CHAPTER 7

Higher Order Quantum Serre Relations

7.1.1. In this chapter we assume that we are given i # j in I and e = +1.
Given n,m € Z, we set
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To simplify notation we shall write fy, ;.. instead of f; j;nm;e when con-
venient, and we shall set a = —(i,5') € N, o/ = —(j,%') € N.

Lemma 7.1.2. We have (in U)
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We prove (a). The left hand side of (a) is
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It remains to observe that
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We prove (b). Using the identity
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we see that the left hand side of (b) is
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and (b) follows.

From Lemma 7.1.2 we deduce by induction on p > 0 the following result.

Lemma 7.1.3. We have
(a) E(p)f'r—t'-m .= EP' 0(_1);;’ e(2pm—apn+pp’—p’) [m+p] + E(P—P ).
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Lemma 7.1.4. We have
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We have
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We now use the identity v;-” = v{¥; the lemma follows.

Proposition 7.1.5. (a) If n <0 or m <0, then fn m.e = 0.
(b) If m > an, then fpm.e =0.

(a) is obvious. In particular (b) holds for n < 0. Hence, to prove (b),
we may assume that n > 0 and that (b) holds with n replaced by n — 1.
For such fixed n, we see from 7.1.2(b) that f} ... commutes with F; and
from 7.1.4 and the induction hypothesis, that fn+, an+1;c commutes with Fj.
(We have an+1 > a(n—1) hence the induction hypothesis is applicable to
fa—1,ant1;+1.) It is trivial that f,tan“;e commutes with F}, for any h # 1, j.
Thus, f,j', an+1;c commutes with Fj, for any h € I. Using 3.2.7(a), it follows
that f, an+1;e is a scalar multiple of 1. On the other hand, it belongs to
fan+1)i+nj and (an + 1)i + nj # 0. It follows that fn ant1.e = 0.

We now show, for our fixed n, that f, m.. = 0 whenever m > an. We
argue by induction on m. If m = an + 1, this has been just proved. Hence
we may assume that m > an+1. Using the induction hypothesis we see that
the left hand side of the identity —v2*" ™2 g, Shmtie + [ 1B =
[m]i ff ;e (see 7.1.2) is zero. Hence we have [m]if}, . = 0. We have
m # 0, hence ff, . = 0. It follows that f, m; = 0 and the induction is
completed. The proposition is proved.

7.1.6. The identities fome = 0 (m > an;n > 1) in f are called the
higher order quantum Serre relations. For n = 1 and m = a + 1, they
reduce to the usual quantum Serre relations.

Corollary 7.1.7. For any n,m > 0 such that m > an + 1, we have
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where vy = E;n:—oan—l(_1)3'+1+q,vi—3’(an—m+l+q)+q [:']i (identity in f).
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From 7.1.5 we see that f, m—g.1 =0 for 0 < ¢ < m — an — 1; hence
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is zero. On the other hand, using the definitions, we have
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If 0 < 8 < m—an — 1, we may replace the range of summa-
tion above to 0 < ¢ < s and the sum will not change, since for

0 < §’ < q, the binomial coefficient [‘:]i is zero. Hence for such s’ we
—m+1 ! 1-5") 18’

have ¢y = (—1)rpflan-—m )Ezzo(—l)qvf( s)[f]]i. By 1.3.4, the last

sum is zero unless s’ = 0. Thus, for 0 < s’ < m — an — 1, we have

Crsr = 60,sr(—1)mv;n(a"_m+l). The corollary follows.



Notes on Part 1

10.

11.

- The formulas for the operators T} ,,T7

. The Hopf algebra U has been defined in the simplest case (quantum analogue

of SLz) by Kulish and Reshetikhin [10] and Sklyanin [14] and, in the general
case, by Drinfeld [2] and Jimbo [5], [6]. The definition given here is different
from the original one; the two definitions will be reconciled in Part V.

. The bilinear form ( , ) in 1.2.3 turns out eventually to be the same as that of

Drinfeld [3].

. The idea of defining the A-form 4f and 4U of fand U (see 1.4.7, 3.1.13) in

terms of v-analogues of divided powers appeared in [12]. (In the classical case,
the Z-forms of enveloping algebras were defined in terms of divided powers
with ordinary factorials by Chevalley and Kostant [9], for finite types, and by
Tits, for infinite types.)

. The theorem in 2.1.2 is due to Iwahori, for finite types, and to Matsumoto

and Tits [1], in the general case. The statement in 2.2.7 can be deduced from
a theorem of Tits on Coxeter groups, see (1], ch. 4, p.93, statement P,,.

The notion of Cartan datum (resp. root datum), see 1.1.1 (resp. 2.2.1), is
closely related to (but not the same as) that of a generalized Cartan matrix
(lresp. a realization of it) in [7]. In fact, an irreducible generalized Cartan
matrix is the same as an irreducible Cartan datum up to proportionality (see
1.1.1).

. The commutation formulas in 3.1.7, 3.1.8, are closely connected with Drinfeld’s

description [3] of U (in the formal setting) as a quantum double. Their con-
sequence, Corollary 3.1.9, is the quantum analogue of an identity of Kostant
[9] (it was shown to me by V. Kac).

The definition 3.5.1 of integrable U-modules is the quantum analogue of Kac’s
definition (7] of integrable modules of a Kac-Moody Lie algebra.

. The definition of universal R-matrices is due to Drinfeld [3]. The characteri-

zation of a modified form of the R-matrix given in 4.1.2, as well as in 4.1.3,
appeared in [13]. Propositions 4.2.2 and 4.2.4 are due to Drinfeld [3].

i.e (in 5.2.1) are new (they are classical
for v =1). An identity like 5.3.4(a) (with a different definition of T7,) is stated
in [8] and [11].

The definition of the quantum Casimir operator (see 6.1) is due to Drinfeld
[4]. The proof of the complete reducibility theorem 6.2.2 is inspired by the
proof of the analogous result in the non-quantum case (Kac [7)).

A number of statements of Drinfeld in [3] were given without proof; some of
the proofs were supplied by Tanisaki [15].
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