REMARKS ON SPRINGER’S REPRESENTATIONS
G. LuszTIG

INTRODUCTION

0.1. Let k be an algebraically closed field of characteristic exponent p > 1. Let
G be a connected reductive algebraic group over k and let g be the Lie algebra of
G. Let Ug be the variety of unipotent elements of G and let Ny be the variety
of nilpotent elements of g (we say that x € g is nilpotent if for some/any closed
imbedding G C GL(k™), the image of z under the induced map of Lie algebras
g — End(k"™) is nilpotent as an endomorphism). Note that G acts on G and g by
the adjoint action. Let X (resp. Xj) be the set of G-orbits on Ug (resp. on Njy).
We fix a prime number [, [ # p. Let Xg (resp. 239) be the set of pairs (O, £) where
O € Xg (resp. O € X,) and L is an irreducible G-equivariant Q;-local system on
O up to isomorphism. Let W be the Weyl group of GG. For any Weyl group W
let Irr(W) be the set of isomorphism classes of irreducible representations of W
over Q. In [Sp], Sprlnger defined (assumlng that p = 1 or p > 0) natural injective
maps S¢g : Irr(W) — Xg, Sg : Irr(W) — X (each of these two maps determines
the other since in this case we have canonically X = X,). In [L2] a new definition
of the map S¢ (based on intersection homology) was given which applies without
restriction on p. A similar method can be used to define Sy without restriction on
p (see [X] and 2.2 below); note that in general Xe, X cannot be identified. Now
for any O € Xg (resp. O € X,), (0,Qy) is in the image of Sg (resp. Sy) hence
there is a well defined injective map S, : Xg — Irr(W) (resp. Sy : Xy — Irr(W))
such that for any O € Xg (resp. O € &) we have Si;(O) = E (resp. S3(0) = E)
where E € Irr(W) is given by Sg(E) = (0, Q) (resp. S4(E) = (0,Qy)). Let S¢
be the image of Si; : Xg — Irr(W). Let &, be the image of Sj : Xy — Irr(W).

In [L5], we gave an apriori definition (in the framework of Weyl groups) of the
subset &g of Irr(W) which parametrizes the unipotent G-orbits in G. In this
paper we give an apriori definition (in a similar spirit) of the subset &4 of Irr(W)
which parametrizes the nilpotent G-orbits in g. (See Proposition 3.2.) This relies
heavily on work of Spaltenstein [S2],[S3] and on [HS]. As an application we define a
natural injective map from the set of unipotent G-orbits in GG to the set of nilpotent
G-orbits in g (see 3.3); this maps preserves the dimension of an orbit.
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2 G. LUSZTIG

In [Se], Serre asked whether a power u™ (where n is an integer not divisible p,
p > 2) of a unipotent element u € G is conjugate to v under G. This is well known
to be true when p > 0. In §2 we answer positively this question in general using
the theory of Springer’s representations; we also discuss an analogous property of
nilpotent elements.

I wish to thank J.-P. Serre for his interesting questions and comments.

1. COMBINATORICS

1.1. For k € N let & = {a. = (ag,a1,...,ax) € NFtliqg < a; < -+ < ap}.

For a, € &; let |a.| = ), a;. For as,a), € & we set a, + al, = (ag + ap, a1 +
al,...,ax +aj). For any n € N let £ = {a. € &;las] = n}. We have an
imbedding £ — &'+, (ao,a1,...,ax) — (0,a0,a1,...,a;). This is a bijection if

k is sufficiently large with respect to n. For n € N let
n = {(ax al) € & x Eslas| + |al] = n},
P ={(a«, a,) € C; either |a.| > |a)| or a, = al}.
Here k is large (relatlve to n), fixed. Let
bCr = {(as,al) €CPsal <a; +2 Viel0,k]},

MCE = {(axd)) € Cfial < a;+2 Vi€ [0k],a; <alyy Vie[0k—1]},

2 = {(ax,al) € Cfsdf < ai+2 Vi€ [0,k],a; <ajy, +2 Vie[0,k— 1]},

ACr ={(as,a}) € Cplya; < af,+1 Vie[0,k—1],a;,<a;+1 Viel0k]}

IDP = {(a.,dl) € D¥;al < a; Vie[0,k]},

4D = {(a.,a,) € Dfyal < a; Vi€ [0,k],a; <al,+2 Vie0,k—1]},

Lpr = {(a,,al) € D¥;al <a; Viel0,k],a; < aj,,+4 Viel0,k—1]}.
Note that

blep c ey c ey,

ciep ey c e,

dlcdn d2cdn an
The following statements are obvious. If (a.,a.) € CI, (b, b.) € CJ* then (a. +
be,al, +b,) € Cm+m If (a.,dl) € °C™, (b, b.) € “Di¥', then (a, + b, al, +b.) €
et If (a4, dl) € 9D, (by,bl) € YD then (a. + by, al 4 b.) € dC™

In the following result we assume that £ is large relative to n.

Proposition 1.2. (a) Let (c.,c,) € C2'. Then either (c«,c.) € 1C or there exist
m > 1,m' > 1 such that m +m' = n and (a.,a.) € CJ*, (b.,b.) € CJ* such that
(c*,c*) (ax + by, al, +0).

(b) Let (c«,cl) € °CP. Then either (c.,c,) € PCP or there exist m > 0,m’ > 2
such that m +m/ = n and (a,,dl,) € °C", (b.,b.) € 9D, such that (c.,c,) =
(ax + by, al, +1).

(c) Let (c,c.) € C2. Then either (c.,c.) € YCP or there exist m > 2,m’ > 2
such that m +m' = n and (a.,d.) € *D*, (b,,b.) € DY such that (c.,c,) =
(ax + by, al, +0).
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We prove (a). Assume first that ¢; < cs41 for some s € [0,k — 1]. Define
(b, b)) €Ck, r=k—5>0,by b;=1forie[s+1,k], b; =0 for i € [0,s], b, =0
for i € [0,k]. Define (ax,a’.) € C¥__ by a; =c¢; —1fori € [s+1,k], a; = ¢; in
[0, s], a/, = ¢,,. We have a, + b, c*, a, + b, =c,. If r <n we see that (a) holds.
If r = n then (c., c,) = (bs, b)) € ¢ICP and (a) holds again.

Next we assume that ¢, < ¢, for some s € [0,k — 1]. Define (b,,b,) € CF,
r=k—s>0,byb =0 foriel0kl, b’—lforiE[s—l—l K, b’—Oforz'E[O s].
Define (ay,a )EC,’i Tbya*—c*,a =c,—1forie€[s+1,k],a, = ¢, fori e [0,s].
We have a, + b, = ¢4, al, + b, = c,. If r < n we see that (a) holds Ifr—nthen
(Cay ) = (by, b)) € C1CP and (a) holds again.

Finally we assume that co = c¢; = =c¢p =0 = = cl.. Since k is large
we can assume that cg =0, ¢ = 0. Then n =0 and (c*, ) Cle

We prove (b). If n = 0 we have clearly (c.,c,) € *1C. Hence we can assume
that n > 0 and that the result is true when n is repaced by n’ € [0,n — 1].

Assume first that we can find 0 < ¢t < s < k such that c;- =cj+2forj € [s+1,k],
< c¢j+2for jelts], ci—1 < ¢ Note that if s < k then ¢ < ¢}, ; indeed,
A, < cs—2< cop1 — 2=, Define (b,0)) € DE, r =2k —t—5s+1>0by
bi =1fori e [t,k], by =0 fori e [0,t—1], 0, =1forie [s+ 1,k], b, = 0 for
i € [0, s]. Define (a.,a’.) € °Ck_ by a; = ¢;—1fori € [t, k], a; = ¢; fori € [0,t—1],
a,=c,—1fori e [s+1,kl], a), = cg for i € [0, s]. We have a,+b, = ¢, al +b, =c,.
If r > 2 we see that (b) holds. If r = 1thent =s=kand ap =cxt — 1, a; = ¢;
for i € [0,k — 1], a, = ¢, for i € [0,k]. The induction hypothesis is applicable to
(ax,a’) €°Ck_|. If (a4, al) € ®1Ck_, then clearly (c.,c,) € ®*C¥_; and (b) holds.
If (ax,al) ¢ blC _; then we can find m > 0,m’ > 2 such that m +m' =n —1
and (., a.) € °C*, (b, b.) € *DY such that (a.,a.) = (a. + by, a. +b.). Then
(Cor €.) = (@u+Dby+bs, @l +D, +.) where (@, @) € °C™, (by+bs, b, 4b.) € 1D+
so that (b) holds.

Next we assume that ¢; > 0 for some i. Then we have 0 = ¢ = ¢ = --- =
ci—1 < ¢ for some | € [0, k]. If ¢, < ¢s + 2 for some s € [[, k| then we can assume
that s is maximum possible with this property and there are two possibilities.
Either ¢, < ¢; +2 for all ¢ € [I, s] and then by the previous paragraph (with t =)
we see that (b) holds; or ¢, = ¢; —|— 2 for some i € I, s] and letting ¢ — 1 be the
largest such i we have 0 <t <s, ¢ <c;+2forj€[t,s],c;=cj+2forj=t-1
and ¢;_1 =¢,_1—2< ¢ —-2< ct, using again the prev1ous paragraph we see
that (b) holds. Thus we may assume that ¢, = ¢; + 2 for all ¢ € [I, k]. Assume in
addition that ¢} < ¢, for some s € [I,k —1]. We can assume that s is maximum
possible so that ¢, < ¢, =--- = ¢;,. We have cs41 = ¢, —2 > ¢, —2 = ¢, hence
s < Csq1. Define (by,b,) € 4DE r =2k —2s > 2, by b; = 1 fori € [s+1,k], b; = O
for i € [0, 5], b, = 1fori € [s+1,k], b, = 0 for i € [0, s]. Define (a.,a’,) € °CF_,

a; =c;i—1forie[s+1,k],a; =c; forie€0,s],a, =c;,—1fori e [s+1,k], a, —cZ
for ¢ € [0, s]. We have a, + b, = ¢, a/, + b, = ¢,,. We see that (b) holds. Thus we
can assume that ¢; = ¢, =---=¢, = N +2sothat ¢ = ¢p1 =--- = ¢ = N.

Cc

n >0~
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Note that ¢, < 2 for i € [0,1 — 1]. We have (cy,c,) € *’CP so that (b) holds.

Finally we assume that ¢o =¢; = --- = ¢ = 0. Then ¢, < 2 for i € [0, k] and
(cx,c.) € P1C2 so that (b) holds. This completes the proof of (b).

We prove (c). If n = 0 we have clearly (c,,c,) € D2. Hence we can assume
that n > 0 and that the result is true when n is repaced by n’ € [0,n — 1].

Assume first that we can find 0 < ¢t < s < k such that c;- =cj for j € [s+ 1, kK],
c; < c¢jfor j € [t,s], c4—1 < ¢;. Note that if s < k then ¢ < c[4; indeed,
i < ¢g < sp1 = 4. Define (b,,b,) € “DF, r=2k—t—s+1>0byb; =1 for
i€[tk],b;=0forie[0,t—1],b, =1fori € [s+1,k], b, =0 for i € [0, s]. Define
(ax,al) € DE_ by a; =c;—1fori €[t k], a;=c; forie[0,t—1],a,=c,—1
for i € [s+1 k] a; = ¢ for i € [0,s]. We have a, + b, = ¢4, a, + b, =, If
n—2 >r > 2 we see that (c) holds. If r = 1thent =s=kand ay = cx—1, a; = ¢;
for i € [0,k — 1], a, = ¢, for i € [0,k]. The induction hypothesis is applicable to
(ay,al) € 4DE_|. Tf (a*, al) € *DF_| then clearly (c.,c.) € UDE_| and (c) holds.
If (a.,dl,) ¢ dlD _, then we can find m > 2,m’ > 2 such that m+m' =n —1
and (d,,a.) € 9Dy, (b,,b.) € 9D such that (a.,al) = (@x + bs, @, + b.). Then
(Cor €.) = (@u+butby, @l +b,+b.) where (d,a.) € DI, (by+by, b, +b.) € 1D+
so that (c) holds. Ifr—n—lthenal—Oforze [0 k—l], ar = 0, a; = 0 for
i€ [O,k];hencecizlforie [tk — 1], k—2 ¢i =0forie[0,t—1], c, =1 for
ies+1 k:] ¢t =0 for i € [0,s]. Hence (c.,c,) € 4Dy so that (c) holds. If r =n
then (c.,c) = (bs, b)) € “DY so that (c) holds.

Next we assume that ¢; > 0 for some ¢. Then we have 0 = ¢cg = ¢ = -+ =
ci—1 < ¢ for some [ € [0, k]. If ¢, < ¢s for some s € [I, k] then we can assume that
s is maximum possible with this property and there are two possibilities. Either
¢ < ¢; forall i € [I, s] and then by the previous paragraph (with ¢ = [) we see that
(c) holds; or ¢}, = ¢; for some i € [l, s] and letting ¢t —1 be the largest such ¢ we have
0<t<s,cj<cjforjelts],c;=cjforj=t-landc, 1 =c;_; <c; <c;using
again the previous paragraph we see that (c) holds. Thus we may assume that
c; = ¢; for all i € [[, k]. Assume in addition that ¢ < ¢, for some s € [I,k — 1].
We can assume that s is maximum possible so that ¢ < ¢, ; = --- = ¢;. We have
Co41 = Chyq > ¢l = cs hence ¢; < cs1. Define (b, b,) € 4DF r = 2k — 25 > 2,
by b; =1fori € [s+1,k],b; =0fori e [0,s],d, =1forie[s+1,k],b,=0
for i € [0,s]. Define (ay,al) € DF__ by a; =¢; — 1 for i € [s + 1,k], a; = ¢; for
i €10, s, ;—c —1forie[s+1, k:] a; = ¢, for i € [0,s]. We have a, + b, = cs,
a, +b, =c. Ifr <n-—2 we see that (c¢) holds. If » = n — 1 then a; = 0 for
i€ [O,k—l], ar =0,a, =0forie [O,k];hencecizlforie [s+1,k— ] ck =2,
c; =0fori € [0,s],c; =1fori € [s+1,k],c; =0fori € [0,s]. Hence (cy,c,) € D
so that (c) holds. If » = n then (c*, c) = (b*, b,) € 4D so that (c) holds. Thus

we can assume that ¢ = CEH =ck =N sothat ¢ =¢ 11 =--=c¢c,t=N.
Note that ¢, = 0 for i € [0,1 — 1]. We have (c,, c.) € 41D so that (c) holds.
Finally we assume that ¢ = ¢; = --- = ¢ = 0. Then ¢, = 0 for ¢ € [0,k]. In

this case we have n = 0 and (c., c.) € D} so that (c) holds. This completes the



REMARKS ON SPRINGER’S REPRESENTATIONS 5
proof of (c).

2. ON SERRE’S QUESTIONS

2.1. For any affine algebraic group H over k we denote by Lie H the Lie algebra
of H. For any O € X (or O € &) we set dp =2dim B — dim O.

2.2. We recall the definition of Springer’s representations following [L2]. Let B
be the variety of Borel subgroups of G. Let B = {(g9, B) € G x B;g € B} and let
f : B — G be the first projection. Let K = f,Q;. In [L2] it was observed that K
is an intersection cohomology complex on G coming from a local system on the
open dense subset of GG consisting on regular semisimple elements. Moreover W
acts naturally on this local system and hence, by ”analytic continuation”, on K.
In particular, if O € X and ¢ € Z then W acts naturally on the i-th cohomology
sheaf H'K|o of K|p, an irreducible G-equivariant local system on O; hence if £
is an irreducible G-equivariant local system on O then W acts naturally on the
Qi-vector space Hom(L, H'K|p). We denote this W-module (with i = dp) by
Vo c. As shown in [L4], Vo . is either 0 or of the form Q; ® E where E € Irr(W);
moreover any E € Irr(W) arises in this way from a unique (O, £) and E +— (O, L)
is an injective map
Sg : Irr(W) — Xg.

We would like to define a similar map from Irr(W) to X,. Let B’ = {(z,B) €
g X B;z € Lie B} and let f' : B/ — g be the first projection. Let K’ = fiQu.
Now if p is small the set of regular semisimple elements in g may be empty (this
is the case for example if G = SLy(k), p = 2) so the method of [L4] cannot be
used directly. However, T.Xue [X] has observed that the method of [L4], [L2] can
be applied if G is a classical group of adjoint type and p = 2 (in that case the set
of regular semisimple elements in g is open dense in g). More generally for any
G which is adjoint, the set of regular semisimple elements in g is open dense in
g. (Here is a proof. We must only check that if 7' is a maximal torus of G and
t = Lie T" then the set t,., of regular semisimple elements in t is open dense in t.
Let Y = Hom(k*,T). We have t =k ® Y. Now t,., is the set of all € t such
that for any root o : t — k we have a(z) # 0. It is enough to show that any
root a: t — kis £ 0. We have a = 1 ® ag where g : Y — Z is a well defined
homomorphism. It is enough to show that «q is surjective. This follows from the
adjointness of G.) As in the group case it now follows that K’ is an intersection
cohomology complex on g coming from a local system on g,.4. Moreover W acts
naturally on this local system and hence, by ”analytic continuation”, on K’. In
particular, if O € &; and ¢ € Z then W acts naturally on the i-th cohomology
sheaf H'K'|o of K'|o, an irreducible G-equivariant local system on O; hence if £
is an irreducible G-equivariant local system on O then W acts naturally on the
Q;-vector space Hom(L, H'K'|p). We denote this W-module (with i = dp) by
Vo.c. Asin [L4], [X], Vo is either 0 or of the form Q; ® E where E € Irr(W);
moreover any E € Irr(W) arises in this way from a unique (O, £) and E +— (O, L)
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is an injective map
Sy : Irr(W) — X,
If G is not assumed to be adjoint, let G,4 be the adjoint group of G and let
gaa = Lie G4q. The obvious map 7 : g — gqq¢ induces a bijective morphism
Ny — Ny, and a bijection Xy — X,,,. Now any Gug-equivariant irreducible Q;-
local system on a Ggq-orbit in Vg, , can be viewed as an irreducible G-equivariant
Q;-local system on the corresponding G-orbit in Nj. This yields an injective map
X,,, — Xy. We define an injective map Sy : Irr(W) — X, as the composition of
the last map with S

Fad*

2.3. For any u € Ug, let B, = {B € B;u € B} and let O be the G-orbit of u
in Ug. Note that B, is a non-empty subvariety of B of dimension dp/2, see [S1].
Using this and the definition of Sg we see that (O, Q) is in the image of Sg.
Hence there is a well defined injective map S¢, : Xg — Irr(W) such that for any
O € Xg we have S, (O) = E where E € Irr(W) is given by Sg(E) = (O, Q).

Similarly, for any x € Ny let B, = {B € B;z € Lie B} and let O be the G-orbit
of x in Ny. Note that B, is a non-empty subvariety of B of dimension dp /2, see
[HS]. Using this and the definition of S, we see that (O, Q;) is in the image of S.
Hence there is a well defined injective map Sy : Xy — Irr(W) such that for any
O € X, we have S}(0) = E where E € Irr(W) is given by S4(E) = (0, Q).

The maps S&,Sg can be described directly as follows. For ¢ € Z, we may
identify H*(B) (l-adic cohomology) with the stalk of H'K at 1 € G hence the
We-action on K induces a W-action on the vector space H'(B). If O € Xz and
u € O then the inclusion B, — B induces a linear map f,, : H% (B) — H(B,)
whose kernel is W-stable; hence there is an induced action of W on the image I,
of f,. The W-module I, is of the form Q; ® E for a well defined E € Irr(W).
We have S;(O) = E. Similarly, if O € X; and « € O then the inclusion B, — B
induces a linear map ¢, : H% (B) — H9 (B,) whose kernel is W-stable; hence
there is an induced action of W on the image I, of ¢,. The W-module I, is of
the form Q; ® E for a well defined E € Irr(W). We have S}(0) = E.

Let &¢ be the image of Si; : Xg — Irr(W). Let &4 be the image of Sy : Xy —
Irr(W).

2.4. Any automorphism a : G — G induces a Lie algebra automorphism a’ : g —
g and an automorphism a of W as a Coxeter group. Now a (resp. a’) induces a
permutation O +— a(O) (resp. O — a'(0)) of Xg (resp. &) denoted again by
a (resp. a'). Also a induces in an obvious way a permutation of Irr(W) denoted
again by a. From the definitions we see that
aSg = Sga, aSy = Sya’.

Let  +— P be the p-th power map g — g (if p > 1) and the 0 map g — g (if
p = 1). The r-th iteration of this map is denoted by x +— zP"; this restricts to a

map Ny — N which is 0 for » > 0. The following result answers questions of
Serre [Se].
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Proposition 2.5. (a) Let u € Ug and let n € Z be such that nn’ = 1 in k for
somen’ € Z. Then u™ and u are G-conjugate.

(b) Let x € Ny and let 2’ = apx + a12? + agazp2 + ... where ag,ay,as, - €Kk,
ag # 0 (so that ' € Ny). Then «’, x are G-conjugate.

We prove (a). Let O be the G-orbit of u and let O" be the G-orbit of v’ := u™.
Clearly, B, C B,/. Since v’ is a power of u we have also B,, C U hence B, = B,.
From dim B, = dim B, we see that dp = do:. The map f, : H* (B) — H% (B,)
in 2.3 remains the same if u is replaced by u’. From the description of S{, given
in 2.3 we deduce that S;(0O) = S;(0’). Since S is injective we deduce that
O = O'. This proves (a).

We prove (b). Let O be the G-orbit of z and let O’ be the G-orbit of z’. Clearly,
B, C B,. Since x = ajz’ + a’z'? +a’2:z:’p2 + ... with a{,a},db,--- €k, aj = agl,
we have B, C B, hence B, = B,. From dim B, = dim B, we see that dp = do.
The map ¢, : H(B) — H(B,) in 2.3 remains the same if = is replaced by z’.
From the description of S¢; given in 2.3 we deduce that S;(O) = Sg(0O’). Since S
is injective we deduce that O = O’. This proves (b).

Parts (a),(b) of the following result answer questions of Serre [Sel; the proof of
(b) below (assuming (a)) is due to Serre [Se].

Proposition 2.6. Letc: G — G be an automorphism such that for some mazximal
torus T of G we have c¢(t) =t~ for allt € T. Let ¢ : g — g be the automorphism
of g induced by c.

(a) For any u € Ug, c(u),u are G-conjugate.

(b) For any g € G, c(g), 9~ are G-conjugate.

(¢c) For any x € Ny, é(z),x are G-conjugate.

(d) For any x € g, é(x), —x are G-conjugate.

We prove (a). Let ¢ : W — W be the automorphism induced by c¢. If B € B
contains T' then T' C ¢(B) and B, c¢(B) are in relative position wg, the longest
element of W. Hence if B, B’ in B contain T and are in relative position w € W
then ¢(B),c(B’) contain T and are in relative position wowwy'. They are also
in relative position c(w). It follows that c(w) = wowwy " for all w € W. Hence
the induced permutation ¢ : Irr(W) — Irr(W) is the identity map. Let O be the
G-orbit of u € Ug. Then c¢(O) is the G-orbit of c¢(u). By 2.4 we have Si,(c(O)) =
c(S5(0)) = S;(0). Since Sg, is injective it follows that O = ¢(O). This proves

(a).

Following [Se|, we prove (b) by induction on dim(G). If dim G = 0 the result
is trivial. Now assume that dim G > 0. Write ¢ = su = us with s semisimple,
u unipotent. If the result holds for g; € G then it holds for any G-conjugate
of g1. Hence by replacing g by a conjugate we can assume that s € T so that
c(s) = s71. Let Z(s)° be the connected centralizer of s, a connected reductive
subgroup of G containing 7. Note that c restricts to an automorphism of Z(s)°
of the same type as ¢ : G — G. Moreover we have g € Z(s)?. If Z(s)? # G

then by the induction hypothesis we see that c¢(g), g~ ! are conjugate under Z(s)°
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hence they are conjugate under G. If Z(s)? = G then by (a), ¢(u), u are conjugate
in G. By 2.5(a), u,u~! are conjugate in G. Hence c(u),u~! are conjugate in
G. In other words, for some h € G we have c(u) = hu~'h. Since s is central
in G and c(s) = s~ we have c(s) = hs~th~!. It follows that c(g) = c(s)c(u) =
hs~th=thu='h = hs~tu=th=! = hg='h~!. This proves (b).

The proof of (c) is completely similar to that of (a); it uses Sy instead of Sg.
The proof of (d) is completely similar to that of (b); it uses (c) and 2.5(b) instead
of (b) and 2.5(a).

3. A PARAMETRIZATION OF THE SET OF NILPOTENT (G-ORBITS IN g

3.1. Let V be a finite dimensional Q-vector space. Let R C V* = Hom(V, Q)
be a (reduced) root system and let W C GL(V) be the Weyl group of R. Let II
be a set of simple roots for R. Let © = {f € R; 5 — a ¢ RU{0} for all a € II}.
For any integer r > 1 let A, be the set of all J C I U© such that J is linearly
independent in V* and >_ .y Za/ Y 5 ; Z3 is finite of order r* for some k € N.
For J € A, let W be the subgroup of W generated by the reflections with respect
to the roots in J. For any E € Irr(W) let bg be the smallest integer > 0 such that
E appears with multiplicity mg > 0 in the bg-th symmetric power of V' regarded
as a W-module. Let Irr(W)" = {E € Irr(W);mg = 1}. Replacing here (V, W)
by (V,W;) with J € A, we see that bg is defined for any E € Irr(W;) and that
Irr(W;)T is defined. For J € A, and E € Irr(W;)' there is a unique E € Irr(W)
such that E appears with multiplicity 1 in Ind%}E and bgp = bp; moreover, we
have E € Trr(W)T. We set B = jw,E. Define S, C Irr(W)' as in [L5, 1.3].
Replacing (V, W) by (V,W;) with J € A, we obtain a subset Sjj, C Irr(W)T.
For any integer » > 1 let Sj;, be the set of all E € Irr(W) such that E = j}//VVJEl
for some J € A, and some E; € S'(W)) (see [L5, 1.3]). If r = 1 this agrees with
the earlier definition of S}, since in this case W; = W for any J € A,. For any
integer r > 1 we define a subset 7y}, of Irr(W)T by induction on |W| as follows. If
W = {1} we set Tj;, = Irr(W). If W # {1} then 7}, is the set of all E' € Irr(W)
such that either F € S}y, or E = jXVVJEl for some J € A, with W; # W and some
E, € T"(Wy). From the definition it is clear that

Sy C Sy C Ty
When r = 1 we have S}y, = T4}

We apply these definitions in the case where r = p, V = Q® Y (with T being
”the maximal torus” of G and Y¢s = Hom(k*,T)), R is "the root system” of G
(a subset of V*) with its canonical set of simple roots and W = W viewed as a
subgroup of GL(V). Then the subsets Sy C Sk, C Tok; of Irr(W) are defined.
We can now state the following result.

Proposition 3.2. (a) We have Gg = Sty
(b) We have &4 = T3, .

For (a) see [L5, 1.4]. The proof of (b) is given in 3.5.
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Corollary 3.3. There is a unique (injective) map 7 : Xg — Xy such that S;;(§) =
Sg(7(§)) for all § € Xg.

The existence and uniqueness of 7 follows from &g C &4 which in turn follows
from 3.2 and the inclusion S§, C T3k,

It is known that when p # 2 we have card& g = cardSg; hence in this case 7 is
a bijection.

3.4. For n € N let W,, be the group of all permutations of the set
{1,2,...,n,n/,...,2" 1"}

which commute with the involution i — ', i’ +— i; let W, be the subgroup of W,,
consisting of the even permutations. Assume that k£ € N is large relative to n.
When G is adjoint simple of type B,, or C, (n > 2) we identify W = W,, in the
standard way; we have a bijection [ay,al] < (as,dl), Irr (W) = Irr(W,,) < C}!
as in [L1, 2.3]; moreover, Irr(W) = Irr(W)T, see [L1, 2.4]. When G is adjoint
simple of type D,, (n > 4) we identify W = W/ in the standard way; we have a
surjective map ¢ : Irr(W)T = Irr(W/)T — D¥ such that for any p € Irr(W/) we
have ((p) = (ax,a.) where (a,al) € D is such that p appears in the restriction
of [ax,a’] from W, to W/ (the set Irr(W/)T is determined by [L1, 2.5]); note that

1" ax,al)| is 2 if a, = @/, and is 1 otherwise.

3.5. In this subsection we prove 3.2(b). We can assume that G is adjoint, simple.
If p=1 or pis a good prime for G then &; = S hence using 3.2(a) we have
Sy = Sty in our case we have W ; = W for any J € A, hence from the definitions
we have 84, = Sty = T3h, and the result follows. In the rest of this subsection we
assume that p is a bad prime for G. In this case &4 has been described explicitly
by Spaltenstein [S2],[S3],[HS] as follows (assuming that the theory of Springer
correspondence holds; this assumption can be removed in view of [X] and the
remarks in 2.2.)

If G is of type Cp,, n > 2 (p = 2), then we have &4 = Irr(W). If G is of type B,
n > 2 (p = 2), then, according to [S1], &4 = {[as,al] € Irr(W); (a., al) € °C1}.
(Here k is large and fixed.) If G is of type D,,, n > 4 (p = 2), then &, = (~1(¢Dy).
If G is of type G (p = 2 or 3), of type Fy (p = 3), of type Fg (p = 2 or 3), of
type E; (p = 3), or of type Eg (p = 3 or 5) then &4 = S¢. If G is of type Fy
(p =2) then 64 = &g U {13,23} (notation as in [L3, 4.10]); note that by, = 12,
by, = 4). If G is of type E7 (p = 2) then 63 = & U {84, } (notation as in [L3,
4.12]; we have bgyr = 15). If G is of type Eg (p = 2) then &4 = &5 LI {50, 700, }
(notation as in [L3, 4.13]; we have bsg, = 8, brgo,, = 16).

On the other hand, for types B,C, D, 7% is computed by induction using
1.2, the formulas for the maps jXVVJ() given in [L6, 4.5, 5.3, 6.3] and the known
description of Syy; for exceptional types, 75, is computed by induction using the
tables in [A] and the known description of Siy.

In each case, the explicitly described subset &4 of Irr(W) coincides with the
explicitly described subset Zg;. This completes the proof of 3.2(b).

To illustrate the inclusion &4 C Ty, we note that:
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if G is of type Eg (p = 2) then 50,, 700,, in &4 — S are obtained by applying
jw, (where W is of type E7 x A;) to 15], M sgn, 84, K sgn (which belong to
TR, — S, Sw, — Sw, respectively);

if G is of type Fy (p = 2) then 13,23 in &5 — G are obtained by applying jvvgJ
(where W is of type By, C3 X A;) to an object in S%VJ — S%NJ.

3.6. If G is of type By, or Cp,, n > 2 (p = 2), then, according to [LS], &¢ =
{[ax, ] € Irr(W); (ay,al) € P2C2}. (Here k is large and fixed.) If G is of type
Dy, n >4 (p=2), then according to [LS], &g = ¢~ (¥*Dy).
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