Contents

1 The unitary group G 1
2 Jacquet-Langlands correspondence $\quad 3$
3 Clozel's base change 3

Quick recap

Rough idea of [HT]:
unitary group $G+$ moduli problem involving $G \Rightarrow$ Shimura variety X $H^{i}\left(X, \mathcal{L}_{\xi}\right)$ is a $G\left(\mathbb{A}^{\infty}\right) \times \operatorname{Gal}\left(F^{a c} / F\right)$-module and

$$
H^{i}\left(X, \mathcal{L}_{\xi}\right)=\oplus_{\pi}\left(\pi \otimes R_{\xi}^{i}(\pi)\right)
$$

where the sum is over irreducible admissible representations π of $G\left(\mathbb{A}^{\infty}\right)$ and R_{ξ}^{i} is a finite dimensional continuous representation of $\operatorname{Gal}\left(F^{a c} / F\right)$.

$$
R_{\xi}(\pi)=(-1)^{n-1} \sum_{i}(-1)^{i}\left[R_{\xi}^{i}(\pi)\right]
$$

Relate $\left[R_{\xi}(\pi)\right]$ to other things.

1 The unitary group G

- E - imaginary quadratic field in which p splits
- u - a prime of E above p
- c - complex conjugation in $\operatorname{Gal}(E / \mathbb{Q})$
- F^{+} / \mathbb{Q} - a totally real field of degree d
- $F=E F^{+}$
- $w=w_{1}, \cdots, w_{r}$ places of F above u
- $\mathbb{A}^{\infty}=\prod_{q \nmid \infty} \mathbb{Q}_{q}$

Let B be a division algebra over F of dimension n^{2} such that

- F is the center of B
- $B^{\mathrm{op}} \cong B \otimes_{E, c} E$
- B is split at w, i.e., $B_{w} \cong M_{n}\left(F_{w}\right)$ for one w or for all w_{1}, \cdots, w_{r} ?
- at any place x of F which is not split over F^{+}, B_{x} is split
- at any place x of F which is split over F^{+}, B_{x} is either split or a division algebra
- if n is even then $1+d n / 2$ is congruent $\bmod 2$ to the number of places of F^{+}above which B is ramified, i.e. not split. This condition is used in the proof of Lemma I.7.1
where are these conditions used? Pick a positive involution of second kind $*$ on B (i.e. $\left.*\right|_{F}=c$ and $\operatorname{tr}_{B / \mathbb{Q}}\left(x x^{*}\right)>0$ for all $\left.0 \neq x \in B\right)$.

Let V denote the $B \otimes_{F} B^{\text {op }}$ module B. We want to look at $*$-hermitian alternating pairings $V \times V \rightarrow \mathbb{Q}$ (resp. $\left.\left(V \otimes \mathbb{A}^{\infty}\right) \times\left(V \otimes \mathbb{A}^{\infty}\right) \rightarrow \mathbb{A}^{\infty}\right)$ (i.e., $\langle b x, y\rangle=\left\langle x, b^{*} y\right\rangle$ for all $b \in B$). Such pairings are of the form

$$
\langle x, y\rangle_{\beta}=\operatorname{tr}_{B / \mathbb{Q}}\left(x \beta y^{*}\right)
$$

for some $\beta \in B^{*=-1}$ (resp. $B^{*=-1} \otimes A^{\infty}$). Define the action $\#_{\beta}$ to be $x^{\# \beta}=\beta x^{*} \beta^{-1}$, then $\#_{\beta}$ is an involution of the second kind on B (resp. $\left.B \otimes \mathbb{A}^{\infty}\right)$. We have

$$
\left\langle\left(b_{1} \otimes b_{2}\right) x_{1}, x_{2}\right\rangle_{\beta}=\left\langle x_{1},\left(b_{1}^{*} \otimes b_{2}^{\#_{\beta}}\right) x_{2}\right\rangle_{\beta} .
$$

Let G_{β} / \mathbb{Q} (resp. $G_{\beta} / \mathbb{A}^{\infty}$) be the algebraic group (general unitary group) whose R-points are

$$
G_{\beta}(R)=\left\{(\lambda, g) \in R^{\times} \times\left(B^{\mathrm{op}} \otimes_{\mathbb{Q}} R\right)^{\times} \mid g g^{\#_{\beta}}=\lambda\right\}
$$

Let $G_{\beta, 1}$ (unitary group) be the kernel of the map $G_{\beta} \rightarrow \mathbb{G}_{m}$ given by $(\lambda, g) \rightarrow \lambda$. The structure map $G_{\beta, 1} \rightarrow \operatorname{Spec} \mathbb{Q}\left(\right.$ resp. $\left.\mathbb{A}^{\infty}\right)$ factors through Spec $F^{+}\left(\right.$resp. $\left.\operatorname{Spec}\left(F^{+} \otimes \mathbb{A}^{\infty}\right)\right)$, so $G_{\beta, 1}$ can be seen as an algebraic group over F^{+}. Action of $\# \beta$ on $B^{\circ p}$? Also why use $B^{\text {op }}$ instead of B ?

Lemma 1. For any embedding $\tau: F^{+} \hookrightarrow \mathbb{R}$ there exists $0 \neq \beta \in B^{*=-1}$ such that

1. if x is a rational prime not split in E, then $G_{\beta, 1}$ and G_{β} are quasi-split at x,
2. and the pairing \langle,\rangle_{β} on $V \otimes_{\mathbb{Q}} \mathbb{R}$ has invariants $(1, n-1)$ at τ and $(0, n)$ at any embedding $\tau^{\prime} \neq \tau$.

Proof. Parametrize pairings by some H^{1}, then use some local-global exact sequence of cohomologies.

Fix some choice of τ, we choose some β as in the lemma and write $\langle\rangle,, \#, G, G_{1}$ for the corresponding objects arising from β. By part (2) of the lemma, the pairing \langle,$\rangle has a$ well-defined extension

$$
\langle,\rangle:(V \otimes \mathbb{A}) \times(V \otimes \mathbb{A}) \rightarrow \mathbb{A}
$$

with invariants $(1, n-1)$ at τ and $(0, n)$ at all other infinite places. Thus we get an involution $\#{ }_{\tau}$ on $B^{\mathrm{op}} \otimes \mathbb{A}$ and groups $G_{\tau}, G_{\tau, 1}$ over \mathbb{A}. Up to equivalence, the involution $\#_{\tau}$ and groups $G_{\tau}, G_{\tau_{1}}$ only depends on τ and not β.

Some properties of G_{τ} that will be used later. For an E-algebra R,

$$
G_{\tau}(R) \cong\left\{\left(g_{1}, g_{2}\right) \in\left(B^{\mathrm{op}} \otimes_{E} R\right) \times\left(B^{\mathrm{op}} \otimes_{E, c} R\right) \mid g_{1} g_{2}^{\# \tau}, g_{2} g_{1}^{\# \tau} \in R^{\times}\right\}
$$

From this we have

$$
\begin{aligned}
G_{\tau}(R) & \cong\left(B^{\mathrm{op}} \otimes_{E} R\right)^{\times} \times R^{\times} \\
\left(g_{1}, g_{2}\right) & \mapsto\left(g_{1}, g_{1} g_{2}^{\# \tau}\right) \\
\left(g, \nu g^{-\# \tau}\right) & \hookrightarrow(g, \nu) .
\end{aligned}
$$

When a place x of \mathbb{Q} splits into $x=y y^{c}$ in E, we can identify \mathbb{Q}_{x} and E_{y} as E-algebras and identify

$$
G\left(\mathbb{Q}_{x}\right)=\left(B_{y}^{\mathrm{op}}\right)^{\times} \times \mathbb{Q}_{x}^{\times}
$$

2 Jacquet-Langlands correspondence

Let K be a p-adic field. Let $g \in \mathbb{Z}^{+}$and $D_{K, g}$ be a division algebra with center K and rank g^{2} over K.

Rogawski, Deligne-Kazhdan-Vigneras showed that there exists a unique bijection
JL: \{irreducible admissible representations of $\left.D_{K, g}^{\times}\right\} \rightarrow$ \{square integrable irreducible admissible representations of $\left.\mathrm{GL}_{g}(K)\right\}$ that satisfy certain properties of characters.

For a supercuspidal representation π of $\mathrm{GL}_{m}(K)$, we denote by $Q(\pi, s)$ the unique irreducible quotient of $n-\operatorname{Ind}\left(\pi \times \cdots \times \pi \otimes|\operatorname{det}|^{s-1}\right)$. cf. [Ze]p197 Denote by $Z(\pi, s)$ the unique irreducible subrepresentation of $n-\operatorname{Ind}\left(\pi \times \cdots \times \pi \otimes|\operatorname{det}|^{s-1}\right)$ cf. [Ze]p180.
$Q(\pi, s)($ resp. $Z(\pi, s))$ is $S p_{s}(\pi)\left(\right.$ resp. $\pi \boxplus \cdots \boxplus\left(\pi \otimes|\operatorname{det}|^{s-1}\right)$) in the notation of [HT]
Let $S(B)$ be the set of places of F at which B ramifies (which we assumed to be division algebra).

Theorem 2. (a) If ρ is an irreducible automorphic representation of $\left(B^{o p} \otimes \mathbb{A}\right)^{\times}$, then there exists a unique irreducible automorphic representation $J L(\rho)$ of $G L_{n}\left(\mathbb{A}_{F}\right)$, which occurs in the discrete spectrum and for which

$$
J L(\rho)^{S(B)} \cong \rho^{S(B)}
$$

(b) If $x \in S(B)$ and $J L\left(\rho_{x}\right)=Q\left(\pi_{x}, s_{x}\right)$, then

- either $J L(\rho)_{x} \cong Q\left(\pi_{x}, s_{x}\right)$
- or $J L(\rho)_{x} \cong Z\left(\pi_{x}, s_{x}\right)$

The image of $J L$ is the set of irreducible automorphic representations π of $G L_{n}\left(\mathbb{A}_{F}\right)$ such that

- π occurs in the discrete spectrum
- and for every $x \in S(B)$ there exist $s_{x} \mid n$ and an irreducible supercuspidal representations π_{x}^{\prime} of $G L_{n / s_{x}}\left(F_{x}\right)$ such that $\pi_{x} \cong S p_{s_{x}}\left(\pi_{x}^{\prime}\right)$ or $\pi_{x} \cong \pi_{x}^{\prime} \boxplus \cdots \boxplus\left(\pi_{x}^{\prime} \otimes|\operatorname{det}|^{s_{x}-1}\right)$
If ρ_{1} and ρ_{2} are two irreducible automorphic representations of $\left(B^{o p} \otimes \mathbb{A}\right)^{\times}$such that $\rho_{1 x}=$ $\rho_{2 x}$ for all but finitely many places x of F, then $\rho_{1}=\rho_{2}$. (strong multiplicity one)

Corollary 3. Suppose that ρ is an irreducible automorphic representation of $\left(B^{o p} \otimes \mathbb{A}\right)^{\times}$. Then the following are equivalent:

1. $J L(\rho)$ is cuspidal.
2. For one place $x \notin S(B)$ the component ρ_{x} is generic.
3. For all places $x \notin S(B)$ the component ρ_{x} is generic.

3 Clozel's base change

Goal: give a surjective (Theorem 8) map (Theorem 5)
$\left\{\begin{array}{l}\text { irreducible automorphic representations } \\ \pi \text { of } G_{\tau}(\mathbb{A}) \text { such that } \pi_{\infty} \text { is cohomological } \\ \text { for } \xi^{\prime}\end{array}\right\} \stackrel{B C}{\longrightarrow}\left\{\begin{array}{l}(\Pi, \psi), \Pi \text { irreducible automorphic representation } \\ \text { of }\left(B^{\mathrm{op}} \otimes \mathbb{A}\right)^{\times}, \psi \text { character of } \mathbb{A}_{E}^{\times} / E^{\times}, \\ \text {satisfying conditions (4)-(7) in Theorem } 5\end{array}\right\}$
that is compatible with local base change.
Some notations:

- Fix an embedding $\tau: F \rightarrow \mathbb{C}$.
- ξ - an irreducible representation of G on a $\mathbb{Q}_{l}^{a c}$-vector space $(l \neq p)$.
- Fix an embedding $\iota: \mathbb{Q}_{l}^{a c} \rightarrow \mathbb{C}$. Let $\xi^{\prime}=\iota(\xi)$, then ξ^{\prime} is an irreducible algebraic representation of G_{τ} over \mathbb{C}.
- For a representation π, let ψ_{π} denote its central character.

Note that

$$
\operatorname{Res}_{\mathbb{Q}}^{E}\left(G_{\tau} \times E\right) \times \mathbb{C} \cong\left(G_{\tau} \times \mathbb{C}\right) \times_{\mathbb{C}}\left(G_{\tau} \times \mathbb{C}\right)
$$

where the first factor corresponds to $\tau: E \hookrightarrow \mathbb{C}$ and the second to $\tau \circ c$. Let ξ_{E}^{\prime} denote the representation $\xi^{\prime} \otimes \xi^{\prime}$ of $\operatorname{Res}_{\mathbb{Q}}^{E}\left(G_{\tau} \times E\right)$ over \mathbb{C}. Note that $G_{\tau}\left(E_{\infty}\right)=\operatorname{Res}_{\mathbb{Q}}^{E}\left(G_{\tau} \times E\right)(\mathbb{R})$. We will denote also by ξ_{E}^{\prime} the restriction of the representation to $\mathrm{GL}_{n}\left(F_{\infty}\right) \subset E_{\infty}^{\times} \times \mathrm{GL}_{n}\left(F_{\infty}\right) \cong$ $G_{\tau}\left(E_{\infty}\right)$. I don't understand details in this paragraph

Definition 4. We say an irreducible admissible representation π_{∞} of $G_{\tau}(\mathbb{R})$ (resp. Π_{∞} of $\left.G L_{n}\left(F_{\infty}\right)\right)$ is cohomological for ξ^{\prime} (resp. ξ_{E}^{\prime}) if for some i,

$$
H^{i}\left(\left(\operatorname{Lie} G_{\tau}(\mathbb{R})\right) \otimes_{\mathbb{R}} \mathbb{C}, U_{\tau}, \pi_{\infty} \otimes \xi^{\prime}\right) \neq 0
$$

(resp.

$$
\left.H^{i}\left(M_{n}\left(F_{\infty}\right) \otimes_{\mathbb{R}} \mathbb{C}, U(0, n)^{\left[F^{+}: \mathbb{Q}\right]}, \Pi_{\infty} \otimes \xi_{E}^{\prime}\right) \neq 0 .\right)
$$

What are U_{τ} and $U(0, n)^{\left[F^{+}: \mathbb{Q}\right]}$?
Let x be a place of \mathbb{Q}. Next we define (under some conditions) the local base change from representations of $G\left(\mathbb{Q}_{x}\right)$ to representations of $G\left(E_{x}\right)$.

First suppose x splits into $x=y y^{c}$ in E. Recall that we have $G\left(\mathbb{Q}_{x}\right)=\left(B_{y}^{\mathrm{op}}\right)^{\times} \times \mathbb{Q}_{x}^{\times}$. So we can decompose irreducible admissible representations π of $G\left(\mathbb{Q}_{x}\right)$ into

$$
\pi \cong \pi_{y} \otimes \psi_{\pi, y^{c}}
$$

Replacing y by y^{c}, we get $\pi_{y^{c}}=\pi_{y}^{\#}$ and $\psi_{\pi, y}=\psi_{\pi_{y}} \psi_{\pi, y^{c}}$, where $\pi_{y}^{\#}$ is defined by $\pi_{y}^{\#}(g)=$ $\pi_{y}\left(g^{-\#}\right)$. what does $-\#$ mean? We define $B C(\pi)$ to be the representation

$$
\pi_{y} \otimes \pi_{y^{c}} \otimes\left(\psi_{\pi, y^{c}} \circ c\right) \otimes\left(\psi_{\pi, y} \circ c\right)
$$

of

$$
G\left(E_{\tau}\right) \cong\left(B_{x}^{\mathrm{op}}\right)^{\times} \times E_{x}^{\times} \cong\left(B_{y}^{\mathrm{op}}\right)^{\times} \times\left(B_{y^{c}}^{\mathrm{op}}\right)^{\times} \times E_{y}^{\times} \times E_{y^{c}}^{\times} .
$$

Now suppose that x is inert in E and

- x is unramified in F,
- $\left(B_{x}^{\mathrm{op}}, \#\right) \cong\left(M_{n}\left(F_{x}\right), \dagger\right)$, where $g^{\dagger}=w\left(g^{c}\right)^{t} w^{-1}$ with $w=\left(\begin{array}{lll} & & 1 \\ 1 & & .\end{array}\right)$.

These two conditions only exclude finitely many places of \mathbb{Q}. Then $G\left(\mathbb{Q}_{x}\right)$ is quasi-split and split over an unramified extension. Let B_{x} be a Borel subgroup of $G \times F_{x}$ so that $B_{x}\left(F_{x}\right)$ corresponds to the set of upper triangular matrices in $M_{n}\left(F_{x}\right)$. Let T_{x} be a maximal torus in B_{x} such that $T_{x}\left(F_{x}\right)$ corresponds to the set of diagonal elements in $M_{n}\left(F_{x}\right)$. Then why?

$$
T_{x}\left(\mathbb{Q}_{x}\right) \cong\left\{\left(d_{0} ; d_{1}, \cdots, d_{n}\right)\right\} \in \mathbb{Q}_{x}^{\times} \times\left(F_{x}^{\times}\right)^{n} \mid d_{0}=d_{i} d_{n+1-i^{c}}, \forall i=1, \cdots, n
$$

For a character ψ of $T_{x}\left(\mathbb{Q}_{x}\right)$ we define a character $B C(\psi)$ of $E_{x}^{\times} \times\left(F_{x}^{\times}\right)^{n}$ by

$$
B C(\psi)\left(d_{0} ; d_{1}, \cdots, d_{n}\right)=\psi\left(d_{0} d_{0}^{c}, d_{0} d_{1} / d_{n}^{c}, \cdots, d_{0} d_{n} / d_{1}^{c}\right)
$$

Let B denote the Borel subgroup of upper triangular elements of $G L_{n}$. If π is an unramified representation of $G\left(\mathbb{Q}_{x}\right)$ which is a subquotient of $\mathrm{n}-\operatorname{Ind}_{B_{x}\left(\mathbb{Q}_{x}\right)}^{G\left(\mathbb{Q}_{x}\right)} \psi$, we define $B C(\pi)$ to be the unique unramified subquotient of n- $\operatorname{Ind}_{E_{x}^{\times} \times B\left(F_{x}\right)}^{E_{x_{x}}^{\times} \times \mathrm{GL}_{n}\left(F_{x}\right)} B C(\psi)$.

If Π is an irreducible automorphic representation of $\left(B^{\mathrm{op}} \otimes_{\mathbb{Q}} \mathbb{A}\right)^{\times}$, we define $\Pi^{\#}$ by $\Pi^{\#}(g)=\Pi\left(g^{-\#}\right)$. Strong multiplicity one implies that

$$
J L\left(\Pi^{\#}\right)=J L(\Pi)^{\vee} \circ c .
$$

Theorem 5. Suppose that π is an irreducible automorphic representation of $G_{\tau}(\mathbb{A})$ such that π_{∞} is cohomological for ξ^{\prime}. Then there is a unique irreducible automorphic representation $B C(\pi)=(\psi, \Pi)$ of $\mathbb{A}_{E}^{\times} \times\left(B^{o p} \otimes_{\mathbb{Q}} \mathbb{A}\right)^{\times}$such that

1. $\psi=\left.\psi_{\pi}\right|_{\mathbb{A}_{E}^{\times}} ^{c}$, how is \mathbb{A}_{E}^{\times}contained in the center of $G_{\tau}(\mathbb{A})$?
2. if x is a place of \mathbb{Q} that splits in E then $B C(\pi)_{x}=B C\left(\pi_{x}\right)$,
3. for almost all places x of \mathbb{Q} (which are inert in E) we have $B C(\pi)_{x}=B C\left(\pi_{x}\right)$,
4. Π_{∞} is cohomological for ξ_{E}^{\prime},
5. $\psi_{\infty}^{c}=\left.\xi^{\prime}\right|_{E_{\infty}^{\times}} ^{-1}\left(\right.$ where $\left.E_{\infty}^{\times} \subset G_{\tau}(\mathbb{R})\right)$,
6. $\left.\psi_{\Pi}\right|_{\mathbb{A}_{E}}=\psi^{c} / \psi$,
7. $\Pi^{\#} \cong \Pi$.

I'm not sure if the cohomological condition parts of the theorem below is correct.
Theorem 6 (Clozel-Labesse, 1999). Let π be an automorphic representation of $G_{\tau, 1}(\mathbb{A})$ such that π is cohomological for ξ^{\prime} and one of the following conditions hold:

- at a finite place v of F, π_{v} is the Steinberg representation
- at a place v of F, U_{v} is obtained from a division algebra.

Then there exists an automorphic representation Π of $\left(B^{o p} \otimes \mathbb{A}\right)^{\times}$such that $\Pi_{v}=B C\left(\pi_{v}\right)$ almost everywhere and Π is cohomological for ξ_{E}^{\prime}.

Proof idea. Comparison of trace formulas.
Proof sketch of Theorem 5. Let $T=\operatorname{Res}_{\mathbb{Q}}^{E} \mathbb{G}_{m}$ and $T^{1}=\operatorname{ker} T \xrightarrow{N} \mathbb{G}_{m}$. We want to construct an irreducible automorphic representation π^{\prime} of $\left(T \times G_{\tau, 1}\right)(\mathbb{A})$ such that

- $\left.\pi^{\prime}\right|_{T^{1}(\mathbb{A})}=1$,
- if x is a place of \mathbb{Q} that splits in E, then $\pi_{x}^{\prime}=\left.\pi_{x}\right|_{\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right)}$,
- for almost all places x of \mathbb{Q} that are inert in E, π_{x}^{\prime} is the unique unramified subquotient of $\left.\pi_{x}\right|_{\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right),}$
- $\left.\pi_{\infty}^{\prime}\right|_{E_{\infty}^{\times}}=\left.\xi^{\prime}\right|_{E_{\infty}^{\times}} ^{-1}$,
- and for some i we have

$$
H^{i}\left(\text { Lie } G_{\tau, 1}(\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C}, U_{\infty},\left.\left(\pi_{\infty}^{\prime} \otimes \xi^{\prime}\right)\right|_{G_{\tau, 1}(\mathbb{R})}\right) \neq 0
$$

Such π^{\prime} is of the form $\psi^{c} \otimes \pi_{1}^{\prime}$ for some character ψ of $E^{\times} \backslash \mathbb{A}_{E}^{\times}$and automorphic representation π_{1}^{\prime} of $G_{\tau, 1}(\mathbb{A})$ such that $\left.\psi\right|_{T^{1}(\mathbb{A})}=\left.\psi_{\pi_{1}^{\prime}}\right|_{T^{1}(\mathbb{A})} ^{-1}$. Apply Theorem 6 to π_{1}^{\prime}, we obtain a representation Π of $\left(B^{\circ \mathrm{p}} \otimes \mathbb{A}\right)^{\times}$such that $\left(\left.\psi_{\pi}\right|_{\mathbb{A}_{E}^{\times}}, \Pi\right)$ satisfies properties (1)-(6) in the theorem. Uniqueness and property (7) follows from strong multiplicity one (Theorem 6).

We construct the π^{\prime} as follows. Note that there is a natural exact sequence

$$
\begin{aligned}
0 \rightarrow T^{1} & \rightarrow T \times G_{\tau, 1} \rightarrow G_{\tau} \\
t & \mapsto\left(t, t^{-1}\right),
\end{aligned}
$$

where the last map is surjective on geometric points. If π is an automorphic representation of $G_{\tau}(\mathbb{A})$, its "restriction" to $\left(T \times G_{\tau, 1}\right)(\mathbb{A})$ is a semisimple admissible representation. then we want to make local components irreducible and automorphic

When x is a place of \mathbb{Q} that splits in E, we have an exact sequence

$$
0 \rightarrow T^{1}\left(\mathbb{Q}_{x}\right) \rightarrow\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right) \rightarrow G\left(\mathbb{Q}_{x}\right) \rightarrow 0
$$

If π_{x} is an irreducible admissible representation of $G\left(\mathbb{Q}_{x}\right)$, then the restriction $\left.\pi_{x}\right|_{\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right)}$ is also irreducible. (With the embedding $T^{1} \rightarrow T \times G_{\tau, 1}$ above, the restriction of π_{x} to $T^{1}\left(\mathbb{Q}_{x}\right)$ is trivial. So we can reconstruct subrepresentations of π_{x} from subrepresentations of $\left.\left.\pi_{x}\right|_{\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right)}\right)$.

Other cases can be done using similar exact sequences. (Conjugating irreducible subquotients of $\left.\pi_{x}\right|_{\left(T \times G_{1}\right)\left(\mathbb{Q}_{x}\right)}$ by appropriate elements in $G_{\tau}(\mathbb{A})$ can make them into automorphic representations.)

Corollary 7. If π and π^{\prime} are irreducible automorphic representations of $G_{\tau}(\mathbb{A})$ such that π_{∞} and π_{∞}^{\prime} are cohomological for ξ^{\prime} and such that $\pi_{x} \cong \pi_{x}^{\prime}$ for almost all places x of \mathbb{Q}, then $\pi_{x} \cong \pi_{x}^{\prime}$ for all places x of \mathbb{Q} which split in E.

Proof. Corollary $3+$ Theorem 5.
Theorem 8. Suppose that Π is an irreducible automorphic representation of $\left(B^{o p} \otimes \mathbb{A}\right)^{\times}$ and ψ is a character of $\mathbb{A}_{E}^{\times} / E^{\times}$satisfying conditions (4)-(7) in Theorem 5. (all ψ appearing in the image of $B C$ are invariant under E^{\times}by the proof of Theorem 5) Then there is an irreducible automorphic representation π of $G_{\tau}(\mathbb{A})$ such that

1. $B C(\pi)=(\psi, \Pi)$,
2. and π_{∞} is cohomological for ξ^{\prime}.

Moreover, $\operatorname{dim}\left[R_{\iota^{-1}\left(\xi^{\prime}\right)}\left(\iota^{-1} \pi^{\infty}\right)\right] \neq 0$.
Proof sketch. Clozel: there exists a representation π_{1} of $G_{\tau, 1}(\mathbb{A})$ that is cohomological and compatible with local base change. Then $\psi^{c} \otimes \pi_{1}$ is an irreducible automorphic representation of $\left(T \times G_{\tau, 1}\right)(\mathbb{A})$ which is trivial on $T^{1}(\mathbb{A})$. Thus $\psi^{c} \times \pi_{1}$ is a subrepresentation of the restriction of some automorphic representation π of $G_{\tau}(\mathbb{A})$ to $\left(T \times G_{\tau, 1}\right)(\mathbb{A})$. This π satisfies the required conditions.

