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Abstract

With random inputs, certain decision problems undergo a “phase
transition”. We prove similar behavior in an optimization context.

Given a conjunctive normal form (CNF) formula F on n variables
and with m k-variable clauses, denote by max F the maximum number
of clauses satisfiable by a single assignment of the variables. (Thus
the decision problem k-sat is to determine if max F is equal to m.)
With the formula F chosen at random, the expectation of max F is
trivially bounded by 3

4
m 6 E max F 6 m. We prove that for random

formulas with m = bcnc clauses: for constants c < 1, E max F is
bcnc − Θ(1/n); for large c, it approaches ( 3

4
c + Θ(

√
c))n; and in the

“window” c = 1 + Θ(n−1/3), it is cn−Θ(1). Our full results are more
detailed, but this already shows that the optimization problem max

2-sat undergoes a phase transition just as the 2-sat decision problem
does, and at the same critical value c = 1. Most of our results are
established without reference to the analogous propositions for decision
2-sat, and can be used to reproduce them.

We consider “online” versions of max 2-sat, and show that for
one version the obvious greedy algorithm is optimal; all other natural
questions remain open.

We can extend only our simplest max 2-sat results to max k-
sat, but we conjecture a “max k-sat limiting function conjecture”
analogous to the folklore “satisfiability threshold conjecture”, but open
even for k = 2. Neither conjecture immediately implies the other, but
it is natural to further conjecture a connection between them.

We also prove analogous results for random max cut.
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1 Introduction

In this paper, we consider random instances of max 2-sat, max k-sat, and
max cut. Just as random instances of the decision problem 2-sat show a
phase transition from almost-sure satisfiability to almost-sure unsatisfiability
as the instance “density” increases above 1, so the maximization problem
shows a transition at the same point, with the expected number of clauses
not satisfied by an optimal solution quickly changing from Θ(1/n) to Θ(n).
Max cut experiences a similar phase transition: as a random graph’s edge
density crosses above 1/n, the number of edges not cut in an optimal cut
changes from Θ(1) to Θ(n).

Our methods are well established ones: the first-moment method for up-
per bounds; algorithmic analysis including the differential-equation method
for lower bounds; and some more sophisticated martingale arguments for
the analysis of the scaling window. The interest of the work lies in the
relative straightforwardness of the methods, as well as in the results. The
questions we ask seem very natural, and the answers obtained for max 2-

sat and max cut are happily neat, and, with one notable exception, fairly
comprehensive.

A preliminary version of this paper appeared as [CGHS03].

1.1 Outlook

Beyond our particular results for max 2-sat and max cut, we hope to
spark further work on phase transitions in random instances of optimiza-
tion problems generally, in particular of max csps (constraint satisfaction
problems). Random instances of optimization problems have been studied
extensively — some that come to mind are the travelling salesman problem,
minimum spanning tree, minimum assignment, minimum bisection, mini-
mum coloring, and maximum clique — but little has been said about phase
transitions in such cases, and indeed many of the examples do not even have
a natural parameter whose continuous variation could give rise to a phase
transition.

Many problems, including all csps, have natural decision and optimiza-
tion versions: one can ask whether a graph is k-colorable, or ask for the
minimum number of colors it requires. We suggest that in a random setting,
the optimization version is quite as interesting as the decision version. Fur-
thermore, optimization problems may plausibly be easier to analyze than
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decision problems because the quantities of interest vary more smoothly.
In fact, a recent triumph in the analysis of a decision problem, Bollobás,
Borgs, Chayes, Kim, and Wilson’s characterization of the “scaling window”
for 2-sat, used as a smoothed quantity the size of the “spine” of a for-
mula [BBC+01]. A way to view our max 2-sat results is that instead of
taking the size of the spine as our “order parameter”, we take the size of a
maximum satisfiable subformula. This seems comparably tractable (we re-
produce the result of [BBC+01] incompletely, but more easily), and arguably
more natural. Generally, when a decision problem has an optimization ana-
log, the value of the optimum is both interesting in its own right, and, we
suggest, an obvious candidate order parameter for studying the decision
problem.

1.2 Motivations

Let F be a k-sat formula with n variables X1, . . . , Xn . An “assignment” of
these variables consists of setting each Xi to either 1 (True) or 0 (False); we
may write an assignment as a vector ~X ∈ {0, 1}n . k-sat is well understood.
In particular, it is a canonical NP-hard problem to determine if a given
formula F is satisfiable or not, except for k = 2 when this decision problem
is solvable in essentially linear time.

Random instances of k-sat have recently received wide attention. Let
F(n, m) denote the set of all formulas with n variables and m clauses, where
each clause is proper (consisting of k distinct variables, each of which may be
complemented or not), and clauses may be repeated. Let F ∈ F be chosen
uniformly at random; this is equivalent to choosing m clauses uniformly at
random, with replacement, from the 2k

(

n
k

)

possible clauses.
The model is generally parametrized as F ∈ F(n, cn) for various “den-

sities” c, and the state of knowledge is summarized thus. The 2-sat case
is well understood: for c < 1, F is a.a.s. satisfiable (asymptotically al-
most surely in the limit n → ∞), and for c > 1, F is a.a.s. unsatisfiable
[CR92, Goe96, FdlV92]. The “scaling window” c = 1±Θ(n−1/3) has recently
been analyzed [BBC+01]. For k-sat, much less is known. For 3-sat, for
instance, it is known that for c < 3.42, F is a.a.s. satisfiable [KKL02] and for
c > 4.6, F is a.a.s. unsatisfiable [JSV00]. (A bound of 4.506 by Boufkhad,
Dubois and Mandler was announced in a 2-page abstract [DBM00], but a
full version has so far appeared only as a technical report [DBM03].) It is
only conjectured, though, that for k = 3 (and for all k) the situation is
similar to that for k = 2.
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Conjecture 1 (Satisfiability Threshold Conjecture) For each k there
exists a threshold density ck , such that for any positive ε, for all c < ck− ε,
a random formula F is a.a.s. satisfiable, and for all c > ck + ε, F is a.a.s.
unsatisfiable.

For large values of k, although the question of a threshold remains open,
satisfiability and unsatisfiability density bounds are asymptotically equal, as
shown by an analysis in [AM02] and refined in [AP03]. The closest result to
the satisfiability conjecture is a theorem of Friedgut [Fri99] proving similar
thresholds, but leaving open the possibility that (for a given k), each n may
have its own threshold ck(n), and that these may not converge to a limit.

Theorem 2 (Friedgut) For each k there exists a threshold density func-
tion ck(n), such that for any positive ε, as n → ∞, for all c < ck − ε, a
random formula F is a.a.s. satisfiable, and for all c > ck + ε, F is a.a.s.
unsatisfiable.

Having briefly surveyed random k-sat, let us similarly consider max k-
sat. For a given formula F , let F ( ~X) be the number of clauses satisfied
by ~X . The problem max 2-sat asks for max F

.
= max ~X F ( ~X), i.e., the

maximum, over all assignments ~X , of the size (number of clauses) of a
maximum satisfiable subformula of F .

In the maximization setting, even 2-sat is interesting. max 2-sat is
NP-hard to solve exactly, and it is even NP-hard to approximate max F to
within a factor of 21/22 [H̊as97]. On the other hand, a 3/4-approximation
is trivial: a random assignment satisfies an expected 3/4ths of the clauses,
and a derandomized algorithm is simple (our algorithm used to prove the
lower bound for Theorem 5 can serve). The best known approximation ratio
achievable in polynomial time is 0.940 [LLZ02]. For arbitrary 3-sat formulas
F , in polynomial time, max F can be approximated to within a factor of
7/8 [KZ97], but no better (unless P=NP) [H̊as97].

1.3 Problem: Random MAX CSP

Although both randomized and maximization versions of k-sat are thus well
studied, we are aware of limited prior work on random max sat and other
random max or min constraint satisfaction problems (csps). Indeed, in the
conclusions to his survey article [FdlV01] on random instances of (decision)
2-sat, Fernandez de la Vega notes that nothing is known about random
max 2-sat, “which is also certainly challenging and perhaps not hopeless.”

Such questions prove to have elegant answers: we will show for example
that random max 2-sat has a phase structure analogous to the decision
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problem’s. We hope that maximization problems may even help in under-
standing the decision problems. For 2-sat this hope is borne out to a degree
by our Theorem 7 on the scaling window of max 2-sat: using max F as an
order parameter, instead of the “spine” devised by [BBC+01], allows us to
reproduce part of their result on the scaling window for decision 2-sat.

For random max cut, we obtain results which are slightly more com-
prehensive than those for 2-sat, and largely though not entirely analogous.
While our results for k-sat (k > 2) and other csps are very limited (see
Theorems 15 and 16), Conjectures 12 and 14 link the open questions for
the maximization and decision thresholds for random satisfiability. At this
point we cannot guess the comparative difficulties of resolving the satisfia-
bility threshold conjecture, its maximization analog, or the conjectured link
between them.

1.4 Related work

For a random graph, the maximum bisection and maximum cut are nearly
equivalent, and these problems have received the most and earliest attention.
Bertoni, Campadelli, and Posenato in 1997 determined an upper bound on
the expected maximum bisection width for random graphs with average
degree c [BCP97], and Verhoeven in an unpublished manuscript apparently
dating from 2000 found a lower bound as well [Ver00]. Our Theorem 20 is
simply a statement of these two results, with brief proofs included for the
sake of completeness.

Subsequent to our work, in 2003 this theorem was generalized to max

k-cut by Moore, Coja-Oghlan, and Sanwalini [COMS03], as part of a
project of analyzing the performance of a semi-definite programming (SDP)
relaxation-based algorithm for max k-cut on random graphs G(n, c/n),
focusing on asymptotically large value of c. This line of work (SDP-
based approximation algorithms, starting with Goemans and Williamson’s
[GW95],copy and their connections with the eigenvalues of random matrices,
see for example Friedman, Kahn, and Szemerédi’s [FKS89] and Friedman’s
[Fri02]) is interesting from our perspective for the possibility that it could
determine the exact constant of

√
c on which Theorem 20 gives upper and

lower bounds.
On this theme, concurrently with our work, Dı́az, Do, Serna and

Wormald derived narrow bounds for, but not quite the exact values of, the
size of optimum bisections of random cubic and 4-regular graphs [DDSW03];
these problem are close kin to the maximum cut of a random graph with cn
edges, c = 3/2 and c = 2 respectively.
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Despite this attention to random max cut, we are not aware of any prior
treatment of the phase transition, which occurs around average degree 1; in
fact prior consideration seems to have been limited to above-threshold or
even asymptotically large fixed or average degree.

For random max 2-sat, we are not aware of any prior work at all,
let alone on the phase transition. These problems seem very natural, and
answers to even the simplest questions are not obvious at first blush: For
a random 2-sat formula F (n, cn) with c > 1, which is a.a.s. unsatisfiable,
can we perhaps w.h.p. satisfy all but a single clause?

Our study of random max 2-sat and random max cut was also moti-
vated by recent work on “avoiding a giant component”; we will discuss this
in section 8.

2 Model, notation, and inequalities

We write F (n, m) to denote a random 2-sat formula on n variables, with m
clauses chosen uniformly at random with replacement from the collection of
all 22

(

n
2

)

proper two-variable clauses. Typically we will fix a constant c and
consider F (n, bcnc); where it does not matter we will often write cn in lieu
of bcnc and we often omit the notation b·c in other instances too. For any
formula F , define max F to be the size of a largest satisfiable subformula
of F . Our focus is the functional behavior of max F , and accordingly we
define

f(n, m)
.
= E max F (n, m).

We use the symbol “
.
=” to denote equality by definition. Throughout the

paper we reserve n, m, and c for these roles.
In the context of graphs instead of formulas, we write G(n, m) for a

random graph on n vertices with m edges. For any graph G, let ~X de-
scribe a partition of the vertices, and let cut(G, ~X) be the number of edges
having one vertex in each part of the partition. Define max cut(G)

.
=

max ~X cut(G, ~X), and fcut(n, m)
.
= E(max cut(G(n, m))).

We use standard asymptotic and “order” notation, so for example f(n) '
g(n) means f(n)/g(n) → 1 as n →∞ — also expressed by the phrase f(n)
is a.e. (almost exactly) g(n) — and f(n) = o(n) means f(n)/n → 0. While
a small quantity like o(·) may have either sign, we may write for example
1 ± o(1) to explicitly flag uncertainty in the sign. For large quantities like
Ω(·) or Θ(·), there is usually an implicit presumption of positivity: for ε > 0,
1 + Θ(ε3) is greater than 1, not less than 1.
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Less standardly, we will write f(n) . g(n) to indicate that f is less
than or equal to g asymptotically — lim sup f(n)/g(n) 6 1 — though it
may be that f(n) > g(n) even for arbitrarily large values of n. Asymptotic
results involving two variables, for example concerning 2-sat formulas on n
variables with cn clauses, with c large (or (1 + ε)n clauses with ε small)
should always be interpreted as taking the limit in n second; thus “for any
desired error bound there exists a c0 , such that for all c > c0 there exists an
n0 , such that for all n > n0”, etcetera. When the asymptotics are not clear,
we will sometimes use subscripting to clarify, so for example in Theorem 5,
the factor 1 − oc(1) indicates a quantity which is arbitrarily close to 1 for
all c sufficiently large.

We will have repeated use for a couple of inequalities. First is the pair
of Chernoff bounds that, for a sum X of independent 0-1 Bernoulli random
variables with parameters p1, . . . , pn and expectation µ =

∑n
i=1 pi ,

Pr(X ≥ µ + ∆) ≤ exp
(

−∆2/(2µ + 2∆/3)
)

and(1)

Pr(X ≤ µ−∆) ≤ exp
(

−∆2/(2µ)
)

.(2)

(See for example [J LR00, Theorems 2.1 and 2.8].)
The second is a form of the Azuma-Hoeffding inequality due to McDi-

armid [McD89] (see also Bollobás [Bol88]).

Theorem 3 (Azuma-Hoeffding) Let X1, . . . , Xn be independent random
variables, with Xk taking values in a set Ak for each k. Suppose that a mea-
surable function f :

∏

Ak → R satisfies |f(x)−f(x′)| 6 ck whenever the vec-
tors x and x′ differ only in the kth coordinate. Let Y be the random variable
f(X1, . . . , Xn). Then for any λ > 0, P[ |Y −EY | > λ] 6 2 exp(−2λ2/

∑

c2
k).

3 Summary of MAX 2-SAT results

We establish several properties of random max 2-sat, random max k-sat,
and random max cut, focusing on 2-sat. This section summarizes our main
results and indicates the nature of the proofs; further results and proofs are
given in subsequent sections.

One of our goals is to establish the max 2-sat results without depending
on those for decision 2-sat— in particular to work independently of Bol-
lobás, Borgs, Chayes, Kim, and Wilson’s [BBC+01] and reproduce its results
— and we were largely successful in this. The exceptions are in Theorems 6
and the λ > 1 case of Theorem 7. Our lower bounds in these cases come
from analysis of the shortest-clause rule, but since there is no guarantee that
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f(n, cn)/(cn)

n →∞

Figure 1: “Artist’s rendition” of the behavior of f(n, cn)/(cn).

this heuristic is doing as well as possible, it cannot yield an upper bound. A
promising alternative is to analyze the pure-literal rule, and we discuss this
in Section 5.2.5. For the meanwhile, though, we rely on [BBC+01] for the
upper bound in Theorem 6 (with an extraneous logarithmic factor arising
in the translation), and we lack any upper bound for the λ > 1 case of
Theorem 7.

Figure 3 shows an “artist’s rendition” of the our results for 2-sat. For
c < 1, we expect to satisfy nearly all clauses, while for c → ∞, we expect
to satisfy only about 3/4ths of them. The asymptotic behavior for c < 1
is understood; so is that for c large (with a log-factor gap in the bounds
on the second term); and that for c = 1±Θ(n−1/3) (with only a one-sided
bound on the second term). We now state these results more exactly, and
prove them in the next section.

For c < 1 a random formula F (n, cn) is satisfiable w.h.p., so we would
expect max F to be close to cn in this case; the following theorem shows
this to be true.

Theorem 4 For c = 1 − ε, with any constant ε > 0, bcnc − f(n, bcnc) =
Θ(1/(ε3n)).

The proof comes from counting the expected number of the “bicycles”
shown by [CR92] to be necessary components of an unsatisfiable formula.

For any c, f(n, cn) > 3
4cn, since a random assignment of the variables

satisfies each clause with probability 3
4 . The next theorem shows that neither
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this bound nor the trivial upper bound cn is tight, although for large c, 3
4cn

is close to correct.

Theorem 5 For c large, (1 − oc(1))(
√

c
√

8−1
3
√

π
)n . f(n, cn) − 3

4cn .

(
√

c
√

3 ln(2)/8)n.

The values of
√

8−1
3
√

π
and

√

3 ln(2)/8 are approximately 0.343859 and

0.509833, respectively. The upper bound is proved by a simple first-moment
argument, and the lower bound by analyzing an algorithm; the upper
bound’s proof technique is the same as that in [Spe94, Lecture 6] to an-
alyze the Gale-Berlekamp switching game.

Our next results relate to the low-density case, when c is above but close
to the critical value 1. How does f(n, cn) depend on c = 1 + ε for small ε?

Theorem 6 For any fixed ε > 0, (1 + ε − [ε3/3 − 3ε4/8 ± O(ε5)])n .

f(n, (1 + ε)n); also, there exist absolute constants α0 and ε0 , such that for
any fixed 0 < ε < ε0 , f(n, (1 + ε)n) . (1 + ε− 1

3α0ε
3/ ln(1/ε))n.

That is, a constant fraction of the clauses must remain unsatisfied, but
this fraction — ε3/3 at most for ε sufficiently small — is surprisingly small.
The lower bound is proved by using the “differential equation method” (see
for example [Wor95]) to exactly analyze a version of the unit-clause heuris-
tic. The upper bound’s proof is a simple first-moment argument; however,
for the probability that a sub-formula with density > 1 is satisfiable, it
requires the exponentially small bound given by Bollobás et al. [BBC+01]
(see Theorem 9 below). It is likely that, by replacing our use of [BBC+01]
with structural properties of the kernel of a sparse random graph, the upper
bound’s ε3/ ln(1/ε) could be replaced by ε3 to match the lower bound up
to constants (see the Remarks in Section 5.2.5 and [J LR00, p. 123]).

The major significance of [BBC+01] was to determine the “scaling win-
dow” for random 2-sat. Without using their result, we prove an analogous
result for max 2-sat, and incidentally reproduce most parts of their 2-sat
result.

Theorem 7 Letting c = c(n) = 1 + ε(n) = 1 + λ(n)n−1/3 , for ε = o(1)
(λ = o(n−1/3)) we have

bcnc − f(n, bcnc) =











O(λ3) if λ > 1;

Θ(1) if −1 6 λ 6 1;

Θ(|λ|−3) if λ < −1.
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Furthermore, for λ > 1, for some positive absolute constant κ and any
β > 0,

Pr
(

(bcnc −max F (n, bcnc)) > κβ3λ3
)

6 exp(−Ω(β)).

Also,

Pr(F (n, cn) is satisfiable) =











exp(−O(λ3)) if λ > 1;

Θ(1) if −1 6 λ < 1;

1−Θ(|λ|−3) if λ < −1.

In particular, in the scaling window c = 1 ± λn−1/3 , a random formula
is satisfiable with probability which is bounded away from 0 and 1 (the
exact bounds depending on λ), and it can be made satisfiable by removing
a constant-order number of clauses (the constant depending on λ).

In section 6, for max k-sat, we derive analogous results only for c large,
reflecting the general state of ignorance regarding the k-sat phase transi-
tion. (For some results on scaling windows for k-sat see [Wil02].) Still more
generally, Theorem 16 describes the high-density case for any max csp.
More interestingly, for random max k-sat (including k = 2) we observe
that max F is concentrated about its expectation f(n, cn) (as previously re-
marked in [BFU93]) and that f(n, cn)/(cn) is monotone non-increasing in c.
Were f(n, cn)/(cn) also monotone in n, an important property analogous
to the satisfiability conjecture would follow; we present this as a conjecture
for general max csps.

In section 7 we consider online versions of max 2-sat, for one of which
we prove that a natural greedy algorithm is optimal.

Results for the max cut problem for sparse random graphs, which is
closely analogous to random max 2-sat, are presented in section 8.

4 Random MAX 2-SAT

4.1 Sub-critical MAX 2-SAT

One of the most basic facts concerning max 2-sat is that for constants
c < 1, the expected number of clauses unsatisfied is o(1). This is refined by
Theorem 4, which shows the number to be Θ(1/(ε3n)). We now prove the
theorem.

Theorem 4: Proof. We write the proof in the sat equivalent of the
“G(n, p)” model, because the expressions for the probability of a clause’s

11
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u = w0

wi wj

v = wk+1

Figure 2: Sequence of clause-derived implications for a bicycle. Start the
walk from u, proceed clockwise to wi (which equals either u or ū), continue
right to wj , and again go clockwise to terminate at v (which equals either
wj or w̄j ).

presence are cleaner in this model, but adaptation to the G(n, m) model is
immediate.

A k-bicycle (see Figure 4.1) is a sequence of clauses {ū, w1} , {w̄1, w2} ,
. . . , {w̄k, v} where literals w1, w2, . . . , wk are distinct as variables (none is
the same as nor the complement of another) and u ∈ {wi, w̄i}, v ∈ {wj , w̄j}
for some 1 6 i, j 6 k. (Think of it as a “walk” in which the first and last
variables are also both visited en route.) Because satisfying a clause {ū, v}
means that if u is true then v must be true, such a clause yields an implica-
tion u → v (and a complementary implication v̄ → ū); Figure 4.1 represents
such a sequence of implications for a bicycle. Chvátal and Reed [CR92] ar-
gue that if a formula is infeasible then it contains a bicycle. Thus if we
delete an edge from every bicycle, the remaining subformula is satisfiable.

The number of potential k-bicycles, whether or not present in a
given formula F , is at most (2k)2(2n)k . The probability that all k + 1
clauses of a given bicycle are present in a random formula F is at most
[(cn)/(22

(

n
2

)

)]k+1 = [c/(2(n− 1))]k+1 , so the expected number of k-bicycles
is . (2k)2ck+1/(2n). If we delete one edge in every bicycle, we obtain a
satisfiable formula. For any fixed c = 1− ε < 1,

n
∑

k=1

(2k)2ck+1/(2n) =
2(2− ε)(1− ε)2

ε3n
+ exp(−Ω(εn)).

Thus, the expected number of edges we need to delete is at most O(1/(ε3n))
and f(n, bcnc) > bcnc −O(1/(ε3n)).

To obtain the lower bound we show that with probability at least
Θ(1/(ε3n)) the formula F is not satisfiable. This clearly implies an up-
per bound f(n, bcnc) 6 bcnc − Θ(1/(ε3n)). To this goal we employ the
second moment method.

For simplicity here, we will restrict ourselves to 3-bicycles, which will
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only establish “Θε(1/n)”, that is, something of order Θ(1/n) but with hid-
den constants that may depend on ε. The full proof is the same but using
bicycles of lengths up to 1/ε, not just length 3, and parallels the proof of
Theorem 7, case λ 6 −1. (In fact, taking λ = λ(n) = εn1/3 there establishes
the current theorem completely.)

Consider 4-tuples of clauses of the form {ū1, u2} , {ū2, ū1} , {u1, u3} , {ū3, u1},
where u1, u2, u3 are arbitrary variables. One observes that this sequence
of clauses is a 3-bicycle, and, moreover, its presence in the random for-
mula F implies non-satisfiability. We now show, using second moment
method, that the number B3 of such bicycles is at least one with prob-
ability at least Ω(1/n). We have E[B2

3 ] =
∑

P(X ∈ F, X ′ ∈ F ), where
the sum runs of over the pairs of 3-bicycles X, X ′ of the form above, and
X ∈ F means all the clauses of X are present in F . We decompose the
sum into three parts: the sum over pairs X, X ′ with X = X ′ , the sum
over pairs that do not have common clauses and the rest. It is easy to see
that the first sum is simply E[B3] which is Θ(1/n), by the argument for up-
per bound. To analyze the second sum note that for each fixed pair X, X ′

with no common clauses, we have P(X, X ′ ∈ F ) = P(X ∈ F )P(X ′ ∈ F ),
when replacement of clauses is allowed. (When replacement is not allowed
the reader can check that the difference between the left and the right-
hand sides is very small, and the rest of the argument goes through).
Then, this sum is smaller than

∑

X,X′ P(X ∈ F )P(X ′ ∈ F ) = (E[B3])2 ,
where the sum now runs over all the pairs X, X ′ . For the third sum
we have two cases. First case is pairs X, X ′ defined on the same set
of variables. For example X = {ū1, u2} , {ū2, ū1} , {u1, u3} , {ū3, u1} and
X ′ = {ū1, u2} , {u2, u1} , {ū2, u3} , {ū3, ū2}, share one clause {ū1, u2} and
are defined over the same set of variables. There are O(n3) choices for the
variables u1, u2, u3 in these pairs. But since X 6= X ′ then there are alto-
gether at least five clauses in X and X ′ together. For a given pair, the
probability that all these clauses are present in F is O(1/n5). Then the
expected number of such pairs X, X ′ ∈ F is O(1/n2) = o(1/n).

The second case is pairs X, X ′ defined over different set of variables.
Since they share a clause then the pair is defined on exactly four vari-
ables. But then there are at least six clauses in this pair. We obtain that
the expected number of such pairs X, X ′ which belong to F is at most
O(n4)O(1/n6) = O(1/n2) = o(1/n).

We conclude that E[B2
3 ] = E[B3] + o(1/n) = Θ(1/n) + o(1/n). We

now use the bound P(Z > 1) > (E[Z])2/E[Z2], which holds for any non-
negative integer random variable Z . Applying this bound to B3 we obtain
P(B3 > 1) > (E[B3])2/E[B2

3 ] > Θ(1/n2)/(Θ(1/n) + o(1/n)) = Θ(1/n). This

13



completes the proof. �

It is worth pointing out the following simple fact, upon which we will
shortly improve.

Remark 8 For c > 1, f(n, cn) & n( 3
4c + 1

4).

Proof. It suffices to show that for any ε > 0, for all n sufficiently large,
f(n, cn) > (3

4c+ 1
4−ε)n. Select the first (1−ε)n clauses, and let ~X be a best

assignment for it. By Theorem 4, ~X satisfies an expected (1− ε)n− o(1) of
these first clauses. Also, an expected 3/4ths of the remaining (c − 1 + ε)n
clauses are satisfied, yielding the claim. �

4.2 High-density random MAX 2-SAT

While it is well known that for c > 1, F (n, cn) is a.a.s. unsatisfiable, is
it possible that even for c large, almost all clauses are satisfiable? Theo-
rem 5 rules this out by showing that a constant fraction of clauses must go
unsatisfied; up to a constant, it also provides a matching lower bound.

Theorem 5: Proof of the upper bound. The proof is by the first-moment
method. A referee pointed out that “it seems odd to begin an estimate of the
first moment with the first-moment method”, but that is exactly what we
do: We get at the expectation of max F through the probability that F has
a satisfiable subformula of some size, which (by the first-moment method)
is at most the expected number of such subformulas. It is a little odd.

If max F > (1−r)cn then there is a satisfying assignment of a subformula
F ′ which omits rcn or fewer clauses, and where (taking F ′ to be maximal)
all the omitted clauses are unsatisfied. Any fixed assignment satisfies each
(random) clause of F ′ w.p. 3/4 and dissatisfies each omitted clause w.p. 1/4,
so by linearity of expectations, the probability that there exists such an F ′

is

P = P(∃ satisfiable F ′) 6 2n
rcn
∑

k=0

(

cn

k

)

(
3

4
)cn−k(

1

4
)k.

For r < 1
4 the last term is the largest and the sum is dominated by rcn

times the last term. From Stirling’s formula n! '
√

2πn (n/e)n ,
(

cn

rcn

)

' 1/
√

2πr(1− r)cn · (r−r(1− r)−(1−r))cn.(3)

14



Substituting (3) into the previous expression,

P . 1/
√

2πr(1− r)cn · 2n · rcn · (r−r(1− r)−(1−r)(3/4)1−r(1/4)r)cn.

Substituting r = 1/4− ε,

1

cn
ln P . ln(2)/c− (8/3)ε2 + O(ε3) + ln(rcn)/(cn),

so that for ε >
√

(3/8) ln 2/c, as n →∞, P → 0. The conclusion follows.

Theorem 5: Proof of the lower bound. The proof is algorithmic. When
variables X1, . . . , Xt have been set, define the reduced formula Ft in which
any clause containing a True literal is removed and “scored”, and False lit-
erals are removed from the remaining clauses. Define a potential function
q(Ft) to be the number of clauses already satisfied, plus 3/4 the number of
2-variable clauses (“2-clauses”), plus 1/2 the number of 1-variable clauses
(“unit clauses”). (Clauses with 0 variables remaining are permanently un-
satisfied.) At this point, set Xt+1 in whichever of the two ways gives an
Ft+1 with larger value q(Ft+1). (Ties may be broken arbitrarily.) We now
analyze this algorithm.

We will work in a model F̃ (n, m), with a set of (2n)2 ordered clauses,
allowing improper ones involving the same variable twice, and (as before)
taking precisely m clauses uniformly at random with replacement from this
set. The expected number of improper clauses in F̃ (n, c) is only Θ(c), and
our conclusions for F̃ (n, cn) carry over directly to F (n, m).

At any time t, randomly assigning the remaining variables satisfies (for
any formula) an expected total number of clauses precisely q(Ft), so some
assignment must achieve at least this. I.e., q(Ft) is a lower bound on the
number of clauses satisfiable, q(F0) = 3

4cn, and we will focus on the incre-
ments Ft+1 − Ft .

In Ft , let the number of appearances of Xt and X̄t in unit clauses be
denoted by A1 and Ā1 , and their number of appearances in 2-clauses by A2

and Ā2 . If Xt+1 is set to True, then

q(Ft+1)− q(Ft) = ∆t
.
=

1

2
(A1 − Ā1) +

1

4
(A2 − Ā2),

and if Xk is set False, then q(Ft+1)− q(Ft) = −∆t . Thus q(Ft+1)− q(Ft) =
|∆t|.

For most of the analysis we will only consider values of t between δn and
(1− δ)n, where δ > 0 is any small value of our choosing. (We will take δ to
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0 at the end of the proof.) Having chosen δ, we will consider only c > c0(δ),
for some function c0 implicitly specified by the proof.

In the F̃ model, the number of clauses m2(xn) containing none of
the first xn variables is distributed as B(cn, (1 − x)2), with expectation
µ2 = cn(1 − x)2 . For δ 6 x 6 1 − δ, by the Azuma-Hoeffding inequality,
Pr(|B(cn, (1 − x)2) − µ2| > λ) 6 2 exp(−2λ2/(cn)). Setting λ = n−1/3µ2 ,
Pr(|m2−µ2| > n−1/3µ2)) 6 2 exp(−2n1/3cδ4). Summing over the < n steps
under consideration, the probability that m2 ever fails to be within 1±n−1/3

times its expectation is exponentially small, and we may simply ignore these
cases.

The same will be true of m1 , the number of unit clauses, but the argu-
ment has additional complications. Denote by M ′

1 the set of clauses con-
taining exactly one of the first xn variables: these include the m1 unit
clauses and also already-satisfied clauses. m′

1 = |M ′
1| is distributed as

B(cn, 2x(1 − x)), with expectation µ′1 = 2cnx(1 − x), and depends only
on the random formula, not the algorithm. By the same argument as for
m2 , we may safely assume that for all δ 6 x 6 1− δ, m′

1(xn) is within the
range (1± n−1/3)µ′1 .

Let L′1 ∈ [2xn]m
′
1 be the identities (“labels”) of the set literals in the

clauses M ′
1 . The True or False settings ~X of the xn variables, together with

L′1 , determine which of the m′
1 clauses are satisfied clauses, and which are

unit clauses contributing to m1 ; let us write m1 = m1(L′1, ~X). It is hard to
characterize the setting ~X produced by the algorithm, and with it the “true”
value of m1 , but for any ~X , m1(L′1, ~X) 6 m1(L′1)

.
=
∑xn

τ=1 max{sτ , s̄τ},
where sτ and s̄τ are the numbers of occurrences in L′1 of Xτ and X̄τ .

Let us first consider the expectation of Em1 over random L′1 , which is xn
times E max{s1, s̄1}. Now s1 and s̄1 are respectively the number of heads
and tails in a number of coin tosses itself distributed as B(m′

1, 1/(xn)),
so this is no longer a question about an algorithm or random process but
simply a pair of random variables. We may assume that m′

1 = 2cnx(1 −
x)(1 + on(1)), and in this case the Chernoff bound (1) shows that Pr(s1 −
m′

1/(2xn) > k
√

c) 6 exp(−k2c/[(2c(1 − x) + 2
3k
√

c)]) 6 exp(−k/4), for
k, c > 1. The probability that either s1 or s̄1 is “large” is at most twice
this, proving E max{s1, s̄1} = m′

1/(2xn) + O(
√

c). We conclude that there
is a universal k0 such that for c sufficiently large,

1

2
m′

1 6 Em1 6
1

2
m′

1 + k0

√
cxn.(4)

The Azuma-Hoeffding inequality (Theorem 3) shows that for random
labelings L′1 , m1(L′1) is tightly concentrated around the mean given by
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(4). Two labelings differing in a single label give values of m1 differing
by at most 2, so even if m′

1 were fully cn, Pr(|m1 − Em1| >
√

cn) 6

2 exp(−2cn2/(4cn)). Even when multiplied by the < n steps the algorithm
runs, there is only a negligible, exponentially small probability of encounter-
ing such a labeling (which is determined by the initial random formula and
the number of variables xn that have been set, independent of how they are
set).

Similar, slightly easier arguments apply to m1 , and m1 6 m1 6 m1 , so
we may assume that for all δ 6 x 6 1−δ, |m1(xn)−cnx(1−x)(1+on(1))| 6
6
√

c and (as before) that |m2(xn)− cn(1− x)2| 6 n−1/3cn(1− x)2 .
Conditioned on any “history” giving values m1(xn) and m2(xn) in the

presumed ranges, for t = xn,

E|∆t| .
= E|1

2
(A1 − Ā1) +

1

4
(A2 − Ā2)|,

where A1 and Ā1 are each distributed as B(m1, 1/(2(1−x)n)), and A2 and
Ā2 as B(2m2, 1/(2(1 − x)n)). Again, this is no longer a question about
an algorithm or random process but simply about four random variables.
While the values within each pair are not independent, for large n (and
uniformly over all δ 6 x 6 1 − δ), the constituents of ∆t converge to
independent Poissons or Gaussians. Specifically, (A1 − EA1)/

√
c converges

in distribution to N(0, 1
2x) and (A2 − EA2)/

√
c to N(0, 1 − x), the same

is true for Ā1 and Ā2 , and the joint distribution of the four “rescaled”
variables converges to that of four independent Gaussians. The expectation
of the given linear function of the original variables thus converges to (a
rescaling back of) the same function of the Gaussians, whose distribution is

a single Gaussian Z whose variance is σ2
Z = 2 · 1

2

2 · x + 2 · 1
4

2 · (1 − x). It

is well known that E|N(0, σ2)| =
√

2/πσ, and ∆t has mean exactly 0 (by
symmetry), so E|∆t| =

√
cE|(∆t−E∆t)/

√
c| =

√
c(1 + oc(1) + on(1))E|Z| =

(1 + oc(1) + on(1)) ·
√

2/π
√

c
√

1
2x + 2(1− x).

We conclude that the expected number of clauses satisfiable is at least

q(Fn) > q(F0) +

(1−δ)n
∑

t=δn

E|∆t|

>
3

4
cn + (1 + oc(1) + on(1))

√

2/π
√

c n

∫ 1−δ

δ

√

1

2
x + 2(1− x) dx

=
3

4
cn +

√
8− 1

3
√

π

√
c n · (1 + oc(1) + oδ(1) + on(1)).
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Taking δ → 0 and c →∞ together appropriately yields the claim: the oδ(1)
is subsumed into the oc(1), we write −oc(1) to highlight the pessimistic
possibility, and the on(1) is expressed by the Theorem’s “.” notation. �

We remark that in the preceding proof, Xk was set True or False so as to
maximize half the number of satisfied unit clauses plus a quarter the number
of satisfied 2-clauses. This is reminiscent of the “policies” in [AS00]. There,
the goal was to satisfy as a dense a 3-sat formula as possible; unit clauses
always had to be satisfied, and variables were set so as to maximize a linear
combination of the number of satisfied 2-clauses and 3-clauses. In [AS00],
the linear combination which was optimal for the purpose changed during the
course of the algorithm; the determination of the optimal combinations, and
the proof of optimality, was a main result of the paper. In the present case,
though, it is evident that the ratio 1:2 is optimal: for c large, the potential
function q predicts the expected number of clauses satisfiable almost exactly.
The difference can be ascribed to the fact that here c is “large”, and in [AS00]
the corresponding parameter (the initial 3-clause density) was fixed (relevant
values were in the range of 3.145 to 3.26). Were we to try to tune the max

2-sat algorithm above for small values of c, more complex methods like
those of [AS00] would presumably be needed.

4.3 Low-density random MAX 2-SAT

For low-density formulas, with c = 1 + ε and ε > 0 a small constant, the
bounds of Theorem 5 are inapplicable. It is still true (from Remark 8) that
we expect to satisfy at least (1 + 3

4ε)n clauses, but it is not obvious whether
the best answer is this, or close to the full number of clauses (1 + ε)n, or
something in between. In this section we prove Theorem 6 which shows that
(1 + ε)n − f(n, cn), the number of clauses we must dissatisfy, lies between
Θ(ε3n/ ln(1/ε)) and Θ(ε3n). That is, a linear fraction of clauses must be
rejected, but this fraction, at most Θ(ε3), is surprisingly small. We will
employ the following theorem of Bollobás et al. [BBC+01] on random 2-
sat.

Theorem 9 ([BBC+01], Corollary 1.5) There exist positive constants α0

and ε0 such that for any 0 < ε < ε0 and sufficiently large n, P[F (n, (1 +
ε)n) is satisfiable] 6 exp(−α0ε

3n).

(Here, α0 is the lim inf of the constant implicit in Θ in the theorem
in [BBC+01].) The exp(−Θ(ε3n)) probability of satisfiability in random
2-sat translates into an expected O(ε3n/ ln(1/ε)) unsatisfied clauses in ran-
dom max 2-sat.
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Theorem 6: Proof of the upper bound. The proof is by the first-moment
method. Let c = 1 + ε. Let F ′ range over subformulas of F which omit rcn
or fewer clauses. Specifying r < 1/4, the conditions of Theorem 9 apply, so

P = P(∃ maximally satisfiable F ′) 6

rcn
∑

k=0

(

cn

k

)

(
1

4
)ke−α0(ε− k

n
)3n;(5)

as r < 1/4, the sum is dominated by the last term. Using (3) to approximate
(

cn
crn

)

,

1

cn
ln P . −r ln r − (1− r) ln (1− r)− α0(ε− cr)3/c− r ln(4).

First observe that as ε → 0, for any r = o(ε), this is

= −r ln r(1 + o(1))− α0ε
3(1 + o(1))− r ln(4).

For any constant b < 1/3, if r = bα0ε
3/ ln(1/ε), this is

= 3bα0ε
3(1 + o(1))− α0ε

3(1 + o(1)) < 0.

That is, it is unlikely that asymptotically fewer than (1/3)α0ε
3/ ln(1/ε)

clauses can go unsatisfied.

Theorem 6: Proof of the lower bound. The proof is algorithmic, and of the
sort familiar from [AS00] and similar works. It analyzes a variation on the
“unit-clause” heuristic through the differential equation method. Initially,
“seed” the algorithm by artificially adding some number δn of unit clauses,
where δ = δ(ε) will be very small. While F has any unit clauses, select one
at random and set its variable to satisfy the clause. Continue until no unit
clauses remain. The analysis consists of counting the clauses unsatisfied in
these steps, and justifying the assertion that when there are no more unit
clauses, o(1) further clauses need be unsatisfied.

When t variables have been set, let the number of 2-clauses be denoted
m2(t), and the number of unit clauses m1(t). In one step, assuming that
m1 > 0 before the step, the expected changes in these quantities are

E(∆m2) = − 2m2

n− t
= −2m2

n

1

1− t/n
,(6)

E(∆m1) = −1− m1

n

1

1− t/n
+

m2

n

1

1− t/n
.(7)
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These (small) random changes are predictable in the long run: the analysis
is a fairly standard application of the differential equation method. We use
the “packaging” of the method given by Wormald’s [Wor95, Theorem 2].
Theorem 2 is too long to re-state explicitly, but we will summarize the
hypotheses and conclusion as we show how they apply to our process.

The first hypothesis is that, over the entire space, ∆m1 and ∆m2 have
“light tails”. For Wormald’s Theorem 2, choosing “w”= n0.6 and “λ”= n0.1 ,
it suffices to show that, conditioned on any “history” of the process up
to time t, for i = 1, 2, Pr(|∆mi| > n0.2) = o(n−3). The changes ∆mi

are bounded by the number of appearances of the variable Xt , which is
dominated by a binomial random variable B(2cn, 1/(n− t)). For t 6 n/2,
the Chernoff bound (1) gives Pr 6 exp(−n0.2), which is better than needed.
We treat t > n/2 (which will not be of genuine interest) by replacing the
algorithmic random process with an artificial one in which the changes ∆mi

are deterministically those given by the right-hand sides of (6) and (7).
While we are at it, we will also artificially apply (7) even for m1 6 0; it will
be seen that during the period to which we apply the differential-equation
analysis, this condition will never be relevant.

The second condition needed by Wormald’s theorem is that the expected
changes in ∆mi must be expressible as Emi = fi(t/n, m1/n, m2/n) + o(1).
Equations (6) and (7) do so.

The third and final condition needed is that the functions fi(s, z1, z2)
should be Lipschitz continuous in some open connected domain D with
prescribed properties. The subspace D with |s| < 1/2, |zi| < 2c will do,
and it is clear that the functions are Lipschitz here.

The first conclusion is that for a given initial condition (0, z1, z2), the
differential equations dzi/ds = fi(s, z1, z2) have a unique solution z(s). In
our case, starting with z2(0) = c and z1(0) = δ the solution is simply

z2(s) = c(1− s)2

z1(s) = cs(1− s) + (1− s) ln(1− s) + δ(1− s).(8)

The second conclusion is that, starting from mi/n = zi , the random process
almost surely satisfies mi(t) = nzi(t/n) + o(n).

Equation (8) gives z1 = 0 only when s = s? satisfies

c =
− ln(1− s?)− δ

s?
.(9)

Although both s? and δ are functions of c, it is more convenient to
parametrize c and δ as functions of s? . At this point, we will define δ = s?5 .
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Equation (9) is important because it justifies the assumption m1 > 0 (made
before equation (6)) for all fixed s < s? . Once m1 = 0 (which a.a.s. will
occur at some time s ∈ [s?−δ, s?+d]) we will halt the algorithm and analyze
the remaining formula by other means. To first order, (9) gives c = 1 + ε
when s? = 2ε, and thus for ε sufficiently small, our earlier limitation to
t 6 n/2 is also justified.

While s < s? , the only clauses ever unsatisfied are unit clauses which
contain the negation of the variable being set, and the expected number of
such rejected clauses per step is m1/(2(n− t)) = z1/(2(1− s)). Integrating
over the period 0 to s? ,

∫ s?

0

z1

2(1− s)
ds =

1

2

∫ s?

0
(cs + ln(1− s) + δ) ds

=
1

2

(

cs2/2− (1− s) ln(1− s)− s + δs
)

∣

∣

∣

∣

s?

0

which, substituting for c from (9)

= −1

4
(2− s?) ln(1− s?)− 1

2
s? +

1

4
δs?.(10)

From s = 0 to s = s? , the number of clauses dissatisfied by the algo-
rithm is a.a.s. a.e. n times expression (10). At time s = s? , the remaining
(uniformly random) 2-sat formula has density z2 / (1 − s?) = c(1 − s?) =
− ln(1−s?)−δ

s? (1− s?); with δ = s?5 , this is 1− s?/2−O(s?2), which is < 1 for
s? sufficiently small. Thus by Theorem 8 the remaining formula contributes
o(1) to the expected number of unsatisfied clauses.

In short, the number of clauses not satisfied is a.a.s. a.e. n times ex-
pression (10). For s? asymptotically close to 0 and with δ = s?5 , this is
n(s?3/24 + s?4/24 +O(s?4)), while from (9), c = 1 + s?/2 +O(s?2). Return-
ing to the original parametrization, with ε > 0 asymptotically small and
c = 1 + ε, s? = 2ε − 8ε2/3 ± O(ε3), and the number of dissatisfied clauses
is a.a.s. n(ε3/3− 2ε4/3±O(ε4))(1 + on(1)). �

Three remarks. First, the δn artificial unit clauses are introduced solely
to exclude the possibility that m1 = 0 at some early time, long before the
time of about 2ε (for c = 1+ε) when the work is really done. This simplifies
the proof but is not necessary: if we use the shortest-clause rule, there may
be a few early revisits to m1 = 0, but then m1 will “take off” and not
return to 0 until time about 2ε. Our proof for the “scaling window” result
of Theorem 7 uses this approach. So let us now imagine δ = 0.
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In that case, our second remark is that in addition to the asymptote,
the proof gives a precise parametric relationship (as functions of s?) be-
tween the clause density c (given by (9)) and the rejected-clause density
(given by (10)). For example, for c = 1.5 we find rejected-clause density
≈ 0.0183275, and for c = 2 — where naively the rejected-clause density
would be 1

4c = 0.5 — we achieve rejected-clause density ≈ 0.0809517.
Third, with the solution in hand, the asymptotic behavior is easy to

see without the need for differential equations. This approach is not here
presented formally, but it is more intuitive and more robust, and is the basis
for the analysis within the scaling window (see Theorem 7).

Theorem 6: Informal argument for the lower bound. Consider what hap-
pens when m = (1 − δ)n variables remain unset. The number of 2-clauses
is a.a.s. m2 ' (1− δ)2(1 + ε)n ' (1 + ε− 2δ)n. The expected increase in the
number of unit clauses is then E(∆m1) = −1−m1/m+m2/m > −1+m2/m
(and the neglected m1/m is not only conservative, but will also prove to be
insignificantly small). Thus, E(∆m1) > −1+[(1+ε−2δ)n]/[(1−δ)n] ' ε−δ.
At δ = 0, the number of unit clauses increases by ε per step, this increase
linearly falls to 0 per step by δ = ε, and further to −ε by δ = 2ε: the
expected number of unit clauses is bounded by an inverted parabola, with
base 2εn and height 1

2ε2n. At each step about 1/(2n)th of the unit clauses
get dissatisfied. The area under the parabola, times this 1/(2n) factor, is
2
3 · base · height · 1/(2n) = 1

3ε3n. �

5 The MAX 2-SAT scaling window

For random max 2-sat, we have seen that for fixed c < 1, bcnc −
f(n, bcnc) = Θ(1/n), and for c > 1, cn− f(n, cn) = Θ(n). That is, random
max 2-sat experiences a phase transition around c = 1. It is natural to ask
about the scaling window around the critical threshold: What is the interval
around c = 1 within which bcnc − f(n, bcnc) = Θ(1)? Theorem 7 shows
that the scaling window is c = 1 ± Θ(n−1/3). The corresponding question
for random 2-sat is the range in which P(F (n, bcnc) is satisfiable) = Θ(1).
This was shown by [BBC+01] to be c = 1 ± Θ(n−1/3) with their result
reproduced as Theorem 10 here.

Theorem 10 (Bollobás et al, [BBC+01]) Let F (n, cn) be a random 2-
sat formula, with c = 1+λnn−1/3 . There are absolute constants 0 < ε0 < 1,
0 < λ0 < ∞, such that the probability F is satisfiable is: 1 − Θ(1/|λn|3),
when −ε0n

1/3 6 λn 6 −λ0 ; Θ(1), when −λ0 6 λn 6 λ0 ; and e−Θ(λ3
n), when
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λ0 6 λn 6 ε0n
1/3 .

That the two scaling windows are the same is no coincidence, and in fact
Theorem 7 reestablishes much of Theorem 10 independently. Unfortunately,
our theorem does not capture everything one would like to know about the
scaling window.

Theorem 7: Proof. Note that, provided we prove the bounds for the cases
λ 6 −1 and λ > 1, the bound for the case |λ| < 1 follows immediately, since
we obtain that the probability of satisfiability is at least exp(−O(λ3)) >

exp(−O(1)) and at most 1 − Θ(1/|λ|3) 6 1 − Θ(1), where in both cases
|λ| < 1 was used. The more interesting cases |λ| > 1 are considered in the
two subsections below.

5.1 Case c = 1 + λn
−1/3, λ 6 −1

For convenience we write c = 1 − λn−1/3 and λ > 1. The proof for this
case is very similar to that of Theorem 4 and uses the notion of bicycles.
(As in the earlier case, we work in the equivalent of the G(n, p) model for
notational convenience, with the understanding that the proof works equally
well in the G(n, m) model.) As before, the number of clauses that must be
dissatisfied is bounded by the number of bicycles. The expected number of
k-bicycles is at most (2k)2ck+1/(2n) = (2k)2(1 − λn−1/3)k+1/(2n). Using

the formula
∑

k>1 k2ρk = ρ(1+ρ)
(1−ρ)3

which for ρ ' 1 is ' 2/(1− ρ)3 , we have

∑

16k<∞
(2k)2(1− λn−1/3)k+1/(2n) ' 4/λ3.(11)

Therefore bcnc − f(n, bcnc) = O(1/λ3). By the first-moment method, the
probability that the formula is unsatisfiable is at most the expected number
of bicycles, that is, at most O(1/λ3).

We now obtain a matching lower bound. Consider only “bad” bicycles,
in which u = w̄i , v = w̄j , and i < j . Note that no bad bicycle is completely
satisfiable, since the first “wheel” u → · · · → wi = ū requires u = False
and thus wi = True; whereupon the path (technically called the “top tube”
of a bicycle) wi → · · · → wj implies wj = True; and the second wheel
wj → · · · → v = w̄j provides a contradiction. Note that about 1/8th of the
potential bicycles are bad.
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Let Bk denote the number of bad k-bicycles. Since

E(#unsatisfiable clauses) > Pr(F unsatisfiable)(12)

> Pr(
∑

k6K

Bk > 1),

it suffices to prove that this is

= Ω(1/λ3);(13)

we will show this for K = (1/λ)n1/3 . Repeating the argument for (11), we
obtain that

E[
∑

k6K

Bk] & (2/(8e))/λ3,

the 1/(8e) coming from the series’ truncation at K and the use of only bad
bicycles. To obtain (13) it suffices to prove that

E[(
∑

k6K

Bk)2] = (1 + O(1)) · E[
∑

k6K

Bk],(14)

for then

P(
∑

k

Bk > 1) >
(E[
∑

k Bk])2

E[(
∑

k Bk)2]
=

(E[
∑

k Bk])2

E[
∑

k Bk](1 + O(1))
= Ω(1/λ3).

We will prove (14) with O(1/λ3) filling in for O(1) (recall that λ > 1).
Consider pairs of k, k′-bicycles X, X ′ with k, k′ 6 K . It suffices to show
that for every X ,

∑

X′ 6=X

P(X ′ ⊆ F |X ⊆ F ) = O(1/λ3),(15)

because then

E[(
∑

k

Bk)2] =
∑

X,X′

P(X, X ′ ⊆ F )

=
∑

X

Pr(X ⊆ F ) [1 +
∑

X′ 6=X

Pr(X ′ ⊆ F | X ⊆ F )]

6 E[
∑

k

Bk](1 + O(1/λ3)).
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Establishing (15) is the nub of the proof. First, observe that for any
bicycle X ′ sharing no literals with X , Pr(X ′ ⊆ F | X ⊆ F ) 6 Pr(X ′ ⊆ F ),
and so such bicycles X ′ contribute 6 E

∑

k Bk = O(1/λ3) to the sum.
Given a bicycle X ′ = {u, w1} , {w̄1, w2} , . . . , {w̄k, v}, a sequence of lit-

erals wi, wi+1, . . . , wj from X ′ is defined to be a type I excursion if literals
wi, wj belong to X but literals wi+1, . . . , wj−1 do not (i.e., the sequence
branches off from X and rejoins it). (If j = i + 1, a sequence wi, wi+1 is a
type I excursion if the corresponding clause (w̄i, wi+1) ∈ X ′ does not belong
to X .) A sequence of literals u, w1, . . . , wj in X ′ is defined to be a type II
excursion if the literal wj belongs to X , but u, w1, . . . , wj−1 do not (i.e., a
“prefix” of X ′ merges into X ). Similarly, a sequence wj , wj+1, . . . , v in X ′

is defined to be a type III excursion (i.e., a suffix of X ′ branches off from
X ).

Bicycles X ′ which are neither equal to X nor disjoint from X must
have at least one excursion (and at most one each of excursions of type II
and III). It suffices to establish (15) for such bicycles X ′ . We will just show
that the expected number of bicycles X ′ with one type II excursion, no
type III excursion, and any number r > 0 of type I excursions, is O(1/λ3);
the other three cases (classified by the number of type II and III excursions)
follow similarly.

Since a collection of excursions uniquely defines X ′ , it is enough to
count such collections. Let the lengths of the type I excursions be
m1, m2, . . . , mr > 2 and that of the type II excursion mII , where the length
is defined by the number of literals.

For each type I excursion there are two endpoints (literals) which be-
long to X . Since the size of X is 6 K = (1/λ)n1/3 , there are 6 K2r =
(1/λ2r)n2r/3 choices for all the end points. The ith type I excursion con-
tains mi − 2 literals not from X , so there are at most (2n)mi−2 ways of
selecting them. The excursion contains mi − 1 clauses, all not from X , so
the probability they are all present in F is (1− λn−1/3)mi−1/(2n)mi−1 .

Similarly, for the type II excursion, there are at most K choices for the
endpoint literal wj , which belongs to X , at most K choices for the initial
literal u (which must be the negation of another literal chosen for X ′), and
at most (2n)mII−2 choices for other literals u, w1, . . . , wj−1 . The excursion
contains mII − 1 clauses, all not from X , so the probability that they are
all present in F is (1− λn−1/3)mII−1/(2n)mII−1 .

Combining, we obtain that the expected number of bicycles X ′ con-
taining exactly r type I excursions, one type II excursion, and no type III
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excursions is

#(r, 0, 1) 6
∑

mII ,m1,...,mr>2

(1/λ2r+2)n2r+ 2

3 (2n)mII−2+
∑

i
mi−2r

× (1− λn−1/3)mII−1+
∑

i
mi−r

(2n)mII−1+
∑

i
mi−r

=
1

2r+1λ2r+2nr+ 1

3

∑

mII ,m1,...,mr>2

(1− λn−1/3)mII−1+
∑

i
mi−r.

Note that
∑

mII ,m1,...,mr>2

(1− λn−1/3)mII+
∑

i
mi−r−1

=
∑

mII ,m1,...,mr>1

(1− λn−1/3)mII+
∑

i
mi

=





∑

m>1

(1− λn−1/3)m





r+1

6
1

λr+1n−r+ 1

3

.

Applying this to the equality above we obtain

#(r, 0, 1) 6
1

2r+1λ3r+3
, and

∑

r>0

#(r, 0, 1) 6
1

2λ3 − 1
= O(1/λ3).

With similar calculations for #(r, ·, ·) this establishes (15), and completes
the proof of the case λ 6 −1 of Theorem 7. �

5.2 Case c = 1 + λn
−1/3, λ > 1

The proof of this part resembles our alternate, informal argument for the
lower bound of Theorem 6. There we showed that m1(t) a.a.s. a.e. followed
a parabolic trajectory. Both there and here, at time t = εn, the expectation
given by the parabola is 1

2ε2n, and the typical deviations (the standard devi-
ation) from summing εn binomial r.v.s with distributions near to B(n, 1/n)
is about

√
εn.

In the previous case, with ε = Θ(1), the deviations were a.a.s. tiny
compared with the expectation, but here, with ε = λn−1/3 , if λ = Θ(1)
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Figure 3: Nominal parabolic trajectory of m1(t) vs t, and two random
samples for density 1 + λn−1/3 (λ = 2, n = 10, 000). With λ = Θ(1), the
random fluctuations are of the same order as the nominal values.

the standard deviation
√

λn1/3 is of the same order (in terms of n) as the
expectation 1

2λ2n1/3 : the trajectory is not predictable in an a.a.s. a.e. sense.
Figure 3 shows two typical samples (with λ = 2 and n = 10, 000) against
the nominal parabolic trajectory. The analysis is thus more involved.

As before, we analyze the unit-clause resolution algorithm in which if
there are any unit clauses (if m1(t) > 0) we choose one at random and set
its literal True, and otherwise we choose a random literal (from the variables
not already set) and set it True.

Our analysis proceeds in three phases. Phase I proceeds until time T =
2εn, and we show that in this period, there is an exponentially small chance
that m1 is ever much larger than its expectation. In Phase II, we continue
unit-clause resolution until m1(t) = 0; we show that this happens quickly,
and the number of unit clauses is unlikely ever to grow much beyond its
initial Phase II value. These facts will suffice to give upper bounds on the
sum, over all steps in these phases, of the number of unit clauses at each
step, and in turn on the number of unsatisfied clauses. In Phase III we begin
with a formula of density 6 1−εn, and we simply apply the Theorem’s case
λ 6 −1, proved (non-algorithmically) in Section 5.1.
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5.2.1 Useful facts

We first establish a simple relation, useful for Phase I and essential for
Phase II. The number of 2-clauses remaining (both of whose variables re-
main) at time δn is m2(δn) ∼ B(n(1 + ε), (1 − δ)2). Thus for all times
t 6 1

2n(1 + ε) (much longer than the times Θ(εn) in which we are inter-
ested),

Pr

(

max
δ6 1

2

[

m2(δn)− n(1 + ε)(1− δ)2 > n3/5
]

)

6 exp(−Θ(n1/5)).(16)

We prove (16) using the Chernoff bound (1). To establish (16) we take
(1 + ε)n i.i.d. Bernoullis with pi = (1 − δ)2 . For any fixed δ in (16) this
immediately gives probability exp(−Θ(n6/5/n)), and the sum over the Θ(n)
possible values of δ can be subsumed into the exponential.

In the main we will therefore assume that

m2(δn) 6 n(1 + ε)(1− δ)2 + n3/5,(17)

and deal with the failure case only at the end.
We will also need two simple distributional inequalities. First, a

Bernoulli random variable is stochastically dominated by a similar Poisson
random variable,

Be(p) � Po(− ln(1− p)),

as they give equal probability to 0, and the Bernoulli’s remaining probabil-
ity is entirely on 1 whereas the Poisson’s is on 1 and larger values. (Here
we have written Be(p) and Po(− ln(1 − p)) where we really mean random
variables with those distributions; we shall continue this practice where con-
venient.) Summing n independent copies of such random variables shows
that a binomial is dominated by a similar Poisson,

B(n, p) � Po(−n ln(1− p)).

In particular, for any a, b = Θ(1),

B(an, b/n) � Po(−an ln(1− b/n)) = Po(ab + O(1/n))).(18)

We also recall that the exponential moments of a Poisson random vari-
able are

EzPo(d) = exp((z − 1)d).(19)

We now analyze the unit-clause algorithm in Phases I and II.
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5.2.2 Phase I

During Phase I, assuming (17), at times t = δn,

m2(t) = n(1 + ε)(1− δ)2 + O(n3/5) 6 n(1 + 1.01ε− 2δ),

using ε > n−1/3 . Meanwhile the number of unset variables is m(t) = n(1−
δ), so in particular,

m2(t)/m(t) 6 1 + 1.05ε.(20)

With the random variables below all independent, the unit-clause algo-
rithm gives

m1(t)−m1(t− 1)

= −1 + 1(m1(t− 1) = 0)−B(m1(t− 1), 1/(m(t− 1)))

= +B(m2(t− 1), 1/(m(t− 1)))

6 −1 + 1(m1(t− 1) = 0) + B(m2(t− 1), 1/(m(t− 1)))

6 −1 + 1(m1(t− 1) = 0) + Po(1 + 1.1ε),

where the last inequality uses (18), (20), and 0.1ε � 1/n.
It is easy to see that, starting from m1(0) = m′

1(0), if X(t) 6

Y (t) for all t , if

m1(t)−m1(t− 1) = 1(m1(t− 1) = 0) + X(t− 1) and

m′
1(t)−m′

1(t− 1) = 1(m′
1(t− 1) = 0) + Y (t− 1),

then for all t,

m1(t) 6 m′
1(t).

(An easy proof is inductive. The 1(·) term may contribute to m1 and not
to m′

1 if m1 < m′
1 , but in that case, the inequality still holds.) In a similar

setup but with X(t) � Y (t), coupling shows that m1(t) � m′
1(t).

Thus m1(t) � m′
1(t) where m′

1(0) = 0 and

m′
1(t)−m′

1(t− 1) = −1 + 1(m′
1(t− 1) = 0) + Po(1 + 1.1ε).

Now, let U(t) be a random walk with U(0) = 0 and independent increments

U(t)− U(t− 1) = −1 + Po(1 + 1.1ε),(21)

29



and let V (t) count the “record minima” of U , so V (0) = 0 and V (t) =
V (t − 1) except that if U(t) < minτ<t U(τ), then V (t) = V (t − 1) + 1.
Observe that

m1(t) � m′
1(t) = U(t) + V (t).(22)

(V (t) precisely takes care of the 1(·) terms.)
At this point, we have reduced the behavior of the number of unit clauses

m1(t) to properties of a simple Poisson-incremented random walk.

Renewal process V

We first dispense with V , by showing that

V (∞)
.
= sup

t>0
V (t) � G(2ε),(23)

where G(p) indicates a geometric random variable with parameter p. Start-
ing from any time t0 at which U(t0) is a record minimum (at which
V (t0) = V (t0 − 1) + 1), define U ′(τ) = U(t0 + τ) − U(t0) + 1. Observe
that U ′(0) = 1, and the first time τ for which U(τ) = 0 gives the next time
t0 +τ for which V (t0 +τ) = 1. Thus the number of “restarts” of the process
U ′ is V (∞).

U ′ may be viewed as a Galton-Watson branching process observed each
time an individual gives birth (adding Po(·) offspring to the population)
and itself dies (adding −1). As a super-critical Galton-Watson branching
process, U ′ has a positive probability of non-extinction, and thus the number
of restarts (following extinctions) is geometrically distributed.

Quantitatively, the extinction probability of a Galton-Watson process
with X offspring (the probability the process never hits 0) is well known to
be the unique root p ∈ [0, 1) of

p = E(pX).(24)

(See for example [Dur96, pp. 247–248].) Also, for any p such that p > E(pX),
the probability of non-extinction exceeds 1 − p. In this case, recalling (21)
and (19), we seek p such that

p > E(pX) = exp((p− 1)(1 + 1.1ε))

or equivalently, with q = 1− p,

ln(1− q) > −q(1 + 1.1ε).
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Taking a Taylor expansion around q = 0 and cancelling like terms, it suffices
to ensure that 1

2q + 1
3q2 + · · · < 1.1ε, and q = 2ε suffices (for all ε < 0.37,

let alone the ε = Θ(n−1/3) of interest).
Thus U ′ has non-extinction probability at least 2ε, verifying (23).

Random walk U

We now analyze the random walk U (see (21)) to show that for any 0 <
ε 6 0.02 and 0 < α 6 0.06 (our principal realm of interest will be ε, α =
Θ(n−1/3)), for any time t,

Pr

(

max
06τ6t

U(τ) > EU(t) + αt

)

6 exp(−tα2/2.1).(25)

Observe that U(t) is a submartingale, and for any β > 0 (by convexity of
exp(βu)), exp(βU(t)) is a non-negative submartingale.

Doob’s submartingale inequality (see for example [Nev75, p. 69]) asserts
that for a positive, integrable submartingale Xn , for all n ∈ N and all
a ∈ R+ , a Pr(supm6n Xm > a) 6

∫

{supm6n Xm>a} XndP . Applying the

weaker form Pr(supm6n Xm > a) 6 EXn to 1
a exp(βU(T )) gives

Pr

(

max
06τ6t

U(τ) > EU(t) + αt

)

= Pr

(

max
06τ6t

exp (βU(τ)) > exp (β(EU(t) + αt))

)

6
E (exp(βU(t)))

exp (β(EU(t) + αt))
.(26)

Trivially,

EU(t) = −t + (1 + 1.1ε)t = 1.1εt,(27)

and, by (19),

E (exp(βU(t))) = exp(−βt + β Po((1 + 1.1ε)t))

= exp(−βt) exp((eβ − 1)(1 + 1.1ε)t),

so (26) is

exp(−t[β − (1 + 1.1ε)(eβ − 1) + β(1.1ε + α)]).(28)
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We are free to choose β > 0 as we like, so to minimize (28) we maximize the
innermost quantity. Setting its derivative equal to 0 yields 1−(1+1.1ε)eβ +
1.1ε + α = 0 or β = ln(1 + α/(1 + 1.1ε)), but we will simply take β = α.
Then (eschewing asymptotes in favor of absolute bounds), for ε < 0.02 and
α < 0.06 (let alone the regime ε, α = Θ(n−1/3) of interest), (28) is

6 exp
(

−tα2/2.1
)

,

proving (25).

Parameter substitution and m1

Recall that ε = λn−1/3 with λ > 1, and parametrize time as t = βεn =
βλn2/3 , restricting to β > 1. We will allow values t > n: U(t) is well
defined for all time, and (22) remains true if we define m1(t) = 0 for t > n.
In (25), parametrize α by α = α′/

√
t. Validity of (25) is then guaranteed

up to α′ = 0.06n1/3 , as α = α′/
√

βλn2/3 6 0.06. With these substitutions
for t and α in (25),

Pr( max
τ6βεn

U(τ) > βλ2n1/3 + α′
√

βλn1/3) 6 exp(−α′2/2.1).

I.e., with β, λ > 1, the tails of U(t) fall off exponentially with a “half-life”,√
βλn1/3 , smaller than the bound on the mean, βλ2n1/3 . A weaker but

more convenient form of the above inequality is

Pr( max
τ6βεn

U(τ) > 2α′βλ2n1/3) 6 exp(−Ω(α′2)).(29)

V (∞) has expectation 1/(2ε) = 1
2λn1/3 6 1

2βλ2n1/3 , which is smaller
than the bound on U ’s mean, and (as a geometric random variable) falls
off exponentially with half-life comparable to its own expectation. Thus
from (22), for 1 6 α′ 6 n1/4 6 0.06n1.3 ,

Pr

(

max
τ6βεn

m1(τ) > 3α′βλ2n1/3

)

= exp(−Ω(α′2)) and(30)

Pr

(

βεn
∑

τ=1

m1(τ) > 3α′β2λ3n

)

= exp(−Ω(α′2)).(31)

In particular, with t = 2εn, or β = 2, (30) provides the following bound on
the number of unit clauses m1(t) at the end of Phase I.

Pr

(

max
τ62εn

m1(τ) > 6α′λ2n1/3

)

= exp(−Ω(α′2)).(32)
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The probability of a deviation with α′ > n1/4 is exp(−Ω(n1/2)), and will
be dealt with as a “failure probability” at the end.

5.2.3 Phase II

The analysis of this phase largely parallels the previous one.
Assuming (17), at times t = δn, m2(t)/m(t) is roughly (1 + ε)(1 − δ),

and in particular, since in Phase II by definition δ > 2ε,

m2(t)/m(t) 6 1− 0.95ε.(33)

Since Phase II ends as soon as m1(t) = 0, there is no +1(·) term to
worry about, so assuming (33),

m1(t)−m1(t− 1)

= −1−B(m1(t− 1), 1/(2m(t− 1))) + B(m2(t− 1), 1/(m(t− 1)))

6 −1 + Po(1− 0.9ε).

By the same argument as for Phase I, then,

m1(2εn + t) � m1(2εn) + W (t)

where W (t) is a random walk with W (0) = 0 and independent increments
−1 + Po(1− 0.9ε).

We now fix α1 and condition on Phase I ending with m1(2εn) ≤
α1λ

2n1/3 . Fix α2 > 2α1 . Our next goal is to bound the probability that
the Phase II does not end by time 2εn + α2εn. Such an event occurs only
if W (α2εn) > −m1(2εn) > −α1ε

2n > −1
2α2ε

2n. We have

Pr(W (α2εn) > −1
2α2ε

2n)

= Pr
(

Po(α1εn(1− .9ε)) > E(Po(·)) + 0.4α2ε
2n
)

6 exp

(

− (0.4α2ε
2n)2

α2εn(1− 0.9ε) + 0.4α2ε2n

)

since the Chernoff bound (1) applies as well to the Poisson. Substituting
ε = λn−1/3 , and noting that the denominator’s first term, of order Θ(α2εn),
dominates the second, of order Θ(α2ε

2n), we obtain

Pr(W (α2εn) > −1
2α2ε

2n) 6 exp(−0.42α2λ
3).(34)

Then, conditionally on Phase I ending with m1(2εn) ≤ α1λ
2n1/3

(see (30)), for any α2 > 2α1 , (34) implies that Phase II ends by time
2εn + α2εn, with probability exponential in α2 .
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Furthermore, over Phase II, m1(t) is unlikely ever to increase much over
its initial value. An argument along the lines used in the context of equa-
tion (24) could be constructed to show that maxt>0 W (t) is exponentially
sure to be quite small, but as there are some technical complications, we
take a simple, wasteful approach. Observe that

W (t) � X(t)

where X(0) = W (0) = 0 and X(t) has independent increments −1+Po(1+
1.1ε). This wild over-estimation is useful because X (unlike W ) is a sub-
martingale, to which we apply Doob’s inequality. In fact X is the same
random process as U , so the tail inequality of (29) applies to X in lieu
of U . We obtain that for every α2, α

′ > 1

Pr( max
τ6α2εn

X(τ) > 2α2α
′λ2n1/3) 6 exp(−Ω(α′2)).(35)

We finish the analysis of Phase II by bounding the sum
∑

τ m1(τ) over
the period [0, t], where, as a reminder, t is the end time of Phase II. We
claim that for every α > 1

Pr

(

t
∑

τ=0

m1(τ) > const α3λ3n

)

6 exp(−Ω(α)).(36)

(To save calculation, we will write const for universal constants whose par-
ticular values may vary from equation to equation.) Indeed, applying (32)
we have m1(2εn) 6 αεn with probability at least 1 − exp(−Ω(α2)) >

1 − exp(−Ω(α)). Conditioned on this event, and using α2 = 2α1 we have
that Phase II ends no later than 2εn + 2αεn with probability again at least
1 − exp(−Ω(α)), where λ > 1 is used. Conditioning on this event as well
and applying (35) with α2 = 2α, α′ = α

Pr

(

max
06τ62εn+2αεn

m1(τ) > αεn + 2(2α2)λ2n1/3

)

= exp(−Ω(α2)),(37)

or shortly

Pr

(

max
06τ62εn+2αεn

m1(τ) > const α2λ2n1/3

)

= exp(−Ω(α2)) = exp(−Ω(α2)),

(38)

Combining all the events and recalling ε = λn−1/3 , we obtain

Pr





∑

06τ6t

m1(τ) > const α3λ3n



 = exp(−Ω(α)),(39)

where all the universal constants are subsumed by Ω(·). This is (36).

34



5.2.4 Phases I, II and III

We have argued that over Phases I and II the number of unit clauses m1(t)
is exponentially unlikely ever to exceed a multiple of ε2n = λ2n1/3 , and
that Phase II is exponentially unlikely to end after a multiple of time εn =
λn2/3 , to prove, in (31) and (36), that the summed number of unit clauses
M1 =

∑

τ m1(τ) (summed over times τ from 0 to the end of phase II), is
exponentially unlikely to exceed a multiple of λ3n:

Pr(M1 > const α3λ3n) 6 exp(−α).

By definition of the unit-clause algorithm, at each stage the literals form-
ing the unit clauses are drawn independently at random with replacement
from among the literals not yet set, and so the number of unit clauses dis-
satisfied at each step t is

B(m1(t), 1/(2(n− t))(40)

(where m1(t) is itself a random variable). With probability 1 −
exp(−Θ(n1/4)) these phases end long before time t = n/3, so (40) is
� Po(0.8m1(t)/n), and by independence of the random variables in (40)
(each conditioned on m1(t)) for different times t, the total number of unit
clauses dissatisfied in phases I and II is dominated by Po(0.8M1/n).

Since EM1 = O(λ3n), the Poisson’s expectation is O(λ3), and the num-
ber X of unit clauses unsatisfied over these phases also has EX = O(λ3);
this confirms (for Phases I and II) one assertion of Theorem 7. Fixing
α to be a large universal constant, there is at least constant probability
that M1 6 const λ3n and so the probability that no unit clause is dis-
satisfied is Pr(X = 0) > exp(−O(λ3)), a second assertion of the theo-
rem. Since both M1 and Po(M1/n) have exponential tails, so does X —
Pr(X > α3 const λ3) 6 exp(−α) — a third assertion of Theorem 7. We now
argue that Phase III leaves all these properties intact.

By construction, at the conclusion of Phases I and II the remaining
formula is uniformly random, still on n(1 − o(1)) variables, but now with
density 6 1 − ε 6 1 − n−1/3 . For Phase III we simply argue that, by the
previously proved case λ 6 −1 of this Theorem, such a formula can be
satisfied but for 6 const α clauses, with probability > 1 − exp(−α). This
concludes the proof of the case λ > 1 of Theorem 7. �

5.2.5 Remarks

There is little doubt that for c = 1+λn−1/3 , bcnc−f(n, bcnc) = Θ(λ3), not
just O(λ3) as we proved. We assert this by analogy with Theorem 22, which
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proves exactly this for the maximum cut of a random graph with average
degree np = 1 + λn−1/3 . The proof in that case derives from the fact that
for such parameters, a typical random graph Gn,p has a giant component
whose “kernel” is a random cubic graph on Θ(λ3) vertices [J LR00, p. 123].

For 2-sat, we proved that bcnc− f(n, bcnc) = O(λ3) via the unit-clause
algorithm, but since there is no guarantee that this algorithm is doing as
well as possible, it cannot yield a lower bound. A promising alternative is
to analyze the pure-literal rule, which is guaranteed to make no “mistakes”
as long as it runs, and then to use other methods to analyze the remain-
ing “core” formula. Indeed, concurrently with and independently of our
work, Kim analyzed the pure-literal rule to derive an upper bound similar
to ours [Kim], but a matching lower bound has not yet been produced.

Thinking of a clause (u, v) as a pair of implications ū → v and v̄ → u,
the pure-literal rule is a directed-graph analog of the pruning-away of ver-
tices of degree 1 which gives the 2-core of an undirected graph; from this
mathematically imprecise analogy, we would expect the pure-literal rule to
satisfy most clauses, leaving a “core” formula with Θ(λ3) clauses. Making
such an argument explicit, as presumably Kim has done, is enough to show
that bcnc − f(n, bcnc) = O(λ3); if one could additionally show that a con-
stant fraction of the clauses in the core formula must go unsatisfied, that
would give the Θ(λ3) bound desired.

Assuming that such a program is successful, it may well yield another
proof of the [BBC+01] result that Pr(F (n, cn) is satisfiable) = exp(Θ(λ3))
(just as we have already obtained another proof that the probability is
exp(−O(λ3))). Whether such a proof would be simpler than that in
[BBC+01], and thus whether the order parameter max F (which in our
view is more natural) will prove as useful as the spine, remains to be seen,
and may also be a matter of personal taste. Of course, simplifications of
[BBC+01] may be obtained by other means, too. For example, Verhoeven
[Ver01, p. 27 and Appendix B] gave a relatively simple analysis of the “left”
scaling window 1 − λn−1/3 using the “bicycle” approach from [CR92], but
(as a reading of our Section 5 exemplifies) this regime is always easier than
the “right” 1 + λn−1/3 one. (Verhoeven also gave a comparatively simple
branching-process proof that for λ(n) →∞, formulas of density 1 + λn−1/4

are a.a.s. unsatisfiable [Ver99]; we do not know if it could be adapted to
prove the 1 + λn−1/3 that [BBC+01] showed to be the true limit of the
scaling window.)
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6 Random MAX k-SAT and MAX CSP

In this section we present some general facts and conjectures about max

k-sat and max csp, and generalize the 2-sat high-density results.

6.1 Concentration and limits

It is known that random k-sat has a sharp threshold: that is, there exists
a threshold function c(n) such that for any ε > 0, as n → ∞, a random
formula on n variables with (c(n)−ε)n clauses is a.a.s. satisfiable, while one
with (c(n)+ε)n clauses is a.a.s. unsatisfiable [Fri99]. To prove an analogous
result for random max k-sat is much easier; this was first done by [BFU93].

Let Fk(n, m) be a random k-sat formula on n variables with m clauses,
and let fk(n, m) = E(max Fk); we may omit the subscripts k.

Theorem 11 ([BFU93]) For all k, n, c, and λ, P(|max Fk(n, cn) −
fk(n, cn)| > λ) < 2 exp(−2λ2/(cn)).

Proof. Let Xi represent the ith clause in F . Replacing Xi with an
arbitrary clause cannot change max F by more than 1. The result follows
from Azuma’s inequality. �

The theorem’s statement that for any c and large n, F (n, cn)/(cn) has
some almost-sure almost-exact value, is reminiscent of Friedgut’s theorem
(Theorem 2) that (loosely interpreted) says that for large n and any c away
from the threshold, Pr(F (n, cn) is satisfiable) is almost exactly either 0 or 1.
In our case, the target value f(n, cn)/(cn) is unknown, and it is unknown
whether it has a limit in n, and in Friedgut’s case, again, it is unknown for
which values of c the probability is near 0 and for which it is near 1, and
whether the threshold value of c (and the distribution function) has a limit
in n. To conjecture that f(n, cn)/(cn) tends to a limit in n is in this sense
analogous to the “satisfiability threshold conjecture”.

Conjecture 12 (max sat limiting function conjecture) For every k, for
every constant c > 0, as n →∞, fk(n, cn)/n converges to a limit.

The conjecture may equally well be extended to arbitrary csps, yet is open
even for max 2-sat.

If fk(n, cn)/(cn) were monotone in n, the conjecture’s truth would fol-
low. Of course we do not know this, but can prove monotonicity in c: that
as the number of clauses increases, the expected fraction of clauses that can
be satisfied can only decrease.
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Remark 13 For any k and n, fk(n, m)/m is a non-increasing function
of m.

Proof. In a uniform random instance of Fk(n, m), let the maximum
number of satisfiable clauses be J , so that E(J) = f(n, m). By deleting
single clauses, we obtain m uniform random instances F of F (n, m − 1).
Of these, m − J each have max F = J , while the remaining J each
have max F ∈ {J − 1, J}. The average of these m values is at least
(m−J)(J)+(J)(J−1)

m = J(m−1)
m . Taking expectations, we find f(n,m−1)

m−1 >
1

m−1 × E(J(m−1)
m ) = E( J

m) = f(n,m)
m , as desired. �

Finally, we expect a connection between the max sat limiting function
conjecture (Conjecture 12) above and the usual satisfiability threshold con-
jecture (Conjecture 1). We formalize this in the following conjecture.

Conjecture 14 For any c > 0, limn→∞ f(n, cn)/(cn) = 1 if and only if
limn→∞ Pr(F (n, cn)is satisfiable) = 1.

One aspect of this is easily resolved. If lim sup f(n, cn)/(cn) <
1, say 1 − δ, then on average cδn clauses per formula go unsatis-
fied, at least a δ fraction of all formulas must be unsatisfiable, and so
lim sup Pr(F (n, cn) is satisfiable) < 1. But nothing more seems obvious.

6.2 High-density MAX k-SAT and MAX CSP

In this section we extend Theorem 5.

Theorem 15 For all k, for c large, ( 2k−1
2k c + 1

k+1

√

ck
π2k (1 − on(1)))n .

fk(n, cn) . (2k−1
2k c +

√
c
√

(2k−1) ln 2
22k−1

)n.

Note that the leading terms are equal, and the second-order terms equal to
within an absolute constant times

√
k.

Proof. Upper bound. The proof is very similar to that of Theorem 5.
Using the first-moment method, we have:

P = P(∃ satisfiable F ′)

6 2n
rcn
∑

`=0

(

cn

`

)

(
2k − 1

2k
)cn−`(

1

2k
)`.
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For r < 1
2k the sum is dominated by the last term, and so we fix ` = rcn.

Using (3), taking logarithms, and finally substituting r = 1
2k − ε, we have

1

cn
ln P ' ln(2)

c
− (

22k−1

2k − 1
)ε2 + O(ε3).

Thus for r < 1/(2k)−
√

(2k−1) ln 2
c22k−1

, P → 0 as n →∞.

Lower bound. Set the variables sequentially. Fixing ` = n k−1
k+1 , set

variables X1, X2, . . . , X` randomly, and then for each ` 6 i 6 n, enumerate
those clauses involving only Xi and some subset of {X1, X2, . . . , X`} (that
is, unit clauses). The expected number of such clauses is

(1 + on(1))cnk(
1

n
)(

`

n
)k−1 = (1 + on(1))ck(

`

n
)k−1;

the 1+on(1) factor arises from our approximation of the true (`)k−1/(n)k−1

by (`/n)k−1 (clauses sampling variables without replacement vs. with re-
placement). If we count only those left unsatisfied by their previous k − 1
variables, the expected number becomes

h = (1 + on(1))
ck

2k−1
(
`

n
)k−1.

More precisely, the number of such clauses enjoys a Poisson distribution
with mean h. Set the value of Xi to maximize the number of such clauses

satisfied; as in the proof of Theorem 5, this number is 1
2h+(1+on(1))1

2

√

2
πh.

The advantage over purely random guessing is

(1 + on(1))

√

1

2π
h = (1 + on(1))

√

ck

2π2k−1
(
`

n
)k−1.

Sum over i = `, . . . , n to obtain an advantage of

(1 + on(1))
2n

k + 1

√

ck

π2k

(

k − 1

k + 1

)(k−1)/2

> (1 + on(1))
n

k + 1

√

ck

π2k
.

�

Still more generally, we may consider a csp (constraint satisfaction prob-
lem). Let g be a k-ary “constraint” function, g : {0, 1}k → {0, 1}. A
random formula Fg(n, m) over g is defined by m clauses, each chosen uni-
formly at random (with replacement) from the 2kn(n − 1) · · · (n − k + 1)
possible clauses defined by an ordered k-tuple of distinct variables each
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appearing positively or negated. (Formally, a clause consists of a k-tuple
(i1, . . . , ik) of distinct values in [n], specifying the variables, and a binary
k-vector (σ1, . . . , σk), specifying their signs.) A clause with variables (signed
variables) X1, . . . , Xk is satisfied if g(X1, . . . , Xk) = 1. (Formally, an assign-
ment x1, . . . , xn of the full set of variables X1, . . . , Xn satisfies a clause as
above if g(xi1 ⊕ σ1, . . . , xin ⊕ σn) = 1, where “⊕” denotes xor, or addition
modulo 2.) As ever, such a formula F is satisfiable if there exists an assign-
ment of the variables satisfying all the clauses; and max F is the maximum,
over all assignments, of the number of clauses satisfied.

Generally a csp may be based on a finite family of constraint functions,
of “arities” bounded by k, but for notational convenience we limit ourselves
to a single function.

Let a k-ary clause function g be given, with E(g(X)) = p over random
inputs. Define P = min{p, 1−p} and Q = 1−P . Let Fg(n, m) be a random
formula over g on n variables, with m clauses, and let fg(n, m) = E(max F ).

Theorem 16 Given an arity k and a constraint function g, for all c suffi-
ciently large, (p c +

√

PQ2c/k )n . fg(n, m) . (p c +
√

2PQ ln(2)c )n.

The proof follows that of Theorem 15, and is omitted.

7 Online random MAX 2-SAT

In this section, we discuss online versions of the max 2-sat problem. This is
natural enough in any case, but was also motivated by the online “Achlioptas
process” discussed at the start of Section 8.1. There are two natural online
interpretations of random max 2-sat. In both, we are told in advance the
total number of variables n and clauses m; also in both, clauses ci are
presented one by one, and we must choose “on line” whether to accept or
reject ci based on the previously seen clauses c1, . . . , ci−1 . When we accept
a clause we are guaranteeing to satisfy it; when we reject a clause we are
free to satisfy or dissatisfy it. Our goal is to maximize the number of clauses
accepted.

In the first interpretation of online max 2-sat, Online I, when we
accept a clause, we are also required to satisfy it immediately, by setting
at least one of its literals True; once a variable is set, it may never be
changed. The second interpretation, Online II, is more generous: the
variables’ assignments may be decided after the last clause is presented.
Let fO-I(n, m) be the expected number of clauses accepted by an optimal
algorithm for Online I, and fO-II(n, m) that for Online II. Clearly, 3

4m 6
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fO-I(n, m) 6 fO-II(n, m) 6 f(n, m). Here we present a “lazy” algorithm
applicable to both fO-I(n, cn) and fO-II(n, cn). Online-Lazy begins with
no variables “set”. On presentation of a clause, Online-Lazy rejects it only
if it must, and otherwise does the least it can to accept it. Specifically, on
presentation of clause ci , which without loss of generality we may consider
to be (X ∨ Y ), it takes the following action. If X = True or Y = True,
accept ci . If X = False and Y = False, reject ci . If X = False and Y is
unset (or vice-versa), set Y = True (resp. X = True) and accept ci . If X
and Y are both unset, arbitrarily choose one, set it True, and accept ci .

Theorem 17 For any fixed c, Online-Lazy is the unique (up to its arbi-
trary choice) optimal algorithm for Online I, and fO-I(n, cn) ' (3

4c + (1−
e−c)/4 + (1− e−c)2/8)n > (3

4c + 3
8)n.

We note that for c = 1, fO-I(n, n) ≈ 0.957997n, and for c asymptotically
large, fO-I(n, cn) ' (3

4c + 3
8)n.

Proof. Optimality. On appearance of a clause ci , it is clearly best
not to set any variable not appearing in ci , for this merely imposes extra
constraints. Similarly, if ci is already satisfied by one of its literals, then it
is best to accept it and to set no additional variables.

The only interesting cases, then, are if ci is not already satisfied, but
one or both of its variables are unset. Again, if both variables are unset,
it is best to set at most one of them, and it doesn’t matter which one: the
“future” performance of an optimal algorithm is solely a (random) function
of the number of unset variables and the number of clauses remaining, and
these parameters of the future, as well as the number of clauses accepted in
the past, are the same whether ci ’s first or second literal is set.

It only remains to show that if ci is not satisfied by a variable already
set, and at least one of its variables is not yet set, then an optimal algorithm
must set one of its literals to True. Consider a putatively optimal algorithm
Opt which does not do this, so for a literal X in ci , either Opt sets X to
False, or it leaves X unset.

In the case when Opt sets X to False, let a competing algorithm Opt′ set
X to True, then simulate Opt but reversing the roles of X and X̄ in future
clauses. (That is, if Opt′ sees a clause (X, Y ), it queries what Opt would
do with the clause (X̄, Y ).) “Couple” the distribution of future random
clauses seen by Opt and Opt′ , also by reversing the roles of X and X̄ .
With this coupling, Opt′ accepts exactly the same number of clauses (in
some future) as Opt (in the corresponding future under the coupling), but
has accepted one additional clause in the past (ci). The one-to-one nature
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of the coupling means that Opt′ does better on average, which contradicts
the supposed optimality of Opt.

The slightly less obvious case is when Opt leaves X unset. Again we
introduce a competing algorithm Opt′ , which sets X to True, then simulates
Opt until such time as Opt sets X . For inputs where Opt never sets X ,
Opt′ accepts every clause that Opt accepts, as well as the clause ci , and
perhaps additional clauses in which X appears; Opt′ is strictly better on
these inputs. For inputs where Opt eventually sets X to True, Opt′ goes
on simulating Opt, again performing exactly as well on future clauses, and
strictly better on past ones. For inputs where at time j > i, Opt sets X to
False, Opt′ may simulate Opt but (as in the preceding paragraph) negating
any appearance of X before querying Opt. With the previous coupling, on
these inputs, Opt′ accepts exactly as many future clauses as Opt, and at
least as many in the past (Opt′ has accepted ci and perhaps other clauses
rejected by Opt, while Opt has accepted cj and no other clause rejected
by Opt′). So in all three cases, the expected number of clauses accepted
by Opt′ is at least as many as for Opt, and in the first two cases, which
occur with nonzero probability (for example, if no future clause contains
X ), strictly more; this contradicts the supposed optimality of Opt.

Performance. Note that clauses causing a variable to be set by
Online-Lazy are always satisfied, and those not causing a variable to be
set are satisfied with probability 3/4 (if both variables are set) or 1 (if one
is set satisfyingly).

If k variables are yet to be set, the probability that a clause has neither
variable set is (k/n)2 , the probability it has one variable set non-satisfyingly
and the other not set is 2 · 1

2 · ((n − k)/n)(k/n), so a random clause falls
into one of these cases w.p. k/n. The “waiting time” Wk to set another
variable when k are unset is thus geometrically distributed with mean n/k.
In this period, clauses have (unconditioned) probabilities (n − k)2/n2 that
both variables are set, and k(n− k)/n2 that one is set satisfyingly and the
other unset; conditional upon one or other of these being the case (a variable
is not set for this clause), the probabilities are (n − k)/n for the first case
and k/n for the second, and the clause is satisfied with probabilities 3/4
and 1 in these cases, for average gain 1

4k/n over the naive 3/4. Conditioned
on a waiting time Wk = wk , the expected total gain in this period is (wk −
1)(1

4k/n) + 1/4, and since EWk = n/k, the expected total gain is (n/k −
1)(1

4k/n)+1/4 = 1/2− 1
4k/n. The process goes through k = n, n−1, . . . , n−

I? , until the sum of the waiting times exceeds the number of clauses cn. For
any I specified in advance the expected gain over periods k = n, . . . , n−I is a
simple sum, so we just need to deal with the (random) number of periods I? .
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Where H(i) denotes the i’th harmonic number, for a given I , the ex-
pected sum of the waiting times is

∑I
i=0 n/(n−i) = n(H(n)−H(n−I−1)) ≈

n(ln(n/(n − I))). Solving for this equal to cn gives a nominal value Î for
the number of periods, where n/(n − Î) = exp(c), or Î = n(1 − exp(−c)).

By construction, with W =
∑n−Î

k=n Wk , EW = cn. (If we run out of

clauses before period Î , just continue the process artificially for purposes
of analysis.) Each Wk is geometrically distributed with a mean in the range
n
n = 1 to n

n(exp(−c)) = exp(c), all of which are O(1), so W has standard

deviation O(
√

n). The amount by which we may have overshot (or fallen
short of) the target value cn is W − cn; since each round takes time at
least 1, to reach precisely cn it suffices to back off (or add) at most W − cn
rounds. That is, |I? − Î| 6 |W − cn|, which with probability exponen-
tially close to 1 is o(n2/3). Thus, the expected total numbers of clauses
satisfied in the first Î − n2/3 and Î + n2/3 periods are essentially lower
and upper bounds on the true total (the exponentially rare cases where
I? fails to lie in this range making a negligible contribution). The ex-
pected total number of clauses satisfied over the naive 3/4 fraction is then

E

(

∑I?

i=0(1/2− 1
4(n− i)/n)

)

' Î/4+Î2/(8n). That is, the expected number

of clauses satisfied is ' ( 3
4c + (1− e−c)/4 + (1− e−c)2/8)n. �

Note that Online-Lazy does not, in fact, need to know the number of
clauses in advance.

A variant of Online I is that if we accept a clause we must set both its
variables. In this case, similar arguments show that an optimal algorithm
simply sets each new literal True.

We know essentially nothing about Online II. To obtain improved
bounds, or, ideally, to identify a provably optimal algorithm, are interesting
open problems.

8 Random MAX CUT

8.1 Motivation

One source of motivation for our work was, as mentioned in the introduction,
that although random constraint satisfaction problems (csps) and max csps
are well studied, random max csps seem not to have been. However, we
had a second, particular source of motivation, in recent work on “avoiding
a giant component” in a random graph.

Think of max sat as the problem of, given a formula, selecting as many
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clauses as possible so that the subformula of selected clauses is satisfiable.
An analogous problem is, given a graph, to select as many edges as possible
so that the subgraph of selected edges has no giant component (of size Ω(n)).

The latter problem was first posed, in a slightly different form, by
Achlioptas. He asked how many random edge pairs could be given, such that
by selecting one edge from each pair, on line, a giant component could be
avoided. Bohman and Frieze showed in [BF01] that, with 0.55n edge pairs,
a giant component can be avoided (where a random selection of one edge
from each pair would almost surely generate a giant component). Bohman,
Frieze, and Wormald [BFW02] considered the problem without Achlioptas’s
original “pairing” aspect: how many edges may a random graph have, so
that some subgraph with 1/2 the edges (selected online or offline) has no
giant component. They show that this can be done up to about 1.958n
edges (for the offline version) but not beyond; the precise threshold satisfies
a transcendental equation. Without the pairing aspect, there is no longer
anything special about 1/2, though, and [BFW02] is easily extended to an-
swer the question: for a random graph G(n, cn), how many edges f(n, cn)
may be retained while avoiding a giant component? This is precisely the
same sort of question we considered for sat, and was in our minds when we
began this work.

It is tempting to imagine a particular connection between the two ques-
tions, because of a well known connection between the unsatisfiability of a
random 2-sat formula and the existence of a giant component in a random
graph, most easily explained in terms of branching processes. For a 2-sat
formula F , consider a branching process on literals, where a literal X has
offspring including Y if F includes a clause

{

X̄, Y
}

(and if Y was not the
parent of X ). (The process models the fact that if X is set true, Y must also
be set true to satisfy F ). Although additional work is needed to prove it, a
random 2-sat formula is satisfiable with high probability if this branching
process is subcritical (if each X has an expected number of offspring < 1)
and unsatisfiable w.h.p. if it is supercritical. For a random graph G, consider
a branching process on vertices, where a vertex v has offspring including w
if G has an edge {v, w} (and if w was not the parent of v). Here, w.h.p. G
has no giant component if the process is subcritical, and w.h.p. has one if it
is supercritical. These intuitively explain the phase-transition thresholds of
cn clauses, c = 1, for a random 2-sat formula, and edge density c/n, c = 1,
for a random graph.

Despite this connection between unsatisfiability of a random formula,
and a giant component in a random graph, the size of a largest giant-free
subgraph of a random graph behaves very differently from the size of a
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largest satisfiable subformula of a random formula. Specifically, for large
clause density c, there is a satisfiable subformula preserving an expected
constant fraction (3/4ths) of the clauses, while for a random graph with
cn edges, the largest giant-free subgraph has only about n edges, a 1/c
fraction. This can be read off from Theorem 18, or argued more simply: if
G had a giant-free subgraph H with linearly more than n edges, H (and
thus G) would have to have a linear-size dense component, but a random
sparse graph has no linear-size dense component.

Define fnogiant(n, m) to be the expected size of a largest induced sub-
graph of G having no giant component.

Theorem 18 With t = t(c) < 1 defined by te−t = 2ce−2c , fnogiant(n, cn) =

rcn when t2

4c + 1 = t
2c + cr.

The theorem is proved as in [BFW02] (modifying their Lemma 1 to allow
values c > 2 by replacing a (log n)/6 with (log n)/(6 log c)).

Is there another max subgraph problem, then, which does behave like
max 2-sat? Going back to the branching process for a random graph — the
source of the intuitive connection between the graph and sat problems — it
is also easy to check that w.h.p. a graph has few cycles when the branching
process is subcritical, and many cycles when it is supercritical. So perhaps
we should consider the size of maximum cycle-free subgraph. But this is by
definition a forest, which may have at most n−1 edges, again a 1/c fraction,
not a fixed constant fraction as for max 2-sat.

In a 2-sat formula, obstructions to satisfiability come not from cycles of
implications X =⇒ · · · =⇒ X , but only from those with X =⇒ · · · =⇒
X̄ . By a very vague analogy, then, perhaps on the graph side we should
seek not a subgraph which is entirely cycle-free, but just one which is free
of odd cycles: a bipartite subgraph. The size of a largest bipartite subgraph
H of G is by definition, and more familiarly, the size of a maximum cut
of G. Here, finally, we share with max 2-sat that we may keep a constant
fraction of the input structure: for a random graph (indeed any graph) G of
size m, max cut(G) > m/2, since a random cut achieves this expectation.

8.2 MAX CUT

In addition to the fact that just as a maximum assignment satisfies at least
3/4ths the clauses of any formula, a maximum cut cuts at least 1/2 the
edges of a graph, there are other commonalities.

max cut, like max 2-sat, is a constraint satisfaction problem (csp).
With each vertex v we associate a boolean variable representing the parti-
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tion to which v belongs, and with each edge {u, v} we associate a “cut con-
straint” (u ⊕ v), these xor constraints replacing 2-sat’s disjunctions.Like
decision 2-sat, the problem of whether a graph is perfectly cuttable (bipar-
tite) is solvable in linear time. In further analogy with max 2-sat, max cut

is NP-hard, trivially 1
2 -approximable, 0.878-approximable by semidefinite

programming [GW95], and not better than 16/17-approximable in polyno-
mial time unless P=NP [TSSW00].

The methods we have applied to random max 2-sat are equally appli-
cable to max cut, and yield largely analogous results. (The comment after
Theorem 19 below points out the difference.) Because it is easier to work
with random graphs than random formulas, and more is known about them,
our results for max cut are in some respects stronger than those for max

2-sat.
When we work in the G(n, p) model we will take p = 2c/n, and in the

G(n, m) model, m = bcnc, so that in both cases the phase transition occurs
at c = 1/2. We now state our main results.

8.3 Results

Theorem 19 For c = c(n) = 1/2 − ε(n), with n−1/3 � ε(n) < 1/2,
fcut(n, bcnc) = bcnc −Θε(ln(1/(2ε))) + Θε(1).

In particular, for any constant c < 1/2, the gap fcut(n, bcnc) − bcnc is
Θ(1), contrasting with the sub-threshold gap of Θ(1/n) for max 2-sat

(Theorem 4). But here too there is a phase transition, in that for c > 1/2
the gap jumps to Θ(n), per Theorem 21.

Theorem 20 For c large,
(

1
2c +

√
c · (1 + oc(1))

√

8/(9π)
)

n . fcut(n, cn) .
(

1
2c +

√
c
√

ln(2)/2
)

n.

The upper bound was proved by Bertoni, Campadelli and Posenato [BCP97],
and Verhoeven [Ver00] gives both bounds, along with similar results for min
and max bisection. Contemporaneous with our rediscovery of Theorem 20
was a rediscovery by Kalapala and Moore [KM02]. For the lower bound,
Kalapala and Moore improve on our analysis, and Verhoeven’s, by comput-
ing the expectation of the larger of two i.i.d. Poisson random variables with
parameter λ not through a Gaussian approximation, but by a simple and
elegant calculation of this quantity as 1

2λ(1 + e−λ(I0(λ) + I1(λ))), where I0

and I1 are modified Bessel functions of the first kind. This approach, and
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the approximations of both I0(c) and I1(c) as ec/
√

2πc(1+o(1/c)), narrows
our approximation factor 1 + oc(1) to 1 + Oc(1/c).

The values of 2
3

√

1/π and
√

ln(2)/2 are approximately 0.376126 and
0.588704, respectively.

Theorem 21 For any fixed ε > 0, ( 1
2 + ε − [8ε3/3 − 32ε4/3 ± O(ε5)])n .

fcut(n, (1/2 + ε)n) . ( 1
2 + ε− Ω(ε3/ ln(1/ε)))n.

The upper bound’s ε3/ ln(1/ε) can probably be replaced by ε3 , just as we
suspect it can be for Theorem 6. This presumption is largely based on the
next “scaling window” result.

Theorem 22 For any function ε = ε(n) with n−1/3 � ε(n) � 1,
fcut(n, (1/2 + ε)n) = ( 1

2 + ε−Θ(ε3))n.

That the theorem misses out the extremes ε = Θ(n−1/3) and ε = Θ(1) that
are perhaps of greater interest than the mid-range is a direct carryover from
the standard results on random graphs on which our proof is based; it is
likely that other established results for random graphs could complete the
picture.

Before proceeding, we remark that bipartiteness is of course the same
as 2-colorability, and it is sometimes convenient to speak of coloring ver-
tices black or white, rather than placing them in the left or right part of a
partition, with properly colored edges (with one black and one white end-
point) corresponding to cut edges; these two ways of speaking are of course
mathematically identical.

8.4 Subcritical MAX CUT

Theorem 19: Proof. For notational convenience we work in the G(n, p)
model, G = G(n, 2c/n) = G(n, (1− 2ε)/n), but the proof follows identically
for the G(n, m) model.

Tree components of G can be cut perfectly; each unicyclic component
can be cut for all but 1 edge at most (0 for even cycles); and complex
components, where more edges must go uncut but which with high proba-
bility are absent from G, contribute negligibly. That is, E(#uncut edges) =
(1 − o(1))E(#cycles in G). Since the number of potential k-cycles is
(n)k/(2k), where (n)k = n(n − 1) · · · (n − k + 1) denotes falling factorial,
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using (n)k = nk exp(−k2/(2n)−O(k/n + k3/n2)) (see [J LR00, eq (5.5)]),

E(#cycles in G) =
n
∑

k=3

(n)k

2k
(2c/n)k

=
∑ 1

2k
(2c)k exp(−k2/(2n)) exp(−O(k/n + k3/n2)).

Because of the (2c)k , up to constant factors we need consider the sum only
up to k 6 1/ε (recalling 2c = 1− 2ε), and since ε � n−1/3 , this makes the
entire final exponential term negligibly close to 1. Thus

E(#cycles in G) = Θ(1)
∞
∑

k=3

(2c)k/(2k)

= Θ(1)(−1

2
ln(1− 2c))−Θ(1)

= Θ(1) ln(1/(2ε))−Θ(1),

where the final Θ(1) term lies between 0 and 3/2. �

8.5 High-density random MAX CUT

Theorem 20: Proof. For the upper bound, we apply a first-moment
argument identical to that used in the proof of Theorem 5. The prob-
ability that there exists a (maximal) bipartite spanning subgraph of size
> (1−r)cn is P . 2n

(

cn
rcn

)

(1/2)(1−r)cn(1/2)rcn , for 1
cn ln P . ln 2/c−r ln r−

(1− r) ln (1− r)−ln 2. Substituting r = 1/2−ε gives 1
cn ln P . ln 2/c−2ε2 ,

so if ε >
√

ln(2)/(2c) then P → 0.
For the lower bound, color the vertices in random sequence. When xn

vertices have been colored, with x = Θ(1), since c is large, the next ver-
tex is a.a.s. adjacent to a.e. 2cx of the colored ones. In the worst case,
the full set of previously colored vertices is half black and half white, and
even then coloring the new vertex oppositely to the majority color of its
colored neighbors beats cx (in expectation) by E(|B(2cx, 1/2) − cx|) =
(1 + oc(1))E(|N(0, cx/2)|) = (1 + oc(1))

√

cx/π. Integrating over x from
0 to 1 gives 2

3

√

c/π(1 + o(1))n more properly colored edges than the naive
1
2cn. �

8.6 Low-density random MAX CUT

The following fact follows from small-ε asymptotics of classical random
graph results; see, e.g., Bollobás’s [Bol98, VII.5, Theorem 17].
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Claim 23 For ε > 0, a random graph G(n, (1/2 + ε)n) a.a.s. has a giant
component of size (4ε + o(ε))n.

Proof. It is well known (see, e.g., [Bol98, VII.5, Theorem 17]) that for an
arbitrarily slowly growing function w(n), a.a.s., the size L(1)(G) of the giant
component satisfies |L(1)(G)−γn| 6 w(n)n1/2 where 0 < γ < 1 is the unique
solution of e−2cγ = 1−γ . (We have 2c where [Bol98] has c because we use cn
edges where it uses average degree c.) Take the asymptotic approximation
when c = 1/2 + ε. �

Claim 24 The probability that a random graph G(n, (1/2+ε)n) is bipartite,
conditioned on the existence of a component of size Θ(εn) created by the
“first” (1/2 + ε/2)n edges, is exp(−Ω(ε3n)).

Proof. If the presumed giant component is not bipartite, we are done. If it
is, by connectivity, it has a unique bipartition; let the sizes of the parts be n1

and n2 . Each of the remaining εn/2 edges has both endpoints in the giant
component w.p. Θ(ε2), so there are Θ(ε3n) of these, w.p. 1−exp(−Ω(ε3n)).
The probability that each such edge preserves bipartiteness is (2n1n2)/(n1+
n2)2 6 1/2; over the Θ(ε3n) independent edges it is exp(−Ω(ε3n)). �

Theorem 21: Proof. For the upper bound, the first-moment method is
applied exactly as in the proof of Theorem 6. We use the preceding Claim,
and replace its Ω with an α0 for definiteness. With c = (1/2 + ε), then, the
probability that deleting any k 6 rcn edges can leave a bipartite subgraph
is P 6

∑rcn
k=0

(

cn
k

)

exp(−α0(ε − k/n)3). This is just as in inequality (5), so
here again we conclude that r & α0ε

3/ ln(1/ε).
The proof of the lower bound is algorithmic, and in direct analogy to

that of Theorem 6. Think of a graph edge neither of whose vertices has yet
been colored as a “2-clause”, an edge one of whose vertices has been colored
as a “unit clause” implying the opposite color for the remaining vertex, an
edge whose two vertices have been colored alike as an “unsatisfied clause”,
and an edge whose two vertices have been colored oppositely as a “satisfied
clause”. Terminate if there are no unit clauses nor 2-clauses. If there are no
unit clauses, randomly color a random vertex from a random edge. If there
are unit clauses, choose one at random and color its vertex satisfyingly.

As in the informal argument for Theorem 6, the number of 2-clauses is
predictable, and when a fraction s of vertices have been colored a step takes
about 1 + 2ε− s 2-clauses to 1-clauses, but also resolves at least 1 1-clause,
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for a net change in 1-clauses of 2ε − s. The typical number of 1-clauses is
thus given by a parabola of base 4εn and height 2ε2n, with area 16ε3n2/3,
and about 1/(2n)th of these or 8ε3n clauses go unsatisfied.

A formal and exact argument parallels the differential equation method
proof for Theorem 6. Since the initial “seeding” of δn unit clauses was
shown to make no difference there, for expediency we hide it here. When
coloring the tth vertex, ∆m2 = −2m2/(n−t) and ∆m1 = −1−m1/(n−t)+
2m2/(n−t). With s = t/n, the differential equations z ′2 = −2z2/(1−s) and
z′1 = −1−z1/(1−s)+2z2/(1−s), with z2(0) = cn and z1(0) = 0 have solution
z2(s) = c(1− s)2 and z1(s) = 2cs(1− s) + (1− s) ln(1− s). The time other
than s = 0 giving z1 = 0 is s? = 4ε−32ε2/3±O(ε3). The expected number

of clauses unsatisfied in the period s ∈ [0, s?] is n
∫ s?

0 z1/(2(1 − s))ds =
n(8ε3/3 − 32ε4/3 ± O(ε5)). At s = s? the density of edges to uncolored
vertices is about 1/2 − ε, and by Theorem 19 the rest can be colored to
violate just Θ(1) edges. �

8.7 Scaling window

The proof of Theorem 22 follows rather easily from standard — but rela-
tively recent, and lovely — facts about the kernel of a random graph. The
following summary of the relevant facts, which we present informally, is
distilled from [J LR00, Sec. 5.4].

First, if i � n2/3 , then the number of vertices of G(n, n/2+ i) belonging
to unicyclic components is asymptotically almost surely Θ(n2/i2). Consider
the components of a graph G which are trees, unicyclic, or complex. In
the supercritical phase with n−1/3 � ε � 1, a random graph G(n, (1/2 +
ε)n) consists of tree components, unicyclic components, and no complex
component other than a single “giant component”. The expected number of
vertices in the cycles of the unicyclic components is of order 1/ε. The giant
component’s 2-core has order (1 + o(1))8ε2n, and is obtained as a random
subdivision of the edges of a “kernel”, which is a random cubic graph on
(1 + o(1))32

3 ε3n vertices.

Theorem 22: Proof. We consider which edges of G it may be impossible
to cut. Every edge in the tree components of G = G(n, (1/2 + ε)n) can
of course be cut. For each unicyclic component, at most 1 edge must go
uncut (if the cycle is odd). By the symmetry rule (see for example [J LR00,
Theorem 5.24]), the number of unicyclic components for G(n, (1/2 + εn)) is
essentially the same as for G(n, (1/2 − εn)), which by Theorem 19 is only
O(ln(1/ε)).
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The dominant contribution will come from the giant component. Edges
which are not in its 2-core can of course all be cut, even after a partition of
the 2-core has been decided. Moreover, an optimal partition of the 2-core
is essentially decided by a partition of the vertices of the “kernel”, which
is the 2-core where each path whose internal vertices are all of degree 2 is
replaced by a single edge. (See [J LR00, Chap. 5.4] for more on the giant
component, its core, and its kernel.) For any cut of the kernel, each 2-
core path corresponding to a kernel edge can be partitioned either perfectly
or with one edge uncut, depending on the parity of the path’s length and
whether its endpoints are on the same side or opposite sides of the kernel’s
cut. Equivalently, a kernel edge whose 2-core path is of odd length imposes
a “cut” constraint on its endpoints, while a kernel edge whose 2-core path is
of even length imposes an “uncut” constraint on its endpoints; the number
of these constraints violated by a cut of the kernel vertices is equal to the
number of original cut constraints violated by an optimal extension of the
same cut to all the 2-core vertices (and indeed to all the giant-component
vertices).

Since each kernel edge is randomly subdivided, on average into 3/(4ε)
2-core edges, the parities of the kernel edges are almost perfectly random
(with the probability of either parity approaching 1/2 as ε approaches 0).
For our purposes it suffices that either parity occurs with probability at most
some absolute constant p0 < 1, and using this we show that at least some
constant fraction β0 of the approximately 16ε3n edge constraints must be
violated.

Fix a spanning tree T of the kernel K , whose order we will write as
N (expecting N ≈ 32

3 ε3n). Let K subsume not only the graph but also
the edge parities, so that it is an instance of the generalized (cut/uncut)
max cut problem. If it is possible to violate precisely a fraction β < β0 of
K ’s constraints then reversing precisely those constraints gives a perfectly
satisfiable cut/uncut constraint problem instance K ′ .

Fixing the “side” of any one vertex, the N − 1 constraints from the
spanning tree T imply the rest of the cut, which must then satisfy the re-
maining 1

2 |N | + 1 constraints. Viewing the parities of the spanning tree
edges as arbitrary, and the remaining edges as independent random vari-
ables, the probability that the randomly chosen kernel edges satisfy each of

these constraints is at most p
1

2
N+1

0 . The number of choices of t < β0
3
2N

edges to dissatisfy is
( 3

2
N
t

)

. We guarantee an exponentially small probability
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of success by selecting β0 to satisfy:

∑

t<β0
3

2
N

(3
2N

t

)

p
1

2
N+1

0 � 1

3

2
NH(β0) +

1

2
N ln(p0) < 0

H(β0) <
1

3
ln(1/p0),

where H is the entropy function H(x) = x ln(x) − (1 − x) ln(1 − x). In
particular, in the case of interest where ε → 0, p0 → 1/2 and β0 →
H−1(1/3) ≈ 0.896. Recapitulating, we must dissatisfy β0N kernel con-
straints, = (32β0/3)ε3n constraints of G. The expected O(ln(1/ε)) uncut
edges from unicyclic components are negligible by comparison, so in all
Θ(ε3n) edges of G go uncut.

�

9 Conclusions and open problems

We have presented a road map for max 2-sat and max cut in a random
setting, establishing that there is a phase transition, and deriving asymp-
totics below the critical value, for constants slightly above the critical value
and in the scaling window around it, and for larger constants.

For constant densities slightly above threshold there is a logarithmic gap
between our lower and upper bounds; we need to confirm that the ln(1/ε)
factors are extraneous. In the other cases, our bounds are only separated by
a constant. However, in light of the exact result of [BFW02] for the size of
a maximum subgraph which has no giant component, it would be wonderful
to get the exact asymptotics of f(n, cn)/(cn).

An obvious task is to obtain similar results for other max csps. Already,
Achlioptas, Naor and Peres [ANP03] have applied powerful second-moment
methods to max k-sat; their result improves dramatically on our Theo-
rem 15, but since they parametrize it in terms of finding the threshold c
for a given k, the comparison is a bit involved and we will not go into it
here. In discussing random max cut, we mentioned its formulation as a
csp using the xor operator. In fact random max cut is nearly identical
to random max 2-xor sat and while neither decision problem (bipartite-
ness or satisfiability) exhibits a threshold phenomenon (see the remark in
Creignou and Daudé’s [CD99]), our Theorems 19 and 21 show that max cut

does, and max 2-xor sat must behave just the same. Creignou and Daudé,
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in [CD03], joined by Dubois in [CDD03], prove the existence of phase tran-
sitions in random k-xor sat for all k > 2, and approximate the threshold’s
location; the 3-xor sat transition point was resolved by Dubois and Man-
dler in [DM02]. In short, max k-xor sat is an obvious candidate for study.
max k-cut is another; it has been studied in the context of approximation
algorithms [COMS03], but not, as far as we know, with regard to a phase
transition. Beyond expanding the repertory of problems explored, there are
important general questions.

Whether f(n, cn)/(cn) tends to a limit in n (see Conjecture 12) is to
our minds a prime open problem in this area, and is not only in some sense
analogous to the satisfiability threshold conjecture, but may also be directly
connected with it (see Conjecture 14), another important question.

A question similar in spirit to Conjecture 12 was considered in [Gam04],
which defines a certain linear-programming relaxation of max 2-sat. An
instance in characterized by its “distance to feasibility” D, with D(n, cn)
the corresponding random variable for a random instance. It is shown that
for every c > 0, D(n, cn)/(cn) almost surely converges to a limit. The
result is established using powerful local weak convergence methods [Ald92,
Ald01, AS02]. It remains to be seen whether these methods are applicable
to random maximum constraint satisfaction problems, including max 2-sat

and max cut.
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