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0.1 Weber-Hecke L-Functions for Imaginary Quadratic Fields

1 Imaginary Quadratic Fields

Def.(0.1.1.1) [Op]. For D € Z* s.t. D =0,1(mod 4), denote Op = Z[D+‘/E].

_
2
Prop.(0.1.1.2) [Ring of Integers in Quadratic Fields].Let n € Z* be a square-free, and let
K =Q(vn).
e If n=2,3 mod 4, then O = Z[\/n], and disc(K) = 4n.
e If n=1 mod 4, then O = Z[HQ‘/E], and disc(K) = n.
In particular, Ox = Ogjse(kc) = Z[diSC(K)Jrz disc(lc)]. J

Proof:  1: the minimal polynomial of y/n is X2 — n, whose discriminant is 4n, which doesn’t have
a proper divisor 5 that 4n/f is a square and § = 0,1(mod 4), so Z[/n] is the ring of integers.

2: the minimal polynomial of % is X? - X + ITT”, whose discriminant is n, which doesn’t have
a proper divisor # that 4n/f is a square, so Z[HQ‘/H | is the ring of integers.

For the last assertion, given the basis for the ring of integers, we can easily calculate the discrim-
inant. It equals 4n in the first case and n in the second case. Thus the assertion follows. O

Def. (0.1.1.3) [Fundamental Discriminants]. A fundamental discriminant is an element d € Z*
s.t. d is the discriminant of quadratic field K € NField.

Then any fundamental discriminant is a product of distinct elements in {—4, 8, —8}U{ (_71) D) pePrimess)
by(0.1.1.2).

J
Def. (0.1.1.4) [Imaginary Quadratic Orders].
o O_; =ZJi] is called the ring of Gaussian integers.
e O_3= Z[L\Q/??’] is called the ring of Eisenstein integers.
e O 7= Z[H\ﬁ] is called the ring of Kleinian Integers.
These are all PIDs. -

Thm. (0.1.1.5) [Primes in Quadratic Fields]. Let K be a quadratic field with discriminant disc(KC).
Then for p € Prime,

o If p|disc(K), then pOx = p?, where p is a prime in Ox, and p = (p, /disc(K)) if p is odd.
o If (di%f’c)) =1, then pOg = pp’, where p,p # p’ are primes in O.

o If (di%f}q) = —1, then pOy is a prime in Of.
And every maximal prime in Ox are of the form.

In particular, p ramifies in K iff p|disc(K), and p splits completely in K iff (disz(lc)> =1. J

Prop.(0.1.1.6)[Primitive Ideals]. For a quadratic field K with D = disc(K), an ideal a € Ideal* (Ok)
is called a primitive ideal if a|(m) implies m = 1 for any m € Z. Then every primitive ideal is of

the form
{ b+\/5}
a=17-<a, ,

2
where a = ||a|| and b € Z is determined by —a < b < a,b?> = D(mod 4a).
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Proof:  Clearly a = ||a|| is contained in a, and it is the smallest positive integer contained in a.
Thus there must be another element % s.t. {a, b*%/ﬁ} is a basis of a. But then b? = D(mod 4a),
and we may assume —a < b < a. And conversely, if (') = D(mod 4a), then it is easy to verify
Z {a, %} is a primitive ideal with norm a. Which implies that ’ = b(mod 2a). So the solution
of b is unique. O

2 Hecke Characters
Let K = Q(v/D) be a imaginary quadratic field with discriminant D < 0.

Def. (0.1.2.1) [Places]. Let F' = Q or K, a place of F' is a valuation on F: i.e. a function
v = ‘—‘ F— RZO
such that
e 0] =0.
o |ab| = |al||b| for any a,b € F.

o |a+b| <la|+ |b| for any a,b € F.
each prime ideal p C Of defines a valuation v, on F as follows: If a € F*, let k be the maximal

integer s.t. a € p¥, then define
1

T NG

Remember the absolute value on C and R are also valuations.
The set of equivalence classes of valuations on F' is called the set of places of F', denoted by .
|

Def. (0.1.2.2) [Completion Fields|. Let F' = Q or K, for a prime ideal p C Op, the completion field
F, is the field of elements of the form

a=a+agt1+ ... tagp2+ ...

where k € Z, aj, € p¥, a1 € pP*1, .. .. It is clearly an additive group and has multiplications, and
is a field because we can take inversion: Suppose

a=ar+ ag+1 + ...

where a, # 0, we can take

1 .. A 202
0l = —at 1 apy1 + Agpq2 + + <ak+1 + agyo + ) 7 (akz+1 + a2 + > Lo
ap + ap41 + ... ag ag g,

For example, if F' = Q,

1 1
—— =14p+p*+..., =1-p.
1—p pp T+p+p+...+ b

1
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The set of elements of the form
a=ap+ay+...

is denoted by Oy, or when F' = Q, also denoted by Z,,.
There is a valuation on F, given by |a|, = Nm(p,) ¥, where

a=ar+ agy1 + ...

and ay, € p* \ pFtl.
For the infinite place oo, we define the completion in the same way, and get

QOO:R7 ICoo:(D

_|
Def. (0.1.2.3) [Ideles]. Let F' = Q or K, the Idele group is defined to be
/
Ir= ] £\
VEX R
where the weird []’ means the following: an element of I is a tuple
a= (av)veE F
s.t. only finitely many a,(including the infinite place) satisfies a, ¢ O;.
And I is endowed with some topology. There is an embedding of groups
F*CclIp:aw(a,a,...,a,...)
_|

Def.(0.1.2.4) [Hecke Characters]. A Hecke character is a continuous character of Ir(i.e. a contin-
uous group homomorphism Ir — {z € C: |z| = 1}) that is trivial on F'*.
A strange topology is defined on I s.t. that each Hecke character x of Ir is of the form

x((av)) = I xolav)

VEX R

where each x, is a character of F,, and only finitely many of them are non-trivial(i.e. not always
take value 1). J

Prop.(0.1.2.5) [Dirichlet Characters as Hecke Characters]. We have a decomposition of groups:
Io = Q* x [[Z; x Ry,
P
The proof goes as follows: Given an element

a= (ap) € IQ?

only finitely many a, ¢ Z;, so by weak approximation, we can take some a € Q* s.t. apat € 7,
for each prime p. We can also guarantee that as,a™! € Ry by multiplying —1 if necessary. Then

a=axaa ', aa ' €]][Z xRy
p



For any m € Z, there is a natural map
11z, — (z/m)*.
P

defined as follows: If m = p{' ... p*, the map is

ZP 1 Zpk

- P x — Pk (7 /m)*.
PE T 4 pl g, 1+ pi*Z,, (Z/m)

11z — 7y, x...xZ
p

So for any Dirichlet character xg modulo m, we get a Hecke character
-1
x:1q = [[Z: — (Z/m)" 2= C*.
P

In this way, x([p]p) = xo(p) for any p € Prime s.t. (p,m) = 1. -

Prop. (0.1.2.6)[Hecke Characters as Dirichlet Characters]. For an finite modulus m € Ideal™ (OF),
we may define a Dirichlet character as a character

X0 - ((’)F/m)* — C*.
There is an exact sequence

1— 0p = [[0; x FX — Cp — CI(F) — 1.
P

For any Hecke character x of F', xy factors through [], Oy — (Op/m)* for some finite modulus
m = pi'...p;* by continuity constraint, thus inducing a Dirichlet character xo modulo m, called the
Dirichlet component of y.

However, not every naive Dirichlet character xo an an infinite character y, can form a Hecke char-
acter. For example, they must satisfy xo(&)Xoo(€) = 1 for any unit € € O}. And if xo(e)xo(e) =1,
then there exists exactly cl(F)-many Hecke character x extending xo and xoo, because the surjection

F\Ip/TJ(1+p%) = CIF) — 1
p

has sections(take case of the infinite places). J

Def.(0.1.2.7) [Hecke Characters and Ideal Characters]. Any Hecke character x of F'?7? is of the
form x = xf X Xoo, Where x¢ : Iy — C and xoo : (FF ® R)* — C. Then by continuity, there exists
a smallest modulus m = Hvezf;ﬂ pey s.t. xy is trivial on

[T (@ +95).
vEZf}“

Thus the restriction of x to I™™ gives us a ideal class map J™ — C which we also denote by x. And
the restriction of x to HUGE%I, Of., gives a Dirichlet character x; L (Op/m)* = C.

Then we have x((a))Xoo(@) = x0() for any o € O that is prime to m. J
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3 Hecke L-Functions

Def. (0.1.3.1) [Gauss Sum for Hecke Characters|. For F' € NField and a Hecke character y for F
with Dirichlet component o of conductor m(0.1.2.6), the Gauss sum of x is defined to be

T(x) = S xo(a)emtrrale/(0.1.2.6),

acc/cm

xoo(v)x(
where v € O and ¢ € Ideal” (Op) are chosen s.t. (¢,m) =1 and cdpm = (7). Where
0l ={ae F*: trp)q(aOF) € Z}.

The definition of 7(x) is independent of (¢,~) chosen.

In particular, if F' = Q and m = (N) for N € Z_, then
JAN i an
= Y XN, m(x) = nx)-

nez/(N)

Ta(X)

In particular, 7(1,) is called the Ramanujan sum, and by Mobius inversion on N, we have

Kloos(a,0, mod N)= > 2™y = 3 :M( N > ( $(N)

eI 4N (N,n)/) ¢(N/(N,n))
J
Prop.(0.1.3.2). For Ny, Ny € Z4 s.t. (N1,N2) =1 and x; € Diri(JV;), we have
T(x1x2) = x1(N2)x2(N1)7(x1)7 (x2)-
This also holds for Hecke characters. J
Proof:
ogri M1mat Nany
Taxe) = Y. > xa(Nani)xa(Ning)e " % = x1(Na)x2(N1)7(x1)7(x2)-
ni(mod Np)nz(mod No)
Il
Def. (0.1.3.3) [Weber-Hecke L-Functions]. For a Hecke character x of K of conductor m, define
e == >
pim L= X(0) [Ip] sctdeat (O (amy—1 1817
Then for Re(s) sufficiently large, this converges absolutely. i

Thm. (0.1.3.4) [Hecke L-Functions of Imaginary Quadratic Fields|.Let m be a modulus for
KC, and x a Hecke character of K with x¢ of conductor m(0.1.2.6) and associated ideal class map
Y J™ — CX. Suppose Yoo(z) = €F88% then

L

Alxss) = Le(s + 57)L(x; 8)



is the Hecke L-function attached to x. Thus L(x;s) can be extended to a meromorphic function
for all s € C, and it has simple poles at s = 1 when x = 1, and analytic otherwise. When x = 1,

L(17 S) = C’C(S) = C(S)L(X/C7 S)) and
B 2cl(K) -
 #K/Idisc(K))]

resg—1 (i ()
Moreover, there are functional equations

Al ) = 150 a0 ml) V2 A1 - 5)(0.18.0).
"/
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