CHAPTER 6

Complete Reducibility Theorems

6.1. THE QUANTUM CASIMIR OPERATOR

6.1.1. In this chapter we assume that the root datum is both Y-regular
and X-regular.

Let B, B, be as in 4.1.2. Applying m(S ® 1) to the identities at the end
of 4.2.5, where m : U® U — U is multiplication, we obtain for any p > 0:

Do D (1) U (S(EbT)bT + S(Kib)Eib*t

v: tr v<pb€EB,
— SO E)b*t — S(b~K_)b*tE;)
= Y ) (-DPu(SEbT)EbT — ST K_)b*tEy),

v: tr v=p b€B,,

and

D ) (1) T, (SOT)Fb + S(FbT)K_btt

v: tr v<pbeB,
— S(b)b*F, — S(b™F)b*t K;)

= > 3 (1P (SED Kb - S(bTF)b ),
v: tr v=p beEB,

equivalently, setting Q<p, = 3", , <, Dpep, (—1) ¥ “0,8(b7)b**, we have

R—iEiQSp - i{iQSpEi
= Y ) (-1)Pu(S(E_ib7)Eb*t - S(b™K_i)b*t Ey),

v: tr v=pbeB,
and
— Qo Fi + FK Q< K;
= D D (-)Pu(S(FbT)K_bt — SR K,).

v: tr v=pbeB,
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6.1.2. If M € C", then for any m € M, we have that Q(m) =
Q<p(m) € M is independent of p for large enough p. We can write
Q(m) = 3, (—1) ¥ Ply S(b7)b*+m and we have

(a) R_,;Eiﬂ = R,'QE,;, QF,‘ = Fif{iﬂki, QK“ = KuQ

as operators on M. It follows that for m € M?*, we have QE;(m) =
v XM Bi(m) and QF;(m) = o2 F,Q(m).

6.1.3. Remark. Let us define an isomorphism of Q(v)-algebras S : U —
U°PP by 5(@) = S(u) (S is the antipode.) For any u € U, we have S(u)Q =
QS(u) : M — M. Indeed, it suffices to check this for the generators
E;, F;, K, where it follows from the formulas above.

6.1.4. Let C be a fixed coset of X with respect to the subgroup Z[I] C X.
Let G : C — Z be a function such that

(a) G -G\ —=14)=1i-i(i, A)
for all A € C and all ¢ € I. Clearly, such a function exists and is unique up
to addition of an arbitrary constant function C' — Z.

Lemma 6.1.5. Let M € CNX*. Assume that A > X and G(A) = G(X).
Then A = ).

We can write \' = A — i} — i, —--- — i, for some sequence iy,1z,...,i,
in I. Using 6.1.4(a) repeatedly, we see that

G =G =iy =iy = —in) =Y ipiplip ) = D ip-ig
p=1

1<p<g<n

Using our assumption, we have therefore that

(a) D ipiplipg N = Y ip-ig.
p=1

1<p<q<n

Since A € X, we have (i, A) € N for all ¢, hence
n
(b) Z ip * ip(ip, A) 2 0.
p=1
Similarly, since X' € X+, we have

n
Ziz’ ~1p(ip, /\I) 20,
p=1
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or equivalently,
n
c ip (g, A =3 —ih — - =3 > 0.
p ipllp 1% n
p=1
Adding (b),(c) term by term gives

n n
2) ipiplipg ) =2 Y dprig—2 ip-ip 20,
p=1 1<p<g<n p=1
Introducing here the equality (a), we obtain —2 ZZ=1 ip - ip 2> 0. Since
ip - ip > 0 for all p, it follows that n = 0; hence A = X as required.

6.1.6. Let M € C. For each Z[I]-coset C in X we define Mc = @rcc M.
It is clear that M = @®cMc as a vector space and that each M¢ is a
U-submodule. Hence M = @®cM¢ as an object in C.

Proposition 6.1.7. Let M € Ch.

(a) Assume that there ezists C as above such that M = M¢c. LetG : C —
Z be as in 6.1.4. We define a linear map = : M — M by Z(m) = vSMnm
for all A € C and all m € M*. Then the operator Q= : M — M is
in the commutant of the U-module M. Moreover, the Q(v)-linear map
Q=: M — M is locally finite.
“(b) Assume that M is a quotient of the Verma module My:. Then Q= :
M — M is equal to vC*) times identity.
(c) Let M be as in (a). Then the eigenvalues of Q= : M — M are of the
form v¢ for various integers c.

We prove (a). We have for A, m as above:

Q=FE;(m) = ,UG(/\-H')QEi (m) = UG(,\+i’)—i-i(z',,\+i’)Eiﬂ(m)
— vG(A+i')—G(A)—i-i(i,A+i')EiQE(m) = EQ=(m)
and
QEF;(m) = vCA~IQF,(m) = vGO-+iN po(m)

= vCO-)=CN+i6N ROZ(m) = F,QE(m).

Moreover, 2= maps each weight space of M into itself. This proves the
first assertion of (a). To prove the second assertion, it suffices to show that
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the restriction of Q= to any weight space is locally finite. Let m € M?*.
Let M’ be the Ut-submodule of M generated by m. Let M” be the
U-submodule of M generated by m. We have M” = U~ M’. We have
dim M’ < oo since M € C*. It follows easily that all weight spaces of
M?"" are finite dimensional. In particular, the A-weight space of M" is finite
dimensional. This weight space is stable under 2= and it contains m. Thus,
Q=: M — M is locally finite.

We prove (b). From the definition, Q= acts on the A-weight space
of M as multiplication by vG() times identity. Since this weight space
generates M as a U-module, we see that (b) follows from (a). (Note that
(a) is applicable to M.)

We prove (c). Let M be the sum of the generalized eigenspaces of QZ :
M — M corresponding to eigenvalues of form v for various integers c.
We must show that M = M. By the argument in the proof of (a) we
may assume that, for any A € C, we have dy(A) = EA,»‘ dim MY < oo.
We will prove that, for any A € C, we have M* C M, by induction on
d = dpr(N). If d = 0, there is nothing to prove. Assume now that d > 1.
Let A\; € C be maximal such that A\; > X and M* # 0. Let m; be a
ndh-zero vector in M*t. Let M; be the U-submodule of M generated by

. Clearly, das/u, () < dm()). Hence, by the induction hypothesis, we
have (M/M)* C (M/M,]. On the other hand, by (b), we have M; C M.
It follows that M* C M. The proposition is proved.

The operator Q= : M — M is called the quantum Casimir operator.

6.2. COMPLETE REDUCIBILITY IN C* NC’

Lemma 6.2.1. Let M € C. Assume that M is a non-zero quotient of the
Verma module My and that M is integrable. Then

(a) A€ Xt and

(b) M is simple.

(a) follows from 3.5.8 applied to a non-zero vector m € M A

We prove (b). Assume that M’ is a subobject of M distinct from M
and 0. Then clearly, M’*» = 0. We can find A’ € X maximal with the
property that M’ # 0. Then X' < A. Let m’ be a non-zero vector in
M’ . By the maximality of X/, we have E;m’ = 0 for all i. By 3.4.6,
there exists a morphism of U-modules from the Verma module M) into
M’ whose image contains m’. Let M” be the image of this homomorphism.
Clearly M” is integrable (since M is integrable). Applying (a) to M" we
see that \' € X+.
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Applying 6.1.7(b) to M and to M"” and to the Z[I]-coset of A (or \') in
X, we see that Q=(m) = v¢Mm for all m € M and Q=(m) = vSXN)m for
allm € M". (G asin 6.1.4.) It follows that G(A\) = G()\'). This contradicts
6.1.5 since A’ < A\. The lemma is proved.

Theorem 6.2.2. Let M be an integrable U-module in C*. Then M is a
sum of simple U-submodules.

We may assume that M # 0. By 6.1.6, we may also assume that M =
Mc for some Z[I]-coset C' in X. We choose a function G : C — Z as in
6.1.4 and we define Q= : M — M (in the commutant of M) as in 6.1.7.

By writing M as a direct sum of the generalized eigenspaces of Q= :
M — M (see 6.1.7), we may further assume that there exists ¢ € Z such
that (QZ — v°) : M — M is locally nilpotent.

Let P = {m € M|E;m =0 Vi}. We have P = ®cc P> where P> =
PN M>* For any non-zero element m € P the U-submodule of M
generated by m is of the type considered in 6.2.1; hence it is a simple
subobject of M. Thus the U-submodule M’ of M generated by P is a sum
of simple U-submodules. Let M” = M/M’'.

Assume that M” # 0. Then we can find \; € C maximal such that
M"*1 £ 0. Let m; be a non-zero vector of M"*'. We have E;m; = 0 for
alli. Applying 6.2.1 and 6.1.7 to the U-submodule of M" generated by m;,
we see that A\; € X+ and QE(m,) = v¥PIm,. Since (ME—-v°): M - M
is locally nilpotent we see that (QZ — v°) : M” — M" is locally nilpotent.
Hence we must have ¢ = G(\;).

Let m; € M be a representative for m;. As in the proof of 6.1.7, the
Ut-submodule M; of M generated by 7, is a finite dimensional Q(v)-
vector space which is the sum of its intersections with the weight spaces of
M. Hence we can find Az € C maximal such that M; N M*2 #£ 0. Let m,
be a non-zero vector in M; N M*2. We have E;m, = 0 for all . Applying
6.2.1 and 6.1.7 to the U-submodule of M generated by m,, we see that
Az € Xt and QE(my) = v(*2)my,. From the definition of ¢, we have that
G(X2) = c. Hence G(A1) = G(A2). Note that A\; € X+ Ay € X+; from the
definitions, we see that A > A;. Using 6.1.5, we deduce that A1 = A Tt
follows that M, is the one dimensional subspace spanned by 77, ; hence we
must have E;(7n,) = 0 for all ¢, or equivalently, 72, € P. This implies that
my = 0, a contradiction.

We have proved that M” = 0. Hence M = M’ and therefore M is a sum
of simple U-submodules. The theorem is proved.

Corollary 6.2.3. (a) For any A € X, the U-module Ay is a simple object
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of C'.

(b) If \, N € X, the U-modules Ay, Ay are isomorphic if and only if
A= N,

(c) Any integrable module in C* is a direct sum of simple modules of the
form Ay for various A € X+,

(a) follows from 6.2.1 since A is integrable. To prove (b), it suffices to
note the following property which follows from the definitions: given the
U-module M = Ay where A € X7, there is a unique element A\; € X such
that M*t # 0 and )\, is maximal with this property; we have A\; = ).

We prove (c). From Theorem 6.2.2, it follows that any integrable module
in CM is a direct sum of simple objects of C** which are necessarily inte-
grable. Let M’ be one of these simple summands. Let A € X be maximal
such that M’* # 0. Let m be a non-zero vector in M’*». Then E;m = 0
for all <. Using 3.5.8, we can find a non-zero morphism Ay — M’ (in C’).
Since both A and M’ are simple, this must be an isomorphism.

6.3. AFFINE OR FINITE CARTAN DATA

6.3.1. In this section we assume that (I,-) has the following positivity
property: zi’ji - jzizj > 0 for all (z;) € N7. This certainly holds if (I,-)
is of affine or finite type. We first prove an irreducibility result for certain
Verma modules.

Proposition 6.3.2. Let A € X be such that (i,\) < —1 for all i. Then
M X 18 sz'rﬁple.

Assume that M has a non-zero U-submodule M’ distinct from M. Let
) € X be maximal with the property that M’ # 0. Let m’ be a non-zero
vector in M’*". Then E;m’ = 0 for all i. Hence there is a homomorphism
of U-modules My, — M’ whose image contains m’. Using 6.1.7 for M) and
My, we see that QE(m’) = vV m’ and QE(m’) = v ). It follows that
G(X) = G()'). We have )’ < A hence we can write N = A—i} —i5—---—i/,
for some sequence i;,1%3,...,i, in I with n > 1. As in 6.1.5, from G()) =
G(X), we deduce

(a) Z:=1 ip - ip(ip, A) = Zp<q€[1,n] ip g

Hence (Z;=1 ip) - (Z:=1 ig) = 2;:1 ip + ip(2(ip, A) +1). By our as-
sumption, the left hand side is > 0 and the right hand side is < 0. This
contradiction proves the proposition.

6.3.3. In the remainder of this section, we assume that (I,-) is of finite
type. In this case.the root datum is automatically Y-regular and X -regular.
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Proposition 6.3.4. (a) For any A € X*, we have dim A < oo.

(b) Let M € C be such that dim M < oco. Then M is integrable and M €
Ch, hence (by 6.2.2), it is a direct sum of simple U-modules isomorphic to
Ay for various A € X+,

Let X' € X be such that Aj\\' # 0. Using 5.2.7 several times, we see that
we also have A:’('\l) # 0 for any w € W. In particular, we have A’f"(’\') # 0.
It follows that M < A and wp()’) < A. The last inequality implies, in
view of 2.2.8, that wo(A) < A. Thus, we have wo(A) < X < A. These
inequalities are satisfied by only finitely many ). Since each weight space
of A, is finite dimensional, we see that (a) holds. Now (b) is immediate
since the root datum is X-regular. The proposition follows.

6.3.5. The following result is a variant of the complete reducibility theorem
6.2.2: we assume (see 6.3.3) that the Cartan matrix is of finite type but we
do not need the condition that our module is in C*¢.

Proposition 6.3.6. Let M be an integrable U-module. Then M is a sum
of simple U-modules of form Ay for various A € X+.

Let m € M¢S and let M’ be the Ut-submodule of M generated by m.
Since M is integrable, there exist a; € N such that E,.(G‘J'l)m =0foriel
Hence there exists ' € Xt such that Ei((i"\')ﬂ)m = 0 for all i. It follows
that u — um gives a surjective linear map Ut/(}"; U+Ei(<i”\')+l)) — M.
Using 3.5.6, we see that Ut /(3", U+Ei((i"\l)+1)) is isomorphic as a vector
space to Ay, hence it is finite dimensional, by 6.3.4. Thus, dim M’ < oo.
Let M"” be the U-submodule generated by M’. Since M’ is stable under
Ut and U°, M"” is equal to the U~-submodule generated by M’. By the
argument above, the U~ -submodule generated by a vector in M is finite
dimensional. Since M’ is finite dimensional, the U~ -submodule generated
by M’ is finite dimensional. Thus, dim M” < oco. We have shown that m
is contained in a finite dimensional U-submodule of M. Thus, M is a sum
of finite dimensional U-submodules. By 6.3.4(b), each of these is a sum of
simple U-modules of form A for various A € X*. The proposition follows.



