CHAPTER 42

The ADF Case

42.1. COMBINATORIAL DESCRIPTION OF THE LEFT COLORED GRAPH

42.1.1. In this chapter we assume that the Cartan datum is simply laced
and of finite type.

Lemma 42.1.2. Consider the Q(v)-algebra with generators a, § and rela-
tions a?8 — (v + v NaBa+ Ba? =0, Ba-— (v+v1)Baf+af? =0.
Set v =aB —v'Ba. Forz =a,B or+, andn > 0, we set (™ = z"/[n]';
forn < 0, we set (™) = 0. We have

(a) ay =vya, vBy=1p;

(b) o @) = > v~ (P=n)(a=n) gla=n) 4 (n) o (p—n) .

(c) »7(m) = Zj,+j”=m(*l)j,v—j,ﬂ(jl)a(m)ﬂ(j”);

(d) a(p)ﬁ(q)a(r) = Zm,nZO;m+n=p+r—q [m;n] ﬂ(r_m)a(p+r)'8(p_n)’ if
p+r2gq;

(e) ﬂ(p)a(q)ﬁ(r) = Zm,nZO;m+n=p+r—q [m;n]a(r—m)ﬂ(p—rr)a(p—n)’ if
ptr=gq;

(B) a®B@al) = ¥ y=(p=mla=m) [P=m47] gla=n)y(m) g p-ntr),

(g) BP DB = zn;nSr p—(@—n)(r-n) [f:f;tp]ﬂ(r—n+p),y(n)a(q—n);
(h) P gt o (") = g+ 3),

(a) is obvious.

Now (b) is obvious when p < 0 or ¢ < 0. For ¢ = 1, (b) states that
a® B = v PBa® 4 yaP~V); this is proved by induction on p > 1, using
(a). Assume now that ¢ > 2 and that (b) is known when q is replaced by
q — 1. We write (b) for (p,q — 1) and multiply it on the right by 3. Using
the case ¢ = 1, we substitute

[3(4—1—n),y(n)a(z>—n)ﬂ — ﬁ(q—1—n)7(n)(v—p+nﬁa(p—n) + 'ya(”_"_l)).

This can be rearranged using (a) and yields (b) for (p,q). Thus (b) is
proved.

To prove (c), we replace o™ 3U") in the right hand side of (c) by the
expression provided by (b); we perform cancellations, and we obtain (c).
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To prove (d), we replace P39 on the left hand side and a®+7)g(P—")
on the right hand side by the expressions provided by (b); we perform
cancellations, and we obtain (d). Now (e) follows from (d) by symmetry;
(f) and (g) follow immediately from (b) and (h) is a special case of either
(d) or (e). Note that (h) is a special case of the quantum Verma identity
39.3.7.

42.1.3. Let H be the set of all sequences h = (i3, 42,...,%,) in I such that
8i,8iy -+ - 8;, 1s a reduced expression for wg. (Thus, n = I(wy).)
We shall regard H as the set of vertices of a graph in which h =

(21,%2y...,%n) and W' = (j1,72,...,Jn) are joined if h’ is obtained from
h by

(a) replacing three consecutive entries ¢,7,7 in h (with ¢ - j = —1) by
35,7 or by

(b) replacing two consecutive entries i, j in h (with i - j = 0) by j,.

For such joined (h,h’), ie., in case (a) (resp. (b)) we define a map
RM : N = N™ as follows. This map takes ¢ = (c1,...,¢,) € N” to
c = (c},-..,c,) € N™ which has the same coordinates as c except in the
three (resp. two) consecutive positions at which (h,h’) differ; if (a,b,c)
(resp. (a,b)) are the coordinates of c at those three (resp. two) positions,
the coordinates of ¢’ at those positions are

(b+ ¢ — min(a, c), min(a, ¢),a + b — min(a, c)) (resp. (b,a)).

It is easy to check that Rﬁl is a bijection; its inverse is R},.
From 2.1.2, it follows that

(c) the graph H is connected.

42.1.4. Given h = (iy,...,i,) € Hand ¢ = (c1,...,¢cn) € N, we define

(a) Ey=
E(Cl)Tl E(Cz) T T E(Ca) LT T T E(Cn)
[ il,"l( 2 ) i,—1 ’ig,—l( i3 ) T i i —1( in )'

2 1,—1742,—1 in—1,

According to 41.1.3, 40.2.2, the elements Ef (c € N™) are contained
in 4UY and form a Q(v)-basis of U%. We shall denote this basis by Bj,.
Hence, given h,h’ € H and ¢ € N*, we can write uniquely

c __ c,c’ e’
h = E , 'Yh,h'Eh'
c’eNm

where 'y,cl”'l':, € Q(v).
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Proposition 42 1.5. (a) Assume that h,h’ are joined in the graph H. For
c,c’ € N*, yp}, is in Z[v™!]. Its constant term is 1 if ¢’ = RY(c) and is
zero otherwise.

(b) For h € H, let Ly, be the Z[v~']-submodule of Ut generated by the
basis By. Then Ly, is independent of h € H. We denote it by L.

(c) Forhe H, let m: L — L/v™1L be the canonical projection. Then
7(By) is a Z-basis of L/v~'L, independent of h € H; we denote it by B.

Assume that the proposition is known in the special case in which [
consists of two elements i, j. Using the definitions and the fact that the
Ti',_1 : U — U are algebra homomorphisms satisfying the braid relations,
we see that (a) in the general case is a consequence of (a) in the special case.
To prove (in the general case) that the objects defined in (b),(c) in terms
of h,h’ € H coincide, we may assume, in view of the connectedness of the
graph H, that h, b’/ are joined in H, in which case the desired statements
follow immediately from (a).

Thus, we may assume that we are in the special case above. In the case
. where i-j = 0, the result is trivial. Hence we may assume thati-j =j-i =
—1. Now H consists of two elements: h = (3,5,7), h’ = (j,1,7). Besides
L, Ly, we introduce the Z[v~!]-submodule £ of Ut generated by the set

B' = {EPE{PE"|q>p+r}U{EPEDED|g > p+r}

in which we identify Ei(p )EJ(."')Ei(T) = E_gT)Ei(q)E](.T) forg=p+r.

By definition, we have T] ,(E;) = E;E; — v 'E;E; = T;,(E;) and
T; _\(E:) = E;E; — v E;E; = T]',(E;). 1t follows that T} \T; | E; =
E; and T; ,T] _,E; = E;. Hence, if ¢ = (c1,¢2,¢3) € N3 and ¢’ =
(cy, ch,ch) € N3, we have

Ef = E{")(E;E; — v 'E;E;)*VE{*

and
Ef, = ESV(EEj — v\ E; E;) D E"),

where the notation z(®) is as in Lemma 42.1.2. Let (p,q,r) € N3 be such
that ¢ > p + r. From 42.1.2(f), we have

EPE@DED = ZU-(p_n)(q n) [p n:r] pa- -t
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where

- (P-m)(a—n) [P ; " : T] € v~ -ma-n=r)(1 4 4=17[p-1))

is in v™'Z[v™}), if n < p and it equals 1 if n = p. Similarly,

EPEWED =3 y-la-mr—m) [" - " :I’] Ermtpman
n=0

where

p—(a-m)(r=n) [T ;’_’ : P] € u=(r=M@=p=n)(] 4 y=1Z[p=1))

is in v"1Z[v™Y], if n < r and it equals 1 if n = 7. These formulas show
that L,y = £ and, if 7 : £ — L£/v™1L is the canonical map, we have
7(B’) = m(Bw); moreover, m maps B’ onto w(B’) bijectively.

By the symmetry between ¢ and j, there is an analogous statement for
hi(note that £, B’ are symmetric in ¢,j). Thus, we have £, = £ and
w(B') = w(Bn). It follows that (b),(c) hold. The formulas above show also
that (a) holds. The proposition is proved.

Corollary 42.1.6. The A-subalgebra A4U" of Ut coincides with the A-
submodile 4L of Ut generated by L.

The fact that 4£ C 4U™ has been noted in 42.1.4. To prove the reverse
inclusion, it suffices to show that for any i € I and any s € N, 4L is stable
under x multiplication by Ei(s). Now 4L has an A-basis formed by the
elements E}, where h is a fixed element of H which starts with ¢ and ¢ runs
through N™. Multiplication by Ei(s) takes each element of this basis to an
A-multiple of another element of this basis. The corollary follows.

42.1.7. From the definitions it is clear that £ = &, L, where £, = LNU}
for any v € N[I]. This induces a direct sum decomposition £/v™1L =
®,L, /v L,. It is clear that B is compatible with this decomposition; in
other words, we have B = U, B(v) where B(v) is the intersection of B with
the summand £, /v™L, of L/v™1L.

42.1.8. We consider the equivalence relation on H x N™ generated by
(h,c) ~ (h’,c’) whenever h,h’ are joined in H and RP (c) = ¢’. Let H be
the set of equivalence classes.
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Lemma 42.1.9. For any h € H, the map f : N™ — H, which takes any
c to the equivalence class of (h,c), is a bijection.

From 42.1.5(a), we see that the (surjective) map H x N™ — B given by
(h,c) — w(E}) is constant on equivalence classes; hence it factors through
a (surjective) map H — B. On the other hand, for any h € H, the
composition N™ LA 5 Bisa bijection (again by 42.1.5). The lemma
follows.

We have the following result.

Theorem 42.1.10. (a) For any b € B there is a unique element b € L
such that w(b) = b and b =1b.
(b) The set {b|b € B} is a Z[v~']-basis of L and a Q(v)-basis of U+,

We shall regard the pairing (,) on f as a pairing on U* via the iso-
morphism f — Ut given by z +— z*. Let h € H. By 38.2.3, the basis
Eg of Ut, where c is running through N™, is almost orthonormal for ().
" Applying 14.2.2(b) to this basis, we see that any element S € B satisfies
Bt € £ and n(B%) € +B. In particular, we have L(f) C £. Applying
14.2.2(b) to the canonical basis B of f = U* and to z = Ef, which satis-
fies (x,z) € 1+ v~ 1Z[[v=1])] N Q(v) by 38.2.3, we see that z € L(f); hence,
by the previous sentence, £ = L(f) and n(z) = +m(8%) for some g € B.
Since Bt C L(f) = L, we see that the existence statement in (a) holds.
The uniqueness in (a), as well as statement (b) now follow from the known
properties of B. The theorem is proved.

42.1.11. We keep the notation from the proof of Theorem 42.1.10. We fix
i € I. Assume that h € H starts with i. Let b € B be such that b = 7(E}))
where the first coordinate of ¢ is 0. Let ¢/ € N™ be such that ¢’ has the
same coordinates as ¢ except for the first coordinate, which is s € N. Let
¥ = n(EL') € B. We shall use the following notation. For b € B, we define
B» € Bby Bf = b (see the proof of 42.1.10).

Lemma 42.1.12. (a) Write Ef = 2zt where z € f. Then z € f[i] and
Ef = (952)*.

(b) We have By = ¢, mod v~ 1L(f).

(c) We have By € Biyp.

(d) We have By = mi,s(Bs)-
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Since c starts with 0, the element Ef € Ut is in 7] _,U*, hence by
38.1.6, z is in f[i], and ;r(z) = 0; hence ¢ (z) = 05’)z. It follows that
#2(2)* = B Eg = ES'. This proves (a).

We prove (b). Using (a) and the definitions, we have z = 3, mod v=1L(f)
and ¢¢z = By mod v~1L(f). Since ¢! maps v—'L(f) into itself it follows
that ¢2z = ¢2(8,) mod v~1L(f), hence ¢?(B) = By mod v~1L(f). This
proves (b).

From the fact that the elements Eﬁ", where ¢” runs through N, form
a basis of U™, it follows immediately that

(e) for any ¢ > 0, the elements EE where ¢” runs through the elements
of N™ with first coordinate > ¢, form a Q(v)-basis of EfU*.

We prove (c). Assume that 3, € B;; with ¢t > 0. Then 8} € E{UT,
hence it is a linear combination of elements as in (e); in particular, Ef,
appears with coefficient 0, contradicting the definition of 8y. This proves
(c). Since By, By € B, we see from 17.3.7 that (d) follows from (b) and (c).
This completes the proof.

Carollary 42.1.13. We have B = {blb € B}. (We identify f = U* as
above.)

From the proof of 42.1.10, we have that {b|b € B} ¢ B. We show by
induction on N = trv that b € B, if b € B,. If N = 0, this is clear.
Assume that N > 1. By 14.3.3, we can find € I and s > 0 such that

‘be B” 'We then have b = mi,s0 where B € B;,o (see 14.3.2). We have
8= +b; where b, € B. By the argument in the previous lemma we have
that the sign is +, hence b= 5, sbl By the induction hypothesis, we have
by € B; the previous equality then implies that beB.

42.1.14. The basis {b|b € B} = {8*|8 € B} of U is in a natural bijection
with the set B, which in turn is in a natural bijection with the set H (see
the proof of 42.1.9). We thus have a purely combinatorial parametrization
of the canonical basis B.

The structure of left colored graph on B (see 14.4.7) corresponds to a
structure of colored graph on H, which we will now describe in a purely
combinatorial way.

For any ¢ € I, we define a function g, : H — N as follows. Let ¢ € I:I;
we choose h € H such that the sequence h starts with ¢. By 42.1.9, c is
the class of (h,c) for a unique ¢ € N™. We set g;(c) = ¢1 where ¢, is the
first coordinate of c. To show that this is well-defined, we consider h’ € H
such that the sequence h starts with i. Let ¢/ € N™ be such that c is the
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class of (h’,c’) and let ¢| be the first coordinate of ¢’. We must show that
c1 = ¢j. Now the set H; of all sequences in H which start with ¢ can be
naturally identified with the set of reduced expressions for s;wg; applying
2.1.2, we see that H;, regarded as a full subgraph of H is connected. Hence
to prove that ¢; = ¢}, we may assume that h,h’ are joined in the graph.
Then c and c’ are related by an elementary move as in 42.1.3(a) or (b).
This elementary move operates on coordinates other than the first, since
h, b’ start with the same element i. Thus, we have ¢, = ¢, as desired.

42.1.15. For any i € I, we define a partition H = Utzoﬂi,t by setting
ﬁi,t =g, 1(t). We define a bijection Tig I:I,-,o o I:I,-,t as follows. Let
(h, c) be a representative for an element of fli,o. Then c starts with 0; let
¢’ be the element of N™ which starts with ¢ and has the same subsequent
coordinates as those of c. By definition, m;;(h,c) = (h,c’). One checks
that this map is well-defined. From our earlier discussion, it is clear that the
partitions of H just described, together with the bijections 7; ;, correspond
to the analogous objects for B which are the ingredients in the definition

of the left colored graph.

42.1.16. We can also describe in purely combinatorial terms the left col-
ored graph for not necessarily simply laced Cartan data, by reduction to
the simply laced case, using 14.4.9 and 14.1.6.

422 REMARKS ON THE PIECEWISE LINEAR BIJECTIONS R:' :N® @ N»

42.2.1. Let h,h’ € H. We define a bijection Rl : N* =~ N” as a
composition
(2) RY' = Ruo) Ry B

where h(0), h(1),... ,h(t) is a sequence of vertices of the graph H such that
h(0) = h, h(t) = h’ and such that h(s), h(s + 1) is an edge of the graph
H for s = 0,1,...,t — 1; the factors on the right hand side of (a) are the
bijections defined in 42.1.3. (A sequence as above can always be found, by
2.1.2.) From 42.1.5, it follows that the definition of Rk' is correct, that is,
it does not depend on the choices made. Indeed, 42.1.5 gives us an intrinsic
definition of this bijection: with the notation in 42.1.5, we have Rt' (cy=¢
if and only if 7(Ef) = W(Eﬁ’,) The bijections R:' are piecewise linear, since
they are products of factors which are piecewise linear.

42.2.2. In this section we will show that the bijections R{‘l' also appear in
a completely different context.
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Let K be a field with a given subset Ko C K — {0} containing 1, and
such that the following holds:

(a) if f, f' € Ko, then f + f' € Ko, ff' € Ko, L5 € Ko.

For example, we could take

(b) K=R,Ko =R or

(c) K = R((¢)) where € is an indeterminate and Kj is the subset of K

consisting of power series of the form f = ase® + as+1€°*! + - such that
s > 0 and a, > 0; we then set |f| = s.

42.2.3. We consider a split semisimple algebraic group G over K, corre-
sponding to the root datum, with a fixed maximal unipotent subgroup U+
and a fixed maximal torus 7 normalizing U, both defined over K. For
each i € I, we denote by U;" the simple root subgroup of U+ corresponding
to i; we assume that we are given an isomorphism z; of the additive group
with Ll;“, defined over K. Let B~ be the Borel subgroup opposed to U™*
and containing 7. We shall identify G, ", T,U;", B~ with their groups of
K-rational points. We shall regard z; as an isomorphism of K onto U;'.

Proposition 42.2.4. Letw € W. Let h = (i1,12,...,in) be a sequence in
I such that s;, i, - - - Si,, 15 a reduced expression for w.

(a) The map KF — U given by

(P1,02,- -+, Pn) = Tiy (P1) T3, (P2) - - i, (Pn)

is injective.
(b) The image of the map (a) is a subset Ut (w) of Ut which does not
depend on h.

(c) If w' € W is distinct from w, then U (w) NUT(w') = 0.

Let &% (h) be the image of the map in (a). To prove (b), it suffices,
by 2.1.2, to check the following statement: if h’ is obtained from h by
replacing h consecutive indices 4, j, 1, ... in h by the h indices 3,1, j,... (for
some i # j with h = h(4,j)), then U+ (h) = Ut (k').

To prove this statement, we may clearly assume that I consists of two
elements %, j. In the case where i - j = 0, we have z;(p)z;(p") = z;(p")z:(p)
for any p,p’ € K. Assume now that i - j = —1. We have the following
identity, by a computation in SLj:

z;(t)zj(s)zs(r) = z;(t)zi(s")z;(r")
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where
I — sr ! — /— st
(d)t_t+r’ s=t+r, r'=3%
or equivalently,
1 147
() t=gfm s=t'+r, r=g25.

By the definition of Ky, we have s,t,7 € K if and only if s', ¢, € K.
This proves (b). We prove (c). Let $; be an element of the normalizer of
T in G which represents s; € W. If p € K — {0}, we have z;(p) € Bs;B.
Hence if py,p2,... ,pn are in K — {0}, then

iy (p1)iy (p2) - - - i, (Pn) € B3iy B8, B-++ 8, B C By, 54, -+ 8i, B

n

by properties of the Bruhat decomposition. Thus, U*(w) C B$;,8:, -+ $;, B
so that (c) follows from the Bruhat decomposition.
We prove (a). Assume that

iy (p1)Ti, (P2) - -~ Ti,, (Pn) = T4, (p1) T4, (03) - - - 2, (P,)

where py,...,p, and pi,...,p;, are in Ko. We prove that p; = pj for all |
by induction on n. This assumption implies

iy (1 — PVTi, (P2) -+ @i (Pn) = T4y (03) - -~ Tia (P],)-
If py — p} # 0, the two sides of the last equality are in
1

Bs,—lsiz s ‘é’i"B)Bs‘iz‘éig e 6",' B,

n

by the argument above. This is a contradiction. Thus, we must have
p1 = p}. Then we have

iy (P2) T (Pn) = iy () - -~ T4, (P],)
and the induction hypothesis shows that p; = p, ... ,pn = pl,-

Corollary 42.2.5. The subset Uyewldt(w) of UT is closed under multi-
plication. It coincides with the submonoid (with 1) of Ut generated by the
elements x;(p), for various i € I and p € K.

Let i € I and p € Ky. Let h = (i,42,...,i,) be as in 42.2.4. If
8i8i, 8, +++ 8, is a reduced expression in W, then z;(p)U*(h) C U* (k')
where h' = (¢,%1,142,... ,%,). If 8;8;,8;, - - - 8;, is not a reduced expression in
W, then we have s;,s;, -+ - 8;, = 5;8;,8j, - --8;,_,. for some j1,72,...,Jn-1.
Set h! = (4,j1,j2,--.,Jn-1). Clearly, z;(p)d*(h’) C U*(h’) and, by
42.2.4(b), we have U*(h') =U*(h). It follows that z;(p)UU+(h) C Ut (k).

We have thus proved that the set U,ewl ™ (w) is stable under left mul-
tiplication by elements of the form z;(p) as above. The corollary follows.
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42.2.6. From now on we assume that K, Ky are as in 42.2.2(c). Recall
that we then have a well-defined map f — |f| from K{ to N.

For any h = (iy,%2,...,i,) in H and any ¢ = (c1,...,¢n) € N”, we
define a subset U (h,c) of U™ as follows. By definition, U™ (h, c) consists
of all elements of Y+ which are of the form z;, (p1)zi,(p2) - - - Zi, (Pn) where
P1,P2, - - - , Pn are elements of Ko such that |p1| = ¢1, |p2| = c2, ..., |pn] = ca.
From 42.2.4, we see that we have a partition

(a) Ut (wo) = LUt (h,c).

Proposition 42.2.7. Let h,h’ be elements of H and let c,c’ be elements of
N™ such that RY (c) = ¢/. We have Ut (h,c) = Ut (h',c’). In particular,
the partition 42.2.6(a) of U™ (wo) is independent of h.

We may clearly assume that h, h’ are joined in the graph H. That case
reduces immediately to the case where I consists of two elements 4, j. The
case where i - j = 0 is trivial.

Assume now that i - j = —1. Using the identities (d),(e) in the proof
of 42.2.4, we see that it is enough to verify the following statement. Let
t,g,r,tf,g’,r' € Ko be such that t' = L, s’ =t +7,7' = t—i—‘; Then
|t'| = |s|+|r|—min([t], [r]), |s'| = min(j¢],|r]), |r'| = [t]+]s|-min([¢], [7]).
This is immediate. The proposition is proved.

“42.2.8.” We now see that the set of subsets in the partition 42.2.6(a) of
U (wp) (which is intrinsic, by 42.2.7) is in natural 1 — 1 correspondence
with the set ﬁ, hence also with the canonical basis B. At the same time
we have obtained a new interpretation of the piecewise linear bijections
R}," : N™ 22 N” in terms of the geometry of the group G.
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The braid group action on U has been introduced (with a different normal-
ization) in [5), in the simply laced case, and in [6], for arbitrary Cartan data
of finite type. Another approach (for Cartan data of finite type) to the braid
group action has been found by Soibelman [8]. The general case has not been
treated before in the literature. The fact that the braid group acts naturally
on integrable modules over arbitrary ground rings (see 41.2) is also new.

. The paper(3] of Levendorskii and Soibelman contains several results relating

braid group actions (for finite type) with comultiplication and with the inner
product. In particular, an identity like 37.3.2(a) appears (for finite type) in [3].
Our lemma 38.1.8 is closely related to [3, 2.4.2]; however, neither of these two
results implies the other. Propositions 38.2.3 and 40.2.4 are generalizations of
3, 3.2].

Corollary 40.2.2 and Proposition 41.1.7 appeared in [6] and [2].

Most results in 42.1 appeared in [7]. The results in 42.2 are new; in obtaining
them, I have been stimulated by a question of B. Kostant.
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