0.1 Weber-Hecke *L*-Functions for Imaginary Quadratic Fields

1 Imaginary Quadratic Fields

Def. (0.1.1.1) $[\mathcal{O}_D]$. For $D \in \mathbb{Z}^{\times}$ s.t. $D \equiv 0, 1 \pmod{4}$, denote $\mathcal{O}_D = \mathbb{Z}[\frac{D+\sqrt{D}}{2}]$.

Prop. (0.1.1.2) [Ring of Integers in Quadratic Fields]. Let $n \in \mathbb{Z}^{\times}$ be a square-free, and let $\mathcal{K} = \mathbb{Q}(\sqrt{n})$.

- If $n \equiv 2,3 \mod 4$, then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{n}]$, and $\operatorname{disc}(\mathcal{K}) = 4n$.
- If $n \equiv 1 \mod 4$, then $\mathcal{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{n}}{2}]$, and disc $(\mathcal{K}) = n$.

In particular, $\mathcal{O}_{\mathcal{K}} = \mathcal{O}_{\operatorname{disc}(\mathcal{K})} = \mathbb{Z}[\frac{\operatorname{disc}(\mathcal{K}) + \sqrt{\operatorname{disc}(\mathcal{K})}}{2}].$

Proof: 1: the minimal polynomial of \sqrt{n} is $X^2 - n$, whose discriminant is 4n, which doesn't have a proper divisor β that $4n/\beta$ is a square and $\beta \equiv 0, 1 \pmod{4}$, so $\mathbb{Z}[\sqrt{n}]$ is the ring of integers.

2: the minimal polynomial of $\frac{1+\sqrt{n}}{2}$ is $X^2 - X + \frac{1-n}{4}$, whose discriminant is n, which doesn't have a proper divisor β that $4n/\beta$ is a square, so $\mathbb{Z}[\frac{1+\sqrt{n}}{2}]$ is the ring of integers.

For the last assertion, given the basis for the ring of integers, we can easily calculate the discriminant. It equals 4n in the first case and n in the second case. Thus the assertion follows.

Def. (0.1.1.3) [Fundamental Discriminants]. A fundamental discriminant is an element $d \in \mathbb{Z}^{\times}$ s.t. d is the discriminant of quadratic field $\mathcal{K} \in \mathsf{NField}$.

Then any fundamental discriminant is a product of distinct elements in $\{-4, 8, -8\} \cup \{\left(\frac{-1}{p}\right)p\}_{p \in \mathtt{Prime}_{\geq 3}},$ by (0.1.1.2).

Def. (0.1.1.4) [Imaginary Quadratic Orders].

- $\mathcal{O}_{-1} = \mathbb{Z}[i]$ is called the ring of **Gaussian integers**.
- $\mathcal{O}_{-3} = \mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is called the ring of **Eisenstein integers**.
- $\mathcal{O}_{-7} = \mathbb{Z}[\frac{1+\sqrt{-7}}{2}]$ is called the ring of Kleinian Integers.

These are all PIDs.

Thm. (0.1.1.5) [Primes in Quadratic Fields]. Let \mathcal{K} be a quadratic field with discriminant disc(\mathcal{K}). Then for $p \in Prime$,

- If $p|\operatorname{disc}(\mathcal{K})$, then $p\mathcal{O}_K = \mathfrak{p}^2$, where \mathfrak{p} is a prime in $\mathcal{O}_{\mathcal{K}}$, and $\mathfrak{p} = (p, \sqrt{\operatorname{disc}(\mathcal{K})})$ if p is odd.
- If $\left(\frac{\operatorname{disc}(\mathcal{K})}{p}\right) = 1$, then $p\mathcal{O}_K = \mathfrak{p}\mathfrak{p}'$, where $p, \mathfrak{p} \neq \mathfrak{p}'$ are primes in \mathcal{O}_K .
- If $\left(\frac{\operatorname{disc}(\mathcal{K})}{p}\right) = -1$, then $p\mathcal{O}_{\mathcal{K}}$ is a prime in $\mathcal{O}_{\mathcal{K}}$.

And every maximal prime in $\mathcal{O}_{\mathcal{K}}$ are of the form.

In particular, p ramifies in \mathcal{K} iff $p|\operatorname{disc}(\mathcal{K})$, and p splits completely in \mathcal{K} iff $\left(\frac{\operatorname{disc}(\mathcal{K})}{p}\right) = 1$.

Prop. (0.1.1.6) [**Primitive Ideals**]. For a quadratic field \mathcal{K} with $D = \operatorname{disc}(\mathcal{K})$, an ideal $\mathfrak{a} \in \operatorname{Ideal}^{\times}(\mathcal{O}_{\mathcal{K}})$ is called a **primitive ideal** if $\mathfrak{a}|(m)$ implies m = 1 for any $m \in \mathbb{Z}_+$. Then every primitive ideal is of the form

$$\mathfrak{a} = \mathbb{Z}\left\{a, \frac{b + \sqrt{D}}{2}\right\},\,$$

where $a = \|\mathfrak{a}\|$ and $b \in \mathbb{Z}_+$ is determined by $-a < b \le a, b^2 \equiv D \pmod{4a}$.

Hao Peng, March 17, 2024

┛

┛

Proof: Clearly $a = \|\mathbf{a}\|$ is contained in \mathbf{a} , and it is the smallest positive integer contained in \mathbf{a} .

Thus there must be another element $\frac{b+\sqrt{D}}{2}$ s.t. $\left\{a, \frac{b+\sqrt{D}}{2}\right\}$ is a basis of \mathfrak{a} . But then $b^2 \equiv D \pmod{4a}$, and we may assume $-a < b \leq a$. And conversely, if $(b')^2 \equiv D \pmod{4a}$, then it is easy to verify $\mathbb{Z}\left\{a, \frac{b+\sqrt{D}}{2}\right\}$ is a primitive ideal with norm \mathfrak{a} . Which implies that $b' \equiv b \pmod{2a}$. So the solution of b is unique.

2 Hecke Characters

Let $\mathcal{K} = \mathbb{Q}(\sqrt{D})$ be a imaginary quadratic field with discriminant D < 0.

Def. (0.1.2.1) [Places]. Let $F = \mathbb{Q}$ or \mathcal{K} , a place of F is a valuation on F: i.e. a function

$$v = |-|: F \to \mathbb{R}_{\geq 0}$$

such that

- |0| = 0.
- |ab| = |a||b| for any $a, b \in F$.
- $|a+b| \le |a|+|b|$ for any $a, b \in F$.

each prime ideal $\mathfrak{p} \subset \mathcal{O}_F$ defines a valuation $v_{\mathfrak{p}}$ on F as follows: If $a \in F^{\times}$, let k be the maximal integer s.t. $a \in \mathfrak{p}^k$, then define

$$|a|_v = \frac{1}{N(\mathfrak{p})^k}.$$

Remember the absolute value on $\mathbb C$ and $\mathbb R$ are also valuations.

The set of equivalence classes of valuations on F is called the set of places of F, denoted by Σ_F . \Box

Def. (0.1.2.2) [Completion Fields]. Let $F = \mathbb{Q}$ or \mathcal{K} , for a prime ideal $\mathfrak{p} \subset \mathcal{O}_F$, the completion field $F_{\mathfrak{p}}$ is the field of elements of the form

$$a = a_k + a_{k+1} + \ldots + a_{k+2} + \ldots$$

where $k \in \mathbb{Z}_+$, $a_k \in \mathfrak{p}^k$, $a_{k+1} \in \mathfrak{p}^{k+1}$,.... It is clearly an additive group and has multiplications, and is a field because we can take inversion: Suppose

$$a = a_k + a_{k+1} + \dots$$

where $a_k \neq 0$, we can take

$$a^{-1} = \frac{1}{a_k + a_{k+1} + \dots} = a_k^{-1} \left(1 - \frac{a_{k+1} + a_{k+2} + \dots}{a_k} + \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^2 - \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^3 + \dots \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k} \right)^{-1} = \left(\frac{a_{k+1} + a_{k+2} + \dots}{a_k}$$

For example, if $F = \mathbb{Q}$,

$$\frac{1}{1-p} = 1+p+p^2+\dots, \quad \frac{1}{1+p+p^2+\dots+} = 1-p.$$
$$\frac{1}{1-p+p^2} = 1+(p-p^2)+(p-p^2)^2+\dots = 1+p-p^3+\dots$$

The set of elements of the form

$$a = a_0 + a_1 + \dots$$

is denoted by $\mathcal{O}_{\mathfrak{p}}$, or when $F = \mathbb{Q}$, also denoted by \mathbb{Z}_p . There is a valuation on $F_{\mathfrak{p}}$ given by $|a|_{\mathfrak{p}} = \operatorname{Nm}(\mathfrak{p}_v)^{-k}$, where

$$a = a_k + a_{k+1} + \dots$$

and $a_k \in \mathfrak{p}^k \setminus \mathfrak{p}^{k+1}$.

For the infinite place ∞ , we define the completion in the same way, and get

$$\mathbb{Q}_{\infty} = \mathbb{R}, \quad \mathcal{K}_{\infty} = \mathbb{C}$$

Def. (0.1.2.3) [Ideles]. Let $F = \mathbb{Q}$ or \mathcal{K} , the Idele group is defined to be

$$\mathbf{I}_F = \prod_{v \in \Sigma_F}' F_v^{\times}.$$

where the weird \prod' means the following: an element of \mathbf{I}_F is a tuple

$$\mathfrak{a} = (a_v)_{v \in \Sigma_F}$$

s.t. only finitely many a_v (including the infinite place) satisfies $a_v \notin \mathcal{O}_v^*$. And \mathbf{I}_F is endowed with some topology. There is an embedding of groups

$$F^{\times} \subset \mathbf{I}_F : a \mapsto (a, a, \dots, a, \dots)$$

Def. (0.1.2.4) [Hecke Characters]. A Hecke character is a continuous character of I_F (i.e. a continuous group homomorphism $I_F \to \{z \in \mathbb{C} : |z| = 1\}$) that is trivial on F^{\times} .

A strange topology is defined on \mathbf{I}_F s.t. that each Hecke character χ of \mathbf{I}_F is of the form

$$\chi((a_v)) = \prod_{v \in \Sigma_F} \chi_v(a_v)$$

where each χ_v is a character of F_v , and only finitely many of them are non-trivial (i.e. not always take value 1).

Prop. (0.1.2.5) [Dirichlet Characters as Hecke Characters]. We have a decomposition of groups:

$$\mathbf{I}_{\mathbb{Q}} = \mathbb{Q}^{\times} \times \prod_{p} \mathbb{Z}_{p}^{*} \times \mathbb{R}_{+},$$

The proof goes as follows: Given an element

$$\mathfrak{a} = (a_p) \in \mathbf{I}_{\mathbb{Q}},$$

only finitely many $a_v \notin \mathbb{Z}_p^*$, so by weak approximation, we can take some $a \in \mathbb{Q}^{\times}$ s.t. $a_p a^{-1} \in \mathbb{Z}_p^*$ for each prime p. We can also guarantee that $a_{\infty} a^{-1} \in \mathbb{R}_+$ by multiplying -1 if necessary. Then

$$\mathfrak{a} = a \times \mathfrak{a} a^{-1}, \quad \mathfrak{a} a^{-1} \in \prod_p \mathbb{Z}_p^* \times \mathbb{R}_+.$$

For any $m \in \mathbb{Z}_+$, there is a natural map

$$\prod_{p} \mathbb{Z}_{p}^{*} \to (\mathbb{Z}/m)^{*}.$$

defined as follows: If $m = p_1^{e_1} \dots p_k^{e_k}$, the map is

$$\prod_{p} \mathbb{Z}_{p}^{*} \to \mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{k}} \to \frac{\mathbb{Z}_{p_{1}}}{1 + p_{1}^{e_{1}}\mathbb{Z}_{p_{1}}} \times \ldots \times \frac{\mathbb{Z}_{p_{k}}}{1 + p_{1}^{e_{k}}\mathbb{Z}_{p_{k}}} = (\mathbb{Z}/m)^{*}.$$

So for any Dirichlet character χ_0 modulo m, we get a Hecke character

$$\chi: \mathbf{I}_{\mathbb{Q}} \to \prod_{p} \mathbb{Z}_{p}^{*} \to (\mathbb{Z}/m)^{*} \xrightarrow{\chi_{0}^{-1}} \mathbb{C}^{\times}$$

In this way, $\chi([p]_p) = \chi_0(p)$ for any $p \in \text{Prime s.t. } (p,m) = 1$.

Prop. (0.1.2.6)[Hecke Characters as Dirichlet Characters]. For an finite modulus $\mathfrak{m} \in \text{Ideal}^{\times}(\mathcal{O}_F)$, we may define a Dirichlet character as a character

$$\chi_0: (\mathcal{O}_F/\mathfrak{m})^* \to \mathbb{C}^{\times}.$$

There is an exact sequence

$$1 \to \mathcal{O}_F^* \to \prod_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}^* \times F_{\infty}^{\times} \to \mathbf{C}_F \to \mathrm{Cl}(F) \to 1.$$

For any Hecke character χ of F, χ_f factors through $\prod_{\mathfrak{p}} \mathcal{O}_{\mathfrak{p}}^* \to (\mathcal{O}_F/\mathfrak{m})^*$ for some finite modulus $\mathfrak{m} = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_k^{e_k}$ by continuity constraint, thus inducing a Dirichlet character χ_0 modulo \mathfrak{m} , called the **Dirichlet component of** χ .

However, not every naive Dirichlet character χ_0 and an infinite character χ_∞ can form a Hecke character. For example, they must satisfy $\chi_0(\varepsilon)\chi_\infty(\varepsilon) = 1$ for any unit $\varepsilon \in \mathcal{O}_F^*$. And if $\chi_0(\varepsilon)\chi_\infty(\varepsilon) = 1$, then there exists exactly cl(F)-many Hecke character χ extending χ_0 and χ_∞ , because the surjection

$$F^{\times} \setminus \mathbf{I}_F / \prod_{\mathfrak{p}} (1 + \mathfrak{p}^{e_{\mathfrak{p}}}) \to \mathrm{Cl}(F) \to 1$$

has sections (take case of the infinite places).

Def. (0.1.2.7) [Hecke Characters and Ideal Characters]. Any Hecke character χ of F?? is of the form $\chi = \chi_f \times \chi_\infty$, where $\chi_f : \mathbf{I}_{F,f} \to \mathbb{C}$ and $\chi_\infty : (F \otimes \mathbb{R})^{\times} \to \mathbb{C}$. Then by continuity, there exists a smallest modulus $\mathfrak{m} = \prod_{v \in \Sigma^{\text{fin}}} \mathfrak{p}_v^{e_v}$ s.t. χ_f is trivial on

$$\prod_{v\in\Sigma_F^{\mathrm{fin}}} (1+\mathfrak{p}_v^{e_v}).$$

Thus the restriction of χ to $\mathbf{I}^{\mathfrak{m}\infty}$ gives us a ideal class map $J^{\mathfrak{m}} \to \mathbb{C}$ which we also denote by χ . And the restriction of χ to $\prod_{v \in \Sigma_F^{\mathrm{fin}}} \mathcal{O}_{F_v}^*$ gives a Dirichlet character $\chi_0^{-1} : (\mathcal{O}_F/\mathfrak{m})^* \to \mathbb{C}$.

Then we have $\chi((\alpha))\chi_{\infty}(\alpha) = \chi_0(\alpha)$ for any $\alpha \in \mathcal{O}$ that is prime to \mathfrak{m} .

3 Hecke *L*-Functions

Def. (0.1.3.1) [Gauss Sum for Hecke Characters]. For $F \in NField$ and a Hecke character χ for F with Dirichlet component χ_0 of conductor $\mathfrak{m}(0.1.2.6)$, the Gauss sum of χ is defined to be

$$\tau(\chi) = \frac{1}{\chi_{\infty}(\gamma)\chi(\mathfrak{c})} \sum_{\alpha \in \mathfrak{c/cm}} \chi_0(\alpha) e^{2\pi \mathrm{i} \operatorname{tr}_{F/\mathbb{Q}}(\alpha/\gamma)}(0.1.2.6),$$

where $\gamma \in \mathcal{O}_F^{\times}$ and $\mathfrak{c} \in \text{Ideal}^{\times}(\mathcal{O}_F)$ are chosen s.t. $(\mathfrak{c}, \mathfrak{m}) = 1$ and $\mathfrak{cd}_F \mathfrak{m} = (\gamma)$. Where

$$\mathfrak{d}_F^{-1} = \{ \alpha \in F^{\times} : \operatorname{tr}_{F/\mathbb{Q}}(\alpha \mathcal{O}_F) \in \mathbb{Z} \}$$

The definition of $\tau(\chi)$ is independent of (\mathfrak{c}, γ) chosen.

In particular, if $F = \mathbb{Q}$ and $\mathfrak{m} = (N)$ for $N \in \mathbb{Z}_+$, then

$$\tau_a(\chi) \stackrel{\triangle}{=} \sum_{n \in \mathbb{Z}/(N)} \chi(n) e^{2\pi i \frac{an}{N}}, \quad \tau(\chi) \stackrel{\triangle}{=} \tau_1(\chi).$$

In particular, $\tau(\mathbf{1}_p)$ is called the **Ramanujan sum**, and by Möbius inversion on N, we have

$$\text{Kloos}(a, 0, \text{ mod } N) = \sum_{r \in (\mathbb{Z}/(N))^*} e^{2\pi i \frac{an}{N}} = \sum_{d \mid (N,n)} = \mu\left(\frac{N}{(N,n)}\right) \frac{\phi(N)}{\phi(N/(N,n))}.$$

Prop. (0.1.3.2). For $N_1, N_2 \in \mathbb{Z}_+$ s.t. $(N_1, N_2) = 1$ and $\chi_i \in \text{Diri}(N_i)$, we have

$$\tau(\chi_1\chi_2) = \chi_1(N_2)\chi_2(N_1)\tau(\chi_1)\tau(\chi_2).$$

This also holds for Hecke characters.

Proof:

$$\tau(\chi_1\chi_2) = \sum_{n_1 \pmod{N_1}} \sum_{n_2 \pmod{N_2}} \chi_1(N_2n_1)\chi_2(N_1n_2) e^{2\pi i \frac{N_1n_2 + N_2n_1}{N_1N_2}} = \chi_1(N_2)\chi_2(N_1)\tau(\chi_1)\tau(\chi_2).$$

Def. (0.1.3.3) [Weber-Hecke *L*-Functions]. For a Hecke character χ of \mathcal{K} of conductor \mathfrak{m} , define

$$L_{\mathcal{K}}(\chi;s) = \prod_{\mathfrak{p}\nmid\mathfrak{m}} \frac{1}{1-\chi(\mathfrak{p}) \, \|\mathfrak{p}\|^{-s}} = \sum_{\mathfrak{a}\in\mathrm{Ideal}^{\times}(\mathcal{O}_{F}), (\mathfrak{a},\mathfrak{m})=1} \frac{\chi(\mathfrak{a})}{\|\mathfrak{a}\|^{s}}$$

Then for $\operatorname{Re}(s)$ sufficiently large, this converges absolutely.

Thm. (0.1.3.4) [Hecke *L*-Functions of Imaginary Quadratic Fields]. Let \mathfrak{m} be a modulus for \mathcal{K} , and χ a Hecke character of \mathcal{K} with χ_0 of conductor $\mathfrak{m}(0.1.2.6)$ and associated ideal class map $\psi: J^{\mathfrak{m}} \to \mathbb{C}^{\times}$. Suppose $\chi_{\infty}(z) = e^{k \arg z}$, then

$$\Lambda(\chi;s) = L_{\mathbb{C}}(s + \frac{|k|}{2})L(\chi;s)$$

┛

is the Hecke *L*-function attached to χ . Thus $L(\chi; s)$ can be extended to a meromorphic function for all $s \in \mathbb{C}$, and it has simple poles at s = 1 when $\chi = \mathbf{1}$, and analytic otherwise. When $\chi = \mathbf{1}$, $L(\mathbf{1}; s) = \zeta_{\mathcal{K}}(s) = \zeta(s)L(\chi_{\mathcal{K}}, s)$, and

$$\operatorname{res}_{s=1} \zeta_{\mathcal{K}}(s) = \frac{2\operatorname{cl}(\mathcal{K})}{\#\mathcal{K}_{\operatorname{tor}}^{\times}\sqrt{|\operatorname{disc}(\mathcal{K})|}}\pi.$$

Moreover, there are functional equations

$$\Lambda(\chi;s) = \mathrm{i}^{-k} \frac{\tau(\chi)}{\|\mathfrak{m}\|^{1/2}} \left(|\mathrm{disc}(\mathcal{K})| \cdot \|\mathfrak{m}\| \right)^{1/2-s} \Lambda(\overline{\chi};1-s)(0.1.3.1).$$