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Abstract

We propose weakening the assumption made when studyingitiesopanarchy: Rather than assume
that self-interested players will play according to a Nagtilédrium (which may even be computation-
ally hard to find), we assume only that selfish players playsstoaninimize their own regret. Regret
minimization can be done via simple, efficient algorithmerein many settings where the number of
action choices for each player is exponential in the napaemeters of the problem. We prove that de-
spite our weakened assumptions, in several broad clasgasnafs, this “price of total anarchy” matches
the Nash price of anarchy, even though play may never coeveryash equilibrium. In contrast to the
price of anarchy and the recently introduced price of sigkitb], which require all players to behave in
a prescribed manner, we show that the price of total anachyrnany cases resilient to the presence
of Byzantine players, about whom we make no assumptionsllfitbecause the price of total anarchy
is an upper bound on the price of anarchy even in mixed siegtefpr some games our results yield as
corollaries previously unknown bounds on the price of amaro mixed strategies.



1 Introduction

Computer systems increasingly involve the interaction of multiple self-interegsttsa The designers of
these systems have objectives they wish to optimize, but by allowing selfistsdgénteract in the system,
they lose the ability to directly control behavior. How much is lost by this lacleotmlized control? Much
as the study of approximation algorithms aims to understand what is lost whggutation is limited, and
the field of online algorithms aims to understand what is lost when information is lintitedstudy of the
price of anarchy has aimed to understand what is lost when centralipagjan is limited.

In order to study the cost incurred when coordination is lost, we must neake assumption about how
selfish agents behave. Traditionally, the assumption has been that sgdfigh will play Nash equilibrium
strategies, and tharice of anarchyof a game is defined to be the ratio of the value of the objective function
in the worst Nash equilibrium to the social optimum value.

It does not seem realistic, however, to assume that all agents in a systemocassarily play strategies
that form a Nash equilibrium. Even with centralized control, Nash equilibmabeacomputationally hard
to find. Moreover, even when Nash equilibria are easy to find computdltiotieere is no reason in general
to believe that distributed self-interested agents, often with limited informationtabe overall state of
the system, will necessarily converge to them. In addition, for games with onlgdasittategy equilibria,
we would have to assume that rational agents not only play so as to maximizewineittility, but also so
as to preserve the stability of the system. Since a game may have many Naslriagaitid agents may
individually prefer different equilibria, it is not clear why agents wouldnito preserve the stability of a
Nash equilibrium, even if they managed to reach one.

In this paper, we study the value obtained in games with selfish agents whesakesa much weaker
and more realistic assumption about their behavior. We consider repdayeaaf the game and allow agents
to play any sequence of actions with only the assumption that this action seghas low regret with
respect to the best fixed action in hindsight. This “price of total anarchtrictly a generalization of
price of anarchy, since in a Nash equilibrium, all players have zeretegegret minimization is a realistic
assumption because there exist a number of efficient algorithms for plggings that guarantee regret that
tends to zero, because it requires only localized information, and begaasgame with many players in
which the actions of any single player do not greatly affect the decisionther players (as is often studied
in the network setting), players can only improve their situation by switching faostrategy with high
regret to a strategy with low regret.

We consider four classes of games: Hotelling games, in which players temjia each other for
market share, valid games [30] (a broad class of games that includeg athe@ns facility location, market
sharing [14], traffic routing, and multiple-item auctions), linear congegjenmes with atomic players and
unsplittable flow [1] [7], and parallel link congestion games [24]. We prthat in the first three cases,
the price of total anarchy matches the price of anarchy exactly even ifldlyatpelf is not approaching
equilibrium; for parallel link congestion we get an exact matchifet 2 links but an exponentially greater
price for generah when the social cost function is the makespan. When we consider aveadinstead,
we prove that if the machine speeds are relatively bounded, that thegdrtogal anarchy isl + o(1),
matching the price of anarchy. For linear congestion games and aversiglad balancing, the price of
anarchy bounds were previously only known for pure strategy NgsHileria, and as a corollary of our
price of total anarchy bounds, we prove the corresponding priceasthy bound for mixed Nash equilibria
as well.

Most of our results further extend to the case in which only some of thetsagem acting to minimize
regret and others are acting in an arbitrary (possibly adversarial)anaminen studyingnarchy it is vital
to consider players who behave unpredictably, and yet this has beetylagnored up until now. Since
Nash equilibria are stable only if all players are participating, and sink egailibs] are defined over state
graphs that assume that all players play rationally, such guarantemst gr@ssible under the standard price
of anarchy model or the newly introduced price of sinking model f15].

!Babaioff et al. [3] propose a model of network congestion with “malisiqulayers. Their model defines malicious behavior
as optimizing a specific function, however, and is not equivalent to arpipiay.



1.1 Regret minimization and the price of total anarchy

Theregretof a sequence of actions in a repeated game is defined as the diffeetweeb the average cost
incurred by those actions and the average cost the best fixed solutibe mave incurred, where the best is
chosen with the benefit of hindsight. An algorithm is called regret-minimizingperegret, if the expected
regret it incurs goes to zero as a function of time.

Regret-minimizing algorithms have been known since the 1950’s, when Hdfh6hgave such an al-
gorithm for repeated two-player games. Recent work on regret minimizatierfocused on algorithmic
efficiency and convergence rates as a function of the number of aetiailable, and has broadened the set
of situations in which no-regret algorithms are known. Kalai and VempdlhgRow that Hannan’s algo-
rithm can be used to solve online linear optimization problems with regret agpng at a rateO(1/v/T),
given access to an exact best-response oracle. Zinkevich [3&log@d a regret-minimizing algorithm for
onlineconvexoptimization problems. So-calldzhnditalgorithms have also been developed [2, 26, 10, 22],
which achieve low regret even in the situation where the algorithm rece@rgdimited information after
each round of play. Kakade et al. [19] show how to usevaapproximate best-response oracle to achieve
online performance in linear optimization problems that is close tiones that of the best static solution.
Those results provide efficient algorithms for many situations in which the auwoifostrategies for each
player is exponential in the size of the natural representation of the ganoasés where each player has
only a polynomial number of strategies, Littlestone and Warmuth’s weighted ityatgorithm [25] can be
used to minimize regret.

In this paper, we propose regret-minimization as a reasonable definitietf-afiterested behavior and
study the outcome of such behavior in a variety of classes of repeated.géfaentroduce the term “price
of total anarchy” to describe the ratio between the optimum social cost arsbital welfare achieved in a
game where the players minimize regret. We note that the guarantees weipiray¢he no-regret property
are strictly stronger than minimax guarantees.

1.2 Related work

Price of anarchy Economists have long studied games with self-interested playelash equilibrium
in such a game is a profile of strategies for each player such that, givetrdkegies of the other players, no
player prefers to deviate from her strategy in the profile. A Nash equitibcian bepureor mixed depending
on whether the players all play pure, deterministic strategies, or theymarelover pure strategies to give
a mixed strategy.

The study of the effect of selfishness in games has been quite poputanputer science for much of
the past decade. In 1999, Koutsoupias and Papadimitriou [24] intrddlbeenotion of theprice of anarchy
as a measure of this effect: they studied the ratio between the social wélfaesoptimum solution and that
of the worst Nash equilibrium. Since then, researchers have studieddbepanarchy in a wide variety of
games (for example [28, 30, 11]).

Unfortunately, Nash equilibria are not necessarily the best definitioeltéls behavior. Ir2-player,
n-action games, Nash equilibria are PPAD-hard to compute [4], batyrgame with a polynomial number
of actions, one can run regret-minimizing algorithms. (One can also do sieeffy in many settings
with even an exponential number of actions.) Many games only admit mixed @¢aslibria, and there
is no immediate incentive for players to play their given mixed strategy as edpgosany one of the pure
strategies in the support of the mixed strategy. In addition, there is nonréasssume in general games
that agents demonstrating selfish behavior shoaftrergeto a Nash equilibrium.

Our work is most similar in spirit to that of Mirrokni and Vetta [27] and Goemanhsil. [15], who
also question the plausibility of selfish agents converging to Nash equilibhiey ifitroduce the notion of
sink equilibria, which generalize Nash equilibria in a different way than weld doing so, they abandon
simultaneous play, and instead consider sequential myopic best regptaysel hey analyze sink equilibria
in the class of valid games and show that valid games have a price of sinkibgfvoéenn andn + 1.

In contrast, we prove that valid games have a price of total anarchy wlaghing the (Nash) price of
anarchy. One reason for this gap is that myopic best responses @rviguarantee about the payoff of
any individual player. Indeed, the example in [15] of a valid game with micnkingn demonstrates that



myopic best response is not always rational: In their example, myopiadégstnse players each expect
average payoff tending to zero as the number of players increaseseagithey could each easily guarantee
themselves payoffs of one on every turn (and would do so if they minimizgdt)e Additionally, because
sink equilibria rely on play entering and never leaving sinks of a besbresspgraph, the price of sinking is
brittle to Byzantineplayers who may not be playing best responses. In contrast, we showatid games
have a price of total anarchy of 2 even in the presence of arbitrarily Bgngntine players, about whom
we make no assumptions.

Correlated equilibria  Foster and Vohra [12] show that any algorithm that minimizes a strongermnotio
of regret known as “internal regret” will result in an empirical distributiohplay that converges to a
weaker notion of equilibrium, a correlated equilibrium. In addition, sevarBimomial-time internal-regret-
minimizing algorithms are known for settings in which action choices are explicitggil7]. Because we
place a weaker assumption on the agents’ algorithms, there are more algpsimpier algorithms, and
more efficient algorithms for regret minimization than for internal regret minitiuima In addition, we are
able to prove guarantees even in Byzantine settings, where not all plagleave rationally; such settings
need not correspond to correlated equilibria.

1.3 Ourresults

In this paper, we study the price of total anarchy in four classes of gaWwe€mphasize that our analysis
does not presume that players play according to any particular clasggooitlams; our results hold when-
ever players happen to experience low regret, which is a strictly weakarmgption than that players play
according to a Nash equilibrium. than In Section 3 we examine a class ofaljiegadrHotelling games,
where sellers select locations on a graph and achieve revenues pleatden their own locations as well
as the locations chosen by the other sellers. We prove that for such ¢amdesn even broader class, see
Section 3.3), any regret minimizing player gets at least half of her faiesbfahe sales, regardless of how
the other (Byzantine) players beha&his result exactly matches the price of anarchy in these games.

Valid games, introduced by Vetta [30], model games where the social utilitybisiedular, the pri-
vate utility of each player is at least her Vickrey utility (the amount her preseontributes to the overall
welfare), and where the sum of the players’ private utilities is at most thesot#al utility. In Section 4
we prove that the price of total anarchy in valid games with nondecreasaigl sitility functions exactly
matches the (Nash) price of anarchy, even if Byzantine players asgladdhe system.

Finally, in Section 5, we analyze atomic congestion games with two types of saglfalre functions.
First, we consider unweighted atomic congestion games with player-summativeelfare functions, and
in both the linear cost and the polynomial cost case, we show price of twattay results that match the
price of anarchy [7, 1]. Next, we consider a parallel link congestiomegavith social welfare equal to
makespan, the game that initiated the study of the price of anarchy [24khenvd that the price of total
anarchy of the parallel link congestion game with two link8 /&, exactly matching the price of anarchy.
We also show that the price of total anarchy in the parallel link gamemilitiks isQ(1/n), which is strictly
worse than the price of anarchy. Finally, we show a price of total agaraiching the known price of
anarchy in the load balancing game with the sum social utility function. In treeafdsad balancing with
sum social utility, our price of total anarchy results also yield previousknawn price of anarchy results
for mixed strategies.

In Section 6, we discuss techniques for minimizing regret in each of thégegse

2 Preliminaries

In this paper, we considér-player games. For each playgrwe denote byA; the set of pure strategies
available to that player. A mixed strategy is a probability distribution over actiond; we denote bys;
the set of mixed strategies available to playjdret A = Ay x Ay x ... x Ay andS = &1 X Sy X ... X Sp.

2\We note that robustness to Byzantine players is not inherent in our madekd, there exist games for which the addition of
Byzantine players can make the social welfare, as well as the utilities ofdndi regret-minimizing players, arbitrarily bad.



Every game has an associated social utility functjon .4 — R that takes a set containing an action for
each player to some real value. Each playeas an individual utility functiony; : A — R.

We often want to talk about the social or individual utility of a strategy prdfile= {s1,...,sx} €
S. To this end, we denote by : S — R the expected social utility over randomness of the players
and bya; : S — R the expected value of the utility of a strategy profile to plaijeiVe denote the
social value of the socially optimum strategy profile®@PT = maxgcs(.S) in maximization problems.
CorrespondinglyOPT = minges ¥(S) in minimization problems.

We also sometimes wish to talk about a modification of a particular strategy piefilg;® s, be the
strategy set obtained if playéichanges her strategy from to s;. Let (); be the null strategy for player
(playeri takes no action). We use superscripts to denote timé! $e the strategy profile at time s is
playeri’s strategy at time.

We consider both maximization and minimization games in this papenakimizatiorgames the goal
is to maximizethe social utility function and the players wishrtwaximizetheir individual utility functions;
in minimizationgames, both quantities minimized. We define the price of anarchy and the ptizilo
anarchy so that their values are always greater than or equal tcegiaediess of whether we are discussing
a maximization or a minimization game:

Definition 2.1. The price of anarchyfor an instance of aaximizatiorgame is defined to b%%, where
S is the worst Nash equilibrium for the game (the equilibrium that maximizes the ptiaearchy). The

price of anarchyfor an instance of aninimizationgame is defined to bgl(gi), whereS is the worst Nash
equilibrium for the game (the equilibrium that maximizes the price of anarchy).

We present formal definitions of regret and regret-minimization in AppeAdix

Definition 2.2. Theprice of total anarchyor an instance of emaximizatiorgame is defined to haax %,

where the max is taken over dllandS!, S2,...,S”, whereS,, ..., Sy are play profiles of players with

the regret-minimizing property. Tharice of total anarchyor an instance of aninimizationgame is defined

15T  5(gt
to bemax %, where the max is taken over dllandS*, 5%, ..., ST, whereS;, ..., Sy are play

profiles of players with the regret-minimizing property.

Because all players have zero regret when playing a Nash equilibrienprite of total anarchy of a
game is never less than its price of anarchy. In this paper we study thepéanarchy and the price of total
anarchy for general classes of games. The price of (total) ananclaydiass of games is defined to be the
maximum price of (total) anarchy over any instance in that class. Bounttegrice of (total) anarchy for
a class of games may not be tight for particular instances in that class.

3 Hotelling games

Hotelling games [18] are well studied in the economics literature; see, for@ra[13] and [21] for surveys.
Hotelling games are traditionally location games played on a line, but we geeettadien to an arbitrary
graph and a broad class of behaviors on the part of the customersrowequr result first for a specific
Hotelling game, and then observe that our proof still holds in a much moreajedting.

3.1 Definition and price of anarchy

Imagine a set of souvenir stand owners in Paris who must decide wheareup their souvenir stands each
day. Every dayn tourists buy a souvenir from whichever stand they find first. Each stpachtor wishes

to maximize her own sales. Every day there arsales, and we wish to maximize fairness: The social
welfare function is the minimum sales of any souvenir stand. Formally, this maxiorizzame is defined
by ann vertex graphz = (V, E). Every selleri among the: sellers has strategy sd; = V, that is, every
day she sets up her stand on some vertex of the graph. Each dayiawisy chooses a path from some
private distribution over paths on the graph, and buys from the sellendmuaters first (for instance, as a
special case, we could have one tourist at each vertex of the grappwrbhases from the nearest souvenir

4



stand). If there is a tie between sellers, we assume the tourist splits his abatriamong them equally).
At any timet the social welfare is/(S?) = min; a;(S*). The social optimum is obtained by splitting all
vertices equally among all players (this can be achieved if all players play on the same vertex)efber

OPT =n/k.

Theorem 3.1. The price of anarchy of the Hotelling game(is: — 2) /k.

Proof. Given a strategy sef, consider the alternate set @ ;). There arek — 1 active players in this
alternate set and the total payoff is still so there must be some playlemwho achieves expected payoff
ap(Seb;) > n/(k: 1). If player: played the same strategy as plageshe would achieve expected payoff
a;(S @ sp) > (2k 5 Thus, any strategy achieving expected payoff less % is not an equilibrium
strategy, since in a Nash equilibrium, no player wishes to change her gtrateg

This bound is tight: Consider a game on a graph with 1 identical stars, where we identify tourists
with vertices of the graph and each patronizes the nearest souvedir btaims examplek —1 of the players
play deterministically at the center of their own star; playgiays uniformly at random over all — 1 star
centers. This strategy s&tis a Nash equilibrium, and the randomizing player eanf(s5) = n/(2k—2) (the
other players do better), so the social Welfa(é') =n/(2k — 2). SinceOPT = n/k, this demonstrates

that the price of anarchy 8- = (2k—2) O

3.2 Price of total anarchy

Since at a Nash equilibrium, no player has regret, the price of total anfmctihe Hotelling game is at least
(2k — 2)/k. In this section, we show that this value is tight; that is:

Theorem 3.2. The price of total anarchy in the Hotelling game& ¥ — 2) /k, matching the price of anarchy.

The proof of this theorem relies on the symmetry of the game; this propertysiwalarly useful to
Chien and Sinclair [5] in the context of studying convergence to Nashiletda in symmetric congestion
games.

Let O! be the set of plays at timeby all playersotherthan playeti. LetO; = Zthl O}, the union with
multiplicity of all plays of players other thanover all time periods.

Definition 3.3. Let Al~* be the quantity such that if playéplays an action uniformly at random fro®{
at time stepu, she achieves expected payoff(2k — 2) + Al~“. Note thatA!~* is always0 because the
k — 1 other players have average payoff exaetf{k — 1) when player is removed.

Lemma 3.4. Forall 4, forall 1 < ¢,u < T: A¥~! 4+ Al=v > .

Proof. If ¢ = u, the claim follows easily, as noted in the definition. Otherwise, imagifia- 2)-player
game in which there is a timeplayer and a times player for each original player other thanThe timet
version of a playey plays strategy;?; the timew version playss;. Since the sum of all players’ payoffs is
n, if playeri picks a random strategy from among those already being played andtplagiss imaginary
gamereplacingthe player she copies.expects to have payoff/(2k — 2). Half of the time, playei will
select a time:-strategy and replace that timglayer. It can only improveés payoff in this case to remove all
of the other timet players and only play against timeplayers. This leavesplaying a strategy uniformly
selected fromO! at timewu. A parallel argument holds the other half of the time, when playslects a
time-u strategy, and thus

n 1 n 1 n n 1
< | t—u - u—t | _ - t—u u—t
(2k—2)_2<(2k—2)+A’ >+2<(2k—2)+AZ > @hi—g) g AT

as desired. O

Proof of Theorem 3.2Fix a sequence of plays', ..., ST. Recall thatO; = O} + ... + O]. Defineo!
to be the uniform distribution oved!. Picking an actior: uniformly at random fron©; is equivalent to



picking a random time step and then picking a strategy< O} uniformly at random. Playei's expected
payoff had she randomly selecteiland played it over all” rounds is

T T T
1 = t U _ 1 n u—t
Y as o) = $ 3N (Gl A
u=1 t=1 u=1 t=1
T T
Tn 1
= " 1 AL—t
@) T A
u=1 t=1
S Tn
— (26-2)

where the last inequality holds because of Lemma 3.4. Therefore, thetdoenseme single fixed action
a* € S that achieves at Ieag% when played ovef’ rounds of the above game. Any regret minimizing
player achieves expected total payoff at least this much (mihuand so has expected payoff at least
n/((2k — 2)) — ¢, proving the theorem. O

3.3 The price of total anarchy in generalized Hotelling games

We note that the proof of Theorem 3.2 made no use of the specifics of teliflpgame described above.
In particular, the same proof shows that any regret minimizing player azhexpected payoff approaching
n/(2k — 2) regardlessof how other players behave, and so we are able to guarantee gooifl g@png
regret-minimizing players players even in the presence of Byzantine playegting arbitrary (or adversar-
ial) decisions.

Theorem 3.5. Any player who minimizes regret in the Hotelling game achieves payafiagngn /(2k —
2), regardless of how the other players play.

The same proof also holds when the buyers use much more generaloug®bdsing which stand to
patronize® Neither do we use the fact that players’ utilities are linear. In fact, ousfponly makes use of
three properties of the Hotelling game:

1. Constant Sum The individual utilities of the players in the game always sum to the same value,
regardless of play.

2. Symmetric: All players have the same action set, and the payoff vector is a functitmeddction
vector that is invariant to a permutation of the names of the players.

3. Monotone: The game is defined for any number of players, and removing playars the game
(while keeping the strategies of the remaining players fixed) does notakexithe payoff for any
remaining player.

We call such games with the “fairness” social utility functioft) = min; «;(.S) generalized Hotelling
gamesand get the following theorem:

Theorem 3.6. In any k-player, generalized Hotelling game, the price of total anarchy amonigtegini-
mizing players ig2k — 2)/k even in the presence of arbitrarily many Byzantine players.
3.4 Regret minimization need not converge

Since players may efficiently minimize regret in Hotelling games, but may nossatly be able to compute
Nash equilibria, it is notable that we are able to match standard price-offgnguarantees. In fact, it is
possible that regret-minimizing players in Hotelling games never converge astadguilibrium:

30ne caveat is that customers may not in general base their selectisroruliae actions of the players—for instance by
patronizing thesecondclosest souvenir stand. If we were to allow rules such as this, removaygns from the game could
decrease the payoff of some of the remaining players, and we relysonahbeing the case.



Theorem 3.7. Even if all players in the Hotelling game are regret minimizing, stage game nit&d not
converge to Nash equilibrium.

Proof. Considerk players{0,...,k — 1} on a graph withk — 1 identical n-vertex stars with centers
vo, - - -, Uk—o @nd an isolated vertex; ;. At time periodt, playeri plays on vertex;.; mod - Each player
has expected payoff.(k — 1) 4+ 1)/k, but no fixed vertex has expected payoff more tha(k + 1)/2k),
S0 no player has positive regret. However, at each time period, ther @agtee isolated vertex,_, has
incentive to deviate, so this is not a Nash equilibrium. O

A similar example shows that even if all players minimize internal regret (soplhagtis guaranteed
to converge to the set of correlated equilibria), play can cycle foravérsa need not converge to Nash
equilibrium?

4 Valid games

4.1 Definitions and price of anarchy

Valid games, introduced by Vetta [30], are a broad class of games thatléscthe market sharing game
studied by Goemans et al. [14], the facility location problem, a version of #itctrouting problem of
Roughgarden and Tardos [28], and multiple-item auctions [30]. Whserithing valid games, we slightly
adapt the notation of [30]. Considekgplayer maximization game, where each playbas a groundset of
actionsy; from which she can play some subset. Not every subset of actionsdssaiy allowed. Let
YV =V x...x Vg, and let4;, = {a; C V; : q;lis afeasible actioh Let the game have some social
utility function v : 2¥ — R, and let each player have a private utility function: 2 — R. The discrete
derivative of f at X C V in the directionD C V — X is f},(X) = f(X U D) — f(X).

Definition 4.1. A set functionf : 2” — R is submodulaif for A C B, f/(A) > f/(B) Vi € V — B.

Note that submodular utility functions represent the economic conceptcoéaldng marginal utility,
reflecting economies of scale.

Definition 4.2. A game with private utility functions; : 2V — R and social utility functiony : 2¥ — R is
valid if v is submodular and

a;(8) > A, (Sah) (1)

Soas) < () @

Condition 1 states that each agent’s payoff is at leasViorey utility—the change in social utility that
would occur if agent did not participate in the game. Condition 2 states that the social utility of the game
is at least the sum of the agents’ private utilities.

For example, consider the market sharing game studied by Goemans é}.arH& game is played on a
bipartite graptG = ((V,U), E). Each vertex iV is a player, and each vertexilihis a market. Each market
has a value and a cost to service it, and each player has a budget. Ampkayenter a set of markets to
which she has edges, if the sum of their costs is at most her budget.dromeaket that a player enters, she
receives payoff equal to the value of that market divided by the nuofl@ayers that chose to enter it. The
social utility function is the sum of the individual player utilities, or equivaleritiy sum of the values of
the markets that have been entered by any player. This valid game modetgiamsiituwhich cable internet
providers enter different cities with values proportional to their populatenmd share the market equally
with other local providers; the social utility is the number of people with acteligh speed internet.

“k players play on a set df/2 + 1 vertices. Players are divided into two equal sized grodipand R. Every turn, there is
exactly one player ok/2 vertices, and:/2 players on the remaining vertex. Playerdimand R get their own vertices on alternate
turns, and the crowded vertex rotates, so that each player is equatiyooftvery vertex, and on any particular vertex she is equally
often alone and crowded. Therefore no player has any incentivegp amy vertex with any other.



Vetta [30] analyzes the price of anarchy of valid games and shows thi& & Nash equilibrium strategy
andQ2 = {01, ..., 01} is a strategy profile optimizing the social utility function so th&f2) = OPT , then

OPT <2y(S)— Y A.(S®0h)— > QU ohao... o).

1:0,=8; 1:0;#£S;

Thus, if~ is nondecreasing, then for any Nash equilibrium strategy(S) > OPT /2, giving a price of
anarchy of 2. In contrast, Goemans et al. [15] show that the price kifigiffior valid games is larger than

4.2 Price of total anarchy
In this section, we show that the price of total anarchy for valid games nwatichgrice of anarchy exactly:

Theorem 4.3. If all players play regret-minimizing strategies f@rrounds, with strategy profil&? at time
7, then

1 T
OPT sz (27(515) > ng(st@@i)— > ’y;f(QU(St@@i@...@@k))) + €k.

i— " gt
=1 i:oy=st Qo5 F#st

We defer this proof to the appendix. For nondecreasinge get the following corollary:
Corollary 4.4. If v is nondecreasing, the price of total anarchy for valid games is asympligtita

The price of anarchy and the price of sinking are both brittle to the additi®ynéntine players. In
contrast, for nondecreasing social welfare functighgur price of total anarchy result holds even in the
presence of arbitrarily many Byzantine players. In any valid game, sapplayersl, ..., k are regret
minimizing. LetOPT = ~((2) be the optimal value for these players playing alone. Suppose there is some
additional set of Byzantine playetsthat behave arbitrarily.

Theorem 4.5. Consider a valid game with nondecreasing social welfare functiowhere thek regret
minimizing players plays®, ..., ST overT time steps while the Byzantine players pRy, ..., BT. Then
the average social welfare/T S°°_ | (St U B*) > OPT /2.

Proof. We observe that

Y QUBY) < y(QuUS‘uBY
YS'UBY+ Y A (STUB'UQB N D ... o))
i:o#st
< (S'UBY+ D A(STeduBY),

i:o#st
where the first inequality follows becausés nondecreasing, and the third follows from submodularity. We
then have

OPT <(QUB') < ~(S'UB)+ > ~,.(S"®0;UB"
1:8;7£0;

YS'UBY + Y (S ®oyUBY)

1:8;#0;

IN

with the first line following because is nondecreasing, and the second from the Vickrey condition. Sum-
ming overT, this yields

T T
T-OPT <Y 4(S'UBY+> > ai(S'®o;UB.
t=1 t=1 ’i:si#Ui
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Suppos& ., y(S* U B) < T - OPT/2. Since

T k T -‘r T
ZZ% (StU B < ZZ (StU B! < Z (St U BY),
t=1 i=1 t=1 =1 t=1

it must be that
kT

k T
) (S @oUB) > ) ai(S'UBY,

i=1 t=1 =1 t=1

and so there is some regret minimizing playéor whom 7| o, (St @ o; U BY) > 21| a;(S* U BY),
violating the condition that he is regret minimizing. O

Note that here we have shown that in a valid game with a nondecreasing) giitiafunction, if k&
players minimize regret and an arbitrary number of Byzantine playeisdaledto the system, the resulting
social welfare is no worse than half the optimal social welfaré:fplayers. This is a slightly different result
than we showed for Hotelling games, where we were able to guaranteatategret-minimizing player
obtains at least half of her fair share of the entire game, regardledsadtine othek — 1 players do. On the
other hand, for valid games one clearly cannot obtain half of the optimuial seeifare fork + | B| players
since the Byzantine players need not be acting in even their own interest.

5 Atomic Congestion Games

In this section, we show price of total anarchy results matching existing giri@earchy results for atomic,
unweighted congestion games with social utility equal to the sum of the player st[ltjel]. We also
consider the atomic congestion game of weighted load balancing with social utjlig} &0 the makespan
[24, 8, 23], and show matching results for two links, but demonstrate ¢hat finks, the price of total
anarchy is exponentially worse than the price of anarchy. Finally, weidenweighted load balancing
with social utility equal to the sum of the player utilities [29], and show thakfor> n, the price of total
anarchy isl + o(1). In the case of load balancing with sum social utility, our price of total dnaresults
also imply previously unknown price of anarchy results for mixed strategies

A congestion game is a minimization game consisting of a skeptdyers and, for each playgra setV;
of facilities. Playeti plays subsets of facilities from some feasibledet= {a; C V; : q; is a feasible actioh
In weightedgames, each playéthas an associated weighy; in unweightedgames, each player weight is
1. Each facilitye has an associated latency functifn A playeri playing a; experiences cost; =
Eeeai fe(le) wherel, is the load on facilitye: I = ) j : e € a;w;.

5.1 Atomic congestion games with sum social utility

In this section, we consider unsplittable atomic selfish routing with unweightgenslaThe social utility
function we consider in this section is the sum of the player costs(4y = >, a;(A). We write Q) =
{o1,...,0} for a strategy profile optimizing the social utility functian We write!! for the load on edge
e at timet, and!} for the load on edge in (2.

We first consider linear edge costs of the foffi.) = ccl.+b. for edgee. In this setting, Christodoulou
and Koutsoupias [7] and Awerbuch et al. [1] independently showedtikagrice of anarchy for pure strate-
giesis 2.5. We show a matching bound for the price of total anarchy, whsiolinaplies the matching bound
shown by Christodoulou and Koutsoupias [6] for the price of anarchynixed strategies and for correlated
equilibria. We defer the proof of the theorem to the appendix.

Theorem 5.1. The price of total anarchy of atomic congestion games with unweightedrglasum social
utility function, and linear cost functions is 2.5.

Corollary 5.2 (Christodoulou and Koutsoupias [6]). The price of anarchy of atomic congestion games
with unweighted players, sum social utility function, and linear cost functioB$iseven for mixed strate-
gies. The same bound also holds for correlated equilibria in this setting.
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We next consider polynomial latency functions and show a bound matchinqgitieeof anarchy shown
by Christodoulou and Koutsoupias [7] and Awerbuch et al. [1] for misedtegies. We defer the proof to
the appendix.

Theorem 5.3. The price of total anarchy of atomic congestion games with unweightedrglasum social
utility function, and polynomial latency functions of degeeie at mos?' .

5.2 Parallel link congestion game with makespan social utty

The parallel link congestion game model&gentical links andc weighted players (jobs) who must choose
which link to use. Each player pays the sum of the weights of the jobs on thellmkhose. The social cost
for this game is defined as the total weight on the worst-loaded link. This gars¢h@ main focus of the
Koutsoupias and Papadimitriou paper that introduced the concept ofiteeopanarchy [24].

More formally, this is a minimization game where for each plajethe feasible actions ard; =
{1,...n}. The social utility function isy(A) = max;c; . n) Zz 0= Wi-

Koutsouplas and Papadimitriou [24] proved that the price of anarchyeqrfarallel link congestion game
with two links is3/2. Two groups of researchers [9, 23] later proved that the price afcly when there
aren links is©(logn/loglogn).

In this section, we show a matching bound on the price of total anarchylfiok® We also show that
for n links, the price of total anarchyoes notmatch the price of anarchy.

Theorem 5.4. The price of total anarchy of the parallel link congestion game with makespcial utility
and two links is3/2, exactly matching the price of anarchy.

The proof, which we defer to the appendix, parallels that in the originat$Gupias and Papadimitriou
paper [24]. It is subtler because regret-minimizing algorithms only giveamagiee in expectation, on
average, and make no guarantees about the performance on amgayve

For the parallel link congestion game withlinks, the price of total anarchy diverges from the price
of anarchy. This divergence stems from the fact that in the parallel §akse, the social cost function
is defined in terms of expected maximudmk latency, whereas individual utility is a function of average
job latency® In the single stage Nash equilibrium analyzed for price of anarchy reshdtswo values are
related: expected job latency for playies equal to the average link latency of every link in the support of
1’s mixed strategy. In a Nash equilibrium, therefore, maximum expected linkdatanst be low, and with
tail bounds, it is straightforward to argue that the expected maximum link latsarmmnot be too high [9].
Over an arbitrary sequence of regret-minimizing plays, however, gegad latency no longer necessarily
corresponds to the average latency of any link. This is demonstrated ymfimgcexample we use in the
proof of the following theorem, which we defer to the appendix:

Theorem 5.5. The price of total anarchy in the parallel link game with makespan social uéhtyn links

is Q(yv/n).

5.3 Parallel links congestion game with sum social utility

We have just shown that the price of total anarchy does not mataf (tog n/ log log ) price of anarchy

for the load balancing game with the makespan social utility function. The rési8esction 5.1, however,
imply a price of total anarchy 2.5 for the load balancing game with themsocial utility function (since
load balancing is a special case of routing), even for mixed strategiedifent server speeds. In fact,
we can show more: in this section, we show that so long as> n and the server speeds are relatively
bounded, the price of total anarchylist o(1). This matches a price of anarchy result shown by Suri et al.
[29] for pure strategy equilibria. Our theorem below, which we prove émeibpendix, implies an equivalent
price of anarchy result even for mixed strategy equilibria.

Note that if we were to redefine the social cost functicior the parallel links game to be the maximum expegtédatency,
it is simple to verify that the resulting price of total anarchy is 2: Rescale #ights so thaOPT = 1. Total weight is< n, and
w,; < 1 for all players. Over any sequence of plays, there must be some iihlaverage latency < 1. Therefore, every player
is guaranteed to experience average latency in expectation at mast + ¢ < 2 + .
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Theorem 5.6. In the load balancing game with sum social cost and linear latency functibagprice of
total anarchy isl + o(1) provided thatt >> n and server speeds are relatively bounded.

Corollary 5.7. In the load balancing game with sum social cost and linear latency functtbesprice
of anarchy isl + o(1) provided thatt >> n and server speeds are relatively bounded, even for mixed
strategies.

6 Algorithmic efficiency

In the Hotelling games we analyzed in Section 3, each player hasmostyategies—the, nodes in the
graph. In such settings, the weighted majority algorithm [25] runs in polyridimia and minimizes regret.
Similarly, in the parallel links congestion game, there aargtrategies—thes links—and thus minimizing
regret is relatively straightforward.

In valid games, if the set of actions available to a player is polynomi&Vip the action groundset,
then once again, weighted majority can be used to minimize regret. Howevebjtragy valid games, the
action space for player could be as large aVil. In such situations, if the player’s private utility is a
linear function of the elements of the groundset she obtains and she mgnutsoexact best responses in
polynomial time (such as in the market sharing game of Goemans et al. [1&})stie can use results of
Kalai and Vempala [20] to minimize regret in polynomial time. If her utility function ig&n but she can
only compute approximate best responses, results of Kakade et all@@her toapproximatelyminimize
regret; that is, she obtains expected average cost clogetitnes the cost of the best fixed solution in
hindsight, wheres is the approximation ratio of her optimizer. We can modify our proof of the idetal
anarchy to carry thig through and show:

Theorem 6.1. The price of3-minimizing regret in valid games is+ (.

If the player’s utility function is convex and well-defined over the convel of her pure strategies and
she furthermore has the ability to project points in space onto that conliethlen she can use an algorithm
developed by Zinkevich [31] to minimize her regret. In situations where istieg techniques are a perfect
fit, more specialized regret-minimizing algorithms for specific games may alsovetoged.

7 Conclusions

We propose regret minimization as a definition of selfish behavior in repgarees. We consider four
general classes of games—generalized Hotelling games, valid gamegparid @ongestion games with
two different social utility functions—and show that the price of total aharexactly matches the price
of anarchy in most cases, but there is a gag0{/n) versusO(lololgogn) in the case of. parallel links.

Our results hold even in games where regret-minimizing algorithms can cycl&@aianal converge to an

equilibrium. We also prove results in Byzantine settings when only some of tlyerplachieve regret
minimization and the other players are allowed to act in an arbitrary fashioaddition, our results for
weighted load balancing with player-summed social utility functions imply new pifie@archy results for

mixed strategies.

Acknowledgments We thank Evangelia Pyrga for bringing [6] to our attention.
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A Formal definitions of regret and regret-minimization

Definition A.1. Theregretof playeri in amaximizatiorgame given action set$!, A2,..., AT is
;nezﬁ(l—z:al (A' @ a;) — Zaz (AY).
Theregretof playeri in aminimizationgame given action set$', A%, ..., AT is

T
1
T;ai(A —arzrgll —Zaz (A' @ a;).

A regret-minimizing algorithm is one with low expected regret.

Property A.2. When a playef uses a regret-minimizing algorithm or achieves low regret, for any semgien
Al ... AT, she achieves the property

i?éii—zaz (A" ® ;) < R(T

'ﬂ |
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for maximization games and

1 T
n D ai(A")
t=1

for minimization games, where expectation is over the internal randonufdbg algorithm, and where
R(T) — 0asT — oo. The functionR(7T") may depend on the size of the game or a compact representation
thereof. We then defirig to be the number of time steps required to GéT") = .

<R — (A @ ay
< ()+a13é1.£\11 z;oz @ a;)

Note that this implies that, for any sequertek . .., ST, a player with the regret-minimizing property
achieves

T T
t 7:(SY)
glezﬁ(l Z i(S*®a;) < R(T ZaS

for maximizatioogames and

T T
1
@iSt < R(T) 4+ min — o?iStEBai
;1 (5%) < R(T) aieAiT;l ( )

N

for minimizationgames.

B Proof of Theorem 4.3

Proof. Suppose all players use low regret strategies, so that for any player
T
Te—i—Zozl St ) > Zd’ StEBJZ
t=1 t=1
Expanding terms, we can rewrite this as
Te+ Y a@(SH+ D a(S) > D ailS'@o)+ Y ai(S' @a).
t:st=0; t:st#o; t:st=0y t:st#o;
We note that whenr! = o;, @;(S?) = @;(S* @ 0;), so this yields
T+ > @)= > (S o).
t:st#o; t:st#o;

Summing over all players, we get

k k
ReT+> > a(sh) > > (St ® o)
i=1 t:sttoy 1=1 t:sl#0y
k
> ) Vo, (S @ 07),
1=1 t:sl#0y
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where the second equation holds by assumption 1. Now note that

T T k
doASH = D> (s
=1 t=1 i=1
T T
=y a(SH+> . Y ai(sh
t=1 i0;=st t=1 j:0;#st
T T
> Y ai(SN+> D TSt o)
t=1; UL#sg t=1 j:g;=st
k T
= > > a@lsH+y, Y Austen)
i=1 tgﬁésg t=1 j.g;=st

where the third line holds by assumption 2 and the fourth line is a reorderithg summations. This gives
us

Z Y (st o) <Tek—|—z > (s <Tek:—|—27 (8" — Z Y (S @),

i=1 t:g;#st =1 t:g;#£st t=1 j:g;=s!

We use the following lemma proved by Vetta [30]:

LemmaB.1. If @ = {01, ...,0k} is a strategy profile optimizing the social utility functignthen for any
strategy profileS

Q) <G+ DY A (Seb)— D ALQUSad... o).

1:0;#8; 120,785

From Lemma B.1, for any sequence of plas. . ., S,

T
<Z(7(st)+ oAt e0)— > vgg(QU(St@(Zh@---@@k)))-

t=1 iioiFst i:oFst

Substituting, we get

T
T-OPT <) (QV(St)—l-Gk > T (S* @ 0i) - > ’Y;:(QU(St@@i@...@@k)))v

| — Sy —at 2oy t
=1 1:07=8; 7~0'7.7£37;

which completes the proof. O

C Proof of Theorem 5.1

Proof. Let Q@ = {o1,...,0%} be a strategy profile optimizing the social utility function so théf) =
OPT By the assumption of regret minimization, each player’s time average costhimrethan the cost
of her best fixed action in hindsight. In particular, it is no more than if stepteyed her part in the optimal
strategy on every timestep: For all
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Summing over each player and rearranging the sum:

ZT:Z > celetbe < ZZ S (1) +be

t=1 ecE st ecs! t=1ecEis.t.eco;
T
= DO cellli 4 celi + bely.
t=1ecFE
We now use a lemma also used by Awerbuch et al. [1]:

Lemma C.1. For i, j > 0 integers:

1ij =252+ 24 — (j — 34)?

2. 324+ 3i - L(j - 30?2 < 32
We can apply part 1 of the lemma to get
d d 1 3 1., 3
t t t\2 *\ 2 t * *
DD (ede+be)le < > ce (gue) + ) = gl = 51 +1 ) + bely.
t=1 ecFE t=1ecF
This is equivalent to
T T
3 9 3 1 3 3
t e t < Y 1x)\2 xSt Y k2 ulx
SY (et gt < 3N a (G g - - 22 +
t=1eckE t=1eckE

This allows us to apply property 2 of the lemma to obtain

T
DY el +be)ll < ZZ >+ b I
t=1ecE t=1 eeE
5 T
< 5 DY ekt + bl
t=1ecFE

which proves the claim.

D Proof of Theorem 5.3

Proof. By the no-regret property we have for each plajyer
T T
SN LYY flb+ 1),
t=1 eEa’tL_ t=1 eco;

We may sum over each player:

ZZ > fll) SZ;Z SR+

t=1 ecE jst ecal ecEist.eco;

and rearrange the sums:

T T
SO LUNE<DY TN Ll + 1)

t=1ecFE t=1ecFE
We now apply a lemma used by Christodoulou and Koutsoupias [7]:
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Lemma D.1. For f(x) a polynomial with non-negative coefficients of degfeand for everyc, y > 0:

- f(@)  Co(d) y-f(y)
2 * 2 ’

y-flz+1) <

1—o(1)

whereCy(d) = p?
Applying the lemma, we get

T T T * *
SN < S gt < S ) Zw),

t=1eeFE t=1eeFE t=1 ecFE ecE
Rearranging, we then get

T T
ST it < cod) S-S raiz,

t=1 eckE t=1eckE

which completes the proof. O

E Proof of Theorem 5.4

Proof. Denote byy; the expected probability that playieis on the maximally loaded machine (breaking ties
between equally loaded machines at random). Note that the expectedcsatialthery(S) = Zle qiw;.
By the regret-minimizing property, for all players,

T

Wh
§ a; St <wz—|—e+ § Zh#
t=1 tl

'ﬂ |

Definep;; to be the expected probability that playeselects maching; c;;, is the expected probability
that playerg andh select the same machine. Then for any fixed

@+ awn <> (1+cin)wy

h:h#i h:h#i

< Z wp, + Z Cih Wh

h:h#i h:h#i

= > wh+ Y (piPriwh + PiaProwh)-
hihi hihi

Note that for any playet, regardless of her strategy, her cost is

@i(S) = wi+pin Y pmwn+pia Y, Phowh
hihti hihti

by definition. This relationship is essentially Lemma 1 of [24]; however théymote that it holds for Nash
equilibrium strategies. This gives Eh:h#(qi + qp)wp, < Zh:h# wp, + @;(S) — w;. Averaging over time,

this is
T
%Z > (g +gp)wn < Zzwh+ Zaz (") —

t=1 h:h#i = hti
Using the fact that playerobtains low regret, we then have

_ZZ %+ wh<—Zth+e+ ZZh nti Wh

t=1 h:h#i i=1 h:h#i
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Rearranging, this yields for any fixéd

T k 1
quzwh < TZ

t=1 h=1 t

N =

(8% =

3
(2 wh+Q2wZ Zquh) +€

h:h#i h#i

= %Z<ngh—ng—i-qlwz—qlzwh‘i‘qzwz) €
1

N
1M

3

< 2w
h

< 2opT.

Otherwise, there exists some agéstich thatk >, ¢¢ > 3 and thus

T

L, o 1 . 1 .

— < — — q; — ; —
;:17(5) < 20PT Et (3/2—¢!) + OPT Et (2¢) —3/2) + ¢

= gOPT +€

as desired. ]

F Proof of Theorem 5.5

Proof. Considem parallel linksl,. .., n, andn players all with unit weightss; = 1. Clearly, OPT = 1.
Define a sequence of plays', ..., AT as follows: Divide the players intd\/n groupsG, . . ., Go 1
each of size,/n/2. At time ¢, all players iNG(; mod 2m) PlAY 0N link1, and all other players play over
links2+ (¢t modn—1),24+(t+1 modn—1),...,24+ (t+n—+/n/2—1 mod n— 1) so that there is
exactly one player on each link (ordering may be arbitrary). Then eagiepexperiences average latency

72 VL 2yn-l o 5

2\F 2 2/n T4 2yn

Consider the latency experienced by playérshe were to play at any fixed node. Given the sequence of
plays described above, every nade 2 is occupied by some playér= i onan(n — /n/2 —1)/(n—1)
fraction of time steps. Since playealways pays for her own weight, she expects to experience latency

_ Vo
L—i—l- vn =9 vn

SR 2n—1) ° 2n-1)

Therefore, for sufficiently large, all players experience negative regret. Nevertheless, at everytéme s
the maximum latency i€(/n). O
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G Proof of Theorem 5.6

Proof. By the no regret property, for each player

T T T Tt o4
> ai(A Z . <Y aAl@o) <)y T—.

t=1 t=1 =1 =1 o

s.»
~

Summing over all players and reordering the sum, we get
(it) L~ (It +1)
DD o) QIUEEIKE
t=1 eckE t=1 eckE
1 lt 2 I* 2
(<e> ) +z;),

T
22n

where the second inequality follows from the fact that < # Subtracting, we get

IN

(]

ecE

IN

ET: (it)? ET:Z (12)* +21;

=1 ecE t=1eck

IN

Combining these inequalities, we can bound the price of total anarchy:

Te

l 2 = 1*)2
Zt 1ZEEE ﬂ-z Et IZEEE (TT’E)

lt2 l* +2[*
S Yeen 5 Tl Yeen 5

_ Zt 1 ZeEE’ Tl'e
Zt 1 Z GE ﬂ'e
eGE 7re
< 142 Z T
eEE Te

We then use the following technical lemma of Suri et al. [29]

Lemma G.1. Letn, k be positive integers and > 0, 7. > 0 be reals suchtha} . l. = k. Then

l -
Decple/me - (1+\/m)n
ZeEE e/Tre 1<i,j<n T 2k

This gives us

Thisis1 + o(1) in kK whenk >> n, which completes the proof.
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