Contents

1	The unitary group G	1
2	Jacquet-Langlands correspondence	3
3	Clozel's base change	3

Quick recap

Rough idea of [HT]:

unitary group G + moduli problem involving $G \Rightarrow$ Shimura variety X $H^i(X, \mathcal{L}_{\xi})$ is a $G(\mathbb{A}^{\infty}) \times \operatorname{Gal}(F^{ac}/F)$ -module and

$$H^i(X, \mathcal{L}_{\xi}) = \bigoplus_{\pi} (\pi \otimes R^i_{\xi}(\pi)),$$

where the sum is over irreducible admissible representations π of $G(\mathbb{A}^{\infty})$ and R^i_{ξ} is a finite dimensional continuous representation of $\operatorname{Gal}(F^{ac}/F)$.

$$R_{\xi}(\pi) = (-1)^{n-1} \sum_{i} (-1)^{i} [R_{\xi}^{i}(\pi)].$$

Relate $[R_{\xi}(\pi)]$ to other things.

1 The unitary group G

- E imaginary quadratic field in which p splits
- u a prime of E above p
- c complex conjugation in $\operatorname{Gal}(E/\mathbb{Q})$
- F^+/\mathbb{Q} a totally real field of degree d
- $F = EF^+$
- $w = w_1, \cdots, w_r$ places of F above u
- $\mathbb{A}^{\infty} = \prod_{q \nmid \infty} \mathbb{Q}_q$

Let B be a division algebra over F of dimension n^2 such that

- F is the center of B
- $B^{\mathrm{op}} \cong B \otimes_{E,c} E$
- B is split at w, i.e., $B_w \cong M_n(F_w)$ for one w or for all w_1, \dots, w_r ?
- at any place x of F which is not split over F^+ , B_x is split
- at any place x of F which is split over F^+ , B_x is either split or a division algebra
- if n is even then 1 + dn/2 is congruent mod 2 to the number of places of F^+ above which B is ramified, i.e. not split. This condition is used in the proof of Lemma I.7.1

where are these conditions used? Pick a positive involution of second kind * on B (i.e. $*|_F = c$ and $\operatorname{tr}_{B/\mathbb{Q}}(xx^*) > 0$ for all $0 \neq x \in B$).

Let V denote the $B \otimes_F B^{\text{op}}$ module B. We want to look at *-hermitian alternating pairings $V \times V \to \mathbb{Q}$ (resp. $(V \otimes \mathbb{A}^{\infty}) \times (V \otimes \mathbb{A}^{\infty}) \to \mathbb{A}^{\infty}$) (i.e., $\langle bx, y \rangle = \langle x, b^*y \rangle$ for all $b \in B$). Such pairings are of the form

$$\langle x, y \rangle_{\beta} = \operatorname{tr}_{B/\mathbb{Q}}(x\beta y^*)$$

for some $\beta \in B^{*=-1}$ (resp. $B^{*=-1} \otimes A^{\infty}$). Define the action $\#_{\beta}$ to be $x^{\#_{\beta}} = \beta x^* \beta^{-1}$, then $\#_{\beta}$ is an involution of the second kind on B (resp. $B \otimes \mathbb{A}^{\infty}$). We have

$$\langle (b_1 \otimes b_2) x_1, x_2 \rangle_\beta = \langle x_1, (b_1^* \otimes b_2^{\#\beta}) x_2 \rangle_\beta.$$

Let G_{β}/\mathbb{Q} (resp. $G_{\beta}/\mathbb{A}^{\infty}$) be the algebraic group (general unitary group) whose *R*-points are

$$G_{\beta}(R) = \{ (\lambda, g) \in R^{\times} \times (B^{\mathrm{op}} \otimes_{\mathbb{Q}} R)^{\times} | gg^{\#_{\beta}} = \lambda \}.$$

Let $G_{\beta,1}$ (unitary group) be the kernel of the map $G_{\beta} \to \mathbb{G}_m$ given by $(\lambda, g) \to \lambda$. The structure map $G_{\beta,1} \to \operatorname{Spec} \mathbb{Q}$ (resp. \mathbb{A}^{∞}) factors through Spec F^+ (resp. Spec $(F^+ \otimes \mathbb{A}^{\infty})$), so $G_{\beta,1}$ can be seen as an algebraic group over F^+ . Action of $\#_{\beta}$ on B^{op} ? Also why use B^{op} instead of B?

Lemma 1. For any embedding $\tau: F^+ \hookrightarrow \mathbb{R}$ there exists $0 \neq \beta \in B^{*=-1}$ such that

- 1. if x is a rational prime not split in E, then $G_{\beta,1}$ and G_{β} are quasi-split at x,
- 2. and the pairing $\langle , \rangle_{\beta}$ on $V \otimes_{\mathbb{Q}} \mathbb{R}$ has invariants (1, n-1) at τ and (0, n) at any embedding $\tau' \neq \tau$.

Proof. Parametrize pairings by some H^1 , then use some local-global exact sequence of cohomologies.

Fix some choice of τ , we choose some β as in the lemma and write $\langle , \rangle, \#, G, G_1$ for the corresponding objects arising from β . By part (2) of the lemma, the pairing \langle , \rangle has a well-defined extension

$$\langle,\rangle:(V\otimes\mathbb{A})\times(V\otimes\mathbb{A})\to\mathbb{A}$$

with invariants (1, n-1) at τ and (0, n) at all other infinite places. Thus we get an involution $\#_{\tau}$ on $B^{\mathrm{op}} \otimes \mathbb{A}$ and groups $G_{\tau}, G_{\tau,1}$ over \mathbb{A} . Up to equivalence, the involution $\#_{\tau}$ and groups G_{τ}, G_{τ_1} only depends on τ and not β .

Some properties of G_{τ} that will be used later. For an *E*-algebra *R*,

$$G_{\tau}(R) \cong \{ (g_1, g_2) \in (B^{\mathrm{op}} \otimes_E R) \times (B^{\mathrm{op}} \otimes_{E,c} R) | g_1 g_2^{\#_{\tau}}, g_2 g_1^{\#_{\tau}} \in R^{\times} \}.$$

From this we have

$$G_{\tau}(R) \cong (B^{\mathrm{op}} \otimes_E R)^{\times} \times R^{\frac{1}{2}}$$
$$(g_1, g_2) \mapsto (g_1, g_1 g_2^{\#_{\tau}})$$
$$(g, \nu g^{-\#_{\tau}}) \longleftrightarrow (g, \nu).$$

When a place x of \mathbb{Q} splits into $x = yy^c$ in E, we can identify \mathbb{Q}_x and E_y as E-algebras and identify

$$G(\mathbb{Q}_x) = (B_y^{\mathrm{op}})^{\times} \times \mathbb{Q}_x^{\times}.$$

2 Jacquet-Langlands correspondence

Let K be a p-adic field. Let $g \in \mathbb{Z}^+$ and $D_{K,g}$ be a division algebra with center K and rank g^2 over K.

Rogawski, Deligne-Kazhdan-Vigneras showed that there exists a unique bijection

JL: {irreducible admissible representations of $D_{K,g}^{\times}$ } \rightarrow {square integrable irreducible admissible representations of $\operatorname{GL}_g(K)$ } that satisfy certain properties of characters.

For a supercuspidal representation π of $\operatorname{GL}_m(K)$, we denote by $Q(\pi, s)$ the unique irreducible quotient of $n\operatorname{-Ind}(\pi \times \cdots \times \pi \otimes |\det|^{s-1})$. cf. [Ze]p197 Denote by $Z(\pi, s)$ the unique irreducible subrepresentation of $n\operatorname{-Ind}(\pi \times \cdots \times \pi \otimes |\det|^{s-1})$ cf. [Ze]p180.

$$Q(\pi, s)$$
 (resp. $Z(\pi, s)$) is $Sp_s(\pi)$ (resp. $\pi \boxplus \cdots \boxplus (\pi \otimes |\det|^{s-1})$) in the notation of [HT]

Let S(B) be the set of places of F at which B ramifies (which we assumed to be division algebra).

Theorem 2. (a) If ρ is an irreducible automorphic representation of $(B^{op} \otimes \mathbb{A})^{\times}$, then there exists a unique irreducible automorphic representation $JL(\rho)$ of $GL_n(\mathbb{A}_F)$, which occurs in the discrete spectrum and for which

$$JL(\rho)^{S(B)} \cong \rho^{S(B)}$$

- (b) If $x \in S(B)$ and $JL(\rho_x) = Q(\pi_x, s_x)$, then
 - either $JL(\rho)_x \cong Q(\pi_x, s_x)$
 - or $JL(\rho)_x \cong Z(\pi_x, s_x)$

The image of JL is the set of irreducible automorphic representations π of $GL_n(\mathbb{A}_F)$ such that

- π occurs in the discrete spectrum
- and for every $x \in S(B)$ there exist $s_x|n$ and an irreducible supercuspidal representations π'_x of $GL_{n/s_x}(F_x)$ such that $\pi_x \cong Sp_{s_x}(\pi'_x)$ or $\pi_x \cong \pi'_x \boxplus \cdots \boxplus (\pi'_x \otimes |\det|^{s_x-1})$

If ρ_1 and ρ_2 are two irreducible automorphic representations of $(B^{op} \otimes \mathbb{A})^{\times}$ such that $\rho_{1x} = \rho_{2x}$ for all but finitely many places x of F, then $\rho_1 = \rho_2$. (strong multiplicity one)

Corollary 3. Suppose that ρ is an irreducible automorphic representation of $(B^{op} \otimes \mathbb{A})^{\times}$. Then the following are equivalent:

- 1. $JL(\rho)$ is cuspidal.
- 2. For one place $x \notin S(B)$ the component ρ_x is generic.
- 3. For all places $x \notin S(B)$ the component ρ_x is generic.

3 Clozel's base change

Goal: give a surjective (Theorem 8) map (Theorem 5)

 $\begin{cases} \text{irreducible automorphic representations} \\ \pi \text{ of } G_{\tau}(\mathbb{A}) \text{ such that } \pi_{\infty} \text{ is cohomological} \\ \text{for } \xi' \end{cases} \xrightarrow{BC} \begin{cases} (\Pi, \psi), \Pi \text{ irreducible automorphic representation} \\ \text{of } (B^{\text{op}} \otimes \mathbb{A})^{\times}, \psi \text{ character of } \mathbb{A}_{E}^{\times}/E^{\times}, \\ \text{satisfying conditions (4)-(7) in Theorem 5} \end{cases} \end{cases}$

that is compatible with local base change.

Some notations:

- Fix an embedding $\tau: F \to \mathbb{C}$.
- ξ an irreducible representation of G on a \mathbb{Q}_l^{ac} -vector space $(l \neq p)$.
- Fix an embedding $\iota : \mathbb{Q}_l^{ac} \to \mathbb{C}$. Let $\xi' = \iota(\xi)$, then ξ' is an irreducible algebraic representation of G_{τ} over \mathbb{C} .
- For a representation π , let ψ_{π} denote its central character.

Note that

$$\operatorname{Res}_{\mathbb{O}}^{E}(G_{\tau} \times E) \times \mathbb{C} \cong (G_{\tau} \times \mathbb{C}) \times_{\mathbb{C}} (G_{\tau} \times \mathbb{C}),$$

where the first factor corresponds to $\tau : E \hookrightarrow \mathbb{C}$ and the second to $\tau \circ c$. Let ξ'_E denote the representation $\xi' \otimes \xi'$ of $\operatorname{Res}^E_{\mathbb{Q}}(G_\tau \times E)$ over \mathbb{C} . Note that $G_\tau(E_\infty) = \operatorname{Res}^E_{\mathbb{Q}}(G_\tau \times E)(\mathbb{R})$. We will denote also by ξ'_E the restriction of the representation to $\operatorname{GL}_n(F_\infty) \subset E_\infty^{\times} \times \operatorname{GL}_n(F_\infty) \cong G_\tau(E_\infty)$. I don't understand details in this paragraph

Definition 4. We say an irreducible admissible representation π_{∞} of $G_{\tau}(\mathbb{R})$ (resp. Π_{∞} of $GL_n(F_{\infty})$) is cohomological for ξ' (resp. ξ'_E) if for some i,

$$H^{i}((Lie \ G_{\tau}(\mathbb{R})) \otimes_{\mathbb{R}} \mathbb{C}, U_{\tau}, \pi_{\infty} \otimes \xi') \neq 0$$

(resp.

$$H^{i}(M_{n}(F_{\infty}) \otimes_{\mathbb{R}} \mathbb{C}, U(0, n)^{[F^{+}:\mathbb{Q}]}, \Pi_{\infty} \otimes \xi'_{E}) \neq 0.)$$

What are U_{τ} and $U(0,n)^{[F^+:\mathbb{Q}]}$?

Let x be a place of \mathbb{Q} . Next we define (under some conditions) the local base change from representations of $G(\mathbb{Q}_x)$ to representations of $G(E_x)$.

First suppose x splits into $x = yy^c$ in E. Recall that we have $G(\mathbb{Q}_x) = (B_y^{\text{op}})^{\times} \times \mathbb{Q}_x^{\times}$. So we can decompose irreducible admissible representations π of $G(\mathbb{Q}_x)$ into

$$\pi \cong \pi_y \otimes \psi_{\pi,y^c}.$$

Replacing y by y^c , we get $\pi_{y^c} = \pi_y^{\#}$ and $\psi_{\pi,y} = \psi_{\pi_y}\psi_{\pi,y^c}$, where $\pi_y^{\#}$ is defined by $\pi_y^{\#}(g) = \pi_y(g^{-\#})$. what does -# mean? We define $BC(\pi)$ to be the representation

$$\pi_y \otimes \pi_{y^c} \otimes (\psi_{\pi,y^c} \circ c) \otimes (\psi_{\pi,y} \circ c)$$

of

$$G(E_{\tau}) \cong (B_x^{\mathrm{op}})^{\times} \times E_x^{\times} \cong (B_y^{\mathrm{op}})^{\times} \times (B_{y^c}^{\mathrm{op}})^{\times} \times E_y^{\times} \times E_{y^c}^{\times}.$$

Now suppose that x is **inert** in E and

• x is unramified in F,

•
$$(B_x^{\text{op}}, \#) \cong (M_n(F_x), \dagger)$$
, where $g^{\dagger} = w(g^c)^t w^{-1}$ with $w = \begin{pmatrix} & 1 \\ & \ddots & \\ 1 & & \end{pmatrix}$.

These two conditions only exclude finitely many places of \mathbb{Q} . Then $G(\mathbb{Q}_x)$ is quasi-split and split over an unramified extension. Let B_x be a Borel subgroup of $G \times F_x$ so that $B_x(F_x)$ corresponds to the set of upper triangular matrices in $M_n(F_x)$. Let T_x be a maximal torus in B_x such that $T_x(F_x)$ corresponds to the set of diagonal elements in $M_n(F_x)$. Then why?

$$T_x(\mathbb{Q}_x) \cong \{ (d_0; d_1, \cdots, d_n) \} \in \mathbb{Q}_x^{\times} \times (F_x^{\times})^n | d_0 = d_i d_{n+1-i^c}, \forall i = 1, \cdots, n.$$

For a character ψ of $T_x(\mathbb{Q}_x)$ we define a character $BC(\psi)$ of $E_x^{\times} \times (F_x^{\times})^n$ by

$$BC(\psi)(d_0; d_1, \cdots, d_n) = \psi(d_0 d_0^c, d_0 d_1 / d_n^c, \cdots, d_0 d_n / d_1^c).$$

Let *B* denote the Borel subgroup of upper triangular elements of GL_n . If π is an unramified representation of $G(\mathbb{Q}_x)$ which is a subquotient of n-Ind $_{B_x(\mathbb{Q}_x)}^{G(\mathbb{Q}_x)}\psi$, we define $BC(\pi)$ to be the unique unramified subquotient of n-Ind $_{E_x^{\times} \times \operatorname{GL}_n(F_x)}^{E_x^{\times} \times \operatorname{GL}_n(F_x)}BC(\psi)$.

If Π is an irreducible automorphic representation of $(B^{\text{op}} \otimes_{\mathbb{Q}} \mathbb{A})^{\times}$, we define $\Pi^{\#}$ by $\Pi^{\#}(g) = \Pi(g^{-\#})$. Strong multiplicity one implies that

$$JL(\Pi^{\#}) = JL(\Pi)^{\vee} \circ c.$$

Theorem 5. Suppose that π is an irreducible automorphic representation of $G_{\tau}(\mathbb{A})$ such that π_{∞} is cohomological for ξ' . Then there is a unique irreducible automorphic representation $BC(\pi) = (\psi, \Pi)$ of $\mathbb{A}_E^{\times} \times (B^{op} \otimes_{\mathbb{Q}} \mathbb{A})^{\times}$ such that

- 1. $\psi = \psi_{\pi}|_{\mathbb{A}^{\times}}^{c}$, how is \mathbb{A}_{E}^{\times} contained in the center of $G_{\tau}(\mathbb{A})$?
- 2. if x is a place of \mathbb{Q} that splits in E then $BC(\pi)_x = BC(\pi_x)$,
- 3. for almost all places x of \mathbb{Q} (which are inert in E) we have $BC(\pi)_x = BC(\pi_x)$,
- 4. Π_{∞} is cohomological for ξ'_E ,
- 5. $\psi_{\infty}^{c} = \xi'|_{E^{\times}}^{-1}$ (where $E_{\infty}^{\times} \subset G_{\tau}(\mathbb{R})$),

6.
$$\psi_{\Pi}|_{\mathbb{A}_{E}^{\times}} = \psi^{c}/\psi_{L}$$

7. $\Pi^{\#} \cong \Pi$.

I'm not sure if the cohomological condition parts of the theorem below is correct.

Theorem 6 (Clozel-Labesse, 1999). Let π be an automorphic representation of $G_{\tau,1}(\mathbb{A})$ such that π is cohomological for ξ' and one of the following conditions hold:

- at a finite place v of F, π_v is the Steinberg representation
- at a place v of F, U_v is obtained from a division algebra.

Then there exists an automorphic representation Π of $(B^{op} \otimes \mathbb{A})^{\times}$ such that $\Pi_v = BC(\pi_v)$ almost everywhere and Π is cohomological for ξ'_E .

Proof idea. Comparison of trace formulas.

Proof sketch of Theorem 5. Let $T = \operatorname{Res}_{\mathbb{Q}}^{E} \mathbb{G}_{m}$ and $T^{1} = \ker T \xrightarrow{N} \mathbb{G}_{m}$. We want to construct an irreducible automorphic representation π' of $(T \times G_{\tau,1})(\mathbb{A})$ such that

- $\pi'|_{T^1(\mathbb{A})} = 1,$
- if x is a place of \mathbb{Q} that splits in E, then $\pi'_x = \pi_x|_{(T \times G_1)(\mathbb{Q}_x)}$,
- for almost all places x of \mathbb{Q} that are inert in E, π'_x is the unique unramified subquotient of $\pi_x|_{(T \times G_1)(\mathbb{Q}_x)}$,
- $\pi'_{\infty}|_{E_{\infty}^{\times}} = \xi'|_{E_{\infty}^{\times}}^{-1}$,
- and for some i we have

$$H^{i}(\text{Lie } G_{\tau,1}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}, U_{\infty}, (\pi'_{\infty} \otimes \xi')|_{G_{\tau,1}(\mathbb{R})}) \neq 0.$$

Such π' is of the form $\psi^c \otimes \pi'_1$ for some character ψ of $E^{\times} \setminus \mathbb{A}_E^{\times}$ and automorphic representation π'_1 of $G_{\tau,1}(\mathbb{A})$ such that $\psi|_{T^1(\mathbb{A})} = \psi_{\pi'_1}|_{T^1(\mathbb{A})}^{-1}$. Apply Theorem 6 to π'_1 , we obtain a representation Π of $(B^{\mathrm{op}} \otimes \mathbb{A})^{\times}$ such that $(\psi_{\pi}|_{\mathbb{A}_E^{\times}}, \Pi)$ satisfies properties (1)-(6) in the theorem. Uniqueness and property (7) follows from strong multiplicity one (Theorem 6).

We construct the π' as follows. Note that there is a natural exact sequence

$$0 \to T^1 \to T \times G_{\tau,1} \to G_{\tau}$$
$$t \mapsto (t, t^{-1}),$$

where the last map is surjective on geometric points. If π is an automorphic representation of $G_{\tau}(\mathbb{A})$, its "restriction" to $(T \times G_{\tau,1})(\mathbb{A})$ is a semisimple admissible representation. then we want to make local components irreducible and automorphic

When x is a place of \mathbb{Q} that splits in E, we have an exact sequence

$$0 \to T^1(\mathbb{Q}_x) \to (T \times G_1)(\mathbb{Q}_x) \to G(\mathbb{Q}_x) \to 0.$$

If π_x is an irreducible admissible representation of $G(\mathbb{Q}_x)$, then the restriction $\pi_x|_{(T \times G_1)(\mathbb{Q}_x)}$ is also irreducible. (With the embedding $T^1 \to T \times G_{\tau,1}$ above, the restriction of π_x to $T^1(\mathbb{Q}_x)$ is trivial. So we can reconstruct subrepresentations of π_x from subrepresentations of $\pi_x|_{(T \times G_1)(\mathbb{Q}_x)}$).

Other cases can be done using similar exact sequences. (Conjugating irreducible subquotients of $\pi_x|_{(T \times G_1)(\mathbb{Q}_x)}$ by appropriate elements in $G_{\tau}(\mathbb{A})$ can make them into automorphic representations.)

Corollary 7. If π and π' are irreducible automorphic representations of $G_{\tau}(\mathbb{A})$ such that π_{∞} and π'_{∞} are cohomological for ξ' and such that $\pi_x \cong \pi'_x$ for almost all places x of \mathbb{Q} , then $\pi_x \cong \pi'_x$ for all places x of \mathbb{Q} which split in E.

Proof. Corollary 3 + Theorem 5.

Theorem 8. Suppose that Π is an irreducible automorphic representation of $(B^{op} \otimes \mathbb{A})^{\times}$ and ψ is a character of $\mathbb{A}_{E}^{\times}/E^{\times}$ satisfying conditions (4)-(7) in Theorem 5. (all ψ appearing in the image of BC are invariant under E^{\times} by the proof of Theorem 5) Then there is an irreducible automorphic representation π of $G_{\tau}(\mathbb{A})$ such that

- 1. $BC(\pi) = (\psi, \Pi),$
- 2. and π_{∞} is cohomological for ξ' .

Moreover, dim $[R_{\iota^{-1}(\xi')}(\iota^{-1}\pi^{\infty})] \neq 0.$

Proof sketch. Clozel: there exists a representation π_1 of $G_{\tau,1}(\mathbb{A})$ that is cohomological and compatible with local base change. Then $\psi^c \otimes \pi_1$ is an irreducible automorphic representation of $(T \times G_{\tau,1})(\mathbb{A})$ which is trivial on $T^1(\mathbb{A})$. Thus $\psi^c \times \pi_1$ is a subrepresentation of the restriction of some automorphic representation π of $G_{\tau}(\mathbb{A})$ to $(T \times G_{\tau,1})(\mathbb{A})$. This π satisfies the required conditions. \Box