
Regret Minimization and the Price of Total Anarchy

Avrim Blum, MohammadTaghi Hajiaghayi, Katrina Ligett, Aaron Roth
Department of Computer Science

Carnegie Mellon University
{avrim,hajiagha,katrina,alroth}@cs.cmu.edu

November 29, 2007

Abstract

We propose weakening the assumption made when studying the price of anarchy: Rather than assume
that self-interested players will play according to a Nash equilibrium (which may even be computation-
ally hard to find), we assume only that selfish players play so as to minimize their own regret. Regret
minimization can be done via simple, efficient algorithms even in many settings where the number of
action choices for each player is exponential in the naturalparameters of the problem. We prove that de-
spite our weakened assumptions, in several broad classes ofgames, this “price of total anarchy” matches
the Nash price of anarchy, even though play may never converge to Nash equilibrium. In contrast to the
price of anarchy and the recently introduced price of sinking [15], which require all players to behave in
a prescribed manner, we show that the price of total anarchy is in many cases resilient to the presence
of Byzantine players, about whom we make no assumptions. Finally, because the price of total anarchy
is an upper bound on the price of anarchy even in mixed strategies, for some games our results yield as
corollaries previously unknown bounds on the price of anarchy in mixed strategies.



1 Introduction

Computer systems increasingly involve the interaction of multiple self-interested agents. The designers of
these systems have objectives they wish to optimize, but by allowing selfish agents to interact in the system,
they lose the ability to directly control behavior. How much is lost by this lack of centralized control? Much
as the study of approximation algorithms aims to understand what is lost when computation is limited, and
the field of online algorithms aims to understand what is lost when information is limited, the study of the
price of anarchy has aimed to understand what is lost when central organization is limited.

In order to study the cost incurred when coordination is lost, we must make some assumption about how
selfish agents behave. Traditionally, the assumption has been that selfish agents will play Nash equilibrium
strategies, and theprice of anarchyof a game is defined to be the ratio of the value of the objective function
in the worst Nash equilibrium to the social optimum value.

It does not seem realistic, however, to assume that all agents in a system will necessarily play strategies
that form a Nash equilibrium. Even with centralized control, Nash equilibria can be computationally hard
to find. Moreover, even when Nash equilibria are easy to find computationally, there is no reason in general
to believe that distributed self-interested agents, often with limited information about the overall state of
the system, will necessarily converge to them. In addition, for games with only mixed-strategy equilibria,
we would have to assume that rational agents not only play so as to maximize theirown utility, but also so
as to preserve the stability of the system. Since a game may have many Nash equilibria, and agents may
individually prefer different equilibria, it is not clear why agents would want to preserve the stability of a
Nash equilibrium, even if they managed to reach one.

In this paper, we study the value obtained in games with selfish agents when wemake a much weaker
and more realistic assumption about their behavior. We consider repeated play of the game and allow agents
to play any sequence of actions with only the assumption that this action sequence has low regret with
respect to the best fixed action in hindsight. This “price of total anarchy”is strictly a generalization of
price of anarchy, since in a Nash equilibrium, all players have zero regret. Regret minimization is a realistic
assumption because there exist a number of efficient algorithms for playinggames that guarantee regret that
tends to zero, because it requires only localized information, and because in a game with many players in
which the actions of any single player do not greatly affect the decisions of other players (as is often studied
in the network setting), players can only improve their situation by switching from a strategy with high
regret to a strategy with low regret.

We consider four classes of games: Hotelling games, in which players compete with each other for
market share, valid games [30] (a broad class of games that includes among others facility location, market
sharing [14], traffic routing, and multiple-item auctions), linear congestiongames with atomic players and
unsplittable flow [1] [7], and parallel link congestion games [24]. We prove that in the first three cases,
the price of total anarchy matches the price of anarchy exactly even if the play itself is not approaching
equilibrium; for parallel link congestion we get an exact match forn = 2 links but an exponentially greater
price for generaln when the social cost function is the makespan. When we consider average load instead,
we prove that if the machine speeds are relatively bounded, that the priceof total anarchy is1 + o(1),
matching the price of anarchy. For linear congestion games and average cost load balancing, the price of
anarchy bounds were previously only known for pure strategy Nash equilibria, and as a corollary of our
price of total anarchy bounds, we prove the corresponding price of anarchy bound for mixed Nash equilibria
as well.

Most of our results further extend to the case in which only some of the agents are acting to minimize
regret and others are acting in an arbitrary (possibly adversarial) manner. When studyinganarchy, it is vital
to consider players who behave unpredictably, and yet this has been largely ignored up until now. Since
Nash equilibria are stable only if all players are participating, and sink equilibria [15] are defined over state
graphs that assume that all players play rationally, such guarantees arenot possible under the standard price
of anarchy model or the newly introduced price of sinking model [15].1

1Babaioff et al. [3] propose a model of network congestion with “malicious” players. Their model defines malicious behavior
as optimizing a specific function, however, and is not equivalent to arbitrary play.
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1.1 Regret minimization and the price of total anarchy

Theregretof a sequence of actions in a repeated game is defined as the difference between the average cost
incurred by those actions and the average cost the best fixed solution would have incurred, where the best is
chosen with the benefit of hindsight. An algorithm is called regret-minimizing, orno-regret, if the expected
regret it incurs goes to zero as a function of time.

Regret-minimizing algorithms have been known since the 1950’s, when Hannan [16] gave such an al-
gorithm for repeated two-player games. Recent work on regret minimizationhas focused on algorithmic
efficiency and convergence rates as a function of the number of actionsavailable, and has broadened the set
of situations in which no-regret algorithms are known. Kalai and Vempala [20] show that Hannan’s algo-
rithm can be used to solve online linear optimization problems with regret approaching0 at a rateO(1/

√
T ),

given access to an exact best-response oracle. Zinkevich [31] developed a regret-minimizing algorithm for
onlineconvexoptimization problems. So-calledbanditalgorithms have also been developed [2, 26, 10, 22],
which achieve low regret even in the situation where the algorithm receivesvery limited information after
each round of play. Kakade et al. [19] show how to use anα-approximate best-response oracle to achieve
online performance in linear optimization problems that is close toα times that of the best static solution.
Those results provide efficient algorithms for many situations in which the number of strategies for each
player is exponential in the size of the natural representation of the game. In cases where each player has
only a polynomial number of strategies, Littlestone and Warmuth’s weighted majority algorithm [25] can be
used to minimize regret.

In this paper, we propose regret-minimization as a reasonable definition of self-interested behavior and
study the outcome of such behavior in a variety of classes of repeated games. We introduce the term “price
of total anarchy” to describe the ratio between the optimum social cost and the social welfare achieved in a
game where the players minimize regret. We note that the guarantees we proveusing the no-regret property
are strictly stronger than minimax guarantees.

1.2 Related work

Price of anarchy Economists have long studied games with self-interested players. ANash equilibrium
in such a game is a profile of strategies for each player such that, given thestrategies of the other players, no
player prefers to deviate from her strategy in the profile. A Nash equilibrium can bepureormixed, depending
on whether the players all play pure, deterministic strategies, or they randomize over pure strategies to give
a mixed strategy.

The study of the effect of selfishness in games has been quite popular in computer science for much of
the past decade. In 1999, Koutsoupias and Papadimitriou [24] introduced the notion of theprice of anarchy
as a measure of this effect: they studied the ratio between the social welfareof the optimum solution and that
of the worst Nash equilibrium. Since then, researchers have studied the price of anarchy in a wide variety of
games (for example [28, 30, 11]).

Unfortunately, Nash equilibria are not necessarily the best definition of selfish behavior. In2-player,
n-action games, Nash equilibria are PPAD-hard to compute [4], but inanygame with a polynomial number
of actions, one can run regret-minimizing algorithms. (One can also do so efficiently in many settings
with even an exponential number of actions.) Many games only admit mixed Nashequilibria, and there
is no immediate incentive for players to play their given mixed strategy as opposed to any one of the pure
strategies in the support of the mixed strategy. In addition, there is no reason to assume in general games
that agents demonstrating selfish behavior shouldconvergeto a Nash equilibrium.

Our work is most similar in spirit to that of Mirrokni and Vetta [27] and Goemanset al. [15], who
also question the plausibility of selfish agents converging to Nash equilibria. They introduce the notion of
sink equilibria, which generalize Nash equilibria in a different way than we do. In doing so, they abandon
simultaneous play, and instead consider sequential myopic best responseplays. They analyze sink equilibria
in the class of valid games and show that valid games have a price of sinking ofbetweenn andn + 1.
In contrast, we prove that valid games have a price of total anarchy of 2,matching the (Nash) price of
anarchy. One reason for this gap is that myopic best responses provide no guarantee about the payoff of
any individual player. Indeed, the example in [15] of a valid game with priceof sinkingn demonstrates that
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myopic best response is not always rational: In their example, myopic bestresponse players each expect
average payoff tending to zero as the number of players increases, whereas they could each easily guarantee
themselves payoffs of one on every turn (and would do so if they minimized regret). Additionally, because
sink equilibria rely on play entering and never leaving sinks of a best response graph, the price of sinking is
brittle to Byzantineplayers who may not be playing best responses. In contrast, we show that valid games
have a price of total anarchy of 2 even in the presence of arbitrarily manyByzantine players, about whom
we make no assumptions.

Correlated equilibria Foster and Vohra [12] show that any algorithm that minimizes a stronger notion
of regret known as “internal regret” will result in an empirical distributionof play that converges to a
weaker notion of equilibrium, a correlated equilibrium. In addition, several polynomial-time internal-regret-
minimizing algorithms are known for settings in which action choices are explicitly given [17]. Because we
place a weaker assumption on the agents’ algorithms, there are more algorithms, simpler algorithms, and
more efficient algorithms for regret minimization than for internal regret minimization. In addition, we are
able to prove guarantees even in Byzantine settings, where not all players behave rationally; such settings
need not correspond to correlated equilibria.

1.3 Our results

In this paper, we study the price of total anarchy in four classes of games. We emphasize that our analysis
does not presume that players play according to any particular class of algorithms; our results hold when-
ever players happen to experience low regret, which is a strictly weaker assumption than that players play
according to a Nash equilibrium. than In Section 3 we examine a class of generalized Hotelling games,
where sellers select locations on a graph and achieve revenues that depend on their own locations as well
as the locations chosen by the other sellers. We prove that for such games(and an even broader class, see
Section 3.3), any regret minimizing player gets at least half of her fair share of the sales, regardless of how
the other (Byzantine) players behave.2 This result exactly matches the price of anarchy in these games.

Valid games, introduced by Vetta [30], model games where the social utility is submodular, the pri-
vate utility of each player is at least her Vickrey utility (the amount her presence contributes to the overall
welfare), and where the sum of the players’ private utilities is at most the total social utility. In Section 4
we prove that the price of total anarchy in valid games with nondecreasing social utility functions exactly
matches the (Nash) price of anarchy, even if Byzantine players are added to the system.

Finally, in Section 5, we analyze atomic congestion games with two types of socialwelfare functions.
First, we consider unweighted atomic congestion games with player-summed social welfare functions, and
in both the linear cost and the polynomial cost case, we show price of total anarchy results that match the
price of anarchy [7, 1]. Next, we consider a parallel link congestion game with social welfare equal to
makespan, the game that initiated the study of the price of anarchy [24], andshow that the price of total
anarchy of the parallel link congestion game with two links is3/2, exactly matching the price of anarchy.
We also show that the price of total anarchy in the parallel link game withn links isΩ(

√
n), which is strictly

worse than the price of anarchy. Finally, we show a price of total anarchy matching the known price of
anarchy in the load balancing game with the sum social utility function. In the case of load balancing with
sum social utility, our price of total anarchy results also yield previously unknown price of anarchy results
for mixed strategies.

In Section 6, we discuss techniques for minimizing regret in each of these settings.

2 Preliminaries

In this paper, we considerk-player games. For each playeri, we denote byAi the set of pure strategies
available to that player. A mixed strategy is a probability distribution over actionsin Ai; we denote bySi

the set of mixed strategies available to playeri. LetA = A1 ×A2 × . . .×Ak andS = S1 ×S2 × . . .×Sk.

2We note that robustness to Byzantine players is not inherent in our model.Indeed, there exist games for which the addition of
Byzantine players can make the social welfare, as well as the utilities of individual regret-minimizing players, arbitrarily bad.
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Every game has an associated social utility functionγ : A → R that takes a set containing an action for
each player to some real value. Each playeri has an individual utility functionαi : A → R.

We often want to talk about the social or individual utility of a strategy profileS = {s1, . . . , sk} ∈
S. To this end, we denote bȳγ : S → R the expected social utility over randomness of the players
and byᾱi : S → R the expected value of the utility of a strategy profile to playeri. We denote the
social value of the socially optimum strategy profile byOPT = maxS∈S γ̄(S) in maximization problems.
Correspondingly,OPT = minS∈S γ̄(S) in minimization problems.

We also sometimes wish to talk about a modification of a particular strategy profile;let S ⊕ s′i be the
strategy set obtained if playeri changes her strategy fromsi to s′i. Let ∅i be the null strategy for playeri
(playeri takes no action). We use superscripts to denote time, soSt is the strategy profile at timet; st

i is
playeri’s strategy at timet.

We consider both maximization and minimization games in this paper. Inmaximizationgames the goal
is to maximizethe social utility function and the players wish tomaximizetheir individual utility functions;
in minimizationgames, both quantities minimized. We define the price of anarchy and the price of total
anarchy so that their values are always greater than or equal to one, regardless of whether we are discussing
a maximization or a minimization game:

Definition 2.1. Theprice of anarchyfor an instance of amaximizationgame is defined to beOPT

γ̄(S) , where
S is the worst Nash equilibrium for the game (the equilibrium that maximizes the priceof anarchy). The
price of anarchyfor an instance of aminimizationgame is defined to beγ̄(S)

OPT
, whereS is the worst Nash

equilibrium for the game (the equilibrium that maximizes the price of anarchy).

We present formal definitions of regret and regret-minimization in AppendixA.

Definition 2.2. Theprice of total anarchyfor an instance of amaximizationgame is defined to bemax OPT
1
T

P

T

t=1 γ̄(St)
,

where the max is taken over allT andS1, S2, . . . , ST , whereS1, . . . , ST are play profiles of players with
the regret-minimizing property. Theprice of total anarchyfor an instance of aminimizationgame is defined

to bemax
1
T

P

T

t=1 γ̄(St)

OPT
, where the max is taken over allT andS1, S2, . . . , ST , whereS1, . . . , ST are play

profiles of players with the regret-minimizing property.

Because all players have zero regret when playing a Nash equilibrium, the price of total anarchy of a
game is never less than its price of anarchy. In this paper we study the priceof anarchy and the price of total
anarchy for general classes of games. The price of (total) anarchy for a class of games is defined to be the
maximum price of (total) anarchy over any instance in that class. Bounds onthe price of (total) anarchy for
a class of games may not be tight for particular instances in that class.

3 Hotelling games

Hotelling games [18] are well studied in the economics literature; see, for example, [13] and [21] for surveys.
Hotelling games are traditionally location games played on a line, but we generalize them to an arbitrary
graph and a broad class of behaviors on the part of the customers. We prove our result first for a specific
Hotelling game, and then observe that our proof still holds in a much more general setting.

3.1 Definition and price of anarchy

Imagine a set of souvenir stand owners in Paris who must decide where to set up their souvenir stands each
day. Every day,n tourists buy a souvenir from whichever stand they find first. Each stand operator wishes
to maximize her own sales. Every day there aren sales, and we wish to maximize fairness: The social
welfare function is the minimum sales of any souvenir stand. Formally, this maximization game is defined
by ann vertex graphG = (V, E). Every selleri among thek sellers has strategy setAi = V , that is, every
day she sets up her stand on some vertex of the graph. Each day, everytourist chooses a path from some
private distribution over paths on the graph, and buys from the seller he encounters first (for instance, as a
special case, we could have one tourist at each vertex of the graph who purchases from the nearest souvenir
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stand). If there is a tie between sellers, we assume the tourist splits his contribution among them equally).
At any timet the social welfare is̄γ(St) = mini ᾱi(S

t). The social optimum is obtained by splitting all
vertices equally among allk players (this can be achieved if all players play on the same vertex). Therefore
OPT = n/k.

Theorem 3.1. The price of anarchy of the Hotelling game is(2k − 2)/k.

Proof. Given a strategy setS, consider the alternate set(S ⊕ ∅i). There arek − 1 active players in this
alternate set and the total payoff is stilln, so there must be some playerh who achieves expected payoff
ᾱh(S⊕∅i) ≥ n/(k−1). If playeri played the same strategy as playerh, she would achieve expected payoff
ᾱi(S ⊕ sh) ≥ n

(2k−2) . Thus, any strategy achieving expected payoff less thann
(2k−2) is not an equilibrium

strategy, since in a Nash equilibrium, no player wishes to change her strategy.
This bound is tight: Consider a game on a graph withk − 1 identical stars, where we identify tourists

with vertices of the graph and each patronizes the nearest souvenir stand. In this example,k−1 of the players
play deterministically at the center of their own star; playerk plays uniformly at random over allk − 1 star
centers. This strategy setS is a Nash equilibrium, and the randomizing player earnsᾱk(S) = n/(2k−2) (the
other players do better), so the social welfareγ(S) = n/(2k − 2). SinceOPT = n/k, this demonstrates
that the price of anarchy isOPT

γ̄(S) = (2k−2)
k

.

3.2 Price of total anarchy

Since at a Nash equilibrium, no player has regret, the price of total anarchy for the Hotelling game is at least
(2k − 2)/k. In this section, we show that this value is tight; that is:

Theorem 3.2.The price of total anarchy in the Hotelling game is(2k−2)/k, matching the price of anarchy.

The proof of this theorem relies on the symmetry of the game; this property wassimilarly useful to
Chien and Sinclair [5] in the context of studying convergence to Nash equilibria in symmetric congestion
games.

Let Ot
i be the set of plays at timet by all playersotherthan playeri. Let Oi =

∑T
t=1 Ot

i , the union with
multiplicity of all plays of players other thani over all time periods.

Definition 3.3. Let ∆t→u
i be the quantity such that if playeri plays an action uniformly at random fromOt

i

at time stepu, she achieves expected payoffn/(2k − 2) + ∆t→u
i . Note that∆t→t

i is always0 because the
k − 1 other players have average payoff exactlyn/(k − 1) when playeri is removed.

Lemma 3.4. For all i, for all 1 ≤ t, u ≤ T : ∆u→t
i + ∆t→u

i ≥ 0.

Proof. If t = u, the claim follows easily, as noted in the definition. Otherwise, imagine a(2k − 2)-player
game in which there is a time-t player and a time-u player for each original player other thani. The time-t
version of a playerj plays strategyst

j ; the timeu version playssu
j . Since the sum of all players’ payoffs is

n, if player i picks a random strategy from among those already being played and playsit in this imaginary
gamereplacingthe player she copies,i expects to have payoffn/(2k − 2). Half of the time, playeri will
select a time-t strategy and replace that time-t player. It can only improvei’s payoff in this case to remove all
of the other time-t players and only play against time-u players. This leavesi playing a strategy uniformly
selected fromOt

i at timeu. A parallel argument holds the other half of the time, when playeri selects a
time-u strategy, and thus

n

(2k − 2)
≤ 1

2

(

n

(2k − 2)
+ ∆t→u

i

)

+
1

2

(

n

(2k − 2)
+ ∆u→t

i

)

=
n

(2k − 2)
+

1

2
(∆t→u

i + ∆u→t
i )

as desired.

Proof of Theorem 3.2.Fix a sequence of playsS1, . . . , ST . Recall thatOi = O1
i + . . . + OT

i . Defineot
i

to be the uniform distribution overOt
i . Picking an actiona uniformly at random fromOi is equivalent to
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picking a random time stepu and then picking a strategya ∈ Ou
i uniformly at random. Playeri’s expected

payoff had she randomly selectedou
i and played it over allT rounds is

1

T

T
∑

u=1

T
∑

t=1

ᾱi(S
t ⊕ ou

i ) =
1

T

T
∑

u=1

T
∑

t=1

(

n

(2k − 2)
+ ∆u→t

i

)

=
Tn

(2k − 2)
+

1

T

T
∑

u=1

T
∑

t=1

∆u→t
i

≥ Tn

(2k − 2)
,

where the last inequality holds because of Lemma 3.4. Therefore, there must be some single fixed action
a∗ ∈ S that achieves at leastTn

(2k−2) when played overT rounds of the above game. Any regret minimizing
player achieves expected total payoff at least this much (minusε), and so has expected payoff at least
n/((2k − 2)) − ε, proving the theorem.

3.3 The price of total anarchy in generalized Hotelling games

We note that the proof of Theorem 3.2 made no use of the specifics of the Hotelling game described above.
In particular, the same proof shows that any regret minimizing player achieves expected payoff approaching
n/(2k − 2) regardlessof how other players behave, and so we are able to guarantee good payoff among
regret-minimizing players players even in the presence of Byzantine players making arbitrary (or adversar-
ial) decisions.

Theorem 3.5.Any player who minimizes regret in the Hotelling game achieves payoff approachingn/(2k−
2), regardless of how the other players play.

The same proof also holds when the buyers use much more general rules for choosing which stand to
patronize.3 Neither do we use the fact that players’ utilities are linear. In fact, our proof only makes use of
three properties of the Hotelling game:

1. Constant Sum: The individual utilities of the players in the game always sum to the same value,
regardless of play.

2. Symmetric: All players have the same action set, and the payoff vector is a function ofthe action
vector that is invariant to a permutation of the names of the players.

3. Monotone: The game is defined for any number of players, and removing players from the game
(while keeping the strategies of the remaining players fixed) does not decrease the payoff for any
remaining player.

We call such games with the “fairness” social utility functionγ̄(S) = mini αi(S) generalized Hotelling
gamesand get the following theorem:

Theorem 3.6. In anyk-player, generalized Hotelling game, the price of total anarchy among regret mini-
mizing players is(2k − 2)/k even in the presence of arbitrarily many Byzantine players.

3.4 Regret minimization need not converge

Since players may efficiently minimize regret in Hotelling games, but may not necessarily be able to compute
Nash equilibria, it is notable that we are able to match standard price-of-anarchy guarantees. In fact, it is
possible that regret-minimizing players in Hotelling games never converge to a Nash equilibrium:

3One caveat is that customers may not in general base their selection rules on the actions of the players—for instance by
patronizing thesecondclosest souvenir stand. If we were to allow rules such as this, removing players from the game could
decrease the payoff of some of the remaining players, and we rely on this not being the case.
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Theorem 3.7. Even if all players in the Hotelling game are regret minimizing, stage game play need not
converge to Nash equilibrium.

Proof. Considerk players{0, . . . , k − 1} on a graph withk − 1 identical n-vertex stars with centers
v0, . . . , vk−2 and an isolated vertexvk−1. At time periodt, playeri plays on vertexvt+i mod k. Each player
has expected payoff(n(k − 1) + 1)/k, but no fixed vertex has expected payoff more than(n(k + 1)/2k),
so no player has positive regret. However, at each time period, the player at the isolated vertexvk−1 has
incentive to deviate, so this is not a Nash equilibrium.

A similar example shows that even if all players minimize internal regret (so thatplay is guaranteed
to converge to the set of correlated equilibria), play can cycle forever and so need not converge to Nash
equilibrium.4

4 Valid games

4.1 Definitions and price of anarchy

Valid games, introduced by Vetta [30], are a broad class of games that includes the market sharing game
studied by Goemans et al. [14], the facility location problem, a version of the traffic routing problem of
Roughgarden and Tardos [28], and multiple-item auctions [30]. When describing valid games, we slightly
adapt the notation of [30]. Consider ak-player maximization game, where each playeri has a groundset of
actionsVi from which she can play some subset. Not every subset of actions is necessarily allowed. Let
V = V1 × . . . × Vk, and letAi = {ai ⊆ Vi : ai is a feasible action}. Let the game have some social
utility function γ : 2V → R, and let each player have a private utility functionαi : 2V → R. The discrete
derivative off atX ⊆ V in the directionD ⊆ V − X is f ′

D(X) = f(X ∪ D) − f(X).

Definition 4.1. A set functionf : 2V → R is submodularif for A ⊆ B, f ′
i(A) ≥ f ′

i(B) ∀i ∈ V − B.

Note that submodular utility functions represent the economic concept of decreasing marginal utility,
reflecting economies of scale.

Definition 4.2. A game with private utility functionsαi : 2V → R and social utility functionγ : 2V → R is
valid if γ is submodular and

ᾱi(S) ≥ γ̄′
si

(S ⊕ ∅i) (1)
k

∑

i=1

ᾱi(S) ≤ γ̄(S) (2)

Condition 1 states that each agent’s payoff is at least herVickrey utility—the change in social utility that
would occur if agenti did not participate in the game. Condition 2 states that the social utility of the game
is at least the sum of the agents’ private utilities.

For example, consider the market sharing game studied by Goemans et al. [14]. The game is played on a
bipartite graphG = ((V, U), E). Each vertex inV is a player, and each vertex inU is a market. Each market
has a value and a cost to service it, and each player has a budget. A player may enter a set of markets to
which she has edges, if the sum of their costs is at most her budget. For each market that a player enters, she
receives payoff equal to the value of that market divided by the numberof players that chose to enter it. The
social utility function is the sum of the individual player utilities, or equivalently, the sum of the values of
the markets that have been entered by any player. This valid game models a situation in which cable internet
providers enter different cities with values proportional to their populations and share the market equally
with other local providers; the social utility is the number of people with accessto high speed internet.

4k players play on a set ofk/2 + 1 vertices. Players are divided into two equal sized groups,L andR. Every turn, there is
exactly one player onk/2 vertices, andk/2 players on the remaining vertex. Players inL andR get their own vertices on alternate
turns, and the crowded vertex rotates, so that each player is equally often on every vertex, and on any particular vertex she is equally
often alone and crowded. Therefore no player has any incentive to swap any vertex with any other.
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Vetta [30] analyzes the price of anarchy of valid games and shows that ifS is a Nash equilibrium strategy
andΩ = {σ1, . . . , σk} is a strategy profile optimizing the social utility function so thatγ̄(Ω) = OPT , then

OPT ≤ 2γ̄(S) −
∑

i:σi=si

γ̄′
si

(S ⊕ ∅i) −
∑

i:σi 6=si

γ̄′
si

(Ω ∪ (S ⊕ ∅i ⊕ . . . ⊕ ∅k)).

Thus, ifγ is nondecreasing, then for any Nash equilibrium strategyS, γ(S) ≥ OPT /2, giving a price of
anarchy of 2. In contrast, Goemans et al. [15] show that the price of sinking for valid games is larger thann.

4.2 Price of total anarchy

In this section, we show that the price of total anarchy for valid games matches the price of anarchy exactly:

Theorem 4.3. If all players play regret-minimizing strategies forT rounds, with strategy profileSi at time
i, then

OPT ≤ 1

T

T
∑

i=1



2γ̄(St) −
∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i) −
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))



 + εk.

We defer this proof to the appendix. For nondecreasingγ, we get the following corollary:

Corollary 4.4. If γ is nondecreasing, the price of total anarchy for valid games is asymptotically 2.

The price of anarchy and the price of sinking are both brittle to the addition ofByzantine players. In
contrast, for nondecreasing social welfare functionsγ, our price of total anarchy result holds even in the
presence of arbitrarily many Byzantine players. In any valid game, suppose players1, . . . , k are regret
minimizing. LetOPT = γ(Ω) be the optimal value for these players playing alone. Suppose there is some
additional set of Byzantine playersB that behave arbitrarily.

Theorem 4.5. Consider a valid game with nondecreasing social welfare functionγ, where thek regret
minimizing players playS1, . . . , ST overT time steps while the Byzantine players playB1, . . . , BT . Then
the average social welfare1/T

∑T
t=1 γ(St ∪ Bt) ≥ OPT /2.

Proof. We observe that

γ(Ω ∪ Bt) ≤ γ(Ω ∪ St ∪ Bt)

= γ(St ∪ Bt) +
∑

i:σi 6=st

i

γ′
σi

(St ∪ Bt ∪ (Ω ⊕ ∅i ⊕ . . . ⊕ ∅k))

≤ γ(St ∪ Bt) +
∑

i:σi 6=st

i

γ′
σi

(St ⊕ ∅i ∪ Bt),

where the first inequality follows becauseγ is nondecreasing, and the third follows from submodularity. We
then have

OPT ≤ γ(Ω ∪ Bt) ≤ γ(St ∪ Bt) +
∑

i:si 6=σi

γ′
σi

(St ⊕ ∅i ∪ Bt)

≤ γ(St ∪ Bt) +
∑

i:si 6=σi

αi(S
t ⊕ σi ∪ Bt)

with the first line following becauseγ is nondecreasing, and the second from the Vickrey condition. Sum-
ming overT , this yields

T · OPT ≤
T

∑

t=1

γ(St ∪ Bt) +
T

∑

t=1

∑

i:si 6=σi

αi(S
t ⊕ σi ∪ Bt).
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Suppose
∑T

t=1 γ(St ∪ Bt) < T · OPT/2. Since

T
∑

t=1

k
∑

i=1

αi(S
t ∪ Bt) ≤

T
∑

t=1

k+|B|
∑

i=1

αi(S
t ∪ Bt) ≤

T
∑

t=1

γ(St ∪ Bt),

it must be that
k

∑

i=1

T
∑

t=1

αi(S
t ⊕ σi ∪ Bt) >

k
∑

i=1

T
∑

t=1

αi(S
t ∪ Bt),

and so there is some regret minimizing playeri for whom
∑T

t=1 αi(S
t ⊕ σi ∪ Bt) >

∑T
t=1 αi(S

t ∪ Bt),
violating the condition that he is regret minimizing.

Note that here we have shown that in a valid game with a nondecreasing social utility function, if k
players minimize regret and an arbitrary number of Byzantine players areaddedto the system, the resulting
social welfare is no worse than half the optimal social welfare fork players. This is a slightly different result
than we showed for Hotelling games, where we were able to guarantee that each regret-minimizing player
obtains at least half of her fair share of the entire game, regardless of what the otherk−1 players do. On the
other hand, for valid games one clearly cannot obtain half of the optimum social welfare fork + |B| players
since the Byzantine players need not be acting in even their own interest.

5 Atomic Congestion Games

In this section, we show price of total anarchy results matching existing priceof anarchy results for atomic,
unweighted congestion games with social utility equal to the sum of the player utilities [7, 1]. We also
consider the atomic congestion game of weighted load balancing with social utility equal to the makespan
[24, 8, 23], and show matching results for two links, but demonstrate that for n links, the price of total
anarchy is exponentially worse than the price of anarchy. Finally, we consider weighted load balancing
with social utility equal to the sum of the player utilities [29], and show that fork >> n, the price of total
anarchy is1 + o(1). In the case of load balancing with sum social utility, our price of total anarchy results
also imply previously unknown price of anarchy results for mixed strategies.

A congestion game is a minimization game consisting of a set ofk players and, for each playeri, a setVi

of facilities. Playeri plays subsets of facilities from some feasible setAi = {ai ⊆ Vi : ai is a feasible action}.
In weightedgames, each playeri has an associated weightwi; in unweightedgames, each player weight is
1. Each facilitye has an associated latency functionfe. A player i playing ai experiences costαi =
∑

e∈ai
fe(le) wherele is the load on facilitye: le =

∑

j : e ∈ aiwj .

5.1 Atomic congestion games with sum social utility

In this section, we consider unsplittable atomic selfish routing with unweighted players. The social utility
function we consider in this section is the sum of the player costs, orγ(A) =

∑

i αi(A). We writeΩ =
{σ1, . . . , σk} for a strategy profile optimizing the social utility functionγ. We writelte for the load on edge
e at timet, andl∗e for the load on edgee in Ω.

We first consider linear edge costs of the formfe(le) = cele+be for edgee. In this setting, Christodoulou
and Koutsoupias [7] and Awerbuch et al. [1] independently showed that the price of anarchy for pure strate-
gies is 2.5. We show a matching bound for the price of total anarchy, which also implies the matching bound
shown by Christodoulou and Koutsoupias [6] for the price of anarchy for mixed strategies and for correlated
equilibria. We defer the proof of the theorem to the appendix.

Theorem 5.1. The price of total anarchy of atomic congestion games with unweighted players, sum social
utility function, and linear cost functions is 2.5.

Corollary 5.2 (Christodoulou and Koutsoupias [6]). The price of anarchy of atomic congestion games
with unweighted players, sum social utility function, and linear cost functions is2.5, even for mixed strate-
gies. The same bound also holds for correlated equilibria in this setting.
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We next consider polynomial latency functions and show a bound matching theprice of anarchy shown
by Christodoulou and Koutsoupias [7] and Awerbuch et al. [1] for mixedstrategies. We defer the proof to
the appendix.

Theorem 5.3. The price of total anarchy of atomic congestion games with unweighted players, sum social
utility function, and polynomial latency functions of degreed is at mostdd1−o(1)

.

5.2 Parallel link congestion game with makespan social utility

The parallel link congestion game modelsn identical links andk weighted players (jobs) who must choose
which link to use. Each player pays the sum of the weights of the jobs on the linkshe chose. The social cost
for this game is defined as the total weight on the worst-loaded link. This game was the main focus of the
Koutsoupias and Papadimitriou paper that introduced the concept of the price of anarchy [24].

More formally, this is a minimization game where for each playeri, the feasible actions areAi =
{1, . . . n}. The social utility function isγ(A) = maxj∈{1,...n}

∑

i:ai=j wi.
Koutsoupias and Papadimitriou [24] proved that the price of anarchy of the parallel link congestion game

with two links is3/2. Two groups of researchers [9, 23] later proved that the price of anarchy when there
aren links isΘ(log n/ log log n).

In this section, we show a matching bound on the price of total anarchy for 2links. We also show that
for n links, the price of total anarchydoes notmatch the price of anarchy.

Theorem 5.4. The price of total anarchy of the parallel link congestion game with makespan social utility
and two links is3/2, exactly matching the price of anarchy.

The proof, which we defer to the appendix, parallels that in the original Koutsoupias and Papadimitriou
paper [24]. It is subtler because regret-minimizing algorithms only give a guarantee in expectation, on
average, and make no guarantees about the performance on any given day.

For the parallel link congestion game withn links, the price of total anarchy diverges from the price
of anarchy. This divergence stems from the fact that in the parallel linksgame, the social cost functionγ
is defined in terms of expected maximumlink latency, whereas individual utility is a function of average
job latency.5 In the single stage Nash equilibrium analyzed for price of anarchy results, the two values are
related: expected job latency for playeri is equal to the average link latency of every link in the support of
i’s mixed strategy. In a Nash equilibrium, therefore, maximum expected link latency must be low, and with
tail bounds, it is straightforward to argue that the expected maximum link latency cannot be too high [9].
Over an arbitrary sequence of regret-minimizing plays, however, average job latency no longer necessarily
corresponds to the average latency of any link. This is demonstrated by a cycling example we use in the
proof of the following theorem, which we defer to the appendix:

Theorem 5.5. The price of total anarchy in the parallel link game with makespan social utilityandn links
is Ω(

√
n).

5.3 Parallel links congestion game with sum social utility

We have just shown that the price of total anarchy does not match theO(log n/ log log n) price of anarchy
for the load balancing game with the makespan social utility function. The resultsin Section 5.1, however,
imply a price of total anarchy≤ 2.5 for the load balancing game with thesumsocial utility function (since
load balancing is a special case of routing), even for mixed strategies anddifferent server speeds. In fact,
we can show more: in this section, we show that so long ask >> n and the server speeds are relatively
bounded, the price of total anarchy is1 + o(1). This matches a price of anarchy result shown by Suri et al.
[29] for pure strategy equilibria. Our theorem below, which we prove in the appendix, implies an equivalent
price of anarchy result even for mixed strategy equilibria.

5Note that if we were to redefine the social cost functionγ for the parallel links game to be the maximum expectedjob latency,
it is simple to verify that the resulting price of total anarchy is 2: Rescale the weights so thatOPT = 1. Total weight is≤ n, and
wi ≤ 1 for all players. Over any sequence of plays, there must be some link with average latencyl ≤ 1. Therefore, every playeri
is guaranteed to experience average latency in expectation at mostl + wi + ε ≤ 2 + ε.
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Theorem 5.6. In the load balancing game with sum social cost and linear latency functions,the price of
total anarchy is1 + o(1) provided thatk >> n and server speeds are relatively bounded.

Corollary 5.7. In the load balancing game with sum social cost and linear latency functions,the price
of anarchy is1 + o(1) provided thatk >> n and server speeds are relatively bounded, even for mixed
strategies.

6 Algorithmic efficiency

In the Hotelling games we analyzed in Section 3, each player has onlyn strategies—then nodes in the
graph. In such settings, the weighted majority algorithm [25] runs in polynomial time and minimizes regret.
Similarly, in the parallel links congestion game, there aren strategies—then links—and thus minimizing
regret is relatively straightforward.

In valid games, if the set of actions available to a player is polynomial in|Vi|, the action groundset,
then once again, weighted majority can be used to minimize regret. However, in arbitrary valid games, the
action space for playeri could be as large as2|Vi|. In such situations, if the player’s private utility is a
linear function of the elements of the groundset she obtains and she can compute exact best responses in
polynomial time (such as in the market sharing game of Goemans et al. [14]), then she can use results of
Kalai and Vempala [20] to minimize regret in polynomial time. If her utility function is linear, but she can
only compute approximate best responses, results of Kakade et al. [19]allow her toapproximatelyminimize
regret; that is, she obtains expected average cost close toβ times the cost of the best fixed solution in
hindsight, whereβ is the approximation ratio of her optimizer. We can modify our proof of the priceof total
anarchy to carry thisβ through and show:

Theorem 6.1. The price ofβ-minimizing regret in valid games is1 + β.

If the player’s utility function is convex and well-defined over the convex hull of her pure strategies and
she furthermore has the ability to project points in space onto that convex hull, then she can use an algorithm
developed by Zinkevich [31] to minimize her regret. In situations where no existing techniques are a perfect
fit, more specialized regret-minimizing algorithms for specific games may also be developed.

7 Conclusions

We propose regret minimization as a definition of selfish behavior in repeatedgames. We consider four
general classes of games—generalized Hotelling games, valid games, and atomic congestion games with
two different social utility functions—and show that the price of total anarchy exactly matches the price
of anarchy in most cases, but there is a gap ofΩ(

√
n) versusO( log n

log log n
) in the case ofn parallel links.

Our results hold even in games where regret-minimizing algorithms can cycle andfail to converge to an
equilibrium. We also prove results in Byzantine settings when only some of the players achieve regret
minimization and the other players are allowed to act in an arbitrary fashion. Inaddition, our results for
weighted load balancing with player-summed social utility functions imply new priceof anarchy results for
mixed strategies.

Acknowledgments We thank Evangelia Pyrga for bringing [6] to our attention.
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A Formal definitions of regret and regret-minimization

Definition A.1. Theregretof playeri in amaximizationgame given action setsA1, A2, . . . , AT is

max
ai∈Ai

1

T

T
∑

t=1

αi(A
t ⊕ ai) −

1

T

T
∑

t=1

αi(A
t).

Theregretof playeri in aminimizationgame given action setsA1, A2, . . . , AT is

1

T

T
∑

t=1

αi(A
t) − min

ai∈Ai

1

T

T
∑

t=1

αi(A
t ⊕ ai).

A regret-minimizing algorithm is one with low expected regret.

Property A.2. When a playeri uses a regret-minimizing algorithm or achieves low regret, for any sequence
A1, . . . , AT , she achieves the property

max
ai∈Ai

1

T

T
∑

t=1

αi(A
t ⊕ ai) ≤ R(T ) + E

[

1

T

T
∑

t=1

αi(A
t)

]
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for maximization games and

E

[

1

T

T
∑

t=1

αi(A
t)

]

≤ R(T ) + min
ai∈Ai

1

T

T
∑

t=1

αi(A
t ⊕ ai)

for minimization games, where expectation is over the internal randomnessof the algorithm, and where
R(T ) → 0 asT → ∞. The functionR(T ) may depend on the size of the game or a compact representation
thereof. We then defineTε to be the number of time steps required to getR(T ) = ε.

Note that this implies that, for any sequenceS1, . . . , ST , a player with the regret-minimizing property
achieves

max
ai∈Ai

1

T

T
∑

t=1

ᾱi(S
t ⊕ ai) ≤ R(T ) +

1

T

T
∑

t=1

ᾱi(S
t)

for maximizationgames and

1

T

T
∑

t=1

ᾱi(S
t) ≤ R(T ) + min

ai∈Ai

1

T

T
∑

t=1

ᾱi(S
t ⊕ ai)

for minimizationgames.

B Proof of Theorem 4.3

Proof. Suppose all players use low regret strategies, so that for any playeri,

Tε +
T

∑

t=1

ᾱi(S
t) ≥

T
∑

t=1

ᾱi(S
t ⊕ σi).

Expanding terms, we can rewrite this as

Tε +
∑

t:st

i
=σi

ᾱi(S
t) +

∑

t:st

i
6=σi

ᾱi(S
t) ≥

∑

t:st

i
=σi

ᾱi(S
t ⊕ σi) +

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi).

We note that whenst
i = σi, ᾱi(S

t) = ᾱi(S
t ⊕ σi), so this yields

εT +
∑

t:st

i
6=σi

ᾱi(S
t) ≥

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi).

Summing over all players, we get

kεT +
k

∑

i=1

∑

t:st

i
6=σi

ᾱi(S
t) ≥

k
∑

i=1

∑

t:st

i
6=σi

ᾱi(S
t ⊕ σi)

≥
k

∑

i=1

∑

t:st

i
6=σi

γ̄′
σi

(St ⊕ ∅i),
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where the second equation holds by assumption 1. Now note that

T
∑

t=1

γ̄(St) ≥
T

∑

t=1

k
∑

i=1

ᾱi(S
t)

=
T

∑

t=1

∑

i:σi=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi 6=st

i

ᾱi(S
t)

≥
T

∑

t=1

∑

i:σi 6=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i)

=

k
∑

i=1

∑

t:σi 6=st

i

ᾱi(S
t) +

T
∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i),

where the third line holds by assumption 2 and the fourth line is a reordering ofthe summations. This gives
us

k
∑

i=1

∑

t:σi 6=st

i

γ̄′
σt

i

(St ⊕ ∅i) ≤ Tεk +
k

∑

i=1

∑

t:σi 6=st

i

ᾱi(S
t) ≤ Tεk +

T
∑

t=1

γ̄(St) −
T

∑

t=1

∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i).

We use the following lemma proved by Vetta [30]:

Lemma B.1. If Ω = {σ1, . . . , σk} is a strategy profile optimizing the social utility functionγ, then for any
strategy profileS

γ̄(Ω) ≤ γ̄(S) +
∑

i:σi 6=si

γ̄′
σi

(S ⊕ ∅i) −
∑

i:σi 6=si

γ̄′
si

(Ω ∪ (S ⊕ ∅i ⊕ . . . ⊕ ∅k)).

From Lemma B.1, for any sequence of playsS1, . . . , S
t,

T γ̄(Ω) ≤
T

∑

t=1



γ̄(St) +
∑

i:σi 6=st

i

γ̄′
σi

(St ⊕ ∅i) −
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))



 .

Substituting, we get

T · OPT ≤
T

∑

i=1



2γ̄(St) + εk −
∑

i:σi=st

i

γ̄′
st

i

(St ⊕ ∅i) −
∑

i:σi 6=st

i

γ̄′
st

i

(Ω ∪ (St ⊕ ∅i ⊕ . . . ⊕ ∅k))



 ,

which completes the proof.

C Proof of Theorem 5.1

Proof. Let Ω = {σ1, . . . , σk} be a strategy profile optimizing the social utility function so thatγ̄(Ω) =
OPT By the assumption of regret minimization, each player’s time average cost is nomore than the cost
of her best fixed action in hindsight. In particular, it is no more than if she had played her part in the optimal
strategy on every timestep: For alli,

T
∑

t=1

ᾱi(S
t) =

T
∑

t=1

∑

e∈st

i

cel
t
e + be ≤

T
∑

t=1

ᾱi(S
t ⊕ σi) ≤

T
∑

t=1

∑

e∈σi

ce(l
t
e + 1) + be.
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Summing over each player and rearranging the sum:

T
∑

t=1

∑

e∈E

∑

i s.t.e∈st

i

cel
t
e + be ≤

T
∑

t=1

∑

e∈E

∑

i s.t.e∈σi

ce(l
t
e + 1) + be

=
T

∑

t=1

∑

e∈E

cel
t
el
∗
e + cel

∗
e + bel

∗
e .

We now use a lemma also used by Awerbuch et al. [1]:

Lemma C.1. For i, j > 0 integers:

1. ij = 1
3j2 + 3

4 i2 − 1
3(j − 3

2 i)2

2. 9
8 i2 + 3

2 i − 1
2(j − 3

2 i)2 ≤ 5
2 i2

We can apply part 1 of the lemma to get

T
∑

t=1

∑

e∈E

(cel
t
e + be)l

t
e ≤

T
∑

t=1

∑

e∈E

ce

(

1

3
(lte)

2 +
3

4
(l∗e)

2 − 1

3
(lte −

3

2
l∗e)

2 + l∗e

)

+ bel
∗
e .

This is equivalent to

T
∑

t=1

∑

e∈E

(cel
t
e +

3

2
be)l

t
e ≤

T
∑

t=1

∑

e∈E

ce

(

9

8
(l∗e)

2 +
3

2
l∗e −

1

2
(lte −

3

2
l∗e)

2

)

+
3

2
bel

∗
e .

This allows us to apply property 2 of the lemma to obtain

T
∑

t=1

∑

e∈E

(cel
t
e + be)l

t
e ≤

T
∑

t=1

∑

e∈E

5

2
ce(l

∗
e)

2 +
3

2
bel

∗
e

≤ 5

2

T
∑

t=1

∑

e∈E

(cel
∗
e + be)l

∗
e ,

which proves the claim.

D Proof of Theorem 5.3

Proof. By the no-regret property we have for each playeri:

T
∑

t=1

∑

e∈at

i

fe(l
t
e) ≤

T
∑

t=1

∑

e∈σi

fe(l
t
e + 1).

We may sum over each player:

T
∑

t=1

∑

e∈E

∑

i s.t.e∈at

i

fe(l
t
e) ≤

T
∑

t=1

∑

e∈E

∑

i s.t.e∈σi

fe(l
t
e + 1)

and rearrange the sums:
T

∑

t=1

∑

e∈E

fe(l
t
e)l

t
e ≤

T
∑

t=1

∑

e∈E

fe(l
t
e + 1)l∗e .

We now apply a lemma used by Christodoulou and Koutsoupias [7]:

16



Lemma D.1. For f(x) a polynomial with non-negative coefficients of degreed, and for everyx, y ≥ 0:

y · f(x + 1) ≤ x · f(x)

2
+

C0(d) · y · f(y)

2
,

whereC0(d) = pp1−o(1)
.

Applying the lemma, we get

T
∑

t=1

∑

e∈E

fe(l
t
e)l

t
e ≤

T
∑

t=1

∑

e∈E

fe(l
t
e + 1)l∗e ≤

T
∑

t=1

(
∑

e∈E

ltef(lte)

2
+

∑

e∈E

C0(d)l∗ef(l∗e)
2

).

Rearranging, we then get
T

∑

t=1

∑

e∈E

fe(l
t
e)l

t
e ≤ C0(d)

T
∑

t=1

∑

e∈E

f(l∗e)l
∗
e ,

which completes the proof.

E Proof of Theorem 5.4

Proof. Denote byqi the expected probability that playeri is on the maximally loaded machine (breaking ties
between equally loaded machines at random). Note that the expected socialcost is then̄γ(S) =

∑k
i=1 qiwi.

By the regret-minimizing property, for all players,

1

T

T
∑

t=1

ᾱi(S
t) ≤ wi + ε +

1

T

T
∑

t=1

∑

h : h6=i wh

2
.

Definepij to be the expected probability that playeri selects machinej; cih is the expected probability
that playersi andh select the same machine. Then for any fixedi,

∑

h:h 6=i

(qi + qh)wh ≤
∑

h:h6=i

(1 + cih)wh

≤
∑

h:h6=i

wh +
∑

h:h6=i

cihwh

=
∑

h:h6=i

wh +
∑

h:h6=i

(pi1ph1wh + pi2ph2wh).

Note that for any playeri, regardless of her strategy, her cost is

ᾱi(S) = wi + pi1

∑

h:h6=i

ph1wh + pi2

∑

h:h6=i

ph2wh

by definition. This relationship is essentially Lemma 1 of [24]; however they only note that it holds for Nash
equilibrium strategies. This gives us

∑

h:h 6=i(qi + qh)wh ≤ ∑

h:h6=i wh + ᾱi(S)−wi. Averaging over time,
this is

1

T

T
∑

t=1

∑

h:h 6=i

(qt
i + qt

h)wh ≤ 1

T

T
∑

t=1

∑

h:h6=i

wh +
1

T

T
∑

t=1

ᾱi(S
t) − wi.

Using the fact that playeri obtains low regret, we then have

1

T

T
∑

t=1

∑

h:h 6=i

(qt
i + qt

h)wh ≤ 1

T

T
∑

i=1

∑

h:h6=i

wh + ε +
1

T

T
∑

t=1

∑

h : h6=i wh

2
.

17



Rearranging, this yields for any fixedi

1

T

T
∑

t=1

γ̄(St) =
1

T

T
∑

t=1

k
∑

h=1

qt
hwh ≤ 1

T

T
∑

t=1





3

2

∑

h:h6=i

wh + qt
iwi −

∑

h6=i

qt
iwh



 + ε

=
1

T

T
∑

t=1

(

3

2

k
∑

h=1

wh − 3

2
wi + qt

iwi − qt
i

k
∑

h=1

wh + qt
iwi

)

+ ε

=
1

T

T
∑

t=1

(

(

3

2
− qt

i

) k
∑

h=1

wh +

(

2qt
i −

3

2

)

wi

)

+ ε.

Note thatOPT ≥ max{1
2

∑k
h=1 wh, wi} for anyi. If for all agentsi, 1

T

∑T
t=1 qt

i ≤ 3
4 , then

1

T

T
∑

t=1

γ̄(St) =
1

T

T
∑

t=1

k
∑

h=1

qt
hwh

=
∑

h

(

wh
1

T

∑

t

qt
h

)

≤ 3

4

∑

h

wh

≤ 3

2
OPT .

Otherwise, there exists some agenti such that1
T

∑T
t=1 qt

i > 3
4 and thus

1

T

T
∑

t=1

γ̄(St) ≤ 2OPT
1

T

∑

t

(3/2 − qt
i) + OPT

1

T

∑

t

(2qt
i − 3/2) + ε

=
3

2
OPT + ε

as desired.

F Proof of Theorem 5.5

Proof. Considern parallel links1, . . . , n, andn players all with unit weightswi = 1. Clearly,OPT = 1.
Define a sequence of playsA1, . . . , AT as follows: Divide the players into2

√
n groupsG0, . . . , G2

√
n−1,

each of size
√

n/2. At time t, all players inG(t mod 2
√

n) play on link1, and all other players play over
links 2+ (t mod n− 1), 2+ (t+1 mod n− 1), . . . , 2+ (t+n−√

n/2− 1 mod n− 1) so that there is
exactly one player on each link (ordering may be arbitrary). Then each player experiences average latency

1

T

T
∑

t=1

αi(A
t) =

1

2
√

n
·
√

n

2
+

2
√

n − 1

2
√

n
· 1 =

5

4
− 1

2
√

n
.

Consider the latency experienced by playeri if she were to play at any fixed node. Given the sequence of
plays described above, every nodev ≥ 2 is occupied by some playerh 6= i on an(n −√

n/2 − 1)/(n − 1)
fraction of time steps. Since playeri always pays for her own weight, she expects to experience latency

2 · n −
√

n
2 − 1

n − 1
+ 1 ·

√
n

2(n − 1)
= 2 −

√
n

2(n − 1)
.

Therefore, for sufficiently largen, all players experience negative regret. Nevertheless, at every time step,
the maximum latency isΩ(

√
n).
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G Proof of Theorem 5.6

Proof. By the no regret property, for each playeri,

T
∑

t=1

ᾱi(A
t) =

T
∑

t=1

lat

i

πat

i

≤
T

∑

t=1

ᾱi(A
t ⊕ σi) ≤

T
∑

t=1

ltσi
+ 1

πσi

.

Summing over all players and reordering the sum, we get

T
∑

t=1

∑

e∈E

(lte)
2

πe
≤

T
∑

t=1

∑

e∈E

(lte + 1) · l∗e
πe

≤
T

∑

t=1

∑

e∈E

1

πe

(

(lte)
2 + (l∗e)

2

2
+ l∗e

)

,

where the second inequality follows from the fact thata · b ≤ a2+b2

2 . Subtracting, we get

1

2

T
∑

t=1

∑

e∈E

(lte)
2

πe
≤

T
∑

t=1

∑

e∈E

1

πe

(

(l∗e)
2

2
+ l∗e

)

T
∑

t=1

∑

e∈E

(lte)
2

πe
≤

T
∑

t=1

∑

e∈E

(l∗e)
2 + 2l∗e
πe

.

Combining these inequalities, we can bound the price of total anarchy:

∑T
t=1

∑

e∈E
(lte)

2

πe

∑T
t=1

∑

e∈E
(l∗e)2

πe

≤
∑T

t=1

∑

e∈E
(l∗e)2+2l∗e

πe

∑T
t=1

∑

e∈E
(l∗e)2

πe

= 1 + 2

∑T
t=1

∑

e∈E
l∗e
πe

∑T
t=1

∑

e∈E
(l∗e)2

πe

≤ 1 + 2
T

∑

t=1

∑

e∈E
l∗e
πe

∑

e∈E
(l∗e)2

πe

.

We then use the following technical lemma of Suri et al. [29]

Lemma G.1. Letn, k be positive integers andle ≥ 0, πe > 0 be reals such that
∑

e∈E le = k. Then

∑

e∈E le/πe
∑

e∈E l2e/πe
≤ (1 +

√

max
1≤i,j≤n

πi

πj
)

n

2k

.

This gives us

1

2

T
∑

t=1

∑

e∈E

(lte)
2

πe
≤ 1 + 2

(

1 +

√

max
1≤i,j≤n

πi

σj

)

n

2k
.

This is1 + o(1) in k whenk >> n, which completes the proof.
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