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0.1 Weber-Hecke L-Functions for Imaginary Quadratic Fields

1 Imaginary Quadratic Fields

Def.(0.1.1.1)[OD]. For D ∈ Z× s.t. D ≡ 0, 1(mod 4), denote OD = Z[D+
√

D
2 ]. ⌟

Prop.(0.1.1.2) [Ring of Integers in Quadratic Fields]. Let n ∈ Z× be a square-free, and let
K = Q(

√
n).

• If n ≡ 2, 3 mod 4, then OK = Z[
√
n], and disc(K) = 4n.

• If n ≡ 1 mod 4, then OK = Z[1+
√

n
2 ], and disc(K) = n.

In particular, OK = Odisc(K) = Z[disc(K)+
√

disc(K)
2 ]. ⌟

Proof: 1: the minimal polynomial of
√
n is X2 − n, whose discriminant is 4n, which doesn’t have

a proper divisor β that 4n/β is a square and β ≡ 0, 1(mod 4), so Z[
√
n] is the ring of integers.

2: the minimal polynomial of 1+
√

n
2 is X2 −X+ 1−n

4 , whose discriminant is n, which doesn’t have
a proper divisor β that 4n/β is a square, so Z[1+

√
n

2 ] is the ring of integers.
For the last assertion, given the basis for the ring of integers, we can easily calculate the discrim-

inant. It equals 4n in the first case and n in the second case. Thus the assertion follows. □
Def.(0.1.1.3)[Fundamental Discriminants]. A fundamental discriminant is an element d ∈ Z×

s.t. d is the discriminant of quadratic field K ∈ NField.
Then any fundamental discriminant is a product of distinct elements in {−4, 8,−8}∪{

(
−1
p

)
p}p∈Prime≥3 ,

by(0.1.1.2). ⌟
Def.(0.1.1.4)[Imaginary Quadratic Orders].

• O−1 = Z[i] is called the ring of Gaussian integers.

• O−3 = Z[1+
√

−3
2 ] is called the ring of Eisenstein integers.

• O−7 = Z[1+
√

−7
2 ] is called the ring of Kleinian Integers.

These are all PIDs. ⌟
Thm.(0.1.1.5)[Primes in Quadratic Fields]. Let K be a quadratic field with discriminant disc(K).

Then for p ∈ Prime,
• If p|disc(K), then pOK = p2, where p is a prime in OK, and p = (p,

√
disc(K)) if p is odd.

• If
(

disc(K)
p

)
= 1, then pOK = pp′, where p, p 6= p′ are primes in OK.

• If
(

disc(K)
p

)
= −1, then pOK is a prime in OK.

And every maximal prime in OK are of the form.
In particular, p ramifies in K iff p|disc(K), and p splits completely in K iff

(
disc(K)

p

)
= 1. ⌟

Prop.(0.1.1.6)[Primitive Ideals]. For a quadratic field K with D = disc(K), an ideal a ∈ Ideal×(OK)
is called a primitive ideal if a|(m) implies m = 1 for any m ∈ Z+. Then every primitive ideal is of
the form

a = Z

{
a,
b+

√
D

2

}
,

where a = ‖a‖ and b ∈ Z+ is determined by −a < b ≤ a, b2 ≡ D(mod 4a). ⌟
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Proof: Clearly a = ‖a‖ is contained in a, and it is the smallest positive integer contained in a.
Thus there must be another element b+

√
D

2 s.t.
{
a, b+

√
D

2

}
is a basis of a. But then b2 ≡ D(mod 4a),

and we may assume −a < b ≤ a. And conversely, if (b′)2 ≡ D(mod 4a), then it is easy to verify
Z
{
a, b+

√
D

2

}
is a primitive ideal with norm a. Which implies that b′ ≡ b(mod 2a). So the solution

of b is unique. □

2 Hecke Characters

Let K = Q(
√
D) be a imaginary quadratic field with discriminant D < 0.

Def.(0.1.2.1)[Places]. Let F = Q or K, a place of F is a valuation on F : i.e. a function

v = |−| : F → R≥0

such that
• |0| = 0.
• |ab| = |a||b| for any a, b ∈ F .
• |a+ b| ≤ |a| + |b| for any a, b ∈ F .

each prime ideal p ⊂ OF defines a valuation vp on F as follows: If a ∈ F×, let k be the maximal
integer s.t. a ∈ pk, then define

|a|v = 1
N(p)k

.

Remember the absolute value on C and R are also valuations.
The set of equivalence classes of valuations on F is called the set of places of F , denoted by ΣF .

⌟
Def.(0.1.2.2)[Completion Fields]. Let F = Q or K, for a prime ideal p ⊂ OF , the completion field

Fp is the field of elements of the form

a = ak + ak+1 + . . .+ ak+2 + . . .

where k ∈ Z+, ak ∈ pk, ak+1 ∈ pk+1, . . .. It is clearly an additive group and has multiplications, and
is a field because we can take inversion: Suppose

a = ak + ak+1 + . . .

where ak 6= 0, we can take

a−1 = 1
ak + ak+1 + . . .

= a−1
k

(
1 − ak+1 + ak+2 + . . .

ak
+
(
ak+1 + ak+2 + . . .

ak

)2
−
(
ak+1 + ak+2 + . . .

ak

)3
+ . . .

)

For example, if F = Q,

1
1 − p

= 1 + p+ p2 + . . . ,
1

1 + p+ p2 + . . .+
= 1 − p.

1
1 − p+ p2 = 1 + (p− p2) + (p− p2)2 + . . . = 1 + p− p3 + . . .
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The set of elements of the form
a = a0 + a1 + . . .

is denoted by Op, or when F = Q, also denoted by Zp.
There is a valuation on Fp given by |a|p = Nm(pv)−k, where

a = ak + ak+1 + . . .

and ak ∈ pk \ pk+1.
For the infinite place ∞, we define the completion in the same way, and get

Q∞ = R, K∞ = C

⌟
Def.(0.1.2.3)[Ideles]. Let F = Q or K, the Idele group is defined to be

IF =
′∏

v∈ΣF

F×
v .

where the weird ∏′ means the following: an element of IF is a tuple

a = (av)v∈ΣF

s.t. only finitely many av(including the infinite place) satisfies av /∈ O∗
v .

And IF is endowed with some topology. There is an embedding of groups

F× ⊂ IF : a 7→ (a, a, . . . , a, . . .)

⌟
Def.(0.1.2.4)[Hecke Characters]. A Hecke character is a continuous character of IF (i.e. a contin-

uous group homomorphism IF → {z ∈ C : |z| = 1}) that is trivial on F×.
A strange topology is defined on IF s.t. that each Hecke character χ of IF is of the form

χ((av)) =
∏

v∈ΣF

χv(av)

where each χv is a character of Fv, and only finitely many of them are non-trivial(i.e. not always
take value 1). ⌟

Prop.(0.1.2.5)[Dirichlet Characters as Hecke Characters]. We have a decomposition of groups:

IQ = Q× ×
∏
p

Z∗
p × R+,

The proof goes as follows: Given an element

a = (ap) ∈ IQ,

only finitely many av /∈ Z∗
p, so by weak approximation, we can take some a ∈ Q× s.t. apa

−1 ∈ Z∗
p

for each prime p. We can also guarantee that a∞a
−1 ∈ R+ by multiplying −1 if necessary. Then

a = a× aa−1, aa−1 ∈
∏
p

Z∗
p × R+.
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For any m ∈ Z+, there is a natural map∏
p

Z∗
p → (Z/m)∗.

defined as follows: If m = pe1
1 . . . pek

k , the map is

∏
p

Z∗
p → Zp1 × . . .× Zpk

→ Zp1

1 + pe1
1 Zp1

× . . .× Zpk

1 + pek
1 Zpk

= (Z/m)∗.

So for any Dirichlet character χ0 modulo m, we get a Hecke character

χ : IQ →
∏
p

Z∗
p → (Z/m)∗ χ−1

0−−→ C×.

In this way, χ([p]p) = χ0(p) for any p ∈ Prime s.t. (p,m) = 1. ⌟
Prop.(0.1.2.6)[Hecke Characters as Dirichlet Characters]. For an finite modulus m ∈ Ideal×(OF ),

we may define a Dirichlet character as a character

χ0 : (OF /m)∗ → C×.

There is an exact sequence

1 → O∗
F →

∏
p

O∗
p × F×

∞ → CF → Cl(F ) → 1.

For any Hecke character χ of F , χf factors through ∏p O∗
p → (OF /m)∗ for some finite modulus

m = pe1
1 . . . pek

k by continuity constraint, thus inducing a Dirichlet character χ0 modulo m, called the
Dirichlet component of χ.

However, not every naive Dirichlet character χ0 an an infinite character χ∞ can form a Hecke char-
acter. For example, they must satisfy χ0(ε)χ∞(ε) = 1 for any unit ε ∈ O∗

F . And if χ0(ε)χ∞(ε) = 1,
then there exists exactly cl(F )-many Hecke character χ extending χ0 and χ∞, because the surjection

F×\IF /
∏
p

(1 + pep) → Cl(F ) → 1

has sections(take case of the infinite places). ⌟
Def.(0.1.2.7)[Hecke Characters and Ideal Characters]. Any Hecke character χ of F?? is of the

form χ = χf × χ∞, where χf : IF,f → C and χ∞ : (F ⊗ R)× → C. Then by continuity, there exists
a smallest modulus m =

∏
v∈Σfin

F
pev

v s.t. χf is trivial on

∏
v∈Σfin

F

(1 + pev
v ).

Thus the restriction of χ to Im∞ gives us a ideal class map Jm → C which we also denote by χ. And
the restriction of χ to ∏v∈Σfin

F
O∗

Fv
gives a Dirichlet character χ−1

0 : (OF /m)∗ → C.
Then we have χ((α))χ∞(α) = χ0(α) for any α ∈ O that is prime to m. ⌟
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3 Hecke L-Functions
Def.(0.1.3.1)[Gauss Sum for Hecke Characters]. For F ∈ NField and a Hecke character χ for F

with Dirichlet component χ0 of conductor m(0.1.2.6), the Gauss sum of χ is defined to be

τ(χ) = 1
χ∞(γ)χ(c)

∑
α∈c/cm

χ0(α)e2πi trF/Q(α/γ)(0.1.2.6),

where γ ∈ O×
F and c ∈ Ideal×(OF ) are chosen s.t. (c,m) = 1 and cdFm = (γ). Where

d−1
F = {α ∈ F× : trF/Q(αOF ) ∈ Z}.

The definition of τ(χ) is independent of (c, γ) chosen.
In particular, if F = Q and m = (N) for N ∈ Z+, then

τa(χ) 4=
∑

n∈Z/(N)
χ(n)e2πi an

N , τ(χ) 4= τ1(χ).

In particular, τ(1p) is called the Ramanujan sum, and by Möbius inversion on N , we have

Kloos(a, 0, mod N) =
∑

r∈(Z/(N))∗

e2πi an
N =

∑
d|(N,n)

= µ

(
N

(N,n)

)
ϕ(N)

ϕ(N/(N,n))
.

⌟
Prop.(0.1.3.2). For N1, N2 ∈ Z+ s.t. (N1, N2) = 1 and χi ∈ Diri(Ni), we have

τ(χ1χ2) = χ1(N2)χ2(N1)τ(χ1)τ(χ2).

This also holds for Hecke characters. ⌟
Proof:

τ(χ1χ2) =
∑

n1(mod N1)

∑
n2(mod N2)

χ1(N2n1)χ2(N1n2)e2πi N1n2+N2n1
N1N2 = χ1(N2)χ2(N1)τ(χ1)τ(χ2).

□

Def.(0.1.3.3)[Weber-Hecke L-Functions]. For a Hecke character χ of K of conductor m, define

LK(χ; s) =
∏
p∤m

1
1 − χ(p) ‖p‖−s =

∑
a∈Ideal×(OF ),(a,m)=1

χ(a)
‖a‖s

Then for Re(s) sufficiently large, this converges absolutely. ⌟
Thm.(0.1.3.4) [Hecke L-Functions of Imaginary Quadratic Fields]. Let m be a modulus for

K, and χ a Hecke character of K with χ0 of conductor m(0.1.2.6) and associated ideal class map
ψ : Jm → C×. Suppose χ∞(z) = ek arg z, then

Λ(χ; s) = LC(s+ |k|
2

)L(χ; s)
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is the Hecke L-function attached to χ. Thus L(χ; s) can be extended to a meromorphic function
for all s ∈ C, and it has simple poles at s = 1 when χ = 1, and analytic otherwise. When χ = 1,
L(1; s) = ζK(s) = ζ(s)L(χK, s), and

ress=1 ζK(s) = 2 cl(K)
#K×

tor
√

|disc(K)|
π.

Moreover, there are functional equations

Λ(χ; s) = i−k τ(χ)
‖m‖1/2 (|disc(K)|·‖m‖)1/2−s Λ(χ; 1 − s)(0.1.3.1).

⌟
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