Date | Title | Speaker | Notes |
---|---|---|---|

Sep23 | Classical theta correspondence, Doubling method and Siegel-Weil formula | Julia Meng | notes |

Sep30 | Rallis inner product formula & central derivatives | Weixiao Lu | notes |

Oct7 | Arithmetic and geometric theta series | Ayan Nath | notes |

Oct16 1-2:30pm at 2-361 |
Research talk: Comparison of absolute and relative unitary Rapoport-Zink spaces | Yu Luo | TBA |

Oct21 | Geometric Siegel-Weil formula and geometric inner product formula | Vijay Srinivasan | TBA |

Oct28 | Arithmetic intersection theory | Daniel Hu | notes |

Nov4 | Research talk: Semi-Lie arithmetic fundamental lemma for full spherical Hecke algebras | Evan Chen | TBA |

Nov11 | Research talk: On local newform theory for unramified odd unitary groups | Masao Oi | TBA |

Nov18 | Integral models and Arakelov theta series | Patrick Bieker | TBA |

Nov25 | Arithmetic Siegel-Weil formula and arithmetic inner product formula | Mikayel Mkrtchyan | TBA |

Dec2 | Beilinson-Bloch height pairing and local indices | Ryan Chen | TBA |

Dec9 | Sketch of proof of arithmetic inner product formula | Zeyu Wang | TBA |

- [BHKRY]J. Bruinier, B. Howard, S. Kudla, M. Rapoport and T. Yang, Modularity of generating series of divisors on unitary Shimura varieties. Asterisque,Diviseurs arithmetiques sur les varietes orthogonales et unitaires de Shimura(2020), no.421, 7-125.
- [G-S90]H. Gillet and C. Soule, Arithmetic intersection theory. Inst. Hautes Etudes Sci. Publ. Math.(1990), no.72, 93-174.
- [Kud04]S. Kudla, Special cycles and derivatives of Eisenstein series.Heegner points and Rankin L-series. 243-270. Math. Sci. Res. Inst. Publ., 49. Cambridge University Press, Cambridge, 2004.
- [Li24]C. Li, Geometric and arithmetic theta correspondences. https://www.math.columbia.edu/~chaoli/IHES.pdf
- [L-L21]C. Li and Y. Liu, Chow groups and L-derivatives of automorphic motives for unitary groups. Ann. of Math. (2)194(2021), no.3, 817-901.
- [Liu11]Y. Liu, Arithmetic theta lifting and L-derivatives for unitary groups, I. Algebra Number Theory5(2011), no.7, 849-921.

- [Bei87]A. A. Beilinson, Height pairing between algebraic cycles. $K$-theory, arithmetic and geometry (Moscow, 1984-1986), 1-25. Lecture Notes in Math., 1289. Springer-Verlag, Berlin, 1987.
- [Dun22]N. C. Dung, Geometric Pullback Formula for Unitary Shimura Varieties. Thesis (Ph.D.)-Columbia University. ProQuest LLC, Ann Arbor, MI, 2022. 68 pp.
- [Li92]J.-S. Li, Nonvanishing theorems for the cohomology of certain arithmetic quotients. J. Reine Angew. Math.428(1992), 177-217.
- [Liu11a]Y. Liu, Arithmetic theta lifting and L-derivatives for unitary groups, II. Algebra Number Theory5(2011), no.7, 923-1000.