξ−1Γξ.
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Def.(16.1.1.3)[Form Spaces].Let C∞(Γ\G,χ, ω) be the space of smooth functions F : G→ C that

F (γg) = χ(γ)F (g), γ ∈ Γ, g ∈ G,

F (zg) = ω(z)F (g), z ∈ Z(R), g ∈ G.

Let the subspace C∞
c (Γ\G,χ, ω) be those functions f that |f | is compactly supported in G1.

Similarly we define C(Γ\G,χ, ω) and Cc(Γ\G,χ, ω).
Define C(Γ\G,χ, k) or Cc(Γ\G,χ, k) to be the subspace of C(Γ\G,χ) or Cc(Γ\G,χ) consisting

of functions F s.t. ρ(kθ)F = eikθF .
When ω is the character of Z(R) that ω(Z(R+)) = 1, then we denote C∞(Γ\G,χ) =

C∞(Γ\G,χ, ω).

Def.(16.1.1.4) [Archimedean Automorphic Forms].Let the space of automorphic forms
A(Γ\G,χ, ω) be the subspace of C∞(Γ\G,χ, ω) consisting of K-finite and Z-finite functions sat-
isfies the condition of moderate growth:

|F (g)| < C||g||N

for some C,N > 0, where the height on G is induced from the inclusion

G→M(n,R)×M(n,R) : g 7→ (g, g−1).

When ω is trivial on Z+(R), let A(Γ\G,χ, k) be the subspace of A(Γ\G,χ) consisting of functions
f that ρ(kθ)(f) = eikθf .

Automorphic forms are real analytic, by(16.1.1.29).

Def.(16.1.1.5) [Cuspidal Forms]. If ∞ is a cusp of Γ, then {±1}Γ∞ = {±1}⟨
[
1 r

1

]
⟩, so a F ∈

A(Γ\G,χ, ω) is called cuspidal at ∞ iff χ(τr) ̸= 1 or∫ r

0
F (
[
1 x

1

]
g)dx = 0.

for any g ∈ G. Notice this is independent of r chosen.
More generally, if a is a cusp of Γ, then choose ξ ∈ SL(2,R) that ξ(∞) = a, then for F ∈

A(Γ\G,χ, ω), F ′(g) = F (ξg) ∈ A(Γ′\G,χ′, ω), where Γ′ = ξ−1Γξ, χ′(γ′) = χ(ξγ′ξ−1)(Because left
and right actions commute). Then F is called cuspidal at a iff F ′ is cuspidal at ∞.

The subspace of cuspidal forms is denoted by A0(Γ\G,χ, ω) ⊂ A(Γ\G,χ, ω).

Prop.(16.1.1.6) [Hecke Operators]. Similar as in(16.2.3.6), we can define the action of RN on
C∞(Γ0(N)\G, χd):

Tα(f)(g) =
∑
i

χd(αi)−1f(αig), if Γ0(N)αΓ0(N) =
⨿
i

Γ0(N)αi.

and preserves automorphic or cuspidal forms.

Proof: This is an action because if Γ0(N)αΓ0(N) =
⨿
i Γ0(N)αi,Γ0(N)βΓ0(N) =

⨿
j Γ0(N)βj ,

then [α][β] =
⨿
i,j Γ0(N)αiβj .

Also f(γx) = χ(γ)f(x) for γ ∈ Γ0(N) because Γ0(N)\Γ0(N)αΓ0(N) is right Γ0(N)-invariant. □
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Γ\H

Def.(16.1.1.7)[Right Weight Action].There are right actions of GL(2,R)+ on C∞(H) defined to
by

(f |kg)(z) = ( cz + d

|cz + d|
)kf(az + b

cz + d
)

Proof: It is an action because? □

Def.(16.1.1.8) [Holomorphic Right Weight Action].Besides the right weight action(16.1.1.7),
there is another family of actions:

f [γ]k(z) = deg(γ)k/2(cz + d)−kf(az + b

cz + d
).

Proof: This is an action because? □

Remark(16.1.1.9).This action is related to that of(16.1.1.7) via(16.1.2.9).

Lemma(16.1.1.10). If f is a holomorphic function on H and γ ∈ SL2(R) satisfies γn ̸= 1 for any
n ̸= 0 and f [γ]k = f , then f = 0.

Proof: Use a Cayley transformation H→ D to map the fixed point to origin, then γ corresponds
to diag(α, α−1), where α is not a root of unity. Then if f(z) =

∑
anz

n, the formula f [γ]k = f says
anα

2n+k = an. Because α2n+k ̸= 1 for any n, an = 0 for any n, thus f = 0. □

Def.(16.1.1.11)[Form Spaces]. if Γ is a discrete subgroup of G1, let C∞(Γ\H, χ, k) be the space of
smooth functions on H that

f |kγ = χ(γ)f, γ ∈ Γ.

And elements in C∞(Γ\H, 1, 0) are called automorphic functions.
Let the subspace C∞

c (Γ\H, χ, k) be those functions f that |f | is compactly supported in Γ\H.

Def.(16.1.1.12) [Behavior at Cusps]. If ∞ is a cusp of Γ, then Γ contains some τr =
[
1 r

1

]
for

r > 0, then a continuous function f(x+ iy) on H is called
• of at most linear exponential growth at ∞ iff |f(x+ iy)| = O(eNy) for y →∞
• of moderate growth at ∞ iff |f(x+ iy)| = O(yN ) for y →∞.
• decay rapidly at ∞ iff |f(x+ iy)| ≤ y−N for some N > 0.
• cuspidal at ∞ iff either χ(τr) ̸= 1 or

∫ r
0 f(z + u)du = 0 for any z ∈ H.

If f is meromorphic on H then we have a Fourier expansion

f(z) =
∞∑

n=−∞
ane

2πinz/r =
∞∑

n=−∞
anq

n = T (q).

Then f is called meromorphic/holomorphic/vanishes at the cusp ∞ iff T (q) does at 0.
The general cusp case is reduced to the ∞ case the same way as in(16.1.1.5). Notice this is

independent of possible r chosen.
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Prop.(16.1.1.13) [Hecke Operators]. Similar as in(16.2.3.6), we can define the action of RN on
C∞(Γ0(N)\H, χd, k):

Tα(f) =
∑
i

χd(αi)−1f |kαi(16.1.1.7), if Γ0(N)αΓ0(N) =
⨿
i

Γ0(N)αi.

and preserves automorphic or cuspidal automorphic forms.

Proof: This is an action because if Γ0(N)αΓ0(N) =
⨿
i Γ0(N)αi,Γ0(N)βΓ0(N) =

⨿
j Γ0(N)βj ,

then [α][β] =
⨿
i,j Γ0(N)αiβj .

Also Tα(f)|kγ = Tα(f) for γ ∈ Γ0(N) because Γ0(N)\Γ0(N)αΓ0(N) is right Γ0(N)-invariant. □

L2-Spaces

Def.(16.1.1.14)[Inner Product on Form Spaces].Notice that if f, g ∈ C∞(Γ\H, χ, k)(16.1.1.11),
then fg is invariant under action of Γ, so we define the Hilbert space L2(Γ\H, χ, k) as the square-
integrable functions in the inner product(16.1.0.1):

(f, g) =
∫

Γ\H
f(z)g(z)dxdy

y2 .

Def.(16.1.1.15) [L2-Spaces].L2(Γ\G,χ) is defined to be the space of functions on G that is χ-
invariant and that is square integrable on Γ\G1(because it can descend) with the quotient Haar mea-
sure(11.7.4.3)(notice that the absolute value descents to Γ\G1) that satisfies conditions in(16.1.1.3).

L2
0(Γ\G,χ) is the subspace of L0(Γ\G,χ) of cuspidal elements, where cuspidality is defined the

same way as in(16.1.1.5) but in the sense that holds for a.e. g.
L2(Γ\G,χ, k) be the subspace of L2(Γ\G,χ) consisting of functions F that ρ(kθ)F = eikθF .

Prop.(16.1.1.16).The space Cc(Γ\G,χ) is dense in L2(Γ\G,χ).

Proof: Firstly we show Cc(Γ\G,χ) is dense in L2(Γ\G,χ). Let F be a Poincaré fundamental do-
main for Γ in SL2(R)(16.1.1.24), then elements in Cc(F) can be extended to elements of Cc(Γ\G,χ),
and in this way, L2(Γ\G,χ) is identified with L2(F), so the claim follows from(10.4.8.5). □

Cor.(16.1.1.17).The right regular action of G extends to a continuous unitary representation of G
on L2(Γ\G,χ). L2

0(Γ\G,χ) is invariant under this representation.

Proof: We must verify continuity, and this is clear using the proposition because we can choose a
compact supported function f to approximate, then the right action is uniformly continuous. The
unitaricity is clear. The invariance of L2

0(Γ\G,χ) is clear. □

Remark(16.1.1.18).Can this be extended to arbitrary locally compact group G??, compare
with(10.11.2.9).

Prop.(16.1.1.19)[Two Form Spaces Equal].There is an isomorphism of Hilbert spaces

σk : C∞(Γ\H, χ, k) ∼= C∞(Γ\G,χ, k) : (σkf)(g) = (f |kg)(i).

that preserves the inner products thus induces an isomorphism

σk : L2(Γ\H, χ, k) ∼= L2(Γ\G,χ, k)
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And we have(16.1.2.1):

σk+2Rk = dRσk, σk−2Lk = dLσk, σk∆k = ∆σk.

Also cuspidality and the behaviors at the cusps are compatible.
Also if Γ = Γ0(N), this isomorphic is compatible with the Hecke operator actions(16.1.1.13)

and(16.1.1.6).

Proof: It can be verified that the inverse of σk is given by

f(z) = F (
[
y x

1

]
)

More precisely, if coordinates(11.7.4.3),

F (u, x, y, θ) = f(x+ iy)eikθ, f(z) = F (0, x, y, 0).

Check the left action of Γ and Z+(R): For Γ actions(16.1.1.11) and(16.1.1.3), this is because
σk(f)(γg) = f |k(γg)(i) = σk(f |kγ). Finally check that σk preserves inner product, which is immedi-
ate from(16.1.1.14)(16.1.1.15) and(11.7.4.3).

The equations between Rk, Lk and R,L are easily verified from(16.1.1.1).
Th action of Hecke operators are compatible by the form (σkf)(g) = (f |kg)(i) as above.
Compatibility of behaviors at cusps: It suffices to check growth conditions, and this follows

from??. □

Technicalities

Prop.(16.1.1.20).

kθ

[
y1

y2

]
=
[
y1y2D(θ)−1 ξD(θ)−1

D(θ)

]
kθ′ .

where

θ′ = arctan(y1
y2

tan θ), D(θ) =
√
y2

1 sin2 θ + y2
2 cos2 θ, ξ = (y2

2 − y2
1) sin θ cos θ.

Proof: Hint: find θ′ first. □
Prop.(16.1.1.21)[Gelfand].Let G = GL(n,R)+,K = SO(n), denote C∞

c (K\G/K) to be the smooth
functions φ ∈ C∞(G) that φ(k1gk2) = φ(g), then C∞

c (K\G/K) is commutative.

Proof: Consider the map φ 7→ φ̂ : φ̂(g) = φ(gt), then it is an anti-involution of C∞
c (K\G/K):

(φ̂1 ∗ φ2)(g) =
∫
G
φ1(gth)φ2(h−1)dh =

∫
G
φ̂2(h−t)φ̂1(htg)dh =

∫
G
φ̂2(h)φ̂1(h−1g)dh = (φ̂2 ∗ φ̂1)(g)

But we find φ̂ = φ, because we can use(11.7.6.1), φ(g) = φ(d) = φ̂(d) = φ̂(g). □
Prop.(16.1.1.22).Let G = GL(2,R)+,K = SO(2), let σ be a character of K, then C∞

c (K\G/K, σ)
is commutative.

Proof: The proof is the same as that of(16.1.1.21), but modified as

φ̂(g) = φ(
[
−1

1

]
gt
[
−1

1

]
).

□
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Siegel Sets

Def.(16.1.1.23)[Siegel Sets].
Prop.(16.1.1.24)[Poincaré Fundamental Domain].Fundamental domain for Γ ⊂ GL(2,R) acting
on H is defined in(10.11.1.35). There is a well-shaped open subset F with a set F ⊂ F ′ ⊂ F that F ′

is a fundamental domain for Γ acting on H.
Notice that if F is a fundamental domain for Γ in H ∼= SL2(R)/SO(2,R), then the inverse image

of F is a fundamental domain for Γ in SL2(R), because a.e. z ∈ H is not fixed by any γ ∈ Γ.
Proof: Choose a z ∈ H which is not fixed by any γ ∈ Γ, then for any γ ∈ Γ, draw the circle of
points that have the same distance to z and γ(z), then the intersection of all the part containing z
is a fundamental domain.? □

Prop.(16.1.1.25)[Siegel]. If a Poincare fundamental domain Ω has finite area, then ∂Ω is a union of
f.m. geodesics, and ∂Ω ∩X is finite, and Γ(∂Ω ∩X) is the set of cusps for Γ.
Proof: The volume of Ω has a relation with the angles of geodesics of Ω, so it can only have f.m.
vertices with interior angle< 0.9π. And the Γ-orbits of these angles intersect Ω at f.m. vertices,
which is because they consists of Γ-conjugates with the same distance with z0, and a compact set
meets f.m. geodesics of Ω, because Γz0 is discrete in H. In particular, Γ has f.m. vertices in the
boundary.

Now if Γ has infinitely many vertices, there is a vertex b that all its Γ-conjugates have angles> 0.9π,
then consider the Γ-conjugates of Ω with a vertex b, then all their angle at b > 0.9π, but this cannot
be possible geometrically.

For any cusp x of Γ, suppose the Poincare fundamental domain is defined using z, notice there is a
γ ∈ Γ that d(γx, z) attains minimum, then γx must by in the boundary of Γ, as d(γ0z, γx) = d(z, γx),
and no other z are closer to γx. □

Prop.(16.1.1.26)[Siegel Set and Fundamental Set]. Siegel set is a nicely shaped substitutes for
a fundamental domain:

• Let a1, . . . , an ∈ R ∪ {∞} be a representation of the Γ-orbits of cusps of Γ(16.1.1.25), let
ξ ∈ SL(2,R) be chosen that ξi(ai) = ∞. If c > 0, d > 0 be chosen suitably, then the set
∪ξ−1

i Fc,d contains a fundamental domain of Γ.
• Suppose ∞ is a cusp of Γ, then if d is large enough, then F∞

d contains a fundamental domain
for Γ.

Proof: 1: ξiΓξ−1
i contains a unipotent subgroup generated by

[
1 δi

1

]
, so if d ≥ δi, then ξ−1

i Fc,d

contains a nbhd of the cusp ai in the fundamental domain F of Γ. so F −∪ξ−1
i Fc,d is precompact in

H, by(16.1.1.25). Now if c = 0, d =∞, then F − ∪ξ−1
i Fc,d = ∅, then this is true for some c, d.

For 2: because ∞ is a cusp, we may assume F ∈ H ∩ {x > 0}. If d is large, then d will contain
each of the pieces ξ−1

i Fc,d ∩ F in item1. □
Prop.(16.1.1.27)[Compatibility of Growth Conditions].Let G/R be semisimple, f be a function
on Γ\G(R), then the following are equivalent:

• f is of moderate growth/rapidly decreasing.
• f is of moderate growth/rapidly decreasing on each cusp of Γ.
• f is of moderate growth/rapidly decreasing on each Siegel set Gi,c,d.

Proof: Cf.[Bor97]P5.11.? We only prove for SL(2,R). □
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Harish-Chandra Theorem

Thm.(16.1.1.28) [Harish-Chandra]. If G is semisimple and f ∈ C∞(G) be both K-finite and Z-
finite, then

• f is real analytic.
• U(g)f is an admissible (g,K)-module.
• There exists α ∈ C∞

c (G) that

α(kgk−1) = α(g), ∀k ∈ K, f ∗ α = f.

• If |f(g)| < C||g||N , then all U(g)f satisfies similar inequalities with the same N , i.e. f is
uniformly of moderate growth.

Proof: We prove only for G = SL(2). See [Harish-Chandra, Discrete series for semisimple Lie
groups, II. Explicit determination of the characters. Acta. Math. 116 (1966)] or [Gan’s notes, P24]
for the general case.?

Because W lies in the Lie algebra of K and W = iH, the hypothesis implies Rf is f.d., where
R = C[∆,H]. Let V be the smallest closed G-invariant subspace of C∞(G) containing f and let
V0 = U(g)f .

We first prove that

V0 =
∞⊕

−∞
(V0 ∩ V (n)).

Notice there is a continuous projection of V onto V (n):

Enφ(g) = 1
2π

∫ 2π

0
e−inθφ(gkθ)dθ,

because f is K-finite, there is an N s.t. f =
∑N
n=−N Enf . Then notice any Df is also K-finite

because D is combination of polynomials in R,L,H and R,L,H shift the weights, so the LHS is
contained in the RHS. It’s left to show now EnDf ∈ V0 for any n: EnDf can be extracted using
Lagrange polynomial in H, so it is clearly in V0.

Next we show V0∩V (n) is of f.d.: Let f1, . . . , fk be a basis of Rf , because each fk is K-finite. so if
we use the decomposition of U(sl2(C))(2.5.8.24), only the R,L shifting of the Enf will be considered,
and clearly each V0 ∩ V (n) is of f.d.

Now we show f is analytic: because f is Z-finite, there is an equation P (∆)f = 0 where P
is a monic function, and because ∆ commutes with Ek and f is K-finite, P (∆)Ekf = 0. Now
the P (∆)Ekf = P (∆k)Ekf by(16.1.1.1) and(16.1.2.1), and P (∆k) is an elliptic operator, so Ekf is
analytic by(10.13.8.5).

Now we show V is the closure of V0: Suppose not, then by Hahn-Banach there is a non-zero
continuous linear functional Λ on V that Λ(V0) = 0. If F ∈ C∞(G), let φF (g) = Λ(ρ(g)F ), and
let φ = φf . Clearly dXφF = φdXF , so DφF = φDF , which implies φ is Z-finite and smooth, and
also K-finite because f does. So by what we have proved, φ is analytic. But now φ is analytic and
Dφ(1) = φDf (1) = 0 because Df ∈ V0, so φ = 0 by Taylor expansion. So Λ(ρ(g)f) = 0 for any g,
contradiction because ρ(g)f is dense in V .

So actually V (n) ⊂ V0, because EnV0 = V0 ∩ V (n) ⊂ V (n) is dense, and V0 ∩ V (n) is of f.d., so
V (n) ⊂ V0 = Vn(10.9.1.8) and V0 = ⊕V (n) is an admissible (g,K)-module.
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Let J be the convolution algebra(because G is unimodular) of functions α that α(kgk−1) = α(g),
then it can be checked that convolution − ∗ α commutes with action of K, so f ∗ J is in the same
K-type space as f , thus K-finite and in a f.d. space.

Now we can approximate f by f ∗ J : choose a Dirac sequence {αn} ∈ C∞
c (G1), we may replace

{αn} by the function βn(g) =
∫
K αn(k−1gk)dk to obtain a Dirac sequence in J . Then f ∗ αn → f

uniformly on compact sets. But f ∗ J is f.d., so there are some f ∗ α = f .
Finally for the growth estimate, it suffices to check for D ∈ g. Then dX(f) = dX(f ∗ α) =

f ∗ (dXα), from which the estimate is clear. □

Cor.(16.1.1.29) [Automorphic Forms Generate Admissible (g,K)-Modules].The space
A(Γ\G,χ, ω) and A0(Γ\G,χ, ω) are stable under the action of U(g), and for f ∈ A(Γ\G,χ, ω),
f is analytic and U(g)f is an admissible (g,K)-module.

Moreover, if f satisfies condition of moderate growth(16.1.1.4) and D ∈ U(g), then Df satisfies
similar conditions with the same constant N .

Proof: It suffices to prove for A(Γ\G,χ, ω) because the cuspidality condition is clearly preserved
by right action.

We want to use Harish-Chandra theorem(16.1.1.28) on G(K)/Z(K). Now |f | is constant on each
fiber of G(K)→ G(K)/Z(K). it suffices to compare the norm on G(K) and G(K)/Z(K).

We do this only for GL(2,R)?
The condition of moderate growth is compatible because the minimal ||g|| in a Z(R)-orbit is

achieved when deg g = 1(16.1.1.4). So all the assertion follows from that of(16.1.1.28) and its proof.
□

2 Maass Forms

Maass Forms

Def.(16.1.2.1)[Maass Operator].A Maass differential operators on C∞(H) is defined to be

Rk = (z − z) ∂
∂z

+ k

2
= iy

∂

∂x
+ y

∂

∂y
+ k

2
, Lk = −(z − z) ∂

∂z
− k

2
= −iy ∂

∂x
+ y

∂

∂y
− k

2

and
∆k = −y2( ∂

2

∂x2 + ∂2

∂y2 ) + iky
∂

∂x
= −Lk+2Rk −

k

2
(1 + k

2
) = −Rk−2Lk + k

2
(1− k

2
)

∆k is a symmetric(unbounded) operator on L2(H) with domain C∞
c (H).

Proof: For the formula:?
For the symmetry: composed with the measure, the order2 part is just the ordinary Laplacian,

and the order 1 part becomes iy−1 ∂
∂x , then notice∫

H
iy−1(∂f

∂x
g + f

∂g

∂x
)dxdy = i

∫
H
d(y−1fgdy) = 0

as f, g are compactly supported. □

Prop.(16.1.2.2)[Maass Operator and Weight Action].For f ∈ C∞(H), g ∈ G,

(Rkf)|k+2g = Rk(f |kg), (Lkf)|k−2g = Lk(f |kg), (∆kf)|kg = ∆k(f |kg)
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Proof: For Rk, because scalar doesn’t matter, we may assume g ∈ SL2(R), and let w = az+b
cz+d , then

∂

∂z
= ∂w

∂z

∂

∂z
= (cz + d)−2 ∂

∂w
, (w − w) = z − z

|cz + d|2
.

So
(w − w) ∂

∂w
= ((cz + d)2

|cz + d|2
)(z − z) ∂

∂z
.

And for any smooth function φ ∈ C∞(H),

(z − z) ∂
∂z

(( cz + d

|cz + d|
)kφ) = (z − z)( cz + d

|cz + d|
)k ∂φ
∂z

+ k

2
[( cz + d

|cz + d|
)k+2 − ( cz + d

|cz + d|
)k]φ.

This is because

∂

∂z
|cz+d| = c

2
|cz + d|
cz + d

,
∂

∂z
( cz + d

|cz + d|
)k = −k

2
c(z−z) (cz + d)k

|cz + d|k(cz + d)
= k

2
[( cz + d

|cz + d|
)k+2−( cz + d

|cz + d|
)k].

Thus,

Rk(f |kg) = [(z − z) ∂
∂z

+ k

2
]( cz + d

|cz + d|
)kf(w) = [(z − z)( cz + d

|cz + d|
)k ∂
∂z

+ k

2
( cz + d

|cz + d|
)k+2]f(w)

= ( cz + d

|cz + d|
)k+2[(w − w) ∂

∂w
+ k

2
]f(w) = ((Rkf)|k+2g)(z).

The case of Lk is similar, and ∆k follows. □

Cor.(16.1.2.3).The operator Rk, Lk,∆k maps functions between C∞(Γ\H, χ, k) and arises and de-
creases weights respectively.

Prop.(16.1.2.4).For f ∈ C∞(Γ\H, χ, k), g ∈ C∞(Γ\H, χ, k + 2), if one of them decays rapidly at all
cusps, then(16.1.1.14)

(Rkf, g) = (f,−Lk+2g).

In particular, ∆k = −Lk+2Rk − k
2 (1 + k

2 ) is symmetric on the subspace of L2(Γ\H, χ, k) consisting
of rapidly decaying functions(∆ is unbounded and defined only on C∞(Γ\H, χ, k) now, but will be
extended to L2(Γ\H, χ, k) in(16.1.4.5) when Γ\H is compact).

Proof: Let ω = y−1f(z)g(z)dz. It can be shown by definition and using(10.5.1.8) that ω(γz) =
ω(z), so ω descends to a differential form on Γ\H, and because one of f, g decays rapidly at all cusps,

0 =
∫

Γ\H
d(y−1f(z)g(z)dz) =

∫
Γ\H

[ ∂
∂y

(y−1fg) + i
∂

∂x
(y−1fg)]dx ∧ dy

=
∫

Γ\H
[(iy ∂f

∂x
+ y

∂f

∂y
)g − (iy ∂g

∂x
− y∂g

∂y
)f − fg]dxdy

y2

=
∫

Γ\H
[(Rkf)g + f(Lk+2g)]dxdy

y2 .

so the conclusion follows. □

Cor.(16.1.2.5). If λ is an eigenvector of ∆k on C∞(Γ\H,χ, k), then either λ = l
2(1 − l

2), where
1 ≤ l ≤ k and l ≡ k mod 2, or λ ≥ ε

2(1 − ε
2), where ε = 0 or 1 that k ≡ ε mod 2. In particular,

eigenvalues of ∆0 are≥ 0 and eigenvalues of ∆1 are ≥ 1/4.
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Proof: This can be done by repeatedly using ∆k−2Lk = Lk∆k to reduce ∆ε, or can be deduced
from(16.1.4.11). □

Def.(16.1.2.6)[Maass Forms].A twisted Maass Form of weight k and parameter s for Γ is an ele-
ment in C∞(Γ\H, χ, k)(16.1.1.11) that is an eigenform for ∆k of eigenvalue λ = 1

4 −s
2 and is of mod-

erate growth at cusps of Γ(16.1.1.12). The space of Maass forms are denoted by AMaass(Γ\H, χ, k).
The space of cuspidal Maass forms are denoted by ACuspMaass(Γ\H, χ, k).

A Maase form of weight 0 and χ = 1 is sometimes just a Maass form. The space of Maass form
is denoted by AMaass(Γ\H).

Def.(16.1.2.7)[Weak Maass Forms].A weak Maass form of weight k and parameter s for Γ is
an element in C∞(Γ\H, χ, k)(16.1.1.11) that is an eigenform for ∆k of eigenvalue λ = 1

4 − s
2 and is

of at most linear exponential growth at cusps of Γ(16.1.1.12). A harmonic Maass form is a Maass
form of eigenvalue λ = 1

4 − s
2 where s is an integer.

Prop.(16.1.2.8)[Hecke Operators on Maass Forms]. If Γ = Γ0(N), the space of Maass forms is
stable under the action of the Hecke algebra on C∞(Γ0(N)\H, χ, k)(16.1.1.13), by(16.1.2.2).

Def.(16.1.2.9)[Holomorphic Modular Forms as Maass Forms].There is a bijection

Mk(Γ, χ) ∼= AMaass(Γ\H, χ, k)Lk=0 : f 7→ yk/2f

that induces a bijection
Sk(Γ, χ) ∼= ACuspMaass(Γ\H, χ, k)Lk=0.

Proof: Direct calculation shows Lk(yk/2f(z)) = 2iy(k+2)/2 ∂
∂zf(z), and by(10.5.1.8),

(Im(z)k/2f(z))|kγ = ( cz + d

|cz + d|
)k Im(γz)k/2f(γz) = ( cz + d

|cz + d|
)k · Im(z)k/2

|cz + d|k
f(γz)

= Im(z)k/2(cz + d)−kf(z) = Im(z)k/2(f [γ]k)(z)

so their invariant properties are compatible. Also, if f is a holomorphic modular form, then each
yk/2f [γ]k is bounded by a polynomial of y at ∞, and conversely, if f(q) is bounded by a polynomial
of log(1/|q|), then?? shows f is holomorphic at each cusp. And the cuspidal condition∫ r

0
Im(z)k/2f(z + u)du = Im(z)k/2

∫ r

0
f(z + u)du = 0

just means f is a cusp form. □

Prop.(16.1.2.10)[Non-holomorphic Eisenstein series is a Maass Form].The non-holomorphic
Eisenstein series E(s, ν + 1/2) is a Maass form of parameter ν for Γ(1).

Proof: E(s, ν + 1/2) is automorphic and of moderate growth by(19.2.5.6) and(19.2.5.4).
To show E(s, ν+1/2) is an eigenfunction of ∆, if Re(ν) > 1/2, notice ∆(yν+1/2) = (1

4−ν
2)yν+1/2,

and ∆ is invariant under action of SL(2,Z), thus each Im(γ(yν+1/2)) is an eigenfunction for ∆ of
eigenvalue 1

4 − ν
2, so the same is true for E(s, ν + 1/2).

For general ν, this can be seen from the Fourier coefficients of E(s, ν + 1/2)(19.2.5.5):? □
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Prop.(16.1.2.11)[Maass Forms as Automorphic Forms]. If f ∈ AMaass(Γ\H, χ, k), then σk(f) ∈
C∞(Γ\G,χ, k)(16.1.1.19), and is an eigenform of ∆. In particular it is K-finite, Z-finite, of moderate
growth by(16.1.1.19), and it is cuspidal iff σk(f) is cuspidal, so σk(f) ∈ A(Γ\G,χ, k). And f is
cuspidal iff σk(f) is cuspidal.

In fact, there are a bijections

AMaass(Γ\H,χ, k, λ) ∼= A(Γ\G,χ, k, λ), AMaass(Γ\H,χ, k) ∼= A(Γ\G,χ, k)∆−ss

ACuspMaass(Γ\H,χ, k) ∼= A0(Γ\G,χ, k), ACuspMaass(Γ\H,χ) ∼= A0(Γ\G,χ) = L2
0(Γ\G,χ)K−fin.

this is because when f is cuspidal, ∆ is semisimple on the finite dimensional subspace Zf because
of the spectral decomposition of L2

0(Γ\G,χ, k)(16.1.4.8).

Cor.(16.1.2.12)[Modular Forms as Automorphic Forms].Combine this and(16.1.2.9), we get a
bijection

Mk(Γ, χ) ∼= A(Γ\G,χ, k)L=0

that induces a bijection
Sk(Γ, χ) ∼= A0(Γ\G,χ, k)L=0.

Cor.(16.1.2.13)[Finitely Many Maass Forms of Given Type]. dimAMaass(Γ0(N)\H, χ, k, λ) <
∞.

Proof: This follows from(16.1.1.29). □

Conj.(16.1.2.14) [Selberg Conjecture].Let Γ be a congruence subgroup, for any cuspidal Maass
form f , the eigenvalue λ of ∆0 satisfies λ ≥ 1/4, or equivalently, the parameter s is purely imaginary.
In this case, the cuspidal representation generated by f is tempered.

This conjecture is true for Γ = Γ(1) but wrong for some other congruence subgroups.

Harmonic Maass Forms

References are [Harmonic Maass Forms, Mock Modular Forms, And Quantum Modular Forms,
Ken Ono], [Harmonic Maass Forms and Mock Modular Forms Theory and Applications].

Def.(16.1.2.15) [Harmonic Maass Forms].A harmonic Maass form is a weak Maass
form(16.1.2.7) of eigenvalue k

2 (1− k
2 ), where k is an integer.

Any modular form corresponds to a harmonic Maass form, by(16.1.2.9).

Def.(16.1.2.16) [Mock Modular Forms].A Mock modular form is the holomorphic part of a
harmonic Maass form.

3 Whittaker Models

Def.(16.1.3.1)[Whittaker Function Space].For ψ ∈ R̂, denoteWψ = the space of smooth functions
f on GL(n,R)+ that satisfies

f(ug) = ψUnip(n)(u)f(g), u ∈ Unip(n)

A function f ∈W is called:
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• of moderate growth if for any compact set Ω ⊂ G, |f(
[
y

1

]
g)| < C|y|k for some C, k > 0

for any g ∈ Ω when |y| → ∞.

• rapidly decreasing if for any compact set Ω ⊂ G and k ∈ R, |f(
[
y

1

]
g)| < C|y|k for some

C for any g ∈ Ω when |y| → ∞.

Lemma(16.1.3.2) [Whittaker Function].Let µ, λ ∈ C and k ∈ Z. Let W (λ, µ, k) be the space
of functions f ∈ W (16.1.3.1) on G s.t. ∆f = λf , If = µf , f ∈ (C∞(G))k and f is of moderate
growth, then W (λ, µ, k) is 1-dimensional, and functions in this space are actually rapidly decreasing
and analytic.

Moreover, the operators R,L map W (λ, µ, k) into W (λ, µ, k + 2), W (λ, µ, k − 2) respectively.
Also, for |y| → 0 and µ imaginary, W (λ, µ, k) is bounded by a |y|−1/2 for some ε > 0.

Proof: For f ∈W (λ, µ, k), in coordinate(11.7.4.3), we have

f(g) = uµψ(x)eikθw(y), w(y) = f(
[
y1/2

y−1/2

]
)

Thus it suffices to study the behavior of w(y). By the expression of ∆(16.1.1.1), if ψ(x) = eiax, then

w′′ + (−a2 + k

2y
+ λ

y2 )w = 0

And this is the Whittaker’s equation, and the only moderate growth function is rapidly decreasing and
analytic. This is by direct calculation in [A course of Modern Analysis, Whittaker/Watson(1927)]?.

For the action of R,L, they preserve W because they are right actions. And Rf,Lf have the
same eigenvalue of ∆, I because ∆, I are in the center of U(g). They shift the weight by(16.1.1.19)
and(16.1.2.2). □

Prop.(16.1.3.3) [Uniqueness of Whittaker Models for GL(2,R)].For (π, V ) ∈ Irradm((g,K)),
there exists at most one space W (π, ψ) ∈ W consisting of K-finite functions f ∈ W that is of
moderate growth, and is invariant under the action of U(g) and K, and is infinitesimal equivalent to
(π, V ).

Moreover, functions in W (π, ψ) are actually rapidly decreasing and analytic. The space W (π, ψ)
is called the Whittaker model of π, if it exists.

Proof: By(15.9.3.9), ∆, I acts by scalars λ, µ on V . By(15.9.3.26) or(15.9.3.34) if V k ̸= 0, then
dimV k = 1. If V k ̸= 0, then the image of V k under the isomorphism with W (π, ψ) is in the space
W (λ, µ, k). Thus W (π, ψ) is the direct sum of the W (λ, µ, k) for all k that V k ̸= 0, so uniquely
determined by(16.1.3.2). And the rapid decreasing and analytic properties are also consequences
of(16.1.3.2). □

Prop.(16.1.3.4). If (π, V ) ∈ Irradm((g,K)) has a Whittaker model, then there exists some ξ ∈ V that
Wξ(1) ̸= 0.

Proof: Because K intersect each connected component of G, we can assume some Wξ is non-zero
on K0, thus by analyticity(16.1.3.3), its derivatives at 1 are not identically 0, thus there exists some
D ∈ U(g) that DWξ(1) = WDξ(1) ̸= 0. □
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Prop.(16.1.3.5)[Whittaker Models for GL(n,C)].This result is true if R is replaced by C.

Proof: Cf.[Automorphic Forms on GL(2), Jacquet/Langlands (1970) Thm5.3. P232]?. □
Prop.(16.1.3.6)[Fourier-Maass Expansion].

Proof: □
Cor.(16.1.3.7) [Rapidly Decreasing].Cuspidal automorphic Forms are rapidly decreasing at any
Siegel set.

Proof: Cf.[Gan’s Notes, P26].? □
Prop.(16.1.3.8)[Existence of Whittaker Models].The Whittaker model exists for the
Prop.(16.1.3.9)[Shalika’s Local Multiplicity One Theorem].Given a unitary irreducible repre-
sentation V of GL(n, F ), a Whittaker functional on V ∞ is a N(F )-map λ : V ∞ → ψN .

Then the space of Whittaker functionals on V ∞ is at most 1-dimensional.
Proof:

□

4 The Spectral Problem

The Spectral Problems for Γ\H Compact

Def.(16.1.4.1). In this subsection we assume Γ\G1 is compact, or equivalently Γ\H is compact, be-
cause K is compact. This condition makes C∞(Γ\H, χ) = L2(Γ\H, χ), and will make the decompo-
sition having only discrete parts(16.1.4.2).

Prop.(16.1.4.2) [L2(Γ\G,χ) Totally Decomposable].The space L2(Γ\G,χ) decomposes into a
Hilbert space direct sum of subspaces that are invariant and irreducible under the right regular
action ρ.
Proof: This follows from(16.6.2.3). □

Lemma(16.1.4.3).Let σ be the character on K that σ(kθ) = e−ikθ, C∞
c (K\G/K, σ) is commutative

by(16.1.1.22), let ξ be a character of it. Let H(ξ) be the subspace of f ∈ L2(Γ\G,χ, k) that π(φ)f =
ξ(φ)f for φ ∈ C∞

c (K\G/K, σ).
Then H(ξ) are of f.d. and different H(ξ),H(η) are orthogonal that ⊕ξH(ξ) = L2(Γ\G,χ, k).

Proof: Suppose 0 ∈ f ∈ H(ξ), then by(15.9.4.1), we can find a φ ∈ C∞
c (K\G/K, σ) s.t. ρ(φ)f ̸= 0.

And by hypothesis ρ(φ)f = ξ(φ)f , thus ξ(φ) ̸= 0, and f is an eigenvalue of ρ(φ) which is compact
and self-adjoint, so the ξ(φ)-eigenspace of ρ(φ) is f.d. and H(φ) is contained in this space, thus f.d.

To show the orthogonality, choose φ ∈ C∞
c (K\G/K, σ) that ξ(φ) ̸= η(φ). Considering φ =

φ1 + iφ2, where ρ(φ1), ρ(φ2) are both self-adjoint, then we mays assume φ is self-adjoint. Then
H(ξ),H(η) are contained in different eigenspaces of ρ(φ), so they are orthogonal.

Finally for the direct sum, it suffices to show that if f is orthogonal to all H(ξ), then f =
0. Given f , let φ0 ∈ C∞

c (K\G/K, σ) be chosen that ρ(φ0)f is near f that ρ(φ0)f, f are not
orthogonal(15.9.4.1).

Consider the eigenspace decomposition of ρ(φ0) on L2(Γ\G,χ, k), then f = f0 + f1 + f2 + . . .,
then ρ(φ0)f = λ1f + λ2f + . . .. Because f is not orthogonal to ρ(φ0)f , thus fi is not orthogonal to
f for some i ≥ 1. Let V be the λi-eigenvalue of ρ(φ0), then V is f.d. and invariant under ρ(φ) for
all φ ∈ C∞

c (K\G/K, σ) because C∞
c (K\G/K, σ) is commutative(16.1.1.22). So V is a direct sum of

elements of the spaces H(ξ), so V is orthogonal to f , contradiction. □
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Prop.(16.1.4.4).The space L2(Γ\H, χ, k) decomposes into a Hilbert space direct sum of eigenspaces
for ∆k.

Proof: By(16.1.1.19), it suffices to prove for L2(Γ\G,χ, k) and ∆. Because ∆ are in the center
of U(g), H(ξ) are all ∆-invariant. So we finish by the lemma(16.1.4.3), as each H(ξ) is f.d. so ∆
is a self-adjoint operator on H(ξ), because C∞

c (Γ\G,χ) is dense(16.1.1.16). So it is a direct sum of
∆-eigenspaces. □

Prop.(16.1.4.5).
• The eigenvalues λi of ∆k on L2(Γ\H, χ, k) tends to ∞, and satisfies ∑λ−2

i <∞.
• The laplacian ∆k has an extension to a self-adjoint operator on the Hilbert space L2(Γ\H, χ, k).

Proof: Cf.[Bump P185].? □

The Spectral Problems for General Case

Prop.(16.1.4.6)[Gelfand, Graev and Piatetski-Shapiro].Let φ ∈ C∞
c (G), then

• There exists a constant C(φ) that for all f ∈ L2
0(Γ\G,χ, ω), we have ||ρ(φ)f ||C(G) ≤ C(φ)||f ||2.

• ρ(φ) is a compact operator on L2
0(Γ\G,χ, ω).

Notice this generalizes(16.6.2.1).

Proof: We may assume Γ has cusps, otherwise this is proved in(16.6.2.1). Conjugating Γ by an

element of SL(2,R), we may assume that ∞ is a cusp for Γ, and Γ∞ is generated by
[
1 1

1

]
. Then

it suffices to prove that
sup
g∈Gc,d

|ρ(φ)f(g)| ≤ C0||f ||2,

because we can do the same for other cusps of Γ, and use(16.1.1.26) to show that supg∈F |ρ(φ)f(g)| ≤
C0||f ||2, hence for all g ∈ H.

Now let φω(g) =
∫
R∗ φ(zg)ω(z)dz, then

ρ(φ)f(g) =
∫
Z(R)\G

f(gh)φω(h)dh

=
∫
Z(R)\G

f(h)φω(g−1h)dh

=
∫

Γ∞Z(R)\G

∑
γ∈Γ∞

f(γh)φω(g−1γh)dh

=
∫

Γ∞Z(R)\G
K(g, h)f(h)dh,

whereK(g, h) =
∑
γ∈Γ∞ χ(γ)φω(g−1γh). Then we can estimate the kernelK(g, h) and show it decays

rapidly for h when g is fixed, and this will give the disired result, Cf.[Bump, P286]?.
2: Let X(Γ) be the space obtained by compactifying Γ\G1 by adjoining cusps, and let Σ be the

image of the unit ball in L2
0(Γ\G,χ, ω) under ρ(φ), then we can extend each |ρ(φ)f | to X(Γ) that it

vanish at the cusps, by the corollary to item1 below(16.1.4.7), then Σ is bounded in the L∞-norm
by item1, and it is also equicontinuous, because its derivatives can be bounded uniformly for f :

(Xρ(φ)f)(g) = ρ(φX)f(g), φX(g) = d

dt
φ(exp(−tX)g)
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so the conclusion of item1 applied to φXs shows the uniformly boundedness. Now Arzela-Ascoli
shows that Σ is precompact in C(X(Γ)), thus also in L2(X(Γ)). □

Cor.(16.1.4.7). If φ ∈ C∞
c (G), f ∈ L2

0(Γ\G,χ, ω), then ρ(φ)f is smooth and rapidly decreasing at
cusps.

Proof: This is contained in the proof of(16.1.4.6) above, Cf.[Bump, P286]?. □

Prop.(16.1.4.8)[L2
0(Γ\G,χ, ω) Totally Decomposable].The space L2

0(Γ\G,χ, ω) decomposes into a
Hilbert space direct sum of irreducible subrepresentations of G, and if H is such a subrepresentation,
then the HK−fin ⊂ H is dense, and HK−fin ∈ Irradm((g,K)) is contained in A0(Γ\G,χ, ω).

Moreover, A0(Γ\G,χ, ω) is just the smooth part of L2
0(Γ\G,χ, ω).

Proof: The proof is exactly the same as that of(16.1.4.2), but where we use(16.1.4.6) in place
of(16.6.2.1). Lemma(15.9.4.1) is indispensable.

HK−fin ∈ Irradm((g,K)) by(15.9.4.4). To show it is contained in A0(Γ\G,χ, ω), it suffices show
thatHk ⊂ A0(Γ\G,χ, ω) for any k. For this, if 0 ̸= f ∈ Hk, choose by(15.9.4.1) a function φ ∈ C∞

c (G)
that ρ(φ)f ̸= 0, thus we can assume ρ(φ)(f) = f by(15.9.4.1) and(16.6.2.1), as dimHk < ∞
by(15.9.4.3). Then by(16.1.4.7) f is smooth and decay rapidly, and it is clearly K-finite and Z-finite,
thus f ∈ A0(Γ\G,χ, ω).

The last assertion follows as any cuspidal form decays rapidly thus is contained in
L2

0(Γ\G,χ, ω)(16.1.3.7). □

Cor.(16.1.4.9)[Finite Multiplicity].
• L2

0(Γ\G,χ, ω) =
⊕

π π
m(π), where for each π, m(π) is finite.

• Let A(Γ\G,χ, ω, λ) be the λ-eigenspace of ∆ on A(Γ, χ, ω), and A(Γ\G,χ, ω, λ, k) be the k-
part in K-decomposition of A(Γ\G,χ, ω, λ), and A0(Γ\G,χ, ω, λ, k) the cuspidal part, then
A0(Γ\G,χ, ω, λ, k) is of f.d.

Proof: 1: Let (π, V ) be an irreducible unitary representation of G, let k be chosen that V k ̸= 0,
let 0 ̸= ξ ∈ V k, then by(15.9.4.1) there is a φ ∈ C∞

c (G) that π(φ)ξ = ξ and π(φ) is self-adjoint
by(15.9.4.1) and(16.6.2.1), as dimHk <∞ by(15.9.4.3). Now consider for any continuous linear map
T : V → L2

0(Γ\G,χ, ω), Tξ lies in the 1-eigenspace of the compact self-adjoint operator ρ(φ), which
is of f.d. as ρ(φ) is compact by(16.1.4.6). Of course, T is determined by Tξ because V is irreducible,
so these T form a f.d. vector space, so the multiplicity is finite.

2: This follows from the first, because by(16.1.4.8) the K-finite parts of an irreducible subrepre-
sentation of L2

0(Γ\G,χ, ω) are just the space of cuspidal forms contained in it, and λ, k determined
the action of ∆, I, so there are at most onw representation of G that satisfies these, by classification
in(15.9.3.34) and(15.9.3.10), and they appear for finite multiplicity by item1, and for each of them,
the k-part is of f.d., because they are admissible(15.9.4.4). So the conclusion follows. □

Remark(16.1.4.10) [Fundamental Theorem of Harish-Chandra]. In fact, Harish-Chandra
showed that for any finite codimensional ideal J ⊂ Z, The subspace A(Γ, χ, ω, J) of automorphic
forms annihilated by J is an admissible (g,K)-module.

In particular, any irreducible admissible (g,K)-module π appears in A(Γ, χ, ω) with finite multi-
plicity.?

Thm.(16.1.4.11)[Main Theorem].Let χ(−1) = (−1)ε, ε = 0, 1, (16.1.4.2) shows the representation
H = L2

0(Γ\G,χ) decomposes into Hilbert space direct sums of irreducible representations, and ∆
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acts as real scalars λ on each irreducible subspace(15.9.3.33), and µ acts by 0. So comparing the
classification of representations of GL(2,R)(15.9.4.25), we can list what representation can appear
in it by looking at eigenvalues λ of ∆:

• There is only one f.d. irreducible unitary subrepresentation of G occurring in H, the trivial
representation.

• If λ ̸= k
2 (1 − k

2 ) for any k ≥ 1 ∈ Z and k ≡ ε mod 2, then λ ≥ ε
2(1 − ε

2), and this subrepre-
sentation is isomorphic to P (λ, ε). And let k′ ≡ ε mod 2 be any integer, then the multiplicity
of P (λ, ε) is equal to the multiplicity of the eigenvalue λ of ∆k′ on L2(Γ\H, χ, k′) because
L2(Γ\H, χ, k′) ∼= L2(Γ\G,χ, k′) by(16.1.1.19).

• If λ = k
2 (1− k

2 ) for some k ≥ 1 ∈ Z and k ≡ ε mod 2, then this subrepresentation is isomorphic
to either D+(k) or D−(k), and D±(k) have the same multiplicity in H, equal to the dimension
dim(Mk(Γ, χ))(16.2.1.10) of holomorphic modular forms of weight k for Γ.
Also if k′ ≡ ε mod 2 is any integer≥ k(resp. ≤ −k), then the multiplicity of D+(k)(resp.
D−(k)) is equal to the multiplicity of the eigenvalue λ of ∆k′ on L2(Γ\H, χ, k′) because
L2(Γ\H, χ, k′) ∼= L2(Γ\G,χ, k′) by(16.1.1.19).

Proof: These follow from classification of irreducible representations of GL(2,R)(15.9.4.26).
Relation with modular forms: by(15.9.3.28), the multiplicity of D+(k) equals the dimension

of the k
2 (1 − k

2 )-eigenspace of ∆k on L2(Γ\H, χ, k), and any f in this eigenspace is annihilated
by Lk by(16.1.2.1)(16.1.2.3). But(16.1.2.9) shows the dimension of space of functions annihilated
by Lk equals the dimension of modular forms of weight k. Finally notice that complex conjugation
interchanges L2(Γ\H, χ, k) and L2(Γ\H, χ,−k) and ∆k = ∆−k(16.1.2.1), so the multiplicity ofD+(k)
and D−(k) equal. □

Eisenstein Series

Prop.(16.1.4.12).Let A2(Γ\G,χ, ω) = A(Γ\G,χ, ω) ∩ L2(Γ\G,χ, ω), then this is exactly the space
of smooth K-finite Z-finite vectors in the discrete spectrum L2

disc(Γ\G,χ, ω).

Proof:
□
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16.2 Modular Forms

Main References are [D-S16], [1-2-3 of Modular Forms] and [Mil17c]. This section is a continuation
of the discussion of Automorphic Forms in16.1 and use the same notations.

1 Modular Forms

Def.(16.2.1.1)[Congruence Subgroups].Let Γ(N) be the inverse image of 1 ∈ SL(2,Z/N) in the
mapping SL(2,Z)→ SL(2,Z/N), then a subgroup Γ of SL(2,Z) is called a congruence subgroup
iff it contains Γ(N) for some N .

In particular, a congruence subgroup has finite index in Γ(1).

Lemma(16.2.1.2) [Cartan Decomposition].There is a complete set of coset representatives for
SL(2,Z)\GL(2,Q)+/SL(2,Z) consisting of the diagonal matrices diag(d1, d2), where d1, d2 ∈ Q×

and d1/d2 is a positive integer.
More generally, for N > 0,

GL(2,Q)+ =
⨿

d1,d2∈Q×,d1/d2∈Z+

SL(2,Z)
[
d1

d2

]
Γ0(N).

Also, let Σ be the set of primes dividing N , ZΣ be the localization of Z at these primes, and

G0(N) be the subgroup of GL(2,ZΣ)+ consisting of matrices
[
a b
c d

]
s.t. c ∈ NZΣ. Then

G0(N) =
⨿

d1,d2∈ZΣ,d1/d2∈Z+

Γ0(N)
[
d1

d2

]
Γ0(N).

Proof: The first assertion follows from(11.7.6.7), noticing the sign.
For the second assertion, for any g ∈ G0(N), let g = γ1 diag(d1, d2)γ2 where D = d1/d2 ∈ Z and

(D,N) = 1. Then for any
[
a b
Dc d

]
∈ Γ0(N), we can change (γ1, γ2) to (γ1

[
a Db
c d

]
,

[
a b
Dc d

]
γ2),

in this way if γ2 =
[
x y
z w

]
, we can change z to Dxc + dz. Now take k s.t. (kx + z,N) = 1, and

let c be chosen s.t. N |D(kz + x)c + z, and d = kDc + 1, then (Dc, d) = 1, and we can find a, b s.t.

ad−Dbc = 1. Then for this (a, b, c, d),
[
a b
Dc d

]
γ2 ∈ Γ0(N).

Finally, if g ∈ G0(N) and γ2 ∈ Γ0(N), then automatically γ1 ∈ Γ0(N). □

Prop.(16.2.1.3)[Conjugate of Congruence Subgroup]. If Γ is a congruence subgroup of level N
and α ∈ GL(2,Q)+, then α−1Γα is a congruence subgroup.

In particular, αΓα−1 ∩Γ is also a congruence subgroup, and if α ∈ SL(2,Z) with δ(α) = D, then
α−1Γα is a congruence subgroup of level DN .

Proof: Let M1,M2 be positive integers s.t. M1α,M2α
−1 ∈ M(2,Z).(In the second case we can

take M1 = 1,M2 = D). If A is a matrix that A ≡ 1 mod M1M2N , then α−1(A− 1)α ≡ 1 mod N .
Thus α−1Γα contains Γ(M1M2N). □
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Cor.(16.2.1.4) [Congruence Topology].We can define a topology on the group GL(2,Q)+ given
by a basis at the origin given by the open subgroup Γ(N). Then(16.2.1.3) can be used to show that
this is truly a topology. In fact, it is restriction on SL(2,Z) is the same as the topology given by the
inclusion SL(2,Z) ⊂ SL(2, Ẑ).

But unfortunately, SL(2,Z) is not compact in this topology, because otherwise SL(2,Z) is closed
in SL(2, Ẑ), contradiction.

Lemma(16.2.1.5).The action of Γ(1) = SL(2,Z) on H is properly discontinuous(3.11.1.13).

Proof: Cf.[Bump P18]. □

Prop.(16.2.1.6).The subset F = {z ∈ H||Re(z)| < 1/2, |z| > 1} is a fundamental domain for Γ(1) =

SL2(Z), and moreover, let S =
[
0 −1
1 0

]
and T =

[
1 1
0 1

]
, then S2 = −1, (ST )3 = (TS)3 = −1, and

(1) two elements z, z′ of F are equivalent under Γ(1) iff
(a) Re(z) = −1/2 and z′ = z + 1, then z′ = T (z).
(b) |z| = 1 and z′ = −1

z , then z′ = S(z).
(2) Let z ∈ F , if the stabilizer of z is not ±1, then

(a) z = i and Stab(i) = ⟨S⟩.
(b) z = ρ = e2πi/6 and Stab(ρ) = ⟨TS⟩.
(c) z = ω, and Stab(ω) = ⟨ST ⟩.

Proof: 1: Let Γ′ be the subgroup of Γ(1) generated by S and T . By(10.5.1.8),

Im(γ(z)) = Im(z)
|cz + d|2

.

and there is a γ ∈ Γ′ that |cz+ d| attains the minimal value, then Im(γ(z)) attains a maximal value.
Now there is a n that z′ = Re(Tnγ(z)) ∈ [−1/2, 1/2]. Now I claim that |z′| ≥ 1, because otherwise

Im(Sz′) = Im(−1/z′) = Im(z′)
|z′|2

> Im(z′),

contradiction.
2: Suppose z, z′ ∈ F are Γ-conjugate, we can assume Im(z) ≤ Im(z′). Suppose z′ = γ(z) and

z = x+ iy, then
(cx+ d)2 + (cy)2 ≤ 1.

Then |c| < 2. If c = 0, then d = ±1, and γ is a translation, thus we are in case 1.(a). If c = 1, then

d = 0, unless z = ρ or ω. If d = 0, then γ =
[
a 1
−1

]
, thus γ(z) = a − 1

z . If a = 0, then we are in

case 1.(b), and if a ̸= 0, then z = ρ or ω. and the c = −1 case is similar. □

Def.(16.2.1.7)[Elliptic Points].A point z ∈ H is called a elliptic point if it is the fixed point of
an elliptic element γ of Γ(11.7.4.2).

Prop.(16.2.1.8).Let Γ be a discrete subgroup of SL(2,R) and z an elliptic point of Γ, then the
stabilizer Γz of z in Γ is a finite cyclic subgroup .
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Proof: Because SL(2,R) acts transitively on H, by conjugacy we can assume the elliptic point is i
for another Γ′. Then the stablizer of i in SL(2,R) is SO(2,R) ∼= S1, and SO(2,R)∩Γ′ is a compact
and discrete subgroup, so it is finite cyclic. □

Prop.(16.2.1.9)[Cusps and Elliptic Points for Γ(1)].
• The cusps of Γ(1) are exactly P1(Q), and each of them is Γ(1)-equivalent to ∞.
• The elliptic points of Γ(1) are exactly those that are Γ(1)-conjugate to i or ρ = (1 +

√
3)/2,

with corresponding stablizer group cyclic of order 4 and 6.

Proof: 1: Clearly ∞ is fixed by the parabolic matrix T =
[
1 1

1

]
. Now for any m/n that m,n is

coprime, there exists integers r, s that rm − sn = 1. Let γ =
[
m s
n r

]
, then γ(∞) = m/n thus m/n

is also a cusp. Conversely, every parabolic matrix is conjugate to T , thus its fixed point is conjugate
to ∞, which means the fixed point is in Q ∪ {∞}.

2: For the elliptic points of Γ(1), use(16.2.1.6). □

Def.(16.2.1.10)[Meromorphic Modular Forms].Let Γ be a discrete subgroup of SL(2,R), k > 0
and χ is a character of Γ that χ(−1) = (−1)k, the space of (twisted)meromorphic modular forms
M !
k(Γ, χ) is the space of all holomorphic functions H → C that satisfies
• f is meromorphic.
• f [γ]k = χ(γ)f(16.1.1.8).
• f is meromorphic at the cusps(16.1.1.12), equivalently, f [γ]k are all meromorphic at ∞ for
γ ∈ GL(2,Q)+.

And it is called a holomorphic modular form iff it is holomorphic and holomorphic at
cusps(16.1.1.12).

A meromorphic modular form of weight 0 is called a modular function.
Denote M !

k(Γ, 1) = M !
k(Γ), Mk(Γ, 1) = Mk(Γ), and moreover we denote by Sk(Γ, χ) the set of

holomorphic cusp forms consisting of all f ∈Mk(Γ, χ) that vanishes at the cusps(16.1.1.12), and
denote Sk(Γ, 1) = Sk(Γ).

Denote by M !(Γ) = ⊕k≥0M
!
k(Γ) the graded ring of meromorphic modular forms, M(Γ) =

⊕k≥0Mk(Γ) the graded algebra of holomorphic modular forms for Γ, ⊗k≥0Sk(Γ) is a graded ideal of
M(Γ).

Def.(16.2.1.11) [Hauptmodul].Let Γ be a discrete subgroup of SL(2,R) with exactly one cups,
k > 0, a Hauptmodul for Γ is an element in M !(Γ) s.t. it is holomorphic on H and has a simple
pole at the cusp with residue 1, i.e. its Fourier series at the cusp is of the form

f(τ) = q−1 + a0 + a1q + . . . .

Prop.(16.2.1.12)[Petersson Inner Product].Let f ∈Mk(Γ, χ) and g ∈ Sk(Γ, χ), then we see fgyk
is invariant under the action of Γ, thus we can define

(f, g) = (f, g)Γ,k = 1
[SL(2,Z) : {±}Γ]

∫
Γ\H

fgyk
dxdy

y2 ,

which is finite, and restricts to an inner product on Sk(Γ, χ). Moreover, this inner form is invariant
of the Γ chosen.
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Proof: To show it is finite, notice that Γ\H is a finite translations of the fundamental domain of
Γ(1), and for α ∈ SL(2,Z),∫

α(D)
fgyk

dxdy

y2 =
∫
D
f ◦ αg ◦ αy(α(z))k dxdy

y2 =
∫
D
f [α]kg[α]kyk

dxdy

y2 ,

and f [α]k, g[α]k are modular forms for Γ′ = α−1Γα, χ′(γ′) = χ(αγα−1), thus it suffices to prove the
integral is finite on the fundamental domain F for Γ(1)(16.2.1.6). For this, notice g is of exponential
decay for y, thus the integral is bounded by

∫∞
y1
e−cyyk−2dy <∞. □

Prop.(16.2.1.13). If α ∈ GL(2,R)+, f ∈Mk(Γ) and g ∈ Sk(α−1Γα), then

(f [α]k, g)α−1Γα = (f, g[α−1]k)Γ.

Proof: This is because for there is an isomorphism α : α−1Γα\H ∼= Γ\H, and for any left Γ-
invariant function φ, ∫

α−1Γα\H
φ(α(τ))dµ(τ) =

∫
Γ\H

φ(τ)dµ(τ)

and [fg[α−1]yk](ατ) = [f [α]kgyk](τ). □

Prop.(16.2.1.14)[Twisted Modular Forms].For each Dirichlet character χ mod N , we can define
a character of Γ0(N):

χd(
[
a b
c d

]
) = χ(d).

Then we can define Mk(N,χ) = Mk(Γ0(N), χ)(16.2.1.10) and Sk(N,χ) = Sk(Γ1(N)) ∩Mk(N,χ).
Then there are direct sum decompositions:

Mk(Γ1(N)) =
⊕

χ,χ(−1)=(−1)k
Mk(N,χ), Sk(Γ1(N)) =

⊕
χ,χ(−1)=(−1)k

Sk(N,χ),

where the summation is over all Dirichlet character mod N . Moreover, the summands are orthogonal
w.r.t. the Petersson inner product(16.2.1.12).

Proof: Cf.[Diamond, P418]. □

Cor.(16.2.1.15) [Reduction to Γ0(N)].For any congruence subgroup Γ(N), there exists α ∈

GL(2,Q)+ s.t.
[
1

N

]
Γ1(N)

[
1

1/N

]
⊂ Γ(N). Thus if f ∈ Mk(Γ(N)), f [diag(1, N)]k ⊂

Mk(Γ1(N)), which is a combination of modular forms in Mk(Γ0(N), χ). Thus the study of con-
gruence modular forms reduces to the study of Mk(N,χ).

Derivatives

2 Modular Curves and Jacobians
Prop.(16.2.2.1)[Local Picture].Let D be the unit disk and ∆ be a finite group acting on D and
fixing 0, then by Schwarz lemma, ∆ is a finite subgroup of Aut(D, 0) ∼= R/Z, so it is a finite
cyclic group. If |∆| = m, then zm is invariant under ∆ and defines a function on ∆\D. It is a
homeomorphism from ∆\D to D, thus defines a complex structure on ∆\D.
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Let X = {z ∈ C| Im(z) > c} and h an integer. Let Z acts on X by nz = z + nh. This action can
extend to X∗ = X∪{∞}, and we can consider the quotient space Z\X∗. The function q(z) = e2πiz/h

is a homeomorphism from Z\X∗ onto the open disk of radius e−2πc/h and center 0, which defines a
complex structure on Z\X∗.

Lemma(16.2.2.2)[Modular Curves for Γ(1)].Let H∗ = H ∪ {∞}, the Riemann surface Γ(1)\H∗

is compact and of genus 0, so isomorphic to the Riemann surface.

Proof: We first define a complex structure on Γ(1)\H: Let p : H → Γ(1)\H be the quotient map,
and let Q be a point of H mapping to P . If Q is not an elliptic point, then we can choose a nbhd of
Q that maps isomorphically to a nbhd of P , so we can define the complex structure near P .

If Q = i, then the map z 7→ z−i
z+i maps some open nbhd of i to an open disk D′ with center 0, and

the action of S is transformed to the action z 7→ −z. By the local picture, f(z) = ( z−i
z+i)

2 is invariant
under action of S and defines a complex structure near p(i). Similarly, if Q = ρ, then g(z) = ( z−ρ

z−ρ)3

is invariant under the action of ST , and defines a complex structure near p(ρ).
The space Γ\H we get is not compact, and it can be compactified by adding a point ∞, the

resulting space is compact because it is a quotient space of D∪{∞}, which is compact. And we give
a complex structure on the resulting space: The function q = e2πiz is a function mapping a nbhd of
∞ in the fundamental domain to an open disk with center 0, and thus giving a complex structure
near ∞.

It can be seen directly that Γ(1)\H∗ is homeomorphic to a sphere, and then use the fact any
Riemann surface of genus 0 is isomorphic to S1(5.11.8.2). □

Prop.(16.2.2.3)[Modular Curves for Γ].For a congruence group Γ, the quotient space Γ\H can
be compactified to a Riemann surface X(Γ) by adjoining n points, where n is the number of cusps
of Γ.

Proof: The quotient space Γ\H can be given a complex structure exactly the same way as Γ(1)\H,
and it can be compactified by adding P1(Q), which has only f.m. orbits under action of Γ, by(16.2.1.9)
and the fact Γ has finite index in Γ(1). For the complex structure: if h is the smallest positive integer
that T h ∈ Γ, then q = e2πiz/h is a homeomorphism of a nbhd of ∞ in Γ\H to some open disk of 0,
thus defines a complex structure near ∞. For any other cusps α, let γ ∈ Γ(1) satisfies α = γ(∞),
then z 7→ q(γ−1(z)) defines a complex structure near α. □

Def.(16.2.2.4)[Notations].Let Γ be a congruence subgroup, then we denote

Y (Γ) = Γ\H, X(Γ) = Γ\H∗.

Also abbreviate Y (Γ(N)) to Y (N), X(Γ(N)) to X(N), and Y (Γ0(N)) to Y0(N), and X(Γ0(N)) to
X0(N).

Prop.(16.2.2.5)[Modular Form as Differential Forms].A holomorphic modular form of degree
k in Mk(Γ) is just a holomorphic differential form on X(Γ) of degree k, and its dimension can be
calculated, see Dimension Formulae.

Similarly, an automorphic function for Γ is the same as a function onX(Γ)(16.2.2.3). In particular,
if it is holomorphic and vanishes at cusps, then it is constant.

Proof: ? □

Cor.(16.2.2.6)[Hauptmodul].Let Γ be a congruence subgroup with only 1 cusp, a Haptmodul is
the unique meromorphic modular form that has only a simple pole at the cusp with residue 1.
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Modular Curves over Q

Prop.(16.2.2.7)[X0(N)].The field C(X0(N)) of modular functions for Γ0(N) is generated by j(z) and
j(Nz) over C, and the minimal polynomial F (j, Y ) of j(Nz) over C(j) has degree d = [PSL(2,Z) :
Γ0(N)](16.2.4.1), and F (j, Y ) ∈ Z[j, Y ].

When N > 1, F (X,Y ) is symmetric in X,Y , and when N = p is a prime,

F (X,Y ) ≡ Xp+1 + Y p+1 −XpY p −XY mod p.

Proof:
□

Cor.(16.2.2.8).The field of functions on X(1) is C(j).

Action of Hecke Algebras

Prop.(16.2.2.9)[Double Coset Operators].There is an action of R on X1(Γ)

Modular Jacobians

Def.(16.2.2.10)[Modular Jacobians].Define J1(N) = Jac(X1(N)), J0(N) = Jac(X0(N)), which is
defined over the same field as the defining field of X1(N) or X0(N).

3 Hecke Algebra
Def.(16.2.3.1)[G(N)].Define G(N) = ∪α∈GL(2,Q)+Γ0(N)αΓ0(N).

Def.(16.2.3.2) [Hecke Algebra].Notation as in(16.2.1.2), if α ∈ Γ0(N)\G(N)/Γ0(N), then
Γ0(N)\Γ0(N)αΓ0(N) is finite, and if N = 1, there is a set of representatives {α1, . . . , αh} s.t.

Γ(1)αΓ(1) =
⨿
i

Γ(1)αi =
⨿
i

αiΓ(1) = Γ(1)αti.

Let R′
N be the free Abelian group generated by Γ0(N)\G(N) s.t. if Γ0(N)αΓ0(N) =

∑
i Γ0(N)αi,

then [α][β] =
∑
i[αiβ].

Define the Hecke algebra RN of Γ0(N) to be the subalgebra of R′
N consisting by right Γ0(N)-

invariant elements. Then RN is isomorphic to the free Abelian group generated by the double coset
Γ0(N)\G(N)/Γ0(N), and is commutative.

Remark(16.2.3.3).Compare this definition with that of(15.1.5.19).

Proof:

Γ0(N)\Γ0(N)αΓ0(N) ∼= Γ0(N)\Γ0(N)αΓ0(N)α−1

∼= Γ0(N) ∩ αΓ0(N)α−1\αΓ0(N)α−1

∼= α−1Γ0(N)α ∩ Γ0(N)\Γ0(N)

which is finite by(16.2.1.3).
By decomposition(16.2.1.2), the transposition on G(N) is an involution that identifies every

double coset Γ(1)αΓ(1), thus ∑i Γ(1)αi =
∑
i α

t
iΓ(1), and also Γ(1)αi∩αtiΓ(1) ̸= ∅, as Γ(1)αiΓ(1) =

Γ(1)αtiΓ(1), thus we can replace αi by some element in Γ(1)αi ∩ αtiΓ(1).
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To show RN is commutative, for any σ ∈ Γ(1)\GL(2,Q)+/Γ(1), denote deg(σ) to be the car-
dinality of Γ(1)\Γ(1)σΓ(1), σ[i], i ≤ deg(σ) be a set of representatives, and let m(α, β, σ[i]) be
the cardinality of {(i, j)|Γ(1)αiβj = Γ(1)σ[i]}, then m(α, β, σ[i]) is independent of i as right action
by Γ(1) permutes {(i, j)}. Also we see m(α, β, σ[i]) equals 1/ deg(σ) times the number of pairs
{(i, j)|[σ] = [αiβj ]}, because [σ] = [αiβj ] iff αiβj ∈ Γ(1)σ[i] for some i.

Then

m(α, β, σ[i]) = 1
deg(σ)

#{(i, j)|[σ] = [αiβj ]} = 1
deg(σ)

#{(i, j)|[σt] = [βtjαti]} = m(β, α, σt[i]).

But as σt[i] is a permutation of σ[i], we see R is commutative. □

Hecke Operators

Prop.(16.2.3.4). If Γ1,Γ2 are congruence subgroups of X, then for any α ∈ GL+(2,Q), the double
coset

Γ1αΓ2 =
⨿
i

Γ1βi

for some βi ∈ GL+(2,Q). Then we can define a map

Div(X(Γ1))→ Div(X(Γ2)) : [τ ] 7→ [βiτ ],

which induces a morphism Jac(Γ1)→ Jac(Γ2)?.
Prop.(16.2.3.5)[Action on Modular Forms].Let Γ1,Γ2 be congruence subgroups of GL+(2,R),
then

Prop.(16.2.3.6)[Hecke Operators].The Hecke algebra Γ\GL+(2,R)/Γ acts on Mk(Γ) via

Tα(f) =
∑
i

f [αi]k(16.1.1.8), if ΓαΓ =
⨿
i

Γαi.

and preserves Sk(Γ).
Proof: This is an action because if Γ0(N)αΓ0(N) =

⨿
i Γ0(N)αi,Γ0(N)βΓ0(N) =

⨿
j Γ0(N)βj ,

then [α][β] =
⨿
i,j Γ0(N)αiβj .

Also Tα(f)[γ]k = Tα(f) for γ ∈ Γ0(N) because Γ0(N)\Γ0(N)αΓ0(N) is right Γ0(N)-invariant.
And they are holomorphic at cusps because f is holomorphic at cusps thus all f [αi]k are holomorphic
at cusps. Moreover, if f vanishes at cusps, then all f [αi]k vanishes at cusps. □

Γ0(N),Γ1(N) Cases

Prop.(16.2.3.7) [Self-Adjointness].The action of RN on Sk(Γ(N)) is self-adjoint w.r.t to the Pe-
tersson inner product(16.2.1.12).
Proof: First notice (χd(α)−1f [α]k, g) = (f, χd(α)g[α−1]k) for any α ∈ G0(N) by(16.2.1.13), and
f, g ∈Mk(N,χ), thus (χd(α)−1f [α]k, g) only depends on the double coset Γ0(N)αΓ0(N). Thus

(Tαf, g) =
∑
i

(χd(αi)−1f [αi]k, g) = deg(α)(χd(α)−1f [α]k, g) = deg(α)(f, χd(α)g[α−1]k)

However, det(α)α−1 has the same Smith normal form as α, thus it is in the same double coset as
α, thus

deg(α)(f, χd(α)g[α−1]k) = deg(α)(f, χd(α)−1g[α]k) = (f, Tαg).
□
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Cor.(16.2.3.8)[Hecke Eigenforms].The Hecke algebra is commutative and acts as self-adjoint op-
erators on Sk(N,χ), thus there is a basis consisting of eigenfunctions for each Tα, called the Hecke
eigenforms.

Prop.(16.2.3.9) [T (n)].Let T (n) be the sum of operators Tdiag(d1,d2) where d1, d2 ∈ N, d2|d1 and
d1d2 = n.

Equivalently by Cartan decomposition, if ∆n is the subset of GL(2,Z) ∩ G0(N) consisting of
matrices of determinant n, then

∆n =
⨿

a,d>0,ad=n,b mod d

Γ0(N)
[
a b

d

]

and

T (n)f =
∑

a,d>0,ad=n,b mod d

χ(d)−1f [
[
a b

d

]
]k.

Proof: By column reduction, we can make any matrix in ∆n the form as above, and if two elements

of the form
[
a b

d

]
differ by an element of Γ0(N), they differ by an upper-triangular matrix in Γ0(N),

thus a, d are determined, and also b mod d. □

Cor.(16.2.3.10).
• T (1) = id.
• If (m,n) = 1, then T (m) · T (n) = T (mn).
• If p is a prime that (p,N) = 1 and n ≥ 1, then T (pn) ·T (p) = T (pn+1) +pR(p) ·T (pn−1), where

R(p) is the coset Γ0(N)
[
p

p

]
.

• RN is generated by T (p), R(p), R(p)−1.

Proof: 1: Trivial.
2: This follows from Chinese remainder theorem.
3: Omitted. □

Prop.(16.2.3.11)[Explicit Hecke Operators].Let f =
∑
A(m)qm ∈ Sk(N,χ), then for (n,N) = 1,

T (n)f has a Fourier expansion
T (n)f =

∑
B(m)qm,

where
B(m) =

∑
ad=n,a|m

(a
d

)k/2χ(d)−1dA(md
a

).

Proof:

(T (n)f)(z) =
∑
ad=n

∑
b mod d

(a
d

)k/2χ(d)−1f(az + b

d
)

=
∑
ad=n

∑
b mod d

(a
d

)k/2
∞∑
m=1

A(m) exp(2πiamz
d

) exp(2πimb
d

)
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=
∞∑
m=1

∑
ad=n,d|m

(a
d

)k/2χ(d)−1dA(m) exp(2πiamz
d

)

Thus B(m) =
∑
ad=n,a|m(ad)k/2χ(d)−1dA(mda ). □

Prop.(16.2.3.12)[Normalized Hecke Eigenforms]. If f =
∑
cnq

n ̸= 0 ∈Mk(N,χ) that satisfies

T (n)f = n1−k/2χ(n)−1λ(n)f

for all (n,N) = 1 and λ(n) ∈ C, then c1 ̸= 0, and if f is normalized that c1 = 1, then cn = λ(n) for
all such n. In particular, cn are all real, because T (n) is Hermitian(16.2.3.7).

Proof: By(16.2.3.11),

n1−k/2λ(n)A(m) =
∑

ad=n,a|m
(a
d

)k/2χ(d)−1dA(md
a

),

thus for (m,n) = 1, λ(n)A(m) = A(mn), and λ(n) = A(n). □

New Forms

Def.(16.2.3.13)[Old and New Forms].Let αd = diag(d, 1), and let Sk(Γ1(N))[d] be the subspace
of Sk(Γ1(N)) consisting of elements of the form f + g[αd]k, f, g ∈ Sk(Γ1(N/d)), and let

Sk(Γ1(N))old =
∑

p∈P,p|N
Sk(Γ1(N))[p],

called the space of old forms of level N . Also the space

Sk(Γ1(N))new = Sk(Γ1(N))⊥
old,

called the space of new forms of level N .

Remark(16.2.3.14).Omitting the p ∈ P condition in the definition of oldforms doesn’t change the
space.

Remark(16.2.3.15).The dimension of newforms and oldforms are calculated by [Dimensions of the
Spaces of Cusp Forms and Newforms on Γ0(N) and Γ1(N)].

Prop.(16.2.3.16).Sk(Γ1(N))old and Sk(Γ1(N))new are both stable under action of RN . In particular,
they have a orthogonal basis of Hecke eigenforms for the Hecke operators, by(16.2.3.7)(16.2.3.8).

Proof: By(16.2.3.10), for R(n), R(n)(f + g[αp]) = R(n)f + (R(n)g)[αp], for T (ℓ), ℓ ̸= p, T (ℓ)(f +
g[αp]) = T (ℓ)f + (T (ℓ)g)[αp] because d is prime to ℓ. □

Prop.(16.2.3.17) [Strong Multiplicity One]. If f ∈ Sk(Γ0(N), χ)new, f
′ ∈ Sk(Γ0(N ′), χ)new are

normalized new eigenforms having the same eigenvalues for a.e. Tp, then N = N ′ and f = f ′.

Proof: Cf.[On some results of Artin and Lehner, Casselman].? □
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4 Dimension Formulae
Def.(16.2.4.1)[Notations]. In this subsection,

• Γ is a congruence subgroup of SL2(Z).
• g is the genus of X(Γ).
• d is the degree of the map X(Γ)→ X(1) which is equal to [SL(2,Z) : {±1}Γ].
• ε2 the number of elliptic points with period 2.
• ε3 the number of elliptic points with period 3.
• ε∞ the number of cusps.
• εreg

∞ the number of regular cusps(16.1.1.2).
• εirr∞ the number of irregular cusps.

Prop.(16.2.4.2)[Genus Formula].

g = 1 + d

12
− ε2

4
− ε3

3
− ε∞

2
.

Proof: Cf. [Diamond, P68].? □
Prop.(16.2.4.3)[Zeros and Poles of Automorphic Forms].Let f be a meromorphic forms for Γ
of weight 2k, then

1
2

∑
Q elliptic points with period 2

ordQ(f) + 1
3

∑
Q elliptic points with period 3

ordQ(f) +
∑

Q others
ordQ(f) = kd/6,

where the sum is over a set of representatives for points in Γ\H∗.

Proof: Cf.[Milne, P53]. □

Prop.(16.2.4.4)[Dimension Formulae for k Even]. If k is even, then

dim(Mk(Γ)) =


(k−1)d

12 + (1
4 − {

k
4})ε2 + (1

3 − {
k
3})ε3 + 1

2ε∞ k ≥ 2
1 k = 0
0 k < 0

and

dim(Sk(Γ)) =


(k−1)d

12 + (1
4 − {

k
4})ε2 + (1

3 − {
k
3})ε3 − 1

2ε∞ k ≥ 4
g k = 2
0 k ≤ 0

Proof: Cf.[Diamond P87]. □

Cor.(16.2.4.5)[Modular Forms for SL(2,Z)].

M(Γ(1)) = C[E4, E6], S(Γ(1)) = ∆ ·M(Γ(1)).

Thus for k ≥ 4 even,

dim(Sk(Γ(1))) =
{
⌊ k12⌋ − 1 k ≡ 2 mod 12
⌊ k12⌋ otherwise

.

Mk(Γ(1)) = Sk(Γ(1))⊕ CEk.
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Proof: Cf.[Diamond P88]. □

Cor.(16.2.4.6).M(Γ(1)) = M(Γ(1),Z)⊗ C, S(Γ(1)) = S(Γ(1),Z)⊗ C(16.2.8.4).

Proof: By(16.2.5.8), E4, E6 have Fourier coefficients in Z. □

Prop.(16.2.4.7)[Dimension Formulae for k Odd].For k odd,
• if k < 0 or −I ∈ Γ, then Mk(Γ) = Sk(Γ) = 0.
• If k ≥ 3, −I /∈ Γ, then

dim(Mk(Γ)) = (k − 1)(g − 1) + ⌊k
3
⌋ε3 + k

2
εreg

∞ + k − 1
2

εirr∞

dim(Sk(Γ)) = (k − 1)(g − 1) + ⌊k
3
⌋ε3 + (k

2
− 1)εreg

∞ + k − 1
2

εirr∞

• If k = 1, −I /∈ Γ, then

dim(M1(Γ))
{

= εreg
∞ /2 εreg

∞ > 2g − 2
≥ εreg

∞ /2 εreg
∞ ≤ 2g − 2

, dim(S1(Γ)) = dim(M1(Γ))− εreg
∞ /2.

Proof: Cf.[Diamond P91]. □

Explicite Dimension Formulae for Γ(N),Γ1(N),Γ0(N)

Lemma(16.2.4.8).
SL(2,Z)→ SL(2,Z/NZ)

is surjective.

Proof: Cf.[D-S16]P101. □

Prop.(16.2.4.9)[Degree].
• The degree of the mapping X(N)→ X(1) is

d = dN = [SL(2,Z) : {±1}Γ(N)] =
{

1/2N3∏
p|N (1− 1/p2) N > 2

6 N = 2

• There is a coset decomposition Γ1(N) =
⨿N
j=1 Γ(N)

[
1 j

1

]
, in particular, d = [SL(2,Z) :

{±1}Γ1(N)] = dN/N,N ≥ 2.

• There is a coset decomposition Γ0(N) =
⨿

y mod N,(y,N)=1
Γ1(N)

[
x k
N y

]
, where x, k are chosen

that xy − kN = 1. In particular, d = [SL(2,Z) : Γ0(N)] = 2d/Nφ(N), N ≥ 2.

Proof: 1: By(16.2.4.8), the map SL(2,Z) → SL(2,Z/NZ) is surjective, so [Γ(N) : Γ(1)] =
#SL(2,Z/NZ). Let N =

∏
pnii , then SL(2,Z/NZ) ∼=

∏
i SL(2,Z/pnii Z), and calculating depending

on e11 is invertible or e12 is invertible, #SL(2,Z/pnii Z) = 2(pni − pni−1)p2ni − (pni − pni−1)2pni =
p3ni
i − p3ni−2

i . Thus #SL(2,Z/NZ) = N3∏
p|N (1− p−2), and we get the desired formula. □

Prop.(16.2.4.10)[Elliptic Points].
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Cor.(16.2.4.11)[Elliptic Points of X0(p)].Let p be a prime, then
• ε3(Γ0(p)) = 1 +

(−1
p

)
, where

(−1
2
)

= 0.

• ε2(Γ0(p)) = 1 +
(−3
p

)
, where

(−3
2
)

= −1.

Proof: Firstly there is a coset decomposition Γ(1) = Γ0(p)αj , where αj =
[
1
j 1

]
when j =

0, . . . , p− 1 and α∞ =
[
1 −1
1 0

]
:

Because −1 ∈ Γ0(p), if αj(i) or α(ω) is an elliptic point, we may assume that it is fixed by
an element of order 4 or 6 resp. by(16.2.1.9). Notice αj(i) is an elliptic point or equivalently

αj

[
0 −1
1 0

]
α−1
j ∈ Γ0(p) iff j ̸= ∞ and j2 + 1 ≡ 0 mod p. Thus ε2(Γ0(p)) equals the number

of solutions to j2 = 1, which is 1 +
(−1
p

)
. Similarly αj(ω) is an elliptic point or equivalently

αj

[
0 −1
1 1

]
α−1
j ∈ Γ0(p) iff j ̸= ∞ and j2 − j + 1 ≡ 0 mod p. Thus ε2(Γ0(p)) equals the num-

ber of solutions to j2 = 1, which is 1 +
(−1
p

)
. □

Lemma(16.2.4.12).Let s = a/c, s′ = a′/c′ ∈ P1(Q) with (a, c) = (a′, c′) = 1, then for any γ ∈
SL(2,Z),

s′ = γ(s) ⇐⇒
[
a′

c′

]
= ±γ

[
a
c

]
.

Proof: □

Lemma(16.2.4.13).Let s = a/c, s′ = a′/c′ ∈ P1(Q) with (a, c) = (a′, c′) = 1, then

• Γ(N)s′ = Γ(N)s ⇐⇒
[
a′

c′

]
≡ ±

[
a
c

]
mod N

• Γ1(N)s′ = Γ1(N)s ⇐⇒
[
a′

c′

]
≡ ±

[
a+ jc
c

]
mod N , for some j.

• Γ0(N)s′ = Γ0(N)s ⇐⇒
[
ya′

c′

]
≡
[
a+ jc
c

]
mod N , for some y relatively prime to N and some

j.

Proof: Use(16.2.4.12).

1: One direction is clear, for the other, If
[
a′

c′

]
≡ ±

[
a
c

]
mod N , take b, d that ac− bd = 1, then

γ =
[
a b
c d

]
maps

[
1
0

]
to
[
a
c

]
. As Γ(N) is normal in Γ(1), it suffices to prove for

[
a
c

]
=
[
1
0

]
. Then

a′ ≡ 1 mod N , take integers β, δ that a′δ− c′β = (1−α′)/N , let γ =
[
a′ βN
c′ δN

]
, then γ ∈ Γ(N) and[

a′

c′

]
= γ

[
1
0

]
.

2 follows from 1 and the coset decomposition Γ1(N) =
⨿N
j=1 Γ(N)

[
1 j

1

]
.
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3: There is a coset decomposition Γ0(N) =
⨿

y mod N,(y,N)=1
Γ1(N)

[
x k
N y

]
, where x, k are chosen

that xy − kN = 1. Then

Γ0(N)s′ = Γ0(N)s ⇐⇒
[
a′

c′

]
≡ ±

[
xa+ kc+ jcy

cy

]
mod N, ∃j, (y,N) = 1

⇐⇒
[
ya′

c′

]
≡
[
a+ jc
cy

]
mod N, ∃j, (y,N) = 1

□

Prop.(16.2.4.14)[Cusps].
• ε∞(Γ0(N)) =

∑
d|N φ((d,N/d)).

•

Proof: 1: By(16.2.4.13), if Γ0(N)s′ = Γ0(N)s, then
[
ya′

c′

]
≡
[
a+ jc
c

]
mod N , which means

first (c,N) = (c′, N). So we consider the equivalence classes with (c,N) = d. In this case any
equivalence class has a representative that c = d. Consider the equivalence relations between them,

then
[
a′

d

]
represents the same cusp as

[
a
d

]
iff (y0 + iN/d)a′ ≡ a+ jd mod N for some i, j, which is

equivalent to a′ ≡ y0a mod (c,N, a′N/d) = (d,N/d). So there are∑d|N φ((d,N/d)) many equivalence
classes(cusps). □

Prop.(16.2.4.15)[Regular Cusps].All the cusps of Γ0(N) and Γ(N) are regular. The only irregular
cusp of Γ1(N) are s = 1/2 for N = 4.

Proof: Cf.[?]P103. □

Lemma(16.2.4.16).Lists of statistics for Γ0(N),Γ1(N),Γ(N).

Γ d ε2 ε3 ε∞

Γ0(N), N > 2 2dN
Nφ(N)

{∏
p|N (1 + (−1

p )) 4 ∤ N
0 4|N

{∏
p|N (1 + (−3

p )) 9 ∤ N
0 9|N

∑
d|N φ((d,N/d))

Γ1(2)(Γ0(2)) 3 1 0 2
Γ1(3) 4 0 1 2
Γ1(4) 6 0 0 3
Γ1(N), N > 4 dN/N 0 0 1

2
∑
d|N φ(N)φ(N/d)

Γ(1)(Γ1(1)) 1 1 1 1
Γ(N), N > 1 dN 0 0 dN/N

where

dN =
{

1/2
∏
p|N N

3(1− 1/p2) N > 2
6 N = 2

.

Proof: Cf.[Diamond P107]. □
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Prop.(16.2.4.17) [List of Dimension Formulae].Lists of dimension formulae for
Γ0(N),Γ1(N),Γ(N).

Γ g
dim(Mk(Γ))& dim(Sk(Γ)),
2|k, k ≥ 2

dim(Mk(Γ))& dim(Sk(Γ)),
2|k + 1, k ≥ 3

Γ0(N), N > 2 expression too long expression too long expression too long
Γ1(2)(Γ0(2)) 0 ⌊k4⌋ ± 1 0
Γ1(3) 0 ⌊k3⌋ ± 1 ⌊k3⌋ ± 1
Γ1(4) 0 k−1±3

2
k−1±2

2
Γ1(N), N > 4 1 + dN

12N −
1
4
∑
d|N φ(d)φ(N/d) (k−1)dN

12N ± 1
4
∑
d|N φ(d)φ(N/d) (k−1)dN

12N ± 1
4
∑
d|N φ(d)φ(N/d)

Γ(1)(Γ1(1)) 0 1 1
Γ(2) 0 k−1±3

2 0
Γ(N), N > 2 1 + dN (N−6)

12N 0 (k−1)dN
12N ± dN

2N

Proof: This follows from(16.2.4.4)(16.2.4.7)(16.2.4.16) and(16.2.4.15). □

Remark(16.2.4.18).The only case that is not calculated is the dimensions of dim(M1(Γ)).

Cor.(16.2.4.19)[Low Genus Cases].For N ∈ Z+,
• g(X(N)) = 0 iff N ∈ {1, 2, 3, 4, 5}.
• g(X(N)) = 1 iff N = 6.
• g(X1(N)) = 0 iff N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}.
• g(X1(N)) = 1 iff N ∈ {11, 14, 15}.
• g(X0(N)) = 0 iff N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25}.
• g(X0(N)) = 1 iff N ∈ {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49}.

Proof: If N =
∏
p p

ep ,
1, 2:
3, 4:

g(X1(N)) = 1 + 1
24
∏
p|N

p2ep(1− 1
p2 )− 1

4
∏
p

pep−2(p− 1)[(p+ 1)− ep(p− 1)],

so if g(X1(N)) = 0, ∏
p

pep(p+ 1)
[(p+ 1) + ep(p− 1)]

< 6.

Then it can be verified that e2 ≤ 3, e3 ≤ 2, e5 ≤ 1, e7 ≤ 1, e11 ≤ 1, ep = 0 for p > 11 ∈ P. Then the
assertion follows. 4 is similar.

5, 6:? □

Applications

Prop.(16.2.4.20).Use dimension formula to prove four square problem, Cf.[D-S16]Chap1.
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5 Eisenstein Series
Def.(16.2.5.1) [Eisenstein Series].Let Γ be a congruence subgroup of Γ(1), define the space of
Eisenstein series Ek(Γ, χ) to be the orthogonal complement of Sk(Γ, χ) in Mk(Γ, χ). Also denote
Ek(Γ) = Ek(Γ, 1).

Prop.(16.2.5.2) [Dimensions of Eisenstein Series].Notation as in(16.2.4.1), by(16.2.4.4)
and(16.2.4.7), the dimensions of the space of Eisenstein series satisfy:

dim(Ek(Γ)) =



ε∞ k ≥ 4, 2|k
ε∞ − 1 k = 2
1 k = 0
εreg

∞ k ≥ 3, 2|k + 1,−1 /∈ Γ
εreg

∞ /2 k = 1,−1 /∈ Γ
0 k < 0 or 2|k + 1,−1 ∈ Γ

And also the dimension of Ek(Γ0(N)), Ek(Γ1(N)), Ek(Γ(N)) can be read off from(16.2.4.17).

Eisenstein Series for Γ(1)

Def.(16.2.5.3). In this subsubsection, denote q = e2πiz.

Prop.(16.2.5.4) [Weakly Modular Forms and Lattices].Let L be the set of lattices in C, If
F : L → C is a function of weight 2k, i.e. F (λΛ) = λ−2kF (Λ) for λ ∈ C∗, then f(z) = F (Λ(z, 1)) is a
weakly modular form on H for Γ(1) of weight 2k, and this is a bijection between functions of weight
2k on L and weakly modular functions on H for Γ(1) of weight 2k.

Proof: By the hypothesis, there is a function f on H that for any w1, w2 with w1/w2 ∈ H,

F (Λ(w1, w2)) = w−2k
2 f(w1/w2).

Then the invariance of F under SL(2,Z) action implies f is weakly modular of weight 2k. □

Prop.(16.2.5.5)[Eisenstein Series for SL(2,Z)].Let k > 2 be an even integer and Λ a lattice of C,
define the Eisenstein series of weight k to be

Gk(Λ) =
∑

ω∈Λ,ω ̸=0

1
ωk
,

and also for a complex number z, let Λz be the lattice generated by 1 and z, and let Gk(z) = Gk(Λz).
Then Gk(z) ∈Mk(Γ(1)), and

Gk(z) = 2ζ(k) + 2 (2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

And denote
Ek(z) = Gk(z)/2ζ(k) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

the normalized Eisenstein series.
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Proof: Gk(z) is weakly modular of weight k by(16.2.5.4). For the expansion, notice by(10.5.3.11),

π cot(πz) = 1
z

+
∞∑
n=1

( 1
z + n

+ 1
z − n

),

and by definition

z cot(πz) = πi− πi

1− q
= πi− 2πi

∞∑
n=1

qn

where z ∈ H.
Taking (k − 1)-th derivative of this, we get

∑
n∈Z

1
(z + n)k

= (−2πi)k

(k − 1)!

∞∑
n=1

nk−1qn,

thus

Gk(z) =
∑

(m,n)̸=(0,0)

1
(nz +m)k

= 2ζ(k) + 2
∞∑
n=1

∑
m∈Z

1
(nz +m)k

= 2ζ(k) + 2(−2πi)k

(k − 1)!

∞∑
n=1

∞∑
a=1

ak−1qan

= 2ζ(k) + 2 (2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

Finally the assertion about Ek(z) follows from(19.6.4.1).
To show the Eisenstein series is orthogonal to any cusp form, notice for any cusp form f ∈

Sk(Γ(1)),
f(γ(z))(Im(γz))k = f(z)τ(γ, z)−k Im(z)k

and by(16.2.5.5)
Gk(z) =

∑
(m,n) ̸=0∈Z2

1
(mz + n)k

=
∑

Γ(1)∞\Γ(1)

1
τ(γ, z)k

,

so ∫
Γ(1)\H

f(z)Gk(z)yk
dxdy

y2 =
∫

Γ(1)\H

∑
Γ(1)∞\Γ(1)

f(z)τ(γ, z)−k
yk
dxdy

y2

=
∫

Γ(1)\H

∑
Γ(1)∞\Γ(1)

f(γz)(Im(γz))k dxdy
y2

=
∫

Γ(1)∞\H
f(z)(Im z)k dxdy

y2

=
∫ ∞

0
[
∫ 1

0
f(x+ iy)dx]yk−2dy = 0

as f is a cusp form. □
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Cor.(16.2.5.6).By(16.2.5.5) and(8.5.1.12):

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn, E6(z) = 1− 504
∞∑
n=1

σ5(n)qn

E8(z) = 1 + 480
∞∑
n=1

σ7(n)qn, E10(z) = 1− 264
∞∑
n=1

σ9(n)qn

E12(z) = 1 + 65520
691

∞∑
n=1

σ3(n)qn, E14(z) = 1− 24
∞∑
n=1

σ5(n)qn.

Cor.(16.2.5.7) [Ramanujan Identities].By(16.2.4.5), dimM6(Γ(1)) = dimM8(Γ(1)) =
dimM10(Γ(1)) = dimM14(Γ(1)) = 1, thus there are equations

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14

which give equations like:

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m)

11σ9(n) = 21σ5(n)− 10σ3(n) + 1054
n−1∑
m=1

σ3(m)σ5(n−m).

Prop.(16.2.5.8)[Discriminant Function].By(16.2.5.6), we can define the discriminant function

∆(q(z)) = 1
1728

(E3
4 − E2

6) = q − 24q2 + 252q3 − 1472q4 + τ(5)q5 + . . . .

So ∆(z) ⊂ S12(Γ(1)), and the coefficients τ(n) are called the Ramanujan τ-function.

Cor.(16.2.5.9).
E2

6 − E12 = (−1008− 24 · 2730
691

)∆.

In particular, τ(n) ≡ σ11(n) mod 691.

Proof: Consider E2
6−E12 ∈ S12(Γ(1)), and S12(Γ(1)) is 1-dimensional and generated by ∆(16.2.4.5),

thus E2
6 − E12 = c∆ for some constant c ∈ C. By comparing the degree 1 term of both sides:

∆(q(z)) = 1
1728

(E3
4 − E2

6) = q − 24q2 + . . . .

E12(z) = 1 + 24 · 2730
691

∞∑
n=1

σ11(n)qn, E6(z) = 1− 504
∞∑
n=1

σ5(n)qn

by(16.2.5.6) and(16.2.5.8), so c = −1008− 24·2730
691 . Then the formula

691(E2
6 − E12) = 691c∆,

modulo 691 gives τ(n) ≡ σ11(n) mod 691. □
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Cor.(16.2.5.10) [j-Function].By(16.2.4.3), the discriminant function ∆(z) has exactly one simple
zero at ∞, thus we can define the j-function on H as

j : H → C, j(q(z)) = E4(z)3

∆(q(z))
= 1
q

+ 744 + 196884q + 21493760q2 + 864299970q3 + . . . ∈ 1
q

+ Z[[q]]

which is an automorphic function for Γ(1), and it subjects onto C.

Proof: To show it surjects onto C, notice it induces a holomorphic map X(1) ∼= P1 → P1, and it
maps ∞ to ∞ with no ramification, thus it has degree 1, so it is surjective. □

Prop.(16.2.5.11).

∆(q(z)) = η(q(z))24 = q
∞∏
n=1

(1− qn)24.

where η(z) the Dedekind eta function from(8.5.2.6), and dim(S(SL(2,Z))) = 1, spanned by ∆.

Proof: We show that η24(z) is a holomorphic cusp form in S12(Γ(1)), and it has a first order pole
at ∞ by the expression, and has no zero on H, thus it divides every cusp form in S12(Γ(1)), and the
quotient is a holomorphic modular function, thus is a constant. The assertion follows by comparing
coefficients.

To show this, it suffices to show

η(γ(z)) = ε(γ)(cz + d)1/2η(z)

for every γ ∈ Γ(1), where ε(γ) is a 24-th root of unity. Because [γ]k is an action(16.2.1.10), by6, it

suffices to show for S =
[
−1

1

]
and T =

[
1 1

1

]
. The case for T is clear from the last expression

of η(z). For S: ? □

Def.(16.2.5.12) [Poincaré Series].Let Γ be a congruence subgroup, T =
[
1 1

1

]
. Let h be the

minimal positive integer that T h ⊂ Γ, and define Γ0 the subgroup of Γ generated by T h. Then we
define the Poincaré series of weight 2k and character n for Γ to be the series

φn(z) =
∑

Γ∞\Γ′

exp(2πinγ(z)
h )

(cz + d)2k ,

where Γ′ is the image of Γ in Γ(1)/{±1}.

Prop.(16.2.5.13).For k ≥ 1, n ≥ 0, The Poincaré series converges absolutely on compact subsets of
H, and is invariant under Γ-action, and it is a modular form of weight 2k for Γ. Moreover,

• φ0(z) vanishes at all finite cusps, and φ0(∞) = 1.
• for n ≥ 1, φn(z) are cusp forms.

Proof: Cf.[Mil, P62]. □

Prop.(16.2.5.14).The Poincaré series φn(z) of weight 2k spans S2k(Γ).

Proof: Cf.[Mil17c]P62. □
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General Eisenstein Series

Quasimodular Forms

Def.(16.2.5.15)[Almost Modular Forms and Quasimodular Forms].For a discrete subgroup Γ
of SL(2,R), let M̂≤p

k (Γ) be the space of functions in C∞(H) of the form F (z) =
∑p
r=0 fr(z)(−4πy)−r,

where fr are holomorphic on H and holomorphic at the cusps, and F [γ]k = F for any γ ∈ Γ. Also
denote M̂k(Γ) = ∪∞

p=0M̂
≤p
k (Γ) and the graded ring M̂∗(Γ) = ⊕k≥0M̂k(Γ), called the space of almost

modular forms.
The graded ring M̃∗(Γ) consists of constant terms of functions in M̂∗(Γ). Any almost modular

function is determined by its constant term, so M̃∗(Γ) is canonically isomorphic to M̂∗(Γ).?
Def.(16.2.5.16)[E2(z)].Denote

G2(z) = 1
2
∑
n̸=0

1
n2 +

∑
m ̸=0

∑
n∈Z

1
(mz + n)2 .

This summation is convergent but not absolutely convergent, and

E2(z) = 6
π2G2(z) = 1− 24q − 72q2 + . . . ∈ M̃≤1

2 (Γ(1))

with
G∗

2 = G2(z)− π

2 Im(z)
, E∗

2(z) = 6
π2G

∗
2 = E2(z)− 3

πy
∈ M̂≤1

2 (Γ(1)).

In particular, E2(z) satisfies

E2[γ]2(z) = E2(z) + 12
2πi

c

cz + d
.

Proof:
□

Prop.(16.2.5.17)[Derivations of Modular Forms].Let f ∈Mk(Γ(1)), then

Df = f ′ = 1
2πi

∂

∂z
f = q

∂

∂q
f =

∞∑
n=1

nanq
n

satisfies
(Df)[γ]k+2(z) = (Df)(z) + k

2πi
c

cz + d
f(z).

In particular, by(16.2.5.16), θk(f) = D(f) − k
12E2f ∈ Mk+2(Γ(1)), called the Serre derivation of

f .

Proof: This follows form differentiating the equation f(az+b
cz+d) = (cz + d)kf(z). □

Cor.(16.2.5.18).

D(E2) = E2
2 − E4

12
, D(E4) = E2E4 − E6

3
, D(E6) = E2E6 − E4

2
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Proof: D(E4) and D(E6) follows from(16.2.5.17) by comparing coefficients, for D(E2), differenti-
ating the equation E2(az+b

cz+d) = (cz + d)2E2(z) + 12
2πic(cz + d), we get

D(E2)[γ]4(z) = D(E2)(z) + 2c
2πi

E2(z)
cz + d

+ 12c2

(2πi)2
1

(cz + d)2 .

Thus by(16.2.5.16), we see D(E2)− E2
2

12 ∈M4(Γ(1)), then we can compare coefficients. □

Prop.(16.2.5.19)[Structure of M̃∗(Γ)].Let Γ be a discrete subgroup of SL(2,R), then
• D(M̃≤p

k (Γ)) ⊂ M̃≤p+1
k+2 (Γ). In particular, D(M̃∗(Γ)) ⊂ M̃∗(Γ).

• If φ ∈ M̃≤1
2 (Γ), then M̃≤p

k (Γ) = ⊕pr=0Mk−2r(Γ)φr, for all k, p ≥ 0. In particular, M̃∗(Γ(1)) =
C[E2, E4, E6].

• If φ ∈ M̃≤1
2 (Γ), then for p, k ≥ 0,

M̃≤p
k (Γ) =

{
⊕pr=0D

r(Mk−2r(Γ)), p < k/2
⊕k/2−1
r=0 Dr(Mk−2r(Γ))⊕ C ·Dk/2−1φ, p ≥ k/2

Proof: Cf.[BGHZ]P59. □

6 Eichler-Shimura Relations

7 Moduli Characterization

Prop.(16.2.7.1) [Elliptic Curves and Modular Curves].Modular curves Y0(N), Y1(N), Y (N)
parametrizes elliptic curves over C with additional structures.

Proof: □

Thm.(16.2.7.2)[Modularity Theorem].Any elliptic curve over C with rational j-invariant arises
from a modular form.

8 Arithmetics

Prop.(16.2.8.1)[Number Field of f ]. If f ∈ Sk(Γ1(N)) is a normalized eigenform, then the coef-
ficients an(f) are algebraic integers, and generate a number field Kf , called the number field of
f .

Proof: Cf.[Diamond, P238]. □

Prop.(16.2.8.2). if f ∈ S2(N,χ) is a normalized eigenform, then for any σ ∈ GalQ, fσ is also a
normalized eigenform in S2(N,χσ), where χσ(n) = χ(n)σ. And if f is a newform, then so is fσ.

Proof: Cf.[Diamond, P239].? □

Cor.(16.2.8.3) [Integrality of Modular Forms].S2(Γ1(N)) has a basis of modular forms with
integral coefficients.
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Proof: Let f ∈ S2(Γ1(N)) be a newform of levelM |N , andKf the number field of f . Let α1, . . . , αd
be a Z-basis of OK , and Σ∞ = {σ1, . . . , σd} the set of embeddings of K into C. Let

gi =
d∑
j=1

σj(αi)fσj ,

then by linear independence of characters, the matrix (σi(αj)) is non-degenerate, so
span{g1, . . . , gd} = span{f, . . . , fσd}, and gi ∈ S2(Γ1(N)) by(16.2.8.2). Then by(16.2.3.13), applying
this for all old and new forms of S2(Γ1(N)), the assertion follows. □

Prop.(16.2.8.4)[Integral Modular Forms]. IfA ⊂ C be a subring, denoteMk(Γ, A) = Mk(Γ)∩A[[q]]

9 Modular Forms Mod p

Def.(16.2.9.1) [Modular Forms Mod p].Define Mk(Γ,Fp) = Mk(Γ,Z) ⊗ Fp, called the space of
modular forms mod p of weight k.

Prop.(16.2.9.2)[Serre’s Equality].There is an isomorphism Mp+1(SL(2,Z),Fp) ∼= M2(Γ0(p),Fp)

Proof: Because Ek(z)1− 2k
Bk

∑∞
n=1 σk−1(n)qn, and by Kummer’s congruence(20.3.1.1) ordp(Bp−1) =

−1, thus Ep−1 mod 1 mod p. Then multiplying by Ep−1 : M2(Γ0(p),Fp) → Mp+1(Γ0(p),Fp)
raises the level by p − 1. Then we compose with the natural averaging map Mp+1(Γ0(p),Fp) →
Mp+1(SL(2,Z),Fp), which is dual to the natural inclusion Mp+1(SL(2,Z),Fp)→Mp+1(Γ0(p),Fp).

Why isomorphism.? □

10 Non-Congruent Modular Forms
Cf.[Non-Congruuent Modular Forms, Ling Long].

Thm.(16.2.10.1)[Unbounded Denominators Conjecture].Let N be any positive integer and let
f(τ) ∈ Z[[q1/N ]] for q = exp(πiτ) be a holomorphic function on the upper half plane. Suppose there
exists an integer k and a finite index Γ ⊂ SL(2,Z) that f is Γ-invariant, and f is meromorphic at
the cusps of Γ, then f(τ) is a modular form for some congruent subgroup of SL(2,Z).

Proof: Cf.[the Unbounded Denominator Conjecture]. □
3
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16.3 Adelic Automorphic Representations
Main references are [Bum98], [Gan07], [G-H11], [Borel, Casselman, Automorphic forms, represen-

tations and L-function (Corvallis)], [Automorphic Forms on GL(2), Jacquet and Langlands(1970)].
[Introduction to Langlands Program, Cogdell].

Notation(16.3.0.1).
• Use notations defined in Adeles and Ideles.
• Use notations defined in Admissible Representations of GL(n) over p-Adic Number Fields.
• Use notations defined in Arithmetic of Algebraic Groups.
• Use notations defined in Automorphic Representations over Archimedean Local Fields.
• Fix a global field F and let A = AF .
• Fix a linear algebraic group G ∈ AlgGrp /F with center Z.
• Fix a central character ω : Z(AF )/Z(F ) → C×. Notice if G = GL(2), ω is just a Hecke

character.

Def.(16.3.0.2)[Lie Algebra].Let g∞ = Lie(G(A∞)) be the Lie algebra of G(A), Z = Z(U(g∞)).

Notation(16.3.0.3)[Group-Theoretic Notations].
• If G = GL(n), B is the Borel subgroup of upper triangular matrices, Unip(n) is the subgroup

of upper triangle unipotent matrices.
• Mn is the mirabolic subgroup of B with an,n = 1, which is isomorphic to GL(n− 1) ⋉An.
• T the group of diagonal matrices. T1 is the subgroup of T that ann = 1.
• Denote w0 the matrix=

∑n
i=1 ei,n−i.

• If n = 2, denote w0 =
[
−1

1

]
, w1 =

[
1

−1

]
,

t(y) =
[
y

y−1

]
, n(z) =

[
1 z

1

]
y ∈ F ∗, z ∈ F.

following6.

Def.(16.3.0.4).For α ∈ Fn−1, let ψN,α be a character of N(F ) given by ψN (g) =
∑
i ψ(αigi,i+1). For

α = (1, . . . , 1), denote ψN,α by ψN .

Def.(16.3.0.5)[Global Norm].Take an embedding G ↪→ GL(n) over F . Define the norm on G(AF )
by

||g|| =
∏
v

max(|gij |v, |g−1
ij |v).

Notice in non-Archimedean places ||g||v = 1 for g ∈ GL(m,Ov), so it is definable.

Remark(16.3.0.6)[Delete].The reason to formulate automorphic forms in the Adelic setting:
1: we want a theory that deals with A(G,Γ) for all choices of Γ simultaneously.
2: we want a framework in which the roles of the (g,K)-action and theH(G,Γ)-action are parallel,

i.e. so that they are actions of the same kind.
3: To describe the process of attaching an L-function to a classical modular form in terms of

representation theory, it is cleanest to use the adelic framework, as demonstrated in Tate’s thesis.
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4: The questions about the absolute Galois group GalQ, like what finite groups are quotients
of GalQ, or where there extensions of Q with given ramification conditions, can be understood via
automorphic forms. And automorphic forms can be understood via Langlands dual groups.

1 Automorphic Representations

Admissible Representations and Tensor Product Theorem

Def.(16.3.1.1)[Admissible Representations].A smooth representation of G(AF ) is defined to
be a commuting smooth G(Af )-action and a (g∞,K∞)-module structure(13.3.3.5). The category of
smooth representations of G(AF ) is denoted by Repalg(G/F ).

Any (π, V ) ∈ Repalg(G(AF )) induces a representation of K = Kf×K∞. Then this representation
is called an admissible representation iff every vector is K-finite, and for any irreducible repre-
sentation ρ of K, dimV ρ < ∞. By(15.1.5.32), it can be checked that this is equivalent to: for any
irreducible representation ρ∞ of K∞ and an open compact subgroup U ⊂ Kf , dimV ρ∞ ∩ V U <∞.
The category of admissible representations of G(AF ) is denoted by Repadm(G/F ).

Def.(16.3.1.2)[Restricted Tensor Representation].Given a set of locally compact groups Gv and
a.e. their compact subgroups Kv, (ρv, Vv) ∈ Repalg(Gv), ξ0

v ∈ V Kv
v are given for a.e. v, then we can

define the restricted tensor representation

(ρ, V ) =
′⊗
v

(ρv, Vv, ξ0
v)

of G(AF ) =
∏′(Gv,Kv) on ⊗′

vVv by

ρ(⊗vgv)(⊗vξv) = ⊗vρv(gv)ξv.

Def.(16.3.1.3)[Global Hecke Algebra].For v ∈ ΣF , let HG(Fv) be the Hecke algebras constructed
in(15.1.5.19) and(15.9.4.11). As HG(Fv) has a spherical idempotent e0

v = eKv(16.3.1.1), we can define
the global Hecke algebra

HG(AF ) =
′⊗
v

(HG(Fv), e
0
v).

Then by definition of representations in(16.3.1.12) and(15.9.4.12)(15.1.5.23),

Repalg(G(AF )) = Repalg(HG(AF )).

Thm.(16.3.1.4) [Tensor Product Theorem, Flath].For (ρ, V ) ∈ Irradm(G/F ), there exists
uniquely for each v ∈ Σ∞

F a (ρv, Vv) ∈ Irradm((g∞,Kv)), and for each v ∈ Σfin
F a (πv, Vv) ∈

Irralg(G(Fv)) s.t. for a.e. v, Vv contains a non-zero Kv-fixed vector ξ0
v , and

(ρ, V ) =
′⊗

(ρv, Vv, ξ0
v).

Conversely, any such a restricted tensor product is in Irradm(G/F ).

Proof: By considering the global Hecke algebra, this follows immediately from(16.3.1.3)
and(15.9.4.12)(15.1.5.23) □
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Cor.(16.3.1.5)[Contragradient Representations].For any ρ = ⊗vρv ∈ Irradm(G/F ), we can define
the contragradient of ρ as ρ̂ = ⊗vρ̂v(15.1.2.7) ∈ Irradm(G/F ).

Cor.(16.3.1.6)[Irreducible Representations of K].

Irr(K) =
′⊗
v

Irr(Kv).

Proof: This is similar to the proof of(16.3.1.4). □

Automorphic Representations

Def.(16.3.1.7)[L2-Space].Define L2(G/F, ω) the space of all measurable functions φ on G(A) that
satisfies

φ(zg) = ω(z)φ(g),∀z ∈ Z(A), φ(γg) = φ(g),∀γ ∈ G(F )

and square integrable module the center:∫
Z(A)G(F )\G(A)

|φ(g)|2dg <∞.

Then the right action of G(A) on L2(G(F )\G(A), ω) is continuous, by(10.11.2.9).

Def.(16.3.1.8) [Cuspidality].A function φ ∈ L2(G(F )\G(AF ), ω) is called cuspidal iff for any
proper parabolic subgroup P = MU , where U is the unipotent radical,∫

U(F )\U(AF )
φ(ng)dn = 0

a.e. g ∈ G(AF ). The closed space of all cuspidal elements in L2(G(F )\G(AF ), ω) is denoted by
L2

0(G(F )\G(A), ω). L2
0(G(F )\G(A), ω) is stable under the right action of G(A).

Thus a function φ ∈ L2(GL(n, F )\GL(n,AF ), ω) is cuspidal iff∫
Mr×s(F )\Mr×s(A)

φ(
[
Ir X

Is

]
g)dX = 0

a.e. g for any r + s = n, 1 < r < n, as these are the maximal proper parabolic subgroups of GL(n).

Def.(16.3.1.9)[Smooth Functions on G(AF )].
• The space C∞(G(AF )) of smooth functions on G(AF ) is defined to be the restricted tensor

product ⊗′C∞(Gv) w.r.t. fv,0 = χKv .
• The space C∞

c (G(AF )) of compactly supported smooth functions on G(AF ) is de-
fined to be the restricted tensor product ⊗′C∞

c (Gv) w.r.t. fv,0 = χKv . C∞
c (G(A)) acts

on L2(G(F )\G(AF ), ω).
• G(AF ) acts on C∞(G(AF )) by right translation, and induces an action of g∞ thus an action

of U(g∞) on it. A function f is called Z-finite if it is contained in a f.d. space that is invariant
under the action of Z.

• A K-finite function f ∈ C∞(G(AF )) is a vector that is contained in a f.d. space that is
right-invariant under K. Equivalently, it is K∞-finite and is right-invariant under an open
compact subgroup of G(Af ).
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• A function f ∈ C∞(G(AF )) is said to have moderate growth iff |f(g)| ≤ C||g||N (16.3.0.1)
for some constant C > 0 and any g ∈ G(AF ).

• A function f ∈ C∞(G(AF )) is said to be rapidly decreasing if for any k ∈ Z+, |f(g)| ≤
Ck||g||−k for any g ∈ G(AF ) and some constant Ck.

Def.(16.3.1.10)[Adelic Automorphic Forms].We denote by A(G/F, ω) the space of adelic auto-
morphic forms consisting of smooth functions on G(AF )(16.3.1.9) that satisfies

• φ(zg) = ω(z)φ(g), ∀z ∈ Z(A), φ(γg) = φ(g), ∀γ ∈ G(F ).
• K-finite and Z-finite(16.3.1.9).
• of moderate growth(16.3.1.9).

And the spaceA0(G/F, ω) of cusp forms the automorphic forms that is cuspidal in sense of(16.3.1.8).
A(G/F, ω) is a (g∞,K∞)-module, and G(AfF ) acts smoothly on it. The subspace A0(G/F, ω) is stable
under both actions.

Prop.(16.3.1.11)[Analytic Properties].Any automorphic form f is real analytic when restricted
to G(A∞), and is of moderate growth.

Any cusp form f is rapidly decreasing. In particular, f ∈ L2
0(G/F ) if G is semisimple.

Proof: It is real analytic by(16.1.1.29). The growth condition reduces immediately to the
Archimedean case(16.1.3.7). □

Def.(16.3.1.12)[Automorphic Representations].A(G/F, ω) and A0(G/F, ω) afford smooth repre-
sentations of GL(n,A) by definition(16.3.1.10). So we define an automorphic representation to
be an irreducible smooth representation of G(A) that can be realized as a quotient of a subrepresen-
tation of A(G/F, ω), and an automorphic cuspidal representation to be an irreducible smooth
representation of G(AF ) that can be realized as a subrepresentation of A0(G(F )\G(A), ω). The
category of automorphic representations of G(AF ) is denoted by Irrauto(G/F, ω). The category of
cuspidal representations of G(AF ) is denoted by Irrcusp(G/F, ω).

Remark(16.3.1.13).There is a general method of constructing subrepresnetations of
A(G(F )\G(A), ω) using Eisenstein series?, but no known methods for constructing subrepresneta-
tions of A0(G(F )\G(A), ω).

Thm.(16.3.1.14)[Automorphic Representations are Admissible, Harish-Chandra].

Irrcusp(G/F, ω) ⊂ Irrauto(G/F, ω) ⊂ Irradm(G/F ).

Proof: Le V1 ⊂ V2 ⊂ A(G(F )\G(A), ω) be submodules s.t V2/V1 ∼= π, then we can assume V2 is
generated by an element f ∈ V2\V1, because otherwise change V2 by the submodule V ′

2 generated by
f and V1 by V1 ∩ V ′

2 .
f is killed by an ideal J∞ of finite codimension in Z∞, and is invariant under the action of a

compact open subset U ⊂ G(Af
F ). Let

G(F )\G(A)/U =
⨿
i

Γi\G(A∞)

as in(13.3.3.13), then there is an isomorphism of (g∞,K∞)-modules

A(G(F )\G(A), ω, J∞)U ∼= ⊕iA(Γi\G(A∞), 1, ω∞, J∞)(16.1.4.10),

which is admissible by the fundamental theorem of Harish-Chandra(16.1.4.10). Thus V2 ⊂
A(G(F )\G(A), ω, J)U is also admissible. □
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2 Irrauto(GL(n)/F )

Main references are [Bum98]Chap3.

Basics

Prop.(16.3.2.1).GL(n,AF ) is unimodular.

Proof: This is because GL(n, Fv) is unimodular for any v ∈ ΣF and because we can calculate the
restricted product measure by(12.4.5.5). □

Def.(16.3.2.2) [Congruence Subgroups].For N ∈ Z+, define the congruence subgroup(13.3.2.3)
K0(N) ⊂ GL(2,Af

F ) as follows: K0(N) =
∏
v∈Σfin

F
K0(N)v, where

K0(N)v =
{
GL(2,Ov) v ∤ N
K0(Nv) ⊂ Fv(15.11.1.8) v|N

Prop.(16.3.2.3). If F = Q, then the inclusion induces homeomorphisms

Γ0(N)\GL(2,R)+ ∼= GL(2,Q)\GL(2, A)/K0(N).

Γ0(N)\SL(2,R) ∼= GL(2,Q)Z(A)\GL(2, A)/K0(N)

Thus the definition of congruence subgroups(16.2.1.1) are compatible with that of(13.3.3.13)

Proof: Because Cl(Q) = 1 and det(K0(N)) =
∏
v∈Σfin

F
O∗
v , item3 of(13.3.3.12) shows

GL(2, A) = GL(2,Q)GL(2,R)K0(N) = GL(2,Q)GL(2,R)+K0(N),

so the map
GL(2,R)+ → GL(2,Q)\GL(2, A)/K0(N)

is surjective. Now if g′
∞ and g∞ has the same image, then g′

∞ = γg∞k0, so g′
∞ = γ∞g∞, γf = k−1

0 .
Then γ∞ belongs to Γ0(N). Thus there is a bijection

Γ0(N)\GL(2,R)+ ∼= GL(2,Q)\GL(2, A)/K0(N).

2 follows from 1 by modulo the center. □

Cor.(16.3.2.4).The quotient space GL(n, F )Z(A)\GL(n,A) has finite measure.

Proof: For the general case, Cf.[Humphreys, Arithmetic Groups, (1980)?].
Because K0(N) is compact, it suffices to prove that GL(n, F )Z(A)\GL(n,A)/K0(N) has finite

measure(because GL(n, F ) and GL(n,A) are both unimodular, the measure is compatible). But this
space is homeomorphic to Γ0(N)\SL(2,R), which has finite measure because Γ(1)\SL(2,R) does
and Γ0(N) is of finite index in Γ(1). □

Def.(16.3.2.5)[Global Siegel Sets].For c, d > 0, then the global Siegel set Gc,d = Kf × Gc,d,∞??.
And denote Gc,d its image in Z(A)\GL(2, A).

Prop.(16.3.2.6).For c, d suitable chosen, GL(2, A) = GL(2, F )Gc,d.
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Proof: We prove only for F = Q?: This is true for c ≤
√

3/2 and d ≥ 1 because of the shape of
the fundamental domain of GL(2,R) for SL(2,Z)(16.2.1.6). □

Prop.(16.3.2.7)[Contragradient Representations].For (π, V ) ∈ Irradm / cusp(GL(n)/F, ω),
• its contragradient (π̂, V̂ ) ∈ Irradm / cusp(GL(n)/F, ω−1), and V̂ can be chosen to be the space of

all functions g 7→ φ(g−t).
• if n = 2, then π̂ ∼= π ⊗ (ω−1 ◦ det).

Proof: It suffices to analyze each place. Notice for cuspidal representations, it suffices to show for
finite places, because we can use strong multiplicity one(16.3.3.8).

For admissible case we only prove for n = 2 and F totally real(the problem is we haven’t studied
C).?

Let V̂ be the space of functions of the form φ̂(g) = φ(g−t), then the right action of G on V̂ corre-
sponds back to the restriction of the right action composed with the automorphism g 7→ g−t. Thus
the result follows from(15.11.1.15) and its Archimedean analogy for (g∞,K∞)-modules(15.9.3.35). □

Spectral Problem

Prop.(16.3.2.8)[Gelfand, Graev and Piatetski-Shapiro].Let φ ∈ C∞
c (GL(n,A)), then

• There exists a constant C(φ) that for all f ∈ L2
0(GL(n, F )\GL(n,A), ω), we have

||ρ(φ)f ||C(G) ≤ C(φ)||f ||2.
• ρ(φ) is a compact operator on L2

0(GL(n, F )\GL(n,A), ω).

Proof: The proof is the same as that of(16.1.4.6), but use global Siegel sets(16.3.2.5), Cf.[Bump,
P297]?. □

Cor.(16.3.2.9) [L2
0(GL(n, F )\GL(n,A), ω) Totally Decomposable].The space

L2
0(GL(n, F )\GL(n,A), ω) decomposes into a Hilbert space direct sum of irreducible invariant

subspaces over GL(n,A).

Proof: The proof is exactly the same as(16.1.4.2), but where we use(16.3.2.8) in place of(16.6.2.1)
and lemma?? in place of lemma(15.9.4.1). □

Prop.(16.3.2.10) [Irreducible Cuspidal Representations Admissible]. If (π, V ) ∈
Irruni(GL(n,A)) is contained in the decomposition of H = L2

0(GL(n, F )\GL(n,A), ω) in(16.3.2.9),
then V K−fin ⊂ V is dense, V K−fin ⊂ A0(GL(n, F )\GL(n,A), ω) ∈ Repalg(GL(n)/F, ω).

In particular,
A0(GL(n, F )\GL(n,A), ω) ⊂ L2

0(GL(n, F )\GL(n,A), ω),

and
A0(GL(n, F )\GL(n,A), ω) =

⊗
π∈Irrcusp(GL(n)/F,ω)

mππ

by(16.3.1.11) and(16.3.2.9).

Proof: This is general by(15.9.4.4), and for the containment in A0 by a similar argument as
in(16.1.4.8) using a similar lemma as lemma(16.1.4.7).

The irreducible smooth GL(n,A)-representations are admissible by(16.3.1.14). □
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Adelization

Prop.(16.3.2.11)[Global Hecke Algebra].There are isomorphisms

Γ0(N)\G0(N)/Γ0(N)(16.2.1.2) ∼=
′∏

v∈P\Sf (N)
Kv\GL(2,Qv)/Kv.

Γ0(N)\G0(N) ∼=
′∏

v∈P\Sf (N)
Kv\GL(2,Qv)

which induces an isomorphism RN ∼=
∏
v∈P\Sf (N)HKv(16.2.3.2)(15.11.1.13).

Prop.(16.3.2.12)[Adelization of Maass Forms].Let χ be a Dirichlet character (mod N) and ω
be the adelized Hecke character of χ(12.4.5.32), then define a character λd of K0(N)(16.3.2.2) by

λd(
[
a b
c d

]
) =

∏
v∈Sf (N)

ωv(dv).

By(16.3.2.3) there is a homeomorphism

Γ0(N)\GL(2,R)+ ∼= GL(2,Q)\GL(2, A)/K0(N),

which induces a map

f 7→ φf : C∞(Γ0(N)\GL(2,R)+, χd|·|λ)→ C∞(GL(2,Q)\GL(2, A), ω|·|λ) : φ(γg∞k0) = f(g∞)λd(k0)

and this map identifies K-finiteness, Z-finiteness and moderate growth, thus induces a map

A(Γ0(N)\GL(2,R)+, χd)→ A(GL(2,Q)\GL(2, A), ω)

compatible with (g∞,K∞)-action, and the image are the automorphic forms satisfying π(k0)φ =
λ(k0)φ for k0 ∈ K0(N).

This map also identifies cuspidality, thus it induces a map

A0(Γ0(N)\GL(2,R)+, χd)→ A0(GL(2,Q)\GL(2, A), ω)

Proof: To show that φf (zg) = ω(z)φf (g) for z ∈ A∗, notice by(12.4.5.30), Z(A×) =
Z(Q×)Z(R×

+)(Z(A) ∩ K0(N)), and for these elements φf (zg) = λ(z)φf , as ω is trivial on∏
v/∈Sf (N)O×

v .
It identifies moderate growth because A× = Q×R×

+
∏
v∤∞O×

v again.

To show cuspidality, notice x 7→ γ(
[
1 x

1

]
g) is left-invariant under a if g−1

[
1 a

1

]
g ∈ K0(N).

but such a is open in A, thus contains some open compact subgroup Uf ⊂ Af . Notice by strong
approximation, A = Q×R×Uf , thus there is an isomorphism R/M ∼= A/FUf . Now let g = γg∞k0,
then ∫

A/F
φf (

[
1 a

1

]
g) = C

∫
R/M

φf (
[
1 x

1

]
g)dx = Cλ(k0)

∫ M

0
f(γ−1

[
1 x

1

]
γg∞),

which vanishes for each g iff f is cuspidal at every cusp. For similar reason, φf is of moderate growth
iff f is of moderate growth at every cusp. □
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Remark(16.3.2.13). Similar isomorphism happens for more general congruence subgroups, for exam-
ple, we can change Γ0(N) to Γ1(N) and change K0(N) to

U1(N) = {
[
a b
c d

]
∈ GL(2, Ẑ) : c ≡ 0(mod N), d ≡ 1(mod N)}.

Prop.(16.3.2.14)[Strong Multiplicity One].
• Let f be a cuspidal eigenfunction in A0(Γ0(N)\GL(2,R)+, χ) of a.e. Hecke operators Tp for
p ∤ N , then φf lies in an irreducible subspace of L2

0(GL(2, F )\GL(2, A), ω).
• If f, g are cuspidal eigenfunctions for a.e. Hecke operators in A0(Γ0(N)\GL(2,R)+, χ) of a.e.

Hecke operators Tp for p ∤ N , then f = g.
In particular, any Hecke eigenform generates a cuspidal representation.
Proof: 2: By(16.3.2.9), consider the projection of φf to any irreducible cuspidal representation π.
By(16.3.2.11), φf is an eigenform of the Hecke operator Tp. But it is also eigenvalues of the Hecke
operator Rp, But HQp is generated by Tp, Rp, R−1

p by(16.2.3.10), so πp is spherical with determined
eigenvalues. But then πv is determined by(2.4.4.12). Then π is determined by strong multiplicity
one(16.3.3.8).

1 follows from 2 because if π is a component of L2
0(GL(2, F )\GL(2, A), ω) that the projection of

φf is non-zero, then it has the same Hecke eigenvalue as φf , so it must be just φf by item2.
Cf.[Bump, P344]. □

Remark(16.3.2.15).WARNING: This is in general not true for groups other than GL(n). This is
related to the theory of L-packets and A-packets.?

Remark(16.3.2.16)[Adelized Maass Forms].Notice if f comes from a Maass form, then [G-H11]
documented the properties of the adelized Maass form φf in detail.

Ramanujan Conjecture

Conj.(16.3.2.17) [Ramanujan]. If ω is unitary and ρ = ⊗′ρv ∈ Irrcusp(GL(n)/F, ω), then for any
v ∈ ΣF , ρv is tempered(15.11.6.3).
Proof: □

Prop.(16.3.2.18).The Ramanujan conjecture(16.3.2.17) implies the Ramanujan-Petersson conjec-
ture(19.2.6.16).
Proof: The Ramanujan-Petersson conjecture says the eigenvalue λp of Tp on f satisfies |λp| ≤ 2p1/2.
Consider the irreducible cuspidal representation πf generated by φf (16.3.2.14), then Tp is the same
as the eigenvalue of the local Hecke algebra Tp on φf . But πf,p is unramified, thus by(15.11.6.10)
it is unitary principal or complementary. But notice if the Satake parameters of πf,p are αi, then
λp = p1/2(α1 + α2), Then it suffices to show that |α1 + α2| ≤ 2, which is equivalent to πp being
tempered(15.11.6.10). □

Conj.(16.3.2.19)[Generalized Ramanujan Conjecture].Let G be a reductive group over a global
field F , and π ∈ Irrcusp,generic(G/F, ω), then π is tempered. Notice this implies the Ramanujan
conjecture, as any ρ ∈ Irrcusp(GL(n)/F, ω) is generic(16.3.3.3).
Proof: □

Remark(16.3.2.20)[Arthur Conjecture]. In fact, Arthur extends this conjecture further, and ex-
plains the extent of failure of the Ramanujan conjecture for irreducible representations in the discrete
spectrum of L2(G(F)\G(A)), as well as the multiplicities in the discrete spectrum.
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3 Whittaker Models
Def.(16.3.3.1)[Whittaker Models].The notion ofWhittaker model andWhittaker functional,
genericness the same as in the local case(15.11.3.1).

Prop.(16.3.3.2)[Global uniqueness of Whittaker Models].Let (π, V ) be an irreducible admissi-
ble representation of GL(2, A), then (π, V ) has a Whittaker model w.r.t ψ iff each (πv, Vv)(16.3.1.4)
has a Whittaker model W(πv, ψv). If this is the case, then W(π, ψ) is unique and

W(π, ψ) =
′⊗

(Wv,W
0
v )

where W 0
v are the unique spherical function(15.11.5.15) of Wv normalized s.t. W 0

v (Kv) = 1.
Proof: Let (π, V ) = ⊗′

v(πv, Vv) w.r.t a.e. spherical vectors ξ0
v by tensor product theorem(16.3.1.4),

and (πv, Vv) are spherical a.e. v.
Firstly if every (πv, Vv) has a Whittaker model, the W in the proposition is truly a Whittaker

model: functions inW(π, ψ) are clearly smooth andK-finite, and they have moderate growth because
each local part is, and for a.e. v, Wv(π, ψ) is compactly supported on |x|v ≤ 1. And there is a
canonical isomorphism of V onto W(π, ψ) by letting (Wξ)v = W 0

v if ξv = ξ0
v and

Wξ(g) =
∏
v

Wv,ξv(gv).

This is definable because gv ∈ Kv for a.e. v thus Wv,ξv(gv) = W 0
v (gv) = 1 for a.e. v.

Because the local Whittaker models are all rapidly decreasing, and the spherical Whittaker model
vanishes for |ξv|v > 1, thus W is also rapidly decreasing, and is a Whittaker model for π.

Secondly if W is a Whittaker model for (π, V ), denote ξ 7→ Wξ the isomorphism of V onto W.
Notice there exists some ξ ∈ V that Wξ(1) ̸= 0: if Wξ(g∞gf ) ̸= 0, then Wπ(gf )ξ(g∞) ̸= 0, and argue
the same way as in(16.1.3.4). We may assume ξ0 = ⊗vξ0

v that Wξ0(1) = 1.
Consider the ”pullback” of W to GL(n, Fv) via ξ, then they are clearly Whittaker models for

(πv, Vv) thus unique(13.3.1.5)(16.1.3.3), and also Wv,ξ0
v
(1) = 1. So W 0

v exists a.e. uniquely. Now we
prove W is of the form we said above, this will prove uniqueness.

Then we need to prove
Wξ(g) =

∏
v

Wv,ξv(gv)

We only need to prove for one ξ = ξ0, because W,W(πv, ψv) are both irreducible. And also we can
assume gv = 1, a.e., because (Wξ)v(gv) = Wv,ξv(gv) = 1, a.e.. Then we are in the finite case and we
can multiply by scalars at f.m. v s.t. this equation is true and nonzero for g. □

Thm.(16.3.3.3) [Fourier Expansion and Existence of Whittaker Models, Shalika].Given
(π, V ) ∈ Irrcusp(GL(n)/F, ω), for Φ ∈ V , define

WΦ(g) =
∫

Unip(n,F )\ Unip(n,A)
Φ(ng)ψN (−n)dn,

then GL(n,AF ) acts on these functions, and they form a Whittaker modelW(π, ψ). WΦ(g) is called
the Fourier-Whittaker coefficients for Φ.

And we have a Fourier expansion formula:

Φ(g) =
∑

γ∈Unip(n−1,F )\GL(n−1,F )
WΦ(

[
γ

1

]
g),

which converges absolutely and uniformly on compact subsets of GL(n,AF ).
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Remark(16.3.3.4).This is false for some other groups, for the reason that the Fourier inversion may
not be true, thus it map happen that all the Fourier coefficients vanish. For example, holomorphic
Siegel modular forms on Sp(2n) don’t have Whittaker models.

Proof: We only prove for n = 2. For general case, see the beautiful paper[Sha74] of Shlika?.
For any g ∈ GL(n,A), consider F (n) = φ(ng) on N(A), then it is a continuous function on

N(F )\N(A), and N(F )\N(A) is compact(12.4.5.12), so by Fourier inversion formula(10.11.3.17),

F (x) =
∑
α∈F

C(α)ψ(αx), C(α) =
∫

Unip(n,F )\ Unip(n,A)
φ(
[
1 x

1

]
g)ψ(−αx)dx.

Now C(0) = 0 because φ is cuspidal, and if α ∈ F×, as φ is automorphic,

C(α) =
∫

Unip(n,F )\ Unip(n,A)
φ(
[
α

1

] [
1 x

1

]
g)ψ(−αx)dx

=
∫
A/F

φ(
[
1 αx

1

] [
α

1

]
g)ψ(−αx)dx = Wφ(

[
α

1

]
g).

So if we let x = 0, we get Φ(g) =
∑
α∈F× WΦ(

[
α

1

]
g).

Now we show {WΦ} is Whittaker model: they all satisfies WΦ(ng) = ψ(n)WΦ(g) by construction,
and because WXφ = XWφ, ρ(g)Wφ = Wρ(g)φ, it is clear that this space is invariant under action
of GL(2, Af ) and (g∞,K∞), and also it is of moderate growth in y because φ does(16.3.1.10) and
N(F )\N(A) is compact, and it consists ofK-finite vectors because V is admissible(16.3.2.10). Finally,
the Fourier inversion shows that φ 7→Wφ is non-zero, thus injective. □

Cor.(16.3.3.5)[Cuspidal Forms Decay Rapidly].Any cuspidal form on GL(2,AF ) is rapidly de-
creasing for |y| → ∞.

Moreover, it also decays rapidly when |y| → 0.

Remark(16.3.3.6).This is proved already in(16.3.1.11).

Proof: To show it is rapidly decreasing, use the Fourier expansion formula, and the fact the Whit-
taker model is product of local Whittaker models. Also for v ∈ Σfin

F , the local Kirillov model is com-
pactly supported(15.11.3.19), and for v ∈ Σ∞

F , the Whittaker model is rapidly decreasing(16.1.3.3),

notice for any g ∈ GL(2, A), for any C, the number of a ∈ K∗ that φ(
[
a

1

]
g) ̸= 0 and |a|∞ < C is

bounded by a polynomial of C, thus it is rapidly decreasing.
For |y| → 0, as φ is automorphic, notice

φ(
[
y

1

]
) = φ(w0

[
1

y

]
w0) = ω(y)(π(w0)φ)(

[
y−1

1

]
).

□

Cor.(16.3.3.7).Every local component of a cuspidal representation of GL(n,A) is generic,
by(16.3.3.2).

Prop.(16.3.3.8)[Strong Multiplicity One for GL(n)]. If (π, V ), (π′, V ′) ∈ Irrcusp(GL(n)/F ) satisfy
πv ∼= π′

v a.e. v, then π ∼= π′, and V = V ′ ⊂ A0(GL(n, F )\GL(n,AF )).
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Proof: We only prove for n = 2 and the case π1, π2 are isomorphic on Archimedean places?. For
general n, Cf.[Representations of the Group GL(n,K) where K is a local field, Gelfand-Kazhdan],
[Euler Subgroups, in Lie Groups and their Representations, Piatetski-Shapiro(1975)]. For the
Archimedean places, Cf.[Base Change for GL(2), Langlands(1980)Lemma3.1]

Firstly if πv ∼= π′
v for every place v, then their corresponding Whittaker model is the

same(multiplied by a scalar) by(16.3.3.2). Then by(16.3.3.3) we have a Fourier expansion formula

φ(g) =
∑
α∈F ∗

Wφ(
[
α

1

]
g).

Thus V = V ′.
In case that πv ∼= π′

v only outside a finite set S, we choose functionsWv,W
′
v in the local Whittaker

model for πv, π′
v s.t. if v /∈ S, Wv = W ′

v and Wv is the unique spherical function normalized that
Wv(Kv) = 1 a.e. v, and if v ∈ S, they are chosen that

F (y) = Wv(
[
y

1

]
) = W ′

v(
[
y

1

]
) ∈ C∞

c (F×
v ),

which is possible by(15.11.3.20). And we define

φ(g) =
∑
α∈F ∗

W (
[
α

1

]
g), φ′(g) =

∑
α∈F ∗

W ′(
[
α

1

]
g),

W (g) =
∏
v

Wv(gv), W ′(g) =
∏
v

W ′
v(gv).

as in(16.3.3.3).
Then we claim φ = φ′ on GL(2, A): φ ∈ V, φ′ ∈ V ′ are automorphic, thus φ = φ′ on

GL(2, F )GL(2,AS
F ) by continuity, which is just GL(2,AF ) by weak approximation, so we have

a φ ∈ V ∩ V ′, meaning V = V ′. □

4 Eisenstein Series
References are [Bump, Chap3].

Prop.(16.3.4.1)[Langlands].For any ρ ∈ Irrauto(G/F, ω), there exists a parabolic subgroup P = MN
and σ ∈ Irrcusp(M/F ) that π is a subquotient of IP (σ).

Proof:
□

Remark(16.3.4.2).The pair (M,σ) may not be unique up to conjugacy. It is unique for GL(n), by
a theorem of Jacquet-Shalika, but in general it is false. For example, Waldspurger showed for G =
PGSp(4) that there are cuspidal representations π that are abstractly isomorphic to a subquotient
of some IP (σ) with σ cuspidal on M = GL(2). These are called CAP representations.
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16.4 Overview of the Langlands Program

1 Langlands Program
Main references are [Lan70]. Cf. Arthur’s work on stabilization of trance formula, proof of the

fundamental lemma by Laumon-Ngo, and inputs from Shin, Morel, Harris-etc..

Def.(16.4.1.1)[Langland Dual Groups].For any connected reductive group G over a global field
F , we want to define a complex analytic group LGF , and for each place p, a complex analytic group
LGFp , and complex analytic homomorphisms LGFp → LGF defined up to conjugacy. The definition
is given in [Lan70].

Then for each complex analytic representation σ of LGF and automorphic representation π of
GA(F ), we want to define an L-function

L(s, σ, π) =
∏
p

L(s, σp, πp)

that is convergent in some right half plane, and

L(s, σp, πp) =
n∏
i=1

1
1− αi|ϖp|s

for any non-Archimedean plane p, where n = deg(σp).
Also there is a functional equation

L(s, σ, π) = ε(s, σ, π)L(1− s, Lσ, π)

with
ε(s, σ, π) =

∏
p

ε(s, σp, πp, ψFp)

for any non-trivial character ψ of F\A(F ), where the product is finite.

Conj.(16.4.1.2). Is it possible to define the local L-functions L(s, ρ, π) and the local factors
ε(s, ρ, π, ψF ) at the ramified primes that

L(s, σ, π) =
∏
p

L(s, σp, πp)

is meromorphic in the entire complex plane with only a finite number of poles and satisfies the
functional equation.

Conj.(16.4.1.3). Suppose G,G′ are reductive groups over the local field F and G is quasi-split and
G′ is an inner twist of G, then LGF = LG′

F . Is there a correspondence Irr(G′
F ) → Irr(GF ) s.t. if

π = R(π′), then L(s, ρ, π) = L(s, ρ, π′) for any representation ρ of LGF ?

Conj.(16.4.1.4)[Local Functorial Lifting].Let G,G′ be two quasi-split groups over the local field
F . Let G split over K and K ′ where F ⊂ K ⊂ K ′. Suppose φ : LG′

K′/F →
LGK/F is a complex

analytic homomorphism that makes the diagram

LG′
K′/F G(K ′/F )

LGK/F G(K/F )

φ
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commutative, is there a correspondence rφ : Irr(G′
F ) → Irr(GF ) that if π = Rφ(π′), then for any

representation ρ of LGF ,

L(s, ρ, π) = L(s, ρ ◦ φ, π′), ε(s, ρ, π, ψF ) = ε(s, ρ ◦ φ, π′, ψF ).

Such a correspondence is called a functorial lifting of π′.

Some evidences of(16.4.1.6) is given in[Lan70]P17.

Global Langlands Conjectures

Prop.(16.4.1.5)[Langlands L-function].Let F be a global field, A = AF , and G a reductive algebra
over F , (π, V ) an automorphic cuspidal representation of G(A), (π, V ) =

∏′(πv, Vv). Let S be a finite
set of primes including the Archimedean ones and places that πv is ramified or the field Ω/F defining
LG is unramified. Let r : LG → GL(m,C) be a complex homomorphism, for v /∈ S, let αv be the
semisimple conjugacy class in LGv parametrizing πv, then we define

Lv(s, πv, rv) = 1
det(I − q−s

v rv(αv))
, LS(s, π, r) = πv/∈SLv(s, πv, rv)

called the Langlands L-functions attached to π and r. langlands proved in [Euler Products, 1971]
that such a product is convergent and analytic for Re(s) sufficiently large.

Conj.(16.4.1.6) [Global Functorial Lifting]. Suppose G,G′ are two quasi-split groups over the
global field F . Let G split over K and K ′ where F ⊂ K ⊂ K ′. Suppose φ : LG′

K′/F →
LGK/F is a

complex analytic homomorphism that makes the diagram

LG′
K′/F G(K ′/F )

LGK/F G(K/F )

φ

commutative. If P′ is a prime of K ′, P = P′ ∩K, p = P′ ∩ F , then φ determines a homomorphism
φp : LG′

K′
P′/Fp

→ LGKP/Fp
that makes the diagram

LG′
K′

P′/Fp
G(K ′

P′/Fp)

LGKP/Fp
G(KP/Fp)

φp

commutative. If π′ = ⊗pπ
′
p is an automorphic representation of G′

F , is it true that π = ⊗pRφp(π′
p)

is an automorphic representation of GF ? Such an automorphic representation is called a functorial
lifting or π′.

Remark(16.4.1.7).This conjecture reduces the conjecture about a general group to the case of
GL(n, F ), which can be handled, such as by [Zeta Functions of Simple Algebras, Godement/Jacquet].

Conj.(16.4.1.8). If(16.4.1.3) is true, if G,G′ are defined over the global field F and G is quasi-split
and G′ is an inner twist of G, suppose π′ = ⊗pπ

′
p is an automorphic representation of G′

F , is it true
that π = ⊗pR(π′

p) is an automorphism representation of GF ?

Conj.(16.4.1.9).
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Relation to Artin L-Functions

If F is a local field and φF is a non-trivial additive character of F , then for any representation
σ of WK/F we can define a local L-function L(s, σ) and local factors ε(s, σ, ψF ) that if F is a global
field and σ is a representation of WK/F , then

L(s, σ) =
∏
p

L(s, σp), ε(s, σ) =
∏
p

ε(s, σp, ψFp)

satisfies the functional equation

L(s, σ) = ε(s, σ)L(1− s, Lσ).

Conj.(16.4.1.10). Suppose G is quasi-split over the local field F and splits over the Galois extension
K. Let LUK be a maximal compact subgroup of LGF . Let K ′ be a Galois extension of F containing
K and let φ : WK′/F → LUF be a homomorphism that makes the diagram

WK′/F G(K ′/F )

LUF G(K/F )

φ

commutative, then there is an irreducible unitary representation π(φ) of GF s.t. for any representa-
tion σ of LGF , L(s, σ, π(φ)) = L(s, σ ◦ φ), and ε(s, σ, π(φ), ψF ) = ε(s, σ ◦ φ,ψF ).

Conj.(16.4.1.11). Suppose G is quasi-split over the local field F and splits over the Galois extension
K. Let LUK be a maximal compact subgroup of LGF . Let K ′ be a Galois extension of F containing
K and let φ : WK′/F → LUF be a homomorphism that makes the diagram

WK′/F G(K ′/F )

LUF G(K/F )

φ

commutative. If P′ is a prime of K ′ and p = P′ ∩ F , then φp = φ ◦ αp takes WK′
P′/Fp

into LUFp . If
π(φ) = ⊗pπ(φp), is π(φ) an automorphic representation?

Relation to Elliptic Curves

Conj.(16.4.1.12). If C is an elliptic curved defined over a local number field F , we can associate to it
a representation π(C/F ) of GL(2, F )?. If C is an elliptic curve defined over a global number field F ,
then for any place p, π(C/Fp) is defined. Is is true that π(C/F ) = ⊗pπ(C/Fp) is an automorphism
representation?

2 Local Langlands

Archimedean Local Langlands for GL(n)

Cf.[Local Langlands Correspondence, the Archimedean case, Knapp(1994)].
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LLC for GL(n) over Function Fields

References are [G. Laumon, M. Rapoport, U. Stuhler: D-elliptic sheaves and the Langlands
correspondence]. [V.G. Drinfeld: Elliptic modules, Mat. USSR Sbornik 23, pp. 561–592 (1974)],
[V.G. Drinfeld: Elliptic modules II, Mat. USSR Sbornik 31, pp. 159–170 (1977)].

3 Global Langlands Correspondence
Def.(16.4.3.1)[L-Packets]. It is possible that two automorphic representations π and π′ of G(A) have
the same L-function, and for any reductive group H over F and σ an automorphic representation of
H(A) and r1 a complex analytic representation of LH,

LS(s, π ⊗ σ, r ⊗ r1) = LS(s, π′ ⊗ σ, r ⊗ r1).

In this case, π, π′ are called to be in the same L-packet.

Prop.(16.4.3.2).Any L-packet is finite. And it is conjectured that every L-packet contains a generic
representation.

4 Beyond Endoscopy
References are [Problems Beyond Endoscopy, Arthur].
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16.5 Automorphic Forms Beyond GL(2)

Prop.(16.5.0.1)[Ramakrishnan, 2000].Multiplicity one theorem is true for cuspidal representations
on SL(2).

Proof: □

Prop.(16.5.0.2) [Blasius, 1994].Multiplicity one theorem is false for cuspidal representations on
SL(n), n ≥ 3.

Proof: □

1 Automorphic Forms on Unitary Groups
Main references are [Automorphic Forms on Unitary Groups, Eischen].
Unitary groups provide a particularly fruitful setting in which to work. Unitary groups have

associated Shimura varieties, which provide convenient structure for studying algebraic aspects of
automorphic forms (which, in turn, arise as sections of a vector bundle over Shimura varieties). We
have substantial results about Galois representations associated to automorphic forms on unitary
groups (e.g. [Ski12, Che04, Che09, CH13, Har10]). In addition, we have convenient representations
of the L-functions associated automorphic forms on unitary groups, which are useful both for proving
analytic properties and for extracting algebraic information (and even p-adic properties, as seen in
[EHLS20]). Working with unitary groups has enabled major developments, including a proof of the
main conjecture of Iwasawa Theory for GL2 [SU14] and the rationality of special values of certain
automorphic L-functions (including [Shi00, Har97, Har08, Har84, Bou15]), as well as progress toward
cases of the Bloch–Kato conjecture (including [SU06, Klo09, Klo15, Wan19]), and the Gan–Gross–
Prasad conjecture (many recent developments, including [Xue14, Xue19, Zha14, Liu14, Yun11, JZ20,
He17, BP20, BPLZZ21]).

2 Quaternionic Modular Forms
Main references are [Modular Forms on Exceptional Groups, Pollack].

3 Theta Correspondence

Classical Theta Functions

Def.(16.5.3.1) [Poisson Summation for Lattices].Let V be a vector space of dimension n with
an Haar measure µ, Γ ⊂ V a full lattice, and Γ′ ⊂ V ∨ be its Z-dual, Let V = µ(V/Γ), then for any
Schwartz function f ∈ S(V ), ∑

x∈Γ
f(x) = 1

V

∑
y∈Γ′

f̂(y).

Proof: This is just??. □

Def.(16.5.3.2)[Theta function].Let Γ ⊂ V be a real inner product space with an Haar measure µ
normalized that for an orthonormal basis ei of V , V/Z{ei} has volume 1, then we can identify V
with V ∨ by this inner product. Let Γ be a full lattice, then its Z-dual Γ′ is identified with a lattice
in V that (x, y) ∈ Z for any x ∈ Γ, y ∈ Γ′.
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The theta function θΓ(z) is defined to be

θΓ(z) =
∑
x∈Γ

q−(x,x)/2 =
∑
x∈Γ

e−πiz(x,x), Im(z) > 0,

and
ΘΓ(t) = θΓ(it) =

∑
x∈Γ

e−πt(x,x)

Cor.(16.5.3.3).With the notation as in(16.5.3.2), the theta function satisfies

ΘΓ(t) = t−n/2

µ(V/Γ)
ΘΓ′(t−1)

Proof: Notice that ΘsΓ(t) = ΘΓ(s2t), so this formula follows from(16.5.3.1) applied to t−1/2Γ and
f(x) = e−π(x,x). □

Def.(16.5.3.4)[Self-Dual Lattices]. Situation as in(16.5.3.2), a self-Dual Lattice is a lattice Γ in
V that V ′ = V . Equivalently, if {fi} is a Z-basis of Γ, then the matrix A = ((ei, ej)) is a matrix
with integer coefficients and determinant 1. The last equivalence is because Γ′ ⊂ Γ equals Γ if
µ(V/Γ) = µ(V/Γ′), but this is equivalent to µ(V/Γ) = 1, because µ(V/Γ) · µ(V/Γ′) = 1.

A self-dual lattice is called even iff (x, x) ∈ 2Z for any x ∈ Γ.

Example(16.5.3.5)[E8k].Let V = R8k with the canonical inner product, denote E8k the set of vectors∑
i xiei in V that

2xi ∈ Z, xi − xj ∈ Z,
8k∑
i=1

xi ∈ 2Z.

Notice E8 is just the Z-span of the root system E8(2.7.3.2), and the root system just consists of all
vectors in E8 of length

√
2.

Then E8k is a self-dual and even.

Cor.(16.5.3.6).Let k ≥ 2, then all the vectors in E8k of length
√

2 are {±ei ± ej |i ̸= j}.

Remark(16.5.3.7).For more examples of self-dual lattices, see[Ser73]Chap5.

Prop.(16.5.3.8) [Theta Function for Self-Dual Even Lattices].Let Γ ⊂ V be a self-dual even
lattice(16.5.3.4), then the dimension n of V is divisible by 8, and the theta function θΓ(z) is a modular
form for Γ(1) of weight n/2.

Proof: We first show that
θΓ(−1/z) = (−iz)n/2θΓ(z)

and because both sides are holomorphic functions on H, it suffices to show this for z = it, t > 0.
Thus it suffices to show

ΘΓ(t−1) = t−n/2ΘΓ(t).

And this is just(16.5.3.3), because Γ is self-dual(16.5.3.4).
Then θΓ[ST ]n/2 = (−i)n/2θΓ(16.2.1.6), but (ST )3 = 1, so (−i)3n/2 = 1, so 8|n, and θΓ ∈

Mn/2(Γ(1)). □
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Prop.(16.5.3.9)[Theta Function for Non-Even Self-Dual Lattices]. If we consider theta function
for non-even self-dual lattices in Rn, then we get a modular form of weight n/2 w.r.t. the subgroup of
SL(2,Z) generated by the elements S and T 2. This image of this subgroup has index 3 in PSL(2,Z),
and it has two cusps, thus two Eisenstein series.

In particular, we can apply this to the lattice {ei}, and use this information to obtain formula
giving the number of ways to represent an integer into a sum of n squares.

Proof: □

4 Weil Representations
We use notations as in3.

Def.(16.5.4.1) [Heisenberg Group of O(V )].Let F be a local or finite field of characteristic̸= 2,
(V,B) a quadratic space over F of dimension n, O(V ) = O(V,B). Then the Heisenberg group H
is the group V × V × F with the group law

(v∗
1, v1, x1)(v∗

2, v2, x2) = (v∗
1 + v∗

2, v1 + v2, x1 + x2 +B(v2, v
∗
1)−B(v1, v

∗
2)).

Let ψ : F → C a non-trivial character. We may identify V with V ∗ via the pairing (v, v∗) 7→
ψ(−2B(v, v∗)). Then the group A(V )(10.11.3.20) is V × V ×T with multiplication

(v∗
1, v1, t1)(v∗

2, v2, t2) = (v∗
1 + v∗

2, v1 + v2, t1t2ψ(−2B(v1, v
∗
2))).

Then there is a surjective homomorphism τ : H → A(V ) : (v∗, v, x) 7→ (v∗, v, ψ(x)ψ(−B(v, v∗))).
A(V ) acts on L2(G): (ρ(v∗, v, t)Φ)(u) = tψ(−2B(u, v∗))Φ(u+ v)(10.11.3.21), and this induces an

action π of H on L2(G): (ρ(v∗, v, x)Φ)(u) = tψ(−2B(u, v∗))Φ(u+ v).

SL(2, F ) acts on H:
[
a b
c d

]
(v1, v2, x) = (av1 + bv2, cv1 + dv2, x), and acts on A(V ):[

a b
c d

]
(v1, v2, t) = (av1 + bv2, cv1 + dv2, tψ(−acB(v1, v1)− bdB(v2, v2))), these two actions are com-

patible with τ .
O(V ) acts on H: g(v1, v2, x) = (gv1, gv2, x), and a similar action on A(V ), compatible with τ .
Recall the Fourier transform on V w.r.t. the pairing (v, v∗) 7→ ψ(−2B(v, v∗)).

Prop.(16.5.4.2).There exists a unitary projective representation ω1 of Sp(2n,B) on L2(V ) that for
the subgroup SL(2, F ) ⊂ Sp(2n,B),

• For g ∈ SL(2, F ), h ∈ H, ω1(g)π(h)ω1(g)−1 = π(g(h)).

• (ω1(
[
1 x

1

]
)Φ)(v) = ψ(xB(v, v))Φ(v).

• (ω1(
[
a

a−1

]
)Φ)(v) = |a|d/2χ(a)Φ(av), where χ(a) is any element that |χ(a)| = 1.

• ω1(w1)Φ = γ(B)Φ̂, where γ(B) is any element that |γ(B)| = 1.
and there is a unitary representation ω2 of O(V ) on L2(V ) that

• ω2(k)π(h)ω2(k)−1 = π(k(h)).
• (ω2(k)Φ)(v) = Φ(k−1v).
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• ω2 commutes with ω1.
where π is a Schrödinger representation of A(V ) on L2(V )(10.11.3.21).

Proof: Because the action of Sp(2n,B) on A(V ) is in B0(V ), thus by(10.11.3.21), there are unitary
automorphisms of L2(G) that

ω1(g)π(h)ω1(g)−1 = π(g(h)).

Now to check the properties of ω, it suffices to check this equation for h = (v, 0, 1) or (0, v, 1) because
these elements generate A(V ), using the fact ρ action on L2(V ) is irreducible(10.11.3.21).?

For O(V ), just verify directly. □

Prop.(16.5.4.3)[dimV Even Case]. If F is a local or finite field of characteristic̸= 2, V has dimension
2n, and if we define ∆ = (−1)n det(B) ∈ F ∗/(F ∗)2, χ : F ∗ → {±1} the quadratic character a 7→
(∆, a)F (12.5.5.8), and γ(B) as defined in(12.5.5.9), then the projection representation of SL(2, F )
in(16.5.4.2) is a true representation.

It suffices to check the relations(2.1.6.8). Use(12.5.5.14) to show that γ(B)2 = χ(−1). And it
suffices to show that

w1

[
a−1

a

] [
1 −a

1

]
w1

[
1 −a−1

1

]
Φ =

[
1 a

1

]
w1Φ

The LHS equals γ(B)2|a|−nF(Φ ∗ F−a−1B), which by(12.5.5.9) and(12.5.5.13) equals γ(B)F(Φ)FaB,
which is just the RHS.

Conj.(16.5.4.4)[Theta Correspondence(Special Case)].Let ω be the action of SL(2, F )×O(V )
on L2(V ) as in(16.5.4.3) and(16.5.4.2), then its smooth part C∞

c (V ) is a smooth representation
ω∞. Let π1 be an irreducible admissible representation of SL(2, F ), π2 an irreducible admissible
representation of O(V ), they are said to correspond iff there exists a non-zero intertwining operator
ω∞ → π1 ⊗ π2.

Then each π1 can corresponds to at most one π2, and vise versa.

Proof: This is proved for non-Archimedean local fields of odd residue characteristic by Wald-
spurger(1990). □

Def.(16.5.4.5)[Setup for Dihedral Weil Representation].Let F be local or finite field, and E be
a 2-dimensional commutative semisimple algebra over F , then E = F ⊕F and F embeds diagonally,
called the split case; or E is the unique quadratic extension of F , called the anisotropic case. Let
the automorphism of E given by

x 7→ x :
{

(ξ, η) = (η, ξ), E = F ⊕ F
The non-trivial Galois automorphism, E is a field

.

Let tr(x) = x+ x,N(x) = xx. Let E∗
1 = {x ∈ E∗|N(x) = 1}.

There is an embedding ι of E into GO(E) ⊂ GL(2, F ): for E = F ⊕F , it embeds diagonally, and
for E a field, E embeds by left action on itself. Notice ι(x)(y) = ι(x)(y), thus GO(E) ∼= E∗ ⋊ {}?.

Let ψ be a character of E∗ that is non-trivial on E∗
1 .

Prop.(16.5.4.6)[Howe Duality of Dihedral Representations].Let ψ be a character of E∗, then
by(15.1.1.12), ψ extends to a representation ofGO(E) iff ψ(x) = ψ(x), which is equivalent to ψ(x) = 1
on E∗

1 , by Hilbert’s theorem90 or direct inspection. Then by(15.1.1.12), in the other case, indGO(E)
E∗ ψ
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is an irreducible representation of GO(E), and Howe duality predicts an irreducible smooth represen-
tation of GL(2, F ). In case E is a field or F is finite, we can construct this representation directly,
in(16.5.4.7) and(15.6.10.8).

Prop.(16.5.4.7) [Dihedral Representations].Let E/F be a quadratic extension of non-
Archimedean local fields, then E is a quadratic space over F by the norm form, and let ξ be a
quasi-character of E∗ that doesn’t factor through the norm map N : E∗ → F ∗. Let Uξ,ψ be the space
of functions Φ ∈ C∞

c (E) that satisfy

Φ(yv) = ξ(y)−1Φ(v), ∀y ∈ E∗, N(y) = 1,

and let χ : F ∗ → {±1} be the quadratic character attached to the extension E/F (12.6.2.14), and
let GL(2, F )+ be the subgroup of GL(2, F ) that the determinants are norms from E, which is an
open normal subgroup of index2, then there exists an irreducible admissible representation ωξ,ψ of
GL(2, F )+ on Uξ,ψ s.t.

(ωξ,ψ(
[
a

1

]
)Φ)(v) = |a|1/2ξ(b)Φ(bv), ∀b ∈ E∗, N(b) = a ∈ F ∗

(ωξ,ψ(
[
1 x

1

]
)Φ)(v) = ψ(xN(v))Φ(v)

(ωξ,ψ(
[
a

a−1

]
)Φ)(v) = |a|χ(a)Φ(av)

(ωξ,ψ(w1)Φ) = γ(N)Φ̂.

Then the representation ωξ of GL(2, F ) induced from this representation of GL(2, F )+ is irre-
ducible and cuspidal.

Remark(16.5.4.8).For F with odd residue characteristic, this dihedral representation is the only
cuspidal representation of GL(2, F ), by Tunnell 1978 or 1979.?
Proof: Notice in this case, the character χ defined in(16.5.4.3) is the same as the quadratic character
corresponding to E/F : let E = F (

√
D), then NE/F = ⟨1,−D⟩, thus (a,D)F = 1 iff ⟨a,D,−1⟩ is

universal iff a is represented by ⟨1,−D⟩, which is equivalent to a ∈ NE/F (E∗). Then by(16.5.4.3),
we have an action of SL(2, F ) on L2(E), and we can extend it to GL(2, F )+ satisfying all these
equations(? by direct verification). And it can be verified Uξ,ψ is stable under this action.

We show this action is smooth: Every φ ∈ Uξ,ψ is stable under some K(pn) for n large:
By(15.11.1.9), it suffices to prove it is stable under N−(pn), T (pn) and N(a). By action of w1, it
suffices to show it is stable under the latter two. But this is clear from the equations above.

Similarly, to show it is admissible, it suffices to show for any ideal a, the space of functions fixed
by N(a) and N−(a) is of f.d.: It is clear from equation2 that if φ is fixed by N(a), then there is a
fractional ideal a′ that Supp(φ) ⊂ N−1(a′). Similarly for F(φ). These two conditions means φ has
bounded support and fixed by some open subgroup, these functions are f.d..

To show ωξ,ψ and ωξ are irreducible: Let B1(F )+ be the subgroup of B1(F ) consisting of matrices

{
[
a b

1

]
|a ∈ NE/F (E∗)}, let K+ the restriction of ωξ,ψ to B1(F )+. Define a map

Λ : C∞
c (N(E∗))→ K+ : (Λφ)(v) = ξ(v)−1|N(v)|−1/2φ(N(v)),
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then this is an isomorphism, and is B1(F )-invariant, where B1(F ) acts on C∞
c (N(E∗)) as

in(15.11.3.15). Thus by Mackey decomposition(15.1.5.49),

resB1(F ) indGL(2,F )
GL(2,F )+

ωξ,ψ ∼= indB1(F )
B1(F )+

ωξ,ψ ∼= indB1(F )
N(F ) ψ,

which is irreducible by(15.11.3.16). thus ωξ is irreducible, thus also does ωξ,ψ.
A byproduct of the above argument is that ωξ is cuspidal. □

5 Gan-Gross-Prasad Conjecture
Main References are [Background on the Gan-Gross-Prasad Conjecture, David Schwein].
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16.6 Trace Formulae

Main references are [Introductory notes on the trace formula, Lapid], [Trace formula, Whitehouse]
and [Trace Formula, Arthur].

1 Introduction
Remark(16.6.1.1).Delete this subsection.

The trace formula was introduced by Selberg in his seminal work. Selberg mostly developed the
trace formula for quotients of the hyperbolic plane by a Fuchsian group Γ of the first kind (both
in the co-compact and the non co-compact case). One of his original motivations and applications
was to show the existence of Maass forms with respect to Γ = SL(2, Z). It was subsequently vastly
generalized by Arthur in the context of adelic quotients G(F )\G(A) of a reductive group G over a
number field F. Arthur’s main driving force was the functoriality conjectures of Langlands.

Selberg’s trace formula is a far-reaching non-commutative generalization of the Poisson summation
formula. It underlines a duality between geometric and spectral objects.

2 Trace Formulae

Trace Formula for Compact Quotient

Prop.(16.6.2.1).Consider the right action of G on L2(Γ\G,χ)(16.1.1.17), let φ ∈ C∞
c (G), then φ can

act on L2(Γ\G,χ) by(10.9.3.24), and:
• ρ(φ) is an integration operator, in particular Hilbert-Schmidt and compact. And Im(ρ(φ)) ⊂
C∞(Γ\G,χ).

• If φ(g−1) = φ(g), then ρ(φ) is self-adjoint.
• If φ(kθg) = e−tkθφ(g), then Im(ρ(φ)) ⊂ C∞(Γ\G,χ, k).

Compare with(16.6.2.4).

Proof: These follows from(16.6.2.4). □

Cor.(16.6.2.2).Let H be a nonzero closed G-subrepresentation of L2(Γ\G,χ), then H decomposes
as ⊕kHk w.r.t. action of SO(2,R). And if Hk ̸= 0, then ∆ has a nonzero eigenvector in Hk ∩
C∞(Γ\G,χ).

Proof: The decomposition is clear from(10.11.4.3). It’s left to show ∆ has an eigenvalue in Hk ∩
C∞(Γ\G,χ). By lemma(15.9.4.1) above, for f0 ∈ Hk, there is a φ ∈ C∞

c (G) s.t. ρ(φ)f0 ̸= 0, and
φ(kθg) = e−ikθφ(g). So(16.6.2.1) shows ρ(φ) maps H into Hk ∩C∞(Γ\G,χ) and induces a compact
self-adjoint operator on Hk. So we can choose a f.d. eigenspace of it. Notice ∆ commutes with the
action ρ(φ), so ∆ fixes this eigenspace, thus it has an eigenvalue on Hk ∩ C∞(Γ\G,χ). □

Prop.(16.6.2.3)[L2(Γ\G) Totally Decomposable].Let G be a unimodular locally compact topolog-
ical group and Γ ⊂ G be a discrete subgroup that Γ\G is compact, χ ∈ Γ̂, then the space L2(Γ\G,χ)
decomposes as

L2(Γ\G,χ) =
⊕
π∈Ĝ

mπVπ

that each mπ is finite.
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Proof: Let Σ be the set of sums of irreducible invariant subspaces of L2(Γ\G,χ) that is mutu-
ally orthogonal. then choose by Zorn’s lemma a maximal one in Σ, and we prove the orthogonal
complement H = 0 otherwise we construct an irreducible subspace of H.

Let f ̸= 0 ∈ H, choose by(15.9.4.1) and(16.6.2.1) a φ ∈ Cc(G) that ρ(φ) is compact self-adjoint
and ρ(φ)f ̸= 0. So ρ(φ) has a non-zero eigenvalue and the eigenspace L is of f.d..

Let L0 be a minimal nonzero subspace of L that is an intersection of L with a nonzero closed
invariant subspace of H, and let V be the intersection of all closed invariant subspaces W of H
that L0 = L ∩W . We show V is irreducible, if not, then V = V1 ∩ V2, and if 0 ̸= f0 ∈ L0, then
f0 = f1 + f2 and both f1, f2 are eigenfunctions of ρ(φ) of eigenvalue λ. Now if f1 ̸= 0, then by
minimality, V1 ∩ L = L0.

The finiteness of mπ follows from the fact that ρ(f) is Hilbert-Schmidt for every f ∈
Cc(G)(16.6.2.4). □

Prop.(16.6.2.4). If Γ ⊂ G is a discrete subgroup that Γ\G is compact, consider the right action of G
on L2(Γ\G)(10.11.2.9), let φ ∈ Cc(G), then φ can act on L2(Γ\G,χ) by(10.9.3.24), and:

• ρ(φ) is an integration operator, in particular Hilbert-Schmidt and compact.
• If φ(g−1) = φ(g), then ρ(φ) is self-adjoint.

Proof: 1:

(ρ(φ)f)(g) =
∫
G
f(h)φ(g−1h)dh =

∫
Γ\G1

∑
γ∈Γ

f(γh)φ(g−1γh)dh =
∫

Γ\G1
f(h)Kφ(g, h)dh

where
Kφ(g, h) =

∑
γ∈Γ

φ(g−1γh).

Because φ is compactly supported, this is a smooth function in g and h, in particular square integrable
on Γ\G compact. And ρ(φ)(f)(g) is smooth in g because f ∈ L1(Γ\G1, χ) as Γ\G1 is compact, and
K(g, h) is smooth in g.

2 is easy. □
Prop.(16.6.2.5) [Trace of ρ(f)]. If φ = φ1 ∗ φ2 where φi ∈ Cc(Γ\G), then ρ(φ) =
ρ(φ1)ρ(φ2)(10.9.3.24) and hence a trace class(10.10.5.7). And its integral kernel is

Kφ(x, y) =
∫

Γ\G
Kφ1(x, z)Kφ2(z, y)dz.

and
tr ρ(f) =

∫
Γ\G

Kφ(x, x)dx =
∫

Γ\G

∫
Γ\G

Kφ1(x, y)Kφ2(y, x)dxdy.

Proof: This follows from(10.10.5.10). □
Cor.(16.6.2.6)[the Geometric Side of Trace Formula]. If G is unimodular, let f = f1 ∗ f2, c(γ)
be a representative for the conjugacy classes of Γ, then

tr(ρ(f)) =
∑

γ∈c(Γ)

∫
Γγ\G

f(x−1γx)dx.

And if Gγ is unimodular for every γ ∈ Γ, then

tr(ρ(f)) =
∑

γ∈c(Γ)
V (Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx.
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Proof:
Kf (x, x) =

∑
γ∈Γ

f(x−1γx) =
∑

γ∈c(Γ)

∑
δ∈Γγ\Γ

f(x−1δ−1γδx),

so we have∫
Γ\G

Kf (x, x)dx =
∫

Γ\G

∑
γ∈c(Γ)

∑
δ∈Γγ\Γ

f(x−1δ−1γδx) =
∑

γ∈c(Γ)

∫
Γγ\G

f(x−1γx)dx.

□

Cor.(16.6.2.7)[Trace Formula for Γ\G Compact].Let G be a unimodular locally compact topo-
logical group and f = f1 ∗f2 where fi ∈ Cc(G), and Γ be a discrete subgroup of G with Γ\G compact
and Gγ is unimodular for every γ ∈ Γ, then ρ(f) is a trace class with

∑
π∈Ĝ

mπ tr(π(f)) = tr(ρ(f)) =
∑

γ∈c(Γ)
V (Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx.

Proof: Follows from(16.1.4.2) and(16.6.2.6). □

Lemma(16.6.2.8).Let G = GL(2,R),K = SL(2,R), Γ\G be compact, ρ be the principal series
P (λ, 0)(15.9.4.15) of G, and s = 1

2(s1 − s2 + 1), λ = s(1 − s), µ = (s1 + s2), then for any f ∈
C∞
c (K\G/K), ρ(f) ∈ V K

ρ , which has dimension1, so f is a trace class and

tr(ρ(f)) =
∫ ∫

f(
[
eu/2 x

0 e−u/2

]
)e

us
2 dudx.

Proof: The trace of ρ(f) is just the scalar by which ρ(f) acts on a non-zero vector of ρK . Take
φ ∈ ρK ⊂ H(s1, s2, 0) normalized that φ(I) = 1, then

(ρ(f)φ)(I) =
∫
G
f(g)φ(g)dg =

∫
K

∫
A

∫
N
f(ank)φ(ank)dAdNdθ =

∫
A

∫
N
f(an)φ(an)dAdN

□
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16.7 Modular Galois Representations

This section concerns automorphy and modularity of global Galois Representations.

Notation(16.7.0.1).
• Let (F,OF ) ∈ NField.

1 Galois Representation attached to Automorphic Forms

Prop.(16.7.1.1)[Representation Associated to a Cusp Form, Eichler-Shimura].For any new-
form f ∈ Sk(Γ1(N)), let Of be the number field generated by the coefficients of f , then there exists
a Galois representation

ρf : GalQ → GL(2,Of ).

Proof: □

Automorphic Galois Representations

Def.(16.7.1.2) [Automorphic Galois Representations].An automorphic Galois representa-
tion is a Galois representation of GalQ on a p-local field that is attached to an automorphic repre-
sentation of GL(n,AF ) for some F ∈ NField via the global Langlands conjecture.

Def.(16.7.1.3) [Modular Galois Representations].A continuous irreducible representation
GalQ → GL(2,Fp) or GalQ → GL(2,K), where K ∈ p-NField is called a modular Galois repre-
sentation if it arises from a newform?.

Def.(16.7.1.4)[Modular Galois Representations].Let A be a Zp-algebra and ρ : GalQ → GL(2, A)
be a representation, then ρ is called a modular Galois representation if there exists some N > 0
and a homomorphism pr : T ′(N) → A(where T ′(N) = Z[Tℓ, ⟨d⟩] ⊂ End(S2(Γ1(N))), ℓ ∈ P\{p}, d ∈
(Z/(N))∗) s.t. ρ is unramified outside Np, and for ℓ ∤ pN ,

tr(ρ(Frobℓ)) = pr(Tℓ), det(ρ(Frobℓ)) = pr(⟨ℓ⟩)ℓ.

?
Conj.(16.7.1.5) [Langlands-Fontaine-Mazur].Any geometric representation of GalF is automor-
phic(16.7.1.2).

Remark(16.7.1.6).This is very likely to imply Fontaine-Mazur conjecture(16.7.4.2).

Potential Modularity

Remark(16.7.1.7).A potential modularity result is a result that says certain representation of GalQ
comes from geometry when restricting to GalF for some F ∈ NField. Cf.[Remarks on a Conjecture
of Fontaine and Mazur, Taylor].
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2 Serre’s Modularity Conjecture
References are [K-W09b], [K-W09c] and [Diamond, F.: The Taylor-Wiles construction and multi-

plicity one. Invent. Math. 128(2), 379–391 (1997)], [Fujiwara, K.: Deformation rings and Hecke alge-
bras in the totally real case], [Khare, C., Wintenberger, J.-P.: On Serre’s conjecture for 2-dimensional
mod p representations of Gal(Q/Q)], [Kisin, M.: Modularity of 2-adic Barsotti-Tate representations.
Invent. Math. (2009)], [Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math].

Notation(16.7.2.1).
• For N ∈ Z+, let Q(N) be a maximal prime factor of N .
• Let p ∈ P, q ∈ pZ+ , and ρ : GalQ → GL(2,Fq) be a continuous representation.

Def.(16.7.2.2)[Artin Conductor and Weights of ρ].? k(ρ), N(ρ).

Thm.(16.7.2.3)[Serre’s Modularity Conjecture, Khare-Kisin-Wintenberger]. If ρ be an odd
smooth absolutely irreducible representation, (such a representation is said to be of S-type), then
for any embedding ι : Q ↪→ Qp, there exists a newform f ∈ Sk(ρ)(Γ1(N(ρ)))(16.7.2.2) s.t. ρf =
ρ(16.7.1.1).

Proof: Cf.[Khare-Wintenberger]Thm9.1? □

Lemma(16.7.2.4). Serre’s modularity conjecture is true for
• p ̸= 2 and 2 ∤ N(ρ).
• or p = 2 and k(ρ) = 2.

Proof: (D0)(16.7.2.8) follows from the truth of (Lr)(16.7.2.7) for each r. Then the assertion follows
from(16.7.2.8) and (D0). □

Lemma(16.7.2.5).Let ρ : GalQ → GL(2,O) be a continuous odd irreducible representation s.t.
• ρ has non-solvable image, and ρ is modular.
• ρ is of weight 2, a.e. unramified, and potentially crystalline at p.

Then ρ is modular.

Proof: Cf.[Khare-Wintenberger]Hypothesis H.? □

Def.(16.7.2.6)[Locally Good Dihedral Reoresentations]. ℓ ∈ P\{p} is called a good dihedral
prime for ρ if

• ρ|Iℓ is of the form
[
ψ

ψℓ

]
, where ψ is a non-trivial character of Iℓ of order a power of an odd

prime t, s.t. t|ℓ+ 1, and t > max(Q(N(ρ)
q2 ), 5, p).

• q ≡ 1(mod 8), and q ≡ 1(mod r) for any r ≤ max(Q(N(ρ)
q2 ), p) ∈ P.

If there exists a good dihedral prime q for ρ, then ρ is called locally good-dihedral or q-dihedral.

Lemma(16.7.2.7).For r ∈ Z+, consider the following statements:
(Lr) : If ρ is of S-type(16.7.2.3) and satisfies

• ρ is locally good-dihedral,
• k(ρ) = 2 if p = 2,
• N(ρ) is odd and divisible by at most r primes.
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Then ρ is modular.
(Wr) : If ρ is of S-type and satisfies

• ρ is locally good-dihedral,
• k(ρ) = 2,
• N(ρ) is odd and divisible by at most r primes.

Then ρ is modular.
Then

• (W1) is true.
• (Killing ramification in weight 2)(Lr) implies (Wr+1).
• (Reduction to weight 2)(Wr) implies (Lr).

In particular, by induction spirally, all (Lr), (Wr) are true.

Proof: Cf.[Khare-Wintenberger]Thm3.1, 3.2, 3.3.? □

Lemma(16.7.2.8)[Level-Rising].For r ∈ N, if the following is true:
(Dr) ρ is modular If ρ is of S-type and satisfies

• ρ is locally good-dihedral,
• p ∈ P \ {2},
• 2r+1 ∤ N(ρ).

Then the following is also true:

ρ is modular If ρ is of S-type and satisfies
• k(ρ) = 2 if p = 2 and r = 0,
• 2r+1 ∤ N(ρ),

Proof: Cf.[Khare-Wintenberger]Thm3.4.? □

Def.(16.7.2.9) [Weights].Let K ∈ p-NField and O = OK , then a continuous representation ρ :
GalQ → GL(2,O) is said to be of weight k ≥ 2 if it is Hodge-Tate with weights (k − 1, 0).?

Thm.(16.7.2.10)[Modularity Lifting].Assume ρ is modular, and
• Im(ρ) is non-solvable if p = 2,
• ρ|Q(ζp) is absolutely unramified if p > 2,

Then
• (If p = 2) and ρ is an odd lift of ρ to a 2-adic representation that is

– a.e. unramified,
– crystalline of weight 2 at 2, or semistable of weight 2 at 2 and k(ρ) = 4,

• (Or if p > 2) and ρ is a lift of ρ to a p-adic representation that is crystalline of weight
2 ≤ k ≤ p+ 1 at p, or potentially semistable of weight 2 at p,

Then ρ is also modular.

Proof: Cf.[Khare-Wintenberger 2].? □
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Applications

Cor.(16.7.2.11) [Level-Lowering, Ribet].Let p, ℓ ∈ P, N ∈ Z+, ℓ ∤ N , and f ∈ S2(Γ0(Nℓ)) is a
newform. Suppose that ρf,p is irreducible and one of the following is true:

• ρf,p is unramified at ℓ,
• ℓ = p and ρf,p is flat at p.

Then there exists a g ∈ S2(Γ0(N)) s.t. ρg,p ∼= ρf,p.

Proof: Cf.[Fermat’s last theorem, Chap7]. □

3 Geometric Galois Representations
Def.(16.7.3.1) [Geometric Representations].For F ∈ NField, p ∈ P, (ρ, V ) ∈ RepQp(GalF ) is
called a geometric representation if it satisfies

• For a.e. v ∈ Σfin
F , ρv is unramified.

• For any v ∈ S(p), the representation ρv is deRham.
It is called a genuine geometric representation if it is isomorphic to the subquotient of some
Hrét(XF ,Qp)(m) where X ∈ SmPrpr /F and m ∈ Z.

Prop.(16.7.3.2)[Change of Fields].Let E/F ∈ NField be a field extension, then geometric repre-
sentations are stable under resLK and IndLK .

Proof: □

Compatible Systems

Prop.(16.7.3.3)[Weakly Compatible System of adic Representations].A weakly compatible
system of adic representations is a collection R = {Rℓ,ι}, where ℓ ∈ P, ι : Q ↪→ Qℓ, and Rℓ,ι is a
semisimple ℓ-adic representation

Rℓ,ι : GalQ → GL(V ⊗
Q,ι Qℓ),

which satisfies the following conditions:
1. There is a multiset of integers H-T(R) s.t. for any ℓ ∈ P and each embedding ι : Q ↪→ Qℓ, the

restriction Rℓ,ι|GalQℓ is deRham and H-T(Rℓ,ι|GalQℓ ) = H-T(R).
2. There exists a finite set S ⊂ P s.t. if p /∈ S, then wdp(Rℓ,ι) is unramified for all (ℓ, ι).
3. For a.e. p ∈ P, there is an F-semisimple WD-representation wdp(R) of WDp over Q s.t. for all
ℓ ∈ P \ {p} and ι,

wdp(Rℓ,ι) ∼= wdp(R)⊗
Q,ι Qℓ.

Moreover,
• R is called a strongly compatible system of adic representations if condition3 holds for

any p ∈ P.
• R is called irreducible if each Rℓ,ι is irreducible.
• R is called pure of weight w ∈ Z if for a.e. p ∈ P and eigenvalues αi of wdp(R), |αi| ∈ Q,

and
|ι(αi)|2 = pw.
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• R is called a genuinely geometric system if there exists an X ∈ SmProj /Q and i ∈ N, j ∈ Z

and a subspace
W ⊂ HBetti(X,Q(j))

s.t. for any (ℓ, ι), W ⊗
Q,ι Qℓ is GalQ-invariant and realizes Rℓ,ι.

Conj.(16.7.3.4).
• If ρ : GalQ → GL(n,Qℓ) be a continuous semisimple representation unramified at a.e. places

and deRham at p, then ρ is a part of a weakly compatible system.
• Any weakly compatible system is strongly compatible.
• Any irreducible strongly compatible system R is geometric and pure of weight

2
dim R

∑
h∈H-T(R) h.

4 Conjectures

Prop.(16.7.4.1)[Properties of Étale Cohomologies].Let F ∈ NField andX ∈ SmProjd /F, p ∈ P.
• (E5): If v /∈ Σp

F and X has good reduction at v, then Hiét(X,Qp)|GalFv ∈ Repur
Qp

(GalFv), and

Pv,X(T ) = det(1− Frobv T |Hiét(X,Qp)) ∈ Z[T ]

is independent of p prime to v. And all roots of Pv,X(T ) in C has absolute value q−i/2
v .

• (E6): Genuine geometric representations are geometric. And for v ∈ Σp
F , if X has good

reduction at v, Hiét(X,Qp)|GalFv is even crystalline.
• (E7): There is a cycle map

ηℓ : CHi(X)→ (H2i
ét(X,Qℓ)(i))GalK .

and for P ∈ X(K), ηℓ(P ) ̸= 0 ∈ (H2d
ét (X,Qp)(d))GalK .

And there are some open conjectures:
• (EC1)[Semisimplicity of Frobenius]: Suppose X has good reduction on v,

– If v /∈ Σp
F , then Frobv acts semi-simply on H i(X,Qp).

– if v ∈ Σp
F , then Frobv acts semi-simply on Dcrys(H i(X,Qp)|GalFv ).

• (EC2)[Grothendieck-Serre]: H i(X,Qp) is a semisimple GalF -representation.
• (EC3)[Tate’s Conjecture]: ηℓ is surjective. There are variant of this conjecture:

There is a decomposition H i(X(C),Q) = ⊕Mj as Q-vector spaces s.t.
– For any ℓ ∈ P and an embedding ι : Q ↪→ Qℓ, Mj ⊗Q,ι Qℓ is a minimal GalGQp

-stable
Qℓ-space.

– There are Weil-Deligne representations WDp(Wj) over Q s.t. for any ℓ ∈ P and an
embedding ι : Q ↪→ Qℓ,

WDp(Mj)⊗Q,ι Qℓ
∼= WDp(Mj⊗Q,ι,Qℓ).

– There are motivic weights H-T(Mj) s.t. for any ℓ ∈ P and ι : Q ↪→ Qℓ,

H-T(Mj ⊗Q,ι Qℓ) = H-T(Mj).
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and for any ι : Q ↪→ C,

dimC(Mj ⊗Q,ι C) ∩Ha,i−a(X(C),C)

equals the multiplicity of a in H-T(Mj).

Conj.(16.7.4.2) [Fontaine-Mazur].For F ∈ NField, any irreducible geometric representation is
genuine geometric(16.7.3.1).

Proof: Emerton and Kisin proved the two-dimensional case, Cf.[The Fontaine-Mazur conjecture
for GL(2), Kisin], [Emerton, Local-Global Compatibility in the p-adic Langlands Programme for
GL(2)Q]?. □

Remark(16.7.4.3). It follows from proper base change(7.4.3.1) and(7.4.7.33)(14.3.1.1) that any such
cohomology group satisfies the requirement.

This conjecture is very strong, for example, the étale cohomology of smooth proper varieties are
known to satisfy many good properties, like Weil conjecture, and Fontaine-Mazur conjecture implies
that those properties can be derived via linear algebra data.

The local version of this conjecture is known to be false.

Def.(16.7.4.4)[Algebraic Representations]. (ρ, V ) ∈ RepQp(GalF ) is called an algebraic repre-
sentation if

Pv,X(T ) = det(1− Frobv T |H i(X,Qp)) ∈ Q[T ].

And it is moreover called pure of weight w if for a.e. v ∈ ΣF , eigenvalues of ρ(Frobv) are all Weil
integers of weight w. And w is called the motivic weight of V .

Prop.(16.7.4.5). If F0 ⊂ F is a subfield, and V ∈ RepQp(GalK) is pure of weight w, then if W =
IndGalF0

GalF (V ), W is also pure of weight w.

Proof: ? □

Prop.(16.7.4.6) [Total Hodge-Tate Weights].For a geometric representation V ∈ RepQp(GalF ),
for each v ∈ Σv

F , there are Hodge-Tate weights associated to v. For k ∈ Z, define

mk(V ) =
∑
v∈ΣpF

[Fv : Qp]mk(V |GalFv ),

called the total Hodge-Tate weights of V . Then it satisfies:
• ∑

k∈Zmk(V ) = [F : Q] dimV .

• For a subfield F0 ⊂ F , if W = IndGalF0
GalF (V ), then mk(V ) = mk(W ).?

• If V is pure of weight w, then

w[F : Q] dimV = 2
∑
k∈Z

mk · k.

Proof: 1 is clear.
2: ?
3: By item2 and(16.7.4.5), it suffices to show for F = Q. Secondly, it suffices to show for detV , it

has motivic weight w dimV and for each v ∈ Σp
F the unique Hodge-Tate weights equal to the sum of
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Hodge-Tate weights of V . Then we may assume it has weight 0 by Tate twist because Hodge-tensoring
by Qp(k) increases both sides by −2k.

Then by Sen’s theory, V |GalQp is potentially unramified. Let χ be the Hecke character attached to
V , then its kernel contains an open subgroup Up ⊂ Z×

p , and also by small circle argument, it contains
an open subgroup Up ⊂ ∏ℓ ̸=pZ

×
ℓ , and it also contains R×

+ by(12.6.3.27). But notice I∗
Q /Q

×UpU
pR×

is finite. Thus it is an Artin representation, and has motivic weight 0(16.7.4.4), □

Prop.(16.7.4.7)[Symmetry of Hodge-Tate Weights]. If the Tate conjecture(16.7.4.1) is true, then
for any genuine geometric representation V pure of weight w,

• mk = mw−k.
• If w ∈ 2Z, let m±

w/2(V ) be defined by

m+
w/2(V ) +m−

w/2(V ) = mw/2(V )

m+
w/2(V )−m−

w/2(V ) = (−1)w/2(dimV c=id − dimV c=− id).

Then m±
w/2(V ) ∈ N.

• For a subfield F0 ⊂ F , m±
w/2(V ) = m±

w/2(IndGalF0
GalF (V )).

Polarized Representations

Def.(16.7.4.8) [Polarized Representations]. V is called a polarized Galois representation if
V ∨ ∼= V (w) for some w ∈ Z. w is called the weight of the polarization. If V is polarized and pure,
then the motivic weight equals the polarization weight, so there will be no confusion.

Prop.(16.7.4.9). If F/Q is Galois, and V, V ′ are two irreducible geometric representation of GalF s.t.
L(V ; s) = L(V ′; s), then V ′ ∼= V .

Proof: This is because L(V ; s) determines WDv(V ) for all v that is unramified. Thus also deter-
mines V by Chebotarev density theorem?. □

Example(16.7.4.10)[Polarized Representations].
• Any 1-dimensional representation is polarized.
• Vp(A) of an Abelian variety is polarized of weight 1.
• Representations attached to a classical modular eigenform in S2k(Γ0(N)) is polarized of weight

2k − 1.
• For an irreducible polarized representation of GalQ of dimension 2, its weight is odd iff V is

odd.

Proof: ? □
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16.8 Shimura-Taniyama-Weil Conjecture

References are [Ring-theoretic properties of certain Hecke algebras, Taylor-Wiles], [Henri Dar-
mon, Fred Diamond, and Richard Taylor, Fermat’s last theorem, Elliptic curves, modular forms
& Fermat’s last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997, pp. 2–140.],
http://virtualmath1.stanford.edu/~conrad/modseminar/.

1 Modularity

Thm.(16.8.1.1)[Eichler-Shimura]. If f ∈ S2(Γ0(N)) be a Hecke eigenform with integral coefficients,
then there exists an elliptic curve E/Q s.t. L(E, s) = L(f, s)(19.1.7.5)(19.2.6.17).

Proof: □

Prop.(16.8.1.2)[Modular Elliptic Curves].For E ∈ Ell /Q, the following are equivalent:
• there exists a normalized Hecke eigenform f ∈ S2(Γ0(NE)) with integral coefficients s.t.
L(E, s) = L(f, s).

• For some(every) p ∈ P, ρE,p is modular.
• There is a non-constant map X0(N)→ E over Q for some N ∈ Z+.
• E is isogenous to the modular Abelian variety Af associated to some newform f ∈ S2(Γ0(NE)).

And E is called a modular elliptic curve if these hold.

Proof: □

Lemma(16.8.1.3).For E ∈ Ell /Q and N ∈ Z+, there is a surjection X0(NE) → E iff there is a
surjection J0(N)→ E.

Proof: If φ : X0(N)→ E is non-zero, then φ∗ : J0(N)→ Jac(E) ∼= E is nonzero, by(13.5.13.9). If
Φ : J0(N)→ E is surjective, then X0(N) Abel−−−→ J0(N)→ E is also surjective, by looking at the Tate
module?. □

Lemma(16.8.1.4)[Langland-Tunnell]. If E ∈ Ell /Q is semistable and E[ℓ] is irreducible for some
odd prime ℓ, then E[ℓ] is modular.

Lemma(16.8.1.5) [Taylor-Wiles]. If E ∈ Ell /Q is semistable and ℓ is an odd prime s.t. E[ℓ] is
irreducible and modular, then Tℓ is modular.

Proof: □

Thm.(16.8.1.6)[Modularity Theorem(Shimura-Taniyama1955), Taylor-Wiles/Breuil-Con-
rad-Diamond-Taylor].Any E ∈ Ell /Q is modular(16.8.1.2).

Proof: Cf.[On the modularity of elliptic curves over Q: wild 3-adic exercises, C. Breuil, B. Conrad,
F. Diamond, and R. Taylor]. □

Prop.(16.8.1.7) [Weil’s Theorem].modular deformation ring T is isomorphic to the Galois defor-
mation ring Rρ.

http://virtualmath1.stanford.edu/~conrad/modseminar/
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2 L-Functions

Prop.(16.8.2.1) [Elliptic Curves and Modular Forms].For E ∈ Ell /Q with conductor N and
sign of functional equation wE , and has L-function L(E, s) =

∑
cnn

−s. Let fE(τ) =
∑
cne

2πiτ be
the Mellin transform of L(E, s), then

• fE is a cuspidal modular form on Sk(Γ0(N)).
• fE is a normalized Hecke eigenfunction, and satisfies f(−1/Nτ) = wEf(τ).
• Let ω be an invariant differential form on E, then there exists a finite morphism φ : X0(N)→ E

over Q s.t. φ∗(ω) is a multiple of the differential form on X0(N) represented by f(τ)dτ .

Proof: □

Def.(16.8.2.2)[Manin Constant].Let E ∈ Ell /Q and ω ∈ KE/Q, the Manin constant is defined
to be the constant c ∈ C s.t. f∗ω = c · 2π i fEdz.

Fermat’s Last Theorem

Def.(16.8.2.3) [Frey’s Curve].Let a, b, c ∈ Z satisfy ap + bp = cp, p ≥ 3 ∈ P, abc ̸= 0, the Frey
curve for a, b, c is the elliptic curve Eap,bp,cp ∈ Ell /Q define by the Weierstrass equation

Wap,bp,cp : y2 = x(x+ ap)(x− bp).

Then it satisfies:
• DWap,bp,cp

= 16a2pb2p(ap + bp)2 = 16(abc)2p.

• ∆min
Eap,bp,cp/Q

satisfies ∆min
ap,bp,cp ≥

|abc|2p
28 by(13.9.4.25).

Prop.(16.8.2.4) [Galois Representation of Frey’s Curve].Let ρap,bp,cp : GalQ → GL(2,Fp) be
the mod p Galois representation of GalQ corresponding to the Frey’s curve Eap,bp,cp(16.8.2.3), and
let ρap,bp,cp be its reduction modulo p. Suppose that a ≡ −1(mod 4) and 2|b, then

• ρap,bp,cp is absolutely irreducible.
• ρap,bp,cp is odd.

• ρap,bp,cp is unramified outside 2p, flat at p, and semistable at 2?.

Proof: ? □

Remark(16.8.2.5).One suspects that even such a Galois representation does’t exist.

Thm.(16.8.2.6)[Fermat’s Last Theorem, Ribet/Wiles-Taylor]. If p ≥ 5 ∈ P, then there are no
integral solution to the equation ap + bp = cp.

Proof: If there exists an integral solution s.t. abc ̸= 0, consider the Frey’s curve Eap[,bp,cp(16.8.2.3),
then by(16.8.2.4), ρap,bp,cp is absolutely irreducible, odd and unramified outside 2p, and flat at p.

Then it follows from modularity conjecture(16.8.1.6) that ρap,bp,cp is attached to some newform
f ∈ S2(Γ0(2p)). Then it follows from Ribet’s theorem(16.7.2.11) that ρap,bp,cp = ρg,p for some
newform g ∈ S2(Γ0(2)). But there is no cuspidal form of level Γ0(2) and weight 2 becauseX0(2) = P1,
and H0(P1,Ω1

P1) = 0, contradiction. □
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Remark(16.8.2.7) [Szpiro’s Conjecture and Fermat’s Last Theorem].The Szpiro’s conjec-
ture(13.5.10.12) implies Fermat’s last theorem for sufficiently large n(depending on the effectiveness
of Szpiro’s conjecture).

Proof: Let a, b, c ∈ Z satisfy an + bn = cn, n ≥ 2, abc ̸= 0, the conductor Na,b,c of the Frey’s
curve(16.8.2.3) Ea,b,c satisfies Na,b,c ≤ 28(abc) by(13.9.4.25). Szpiro’s conjecture implies

|abc|2n

28 ≤ |∆min
a,b,c| ≤ κ1N

7
E ≤ 256κ1|abc|7,

so |abc|2n−7 ≤ 264κ. As |abc| ≥ 2, this gives an upper bound for n. □
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16.9 Drinfeld Modules
References are [Elliptic Modules, Drinfeld] and [Introduction to Drinfeld Modules, Hayes].
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17 | Shimura Varieties

17.1 Shimura Varieties
Main references are [Lan20], [Mil17b], [Mil11], http://virtualmath1.stanford.edu/~conrad/

shimsem/, [Canonical Models of Mixed Shimura Varieties and Automorphic Vector Bundles, Milne].

1 Connected Shimura Varieties
Def.(17.1.1.1)[Connected Shimura Data].A connected Shimura datum is a pair (G,D) where
G ∈ AlgGrp /Q is a semisimple algebraic group andD aGad(R)0-conjugacy classes of homomorphisms
u : U(1)→ Gad

R satisfying
SU1: Only z, 1, z−1 appear in the character of the complex representation Ad ◦u : U(1)→ Lie(Gad)C.
SU2: ad(u(−1)) is a Cartan involution on Gad

R .?
SU3: Gad has no Q-factor H s.t. H(R) is compact.

Prop.(17.1.1.2).Let H be an adjoint real Lie group and u : U(1) → H a homomorphism satisfying
SU1, SU2, then the following are equivalent:

• u(−1) = 1.
• u is trivial.
• H is compact.

Proof: 1 ⇐⇒ 2: If u(−1) = 1, then u factors through U(1) 2−→ U(1), so the characters z, z−1

cannot occur in Ad ◦u. The converse is trivial.
1 → 3: by(8.3.6.19), H is compact iff ad(u(−1)) = 1, which is equivalent to u(−1) = 1 as H is

adjoint. □

Prop.(17.1.1.3) [Equivalent Characterization of Connected Shimura Data].A connected
Shimura datum is equivalent to the following data:

• G ∈ AlgGrp /Q semisimple of non-compact type.
• D a Hermitian symmetric domain.
• an action of G(R)+ on D via a surjective homomorphism Gad(R)0 → Hol(D)0 with compact

kernel.

Proof: Cf.[Mil17b]P45.? □

Prop.(17.1.1.4).Let (G,D) be a connected Shimura datum and X be the Gad(R)-conjugacy class
of homomorphisms S1 → GR containing D, and D is a connected component of X, with stabilizer
Gad(R)0 ⊂ Gad(R).

http://virtualmath1.stanford.edu/~conrad/shimsem/
http://virtualmath1.stanford.edu/~conrad/shimsem/
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Proof: Cf.[Mil17b]P45. □

Def.(17.1.1.5) [Connected Shimura Varieties].Let (G,D) be a Shimura datum, then the map
Gad(R)0 → Hol(D)0 as in(17.1.1.3) has compact kernel, so for any arithmetic Γ ⊂ Gad(R)0∩Gad(Q),
the image Γ is an arithmetic subgroup of Hol(D)0, thus we can apply Baley-Borel compactifica-
tion(11.11.7.4) to get an algebraic structure on D(Γ) = Γ\D = Γ\D. Moreover, if Γ′ ⊂ Γ ⊂
Gad(R)0 ∩Gad(Q) satisfy Γ′,Γ are torsion-free, then by Borel-theorem(11.11.7.5) to get a morphism
D(Γ′)→ D(Γ).

Then for any Γ ∈ Gad(R)0 ∩Gad(Q) s.t. Γ is torsion-free, D(Γ) is called a connected Shimura
variety relative to (G,D). And the inverse image of these Shimura varieties are called the con-
nected Shimura variety attached to (G,D), denoted by Sh0(G,D).

Prop.(17.1.1.6)[Galois Action on Shimura Varieties].

2 Shimura Varieties

Prop.(17.1.2.1)[Shimura Variety].Let K ⊂ G(Af ) be a compact open subset, and

SK(C) = G(Q)\X ×G(Af )/K.

Then when K is neat?(which is true when K is small enough), SK(C) has the structure of an
algebraic variety over C by Baily-Borel?, and has a model SK over the reflex field E, by[Milne].

Proof: □

3 Siegel Moduler Varieties
Prop.(17.1.3.1)[Siegel Modular Varieties].For k ∈ Field, consider the functor

Mg,d : Sch /k → Set : X 7→ {Abelian schemes over X with a polarization of degree d},

then its Zariski shifificationMg,d
ét is representable by an algebraic varietyMg,d/k.

Proof: ? □

Prop.(17.1.3.2) [Canonical Ample Divisor on Mg,d].There exists a canonical ample divisor on
Mg,d given by the determinant of the sheaf of invariant differentials on A, the universal Abelian
variety.

Proof: □

Prop.(17.1.3.3).The j-invariant of Elliptic schemes define an isomorphismM1,1
Q → A1

Q.

Proof: ? □

Prop.(17.1.3.4).Let

(V, ψ) = (Q2g, ⟨(ai), (bi)⟩ =
g∑
i=1

(aibg+i − ag+ibi)),

and G̃ = GSp(V ), then the Hermitian symmetric domain X̃ is the Siegel double space, and for any
neat compact open subgroup K̃ ⊂ G̃(Af ), the corresponding Shimura variety S̃

K̃
is the moduli space

of principally polarized g-dimensional Abelian varieties with level-K̃-structure, which has a model
over the reflex field Q.
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4 Hodge Type Shimura Varieties
A Shimura datum (G,X) is called of Hodge Type if it admits a closed embedding into some

Siegel variety datum (G̃, X̃). Thus it carries a universal Abelian variety.

Prop.(17.1.4.1). If (G,X) is a Shimura datum of Hodge type with an embedding (G,X) ↪→ (G̃, X̃),
then there exists a neat subgroup K̃ ⊂ G̃(Af ), K = K̃ ∩G(Af ) s.t. there is a closed embedding of
Shimura varieties

SK ↪→ S̃↪→K ⊗Q E.

Proof: [Deligne71, Prop1.15]. □

5 PEL Type Shimura Varieties
6 Complex Multiplication
7 Canonical Models

Remark(17.1.7.1).Delete this?. For a Shimura datum (G,X), attached to each compact open
subgroup K ⊂ G(Af ), there is a map

fK : Shk(G,X)→ πK

where πK is a the theory of canonical model defines
• a reflex field E = E(G,X), which is a number field.
• A canonical model (fK)0 : ShK(E,G)0 → (πK)0 of fK over E, which is uniquely characterized

by the reciprocity law at the special points.
and also describes the action of Aut(C/E) on πK .

Remark(17.1.7.2).Delete this?. The method of constructing the canonical model is the following:
When our Shimura variety arises naturally as a moduli space over C, then we can use the action of
Gal(C/E) on the C-points to define a model of the variety over a specific number field.

The theory of complex multiplication will give us an explicit description of the action on certain
special points, called the reciprocity law at these points, which will determine the model uniquely.

Remark(17.1.7.3).Delete this?. A heuristic reason that a Shimura variety has a canonical model is
that if it is defined only on a transcendental field, then it can be spread out to give a flat family of va-
rieties. But there are only countably many arithmetic locally symmetric varieties up to isomorphism,
so there cannot be a

André-Oort Conjecture

Def.(17.1.7.4)[Special Subvarieties].

Conj.(17.1.7.5)[André-Oort].Let S be a Shimura variety. Let V ⊂ S be a subvariety, then there
are only f.m. maximal special subvarieties contained in V .

Proof: □
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17.2 André-Oort Conjecture
References are [Canonical Heights on Shimura Varieties and the André-Oort Conjecture].
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18 | Arakelov Geometry

18.1 Arithmetic Intersection Theory

1 Arithmetic Riemann-Roch
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18.2 Arakelov Geometry

1 Metrized Line Bundles
Def.(18.2.1.1)[Metrized Line Bundles].Let F be a number field, a metrized line bundle (L, | · |)
is a line bundle on OF together with norms || · ||v on the free Fv-module M ⊗R Fv of rank 1 for
v ∈ Σ∞

F .

Def.(18.2.1.2)[Heights and Degree of Metrized Line Bundles].Let F be a number field and
(L, | · |) be a metrized line bundle on OF (18.2.1.1), for each v ∈ Σ0

F , Lv = OF,vmv for some mv ∈ Lv,
so we define ||m||v = |m/mv|v for m ∈ Lv, and define the height of L to be

H((L, | · |)) =
∏
v∈ΣF

||m||−1
v , m ̸= 0 ∈M

which is independent of m by product formula. Also we define

h(M) = 1
[F : Q]

logH(M),

called the degree of L. h((L, | · |)) is invariant under change of number fields.
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19.1 L-Functions Attached to Motives
Main references are [Conjectures in Arithmetic Algebraic Geometry, Hulsbergen, 1992], [Galois

Representations, ICM, Taylor].

Notation(19.1.0.1).
• Use notations defined in .

Remark(19.1.0.2). In short, nineteenth century number theory showed that much, if not all, of
number theory is reflected by properties of L-functions.

1 Galois L-Functions

L-Factors of Weil Representations

Thm.(19.1.1.1)[Weil L-Factors].For any local field K and a non-trivial additive character ψ of K,
there exists a group homomorphism

ε(·, ψ) : K0(wd(WK))→ C×

that satisfy
• For a quasi-character χ, ε(χ, ψ) agrees with local factor given by Tate thesis.
• If E/F is a finite extension, and ρ is a representation of WE , then

ε(indWF
WE

ρ, ψF ) = λ(E/F, ψF )dim ρε(ρ, ψF ◦ trE/F ).

Proof: Cf.[Functional Equation for Artin L-Functions, Langlands] and [Tate, Number Theoretical
Background]. □

Def.(19.1.1.2)[Weil-Deligne L-Factors].Let K ∈ p-NField and ρ = (ρ0, N) ∈ wd(WK), we define
• the conductor f(ρ) = f(ρ0)+dim(V IK/ ker(N)IK ), where f(ρ0) is the Artin conductor(15.3.2.16).
• the local L-factor

L(ρ, s) = det(1− q−s Frobκ | ker(N)IK )−1.

• the local ε-factor

ε(ρ, s, ψ) = q−(c(ρ)+n(ψ) dimV )s det(−φ|V IK/ ker(N)IK )ε(ρ′, ψ).

Prop.(19.1.1.3). ε(ρ⊗ ωs, ψ) = q−(c(ρ)+n(ψ) dimV )sε(ρ, ψ).

Proof: □
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Galois L-Functions

Def.(19.1.1.4)[L-Functions].Given an isomorphism ι : Qp ↪→ C, for any V ∈ RepQp(GalF ), define
the global L-function as

L(ιV ; s) =
∏

v∈Σfin
F

L(ιWDp(V ); s).

Prop.(19.1.1.5).By Chebotarev density theorem, L(ιV ; s) determines WDp(V ) and thus V up to
F-semisimplification.

Proof: ? □

Prop.(19.1.1.6). Situation as in(19.1.1.4),
• L(V (n); s) = L(V ; s+ n).

• If F0 ⊂ F is a subfield, W = IndGalK0
GalK (V ), then L(V ; s) = L(W ; s).

• If V is S-pure of weight w, then LS(V ; s) converges absolutely for Re s > w/2 + 1.
• If V is pure of weight w, then L(V ; s) is meromorphic for Re s > w/2 + 1 and has no zeros

there.

Proof: 1 is easy.
2: ?
3: Compare with the Dedekind zeta function(19.2.2.1).
4: clear. □

Conj.(19.1.1.7)[Holomorphy]. Situation as in(19.1.1.4), if V is geometric and pure of weight w, then
it is totally pure. In particular, it is holomorphic for Re s > w/2 + 1. This should be a consequence
of Fontaine-Mazur conjecture and Tate’s conjecture.

Conj.(19.1.1.8)[Meromorphic Extension]. If V is geometric and pure of weight w, then
• L(V ; s) admits a meromorphic continuation to all s ∈ C, and essentially bounded on vertical

strips.
• L(V ; s) ̸= 0 for Re(s) > w/2 + 1.
• If V is irreducible, then L(V ; s) has no poles, expect when V ∼= Qp(n), then it has a simple

pole at s = −n+ 1.
• L(V ;w/2 + 1) ̸= 0.

Proof: □

Remark(19.1.1.9).This is true when V is automorphic, by Jacquet-Shalika method.

Conj.(19.1.1.10) [Grand RH Hypothesis]. If V is geometric and pure of weight w, then L(V ; s)
has no zeros on Re s > (w + 1)/2.

Proof: □

Def.(19.1.1.11)[Completed L-Functions]. If V is geometric and pure of weight w, define

L∞(V ; s) = ΓR(s− w/2)m
+
w/2 .ΓR(s− w/2 + 1)m

−
w/2 .

∏
k∈Z,k<w/2

ΓC(s− k)mk .
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and define the root number at ∞

w∞(ρ) = im
−
w/2 .

( ∏
k<w/2

imk
)2w+1

and the Artin conductor f(ρ)(15.3.2.16), and the completed L-function

Λ(V ; s) = L(ιV ; s)L∞(V ; s).

and the root number
w(ιρ) = w∞(ρ)

∏
p∈P

w(WDp(ρ);ψp)

where ιψp(x) = e−2π ix.
Prop.(19.1.1.12). If V ∈ Rep

Qℓ
(GalQ) is geometric and pure of weight w, then

• L∞(V (n); s) = L∞(V ; s+ n).
• L∞(V (n); s) has a pole of order ∑0≤k<w/2mk +m+

w/2 at s = 0.

• If Tate’s conjecture(16.7.4.1) holds, then m±
w/2 ≥ 0, so L∞(V (n); s) has no zeros.

Proof: Only 1 deserves a proof: It suffices to prove for n = 1. If w /∈ 2Z this is clear. If w ∈ 2Z,
notice Tate twists change weights by 2, so it is also odd, and (−1)w′/2 = −(−1)w/2. But also the
twist changes the action of c by −1 in(16.7.4.7), so the assertion follows. □

Conj.(19.1.1.13)[Functional Equations]. If V is geometric and pure of weight w, then

Λ(V ; s) = w(V )N(V )(w+1)/2−sΛ(V ∨; 1− s).

Proof: □

Remark(19.1.1.14).This is true for V automorphic, by Jacquet-Shalika method.?
Conj.Cor.(19.1.1.15).For a geometric representation polarized of weight w(16.7.4.8), there should
be a functional equation

Λ(V ; 1 + w − s) = ε(V ; s)Λ(V ; s).

Proof: □

2 Artin L-Functions
References are [On the Functional Equation of the Artin L-Functions, Langlands], [On Artin

L-Functions, Cogdell], [Deligne’s 1973 Paper]. [Neu99].
Def.(19.1.2.1) [Local Artin L-Factors].For a Galois extension of global fields L/F and ρ ∈

Rep(Gal(L/F )),

Lv(F, ρ; s) =


(det(1− ||v||−sρ(φP/p)|V IP))−1 , v ∈ Σfin

F

LC(s)χ(1) , v ∈ ΣC
F

LR(s)n+ .LR(s+ 1)n− , v ∈ ΣR
F (19.2.3.1)

where in the case v ∈ Σfin
F , P is a prime over p = pv, and in the case v ∈ ΣR

F , let p = pv,P be any
place of L over p, and let cP be the generator of Gal(LP/Fp), then

n+ = χ(1) + χ(cP)
2

, n− = χ(1)− χ(cP)
2

.
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Prop.(19.1.2.2)[Functoriality of Artin L-Factors].For a Galois extension of global fields L/F and
(ρ, V ) ∈ Rep(Gal(L/F )), v = vp ∈ ΣF , The Artin L-factors(19.1.2.1) satisfy the following functorial
properties:

• Lv(F,1; s) = Lv(1; s)?.
• For ρ, ρ′ ∈ Rep(Gal(L/F )), Lv(F, ρ⊕ ρ′; s) = Lv(F, ρ; s)Lv(F, ρ′; s).
• For Galois extensions L′/L/K and ρ ∈ Rep(Gal(L/F )), L(L′/F, ρ; s) = L(L/F, ρ; s).

• If F ⊂M ⊂ L, ρ ∈ Rep(Gal(L/M)), then Lp(F, IndGal(L/M)
Gal(L/F ) (ρ); s) =

∏
q|p Lq(M,ρ; s).

Proof: ?
1, 2, 3 are clear.
For 4: Let G = Gal(L/F ),H = Gal(L/M), for any p ∈ Σfin

F , let {q1, . . . , qr} = S(p) ⊂ Σfin
M ,

and take Pi ∈ Σfin
L over qi. Let Gi, Ii be the decomposition and inertia groups of Pi/p, then

Hi = Gi ∩H, I ′
i = Ii ∩H are the decomposition and inertia groups of Pi/qi. Denote fi the inertia

degree of qi/p. Let (ρ,W ) ∈ Rep(Gal(L/M)), (ρ′, V ) = IndGal(L/M)
Gal(L/F ) (ρ) ∈ Rep(Gal(L/F )), then it

suffices to show that
det(1− φP1/pT |V

I1) =
r∏
i=1

det(1− φfiPi/pT
fi |W I′

i).

If Pi = τ−1
i (P1), then we can take φPi/p = τ−1

i φP/pτi, Ii = τ−1
i Iτi, then

det(1− φfiPi/pT
fi |W I′

i) = det(1− φfiP1/p
T fi |W I1∩τiHτ−1

i ),

and fi = (Gi : HiIi) = (G1 : (G1 ∩ τiHτ−1
i )I1).

Let σij be a representative of G1/(G1 ∩ τiHτ−1
i ), then because G/H = ∪iGi/Hi, {σijτi}ij is a

representative of G/H. Then
V = ⊕i(

⊕
j

σijτiW ),

and Vi =
⊕

j σijτiW = IndG1
G1∩τiHτ−1

i

(τiW ) is a G1-module. So

det(1− φP1/pT |V
I1) =

r∏
i=1

det(1− φP1/pT |V
I1
i )

Then it suffices to prove for each i,

det(1− φP1/pT |V
I1
i ) = det(1− φfiPi/pT

fi |W I′
i).

Notice

V I1
i =

(
IndG1

G1∩τiHτ−1
i

(τiW )
)I1

= IndGiHiW
I′
i(15.1.5.47) =

fi−1⊕
i=0

φiPi/pW
I′
i ,

so the assertion follow easily from this. □

Def.(19.1.2.3) [Artin L-Functions].For a Galois extension of global fields L/F and (ρ, V ) ∈
Rep(Gal(L/F )), the Artin L-function of ρ is defined to be the Euler product

L(F, ρ; s) =
∏

v∈Σfin
F

Lv(F, ρ; s).
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This L-function also only depends on F but not L, as we will see in(19.1.2.4).
And also define the completed Artin L-function as the function

Λ(F, ρ; s) =
∏
v∈ΣF

Lv(F, ρ; s).

Prop.(19.1.2.4)[Functoriality of Artin L-Functions].For a Galois extension of global fields L/F
and (ρ, V ) ∈ Rep(Gal(L/F )), The L-functions satisfy the following functorial properties:

• L(F,1; s) = ζ(F ; s)(19.3.4.1).
• For ρ, ρ′ ∈ Rep(Gal(L/F )), L(F, ρ⊕ ρ′; s) = L(F, ρ; s)L(F, ρ′; s).
• For Galois extensions L′/L/K and ρ ∈ Rep(Gal(L/F )), L(L′/F, ρ; s) = L(L/F, ρ; s).

• If F ⊂M ⊂ L, ρ ∈ Rep(Gal(L/M)), then L(F, IndGal(L/M)
Gal(L/F ) (ρ); s) = L(M,ρ; s).

Proof: These follow from(19.1.2.2). □

Cor.(19.1.2.5).For a finite Galois extension L/F ,

ζ(L; s) = ζ(F ; s) ·
( ∏
ρ ̸=1∈Irr(Gal(L/F ))

L(F, ρ; s)χρ(1)
)

Prop.(19.1.2.6)[Artin L-Functions and Weber L-Functions].For an Abelian extension of global
fields L/F with conductor f and a character χ : Gal(L/F ) → C×, composing with the Artin sym-
bols(12.6.4.26), we get a character χ̃ : CF /C f ∼= J f/P f → Gal(L/F ) χ−→ C×, which is a Dirichlet
character. Then we have

L(F, χ; s) =
∏
p∈S

1
1− χ(φP/p)(Np)−sL(F, χ̃; s)(19.3.3.3),

where S = {p ∈ Sf (f)|χ(IP) = 1}. Moreover, if χ is injective, then S = ∅.

Proof: S are the primes that are ramified in L/F and C(χ)IP ̸= 0. □

Functional Equations

Prop.(19.1.2.7) [Functional Equations, Brauer].By Brauer theorem(15.1.3.33) and(15.1.3.33),
the Artin L-functions can be written as products and inverses of Weber L-functions(19.3.3.3) and
f.m. L-factors. In particular, they can be extended meromorphically to all s ∈ C and satisfies a
functional equation(19.3.3.5). But the ε-factor remains mysterious?.

More explicitly, for a Galois extension of global fields L/F and (ρ, V ) ∈ Rep(Gal(L/F )), the
completed Artin L-function satisfies a functional equation

Λ(F, ρ; s) = ε(ρ; s)Λ(ρ∨; 1− s),

where
ε(ρ) = w(ρ)

(
|dF |χρ(1)||f(F, ρ)||

)1/2−s
(15.3.2.16)

and w(ρ) is a root number, which satisfies |w(ρ)| = 1.

Proof: Cf.[Algebraic Number Theory, Neukirch].? □
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Conj.(19.1.2.8) [Artin]. If F is a global field and (ρ, V ) ∈ Rep(GalF ) satisfies V GalF = 0, then
L(F, ρ; s) is an entire function on C.

Proof: □

Remark(19.1.2.9).The Artin conjecture is true for ρ factoring through a solvable quotient, as we
can reduce to Abelian case, and use(19.1.2.6) and(19.3.3.5).

3 Artin-Weil L-Functions
Cf.[On the Functional Equation of the Artin L-Functions, Langlands].

4 Hasse-Weil L-Functions

over Finite Fields

Def.(19.1.4.1)[Zeta-Functions].Let X be an algebraic scheme over a finite field Fq, then its Zeta
function is defined to be the power series

Z(X;T ) = exp(
∑
n≥1

#X(Fqn)T
n

n
) ∈ Q[[T ]].

Notice that we can get the information of number of rational points of X by the formula

#X(Fqn) = 1
(n− 1)!

dn

dTn
logZ(X;T )|T=0.

Prop.(19.1.4.2) [Euler Product]. there is an Euler product formula for Z(X;T )
by(13.12.2.2)(13.12.2.3):

Z(X;T ) =
∏

x closed in X

1
1− T deg(x) .

Thm.(19.1.4.3)[Weil Conjecture1949, Deligne1974].Let X be a smooth proper variety over Fq
of dimension n, then

1. (Rationality): Z(X;T ) ∈ Q(T ).
2. (Riemann Hypothesis): Z(X;T ) is of the form

Z(X;T ) = P1(X;T )P3(X;T ) . . . P2n−1(X;T )
P0(X;T )P2(X;T ) . . . P2n(X;T )

s.t.
• P0(X;T ) = 1− T ,
• P2n(X;T ) = 1− qnT ,
• For 0 ≤ i ≤ 2n, Pi(X;T ) ∈ Z[T ],
• For 0 ≤ i ≤ 2n, Pi(X;T ) =

∏
j≤k(1 − αijT ), where each αij is an algebraic integer

s.t. |ι(αij)| = qi/2, where ι is any embedding Z[αij ] → Z. In particular, αij appear in
conjugate pairs.

• deg(Pi(X;T )) is called the i-th Betti number ofX, and degPi(X;T ) = degP2n−i(X;T ).
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3. (Functional Equation):
Z(X; 1

qnT
) = ±qnχ/2TχZ(X;T ),

where χ is a Euler character ∆ ·∆ =
∑2n
i=0(−1)i degPi(X;T ), where nχ/2 ∈ Z.

4. If X lifts to some proper smooth scheme X over OK where K is a global number field and p is
a prime of K with residue field Fq, then deg(Pi(X;T )) equals the i-th Betti number of XC.

5. χ(X) = ∆X ·∆X .

Proof: 1, 2: It follows from trace formula(13.12.2.6) that

Z(X;T ) = P1(X;T )P3(X;T ) . . . P2n−1(X;T )
P0(X;T )P2(X;T ) . . . P2n(X;T )

= P (T )
Q(T )

,

where the roots αij of Pi(X;T ) are algebraic integers satisfying |ι(α−1
ij )| = q−i/2 by Deligne’s purity

theorem(13.12.6.5). Thus Pi(X;T ) ∈ Q[T ] because it is in Q[T ] and also it is stable under GalQ, as
their roots are distinguished by their ι-values.

Moreover, by Euler product(19.1.4.2), Z(X;T ) ∈ Z[[T ]], so it follows from(8.5.1.16) that
P (T ), Q(T ) ∈ Z[T ].

Notice by Poincaré duality(7.4.8.11), H2n
ét (X;Qℓ(n)) ∼= H0

ét(X;Qℓ)∨, thus F ∗
X acts on H0

ét(X;Qℓ)
by id and acts on H2n

ét (X,Qℓ) by qn. Thus P0(X;T ) = 1− T , P2n(X;T ) = 1− qnT .
3: Apply(2.3.12.1) to H i = Hiét(X;Qℓ), trace map and perfect pairing given by Poincaré du-

ality(7.4.8.11) and φi = q−i/2F ∗
X . Notice φ2n = id by item2. Now(2.3.12.1) says φ−1

i = φt2d−i.
Then

{q
i/2

αij
} = { α2n−i

q(2n−i)/2 }

where we are counting multiplicity. Thus for i ̸= d, we can assume αijα2n−i,j = qn, and for i = d,
suppose there are N± many αd,j = ±qn/2, and the other αd,j comes in pair: αd,jαd,bd−j = 0. Then

Z(X; 1
qnT

) =
∏
i

(1− αij/(qnT ))(−1)i+1 =
∏
i

(1− 1
α2n−i,jT

)(−1)i+1 = Z(X;T )·qnχ/2(−1)N+ .

Moreover, if n is odd, then bi = bd−i, and χ is even, so dχ/2 ∈ Z.
4: These follow from the trace formula(13.12.2.6) and(7.4.7.32). □

Cor.(19.1.4.4)[Invariance of Characteristic Polynomial with ℓ]. It follows from the proof above
that Pi is determined by X, and it is also the characteristic polynomial of FrX on Hiét(X,Qℓ) for any
ℓ ∈ P\ char k, so the latter is independent of ℓ chosen.

5: By(7.8.2.2),

∆X ·∆X = (cylX×X(∆X), cylX×X(∆X)) =
2d∑
i=0

tr(id |Hiét(X)) = χ(X).

Points Counting

Thm.(19.1.4.5)[Deligne’s Estimate].

Proof: □
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Cor.(19.1.4.6) [Weil Bound]. If X is a proper smooth curve over Fq, then by Weil conjec-
ture(19.1.4.3),

|#X(Fqn)− qn − 1| = |
∑
j

α1j | ≤ 2g(X)qn/2.

Prop.(19.1.4.7)[Drinfeld-Vladut].For p ∈ P, q = pr, let A(q) = limg(X)→∞
#X(Fq)
g(X) , where the limit

is taken over all smooth proper curves over Fq. Then A(q) ≤ √q − 1.

Proof: Let α1j as in(19.1.4.3), ωi = α1iq
−1/2, then |ωi| = 1 and inversion induces an automorphism

of {ωi}. Then by(19.1.4.6), for any r ∈ Z+,

N = #X(Fq) ≤ #X(Fqr) = qr + 1− qr/2∑
i

ωri .

And notice
0 ≤ |1 + ωi + . . .+ ωri |2 = (r + 1) +

r∑
j=1

(r + 1− j)(ωji + ω−j
i ),

So

2g(X)(r + 1) ≥ −
∑
i

r∑
j=1

(r + 1− j)(ωji + ω−j
i ) = −2

r∑
j=1

(r + 1− j)(
∑
i

ωji )

≥ N
r∑
j=1

(r + 1− j)q−j/2 −
r∑
j=1

(r + 1− j)(αj + α−j)

Thus
N

g(X)
≤ (

r∑
j=1

r + 1− j
r + 1

q−j/2)−1 · (1 + 1
g

r∑
j=1

r + 1− j
r + 1

(αj + α−j))

Taking limit g →∞,
N

g(X)
≤ (

r∑
j=1

r + 1− j
r + 1

q−j/2)−1.

And taking limit r →∞ gives

N

g(X)
≤ (

r∑
j=1

q−j/2)−1 = √q − 1

□

Thm.(19.1.4.8)[Lang-Weil Estimate].Cf.[Zeta function in algebraic geometry, Mustata].

Proof: □

Hasse-Weil L-Functions

Def.(19.1.4.9)[Hasse-Weil L-Functions].For X ∈ SmProj /Q, ℓ ∈ P, there is some N ∈ Z+, ℓ|N
s.t. X has a model X/Z[ 1

N ]. Choose an embedding Then we can define a a partial zeta function

ζN (X; s) =
∏
p∤N

( ∏
x∈|Xp|0

(1− p−sdeg(x))−1
)
,
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then by Grothendieck-Lefschetz formula,

ζN (X; s) =
2 dimX∏
i=0

LN (ιH i(X,Qℓ); s)(−1)i .

Thus it is natural to define the Hasse-Weil L-function

ζ(X; s) =
2 dimX∏
i=0

L(ιH i(X,Qℓ); s)(−1)i .

and the completed L-function

Λ(X; s) =
2 dimX∏
i=0

Λ(ιH i(X,Qℓ)l; s)(−1)i .

Example(19.1.4.10). If X ∈ Ell /Q, then this will give

ζ(X; s) = ζ(s)ζ(s− 1)
L(E; s)

.

Conj.(19.1.4.11).Motivated by Poincaré duality and(19.1.1.13), situation as in(19.1.4.9), ζ(X; s)
should have a meromorphic extension to the whole plane, and satisfies a functional equation of
the form

Λ(X; s) = ε(s)Λ(X, 1 + dimX − s).

Proof: □
Remark(19.1.4.12).This is true for elliptic curves, by [BCDT].

5 Motivic L-Functions
Main references are [Del79] and [Zag94].

Def.(19.1.5.1)[Motivic L-Functions].Use the fact the Grothendieck motives over a finite field is
a Tannakian category?, we can define L-functions for any motives over a number field. Such an
L-function is called a motivic L-function.

Conj.(19.1.5.2)[Properties].The motivic L-functions are conjectured to satisfy the following prop-
erties:
Algebraicity: There are Dirichlet series expansions: L(s) =

∑
n≥1 ann

−s for Re(s) large, where
{an} ∈ F for some number field F .

Euler Product: There are Euler product expansions: L(s) =
∏
p∈P Φp(p−s) where

maxp∈P{deg Φp} <∞. In particular, n 7→ an is multiplicative.
Functional Equation: There is a γ-factor

γ(s) = As ·
∏
i

Γ(1
2

(s+mi))

where A ∈ C∗,mi ∈ Z, s.t. ζ(s) = γ(s)L(s) satisfies a functional equation

ζ(s) = wζ(h− s)

where w = ±1 called the sign of functional equation and h ∈ Z+. And in this way, L(s)
extends to a meromorphic function on C with only f.m. poles.
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Local Riemann Hypothesis: The zeros of Φp(p−s) lie on the line Re(s) = k−1
2 .

Riemann Hypothesis: The zeros of L(s) are either integers or lie on the line Re(s) = k−1
2 .

Special Values: A critical point for L(s) is an integer m ∈ Z s.t. neither m nor h−m is a pole
of L(s). Then for a critical point m for L(s), the critical value L(m) = A(m)Ω(m), where
A(m) is a reasonable algebraic number and Ω(m) ∈ P is a reasonable period number.

Central Special Values: If h = 2m,m ∈ Z, then m is called a central value of L(s), and in this
case, A(m) is a square times a simple factor.

More...
Proof: □

Conj.(19.1.5.3)[Big Automorphy Conjecture].Every motivic L-function comes from a automor-
phism representation.
Proof: □

6 0-Dimensional Motives
7 Abelian Motives

Def.(19.1.7.1) [Motivic L-Function of Elliptic Curves].Let F be a global field F and A ∈
AbVar /F , the motivic h1 L-function is defined to be

L(h1A, s) =
∏
v∈Σ0

F

L(h1Av, s)

where L(Ev, s) is defined to be
• L(Ev, s) = (1− avq−s

v + q1−2s
v )−1 as in(19.1.7.4), where av = qv + 1−#Ẽv(kv), if E has good

reduction at v.
• (1− q−s

v )−1 if E has split multiplicative reduction at v.
• (1 + q−s

v )−1 if E has non-split multiplicative reduction at v.
• 1 if E has additive reduction at v.

Notice that in all cases we have L(Ev, 1) = qv/#Ẽns(kv).

Hasse-Weil L-Functions

Prop.(19.1.7.2)[Hasse-Weil L-Functions].Let X be a smooth proper variety over a global field F ,
the ζ-function of X is defined to be

Z(X, s) =
∏
v∈Σ0

F

Z(Xv, q−s),

where for v s.t. Xv has good reduction, Z(Xv, T ) = Z(Xkv , T ) in(19.1.4.1), and for bad places v, it
needs to be defined otherwise.?

Prop.(19.1.7.3).Let l1, . . . , lN be linear forms in r-variables with rational coefficients, then∑
x∈Zr

1
l1(x) . . . lN (x)

∈ QπN

if it is convergent.
Proof: □
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Elliptic Curves

Def.(19.1.7.4)[L-Factors].

Def.(19.1.7.5)[Motivic L-Function of Elliptic Curves].Let F be a global field F and E ∈ Ell /F ,
the motivic h1 L-function is defined to be

L(h1E, s) =
∏
v∈Σ0

F

L(h1Ev, s)

where L(Ev, s) is defined to be
• L(Ev, s) = (1− avq−s

v + q1−2s
v )−1 as in(19.1.7.4), where av = qv + 1−#Ẽv(κv), if E has good

reduction at v.
• (1− q−s

v )−1 if E has split multiplicative reduction at v.
• (1 + q−s

v )−1 if E has non-split multiplicative reduction at v.
• 1 if E has additive reduction at v.

Notice that in all cases we have L(Ev, 1) = qv/#Ẽsm(κv).

Prop.(19.1.7.6)[Tate-Faltings]. If E,E′ ∈ Ell /Q s.t. LE(s) = LE′(s), then E,E′ are isogenous.

Proof: Cf.[Milne, Elliptic Curves, Thm5.4.1]. □

8 Tamagawa Number Conjecture(Bloch-Kato)
References are [A note on Height Pairings, Tamagawa Numbers and the Birch and Swinnerton-

Dyer Conjecture, Bloch].

Conj.(19.1.8.1)[Tamagawa Number Conjecture].Let F be a number field and G ∈ AlgGrp /F ,
suppose that G(F ) is discrete in G(AF ), then

τ(G) = # Pic(G)tor
#X(G)

.

Moreover, ords=1 L(s) ≤ 0, and r = 0 iff Vol(G(AF )/G(F )) <∞.

Proof: □

Thm.(19.1.8.2)[Bloch].The Tamagawa number conjecture(19.1.8.1) implies that BSDT conjecture.

Proof: [Bloch, Height Pairing and]. □

Equivariant Tamagawa Number Conjecture

9 Others

Invariants of Moduli Spaces

Prop.(19.1.9.1).Volumes and Euler characteristics of moduli spaces are often expressible by special
values of ζ-functions.

Proof: □
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Def.(19.1.9.2)[Witten ζ-Functions].Because of the appearance in physics(Verlinde formula), people
are interested in certain moduli spaces of vector bundles on curves.

Witten gave a formula expressing the volume of these moduli spaces in terms of special values of
Witten ζ-functions:

Let g be a semisimple f.d. Lie algebra, define

ζg(s) =
∑

ρ∈Rep(g)

dim(ρ)s?

Prop.(19.1.9.3).A consequence of Witten’s formula(19.1.9.2) is:

ζg(2m) ∈ Qπ2rm,m ∈ Z+

where r is the number of positive roots of g.

Multiple ζ-Values

Cf.[Zag94].
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19.2 L-Functions Attached to Automorphic Representations

Main references are [Bum98], [Cog00] and [Gelbart-Shahidi, Analytic Properties of Automorphic
L-Functions].

Notation(19.2.0.1).
• Use notations defined in Adelic Automorphic Representations.
• Use notations defined in Archimedean L-Factors.
• Fix a global field F .
• Fix an additive character ψ = ⊗′ψv : AF /F → C×.
• Fix a linear algebraic groupG ∈ AlgGrp /F with center Z, and letK ⊂ G(AF ) be a hyperspecial

compact subgroup(13.3.3.2).
• Fix a central character ω : Z(AF )/Z(F ) → C×. Notice if G = GL(2), ω is just a Hecke

character.

1 Introduction

Remark(19.2.1.1) [Delete].According to https://mathoverflow.net/questions/44657/
principal-l-functions-on-gln, there are several ways to attach L-functions to a cusp form on
GL(n) with functional equations:

1. Godement-Jacquet: In the spirit of Tate’s thesis, take a cusp form f on G = GL(n) (and f ′ in
the dual representation) and a Schwartz-Bruhat function Φ on Mat(n,AF ) and integrate∫

Z(AF )G(F )\G(AF )
⟨π(g)f, f ′⟩Φ(g)|det(g)|sdg.

For this, Cf.[G-H11]Chap11.
2. Rankin-Selberg: Take a cusp form f on G = PGL(n) (and f ′ in the dual representation) and

a specific Eisenstein series on PGL(n2) and integrate∫
Z(AF )(G×G)(F )\(G×G)(AF )

E(g1, g2)f(g1)f ′(g2)dg1dg2,

where Z is the center of PGL(n2). For this, Cf.[Bum98] and [Goldfeld].
3. Explicit Eulerian integral(Jacquet-Shapiro-Shalika): Take a cusp form f on GL(n) and f ′ on

GL(m) with n > m, integrate∫
GL(m,F )\GL(m,AF )

Pf(g)f ′(g)| det(g)|s−1/2dg.

where P is the projection operator brilliantly designed s.t. this integral resolves to the product
of Whittaker models for f and f ′. For this, Cf.[Cog00] and [Analytic Theory of L-functions for
GL(n)].

4. Eisenstein series(Langlands-Shahidi):

https://mathoverflow.net/questions/44657/principal-l-functions-on-gln
https://mathoverflow.net/questions/44657/principal-l-functions-on-gln
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L-Functions for GL(n)

Prop.(19.2.1.2).To π ∈ Irradm(GL(n)/Q), we can associate:
•

2 Tate’s thesis(Godement-Jacquet for GL(1))
Main references are [Poo15], [R-V99] and [Tat65].

Lemma(19.2.2.1)[Dedekind Zeta Function].For a global field F , the Dedekind zeta function
is defined by

ζ(F ; s) =
∏

p∈Σfin
F

1
1− ||p||−s

.

It converges absolutely for Re(s) > 1. Notice if F ∈ FField, then

ζ(F ; s) =
∑

a∈Ideal(OF )

1
||a||s

Proof: It suffices to show ∏
p∈Σfin

F

1
1−||p||−σ < +∞ for σ > 1.

If F is a number field, let d = [F : Q], this is bounded by∏
p

(1− p−σ)−d = (
∑
n≥1

n−σ)d <∞.

If F is a function field, let the number of irreducible polynomial modulo p be Nn, then use the same
method, it suffices to prove the convergence of

∏
p∈Σfin

F

1
1− 1

(Np)σ
=
∏
n≥1

( 1
1− q−nσ )Nn .

This is convergent iff ∑n≥1Nnq
−nσ is convergent(10.5.3.8), but the latter is bounded by∑
n≥1

qnq−nσ =
∑
n≥1

q−n(σ−1) <∞.

□

Def.(19.2.2.2)[Zeta Functions]. If Φ ∈ S(F ) and χ is a Hecke character of F , s ∈ C, the global
zeta function is defined to be

ζ(χ,Φ; s) =
∫

IF
Φ(a)χ(a)|a|sd×a.

When Φ = ⊗vΦv is a pure tensor,

ζ(χ,Φ; s) =
∏
v∈ΣF

ζv(s, χv,Φv) =
∏
v∈ΣF

∫
F×
v

Φv(x)χv(x)|x|svd×x

Where the local zeta functions ζv(χv,Φv; s) converge to a holomorphic function for Re(s) > 0 and
the integral is absolutely convergent for Re(s) > 1.
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Proof: For the local zeta function: Φv is rapidly decreasing, thus it suffices to integrate the
part where |x|v < 1. Then Φv is bounded on this compact region, thus it suffices to evaluate∫

|x|v≤1 |x|svd×x <∞ for Re(s) > 0, which can be done case by case.
To show the global integral converges, notice the local integrals is the same as the local L-factors

for a.e. v ∈ ΣF by(19.2.2.3), so we can use Fubini and notice that ∏v L(χv; s) converges by compar-
ison with the Dedekind zeta function(19.2.2.1). □

Prop.(19.2.2.3) [Unramified Factors].For any place v that unramified in the sense of(12.4.6.19)
and Φv = 1Ov ,

ζv(χv,Φv; s) = L(χv; s) = (1− χv(ϖ)||p||−s)−1(19.2.3.1).

Proof: Notice the a.e. v ∈ ΣF satisfies v that unramified in the sense of(12.4.6.19) and Φv = 1Ov ,
and for such a v,

ζv(χv,Φv; s) =
∑
k∈N

∫
v(x)=k

χv(x)|x|svd×x =
∑
k∈N

(χv(ϖv)||v||−s)k = (1− χv(ϖ)||v||−s)−1.

□

Prop.(19.2.2.4)[Global Functional Equation].The global zeta function(19.2.2.2) can be extended
to a meromorphic function for all s, and it has poles iff χ(x) = |x|λ for some λ ∈ iR. In which case,
it only has poles at

s =

−λ, 1− λ , F ∈ NField
−λ+ 2πn i

log(#F0) , 1− λ+ 2πn i
log(#F0) , F ∈ FField

with respectively residue −kf(0) and kf∨(0), where k = V (I1
F /F

×)(12.4.6.20), and essentially
bounded on the vertical strips away from the poles. And we have functional equations

ζ(χ,Φ; s) = ζ(χ−1,Φ∨; 1− s).

Proof: Consider the exact sequence

1→ I1
F → IF → | IF | → 1.

Let ItF be the inverse image of t ∈ | IF |, where | IF | = R+ or qZ, with Haar measure dt/t or log q
times the counting measure(also denoted dt/t), and choose Haar measure d×x on each ItF compatible
with d×a and dt/t. In particular, if |at| = t,∫

|IF |

∫
I1
F

Φ(atx)χ(atx)tsd×x
dt

t
=
∫
IF

Φ(a)χ(a)|a|sd×a.

Then the measure d×x and the counting measure on F× induces a measure d×x on I1
F /F

×, in
particular, for any f ∈ C(CF ), we have∫

ItF /F
×
f(x)d×x =

∫
I1
F /F

×
f(atx)d×x =

∫
I1
F /F

×
f(at
x

)d×x =
∫
I

1/t
F /F×

f( 1
x

)d×x. (⋆)

Denote ζt(χ,Φ; s) =
∫
ItF

Φ(x)χ(x)|x|sd×x, then

ζ(χ,Φ; s) =
∫ 1

0
ζt(χ,Φ; s)dt

t
+
∫ ∞

1
ζt(χ,Φ; s)dt

t
= J + I
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where if |IF | = qZ the value at 1 is counted half-half at this two part. Now for the I-part, if Re(s)
is smaller, it is smaller, thus I extends to a holomorphic function to all s ∈ C. For the J-part, by
lemmas(19.2.2.6)(19.2.2.5),

J =
∫ 1

0
ζ1/t(Φ̂, χ−1; 1− s)dt

t
+ [
∫ 1

0
(kΦ̂(0)(1

t
)1−s − kΦ(0)ts)dt

t
]δc,|·|

=
∫ ∞

1
ζt(Φ̂, χ−1; 1− s)dt

t
+ [
∫ 1

0
(kΦ̂(0)ts−1 − kΦ(0)ts)dt

t
]δc,|·|

= I(χ,Φ; s) + I(χ−1, Φ̂; 1− s) + kδc,|·|[
∫ 1

0
(Φ̂(0)ts−1 − Φ(0)ts)dt

t
]

So it can be extended, and the final part is

kf̂(0)
s− 1

− kf(0)
s

when F is number field, and when F is function field, it equals

k log q[f̂(0)(−1
2

+
∞∑
n=0

(q−n)s−1)− f(0)(−1
2

+
∞∑
n=0

(q−n)s)] = k log q
2

(f̂(0)1 + q1−s

1− q1−s + f(0)1 + qs

1− qs
).

Now clearly ζ(χ,Φ; s) = ζ(χ−1, Φ̂; 1− s), and it has the desired residues at 1 and | · |. □

Lemma(19.2.2.5).
∫

ItF /F× χ(x)|x|sd×x = kts if χ = 1 and 0 otherwise.

Proof:
∫

ItF /F× χ(x)|x|sd×x = χ(at)ts
∫

I1
F /F

× χ(x)d×x, ItF /F× is compact(12.4.5.21) and χ is trivial
on I1

F /F
× iff χ = 1, thus we can use(10.11.1.14). □

Lemma(19.2.2.6). ζt(χ,Φ; s) + Φ(0)
∫

ItF /F× χ(x)|x|sd×x = ζ1/t(Φ̂, χ−1; 1 − s) +
Φ̂(0)

∫
I

1/t
F /F× χ(x)|x|sd×x.

Proof:

ζt(χ,Φ; s) + Φ(0)
∫
ItF /F

×
χ(x)|x|sd×x =

∫
ItF /F×

(
∑
a∈F×

Φ(ax))χ(ax)|ax|sd∗x+
∫

ItF /F×
Φ(0)χ(x)|x|sd×x

=
∫

ItF /F×
(
∑
a∈F

Φ(ax))χ(x)|x|sd∗x

(12.4.6.22) =
∫

ItF /K×

1
|x|

(
∑
a∈K

Φ̂(a/x))χ(x)|x|sd∗x

(by ⋆) =
∫

I1/t
F /F×

(
∑
a∈F

Φ̂(ay))|y|χ−1(y)|y|−sd∗y

= ζ1/t(Φ̂, χ−1; 1− s) + f̂(0)
∫

I1/t
F /F×

χ(x)|x|sd×x

□
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Local Functional Equations

Lemma(19.2.2.7).For any Φv,Ψv ∈ S(Fv), χv ∈ (F×
v )∨, s ∈ C,

ζv(χv,Φv; s)
ζv(χ−1

v , Φ̂v; 1− s)
= ζv(χv,Ψv; s)
ζv(χ−1

v , Ψ̂v; 1− s)
.

Proof: ?
ζ(f, c)ζ(ĝ, c) =

∫
K×

f(α)c(α)
∫
K×

ĝ(β)c−1(β)|β|dβ =
∫ ∫

f(α)ĝ(β)c(αβ−1)|β|dαdβ

by Fubini.

=
∫ ∫

f(α)ĝ(αβ)c(β−1)|αβ|dαdβ =
∫

(
∫
f(α)ĝ(αβ)|α|dα)|β|c(β−1)dβ

And notice∫
K×

f(α)ĝ(αβ)|α|dα = C·
∫
K+\{0}

f(ξ)ĝ(ξβ)dξ = C·
∫
K+

∫
K+

f(ξ)g(η)e−2πiΛ(ξβη)dηdξ

which is clearly symmetric in f and g. So the conclusion follows. □

Prop.(19.2.2.8) [Local Functional Equations].For any Φv ∈ S(Fv), χv ∈ (F×
v )∨, the local zeta

function ζv(χv,Φv; s)(19.2.2.2) can be extended to a meromorphic function to all s ∈ C that is
analytic for Re(s) > 0, and there is a function γv(χv, ψv; s), meromorphic for s and independent of
f , such that

ζv(χ−1
v , Φ̂v; 1− s) = γv(χv, ψs; s)ζv(χv,Φv; s).

Proof: By(19.2.2.2), both ζv(χ−1
v , Φ̂v; 1 − s) and ζv(χv,Φv; s) are holomorphic in 0 < Re(s) < 1,

so we define γ(χv, ψs; s) in this region, and try to extend it. Now(19.2.2.7) shows this is invariant
of Φv, so we can take any Φv we want. Notice if Φv = 0 on a nbhd of 0, then ζv(χ,Φv; s) is entire.
Then because Fourier transform preserves S(Fv)(12.4.6.11), we can take Φv to be 0 around 0 or Φ̂v

to be 0 around 0, then γv(χv, ψv; s) is analytic on both Re(s) > 0 and Re(s) < 1. □

Prop.(19.2.2.9).Let v ∈ Σfin
F and Re(s) < 1, then for N ∈ Z+ sufficiently large,

γv(s, χv, ψv) =
∫
p−N
|x|−sχ−1

v (x)ψv(x)dx.

Proof: In(19.2.2.8), take Φv = 11+pN , then Φ̂v = 1p−N · ψv. □

Prop.(19.2.2.10).
• γ(1− s, χ−1, ψ) = χ(−1)/γ(s, χ, ψ).
• ρ(c) = c(−1)ρ(c)

Proof: 1:
ζ(f, c) = ρ(c)ζ(f̂ , ĉ) = ρ(c)ρ(ĉ)ζ(̂̂f, c) = ρ(c)ρ(ĉ)c(−1)ζ(f, c)

2:
ζ(f, c) = ρ(c)ζ(f̂ , ĉ), ζ(f, c) = ζ(f, c) = ρ(c)ζ(f̂ , ĉ)
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And
f̂(ξ) =

∫
f(η)e−2πiΛ(ξη)dη =

∫
f(η)e2πiΛ(ξη)dη = f̂(−ξ)

so
ρ(c)ζ(f̂ , ĉ) = ρ(c)c(−1)ζ(f̂ , ĉ) = ρ(c)c(−1)ζ(f̂ , ĉ)

Thus ρ(c) = c(−1)ρ(c). □

Cor.(19.2.2.11).Because when σ(c) = 1
2 , ĉ = c??, we have |ρ(c)| = 1 in this case.

3 Weber L-Functions(GL(1) Case)
Def.(19.2.3.1) [Local L-Factors].Given a Hecke character χ, for v ∈ ΣF , the local L-factor for
v ∈ ΣF and s ∈ C is defined to be

L(χv; s) =


(1− χv(ϖ)||p||−s)−1 v ∈ Σfin

F , χv unramified
1 v ∈ Σfin

F , χv ramified
LR(s+ ν + ε)(10.7.1.13) v ∈ ΣR

F , χv(x) = |x|ν sgn(x)ε, ν ∈ iR, ε ∈ {0, 1}
LC(s+ ν + |k|

2 )(10.7.1.13) v ∈ ΣC
F , χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ Z

Prop.(19.2.3.2)[Local L-Factors are the Common Divisors]. Situation as in(19.2.2.8), ζv(χv ,Φv ;s)
L(χv ;s)

is entire for any Φv ∈ S(Fv), and if v ∈ Σfin
F , it is a rational function of ||v||−s.

Moreover, if we take

Φv(x) =


11+c(χv) , v ∈ Σfin

F

xεe−πx2
, v ∈ ΣR

F , χv(x) = |x|ν sgn(x)ε, ν ∈ iR, ε ∈ {0, 1}
π−1xke−2π|x|v , v ∈ ΣC

F , χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ N

π−1x−ke−2π|x|v , v ∈ ΣC
F , χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ Z−.

then

ζv(χv,Φv; s)
L(χv; s)

=


d×αv(O∗) , v ∈ Σfin

F , χv unramified
d×αv(1 + c(χv)) , v ∈ Σfin

F , χv ramified
1 , v ∈ Σ∞

F

In particular, they can all be non-zero constants.

Proof: For v ∈ Σfin
F ,

ζv(χv,Φv; s) =
∑
k∈Z

||v||ks
∫
v(x)=−k

Φv(x)χv(x)d×x

As Φv ∈ C∞
c (Fv), the summand is 0 for k large. And for k small, Φv(x) is constant. If χv is ramified,

then these terms are 0, thus it is a polynomial in ||p||−s, and for χv unramified, the these terms are
a geometric series, which is easily seen to be a rational function of ||p||−s, and has the same pole as
L(χv; s)(19.2.3.1).

For v ∈ ΣR
F , the poles of ζv(χv,Φv; s) are the same as poles of

∫
|x|≤1 Φv(x)χv(x)|x|sdx, because∫

|x|≥1 Φv(x)χv(x)|x|sdx is convergent for any s ∈ C. For the former, we can write Φv as a sum of an
odd function and an even function. Only the part with the same parity of χv will be non-zero, and
for that part, by(10.5.3.5), its poles are all simple and are poles of L(χv; s)(19.2.3.1).
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For v ∈ ΣC
F , if χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ Z,

ζv(χv,Φv; s) = 1
2π

∫ ∞

0

∫ 2π

0
r2v+2seikθΦv(reiθ)dθ

dr

r
=
∫ ∞

0
r2v+2sφ(r)dr

r
,

where
φ(r) = 1

2π

∫ 2π

0
eikθΦv(reiθ)dθ.

Suppose Φv(x) =
∑
n,m∈N a(n,m)xnxm, then φ(r) =

∑
m−n=k a(n,m)rm+n. Thus by(10.5.3.5), its

pole are {s|2s+ 2v − (|k|+ 2l)}, which are all simple and are poles of L(χv; s)(19.2.3.1).
For the last assertion, we need direct calculations, Cf.[Tate’s Thesis]P320?. □

Prop.(19.2.3.3)[Local ε-Factors]. Situation as in(19.2.2.8), there exists a non-vanishing holomorphic
function εv(χv, ψv) that

ζv(χ−1
v , Φ̂v; 1− s)

L(χ−1
v ; 1− s)

= εv(χv, ψv; s)
ζv(χv,Φv; s)
L(χv; s)

.

and ζv(χv ,Φv)
Lv(χv ;s) is holomorphic. Moreover, εv(χv, ψv; s) is of the form abs for a ∈ C∗, b ∈ R. And

ε(χv, ψv) = 1 if v is unramified in the sense of(12.4.6.19).

Proof: Such an εv(χv, ψv; s) exists by(19.2.2.8). It is holomorphic and non-vanishing by(19.2.3.2)
as both ζv(χ−1

v ,Φ̂v ;1−s)
L(χ−1

v ;1−s) and ζv(χv ,Φv ;s)
L(χv ;s) are holomorphic and for any s0 ∈ C, Φv can be chosen to make

either one of them non-vanishing at s0.
To show it is of the form abs: If v ∈ Σfin

F , it is a rational function in ||p||−s with no zeros or poles,
so it must be of the form abs. And if v is unramified, then we can take Φv = 1OF,v

,Φ∨
v = 1OF,v

by(12.4.6.5), and both sides are 1 by(19.2.2.3).
If v ∈ Σ∞

F , then we can take Φv defined in(19.2.3.2) to do the calculation to show it di-
rectly(?Cf.[Tate’s Thesis]):

Φ∨
v (x) =


||c(ψv)−1c(χv)||.dµv(OFv).1c(ψv)c(χv)−1 .ψ−1

v , v ∈ Σfin
F

iε ·xεe−πx2
, v ∈ ΣR

F , χv(x) = sgn(x)ε, ε ∈ {0, 1}
ik ·π−1xke−2π|x|v , v ∈ ΣC

F , χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ N

i−k ·π−1x−ke−2π|x|v , v ∈ ΣC
F , χv(x) = |x|νei k arg(x), ν ∈ iR, k ∈ Z−.

So it follows from(19.2.3.2) that

εv(χv, ψv; s) =


Cf.[Tate’s Thesis]? , v ∈ Σfin

F

iε , v ∈ ΣR
F

i|n| , v ∈ ΣC
F

□

Remark(19.2.3.4).The local ε-factor is calculable using the special function Φv, theoretically.

Prop.(19.2.3.5)[Global Hecke L-Functions].For a Hecke character χ =
∏
v χv on F and s ∈ C,

we define the global Hecke L-function and completed Hecke L-function as

L(χ; s) =
∏

v∈Σfin
F

L(χv; s), Λ(χ; s) =
∏
v

L(χv; s)(19.2.3.1)
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which converges for Re s > 1 and has a meromorphic continuation to all s ∈ C.
Also, we can define the global ε-factor for χ as

ε(χ; s) =
∏
v

εv(χv, ψv; s).

All but f.m. of the product equals 1 by(19.2.3.3), and they are of the form abs, so ε(s, χ) is also of
the form abs, where a ∈ C∗, b ∈ R+. In particular, it is holomorphic and non-vanishing. The fact
ε(s, χ) is independent of ψ can be seen from(19.2.3.6).

Prop.(19.2.3.6)[Meromorphic Extension of Hecke L-Functions]. For a Hecke character χ,
• L(χ; s) has meromorphic continuation to all s, and there is a functional equation

Λ(χ; s) = ε(χ; s)Λ(χ−1; 1− s),

where ε(χ; s) is of the form abs, a ∈ C×, b ∈ R+.

• L(χ; s) has poles iff χ(x) = |x|λ for some λ ∈ iR. In this case,

– If F ∈ NField, then it only has simple poles at s = 1− λ, with residue −k||dF ||1/2.

– If F ∈ FField, it has poles at s = −λ+ 2πn i
log(#F0) , 1−λ+ 2πn i

log(#F0) , with respectively residue
−k||dF ||1/2 and k, where k = V (I1

F /F
×)(12.4.6.20),

• L(χ; s) is essentially bounded on the vertical strips away from the poles.

• If F ∈ NField, then L(1; s) has a zero of order r1 + r2 − 1 at s = 0.

Proof: The functional equation follows from the definition of local ε-factors(19.2.3.3) and(19.2.2.4).
To show it is essentially bounded on vertical strips, use

Λ(χ; s)
ζ(χ,Φ; s)

=
∏
v∈ΣF

L(χv; s)
ζv(χv,Φv; s)

where we can take Φv s.t. each fraction is of the form abs, and a.e. term is 1, by(19.2.3.3). Then
L(χ; s) is essentially bounded on vertical strips because ζ(χ,Φ; s) does(19.2.2.4).

To find the poles and residues, choose Φv as in (19.2.3.2), then ζ(χ,Φ; s) is a constant multiple
of Λ(χ; s), and the poles and residues of can be read from that of ζ(χ,Φ; s). Then we use(19.2.2.4),
the assertion about poles follows.

Then it suffices to calculate for χ = 1: we use the standard character on AF , then we calculate
Φv(0) = π−r2 and Φ∨

v (0) = ||dv||−1/2π−r2 , by(19.2.3.3) and(12.4.6.5). Thus we can use properties of
the infinite L-factors(10.7.1.13). □

Def.(19.2.3.7)[Root Number].The number w(χ) = ε(χ; 1
2) is called the root number of χ. Then

it satisfies |w(χ)| = 1, and w(χ) ∈ {±1} if χ is real.

4 Godement-Jacquet Theory

Main references are [G-J72].
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5 Rankin-Selberg Methods on GL(2)×GL(2)

References are [Automorphic Forms on GL(2), Jacquet, 1972].

Def.(19.2.5.1)[Intro, Rankin-Selberg Method].Delete this?. Converse theorems like(19.2.6.18),
shows that a possible method of proving the existence of an automorphic form is to prove by any
method the functional equations of sufficiently many of the the L-series attached to it. One of the
most powerful methods of doing this is the Rankin-Selberg method, which seeks to represent an
L-function as an integral of one or more automorphic forms against an Eisenstein series, itself a type
of automorphic form.

Conj.(19.2.5.2) [Rankin-Selberg L-function].For a global field F , assume the Langlands func-
toriality, for any π1 ∈ Irrauto(GL(n)/F ) and π2 ∈ Irrauto(GL(m)/F ), their product π1 × π2 ∈
Irrauto(GL(n)×GL(m)/F ), and there is a tensor product map ⊗ : GL(n)×GL(m)→ GL(mn), which
by functorial lifting(16.4.1.6) gives us an automorphic representation π1 ⊠ π2 ∈ Irrauto(GL(mn)/F ),
whose L-function is denoted by L(s, π × π′) And for a finite set S of places of F large enough,

LS(s, π1 × π2) =
∏
v/∈S

n∏
i=1

m∏
j=1

1
1− αi(π1,v)β(π2,v)q−s

v

called the (partial)Rankin-Selberg L-function of π1, π2. Here are some examples:
• π1 = π, π2 = π̂, then for some S, then

LS(s, π × π̂) =
∏
v/∈S

∏
1≤i,j≤n

1
1− αi(πv)α−1

j (πv)q−s
v
.

In this case, this is the functorial lifting of

GL(n)→ GL(n)×GL(n)→ GL(2n) : g 7→ (g, g−t) 7→ g ⊗ g−t

by(16.3.2.7), which is isomorphic to the conjugation action of GL(n) on Mat(n). This action
decomposes as a trivial action and a n2−1-dimensional representation Ad0. Thus there should
be a decomposition

LS(s, π × π̂) = ζF,S(s)LS(s, π,Ad0)

where ζF,S(s) is the partial zeta function on F .
• π1 = π = π2, then for some S, then

LS(s, π × π̂) =
∏
v/∈S

∏
1≤i,j≤n

1
1− αi(πv)αj(πv)q−s

v
.

In this case, this is the functorial lifting of

GL(n)→ GL(n)×GL(n)→ GL(2n) : g 7→ (g, g) 7→ g ⊗ g

by(16.3.2.7), which decomposes as a 1
2n(n + 1)-dimensional symmetric square representation

Sym2, and a 1
2n(n− 1)-dimensional exterior square representation ∧2. Thus there should be a

decomposition
LS(s, π × π̂) = LS(s,Sym2 π)LS(s,∧2π),

where LS(s,Sym2 π) and LS(s,∧2π) are called the symmetric square L-functions and ex-
terior square L-functions of π.
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There are two Rankin-Selberg constructions of exterior square L-functions, which can be found in
[Jacquet, H. and J. Shalika, Exterior square L-functions, in Automorphic Forms, Shimura Varieties
and L-functions II, 1990] and [Bump, D. and S. Friedberg, The “exterior square” automorphic L-
functions on GL(n), 47-65 in part 2 of Gelbart, Howe and Sarnak (1990)]. The construction of
symmetric square L-functions can be found in [Bump, D. and D. Ginzburg, Symmetric square L-
functions on GL(r), Annals of Math. 136 (1992)].

Prop.(19.2.5.3).For π1 ∈ Irrauto(GL(2)/F, ω1), π2 ∈ Irrauto(GL(2)/F, ω2), by tensor product theo-
rem(16.3.1.4), we can fix a finite set Σ∞

F ⊂ S ⊂ ΣF that any v /∈ S is unramified for both π1, π2
in the sense of(19.2.6.1). Let αi(v), βi(v) be the Stake parameters of π1,v, π2,v, then π1 ∼= π̂2 iff the
Rankin-Selberg L-function(19.2.5.2)

LS(s, π1 × π2) =
∏
v/∈S

∏
1≤i,j≤2

1
1− αi(v)βi(v)

has a pole at s = 1.

Proof: Cf.[Bump, Chap3.8]. □

Eisenstein Series

References are [Bump, Chap3].

Def.(19.2.5.4)[Non-Holomorphic Eisenstein Series].The non-holomorphic Eisenstein series
of weight s is defined to be

E∗(z, s) = 1
2
LR(2s)

∑
(m,n)̸=0∈Z2

(Im(z))s

|mz + n|2s
= LR(2s)

∑
γ∈Γ∞\Γ(1)

(Im(γ(z)))s

It is absolutely convergent for Re(s) > 1, and is automorphic for Γ(1)(16.1.1.11).

Prop.(19.2.5.5)[Fourier Expansion of E(z, s)].The Fourier coefficients of E(z, s) is of the form

E∗(z, s) =
∞∑

n=−∞
an(y, s)e2πirx,

where
a0(y, s) = Λ(2s)ys + Λ(2− 2s)y1−s

and for n ̸= 0,
an(y, s) = 2|n|−s+1/2σ2s−1(|n|)√yKs−1/2(2π|n|y),

where Ks−1/2(z) is the K-Bessel function(10.7.3.1). In particular,

E∗(z, s) = Λ(2s)ys + Λ(2− 2s)y1−s + 4√y
∑
n∈Z+

n
1
2 −sσ2s−1(n)Ks− 1

2
(2πny) cos(2πnx)

Proof:

ar(y, s) =
∫ 1

0
E∗(x+ iy, s)e−2πirxdx =

∫ 1

0

1
2
π−sΓ(s)

∑
(m,n) ̸=0∈Z2

ys

|mz + n|2s
e−2πirxdx.
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The term with m = 0 only contributes to a0, and equals π−sΓ(s)ζ(2s)ys. For the rest we may assume
m > 0 by symmetry, then they contributes to

π−sΓ(s)ys
∞∑
m=1

∞∑
n=−∞

∫ 1

0
[(mx+ n)2 +m2y2]−se−2πirxdx

= π−sΓ(s)ys
∞∑
m=1

∑
n mod m

∫ ∞

−∞
[(mx+ n)2 +m2y2]−se−2πirxdx

= π−sΓ(s)ys
∞∑
m=1

m−2s ∑
n mod m

e2πirn/m
∫ ∞

−∞
(x2 + y2)−se−2πirxdx

Notice ∑
n mod m

e2πirn/m =
{
m m|r
0 otherwise

, thus the calculation reduces to(10.7.3.5). □

Prop.(19.2.5.6)[Functional Equation].E∗(z, s) has meromorphic continuation to all s ∈ C, and it
is analytic except at s = 1 or s = 0, where the residue at s = 1 is 1/2 for any z, and it satisfies the
functional equation

E∗(z, s) = E∗(z, 1− s).

and E(x+ i y, s) = O(yσ) for y →∞, where σ = max(Re(s), 1− Re(s)).

Proof: This follows from the Fourier expansion of E∗(z, s)(19.2.5.5). Each term ar(y, s) has analytic
extension to all s, except that a0 has simple poles at s = 0 and s = 1 by(19.3.3.5)(the pole at s = 1/2
was neutralized). And the functional equation and the convergence is clear from the properties of
K-Bessel functions(10.7.3.2). For the residue, it suffices to show the residue of π−s/2Γ(s/2)ζ(s) at 0
is −1(19.3.3.5). □

Prop.(19.2.5.7)[Kronecker’s First Limit Formula].

2E∗(z, s) = 1
s− 1

+ γ0 − log(4πy|η(z)|4) +O(s− 1).

And a similar formula is true for s = 0, by the functional equation(19.2.5.6).

Proof: Cf.[Kronecker’s First Limit Formula, Revisited]. □

Prop.(19.2.5.8) [Eisenstein Series of Mixed Type].The Eisenstein series of mixed type is
defined to be

Ek,s(z) =
∑

(m,n)∈Z2\(0,0)

ys

(mz + n)k|mz + n|2s
, k ∈ Z, s ∈ C.

Then
Rk(yk/2Ek,s(z)) = (k + s)y(k+2)/2Ek+2,s(z).

and yk/2Ek,s(z) is a Maass form in (z) of weight k. Its better to consult the paper https://arxiv.
org/abs/1803.08210 for the Fourier expansion of Ek,s.

Proof:

((z − z) ∂
∂z

+ k/2)[
( z−z

2i )s+k/2

(mz + n)s+k(mz + n)s
]

https://arxiv.org/abs/1803.08210
https://arxiv.org/abs/1803.08210


1748 CHAPTER 19. L-FUNCTIONS

= (z − z)(
s+k/2

2i ( z−z
2i )s−1+k/2(mz + n)s+k − ( z−z

2i )s+k/2m(s+ k)(mz + n)s+k−1

(mz + n)s(mz + n)2s+2k ) + k

2
( z−z

2i )s+k/2

(mz + n)s+k(mz + n)s

=
( z−z

2i )s+k/2

(mz + n)s+k+1(mz + n)s
[(s+ k/2)(mz + n)− (z − z)m(s+ k) + k

2
(mz + n)]

= (k + s)
( z−z

2i )s−1+(k+2)/2

(mz + n)s+k+1(mz + n)s−1

= (k + s)y(k+2)/2Ek+2,s−1(z)

□

Prop.(19.2.5.9) [Rankin-Selberg].Let φ ∈ C∞(Γ(1)\H) be decreasing rapidly along y → ∞ and
φ(z) =

∑
n∈Z φn(y)e2πinx be its Fourier expansion. Call φ0 the constant term of φ. Consider the

Mellin transform

M(s, φ0) =
∫ ∞

0
φ0(y)ysdy

y
(10.12.2.16), Λ(s, φ0) = Λ(2s)M(s− 1, φ0).

As φ(s, φ0) is bounded as a function on y and decay rapidly, M(s, φ) is absolutely convergent for
Re(s) > 0.

Then
Λ(s, φ0) =

∫
Γ(1)\H

E∗(z, s)φ(z)dxdy
y2

and thus has a meromorphic continuation to all s and satisfies a functional equation, with at most
simple poles at s = 0 or 1,

Ress=1Λ(s, φ0) = 1
2

∫
Γ(1)\H

φ(z)dxdy
y2 .

Proof: Using(19.2.5.4),∫
Γ(1)\H

φ(z)dxdy
y2 = Λ(2s)

∑
γ∈Γ∞\Γ(1)

∫
Γ(1)\H

(Im(γ(z)))sφ(γ(z))dxdy
y2

= Λ(2s)
∫

Γ∞\H
Im(z)sφ(z)dxdy

y2

= Λ(2s)
∫ ∞

0
ys−1

∫ 1

0
φ(x+ i y)dxdy

y

= Λ(2s)
∫ ∞

0
φ0(y)ys−1dy

y

= Λ(s, φ0)

The assertion about the meromorphic continuation and the residue follows from the equation
above and(19.2.5.6). □

Rankin-Selberg for Modular Forms

Prop.(19.2.5.10) [Convolution of Cusp Forms]. If f(z) =
∑
A(n)qn ∈ Sk(Γ(1)), g(z) =∑

B(n)qn ∈Mk(Γ(1)), define

L(f × g; s) = ζ(2s− 2k + 2)
∑

A(n)B(n)n−s, Λ(f × g; s) = (2π)−2sΓ(s)Γ(s− k + 1)L(f × g; s),
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then L(s, f × g) is absolutely convergent for s large, Λ(s, f × g) has a meromorphic continuation to
all s, analytic except for at most simple poles at s = k or s = k − 1, and it satisfies a functional
equation

Λ(s, f × g) = Λ(2k − 1− s, f × g).
and the residue of Λ at s = k is 1

2π
1−k(f, g)(16.2.1.12).

Moreover, if f, g are Hecke eigenforms, let

1−A(p)X + pk−1X2 = (1− α1(p)X)(1− α2(p)X),

1−B(p)X + pk−1X2 = (1− β1(p)X)(1− β2(p)X),
then L(s, f × g) has an Euler product formula

L(s, f × g) =
∏
p

2∏
i=1

2∏
j=1

1
1− αi(p)βj(p)p−s .

Proof: We may assume f, g are Hecke eigenforms(16.2.3.12), so A(n), B(n) are real. Let φ(z) =
f(z)g(z)yk, then φ satisfies the condition of the Rankin-Selberg method(19.2.5.9), thus we calculate

φ0(y) =
∫ 1

0
f(x+ iy)g(x+ iy)ykdx =

∞∑
n=0

∫ ∞

m=0

∫ 1

0
A(n)B(n)e2πi(n−m)xe−2π(n+m)yykdx

=
∞∑
n=0

A(n)B(n)e−4πnyyk

and

M(s, φ0) =
∞∑
n=0

A(n)B(n)
∫ ∞

0
e−4πnyys+k

dy

y
= (4π)−s−kΓ(s+ k)

∞∑
n=0

A(n)B(n)n−s−k

and
Λ(s, φ0) = 4−s−k+1π−2s−k+1Γ(s)Γ(s+ k − 1)ζ(2s)

∞∑
n=1

A(n)B(n)n−s−k+1.

Thus
Λ(s− k + 1, φ0) = πk−1Λ(s, f × g),

and the assertion follows from(19.2.5.9). The residue is also clear.
The Euler product formula follows from(8.5.2.3) applied to z = p−s for all p ∈ P. □

Remark(19.2.5.11)[Averaged Ramanujan Conjecture].By the Ramanujan conjecture(19.2.6.16),
for any cuspidal form f =

∑
a(n)qn, L(s, f) =

∑
ann

−s is convergent for Re(s) > k+1
2 . But we can

prove this directly: as ∑ a2
nn

−s is convergent for Re(s) > k, and |a(n)| ≤ max(n
k−1

2 , n− k−1
2 |a(n)|2).

Waldspurger’s Theorem

Cf.[Explicit application of Waldspurger’s theorem].
Thm.(19.2.5.12) [Waldspurger].Let χ be a character, k ∈ 2Z and φ ∈ Sk−1(N,χ2), then there
exists a function Aφ on Nsc s.t. for t ∈ Nsc,

Aφ(t)2 = L(φ⊗ χ−1
0 χt,

k − 1
2

)ε(χ−1
0 χt,

1
2

).

Proof: Cf.[Explicit application of Waldspurger’s theorem]. □
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6 Eulerian Integrals on GL(2)×GL(1)

Main references are [Cog00] and[Bum98].

Def.(19.2.6.1) [Unramified Places].Let (π, V ) be an irreducible cuspidal representation, given a
pure cuspidal form φ ∈ V and a Hecke character ξ of F , we call a place v of F unramified iff
v ∈ Σfin

F , the conductor of ψv is Ov and the conductor of ξv is O∗
v , πv is a spherical principal series.

This condition is true for a.e. v by(16.3.3.2) and(16.3.3.3).

Def.(19.2.6.2)[Zeta Functions for GL(2) × GL(1)].Given (π, V ) ∈ Irrauto(GL(2)/F, ω), ξ a Hecke
character, for any Φ ∈ V , consider the zeta integral

ζ(Φ, ξ; s) =
∫
CF

Φ(
[
y

1

]
)|y|s−1/2ξ(y)d×y

It is absolutely convergent by(16.3.3.5) and(12.4.5.21).
If Φ = ⊗Φv is a pure tensor, the zeta integral equals∫
IF

WΦ(
[
y

1

]
)|y|s−1/2ξ(y)d×y =

∏
v

∫
F×
v

Wv,Φv(
[
yv

1

]
)|yv|s−1/2ξv(yv)d×yv =

∏
v

ζv(Φv, ξv; s)

where each local zeta functions ζv(s,Φv, ξv) converges absolutely to a holomorphic function for
Re(s) > 1/2, and the integral is absolutely convergent when Re(s) > 3/2, using(10.11.1.38).

Proof: We analyze the integrand for the local zeta integrals:
For non-Archimedean case, the integrand is compactly supported on(15.11.3.19), and because πv

is unitary, use(15.11.4.23) and(15.11.6.10) to analyze the Kirillov model of πv, we see the integral
converges absolutely for Re(s) > 1/2.

For Archimedean case, the Wφ decays rapidly for |y| → ∞, and for |y| → 0, by(16.1.3.2), it is
bounded by |y|−1/2, thus it also converges absolutely for Re(s) > 1/2.

By(19.2.6.3), the local factor is the same as the local L-factor a.e. v, and |αi| < ||v||1/2

by(15.11.6.10), thus it converges for Re(s) > 3/2 by comparison with the Dedekind Zeta func-
tion(19.2.2.1). □

Prop.(19.2.6.3) [Unramified Factors]. If v is unramified in the sense of(19.2.6.1) and Φv is the
spherical function in πv normalized s.t. Wv,Φv(1) = 1, then for Re(s) > 1/2(thus all, as they are
both meromorphic),

ζv(Φv, ξv; s) = L(πv, ξv; s)(19.2.6.10).

Proof: With the unramified hypothesis, there is an explicit formula for Wv in terms of the Satake
parameters α1, α2(15.11.5.15): if ordv(y) = m, then

Wv(
[
y

1

]
) =

||v||−m/2 α
m+1
1 −αm+1

2
α1−α2

m ≥ 0
0 otherwise

.

ζv(Wv, ξv; s) =
∞∑
m=0
||v||−m/2α

m+1
1 − αm+1

2
α1 − α2

||v||m/2−msξ(ϖv)m

= 1
(1− α1ξ(ϖv)||v||−s)(1− α2ξ(ϖv)||v||−s)

= L(πv, χv; s)

□
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Prop.(19.2.6.4)[Global Functional Equation]. In spite of the convergence problem of the product
of local zeta integrals, the global zeta integral is absolutely convergent for any s asWΦ decay rapidly?.
Moreover, because Φ is automorphic, we have

ζ(Φ, ξ; s) =
∫
C(F )

Φ(w1

[
y

1

]
)|y|s−1/2ξ(y)d×y

=
∫
C(F )

Φ(
[
1

y

]
w1)|y|s−1/2ξ(y)d×y

=
∫
C(F )

(π(w1)Φ)(
[
y

1

]
)|y|−s+1/2(ξω)−1(y)d×y

= ζ(π(w1)Φ, ξ−1ω−1; 1− s)

Local Functional Equation

Prop.(19.2.6.5) [Local Zeta Function].Let K be a p-adic local field and (π, V ) ∈
Irradm,generic(GL(2,K)), if we identify V with its Kirillov model, then for any φ ∈ V , quasi-character
ξ of K×, the local Zeta integral ζ(Φ, ξ; s)(19.2.6.2) is absolutely convergent for Re(s) sufficiently
large, and defines a holomorphic function there. And it has a meromorphic continuation to all s. In
fact,

ζ(Φ, ξ; s) = pφ,ξ(q−s)L(π, ξ; s), pΦ,ξ ∈ C[X,X−1].

Moreover, Φ can be chosen s.t. pΦ,ξ = 1.

Proof: This is by direct calculation: If V is cuspidal, then V = C∞
c (K×) by(15.11.3.20).

If V is not cuspidal, then by(15.11.4.20) it is π(χ1, χ2) or σ(χ1, χ2), whose elements are
known(15.11.4.22)(15.11.4.23). For Re(s) sufficiently large, the |t| > q−k part can contribute to
any p(q−s) for p ∈ C[qs, q−s] with degree≤ k − 1, and the |t| ≤ q−k part is of the form∫

pk\{0}
(χiξ)(y)|y|sd×y =

∑
n≥k

((χξ)(ϖ)q−s)n
∫

O∗
(χiξ)(y)d×y = C

αki q
−ks

1− αiq−s ,

where C ̸= 0 iff χiξ is unramified, or of the form∫
pk\{0}

v(y)(χiξ)(y)|y|sd×y =
∑
n≥k

n((χξ)(ϖ)q−s)n
∫

O∗
(χiξ)(y)d×y = C

αki q
−ks

(1− αiq−s)2 ,

where C ̸= 0 iff χiξ is unramified.
Clearly pφ,ξ can be chosen to be 1 if we choose the compactly supported part of φ suitably. □

Prop.(19.2.6.6) [Local Functional Equations].The local zeta integral ζv(Φv, ξv; s), defined
in(19.2.6.2) has a meromorphic continuation to all s, and there exists a meromorphic function
γv(x, πv, ξv, ψv) s.t.

ζv(πv(w1)Φv, ξ
−1
v ω−1

v ; 1− s) = γv(πv, ξv, ψv; s)ζv(Φv, ξv; s).

Proof: This follows by similar method as the proof of(19.2.2.8) and by evaluating γv(πv, ξv, ψv; s)
explicitly, using methods of Weil representation parallel to the proof of(19.2.6.8), Cf.[Jacquet-
Langlands(1970), P37].?
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There are easier way to prove this when v ∈ Σfin
F : We show that both sides are linear functionals

on Φ ∈ V that satisfies
L(π(

[
y

1

]
)φ) = ξ−1(y)|y|−s+1/2L(φ).

This is true for RHS by a change of variable and analytic continuation(19.2.6.5), and then also true
for LHS.

Thus for general s, (15.11.3.22) shows two sides differ by a scalar γ(s, π, ξ, ψ). By(19.2.6.5), for
general s, both sides can be non-zero, thus γ(s, π, ξ, ψ) is non-zero, and thus a meromorphic function
of s. □

Prop.(19.2.6.7) [Gamma Factor Determines Representations].For (π1, V1), (π2, V2) ∈
Irradm,generic(GL(2,K)), if γ(s, π1, ξ, ψ) = γ(s, π2, ξ, ψ) for any quasi-character ξ ofK×, then π1 ∼= π2.

Proof: Identify Vi with their Kirillov models, and let V0 = V1 ∩ V2. Then it suffices to show that
π1(w1), π2(w1) acts the same on V0: This is because V0 contains C∞

c (K∗), and B(K) action on V1, V2
are the same by(15.11.3.15), and GL(2, F ) is generated by B(F ) and w1. Then V0 = V1 = V2 as they
are irreducible representations.

For φ ∈ V , let φi = πi(w1)φ, then it suffices to show φ1(1) = φ2(1): For other a,

φi(a) = (πi(
[
a

1

] [
1

−1

]
)φ)(1) = (πi(

[
1

−1

] [
1

a

]
)φ)(1)

and π1(
[
1

a

]
)φ = π2(

[
1

a

]
)φ.

For n ∈ Z, let
Fξ(n) =

∫
q−n\q−n+1

(φ1(y)− φ2(y))ξ(y)d×y,

then Fξ(0) only depends on the restriction of ξ to O∗, and Fξ(0) = 0 for all but f.m. characters ξ of
O∗: φ1 − φ2 is a locally constant function that is fixed by U ⊂ O∗, so in order Fξ(0) ̸= 0, at least ξ
should be trivial on U , and there are f.m. such characters. Thus the hypothesis of Fourier transform
on O∗ is satisfied(10.11.3.24) and

φ1(1)− φ2(1) =
∑

ξ∈(O∗)∧

Fξ(0).

The hypothesis and the functional equation(19.2.6.6) shows Z(s, φ1, ξ) = Z(s, φ2, ξ) for any quasi-
character ξ of F ∗, so ∑

n

Fξ(n)q−sn = Z(s, φ1, ξ)− Z(s, φ2, ξ) = 0

and Fξ(n) = 0 for n sufficiently small, thus Fξ(n) = 0 for all n. In particular, Fξ(0) = 0, for any ξ.
□

Prop.(19.2.6.8)[Gamma Factor Commutes with Parabolic Induction]. If (π, V ) = B(χ1, χ2)
is irreducible, then

γ(s,B(χ1, χ2), ξ, ψ) = γ(s, ξχ1, ψ)γ(s, ξχ2, ψ).

Remark(19.2.6.9).For the compatibility of the gamma factor with parabolic inductions in the
GL(n) case, Cf.[Jacquet, H., I. Piatetski-Shapiro and J. Shalika, Rankin-Selberg Convolutions, Am.
J. Math., 105 (1981b), 367-464.] or [Jacquet, H. and J. Shalika, Rankin-Selberg Convolutions:
Archimedean Theory].



19.2. L-FUNCTIONS ATTACHED TO AUTOMORPHIC REPRESENTATIONS 1753

Proof: Cf.[Bump, P548].? This uses the concrete realization of the Whittaker model of B(χ1, χ2)
as a quotient of the Weil representation in the split case. □

Jacquet-Langlands L-Functions(GL(2)×GL(1) Case)

Def.(19.2.6.10)[Local L-Factors for GL(2)].Given π ∈ Irrauto(GL(2)/F, ω), for v ∈ Σfin
F , the local

L-factor is defined to be

L(πv; s) =


1 , v ∈ Scusp(π)

1
(1−α1q−s)(1−α2q−s)(15.11.5.2) , πv = π(χ1, χ2)

1
1−α2q−s , πv = σ(χ1, χ2), χ1χ

−1
2 = | · |−1

It follows from(15.11.4.20) and(15.11.4.2) that any irreducible representation of GL(2, Fv) is one of
the form above. Also when ξ is a quasi-character of F×, define

L(πv, ξv; s) = L(πv(ξv); s).

Prop.(19.2.6.11) [L-Factors as the Common Divisors]. Situation as in(19.2.6.6), ζv(Φv ,ξv ;s)
Lv(πv ,ξv ;s) is

entire for any Φv, ξv, and if v ∈ Σfin
F , then it is a rational function of ||v||−s.

Moreover, for each (πv, Vv), we can take specific Φv ∈ Vv? s.t. ζv(Φv ,ξv ;s)
Lv(πv ,ξv ;s) is of the form abs for

a ∈ C×, b ∈ R+.

Proof: Cf.[Jacquet-Langlads, GL(2)]. □

Prop.(19.2.6.12)[Local ε-Factors]. Situation as in(19.2.6.6), there exists a non-vanishing holomor-
phic function εv(πv, ξv, ψv; s) s.t.

ζ(π(w1)Φv, ξ
−1
v ; 1− s)

Lv(π̂v, ξ−1
v ; s)

= εv(πv, ξv, ψv; s)
ζ(Φv, ξv; s)
Lv(πv, ξv; s)

,

and Z(s,Φ,ξ)
Lv(s,πv ,ξv) is holomorphic. Moreover, εv(s, πv, ξv, ψv) is of the form abs for a ∈ C∗, b ∈ R. And

εv(s, πv, ξv, ψv) = 1 if v is unramified in the sense of(19.2.6.1).

Proof: Such a meromorphic εv(πv, ξv, ψv; s) exists by(19.2.6.6). It is holomorphic and non-
vanishing by the same reason as in(19.2.3.3) as both ζ(Φv ,ξv ;s)

Lv(πv ,ξv ;s) and ζ(π(w1)Φv ,ξ−1
v ;1−s)

Lv(π̂v ,ξ−1
v ;s) are holomorphic

by(19.2.6.11) and for any s0 ∈ C, Φv can be chosen to make either one of them non-vanishing at s0.
To show it is of the form abs: If v ∈ Σfin

F , it is a rational function in ||v||−s with no zeros or poles,
so it must be of the form abs. And if v is unramified, then we can let Φv be the spherical function
in πv normalized s.t. Wv,φv(1) = 1, then π(w1)Φv is the normalized spherical function of π̂v. Then
by(12.4.6.5), both sides are 1 by(19.2.6.3).

If v ∈ Σ∞
F , then we can take Φv as in(19.2.6.11) to do the calculation to show it directly,

Cf.[Jacquet-Langlads, GL(2)].?. □

Prop.(19.2.6.13)[Global L-Functions for GL(2)×GL(1)].Define

L(π, ξ; s) =
∏

v∈Σfin

Lv(πv, ξv; s), Λ(π, ξ; s) =
∏
v

Lv(πv, ξv; s) ε(π, ξ; s) =
∏
v

εv(πv, ξv, ψv; s)

Then ε(π, ξ; s) is independent of ψ, and L(s, π, ξ) satisfies a functional equation

Λ(π, ξ; s) = ε(π, ξ; s)Λ(π̂, ξ−1; s)
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Proof: This follows from(19.2.6.12) and(19.2.6.4). □

Prop.(19.2.6.14)[Non-Vanishing on Re(s) = 1].For π ∈ Irrcusp(GL(n)/F ), L(π; s) ̸= 0 on the line
Re(s) = 1.

Proof: Cf.[A Non-Vanishing Theorem for Zeta Functions of GL(n), Jacquet-Shalika(1976)]. □

Modular Forms

Prop.(19.2.6.15)[Trivial Bound]. If f ∈ Sk(Γ(N)), suppose f(z) =
∑
n≥0 ane

2πinz/N , then |an| =
O(nk/2).

Proof: an =
∫N

0 f(x + iy)e−2πin(x+iy)/Ndx for any y, so let y = N/n, then an =
∫N

0 f(x +
iN/n)e−2πinx/Ndx. As f is a cusp modular form, (Im(z))k/2|f(z)| is cuspidal automorphic function,
thus bounded on H, thus |an| ≤ C(N/n)

k
2 . □

Thm.(19.2.6.16) [Ramanujan-Petersson Conjecture].Let f be a cuspidal Hecke eigenform of
weight k for Γ(1), then for any prime p, |ap(f)| ≤ 2p(k−1)/2.

Proof: By(16.2.3.12) this means the eigenvalue λp of f w.r.t. Tp satisfies |λp| ≤ 2p1/2. This is a
consequence of Weil conjecture and modularity?. □

Def.(19.2.6.17)[L-functions associated to Modular Forms].Each f ∈Mk(Γ1(N)) has an associ-
ated L-functions: if f =

∑∞
n=0 anq

n, define

L(s, f) =
∞∑
n=1

ann
−s.

Prop.(19.2.6.18)[Functional Equations of Modular Forms, Hecke].Let a0, a1, . . . be a sequence
of complex numbers s.t. an = O(nM ) for some integer M . Given λ > 0, k > 0, C = ±1, write

φ(s) =
∞∑
n=1

ann
−s, Φ(s) = (2π

λ
)−sΓ(s)φ(s), f(z) =

∞∑
n=0

ane
2πinz/λ.

Then the following conditions are equivalent:
• The function Λ(s) = Φ(s) + a0

s + Ca0
k−s can be analytically continued to a holomorphic function

of the whole plane which is bounded on vertical strips, and it satisfies the functional equation

Φ(s) = CΦ(k − s).

• In the upper half plane, f satisfies the functional equation

f(−1/z) = C(z/i)kf(z).

Proof: Notice first ∫ ∞

0
e−2πnt/λts

dt

t
= ( 2π

nλ
)−s

∫ ∞

0
e−tts

dt

t
= ( 2π

nλ
)−sΓ(s).

Thus for Re(s) large,

Φ(s) =
∫ ∞

0
(f(it)− a0)tsdt

t
=
∫ ∞

1
(f(it)− a0)tsdt

t
+
∫ ∞

1
(f( i

t
)− a0)t−sdt

t
.
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If 2 holds, then f( it) = Ctkf(it), and

Φ(s) =
∫ ∞

1
(f(it)− a0)tsdt

t
+
∫ ∞

1
(Ctkf(it)− a0)t−sdt

t

=
∫ ∞

1
(f(it)− a0)tsdt

t
+ C

∫ ∞

1
(f(it)− a0)tk−sdt

t
+
∫ ∞

1
(Ctk−sa0 − t−sa0)dt

t
.

The first two integral is absolutely convergent for any s and then can be extended to an analytic
function of the whole plane, and the final term equals

−(a0
s

+ Ca0
k − s

)

when Re(s) is large, so it can be extended to a meromorphic function on the whole plane. And
Φ(s) = Φ(k− s) follows easily from the equation above. Also it is bounded on vertical strips because
it attain maximum at the real axis.

Conversely, first notice it suffices to prove for real y > 0,

f( i
y

) = Cykf(i y)

because this implies these two holomorphic functions on H coincide on the imaginary axis, so they
must be equal. Notice ∫ ∞

0
(f(iy)− a0)ysdy

y
= Φ(s)

converges absolutely for Re(s) sufficiently large, so for σ > 0 sufficiently large, Mellin inversion
formula(10.12.2.16) shows

f(iy)− a0 = 1
2πi

∫ σ+i∞

σ−i∞
Φ(s)y−sds = C

2πi

∫ σ+i∞

σ−i∞
Φ(k − s)y−sds

= C

2πi

∫ σ+i∞

σ−i∞
(Λ(k − s)− Ca0

s
− a0
k − s

)y−sds

Notice Φ(σ + it) decays exponentially for fixed σ = α sufficiently large, because of the Stirling
formula(10.7.1.12), and for σ = β sufficiently small, Φ(s) = CΦ(k − s) also shows Φ(σ + it) decays
exponentially. And also Ca0

σ+it + a0
k−σ−it = O(t−1) for σ = α or β, so Λ(σ + it) = O(t−1) for σ large

or small, and also the hypothesis shows Λ is bounded on the strip α < Re(z) < β, thus by(10.5.5.7),
Λ(σ + it) → 0 for t → 0 and σ in any compact set. So we can move the integration of Λ(s) to the
left or to the right. Then

f(iy)− a0 = C

2πi

∫ σ+i∞

σ−i∞
(Λ(k − s)− Ca0

s
− a0
k − s

)y−sds

= C

2πi

∫ σ+i∞

σ−i∞
y−kΛ(s)ysds− 1

2πi

∫ σ+i∞

σ−i∞
(a0
s

+ Ca0
k − s

)y−sds

= Cy−k

2πi

∫ σ+i∞

σ−i∞
Φ(s)ysds+ Cy−k

2πi

∫ σ+i∞

σ−i∞
(a0
s

+ Ca0
k − s

)ysds+ 1
2πi

∫ k−σ−i∞

k−σ+i∞
( a0
k − s

+ Ca0
s

)ys−kds

= Cy−k(f( i
y

)− a0) + y−k

2πi

∫
γ
(Ca0
s

+ a0
k − s

)ysds

= Cy−kf( i
y

)− Ca0y
−k + y−k(Ca0 − a0y

k) = Cy−kf( i
y

)− a0

So we are done. □
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Def.(19.2.6.19)[L-Functions of Modular Forms].Let a1, a2, . . . be a sequence of complex numbers
such that an = O(nM ) for some M > 0. Let

L(s) =
∑

ann
−s, Λ(s) = (2π)−sΓ(s)L(s), f(z) =

∑
ane

−2πinz.

More generally, letm > 0 and χ a primitive character modm, then we define twisted L-function
as

L(f, χ; s) =
∑

anχ(n)n−s, Λ(f, χ; s) = LC(s)L(f, χ; s)

Notice if f(x) =∈ Sk(Γ(1)), and πf ∈ Irrauto(GL(2)/Q) corresponding to f via(16.3.2.12), then

L(f, χ; s) = L(πf , χ; s).

Prop.(19.2.6.20) [Converse Theorem(Correspondence for Γ(1))]. If f ̸= 0 ∈ Sk(Γ(1))(so k is
even), then Λ(s, f) = (2π)−sΓ(s)L(s, f) has analytic continuation to all s, is bounded on vertical
strips, and satisfies a functional equation

Λ(s, f) = (−1)k/2Λ(k − s, f).

Conversely, let a0, a1, . . . be a sequence of complex numbers that an = O(nM ) for some M > 0.
Let f(s), L(s),Λ(s) be defined in(19.2.6.19) and Λ(s) has analytic continuation to all s and satisfies
the above functional equation then f(z) ∈ Sk(Γ(1)).

Moreover, in this case, f is a normalized Hecke eigenform(16.2.3.12) iff L(s, f) has as Euler
product formula

L(s) =
∏
p

(1− app−s + pk−1−2s)−1

for s sufficiently large, where 1− asX + pk−1X2 = (1− aX)(1− aX), where |a| = p
k−1

2 .

Proof: The first part is a direct consequence of(19.2.6.18). Notice an is bounded by polynomials
in n by(19.2.6.15).

When s is large, the Euler product is absolutely convergent, thus it suffices to compare the
coefficients. By(16.2.3.12) and(16.2.3.10), f being a normalized Hecke eigenform is equivalent to{

cmcn = cmn, (m,n) = 1
cpcpn = cpn+1 + p2k−1cpk−1

which is equivalent to

(1− apX + pk−1X2)(
∞∑
r=0

aprX
r) = 1.

□

Prop.(19.2.6.21) [Functional Equation associated to Sk(N,ψ)].Notation as in(19.2.6.19). If

f(z) ∈ Sk(N,ψ)(16.2.1.10). Denote wN =
[

0 −1
N 0

]
, then wN stablizes Γ0(N) because

wN

[
a b
c d

]
w−1
N =

[
d −c/N
bN a

]
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Also notice ψ(aγ) = ψ(dγ), so

f [wN ]k[γ]k = f [wNγw−1
N ]k[wN ]k = ψ(d)f [wN ].

So g = f [wN ]k ∈ Sk(N,ψ).
Now if

f(z) =
∑

ane
2πinz/N , g(z) =

∑
bne

2πinz/N ,

and χ is a primitive character mod D, define L(s, f, χ), L(s, g, χ),Λ(s, f, χ),Λ(s, g, χ) as in(19.2.6.19),
then Λ(s, f, χ) extends to an analytic function for all s ∈ C, and there are functional equations

Λ(s, f, χ) = ikχ(N)ψ(D)τ(χ)2

D
(D2N)−s+k/2Λ(k − s, g, χ), (19.1)

where τ(χ) is the Gauss sum of χ(19.3.2.2).
In particular, if D = 1, then

Λ(s, f) = ikN−s+k/2Λ(k − s, g). (19.2)

Proof: Let
fχ(z) =

∑
χ(n)anqn, gχ(z) =

∑
χ(n)bnqn.

Use(19.3.2.6) on fχ(z), we get

fχ = χ(−1)τ(χ)
D

∑
m∈(Z/DZ)∗

χ(m)f [
[
D m

D

]
]k

Now

fχ[
[

−1
D2N

]
]k = fχ[

[
−1/DN

D

]
]k =χ(−1)τ(χ)

D

∑
m∈(Z/DZ)∗

χ(m)g[w−1
N ]k[

[
D m

D

]
]k[
[

−1/DN
D

]
]k

= χ(−1)τ(χ)
D

∑
m∈(Z/DZ)∗

χ(m)g[
[

D −r
−Nm s

] [
D r

D

]
]k

where (r, s) are integers chosen that Ds − rNm = 1. Thus χ(m) = χ(−N)χ(r), and because
g ∈Mk(N,ψ),

fχ[
[

−1
D2N

]
]k = χ(N)τ(χ)

D

∑
r∈(Z/DZ)∗

χ(r)ψ(D)g[
[
D r

D

]
]k.

Compare this with the formula

gχ = χ(−1)τ(χ)
D

∑
m∈(Z/DZ)∗

χ(m)g[
[
D m

D

]
]k,

we get

fχ[
[

−1
D2N

]
]k = χ(−N)ψ(D)τ(χ)

τ(χ)
gχ = χ(N)ψ(D)τ(χ)2

D
gχ(19.3.2.3)(19.3.2.5). (19.3)
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Now similar to the proof of(19.2.6.18),

Λ(s, f, χ) =
∫ ∞

0
fχ(iy)ysdy

y
.

So when Re(s) is large,

χ(N)ψ(D)τ(χ)2

D
Λ(s, g, χ) = χ(N)ψ(D)τ(χ)2

D

∫ ∞

0
gχ(iy)ysdy

y

=
∫ D

√
N

0
(D2N)−k/2(iy)−kfχ( 1

−D2Niy
)ysdy

y
+ χ(N)ψ(D)τ(χ)2

D

∫ ∞

D
√
N
gχ(iy)ysdy

y

=
∫ ∞

D
√
N

(D2N)k/2tki−kfχ(it)(D2Nt)−sdt

t
+ χ(N)ψ(D)τ(χ)2

D

∫ ∞

D
√
N
gχ(iy)ysdy

y

= i−k(D2N)k/2−s
∫ ∞

D
√
N
fχ(it)tk−sdt

t
+ χ(N)ψ(D)τ(χ)2

D

∫ ∞

D
√
N
gχ(iy)ysdy

y

Both integral are absolutely convergent for any s. And similarly when Re(s) is small,

i−k(D2N)k/2−sΛ(k − s, f, χ) = i−k(D2N)k/2−s
∫ ∞

0
fχ(it)tk−sdt

t

= i−k(D2N)k/2−s
∫ ∞

D
√
N
fχ(it)tk−sdt

t
+ χ(N)ψ(D)τ(χ)2

D

∫ ∞

D
√
N
gχ(iy)ysdy

y

Thus we get the desired result. □

Cor.(19.2.6.22).As f [w2
N ]k = (−1)kf , if f ∈ Sk(Γ1(N)) satisfies f [wN ]k = cf , c = εik, ε = ±1, then

N s/2Λ(s, f) = ε(−1)k(N (k−s)/2Λ(k − s, f)).

so ord1/2(L(s, f)) is even if ε = (−1)k and odd if ε = (−1)k+1.
In particular, if N = 1 and k ≡ 2 mod 4, L(1/2, f) = 0.
It is conjectured that L(1/2, f) ̸= 0 if 4|k, Cf.[Modular Forms, Ribet] P148.?

Prop.(19.2.6.23) [Converse Theorem, Weil].Let N > 0 and ψ a character mod N . Suppose
an, bn are two sequence of complex numbers that |an|, |bn| = O(nM ) for some positive integer M . If
(D,N) = 1 and χ is a primitive character mod D, let

L1(s, χ) =
∑

χ(n)ann−s, L2(s, χ) =
∑

χ(n)bnn−s.

and Λi(s, χi) = (2π)−sΓ(s)Li(s, χi).
Now if forD equals to a.e. p and any primitive character modD, Λi(s, χ) has analytic continuation

to all s, are bounded on vertical strips, and satisfy the functional equation

Λ1(s, χ) = ikχ(N)ψ(D)τ(χ)2

D
(D2N)−s+k/2Λ2(k − s, χ),

where τ(χ) is the Gauss sum of χ(19.3.2.2), then f(z) =
∑
ane

2πinz ∈Mk(N,ψ).
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Proof: Let
fχ(z) =

∑
χ(n)anqn, gχ(z) =

∑
χ(n)bnqn.

We first show equation19.3 holds. As in the proof of(19.2.6.18), it suffices to show the functional
equation it is true on the positive imaginary axis. If σ = Re(s) is sufficiently large, then∫ ∞

0
fχ(iy)ysdy

y
= Λ1(s, χ)

so by Mellin inversion formula

fχ(iy) = 1
2πi

∫ σ+i∞

σ−i∞
Λ1(s, χ)y−sds = ikχ(N)ψ(−D)τ(χ)2

D

1
2πi

∫ σ+i∞

σ−i∞
(D2N)−s+k/2Λ2(k − s, χ)ds

Same argument of Phragmén-Lindelöf principle as in proof of(19.2.6.18) shows Λ2(σ + it, χ) con-
verges to 0 for t → ∞, uniformly on any compact subset, so we can move the integral horizontally
and make a change of variable s 7→ k − s to get

fχ(iy) = ikχ(N)ψ(−D)τ(χ)2

D
(D2N)−k/2y−k 1

2πi

∫ σ+i∞

σ−i∞
Λ2(k − s, χ)(D2Ny)sds

= ikχ(N)ψ(−D)τ(χ)2

D
(D2N)−k/2y−kgχ( i

D2Ny
)

which is equivalent to19.3.
The rest is to manipulate 2×2 matrices and use(16.1.1.10) to show that g ∈Mk(N,ψ), Cf.[Bump,

P62]?. □

Remark(19.2.6.24).For Γ(1), the function only requires one functional equation, and we used the
fact Γ(1) is generated by S and T . But Γ0(N) is not generated by two elements, so we must assume
functional equations for the twists L(s, f, χ) also.

Maass Forms

See Wei’s notes.

7 Langlands-Shahidi Method
8 Triple Product

Cf.[Bump]
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19.3 Dirichlet L-Functions and Theory of Natural Primes

References are [Analytic Number Theory, Iwaniec-Kowaiski].

Notation(19.3.0.1).
• Let F ∈ NField.

1 Representing Primes
Conj.(19.3.1.1)[Hardy-Littlewood].There are infinitely many primes of the form n2 + 1, n ∈ Z+.

Proof: □

Prop.(19.3.1.2). If f(X) ∈ C[X] only takes values in P at non-negative integer points, then f is
constant.

Proof: □

Prop.(19.3.1.3).There is an integral polynomial of degree 25 in 26 variables that its only positive
values at integer points are primes.

Proof: Cf.[J. P. Jones, D. Sato, H. Wada and D. Wiens, ”Diophantine representation of the set of
prime numbers,” Amer. Math. Monthly, 83 (1976) 449-464.]. □

Prop.(19.3.1.4)[Landau].For n ∈ Z+, let f(n) be the cardinality of numbers in [n]+ that can be
written as the form x2 + y2, then f(n) = O( n√

logn).

Proof: ? □

2 Dirichlet Characters
Def.(19.3.2.1)[Dirichlet Character].For F ∈ NField and a modulus m for F , a Dirichlet char-
acter modulo m is a functor Clm(F ) = Jm/Pm → C×.

A primitive Dirichlet character modulo m is a Dirichlet character modulo m that is injective.
Usually we consider the case F = Q and m = m·∞. In which case, a Dirichlet character is just a

map (Z/(m))× → C×.

Def.(19.3.2.2)[Gauss Sum].Let χ be a primitive Dirichlet character mod N , then the Gauss sum
of χ is defined to be

τ(χ) =
∑

n∈Z/(N)
χ(n)e2π in/N .

Prop.(19.3.2.3). τ(χ) = χ(−1)τ(χ).

Prop.(19.3.2.4). ∑
n∈Z/(N)

χ(n)e2π inm/N = χ(m)τ(χ)(19.3.2.2).

Proof: If (m,N) = 1, then this follows from

τ(χ) =
∑

n(mod N)
χ(mn)e2π imn/N = χ(m)

∑
n(mod N)

χ(n)e2πimn/N .
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If (m,N) ̸= 1, then we need to show the LHS is 0. Let m = dM,N = dN1. Because χ is primitive
character mod N , there is some c ≡ 1 mod N1 that χ(c) ̸= 1, otherwise χ is defined mod N1. Notice∑

n(mod N)
χ(n)e2πinm/N =

∑
r(mod N1)

{ ∑
n(mod N),n≡r(mod N1)

χ(n)
}
e2πirM/N1

But r 7→ cr is a permutation of {n(mod N), n ≡ r(mod N1)}, thus∑
n(mod N),n≡r mod N1

χ(n) =
∑

n mod N,n≡r mod N1

χ(cn) = χ(c)
∑

n(mod N),n≡r mod N1

χ(n)

which means this sum vanishes. □

Prop.(19.3.2.5). |τ(χ)|2 = N .

Proof: For any m,

|
∑

n mod N

χ(n)e2πinm/N |2 =
∑

(n1n2,N)=1
χ(n1)χ(n2)e2πi(n1−n2)m/N ,

summing over m ∈ (Z/NZ)∗,

φ(N)|τ(χ)|2 =
∑

m mod N

∑
(n1n2,N)=1

χ(n1)χ(n2)e2πi(n1−n2)m/N =
∑

n1≡n2 mod N,(n1n2,N)=1
N = φ(N)N

□

Cor.(19.3.2.6).From this and(19.3.2.4) and also(19.3.2.3), we get that

χ(n) = χ(1)τ(χ)
N

∑
m(mod N)

χ(m)e2πimn/N .

Cor.(19.3.2.7). If χ is real(i.e. χ2 = 1), by(19.3.2.3), τ(χ)2 = χ(−1)N .

Cor.(19.3.2.8).For p ≥ 3 ∈ P,
τ(
(−
p

)
)2 =

(−1
p

)
p.

Prop.(19.3.2.9)[Finite Fourier Transform].Let ψ be a non-trivial character on a finite field Fq,
then let gψ =

∑
x∈Fq

ψ(x2), then
• |gψ|2 = q1/2.
• gψ(a) = ( a

Fq
)gψ(1).

Proof: Use Fourier transform on Fq?. □

Def.(19.3.2.10)[Theta Function].Let χ be a primitive character modulo N s.t. χ(−1) = 1, define
the Theta function

θχ(t) = 1
2

∞∑
n=−∞

χ(n)e−πn2t = 1
2
χ(0) +

∞∑
n=1

χ(n)e−πn2t.
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3 Dirichlet-Weber L-Functions
Cf.[Class Field Theory, Milne]

Def.(19.3.3.1)[Partial L-Functions]. If m is a modulus for F , R ⊂ Clm(F ) be an ideal class. Define
the partial L-function

ζ(F,R; s) =
∑
a∈R

1
||Na||s

.

Prop.(19.3.3.2). Situation as in(19.3.3.1), ζ(F,R; s) is analytic for Re(s) > 1− 1/N except a simple
pole at s = 1, where it has residue gm depending only on m.

Proof: Cf.[Class Field Theory, Milne]. □

Prop.(19.3.3.3) [Weber L-Functions]. If m is a modulus for F , χ : Clm(F ) → C× a Dirichlet
character for F , then the Weber L-function attached to χ is defined to be the Euler product

L(F, χ; s) =
∏
p∤m

1
1− χ(p)||p||−s

=
∑

(a,m)=1

χ(a)
||Na||s

=
∑

R∈Clm(F )
χ(R)ζ(F,R; s).

Thus by(19.3.3.2), L(K,χ; s) is analytic for Re(s) > 1 − 1/N , except for possibly a simple pole at
s = 1. And for χ ̸= 1, it is in fact analytic at s = 1, as the residues cancelled out.

Def.(19.3.3.4) [Dirichlet L-Functions].For F = Q, the characters of Clm(Q) are just Dirichlet
characters χ(12.4.5.32), thus the Weber L-function is

L(s, χ) =
∞∑
n=1

χ(n)
ns

,

where Re s > 1. Called the Dirichlet L-function attached to χ.

Prop.(19.3.3.5)[Functional Equation for Dirichlet L-Functions].Let χ be a Dirichlet character
with χ(−1) = (−1)ε where ε = 0 or 1, then

Λ(χ; s) = LR(s+ ε)L(χ; s),

is the Hecke L-function attached to the Hecke character corresponding to χ(12.4.5.32)(19.2.3.5). Thus
L(s, χ) can be extended to a meromorphic function for all s ∈ C, and it has simple poles at s = 0, 1
when χ = 1, and analytic otherwise. When χ = 1, by(19.3.4.2),

ress=1 L(1; s) = 1.

Moreover, there are functional equations

Λ(χ; s) = (− i)ετ(χ)N−sΛ(χ−1; 1− s)(19.3.2.2),

In other words,
ε(χ; s) = (− i)ετ(χ)N−s.

Proof: Cf.[Bum98]P10. □
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Prop.(19.3.3.6).Let χ be a Dirichlet character modulo N , then

L(χ; 1) = −τ(χ)
N

∑
n∈Z/(N)

χ−1(n) log(1−e−2π in/N ) =
{
τ(χ)
N2 π i

∑
n∈Z/(N) χ

−1(n)n , χ(−1) = −1
−τ(χ)
N

∑
n∈Z/(N) χ

−1(a) log |1− e−2π in/N | , χ(−1) = 1

Proof: Use Fourier transform?. □

Prop.(19.3.3.7). If F ∈ NField and χ ̸= 1 is a Hecke character on F , then L(χ; 1 + i t) ̸= 0 for any
t ∈ R.

Proof: Cf.[GTM186, P289].?
We prove for F = Q and χ = 1: If ζ has a zero at x+ i y for y ̸= 0, then by(19.3.3.5), ζ(s) has a

simple pole at s = 1 and holomorphic at s = x+ 2 i y. But by(19.3.3.8)

lim
x→0+

|ζ(x)3ζ(x+ i y)4ζ(x+ 2 i y)| ≥ 1,

contradiction. □

Lemma(19.3.3.8)[Mertens].For x, y ∈ R with x > 1, |ζ(x)3ζ(x+ i y)4ζ(x+ 2 i y)| ≥ 1.

Proof: Because for Re(s) > 1,

log |ζ(s)| = −
∑
p∈P

log |1− p−s| = −
∑
p∈P

Re log(1− p−s) =
∑
p∈P

∑
n∈Z+

Re(p−ns)
n

,

so
log |ζ(x+ i y) =

∑
p∈P

∑
n∈Z+

cos(ny log p)
npnx

.

So

log |ζ(x)3ζ(x+i y)4ζ(x+2 i y)| =
∑
p∈P

∑
n∈Z+

3 + 4 cos(ny log p) + cos(2ny log p)
npnx

=
∑
p∈P

∑
n∈Z+

2(cos(ny log p) + 1)2

npnx
≥ 0.

□

Prop.(19.3.3.9).For any ε > 0, there exists constant Cε > 0 s.t. |ζ(s)|−1 ≤ Cε|t|ε, where s =
σ + i t, σ ≥ 1, |t| ≥ 1.

Proof:
□

Estimates

Prop.(19.3.3.10)[Louboutin].Let χ be a Dirichlet character modulo N > 1, then

|L(χ; 1)| ≤
{1

2 logN + 0.009 .χ(−1) = 1
1
2 logN + 0.716 , χ(−1) = −1

.

Proof: Cf.[S. Louboutin, Majorations explicites de |L(1, χ)|]. □
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Remark(19.3.3.11). It is easy to show that |L(χ; 1) ≤ log(N) + C:

|L(χ; 1)| ≤ |
∑
n≤N

χ(n)
n
|+ |

∑
n>N

χ(n)
n
|

≤
∑
n≤N

1
n

+
∣∣∣ ∫ ∞

N
(
∑

N<n≤t
χ(n))dt

t2

∣∣∣
≤ 1 +

∫ N−1

1

dt
t

+ 1
N

max
X
|
∑

N<n≤t
χ(n)|

< logN + 1 + φ(N)
N

Thm.(19.3.3.12)[Zhang]. If χ is a real primitive Dirichlet character modulo D > 1, then there exists
an absolute effectively computable constant c1 > 0 s.t.

L(χ; 1) > C(logD)−2022

Proof: Cf.[Yitang Zhang, Discrete mean estimates and the Landau-Siegel zero]. □

Cor.(19.3.3.13). If χ is a real primitive Dirichlet character modulo D > 1, then there exists an
absolute effectively computable constant c1 > 0 s.t.

L(σ, χ) ̸= 0, σ > 1− c2(logD)−2024.

Proof: ? □

Cor.(19.3.3.14)[Siegel].Let χ be a real primitive Dirichlet character modulo N > 1, then for any
ε > 0, there exists C(ε) > 0 s.t.

L(1, χ) ≥ C(ε)
qε

.

Proof: There is a direct proof of this theorem in?? and [A simple proof of Siegel’s theorem via
Mellin’s transform]. □

4 Riemann L-Functions
Def.(19.3.4.1)[Riemann L-Functions]. ζ(F ; s) = L(F,1; s) is called the Riemann L-function for
F . Also denote

ζ(s) = ζ(Q; s), Λ(s) = Λ(Q,1; s) = LR(s)ζ(s)(10.7.1.13).

By(19.3.3.5), ζ(s) extends to a meromorphic function for all s ∈ C with a simple pole at s = 1.
And there is a functional equation

Λ(s) = Λ(1− s).

Thm.(19.3.4.2)[Class Number Formula, Dirichlet].By(19.2.3.6)(12.4.6.20),

ress=1 ζ(F ; s) = 2r1(2π)r2

w(F )
√
|dF |

cl(F ) Reg(F )

where w(F ) = #µ(F ), and Reg(F ) is the regulator of F (12.4.2.26). In particular,

ress=1 ζQ(s) = 1.
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Prop.(19.3.4.3) [Dirichlet’s Class Number Formula for Quadratic Fields].Let K = Q(
√
D)

be a quadratic field with discriminant D, and χD the (real)Dirichlet character associated to K, and
ε = 0(resp. 1) if K is real(resp. complex), then

• The root number of χD(19.2.3.7) is given by

W (χD) = τ(χ)√
|D|

(−1)ε ∈ {±1} ∈ {−1, 1},

• if D < 0, then

cl(K) = w(K)
√
|D|

2π
L(χD; 1) = w(K) i

2|D|
· τ(χD)√
|D|
·
∑

a∈Z/(D)
χ(a) = w(K)W (χD) i

2D
·
∑

a∈Z/(D)
χ(a)a.

Proof: For 1: Cf. [GTM 218]P305-306, Ex.14-15.?
For 2, in this case r1 = 0, r2 = 1, so Reg(K) = 1, and the rest follows

from(19.1.2.5)(19.3.3.5)(19.3.3.6) and item1. □

Prop.(19.3.4.4)[Kronecker’s First Limit Formula].

ζ(s) = 1
s− 1

+ γ0 +O(s− 1).

Proof: Cf.[Kronecker’s First Limit Formula, Revisited]. This can be deduced from(19.2.5.7).? □

Remark(19.3.4.5).This is related to the the averaged Colmez’s conjecture?.

Prop.(19.3.4.6). ζ(s) ̸= 0 for Re(s) ≥ 1, by(19.3.3.7).

5 Sieves
6 Characteristic Sums
7 Primes in Arithmetic Progressions

Def.(19.3.7.1)[Prime Counting Functions].For N ∈ Z+, a ∈ (Z/(N))∗, X ∈ R+, define

π(X;N, a) =
∑

p∈P,p≤X,p≡a(mod N)
1.

And π(X; 1, 1) is also denoted by π(X).

Def.(19.3.7.2)[Log-Weighted Prime Counting Function].For X ∈ R+, define

ϑ(X) =
∑

p∈P,p≤X
log p.

Thm.(19.3.7.3)[Prime Number Theorem, Hadamard-Vallée-Poussin1896/Siegel-Walfisz].
then for any A ∈ R+,

π(X;N, a) = 1
φ(N)

∫ X

2

dt
log t

+OA( X

exp(A
√

logX)
), X →∞

holds when (a,N) = 1 and N ≤ (logX)A.
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Proof: ?
We only prove that π(X) ∼ X

logX , X → ∞: The function H(t) = ϑ(et)e−t − 1 is piecewise
continuous and bounded by(19.3.7.6), and (LH)(s) = Φ(s+1)

s+1 −
1
s (19.3.7.7) extends to a holomorphic

function on Re(s) ≥ 0. Then by(10.12.2.18), the integral∫ ∞

0
H(t)dt =

∫ ∞

0
(ϑ(et)e−t − 1)dt =

∫ ∞

1

ϑ(x)− x
x2 dx

converges. Then by(10.4.2.8), ϑ(X) ∼ X, and so π(X) ∼ X
logX by(19.3.7.5). □

Remark(19.3.7.4).This is used by Vinogradov to prove the ternary Goldbach’s conjecture: Any large
odd integer is a sum of three primes.?

Prop.(19.3.7.5)[Chebyshev]. π(X) ∼ X
logX iff ϑ(X) ∼ X.

Proof: As 0 ≤ ϑ(X) ≤ π(X) log(X), ϑ(X)
X ≤ π(X) log(X)

X . Also

ϑ(X) ≥
∑

X1−ε<p≤X
log p ≥ (1− ε) log(X)(π(X)− π(X1−ε)),

so
ϑ(X)
X
≤ π(X) log(X)

X
≤ ( 1

1− ε
)ϑ(X)
X

+ log(X)
Xε

.

Thus the theorem follows. □

Lemma(19.3.7.6)[Chebyshev].For X ≥ 1, ϑ(X) ≤ (4 log 2)X.

Proof:

22n = (1 + 1)2n ≥
(

2n
n

)
≥

∏
n<p<2n,p∈P

p,

so
ϑ(2n)− ϑ(n) ≤ 2n log 2.

From this the assertion easily follows. □

Lemma(19.3.7.7).Define the function Φ(s) =
∑
p∈P p

−s log p, then (Lϑ(et))(s) = Φ(s)/s. Thus Φ(s)
is holomorphic on Re(s) > 1 by(10.12.2.17) and(19.3.7.6), and Φ(s) − 1

s−1 extends to meromorphic
functions on Re(s) > 1/2 and holomorphic on Re(s) ≥ 1.

Proof: It follows easily from Euler’s method(taking divisors of p1·. . .·pn+1 that there are infinitely
many prime numbers. Let pn be the n-th smallest prime number, then the function ϑ(et) is constant
on (log pn, log pn+1), and∫ log pn+1

log pn
e−stϑ(et)dt = ϑ(pn)

∫ log pn+1

log pn
e−stdt = ϑ(pn)

p−s
n − p−s

n+1
s

.

Thus

(Lϑ(et))(s) =
∫ ∞

0
e−stϑ(et)dt = 1

s

∑
n∈Z+

ϑ(pn)(p−s
n − p−s

n+1) = 1
s

∑
n∈Z+

p−s
n log pn = Φ(s)

s
.
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For the last assertion, notice

−ζ
‵(s)
ζ(s)

= (− log ζ(s))‵ = (
∑
p∈P

log(1− p−s))‵ =
∑
p∈P

log p
ps − 1

= Φ(s) +
∑
p∈P

log p
ps(ps − 1)

,

And ∑p∈P
log p

ps(ps−1) is absolutely convergent and holomorphic for Re(s) > 1/2, and ζ‵(s)
ζ(s) has a simple

pole with residue 1 by(19.3.4.1). So the assertion follows. □

Green-Tao Theorem

Thm.(19.3.7.8)[Green-Tao].The primes contain arbitrarily long arithmetic progressions.

Proof: Cf.[Green-Tao]. □

8 Goldbach Problem
9 Circle Method
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19.4 Riemann Conjecture
References are [Ivic, Aleksandar The Riemann zeta-function. The theory of the Riemann zeta-

function with applications. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York,
1985. xvi+517 pp. ISBN: 0-471-80634-X].

1 Hilbert-Pólya Conjecture
References are [Rudnick-Sarnak, Zeros of Principal L-functions and Random Matrix Theory],

[Trace formula in noncommutative geometry and the zeros of the Riemann zeta function].

Conj.(19.4.1.1)[Riemann Hypothesis, Riemann1859].

2 Landau-Siegel Conjecture
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19.5 B-S.D Conjecture
References are [Lectures on the Conjecture of Birch and Swinnerton-Dyer, Gross], [Sil99], http://

virtualmath1.stanford.edu/~conrad/BSDseminar/, [Gross, Kolyvagin’s work on modular elliptic
curves(1989)].

1 Statements
References are [BSD65].

Elliptic Curves

Thm.(19.5.1.1)[Analytic Continuation].Let E be an elliptic curve over a global field K, the L-
function L(E, s) defined as in(19.1.7.5) has an analytic continuation an entire function on s ∈ C, and
satisfies a functional equation relating its value at s and 2− s.

If K = Q and the zeta function Z(E, s) = N
s/2
E/Q(2π)−sΓ(s)L(E, s), where NE/Q is the conductor,

the functional equation writes:
Z(E, s) = wEZ(E, 2− s)

where wE = ±1 is called the sign of functional equation of E.

Proof: ? This is a consequence of the Breuil-Conrad-Diamond-Taylor theorem(16.8.1.6),
Cf.[Introduction to the Theory of Automorphic Forms, Shimura]. □

Conj.(19.5.1.2)[Birch-S.Dyer].Let K be a number field, E ∈ Ell /K, let L(E, s) be the L-function
of E(19.1.7.5), then

• #X(E) <∞, rank(E/K) = rankan(E/K) = r, and
•

L†(E; 1) =
2r2Ω(

∏
v∈Σ0

K
cv)(

∏
v∈Σ0

K
|ω/ωE,v|v)√

|dK |
·#X(E/K) · Reg(E/K)

(#E(K)tor)2 ,

where
• r2 is the number of complex places of K,
• Reg(E/K) the regulator of E(K)/E(K)tor w.r.t the Neron-Tate height pairing on
E(K)(13.5.12.8),

• cv the local Tamagawa numbers,
• ω a non-zero global exterior differential form,
• Ω =

∏
v∈Σ∞

K

∫
E(Kv) |ω|v,

• ωE,v is a Néron differential on Ev.

Proof: □

Conj.(19.5.1.3)[p-Parts of the Birch-S.Dyer Conjecture].

Prop.(19.5.1.4)[Nekovar].The parity conjecture holds for elliptic curves over a totally real number
field K if X(E/K) is finite.

Proof: □

http://virtualmath1.stanford.edu/~conrad/BSDseminar/
http://virtualmath1.stanford.edu/~conrad/BSDseminar/
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Abelian Varieties

Conj.(19.5.1.5)[Functional Equation Conjecture].Let F be a number field, A ∈ AbVarg /F , then
• the zeta function Z(A, s)? extends to an entire function on s ∈ C, and satisfies the functional

equation
Z(A, s) = wAZ(A, 2− s),

where wA = ±1 is called the sign of functional equation of A, and

• wA = w =
∏
v∈ΣF wv, where wv is the local root number of A/K at v.

Proof: □

Conj.(19.5.1.6)[Birch-S.Dyer-Tate].Let F ∈ NField, A ∈ AbVarg /K, let L(A, s) be the L-function
of A(19.1.7.5), then

• L(A, s) extends to an entire function on s ∈ C, #X(A) <∞, rank(A/F ) = rankan(A/F ) = r,

•

L†(A; 1) =
2gr2ΩA(

∏
v∈Σ0

K
cv)(

∏
v∈Σ0

K
|ω/ωA,v|v)√

|dK |
g ·#X(A/K) · Reg(A/K)

#A(K)tor#Â(K)tor
,

where
• r2 is the number of complex places of F ,

• Reg(A/F ) the regulator of the Neron-Tate height pairing A(K)/A(K)tor × Â(K)/Â(K)tor →
R(13.5.12.8),

• cv the local Tamagawa numbers,

• ω a non-zero global g-form,

• ΩA =
∏
v∈Σ∞

F

∫
A(Fv) |ω|v,

• ωA,v is a Néron differential on Av.

Proof: □

Remark(19.5.1.7).
• The BSDT conjecture has been verified numerically for some elliptic curves over number fields,

some Jacobians of genus 2 curves and (up to square) a few Jacobians of higher genus curves.

• BSDT conjecture implies BSD conjecture(19.5.1.2), as any E ∈ Ell /K is an Abelian variety of
dimension 1, and E ∼= Ê canonically.

Prop.(19.5.1.8). If the BSDT conjecture holds for all Abelian varieties over Q, then it holds for all
Abelian varieties over any number fields.

Proof: Cf.[The Arithmetic of Abelian Varieties, Milne].? □

Conj.(19.5.1.9) [Parity Conjecture].Let K be a number field and A ∈ AbVar /K, then
rankan(A/K) ≡ rank(A/K) mod 2. This is a consequence of BSDT conjecture(19.5.1.6).
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2 Low Rank Cases

References are [Kolyvagin’s Conjecture And Patched Euler Systems In Anticyclotomic Iwasawa
Theory, Naomi] andhttp://www.math.columbia.edu/~chaoli/docs/KolyvaginConjecture.html.

We use notations in11.

Thm.(19.5.2.1)[Rank 0 Case].For E ∈ Ell /Q and ℓ ∈ P, there are implications:
• rank(E/Q) = 0,#X[ℓ∞] <∞⇒ rankℓ(E/Q) = 0.
• rankan(E/Q) = 0⇒ rank(E/Q) = 0,#X[ℓ∞] <∞.
• rankℓ(E/Q) = 0 ⇒ rankan(E/Q) = 0 if ℓ ≥ 3 is good ordinary for E and ρE,ℓ : GalQ →

Aut(E[ℓ]) surjective.

Proof: 1 is trivial.
2 is the work of Gross-Zagier and Kolyvagin.?
3 is the work of Skinner-Urban(2000s)?. □

Prop.(19.5.2.2). If rankan(E/Q) = 0, the p-part of the BSD formula(19.5.1.3) is know for p ≥ 3 under
similar hypothesis by work of Kato(2000s) and Skinner-Urban on the Iwasawa main conjecture for
elliptic curves.?

Rank 1 Case

References are [Weil Zhang, Selmer groups and the divisibility of Heegner points (2013)] and [the
Birch and Swinnerton-Dyer Formula for Elliptic Curves of Analytic Rank One].

Thm.(19.5.2.3)[Rank 1 Case].For E ∈ Ell /Q and ℓ ∈ P, there are implications:
• rank(E/Q) = 1,#X[ℓ∞] <∞⇒ rankℓ(E/Q) = 1.
• rankan(E/Q) = 1⇒ rank(E/Q) = 1,#X[ℓ∞] <∞.
• rankℓ(E/Q) = 1 ⇒ rankan(E/Q) = 1 if ℓ ≥ 5 is good ordinary for E and ρE,ℓ : GalQ →

Aut(E[ℓ]) surjective with some mild ramification conditions.

Proof: 1 is trivial.
2 is the work of Gross-Zagier(19.7.2.2) and Kolyvagin(19.7.3.10).
3 follows from(19.7.3.14). □

Cor.(19.5.2.4).As a corollary of(19.5.2.1) and(19.5.2.3), [Bhargava-Skinner-Zhang] proved that at
least 66% of Elliptic curves over Q satisfy the rank part of the BSD conjecture(19.5.1.2)?

Prop.(19.5.2.5).Under the hypothesis of(19.7.3.12), if rankp(E/Q) = 1, then the p-part of the

Prop.(19.5.2.6). If E ∈ Ell /Q with conductor N satisfies rankan(E/Q) = 1, p ∈ P\{2, 3} and rhoE,p
is surjective and ramifies at any ℓ ∈ P s.t. vℓ(N) = 1, then the p-part of the BSD formula(19.5.1.3)
holds.

Proof: Cf, [Weil Zhang, Selmer groups and the divisibility of Heegner points (2013)]. or http:
//www.math.columbia.edu/~chaoli/docs/KolyvaginConjecture.html. □

http://www.math.columbia.edu/~chaoli/docs/KolyvaginConjecture.html
http://www.math.columbia.edu/~chaoli/docs/KolyvaginConjecture.html
http://www.math.columbia.edu/~chaoli/docs/KolyvaginConjecture.html
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3 over Function Fields
Prop.(19.5.3.1)[Artin-Tate].The BSD conjecture hold for an elliptic curve over a function field F
iff X(E/F ) is finite.

Proof: □

4 Motivic BSD Conjectures
Prop.(19.5.4.1)[Motivic BSD conjectures].For E ∈ Ell /Q, consider the motive h1(E), then

L(E, s) = Z(h1(E), s).

More generally, if we consider L-functions of the form

L3(E, s) =
∏
p

L(EFp3 , s).

Then there exists a motive M ∈Mnum(Q) s.t.

h1(E)⊗ h1(E)⊗ h1(E) = 3h1E(−1)⊕M,

and
L3(E, s) = Z(M, s).

Proof: □
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19.6 Special Values of L-Functions
Main references are[Del79], [Conrad BSD notes], [Remarks on special values of L-functions,

Scholl], [nLab].

1 Deligne Conjecture
Prop.(19.6.1.1). If X ∈ SmProj /Q and M = hi(X)(m), then M∨ ∼= hi(X)(i−m), i.e. it is polarized
of weight i− 2m?.

Proof: ? Let η ∈ h2 be a hyperplane section, then

H2d(X)(d) ∼= H2d(PN )(d) = (η(1))⊗d ∼= 1.

There is a pairing
hi(X)(m)× h2d−i(X)(d−m)→ h2d(X)(d),

and also an isomorphism
hi(X)(i−m) ∪ηd−i

−−−−→ h2d−i(X)(d−m).

□

Def.(19.6.1.2)[Critical Values].For M ∈ Mot(Q), m ∈ Z is called a critical value for M if neither
L∞(M ; s) nor L∞(M∨; 1− s) has a pole at s = m. M is called a critical motive if 0 is critical for
M .

Prop.(19.6.1.3).M is critical iff the Betti realization satisfies
• RealBetti(M)p,q = 0 unless p = q or p < 0 ≤ q or q < 0 ≤ p.
• c acts on RealBetti(M)p,p by −1 if p ≥ 0, and 1 if p < 0.

Deligne’s Periods

Prop.(19.6.1.4)[Deligne’s Periods].We assume that M ∈ Mot(Q) is pure of weight w, and c = ±1
on Mw/2,w/2 if w ∈ 2Z. Notice these hypothesis are satisfied when M is critical.

Define
d(M) = dimQ RealBetti(M), d±(M) = dimQ RealBetti(M)c=±1,

And also the eigenvalue decomposition of c∗ on RealBetti(M):

RealBetti(M) = RealBetti(M)+ ⊕ RealBetti(M)−.

Then it follows from(7.8.3.16) that

IdR(RealBetti(M)+ ⊗R) ⊂ RealdR(M), IdR(RealBetti(M)− ⊗R) ⊂ i .RealdR(M).

There are filtration steps Fil± ⊂ RealdR(M) of the deRham filtration s.t.

Fil± RealdR(M)⊗ C = IdR(⊕p>q RealBetti(M)p,q ⊕ (RealBetti(M)w/2,w/2)c=±1).

Then we can define
RealdR(M)± = RealdR(M)/Fil∓ RealdR(M).
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Since RealBetti(M)p,q = RealBetti(M)q,p, the space RealBetti(M)± lies (anti)diagonally, so the follow-
ing maps

I± : RealdR(M)± ⊗ C ⊂ RealdR(M)⊗ C
IdR−−→ RealdR(M)⊗ C ↠ RealdR(M)± ⊗ C

are isomorphisms.
Then because of the Q-structure on RealdR(M)± and RealdR(M)±, we have that

c±
Del(M) = det(I±) ∈ C×/Q×

are well-defined, called the Deligne periods of M(if both sides are {0}, let c±
Del(M) = 1). In fact,

from the argument above, we see that I± are real, so in fact c±
Del ∈ R×/Q×.

Conj.(19.6.1.5)[Deligne].Let M ∈ Mot(Q) be critical, then

L(M ; s) ∼Q c+
Del(M) ∈ P̂(19.6.1.4).

Proof: Cf.[Deligne, Values of L-functions] for the assertion that c+
Del(M) ∈ P̂. □

Example(19.6.1.6)[Tate Modules].For the Tate module Q(r), c∗ = (−1)r on RealBetti(Q(n)), so it
follows from(7.8.3.15) that

cε(Q(r)) =
{

(2π i)r , ε = (−1)r

1 , ε = (−1)r−1 .

And Q(r) is critical iff L∞(Q) = ΓR(s) is holomorphic at both r, 1 − r, and this is the case when
r ∈ 2Z+ or r ∈ 1− 2Z+. The Deligne’s conjecture is true in this case, by(19.6.4.1).

General Coefficients

2 Beilinson-Bloch Conjecture
References are [Blo00], [Beilinsen, Higher regulators of modular curves, Applications of algebraic

K-theory to algebraic geometry and number theory, Part I, II], [Iwasawa theory for the symmetric
square of an elliptic curve], [Nekovar, Beilinson’s Conjecture, in Motives, 537-570], [Algebraic K-
Theory and Special Values of L-Functions: Beilinson’s Conjecture], [Higher Regulators And Values
Of L-Functions, Beilinson].

Notation(19.6.2.1).
• Denote m = i+ 1− n.
• We assume that

– the Euler product for L(hi(X); s) converges absolutely for Re(s) > i/2 + 1.
– L(hi(X); s) meromorphically extends to the whole plane, and possible poles can occur

only when i is even and s = i/2 + 1.
– L(hi(X); i/2 + 1) ̸= 0.
– Λ(hi(X); s) has a functional equation

Λ(hi(X); i+ 1− s) = ε(hi(X); s)Λ(hi(X); s).
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Prop.(19.6.2.2).By(11.10.3.8), if m < i+1
2 , there is an exact sequence

0→ FilnH i
Betti(X,R)→ H i

Betti(X,R(n− 1))c∗=(−1)n−1 → H i+1
Del (X/R,R(n))→ 0.

Prop.(19.6.2.3). If the functional equation and

dimRH
i+1
Del (X/R,R(n)) =

{
ords=m L(hi(X), s) ,m < i

2
ords=m L(hi(X), s)− ords=m+1 L(hi(X), s) ,m = i

2
.

Notice if m < i/2, H i+1
Del (X/R,R(n)) = {0} iff hi(X)(m) is critical(19.6.1.2).

Proof: Cf.[Schneider’s notes, P5].? □

Prop.(19.6.2.4) [Beilinson’s version of Periods]. If m is critical for hi(X), then
H i+1

Del (X/R,R(n)) = 0, and the determinant cBei of the isomorphism

FilnH i
Betti(X,R)→ H i

Betti(X,R(n− 1))c∗=(−1)n−1

satisfies cBei(hi(X)(m)) = cDel(hi(X)(m)) ∈ R×/Q×.

Proof: Cf.[Deligne’s conjecture, in Rapoports’ notes, P42]?. □

Beilinson’s Regulator Maps

Remark(19.6.2.5)[Beilinson’t Regulator]. If m < (i+ 1)/2, then by(19.6.2.2), there is an isomor-
phism

det FilnH i
Betti(X,R)⊗R detH i+1

Del (X/R,R(n))→ detH i
Betti(X,R(n− 1))c∗=(−1)n−1

,

then if detH i+1
Del (X/R,R(n)) has a Q-structure, then we can construct a cBei(hi(X)(m)) ∈ R×/Q×.

Def.(19.6.2.6)[Beilinson’s Regulator].There is a regulator

r : H i+1
M (X,Q(n))Z = (K2n−i−1(X)Q)(n) → H i+1

M (X,Q(n))Z = (K2n−i−1(XR)Q)(n) ch2n−i−1−−−−−−→ H i+1
Del (X/R,R(n))(7.9.0.6).

Conj.(19.6.2.7)[Beilinson].
• If w < −2, then

– rR : H i+1
Mot(X,Q(n))Z ⊗R→ H i+1

Del (X/R,R(n))(19.6.2.6) is an isomorphism.
– the determinant of the map

det FilnH i
Betti(X,R)⊗R det(H i+1

Mot(X,Q(n))Z ⊗R) id ⊗ det(rR)−−−−−−−→
det FilnH i

Betti(X,R)⊗R detH i+1
Del (X/R,R(n))→

detH i
Betti(X,R(n− 1))c∗=(−1)n−1

equals L†(M ; 0) ∈ R×/Q×.
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• If w = −2, then s = 0 may be a pole, and Tate conjecture predicts? that

− ords=0 L(M ; 0) = dimQN
n−1(X),

where Nn−1(X) = CHn−1(X)/CHn−1(X)0, and CHn−1(X)0 is the subgroup of homologically
trivial cycle. In this case, there is also a cycle class map

r′ : Nn−1(X)→ H i+1
M∞

(XR,R(n))?,
and

– (r ⊗ r′)⊗R : C1 ⊗R⊕Nn−1(X)⊗R→ H i+1
M∞

(XR,R(n)) is an isomorphism.

– L†(M, 0) = det(r ⊗ r′) ∈ R×/Q×.

Def.(19.6.2.8)[Polylogarithm].For s ∈ Z+, the power series

Lis(z) =
∑
n≥1

zn

ns

converges absolutely for |z| < 1 and can be analytically continued to a multi-valued function on
C\{1}, called the Polylogarithm function.

Proof: In fact, Li1(z) = − log(1− z), and Lis+1(z) =
∫ z

0 Lis(t)dtt . □

Def.(19.6.2.9)[Bloch-Wigner Dilogarithm].The function

D(z) = Im
(

Li2(z) + log |z| log(1− z)
)
, z ∈ C(19.6.2.8)

is a real-valued function on C, called the Bloch-Wigner dilogarithm.

Proof: Cf.[Blo00]P44. □

Height Pairings

Conj.(19.6.2.10)[Beilinson]. If w = −1, then M must be critical by drawing diagram, and
• There is a non-degenerate Beilinson height paring

h : CHn(X)0 ⊗ CHdimX+1−n
0 → R,

• and ords=0 L(M ; s) = dimQ CHn(X)0.
• L†(M ; 0) = c+

Del(M) det(h) ∈ R×/Q×.

Proof: □

3 Fontaine-Perrion.Riou Conjecture

Cf.[Fontaine-Perrion.Riou]?.
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4 Examples

A1 Case

Prop.(19.6.4.1).For k ∈ Z+, ζ(2k) = B2k
(2k)!(2π)2k.

Proof: Because
cot(z) = i+ 2i

e2iz − 1
,

z cot(z) = 1−
∞∑
k=1

B2k
22kz2k

(2k)!

where Bk are Bernoulli numbers(8.5.1.12). But also

z cot(z) = 1− 2
∞∑
k=1

ζ(2k) z
2k

π2k .

by(10.5.3.11), thus the assertion follows. □
Cor.(19.6.4.2).For k ∈ Z+, ζ(1− 2k) = (−1)k B2k

2k .

Proof: ? □
Prop.(19.6.4.3)[Leibniz Formula for π].

1− 1
3

+ 1
5
− 1

7
+ . . . = π

4
.

Proof: Use the arctan integration formula. □
Thm.(19.6.4.4)[Borel1972].For F ∈ NField and m ∈ Z>1, let

dm = ords=1−m ζF (s) =
{
r2 ,m ∈ 2Z
r1 + r2. ,m ∈ 2Z + 1

.

Then
dimQK2m−1(OF )Q = dm

Proof: □
Prop.(19.6.4.5)[Comparison of Beilinson and Bloch’s Regulator Maps].Cf.[Rapoport, Com-
parison].

Conj.(19.6.4.6)[Bloch Conjecture for Fields].For a number field F , mapping the higher K-groups
K2i−1(F ) to a lattice with covolume ζF (m) via higher regulator maps. And the regular maps are
made from m-th polylogarithm functions(19.6.2.8), so ζF (m) can be expressed by combinations of
m-th polylogarithm functions of elements in F .

For example:

ζQ(
√

5)(3) = 24
25
√

5
Li3(1)[Li3(α) + Li3(−α) + 1

2
(log(α))3 − π2

6
log(α)], α =

√
5− 1
2

.

This makes the numerical calculation of higher K-groups possible.

Proof: ? □
Remark(19.6.4.7).m = 2 case is proved by Bloch-Suslin-Merkuriev, m = 3 case is proved by Gon-
charov.
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Elliptic Curve Case

Def.(19.6.4.8)[Elliptic Dilogarithm].Let E ∈ Ell /C with complex parametrization C×/qZ, define
the elliptic dilogarithm:

Dq : C×/qZ → R : z 7→
∑
n∈Z

D(qnz)(19.6.2.9).

And it extends linearly to a map Z1(E)→ R.

Prop.(19.6.4.9)[Bloch].Let E ∈ Ell /C, define

F : R(E)× ⊗R(E)× → R : f ⊗ g 7→ Dq(
∑

minj [bj − ai]),

where f, g ∈ R(E)∗ with divisor (f) =
∑
miai, (g) =

∑
njbj . Then F is additive, and

D(f ⊗ (1− f)) = 0.

In particular, F factors through R(E)∗ ⊗R(E)∗/{f ⊗ (1− f)} = K2(R(E)).
Thus, there is a composition rE : K2(E)→ K2(R(E))→ R, called the (higher)regulator map.

Proof: □

Thm.(19.6.4.10)[Beilinson-Bloch].Le E ∈ Ell /Q with complex parametrization E(C) ∼= C×/qZ,
then there exists a GalQ-invariant divisor P on E s.t. Dq(P ) ∼Q× L(E, 2)/π(19.6.4.8).

Proof: Cf.[Beilinson, Higher regulators of modular curves]. □
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19.7 Heegner Points

References are [Gross–Zagier formula and arithmetic fundamental lemma, Wei Zhang], [Gross-
Zagier Formula notes], [Heegner Points and Representation Theory, Gross], [Gross–Zagier Revisited,
Conrad]. [Moduli of Elliptic Curves, James Parson], [Heegner points and derivatives of L-series,
Gross/Zagier]. http://math.columbia.edu/~yihang/GZSeminar.html.

1 Heegner Points

Def.(19.7.1.1) [Heegner Conditions].Let E ∈ Ell /Q and F/Q an imaginary quadratic extension
with (dF , N) = 1 and associated quadratic character ηF : (Z/dF )× → {±1}. Then the Heegner
condition is the hypothesis that every prime factor of N splits in F .

Prop.(19.7.1.2). In the Heegner situation(19.7.1.1), the sign of functional equation for E(19.5.1.1)
wE = −1?, thus rankan(E/Q) is odd and the BSD conjecture(19.5.1.2) predicts rank(E/Q) is odd,
so at least it has a non-torsion rational point.

Def.(19.7.1.3)[Heegner Points]. In the Heegner situation(19.7.1.1), there exists an ideal N ⊂ OF
of conductor N . Then for any n ∈ Z+, On = Z + nOF is an order of OF of conductor n. Thus for
(n,N) = 1,

C/OF → C/(OF ∩N )−1

is an isogeny of degree N , thus defines a point xn ∈ X0(N), by moduli characterization?, called a
Heegner point. Then by theory of complex multiplication?, xn is defined over the ring class field
Fn corresponding to the open compact subgroup (On ⊗ Ẑ)× ⊂ A×

F .

Proof:
□

Def.(19.7.1.4)[Heegner Points]. In the Heegner situation(19.7.1.1), using the modular parametriza-
tion φE : X0(N) → E over Q(16.8.1.6), yn = φE(xn) ∈ E(Kn). In particular, define yF =
trF1/F (y1) ∈ E(F ), called the (principal)Heegner point of E.

Prop.(19.7.1.5).The Heegner point yF ∈ E(F ) is uniquely defined up to sign and torsion.

Proof: □

2 Gross-Zagier Formula

Thm.(19.7.2.1)[Gross-Zagier]. In the Heegner situation(19.7.1.1),

L‵(E/F ; 1) =
∫
E(C) ω ∧ ω
|dF |1/2 · 1

c2 · ⟨yF , yF ⟩N-T

Proof: □

Cor.(19.7.2.2). If rankan(E/F ) = 1, then the Heegner point yF is non-torsion, by(13.5.12.6). And if
rankan(E/F ) = 1, yF is torsion.

http://math.columbia.edu/~yihang/GZSeminar.html
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3 Kolyvagin’s Work

Main references are [Gro89], [Finiteness of E(Q) and X(E/Q) for a subclass of Weil curves,
Kolyvagin], [Finiteness of the Shafarevich-Tate group and the group of rational points for some
modular abelian varieties, Kolyvagin-Yu] and [Euler Systems, Kolyvagin].

Def.(19.7.3.1) [Kolyvagin Primes]. In the Heegner situation(19.7.1.1), let p ∈ P, a Kolyvagin
prime ℓ for E is a prime ℓ ∈ P\S(NpdF ) s.t. ℓ is inert in F and p|ℓ+ 1, p|aℓ,E . Equivalently, Frobℓ
is in the conjugacy class of c ∈ Gal(F (E[p])/F )?. So by Chebotarev density theorem, the set of
Kolyvagin primes has positive Dirichlet density.

For a Kolyvagin prime ℓ, M(ℓ) = min{vp(ℓ+ 1), vp(aℓ,E)} is called the Kolyvagin index of ℓ.
A product of distinct Kolyvagin primes is called a Kolyvagin number for E. The set of Koly-

vagin numbers is denoted by ΛE . For a Kolyvagin number n, define the Kolyvagin index of n as
M(n) = minℓ|n{M(ℓ)}.

Prop.(19.7.3.2). In the Heegner situation(19.7.1.1), let ℓ be a Kolyvagin prime for E, then

Gal(Fℓ/F1) ∼= Pic(Oℓ)/Pic(OF ) ∼= Z/(ℓ+ 1) = ⟨σ⟩.

Proof: □

Def.(19.7.3.3)[Kolyvagin Derivative]. In the situation(19.7.3.1), let ℓ be a Kolyvagin prime for E,
define the Kolyvagin derivative Dℓ =

∑ℓ
i=1 iσ

i ∈ Z[Gal(Fℓ/F1)]. Then (σ − 1)Dℓ = ℓ+ 1− trℓ .

Prop.(19.7.3.4). In the situation(19.7.3.1), for ℓ ∈ ΛE ∩ P and Heegner point yℓ ∈ E(Fℓ), Dℓyℓ ∈
E(Fℓ)/pME(Fℓ) ⊂ H1(Fℓ, E[pM ]) is invariant under the action of Gal(Fℓ/F1).

Thus for any n ∈ ΛE and M ≤ M(n), Dnyn ∈ H1(Fn, E[pM ]) is invariant under the action of
Gal(Fℓ/F1) ∼=

∏
ℓ|nGℓ, thus descends to an element in H1(F1, E[pM ]) ∼= H1(Fn, E[pM ])Gal(Fn,F1) by

Hochschild-Serre spectral sequence(10.1.1.13) and the fact E[pM ](Kn) = 0?
Proof: By(19.7.3.3), it suffices to show that (σ− 1)Dℓyℓ = (ℓ+ 1− trℓ)yℓ ∈ pME(F1): This follows
from the definition(19.7.3.1) and the fact trℓ yℓ is just the Hecke operator action Tℓ on y1, which
maps to aℓy1 ∈ E(F1)? □

Def.(19.7.3.5)[Kolyvagin Systems]. In the situation(19.7.3.1), for n ∈ ΛE , define the Kolyvagin
cohomology classes

cM (n) =
∑

s∈Gal(F1/F )
sDnyn ∈ H1(F,E[pM ]), M ≤M(n).

The collection of cohomology classes

κ = {cM (n) ∈ H1(F,E[pM ])|n ∈ ΛE ,M ∈ Z+,M ≤M(n)}

is called a Kolyvagin system of E.

Def.(19.7.3.6) [p-Divisibility]. In the situation(19.7.3.1), for r ∈ N, denote Λr to be the subset of
ΛE consisting of numbers with exactly r prime factors, and define Mr ∈ [0,∞] to be the maximal
integer s.t. pMr |cM (n) for any n ∈ Λr,M ≤M(n).
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Prop.(19.7.3.7)[Order of Kolyvagin Systems]. In the situation(19.7.3.1),M0 ≥M1 ≥ . . . ≥ 0.
In particular, we can define M∞ = limr→∞Mr. Clearly, M∞ = ∞ iff κ = 0. The vanishing

order of κ is the minimal r s.t. Mr ̸=∞, denoted by ordκ.
Proof: □

Prop.(19.7.3.8).M0 is just the p-divisibility of the Heegner point yF . In particular,M0 <∞ iff yF
is non-torsion?.

Thm.(19.7.3.9)[Kolyvagin].Let ordκ <∞, then
• Selp∞(E/F ) is contained in the subgroup of H1(F,E[p∞]) generated by κ.

• rankwE(−1)ordκ+1
p (E/F ) = ordκ+ 1, rankwE(−1)ordκ

p (E/F ) = ordκ− d and d ∈ 2N.
• Let

X̃(E/F )[p∞]ordκ+1 = (
⊕
i≥1

Z/(pai))2, X̃(E/F )[p∞]ordκ = (
⊕
i≥1

Z/(pbi))2,

where (ai), (bi) is non-increasing, then

ai =Mordκ+2i−1 −Mordκ+2i, bd+i =Mordκ+2i−2 −Mordκ+2i−1.

In particular, #X̃(E/F )[p∞]ordκ+1 ≥ pMordκ−M∞ , with equality iff d = 0.
Proof: □

Cor.(19.7.3.10). If ordκ = 0, i.e. yF is non-torsion(19.7.3.8), then d = 0, and r(E/Q) =
1,#X(E/K) <∞.

Kolyvagin’s Conjecture

Conj.(19.7.3.11) [Kolyvagin].Let p ∈ P\{2} s.t. ρE,p is surjective, then κ ̸= {0}. Equivalently,
M∞ <∞.

Thm.(19.7.3.12)[Zhang].Let E ∈ Ell /Q with conductor N and p ≥ 5 is good ordinary and ρE,p is
surjective and ramifies at every prime ℓ ∈ P s.t. vℓ(N) = 1, thenM∞ = 0. In particular, Kolyvagin’s
conjecture(19.7.3.11) is true.

Remark(19.7.3.13).There are results that generalize this.
Cor.(19.7.3.14).Under the hypothesis of(19.7.3.12), if rankp(E/Q) = 1, then ran(E/Q) = r(E/Q) =

1, and #X(E/Q) <∞.
Proof: Cf.[Wei Zhang]. □

4 p-adic Gross-Zagier Formula
References are [Heegner points and a p-adic Gross-Zagier formula].

5 Waldspurger’s Period Formula
6 Higher Gross-Zagier over Function Fields, Yun-Zhang

Remark(19.7.6.1).The formula relates arbitrary order central derivative of the base change L-
function of an unramified automorphic representation of PGL(2) over a function field to the self-
intersection number of a certain algebraic cycle on the moduli stack of Shtukas.
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19.8 Gan-Gross-Prasad Conjecture
References are [Wei, More Arithmetic Fundamental Lemma Conjectures: The Case Of Bessel

Subgroups].

1 Introduction
The GGP conjecture is a generalization of the the Gross-Zagier formula to higher dimensional

varieties. It concerns the central derivative of the L-function and special cycles of Shimura varieties.
AGGP conjecture has applications to the Beilinson-Bloch conjecture, which is a generalization of

the BSD conjecture.

2 restriction Problems
Conj.(19.8.2.1)[Local Restriction Problems].Let K be a local field with an involution σ, K0 =
Kσ. Let V ∈ Vect /K with a non-degenerate sesqui-linear form. Let G(V ) be the identity component
of the subgroup of GL(Vk0) preserving this form.

There are natural non-degenerate subspace W ⊂ V , there will be a subgroup H ⊂ G(W )×G(V )
containing the diagonally embedded subgroup G(W ), and a unitary representation ν of H?.

The local restriction problem is to determine for each π ∈ Irr(G), the number

d(π) = dim HomH(π|H ⊗ ν,1).

Def.(19.8.2.2)[Arithmetic Periods].Let F be a global field and G a reductive group over F , H ⊂ G
an algebraic subgroup, Z = Z(G) ∩H. Denote [H] = Z(AF )H(F )\H(AF ). For χ ∈ Ĥ(AF ), denote
the (twisted)automorphic L-period map:

lH,χ : A0(G/F )→ C : φ 7→
∫

[H]
χ(h)φ(h)dh.

(? Convergence).

3 Statements
References are [Symplectic Local Root Numbers, Central Critical L-Values, And Restriction Prob-

lems In The Representation Theory Of Classical Groups, Gan-Gross-Prasad].

Conj.(19.8.3.1).

4 Arithmetic Fundamental Lemma
Jacquet–Rallis proposed an approach using relative trace formula to attack the unitary case of

Gan–Gross–Prasad conjecture. The fundamental lemma is proved by Yun.
Later Wei Zhang proposed an analogous approach using the arithmetic fundamental lemma, equal-

ity between certain intersection numbers and the first derivatives of some relative orbital integrals,
and is not proved yet.
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19.9 Kudla’s Program
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19.10 Colmez Conjecture
References are [On Faltings heights of abelian varieties with complex multiplication, Xinyi Yuan].

1 Averaged Colmez Conjecture
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20 | Iwasawa Theory

20.1 Euler Systems

Cf.[Rub00], [Rub96], [Kat04] and [Scholl].

Notation(20.1.0.1).
• Fix p ∈ P, F ∈ NField.
• For each modulus m of F , let F (m) be the maximal p-extension of F inside the ray class field
Fm, and Γm = Gal(F (m)/F (1)).

• Fix T ∈ RepZp(GalF ), V = T ⊗Zp Qp,W = V/T = T ⊗Zp (Qp/Zp).
• Suppose T is unramified outside f.m. places of F .

• WARNING: the notations in this section may subject to change.?
1 Local Cohomologies

This subsection should be moved to somewhere else.

Prop.(20.1.1.1). If p ∈ P,K ∈ p-Field, ℓ ∈ P \ {p}, and V ∈ Repfd
Qℓ

(GalK), then

dimH1
ur(K,V ) = V GalK , dim

(
H1(K,V )/H1

ur(K,V )
)

= dimH2(K,V ).

Proof: Cf.[Rubin, P5]. □

Prop.(20.1.1.2). Suppose K ∈ Field and K∞/K is an infinite p-extension, T ∈ Repfg
Zp

(GalK), then

lim←−
K ⊂fin L⊂K∞

TGalL = 0,

where the transition maps are norm maps.

Proof: Define T0 = lim−→K ⊂fin L⊂K∞
TGalL ⊂ T , so T0 is also f.g. over Zp. Then T0 = TGalL0 for

some K ⊂fin L0. Then
lim←−

K ⊂fin L⊂K∞

TGalL = lim←−
L0 ⊂fin L⊂K∞

T0 = 0.

□

Prop.(20.1.1.3). If ℓ ∈ P \ {p}, Qℓ⊂finK, and K∞ is the unique Zp-extension of K. Suppose
{cL} ∈ lim←−K ⊂fin L⊂K∞

H1(L, T ), then for any L, cL ∈ H1
ur(L, T ).
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Proof: K∞/K is unramified?, so for any K ⊂fin L ⊂ K∞, there is an exact sequence

0→ H1
ur(L, T )→ H1(L, T )→ H1(IK , T )GalK .

But H1(IK , T ) is f.g. over Zp by [Rubin, B.2.7]?, so taking limit of these exact sequences, we get

lim←−
K ⊂fin L⊂K∞

H1
ur(L, T ) = lim←−

K ⊂fin L⊂K∞

H1(L, T )

by(20.1.1.2). □

Cor.(20.1.1.4).Let F∞ be an Zdp-extension of F , F ⊂fin L ⊂ F∞, and v ∈ Σp
L has infinite decomposi-

tion group in Gal(F∞/F ). Suppose

{cL} ∈ lim←−
F ⊂fin L⊂F∞

H1(L, T ),

then (cL)v ∈ H1
ur(Fλ, T ). In particular, this applies to L = F .

Proof: Cf.[Rubin, P155]. □

2 Selmer Groups
Def.(20.1.2.1)[Selmer Local Conditions].For F ∈ NField, v ∈ Σp

F , denote

H1
f (Fv, V ) = H1

ur(Fv, V ) = ker
(
H1(Fv, V )→ H1(F ur

v , V )
)

= H1(F ur
v /Fv, V

Iv)(10.1.1.13)

And for places of F over p, fix a choice of invariant subspaces H1
s (F, V ) ⊂ H1(Fv, V ).

Then we can define for any v ∈ Σcyclp,n(Q),

H1
f (Fv,W ) ⊂ H1(Fv,W ), H1

f (Fv, T ) ⊂ H1(Fv, T )

the image and inverse image of H1
f (Fv, V ) under the maps on cohomologies induced by the exact

sequence
0→ T → V →W → 0.

Next, for any v ∈ ΣF , denote

H1
s (Fv, T ) = H1(Fv, T )/H1

f (Fv, T )

locsv(T ) : H1(F, T )→ H1
s (Fv, T )

and similarly for W .

Prop.(20.1.2.2).For v ∈ Σp
F ,

• H1
f (Fv,W ) = H1

ur(Fv,W )div.

• H1
ur(Fv, T ) ⊂ H1

f (Fv, T ) has finite index, and H1
s (Fv, T ) is torsion-free.

• Let W = W Iv/(W Iv)div be finite, then there are natural isomorphisms

H1
f (Fv,W )/H1

ur(Fv,W ) ∼=W/(Frobv −1)W, H1
ur(Fv, T )/H1

f (Fv, T ) ∼=WFrobv=1.
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• If T is unramified at v, then

H1
f (Fv,W ) = H1

ur(Fv,W ), H1
ur(Fv, T ) = H1

f (Fv, T )

Proof: 1, 2, 4 follow from 3. For 3, Cf.[Rubin, P6]?. □

Def.(20.1.2.3)[Selmer Groups]. Situation as in(20.1.2.1), define

Sel(F,W ) = ker
(
H1(F,W ) locs(W )−−−−−→

⊕
v∈ΣF

H1
s (Fv,W )

)
.

Moreover, if Σ is a finite set of places, then we can define

SelΣ(F,W ) = ker
(
H1(F,W )→

⊕
v/∈Σ

H1
s (Fv,W )

)
.

SelΣ(F,W ) = ker
(

SelΣ(F,W )→
⊕
v∈Σ

H1(Fv,W )
)
.

Def.(20.1.2.4) [Hypothesis]. Situation as in(20.1.2.1), assume for all the time that the choices
H1
f (Fp, V ) and H1

f (Fp, V D) satisfy:
• H1

f (cyclp,n(Qp), V ) and H1
f (cyclp,n(Qp), V D) are orthogonal complements under the cup prod-

uct pairing

H1(cyclp,n(Qp), V )×H1(cyclp,n(Qp), V D)→ H2(cyclp,n(Qp),Qp(1)) = Qp.?
• For m ≥ n,

corcyclp,m(Qp)
cyclp,n(Q) H1

f (cyclp,m(Q), V ) ⊂ H1
f (cyclp,n(Qp), V ).

rescyclp,n(Qp)
cyclp,m(Q) H

1
f (cyclp,n(Q), V ) ⊂ H1

f (cyclp,m(Qp), V ).

Prop.(20.1.2.5)[Selmer Group of Elliptic Curves]. If T = Tp(E),W = E[p∞] where E ∈ Ell /Q,
and define

H1
f (Qn,p, V ) = Im

(
E(Qn,p)⊗Qp ↪→ H1(Qn,p, V )

)
,

then Sel(Qn,W ) = Selp∞(E/Qn)(13.5.11.9)(13.5.11.4) is the classical Selmer group.

Proof: For v ∈ Σp
Qn

, by(13.9.4.17), #E(Qn,v)[p∞] < ∞, so E(Qn,v) ⊗ (Qp/Zp) = 0. And also
by(20.1.1.1),

dimH1
f (Qn,v, Vp(E)) = dimVp(E)GalQn,v = 0,

because E(Qn,v)[p∞] = 0. So

H1
f (Qn,v,W ) = Im

(
E(Qn,v)⊗ (Qp/Zp)→ H1(Qn,v,W )

)
for any place v. Thus the assertion follows from the definitions(20.1.2.1)(13.5.11.4). □
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Selmer Groups over F∞

Def.(20.1.2.6).Define Λp-modules20.2

Sel(F∞,W ) = lim−→
F ⊂fin F ′⊂F∞

Sel(F ′,W ), X∞ = Hom(Sel(F∞,W
D),Qp/Zp),

H1
∞(F, T ) = lim←−

F ⊂fin F ′⊂F∞

H1(F ′, T ), H1
∞,s(Fp, T ) = lim←−

F ⊂fin F ′⊂F∞

H1
s (F ′, T ).

where the transition maps are induced by restriction and corestriction maps(20.1.2.4). Then they
are f.g. Λp-modules?.

Similarly define

SelS(p)(F∞,W ) = lim−→
F ⊂fin F ′⊂F∞

SelS(p)(F ′,W ), X∞,S(p) = Hom(SelS(p)(F∞,W
D),Qp/Zp).

Prop.(20.1.2.7).There is an exact sequence

0→ H1
∞,s(Fp, T )/ locs∞,S(p)(H

1
∞(F, T ))→ X∞ → X∞,S(p) → 0.

Proof: Cf.[Rubin, P29].? □

Poitou-Tate Duality

Prop.(20.1.2.8)[Poitou-Tate Duality].Let m ∈ Z×,Σ0 ⊂ Σ ⊂ ΣF be two finite set of places, then
• There are exact sequences

0→ SelΣ0(F,W [m])→ SΣ(F,W [m])
locsΣ,Σ0−−−−→

⊕
v∈Σ\Σ0

H1
s (Fv,W [m])

0→ SelΣ(F,W [m])→ SΣ0(F,W [m])
locfΣ,Σ0−−−−→

⊕
v∈Σ\Σ0

H1
f (Fv,W [m])

• Im(locsΣ,Σ0) and Im(locfΣ,Σ0
) are orthogonal w.r.t. the pairing ∑v∈Σ\Σ0⟨−,−⟩v.

• There is an isomorphism

SelΣ0(F,WD[m])/ SelΣ(F,WD[m]) ∼= HomZp(Coker(locsΣ,Σ0),Zp/(m)).

Proof: 1 is clear, and 3 follows from 2. For 2, Cf.[Rubin, P17].? □

Remark(20.1.2.9).When Σ is large, we can make SelΣ(F,WD[m]) = 0, then # SelΣ0(F,WD[m]) =
# Coker(locsΣ,Σ0). So if we can construct enough element in SΣ(F,W [m]), then we bound
SelΣ0(F,WD[m]). And this can be done by Kolyvagin’s derivative construction4 applied to Euler
classes.

Cor.(20.1.2.10).There is an isomorphism

Sel(F,WD)/ SelS(p)(F,WD) ∼= HomZp(Coker(locsS(p)),Qp/Zp).
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3 Euler Systems

Def.(20.1.3.1)[Euler Systems]. Suppose F ∈ NField, p ∈ P and F∞/F is an Zdp-extension s.t. no
finite place of F splits completely(This is satisfies if F∞ contains the cyclotomic Zp-extension of
F?). Suppose

• K is an Abelian extension of F containing F∞ and F (p) for any p ∈ Σfin
F ,

• N is an ideal of F divisible by p and all finite places that T is ramified(20.1.0.1).
Then an Euler system for (T,K,N ) is a collection of cohomology classes

c = {cF ′ ∈ H1(F ′, T ) : F ⊂fin F
′ ⊂ K}

satisfying
corF ′′/F ′(cF ′′) =

( ∏
q∈Σ(F ′′/F ′)

Pq(||q||−1 Frob−1
q )
)
(cF ′),

where Σ(F ′′/F ′) is the set of finite places of F not dividing N that is ramified in F ′′ but not in F ′.
And an Euler system for (T, F∞) is any Euler system for such (T,K,N ).

Example(20.1.3.2)[Euler Systems for Q].For N ∈ Z+, let R(N) be the set of square-free integers
r s.t. (r,N) = 1, and Q∞ be the cyclotomic Zp-extension of Q, then an Euler system c for (T,Q∞)
is a collection of cohomology classes

cQn(µr) ∈ H1(Qn(µr);T )

s.t. for any r ∈ R(N), ℓ ∈ P, rℓ ∈ R(N) and m ≥ n ∈ N,

corQn(µrℓ)/Qn(µr)(cQn(µrℓ)) = Pℓ(ℓ−1 Frob−1
ℓ )(cQn(µr)).

Def.(20.1.3.3). If c is an Euler system, denote cF,∞ the corresponding element in H1
∞(F, T ), and the

ideal
indΛp(c) = {φ(cF,∞) : φ ∈ HomΛp(H1

∞(F, T ),Λp)} ⊂ Λp.
and also

indZp(c) = sup{n : cF ∈ pnH1(F, T ) +H1(F, T )tor}.

Twisting by Characters

Prop.(20.1.3.4) [Twisting Cohomology Groups].For any extension of number fields L/F ∈
NField, denote H1

∞(L, T ) = lim←−F ⊂fin F ′⊂F∞
H1(F ′L, T ), L∞ = LK∞. Then for any character

ρ : Gal(L∞/K)→ Z∗
p and S(p) ⊂ Σ ⊂ ΣF , then there are GalK-isomorphisms

H1
∞(L, T )(ρ) ∼= H1

∞(L, T (ρ)), SelΣ(L∞,W )(ρ) ∼= SelΣ(L∞,W (ρ)).

Proof: Cf.[Rubin, P91].? □
Prop.(20.1.3.5). Suppose c is an Euler system for (T,K,N ), and ρ : Gal(F∞/F )→ Z∗

p is a character
with fixed field L and conductor f, then for any field F ⊂fin F

′ ⊂ K, denote by cρF ′ ∈ H1(F, T (χ)) the
image of cF ′L(ρ) under the map

H1(F ′L, T )(ρ) cor−−→ H1(F ′, T (ρ)).

Then {cρF ′} form an Euler system for (T (ρ),K, fp∞N ).

Proof: Cf.[Rubin, P30, 93].? □
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4 Kolyvagin Derivatives
Def.(20.1.4.1)[Kolyvagin Primes]. Suppose F ⊂fin F

′ ⊂ F∞,m ∈ Z+, define RF ′,m ⊂ R(N ) to be
the set of products of primes q of F s.t.

• m|[F (q) : F (1)],
• Pq(||q||−1)/m ∈ Zp,
• q splits completely in F ′(1)/F .

Def.(20.1.4.2)[Kolyvagin Derivatives].For any q ∈ Σp
F , Γq = Gal(F (q)/F (1)) is canonical isomor-

phic to a cyclic group with generator σq(?, [Rubin, P62]). Define

Dq =
#Γq−1∑
i=0

iσiq ∈ Z[Γq],

and for any r ∈ R(N ), define
Dr =

∏
q|r
Dq ∈ Z[Γr].

And if F ⊂fin L ⊂ F∞, fix an element NL(1)/L ∈ Z[Gal(L(r)/L)] whose restriction to Gal(F (1)/F ) is∑
γ∈Gal(F (1)/F ) γ, then define

Dr,L = NL(1)/LDr.

Def.(20.1.4.3) [Kolyvagin Systems]. Suppose c is an Euler system, F ⊂fin L ⊂ F∞,m ∈ Z+, and
r ∈ RL,m, define

κL,r,M = δL(d(Dr,LxF (r)) ∈ H1(F,W [m]).

Proof: ?. Cf.[Rubin, P66]. □

Cor.(20.1.4.4)[Properties of κL,r,m].
• κL,1,m is the image of cL in H1(L,W [m]).
• The restriction of κL,r,m to L(r) is the image of Dr,LcL(r) in H1(L(r),W [m]).
• κL,1,m is compatible with m.

Proof: Cf.[Rubin, P67]?. □

Local Properties

Thm.(20.1.4.5). Suppose F ⊂fin F
′ ⊂ F∞,m ∈ Z+, and r ∈ RF ′,m, then

κF,r,m ∈ SelS(pr)(F ′,W ).

Proof: Cf.[Rubin, P67]. □

Thm.(20.1.4.6) [Ramification of Kolyvagin Systems]. Suppose F ⊂fin F
′ ⊂ F∞,m ∈ Z+, and

rq ∈ RF,m, then
locsq(κF,rq,m) = ϕfsq (κF,r,m).

Proof: Cf.[Rubin, P68]. □
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5 p-adic L-Function for Elliptic Curves
Thm.(20.1.5.1)[p-adic L-Functions].Let E ∈ Ell /Q, p ∈ P. Suppose E ∈ Ell /Q has good ordinary
reduction or multiplicative reduction at p. Let α ∈ Z∗

p, β = p/α ∈ pZ∗
p be the eigenvalues of Frobp on

Tp(E) if E has good ordinary reduction at p, or (α, β) = (1, p) or (−1,−p) if E has split or non-split
multiplicative reduction.

Then there exists cE ∈ Z+ independent of p and a p-adic L-function LE ⊂ c−1
E Λp s.t. for any

character χ of Gal(cyclp(Q)/Q) of finite order,

χ(LE) =


(1− α−1)2L(E; 1)/ΩE , χ = 1&E has good reduction at p.
(1− α−1)L(E; 1)/ΩE , χ = 1&E has multiplicative reduction at p.
α−nτ(χ)L(E,χ−1; 1)/ΩE , c(χ) = pn > 1

.

And for any N ∈ Z+, we can define

LE,N =
∏

q|N,q ̸=p
Pℓ(ℓ−1 Frob−1

ℓ )LE ∈ Λp.

Proof: Cf.[Mazur-Tate-T]?. □

Coleman Map

Def.(20.1.5.2)[Coleman Map]. Suppose E ∈ Ell /Q has good ordinary reduction or multiplicative
reduction at p, then there is an injective Λp-module map

Col∞ : H1
∞,s(Qp, Tp(E)) ↪→ Λp

s.t.
• For any element z = {zn} ∈ H1

∞,s(Qp, Tp(E)) and any non-trivial character χ of Gn =
Gal(cyclp,n(Q)/Q) of conductor pm,

χ(Col∞(z)) = α−mτ(χ)
∑
γ∈Gn

χ−1(γ) exp∗
ωE

(zγn).

• If χ0 is the trivial character, then

χ0(Col∞(z)) = (1− α−1)(1− β−1)−1 exp∗
ωE

(z).

• If E has split multiplicative reduction at p, then the image of Col∞ is contained in the aug-
mentation ideal Jp of Λp.

Proof: Cf.[Rubin short, Appendix]?. □

Local Cohomology Groups

Prop.(20.1.5.3).Let K ∈ p-Field and E ∈ Ell /K with a Neron differential ωE , then Tgt∗(E/K) =
KωE , and Tgt(E/K) = Kω∗

E . There exists an exponential map

expE : Tgt(E/K) ∼= E(K)⊗Qp
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and the following diagram is commutative:

Tgt(E/K) E(K)⊗Qp

K Ê(mK)⊗Qp E1(K)⊗Qp

expE

.ω∗
E

logE

∼=

=

where all the maps are isomorphisms.

Proof: ? □

Prop.(20.1.5.4).By the definition and local Tate pairing,

Hom(E(Qn,p),Qp) = Hom(H1
f (Qn,p, Vp(E))) ∼= H1

s (Qn,p, Vp(E)).

So we can define a dual exponential map

exp∗
E : H1

s (Qn,p, V )→ Tgt∗(E/Qn,p)

and its composite with ω∗
E :

exp∗
ωE

: H1
s (Qn,p, V )→ Tgt∗(E/Qn,p)/ωE ∼= Qn,p.

More explicitly, for z ∈ H1
s (Qn,p, Vp(E)), x ∈ E(Qn,p),

trQn,p/Qp(λE(x) exp∗
ωE

(z)) = ⟨x, z⟩Qn,p .

Prop.(20.1.5.5).
exp∗

ωE
(H1

s (Qp, T )) = 1
p

[E(Qp) : E1(Qp) + E(Qp)tor]Zp.

Proof: By duality, if λE(Qp) = p−aZp, then exp∗
ωE

(H1
s (Qp, T )) = paZp. But λE(E1(Qp)) = pZp,

so the assertion follows. □

6 Bounding Selmer Groups
Notation(20.1.6.1).

• Fix an Euler system c for (T, F∞)(20.1.3.2). cF ∈ SelS(p)(F, T ) by(20.1.1.4) and(20.1.2.2).
• Suppose the choices of Selmer local conditions satisfy hypothesis(20.1.2.4).

Hypothesis on Representations

Def.(20.1.6.2)[Hypothesis]. T satisfies the hypothesis
Hypothesis Hyp(F∞;T ) if:

• There exists τ ∈ GalF (1)F (µp∞ ) s.t. T/(τ − 1)T is free of rank 1 over Zp, and
• T/(p) ∈ IrrFp(GalF∞).

Hypothesis Hyp(F∞;V ) if:
• There exists τ ∈ GalF (1)F (µp∞ ) s.t. dimQp V/(τ − 1)V = 1, and
• V ∈ IrrQp(F∞).

Hypothesis Hyp(F∞/F ) if:
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• rankZp(GalF∞/F ) > 1 or
• neither T nor T (−1) is trivial, or
• F is imaginary quadratic, or
• F is totally real and leopoldt’s conjecture holds for F .

Prop.(20.1.6.3). Suppose E ∈ Ell /Q without CM, then
• T = Tp(E) satisfies the hypothesis Hyp(cyclp(Q);V )(20.1.6.2), and

#H1(Q(E[p∞])/Q, E[p∞]) <∞.
• If ρE,p : GalQ → Aut(Tp) is surjective, then Tp(E) satisfies the hypothesis

Hyp(cyclp(Q), T )(20.1.6.2), and H1(Q(E[p∞])/Q, E[p∞]) = 0.

Proof: By Weil pairing,

ρE,p(GalQ(µp∞ )) = ρE,p(GalQ) ∩ SL(2,Zp).

When ρE,p : GalQ → Aut(Tp) is surjective, then ρE,p is surjective thus irreducible, and also we can

take ρE,p(τ) =
[
1 1

1

]
. So Tp(E) satisfies the hypothesis Hyp(cyclp(Q), T ).

And because E has no CM, by [Serre, Galois Property Points Elliptiques, (1972) Cor1 of Thm3],

ρE,p(GalQ) ⊂ GL(2,Zp) is open. So ρE,p|GalQ(µp∞ ) is irreducible, and we can take ρE,p(τ) =
[
1 x

1

]
for some x ̸= 0. So Tp(E) satisfies the hypothesis Hyp(cyclp(Q), V ).

Finally, the cohomology group can be calculated directly?. □

Bounding Selmer Groups over F

Thm.(20.1.6.4). Suppose V satisfies Hyp(F ;V )(20.1.6.2), and V is not the trivial representation.
• If cF /∈ H1(F, T )tor, then # SelS(p)(F,WD) <∞.

• If locsp(cQ) ̸= 0 and [H1
s (Qp, T ) : Zp locsp(cQ)] <∞, then # Sel(Q,WD) <∞.

(If V is trivial, this is true iff the Leopodlt’s conjecture holds).

Proof: Cf.[Rubin, P24].?
2: It follows from(20.1.2.10) that

[Sel(Q,WD) : Selp(Q,WD)] = [H1
s (Qp, T ) : Zp locsp(Selp(Q, T ))] ≤ [H1

s (Qp, T ) : Zp locsp(cQ)].

So the assertion follows from item1. □

Cor.(20.1.6.5). Suppose V satisfies Hyp(cyclp(Q);V )(20.1.6.2), locsp cQ ̸= 0, and rankZp H
1
s (Qp, T ) =

1, then # Selp∞(Q,WD) <∞.

Proof: This is because H1
s (Qp, T ) is torsion-free. □

Thm.(20.1.6.6). Suppose T satisfies Hyp(cyclp(Q);T )(20.1.6.2), p > 2. Let Ω = Q(W )Q((Z∗
p)1/p∞),

where Q(W ) is the minimal extension of Q that GalQ(W ) acts trivially on W .
• Then

# Selp(Q,WD) ≤ pindZp (c)#
(
H1(Ω/Q,W ) ∩ Selp(Q,W )

)
#
(
H1(Ω/Q,W ) ∩ Selp(Q,WD)

)
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• If locsp(cQ) ̸= 0(20.1.2.1), then

# Sel(Q,WD) ≤ [H1
s (Qp, T ) : Zp locsp(cQ)]#

(
H1(Ω/Q,W )∩Selp(Q,W )

)
#
(
H1(Ω/Q,WD)∩Selp(Q,WD)

)
.

Notice #H1(Ω/Q,W )#H1(Ω/Q,WD) < ∞ when V is irreducible and dimV > 2, by [Rubin,
P162].?
Proof: Cf.[Rubin, P24].?

2: Notice H1(Q, T )/Selp(Q, T ) ↪→ ⊕v∈Σp
Q
H1
s (Qv, T ) is torsion-free, so cQ ∈ pnH1(Q, T ) +

H1(Q, T )tor implies cQ ∈ pn Selp(Q, T ) + H1(Q, T )tor, which implies locsp(cQ) ∈ pn locsp(Selp(Q, T )).
Then the assertion follows from(20.1.2.10) and item1. □

Bounding Selmer Groups over F∞

Prop.(20.1.6.7). Suppose V satisfies Hyp(F∞, V ) with τ . Define Z(resp. ZD) to be the maximal
GalF∞-stable submodule of (τ − 1)W (resp. WD), and

aτ = [W τ : (W τ )div].max(#Z,#ZD).

Then aτ <∞. And if T satisfies Hyp(F∞, T ), then aτ = 1.

Proof: Cf.[Rubin, P98].? □

Thm.(20.1.6.8). Suppose V satisfies Hyp(F∞;V ) and Hyp(F∞/F )(20.1.6.2), cF,∞ /∈ H1
∞(F, T )Λp−tor,

then
• (Weak Leopoldt Conjecture) X∞,S(p) is a torsion Λp-module.
• There exists t ∈ N s.t. char(X∞,S(p))|pt indΛp(c).
• If moreover T satisfies Hyp(F∞;T )(20.1.6.2), then char(X∞,S(p))| indΛp(c).

Proof: 1: [Rubin, Thm2.3.2].?
2,3: Cf.[Rubin, P101]?. Given item1, there exists an injective pseudo-isomorphism

r⊕
i=1

Λp/(fi)→ X∞,S(p),

where fi+1|fi. Then by(20.1.6.7), it suffices to show that char(X∞,S(p))|a5r
τ indΛp(c).

Suppose h ∈ Λp satisfies(20.1.6.14), and a finite set of places Σ∞
F ∪ S(p) ∪ Ram(T ) ⊂ Σ ⊂ ΣF ,

then by?,
hra5r

τ cL ∈ char(X∞,S(p)).H1(FΣ/L, T )lf .

Then by? and taking limit,

hra5r
τ cF,∞ ∈ char(X∞,S(p)).H1(F, T )lf .

Then by the definition of indΛp(c) and the fact h is prime to char(X∞,S(p))(20.1.6.14), we get
char(X∞,S(p))|a5r

τ indΛp(c). □
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Cor.(20.1.6.9). Suppose V satisfies Hyp(cyclp(Q);V )(20.1.6.2), locsp,∞(cF,∞) is non-torsion over Λp,
and H1

∞,s(Fp, T )/Λp. locsp,∞(cF,∞) is torsion, define

L = char
(
H1

∞,s(Fp, T )/Λp. locsp,∞(cF,∞)
)
,

then
• (Weak Leopoldt Conjecture) X∞ is a torsion Λp-module.
• There exists t ∈ N s.t. char(X∞)|(ptL).
• If T satisfies Hyp(F∞;T )(20.1.6.2), then char(X∞)|L.

Proof: By(20.1.6.8), X∞,S(p) is torsion over Λp, so by(20.1.2.7) and the hypothesis, X∞ is also
torsion over Λp, and

char(X∞) = char(X∞,S(p)) char
(
H1

∞,s(Fp, T )/ locsp,∞(H1
∞(F, T ))

)
.

Notice the hypothesis also implies locsp,∞(H1
∞(F, T )) has rank 1 over Λp, so by the definition of

indΛp(c),
indΛp(c)| char

(
locsp,∞(H1

∞(F, T ))/Λp. locsp,∞(cF,∞)
)
.

Thus the assertion follows. □

Proof over F∞

Lemma(20.1.6.10).Let ρ : Gal(F∞/F )→ Λp be a character, then theorem(20.1.6.8) for T and c are
equivalent to the theorem for T (ρ) and cρ.

Proof: The hypothesis Hyp(F∞;V ),Hyp(F∞/F ) and Hyp(F∞;T ) depends only on T as a GalF∞-
module, so they are not affected. And the rest follows from the fact everything is twisted by ρ,
by(20.1.3.4). □

Prop.(20.1.6.11). [Rubin, P99]?
Def.(20.1.6.12) [Selmer Sequences and Kolyvagin Sequences].Fix a sequence (z1, . . . , zr) for
X∞,S(p) as in(20.1.6.11), and let Z∞ ⊂ X∞,S(p) be the submodule they generate. Then for 0 ≤ k ≤ r,
F ⊂fin L ⊂ F∞, then

• A Selmer sequence of length k is a sequence (σ1, . . . , σk) s.t. Cf.[Rubin, P99].?
• A Kolyvagin sequence of length k for L and M is a sequence (Q1, . . . ,Qk) of primes of L?

Cf.[Rubin, P99].
Let Π(k, L,M) be the set of Kolyvagin sequences of length k for F and M , and define

Ψ(k, L,M) =
∑

π∈Π(k,L,M)

∑
ψ∈Hom(ΛpκL,r(π),M ,ΛL,M )

ψ(κL,r(π),M ) ⊂ ΛL,M

Lemma(20.1.6.13). Suppose G ∈ Abfin, R ∈ CRing is a PID, and B is a f.g. R[G]-module without
R-torsion. Suppose f ∈ R[G] is a non-zerodivisor, b ∈ B, and

{ψ(b) : ψ ∈ HomR[G](B,R[G])} ⊂ fR[G],

then b ∈ fB.
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Proof: Cf.[Rubin, P101]. □

Prop.(20.1.6.14). Situation as in(20.1.6.8), there exists h ∈ Λp relatively prime to char(X∞,S(p)), and
for each F ⊂fin L ⊂ F∞ a number NL ∈ pZ+ , s.t. if M ∈ pZ+ , NL|M, 0 ≤ k ≤ r, then

ha5
τΨ(k, L,MNL) ⊂ fk+1Ψ(k + 1, L,M)(20.1.6.12).

Proof: Cf.[Rubin, P100]?. □

Cor.(20.1.6.15). Situation and notation as in(20.1.6.14), if F ⊂fin L ⊂ F∞ and finite set of places
Σ∞
F ∪ S(p) ∪ Ram(T ) ⊂ Σ ⊂ ΣF , then

hra5r
τ cL ∈ char(X∞,S(p)).H1(FΣ/L, T )lf .

Proof: It follows from(20.1.6.14) and induction that

hra5
τΨ(0, L,MN r

L) ⊂ (
r∏
i=1

fi)Ψ(r, L,M) ⊂ char(X∞,S(p))ΛL,M .

By(20.1.6.13), it suffices to show that for any ψ ∈ Hom(H1(FΣ/L, T ),ΛL), hra5r
τ ψ(cL) ∈

char(X∞,S(p))ΛL. For this, notice ψ(κL,1,MNr
L
) ≡ ψ(cL)(mod M)(?, Cf.[Rubin, P100]), and by

definition ψ(κL,1,MNr
L
) ∈ Ψ(0, L,MN r

L)ΛL,M . Then we get the desired assertion by noticing M can
arbitrarily large.

□

7 Euler System for Elliptic Curves(Kato)
Thm.(20.1.7.1)[Kato]. Suppose E ∈ Ell /Q with conductor N , and p ∈ P. Then there exists D,D ̸≡

1 mod p, (DD′, 6pN) = 1, and rE ∈ Z+ independent of p, and an Euler system c = c(D,D′) for
Tp(E)(20.1.3.2):

{cQn(µr) ∈ H1(Qn(µr), Tp(E))}r∈R(NpDD′),n∈N,

s.t. for any character χ ∈ Gal(Qn/Q)∨,∑
γ∈Gal(Qn/Q)

χ(γ) exp∗
ωE

(locsp(c
γ
Qn

)) = rEDD
′(D − χ−1(D))(D′ − χ−1(D′))LNp(E,χ; 1)/ΩE .

Proof: Cf.[Scholl, Thm5.2.7.]? □

Cor.(20.1.7.2). Situation as in(20.1.7.1), suppose that E has good ordinary reduction or multiplicative
reduction at p, then there is an Euler system c for Tp(E) s.t.

• exp∗
ωE

(locsp(cQ)) = rELNp(E; 1)/ΩE .
• Col∞(locsp,∞(cQ,∞)) = rELE,N (20.1.5.1).

Proof: Let σD, σD′ ∈ Gal(Q(µp∞)/Q) denote the automorphism ζ 7→ ζD, ζ ∈ µp∞ , then since
D,D′ ∤ 1(mod p), (D−σD)(D′−σD′) ∈ Λp is invertible. Let ρD,D′ ∈ Zp[[GalQ]] be any element that
restricts to (D − σD)−1(D′ − σD′)−1, then we can define

cQn(µr) = (DD′)−1ρD,D′cQn(µr),
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which is also an Euler system, and by(20.1.7.1) and a change of variable, we get∑
γ∈Gal(Qn/Q)

χ(γ) exp∗
ωE

(locsp(c
γ
Qn

)) = rELNp(E,χ; 1)/ΩE .

Then if χ is the trivial character, this gives equation1. And for any χ ∈ Gal(Q∞/Q)∨,

χ
[

Col∞(locsp,∞(cQ,∞))
]

=

{
(1− α−1)(1− β−1)−1 exp∗

ωE
(locsp(cQ)) = rELNp(E; 1)/ΩE , χ = 1

α−nτ(χ)
∑
γ∈Gal(Qn/Q) χ

−1(γ) exp∗
ωE

(locsp(c
γ
Qn

)) = rELNp(E;χ−1, 1)/ΩE c(χ) = pn > 1

= χ(rELE,N ).

Thus Col∞(locsp,∞(cQ,∞)) = rELE,N . □

Bounding Selmer Groups

Prop.(20.1.7.3). Suppose E ∈ Ell /Q without CM. Notation as in(20.1.7.1),
• If E has good ordinary reduction or non-split multiplicative reduction at p, then X∞(E[p∞])

is f.g. torsion over Λp, and there exists t ∈ N s.t. char(X∞)|(ptLE,N ). And if ρE,p is surjective
with p ∤ rE

∏
q|N,q ̸=p ℓq(q−1), then char(X∞)|(LE).

• If E has split multiplicative reduction at p, then similar results hold with char(X∞) replaced
by J char(X∞).

Proof: Because Col∞ is injective(20.1.5.2), by(20.1.7.2),

L = char
(
H1

∞,/ Sel(Qp, T )/Λp. locsp,∞(cQ)
)∣∣∣∣ char

(
Im(Col∞)/(Col∞(locsp,∞(cQ)))

)∣∣∣∣(rELE,N )

So item1 follows from(20.1.6.9). Notice the hypothesis are satisfied by(20.1.6.3). Item2 also follows,
by noticing that Im(Col∞) ⊂ Jp(20.1.5.2). □

Cor.(20.1.7.4)[Greenberg].Let E ∈ Ell /Q without CM, then there exists ME ∈ Z+ s.t. if p ∈ P is
good ordinary for E and p ∤ME , then X∞(E)(20.1.2.6) has no non-zero finite submodules.

Proof: Cf.[Rubin short, P363] and [Greenberg, Iwasawa theory for p-adic Representations]?. □

Cor.(20.1.7.5).Let E ∈ Ell /Q without CM, p ∈ P is a good place for E and p ∤
2rEME

∏
q|N ℓq(q−1)(20.1.7.1)(20.1.7.4), and ρE,p is surjective, then

#X(E)[p∞]
∣∣∣L(E; 1)

ΩE
.

Proof: If p is good supersingular for E, then p ∤ #Ẽ(Fp), and Cf.[Rubin short, P362]?
If p is good ordinary for E, then by(20.1.7.4), we may assume X∞(E) ⊂

∏
i Λp/(f

nij
i ), and then

Sel(cyclp(Q), E[p∞])Gal(cyclp(Q)/Q) = (X∞(E))Gal(cyclp(Q)/Q) ⊂ χ0(
∏
i

Λp/(f
nij
i ))
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and the RHS has cardinality χ0(char(X∞(E))), which by(20.1.7.3) divides

χ0(LE) = (1− α−1)2 ∏
q|N

ℓq(q−1)L(E; 1)/ΩE(20.1.5.1).

Also, one show by proof of Mazur control theorem that

Sel(Q, E[p∞])→ Sel(cyclp(Q), E[p∞])Gal(cyclp(Q)/Q).

is injective with cokernel of order divisible by (1− α−1)2?. Thus the assertion follows. □

Cor.(20.1.7.6). Suppose E ∈ Ell /Q without CM, and L(E; 1) ̸= 0, then #E(Q) <∞,#X(E) <∞.

Proof: This is proven by Kolyvagin before, but Kato proved it again as follows:
For each q|N, ℓq(q−1) ̸= 0, so LNp(E; 1) ̸= 0, and then by(20.1.7.2), locsp(cQ) ̸= 0, then it follows

from(20.1.6.5) that Selp∞(E/Q) <∞. Notice the hypothesis is satisfied by(20.1.5.5).
But then by Serre’s theorem, ρE,p is surjective for a.e. p, so by(20.1.7.5), X(E)[p∞] = 0 for a.e.

e. Thus the assertion follows. □

Thm.(20.1.7.7) [Kato].For E ∈ Ell /Q, if F/Q is an Abelian extension and χ ∈ Gal(F/Q)∨, and
L(E,χ; 1) ̸= 0, then #E(F )χ <∞,#X(EL)χ <∞.

Proof: We only prove for the case E without CM. For the CM case, Cf.[Coates-Wiles77], [Rubin,
The Iwasawa Main conjecture for Imaginary Quadratic Fields] or [Rubin-Wiles, Mordell-Weil Groups
of Elliptic Curves over Cyclotomic Fields].?

The proof is similar to that of(20.1.7.6): χ(char(X∞(E))) is a non-zero multiple of L(E,χ; 1), so
# Sel(cyclp(Q), E[p∞])χ <∞. Then use a variant of(20.1.7.5) to bound #X(E). □

Cor.(20.1.7.8) [Kato].For E ∈ Ell /Q and F/Q an Abelian extension, p ∈ P, E(Q(µp∞)) is a f.g.
Abelian group.

Proof: It follows from [Roh84]? that L(E,χ, 1) ̸= 0 for a.e. character χ of finite order of
Gal(Q(µp∞)/Q). ? □

Def.(20.1.7.9)[rp(E/F )].For F ∈ NField, E ∈ Ell /F, p ∈ P, define

rp(E/F ) =
∑

v∈S(p),E has potential supersingular reduction at v
[Fv : Qp].

Conj.(20.1.7.10).For F ∈ NField, E ∈ Ell /F, p ∈ P, let Γ = Gal(cyclp(F )/F ) ∼= Zp, then

rankFrac(Zp(Γ))[Sel(E/ cyclp(F ))⊗Zp(Γ) Frac(Zp(Γ))] = rp(E/F )(20.1.7.9)

Proof: □

Conj.Cor.(20.1.7.11).For F ∈ NField, E ∈ Ell /F, p ∈ P,

rankFrac(Λp)[Sel(E/ cyclp(F ))⊗Λp Frac(Λp)] ≥ rp(E/F )(20.1.7.9)

Proof: Cf.[Coates, Galois of Elliptic Curves, P19]. □

Cor.(20.1.7.12).For F ∈ NField, E ∈ Ell /F, p ∈ P, if E has potential good ordinary reduction at all
places dividing p, and Sel(E/F ) is finite, then Sel(E/ cyclp(F ))∨ is Zp(Γ)-torsion.
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Proof:
□

Cor.(20.1.7.13). If E ∈ Ell /Q and rankan(E) = 0, then Sel(E/ cyclp(Q))∨ is Λp-torsion.

Proof: This follows from(19.5.2.1) and(20.1.7.12). □

Cor.(20.1.7.14). Suppose E ∈ Ell /Q and p ∈ P is of good ordinary reduction for E, then

Sel(Q(µp∞), E)∨

is torsion over Λp.

Proof: Cf.[Kato]. □

Prop.(20.1.7.15) [Euler Characteristic of Sel(E/ cyclp(F ))].Let p ∈ P \ {2}, F ∈ NField, and
E ∈ Ell /F with good ordinary reduction over all places v ∈ S(p). Suppose Sel(E/F ) is finite, then
Sel(E/F ) has finite Γ-Euler characteristic, and

χ(Γ, Sel(E/ cyclp(F ))) = ρp(E/F ) =
∣∣∣#X(E/F )[p∞]

(#E(F )[p∞])2 ·
∏

v∈Σfin
F

cv ·
∏

v∈S(p)
(#Ẽv(κv))2

∣∣∣−1

p

Proof: Cf.[Coates, Galois cohomology of Elliptic Curves, P28]. □

8 Examples
Example(20.1.8.1).There are three elliptic curves of conductor 11 over Q, namely

A0 : y2 + y = x3 − x2 − 10x− 20

A1 : y2 + y = x3 − x2

A2 : y2 + y = x3 − x2 − 7820x− 263580.

And they are all isogenous.

Proof: □
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20.2 Iwasawa Theory

1 Iwasawa Theory for Fields
Def.(20.2.1.1)[Iwasawa Algebra].Let Γ ∼= Zp, the Iwasawa algebra Λp is defined to be

Λp = Zp[Γ].

And it is non-canonically isomorphic to Zp[[T ]].

Proof: ? □

Def.(20.2.1.2)[Pseudo-Isomorphisms].A homomorphism between Λp-modules are called a pseudo-
isomorphism if its kernel and cokernel are all finite.

Prop.(20.2.1.3).For M ∈Modfg
Λp , there exists r, s, t, ni,mj ∈ N and fj distinguished and irreducible,

s.t. M is pseudo-isomorphic to

Λ⊕r
p ⊕ (

s⊕
i=1

Λp/(pni))⊕ (
t⊕

j=1
Λp/(fj(T )mj )).

Proof: Cf.[Washington, P272]. □

Prop.(20.2.1.4). If B ∈Modtor,fg
Λp , then there exists fi ∈ Λ∗

p and a pseudo-isomorphism(20.2.1.2)

B →
⊕
i

Λp/(fi).

Moreover, the ideal (
∏
i fi) ⊂ Λp is well-defined, called the characteristic ideal of B, denoted by

char(B).

Proof: □

Prop.(20.2.1.5). If X ∈Modfg
Λp and #XΓ <∞, then X is torsion over Λp.

Proof: Cf.[Washington]. □
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20.3 p-adic L-Functions

1 p-Adic L-Functions
Main references are [Fontaine’s rings and p-adic L-functions, Colmez], and [Mazur, B.; Tate, J.;

Teitelbaum, J. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math.
84 (1986), no. 1, 1–48.]

Prop.(20.3.1.1) [Kummer’s Theorem].Let a ≥ be coprime to p and k ≥ 1. If n1, n2 ≥ k that
n1 ≡ n2 mod φ(p), then

(1− an1)Bn1

n1
≡ (1− an2)Bn2

n2
mod pk.

Proof: Cf.[p-adic L-functions, Colmez]P5. □

Remark(20.3.1.2).This has vast generalizations in Iwasawa theory, Cf.[Iwasawa, On p-adic L-
functions].

2 Iwasawa Main Conjectures
[Wiles, A. The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3,

493–540], [Rubin, Karl The ”main conjectures” of Iwasawa theory for imaginary quadratic fields.
Invent. Math. 103 (1991), no. 1, 25–68.].

Thm.(20.3.2.1)[Herbrand].Let p ∈ P, Y = Cl(Q(µp))[p], then Gal(Q(µp)/Q) = (Z/(p))× acts on Y
as a Fp-space by conjugation. Let Y j be the subspace of Y that (Z/(p))× acts by character a 7→ aj .
Then for 1 < j < p − 1 an odd integer, if Y j ̸= 1, then the Bernoulli number Bp−j has numerator
divisible by p.

Proof: Cf.[Eisenstein Ideals, Mazur, P52]. □

3 Iwasawa Main Conjectures for GL(2)

Main references are [the Iwasawa Main Conjectures for GL(2), Skinner-Urban].
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21 | Computational Number Theory and
Complexity

21.1 Computational Number Theory
References are [Princeton Companion] and [Pi and the AGM. A study in Analytic Number theory

and computational complexity].
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21.2 Theoretical Computer Science
Def.(21.2.0.1)[Protocols].A protocol is a multi–party algorithm, defined by a sequence of steps,
specifying the actions required of two or more parties in order to achieve a specified objective

1 Cryptography
References are [Arithmetic aspects of cryptography, GTM], and [AAG99].

Def.(21.2.1.1) [Key Establishment Protocols].A key establishment protocol is a protocol
whereby a shared secret becomes available to two or more parties, for subsequent cryptographic
applications.

Prop.(21.2.1.2)[An Algebraic Key Establish Protocol, Anshel-Andhel-Goldfeld].Let U, V
be monoids and

β : U × U → V, γ0, γ1 : U × V → V

be feasibly computable functions satisfying the following properties:
• β(x, y1y2) = β(x, y1)β(x, y2).
• γ1(x, β(y, x)) = γ2(y, β(x, y)).
• Given y1, y2, . . . , yk ∈ U and β(x, y1), . . . , β(x, yk), it is in general infeasible to determine the

element x.
Then there is a key establish protocol as follows:

1. Publicly assign users A, B elements S = {s1, . . . , sm} and T = {t1, . . . , tn}.
2. User A choose some a ∈ S and transmit the elements β(a, ti) to user B.
3. User B chose some b ∈ T and transmit the elements β(b, ti) to user A.
4. Then item1 guarantees that user A can calculate β(b, a) and thus γ1(a, β(b, a)). Similarly user

B can calculate β(a, b) and thus γ2(b, β(a, b)). Then notice

κ = γ1(a, β(b, a)) = γ2(b, β(a, b))

is an established key.
But to extract an identical element, there are two cases: If there isa. feasible algorithm to put
every word in U in canonical form, then they get a identical element. Otherwise there are no
canonical form algorithm but has a fast word identifying algorithm, then user A can choose a
random word τ other than κ and then choose either send τ or κ to user A. Then user A can
determine if this is κ or not, and receives a bit in this way.

Remark(21.2.1.3).An example is given by U = V = G ∈ Grp and

β(x, y) = x−1yx, γ1(u, v) = u−1v, γ2(u, v) = v−1u.

Then
κ(a, b) = [a, b].

Def.(21.2.1.4)[Factoring Integers].

Def.(21.2.1.5)[ECDHE Key Exchange].

Def.(21.2.1.6)[SIDH Key Exchange].Using a supersingular elliptic curve E/Fp2 .
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Primality Proving

Def.(21.2.1.7)[Elliptic Curve Primality Proving(ECPP)].Cf.[Sutherland]L12.
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22 | Theoretical Physics

22.1 Quantum Mechanics

Basic References are [Nap].

1 Basics

Axiom(22.1.1.1) [Axioms for Quantum Machanics].The Schrodinger equation can be derived
from the Dirac-von Neumann axioms:

The states of particles is a countable dimensional Hilbert space, and
• The observables of a quantum system are defined to be the (possibly unbounded)Hermitian

operators A on H. Then any continuous observable is unitarily diagonalizable, with real eigen-
values by Hilbert-Schimidt(10.10.4.16).

• The state φ of the quantum system is a unit vector of H, up to scalar multiples.
• The expectation value of an observable A for a system in a state φ is given by the inner product

(φ,Aφ).
• (Unitarity)The time evolution of a quantum state according to the Schrodinger equation is

mathematically represented by a unitary operator U(t) (depends only on the state an relative
time)(one-parameter subgroup).

Now that φ(t) = Û(t)φ(t0), so Û(t)φ(t0) = e−iĤt, Ĥ hermitian.
So now take derivative w.r.t t, we get idφdt = Ĥφ. By quantum correspondence principle, it

is possible to derive the expression of Ĥ by classical methods.

Def.(22.1.1.2) [Qubits].A qubit is a state that is complex combination of 0 and 1, i.e. |φ) =
α|0) + β|1). Notice I very dislike the ’bra-ket’ notation, I prefer to think of state just as an element
in the Hilbert space, and use any notation I like.

Def.(22.1.1.3)[Pauli Observables].The observables on a two dimensional Hilbert space, i.e. a qubit
state space, are all combinations of Pauli Observables or Pauli matrixes plus I:

σz =
[
1 0
0 −1

]
σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]

Their corresponding eigenvalues are denoted by

↑=
[
0
1

]
↓=

[
1
0

]
, →= 1√

2

[
1
1

]
←= 1√

2

[
1
−1

]
, ⊗ = 1√

2

[
1
i

]
⊙ = 1√

2

[
1
−i

]
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Remark(22.1.1.4).The solution of a Schrodinger equation for a non Relativistic particle is assumed
to be a Schwartz function (Vanish fast enough at infinity). The coefficients is assumed smooth enough
to guarantee at least uniqueness and existence locally.

Prop.(22.1.1.5).The wave function on the (p, t) coordinates is the Fourier Transform of the wave
function on the (x, t) coordinates, because the eigenstate of the p-operator iℏ ∂

∂x is eikx, the coefficients
of which is the value (probability) of the wave function of the (p, t) coordinates.

Prop.(22.1.1.6)[Schrödinger Uncertainty Principle]. Set σA =
√
⟨Â2⟩ − ⟨Â⟩2, then:

σ2
A2σ2

B ≥
∣∣∣12⟨ÂB̂ + B̂Â⟩ − ⟨Â⟩⟨B̂⟩

∣∣∣2 +
∣∣∣ 1
2i
⟨[Â, ]B̂]⟩

∣∣∣2.
Proof: Derived from definition and Schwarz inequality, Cf.[Wiki]. □

Cor.(22.1.1.7)[Heisenberg Uncertainty Principle]. σxσp ≥ ℏ
2 .

Proof:
[x, iℏ ∂

∂x
] = iℏ.

□

Prop.(22.1.1.8)[Spectral Decomposition]. In Quantum physics, one need to use spectral decom-
position of the Hamiltonian operator. But at most cases, there are only countably many eigenstate
and the eigenvalue has a lower bound and tends to infinity. In this case, (Ĥ + A)−1 is a compact
operator thus by spectral theorem(10.10.4.15) the eigenstate of Ĥ forms a set of complete basis.

Prop.(22.1.1.9)[No-Cloning Theorem].

Calculations

Prop.(22.1.1.10) [Virial Theorem].For a system that V (r) ∼ rn, the average kinetic energy and
the average potential energy has the relation :

2⟨T ⟩ = n⟨V ⟩.

Spin

2 Quantum Computations

Classical Logic Gates

Def.(22.1.2.1)[Boolean Functions].A Boolean function is a function f : Fn2 → F2.

Def.(22.1.2.2)[Classical Logic Gates].There are four classical logic gates, if we let 0, 1 ∈ F2, then:
• AND gate: (a, b) 7→ ab.
• OR gate: (a, b) 7→ ab+ a+ b.
• NOT gate: a 7→ a+ 1.
• COPY gate: a 7→ (a, a).

Def.(22.1.2.3)[Reversible Gates].A gate is called reversible iff it is a bijection from Fn2 to Fn2 .
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Def.(22.1.2.4)[Stimulation].A set of gates is said to be able to stimulate a boolean function f iff
there is a composition of these gates that maps:

(x1, . . . , xm+n)→ (g1(x1, . . . , xm+n), . . . , gk(x1, . . . , xm+n))

that if we let xi1 = a1, xi2 = a2, . . . , xim = am be fixed, where {0, 1 . . . ,m + n} − {i1, . . . , im} =
{j1, . . . , jn}(in some order), then g1(x1, . . . , xm+n) = f(xj1 , . . . , xjn).

A set of gates is called universal iff they can stimulates all Boolean function f : Fn2 7→ F2.

Prop.(22.1.2.5) [Classical Gates Universal].The four classical gates are universal. In fact,
AND(x, y) = OR(NOT (x), NOT (y)), so even AND is disposable, and COPY is not used as well.

Proof: Just use OR gate to juxtapose all possible combinations that are mapped to 1. □

Example(22.1.2.6)[Reversible Gates].
• The CNOT gate is defined to be CNOT : (a, b) 7→ (a, a+ b).
• The Toffoli gate is defined to be CCNOT : (a, b, c) 7→ (a, b, c+ ab).

Prop.(22.1.2.7).CNOT gate cannot stimulate AND. In particular, CNOT is not universal.

Proof: It can be shown that any Boolean function that can be stimulated by CNOT gate is of the
form (x1, . . . , xn) 7→

∑
aixi + b. But AND is of the form (a, b) 7→ ab, which is not of the form, so it

is not stimulated by CNOT. □

Prop.(22.1.2.8).The Toffoli gate(22.1.2.6) is universal(22.1.2.4).

Proof: It suffices to show it can stimulate AND and NOT, then it can stimulate OR because
OR(x, y) = NOT (NOT (x), NOT (y)).

AND is outputted in the third bit with c = 0, a = x, b = y, NOT is outputted in the third bit
with a = 1 = c, b = x. □

Quantum Logic Gates

Def.(22.1.2.9)[Quantum Logic Gates].A quantum logic gate is a unitary matrix. So a quantum
logic gate is always reversible.

Prop.(22.1.2.10)[Examples of Quantum Gates].

• The Hadamard gate H is a rotation on one single qubit given by the matrix
[ 1√

2
1√
2

1√
2 − 1√

2

]
.

• If a classical gate is reversible and its matrix is unitary, then the same matrix will give out a
quantum gate with all entries 0 and 1, called the quantization of the classical gate.

• The Fredkin gate or CSWAP gate is a three-bit gate defined as the quantization of the gate
given by:(a, b, c) 7→ (a, a(b+ c) + b, a(b+ c) + c).

3 Quantum Algorithms

Deutsch-Jozsa Algorithm

Prop.(22.1.3.1)[Deutsch-Jozsa Algorithm].The Deutsch-Jozsa problem is that: given a func-
tion f : Fn2 → F2, which is either a constant function or a function that takes half value 0 and half
value 1, If we have a box that maps:(x1, . . . , xn, x) 7→ (x1, . . . , xn, x+ f(x1, . . . , xn)).
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Now there is a Deutsch-Jozsa algorithm that can determine if f is a constant function just
using the box one time.

Proof: Cf.[Napkin P270]. The circuit is

(0, 0, . . . , 0, 1) 7→ (H(0),H(0), . . . , H(0),H(1)) 7→ (H(0),H(0), . . . , H(0),H(1) + f(H(0),H(0), . . . , H(0)))
7→ (H(H(0)),H(H(0)), . . . , H(H(0)),H(1) + f(H(0),H(0), . . . , H(0))).

Then we measure all the first n bits in the |0)/|1)-basis.
Notice if f is constant, then the first n bits must be all ±|00 . . . 0), so the measure is all 0. And

if f is not constant, then the first n bits are entangled, equals the image of

1√
2n

∑
(a1,...,an)∈Fn2

(−1)f(a1...an)|a1 . . . an).

after the action of H⊗n, then its coefficient of |0 . . . 0) is just 0, so the measure cannot be all 0. □

Quantum Fourier Transform

Def.(22.1.3.2) [Discrete Fourier Transform].The inverse Fourier transform is defined to
be:(x0, . . . , xn−1) 7→ (y0, . . . , yn−1), where

yk = 1
N

N−1∑
j=0

ωjkN xk.

This is in fact represented by a van der Waerden matrix of ωN times 1
N .

Prop.(22.1.3.3) [Fast Fourier Transform].There is a fast Fourier transform algorithm that
can calculate the Fourier transform in O(N logN) time.

Proof: □

Def.(22.1.3.4)[Quantum Fourier Transform].The quantum Fourier transform is a gate rep-
resented by a matrix UQFT which is the van der Waerden matrix of ωN times 1√

N
.

Proof: It suffices to prove this matrix is truly unitary. □

Prop.(22.1.3.5) [Tensor Representation].The trick of the quantum Fourier transform lies in its
connection with the 2-adic decimal representation:

UQFT (|xnxn−1 . . . x1)) = 1√
N

(|0) + exp(2πi · 0.x1)|1))

⊗(|0) + exp(2πi · 0.x2x1)|1))
⊗ . . .
⊗(|0) + exp(2πi · 0.xnxn−1 . . . x1)|1))

Proof: Direct calculation.? □

Prop.(22.1.3.6).Now by the above tensor representation, the thing seems to be beautiful, and it seems
the Fourier transform for 2n data can be done in n2 steps. And this is true, QFTn is inductively
define, Cf.[Napkin P273].
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Shor’s Algorithm

Def.(22.1.3.7).For a numberM = pq, where p, q are different odd prime numbers. Then an x mod M
is called good iff: (x,M) = 1, r = ord(x) is even, and neither of xr/2 ± 1 is divisible by M .

Then at least half of (Z/MZ)∗ is good.

Proof: It suffices to consider a fixed order 2a, and this is additive in Z/(2a, p− 1)Z× Z/(2a, q −
1)Z.?. □

Remark(22.1.3.8). If we find a good x forM , then xr/2±1 contains separately a prime p or q, so we can
use Euclidean algorithm to extract a prime of M . This is just the idea of Shor’s algorithm(22.1.3.9).

Prop.(22.1.3.9)[Shor’s Algorithm].For M = pq, we can factor p, q out in O((logM)2) time.

Proof: Cf.[Napkin P274]. □

Grover’s Algorithm

Prop.(22.1.3.10).

Prop.(22.1.3.11)[Grover’s Algorithm]. If there are n items labeled {0, . . . , n − 1}, and there is a
marked item w. then there is a quantum algorithm that find w in O(

√
n) times.

Proof: Cf.[Quantum Algorithm MIT P33,35]. □
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22.2 Quantum Field Theory
Main references are [Witten, Super-symmetry and Morse Theory]. [Witten, Topological Quantum

Field Theory, 1988]. [Witten, Elliptic Genera and Quantum Field Theory], [Quantum Field Theory
and the Jones Polynomial, Witten], [Supersymmetry and Morse Theory, Witten].

1 Supersymmetric Quantum Field Theory
Main references are [Supersymmetry and Morse Theory, Witten].

2 Topological Quantum Field Theory
Main references are [Ati88], [On the Classification of Topological Field Theories, Lurie].

Remark(22.2.2.1). It now seems clear that the way to investigate the subtleties of low-dimensional
manifolds is to associate to them suitable infinite-dimensional manifolds (e.g. spaces of connections)
and to study these by standard linear methods (homology, etc.). In other words we use quantum
field theory as a refined tool to study low-dimensional manifolds. —–Atiyah.

Def.(22.2.2.2)[Topological Quantum Field Theory].A topological quantum field theory or
TQFT in dimension d defined over a ground ring Λ ∈ CAlg consists of the following data:

• For any Σ ∈ Diffdorntd,cpct, there is a finite Λ-module Z(Σ), called the states of particles of
Σ.

• For any M ∈ Diffd+1
orntd,∂ , there is an element Z(M) ∈ Z(∂M), called the vacuum state

defined by M .
s.t.

• Z are functorial in orientation-preserving diffeomorphisms of Σ or M .
• Z are involutary, i.e. Z(Σ∗) = Z(Σ)∗, where Σ∗ is Σ with the dual orientation and Z(Σ)∗ is

the dual module of Z(Σ).
• Z is multiplicative, i.e. Z(Σ1

⨿
Σ2) = Z(Σ1) ⊗ Z(Σ2), and if ∂M1 = Σ1

⨿
Σ3, ∂M2 = Σ3 ∗⨿

Σ2,M = M1
⨿

Σ3 M2, then
Z(M) = ⟨Z(M1), Z(M2)⟩

where the pairing is the natural pairing Z(Σ3)× Z(Σ3)∗ → Λ.
• Z(∅d) = Λ, and Z(∅d+1) = 1 ⊂ Λ = Z(∅d).

Prop.(22.2.2.3) [Cobordisms]. If For M ∈ Diffd+1
orntd,∂ , if ∂M = Σ∗

1
⨿

Σ2, then Z(M) ∈ Z(Σ1)∗ ⊗
Z(Σ2) can be regarded as a homomorphism Z(M) : Z(Σ1) → Z(Σ2), and this is compatible with
composition of cobordisms. In particular, if Σ ∈ Diffdorntd,cpct,M = Σ × [0, 1], then Z(M) = id ∈
End(Z(Σ)).

In particular, the states of particles and vacuum states can be calculated by cut-and-paste.

Def.(22.2.2.4)[Vacuum-Vacuum Expectation Values].For M ∈ Diffd+1
orntd,cpct, Z(M) ∈ Z(∂M =

∅) = Λ is an element, called the vacuum-vacuum expectation value of M .

Prop.(22.2.2.5)[Homotopy Invariance].Let Σ,Σ′ ∈ Diffdorntd,cpct,M = Σ× [0, 1],M ′ = Σ′ × [0, 1],
and F : M →M ′ is a homotopy of morphisms between f1, f2 : Σ→ Σ′, then Z(f) = Z(f ′) : Z(Σ′)→
Z(Σ), by(22.2.2.3).
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Examples of Topological Quantum Field Theory

Remark(22.2.2.6).For d = 1, there are Floer/Gromov theory and holomorphic conformal field theo-
ries.

Remark(22.2.2.7).For d = 2, there are Jones/Witten theory, Casson theory, Johnson theory, and
“Thurston” theory.

Remark(22.2.2.8).For d = 3, there are Floer/Donaldson theory.

3 Vector Operator Algebras
Cf.[Princeton Companion].
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22.3 Mirror Symmetry
Cf.[Princeton Companions].
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22.4 General Relativity

1 Basics
Prop.(22.4.1.1)[Maxwell’s Equation].Normal Maxwell’s equation reads:

divE = q (Coulomb’s law)
divH = 0 (Gaussian law)
curlE = −1

c
∂H
∂t (Faraday’s law)

curlH = j + 1
c
∂E
∂t (Ampère-Maxwell law)

where E is the magnetic field, H is the electric field, q the charge density, j the electric current.
In Minkowski space, we define the electromagnetic 2-form

F = 1
2
Fαβdx

α ∧ dxβ,

where Fi0 = Ei, F ij = Hk, and electric current J , J i = −ji, J0 = q.
Maxwell’s equation can be re-written as:

d∗F = J dF = 0.

Where d∗ = ∗d∗.

Proof: The Minkowski space is flat, the equivalence can be seen by direct calculation. □
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23 | Combinatorics

23.1 Combinatorics

1 Graph Theory
Def.(23.1.1.1) [Graphs].A graph X is a CW-complex of dimension≤ 1 with a given presentation

(X0, X1 = X)(3.12.3.1). the elements in the set of X0 are called vertices of X, and the 1-cells are
called edges of X.

For a graph X, a subgraph is a sub CW-complex of X.
Def.(23.1.1.2)[Trees].A tree is a graph T s.t. H1(T ) = 0. A tree in a graph X is called a maximal
tree if it contains all vertices of X. A forest is a graph that is a disjoint union of trees.

Prop.(23.1.1.3).Any tree T is contractible, and any vertex v is a deformation retract of T .
Proof: □

Prop.(23.1.1.4)[Maximal Trees].Every connected graph contains a maximal tree, and any tree in
such a graph is contained in a maximal tree.

A tree T in a graph X is maximal iff X0 ⊂ T .
Proof: Cf.[Hat02]P84. □

Prop.(23.1.1.5) [π1 of Graphs].For a connected graph X with a maximal tree T , π1(X) is a free
group with basis the classes [fα] corresponding to the edges eα ∈ X\T .
Proof: The quotient map X → X/T is a homotopy equivalence by(3.12.6.7). And the quotient
space X/T has only one vertex, thus is a wedge sum of circles corresponding to eα ∈ X\T . So we
are done by(3.12.4.28). □

Prop.(23.1.1.6)[Covering Spaces of Graphs].Every covering space π : X̃ → X of a graph is also
a graph, with vertices and edges lifts of vertices and edges of X.
Proof: Let the sets π−1(v) be vertices of X̃, where v are vertices of X. And if we write X as a
quotient space of X0 ∪α Iα, each Iα can be lifted to maps to X̃, and we let these be edges of X̃. The
topology of X̃ coming from quotient topology of this is the same as the original topology, because
they has the same basis open sets, because π is a local homeomorphism. □

Prop.(23.1.1.7)[Spencer’s Lemma]. If there is a triangulation of a plane polygon P , for arbitrary
3-color numbering({0, 1, 2}) of the vertices, if the number of edges on the boundary with color (0, 1)
is odd, then there is a triangle with vertices of pairwise different colors.
Proof: In fact the number of those triangles with vertices of pairwise different colors is odd. In
fact, the number of (0, 1)-edges on a triangle is odd iff its vertices has pairwise different colors. But
the sum of numbers of (0, 1)-edges on the triangles are odd, by hypothesis, thus the result. □
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Connectedness

Def.(23.1.1.8)[s-Connected Graphs].For s ∈ Z+, a graph is called k-connected if it is connected
after deleting any k − 1 vertices.

Def.(23.1.1.9)[(x, y)-Cuts].For a finite graph G and x, y ∈ V (G) with d(x, y) ≥ 2, an (x, y)-cut in
G is a set S ∈ V (G) \ {x, y} s.t. G \ S has no (x, y)-paths.

Def.(23.1.1.10)[Independent Sets].An independent set in a graph is a set of vertices that any two
of them is not connected.

Thm.(23.1.1.11)[Menger].Let G be a finite graph and x, y ∈ V (G) s.t. d(x, y) ≥ 2. Denote κG(x, y)
the minimum size of an (x, y)-cut in G and λG(x, y) a maximum number of internally-disjoint (x, y)-
paths in G, then κG(x, y) = λG(x, y).

Proof: □

Def.(23.1.1.12) [(x,U)-Fans].For a finite graph G and a subset U ⊂ V (G) and x ∈ V (G) \ U , an
(x,U)-fan of size k is a set of k-paths from x to U s.t. any two of them shear only x.

Prop.(23.1.1.13)[Fan Lemma, Dirac].For k ∈ Z+, a graph is k-connected iff it has at least k + 1
vertices, and for any subset U of vertices G with |U | ≥ k and each vertex x /∈ U , G has an (x,U)-fan
of size k.

Proof: If G has at least k + 1 vertices and for any subset U ⊂ V (G) with |U | ≥ k and each vertex
x /∈ U , G has an (x,U)-fan of size k, we show G is k-connected: If there is a (k− 1)-vertex cut S, let
A be a connected component of G \ S, and U = V (G) \A. Then #U ≥ k, and for any x ∈ A, there
are no (x,U)-cut of size k, because each path from x to U must intersect with S.

Conversely, if G is k-connected and U ⊂ V (G),#U ≥ k. Let G′ = G ∗U {y}, then G′ is also
k-connected. Then by Menger’s theorem(23.1.1.11), λG(x, y) = κG(x, y) ≥ k. Let P1, . . . , Pk be
internally-disjoint (x, y)-paths in G′, then after deleting y, they form an (x,U)-fan of size k. □

Def.(23.1.1.14)[Hamiltonian Circuits].Let G be a finite graph, then an Hamiltonian circuit is
an loop in G s.t. each vertices appear exactly once. An Hamiltonian path is a path in G s.t. each
vertices appear exactly once.

G is called Hamiltonian connected if each pair of vertices x ̸= y ∈ G is the endpoint of a
Hamiltonian path in G.

Thm.(23.1.1.15)[Chvátal-Erdös]. If G is a finite graph with at least 3 vertices, and for some k ∈ Z+,
G is s-connected and contains no independent set of cardinality> k, then G has a Hamiltonian circuit.

Proof: The hypothesis implies that G is not a tree thus contains a circuit. Take a longest circuit C,
if there exists x /∈ C, then by Fan lemma(23.1.1.13), there exists an (x,U)-fan of size k, with vertices
x1, . . . , xk. Take any ordering of C and let yi be the successor of xi, then for the set {x, y1, . . . , yk},
either there is a path xyi or there is a path yiyj . In each case, we can find a circuit of larger size,
contradiction. □

Cor.(23.1.1.16). If G is an k-connected finite graph with no independent set of cardinality> k + 1,
then G has an Hamiltonian path.

Proof: The graph G ∗pt satisfies the hypothesis of(23.1.1.15) and has a Hamiltonian circuit. Thus
G has an Hamiltonian path. □
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Cor.(23.1.1.17). If G is a finite graph with at least 3 vertices, and for some s ∈ Z+, G is k-connected
and contains no independent set of cardinality> k, then G is Hamiltonian-connected.

Proof: The proof is similar to that of(23.1.1.15): For any vertices x ̸= y ∈ G, just choose the
longest path from x to y. □

Complete Graphs

Prop.(23.1.1.18).For any k, l ∈ Z+ and a graph G of size (k− 1)(l− 1) + 1, then either G contains a
complete k-graph, or any no-circuits ordering of the complement graph G′ contains a directed path
of l-vertices.

Proof: Consider any ordering on G′. then we can put the vertices in a matrix by the following
rule: The first row are vertices with no inward order, and for any k ≥ 1, the row k are vertices not
in the first k row and has an inward edge from some vertex in the row k.

Then there are no edges between vertices in the same row, and we are done if some row has k
vertices. If each row has less than k vertices, then there are at least l row, which will give us a
directed path of l-vertices, by our rule of construction. □

Cor.(23.1.1.19).For any k, l ∈ Z+ and a1 < a2 < . . . < a(k−1)(l−1)+1 ∈ Z+, there either exists k of
them no one dividing the other, or there exists l of them each of a multiple of the previous one.

Planer Graphs

Prop.(23.1.1.20)[Plane Graphs].When can a graph be embedded in R2.?
Proof: □

Prop.(23.1.1.21)[Euler].A simple finite planer graph G satisfies E(G) < 3V (G)− 6.

Proof: □

Extremal Graph Theory

Prop.(23.1.1.22) [Rademacher].For any n ∈ Z+, any graph G with V (G) = 2n,E(G) = n2 + 1
contains at least n triangles.

Proof:
□

Applications

Thm.(23.1.1.23)[Monsky].A square cannot be divided into m triangles of the same area, where m
is odd.

Proof: Choose a 3-coloring on R2: By(12.2.1.28) there can be an extended 2-adic valuation | · |2
on R that extends the 2-adic valuation on Q, then color a point (x, y)

• 0 if |x|2 < 1, |y|2 < 1,
• 1 if |x|2 ≥ 1 and |x|2 ≥ |y|2.
• 2 if |y|2 ≥ 1 and |y|2 > |x|2.
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Then there are two things:
1. The coloring is invariant under translation by vectors represented by a point of color 0.
2. The valuation of the area of a triangle with vertices of 3 different colors is bigger than 1, because

we can assume one vertex is the origin, and then its area is 1
2 |x1y2 − x2y1|, which, because the

coloring, must have 2-adic valuation bigger than 1.
Now back to the question, let the square be placed as a unit square, then its area is 1, and it has

exactly one (0, 1)-edge, so by Spencer’s lemma(23.1.1.7), it has a triangle with vertices of pairwise
different colors, so its area A has valuation> 1, but the total area is mA = 1 that has valuation 1,
so |m| < 1, which means that m is even. □

Prop.(23.1.1.24)[Hindman’s Theorem].Whenever N is colored with f.m. colors, one can find an
infinite subset A ⊂ N and a color c that whenever F ⊂ A is finite, the color of the sum of numbers
in F is colored c.

Proof: Cf.[W. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc.
83 (1977) 417–455.] □

2 Spander Graphs

3 Polytopes

Def.(23.1.3.1)[Polytopes].A n-polytope is a compact subset of Rn for some n ∈ Z with boundaries
given by polytopes of smaller dimensions. A polygon is a 2-polytope. A polyhedron is a 3-polytope.

Def.(23.1.3.2)[Tetrahedra].A tetrahedron is an 3-simplex in R3.

Def.(23.1.3.3)[Orthohedra].An orthohedron is a tetrahedron isomorphic to the convex hull of the
four points

{(0, 0, 0), (x, 0, 0), (x, y, 0), (x, y, z)} ∈ R3.

Prop.(23.1.3.4)[Dihedral Angles of Orthohedra].
• Each orthohedron has dihedral angles (α, β, γ, π/2, π/2, π/2).
• A rectangular solid can be cut into 6 orthohedra sharing a common diagonal. And for any
α, β, γ ∈ (0, π), α + β + γ = π, there is a rectangular solid that can be cut into 6 orthohedra
s.t. the dihedral angles along the diagonal are (α, β, γ, α, β, γ).

Proof: Only 2 needs a proof, and this is verified by brutal force calculations. □

4 Hilbert’s 3rd Problem

Cf.[Sch13b].

Def.(23.1.4.1)[Scissors Congruence].A dissection of a polytope P is an expression P = ∪ni Pi
s.t. the interiors of Pi are disjoint.

Two polytopes P,Q are called scissors-congruent if there are dissections P = ∪ni Pi, Q = ∪ni Qi
s.t. Pi ∼= Qi for 1 ≤ i ≤ n. Scissors congruence relations are denoted by ∼s.

Thm.(23.1.4.2)[Wallace-Bolyai-Gerwien].Any two polygons P,Q in R2 are scissors-congruent.
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Proof: Find a line l that is not parallel to any line generated by vertices of P and Q, cut P,Q
through lines parallel to l and passing through some vertices of O,Q. Then we get some trapezoids.
Then we cut them into right triangles.

Now we transform any right triangle P with vertices {A = (−0, 0), B = (0, 2b), C = (0, c)} to a
triangle triangle of height 2: Now consider another right triangle with vertices {A = (−0, 0), X =
(0, 2), Y = (0, bc)}. Then BY//CX, thus BY C and BYX are triangles of the same base and height.

Then BY C ∼s BYX: cut them into parallelograms with the same base and height, then it is
easy to see any two such parallelograms are scissor-congruent.

Now all the triangles has a side of length2, we can transform them into rectangles with a side of
length1. Then clearly P,Q are transformed together. □

Thm.(23.1.4.3)[Zylev]. If P,A,B are polytopes, A ⊂ P,B ⊂ P , P\A ∼s P\B, then A ∼s B.

Proof: Let

F = A
⨿ n⨿

k=1
Pk = B

⨿ n⨿
k=1

Qk, Pk ∼s Qk

We can dissect them even further s.t. Vol(Pk) < 1
2 Vol(A). Then we use induction on n to show that

A ∼s B: n = 0 is trivial. For n > 0, because of the volume bound, Vol(A\Qn) > Vol(Qn), thus we
can find disjoint T1, . . . , Tn ⊂ A\Qn s.t. Tk ∼s Pk ∩Qn. Now define

F ′ = F\Q,P ′
k = (Pk\Qn) ∪ Tk ∼s Pk, A′ = F ′\

n−1∪
k=1

P ′
k = (A\

n−1∪
k=1

Tk)
n−1∪
k=1

Qk

Then by induction, A′ ∼s B′ = B. But A′ ∼s A by changing Tk with Qk. □

Dehn-Sydler Theorem

Prop.(23.1.4.4)[Tetrahedra].Any polyhedron has a dissection into tetrahedra.

Proof: By choose a sufficiently small lattice dissection of R3, it suffices to consider three cases:
• A cube.
• A cube cut by one hypersurfaces.
• A cube cut by two hypersurfaces.
• A cube containing a single vertex.

All cases are straightforward. □

Def.(23.1.4.5)[Dehn Invariants].For a polyhedron P , define the Dehn invariant of P as

∆(P ) =
∑
i

li[αi] ∈ R⊗ (R/Zπ)

where the sum is over all edges ei, of P , li = l(ei), and αi is the dihedral angles of ei.

Thm.(23.1.4.6) [Dehn]. If two polyhedra in R3 are scissors-congruent, then they have the same
volume and Dehn invariants.

Proof: The volumes are the same by the invariance properties of Lebesgue measure. To show the
Dehn invariants are the same, notice the dissections of a polytope P may create new edges, but the
sum of angles around a new edge is 2π for if it is contained in the interior of P , or π if it is in the
surface of P . □
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Def.(23.1.4.7) [Simple Prisms].A simple prism is a polyhedron that is isomorphic to an affine
translate of T × I ⊂ R2 ×R, where T ⊂ R2 is a triangle.

Prop.(23.1.4.8).A simple prism P is scissors-congruent to [0, 1]2 × [0,Vol(P )].

Proof: Place the three edges P1Q1, P2Q1, P3Q3 that is the image of Vertices(T )× I vertically, and
they have length l. Then we can talk about the heights of Pi, Qi. Suppose h(P1) ≥ h(P2) ≥ h(P3).
If h(P3) ≥ h(Q1), then we can cut P along height h(Q1) make P scissors-congruent to a perfect
simple prism P ′ = T ′ × I ′. If h(P3) < h(Q1), then we can cut P along the plane P2P3Q1 to make
P ∼s P ′, where for P ′, h(P ′

3)−h(Q′
1) is larger. And if this process goes on, every 2 transform makes

h(P3)−h(Q1) bigger by at least l, so eventually h(P3) ≥ h(Q1), and we can transform it to a perfect
simple prism.

Now if P = T × I is a perfect simple prism, (23.1.4.2) shows T is scissors equivalent to [0, 1] ×
[0,Vol(T )], and then it suffices to show [0,Vol(T )] × I is scissors equivalent to [0,Vol(P )], which is
by(23.1.4.2) again. □

Def.(23.1.4.9)[pseudo-prisms].A pseudo-prisms is a convex polyhedra (OPQRS), where
• OPQ is is an isosceles with OP = PQ,
• PR,QS is orthogonal to the plane OPQ,
• l(QS) = 2l(PR).

Notice a pseudo-prism (OPQRS) is scissors-congruent to the perfect simple prism OPQ× PR.

Def.(23.1.4.10).Denote
• P the free Abelian group generated by isomorphism classes of all polyhedra.
• E the subgroup of P generated by the dissection relations.
• F is the subgroup of P generated by E and all the simple prisms(23.1.4.7).
• V = P/F .

Then clearly two polyhedra P,Q are scissors-congruent iff [P ] = [Q] ∈ P/E .

Prop.(23.1.4.11)[R-Structures].R acts on the set of polyhedra by scaling, and this action is additive
and multiplicative, and stablizes F , thus inducing an R-structure on V.

Proof: By(23.1.4.4), P is generated by tetrahedra. So it suffices to show that for λ1, λ2 ∈ R+ and a
tetrahedron T , [λ1T ]+[λ2T ]−[(λ1+λ2)T ] ∈ F . For this, use geometry, notice (λ1+λ2)T\(λ1T ∪λ2T )
consists of two simple prisms, where these two smaller tetrahedra aligned along an edge of T . □

Prop.(23.1.4.12)[Orthohedra].V is generated by orthohedra(23.1.3.3).

Proof: By(23.1.4.4), it suffices to show that for any tetrahedron T , [T ] is a linear combinations
of orthohedra. For this, take the center I of the inscribed circle of T , and take its projections
I1, I2, I3, I4 to the faces of T , then they form 24 orthohedra(may be degenerate ones). Thus T is a
linear combinations of those non-degenerate orthohedra. □

Prop.(23.1.4.13).A simple primes P has Dehn invariant ∆(P ) = 0(23.1.4.14) and(23.1.4.8), so
by(23.1.4.8) again, ∆ factors through ∆ : V → R ⊗ (R/Zπ), which is R-linear with R-structure
on V given in(23.1.4.11).

Thm.(23.1.4.14)[Dehn-Sydler].Two polyhedra in R3 are scissors-congruent iff they have the same
volume and Dehn invariants.
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Proof: One direction is shown in(23.1.4.6). For the other, it suffices to show this map ∆ : V =
P/F → R⊗(R/Zπ)(23.1.4.13) is injective, because in this way, if two polyhedra has the same volume
and Dehn invariants, then they are scissors equivalent to two prisms with the same volume, hence
scissors-congruent, by(23.1.4.8).

Take a good function φ : R→ V(23.1.4.24). φ vanishes on Zπ, thus extends to an R-linear map
Φ : R ⊗ (R/Zπ) → V, and for an orthohedron T , Φ(∆([T ])) = [T ] by(23.1.4.15), and orthohedra
generate V by(23.1.4.12), so Φ ◦∆ = idV . Thus ∆ is injective. □

Homological Arguments

Def.(23.1.4.15)[Good Functions].A map φ : R→ V is called a good function if
• φ is additive and φ(π) = 0.
• For any orthohedron T , [T ] =

∑6
i=1 liφ(αi), where the notation is the same as in(23.1.4.5).

Def.(23.1.4.16)[T (a, b)].For a, b ∈ (0, 1), define a′ =
√
a−1 − 1, b′ =

√
b−1 − 1, and define T (a, b) to

be the orthohedron with vertices

{(0, 0, 0), (a′, 0, 0), (a′, a′b′, 0), (a′, a′b′, b′)} ∈ R3.

Notice T (a, b) ∼= T (b, a).
The order of the vertices is also important. It is always assumed to be written in this order.

Prop.(23.1.4.17).For α, β ∈ R, T (sin2(α), sin2(β)) has three edges with dihedral angle π/2, and three
edges with lengths cot(α), cot(β), cot(γ) and dihedral angles (α, β, π/2 − γ) resp., where sin2(γ) =
ab, γ ∈ (0, π/2). In particular,

∆(T (sin2(α), sin2(β))) = cot(α)⊗ α+ cot(β)⊗ β + cot(γ)⊗ (π/2− γ).

Proof: Brutal force calculation. □

Prop.(23.1.4.18).For a, b, c ∈ R+,

a[T ( a+ b

a+ b+ c
,

a

a+ b
)] + b[T ( a+ b

a+ b+ c
,

b

a+ b
)] = a[T ( a+ c

a+ b+ c
,

a

a+ c
)] + c[T ( a+ c

a+ b+ c
,

c

a+ c
)]

Proof: This follows from the different ways of cutting the tetrahedron with vertices

{O = (0, 0, 0), X = (
√
bc, 0, 0), Y = (0,

√
ac, 0), Z = (0, 0,

√
ab)} ∈ R3.

In fact, for this tetrahedron, the plane orthogonal to Y Z passing through X cut this to two ortho-
hedra, and similar does the plane orthogonal to XZ passing through Y . These two cutting give the
assertion above. □

Def.(23.1.4.19) [Homological Functions].A homological function is a function h : (0, 1) → V
s.t.

• For a, b ∈ (0, 1), [T (a, b)] = h(a) + h(b)− h(ab).
• If a, b ∈ (0, 1), a+ b = 1, then ah(a) + bh(b) = 0.

Prop.(23.1.4.20).For V ∈ Vect /R, if g : R+ → V , define δ(g)(a, b) = g(a) + g(b) − g(ab). And if
F : R2

+ → V , define δ(F )(a, b, c) = F (a, b)− F (a, c) + F (ab, c)− F (ac, b).
Then if F : (0, 1)→ V is symmetric and δ(F ) = 0, then F = δ(f) for some f : (0, 1)→ V .
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Proof: Cf.[Sch13b]. □
Prop.(23.1.4.21).Let G : R2

+ → V be a symmetric function satisfying
• G(λa, λb) = λG(a, b), λ, a, b ∈ R+,
• G(a, b) +G(a+ b, c) = G(a, c) +G(a+ c, b).

Then there exists a homomorphism g : R×
+ → V s.t. when a+ b = 1,

G(a, b) = ag(a) + bg(b).

Proof: Cf.[Sch13b]. □
Prop.(23.1.4.22)[Sydler].Let F : (0, 1)2 → V : (a, b) 7→ [T (a, b)], then F is symmetric, and δ(F ) = 0.

Proof: We check that [T (a, b)] + [T (ab, c)] = [T (a, c)] + [T (ac, b)]. This is done by geometry:
Put T (a, b), T (a, c) together: T (a, b) ∼= ABCD,T (a, c) ∼= ABEF , where BDE is collinear. Let

H be the center of the sphere S passing through ACDEF , and the projection of H on the planes
ABC,ABD is denoted by I, J resp. Let K,L,M be the intersection of AH,AI,AJ with the sphere
S resp.

Then it can be verified that T (ab, c) ∼= ANMK,T (ac, b) ∼= AFLK. Let P = ABDFHI+ADHJ ,
then

P − (AICHD)− (FICHD) + (DJMHK) = T (a, b) + T (ab, c).
P + (DJEHF )− (AJEHF ) + (FILHK) = T (a, c) + T (ac, b).

□

Cor.(23.1.4.23).Homological functions(23.1.4.19) exist.
Proof: By(23.1.4.20), there exists f : (0, 1) → V s.t. F (a, b) = [T (a, b)] = f(a) + f(b) − f(ab).
Then we want to find h = f − g, where g : (0, 1) → V is a homomorphism s.t. when a + b = 1,
ah(a) + bh(b) = 1, which is equivalent to

ag(a) + bg(b) = af(a) + bf(b).

Let
G : R2

+ → V : (a, b) 7→ af( a

a+ b
) + bf( b

a+ b
),

then G(λa, λb) = λG(a, b), λ, a, b ∈ R+, and G(a, b) +G(a+ b, c) = G(a, c) +G(a+ c, b). In fact, this
boils down to(23.1.4.18). Thus by(23.1.4.21), we truly can find such a function g. □
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Prop.(23.1.4.24).Good functions(23.1.4.15) exist.

Proof: Take a homological function h(23.1.4.23), define φ : R→ V:

φ(nπ
2

) = 0, n ∈ Z, φ(α) = tan(α)h(sin2(α)).

We show this is a good function:
Firstly we show:

Lemma(23.1.4.25).φ(π/2− α) = −φ(α), φ(α+ π/2) = φ(α).

Proof: If α = nπ/2, the assertion holds. So we assume α ̸= nπ/2 and let β = π/2 − α, a =
sin2(α), b = sin2(β), then a+ b = 1, so by definition(23.1.4.19),

0 = 2ah(a) + abh(b) = 2 sin2(α) cot(α)φ(α) + 2 sin2(β) cot(β)φ(β)
= sin(2α)φ(α) + sin(2β)φ(β) = sin(2α)(φ(α) + φ(β))

So the assertion holds as sin(2α) ̸= 0.
The second equality follows from the first. □
Next, we show [T ] =

∑6
i=1 liφ(αi) for a orthohedron T : By scaling, it suffices to prove for T of

the form T (sin2(α), sin2(β))(23.1.4.16). Thus by(23.1.4.19) and(23.1.4.17),

[T (sin2(α), sin2(β))] = h(sin2(α)) + h(sin2(β))− h(sin2(α) sin2(β))

= cot(α)φ(α) + cot(β)φ(β) + cot(γ)φ(π/2− γ) =
6∑
i=1

liφi(αi)

Finally, to show additivity of φ, notice by the lemma above, it suffices to show φ(α) + φ(β) =
φ(α + β) for α, β ∈ (0, π/2). In this case, let γ = π − α − β ∈ (0, 2π), then use(23.1.3.4) to find
a rectangular solid that cuts along a diagonal to 6 orthohedra Ti s.t. the dihedral angles along the
diagonals are (α, β, γ, α, β, γ). Then

0 = [R] =
6∑

k=1
[Ti] = 2l(φ(α) + φ(β) + φ(γ)) +

6∑
k=1

lk(φ(θk1) + φ(θk2))

where l is the length of the diagonal, θki are the dihedral angles along the edges of the rectangular
solid that is connected to the diagonal, and θk1 +θk2 = π/2. Thus by the lemma above, φ(α)+φ(β) =
−φ(γ) = φ(α+ β). □

5 Additive Combinatorics

Zero-Sum Sets of Prescribed Size

Prop.(23.1.5.1) [Cauchy-Davenport]. If A,B are two nonempty subsets of Fp, then |A + B| ≥
min{p, |A|+ |B| − 1}.

Proof: If |A|+ |B| > p, then this is trivial, because A ∩ (B − x) ̸= ∅ for all x.
Now if |A| + |B| ≤ p, and if A + B ⊂ C with |C| = |A| + |B| − 2, define f =

∏
c∈C(x + y − c),

then f(a, b) = 0 for all a ∈ A, b ∈ B, but the coefficient of the highest degree term x|A|−1y|B|−1 is
C

|A|−1
|A|+|B|−2 ̸= 0, so this contradicts combinatorial Nullstellensatz(2.2.2.6). □
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Cor.(23.1.5.2).Any element of Fp is a sum of two squares, as there are p+1
2 squares.

Cor.(23.1.5.3) [Erdös-Ginzburg-Ziv].For any 2n − 1 elements (ai) in Z/(n), there exists I ⊂
{1, 2, . . . , 2n− 1} with #I = n and ∑i∈I ai = 0.
Proof: We use induction on n. If n ∈ P, then this follows from Cauchy-Davenport(23.1.5.1). If
this is true for m, then for p ∈ P and n = mp, given any 2n − 1 numbers, we can find pairwise
disjoint subsets I1, . . . , I2m−1 of {1, . . . , 2pm − 1} where #Ii = p and ∑j∈Ii aj ≡ 0(mod p) for any
1 ≤ i ≤ 2m− 1. Define

Ai = (
∑
j∈Ii

aj)/p,

then we can use the induction hypothesis for m and Ai to get the desired assertion. □

Roth’s Theorem

Thm.(23.1.5.4).For X ∈ Z+, let A(X) be the maximal set of a subset of [X]+ that avoids three-term
arithmetic sequences, then

A(X)
X

= O( 1
log logX

).

Proof: Let b(X) = A(24X )/24X , then b(X) is decreasing by(23.1.5.5), and(23.1.5.6) applied to
m = 24X implies that if δ = 1

24X+1η
where 0 < η < 1/2, then

b(X)2 < C[b(X)δ + b(X)2δ2 + (δ−1b(X) + 1)(b(X)− b(X + 1) + 1
24x )].

Then notice for X large, we can choose δ = δ(X) = b(X)
2C1

< 1
2 where C1 > min(C, 1) is a constant:

it suffices to verify that 1
24X+1 · 1

2
< b(X)

2C , or equivalently C < 23·4X−2A(24X ), which is clearly true for
X large.

Thus by the fact b(X) < 1,

b(X)2 < C1[b(X)δ + b(X)2δ2 + (δ−1b(X) + 1)(b(X)− b(X + 1) + 1
24x )]

≤ b(X)2(1
2

+ 1
4C1

) + C1(δ−1b(X) + 1)(b(X)− b(X + 1) + 1
24x )

<
3
4
b(X)2 + C1(2C1 + 1)(b(X)− b(X + 1) + 1

24x )

Thus there exists a constant C2 s.t. for X large,

b(X)2 < C2(b(X)− b(X + 1) + 1
24x ).

which implies there exists a constant C3 > C2 that for X large,

Xb(2X)2 ≤
2X−1∑
k=X

b(X)2 < C3(b(X)− b(2X) + 2C3
X

).

Hence whenever 2Xb(2X) > 4C3,

2Xb(2X) < 1
4C3

4X2b(2X)2 < (Xb(X)−Xb(2X) + 2C3) < Xb(X).

From this that the fact b(X) is decreasing(23.1.5.5) it is clear that Xb(X) is bounded, i.e. b(X) =
O( 1

X ). And clearly this together with(23.1.5.5) implies the desired assertion. □
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Lemma(23.1.5.5).For any X,Y ∈ Z+, A(X) equals the maximal number of elements without three-
term arithmetic sequences that can be selected from any X-term arithmetic sequence. A(XY )

XY ≤ A(X)
X ,

and A(X)
X ≤ X+Y

X
A(Y )
Y .

Proof: The first assertion is easy. Thus A(X + Y ) ≤ A(X) +A(Y ), and

A(X) ≤ A(
[
1 + ⌊X

Y
⌋
]
Y ) ≤ X + Y

X
A(Y ).

□

Lemma(23.1.5.6) [Hardy-Littlewood Method].For X ∈ Z+, let a(X) = A(X)
X , then for any

m ∈ 2Z+, if δ = 1
m4η where 0 < η < 1/2, there exists constant C > 0

a(m)2 < C[a(m)δ + a(m)2δ2 + (δ−1a(m) + 1)(a(m)− a(m4) +m−1)].

Proof: Let {u1, . . . , uA(m4)} be a maximal subset of {m4} without three-term arithmetic sequences,
and let {2v1, . . . , 2vV } be the set of even integers among uk. Then by(23.1.5.5),

A(m4) ≤ m4a(m), V ≤ A(m
4

2
) ≤ m4

2
a(m), V ≥ A(m4)−A(m

4

2
) ≥ m4a(m4)− m4

2
a(m).(⋆)

Define

f1(α) =
A(m4)∑
k=1

e2π iαuk , f2(α) =
V∑
k=1

e2π iαvk ,

F1(α) = a(m)
m4∑
n=1

e2π iαn, F2(α) = a(m)
m4/2∑
n=1

e2π iαn,

then by the above, |fi(α)| ≤ m4a(m), |Fi(α)| ≤ m4a(m). And

fi(α)− Fi(α) = O
(
m4[a(m)− a(m4)] +m3

)
(⋆⋆) :

Using(23.1.5.7), if q = 1, this is true for i = 1, and for i = 2, use the lower bound for V above. On the
other hand, if q cannot be chosen to be 1, then S′ = 0, and it suffices to show that Fr(α) = O(m3),
which is true by(12.1.1.1) and the fact {{α}} ≥ 1/

√
2N(because q cannot be chosen to be 1).

Thus

f1(α)f2(−α)2 − F1(α)F2(−α)2 = f1(α)(f2(−α) + F2(−α))(f2(−α)− F2(−α)) + F2(−α)2(f1(α)− F1(α))

= O
(
[m4a(m)]2(m4[a(m)− a(m4)] +m3)

)
.

and by(12.1.1.1), if 0 < η < {{α}} < 1/2, then

f1(α) = O
(
a(m)η−1 +m4[a(m)− a(m4)] +m3

)
.(⋆ ⋆ ⋆)

Then for any 0 < η < 1/2,
• The hypothesis implies that uh = vk + vl iff k = l and uh = 2vk, so by (⋆)∫ 1−η

−η
f1(α)f2

2 (−α)dα = V = O(m4a(m)).
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• By (⋆ ⋆ ⋆),∫ 1−η

η
f1(α)f2(−α)2dα < [ max

η<α<1−η
f1(α)]

∫ 1

0
f2(−α)2dα = O

([
a(m)η−1+m4[a(m)−a(m4)]+m3

]
m4a(m)

)
.

• By (⋆⋆) and(12.1.1.1),∫ η

−η
f1(α)f2

2 (−α)dα =
∫ η

−η
F1(α)F 2

2 (−α)dα+O
(
η[m4a(m)]2(m4[a(m)− a(m4)] +m3)

)
=
∫ 1/2

−1/2
F1(α)F 2

2 (−α)dα+O(a(m)3η−2) +O
(
η[m4a(m)]2(m4[a(m)− a(m4)] +m3)

)
= a(m)3m8/4 +O(a(m)3η−2) +O

(
η[m4a(m)]2(m4[a(m)− a(m4)] +m3)

)

And these three estimates give the desired assertion. □
Lemma(23.1.5.7).Let M ∈ Z+ and A = {u1, . . . , uU} be a subset of [M ]+ without three-term
arithmetic sequences. For any α ∈ R, by Dirichlet’s box principle, there exists h, q ∈ Z s.t.

α = h

q
+ β, (h, q) = 1, 1 ≤ q ≤

√
M, q|β| < 1/

√
M.

Thus for any m ∈ Z+,m < M , we can define

S = S(α) =
U∑
k=1

e2π iαuk , S′ = S′(α, q, h,m) = A(m)
m

1
q

(
q∑
r=1

e
2π i rh

q )(
M∑
n=1

e2π iβn).

Then
|S − S′| = M

A(m)
m
− U +O(m

√
M),

and S′ = 0 unless q = 1.

Proof: Firstly, notice

S = 1
mq

q∑
r=1

M∑
n=1

∑
n≤uk≤n+mq,uk≡r(mod q)

e2π iαuk +O(mq),

because the coefficient for e2π iαuk is 1 unless uk ≤ mq, which is compensated by the error term.
Then notice

e2π iαuk = e
2π i rh

q e2π iβuk = e
2π i rh

q e2π iβn +O(mq|β|),
and the number of k s.t. uk ≡ r(mod q) and n ≤ uk ≤ n + mq is at most A(m) for each n, r,
by(23.1.5.5), which we denote by A(m)−D(n,m, q, r) ≤ A(m), then

S = S′ − 1
mq

q∑
r=1

e
2π i rh

q

M∑
n=1

e2π iβnD(n,m, q, r) +O(Mmq|β|) +O(mq).

But this estimate is also true for α ∈ Z, so

U = M
A(m)
m
− 1
mq

q∑
r=1

M∑
n=1

D(n,m, q, r) +O(mq),

then combining these two estimates and the facts q ≤
√
M, q|β| ≤ 1/

√
M , the assertion follows. □
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Littlewood-Offord Problem

Prop.(23.1.5.8)[Littlewood-Offord Problem, Erdös].
• If {xi}1≤i≤n is a set of real numbers with |xi| ≥ 1, then for any r ∈ Z+, the number of sums∑

±xk which lies in the interior of any interval of length 2r doens’t exceed r
( n

⌊n/2⌋
)
.

• If {xi}1≤i≤n is a set of complex numbers with |xi| ≥ 1, then for any r ∈ Z+, the number of sums∑
±xk which lies in the interior of an arbitrary circle of radius r is O(r

( n
⌊n/2⌋

)
) ≤ O(r2n/

√
n).

Proof: Cf.[Erdös, On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc. 51 (1945), 898–
902.] □

Sidon’s Problem

Prop.(23.1.5.9)[Erdös-Turán].For n ∈ Z+, let Φ(n) be the maximal number of subset {a1, . . . , aX}
of [n]+ s.t. {ai + aj}i≤j are pairwise different. Then

1√
2
≤ lim

n→∞

Φ(n)√
n
≤ lim

n→∞
Φ(n)√
n
≤ 1.

Proof: Let p ∈ P \ {2} and ak = 2pk + u(k), k = 1, 2, . . . , p − 1, where 1 ≤ u(k) ≤ p − 1, u(k) ≡
k2(mod p). Then ak < 2p2 for each k, and

ai + aj = ak + al ⇐⇒ (i, j) = (k, l),

because in this case
i+ j = k + l, i2 + j2 ≡ k2 + l2 ≡ q.

Thus Φ(2p2) ≥ p− 1, and because there are infinitely primes, limn→∞
Φ(n)√
n
≥ 1√

2 .
For the other direction, for any such set S = {a1, . . . , aX} of [n]+ s.t. {ai + aj}i≤j are pairwise

different. Choose 1 ≤ m < n, then for each u ∈ Z, let Au = #[u−m,u) ∩ S, then
m+n∑
u=1

Au = mx,

and the number of triples (i, j, n) s.t. ai, aj ∈ Au, aj > ai is
m+n∑
u=1

1
2
Au(Au − 1) ≥ 1

2
(m+ n) mx

m+ n
( mx

m+ n
− 1).

But by the hypothesis, there are at most
m−1∑
r=1

(m− r) = 1
2
m(m− 1)

such triples. Thus
1
2
mx(mx−m− n) ≤ 1

2
m(m− 1)(m+ n),

and whence

x <
n

m
+

√
n+m+ n2

m2 .

Taking m = ⌊
√
n⌋, we get x =

√
n+O(n

1
4 ), thus limn→∞

Φ(n)√
n
≤ 1. □
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6 Combinatorial Geometry

Convex Polygons

Prop.(23.1.6.1).For n ∈ Z≥4 and any n points in R2 in general position, they form a convex n-gon
iff any 4 points of them form a convex quadrilateral.

Proof: We use induction on n. n = 4 is trivial. For n ≥ 5, let the points by {P1, . . . , Pn}, then by
induction hypothesis, any n − 1 points of them form a convex (n − 1)-gon. So for any 1 ≤ k ≤ n,
{X1, . . . , X̂k, . . . Xn} is a convex (n − 1)-gon, and Xk is not contained in any sub-(n − 2)-gon of
X1 . . . X̂k . . . Xn−1. But any convex (n − 1) is a sum of its sub-(n − 2)-gons, because we can use
equations of the form a1P1 +a2P2 = a3P3 +a4P4, ai > 0 to eliminate some Pi. Because k is arbitrary,
this means P1 . . . Pn is convex. □

Thm.(23.1.6.2)[Erdös-Szekeres].For any n ∈ Z≥2, there exists a minimal positive integer N(n) s.t.
for any ES(n) points in R2 in general position, there exists a subset of n points forming a convex
n-gon. Moreover,

2n−2 + 1 ≤ ES(n) ≤
(

2n− 4
n− 2

)
+ 1.

Proof: We first prove that ES(4) = 5: Given 5 points in R2 in general position, we need to find
4 points that form a convex quadrilateral. If the convex hull of these 5 points is a quadrilateral or
a pentagon, we are done, and if the convex hull is a triangle ABC, and D,E are inside ABC, then
suppose BC lies in the same side of the line DE, then BDEC form a convex quadrilateral.

For general n, in fact ES(n) ≤ R(4, 2; 5, n)(1.3.1.2), because for R(4, 2; 5, n) many points X ⊂ R2,
divide the 4-subsets of X into two classes depending on either they form a convex quadrilateral or
not, then either there exists a 5-subset whose 4-subsets are all non-convex, or there exists an n-subset
whose 4-subsets are all convex. The first case is not possible by the fact ES(4) = 5, so the second
case is true. Thus we get a convex n-gon by(23.1.6.1).

For the lower bound, it suffices to construct 2n−2 points with no n points forming a convex n-gon:
Cf.[Art of Counting, Erdös]P680.?

For the upper bound for ES(n), Cf. [Erdös-Szekers](or [Holmsen-Mojarrad-Pach-Tardos], where
they proved that ES(n) ≤ 2n+O(

√
n logn)). □

Conj.(23.1.6.3)[Erdös-Szekeres].For any n ∈ Z≥2, ES(n) = 2n−2 + 1.

Proof: □

Remark(23.1.6.4).This conjecture has been proven for n ≤ 6.

Distance Problems

Prop.(23.1.6.5) [Erdös/Guth-Katz].For n ∈ Z≥2, let P (n) be the minimal number of distinct
distances determined by n distinct points in R2, then there exists constants C1, C2 s.t.

f(n) = Θ( n

logn
).

Proof: Consider the points (x, y) where 1 ≤ x, y ≤
√
n, then the distances between them are all of

the form
√
a2 + b2, where 1 ≤ a2 + b2 < 2n. Then by(19.3.1.4), there are O( n

logn) many points.
Conversely, Cf.[Guth-Katz]? □
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Conj.(23.1.6.6)[Erdös].For n ∈ Z≥2, the number of distinct distances determined by the vertices of
a convex n-gon in R2 is at least ⌊n2 ⌋, with equality iff this is a regular n-gon.

Prop.(23.1.6.7).For n ∈ Z≥3 and r ∈ R+, let g(n, r) be the maximal number of times the distance
r occur among n points in R2, then there exists C > 0 s.t.

n1+c/ log logn < g(n, r) < n3/2.

Proof: This is clearly true for n ≤ 3, so we assume n ≥ 4. Given n points {P1, . . . , Pn}, and for
1 ≤ i ≤ n, suppose there are xi points with distance r from Pi. We may assume that x1 ≥ x2 ≥
. . . ≥ xn. Then for any i ≠ j, the xi points at distance r from Pi can contain at most two points
with distance r from Pj , so for each 1 ≤ j ≤ n,

j∑
i=1

(xi − 2i+ 2) ≤ n.

Denote ⌊
√
n⌋ = a, {

√
n} = ε, then

x1 + x2 + . . .+ xa ≤ n+ a(a− 1) = 2n− 2ε
√
n+ ε2 −

√
n+ ε < 2n− 2ε

√
n.

Thus xa < 1
a(2n− 2ε

√
n) = 2

√
n, and∑
xi < 2n− 2ε

√
n+ (n− a)2

√
n = 2n3/2.

For the lower bound, consider the set of points (x, y), 0 ≤ x, y ≤
√
n.? □

Prop.(23.1.6.8).For n ≥ 3, let amin(n) and amax(n) be the maximal number of times the minimal
and maximal distance of distinct n points in R2 can be achieved, then

amin(n) = n, amax(n) = 3n−Θ(
√
n).

Proof: For amax(n), notice amax(n) ≥ n because it can easily achieve n times. To prove amax(n) ≤
n, we use induction on n: if the given points are {P1, . . . , Pn}, and d(P1, P2) and d(P3, P4) are both
maximal, then by an easy argument, P1P2 ∩ P3P4 ̸= ∅. Now connect any two points with maximal
distance, and consider two cases: if each point is connected to at most 2 points, then there are at
most n edges; and if some point P1 is connected to 3 points P2, P3, P4, where ∠P2P1P4 is acute, and
P3 are between P2, P4, then it is clear P3 cannot connect to any other Pi, so we can omit P3 and use
induction on n.

For amin(n), we only prove that amin(n) ≤ 3n − 6?: Connect two points if they has minimal
distance, then clearly these edges don’t intersect. Thus the resulting graph is planer, and then has
at most 3n− 6 edges by Euler’s theorem(23.1.1.21). □

Conj.(23.1.6.9)[Borsuk].For k ∈ Z+, each subset S ⊂ Rk of diameter 1 can be decomposed into
k + 1 subsets s.t. each subset has diameter< 1.

Proof:
□

7 Probabilistic Methods
References are [The probabilistic method, Alon-Spencer].
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23.2 Partition Theory
References are [The Theory of Partitions, Andrews].
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24 | Others

24.1 Elementary Mathematics

1 Algebra
Prop.(24.1.1.1). If (an)n≥n0,n∈N is a series of real numbers and C ∈ R s.t. am+n ≥ am + an + C for
any m,n ≥ n0 ∈ N, then am/m converges to lim an/n ∈ (−∞,∞].

Notice by taking bn = −an, the ≤ case is also true. In particular, if |am+n − am − an| ≤ C for
any m,n ≥ n0 ∈ N, then am/m converges in R.

Proof: Let λ = lim an/n. By induction, for any N ≥ n0 ∈ N, a2kN ≥ 2kaN + (2k − 1)C for any
k ∈ N, so a2kN/2kN ≥ aN/N + min{C, 0}, so λ > −∞.

If λ = +∞, then for any M ∈ R, there exists n > |C|/ε s.t. an/n ≥ M . For any N large,
N = kn + m for some k,m and n0 ≤ m < n0 + n, so aN ≥ kan + am + (k + 1)C, so lim aN/N ≥
an/n− ε ≥M − ε for N large, so lim an/n = lim an/n.

If λ <∞, for any ε > 0, there exists n > |C|/ε s.t. λ− an/n < ε. For any N large, N = kn+m
for some k,m and n0 ≤ m < n0 + n, so aN ≥ kan + am + (k + 1)C, so lim aN/N ≥ an/n ≥ λ − 2ε
for N large, so lim an/n = lim an/n. □

2 Analysis
Lemma(24.1.2.1). If P (x) = anx

n + an−1x
n−1 + . . .+ a0 satisfies an ≥ 1, an−1 ≥ 0, and |ai| ≤ H for

i ≤ n− 2, then for any root α of P , either Reα ≤ 0, or |α| < 1+
√

1+4H
2 .

Proof: □

3 Number Theory
Def.(24.1.3.1)[Prime Numbers]. p ∈ Z+ is called a (rational)prime number if for any d ∈ Z+,
d|p implies d = 1 or d = p. The set of prime numbers is denoted by P.

Def.(24.1.3.2)[Integral Part].For any number α ∈ R, let [α] be the maximal integer n that n ≤ α,
called the integral part of α and {α} = α− [α], called the fractional part of α.

Prop.(24.1.3.3)[Approximation of Irrational Numbers].Let α be an irrational number, then for
any integer N , there exists an integer n ∈ N that {nα} < 1/N or {nα} > 1− 1/N .

Proof: Consider the sequence

{{α}, {2α}, . . . , {(N + 1)α}},
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where {x} is the fractional part of x, then this sequence sits in the N intervals

{(0, 1/N), (1/N, 2/N), . . . , ((N − 1)/N, 1)},

thus there are two that are in the same interval. if v1 < v2 satisfies {v1α} and {v2α} are in the same
interval, then n = v2 − v1 satisfies the desired property. □

Thm.(24.1.3.4)[Power Lifting]. If p ∈ P, a, b ∈ Z \ (p), and vp(a− b) = k ≥ 1, then vp(ap
n − bpn) =

k + n for n ∈ Z+, except for p = 2 and k = 1, in which case vp(ap
n − bpn) = k + n+ 1 for n ∈ Z+.

Proof: Use induction on n: If apn = bp
n + pn+kc for some c s.t. p ∤ c, then

ap
n+1 = bp

n+1 + pn+k+1bp
n(p−1)c . . .+ p(n+k)pcp,

and the assertion follows. □

Lemma(24.1.3.5).
p−1∑
x=0

xk ≡ −1 mod p iff p− 1|k, and ≡ 0 mod p otherwise.

Proof: Choose a a that ak − 1 is not divisible by p, this is doable iff k is not divisible by p − 1,
then it is clear. □

Prop.(24.1.3.6)[Quadratic Legendre Symbol Sum].For add prime p,

∑(
x2 + 1
p

)
= −1.

Proof: The sum is equivalent modulo p to ∑p−1
x=0(x2 + ax + b)

p−1
2 , which by the lemma(24.1.3.5)

above equivalent to −1 modulo p. Now it can not be p− 1, because otherwise there is a solution for
p|x2 + 1, and then it can be calculated directly. □

Prop.(24.1.3.7).For n ≥ 2, the multiplicative group of (Z/(2n))∗ ∼= Z/(2)× Z/(2n−2).

Proof: it suffices to show 32n−3 ̸= ±1 mod 2n, and 32n−2 ≡ 1 mod 2n. □

Prop.(24.1.3.8)[b-adic Decompositions and Irreducibility]. If b > 2 and p is a prime, consider
the b-adic expansion p =

∑
anb

n, then the polynomial∑
anX

n

is irreducible over Z.

Proof: If p(x) = h(x)r(x), use the lemma(24.1.2.1) to show that r(b) and h(b) cannot be 1, thus
h(b)r(b) = p cannot happen. □

Thm.(24.1.3.9)[Zsigmondy]. If a, n ∈ Z>1, then there exists a prime divisor of an − 1 not dividing
aj − 1 for any 0 < j < n, except in the following cases:

• n = 2, a = 2s − 1, s ≥ 2.
• n = 6, a = 2.
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Proof: By(2.2.2.21), it suffices to find a prime ideal of Ψn(a) not dividing n. If n = 2, then any
prime divisor of a+ 1 not dividing a− 1 suffices, as long as a is not of the form 2s − 1.

For n ≥ 3, if all prime divisors of Ψn(a) divides n, we prove that Ψn(a) ∈ P: Take p|Ψn(a), and
let k = ord(a,F×

p )|(p − 1) < n, then p|Ψk(a), and n/k = pt for some t ∈ Z+. Then if p ̸= 2, by
power-lifting(24.1.3.4),

vp(an − 1) = vp(an/p − 1) + 1,

so vp(Ψn(a)) = 1. And if p = 2, then clearly k = 1, and n ∈ 2Z+ , and Ψn(a) = an/2 + 1 ≡ 2(mod 4)
as n ̸= 2, so it is still true that v2(Ψn(a)) = 1.

And if ℓ ∈ P \ {p} is another prime dividing Ψn(a), then n/pt = k|(p − 1), n/ℓt′ = k′|ℓ − 1, so
p ≤ ℓ− 1 < ℓ ≤ p− 1, contradiction. So Ψn(a) = p is a prime.

Then suppose n = pkr where (r, p) = 1, we prove that p > (bp−2(b − 1))φ(r) where b = aq
k−1 :

By(2.2.2.18),

Ψn(a) = Ψr(bp)/Ψr(b) ≥
(bp − 1
b+ 1

)φ(r)
≥
(bp−2(b2 − 1)

b+ 1

)φ(r)
= (bp−2(b− 1))φ(r).

If p ≥ 5, then we have bp−2 > p, so only possible cases are p = 2 or 3. The case p = 2 is not
possible, because then a = 2, and 2 = Ψn(2) ≡ 1(mod 2). So p = 3, a = 2, k = 1 and r = 1 or 2. But
Ψn(2) ̸= 3, contradiction. □

Def.(24.1.3.10)[Numerical Polynomials].A function f : Z → Z is called a numerical polyno-
mial if it there exists a1, . . . , ar ∈ Z that

f(n) =
r∑
i=0

ai

(
n

i

)
.

for n sufficiently large.

Prop.(24.1.3.11). Suppose that f : Z→ Z is defined for n sufficiently large and g(n) = f(n)−f(n−1)
is a numerical polynomial, then f is a numerical polynomial.

Proof: Suppose f(n)− f(n− 1) =
∑r
i=0 ai

(n
i

)
for all n > 0. If we set g(n) = f(n)−

∑r
i=0 ai

(n+1
i+1
)
,

then g(n) − g(n − 1) = 0 for n sufficiently large, so it is eventually constant, which is equal to a−1.
Then f(n) =

∑r
i=0 ai

(n+1
i+1
)

+ a−1 is a numerical polynomial. □

Cor.(24.1.3.12).Any polynomial function with coefficients in Q maps any integer sufficiently large
into Z iff it is a numerical function.

Useful Functions

Def.(24.1.3.13)[Euler Function].The Euler function is defined to be

φ : Z+ → Z+ : n 7→
∑
d|n

d.

Def.(24.1.3.14)[Möbius Function].The Möbius function is defined to be the multiplicative func-
tion

µ : Z+ → {0, 1,−1} : n 7→
{

(−1)k n =
∏k
i=1 pi, pi ̸= pj ∈ P

0 otherwise
.
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Prop.(24.1.3.15)[Möbius Identities].For n ∈ Z+,
• If m ∈ Z+ is prime to n, then µ(mn) = µ(m)µ(n).
• ∑

d|n
µ(d) =

{
1 n = 1
0 n > 1

.

• If p ∈ P, ∑
d|n,p∤d

µ(d) =
{

1 n ∈ pZ+

0 otherwise
.

Proof: 1: This is clear.
2: By item1, it suffices to prove for d = pk for some p ∈ P, then this is clear.
3: By item1, it suffices to prove for d = pk for some p ∈ P, then this is clear. □

Cor.(24.1.3.16)[Möbius Inversion].

Proof: □

Congruences of Binomial Coefficients

References arehttp://www.cecm.sfu.ca/organics/papers/granville/paper/binomial/
html/binomial.html.

Prop.(24.1.3.17)[p-Power in Product]. vp(n!) = n−c(n)
p−1 , where c(n) is the sum of the presentation

of n in the p-adic base.

Cor.(24.1.3.18)[Kummer]. vp(
(a+b
a

)
) equals the number of carries when adding a and b in base p.

Prop.(24.1.3.19)[Wilson]. (p− 1)! ≡ −1(mod p).

Proof: Consider the two polynomials

g(X) =
p−1∏
k=1

(X − k), h(X) = Xp−1 − 1,

then
f(X) = g(X)− h(X)

are identically zero on Fq but has degree≤ p − 2, so it must be identically 0. Thus the assertion
follows. □

Cor.(24.1.3.20).For any n ∈ Z, (
np− 1
p− 1

)
≡ 1(mod p).

And (
2p− 1
p− 1

)
≡ 1(mod pr)

where r = min(3, p− 1).

Proof: □

http://www.cecm.sfu.ca/organics/papers/granville/paper/binomial/html/binomial.html
http://www.cecm.sfu.ca/organics/papers/granville/paper/binomial/html/binomial.html
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Prop.(24.1.3.21)[Lucas].For m, r ∈ Z+, n = m + r, let ni,mi, ri be their i-th term in base-p, then
if k = vp(

(n
m

)
), then

(−1)k

pk

(
n

m

)
≡
∏
k

nk!
mk!rk!

(mod p).

Proof: Denote (n!)p =
∏

1≤m≤n,p∤mm, then by some argument, it suffices to prove that

(−1)⌊n/p⌋(n!)p ≡ n0!(mod p).

And this follows easily from Wilson’s theorem(24.1.3.19). □

Prop.(24.1.3.22)[Glaisher]. If p ∈ P, 1 ≤ j, k ≤ p− 1 and n ∈ Z s.t. n ≡ k(mod p− 1), then

∑
1≤m≤n,m≡j(mod p−1)

(
n

m

)
≡
(
k

j

)
(mod p).

Proof: Notice if the i-th term of n,m in the base p are ni,mi, then p ∤
(n
m

)
iff mi < ni for each i.

And then ∑
1≤m≤n−1,m≡j(mod p−1)

(
n

m

)
=

∑
(m0,...,md)

(
n0
m0

)
. . .

(
nd
md

)
.

But the RHS equals the sum of coefficients of Xj , Xj+(p−1), Xj+2(p−1), . . . in (X + 1)n0(X + 1)n1 ·
(X + 1)nd = (X + 1)

∑
ni , which is also equal to

∑
1≤m≤

∑
ni,m≡j(mod p−1)

(∑
ni
m

)

And also n ≡∑ni(mod p− 1), so we can use induction on n, and notice that the assertion is trivial
for n ≤ p− 1. □

Cor.(24.1.3.23)[Hermite]. If n ∈ Z+, p ∈ P, then

∑
1≤m≤n−1,(p−1)|m

(
n

m

)
≡ 0(mod p)

Prop.(24.1.3.24)[Carlitz]. If n ∈ Z+, p ∈ P, r ∈ Z+ and pr−1|n, then

p+ (p− 1)
∑

1≤m≤n−1,(p−1)|m

(
n

m

)
≡ 0(mod pr).

Proof: □

Prop.(24.1.3.25)[Morley].For p ∈ P and p ≥ 5,

(−1)
p−1

2

(
p− 1

(p− 1)/2

)
≡ 4p−1(mod p)3.

Proof: □
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Continued Fractions

Def.(24.1.3.26)[Continued Fractions].A finite continued fraction [a1, . . . , an] is an abbreviation
of

1
a1 + 1

a2+... 1
an

, ai ∈ Z+.

A continued fraction [a1, a2, . . .] is an abbreviation of

1
a1 + 1

a2+...
, ai ∈ Z+.

Def.(24.1.3.27) [Gauss Transformation].The Gauss transformation is the function φ : R →
[0, 1] :

φ(x) =
{

1/x− [1/x] x ̸= 0
0 x = 0

.

Prop.(24.1.3.28).For any sequence of positive numbers {a1, . . . , an, . . .}, [a1, . . . , an] converges. In
particular, limn→∞[φ(x), φ2(x), . . . , φn(x)] = {x} for x ∈ R.

Proof: We may assume the sequence is infinite. Then we notice for any a ∈ Z+ and t varying in
an interval in (0, 1] of length l, the value of 1

a+t is in an interval of lengthl/a(a + l) ≤ l/(l + 1). So
clearly the length of possible values of [a1, . . . , an, t] for t in an interval of length l is in an interval of
length ln that limn→∞ ln = 0.

Then we conclude [a1, . . . , an] is a Cauchy sequence for n, thus it converges. □

Prop.(24.1.3.29). x ∈ R is a rational number iff φm(x) = 0 for some m > 0.

Proof: If x is rational then this is Euclid division. If φm(x) = 0, then notice x = [x] +
[φ(x), φ2(x), . . . , φm−1(x)] is rational. □

Prop.(24.1.3.30). x ∈ R has eventually periodic continued fractions [φ(x), φ2(x), . . . , φn(x), . . .] iff
[Q(x) : Q] ≤ 2.

Proof: If the fraction is finite, then Q(x) = Q, by(24.1.3.29). If the fraction has periodic part
[a1, . . . , an], let t = [a1, . . . , an, a1, . . . , an, . . . , . . .], then

at+ b

ct+ d
= t

for some a, b, c, d ∈ Z, so [Q[t] : Q] = 2, and hence [Q(x) : Q] = 2.
For the converse, ?. □
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24.2 French to English Dictionary

1 A

• aide: help
• apres: after

• ans: years
• avoir: have

• aux: to the

2 B

•

3 C

• cas: case
• cet: this
• chaleureusement: warmly

• classifiant: classifying
• considere: consider
• corp: field

• courbe: curve

4 D

• dans: in
• d’apres: according to

• de: of, than
• des: of

• du: of
• d’une: of a

5 E

• en: in
• enonce: state

• est: is
• et: and

• etabli: established
• être: be

6 F

•

7 G

• générale: general • grandes: large

8 H

•
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9 I

• il y a: there is • introduite: introduced • indépendamment: inde-
pendence

10 J

• Je: I

11 K

•

12 L

•
• la: the

• le: the
• les: the

• lignes: lines
• lues: read

13 M

•

14 N

• • nous: we

15 O

•

16 P

•
• par: by, through
• peuvent: can

• plus: more
• pour: for, to
• preuve: proof

• principales: main
• presenterons: introduce
• prolonge: extended

17 Q

• qui: who
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18 R

•
• recement: recently

• remercie: thank
• renvoyant: returning

• reste: rest

19 S

•
• sa: his
• ses: its, his, her

• schema: scheme
• strategie: strategy
• son: his

• sont: are
• suit: follows
• sur: on, about

20 T

• texte: text
• theoreme: theorem

• toroidale: toroidal
• traiter: treat

21 U

• • un: a • une: a

22 V

• variante: variant • vectoriel: vector

23 W

•

24 X

•

25 Y

•

26 Z

•
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Notations

This chapter is a collection of definitions used often. These notations will be used without
throughout this book without referring, so if you are confused about some notation, maybe you can
find it here.

Chapter/Section/Subsection/... are called classes. Sometimes in the beginning of a class, there
are notation assignments. They influence only the propositions contained in the same smallest class.

In any proposition, for any symbol appeared, there will only be two cases:
1. This symbol appear without assigned meanings. Then its meaning is defined in this chapter.
2. This symbol has been assigned meanings. Then its meaning may be different from the notations

here(which I will try to avoid it from happening).
When they contradict(which I will try to avoid from happening), they have ascending priori-

ties(e.g. notations assigned in the beginning of a chapter can be overrode by the notation assigned
in the beginning of a section in this chapter), and have higher priorities than notation assignments
in this chapter.

27 General
Notation(24.2.27.1).

• ∈ is an abbreviation for “in” or “be/is/are in”, depending on the syntax. So I will use this
symbol more casually than usual.

• i is a chosen square root of −1 in C.
• a.e. is an abbreviation for “all but finitely many”.
• e.g. is an abbreviation for “for example”.
• f.m. is an abbreviation for “finitely many”.
• i.e. is an abbreviation for “which means”.
• resp. is an abbreviation for “respectively”.
• s.t. is an abbreviation for “such that”.
• “Sufficiently large” means “is an integer greater than a given integer N0 that only depends on

the parameters defined before”.

28 Set Theory
Notation(24.2.28.1)[Sets].For X ∈ Set,

• Use #X instead of |X| to denote the cardinality of a set X.
• P(X) is the power set of X.
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• To avoid confusion with other structures on sets, use bijection of sets instead of isomorphism
of sets to indicate an isomorphism in Set.

• Use U ⊂ X to indicate U is a subset of X. Use U ⊊ X ot indicate U is a proper subset of X.
• Use \dutchcal capital to represent a property on a set.
• If P is a property on X, then use {x ∈ X : P(x)} or {x ∈ X|P(x)} to indicate the subset of X

defined by the property P, depending on which avoids confusion better.
• If S ⊂ P(X), we say a property P holds for elements of Y sufficiently large if it holds for all

elements of Y containing a fixed subset S0 ⊂ X. Notice this definition is compatible with the
definition of numbers being sufficiently large, by taking X = ℵ0 and Y = N ⊂ P(ℵ0).

• Use \mathtt capital to represent a set that is doesn’t form a category with good properties.
For example, GField represents the set of global fields.

• If f : X → X is a self-map and S ⊂ X, then f is said to fix S or stablizes S if f(S) ⊂ S.
• For n ∈ Z+, use an to denote an n-tuple of elements (a1, . . . , an). And the superscript n can

be omitted sometimes.

Notation(24.2.28.2)[Common Sets].
• For n ∈ N, [n] is the set {0, 1, . . . , n}.
• For n ∈ Z+, [n]+ is the set {1, . . . , n}.
• Z is the ring of integers.
• Z+ ⊂ Z is the commutative multiplicative monoid of positive integers.
• Z− ⊂ Z is the commutative multiplicative monoid of negative integers.
• N ⊂ Z is the commutative multiplicative monoid of non-negative integers.
• Q is the field of rational numbers.
• R is the ordered valued field of real numbers.
• R+ is the ordered commutative multiplicative monoid of positive real numbers.
• C is the complete valued field of complex numbers.

29 Categories
Notation(24.2.29.1)[Categories].

• Use \mathscr capital for symbols representing a category.
• Use pr for morphisms that look like projections.

Notation(24.2.29.2)[Common Categories].To avoid the set-theoretical issue that the class of all
sets is not a set, we fix a cardinal κ, which will be given in prior in each situation, and define

• Set to be the category of sets with cardinality< κ.
• Grp to be the category of groups with cardinality< κ.
• Ab to be the category of Abelian groups with cardinality< κ.
• Grpfin to be the category of finite groups. Abfin to be the category of finite Abelian groups.
• CAlg to be the category of commutative unital rings with cardinality< κ.
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• For p ∈ P, CAlgp to be the category of commutative unital rings of characteristic p with
cardinality< κ.

• Field to be the category of fields(2.2.1.3) with cardinality< κ.
• Fieldp to be the category of fields of characteristic p?? with cardinality< κ, where p ∈ P∪{0}.
• Top to be the category of topological spaces with cardinality< κ.
• TopGrp to be the category of topological groups with cardinality< κ.
• Cat to be the category of categories with cardinality< κ.
• In generally, whenever we define the category of some objects, we mean the category of objects

with cardinality< κ. This applies to the whole book.

Remark(24.2.29.3). If the cardinal κ in(24.2.29.2) is chosen to be too small, some construction in
the categories won’t be possible. For example, if you take κ = 2, then {∅}⨿{∅} is not definable in
Set. If you take κ = ℵ, then ⨿ℵ{∅} is not definable in Set.

So usually κ is taken to be a large enough strongly inaccessible cardinal (whose existence depends
on the large cardinal axiom). But in specific cases we can take κ to be smaller to show some
proposition is invariant of the axiom of large cardinals, for example the Weil conjecture(Deligne’s
theorem).

Notation(24.2.29.4)[Categories].For C,D ∈ Cat, A ∈ C,
• C/A or C/A is the slice category of objects over A, CA/ is the slice category of objects under A.
• Func(C,D) is the category of functors from C to D.
• Cop is the category with the arrows reversed.

Notation(24.2.29.5)[Monoidal Categories].For a monoidal category (C,⊗)
• Copp is the monoidal category with the same underlying category and the tensor product ⊗

reversed.

Homological Algebra

Notation(24.2.29.6)[Homological Algebras].
• Use ^\bullet capital for symbols representing a complex over an Abelian category.
• Use K-groups instead of K-groups.

30 Topology
Notation(24.2.30.1)[Topological Spaces].

• cntd is an abbreviation for “connected”.
• For a metric space X and x ∈ X, δ ∈ R+, denote U(x, δ) = {y ∈ X : d(x, y) < δ},D(x, δ) =
{y ∈ X : d(x, y) ≤ δ}.

Notation(24.2.30.2)[Common Spaces].
• For n ∈ Z+, Sn is the unit sphere {x ∈ Rn|||x|| = 1}.
• For n ∈ Z+, Dn is the unit disk {x ∈ Rn|||x|| ≤ 1}. D2 is also denoted by D.
• For n ∈ Z+, In is the unit cube {x = (xi) ∈ Rn||xi| ≤ 1}. I1 is also denoted by I.
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• For n ∈ Z+, a < b ∈ R≥0, Dn(a, b) is the annulus {x ∈ Rn|a < ||x|| < b}. Similarly, we can
define Dn[a, b),Dn(a, b],Dn[a, b].

• For K ∈ {R,C,H}, S∞
K is the unit sphere in K∞.

31 Algebras
Notation(24.2.31.1)[Groups].For G ∈ Grp,

• Gab is the abelianization of G.
• Use H ≤ G to indicate that H is a subgroup of G.
• Use H ⊴ G to indicate that H is a normal subgroup of G.

Notation(24.2.31.2)[Free Groups].
• For n ∈ Z+, Fn is the free group generated by [n− 1].

Notation(24.2.31.3)[Abelian Groups].For G ∈ Ab,
• G∨ = Hom(G,C×) is the dual group of G. This applies to topological groups. Try not to use
Ĝ, because this may be confused with the Langlands dual group or the completion.

•

Notation(24.2.31.4)[Linear Algebras].For R ∈ CAlg,m, n ∈ Z+,
• For V ∈ Vect /R, V ∗ is the dual space of R.
• Mat(m × n;R) is the group of m × n-matrices with coefficients in R. Mat(m × n;R) is also

denoted by Mat(n,R).
• GL(n,R) is the group of invertible elements in Mat(n;R).
• For A ∈ Mat(m,n;R), At ∈ Mat(n×m;R) is the transpose of A.
• For A ∈ GL(n,R), A−1 ∈ GL(n,R) is the inverse of A. A−t denotes (A−1)t = (At)−1.

Prop.(24.2.31.5)[Algebras].For R ∈ Ring,
• ModR is the category of left R-modules.
• AlgR is the the category of R-algebras.
• RingR is the category of associative unital R-algebras.
• CRingR is the category of commutative unital R-algebras.

Notation(24.2.31.6)[Lie Algebras].
• Use \mathfrak lowercase for symbols representing a Lie algebra.

32 Commutative Algebras
Notation(24.2.32.1)[Fields].For k ∈ Field,

• char k is the characteristic of k.
• k is a fixed algebraic closure of k.
• ksep is the separable closure of k in k.
• kperf is the perfect closure of k in k.
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• For a Galois extension k′/k, use Gal(k′/k) instead of Galk′/k or G(k′/k) or Gk′/k to denote the
Galois group of k′/k.

• Galk = Gal(ks/k).
• c ∈ Gal(C/R) is the complex conjugation. For a ∈ C, c(a) is also denoted by a.
• For p ∈ P, Fp is the a fixed finite field of order p.
• For p ∈ P, Fpr is the fixed finite field of order pr contained in Fp.
• µ(k) is the group of roots of unity in k.

Notation(24.2.32.2)[Commutative Algebras].
• Use \mathfrak lowercase for a first prime ideals. Use \mathfrak uppercase for a prime ideal

that is over a given prime ideal.

Notation(24.2.32.3)[Integral Rings].For R ∈ CRing,
• Use “let (R,K) be an integral ring to indicate that R is an integral ring with fraction field K.
• R× is the commutative monoid of non-zero elements in R.
• R∗ is the commutative group of units of R.

Notation(24.2.32.4)[Local Rings].
• Use “let (R,K,m, k) be an integral local ring” to indicate that R is a local ring with maximal

ideal m, κ(m) = k, and Frac(R) = K.
• DVR is the synonym for “discrete valuation ring”.
• CDVR is the synonym for “complete discrete valuation ring”.

Notation(24.2.32.5)[Dedekind Domains].
• Use \mathcal uppercase for symbols representing a Dedekind domain.?
• Use D to denote differents of extensions of Dedekind domains.
• Use d instead of δ to denote discriminants of extensions of Dedekind domains.

33 Algebraic Geometry
Notation(24.2.33.1)[Sheaves].

• Use \mathcal capital for symbols representing a sheaf of sets or a complex of sheaves of sets.
• Use \mathscr capital for symbols representing a sheaf of ∞-categories.

Notation(24.2.33.2)[Schemes].Let (X,OX) ∈ Sch,
• For brevity, we can use X to denote the the scheme (X,OX), and use |X| to denote the

underlying topological space.
• Use \mathbf capital for a relative scheme.
• Use \mathcal capital for symbols representing an integral model.
• Use κ(x) to denote the residue field of a point x ∈ X instead of k(x).
• Use R(x) instead of K(X) to denote the function field of an integral scheme X.
• Use OX(D) instead of L(D) to denote the line bundle associated to a Cartier divisor D.
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Notation(24.2.33.3)[Categories of Schemes].Let X ∈ Sch,
• Sch is the category of schemes.
• NSch is the category of locally Noetherian schemes.
• For R ∈ CAlg, use Sch /R to denote Sch /SpecR.
• Schint is the category of integral schetmes.
• Schft /X is the category of schemes of f.t. over X.
• Schloc.ft /X is the category of schemes locally of f.t. over X.
• Schloc.ft /X is the category of schemes locally of f.t. over X.
• Schfét /X is the category of schemes finite étale over X. In general, use superscript to denote

relative properties w.r.t. X, and superscript to denote absolute properties.
• Use \underline for a functor on the category Sch /X.

Notation(24.2.33.4)[Morphisms of Schemes].
• Use i for a closed immersion and j for an open immersion.
• For R ∈ CAlg, S ∈ CAlgR, X ∈ Sch /R, XRS denotes XSpecR SpecS.

Notation(24.2.33.5)[Modules on Schemes].Let (X,OX) ∈ Sch,
• Mod(OX) is the category of OX -modules.
• QCoh(X) is the category of Qco OX -modules.
• Coh(X) is the category of coherent OX -modules.
• For k ∈ N, Coh≤k(X) is the category of coherent OX -modules with dim Supp(F) ≤ k.
• D(X) = D(OX) = D(Mod(OX)).
• DQCoh(X) = DQCoh(X)(Mod(OX)).
• DCoh(X) = DCoh(X)(Mod(OX)).
• D(X) = D(OX) = ModOX

(Sh(X;D(Z)).
• DQCoh(X) = DQCoh(X)(Mod(OX)).
• DCoh(X) = DCoh(X)(Mod(OX)).

Notation(24.2.33.6)[Group Schemes].
• µ is the group scheme X 7→ µ(Γ(X,OX)).

Notation(24.2.33.7)[Formal Schemes].
• Use mathfrak uppercase(aka. \mfk) for symbols representing a formal scheme that is usually

not representable.

34 Analysis
Notation(24.2.34.1)[Functions].

• for any positive-valued function f : S → R+, I use O(f) in an equation to denote that the
difference of the other part of the equation is bounded by Cf , where C is a constant that
doesn’t depend on any variables appearing in this equation.
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• For any functions f, g : S → C, we use f ∼ g or f = Θ(g) to denote {f = O(|g|) and
g = O(|f |)}.

Notation(24.2.34.2)[Real Analysis].
• √ : R+ → R+ is inverse of the function R+ → R+ : x 7→ x2.
• For a differentiable function f , write f ‵ instead of f ′ to denote the derivative of f . For p ∈ Z+

and a p-th differentiable function f , write f (p) to denote the p-th derivative of f .

Notation(24.2.34.3)[Complex Analysis].
• For α ∈ D, denote ψα(z) = ψα(z) = α−z

1−αz ∈M(C).

Notation(24.2.34.4)[Numbers].
• π represents the smallest x ∈ R+ s.t. eix + 1 = 0.
• γ is the Euler’s constant.

Notation(24.2.34.5)[Special Functions].
• Γ(s) ∈M(C) is the Gamma function.
• ζ(s) ∈M(C) is the Riemann zeta function.
• ℘(τ) ∈M(C) is the Weierstrass ℘ function.

Notation(24.2.34.6)[Fourier Transforms].
• Use f̂ to denote the Fourier transform of a function f on a locally compact Abelian group.

Notation(24.2.34.7)[Functional Analysis].
• Use dutchcal capital to denote a subset of the space of continuous functions on a topological

space.

35 Differential Geometry
Notation(24.2.35.1)[Manifolds].

•

Notation(24.2.35.2)[Lie Groups].

• For θ ∈ R/(2π), denote κθ =
[

cos θ sin θ
− sin θ cos θ

]
.

36 Algebraic Number Theory
Notation(24.2.36.1)[Numbers].

• For X ∈ N, [X] is the set of non-negative integers no greater than X.
• For X ∈ Z+, {X} is the set of positive integers no greater than X.
• P is the set of rational primes.
• P is the algebra consisting of periods.
• Don’t use “#” as an abbreviation of “number” or “numbers”.
• □ is an abbreviation of “square” or “a square number”. This is obsolete and I strongly suggest

not using this notation, for one reason it doesn’t specify square of what numbers, and for the
other reason it may be confused with unrecognizable codes.
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• For n ∈ Z×, use Z/(n) instead of Z/n or Z/nZ.
• Use p to denote a prime number.
• Use ℓ instead of l or q to denote a second prime number when p is present.

Notation(24.2.36.2)[Common Functions]. For n ∈ Z+,
• ϕ(n) = #(Z/(n))∗.

Notation(24.2.36.3)[Number Theory].
• Use ϖ instead of π to denote a uniformizer in a valuation ring to avoid confusion with the

frequently used π.
• In number theory/arithmetic geometry, try to use F to denote a global field, K a CDVR and
k a finite field or general field.

• For p ∈ P, use Qp instead of Qp to denote the fixed p-adic completion of Q.

• For p ∈ P, Qpn is the unique unramified extension of Qp of the degree n contained in Qp,
Zpr = OQpn .

• {ζn, n ∈ Z+} is a compatible system of roots of unity in Q, and ζ4 = i.
Notation(24.2.36.4)[Global Fields].For an extension of global fields E/F ,

• F0 is the constant field of F .
• Use GField to denote the set of global fields. Use FField to denote the set of global function

fields, use NField to denote the set of global number fields. GField /F is the set of global fields
over F .

• OF is the ring of integers of F .
• ΣF is the set of places of F . Σfin

F is the set of finite places of F . Σ∞
F is the set of infinite places

of F . ΣR
F is the set of real places of F , ΣC

F is the set of complex places of F .
• For a finite extension L/F and v ∈ Σfin

F , Σv
L is the set of finite places over v.

• For x ∈ OF , let Σx
F ⊂ Σfin

F denote the set of finite places dividing x.
• For v ∈ Σfin

F , (Rv,mv, kv) is the valuation ring of v, and ||v|| = #kv.
• UnrE/F ,RamE/F , SplE/F is the set of finite places of F unramified, ramified, splitting in E

resp.. SplE/F/F0 is the set of finite places of F0 s.t. every place of F+ over p splits in F .
Notation(24.2.36.5)[Local Fields].

• Use LField to denote the set of local fields. Use p-LField to denote the set of p-adic local
fields. Use p-FField to denote the set of p-adic number fields. Use p-NField to denote the set
of p-adic number fields. Use ArchField to denote the set {R,C}.

Notation(24.2.36.6)[Analysis on Adeles and Ideles].
• For a local field K, V ∈ Vect /K, S(V ) is the space of Bruhat-Schwartz Functions on V .
• For a global field F , V a finite free module over AF , S(V ) is the space of Bruhat-Schwartz

functions on V .

37 Arithmetic Geometry
Notation(24.2.37.1)[Perfectoid Spaces].

• Use old \mathcal(aka. \mrs) to denote adic spaces.
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38 Representation Theory
Notation(24.2.38.1)[Representations].Let G ∈ TopGrp, L ∈ TopCRing,

• RepL(G) is the category of continuous representations of G with coefficients in L. RepC(G) is
also denoted by Rep(G).

• IrrL(G) is the category of irreducible representations of G with coefficients in L. IrrC(G) is
also denoted by Irr(G).

• Repalg(G) is the category of smooth complex representations of G. Irralg(G) is the category of
irreducible smooth complex representations of G.

• For (ρ, V ) ∈ Repalg
L (G), let (ρ∨, V ∨) denote the contragradient representation: ρ∨(g) = ρ(g)−t.

39 L-Functions
Notation(24.2.39.1)[L-Functions].

• Use ζ for a zata-function, i.e. a function that is usually a rational function in the indeterminant
T .

• Use L for an L-function, i.e. a function that is usually a meromorphic function for s with Euler
products.

40 Combinatorics
Notation(24.2.40.1)[Combinatorics Numbers].

• For n,m ∈ N,m ≤ n,

n! =
{

1 , n = 0∏n
k=1 k , n > 0

,

(
n

m

)
= n!

(n−m)!m!

• For n,m ∈ N,m ≤ n and p ∈ P, q ∈ pZ+ ,

[n]p =
{

1 , n = 0
qn−1
q−1 , n > 0

, [n]!q =
{

1 , n = 0∏n
k=1[k]q , n > 0

,

[
n

m

]
= [n]!q

[n−m]!q[m]!q
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Index

(−1)-curve, 765, 1362
(−2)-truncated, 278
(2, 1)-category, 193
(g,K)-module, 1596
(φ,Γ)-module, 1565
(n, ε)-separated, 1104
(n, ε)-spanning, 1104
(x,U)-fan, 1818
(x, y)-cut, 1818
2-commutative digram, 194
2-fibered product, 194
2-morphism of topoi, 536
A-algebra extension, 735
A-antisymmetric, 1030
A-definable, 32
A-order, 1243
A-torsor, 933
B-admissible, 1523
B∗-algebra, 1045
E-valued (p, q)-forms, 1129
F -crystal, 800
G-equivariant object, 204
G-regular, 1523
G-ringed K-space, 1465
G-space, 532
G-unramified, 473
H-projective, 620
H-quasi-projective, 620
I-adic completion, 416
I-adically complete, 416
I-completely

(faithfully)flat/smooth/étale/. . ., 526
I-completely flat, 515
I-completely regular, 515
I-torsion, 519
K-Hodge-deRham structure, 1202

K-finite vectors, 1077
K-flat, 583
K/k-image, 1414
K/k-trace, 1414
K0-group, 289
M -Koszul-regular, 466
M -bounded, 1302
M -quasi-regular sequence, 441
R-fundamental class, 365
R-invariant, 907
R-orbit, 907
R-orientation, 365
S-adeles, 1250
S-birational, 572
S-dense, 572
S-ideles, 1251
S-local, 189
S-local equivalence, 189
S-rational map, 572
S-torsion-free, 398
U -limit, 227
Xn-distinguished of order s, 948
Xn-distinguished of order s at x, 951
I-free, 193
S-enriched model category, 243
Γ(N)-structure, 1391
Γ0(N)-structure, 1391
Γ1(N)-structure, 1391
ΓK-conjugate, 1530
Λ-formal functor, 889
Λ-formal group, 889
Λ-formal scheme, 889
Ω-Spectrum, 371
α-limit points, 1101
δ-functor, 299
δ-pairs, 487
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δ-ring, 487
ℓ-adic Galois representation, 1544
ℓ-adic cohomological dimension, 777
ℓ-integral representation, 1546
ℓ∞-Selmer group, 1338
ℓ∞-Selmer rank, 1338
∞-category, 273
∞-category of C-valued presheaves on S, 282
∞-category of ∞-category of ∞-categories,

278
∞-category of chain complexes, 515
∞-category of pointed objects, 307
∞-category of presheaves on S, 282
∞-category spanned by D0, 273
∞-groupoid, 277
ι-pure, 1397
ι-real, 1402
κ-categorical, 36
κ-chain condition, 16
κ-compact, 190
κ-complete, 25
κ-condensed objects, 935
κ-filtered, 16
κ-small, 190
D-generic, 26
F-limit of f, 216
G-torsor, 533
L-structure, 31
L-theory, 31
O1-derivation, 563
A∞-Ring, 311
E∞-algebra, 311
E∞-ring, 310, 311
E∞-space, 311
Q-Cartier divisor, 748
U-coherent, 1468
a-filtration, 415
ω-limit points, 1101
σ-algebra, 969
σ-semi-linear, 1562
τ -equivalent, 764
ε approximation, 331
ε-approximation, 1152
φ-module, 1562
c-polarization, 873
f -ample, 639

f -localization, 400
f -very ample, 641
g-rigidification of L, 897
i-th Betti number, 1730
i-th cohomology, 575
i-th cohomology groupg, 575
i-th higher direct images, 575
j-function, 1679
j-invariant, 1367
k-connected, 1818
k-cycle associated to Z, 742
k-cycle associated to F , 742
k-gonal curve, 722
k-rank, 869
k-truncated, 278
m-pseudo-coherent OX -module, 591
m-pseudo-coherent module, 520, 522
n-category, 277
n-cells, 341
n-connected, 345
n-equivalence, 345
n-loop space, 225
n-skeleton, 341
n-th infinitesimal neighbourhood, 696
n-universal k-vector bundles, 382
o-minimal, 45
p-Cartesian, 266
p-adic L-function, 1791
p-adic Galois representation, 1544
p-adic Schottky group, 1476
p-adic field, 1233
p-adic function field, 1226
p-adic integral Galois representation, 1544
p-adic local Galois representation, 1544
p-adic local fields, 1226
p-adic local integral Galois representation,

1544
p-adic logarithm, 1227
p-adic number field, 1226
p-adic period space, 1481
p-cohomological dimension, 929
p-divisible formal Lie group, 889
p-divisible group, 889
p-divisible group of height h, 889
p-finite, 1505
p-left Kan extension, 280
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p-normal, 481
p-primary, 426
p-rank, 1328
p-ring, 481
s-th ramification group, 1224
v-adic distance, 1302
(ι-)mixed, 1397
(Abelian)group object, 189
(G-)unramified, 658
(Griffith-)positive, 1196
(almost-)pseudo simple algebraic group, 867
(co)complete, 186
(co)homological, 299
(faithfully)flat, 515, 803
(good/very good) left homotopic, 237
(left)action, 189
(locally) quasi-finite, 610
(locally)algebraic, 609
(positively)recurrent, 1101
(quasi-)separatedness, quasi-compactness,

finiteness, 1470
(semi-)normed ring, 1218
(weakly)admissible pair, 1481
(weakly)initial, 182
étale, 1507, 1562
étale (φ,Γ)-module, 1565
étale cohomology group, 770
étale cohomology with compact support, 782
étale fundamental group, 770
étale morphism, 660
étale site, 544
étale topology, 544
étale, 474, 475
Čech cohomology, 579
Čech complex, 579

a strongly compatible system of adic
representations, 1710

abbreviation, 3
Abel-Jacobi map, 1204
Abelian, 47
Abelian category, 289
Abelian scheme, 1319
Abelian variety, 1319
Abelianization, 49
absolute Frobenius, 573
absolute prismatic site, 811

absolute ramification index, 481
absolutely algebraically closed, 942
absolutely continuous, 973
absolutely unramified, 481
absorbing set, 1025
abstract measure, 25
accessible category, 190
accessible functor, 190
accessible reflective localization, 191
active, 268
acyclic complex of M , 270
Adam operators, 686
addition of ordinals, 20
additive, 285
additive category, 286
additive Herbrand quotient, 297
additive reduction, 1379
adele group, 1250
adelic automorphic forms, 1686
adelic group of G, 1313
Adelic Tate module, 1329
adequate equivalent relation, 820
adic completion, 941
adic morphism, 954
adic point, 1488
adic ring, 940
adic spaces, 1495
adic spectrum, 1486
adjoint group, 1159
adjoint Lie group, 1177
adjunction, 282
adjunction pair, 184
admissible, 385, 942, 1597
admissible H-module, 119
admissible covers, 532
admissible epimorphism, 287
admissible modulus, 1284
admissible monomorphism, 287
admissible opens, 532
admissible representation, 1599, 1684
admissible rings, 1474
admissible smooth representation, 1538
admissible topology, 224
affine connection, 1132
affine formal scheme, 1474
affine height, 1297
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affine local, 596
affine scheme, 569
affinoid K-algebra, 966
affinoid K-space associated to A, 1458
affinoid (Tate) algebras, 949
affinoid adic spaces, 1495
affinoid covering, 1460
affinoid generator, 951
affinoid perfectoid space, 1502
affinoid subdomain, 1458
Affinoid Tate ring, 954
Albanese map, 1204
Albanese variety, 1203
alephs, 23
algebra, 75
algebra of subsets, 969
algebra over a monad, 208
algebraic analytic space, 1186
algebraic closure, 78
algebraic cycle, 742
algebraic de Rham cohomology, 767
algebraic dimension, 1180
algebraic extension, 77
algebraic family of varieties parametrized by

T , 649
algebraic function, 1291
algebraic group of EL type, 1482
algebraic group of multiplicative type, 861
algebraic group of PEL type, 1482
algebraic integer, 1239
algebraic number, 1239
algebraic representation, 1712
algebraic space, 905
algebraic stack, 906
algebraically admissible, 1505
algebraically equivalent, 761
algebraically prime models, 39
almost étale, 507
almost commutative algebras, 504
almost complex manifold, 1181
almost complex structure, 1181
almost elements, 505
almost everywhere convergence, 970
almost finitely generated, 505
almost finitely presented, 505
almost flat, 505

almost integral, 413
almost modular forms, 1680
almost perfect, 505
almost periodic, 1101, 1103
almost projective, 505
almost uniform convergence, 970
almost XXX, 505
almost zero, 504
almost-simple algebraic group, 867
alteration, 619
alternating Čech complex, 580
amalgamated sum, 1219
ample holomorphism line bundle, 1199
ample invertible sheaf, 639
amplitude character, 870
amplitude function, 1094
analytic, 958, 981, 1499
analytic adic point, 1488
analytic group, 1160
analytic module, 1182
analytic Picard group, 1183
analytic point, 959, 1499
analytic space, 1182
analytic space of Cn, 1182
analytic subvariety, 1182
analytification of F , 1187
analytification of X, 1186
AND gate, 1808
André-Quillen cohomology, 732
André-Quillen homology, 732
anima, 277
anisotropic, 1261
annihilating ideal, 631
annihilator, 91
anodyne, 255
anti-affine algebraic group, 845
anti-symmetrized tensors, 102
antichain, 27
approaches, 323
approximate identity, 1061, 1084
Arakelov heights, 1299
arc-topology, 548
Archimedean, 945
Arin-Rees category, 784
arithmetic Frobenius, 573
arithmetic genus, 670
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arithmetic monodromy group, 1401
arithmetic point, 700
arithmetic subgroup, 1316, 1318
arithmetic surface, 1362
Aronszajn tree, 27
Artin conductor, 1547
Artin L-function, 1728
Artin map, 1274, 1276
Artin reciprocity isomorphism, 1273
Artin representation, 1544
Artin symbol, 1286
Artin-Hasse exponential, 878, 1436
Artin-Rees I-adic, 785
Artin-Schreier exact sequence, 775
Artin-Schreier extension, 85
Artin-Schreier sheaf, 1409
Artinian, 291, 404
Artinian Abelian category, 291
associated G-bundle with fiber F , 383
associated category fibered in groupoids, 205
associated point of X, 573
associated points, 626
associated primes, 425
associated to F , 573
associative H-space, 362
associative operator, 47
at most countable set, 21
atlas for the algebraic space F , 905
atlas for the algebraic stack X, 906
atom, 969
atomic diagrams, 37
atomic formulas, 2, 12
augmentation, 250
automorphic cuspidal representation, 1686
automorphic forms, 1647
automorphic functions, 1648
automorphic Galois representation, 1707
automorphic L-period map, 1782
automorphic representation, 1686
automorphic-complete group, 53
axioms, 2, 10
Azumaya algebra, 115, 914
Azumaya Brauer group, 914

B-ring, 1218
Bézout domain, 70
baby Monster group, 60

Baer-Specker group, 50
Baire space, 232
balanced, 1020
balanced Γ1(N)-structure, 1391
bald, 1218
Banach algebra, 1023
Banach space, 1023
base, 162
basepoint free, 637
basis, 89
Beilinson height paring, 1776
belong to T , 532
Bergman metric, 1209
Bergner model structure, 259
Bernoulli numbers, 878
Bessel function, 1018
Betti cohomology, 1187
bi-exact bifunctor, 299
bialgbera, 174
bicommutant, 1047
bicommutatant, 108
big affine étale site, 544
big affine smooth site, 545
big affine Zariski site, 543, 546
big pro-étale site, 1514
big smooth site, 545
big Zariski site, 546
big-crystalline site, 793
biholomorphism, 1001
binary operator, 47
birational, 572
bivariant class c, 748
Bloch-Wigner dilogarithm, 1776
blowing up, 680
Boolean function, 1808
bordism group, 392
Borel measure, 970
Borel pair, 865
borel subalgebra, 141
Borel subgroup, 865
bound variable symbols, 12
boundary map, 355
bounded, 940
bounded f -torsion, 519
bounded above, 323
bounded below, 323
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bounded prism, 803
bounded symmetric domain, 1209
Bousfield localization, 243
Braid group, 56
branch, 27
Brauer group, 914, 918
Brauer-Manin obstruction, 921
Breuil-Kisin twist, 813
Bruhat-Tits building, 1584

canonical height, 1382
canonical height pairing, 1382
canonical heights, 1297
canonical map, 719
canonical sheaf, 701
canonical topology, 534, 1458
canonical truncation, 294
CAP representations, 1693
cardinal number, 21
Cartan involution, 873
Cartan matrix, 164
Cartan subalgebra, 133
Cartan subgroup, 865
Cartan-Eilenberg resolution, 298
Cartesian arrow, 203
Cartesian fibration, 267
Cartesian monoidal structure, 195
Cartesian-closed, 195
Cartier divisor, 1495
Cartier divisor group, 678
Cartier dual, 840
Casimir element, 151, 153
Casimir operator, 153
Casselman basis, 1635
Cassels-Tate pairing, 1338
Casson invariant, 1148
categorical construction, 274
categorical equivalence, 261
categorical fibrations, 248, 262
categorical quotient, 190
category, 181
category (co)fibered in

groupoids/sets/equivalence relations,
205

category of descent datum, 538
catenary, 334, 419
catenary scheme, 599

Cauchy filter, 232
Cayley transformation, 101
cellular homology groups, 358
cellular homotopy, 342
cellular map, 342
center, 125
central k-algebra, 115
central character, 1591
central series, 58
central value, 1734
central/multiplicative isogeny, 850
chain complex, 293
chain equivalent, 1263
character, 836, 1078, 1522, 1538
character of G, 1068
characteristic class, 387
characteristic ideal of B, 1800
Chern character, 754
Chern class, 1126
Chern classes, 390, 753
Chern connection, 1184
Chern polynomials, 69
Chern-Weil, 1126
Chevalley group, 1576
choice function, 20
Chow cohomology group, 749
Chow group, 826
Chow group of k-cycles, 745
Chow group of codimension p cycle, 746
Chow motives, 825
Chow ring of X, 758
Chow-Künneth decomposition, 828
Christoffel symbol, 1132
class, 4
class formation, 1273
class function, 1079
class group, 431
class group of F , 1248
class number of F , 1248
class system, 3
classifying space, 383, 384
cleavage, 203
closed, 195, 1021
closed Cartier divisor, 1496
closed Hurewicz cofibration, 349
closed immersion, 568, 613, 1462, 1470
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closed immersion defined I, 568
closed subfunctor, 892
closed subscheme, 613
CM-algbera, 1347
CM-field, 1347
CM-pair, 1347
CM-type, 1347, 1352
CNOT gate, 1809
co-action, 175
co-module, 175
coalgebra, 174
coCartesian arrow, 203
coCartesian fibration, 267
cocommutative, 174
cocontinuous functor, 531
code, 1106
codimension, 334
coend, 191
cofiber sequence, 307
cofibered category, 203
cofibrantly-generated model category, 241
cofibration, 255, 349
cofibrations, 235
cofinal, 27
cofinal map, 279
cofinality, 16
Cohen-Macaulay ring, 442
Cohen-Macaulay scheme, 599
coherator, 686
coherent nerve, 260
coherent sheaf, 560
coherent sheaves, 533
coherentor, 293
cohomological dimension, 777, 929
cohomological dimension bounded by N , 314
cohomological operator, 359
cohomology of F with supports in Z, 775
cohomology ring of X, 823
coimage, 285
coinduced module, 75
cokernel, 285
cokernel Hopf algebra, 178
colimit, 279
combinatorial model category, 241
comma category, 183
commutative, 327

commutative group scheme, 833
commutative monoid, 311
commutative ring, 64
commutative ring spectra, 311
commutator, 1047
compact, 218, 872
compact dimension, 595
compact generating functor, 222
compact Lie algebra, 141
compact object, 286
compact operator, 1035
compact planer glueing diagram, 233
compact real algebraic group, 871
compact representation, 1542
compact symplectic group, 1169
compact-open topology, 222
compactly generated space, 222
compactly generated triangulated category,

304
compactly induced representation, 1539
compactly supported smooth functions on

G(AF ), 1685
companion matrix, 92
compatible, 16
compatible system of roots of unity, 1245
compatifications of X/S, 682
complementary series representations, 1640
complete, 18, 33, 323, 954
complete intersection, 662
complete intersection local ring, 468
complete linear series, 638
complete tensor product, 941
complete uniform space, 232
completed Artin L-function, 1729
completed de Rham complex, 813
completed Hecke L-function, 1743
completed residue field, 1487
completed tensor product, 1219
completion, 18
completion curve, 706
completion/Henselization/Zariski localization,

956
complex inner space, 96
complex manifold, 1180
complex measure, 969
complex multiplication, 1351
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complex part, 980
complex places, 1239
complex reductive Lie group, 874
complex torus, 1194
component group of A, 1346
composite homotopy, 339
composite series, 57
composition law, 181
composition of correspondences, 820
composition series of G, 850
condensed objects, 937
condition of moderate growth, 1647
conductor, 1277, 1612
conductor of α, 432
conductor of E, 1334, 1336
conductor of L/F , 1284
conductor of R, 432
cone, 340
cone over X, 215
congruence subgroup, 1315, 1662
coniveau, 1207
conjugate, 1140
Conne complex, 270
Conne cyclic category, 268
Conne double complex, 271
connected, 216, 533
connected complex reductive Lie group, 874
connected component, 217
connected Shimura datum, 1719
connected Shimura variety attached to

(G,D), 1720
connected Shimura variety relative to (G,D),

1720
connected sum, 366
connection, 767
connective spectrum, 310
conormal sheaf, 644
consistent, 33
constant sheaf, 535
constant symbols, 12, 13
constructible, 330, 332
constructible m-adic sheaf, 785
constructible Qℓ-sheaves, 787
constructible K-sheaves, 786
constructible étale sheaf, 778
constructible topology, 332

continued fraction, 1838
continuous functor, 531
contractible, 339
contragradient, 119, 1685
contragradient (g,K)-module, 1597
contragradient smooth representation, 1526
contravariant cofibration, 265
contravariant equivalence, 265
contravariant fibration, 265
contravariant functor, 182
contravariant model structure, 265
converge, 991
converge absolutely, 991
convergence in measure, 970
converges, 216, 323
convex subgroup, 86
convolution, 1059, 1084
convolution distribution, 1084
coprimary, 426
COPY gate, 1808
corestriciton, 924
correpondences, 820
correspondence, 281
cosimplicial object, 250
cosmooth C∞

c (X)-module, 1532
cotangent bundle, 1118
cotangent complex, 732
cotensored, 199
countable, 21
course quotient for R, 907
course quotient in schemes for R, 907
covariant cofibration, 264
covariant equivalence, 264
covering space, 376
covering space action, 329
coverings, 531
cowedge, 191
coxeter graph, 164
Coxeter root, 168
critical, 1116
critical motive, 1773
critical point for L(s), 1734
critical value, 1734, 1773
cross product map, 360
cross ratio, 980
crystal in finite locally free modules, 796
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crystalline prism, 803
crystalline representations, 1558
crystalline site, 793
cup product map, 360
curvature, 1133
curve, 699
cusp, 718, 1646
cusp forms, 1686
cuspidal, 1647, 1648, 1685
cuspidal representation, 1618
cuspidal supports, 1627
cut, 18
CW approximation, 348
CW complex, 341
CW complex of finite dimension, 341
CW complex of finite type, 341
cycle class maps, 823
cycle map, 790
Cyclic Homotopy Group, 270
cyclic object, 268
cyclotomic Zp-extension, 1247
cyclotomic character, 1545
cyclotomic polynomial, 67
cylinder object, 236

decay rapidly, 1648
decidable, 33
decomposed generically, 1549
decomposition field, 1240
decomposition group, 1240
Dedekind cut, 18
Dedekind domain, 429
Dedekind eta function, 881
Dedekind scheme, 601
Dedekind zeta function, 1738
Dedekind-finite, 64
deducible form η1 to ηn, 10
definable, 32
definable set, 6
definable subsets, 45
definably arcwise connected, 44
definably connected, 44
definably interpreted, 32
definition, 3
deformation retraction, 339
degenerate, 1218
degenerate complex, 511

degenerate correspondences, 822
degree, 671, 711
degree of A, 914
degree of L, 1724
degree of π at p, 611
degree of D, 711
degree of f , 613, 1122
degree of a locally free sheaf, 712
degree of a zero cycle, 746
degrees of α, 822
Dehn invariant, 1821
Deligne cohomology, 1205
Deligne complex, 1205
Deligne periods, 1774
Deligne-Fourier transform, 1409
Deligne-Lustig Induction map, 1577
Deligne-Mumford stack, 906
Deligne-Weil representations, 1547
dense, 17, 26
deRham complex, 795
deRham representation, 1558
derivation, 461
derivative transformation, 1107
derived I-completion, 525
derived category, 312
derived category of Frobenius B-modules, 819
derived colimit, 322
derived complete, 523
derived de Rham cohomology, 818
derived limit, 322
derived pullback, 585
derived series, 126
derived tensor product, 584
desingularization, 698
destablization, 212
determinant, 102
determinential ι-weights, 1397
Deuring normal form, 1372
Deutsch-Jozsa algorithm, 1810
Deutsch-Jozsa problem, 1809
devided power structure, 493
dg-category, 327
diagonal group, 870
diagonalizable, 859, 1571
diamond, 1451, 1516
different of f , 695
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different of K/L, 434
differentiable singular cohomology, 594
differential graded algebra, 327
differential module, 327
differentiation of a distribution, 1083
dihedral Weil representation, 1547
dimension, 89, 419, 889
dimension function, 334
dinatural transformation, 191
Diophantine sequence, 1310
Dirac sequence, 1055
direct image, 566
direct sum, 285
direct sum dévissage, 76
directed set, 16
Dirichlet character modulo m, 1760
Dirichlet density, 1287
Dirichlet L-function, 1762
discrete, 293, 313
discrete series, 1602, 1603
discrete topology, 531
discrete valuation ring, 944
discriminant function, 1678
discriminant of E, 1367
discriminant of f , 694
discriminant of L/K, 435
discriminant of the basis, 81
dissection of a polytope P , 1820
distal, 1103
distinguished element, 491
distinguished triangle, 309
distribution, 1532
distributions, 1083
distributions on F , 1532
divergence, 1135
divided power ring, 493
division ring, 65
divisor, 1438
divisor functor, 898
divisor-stable, 482
Dolbeault cohomology group, 1185
Dolbeault complex, 1185
domain, 64
dominant map, 609
dominates, 942
Donaldson invariants, 1149

double complex, 294
doubly periodic w.r.t. Λ, 1014
Drinfeld curve, 1582
dual Abelian scheme, 1344
dual Abelian variety, 1323
dual basis, 91
dual category, 181
dual complex, 521
dual complex torus, 1195
dual Coxeter number, 168
dual group, 1068
dual lattice, 1231
dual measure, 1070
dual module, 434
dual of Hopf bundle, 382
dual representation, 152
dual segment, 1616
dual space, 91, 1068
dual system, 161
dual variety, 657
dualizing complex, 529, 689, 693
dualizing module, 529
Dwyer-Kan equivalence of simplicial

categories, 259
Dynkin diagram, 166

Earring group, 54
edge morphisms, 323
edges, 1817
effaceable δ-functor, 318
effective φ-module, 1563
effective Chow motives, 825
effective Grothendieck motives, 826
Eilenberg-Maclane space, 372
Eilenberg-Steenrod homology theory, 355
Eisenstein integers, 1245
Eisenstein manifold, 1137
Eisenstein polynomial, 1223
Eisenstein series, 1676
Eisenstein series of mixed type, 1747
Eisenstein series of weight k, 1676
elementary automorphisms, 125
elementary class, 31
elementary diagrams, 37
elementary embedding, 37
elementary equivalent, 31
elementary matrix, 93



INDEX 1889

elementary polynomials, 69
elementary row operation, 93
elliptic, 1094, 1166
elliptic curve, 1367
elliptic dilogarithm, 1778
elliptic point, 1663
elliptic regulator, 1382
elliptic scheme, 1367
embedded Lie subgroup, 1157
embedded point, 626
embedded prime, 426
embedded submanifold, 1115
embedding of algebraic groups, 849
end, 191
energy, 1140
enriched category, 199
epimorphism, 183
equicontinuous, 1103
equivalence, 182, 247, 273, 327
equivalence relation, 183
equivalence relation on X0, 183
equivalent, 93, 201
equivalent objects, 181
equivariant sheaf, 1525
ergodic, 1108
essential, 291
essential singularity, 987
essentially small, 190
essentially square-integrable, 1638
essentially surjective functor, 182
essentially tempered representation, 1638
Euler character, 368
Euler characteristic, 669, 758
Euler class, 1126
Euler classes, 389
Euler function, 1835
Euler system, 1789
Euler’s constant, 974
even, 1699
even representation, 1545
even/odd line bundle, 1321
exact, 299
exact category, 287
exact functor, 186, 310
exact sequence, 285
excellent model category, 247

excellent ring, 450
exceptional divisor, 680, 681, 1362
excisive triad, 339
exhaustive, 323
expansive, 1102
expansiveness constant, 1102
exponent, 1256
exponential map, 1155
exponential period number, 1292
exponentiation, 22
exponentiation of ordinals, 20
exponents of g, 132
Ext groups, 309
ext groups, 320
extended Period ring, 1291
extension by zero, 557
extension functor of sheaves, 538
extension of valuation rings, 943
extension system, 10
exterior algebra, 399
exterior product, 399
exterior product map, 757
exterior square L-functions, 1745
extremally disconnected, 218

F-isocrystal on S, 798
F-semisimple, 1548
F-space, 1020
factorial scheme, 601
faithful, 108
faithful representation, 1569
faithfully flat, 453
faithfully normed, 1219
Faltings height, 1420
family of effective epimorphisms, 534
family of quotients of E parametrized by T ,

894
family of universal effective epimorphisms,

534
Fano variety, 705
Fargues-Fontaine curve, 1436
fast Fourier transform algorithm, 1810
fat subfunctor, 893
fiber bundle, 374
fiber functor, 198
fiber homotopic, 339
fiber homotopy equivalence, 339
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fiber sequence, 307
fiber sequence map, 307
fibered category, 203
fibered presurface, 1360
fibrations, 235
field, 64
field formation, 1273
field of p-adic numbers, 1220
field of moduli, 1322
filter, 24
filtered (φ,N,Gal(L/K))-module, 1566
filtered φ-modules(isocrystals), 1566
filtered category, 182
filtration, 208
final object, 182, 279
finite, 610
finite I-completely Tor amplitude, 526
finite R-module, 73
finite étale, 1507
finite étale sheaf, 778
finite adeles, 1250
finite continued fraction, 1838
finite CW complex, 341
finite group of Lie type, 1576
finite group scheme, 839
finite ideles, 1251
finite injective dimension, 298, 322
finite intersection property, 24
finite Locally Free group scheme, 839
finite locally free of rank d, 650
finite places, 1238
finite set, 21
finite type, 559, 609
finite type, of finite presentation, coherence,

1468
finitely generated, 291
finitely presented module, 448
first category, 232
first Chern class, 750
first Chern class map, 390
first order language, 12
First Variation of Energy, 1140
fitting ideal, 628
Fitting ideal of A, 407
fixed subscheme, 853
fixed subspace, 1570

flag Variety, 1162
flag variety, 856
flask sheaf, 590
flat, 453, 558, 559, 1133
flat at p, 1545
flat dimension, 439
flat morphism, 559
flat sections, 1629
Floer homology, 1149
flow, 1123
Fontaine’s functor, 480
forest, 1817
formal R-model, 1475
formal R-module, 882
formal adjoint, 1045
formal completion, 889, 1474
formal curve, 880
formal differential forms, 1181
formal differential operator, 879
formal exponential, 877
formal group, 887
formal group law, 882
formal Lie group, 889
formal logarithm, 877, 885
formal power exponential, 885
formal product, 876
formal schemes, 1474
formal sum, 876
formal system, 10
formally étale, 474
formally smooth, 468
formally unramified, 473
formally unramified/smooth/étale, 697
Fourier transform, 1069, 1084
Fourier transformation, 1086
Fourier-Whittaker coefficients, 1691
fppf topology, 546
fpqc topology, 546
Fréchet space, 1020
fractional ideal, 430
fractional part of α, 1833
Fredholm operator, 1038
Fredkin gate, 1809
free, 513
free δ-ring, 489
free group, 54
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free lattice, 1241
free Lie algebra, 150
free pd-algebra, 495
free resolution, 514
free variable symbols, 12
Frey curve, 1715
Frobenius action on compact étale

cohomologies, 781
Frobenius fixed pts, 819
Fubini-Study metric, 1190
full subcategory, 183
full/faithful functor, 182
function field, 1238
function field of X, 598
function symbols, 13
functions symbols, 12
functor, 181
functorial lifting, 1695
fundamental category functor, 251
fundamental class, 1273
fundamental class of X, 746
fundamental domain, 1061
fundamental groupoid functor, 252
fundamental homology class mod 2, 367
fundamental representation, 1590
fundamental solution, 1093

G-ring, 450
GAGA functor, 1466
Galois closure, 83
Galois cover, 769
Galois field extension, 83
Galois symbol map, 172
Gamma function, 1016
gap, 18
gap sequence, 723
Gauss sum, 1760
Gauss transformation, 1838
Gaussian integers, 1244
general linear group, 870, 1166
general symplectic group, 870
generalization of x, 332
generalized Hodge-Tate weights, 1556
generated subgroup scheme, 834
generator of D, 304
generic, 1433
generic fiber, 571

generic fiber functor, 209
generic representation, 1620
generically finite morphism, 612
genuine geometric representation, 1710
genuinely geometric system, 1711
genus of an entire function, 993
geodesic equations, 1132
Geodesic flow, 1138
geometric exact category, 287
geometric Frobenius, 573
geometric genus, 702
geometric irreducible/semisimple, 1394
geometric monodromy group, 1401
geometric point, 700
geometric quotient, 908
geometric representation, 1710
geometric structure, 288
geometrically (almost-)simple algebraic group,

867
geometrically conjugate, 1577
geometrically integral/reduced/separated/irre-

ducible. . .,
601

geometrically irreducible/semisimple, 787
geometrically reduced/integral/connected. . .,

446
geometrically regular, 446, 601
gerbe, 543
ghost components, 483
global ε-factor, 1744
global canonical character, 1257
global field, 1238
global Hecke algebra, 1684
global Hecke L-function, 1743
global intersection, 467
global section, 575
global section functor, 637
global zeta function, 1738
glueable module, 461
gluing pair, 461
going-down property, 332
going-up property, 332
good, 1440
good cylinder object, 236
good dihedral prime, 1708
good quotient, 907
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good reduction, 1365, 1379
Goodstein sequence, 20
Gorenstein, 442
graded module, 413
graded ring, 413
gradient, 1135
Gram matrix, 101
graph, 1817
Grassmannian, 343
Grassmannian manifold, 1162
Grassmannian variety, 856
greatest lower bound property, 17
Gromov-Hausdorff metric, 331, 1152
Grothendieck Abelian category, 291
Grothendieck correspondences, 820
Grothendieck group, 685
Grothendieck group of k-cycles, 761
Grothendieck group of coherent sheaves, 685
Grothendieck motives, 826
Grothendieck ring of X, 761
Grothendieck-Witt ring, 1264
group algebraic space, 907
group cohomology, 923
group formation, 208
group of Adele points of G, 1313
group of compact type, 1312
group of units of G, 1316
group schemes, 833
group variety, 847
group-like, 174
group-like element, 178
groupoid, 182
groupoidification functor, 186
Gyin map, 747
Gysin homomorphism, 747

H-space, 362
H-very ample, 641
Haar measure, 1056
Hadamard gate, 1809
halting computation, 14
Hamiltonian circuit, 1818
Hamiltonian connected, 1818
Hamiltonian path, 1818
Hankel determinants, 879
happy family, 60
Haptmodul, 1666

Harder-Narasimhan category, 212
Harder-Narasimhan filtration, 211, 213
Harder-Narasimhan formalism, 209
Harish-Chandra module, 1599
harmonic, 1010
harmonic Maass form, 1655, 1656
Hartogs number, 23
Hasse invariant, 1376
Hasse-Weil L-function, 1733
Hattoris-Stallings trace, 767
Hauptmodul, 1664
Hausdorff, 323
Hausdorff distance, 331, 1152
have order n, 695
heart, 310
Hecke algebra, 1536, 1605, 1606, 1667
Hecke character, 1253
Hecke eigenforms, 1669
Heegner condition, 1779
Heegner numbers, 1248
Heegner point, 1779
Heegner point of E, 1779
height, 27, 86, 419
height of L, 1724
height of formal group law, 888
height of homomorphism, 888
height of roots, 163
Heine-Borel property, 230
Heisenberg group, 1700
Henselian, 451, 954
Henselian pair, 451
Henselian valued field, 1220
Herbrand function, 1225
Hermitian, 1046
Hermitian form, 97
Hermitian manifold, 1183
Hermitian matrix, 101
Hermitian metric, 1183
Hermitian space, 101
Hermitian symmetric domain, 1209
Hermitian symmetric space, 1208
Hermitian transpose, 101
Hermitian vector bundle, 1182
Hessian, 1135
higher block presentation, 1106
higher direct image with compact support,
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782
highest weight representation, 1588
highest weight vector, 1588
Hilbert basis, 1024
Hilbert class field, 1284
Hilbert class field tower, 1285
Hilbert class polynomial, 1356
Hilbert functor, 894
Hilbert Polynomial, 416
Hilbert polynomial, 670, 671
Hilbert scheme, 718
Hilbert subset, 1293
Hilbert symbol, 1267
Hilbert-Schimidt, 1051
Hilbert-Schmidt inner product, 1052
Hilbertian field, 1293
Hochschild complex, 269
Hochschild complex of M , 270
Hochschild homology group, 269
Hochschild-Mostow group, 1574
Hodge classes, 1202, 1425
Hodge cohomology, 767
Hodge cycle, 1425
Hodge decomposition, 1202
Hodge filtration, 1202
Hodge manifold, 1201
Hodge Type, 1721
Hodge-Tate complex, 811
Hodge-Tate degree, 210
Hodge-Tate representation, 1554
Hodge-Tate weight, 798
holomorphic, 981, 1015
holomorphic cotangent bundle, 1183
holomorphic cusp forms, 1664
holomorphic map, 1182
holomorphic modular form, 1664
holomorphic tangent bundle, 1183
holomorphic vector bundle, 1182
holonomy group, 1138
Hom complex, 294
homogeneous space, 854, 1161
homogenous ideal, 414
homological dimension, 665
homological dimension bounded by N , 314
homomorphism of Lie groups, 1154
homotopic, 275, 339

homotopic maps, 273
homotopy, 339
homotopy category, 239, 245, 251, 261
homotopy category of complexes, 294
homotopy category of spaces, 251
homotopy coherent I-diagram, 274
homotopy colimit, 245
homotopy equivalence, 339
homotopy extension property, 349
homotopy fiber square, 517
homotopy fibers, 225
homotopy groups, 344, 511
homotopy relative to A, 339
Hopf algebra, 174
Hopf bundle, 382
Hopf fibration, 375
Hopf ideals, 177
Hopf invariant, 1150
horizontal divisor, 1361
Huber, 952
Huber category, 1494
Huber pair, 954
Hurewicz fibration, 351
Hurewicz homomorphism, 358
Hurewicz-Str∅m model structure, 248, 353
Hurewitz space, 722
hyperbolic, 1261
hyperbolic disk, 1152
hyperbolic metric, 1152
hyperbolic plane, 1261
hyperbolic type, 1004
hypercohomologies, 318
hyperelliptic curve, 721
hyperelliptic map, 721
hyperelliptic Weierstrass point, 723
hyperplane line bundle, 1183
hyperplane reflection, 1264
hyperspecial compact subgroups, 1313

ideal, 24, 125, 397
ideal class group, 1251
ideal group defined mod m, 1284
ideal groups defined mod m, 1284
ideal of definition, 398, 940, 952
ideal sheaf, 568
idele group, 1251
idelic norm, 1251



1894 INDEX

idempotented algebra, 118
identify local rings, 400
image, 285
immediate specializations/generalizations, 332
immersed submanifold, 1115
immersion, 613
inconsistent, 33
ind-(Zariski localization), 791
ind-Zariski/smooth/étale, 791
indecomposable representation, 1521
index, 1038
index of L, 1326
index of a w.r.t γ, 983
index of M , 367
index of a subgroup, 48
index of the Brauer class, 918
induced admissible formal subscheme, 1475
induced module, 75
induced reduced scheme structure, 597
induced representation, 1082
induction pair for G(Fq), 1577
inductive, 15
inert, 268
inertia degree, 432, 1221, 1239
inertia field, 1240
inertia group, 1223, 1240
infinite adeles, 1250
infinite Grassmannian, 343
infinite ideles, 1251
infinite places, 1238
infinite projective space, 343
infinite sphere, 343
infinite Stiefel Manifold, 343
infinite symmetric product, 344
infinite vector space, 343
infinitesimal deformation, 696, 736
infinitesimal deformation of Y in X, 696
infinitesimal equivalent, 1599
infinitesimal extension, 696
infinitesimal Fontaine’s ring, 480
infinitesimal generator, 1123, 1160
infinitesimal group scheme, 839
inflation, 924
initial ordinal, 19
initial segment, 17
injection, 289

injective, 606
injective amplitude, 298
injective amplitude in [a, b], 322
injective cofibrations, 244
injective dimension, 439
injective fibrations, 244
injective model category, 244
injective object, 183, 297
inner anodyne, 255
inner automorphisms, 53
inner fibration, 255
inner regular, 970
inseparable degree, 80
integrable, 767, 1181
integral, 598, 610
integral curve, 1123
integral Hodge structure, 1202
integral lisse sheaf, 1412
integral part of α, 1833
integral perfectoid ring, 807
integral polarized Hodge structure, 1202
integral ring, 64
integral stalk, 1492
integral structure sheaf, 1493
integral weight, 1588
integration, 1030
internal Ext groups, 589
internal Hom, 320, 588
internal Hom sheaf, 561
interpretable, 32
interpretations, 31
intersection pairing, 367
intersection with Chern classes, 752
intertwining operators, 1065
intrinsic property, 557
invariant, 125
invariant differential form, 882
invariant differential operator, 883
invariant factor decomposition, 76
invariant factors, 76
Invariant polynomial, 1126
inverse Fourier transform, 1810
inverse image, 566
inverse morphism, 181
inverse system, 186
invertibility hypothesis, 247
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invertible object, 197
invertible sheaf, 565
involution of first kind, 118
involution of second kind, 118
involution on G, 873
involutive Hopf algebra, 174
IP-system, 1105
irreducible, 71, 333, 597
irreducible cusp, 1646
irreducible representation, 1521
irreducible/semisimple lisse sheaf, 787
irrelevant ideal, 413
isocrystal decomposition, 799
isocrystal on S, 798
Isocrystal with G-structures, 1480
isogeny, 849
isomorphism, 181
isotropic, 1261
isotropic subgroup, 52
isotropy group scheme, 854
Iwahori factorizations, 1613
Iwahori fixed, 1613
Iwahori subgroup, 1613
Iwasawa algebra, 1800

Jacobi field equation, 1139
Jacobian, 1203
Jacobian variety, 1342
Jacobian variety of X, 1203
Jacobson, 333, 428, 599
Jacobson radical, 112
Jacobson semisimple, 112
Jacquet functor, 1526, 1617
James reduced product, 344
Janko groups, 60
Japanese, 450
Japanese bracket, 1094
Japanese scheme, 600
join, 253
Jordan decomposition, 131
Jordan form, 92
Joyal fibrations, 248, 262
Joyal Join, 262
Joyal model structure, 262

K-adapted class, 315
K-Bessel function, 1018

K-finite function, 1685
K-group, 392
K-group of D, 304
K-injective, 314
K-projective, 314
Kähler class, 1190
Kähler cone, 1201
Kähler different, 694
Kähler manifold, 1190
Kähler metric, 1190
Kähler normal coordinate, 1191
Kahler form, 1183
Kan fibration, 255
Kan-Quillen model structure, 258
Kaplansky dévissage, 77
Karoubian category, 286
kernel, 285
kernel group scheme, 834
kernel of the reduction, 1379
key establishment protocol, 1804
Killing equation, 1135
Killing field, 1135
Killing form, 125
Kirillov model, 1623
Klein bottle, 234
Kleinian Integers, 1245
Kolyvagin cohomology classes, 1780
Kolyvagin derivative, 1780
Kolyvagin index, 1780
Kolyvagin number, 1780
Kolyvagin prime, 1780
Kolyvagin sequence, 1795
Kolyvagin system, 1780
Kostant’s partition function, 164
Koszul complex, 465
Koszul-regular, 466
Kottwitz-basic, 1480
Kottwitz-decent, 1478
Krull dimension, 334
Kummer extension, 84

L-packet, 1697
Lagrangian decomposition, 52
Lang map, 875
Langlands L-functions, 1695
language, 10
Laplace transformation, 1087
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Laplace-Beltrami operator, 1594
Laplacian, 1135
lattice, 1241
lattice in V , 1230
Laurent covering, 1460
Laurent domain, 1459
lcc étale sheaf, 778
least upper bound property, 17
Lebesgue space, 969
Lefschetz number, 790
Lefschetz operator, 1191
left adjoint, 282
left anodyne, 255
left coset, 48
left derived functor, 240, 516
left dual, 196
left dual map, 197
left exact functor, 186
left fibration, 255
left global dimension, 439
left homotopic over Z, 237
left Kan extension, 192
left Kan extension functor, 281
left lifting property, 200
left module, 504
left proper, 236
left Quillen bifunctor, 243
left regular action, 1055
left-closed, 195
left/right cone, 253
Legendre form, 1371
length, 27, 163, 291, 402
Levi subalgebra, 129
Levi subgroup, 869
Levi-Cevita connection, 767
lexicographical ordering, 17
Lie p-algebra, 157
Lie algebra, 124
Lie algebra associated to G, 1163
Lie bracket, 124, 1119
Lie group, 1154
Lie subgroup, 1157
limit, 279
limit ordinal, 18
limits of discrete series, 1602, 1603
Line bundle associated to D, 638

linear action, 855
linear algebraic group, 1571
linear operator, 89
linear ordering, 17
linear series, 718
linear system functor, 899
linear torus, 860
linearly reductive, 866
linked segements, 1616
lisse m-adic sheaf, 785
lisse Qℓ-sheaves, 787
lisse K-sheaf, 786
lisse Weil-sheaf, 1393
local, 548
local G-ringed K-space, 1465
local along Z, 338
local complete intersection, 467
local diffeomorphism, 1113
local dimension, 334
local fibration, 247
local field, 1226
local isomorphism, 791
local on the target, 405
local property, 405
local restriction problem, 1782
local ring, 398, 440
local ring map, 398
local ringed site, 555
local ringed space, 556
local ringed topoi, 556
local zeta functions, 1738, 1750
localization of ∞-category, 282
localization of X along Z, 338
localizing category, 188
localizing system, 188
locally bounded, 1302
locally Cartesian fibration, 267
locally closed, 216
locally closed immsetion, 1462
locally compact, 221
locally complete intersection, 662
locally connected, 216
locally constructible, 332
locally fibrant, 247
locally finite CW complex, 341
locally free crystal over S, 798
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locally good-dihedral, 1708
locally integrable, 970
locally nilpotent, 113, 426
locally nilpotent ideal, 398
locally Noetherian, 598
locally Noetherian space, 331
locally of finite type, 609
locally of topologically finite type/finite

presentation/admissible, 1475
locally path-connected, 217
locally presentable category, 190
locally profinite, 226
locally profinite group, 1064
locally projective, 620
locally projective Qco sheaf, 625
locally Qco, 795
locally spectral, 335
locally symmetric, 1208
locally symmetric variety, 1211
locally trivial bundle, 374
logarithm, 990
logical consequence, 32
loop functors, 308
loop space, 340
lower central series, 126
lower semicontinuous, 215
loxodromic, 1166
Lubin-Tate character, 1278
Lubin-Tate module, 885
Lubin-Tate power series, 885
Lustig series, 1578
Lyons group, 60

M-regular sequence, 440
Möbius band, 234
Möbius function, 1835
Maass differential operators, 1653
Maass Form, 1655
magma, 47
Mahler height, 1298
manifold, 232
Manin constant, 1715
mapping cone, 215, 294
mapping cylinder, 215, 294
mapping graph, 187
mapping space, 253
marked simplicial set, 259

mathematical language, 13
mathematical logic, 1
mathematics, 1
matrices, 89
matrix coefficient, 109
matrix coefficient map, 1077
maximal, 33
maximal ι-weight, 1398
maximal S-torsion-free quotient, 398
maximal compact subgroup, 1064
maximal tree, 1817
maximal unramified extension, 1222
mean-value property, 1010
measurable cardinal, 26
measurable map, 969
measurable space, 969
measure, 969
measure algebra, 1059
measure space, 969
Mellin transformation, 1086
meromorphic along, 1496
meromorphic function, 987
meromorphic modular forms, 1664
meromorphic/holomorphic/vanishes, 1648
metabelian, 59
metaproof, 10
metasystem, 3
metatheorem, 10
metavariable, 3
metrized line bundle, 1724
microbial, 946
Milnor K-group, 171
minimal discriminant, 1382
minimal model, 1363
minimal model for C, 1365
minimal polynomial, 94
minimal set, 1101
minimal surface, 1363
minimal Weierstrass equation, 1378
Minkowski functional, 1025
minuscule, 168
mirabolic subgroup, 1683
Mittag-Leffler condition, 186
mixed complex, 271
mixing, 1108
Mock modular form, 1656
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mod 2 degree of f , 1122
model, 31
model complete, 39
model over S, 1365
model structure, 235
moderate growth, 1657
modification, 619
modular elliptic curve, 1714
modular forms mod p of weight k, 1682
modular function, 1057, 1664
modular Galois representation, 1707
modular height, 1420
moduli space of curves, 718
modulus, 1283
Moishezon manifold, 1189
monad, 208
monoid, 47
monoid scheme, 833
monoidal (∞, 1)-category, 311
monoidal category, 194
monoidal functor, 196
monoidal model category, 243
monoidal natural transformation, 196
monoidal transformations, 861
monomorphism, 183
Monster group, 60
Monstrous module, 159
Montel-normal family, 1007
Moore chain complex, 511
Morita equivalent, 407
morphism compatible with the geometric

structure, 288
morphism of local ringed topoi, 556
morphism of sites, 531
morphism of topoi, 536
morphisms from x to y, 181
motivic L-function, 1733
motivic weight, 1712
multiplication, 22
multiplication of ordinals, 20
multiplicative Arakelov heights, 1299
multiplicative canonical heights, 1297
multiplicative group, 870
multiplicative Herbrand quotient, 297
multiplicative reduction, 1379
multiplicative structure sheaf, 555

multiplicative valuation, 945
Mumford curve, 1476
Mumford line bundle, 1323

N-1, 450
N-2, 450
Néron differential, 1378
Néron model, 1344
Néron-Severi group, 902, 1184
Néron-Tate height, 1339
Néron-Tate pairing, 1340
Nagata, 450
Nagata scheme, 600
Nakayama isomorphism, 1273
natural density, 1287
natural numbers, 3, 15
natural transformation, 182
NDR-pair, 349
nef line bundle, 765
negative roots of R, 162
nerve functor, 251
neutral Tannakian category, 198
new forms of level N , 1670
Newton Identities, 69
Newton map, 1478
Newton polygon, 1235
nilpotent, 124, 126
nilpotent group scheme, 835
nilpotent radical, 129
nilradical, 428
node, 718
Noetherian, 291, 401, 531, 598
Noetherian ring, 401
Noetherian space, 331
non-Abelian Čech cohomology, 582
non-Archimedean , 945
non-Archimedean field, 945
non-degenerate, 108, 1260
non-degenerate F -crystal, 800
non-degenerate critical point, 1147
non-degenerate line bundle, 1325
non-holomorphic Eisenstein series, 1746
non-isotropic kernel, 1263
non-singular measurable map, 969
non-singular projective model, 708
non-split in L, 433
non-split multiplicative reduction, 1379
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non-wandering points, 1101
nonderogatory, 94
norm, 1020
norm group, 1227, 1253
norm map, 80
Norm operator topology, 1023
norm residue symbol, 1273
normal, 600, 1046
normal closure, 79
normal coordinate frame, 1184
normal covering space, 378
normal domain, 442
normal extension, 78
normal sheaf, 644
normal subgroup, 48
normal subobject, 208
normal Weierstrass point, 723
normalization, 443
normalized, 884
normalized Eisenstein series, 1676
normalized invariant differential form, 1369
normalized Jacquet functor, 1617
normalized spherical vector, 1633
normed group, 1218
normed module, 1219
normed(valued) K-space, 1023
normlized Moore complex, 511
NOT gate, 1808
null system, 784
number field, 1238
number field of f , 1681
numerical locally trivial bundle, 374
numerical polynomial, 1835
numerically effective line bundle, 765
numerically equivalent, 761, 764

O’Nan group, 60
objects of C, 181
observables, 1807
odd representation, 1545
of at most linear exponential growth, 1648
of finite branched, 27
of finite presentation, 449, 559, 646
of locally finite presentation, 646
of moderate growth, 1648
of topologically finite presentation, 942
of topologically finite type, 942

old forms of level N , 1670
one-parameter subgroup, 1155
one-point compactification, 221
open covering of a functor, 892
open immersion, 568, 613, 1462, 1470, 1495
open subfunctor, 892
open subscheme, 613
open subspace, 568
open/closed subgroup scheme, 833
opposed category, 194
opposite simplicial set, 252
OR gate, 1808
orbit map, 853
orbit scheme, 853
orbit space for R, 907
order, 1083, 1088, 1243
order of growth, 994
order of vanishing, 986, 1438
orderable ring/field, 86
ordered field, 86
ordered ring, 86
ordinal number, 18
ordinary elliptic curve, 1375
ordinary homology theory, 357
ordinary reduced homology theory, 357
orientable, 803
orientation of E, 379
oriented, 803
oriented bordism group, 393
orthogonal group, 870, 1264
orthohedron, 1820
outer automorphisms, 53
outer regular, 970
overconvergent elements, 1235

PAC field, 1293
parabolic, 1166
parabolic induction, 1618
parabolic subgroup, 865
paracompact, 228
parallelizable, 1118
pariah groups, 60
Parseval equality, 1024
partial L-function, 1762
partial ordering, 16
path, 27
path object, 236
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path space, 225, 340
path-connected, 217
path-connected component, 217
Pauli Observables, 1807
pd-A-derivation, 499
pd-de Rham complex, 500
pd-differential, 499
pd-envelope, 495
pd-scheme, 793
pd-structure, 493
pd-thickening, 793
Peano arithmetic system, 2
perfect, 478, 480, 592, 1429
perfect δ-ring, 491
perfect closure, 80
perfect complex, 313
perfect complex of O-modules, 592
perfect module, 521
perfect object relative to S, 592
perfect prism, 803
perfect prismatic site, 810
perfect quasi-coherent sheaf, 738
perfection, 1429
perfection of prisms, 807
perfectly finitely presented, 478
perfectly finitely presented morphism, 1430
perfectoid affinoid K-algebra, 966
perfectoid affinoid field, 967
perfectoid algebra, 963
perfectoid field, 960
perfectoid spaces, 1502
period number, 1291
Pfaffian, 104
Picard functor, 897
Picard group, 565
Picard number, 903, 1184
Picard scheme, 900
Picard-Fuchs differential operator, 1377
planer glueing diagram, 233
Poincaré metric, 1006, 1152
Poincaré series of weight 2k and character n

for Γ, 1679
point of a site, 533
pointed ∞-category, 307
pointed CW complex, 342
pointwise almost periodic, 1103

pointwise equivalence, 265
polar, 1032
polar density, 1287
polarizable integral Hodge structure, 1331
polarization, 1329
polarization function, 50
polarized Galois representation, 1713
polarized manifold, 1201
pole, 987
polydisc, 1015
polygon, 1820
polyhedron, 1820
polyhomogenous symbols of degree d, 1094
Polylogarithm function, 1776
polytope, 1820
Pontryagin class, 1126
Pontryagin dual, 439
Pontryagin numbers, 391
poset, 16
positive, 1046, 1196
positive elements, 86
positive involution, 1350
positive linear functional, 1055
positive roots of R, 162
positive semi-definite, 50
positive-definite, 50
positively expansive, 1102
potentially good reduction, 1379
potentially unramified, 1551
power bounded elements, 1232
power set, 7
pre Artin-Rees category, 784
pre-equivalence relations on X0, 183
pre-relations on X0, 183
pre-Weil cohomology theory, 823
preadditive category, 285
precompact, 218
predicate calculus, 12
predicate(relation) symbols, 12
preimage orientation, 1122
presentable ∞-category, 283
presheaf, 184, 533
presheaf of affinoid functions, 1461
prespectrum, 371
prestack, 538
prevariety, 699
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prime, 71
prime ideal, 24
prime number, 1833
prime Weil divisor, 744
primitive CM-field, 1348
primitive cohomology class, 1193
primitive Dirichlet character, 1760
primitive of degree d, 1441
primitive of weight λ, 1586
primitive root modulo p, 53
primordial language, 1
principal sl2-subalgebra, 132
principal G-bundle, 383
principal congruence subgroup, 1613
principal polarization, 1329
principal series, 1602
principal series representation, 1627
principally-CM Abelian variety, 1353
principle divisor associated to f , 744
principle Weil divisor, 744
prism, 803
prismatic complexes, 811
prismatic envelope, 805
prismatic site, 811
pro-p-group, 63
pro-étale, 1512
pro-Zariski localization, 338
probabilistic measure, 969
product of A and B, 15
product subgroup, 48
profinite cohomology, 927
profinite formation, 1273
profinite group, 61
profinite space, 226
progenerator, 407
projection along p, 717
projection map, 587
projective, 436, 620
projective cofibrations, 244
projective dimension, 439
projective fibrations, 244
projective metric on Pn, 1299
projective model category, 244
projective object, 183, 297
projective representation, 1521
projective space, 636

projective unitary representation, 1522
proof, 10
proper, 617, 1472
proper action, 329
proper direct image, 566
proper discontinuous, 329
proper inverse image, 566
proper map, 219
proper over a Noetherian affine scheme, 640
propositional calculus, 11
protocol, 1804
proximal, 1103
pseudo G-torsor, 533
pseudo uniformizer, 952
pseudo-Abelian variety, 1320
pseudo-algebraically closed field, 1293
pseudo-coherent OX -module, 591
pseudo-coherent module, 520, 522
pseudo-differential operator of symbol a, 1094
pseudo-isomorphism, 1800
pseudo-reductive group, 867
pseudo-uniformizer, 961
pseudo-unitary groups, 1166
pullback, 557, 1562
pullback bundle, 374
pullback filtration, 209
pullback space, 215
punctuation symbols, 11
punctuations symbols, 12
pure braids, 56
pure of weight, 1710
pure of weight i, 1202
pure of weight w, 1397, 1712
pure tensor, 1265
pure(isotypical) of slope, 798
purely inseparable, 80
pushforward, 557, 566
pushforward filter, 24
pushforward filtrations, 209
pushforward map of cohomology, 824

Qco vector bundle, 635
quadratic character, 1277
quadratic form, 50, 1260
quadratic spaces, 1260
quadratically closed, 1260
quantifier elimination, 38
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quantifier symbol, 12
quantization, 1809
quantum correspondence principle, 1807
quantum Fourier transform, 1810
quantum logic gate, 1809
quasi-affine, 608
quasi-algebraically closed, 1296
quasi-central homomorphism, 847
quasi-character, 1068
quasi-coherent, 560, 1464
quasi-coherent crystal, 796
quasi-compact, 218, 531
quasi-compact morphism, 218
quasi-cuspidal representation, 1618
quasi-excellent ring, 450
quasi-fibration, 203
quasi-functor, 205
quasi-isogenies, 1328
quasi-pro-étale, 1516
quasi-separated, 331, 616
quasi-split torus, 860
quasisplit, 1530
Quaternion algebra, 1265
qubit, 1807
Quillen adjunction, 240
Quillen equivalence, 240
Quot functor, 894
quoternionic orthogonal group, 1166
quotient group, 48
quotient group scheme, 834
quotient map, 215, 834
quotient ring, 397
quotient topology, 215
quotient triangulated category, 303

radical, 126, 866, 1260
radius of convergence, 975, 990
Radon measure, 970
Ramanujan τ -function, 1678
ramification degree, 432, 709, 1221
ramification field, 1240
ramification group, 1223, 1240
ramified in over p, 433
rank, 73
rank class, 753
rank of F at p, 626
rank of g, 133

rank of a group variety, 869
rank of a valuation, 943
Rankin-Selberg L-function, 1745
Rankin-Selberg method, 1745
rapidly decreasing, 1657
rational covering, 1460
rational curve, 706
rational domain, 1459
rational equivalent, 745
rational function, 571
rational map, 571
rational subset, 1486, 1489
rationally connected, 705
ray class field, 1283
ray class group, 1283
ray mod m, 1283
real, 87
real algebraic envelope, 1574
real closed, 87
real closure, 87
real form, 871, 872
real inner space, 96
real part, 980
real places, 1239
real projective space, 234
real quaternion algebra, 105
realization functors, 827
recursive, 33
recursively enumerable, 14
reduced, 64, 597
reduced characteristic, 117
reduced degree, 117
reduced Eilenberg-Steenrod homology theory,

356
reduced norms, 117
reduced root system, 161
reduced trace, 117
reduction map, 947
reduction modulo of E, 1379
reduction of X, 1365
reductive, 140
reductive group, 867
Ree Groups, 1576
reflection, 160
reflection group, 160
reflective localization, 188
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reflex CM-pair, 1349
reflex field, 1349, 1353
reflexive, 1034
reflexive object, 195
region, 980
regular, 25, 323, 600
regular action, 329, 853
regular cusp, 1646
regular element, 133
regular embedding, 662
regular local, 445
regular locus, 600
regular model, 1363
regular of F , 1242
regular points, 1182
regular ring, 445
regular semiperfect ring, 818
regular sequence, 440
regular value, 1116
regular with respect to A•, 515
regulator, 1039, 1341
regulator map, 1242, 1778
relations on X0, 183
relations symbols, 13
relative cup product, 585
relative CW complex, 342
relative de Rham complex, 766
relative dimension, 423
relative dimension n, 652
relative dualizing complex, 690
relative effective (Cartier)divisor, 679
relative Frobenius, 478, 573
relative Grassmannian of E , 896
relative homotopy groups, 345
relative identity component, 1345
relative Morse index, 1149
relative Picard functor, 897
relative Proj, 634
relative tangent space, 656
relatively compact, 1472
relatively minimal surface, 1363
relevant, 871, 872
removable singularity, 987
representable, 206
representable by algebraic spaces, 906
representation, 1521

representation of a Lie p-algebra, 157
representation of a Lie algebra, 152
representation of complex type, 1521
representation of quaternion type, 1521
representation of real type, 1521
representations of Galois-type, 1546
reproducing kernel, 1044
residual representation, 1545
residue, 988
resolution property, 687
restricted étale site, 544
restricted direct product, 1249
restricted Galois representation, 1544
restricted power series, 940
restricted product measure, 1249
restricted smooth site, 545
restricted tensor module, 120
restricted tensor product, 120
restricted tensor representation, 1684
restricted Zariski site, 543
restriction, 75, 924
restriction sheaf, 538
resultant, 67
retract, 183
retraction, 339
retrocompact, 332
reverse ordering, 16
reversible, 1808
Ricci curvature, 1136
Riemann form, 1195
Riemann L-function, 1764
Riemann pair, 1194
Riemann surface, 1201
right adjoint, 282
right anodyne, 255
right coset, 48
right derived functor, 316, 318
right derived functors, 240
right exact functor, 186
right fibration, 255
right homotopic under X, 237
right hyper-derived functor, 318
right Kan extension, 192
right lifting property, 200
right proper, 236
right regular action, 1055
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right-closed, 195
right-lax monoidal functor, 195
rigid, 696, 736
rigid (analytic) space, 1465
rigid fibered category, 205
rigid object, 197
rigid tensor category, 197
ring, 64
ring of p-adic integers, 1220
ring of definition, 952
ring of integers, 1238
ring of integral elements, 954
ringed site, 555
ringed space, 556
ringed topos, 555
Robba ring, 1235
root lattice, 167
root number, 1727, 1744
root number at ∞, 1727
root system, 161
root system associated to (g, h), 135
roots, 161
row equivalent, 93
Rudvalis group, 60
Runge immersion, 1462

s-free, 250
S-type, 1708
Satake parameter, 1612
satisfiable, 31
satisfies, 31
saturated localizing system, 188
saturated triangulated subcategory, 303
saturation, 209
saturation of S, 188
scalar curvature, 1136
Schauder basis, 1038
schematic morphism, 905
schematic support, 631
schematically dense, 602
scheme-theoretic closure, 614
scheme-theoretic image, 614
scheme-theoretically dense, 614
schemes, 569
Schröder functional equation, 1110
Schrödinger representation, 1071
Schwartz functions, 1027

Schwartz-Bruhat function, 1256
Schwartz-Bruhat functions, 1257
scissors-congruent, 1820
second category, 232
section functor, 575
sectional curvature, 1136
Segal category, 268
Segre embedding, 636
self sequentially compact, 219
self-dual Haar measure, 1074
self-Dual Lattice, 1699
Selmer sequence, 1795
semi-algebraic, 43
semi-ample holomorphic line bundle, 1198
semi-direct product group scheme, 834
semi-direct product Lie algebra, 124
semi-local, 112
semi-normed group, 1218
semi-perfect, 478
semi-primary, 112
semilocally simply connected, 346
seminorm, 1020, 1025
semisimple, 110, 124, 127
semisimple k-rank, 869
semisimple R-module, 108
semisimple algebraic group, 866
semisimple or unipotent element, 1573
semisimple rank, 869
semisimple/nilpotent element, 131
semisimple/solvable/nilpotent/simple Lie

group, 1177
semisimple/unipotent element, 874
semistable of slope λ, 210, 212
semistable reduction, 1365, 1379
semistable union of curves, 1365
Sen’s operator, 1555
sentence, 13
separable, 215, 451
separable closure, 83
separable degree, 79
separable extension, 79
separable Hilbert subset, 1293
separable over K, 79
separable polynomial, 79
separable/purely inseparable morphism, 613
separably generated, 451
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separate R-orbits, 907
separated, 616
separated presheaf, 534
separating, 1020
sequentially compact, 219
Serre derivation, 1680
Serre fibration, 350
Serre subcategory, 290
Serre twisting sheaf, 634
Serre twisting sheaves, 634
Serre-Quillen model structure, 248, 353
sesquilinear form, 106
set of generator, 48
set of natural numbers, 15
set of real numbers, 18
set-theoretically R-invariant, 907
setoid, 182
Severi-Brauer variety, 920
Shafarevich-Tate group, 1337
sharp map, 480
sheaf, 534
Sheaf Hom complex, 587
sheaf of R-invariant functions, 907
sheaf of differentials, 563, 564
sheaf of rigid analytic functions, 1465
sheaf-cohomology presheaves, 575
sheafification functor, 535
sheafy, 1493
Siegal upper half space Hg, 1210
Siegel sets, 1314
sieve, 532
sign of functional equation, 1733
sign of functional equation of A, 1770
sign of functional equation of E, 1769
signature, 1263
signature operator, 1128
simple, 125
simple R-module, 108
simple Abelian variety, 1327
simple algebraic group, 867
simple balanced covering, 1499
simple group, 48
simple Laurent covering, 1499
simple prism, 1822
simple ring, 64
simple topological space, 344

simplex category, 250
simplicial categories, 259
simplicial model category, 263
simplicial module, 511
simplicial object, 250
simplicial realization functor, 251
simplicial resolution, 514
simply closed, 39
simply connected, 346
simply equivalent, 1263
simply-connected group variety, 865
singular cohomology groups, 359
singular locus, 600
singular trace, 1053
singularity, 987
site, 531
skew field, 65
slice chart, 1115
slope, 210, 212
slope morphism, 1477
slowly oscillating function, 977
small, 190
small étale site, 544
small smooth site, 545
small Zariski site, 543
smash product, 340
smash products, 339
Smith normal form, 94
smooth, 469
smooth H-module, 119
smooth covering space, 1114
smooth curve, 726
smooth embedding, 1114
smooth functions on G(AF ), 1685
smooth immersion, 1113
smooth induced representation, 1539
smooth morphism, 653
smooth representation, 1525, 1684
smooth submersion, 1113
smooth topology, 545
smooth vector bundle, 1117
smooth vector field, 1118
smooth vectors, 1595
smooth/flat/separated/. . . group scheme, 833
sober, 334, 335
Sobolev Space, 1026
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Sobolev space, 1088
sofic, 1107
solid Abelian group, 938
solid complex, 938
solvable, 126
solvable group scheme, 835
space of left morphisms, 276
space of right morphisms, 276
special automorphism, 125
special cocontinuous functor, 537
special divisor, 715
special fiber, 571, 807
special linear group, 870
special maximal compact subgroups, 1641
special orthogonal groups, 870
special unitary group, 1166
special unitary groups, 870
specialization map, 172, 1487, 1489
specialization of y, 332
spectral, 335
spectral radius, 1040
spectrum, 310, 568, 1040, 1043
sphere spectrum, 371
spherical character, 120
spherical function, 1637
spherical idempotent, 120
spherical represnetation, 1614
spherical vectors, 120
spherical Whittaker function, 1636
spherical(unramified) module, 120
spherically complete, 946
Spin representation, 1591
split, 116
split Cartan subalgebra, 136
split fibered category, 203
split group variety, 865
split multiplicative reduction, 1379
split reductive, 869
split reductive pair, 869
split semisimple Lie algebra, 136
split solvable(resp. nilpotent) group, 835
split torus, 860
splits completely in L, 433
splitting field, 116, 920, 1267
sporadic simple groups, 60
square integrable, 1610

square-integrable, 1638
stabilizer group scheme, 1569
stable ∞-category, 308
stable cohomological operator, 359
stable Faltings height, 1420
stable filtration, 415
stable point, 1110
stable reduction, 1379
stable union of curves, 1365
stablizer subgroup of Y , 846
stably equivalent, 392
stably framed manifold, 395
stably uniform, 1493
stably-étale φ-module, 1563
stack, 538
stackification, 542
stalk, 566
stalk map, 773, 785
stalks of an affinoid adic space, 1492
standard étale, 476
standard étale morphism, 660
standard binary rational covering, 1499
standard Borel subgroup, 870
standard fpqc covering, 546
standard rational covering, 1499
standard smooth algebra, 469
standard smooth morphism, 653
standard syntomic morphism, 662
standard unipotent subgroup, 870
standard v-topology, 547
state, 1807
states of particles, 1807
states of particles of Σ, 1812
Steenrod Powers, 373
Steinberg Groups, 1576
Steinberg representation, 1579, 1626
Stiefel manifold, 1162
Stiefel-Whitney class, 388
Stiefel-Whitney number, 389
stimulate, 1809
Stone-Čech Compactification, 220
straightening functor, 266
strict m-adic sheaves, 785
strict p-cohomological dimension, 929
strict p-ring, 481
strict cohomological dimension, 929
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strict Henselian, 451
strict monoidal category, 194
strict morphism, 940
strict subobject, 209
strict transform, 681
strictly commutative, 327
strictly full subcategory, 183
strictly perfect complex of O-modules, 591
strictly totally disconnected, 1503, 1510
strictly w-local, 791
strong approximation, 1314
strong desingularization, 698
strong Grothendieck category, 1460
strong limit, 25
Strong operator topology, 1023
strongly connected group, 849
strongly contradicting semi-stability, 211
strongly equivalent, 251
strongly finite étale, 1507
strongly holomorphic, 1032
strongly identity component, 849
strongly inaccessible(SI), 25
strongly minimal, 40
strongly Noetherian, 950
structure extension, 31
structure presheaf, 1493
structure sheaf, 555, 793
stupid truncation, 293
sub-comodule, 175
subcanonical topology, 534
subcategory, 183
subcomplex, 341
subgraph, 1817
sublinear functional, 1025
subnormal series, 57
subshift, 1106
subshift of finite type, 1107
subsystem, 10
subtree, 27
successor ordinal, 18
sum, 22
supersingular elliptic curves, 1375
supersolvable group, 58
support, 424, 557
support of a distribution, 1083
surjection, 289

surnatural number, 63
suspension, 340
suspension functor, 308
suspension prespectrum, 371
Suzuki Groups, 1576
Swan conductor, 1547
Sylow pro-p-subgroup, 63
symbol class, 1094
symbolic power, 427
symmetric algebra, 399
symmetric monoidal category, 196
symmetric monoidal functor, 196
symmetric space, 1208
symmetric square L-functions, 1745
symmetrized tensors, 102
symplectic form, 1151
symplectic group, 870
symplectic manifold, 1151
syntomic morphism, 662
syntomic topology, 545
system of parameters, 420

tacnode, 718
Tamagawa measure, 1257
Tamagawa number, 1346
tame character, 1228
tamely ramified extension, 1223
tamely unramified at P , 709
tangent bundle, 1118
tangent sheaf, 701
tangent space of formal curve, 880
tangent vector, 1117
Tannakian category, 198
Tate algebra, 947
Tate comodule, 889
Tate curve, 1385
Tate dual, 1545
Tate Huber ring, 952
Tate module, 889, 1278, 1329
Tate twist, 1545
Tate twist isocrystal, 799
Tate twist sheaf, 785, 786
Tate’s normalized trace, 1229
tautological bundles, 382
Teichmüller lifts, 481, 484
Teichmuller section, 1449
tempered, 1086
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tempered representation, 1638
tensor algebra, 399
tensor category, 197
tensor functor, 197
tensor product, 74, 557
tensor product of correspondences, 821
tensored over C, 199
terms, 12
test functions, 1083, 1532
tetrahedron, 1820
theorem, 10
theory, 13
theory of M , 31
Theta function, 1761
theta function, 1699
thickening, 695
Thom class, 381
tilt, 1503
tilting, 479
tilting , 964
Todd characteristic, 758
Todd class, 755
Todd polynomials, 70
Toffoli gate, 1809
topological Abelian group, 940
topological category, 251
topological dynamic system, 1101
topological entropy, 1104
topological geometrization, 252
topological group, 328
topological Markov chain, 1107
topological module, 940
topological nerve, 260
topological quantum field theory, 1812
topological ring, 940
topological surface, 233
topological vector space, 1020
topologically mixing, 1102
topologically nilpotent, 940, 946, 1218
topologically of finite presentation, 1475
topologically of finite type, 1475
topologically transitive, 1102
topologist’s Hopf algebra, 175
topology, 531
topos, 536
Tor dimension, 440

Tor modules, 584
torsion component, 844
torsion sheaf, 631, 776
torsion tensor, 1133
torsion-free, 75
total Chern class, 753
total complexes, 294
total de Rham complex, 766
total derived functor, 240
total Hodge-Tate weights, 1712
total ordering, 16
total ring of fractions, 400
total transform, 681
totally acyclic sheaf, 590
totally bounded, 230, 1021
totally disconnected, 217, 1503, 1510
totally integrally closed, 413
totally ramified over p, 433
trace, 104
trace class, 1052
trace element, 694
trace element of f , 694
trace form, 81, 152, 434
trace map, 80, 823
trace of f , 694
trace pairing, 694
transcendental degree, 82
transitive, 18
translation, 1084
transporter, 846
transpose, 91
transpose isomorphism, 821
transpose matrix, 91
tree, 27, 1817
triad of spaces, 339
triangle, 307
triangularizable algebraic group, 864
triangularizable space, 233
triangularization, 233
triangulated subcategory, 299
trigonal curve, 722
trigonometric functions, 991
triple point, 718
trivial (co)fibration, 235
trivial fibration, 255
trivial vector bundle, 379
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truncation functor, 310
twist, 548
twist group, 1576
twisted L-function, 1756
twisted Jacquet functor, 1617
twisted-linear subvariety, 920
type I, 1522
type II, 1522
type of this Weil representation, 1546

UFD, 71
ultrafilter, 24
ultranormed Banach algebra, 1232
ultrapower, 34
ultraproduct, 34
uncountable set, 21
undercategories, 254
underlying ∞-category, 273
underlying degeneracy map, 250
underlying reduced subscheme, 597
uniform, 1218, 1495
uniformizer at p, 707
uniformly almost finitely generated, 505
unimodular, 153, 1057
unipotent algebraic group, 1575
unipotent radical, 867
unipotent representations, 1578
unit ideles, 1251
unit transformation, 282
unit/counit maps, 185
unital binary operator, 47
unital magma, 47
unitary, 1046
unitary group, 1166
unitary groups, 870
unitary representation, 1522
univalent function, 1002
universal, 1809
universal δ-functor, 318
universal aximatization, 37
universal categorical quotient, 190
universal cover, 378
universal cover of Lubin-Tate formal group,

1448
universal covering, 865
universal enveloping p-algebra, 157
universal enveloping algebra, 147

universal finite group, 1576
universal object, 192
universal quadratic form, 1260
universal sentence, 37
universally catenary, 599
universally Japanese, 450
unramified, 473, 1222, 1253, 1255, 1750
unramified at p, 1545
unramified class, 931
unramified extension, 433, 1222
unramified in L, 433
unramified over p, 433
unramified principal series, 1633
unramified quasi-character, 1612
unstable reduction, 1379
unstraightening functor, 266
untilting, 964
upper numbering, 1225
upper semicontinuous, 215

v-covering, 547
v-topology, 547
vacuum state defined by M , 1812
vacuum-vacuum expectation value, 1812
valence ν, 822
valuation, 943
valuation ring, 942
valuation spectrum, 1485
value group, 943
valued module, 1219
valued ring, 1218
vanishing order of κ, 1781
variable symbols, 11
variety, 699
variety over S, 705
vector bundle, 378
vector bundle homomorphism, 378
vector bundle of finite type, 380
Verma module, 1589
vertical divisor, 1361
vertically nef, 1362
vertices, 1817
very ample holomorphic line bundle, 1199
very good cylinder object, 236
virtual number of coincidence, 822
von Neumann Algebra, 1047
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w-local, 338, 791
weak equivalence, 245, 252, 511
weak equivalences, 235
weak Goodstein sequence, 20
weak Grothendieck category, 1460
weak homotopy equivalence, 345
weak Maass form, 1655
weak mixing, 1108
Weak operator topology, 1023
weak product, 340
weak Serre subcategory, 290
weak topology, 486
weakly admissible φ-modules, 1566
weakly associated point of F , 626
weakly associated points of X, 626
weakly associated primes, 425
weakly Cartesian, 1219
weakly compact cardinal, 27
weakly compatible system of adic

representations, 1710
weakly converges, 323
weakly embedded submanifold, 1115
weakly final, 182
weakly holomorphic, 1032
weakly inaccessible, 25
weakly saturated, 200
weakly unramified at P , 709
Weber L-function, 1762
wedge, 191
wedge sum, 340
Weierstrass ℘-function, 1014
Weierstrass class, 1382
Weierstrass domain, 1459
Weierstrass equations, 1367
Weierstrass model, 1378
Weierstrass point, 723
Weierstrass semigroup, 723
weight decomposition, 1588
weight lattice, 167
Weil cohomology theory, 824
Weil divisor class associated to L, 638

Weil height, 1300
Weil number, 1240
Weil representation, 1579
Weil restriction, 554
Weil-Châtelet Group, 1388
Weil-Deligne group, 1547
Weil-sheaves, 1393
well-formed formulas, 2, 10
well-ordering, 17
well-pointed space, 340
Weyl chamber, 163
Weyl denominator, 1593
Weyl group, 161
Whittaker functional, 1620, 1658, 1691
Whittaker model, 1620, 1657, 1691
witness property, 33
Witt coordinate, 483
Witt index, 1263
Witt polynomial, 482
Witt ring, 1264
Witten ζ-functions, 1736
Witten complex, 1148
Wu class, 389

Yoneda embedding, 283
Yoneda extension, 320

Zariski, 954
Zariski localization, 338, 791
Zariski open subset, 1486
Zariski pair, 429
Zariski site, 543
Zariski space, 334
Zariski topology, 543
Zelevinsky condition, 1616
Zelevinsky segment, 1616
zero, 987
zero element, 285, 286
zero morphism, 307
zero object, 307
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