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Introduction

0.1. Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p. Let W be the Weyl group of G. Let Ωw be the double
coset in G (with respect to a Borel subgroup B∗) corresponding to an element
w ∈ W which has minimal length in its conjugacy class C in W and has no
eigenvalue 1 in the reflection representation of W. Let ZG be the centre of G.
From [L5, 5.2] it follows that the isotropy groups of the conjugation action of
B∗/ZG on Ωw are finite abelian. One of the results of this paper is that (if G is
semisimple) the set of orbits of this action is naturally an affine variety of dimension
equal to the length of w, which looks very much like an affine space modulo the
action of a finite group. Consider the intersection of Ωw with a conjugacy class
γ in G. Since Ωw ∩ γ is B∗/ZG-stable, the result quoted above shows that, when
Ωw ∩ γ is nonempty, it has dimension greater than or equal to dim(B∗/ZG). As
in [L5] we say that γ is C-small if Ωw ∩ γ 6= ∅ and the previous inequality is an
equality. (This condition depends only on C, not on w.)

In the remainder of this subsection we assume that

(i) p is 0 or a good prime for G
and that G is almost simple. In [L5] we have shown that for any C as above there is
a unique unipotent class γC in G which is C-small. In this paper we investigate the
existence of C-small semisimple classes in G. We show that such a class γ ′ exists in
almost all cases. (There is exactly one exception to this property: it arises in type
E8 for a unique C.) Let ργC

be the Springer representation of W associated to
γC and to the local system Q̄l on γC . We show that ργC

is surprisingly connected
to γ′ above (again with the unique exception above) as follows: ργC

is obtained
by ”j-induction” (see 0.3) from the sign representation of a reflection subgroup of
W, namely the Weyl group of the connected centralizer of an element of γ ′. We
will also show that the representation ργC

depends only on the Weyl group W,
not on the underlying root system.
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0.2. Here is some notation that we use in this paper. Let B the variety of Borel
subgroups of G. Let l : W −→ N be the standard length function. Let S = {s ∈
W; l(s) = 1}. For each w ∈ W let Ow be the corresponding G-orbit in B×B. Let
Wel be the set of elliptic conjugacy classes in the Weyl group W ofG (see [L5, 0.2].)
For C ∈ Wel let dC = minw∈C l(w) and let Cmin = {w ∈ C; l(w) = dC}. For any
conjugacy class γ in G and any w ∈ W we set Bw = {(g,B) ∈ G×B; (B, gBg−1) ∈
Ow}, B

γ
w = {(g,B) ∈ Bw; g ∈ γ}.

The cardinal of a finite set X is denoted by |X| or by ](X). For any g ∈ G let
Z(g) be the centralizer of g in G. Let νG be the number of positive roots of G.
For an integer σ we define κσ ∈ {0, 1} by σ = κσ mod 2.

Let C ∈ Wel. In [L5, 5.5, 5.7(iii)] it is shown that if B
γ
w 6= ∅ for some/any

w ∈ Cmin then dim B
γ
w ≥ dim(G/ZG) and dim γ ≥ dim(G/ZG) − dC . (Here the

equivalence of ”some/any” follows from [L5, 5.2(a)].) Following [L5, 5.5] we say
that γ is C-small if for some/any w ∈ Cmin we have B

γ
w 6= ∅ and the equivalent

conditions dim B
γ
w = dim(G/ZG), dim γ = dim(G/ZG) − dC are satisfied (for the

equivalence see [L5, 7.7(iv)]).

0.3. Let W be a Weyl group. Let sgn be the sign representation of W and let
RW be the reflection representation of W . Let Irr(W ) be the set of (isomorphism
classes of) irreducible representations of W . For E ∈ Irr(W ) let bE be the smallest
integer ≥ 0 such that the multiplicity of E in the bE-th symmetric power of RW
is ≥ 1. We write E ∈ Irr(W )† if this multiplicity is 1. Let W ′ be a subgroup of
W generated by reflections. Let E ′ ∈ Irr(W ′)†. There is a unique E ∈ Irr(W )
such that E appears in indWW ′(E′) and bE = bE′ . (See [GP, 5.2.6].) We have
E ∈ Irr(W )†. We set E = jWW ′(E′). The process jWW ′() is called j-induction.

0.4. For any unipotent class γ in G let ργ ∈ Irr(W) be the Springer representation
of W associated to γ and the local system Q̄l on γ. (We use the conventions of
[L2].) For any C ∈ Wel let γC be the unique C-small unipotent class of G, see
[L5]; thus ργC

is well defined.

0.5. Let B∗ be a Borel subgroup of G and let T be a maximal torus of B∗. Let
NG(T ) be the normalizer of T in G and let W = NG(T )/T . For any z ∈ W let
ż be a representative of z in NG(T ). We identify W = W as follows: to z ∈ W
corresponds the element w ∈ W such that (B∗, żB∗ż−1) ∈ Ow. For any s ∈ S let
αs : T −→ k∗ be the simple root defined by s. In the remainder of this subsection
we assume that G is almost simple, simply connected and that 0.1(i) holds. Let
α0 : T −→ k∗ be the unique root such that for any s ∈ S, α0α

−1
s : T −→ k∗

is not a root. Let ∆ = {αs; s ∈ S} t {α0}. For any K $ ∆ let WK be the
subgroup of W generated by the reflections with respect to roots in ∆. Let GK
be the subgroup of G generated by T and by the root subgroups attached to
roots such that the corresponding reflection in W is in WK . Note that GK is
a connected reductive subgroup of G (a ”Borel-de Siebenthal subgroup”). Now
B∗ ∩GK is a Borel subgroup of GK and T is a maximal torus of B∗ ∩GK . Note
that WK = NGK

(T )/T = {w ∈ W; ẇ ∈ GK} may be identified (using B∗ ∩ GK ,
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T ) with the Weyl group WK of GK in the same way as W is identified with W

(using B∗, T ). In particular WK appears as a subgroup of W. Let SK be the
set of semisimple conjugacy classes γ in G such that for some ζ ∈ γ ∩ T we have
GK = Z(ζ). Note that SK 6= ∅ and any semisimple class in G belongs to SK for
some K $ ∆. The following is our main result.

Theorem 0.6. Assume that G is almost simple, simply connected and that 0.1(i)
holds. Let C ∈ Wel. With the single exception when G is of type E8 and for any
w ∈ C, the characteristic polynomial of w : RW −→ RW is (X+1)(X2+1)2(X3+1),
there exists K $ ∆ such that

(i) for any γ ∈ SK , γ is a C-small semisimple class;
(ii) ργC

= jW
WK

(sgn).

In the case where G is of type E8 and C is the class specified in the theorem,
there is no K $ ∆ for which (i) holds and there is no K $ ∆ for which (ii)
holds. On the other hand in this case we have ργC

= jW
WK

(sgn ⊗ r) where GK is
of type D5 + A3 and r is the irreducible representation of WK on which the D5-
factor acts as the reflection representation and the A3-factor acts trivially. Also,
if γ ∈ SK , ζ ∈ γ ∩ T , Z(ζ) = K and u is a unipotent element of GK which is
in a minimal unipotent class 6= 1 of the D5-factor, then the G-conjugacy class γ ′

of ζu is C-small; although γ ′ is not semisimple, it is as close as possible to being
semisimple.

In the case where G is of type A the theorem is immediate: C must be the
conjugacy class of a Coxeter element and we can take K = ∅. The proof of the
theorem in the case where G is of classical type other than A is given in §1, §3.
When G is of exceptional type the proof of the theorem is given in 2.4, 3.5 (using
a reduction to a computer calculation, see 2.2.)

0.7. Assume that G is almost simple, simply connected and that 0.1(i) holds.
Let γ be any C-small conjugacy class in G. Let ζ (resp. u) be a semisimple
(resp. unipotent) element of G such that ζu = uζ ∈ γ. Let K $ ∆ be such that
the conjugacy class of ζ belongs to SK . We assume as we may that ζ ∈ γ ∩ T
and GK = Z(ζ). Let ρu be the Springer representation of WK associated to the
conjugacy class of u in GK . We conjecture that

ργC
= jW

WK
(ρu).

This is supported by Theorem 0.6.

0.8. I thank Gongqin Li for her help with programming in GAP3.

1. Classical groups

1.1. Let t1, t2, . . . , tm be commuting indeterminates. Let M be the m×m matrix
whose j-th row is tj1 − t−j1 , tj2 − t−j2 , . . . , tjm − t−jm , j ∈ [1,m]. Let M ′ be the

(m+2)× (m+2) matrix whose j-th row is 1, (−1)j, tj1 + t−j1 , tj2 + t−j2 , . . . , tjm+ t−jm ,
j ∈ [0,m+ 1]. The proof of (a),(b) below is left to the reader.
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(a) det(M) is equal to ±
∏

i

∏

i<j(ti − tj)
∏

i≤j(ti − t−1
j ) times a monomial in

the ti;
(b) det(M ′) is equal to ±2

∏

i(ti − t−1
i )

∏

i<j(ti − tj)
∏

i≤j(ti − t−1
j ) times a

monomial in the ti.

1.2. Let V be a k-vector space of finite dimension n ≥ 3. We set κ = κn so that
n = 2n+κ with n ∈ N. Assume that V has a fixed bilinear form (, ) : V ×V −→ k

and a fixed quadratic form Q : V −→ k such that (i) or (ii) below holds:
(i) Q = 0, (x, x) = 0 for all x ∈ V , (, ) is nondegenerate;
(ii) Q 6= 0, (x, y) = Q(x + y) − Q(x) − Q(y) for x, y ∈ V , p 6= 2, (, ) is

nondegenerate.
An element g ∈ GL(V ) is said to be an isometry if (gx, gy) = (x, y) = 0 for
all x, y ∈ V (hence Q(gx) = Q(x) for all x ∈ V ). Let Is(V ) be the group of
all isometries of V (a closed subgroup of GL(V )). In this section we assume
that G is the identity component of Is(V ). Let F be the set of all sequences
V∗ = (0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = V ) of subspaces of V such that dimVi = i
for i ∈ [0,n], Q|Vi

= 0 and {x ∈ V ; (x, Vi) = 0} = Vn−i for all i ∈ [0, n]. Now
Is(V ) acts naturally (transitively) on F .

1.3. Assume that Q = 0 so that n = 2n. Let p∗ = (p1 ≥ p2 ≥ · · · ≥ pσ) be a
sequence of integers ≥ 1 such that p1 + p2 + · · · + pσ = n. For any i ≥ 1 we set
p̄i = ](t ∈ [1, σ]; pt ≥ i) so that p̄1 ≥ p̄2 ≥ . . . and

∑

i p̄i = n. Let k = p1. We
have p̄k ≥ 1, p̄k+1 = 0. We can find subspaces Vi,V

′
i (i ∈ [1, k]) of V such that

V = V1 ⊕ V ′
1 ⊕ V2 ⊕ V ′

2 ⊕ . . .⊕ Vk ⊕ V ′
k;

dimVi = dimV ′
i = p̄i for i ∈ [1, k];

(, ) is zero on Vi,V
′
i for i ∈ [1, k];

(Vi ⊕ V ′
i,Vj ⊕ V ′

j) = 0 for all i 6= j.
Let λ1, λ2, . . . , λk be a sequence elements of k∗ such that
λi − λj 6= 0 for i 6= j,

λi − λ−1
j 6= 0 for all i, j.

For any t ∈ [1, σ] the system of linear equations

∑

i∈[1,pt]

(λji − λ−ji )ct,i = −δj,pt

(j ∈ [1, pt]) with unknowns ct,i (i ∈ [1, pt]) has a unique solution (ct,i)i∈[1,pt] ∈ kpt .
(Its determinant is nonzero by 1.1(a) with m = pt. Note that λi is defined for
i ∈ [1, pt] since pt ≤ p1 = k.) For any i ∈ [1, k] we choose a basis (vt,i)t∈[1,σ];pt≥i)
of Vi and we define vectors v′t′,i ∈ V ′

i (t′ ∈ [1, σ], pt′ ≥ i) by (vt,i, v
′
t′,i) = δt,t′ct,i

for all t ∈ [1, σ], pt ≥ i. Then for any t ∈ [1, σ] and any j ∈ [1, pt] we have

(a)
∑

i∈[1,pt]
(λji − λ−ji )(vt,i, v

′
t,i) = −δj,pt

.

Hence for j ∈ [−pt, pt − 1] we have

(b)
∑

i∈[1,pt]
(λji − λ−ji )(vt,i, v

′
t,i) = δj,−pt

.

(For j ∈ [1, pt − 1], (b) follows from (a); for j ∈ [−pt,−1], (b) follows from
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(a) by replacing j by −j; for j = 0, (b) is obvious.) For any t ∈ [1, σ] we set
vt =

∑

i∈[1,k];i≤pt
(vt,i + v′t,i) ∈ V . Define a linear map g : V −→ V by gx = λix for

x ∈ Vi, gx = λ−1
i x for x ∈ V ′

i (i ∈ [1, k]). Then g ∈ G.

1.4. Assume that Q 6= 0 so that p 6= 2. Let p∗ = (p1 ≥ p2 ≥ · · · ≥ pσ) be a
sequence of integers ≥ 1 such that p1 + p2 + · · ·+ pσ = n. If κ = 0 we assume also
that κσ = 0. For any i ≥ 1 we set p̄i = ](t ∈ [1, σ]; pt ≥ i) so that p̄1 ≥ p̄2 ≥ . . .
and

∑

i p̄i = n. Let k = p1. We have p̄1 = σ, p̄k ≥ 1, p̄k+1 = 0.
We can choose subspaces Z ′,Z ′′ of V and subspaces Vi,V

′
i of V (for i ∈ [2, k])

such that:
V = Z ′ ⊕Z ′′ ⊕⊕i∈[2,k](Vi ⊕ V ′

i);
(, ) is nondegenerate on Z ′ and on Z ′′, () is zero on Vi,V

′
i (for i ∈ [2, k]);

dimZ ′ = p̄1 + κ− κσ, dimZ ′′ = p̄1 + κσ;
dimVi = dimV ′

i = p̄i for i ∈ [2, k];
(Vi ⊕ V ′

i,Vj ⊕ V ′
j) = 0 for i 6= j in [2, k];

(Z ′,Z ′′) = 0;
(Z ′ + Z ′′,Vi + V ′

i) = 0 for i ∈ [2, k].
Let λi(i ∈ [2, k]) be elements of k∗ such that
λi − λj 6= 0 for i 6= j in [2, k],

λi − λ−1
j 6= 0 for all i, j in [2, k].

For any t ∈ [1, σ], the system of linear equations

ct,1 + (−1)jct,−1 +
∑

i∈[2,pt]

(λji + λ−ji )ct,λi
= δj,pt

(j ∈ [0, pt]) with (pt + 1) unknowns (ct,λi
∈ k (i ∈ [2, pt]) and ct,1 ∈ k, ct,−1 ∈ k)

has a unique solution. (Its determinant is nonzero by 1.1(b) with m = pt − 1.)
For any i ∈ [2, k] we choose a basis (vt,i)t∈[1,σ];pt≥i) of Vi and we define vectors
v′t′,i ∈ V ′

i (t′ ∈ [1, σ], pt′ ≥ i) by (vt,i, v
′
t′,i) = δt,t′ct,λi

for all t ∈ [1, σ], pt ≥ i. (Note

that if t ∈ [1, σ] is such that pt ≥ i then i ∈ [2, pt] hence ct,λi
is defined.)

We can find vectors v′t ∈ Z ′ (t ∈ [1, σ]) such that (v′t, v
′
t′) = ct,1δt,t′ for all t, t′

in [1, σ]. We can find vectors v′′t ∈ Z ′′ (t ∈ [1, σ]) such that (v′′t , v
′′
t′) = ct,−1δt,t′

for all t, t′ in [1, σ]. Then for any t ∈ [1, σ] and any j ∈ [0, pt] we have

(v′t, v
′
t) + (−1)j(v′′t + v′′t ) +

∑

i∈[2,pt]

(λji + λ−ji )(vt,i, v
′
t,i) = δj,pt

.

It follows that

(v′t, v
′′
t ) + (−1)j(v′′t , v

′′
t ) +

∑

i∈[2,pt]

(λji + λ−ji )(vt,i, v
′
t,i) = δ−j,pt

for j ∈ [−pt, pt−1]. For any t ∈ [1, σ] we set vt = v′t+v
′′
t +

∑

i∈[2,k];i≤pt
(vt,i+v

′
t,i) ∈

V . Define a linear map g : V −→ V by gx = x for x ∈ Z ′, gx = −x for x ∈ Z ′′,
gx = λix for x ∈ Vi (i ∈ [2, k]), gx = λ−1

i x for x ∈ V ′
i (i ∈ [2, k]). Then g ∈ G.
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1.5. Assume that we are in the setup of 1.3 or 1.4. For t, t′ in [1, σ] and j ∈
[−pt, pt − 1] we have

(a) (gjvt, vt′) = δt,t′δ−j,pt
.

Indeed, in the setup of 1.3, the left hand side of (a) is equal to

∑

i∈[1,k];i≤pt,i≤pt′

(λjivt,i + λ−ji v′t,i, vt′,i + v′t′,i)

= δt,t′
∑

i∈[1,pt]

(λji − λ−ji )(vt,i, v
′
t,i) = δt,t′δj,−pt

;

in the setup of 1.4, the left hand side of (a) is equal to

(vt,1, vt′,1) + (−1)j(v′t,1, v
′
t′,1) +

∑

i∈[2,k];i≤pt,i≤pt′

(λjivt,i + λ−ji v′t,i, vt′,i + v′t′,i)

= δt,t′((vt,1, vt,1) + (−1)j(v′t,1, v
′
t,1)

+
∑

i∈[2,k];i≤pt,i≤pt

(λji + λ−ji )(vt,i, v
′
t,i)) = δt,t′δj,−pt

.

As in [L5, 3.3(vi)], from (a) we deduce that the vectors (gjvt)t∈[1,σ],j∈[−pt,pt−1]

span a (n−κ)-dimensional subspace of V on which (, ) is nondegenerate. (If κ = 0
this subspace is V .) For any h ∈ [1, n] we can write h = p1+p2+· · ·+pr−1+i where
r ∈ [1, σ] and i ∈ [1, pr] are uniquely determined; we define Vh to be the subspace
of V spanned by the vectors gjvt(t ∈ [1, r−1], j ∈ [0, pt−1]) and gjvr(j ∈ [0, i−1]).
Let V ′

h be the subspace of V spanned by the vectors gjvt(t ∈ [1, r− 1], j ∈ [1, pt])
and gjvr(j ∈ [1, i]). We have (Vh, Vh) = 0 (see (a)), (V ′

h, V
′
h) = 0, gVh = V ′

h. There
are unique sequences V∗, V

′
∗ in F such that Vh, V

′
h are as above for any h ∈ [1, n].

We have V ′
∗ = gV∗. For any r ∈ [1, σ] and i ∈ [1, pr − 1] we have

dim(V ′
p1+p2+···+pr−1+i

∩ Vp1+p2+···+pr−1+i) = p1 + p2 + · · ·+ pr−1 + i− r,

(the intersection is spanned by the vectors gjvt(t ∈ [1, r − 1], j ∈ [1, pt − 1]) and
gjvr(j ∈ [1, i− 1])),

dim(V ′
p1+p2+···+pr−1+i ∩ Vp1+p2+···+pr−1+i+1) = p1 + p2 + · · ·+ pr−1 + i− r + 1,

(the intersection is spanned by the vectors gjvt(t ∈ [1, r − 1], j ∈ [1, pt − 1]) and
gjvr(j ∈ [1, i])). For any r ∈ [1, σ] we have

dim(V ′
p1+p2+···+pr

∩ Vn−p1−p2−···−pr−1−1) = p1 + p2 + · · · + pr − r,
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(the intersection is spanned by the vectors gjvt(t ∈ [1, r], j ∈ [1, pt − 1])),

dim(V ′
p1+p2+···+pr

∩ Vn−p1−p2−···−pr−1
) = p1 + p2 + · · ·+ pr − r + 1,

(the intersection is spanned by the vectors gjvt(t ∈ [1, r], j ∈ [1, pt−1]) and gprvr).
(We use again (a).) As in [L5, 3.2] we deduce that aV∗,V ′

∗

= wp∗ ∈ W (notation
of [L5, 1.4, 1.6]). Let B,B′ be the stabilizers of V∗, V

′
∗ in G. Then B,B′ are

Borel subgroups of G and (B,B′) ∈ Owp∗

, gBg−1 = B′. Hence if γ denotes the
conjugacy class of g in G, we have

(b) B
γ
wp∗

6= ∅.

Note that γ is a semisimple conjugacy class and that wp∗ has minimal length in
its conjugacy class C in W (which is elliptic).

Let δ(g) = dimZ(g). Let d = l(wp∗). We show that

(c) δ(g) = d.

In the setup of 1.3, Z(g) is isomorphic to GL(p̄1) ×GL(p̄2) × . . .×GL(p̄k) hence
δ(g) = p̄2

1 + p̄2
2 + · · · + p̄2

k. In the setup of 1.4, the identity component of Z(g) is
isomorphic to SO(p̄1 + κ− κσ)× SO(p̄1 + κσ)×GL(p̄2)×GL(p̄3)× . . .×GL(p̄k)
hence

δ(g) = (p̄1 + κ− κs)(p̄1 + κ− κσ − 1)/2 + (p̄1 + κs)(p̄1 + κs − 1)/2

+ p̄2
2 + · · · + p̄2

k = p̄2
1 + p̄2

2 + · · ·+ p̄2
k − σ(1 − κ).

If (1− κ)Q = 0 we have d = 2(p2 + 2p3 + · · ·+ (σ − 1)pσ) + n; if (1− κ)Q 6= 0 we
have d = 2(p2 + 2p3 + · · ·+ (σ− 1)pσ) + n− σ. Hence to prove (c) it is enough to
show that

p̄2
1 + p̄2

2 + · · ·+ p̄2
k = 2(p2 + 2p3 + · · · + (σ − 1)pσ) + n.

This follows from the equality X = 2Y in [L5, 4.4]; note that f2h from loc.cit. is
the same as p̄′ and

∑

h f2h = n. From (b) and (c) we see that γ is a (semisimple)
C-small conjugacy class. This proves 0.6(i) for our G.

2. Exceptional groups

2.1. In this subsection we assume that k is an algebraic closure of a finite field Fq
with q elements; we also assume that 0.1(i) holds. We choose an Fq-split rational
structure on G with Frobenius map F : G −→ G such that B∗ and T are F -stable.
Note that F (t) = tq for all t ∈ T . Define a class function ΠG : W −→ Z by
ΠG(w) =

∑

i tr(w,H
2i(B, Q̄l))q

i where we use the standard W-module structure
on H∗(B, Q̄l). For any z ∈ W let xz ∈ G be such that x−1

z F (xz) = z and let
Tz = xzT x

−1
z , an F -stable maximal torus of G. For any w ∈ W we have

ΠG(w) = (−1)l(w)|GF |q−νG |Tw|
−1.
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2.2. We assume that k is as in 2.1, that G is almost simple, simply connected of
exceptional type and that K $ ∆. Let γ ∈ SK . Let C ∈ Wel and let w ∈ Cmin.
We show that the condition that B

γ
w 6= ∅ can be tested by performing a computer

calculation. We will also see that this condition depends only on K, not on γ.
We choose an Fq-rational structure onG as in 2.1. We can assume that gq−1 = 1

for some/any g ∈ γ. Then γ is F -stable and γ ∩ T = γ ∩ T F is a single W-orbit.
Let ζ ∈ γ ∩ T be such that Z(ζ) = GK . Note that GK is defined and split over
Fq,

Now the class function ΠGK
: WK −→ Z is well defined, see 2.1. For z ∈ W we

have

](h ∈ GF ;h−1ζh ∈ Tz) = ](h ∈ GF ;x−1
z h−1ζhxz ∈ T )

= ](h′ ∈ G;F (h′) = h′ż, h′−1ζh′ ∈ T ) = ](h′ ∈ G;F (h′) = h′ż, h′−1ζh′ ∈ γ ∩ T )

= |WK |−1
∑

v∈W

](h′ ∈ G;F (h′) = h′ż, h′−1ζh′ = v̇ζv̇−1)

= |WK |−1
∑

v∈W

](h′′ ∈ G;F (h′′) = h′′v̇−1żF (v̇), h′′−1ζh′′ = ζ)

= |WK |−1
∑

v∈W

](h′′ ∈ GK ;F (h′′) = h′′v̇−1żF (v̇))

= |WK |−1](v ∈ W; v̇−1żF (v̇) ∈ GK)|GFK | = |WK |−1](v ∈ W; v−1zv ∈ WK)|GFK |.

(We set h′ = hxz; then we set h′−1ζh′ = v̇ζv̇−1 with v ∈ W; then we set h′′ = h′v̇
and we use Lang’s theorem in GK .)

As in [L5, 1.2(a)] the number of fixed points of F : B
γ
w −→ B

γ
w, (g,B) 7→

(F (g), F (B)), is given by
(a)

|(Bγ
w)F | = |W|−1

∑

E,E′∈IrrW,z∈W,g∈γF

tr(Tw, Eq)(ρE : RE′)tr(z, E′)tr(ζ, R1(z)).

(Notation of loc.cit..) Using [DL, 7.2] we see that

tr(ζ, R1(z)) = ](h ∈ GF ;h−1ζh ∈ Tz)|Tz|
−1q−νGK (−1)l(z)

= |WK |−1](v ∈ W; v−1zv ∈ WK)|GFK |Tz|
−1q−νGK (−1)l(z)

= |WK |−1](v ∈ W; v−1zv ∈ WK)ΠGK
(v−1zv).

(We have used that the restriction to WK = WK of the function z 7→ (−1)l(z) on
W = W is the analogous function defined in terms of GK .) Substituting this into
(a) we obtain

|(Bγ
w)F | = |γF ||W|−1

∑

E,E′∈IrrW,z∈W

tr(Tw, Eq)(ρE : RE′)tr(z, E′)

× |WK |−1](v ∈ W; v−1zv ∈ WK)ΠGK
(v−1zv)

= |γF ||W|−1
∑

E,E′∈IrrW,z∈W

tr(Tw, Eq)(ρE : RE′)tr(z, E′)tr(z, indW
WK

(ΠGK
)).
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Hence

(b) |(Bγ
w)F | = |GF |/|GFK |

∑

E,E′∈IrrW

tr(Tw, Eq)(ρE : RE′)(E′ : ΠGK
)WK

.

Here (E′ : ΠGK
)WK

is the inner product of ΠGK
(viewed as a representation of

WK) with the restriction of E ′ to WK . We can also write (b) as follows:

|(Bγ
w)F | = |GF |/|GFK |

∑

AE,CφE,E′mE′,E′′tE′′,K

where the sum is taken over all E,E ′ in IrrW, E′′ ∈ IrrWK and the notation is
as follows. For C ′ ∈ W, E ∈ IrrW we set AE,C′ = tr(Tz, Eq) where z ∈ C ′

min.
(Note that AE,C′ is well defined by [GP, 8.2.6(b)].) For E,E ′ ∈ IrrW let φE,E′ =
(ρE : RE′). (Notation of [L5, 1.2].) For E ′ ∈ IrrW, E′′ ∈ IrrWK let mE′,E′′ be
the multiplicity of E′′ in E′|WK

. For E′′ ∈ IrrWK let tE′′,K be the multiplicity
of E′′ in ΠGK

. Thus |(Bγ
w)F | is |GF |/|GFK | times the the C-entry of the vector

t(AE,C′)(φE,E′)(mE′,E′′)(tE′′,K).

Here the matrix (AE,C′) is known from the works of Geck and Geck-Michel (see
[GP, 11.5.11]) and is available through the CHEVIE package [C]. The matrix φE,E′

has as entries the coefficients of the ”nonabelian Fourier transform” in [L1, 4.15].
The matrix (mE′,E′′) (”Induction table”) and the vector (tE′′,K) (”Fake degree”)
are available through the CHEVIE package. Thus |(Bγ

w)F | can be obtained by
calculating the product of several explicitly known matrices. The calculation was
done using the CHEVIE package. It turns out that |(Bγ

w)F | is a polynomial in
q with integer coefficients denoted by PKC (it depends only on K,C not on γ, w).
Note that B

γ
w 6= ∅ if and only if PKC 6= 0 as a polynomial in q. Thus the condition

that B
γ
w 6= ∅ can be tested. Moreover for eachK such that PKC 6= 0 and for γ ∈ SK ,

the condition that γ is C-small is equivalent to the condition that dim(GK) = dC ;
in this case we have PKC = mK

C |G(Fq)| as polynomials in q where mK
C is an integer

≥ 1 independent of q. (For any K such that PKC 6= 0 we have deg(PKC ) ≥ dim(G)
(by [L5, 5.2]). Note that mK

C is equal to the number of connected components of
B
γ
w for γ ∈ SK , w ∈ Cmin. This number can be > 1; in one example in type E8

it is 10.

2.3. In this subsection we give (in the setup of 2.2) tables which describe for each
exceptional type and each C ∈ Wel (with one exception) some proper subsets
K of ∆ such that PKC 6= 0 and dim(GK) = dC . The elements of ∆ − {α0} are
denoted by numbers 1, 2, 3, . . . as in [GP, p.20]. We write 0 instead of α0. We
specify K by marking each element of ∆ − K by •. An element C ∈ Wel is
specified by indicating the characteristic polynomial of an element of C acting on
RW, a product of cyclotomic polynomials Φd (an exception is type F4 when there
are two choices for C with characteristic polynomial Φ2

2Φ6 in which case we use
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the notation (Φ2
2Φ6)

′, (Φ2
2Φ6)

′′ for what in [GP, p.407] is denoted by D4, C3 +A1).
The notation d;C;χ; (K1)m1

; (K2)m2
; . . . means that C ∈ Wel, d = dC , χ = ργC

(γC as in 0.4), and K1, K2, . . . are proper subsets of ∆ such that PKi

C 6= 0 and

dim(GKi
) = dC ; we have mi = mKi

C . (We omit mi whenever mi = 1.)
The notation for irreducible representations of W (of type E6, E7, E8) is as in

[Sp]; for type F4 it is as in [L1]; for type G2, 10 is the unit representation, 21

is the reflection representation and 22 is the other two dimensional irreducible
representation of W.

Type G2; ∆ is (012)
2; Φ6; 10; (• • •)
4; Φ3; 21; (•1•); (• • 2)
6; Φ2

2; 22; (0 • 2)

Type F4; ∆ is (01234)
4; Φ12; 11; (• • • • •)
6; Φ8; 42; (•1 • ••)
8; Φ2

6; 91; (0 • 2 • •); (•1 • 3•)2
10; (Φ2

2Φ6)
′; 81; (• • •34)

10; (Φ2
2Φ6)

′′; 83; (•12 • •); (0 • 2 • 4)
12; Φ2

4; 121; (• • 23•)3; (•12 • 4); (0 • •34)
14; Φ2

2Φ4; 161; (0 • 23•)
16; Φ2

3; 61; (01 • 34)
24; Φ4

2; 94; (0 • 234)

Type E6; ∆ is

(

1 3 4 5 6

2

0

)

6; Φ3Φ12; 10;

(

• • • • •

•

•

)

8; Φ9; 61;

(

1 • • • •

•

•

)

12; Φ3Φ
2
6; 303;

(

1 3 • • •

•

•

)

;

(

1 • • 5 •

2

•

)

14; Φ2
2Φ3Φ6; 154;

(

1 • 4 • 6

•

0

)

24; Φ3
3; 109;

(

1 3 • 5 6

2

0

)

Type E7; ∆ is
(

0 1 3 4 5 6 7

2

)

7; Φ2Φ18; 10;
( • • • • • • •

•

)

9; Φ2Φ14; 71;
(

• 1 • • • • •

•

)

11; Φ2Φ6Φ12; 272;
(

• 1 • • • • •

2

)
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13; Φ2Φ6Φ10; 563;
(

• 1 3 • • • •

•

)

2
;

(

• 1 • • 5 • •

2

)

15; Φ3
2Φ10; 354;

(

0 • 3 • 5 • 7

•

)

17; Φ2Φ4Φ8; 1895;
(

• 1 3 • 5 • •

2

)

;
(

0 • 3 • 5 • 7

2

)

21; Φ2Φ
3
6; 3157;

(

• 1 • 4 5 • •

2

)

3
;

(

• 1 3 • 5 6 •

2

)

23; Φ3
2Φ

2
6; 2808;

(

0 1 3 • 5 • 7

•

)

25; Φ2Φ
2
3Φ6; 709;

(

0 1 • 4 • 6 7

2

)

31; Φ5
2Φ6; 8412;

(

0 1 3 • 5 6 7

•

)

33; Φ3
2Φ

2
4; 21013;

(

• 1 3 4 • 6 7

2

)

63; Φ7
2; 1528;

(

0 1 3 4 5 6 7

•

)

Type E8; ∆ is
(

1 3 4 5 6 7 8 0

2

)

8; Φ30; 10;
( • • • • • • • •

•

)

10; Φ24; 81;
(

1 • • • • • • •

•

)

12; Φ20; 352;
(

1 • • • • • • •

2

)

14; Φ6Φ18; 1123;
(

1 3 • • • • • •

•

)

2
;

(

1 • • 5 • • • •

2

)

16; Φ15; 2104;
(

1 • 4 • • • • •

2

)

2
;
(

1 • • 5 • 7 • •

2

)

16; Φ2
2Φ18; 844;

(

• • • 5 • 7 • 0

2

)

18; Φ2
2Φ14; 5605;

(

1 3 • 5 • • • •

2

)

;
(

1 • • 5 • 7 • 0

2

)

20; Φ2
12; 7006;

(

1 3 • 5 6 • • •

•

)

2
;

(

1 3 • 5 • 7 • •

2

)

22; Φ2
4Φ12; 4007;

(

1 3 • 5 • 7 • 0

2

)

22; Φ2
6Φ12; 14007;

(

1 • 4 5 • • • •

2

)

3
;

(

1 3 • 5 6 • • •

2

)

24; Φ2
10; 14008;

(

1 • 4 5 • 7 • •

2

)

3
;

(

1 3 • 5 6 • 8 •

2

)

24; Φ2
2Φ6Φ12; 13448;

(

• • 4 5 • 7 • 0

2

)

26; Φ2
3Φ12; 4489;

(

1 3 • 5 6 • 8 0

•

)

26; Φ2
2Φ6Φ10; 32409;

(

1 3 4 • 6 7 • •

•

)

;
(

1 • 4 5 • 7 • 0

2

)

28; Φ3Φ9; 224010;
(

1 3 • 5 6 7 • •

2

)

;
(

1 3 • 5 6 • 8 0

2

)

30; Φ2
8; 140011;

(

1 3 • 5 6 7 8 •

2

)

32; Φ4
2Φ10; 97212;

(

• • 4 5 • 7 8 0

2

)
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34; Φ2
2Φ4Φ8; 453613;

(

1 3 4 • 6 7 • •

2

)

;
(

1 • 4 5 • 7 8 0

2

)

40; Φ4
6; 448016;

(

1 • 4 5 6 7 • •

2

)

10
;

(

1 3 4 5 • 7 8 0

•

)

42; Φ2
2Φ

3
6; 716817;

(

1 • 4 5 6 7 • 0

2

)

44; Φ4
2Φ

2
6; 420018;

(

• 3 4 5 • 7 8 0

2

)

44; Φ2
3Φ

2
6; 315018;

(

1 3 4 5 6 • 8 0

•

)

46; Φ2
2Φ

2
3Φ6; 201619;

(

1 3 • 5 6 7 8 0

2

)

46; Φ2
2Φ

2
4Φ6; 134419;

48; Φ2
5; 42020;

(

1 3 4 • 6 7 8 0

2

)

60; Φ4
4; 84026;

(

1 3 4 5 • 7 8 0

2

)

64; Φ6
2Φ6; 70028;

(

• • 4 5 6 7 8 0

2

)

66; Φ4
2Φ

2
4; 140029;

(

1 • 4 5 6 7 8 0

2

)

80; Φ4
3; 17536;

(

1 3 4 5 6 7 8 0

•

)

120; Φ8
2; 5056;

(

• 3 4 5 6 7 8 0

2

)

2.4. We prove 0.6(i) in the case where G is almost simple, simply connected of
exceptional type. Let C ∈ Wel. Let K be a proper subset of ∆ associated to C
in the tables in 2.3. We can find γ ∈ SK such that

(i) any element of γ has finite order.
We show that γ is C-small. By a standard argument we are reduced to the case
where k is as in 2.1. In this case the calculations outlined in 2.2 show that γ is
C-small, as claimed.

Next we consider for w ∈ Cmin, the map π : Bw −→ G, (g,B) 7→ G. Let
K = π!Q̄l. Using [L4, 14.2(a)], we see that the cohomology sheaves of K behave
smoothly when restricted to ∪γ∈SK

γ (which is one of the pieces YL,§ in [L3, 13.11]).
Since we know that when γ ∈ SK satisfies (i), some cohomology sheaf of K is non-
zero on γ, it follows that for any γ ∈ SK , some cohomology sheaf of K is non-zero
on γ; in particular, B

γ
w 6= ∅. It follows that any γ ∈ SK is C-good. This completes

the proof of Theorem 0.6(i).

3. Springer representations

3.1. In the setup of 1.2 we assume that G is the identity component of Is(V ). If
(1−κ)Q = 0 we identify, as in [L5, 1.5], W with W , the group of all permutations
of [1,n] that commute with the involution i 7→ n + 1 − i. Let Wn be the group
of all permutations of [1, 2n] that commute with the involution i 7→ 2n + 1 − i.
If n = 2n we have W = Wn; if n = 2n + 1 we identify W with Wn (hence W

with Wn) by w 7→ w′ where h(w′(i)) = w(h(i)) for i ∈ [1, 2n] and h(i) = i if
i ∈ [1, n], h(i) = i + 1 if i ∈ [n + 1, 2n]. As in [L1, 4.5] we write the irreducible
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representations of Wn in the form [(λ1 > λ2 > · · · > λm+1), (µ1 > µ2 > · · · > µm)]
where λi, µi ∈ N,

∑

i λi+
∑

i µi = m2 +n and m is sufficiently large. For example
[(0 < 1 < 2 < · · · < n), (1 < 2 < · · · < n)] is the sign representation of Wn.

If (1 − κ)Q 6= 0 we identify as in [L5, 1.5] W with W ′
n, the group of even

permutations in Wn. As in [L1, 4.6] we write the irreducible representations of W ′
n

as unordered pairs [(λ1 > λ2 > · · · > λm), (µ1 > µ2 > · · · > µm)] where λi, µi ∈ N,
∑

i λi+
∑

i µi = m2−m+n and m is sufficiently large. (There are two irreducible
representations corresponding to [(λ1 > λ2 > · · · > λm), (µ1 > µ2 > · · · > µm)]
with λi = µi for all i.) For example [(1 < 2 < · · · < n), (0 < 1 < 2 < · · · < n− 1)]
is the sign representation of W ′

n.

3.2. Let Sn be the symmetric group in n letters. Using [L6, 5.3, 4.4(a)] we see
that

(a) if n = 2c ∈ 2N then Wc ×W ′
c, Sn are naturally reflection subgroups of Wn

and we have

jWn

Wc×W ′

c
(sgn) = jWn

Sn
(sgn)

= [(0 < 2 < 3 < 4 < · · · < c+ 1), (1 < 2 < 3 < · · · < c)];

(b) if n = 2c+ 1 ∈ 2N + 1 then Wc ×W ′
c+1, Sn are naturally reflection subgroups

of Wn and we have

jWn

Wc×W ′

c+1
(sgn) = jWn

Sn
(sgn)

= [(1 < 2 < 3 < 4 < · · · < c+ 1), (1 < 2 < 3 < · · · < c)].

Using [L6, 6.3] we see that
(c) if n = 2c ∈ 2N then W ′

c ×W ′
c is naturally a reflection subgroup of W ′

n and
we have

j
W ′

n

W ′

c×W
′

c
(sgn) = [(2 < 3 < 4 < · · · < c+ 1), (0 < 1 < 2 < 3 < · · · < c− 1)].

Let p1 ≥ p2 ≥ · · · ≥ pσ be integers ≥ 1 such that p1 + · · · + pσ = n. Define
p̄1 ≥ p̄2 ≥ · · · ≥ p̄k as in 1.3. Note that p̄1 = σ, k = p1. Define p̃1 ≥ p̃2 ≥ · · · ≥ p̃σ
by p̃i = pi − 1 if i ∈ [1, p̄k], p̃i = pi if i ∈ [p̄k + 1, σ].

Assuming that k > 1 we have p̃σ = pσ ≥ 1 and using [L6, 4.4(a)] we see that
(d) if σ = 2τ + 1 we have

[(pσ < pσ−2 + 1 < · · · < p3 + τ − 1 < p1 + τ), (pσ−1 < pσ−3 + 1 < · · · < p2 + τ − 1)]

= jWn

Sp̄k
×Wn−p̄k

(sgn � [(p̃σ < p̃σ−2 + 1 < · · · < p̃3 + τ − 1 < p̃1 + τ),

(p̃σ−1 < p̃σ−3 + 1 < · · · < p̃2 + τ − 1)]);

(e) if σ = 2τ we have

[(0 < pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ < pσ−2 + 1 < · · · < p2 + τ − 1)]

= jWn

Sp̄k
×Wn−p̄k

(sgn � [(0 < p̃σ−1 + 1 < p̃σ−3 + 2 < · · · < p̃3 + τ − 1 < p̃1 + τ),

(p̃σ < p̃σ−2 + 1 < · · · < p̃2 + τ − 1)]).
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Assuming that k > 1, σ = 2τ we have p̃σ = pσ ≥ 1, n − p̄k ≥ 2 and using [L6,
6.2(a)] we see that

[(pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ − 1 < pσ−2 < · · · < p4 + τ − 3 < p2 + τ − 2)]

= j
W ′

n

Sp̄k
×W ′

n−p̄k

(sgn � [(p̃σ−1 + 1 < p̃σ−3 + 2 < · · · < p̃1 + τ),

(p̃σ − 1 < p̃σ−2 < · · · < p̃4 + τ − 3 < p̃2 + τ − 2)]).(f)

We show that
(g) jWn

Sp̄k
×...×Sp̄2

×Sp̄1
(sgn) is equal to

[(pσ < pσ−2 +1 < · · · < p3 + τ − 1 < p1 + τ), (pσ−1 < pσ−3 +1 < · · · < p2 + τ − 1)]

if σ = 2τ + 1 and to

[(0 < pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ < pσ−2 + 1 < · · · < p2 + τ − 1)]

if σ = 2τ . We argue by induction on k. If k = 1 we have σ = n and the result
follows from (a),(b). If k > 1 then

jWn

Sp̄k
×...×Sp̄2

×Sp̄1
(sgn) = jWn

Sp̄k
×Wn−p̄k

(sgn � j
Wn−p̄k

Sp̄k−1
×...×Sp̄2

×Sp̄1
(sgn))

and the result follows from (d),(e) using the induction hypothesis and the transi-
tivity of the j-induction.

We write p̄1 = a+ b where b− a ∈ {0, 1}. We show that

(h) jWn

Sp′

k
×...×Sp′

2
×Wa×W ′

b
(sgn) is equal to

[(pσ < pσ−2+1 < · · · < p3+τ−1 < p1+τ), (pσ−1 < pσ−3+1 < · · · < p2+τ−1)]
if σ = 2τ + 1 and to

[(0 < pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ < pσ−2 + 1 < · · · < p2 + τ − 1)]

if σ = 2τ .
Using (a),(b) and the transitivity of j-induction we see that

jWn

Sp̄k
×...×Sp̄2

×Wa×W ′

b
(sgn) = jWn

Sp̄k
×...×...×Sp̄2

×Wp̄1
(j
Sp̄k

×...×Sp̄2
×Wp̄1

Sp̄k
×...×Sp̄2

×Wa×W ′

b
(sgn))

= jWn

Sp̄k
×...×Sp̄2

×Wp̄1
(j
Sp̄k

×...×Sp̄2
×Wp̄1

Sp̄k
×...×Sp̄2

×Sp̄1
(sgn)) = jWn

Sp̄k
×...×Sp̄2

×Sp̄1
(sgn))

and it remains to use (g).
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Assuming that σ = 2τ we show that

j
W ′

n

Sp̄k
×...×Sp̄2

×W ′

p̄1/2
×W ′

p̄1/2
(sgn) = [(pσ−1 + 1 < pσ−3 + 2 < · · · < p1 + τ),

(pσ − 1 < pσ−2 < · · · < p4 + τ − 3 < p2 + τ − 2)].(i)

We argue by induction on k. If k = 1 we have σ = n and the result follows from
(c). If k > 1 then the left hand side of (i) is equal to

j
W ′

n

Sp̄k
×W ′

n−p̄k

(sgn � j
W ′

n−p̄k

Sp̄k−1
×...×Sp̄2

×W ′

p̄1/2
×W ′

p̄1/2
(sgn))

and the result follows from (f) using the induction hypothesis and the transitivity
of the j-induction.

3.3. Assume that we are in the setup of 1.3. Let p∗ = (p1 ≥ p2 ≥ · · · ≥ pσ) be
as in 1.3. We consider a unipotent class γ in G such that any u ∈ γ has Jordan
blocks of sizes

(i) 2p1, 2p2, . . . , 2pσ.
We set σ = 2τ + κσ. We show:

ργ = [(0 < pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ < pσ−2 + 1 < · · · < p4 + τ − 2 < p2 + τ − 1)] if κσ = 0,

ργ = [(pσ < ps−2 + 1 < · · · < p3 + τ − 1 < p1 + τ),

(pσ−1 < pσ−3 + 1 < · · · < p4 + τ − 2 < p2 + τ − 1)] if κσ = 1.(a)

To the partition (i) we will apply the procedure of [L2, 11.6]. Let M = σ + κσ.
Let zM ≥ · · · ≥ z2 ≥ z1 be the sequence (i) if κσ = 0 and 2p1, 2p2, . . . , 2pσ, 0 if
κσ = 1. The sequence z′M > · · · > z′2 > z′1 in loc.cit. is

2p1 + σ − 1, 2p2 + σ − 2, . . . , 2pσ (if κσ = 0),
2p1 + σ, 2p2 + σ − 1, . . . , 2pσ + 1, 0 (if κσ = 1).

This contains M/2 even numbers 2yM/2 > · · · > 2y2 > 2y1 given by
{2pt + σ − t; t ∈ [1, σ], κt = 0} (if κσ = 0),
{2pt + σ − t+ 1; t ∈ [1, σ], κt = 0} t {0} (if κσ = 1)

and M/2 odd numbers 2y′M/2 + 1 > · · · > 2y′2 + 1 > 2y′1 + 1 given by

{2pt + σ − t+ κσ; t ∈ [1, σ], κt = 1}.
Thus, the sets ({y′M/2 > · · · > y′2 > y′1}, {yM/2 > · · · > y2 > y1}) are given by

({pt+τ−(t+1)/2; t ∈ [1, σ], κt = 1}, {pt+τ−t/2; t ∈ [1, σ], κt = 0}) (if κσ = 0)
({pt+ τ +(1− t)/2; t ∈ [1, σ], κt = 1}, {pt+ τ − t/2+1; t ∈ [1, σ], κt = 0}t{0})

(if κσ = 1).
If κσ = 0, the multisets

({y′τ − (τ − 1) ≥ · · · ≥ y′2 − 1 ≥ y′1 ≥ 0}, {yτ − (τ − 1) > · · · > y2 − 1 > y1})
are given by
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({p1 ≥ p3 ≥ · · · ≥ pσ−1 ≥ 0}, {p2 ≥ p4 ≥ · · · ≥ pσ}).
If κσ = 1, the multisets

({y′τ+1 − τ ≥ · · · ≥ y′2 − 1 ≥ y′1 ≥ 0}, {yτ+1 − τ ≥ · · · ≥ y2 − 1 ≥ y1})
are given by

({p1 ≥ p3 ≥ · · · ≥ pσ ≥ 0}, {p2 ≥ p4 ≥ · · · ≥ pσ−1 ≥ 0}).
Now (a) follows from [L2, §12]. Using (a) and 3.2(g) we see that

(b) ρg = jWn

Sp̄k
×...×Sp̄2

×Sp̄1
(sgn).

3.4. Assume that we are in the setup of 1.4. Let p∗ = (p1 ≥ p2 ≥ · · · ≥ pσ) be as
in 1.4. Define ψ : [1, σ] −→ {−1, 0, 1} by ψ(t) = 1 if t is odd and pt−1 > pt (the last
condition is regarded as satisfied when t = 1); ψ(t) = −1 if t is even and pt > pt+1

(the last condition is regarded as satisfied when t = σ); ψ(t) = 0 for all other t.
We set σ = 2τ + κσ. If n = 2n we assume that σ = 2τ . We consider a unipotent
class γ in G such that any u ∈ γ has Jordan blocks of sizes

(i) 2p1 + ψ(1), 2p2 + ψ(2), . . . , 2pσ + ψ(σ) if n = 2n (hence κσ = 0),
(ii) 2p1 + ψ(1), 2p2 + ψ(2), . . . , 2pσ + ψ(σ) if n = 2n+ 1 and κσ = 1,
(iii) 2p1 + ψ(1), 2p2 + ψ(2), . . . , 2pσ + ψ(σ), 1 if n = 2n+ 1 and κσ = 0.

We show:

ργ = [(pσ − 1 < pσ−2 < · · · < p4 + τ − 3 < p2 + τ − 2),

(pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ)], in case (i),

ργ = [(pσ < pσ−2 + 1 < · · · < p3 + τ − 1 < p1 + τ),

(pσ−1 < pσ−3 + 1 < · · · < p4 + τ − 2 < p2 + τ − 1)] in case (ii),

ργ = [0 < pσ−1 + 1 < pσ−3 + 2 < · · · < p3 + τ − 1 < p1 + τ),

(pσ < pσ−2 + 1 < · · · < p4 + τ − 2 < p2 + τ − 1)] in case (iii).(a)

To the partition (i),(ii) or (iii) we will apply the procedure of [L2, 11.7]. Let
zM ≥ · · · ≥ z2 ≥ z1 be the sequence (i),(ii) or (iii) (where M = σ in cases (i),(ii)
and M = σ + 1 in case (iii)). The sequence z′M > · · · > z′2 > z′1 in loc.cit. is

2p1 + ψ(1) + σ − 1, 2p2 + ψ(2) + σ − 2, . . . , 2pσ + ψ(σ) (in cases (i),(ii)),
2p1 + ψ(1) + σ, 2p2 + ψ(2) + σ − 1, . . . , 2pσ + ψ(σ) + 1, 1 (in case (iii)).

This contains [M/2] even numbers 2y[M/2] > · · · > 2y2 > 2y1 given by
{2pt + ψ(t) + σ − t; t ∈ [1, σ], κt = κψ(t)} in case (i),
{2pt + ψ(t) + σ − t; t ∈ [1, σ], κt 6= κψ(t)} in case (ii),
{2pt + ψ(t) + σ − t+ 1; t ∈ [1, σ], κt 6= kψ(t)} in case (iii),

and [(M + 1)/2] odd numbers 2y′[(M+1)/2] + 1 > · · · > 2y′2 + 1 > 2y′1 + 1 given by

{2pt + ψ(t) + σ − t; t ∈ [1, σ], κt 6= κψ(t)} in case (i),
{2pt + ψ(t) + σ − t; t ∈ [1, σ], κt = κψ(t)} in case (ii),
{2pt + ψ(t) + σ − t+ 1; t ∈ [1, σ], κt = κψ(t)} t {1} in case (iii).

Thus, the sets ({y′[(M+1)/2] > · · · > y′2 > y′1}, {y[M/2] > · · · > y2 > y1}) are given
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by

({pt + τ + (ψ(t) − t− 1)/2; t ∈ [1, σ], κt 6= κψ(t)},

{pt + τ + (ψ(t) − t)/2; t ∈ [1, σ], κt = κψ(t)})

= ({pt + τ + (−t− 2)/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt + τ + (−t− 1)/2; t ∈ [1, σ], ψ(t) = 0, κt = 1},

{pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1}

t {pt + τ + (−t)/2; t ∈ [1, σ], ψ(t) = 0, κt = 0})

= ({pt + τ + (−t− 2)/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt′ + τ + (−t′ − 2)/2; t′ ∈ [1, σ], ψ(t′) = 0, κt′ = 0},

{pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1}

t {pt′ + τ + (1 − t′)/2; t′ ∈ [1, σ], ψ(t′) = 0, κt′ = 1})

= ({pt + τ + (−t− 2)/2; t ∈ [1, σ], κt = 0}

t {pt + τ + (1 − t)/2; t ∈ [1, σ], κt = 1})

in case (i),

({pt + τ + (ψ(t)− t)/2; t ∈ [1, σ], κt = κψ(t)},

{pt + τ + (ψ(t) + 1 − t)/2; t ∈ [1, σ], κt 6= κψ(t)})

= ({pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1}

t {pt + τ − t/2; t ∈ [1, σ], ψ(t) = 0, κt = 0},

{pt + τ − t/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 0, κt = 1})

= ({pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1}

t {pt′ + τ + (1 − t′)/2; t′ ∈ [1, σ], ψ(t′) = 0, κt′ = 1},

{pt + τ − t/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt′ + τ − t′/2; t′ ∈ [1, σ], ψ(t′) = 0, κt′ = 0})

= ({pt + τ + (1 − t)/2; t ∈ [1, σ], κt = 1},

{pt + τ − t/2; t ∈ [1, σ], κt = 0})
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in case (ii),

({pt + τ + (ψ(t)− t)/2; t ∈ [1, σ], κt = κψ(t)} t {0},

{pt + τ + (ψ(t) + 1 − t)/2; t ∈ [1, σ], κt 6= κψ(t)}) =

({pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1} t {0}

t {pt + τ − t/2; t ∈ [1, σ], ψ(t) = 0, κt = 0} t {0},

{pt + τ − t/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 0, κt = 1})

= ({pt + τ + (1 − t)/2; t ∈ [1, σ], ψ(t) = 1, κt = 1} t {0}

t {pt′ + τ + (1 − t′)/2; t′ ∈ [1, σ], ψ(t′) = 0, κt′ = 1} t {0},

{pt + τ − t/2; t ∈ [1, σ], ψ(t) = −1, κt = 0}

t {pt′ + τ − t′/2; t ∈ [1, σ], ψ(t′) = 0, κt′ = 0})

= ({pt + τ + (1 − t)/2; t ∈ [1, σ], κt = 1} t {0},

{pt + τ − t/2; t ∈ [1, σ], κt = 0}})

in case (iii). (We have used that, if κt = 0, t < σ and ψ(t) = 0, then ps(t+ 1) =
ψ(t), pt+1 = pt; if κt = 1 and ψ(t) = 0 then ψ(t− 1) = ψ(t), pt−1 = pt.)

In case (i) the multisets

({y′τ − τ + 1 ≥ · · · ≥ y′2 − 1 ≥ y′1}, {yτ − τ + 1 ≥ · · · > y2 − 1 ≥ y1})

are given by

({p2 − 1 ≥ p4 − 1 ≥ · · · ≥ pσ − 1}, {p1 + 1 ≥ p3 + 1 ≥ · · · ≥ pσ−1 + 1}).

In case (ii) the multisets

({y′τ+1 − τ ≥ · · · ≥ y′2 − 1 ≥ y′1}, {yτ − τ + 1 ≥ · · · ≥ y2 − 1 ≥ y1})

are given by
({p1 ≥ p3 ≥ · · · ≥ pσ}, {p2 ≥ p4 ≥ · · · ≥ pσ−1}).

In case (iii) the multisets

({y′τ+1 − τ ≥ · · · ≥ y′2 − 1 ≥ y′1}, {yτ − τ + 1 ≥ · · · ≥ y2 − 1 ≥ y1})

are given by

({p1 ≥ p3 ≥ · · · ≥ pσ−1 ≥ 0}, {p2 ≥ p4 ≥ · · · ≥ pσ}).

Now (a) follows from [L2, §13]. Using (a) and 3.2(i),(h), we see that

ργ = j
W ′

n

Sp̄k
×...×Sp̄2

×W ′

p̄1/2
×W ′

p̄1/2
(sgn) in case (i);

ργ = jWn

Sp̄k
×...×Sp̄2

×W(p̄1−κσ)/2×W
′

(p̄1+κσ)/2
(sgn)

in case (ii),(iii).(b)
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3.5. We prove Theorem 0.6(ii). If G is of type A the result is immediate. If
G is of classical type other than A, the result follows from 3.3(b) and 3.4(b). If
G is of exceptional type, the result follows from the tables in 2.3 using the data
on j-induction available in the CHEVIE package [C]. This completes the proof of
Theorem 0.6.

3.6. Let wp∗ be the conjugacy class in Wn (as in 3.1) associated to p∗ = (p1 ≥
p2 ≥ · · · ≥ pσ) (where p1 + p2 + · · · + pσ = n) as in [L5, 1,6]. We can view wp∗
as an element of W in the cases where G is as in 1.2 with either Q = 0, κ = 0 or
with Q 6= 0, κ = 1. In both cases wp∗ has minimal length in its conjugacy class C
which is in Wel. Let γC , γ′C be the corresponding C-small unipotent classes (one
is in a symplectic group, one is in an odd orthogonal group). From 3.3(b), 3.4(b),
we see, using 3.2(g),(h), that

(a) the Springer representations ργC
, ργ′

C
are the same.

We see that the map C 7→ ργC
from Wel to Irr(W) depends only on the Weyl

group W, not on the underlying root system.

4. The variety of G-orbits on Bw

4.1. Let C ∈ Wel and let w ∈ Cmin. Let U∗ = UB∗ . Let U∗
w = U∗ ∩ ẇU∗ẇ−1,

T w = {t ∈ T ; ẇt = tẇ}. Let

B̃w = {(g, xU∗
w) ∈ G× (G/U∗

w);x−1gx ∈ ẇU∗},

a closed subvariety of G × (G/U ∗
w). Now G acts on B̃w by g1 : (g, xU∗

w) 7→
(g1gg

−1
1 , g1xU

∗
w) and T w acts (freely) on B̃w by t : (g, xU∗

w) 7→ (g, xt−1U∗
w); these

two actions commute. Define πw : B̃w −→ Bw by (g, xU∗
w) 7→ (g, xB∗x−1). It is

easy to see that, if G is semisimple, then T w is a finite group and πw is a finite
principal covering with group T w. (In this case, the homomorphism T −→ T ,
t 7→ t−1ẇtẇ−1 is surjective, since it has finite kernel T w.) Note that G acts
on Bw by g1 : (g,B) 7→ (g1gg

−1
1 , g1Bg

−1
1 ) and that πw is compatible with the

G-actions. Note that U∗
w acts on U∗ by u1 : u 7→ ẇ−1u1ẇuu

−1
1 .

Let G\Bw, G\B̃w, U∗
w\\U

∗ be the set of orbits of the G-actions on Bw, B̃w

or of the U∗
w-action on U∗. Now the T w-action on B̃w induces a T w-action on

G\B̃w; let T w\(G\B̃w) be the set of orbits of this action. Also, T w acts on U∗

by conjugation and this induces an action of T w on U∗
w\\U

∗; let T w\(U∗
w\\U

∗)
be the set of orbits of this action. Note that u 7→ (ẇu, U ∗

w)} induces a bijection

(a) U∗
w\\U

∗ ∼
−→ G\B̃w.

This induces a bijection T w\(U∗
w\\U

∗)
∼
−→ T w\(G\B̃w). If G is semisimple then π

induces a bijection T w\(G\B̃w)
∼
−→ G\Bw; combining with the previous bijection

we obtain in this case a bijection

(b) T w\(U∗
w\\U

∗)
∼
−→ G\Bw.

We have the following result.
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Proposition 4.2. (i) The isotropy groups of the G-action 4.1 on B̃w are {1}.
(ii) The isotropy groups of the U ∗

w-action 4.1 on U∗ are {1}.
(iii) The variety Bw is affine.

(iv) If G is semisimple, the variety B̃w is affine.

We prove (i). Let g1 be an element of G such that (g, xU∗
w) = (g1gg

−1
1 , g1xU

∗
w)

for some (g, xU∗
w) ∈ B̃w. Then g1gg

−1
1 = g, x−1g1x ∈ U∗

w. We have

(g1gg
−1
1 , g1xB0x

−1g−1) = (g, xB0x
−1) ∈ Bw

hence from [L5, 5.2] we see that the image of g1 in G/ZG is of finite order invertible
in k. Hence g1 is semisimple. Since x−1g1x ∈ U∗

w we see that g1 is also unipotent.
Hence g1 = 1 and (i) is proved.

We prove (ii). Let u1 ∈ U∗
w, u ∈ U∗ be such that ẇ−1u1ẇuu

−1
1 = u. We must

show that u1 = 1. Note that (ẇu, U∗
w) ∈ B̃w and (u1ẇuu

−1
1 , u1U

∗
w) = (ẇu, U∗

w).

Thus u1 is in the isotropy group of (ẇu, U∗
w) for the G-action on B̃w. Using (i)

we have u1 = 1 and (ii) is proved.
We prove (iii) by a method inspired by [BR]. As in the proof of [L5, 5.2] we

can assume that w is good in the sense of Geck and Michel. Let Y be the set of
all sequences (B0, B1, . . . , Bd) ∈ Bd+1 such that (Bi−1, Bi) ∈ Ow for i ∈ [1, d]. By
[BR, Proposition 3], Y is an affine variety. Hence G × Y is an affine subvariety
of G × Bd+1. Let Y ′ be the set of all (g,B0, B1, . . . , Bd) ∈ G × Bd+1 such that
Bi = giB0g

−i for i ∈ [1, d]; this is a closed subvariety of G × Bd+1. Hence
(G×Y )∩Y ′ is a closed subvariety of G×Y so that it is affine. The map Bw −→ Y ′

given by (g,B) 7→ (g,B, gBg−1, g2Bg−2, . . . , gdBg−d) is an isomorphism of Bw

onto (G× Y ) ∩ Y ′. Hence Bw is affine, as required.

(iv) Since B̃w is a principal bundle over Bw with group T w (a finite group)

and Bw is affine (see (iii)) we see that B̃w is affine.

4.3. Assume that G is semisimple. From 4.2(i),(iv) we see that all G-orbits on

the affine variety B̃w are closed hence the set of G-orbits on B̃w has a natural
structure of an affine variety. Using 4.1(a) we may identify this affine variety with
U∗
w\\U

∗. Using 4.2(ii) we see that this affine variety is something like an affine
space of dimension l(w). Using 4.1(b) we see also that the set of G-orbits on Bw

is an affine variety of dimension l(w) which is something like the quotient of an
affine space by the action of the finite group T w.
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