CHAPTER 41

Integrality Properties of the Symmetries

41.1 BRAID GROUP ACTION ON U

41.1.1. Let e = *1 and let i € I. The symmetry T}, : U —» U
(resp. Tj’, : U — U) induces for each A\, )" a linear isomorphism
rwUpr — s;(A’)Us.-(z\”) (notation of 23.1.1; s; : X — X is as in 2.2.6).
Taking direct sums, we obtain an algebra automorphism 77, : U — U
(resp. T}, : U — U) such that T] (1x) = 14, (resp. T{.(1x) = 1,,(a) for
all A and T/, (uza'u') = !, (u)T! ()T} o(&')TL, () (resp. T}, (uza's’) =
T/ ()T (z) T} (2") T} (u")) for all u,u' € Uand z,2" € U. Then T].isan

automorphism of the algebra U with inverse T/"_,. These automorphisms

i,—e*

satisfy braid group relations just like those of U.
41.1.2. From the formulas in 37.1.3, we deduce that

| TE(EM1) = (<) VIR )
T (F{M1,) = (=), O ENTDEM

T, (EML) = Y (1) EDEMEP 1, for j # i;
r+s=—(i,j')n
T (FPL) = Y (F)wo  FOFYED 1, for j #1;

r+s=—(i,j')n

Tz,,, e(Ei(n)lz\) — (_l)nvfn("+(i,/\)-l)Fi(n)18i(/\);

T (F{™M1,) = (=1) oGV EM )

T/ (EPL) = Y. ()" EPEMEM,, ) for j #4;
T+e=—(i,j')n

T (FP) = Y () EOFFEO 1, for j #i.
r+s=—(i,j')n

It follows that T}, T;’, restrict to A-algebra automorphisms AU — 4U.

They take 1) to 1,,(y) for any A € X.
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The following result is an integral version of 40.1.3.

Proposition 41.1.3. Let h = (i1,12,...,i,) be a sequence in I such that

8,84y +* + 8i,, 1S a reduced expression for some w € W; lett € Z. Then
(a) T:: T o T:; L(BY) € aU+;
(b) T, Tl e Th,_, o(BY) € AU*.

Let u be the left hand side of (a). Let ¢’ € X; define ( € X by ( =
8i8iz *** Sin_,(¢'). We have ule =T;) T77 - T} | e(Ei(:)lcz). Hence, by
41.1.2, we have ul¢ € 4U. On the other hand, by 40.1.3, we have u € Ut.
Thus, to prove (a), it suffices to prove the following statement: if z € f and
¢ € X satisfy %1, € AU, then z € 4f. This follows immediately from

23.2.2. The proof of (b) is entirely similar.

The following result is an integral version of 40.2.1.

Proposition 41.1.4. Let w € W and let e = 1. Let h = (i,12,... ,ip)
be a sequence in I such that s; s;,---s;, is a reduced expression for w.
Then

“a) the elements E(cl) T e(E('JZ)) T T}, e T _ 1’e(E(c")) (for var-
ious sequences ¢ = (cl,c2,.. ,tn) € N") form an A-basis for an A-
submodule 4U*(w,e) of Ut (w,e) which does not depend on h;

(b) the elements ESVTY (ES) ... T) [ TY - T! _ (EE™) (for var-
ious sequences ¢ = (c1,¢2,...,¢n) € N™) form an A-basis for AU (w,e)
in (a).

(c) Let i € I be such that l(s;w) = l(w) — 1 and let t € Z. Then
E,.(t)AU‘*(w, e) C AU (w,e).

Using the method of 40.2.1, we see that it suffices to prove (a) in the
case where I consists of two elements 7,5 and h(i,j) < oo. In that case,
the result follows from the analysis in [7]. (If i-i = j - j, this can also be
deduced from Lemma 42.1.2.)

41.1.5. With the notations of 41.1.4, let f € 4f be the element corre-
sponding to E(c‘)T1 _l(E(CZ)) T, T, T _ l,_I(Ei(:")) under the
isomorphism f — U given by z — z¥.

Proposition 41.1.6. Let w,n,h,c be as in 41.1.4. Let m : L(f) —
L(f)/v=1L(f) be the canonical projection. We have 6% € L(f) and there is
a unique element b of the canonical basis B such that w(6§) = £m(b).

From 38.2.3, we have (65, 0§) € 1+v~'Z[[v"!]]nQ(v). This implies the
proposition by 14.2.2(a).
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Proposition 41.1.7. Assume that the Cartan datum is of finite type.
Then

(a) AU (wo, ) = 4U™.
This follows from 41.1.4 in the same way as 40.2.2 follows from 40.2.1.

41.1.8. Braid group action on pU. Let R be as in 31.1.1. Let e = %1.
For any i € I, the A-algebra automorphism 77, : 4U — 4U (resp. T,
AU — AU) induces, upon tensoring with R, an R—algebra automorphism

: RU — gU (resp. T” rU — RfJ) These automorphisms satisfy the
brald group relations on RU just like they did over Q(v) (this holds over for
A by reduction to Q(v), since 4U is imbedded in U, and then it holds in
general by change of rings from A to R). Similarly, we have fl",',e_1 T/,

as automorphisms of zU.

41.1.9. Braid group action and the quantum Frobenius homomor-
phism. Let R be as in 35.1.3. In the setup of 35.1.9, the homomorphism
Fr: RU — RU* is compatible with the braid group actions on RU and
rU*. The proof is by checking on generators.

41.2. BRAID GROUP ACTION ON INTEGRABLE rU-MODULES

41.2.1. In the following proposition we assume that the root datum is
Y -regular and we consider A\, € X 7.

Proposition 41.2.2. The symmetries T! ,,T!". of the U-module “A\ @Ay

,e? " 1,e

map the 4U-submodule “Ax ®a (4aAy) into dtself.

Let m € %4Ax ®4 (4Ax). By definition (see 5.2.1), the vector T} ,(m) is
given by a sum of infinitely many terms such that all but a finite number
of terms (depending on m) are zero. The finitely many terms that can be
non-zero are of the form um where u € 4U. They belong to “GAA® A (aAN)
since this is an 4 U-submodule. Thus this submodule is stable under T .-
The same argument shows that it is stable under 7}',. The proposition is
proved.

41.2.3. Let R be as in 31.1.1. Let M be an integrable object in gC. We
define R-linear maps T}, : M — M and T}, : M — M by the formulas in
5.2.1, in which v is regarded as an element of R, by the .A-algebra structure
on R. It is clear that these operators are well-defined.
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Proposition 41.2.4. (a) The operators T}, : M — M satisfy the braid
group relations. The same holds for the operators T}',: M — M.

(b) We have T} ,~' = T}'_, as operators M — M.

i,—e
(c) For any u € rU and any m € M, we have T/ (um) = T] [(w)T] ,(m)
and T}, (um) = Tj (u)T; (m).

N

Using the functor in 31.1.12 in the case where (Y’, X’,...) is the simply
connected root datum of type (I,-), we can reduce the general case to the
case where the root datum is simply connected, hence Y-regular. In that
case, using the characterization of integrable objects given in 31.2.7, we are
reduced to the special case where M = $A\ ®g (rAx) with A, N € X,
Indeed, suppose that M is a sum of grU-submodules M, and that the
proposition holds for each M,. Then it clearly holds for M. Suppose that
M is a quotient of an integrable object M’ such that the proposition holds
for M’; then it clearly holds for M.

In this special case, the proposition follows by change of scalars from
the case R = A which in turn follows from the already known case where
R = Q(v). The proposition is proved.



