Quivers and Perverse Sheaves

- 9.1. The Complexes L_{ν}
- **9.1.1.** By definition, a (finite) graph is a pair consisting of two finite sets **I** (vertices) and H (edges) and a map which to each $h \in H$ associates a two-element subset [h] of **I**.

We say that h is an edge joining the two vertices in [h]. We assume given a finite graph $(\mathbf{I}, H, h \mapsto [h])$. An *orientation* of our graph consists of two maps $H \to \mathbf{I}$ denoted $h \mapsto h'$ and $h \mapsto h''$ such that for any $h \in H$, the two elements of [h] are precisely h', h''. We assume given an orientation of our graph. Thus we have an oriented graph (=quiver). Note that

- (a) for any $h \in H$, we have $h' \neq h''$.
- **9.1.2.** Let \mathcal{V} be the category of finite dimensional I-graded k-vector spaces $\mathbf{V} = \bigoplus_{\mathbf{i} \in \mathbf{I}} \mathbf{V_i}$; the morphisms in \mathcal{V} are isomorphisms of vector spaces compatible with the grading.

For each $\nu = \sum_{\mathbf{i}} \nu_{\mathbf{i}} \mathbf{i} \in \mathbf{N}[\mathbf{I}]$ we denote by \mathcal{V}_{ν} the full subcategory of \mathcal{V} whose objects are those \mathbf{V} such that $\dim \mathbf{V}_{\mathbf{i}} = \nu_{\mathbf{i}}$ for all $\mathbf{i} \in \mathbf{I}$. Then each object of \mathcal{V} belongs to \mathcal{V}_{ν} for a unique $\nu \in \mathbf{N}[\mathbf{I}]$ and any two objects of \mathcal{V}_{ν} are isomorphic to each other. Moreover, \mathcal{V}_{ν} is non-empty for any $\nu \in \mathbf{N}[\mathbf{I}]$.

Given $V \in V$, we define $G_{V} = \{g \in GL(V) | g(V_i) = V_i \text{ for all } i \in I\}$ and

$$\mathbf{E}_{\mathbf{V}} = \bigoplus_{h \in H} \mathrm{Hom}(\mathbf{V}_{h'}, \mathbf{V}_{h''}).$$

Then $G_{\mathbf{V}}$ is an algebraic group (isomorphic to $\prod_{\mathbf{i}} GL(\mathbf{V}_{\mathbf{i}})$) acting naturally on the vector space $\mathbf{E}_{\mathbf{V}}$ by

$$(g,x)\mapsto gx=x'$$
 where $x_h'=g_{h''}x_hg_{h'}^{-1}$ for all $h\in H.$

9.1.3. Flags. A subset I' of I is said to be *discrete* if there is no $h \in H$ such that $[h] \subset I'$.

If $\nu \in \mathbf{N}[\mathbf{I}]$, we define the support of ν as $\{\mathbf{i} \in \mathbf{I} | \nu_{\mathbf{i}} \neq 0\}$. We say that ν is discrete if its support is a discrete subset of \mathbf{I} .

Let \mathcal{X} be the set of all sequences $\boldsymbol{\nu}=(\nu^1,\nu^2,\ldots,\nu^m)$ in $\mathbf{N}[\mathbf{I}]$ such that ν^l is discrete for all l. Now let $\mathbf{V}\in\mathcal{V}$ and let $\boldsymbol{\nu}\in\mathcal{X}$ be such that $\dim\mathbf{V_i}=\sum_l \nu_i^l$ for all $\mathbf{i}\in\mathbf{I}$. A flag of type $\boldsymbol{\nu}$ in \mathbf{V} is by definition a sequence

(a)
$$f = (\mathbf{V} = \mathbf{V}^0 \supset \mathbf{V}^1 \supset \cdots \supset \mathbf{V}^m = 0)$$

of I-graded subspaces of V such that, for $l=1,2,\ldots,m$, the graded vector space $\mathbf{V}^{l-1}/\mathbf{V}^l$ belongs to \mathcal{V}_{ν^l} . If $x\in\mathbf{E}_{\mathbf{V}}$, we say that f is x-stable if $x_h(\mathbf{V}^l_{h'})\subset\mathbf{V}^l_{h''}$ for all $l=0,1,\ldots,m$ and all h.

Let \mathcal{F}_{ν} be the variety of all flags of type ν in \mathbf{V} . Let $\tilde{\mathcal{F}}_{\nu}$ be the variety of all pairs (x, f) such that $x \in \mathbf{E}_{\mathbf{V}}$ and $f \in \mathcal{F}_{\nu}$ is x-stable. Note that $G_{\mathbf{V}}$ acts (transitively) on \mathcal{F}_{ν} by $g: f \to gf$ where f is as in (a) and $gf = (\mathbf{V} = g\mathbf{V}^0 \supset g\mathbf{V}^1 \supset \cdots \supset g\mathbf{V}^m = 0)$. Hence $G_{\mathbf{V}}$ acts on $\tilde{\mathcal{F}}_{\nu}$ by $g: (x, f) \to (gx, gf)$.

Let $\pi_{\nu}: \tilde{\mathcal{F}}_{\nu} \to \mathbf{E}_{\mathbf{V}}$ be the first projection. We note the following properties which are easily checked.

(b) \mathcal{F}_{ν} is a smooth, irreducible, projective variety of dimension

$$\sum_{\mathbf{i}:l < l'} \nu_{\mathbf{i}}^{l'} \nu_{\mathbf{i}}^{l};$$

the second projection $\tilde{\mathcal{F}}_{\nu} \to \mathcal{F}_{\nu}$ is a vector bundle of dimension

$$\sum_{h:l'< l} \nu_{h'}^{l'} \nu_{h''}^l.$$

(c) $\tilde{\mathcal{F}}_{\boldsymbol{\nu}}$ is a smooth, irreducible variety of dimension

$$f(\boldsymbol{\nu}) = \sum_{\boldsymbol{h}; l' < l} \nu_{\boldsymbol{h'}}^{l'} \nu_{\boldsymbol{h''}}^{l} + \sum_{\mathbf{i}; l < l'} \nu_{\mathbf{i}}^{l'} \nu_{\mathbf{i}}^{l}.$$

(d) π_{ν} is a proper $G_{\mathbf{V}}$ -equivariant morphism.

Let $\tilde{L}_{\boldsymbol{\nu}} = (\pi_{\boldsymbol{\nu}})_! \mathbf{1} \in \mathcal{D}(\mathbf{E}_{\mathbf{V}})$. By (c),(d) and by 8.1.5, $\tilde{L}_{\boldsymbol{\nu}}$ is a semisimple complex on $\mathbf{E}_{\mathbf{V}}$. Let $L_{\boldsymbol{\nu}} = \tilde{L}_{\boldsymbol{\nu}}[f(\boldsymbol{\nu})]$. Since $D(\mathbf{1}[f(\boldsymbol{\nu})]) = \mathbf{1}[f(\boldsymbol{\nu})]$ on $\tilde{\mathcal{F}}_{\boldsymbol{\nu}}$ (see (c)) we have $D(L_{\boldsymbol{\nu}}) = L_{\boldsymbol{\nu}}$.

We denote by $\mathcal{P}_{\mathbf{V}}$ the full subcategory of $\mathcal{M}(\mathbf{E}_{\mathbf{V}})$ consisting of perverse sheaves which are direct sums of simple perverse sheaves L that have the following property: L[d] appears as a direct summand of L_{ν} for some $d \in \mathbf{Z}$ and some $\nu \in \mathcal{X}$ such that dim $\mathbf{V}_{\mathbf{i}} = \sum_{l} \nu_{\mathbf{i}}^{l}$ for all $\mathbf{i} \in \mathbf{I}$.

We denote by $Q_{\mathbf{V}}$ the full subcategory of $\mathcal{D}(\mathbf{E}_{\mathbf{V}})$ whose objects are the complexes that are isomorphic to finite direct sums of complexes of the form L[d'] for various simple perverse sheaves $L \in \mathcal{P}_{\mathbf{V}}$ and various $d' \in \mathbf{Z}$. Any complex in $Q_{\mathbf{V}}$ is semisimple and $G_{\mathbf{V}}$ -equivariant. From 8.1.4, we see that $\mathcal{P}_{\mathbf{V}}$ and $Q_{\mathbf{V}}$ are stable under Verdier duality.

9.1.4. Let $\boldsymbol{\nu}=(\nu^1,\nu^2,\ldots,\nu^m)\in\mathcal{X}$. Assume that for some j we write $\nu^j=\nu^j_1+\nu^j_2$ where $\nu^j_1,\nu^j_2\in\mathbf{N}[\mathbf{I}]$ have disjoint support. Let $\boldsymbol{\nu}'=(\nu^1,\nu^2,\ldots,\nu^{j-1},\nu^j_1,\nu^j_2,\nu^{j+1},\ldots,\nu^m)\in\mathcal{X}$. It is clear that $\tilde{L}_{\boldsymbol{\nu}}=\tilde{L}_{\boldsymbol{\nu}'}$ and $f(\boldsymbol{\nu})=f(\boldsymbol{\nu}')$. Hence $L_{\boldsymbol{\nu}}=L_{\boldsymbol{\nu}'}$. Thus, in the definition of $\mathcal{P}_{\mathbf{V}}$, we may restrict ourselves to sequences $\boldsymbol{\nu}=(\nu^1,\nu^2,\ldots,\nu^m)\in\mathcal{X}$ such that each ν^j is of the form $n\mathbf{i}$ for some $\mathbf{i}\in\mathbf{I}$ and some n>0. Since there are only finitely many such $\boldsymbol{\nu}$ (subject to dim $\mathbf{V_i}=\sum_l \nu_i^l$ for all $\mathbf{i}\in\mathbf{I}$) we see that $\mathcal{P}_{\mathbf{V}}$ has only finitely many simple objects, up to isomorphism.

- **9.1.5.** In the special case where V is such that $\sum_{i} \dim V_{i}i$ is discrete, we have $\mathbf{E}_{\mathbf{V}} = 0$ and $\mathcal{P}_{\mathbf{V}}$ has exactly one simple object up to isomorphism, namely 1.
- **9.1.6.** Let $K, K' \in \mathcal{Q}_{\mathbf{V}}$. The following two conditions are equivalent:
 - (a) $K \cong K'$;
- (b) dim $\mathbf{D}_j(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; K, DB) = \dim \mathbf{D}_j(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; K', DB)$ for all simple objects $B \in \mathcal{P}_{\mathbf{V}}$ and all $j \in \mathbf{Z}$.

It is clear that (a) implies (b). Assume now that K, K' are not isomorphic. Now K is a direct sum of complexes L[n] where L runs over the isomorphism classes of simple objects L of $\mathcal{P}_{\mathbf{V}}$ and $n \in \mathbf{Z}$; let $m(L, n) \in \mathbf{N}$ be the number of times that L[n] appears in this direct sum. We define similarly m'(L, n) by replacing K by K'. Since K, K' are not isomorphic, we can find L_0, n_0 such that $m(L_0, n_0) \neq m'(L_0, n_0)$ and such that m(L, n) = m'(L, n) for all L and all $n < n_0$. By (b), we have

$$\sum_{L,n} m(L,n) \dim \mathbf{D}_{j+n}(\mathbf{E}_{\mathbf{V}},G_{\mathbf{V}};L,DB)$$

$$= \sum_{L,n} m'(L,n) \operatorname{dim} \mathbf{D}_{j+n}(\mathbf{E}_{\mathbf{V}},G_{\mathbf{V}};L,DB)$$

for all simple objects $B \in \mathcal{P}_{\mathbf{V}}$ and all $j \in \mathbf{Z}$.

Using 8.1.10(d), we rewrite this as follows:

$$m(B, -j) + \sum_{L} \sum_{n; n < -j} m(L, n) \operatorname{dim} \mathbf{D}_{j+n}(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; L, DB)$$

(c)
$$= m'(B, -j) + \sum_{L} \sum_{n; n < -j} m'(L, n) \operatorname{dim} \mathbf{D}_{j+n}(\mathbf{E}_{\mathbf{V}}, G_{\mathbf{V}}; L, DB).$$

We apply this to $B = L_0$ and $j = -n_0$. Since by our assumption, m(L, n) = m'(L, n) for $n < n_0$, we see that (c) implies $m(L_0, n_0) = m'(L_0, n_0)$. This is a contradiction. Thus the equivalence of (a),(b) is proved.

9.2. THE FUNCTORS IND AND RES

9.2.1. Let \mathbf{T}, \mathbf{W} be two objects of \mathcal{V} . We can form $\mathbf{E_T}, \mathbf{E_W}$ and their product $\mathbf{E_T} \times \mathbf{E_W}$. This has an action of $G_{\mathbf{T}} \times G_{\mathbf{W}}$ (product of actions as in 9.1.2).

We define a full subcategory $\mathcal{P}_{\mathbf{T},\mathbf{W}}$ of $\mathcal{M}(\mathbf{E_T} \times \mathbf{E_W})$ and a full subcategory $\mathcal{Q}_{\mathbf{T},\mathbf{W}}$ of $\mathcal{D}(\mathbf{E_T} \times \mathbf{E_W})$, as a special case of the definitions of $\mathcal{P}_{\mathbf{V}}$, $\mathcal{Q}_{\mathbf{V}}$ in 9.1.3; indeed, $\mathbf{T} \times \mathbf{W}$ and $\mathbf{E_T} \times \mathbf{E_W}$ are special cases of \mathbf{V} and $\mathbf{E_V}$ where the oriented graph in 9.1.1 has been replaced by the disjoint union of two copies of that oriented graph.

From the definitions it is clear that any simple object $B \in \mathcal{P}_{\mathbf{T},\mathbf{W}}$ is the external tensor product $B' \otimes B''$ of two simple objects $B' \in \mathcal{P}_{\mathbf{T}}$ and $B'' \in \mathcal{P}_{\mathbf{W}}$ (and conversely). Note that any complex in $\mathcal{Q}_{\mathbf{T},\mathbf{W}}$ is semisimple and $G_{\mathbf{T}} \times G_{\mathbf{W}}$ -equivariant.

9.2.2. We assume that we are given V, T, W in V, that W is a subspace of V and that T = V/W. We also assume that the obvious maps $W \to V$ and $V \to T$ preserve the I-grading. Let Q be the stabilizer of W in G_V (a parabolic subgroup of G_V). We denote by U the unipotent radical of Q. We have canonically $Q/U = G_T \times G_W$.

Let F be the closed subvariety of $\mathbf{E}_{\mathbf{V}}$ consisting of all $x \in \mathbf{E}_{\mathbf{V}}$ such that $x_h(\mathbf{W}_{h'}) \subset \mathbf{W}_{h''}$ for all $h \in H$. We denote by $\iota : F \to \mathbf{E}_{\mathbf{V}}$ the inclusion. Note that Q acts on F (restriction of the $G_{\mathbf{V}}$ -action on $\mathbf{E}_{\mathbf{V}}$).

If $x \in F$, then x induces elements $x' \in \mathbf{E_T}$ and $x'' \in \mathbf{E_W}$; the map $x \mapsto (x', x'')$ is a vector bundle $\kappa : F \to \mathbf{E_T} \times \mathbf{E_W}$. Now Q acts on $\mathbf{E_T} \times \mathbf{E_W}$ through its quotient $Q/U = G_T \times G_W$. The map κ is compatible with the Q-actions.

We set $G_{\mathbf{V}} = G, Q/U = \bar{G}, \mathbf{E}_{\mathbf{V}} = E, \mathbf{E}_{\mathbf{T}} \times \mathbf{E}_{\mathbf{W}} = \bar{E}$. We have a diagram

$$\bar{E} \stackrel{\kappa}{\leftarrow} F \stackrel{\iota}{\rightarrow} E.$$

Let $E'' = G \times_P F$, $E' = G \times_U F$. We have a diagram

$$\bar{E} \stackrel{p_1}{\longleftarrow} E' \stackrel{p_2}{\longrightarrow} E'' \stackrel{p_3}{\longrightarrow} E$$

where $p_1(g, f) = \kappa(f)$; $p_2(g, f) = (g, f)$; $p_3(g, f) = g(\iota(f))$. Note that p_1 is smooth with connected fibres, p_2 is a \bar{G} -principal bundle and p_3 is proper.

Let A be a complex in $\mathcal{Q}_{\mathbf{T},\mathbf{W}}$ and let B be a complex in $\mathcal{Q}_{\mathbf{V}}$. We can form $\kappa_!(\iota^*B) \in \mathcal{D}(\bar{E})$. Now p_1^*A is a \bar{G} -equivariant semisimple complex on E'; hence $(p_2)_b p_1^*A$ is a well-defined semisimple complex on E'' (see 8.1.7(c)). We can form $(p_3)_!(p_2)_b p_1^*A \in \mathcal{D}(\mathbf{V})$.

Lemma 9.2.3. $(p_3)_!(p_2)_{\flat}p_1^*A \in \mathcal{Q}_{\mathbf{V}}$.

The general case can be immediately reduced to the case where A is a simple perverse sheaf in $\mathcal{P}_{\mathbf{T},\mathbf{W}}$ and this is immediately reduced to the case where $A = L_{\boldsymbol{\nu}'} \otimes L_{\boldsymbol{\nu}''}$. (Note that a direct summand of a complex in $\mathcal{Q}_{\mathbf{V}}$ belongs to $\mathcal{Q}_{\mathbf{V}}$.) Thus, it suffices to prove that $(p_3)_!(p_2)_\flat p_1^*(\tilde{L}_{\boldsymbol{\nu}'} \otimes \tilde{L}_{\boldsymbol{\nu}''}) \in \mathcal{Q}_{\mathbf{V}}$, where $\boldsymbol{\nu}' = (\nu_1', \nu_2', \dots, \nu_{m'}') \in \mathcal{X}$ and $\boldsymbol{\nu}'' = (\nu_1'', \nu_2'', \dots, \nu_{m''}'') \in \mathcal{X}$ satisfy dim $\mathbf{T}_{\mathbf{i}}' = \sum_{l} \nu_{\mathbf{i}}'^{l}$, dim $\mathbf{W}_{\mathbf{i}} = \sum_{l} \nu_{\mathbf{i}}''^{l}$ for all $\mathbf{i} \in \mathbf{I}$.

Let $\nu'\nu''$ be the sequence of elements in N[I] formed by the elements of the sequence ν' followed by the elements of the sequence ν'' . Recall that $\tilde{\mathcal{F}}_{\nu'\nu''}$ consists of pairs (x,f) where $x\in \mathbf{E}_{\mathbf{V}}$ and f is a flag of type $\nu'\nu''$ in \mathbf{V} which is x-stable. Now the subspace with index m' in $f=(\mathbf{V}=\mathbf{V}^0\supset \mathbf{V}^1\supset\dots)$ is in the G-orbit of \mathbf{W} . The pairs (x,f) for which this subspace is equal to \mathbf{W} form a closed subvariety $\tilde{\mathcal{F}}_{\nu'\nu'',0}$ of $\tilde{\mathcal{F}}_{\nu'\nu''}$; for such (x,f) we have $x\in F$, hence $(x,f)\to x$ defines a (proper) morphism $\tilde{\mathcal{F}}_{\nu'\nu'',0}\to F$. This morphism is Q-equivariant (for the natural actions of Q). Hence it induces a proper morphism $u:G\times_Q\tilde{\mathcal{F}}_{\nu'\nu'',0}\to G\times_QF=E''$. Since $G\times_Q\tilde{\mathcal{F}}_{\nu'\nu'',0}$ is smooth, the complex $\tilde{L}=u_!1\in\mathcal{D}(E'')$ is semisimple. (See 8.1.5.) It is clear from the definitions that $p_2^*\tilde{L}=p_1^*(\tilde{L}_{\nu'}\otimes\tilde{L}_{\nu''})$ and $(p_2)_!p_1^*(\tilde{L}_{\nu'}\otimes\tilde{L}_{\nu''})\cong\tilde{L}$.

It remains to show that $(p_3)_!\tilde{L} \in \mathcal{Q}_{\mathbf{V}}$, or equivalently, that $(p_3u)_!\mathbf{1} \in \mathcal{Q}_{\mathbf{V}}$. We may identify in a natural way $G \times_Q \tilde{\mathcal{F}}_{\boldsymbol{\nu}'\boldsymbol{\nu}'',0} = \tilde{\mathcal{F}}_{\boldsymbol{\nu}'\boldsymbol{\nu}''}$; then $p_3u = \pi_{\boldsymbol{\nu}'\boldsymbol{\nu}''}$. It follows that $(p_3u)_!\mathbf{1} = \tilde{L}_{\boldsymbol{\nu}'\boldsymbol{\nu}''}$ which is in $\mathcal{Q}_{\mathbf{V}}$ by definition. The lemma is proved.

Lemma 9.2.4. $\kappa_!(\iota^*B) \in \mathcal{Q}_{\mathbf{T},\mathbf{W}}$.

We may assume that B is a simple perverse sheaf in $\mathcal{P}_{\mathbf{V}}$. Since a direct summand of a complex in $\mathcal{Q}_{\mathbf{T},\mathbf{W}}$ belongs to $\mathcal{Q}_{\mathbf{T},\mathbf{W}}$ we see that it suffices to prove that $\kappa_!(\iota^*\tilde{L}_{\boldsymbol{\nu}}) \in \mathcal{Q}_{\mathbf{T},\mathbf{W}}$, where $\boldsymbol{\nu} \in \mathcal{X}$ satisfies dim $\mathbf{V_i} = \sum_l \nu_i^l$ for all $\mathbf{i} \in \mathbf{I}$.

Let $\tilde{F} \subset \tilde{\mathcal{F}}_{\nu}$ be the inverse image of $F \subset E$ under π_{ν} . Let $\tilde{\pi} : \tilde{F} \to F$ be the restriction of π_{ν} . We have $\iota^*\tilde{L}_{\nu} = \tilde{\pi}_! \mathbf{1}$; hence

$$\kappa_!(\iota^*\tilde{L}_{\boldsymbol{\nu}}) = \kappa_!\tilde{\pi}_!\mathbf{1} = (\kappa\tilde{\pi})_!\mathbf{1}.$$

Let $\boldsymbol{\nu}=(\nu^1,\nu^2,\ldots,\nu^m).$ For any $\boldsymbol{\tau},\boldsymbol{\omega}\in\mathcal{X}$ of the form

$$\boldsymbol{\tau} = (\tau^1, \tau^2, \dots, \tau^m), \boldsymbol{\omega} = (\omega^1, \omega^2, \dots, \omega^m)$$

such that $\tau^l + \omega^l = \nu^l$ for all l, we define a subvariety $\tilde{F}(\tau, \omega)$ of \tilde{F} as the set of all pairs (x, f) where $x \in F$ and $f = (\mathbf{V} = \mathbf{V}^0 \supset \mathbf{V}^1 \supset \cdots \supset \mathbf{V}^m = 0) \in$

 $\tilde{\mathcal{F}}_{\nu}$ is x-stable and is such that the graded vector space $(\mathbf{V}^{l-1} \cap \mathbf{W})/(\mathbf{V}^{l} \cap \mathbf{W})$ belongs to $\mathcal{V}_{\omega^{l}}$ for l = 1, 2, ..., m.

If (x, f) is as above, then there are induced elements $(x', f') \in \tilde{\mathcal{F}}_{\tau}$ and $(x'', f'') \in \tilde{\mathcal{F}}_{\omega}$; here x'' is deduced from x by restriction to \mathbf{W} and x' is deduced from x by passage to quotient; f' is given by the images of the subspaces in f under the projection $\mathbf{V} \to \mathbf{T}$ and f'' is given by the intersections of the subspaces in f with \mathbf{W} . Thus we have a morphism $\alpha: \tilde{F}(\tau, \omega) \to \tilde{\mathcal{F}}_{\tau} \times \tilde{\mathcal{F}}_{\omega}$. We have a commutative diagram

$$egin{array}{cccc} ilde{F}(au,oldsymbol{\omega}) & \longrightarrow & ilde{F} \ & & & & & & & & & \\ lpha & & & & & \kappa ilde{\pi} & & & \\ ilde{\mathcal{F}}_{oldsymbol{ au}} imes ilde{\mathcal{F}}_{oldsymbol{\omega}} & \longrightarrow & ar{E} \,. \end{array}$$

where the upper horizontal arrow is the obvious inclusion and the lower horizontal arrow is $\pi_{\tau} \times \pi_{\omega}$.

It is not difficult to verify (as in [9, 4.4]) that α is a (locally trivial) vector bundle of dimension $M(\boldsymbol{\tau}, \boldsymbol{\omega}) = \sum_{h:l' < l} \tau_{h'}^{l'} \omega_{h''}^{l} + \sum_{i:l < l'} \tau_{i}^{l'} \omega_{i}^{l}$.

It is clear that the locally closed subvarieties $\tilde{F}(\tau,\omega)$ form a partition of \tilde{F} . Let \tilde{F}_j be the union of all subvarieties $\tilde{F}(\tau,\omega)$ of fixed dimension j. Let Z_j be the disjoint union of the varieties $\tilde{\mathcal{F}}_{\tau} \times \tilde{\mathcal{F}}_{\omega}$ (union over those (τ,ω) such that $\tilde{F}(\tau,\omega) \subset \tilde{F}_j$). The maps α above can be assembled together to form a vector bundle $\tilde{F}_j \to Z_j$. The maps $\pi_{\tau} \times \pi_{\omega}$ can be assembled together to form a (proper) morphism $Z_j \to \bar{E}$. We have a commutative diagram

$$\tilde{F}_{j} \longrightarrow \tilde{F}$$

$$\downarrow \qquad \qquad \kappa_{\tilde{\pi}} \downarrow$$

$$Z_{i} \longrightarrow \bar{E}$$

We may therefore use 8.1.6 to conclude that $(\kappa \tilde{\pi})_! \mathbf{1}$ is a semisimple complex and that, for any i and j, there is a canonical exact sequence (in $\mathcal{M}(\bar{E})$):

(a)
$$0 \to H^n(f_j)_! \mathbf{1} \to H^n(f_{\le j})_! \mathbf{1} \to H^n(f_{\le j-1})_! \mathbf{1} \to 0$$

where $f_j: \tilde{F}_j \to \bar{E}$ and $f_{\leq j}: \cup_{j':j'\leq j} \tilde{F}_{j'} \to \bar{E}$ are the restrictions of $\kappa \tilde{\pi}$. The earlier arguments show that

(b)
$$(f_j)_! \mathbf{1} = \oplus (\tilde{L}_{\boldsymbol{\tau}} \otimes \tilde{L}_{\boldsymbol{\omega}})[-2M(\boldsymbol{\tau}, \boldsymbol{\omega})]$$

where the direct sum is taken over all (τ, ω) such that $\tilde{F}(\tau, \omega) \subset \tilde{F}_j$.

From (a),(b) we see by induction on j that all composition factors of $H^n(f_{\leq j})_!\mathbf{1}$ are in $\mathcal{P}_{\mathbf{V}}$. Taking j large enough we see that all composition factors of $H^n(\kappa\tilde{\pi})_!\mathbf{1}$ are in $\mathcal{P}_{\mathbf{V}}$. Since $(\kappa\tilde{\pi})_!\mathbf{1}$ is semisimple, it follows that $(\kappa\tilde{\pi})_!\mathbf{1} \in \mathcal{Q}_{\mathbf{T},\mathbf{W}}$. The lemma is proved.

9.2.5. By Lemmas 9.2.3, 9.2.4, we have well-defined functors

$$\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}: \mathcal{Q}_{\mathbf{T},\mathbf{W}} \to \mathcal{Q}_{\mathbf{V}} \quad (A \mapsto (p_3)_!(p_2)_{\flat}p_1^*A)$$

and

$$\tilde{\operatorname{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}: \mathcal{Q}_{\mathbf{V}} \to \mathcal{Q}_{\mathbf{T},\mathbf{W}} \quad (B \mapsto \kappa_!(\iota^*B)).$$

Since $\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ is defined using a direct image under a proper map and inverse images under smooth morphisms with connected fibres, it commutes with Verdier duality up to shift (see 8.1.1, 8.1.4); more precisely,

$$D(\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(A)) = \tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(D(A))[2d_1 - 2d_2]$$

where d_1 is the dimension of the fibres of p_1 and d_2 is the dimension of the fibres of p_2 . We have

$$d_1 - d_2 = \sum_h \dim \mathbf{T}_{h'} \dim \mathbf{W}_{h''} + \sum_{\mathbf{i}} \dim \mathbf{T}_{\mathbf{i}} \dim \mathbf{W}_{\mathbf{i}}.$$

We set

$$\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} = \tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}[d_1 - d_2].$$

Then

$$D(\operatorname{Ind}_{\mathbf{T}\mathbf{W}}^{\mathbf{V}}(A)) = \operatorname{Ind}_{\mathbf{T}\mathbf{W}}^{\mathbf{V}}(D(A)).$$

The functor $\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ is called *induction*.

9.2.6. From the proof of 9.2.3 and of 9.2.4, we see that

(a)
$$\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(\tilde{L}_{\boldsymbol{\nu}'}\otimes\tilde{L}_{\boldsymbol{\nu}''})=\tilde{L}_{\boldsymbol{\nu}'\boldsymbol{\nu}''}$$

(b)
$$\tilde{\operatorname{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} \tilde{L}_{\nu} \cong \oplus (\tilde{L}_{\tau} \otimes \tilde{L}_{\omega})[-2M(\tau,\omega)]$$

where the sum is taken over all $\boldsymbol{\tau} = (\tau^1, \tau^2, \dots, \tau^m), \boldsymbol{\omega} = (\omega^1, \omega^2, \dots, \omega^m)$ such that dim $\mathbf{T_i} = \sum_l \tau_i^l$, dim $\mathbf{W_i} = \sum_l \omega_i^l$ for all \mathbf{i} and $\tau^l + \omega^l = \nu^l$ for all l.

9.2.7. We have $f(\nu'\nu'') = f(\nu) + f(\nu') + d_1 - d_2$; hence from 9.2.6(a) we deduce that

$$\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(L_{\boldsymbol{\nu}'}\otimes L_{\boldsymbol{\nu}''})=L_{\boldsymbol{\nu}'\boldsymbol{\nu}''}.$$

9.2.8. Let Γ be a smooth irreducible variety with a free action of G. Let $\overline{\Gamma} = U \backslash \Gamma$. Then $\overline{\Gamma}$ is a smooth irreducible variety with a free action of \overline{G} induced by that of G. Consider the diagram

$$E \stackrel{s}{\leftarrow} \Gamma \times E \stackrel{t}{\rightarrow} G \backslash (\Gamma \times E)$$

with the obvious maps s, t. As in 8.1.9, s^*A is a semisimple G-equivariant complex on $\Gamma \times E$ and, since t is a principal G-bundle, the semisimple complex $t_{\flat}s^*B \in \mathcal{D}(G\backslash(\Gamma \times E))$ is well-defined. In particular, we can replace B by $\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$ and we obtain the semisimple complex

$$t_{\flat}s^*(\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A) \in \mathcal{D}(G\backslash(\Gamma\times E)).$$

Replacing E, Γ, G by $\bar{E}, \bar{\Gamma}, \bar{G}$, we obtain a similar diagram

$$\bar{E} \stackrel{\bar{s}}{\leftarrow} \bar{\Gamma} \times \bar{E} \stackrel{\bar{t}}{\rightarrow} \bar{G} \setminus (\bar{\Gamma} \times \bar{E})$$

and we can consider the semisimple complex $\bar{t}_{\flat}\bar{s}^*A \in \mathcal{D}(\bar{G}\setminus(\bar{\Gamma}\times\bar{E}))$. In particular, we can replace A by $\tilde{\mathrm{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B$ and we obtain the semisimple complex

$$\bar{t}_{\flat}\bar{s}^{*}(\tilde{\operatorname{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B)\in\mathcal{D}(\bar{G}\backslash(\bar{\Gamma}\times\bar{E})).$$

Let $u: G \setminus (\Gamma \times E) \to \{\text{point}\}\ \text{and}\ \bar{u}: \bar{G} \setminus (\bar{\Gamma} \times \bar{E}) \to \{\text{point}\}\ \text{be the obvious maps.}$

Lemma 9.2.9 (Adjunction). We have a natural isomorphism

$$\mathcal{H}^n u_!(t_{\flat} s^* (\tilde{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A) \otimes t_{\flat} s^* (B)) \cong \mathcal{H}^n \bar{u}_!(\bar{t}_{\flat} \bar{s}^* (A) \otimes \bar{t}_{\flat} \bar{s}^* (\tilde{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} B))$$

for $n \in \mathbf{Z}$. Hence, for any $j \in \mathbf{Z}$, we have

(a)
$$\mathbf{D}_{j'}(E, G; \tilde{Ind}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} A, B) = \mathbf{D}_{j}(\bar{E}, \bar{G}; A, \tilde{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} B)$$

where $j' = j + 2 \dim G/Q$.

The proof (which uses 8.1.6) is given in [2]; we will not repeat it here. The shift from j to j' comes from the formula $\dim(G\backslash\Gamma) = \dim(\bar{G}\backslash\bar{\Gamma}) - \dim G/Q$.

9.2.10. In order to eliminate the shift from j to j' in the previous lemma, we define

$$\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}(B) = \operatorname{\tilde{Res}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}[d_1 - d_2 - 2\dim G/Q],$$

where d_1, d_2 are as in 9.2.5. We can now rewrite the conclusion of the previous lemma as follows:

(a)
$$\mathbf{D}_{j}(E, G; \operatorname{Ind}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} A, B) = \mathbf{D}_{j}(\bar{E}, \bar{G}; A, \operatorname{Res}_{\mathbf{T}, \mathbf{W}}^{\mathbf{V}} B).$$

Note that $\dim G/Q = \sum_{i} \dim \mathbf{T}_{i} \dim \mathbf{W}_{i}$; hence

$$d_1 - d_2 - 2\dim G/Q = \sum_{\mathbf{h}} \dim \mathbf{T}_{\mathbf{h}'} \dim \mathbf{W}_{\mathbf{h}''} - \sum_{\mathbf{i}} \dim \mathbf{T}_{\mathbf{i}} \dim \mathbf{W}_{\mathbf{i}}.$$

The functor $Res_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}$ is called *restriction*.

9.2.11. We can rewrite 9.2.6(b) as follows:

$$\operatorname{Res}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} L_{\nu} \cong \oplus (L_{\tau} \otimes L_{\omega})[M'(\tau,\omega)]$$

where the sum is taken over all $\boldsymbol{\tau} = (\tau^1, \tau^2, \dots, \tau^m), \boldsymbol{\omega} = (\omega^1, \omega^2, \dots, \omega^m)$ such that dim $\mathbf{T_i} = \sum_l \tau_i^l$, dim $\mathbf{W_i} = \sum_l \omega_i^l$ for all \mathbf{i} and $\tau^l + \omega^l = \nu^l$ for all l; we have

$$M'(\boldsymbol{\tau}, \boldsymbol{\omega}) = d_1 - d_2 - 2\dim G/Q + f(\boldsymbol{\nu}) - f(\boldsymbol{\tau}) - f(\boldsymbol{\omega}) - 2M(\boldsymbol{\tau}, \boldsymbol{\omega}).$$

We show that the last expression is independent of the orientation of our graph. From the definitions we have

$$\begin{split} M'(\boldsymbol{\tau}, \boldsymbol{\omega}) &= \sum_{h} \dim \mathbf{T}_{h'} \dim \mathbf{W}_{h''} - \sum_{\mathbf{i}} \dim \mathbf{T}_{\mathbf{i}} \dim \mathbf{W}_{\mathbf{i}} + \sum_{h; l' < l} \tau_{h'}^{l'} \omega_{h''}^{l} \\ &+ \sum_{h; l' < l} \omega_{h'}^{l'} \tau_{h''}^{l} + \sum_{\mathbf{i}; l < l'} \tau_{\mathbf{i}}^{l'} \omega_{\mathbf{i}}^{l} + \sum_{\mathbf{i}; l < l'} \omega_{\mathbf{i}}^{l'} \tau_{\mathbf{i}}^{l} - 2 \sum_{h; l' < l} \tau_{h'}^{l'} \omega_{h''}^{l} - 2 \sum_{\mathbf{i}; l < l'} \tau_{\mathbf{i}}^{l'} \omega_{\mathbf{i}}^{l}. \end{split}$$

It follows that

$$\begin{split} M'(\boldsymbol{\tau}, \boldsymbol{\omega}) &= -\sum_{h; l' < l} (\tau_{h'}^{l'} \omega_{h''}^l + \tau_{h''}^{l'} \omega_{h'}^l) \\ &+ \sum_{h} (\dim \mathbf{T}_{h'} \dim \mathbf{W}_{h''} + \dim \mathbf{T}_{h''} \dim \mathbf{W}_{h'}) \\ &- \sum_{\mathbf{i}: l < l'} \tau_{\mathbf{i}}^{l'} \omega_{\mathbf{i}}^l + \sum_{\mathbf{i}: l > l'} \tau_{\mathbf{i}}^{l'} \omega_{\mathbf{i}}^l - \sum_{\mathbf{i}} \dim \mathbf{T}_{\mathbf{i}} \dim \mathbf{W}_{\mathbf{i}}, \end{split}$$

which is clearly independent of orientation.

9.3. The Categories $\mathcal{P}_{\mathbf{V};\mathbf{I}';\geq\gamma}$ and $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$

9.3.1. Let \mathbf{I}' be a discrete subset of \mathbf{I} (see 9.1.3). Let $\gamma = \sum_{\mathbf{i}} \gamma_{\mathbf{i}} \mathbf{i} \in \mathbf{N}[\mathbf{I}]$ be such that $\gamma_{\mathbf{i}} = 0$ for all $\mathbf{i} \in \mathbf{I} - \mathbf{I}'$. Let $\mathcal{P}_{\mathbf{V};\mathbf{I}';\geq\gamma}$ be the full subcategory of $\mathcal{P}_{\mathbf{V}}$ consisting of perverse sheaves which are direct sums of simple perverse sheaves L that have the following property: there exists a graded subspace $\mathbf{W} \subset \mathbf{V}$ and an object $A \in \mathcal{Q}_{\mathbf{T},\mathbf{W}}$ such that $\mathbf{T} = \mathbf{V}/\mathbf{W}$ satisfies dim $\mathbf{T}_{\mathbf{i}} \geq \gamma_{\mathbf{i}}$ if $\mathbf{i} \in \mathbf{I}'$, and $\mathbf{T}_{\mathbf{i}'} = 0$ for $\mathbf{i}' \notin \mathbf{I}'$; moreover, L is a direct summand of $\tilde{\mathbf{I}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$.

Clearly,

(a) $\mathcal{P}_{\mathbf{V};\mathbf{I}';\geq\gamma}\supset \mathcal{P}_{\mathbf{V};\mathbf{I}';\geq\gamma'}$ if $\gamma'\in\mathbf{N}[\mathbf{I}]$ has support contained in \mathbf{I}' and $\gamma_{\mathbf{i}}\leq\gamma'_{\mathbf{i}}$ for all $\mathbf{i}\in\mathbf{I}'$. Any object of $\mathcal{P}_{\mathbf{V}}$ is in $\mathcal{P}_{\mathbf{V};\mathbf{I}';\geq0}$. Moreover, $\mathcal{P}_{\mathbf{V};\mathbf{I}',\geq\gamma}$ is empty if $\gamma_{\mathbf{i}}>\dim\mathbf{V}_{\mathbf{i}}$ for some $\mathbf{i}\in\mathbf{I}'$.

Let $\mathcal{P}_{\mathbf{V};\mathbf{I}';>\gamma}$ be the full subcategory of $\mathcal{P}_{\mathbf{V}}$ consisting of the objects which are in $\mathcal{P}_{\mathbf{V};\mathbf{i};\geq\gamma'}$ for some $\gamma'\in\mathbf{N}[\mathbf{I}]$ with support contained in \mathbf{I}' such that $\gamma'(\mathbf{i})\geq\gamma(\mathbf{i})$ for all $\mathbf{i}\in\mathbf{I}'$ and $\gamma'(\mathbf{i})>\gamma(\mathbf{i})$ for some $\mathbf{i}\in\mathbf{I}'$.

Let $\mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma}$ be the full subcategory of $\mathcal{P}_{\mathbf{V};\mathbf{i};\geq\gamma}$ consisting of those objects of $\mathcal{P}_{\mathbf{V};\mathbf{i};\geq\gamma}$ which are not in $\mathcal{P}_{\mathbf{V};\mathbf{i};\geq\gamma}$. If K is a simple object of $\mathcal{P}_{\mathbf{V}}$ and $\mathbf{V}\neq0$, then K is a direct summand of some shift of $L_{\boldsymbol{\nu}}$ where $\boldsymbol{\nu}$ starts with $\boldsymbol{\nu}^1=\gamma$ which may be assumed to be of form $n\mathbf{i}$ for some $\mathbf{i}\in\mathbf{I}$ and some n>0 (see 9.1.4); we see then that $K\in\mathcal{P}_{\mathbf{V};\{\mathbf{i}\};\geq n\mathbf{i}}$. Thus:

- (b) if K is a simple object of $\mathcal{P}_{\mathbf{V}}$ and $\mathbf{V} \neq 0$, then there exists $\mathbf{i} \in \mathbf{I}$ such that $K \in \mathcal{P}_{\mathbf{V};\{\mathbf{i}\};>\mathbf{i}}$.
- **9.3.2.** We now assume that $\mathbf{W} \subset \mathbf{V}$ and $\mathbf{T} = \mathbf{V}/\mathbf{W}$ are such that for any $h \in H$ we have $\mathbf{T}_{h'} = 0$ (hence $\mathbf{W}_{h'} = \mathbf{V}_{h'}$). It follows that $\mathbf{E}_{\mathbf{T}} = 0$. Moreover, we have a natural imbedding $\iota : \mathbf{E}_{\mathbf{W}} \to \mathbf{E}_{\mathbf{V}}$; if $x = (x_h) \in \mathbf{E}_{\mathbf{W}}$, then the h-component of $\iota(x) = x'$ is the composition $\mathbf{V}_{h'} = \mathbf{W}_{h'} \xrightarrow{x_h} \mathbf{W}_{h''} \subset \mathbf{V}_{h''}$. (In our case we have $\kappa : F \cong \mathbf{E}_{\mathbf{W}}$ and the imbedding ι above may be identified with the imbedding $F \to \mathbf{E}_{\mathbf{V}}$, see 9.2.2.) From our assumption it follows that the set $\{\mathbf{i} \in \mathbf{I} | \mathbf{T}_{\mathbf{i}} \neq 0\}$ is discrete; let \mathbf{I}' be a discrete subset of \mathbf{I} containing $\{\mathbf{i} \in \mathbf{I} | \mathbf{T}_{\mathbf{i}} \neq 0\}$.

We consider the locally closed subset Θ of $\mathbf{E}_{\mathbf{V}}$ consisting of all $x \in \mathbf{E}_{\mathbf{V}}$ such that $\dim \mathbf{V}_{\mathbf{i}}/(\sum_{h \in H: h''=\mathbf{i}} x_h(\mathbf{V}_{h'})) = \dim \mathbf{T}_{\mathbf{i}}$ for all $\mathbf{i} \in \mathbf{I}'$, and the open subset Ξ of $\mathbf{E}_{\mathbf{W}}$ consisting of all $x \in \mathbf{E}_{\mathbf{W}}$ such that $\sum_{h \in H: h''=\mathbf{i}} x_h(\mathbf{W}_{h'}) = \mathbf{W}_{\mathbf{i}}$ for all $\mathbf{i} \in \mathbf{I}'$.

Let $p: G \times_Q \mathbf{E_W} \to \mathbf{E_V}$ be the unique G-equivariant map such that $(1, x) \mapsto i(x)$ for all $x \in \mathbf{E_W}$; let $p_0: G \times_Q \Xi \to \Theta$ be the restriction of p. Note that p_0 is an isomorphism. The inverse map can be described as

follows. Let $x \in \Theta$. The I-graded subspace

$$\oplus_{\mathbf{i} \in \mathbf{I'}} (\sum_{h \in H: h'' = \mathbf{i}} x_h(\mathbf{V}_{h'})) \oplus (\oplus_{\mathbf{i} \in \mathbf{I} - \mathbf{I'}} \mathbf{V_i})$$

of **V** has the same dimension in each degree as **W**; hence it is equal to $g(\mathbf{W})$ for some $g \in G$. The element gx is equal to $\iota(x')$ for a well-defined $x' \in \mathbf{E}_{\mathbf{W}}$. Then $p_0^{-1}(x) = (g, x')$. In particular, $\Theta, G \times_Q \Xi, G \times_Q \mathbf{E}_{\mathbf{W}}$ are irreducible of the same dimension.

Since p is a proper map, its image $p(G \times_Q \mathbf{E_W})$ is a closed subset of $\mathbf{E_V}$ containing Θ . Hence $\dim G \times_Q \mathbf{E_W} \ge \dim p(G \times_Q \mathbf{E_W}) \ge \dim \Theta$. It follows that these inequalities are equalities; hence Θ is open dense in $p(G \times_Q \mathbf{E_W})$.

We have a commutative diagram

$$G \times_{Q} \Xi \xrightarrow{p_{0}} \Theta \xleftarrow{\iota_{0}} \Xi$$

$$j_{0} \downarrow \qquad \qquad j \downarrow \qquad \qquad m \downarrow$$

$$G \times_{Q} \mathbf{E}_{\mathbf{W}} \xrightarrow{p} \mathbf{E}_{\mathbf{V}} \xleftarrow{\iota} \mathbf{E}_{\mathbf{W}}$$

where ι_0, j, j_0, m denote the inclusions. Both squares in the diagram are cartesian.

Let $\mathcal{P}_{\mathbf{W}}^{\mathbf{0}}$ be the full subcategory of $\mathcal{P}_{\mathbf{W}}$ whose objects are those perverse sheaves A such that any simple constituent of A has support which meets Ξ . Let $\mathcal{P}_{\mathbf{W}}^{\mathbf{1}}$ be the full subcategory of $\mathcal{P}_{\mathbf{W}}$ whose objects are those perverse sheaves A such that the support of A is contained in $\mathbf{E}_{\mathbf{W}} - \Xi$.

Let $\mathcal{P}_{\mathbf{V}}^{\mathbf{V}}$ be the full subcategory of $\mathcal{P}_{\mathbf{V}}$ whose objects are those perverse sheaves B such that any simple constituent of B has support which meets Θ and is contained in the closure of Θ . Let $\mathcal{P}_{\mathbf{V}}^{\mathbf{V}}$ be the full subcategory of $\mathcal{P}_{\mathbf{V}}$ whose objects are those perverse sheaves B such that the support of B is disjoint from Θ and is contained in the closure of Θ . Clearly, any object $A \in \mathcal{P}_{\mathbf{W}}$ has a canonical decomposition $A = A^0 \oplus A^1$ where $A^0 \in \mathcal{P}_{\mathbf{W}}^0$ and $A^1 \in \mathcal{P}_{\mathbf{W}}^1$. Moreover, any object $B \in \mathcal{P}_{\mathbf{V}}$ with support contained in the closure of Θ has a canonical decomposition $B = B^0 \oplus B^1$ where $B^0 \in \mathcal{P}_{\mathbf{V}}^0$ and $B^1 \in \mathcal{P}_{\mathbf{V}}^1$.

Proposition 9.3.3. (a) Let $A \in \mathcal{P}_{\mathbf{W}}^0$. If $n \neq 0$, we have $H^n Ind_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A \in \mathcal{P}_{\mathbf{V}}^1$. If n = 0, then $H^n Ind_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A \in \mathcal{P}_{\mathbf{V}}$ has support contained in the closure of Θ ; hence $\xi(A) = (H^{\dim G/Q} Ind_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A)^0 \in \mathcal{P}_{\mathbf{V}}^0$ is defined.

(b) Let $B \in \mathcal{P}_{\mathbf{V}}^{0}$. If $n \neq 0$, we have $H^{n}Res_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B \in \mathcal{P}_{\mathbf{W}}^{1}$. If n = 0, then $H^{n}Res_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B \in \mathcal{P}_{\mathbf{W}}$ hence $\rho(B) = (H^{-\dim G/Q}Res_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}B)^{0} \in \mathcal{P}_{\mathbf{W}}^{0}$ is defined.

(c) The functors $\xi : \mathcal{P}^0_{\mathbf{W}} \to \mathcal{P}^0_{\mathbf{V}}$ and $\rho : \mathcal{P}^0_{\mathbf{V}} \to \mathcal{P}^0_{\mathbf{W}}$ establish equivalences of categories inverse to each other.

Note that j^*B is a perverse sheaf on Θ , since the support of B is contained in the closure of Θ and Θ is open in its closure. Moreover, j^*B is a G-equivariant perverse sheaf. Since $\Theta = G \times_Q \Xi$, it follows that $\iota_0^*(j^*B)[-\dim G/Q]$ is a perverse sheaf on Ξ . But $m^*\iota^*B = \iota_0^*j^*B$, hence $m^*\iota^*B[-\dim G/Q]$ is a perverse sheaf on Ξ . Since m is an open imbedding, we have $m^*(H^n\iota^*B) = H^n(m^*\iota^*B)$ for any n, and this is zero if $n \neq -\dim G/Q$. Hence if $n \neq -\dim G/Q$, the support of $H^n\iota^*B$ is disjoint from Ξ . We have $\tilde{\operatorname{Res}}_{T,\mathbf{W}}^VB = \operatorname{Res}_{T,\mathbf{W}}^VB[\dim G/Q] = \iota^*B$ and (b) is proved.

Let \tilde{A} be the perverse sheaf on $G \times_Q \mathbf{E}_{\mathbf{W}}$ such that $\tilde{A} = r_{\flat}' r^* A[\dim G/Q]$ in the diagram $\mathbf{E}_{\mathbf{W}} \stackrel{r}{\leftarrow} G/U \times \mathbf{E}_{\mathbf{W}} \stackrel{r'}{\longrightarrow} G \times_Q \mathbf{E}_{\mathbf{W}}$. By definition,

$$\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A = p_! r_{\flat}' r^* A = p_! \tilde{A}[-\dim G/Q].$$

This shows that $\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$ has support contained in the image of p, hence in the closure of Θ . We have

$$j^*(\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A) = j^*p_!\tilde{A}[-\dim G/Q] = (p_0)_!j_0^*\tilde{A}[-\dim G/Q].$$

Since j_0 is an open imbedding, we see that $j_0^*\tilde{A}$ is a perverse sheaf on $G \times_Q \Xi$. Since $p_0 : G \times_Q \Xi \to \Theta$ is an isomorphism, it follows that $(p_0)_!j_0^*\tilde{A}$ is a perverse sheaf on Θ . Thus $j^*(\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A)[\dim G/Q]$ is a perverse sheaf on Θ .

Since $\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$ has support contained in the closure of Θ , it follows that $H^n\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$ has support contained in the closure of Θ and $j^*(H^n\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A)=H^n(j^*\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A)$. This is zero if $n\neq \dim G/Q$. Hence for $n\neq \dim G/Q$, the support of $H^n\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$ is disjoint from Θ . This proves (a), since $\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A=\operatorname{Ind}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A[\dim G/Q]$.

From the proof of (b), we have

$$m^*(\rho(B)) = m^*(H^{-\dim G/Q}\iota^*B)$$
$$= m^*(\iota^*B[-\dim G/Q])$$
$$= \iota_0^*j^*B[-\dim G/Q].$$

This implies that $j_0^*\tilde{\rho}(B) = p_0^*j^*B$. From the proof of (a), we have

$$j^*(\xi(A)) = j^*(H^{\dim G/Q} \tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A)$$
$$= j^*(\tilde{\operatorname{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}} A[\dim G/Q]) = (p_0)!j_0^*\tilde{A}.$$

Hence

$$m^*(\rho(\xi(A)) = \iota_0^* j^*(\xi(A))[-\dim G/Q] = \iota_0^*(p_0)! j_0^* \tilde{A}[-\dim G/Q] = m^* A$$

and

$$j^*(\xi(\rho(B)) = (p_0)!j_0^*\tilde{\rho}(B) = (p_0)!p_0^*j^*B = j^*B.$$

Since $A \in \mathcal{P}_{\mathbf{W}}^{0}$ and $B \in \mathcal{P}_{\mathbf{V}}^{0}$, it follows that $\rho(\xi(A)) = A$ and $\xi(\rho(B)) = B$. The proposition is proved.

9.3.4. Assume that \mathbf{I}' is a subset of \mathbf{I} such that $h' \notin \mathbf{I}'$ for any $h \in H$, that is, \mathbf{i} is a sink of our quiver, for any $\mathbf{i} \in \mathbf{I}'$. Let $\mathbf{V} \in \mathcal{V}$. For any $\gamma = \sum_{\mathbf{i}} \gamma_{\mathbf{i}} \mathbf{i} \in \mathbf{N}[\mathbf{I}]$ with support contained in \mathbf{I}' , let $\mathbf{E}_{\mathbf{V};\gamma}$ be the set of all $x \in \mathbf{E}_{\mathbf{V}}$ such that

$$\dim \mathbf{V_i}/(\sum_{h \in H \cdot h'' = \mathbf{i}} x_h(\mathbf{V}_{h'})) = \gamma_{\mathbf{i}}$$

for any $\mathbf{i} \in \mathbf{I}'$. The sets $\mathbf{E}_{\mathbf{V};\gamma}$ form a partition of $\mathbf{E}_{\mathbf{V}}$ with the following property: for any γ as above, the union $\mathbf{E}_{\mathbf{V};\geq\gamma} = \cup_{\gamma'} \mathbf{E}_{\mathbf{V};\gamma'}$ (with γ' running over the elements of $\mathbf{N}[\mathbf{I}]$ with support contained in \mathbf{I}' such that $\gamma_i' \geq \gamma_i$ for all $\mathbf{i} \in \mathbf{I}$) is a closed subset of $\mathbf{E}_{\mathbf{V}}$. Hence for any simple object B of $\mathcal{P}_{\mathbf{V}}$, there is a unique element $\gamma = \gamma^B \in \mathbf{N}[\mathbf{I}]$ with support contained in \mathbf{I}' such that the support of B is contained in $\mathbf{E}_{\mathbf{V};\geq\gamma}$ and meets $\mathbf{E}_{\mathbf{V};\gamma}$. We have $\gamma_i \leq \dim \mathbf{V}_i$ for all $\mathbf{i} \in \mathbf{I}'$.

Lemma 9.3.5. Assume that $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma'}$ where $\gamma' \in \mathbf{N}[\mathbf{I}]$ has support contained in \mathbf{I}' . Then $\gamma^B = \gamma'$.

We write γ instead of γ^B . Let **W** be a graded subspace of **V** such that $\mathbf{T} = \mathbf{V}/\mathbf{W}$ satisfies dim $\mathbf{T_i} = \gamma_i$ for all $\mathbf{i} \in \mathbf{I}'$ and $\mathbf{T_{i'}} = 0$ for all $\mathbf{i}' \in \mathbf{I} - \mathbf{I}'$. We may apply Proposition 9.3.3 to \mathbf{I}' and B. With notations there, let $A = \rho(B) \in \mathcal{P}_{\mathbf{W}}$; we have that some shift of B is a direct summand of $\tilde{\mathbf{Ind}}_{\mathbf{T},\mathbf{W}}^{\mathbf{V}}A$. Hence $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\geq \gamma}$.

From the definition of induction we see that any perverse sheaf in $\mathcal{P}_{\mathbf{V};\mathbf{I}';\geq\gamma'}$ has support contained in $\mathbf{E}_{\mathbf{V};\geq\gamma'}$. In particular, the support of B is contained in $\mathbf{E}_{\mathbf{V};\geq\gamma'}$. By definition, the support of B meets $\mathbf{E}_{\mathbf{V};\gamma}$; hence $\mathbf{E}_{\mathbf{V};\gamma}$ meets $\mathbf{E}_{\mathbf{V};\gamma'}$, so that $\gamma_i \geq \gamma_i'$ for all $i \in \mathbf{I}'$.

Assume that $\gamma_i > \gamma_i'$ for some $i \in I'$. Since $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\geq \gamma}$, it follows that $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';>\gamma'}$, which contradicts our assumption that $B \in \mathcal{P}_{\mathbf{V};\mathbf{I}';\gamma'}$. Thus, we must have $\gamma_i = \gamma_i'$ for all $i \in I'$. The lemma is proved.