CHAPTER 9

Quivers and Perverse Sheaves

9.1. THE COMPLEXES L,

9.1.1. By definition, a (finite) graph is a pair consisting of two finite sets
I (vertices) and H (edges) and a map which to each h € H associates a
two-element subset [h] of L.

We say that h is an edge joining the two vertices in [h]. We assume given
a finite graph (I, H, h — [h]). An orientation of our graph consists of two
maps H — I denoted h — h’ and h — h” such that for any h € H, the two
elements of [h] are precisely h’, h”. We assume given an orientation of our
graph. Thus we have an oriented graph (=quiver). Note that

(a) for any h € H, we have h’ # h".

9.1.2. Let V be the category of finite dimensional I-graded k-vector spaces
V = @jic1Vi; the morphisms in V are isomorphisms of vector spaces com-
patible with the grading.

For each v = Y, 1i € N[I] we denote by V, the full subcategory of V
whose objects are those V such that dim V; = v; for all i € I. Then each
object of V belongs to V, for a unique v € N[I] and any two objects of V,
are isomorphic to each other. Moreover, V, is non-empty for any v € N[IJ.

Given V € V, we define Gy = {g € GL(V)|g(Vi) = V;foralli € I}
and

Ev = EBheHHom(Vh', Vh/r).

Then G is an algebraic group (isomorphic to [[; GL(V;)) acting naturally
on the vector space Ev by

(9,%) — gz = &’ where z}, = gpzhg;, for all h € H.

9.1.3. Flags. A subset I’ of I is said to be discrete if there isno h € H
such that [h] C I'.

If v € N[I], we define the support of v as {i € I|i; # 0}. We say that v
is discrete if its support is a discrete subset of I.



9.1. The Complexes L, 69

Let X be the set of all sequences v = (v!,2%,...,v™) in N{I| such
that v} is discrete for all I. Now let V € V and let v € X be such that
dimV; = 5, for alli € I. A flag of type v in V is by definition a
sequence

(a) F=(V=V°>5Vis...o0V™=0)

of I-graded subspaces of V such that, for [ = 1,2,...,m, the graded vector
space V!=1/V! belongs to V,i. If £ € Ey, we say that f is z-stable if
(VL) c Vi, foralll=0,1,...,m and all h.

Let F, be the variety of all flags of type v in V. Let F,, be the variety
of all pairs (z, f) such that x € Ev and f € F, is z-stable. Note that
Gv acts (transitively) on F, by g : f — gf where f is as in (a) and
gf =(V=gV?>gV! > ... D gV™ = 0). Hence Gy acts on F, by
g9:(z, f) — (g2, 9f)

Let m, : F,, — Ev be the first projection. We note the following prop-
erties which are easily checked.

(b) F, is a smooth, irreducible, projective variety of dimension

Ul
E Y Vi

i<t

the second projection F,, — F, is a vector bundle of dimension

’
E l/;l: U;zu .

hil'<l

(c) %, is a smooth, irreducible variety of dimension

fw)= 3 vivke + D oot
il <l i<t/

(d) m, is a proper Gv-equivariant morphism.

Let L, = (m,)11 € D(Ev). By (c),(d) and by 8.1.5, L, is a semisimple
complex on Evy. Let L, = L,[f(v)]. Since D(1[f(v)]) = 1[f(v)] on F,
(see (c)) we have D(L,) = L,,.

We denote by Py the full subcategory of M(Evy) consisting of perverse
sheaves which are direct sums of simple perverse sheaves L that have the
following property: L[d] appears as a direct summand of L,, for somed € Z
and some v € X such that dimV; = 3,4 foralli€ L

We denote by Qv the full subcategory of D(Ey) whose objects are the
complexes that are isomorphic to finite direct sums of complexes of the
form L[d'] for various simple perverse sheaves L € Py and various d’ € Z.
Any complex in Qv is semisimple and Gy-equivariant. From 8.1.4, we see
that Py and Qv are stable under Verdier duality.
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9.1.4. Let v = (V! V™) € X. Assume that for some j we
write v/ = ] + z/g here V{,V’ € N[I] have disjoint support. Let
vVi= (2. I,V{,V%,V-H_ ...,¥™) € X. It is clear that L, = L,
and f(v) = f(v'). Hence L, = L. Thus, in the definition of Py, we may
restrict ourselves to sequences v = (v!,12,...,™) € X such that each 17
is of the form ni for some i € I and some n > 0. Since there are only
finitely many such v (subject to dim V; = 3°, 4} for all i € I) we see that
Py has only finitely many simple objects, up to isomorphism.

9.1.5. In the special case where V is such that 3", dim V;i is discrete, we
have Ev = 0 and Py has exactly one simple object up to isomorphism,
namely 1

9.1.6. Let K, K’ € Qv. The following two conditions are equivalent:

(a) K = K

(b) dimD;(Evy,Gv; K,DB) = dim D;(Ev, Gv; K’, DB) for all simple
objects B € Py and all j € Z.

It is clear that (a) implies (b). Assume now that K, K’ are not isomor-

» phic. Now K is a direct sum of complexes L[n] where L runs over the

isomorphism classes of simple objects L of Py and n € Z; let m(L,n) € N
be the number of times that L[n] appears in this direct sum. We define
similarly m’(L,n) by replacing K by K’. Since K, K’ are not isomor-
phic, we can find Lo, ng such that m(Lo,ng) # m’(Lg,ne) and such that
m(L,n) = m/(L,n) for all L and all n < ny. By (b), we have

> m(L,n)dim D;yn(Ev,Gv; L, DB)

Ln

=Y m'(L,n)dimDj4n(Ev,Gv; L, DB)
L,n

for all simple objects B € Py and all j € Z.
Using 8.1.10(d), we rewrite this as follows:

m(B,—j)+ Y > m(L,n)dimD,n(Ev,Gv;L, DB)

L nn<—j
() =m'(B,—j)+)_ > m'(L,n)dimD,.(Ey,Gv;L,DB).
L nn<—j
We apply this to B = Ly and j = —no. Since by our assumption,

m(L,n) = m'(L,n) for n < no, we see that (c) implies m(Lo,ng) =
m’(Lo,no). This is a contradiction. Thus the equivalence of (a),(b) is
proved.
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9.2. THE FUNCTORS IND AND RES

9.2.1. Let T, W be two objects of V. We can form Er,Ew and their
product Et x Ew. This has an action of Gt x Gw (product of actions as
in 9.1.2).

We define a full subcategory Pr w of M(Er x Ew) and a full subcate-
gory Qr,w of D(Et x Ew), as a special case of the definitions of Py, Qv
in 9.1.3; indeed, T x W and ET x Ew are special cases of V and Ev where
the oriented graph in 9.1.1 has been replaced by the disjoint union of two
copies of that oriented graph.

From the definitions it is clear that any simple object B € Py w is
the external tensor product B’ ® B” of two simple objects B’ € Py and
B” € Pw (and conversely). Note that any complex in Q1 w is semisimple
and Gt X Gw-equivariant.

9.2.2. We assume that we are given V, T, W in V, that W is a subspace
of V and that T = V/W. We also assume that the obvious maps W — V
and V — T preserve the I-grading. Let Q be the stabilizer of W in Gv (a
patrabolic subgroup of Gv). We denote by U the unipotent radical of Q.
We have canonically Q/U = Gt x Gw.

Let F be the closed subvariety of Ev consisting of all x € Ey such that
Zh(Wh) C Wyn for all h € H. We denote by ¢ : F — Ey the inclusion.
Note that Q acts on F (restriction of the Gy-action on Ev).

If £ € F, then z induces elements z' € Et and z” € Ew; the map
z — (z',2") is a vector bundle k : F — Ex xEw. Now Q acts on Er x Ew
through its quotient Q/U = Gt X Gw. The map « is compatible with the
QQ-actions.

Weset Gv = G,Q/U = G, Ey = E, Ex xEw = E. We have a diagram

E&EFLE
Let E” =G xp F,E' = G xy F. We have a diagram
EXE B E BE

where pi1(g, f) = £(f); p2(9, f) = (9, f); p3(g, f) = g(e(f)). Note that p, is
smooth with connected fibres, ps is a G-principal bundle and p3 is proper.

Let A be a complex in Qp w and let B be a complex in Qv. We can
form ki(¢*B) € D(E). Now p}A is a G-equivariant semisimple complex
on E’; hence (p2),p}A is a well-defined semisimple complex on E” (see
8.1.7(c)). We can form (p3)i(p2)yp;A € D(V).



72 9. Quivers and Perverse Sheaves

Lemma 9.2.3. (p3)i(p2)ypiA € Qv.

The general case can be immediately reduced to the case where A is a
simple perverse sheaf in Pr w and this is immediately reduced to the case
where A = L, ® L,~. (Note that a direct summand of a complex in Qv
belongs to Qv.) Thus, it sufﬁces to prove that (p3) (P2 )y} (Lo ® L) €
Qv, where v/ = (1/1,1/2, w) € X and v’ = (W, vy,...,V0,) € X
satisfy dim T} = 3, { dlmW =Yyt forallieL

Let v’v” be the sequence of elements in N[I] formed by the elements of
the sequence v’ followed by the elements of the sequence v”. Recall that
Fyn consists of pairs (z, f) where z € Ey and f is a flag of type v'v" in
V which is z-stable. Now the subspace with index m’ in f = (V =V? >
V1> ...)is in the G-orbit of W. The pairs (z, f) for which this subspace
is equal to W form a closed subvariety %, o of Fyry; for such (z, f) we
have z € F, hence (z, f) — z defines a (proper) morphism F,,~ o — F.
This morphism is Q-equivariant (for the natural actions of Q). Hence it
induces a proper morphism u : G xg Forur 0 — G xg F = FE". Since
G xq Forpr .0 is smooth, the complex L = w1 € D(E" ) is semisimple.
.. (See 8.1.5.) It is clear from the definitions that p3L = p}(L, ® Ly~) and
(p2)vpi (Lu’ ® LV”) =

It remains to show that (p3):L € Qv, or equivalently, that (psu)l € Qv.
We may identify in a natural way G XQ}'., V10 = =F, rper; then pgu = mwyrpn.
It follows that (psu)il = L,/,» which is in Qv by definition. The lemma
is proved.

Lemma 9.2.4. x(.*B) € Qrw-

We may assume that B is a simple perverse sheaf in Py . Since a direct
summand of a complex in Qr w belongs to Ot w we see that it suffices to
prove that rcg(L*f},,) € Qr,w, where v € X satisfies dimV; =}, Vi' for all
iel

Let ' C .7:'., be the inverse image of F C E under 7,. Let # : F — F be
the restriction of m,,. We have ¢*L, = 71; hence

Kg(L*I/,,) = K,!ﬁ'gl = (nif‘)!]..
Let v = (v1,v2%,...,v™). For any T,w € X of the form
2

r=(47%. . ™), w= (Whw?, ..., w™)

such that 7! +w! = 1! for all I, we define a subvariety F(r, w) of F as the set
of all pairs (z, f) wherex € Fand f=(V=V? >Vl >...5V™m=0)¢
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F, is z-stable and is such that the graded vector space (V!"!NW)/(VINW)
belongs to V,: for 1 =1,2,...,m

If (z, f) is as above, then there are induced elements (z’, f') € F and
(", f") € F.; here z” is deduced from z by restriction to W and z’
is deduced from z by passage to quotient; f’ is given by the images of
the subspaces in f under the projection V. — T and f” is given by the
intersections of the subspaces in f with W. Thus we have a morphism
a: F‘(‘r,w) — F, x F.,. We have a commutative diagram

f‘(‘r,w) _

F
| |
FrxF, —— E.
where the upper horizontal arrow is the obvious inclusion and the lower

horizontal arrow is m, X m,,.

It is not difficult to verify (as in [9, 4.4]) that « is a (locally trivial)
vector bundle of dimension M(7,w) =3, T,‘l',wh,, + X ia<r Wl

It is clear that the locally closed subvarieties F(7,w) form a partition of
F Let F be the union of all subvarieties F(-r w) of fixed dimension j. Let
Z; be the disjoint union of the varieties F» X F, (union over those (T,w)
such that F(7,w) C F‘J) The maps a above can be assembled together
to form a vector bundle F; — Z;. The maps 7, X 7,, can be assembled
_together to form a (proper) morphism Z; — E. We have a commutative
diagram/

KT

— :.ljl

o — "

Zj—>

We may therefore use 8.1.6 to conclude that (k7)1 is a semisimple com-
plex and that, for any i and j, there is a canonical exact sequence (in

M(E)):
(a) 0 — H™(f;)1 — H"(f<;)11 — H*(f<j-1 )1 — 0

where f; : F; — E and f<; : Ujr.jo<jFj» — E are the restrictions of x.
The earlier arguments show that

(b) (fj)!l = @(I:‘r ® i/w)[_2M(T’w)]

where the direct sum is taken over all (7,w) such that F(r,w) C Fj.
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From (a),(b) we see by induction on j that all composition factors of
H™(f<j)11 are in Py. Taking j large enough we see that all composition
factors of H™(k7 )1 are in Py. Since (k)11 is semisimple, it follows that
(k)11 € Q1 w. The lemma is proved.

9.2.5. By Lemmas 9.2.3, 9.2.4, we have well-defined functors

Iﬁd;{,w 1 Qrw — Qv (A (p3)i(p2)yp1A)

and v
Respw: Qv — Qrw (B~ k(B)).

~ .V . . . .
Since Indy v is defined using a direct image under a proper map and inverse
images under smooth morphisms with connected fibres, it commutes with
Verdier duality up to shift (see 8.1.1, 8.1.4); more precisely,

D(Indy,w(A)) = Indy,w(D(A))[2d; — 2d,]

.. where d; is the dimension of the fibres of p; and d; is the dimension of the
fibres of p,. We have

dy —dy = Z dim T} dim W + Z dim T; dim W;.
h i
We set v
IndY w = Indp wldi — da).

Then
D(Indy w(A)) = IndY. w(D(A)).

The functor Ind‘{.yw is called induction.

9.2.6. From the proof of 9.2.3 and of 9.2.4, we see that

-V - - -
(a) IndT,W(LV' X LV") = LuIVII
-V = - -
(b) Resp wly = &(Lr ® L,)[~-2M (7, w)]
where the sum is taken over all 7 = (71,72,...,7™),w = (w!,w?,...,w™)

such that dimT; = Y, 7, dimW; = 3w} for all i and 7% + ! = !
for all 1.
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9.2.7. We have f(1'v") = f(v) + f(') + dy — d; hence from 9.2.6(a) we
deduce that
Ind¥,W(LV’ ® Lu“) = Lulull.

9.2.8. Let I" be a smooth irreducible variety with a free action of G. Let
[ = U\I'. Then T is a smooth irreducible variety with a free action of G
induced by that of G. Consider the diagram

EETxELG\(TxE)
with the obvious maps s,t. As in 8.1.9, s*A is a semisimple G-equivariant

complex on I' x E and, since ¢ is a principal G-bundle, the semisimple
complex t,s*B € D(G\(I' x E)) is well-defined. In particular, we can

replace B by IﬁdT,wA and we obtain the semisimple complex
NP 4
Replacing E,T,G by E,T,G, we obtain a similar diagram

x E L G\(T x E)

(&)
Te
=

and we can consider the semisimple complex ,5*A € D(G\(T x E)). In

~ particular, we can replace A by R~es¥,wB and we obtain the semisimple
complex
- ~ V - - =

Let u: G\(T' x E) — {point} and @ : G\(T' x E) — {point} be the obvious
maps.

Lemma 9.2.9 (Adjunction). We have a natural isomorphism
-~V - - ~ vV
H™ui(tys* (Indp,wA) ® tys*(B)) = H (15" (A) ® 1,5 (Resy wB))
forn € Z. Hence, for any j € Z, we have
-~V _ .V
(a) D;/(E,G; Indy wA, B) = D;(E, G; A, Resp w B)

where 7' = j + 2dim G/Q.

The proof (which uses 8.1.6) is given in [2]; we will not repeat it here. The
shift from j to j comes from the formula dim(G\I') = dim(G\TI)—dim G/Q.
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9.2.10. In order to eliminate the shift from j to j’ in the previous lemma,

we define v
Resy. w(B) = Resy w(d1 — d2 — 2dim G/Q),

where d;,ds are as in 9.2.5. We can now rewrite the conclusion of the
previous lemma as follows:

(a) D;(E, G;IndY wA, B) = D;(E, G; A, Res¥. w B).
Note that dim G/Q = }_; dim T; dim Wj; hence

dy —dp —2dimG/Q = ) _ dim Ty dim W — Y _ dim T; dim W
h i
The functor Res¥,w is called restriction.

9.2.11. We can rewrite 9.2.6(b) as follows:

ResY. wlv = &(Ly ® Lu)[M'(T,w)]

- where the sum is taken over all 7 = (11, 7'2, cHn ™) w = (Wl w™)

such that dimT; = Y, 7{,dim W; = Y, w! for all i and 7! + o' = z/l for all
l; we have

2

M'(1,w) =dy —dy —2dimG/Q + f(v) — f(T) — f(w) — 2M(T,w).

‘We show that the last expression is independent of the orientation of our
graph. From the definitions we have

M (1,w) Z dim Ty, dim Wy, — Z dim T; dim W; + Z Wk,

hil’<l
§ Ul § 4 l
+ wh/Thu + Z 'T w + w T - 2 2 Thlwh// - 2 Z T .
hil'<l ijl<l/ IHAd hil’<l i<t

It follows that

M,(T,(J)) = — Z (T]{l’thu + T’{//WL/)
hil' <l

+ Z(dim T} dim Wy + dim Ty dim W)

_ 27— wh + ZT w; —ZdlmT dim W;,

i<l Li>lU

which is clearly independent of orientation.
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9.3. THE CATEGORIES Pv.1/;>y AND Pv;r;y

9.3.1. Let I’ be a discrete subset of I (see 9.1.3). Let v = >, 1i € N[I]
be such that v; = 0 for all i € I-T'. Let Py,r;> be the full subcategory of
Py consisting of perverse sheaves which are direct sums of simple perverse
sheaves L that have the following property: there exists a graded subspace
W C V and an object A € Qr w such that T = V/W satisfies dim T; > v
ifiel, and Ty = 0 for i’ ¢ I'; moreover, L is a direct summand of
Indey, wA-

Clearly,

(a) Pvir;>y O Pviri>y if 7' € NII] has support contained in I’ and
7 < 7 for all i € I'. Any object of Py is in Py;1;>0. Moreover, Pvir,>~
is empty if v; > dim V; for some i € I'.

Let Py, >~ be the full subcategory of Py consisting of the objects which
are in Py,i,> for some v' € N[I] with support contained in I’ such that
/(i) > (i) for all i € I’ and +/(i) > ~(i) for some i € I'.

Let Py, be the full subcategory of Pvi;> consisting of those objects
of, Py ;> which are not in Pvii;>. If K is a simple object of Py and
V # 0, then K is a direct summand of some shift of L, where v starts
with ! = v which may be assumed to be of form ni for some i € I and
some n > 0 (see 9.1.4); we see then that K € Py,(i};>ni- Thus:

(b) if K is a simple object of Py and V # 0, then there exists i € I such

-that K € Pv,{i};>i-

9.3.2. We now assume that W C V and T = V/W are such that for
any h € H we have Tp: = 0 (hence Wjr = V). It follows that Ex = 0.
Moreover, we have a natural imbedding ¢ : Ew — Ev; if z = (z») € Ew,
then the h-component of ¢(x) = z’ is the composition Vi = Wy, v,
Wy C Vie. (In our case we have k : F = Ew and the imbedding ¢
above may be identified with the imbedding F — Ev, see 9.2.2.) From
our assumption it follows that the set {i € I|T; # 0} is discrete; let I’ be a
discrete subset of I containing {i € I|T; # 0}.

We consider the locally closed subset © of Ey consisting of all z €
Ev such that dimVi/(3,cyni=iTh(Vr)) = dimT; for al'i e I,
and the open subset = of Ew consisting of all z € Ew such that
Y hernr—i Th(Wh) = Wi forallie I'.

Let p : G Xxg Ew — Ey be the unique G-equivariant map such that
(1,z) — i(z) for all z € Ew; let po : G xg E — © be the restriction of
p. Note that pp is an isomorphism. The inverse map can be described as
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follows. Let z € ©. The I-graded subspace

Gier( Y a(Vw)) ® (Bicr-rVi)
heH:h'" =i

of V has the same dimension in each degree as W; hence it is equal to
g(W) for some g € G. The element gz is equal to +(z’) for a well-defined
«’ € Ew. Then p;'(z) = (g,2'). In particular, 6,G xq E,G xg Ew are
irreducible of the same dimension.

Since p is a proper map, its image p(G x g Ew) is a closed subset of Ey,
containing ©. Hence dim G xg Ew > dimp(G xg Ew) > dim 6. It follows
that these inequalities are equalities; hence © is open dense in P(GxoEw).

We have a commutative diagram

Po o

GXQE

| T

G xgEw —2— Ey «—— Ew

“ where to, j, jo,m denote the inclusions. Both squares in the diagram are
cartesian.

Let PY, be the full subcategory of Pw whose objects are those perverse
sheaves A such that any simple constituent of A has support which meets
Z. Let Py be the full subcategory of Py whose ob jects are those perverse
sheaves A such that the support of A is contained in Ew-=

Let PY be the full subcategory of Py whose objects are those perverse
sheaves B such that any simple constituent of B has support which meets
© and is contained in the closure of 8. Let P}, be the full subcategory of
Pv whose objects are those perverse sheaves B such that the support of B
is disjoint from © and is contained in the closure of ©. Clearly, any object
A € Pw has a canonical decomposition A = A® @ A! where A° € PY, and
A! € P},. Moreover, any object B € Py with support contained in the
closure of © has a canonical decomposition B = B® @ B* where B? € P,
and B! € P},

Proposition 9.3.3. (a) Let A € P,. If n # 0, we have H"Ind,r wAa €
PL. Ifn=0, then H "Ind.r wA € Py has support contained in the closure
of ©; hence £(A) = (HI™ G/QIndT A)° € PY is defined.

(b) Let B € PY. Ifn # 0, we have H"ResTwB € Piw- Ifn =0,
then H™ResY. B € Pw hence p(B) = (H™ d‘"‘G/QResT wB)? € P, is
defined.
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(c) The functors & : Py — PY and p: Py — P, establish equivalences
of categories inverse to each other.

Note that j*B is a perverse sheaf on 8, since the support of B is con-
tained in the closure of © and © is open in its closure. Moreover, j*B
is a G-equivariant perverse sheaf. Since 8 = G xg E, it follows that
15(5*B)[— dim G/Q) is a perverse sheaf on E. But m*.*B = ({j* B, hence
m** B[—dim G/Q)] is a perverse sheaf on =. Since m is an open imbed-
ding, we have m*(H™.*B) = H™(m*.*B) for any n, and this is zero if
n # —dimG/Q. Hence if n # —dim G/Q, the support of H™.*B is dis-
joint from E. We have R.es;WB = Resy wB[dim G/Q] = +*B and (b) is
proved.

Let A be the perverse sheaf on G xg Ew such that 4 = r{7* A[dim G/Q]

in the diagram Ew <~ G/U x Ew - G xq Ew. By definition,
Iﬂd};,wA = pirir*A = pA[- dim G/Q).

-~V
This shows that Indy w A has support contained in the image of p, hence
in the closure of 6. We have

PPN ' 1 . .t .

j*(Indy wA) = j*pA[-dim G/Q] = (po)1j A[— dim G/Q).
Since jo is an open imbedding, we see that ja‘fi is a perverse sheaf on
G x@QE. Since pp : G Xx@ E — O is an isomorphism, it follows that (pp):j5A
is a peryerse sheaf on ©. Thus j*(Iﬁd"r,‘wA)[dim G/Q)] is a perverse sheaf

" on 6.

Since Iﬁd;wA has support contained in the closure of O, it fol-
lows that H "Iﬁd"r,,wA has support contained in the closure of © and
J*(H "Iﬁd;wA) =H "(j*Iﬂd;wA). This is zero if n # dimG/Q. Hence
for n # dimG/Q, the support of H "Iﬁd;wA is disjoint from 6. This
proves (a), since Ind¥,WA = Iﬁd‘T,’wA[dim G/Q).

From the proof of (b), we have

m*(p(B)) = m*(H~ 4™ ¢/Q,”B)
=m*(*B[-dim G/Q))
= (5] B[— dim G/Q).
This implies that j34(B) = p{j*B. From the proof of (a), we have
7 (6(4)) = 5" (H™ 6/ ¥Lndy,  A)

= j*(Iﬁd}rl,wA[dim G/Q)) = (po)j3A.
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Hence
m* (p(§(A4)) = 155" (€(A))[- dim G/Q] = 1§ (po)1jg Al dim G/Q] = m* A

and
37 (€(p(B)) = (po)1joA(B) = (po)poi* B = ™ B.

Since A € Py, and B € PY, it follows that p(£(A)) = A and &(p(B)) = B.
The proposition is proved.

9.3.4. Assume that I’ is a subset of I such that A’ ¢ I’ for any h € H,
that is, i is a sink of our quiver, for any i € I'. Let V € V. For any
v = >_;7i € N[I] with support contained in I, let Ey., be the set of all
z € Ev such that

dmVi/( ) z(Vw)) =
heH:h'' =i

for any i € I'. The sets Ey,, form a partition of Ey with the following
* property: for any v as above, the union Ev;>, = Uy Ey.,/ (with 4/ running
over the elements of N[I] with support contained in I’ such that v/ >
for all i € I) is a closed subset of Ey. Hence for any simple object B of
Pv, there is a unique element v = 4B € N(I] with support contained in
I’ such that the support of B is contained in Ev;>, and meets Ey.,. We
have 4 < dimV; for all i € I.

Lemma 9.3.5. Assume that B € Py,y., where v’ € N[I] has support
contained in I'. Then vB =~'.

We write 7 instead of 2. Let W be a graded subspace of V such that
T = V/W satisfies dimT; = ~; foralli€ I’ and Ty =0 foralli’ e I-T'.
We may apply Proposition 9.3.3 to I’ and B. With notations there, let
A = p(B) € Pw; we have that some shift of B is a direct summand of
Iﬁd;wA. Hence B € Py;1/;>.

From the definition of induction we see that any perverse sheaf in
Pv.1/;>4 has support contained in Ev,>.. In particular, the support of B
is contained in Ev,>./. By definition, the support of B meets Ev.; hence
Ev,, meets Ev;>,/, so that 1 > { for allie I'.

Assume that ; >~ for some i € I. Since B € Pv,1;>-, it follows that
B € Pv;r;>y, which contradicts our assumption that B € Py,r;,-. Thus,
we must have v; = 4| for all i € I'. The lemma is proved.



