Integrality Properties of the Symmetries

41.1 Braid Group Action on U

41.1.1. Let $e = \pm 1$ and let $i \in I$. The symmetry $T'_{i,e} : \mathbf{U} \to \mathbf{U}$ (resp. $T''_{i,e} : \mathbf{U} \to \mathbf{U}$) induces for each λ', λ'' a linear isomorphism $\lambda' \mathbf{U} \lambda'' \to s_{i}(\lambda') \mathbf{U}_{s_{i}(\lambda'')}$ (notation of 23.1.1; $s_{i} : X \to X$ is as in 2.2.6). Taking direct sums, we obtain an algebra automorphism $T'_{i,e} : \dot{\mathbf{U}} \to \dot{\mathbf{U}}$ (resp. $T''_{i,e} : \dot{\mathbf{U}} \to \dot{\mathbf{U}}$) such that $T'_{i,e}(1_{\lambda}) = 1_{s_{i}(\lambda)}$ (resp. $T''_{i,e}(1_{\lambda}) = 1_{s_{i}(\lambda)}$) for all λ and $T'_{i,e}(uxx'u') = T'_{i,e}(u)T'_{i,e}(x)T'_{i,e}(x')T'_{i,e}(u')$ (resp. $T''_{i,e}(uxx'u') = T''_{i,e}(u)T''_{i,e}(x)T''_{i,e}(x')T''_{i,e}(u')$) for all $u, u' \in \mathbf{U}$ and $x, x' \in \dot{\mathbf{U}}$. Then $T'_{i,e}$ is an automorphism of the algebra $\dot{\mathbf{U}}$ with inverse $T''_{i,-e}$. These automorphisms satisfy braid group relations just like those of \mathbf{U} .

41.1.2. From the formulas in 37.1.3, we deduce that

$$T'_{i,e}(E_{i}^{(n)}1_{\lambda}) = (-1)^{n}v_{i}^{-en(n+\langle i,\lambda\rangle+1)}F_{i}^{(n)}1_{s_{i}(\lambda)};$$

$$T'_{i,e}(F_{i}^{(n)}1_{\lambda}) = (-1)^{n}v_{i}^{-en(n-\langle i,\lambda\rangle-1)}E_{i}^{(n)}1_{s_{i}(\lambda)};$$

$$T'_{i,e}(E_{j}^{(n)}1_{\lambda}) = \sum_{r+s=-\langle i,j'\rangle n} (-1)^{r}v_{i}^{er}E_{i}^{(r)}E_{j}^{(n)}E_{i}^{(s)}1_{s_{i}(\lambda)} \text{ for } j \neq i;$$

$$T'_{i,e}(F_{j}^{(n)}1_{\lambda}) = \sum_{r+s=-\langle i,j'\rangle n} (-1)^{r}v_{i}^{-er}F_{i}^{(s)}F_{j}^{(n)}F_{i}^{(r)}1_{s_{i}(\lambda)} \text{ for } j \neq i;$$

$$T''_{i,-e}(E_{i}^{(n)}1_{\lambda}) = (-1)^{n}v_{i}^{en(n+\langle i,\lambda\rangle-1)}F_{i}^{(n)}1_{s_{i}(\lambda)};$$

$$T''_{i,-e}(F_{i}^{(n)}1_{\lambda}) = (-1)^{n}v_{i}^{en(n-\langle i,\lambda\rangle+1)}E_{i}^{(n)}1_{s_{i}(\lambda)};$$

$$T''_{i,-e}(E_{j}^{(n)}1_{\lambda}) = \sum_{r+s=-\langle i,j'\rangle n} (-1)^{r}v_{i}^{er}E_{i}^{(s)}E_{j}^{(n)}E_{i}^{(r)}1_{s_{i}(\lambda)} \text{ for } j \neq i;$$

$$T''_{i,-e}(F_{j}^{(n)}1_{\lambda}) = \sum_{r+s=-\langle i,j'\rangle n} (-1)^{r}v_{i}^{-er}F_{i}^{(r)}F_{j}^{(n)}F_{i}^{(s)}1_{s_{i}(\lambda)} \text{ for } j \neq i.$$

It follows that $T'_{i,e}, T''_{i,e}$ restrict to \mathcal{A} -algebra automorphisms $_{\mathcal{A}}\dot{\mathbf{U}} \to _{\mathcal{A}}\dot{\mathbf{U}}$. They take 1_{λ} to $1_{s_{i}(\lambda)}$ for any $\lambda \in X$.

The following result is an integral version of 40.1.3.

Proposition 41.1.3. Let $\mathbf{h} = (i_1, i_2, \dots, i_n)$ be a sequence in I such that $s_{i_1} s_{i_2} \cdots s_{i_n}$ is a reduced expression for some $w \in W$; let $t \in \mathbf{Z}$. Then

(a)
$$T''_{i_1,e}T''_{i_2,e}\cdots T''_{i_{n-1},e}(E^{(t)}_{i_n}) \in {}_{\mathcal{A}}\mathbf{U}^+;$$

(b)
$$T'_{i_1,e}T'_{i_2,e}\cdots T'_{i_{n-1},e}(E^{(t)}_{i_n}) \in {}_{\mathcal{A}}\mathbf{U}^+.$$

Let u be the left hand side of (a). Let $\zeta' \in X$; define $\zeta \in X$ by $\zeta = s_{i_1}s_{i_2}\cdots s_{i_{n-1}}(\zeta')$. We have $u1_{\zeta} = T_{i_1,e}''T_{i_2,e}''\cdots T_{i_{n-1},e}''(E_{i_n}^{(t)}1_{\zeta'})$. Hence, by 41.1.2, we have $u1_{\zeta} \in \mathcal{A}\dot{\mathbf{U}}$. On the other hand, by 40.1.3, we have $u \in \mathbf{U}^+$. Thus, to prove (a), it suffices to prove the following statement: if $x \in \mathbf{f}$ and $\zeta \in X$ satisfy $x^+1_{\zeta} \in \mathcal{A}\dot{\mathbf{U}}$, then $x \in \mathcal{A}\mathbf{f}$. This follows immediately from 23.2.2. The proof of (b) is entirely similar.

The following result is an integral version of 40.2.1.

Proposition 41.1.4. Let $w \in W$ and let $e = \pm 1$. Let $\mathbf{h} = (i_1, i_2, \dots, i_n)$ be a sequence in I such that $s_{i_1} s_{i_2} \cdots s_{i_n}$ is a reduced expression for w. Then

- (a) the elements $E_{i_1}^{(c_1)}T'_{i_1,e}(E_{i_2}^{(c_2)})\cdots T'_{i_1,e}T'_{i_2,e}\cdots T'_{i_{n-1},e}(E_{i_n}^{(c_n)})$ (for various sequences $\mathbf{c}=(c_1,c_2,\ldots,c_n)\in \mathbf{N}^n$) form an \mathcal{A} -basis for an \mathcal{A} -submodule $_{\mathcal{A}}\mathbf{U}^+(w,e)$ of $\mathbf{U}^+(w,e)$ which does not depend on \mathbf{h} ;
- (b) the elements $E_{i_1}^{(c_1)}T_{i_1,e}''(E_{i_2}^{(c_2)})\cdots T_{i_1,e}''T_{i_2,e}''\cdots T_{i_{n-1},e}''(E_{i_n}^{(c_n)})$ (for various sequences $\mathbf{c}=(c_1,c_2,\ldots,c_n)\in\mathbf{N}^n$) form an \mathcal{A} -basis for $\mathcal{A}\mathbf{U}^+(w,e)$ in (a).
- (c) Let $i \in I$ be such that $l(s_i w) = l(w) 1$ and let $t \in \mathbf{Z}$. Then $E_i^{(t)} {}_{\mathcal{A}} \mathbf{U}^+(w, e) \subset {}_{\mathcal{A}} \mathbf{U}^+(w, e)$.

Using the method of 40.2.1, we see that it suffices to prove (a) in the case where I consists of two elements i, j and $h(i, j) < \infty$. In that case, the result follows from the analysis in [7]. (If $i \cdot i = j \cdot j$, this can also be deduced from Lemma 42.1.2.)

41.1.5. With the notations of 41.1.4, let $\theta_{\mathbf{h}}^{\mathbf{c}} \in \mathcal{A}\mathbf{f}$ be the element corresponding to $E_{i_1}^{(c_1)}T'_{i_1,-1}(E_{i_2}^{(c_2)})\cdots T'_{i_1,-1}T'_{i_2,-1}\cdots T'_{i_{n-1},-1}(E_{i_n}^{(c_n)})$ under the isomorphism $\mathbf{f} \to \mathbf{U}^+$ given by $x \mapsto x^+$.

Proposition 41.1.6. Let w, n, h, c be as in 41.1.4. Let $\pi : \mathcal{L}(\mathbf{f}) \to \mathcal{L}(\mathbf{f})/v^{-1}\mathcal{L}(\mathbf{f})$ be the canonical projection. We have $\theta_{\mathbf{h}}^{\mathbf{c}} \in \mathcal{L}(\mathbf{f})$ and there is a unique element b of the canonical basis \mathbf{B} such that $\pi(\theta_{\mathbf{h}}^{\mathbf{c}}) = \pm \pi(b)$.

From 38.2.3, we have $(\theta_{\mathbf{h}}^{\mathbf{c}}, \theta_{\mathbf{h}}^{\mathbf{c}}) \in 1 + v^{-1}\mathbf{Z}[[v^{-1}]] \cap \mathbf{Q}(v)$. This implies the proposition by 14.2.2(a).

Proposition 41.1.7. Assume that the Cartan datum is of finite type. Then

(a)
$$_{\mathcal{A}}\mathbf{U}^{+}(w_{0},e) = _{\mathcal{A}}\mathbf{U}^{+}.$$

This follows from 41.1.4 in the same way as 40.2.2 follows from 40.2.1.

- **41.1.8.** Braid group action on $_R\dot{\mathbf{U}}$. Let R be as in 31.1.1. Let $e=\pm 1$. For any $i\in I$, the \mathcal{A} -algebra automorphism $T'_{i,e}:_{\mathcal{A}}\dot{\mathbf{U}}\to_{\mathcal{A}}\dot{\mathbf{U}}$ (resp. $T''_{i,e}:_{\mathcal{A}}\dot{\mathbf{U}}\to_{\mathcal{A}}\dot{\mathbf{U}}$) induces, upon tensoring with R, an R-algebra automorphism $T'_{i,e}:_{R}\dot{\mathbf{U}}\to_{R}\dot{\mathbf{U}}$ (resp. $T''_{i,e}:_{R}\dot{\mathbf{U}}\to_{R}\dot{\mathbf{U}}$). These automorphisms satisfy the braid group relations on $_{R}\dot{\mathbf{U}}$ just like they did over $\mathbf{Q}(v)$ (this holds over for \mathcal{A} by reduction to $\mathbf{Q}(v)$, since $_{\mathcal{A}}\dot{\mathbf{U}}$ is imbedded in $\dot{\mathbf{U}}$, and then it holds in general by change of rings from \mathcal{A} to R). Similarly, we have $T'_{i,e}{}^{-1}=T''_{i,-e}$ as automorphisms of $_{R}\dot{\mathbf{U}}$.
- **41.1.9.** Braid group action and the quantum Frobenius homomorphism. Let R be as in 35.1.3. In the setup of 35.1.9, the homomorphism $Fr:_R\dot{\mathbf{U}}\to_R\dot{\mathbf{U}}^*$ is compatible with the braid group actions on $_R\dot{\mathbf{U}}$ and $_R\dot{\mathbf{U}}^*$. The proof is by checking on generators.
- **41.2.** Braid Group Action on Integrable $_R\dot{\mathbf{U}}$ -Modules
- **41.2.1.** In the following proposition we assume that the root datum is Y-regular and we consider $\lambda, \lambda' \in X^+$.

Proposition 41.2.2. The symmetries $T'_{i,e}$, $T''_{i,e}$ of the $\dot{\mathbf{U}}$ -module ${}^{\omega}\Lambda_{\lambda}\otimes\Lambda_{\lambda'}$ map the ${}_{\mathcal{A}}\dot{\mathbf{U}}$ -submodule ${}^{\omega}_{A}\Lambda_{\lambda}\otimes_{A}({}_{\mathcal{A}}\Lambda_{\lambda'})$ into itself.

Let $m \in {}^\omega_{\mathcal{A}} \Lambda_\lambda \otimes_{\mathcal{A}} ({}_{\mathcal{A}} \Lambda_{\lambda'})$. By definition (see 5.2.1), the vector $T'_{i,e}(m)$ is given by a sum of infinitely many terms such that all but a finite number of terms (depending on m) are zero. The finitely many terms that can be non-zero are of the form um where $u \in {}_{\mathcal{A}}\dot{\mathbf{U}}$. They belong to ${}^\omega_{\mathcal{A}} \Lambda_\lambda \otimes_{\mathcal{A}} ({}_{\mathcal{A}} \Lambda_{\lambda'})$ since this is an ${}_{\mathcal{A}}\dot{\mathbf{U}}$ -submodule. Thus this submodule is stable under $T'_{i,e}$. The proposition is proved.

41.2.3. Let R be as in 31.1.1. Let M be an integrable object in ${}_R\mathcal{C}$. We define R-linear maps $T'_{i,e}: M \to M$ and $T''_{i,e}: M \to M$ by the formulas in 5.2.1, in which v is regarded as an element of R, by the \mathcal{A} -algebra structure on R. It is clear that these operators are well-defined.

Proposition 41.2.4. (a) The operators $T'_{i,e}: M \to M$ satisfy the braid group relations. The same holds for the operators $T''_{i,e}: M \to M$.

- (b) We have $T'_{i,e}^{-1} = T''_{i,-e}$ as operators $M \to M$.
- (c) For any $u \in {}_R\dot{\mathbf{U}}$ and any $m \in M$, we have $T'_{i,e}(um) = T'_{i,e}(u)T'_{i,e}(m)$ and $T''_{i,e}(um) = T''_{i,e}(u)T''_{i,e}(m)$.

Using the functor in 31.1.12 in the case where (Y', X', ...) is the simply connected root datum of type (I, \cdot) , we can reduce the general case to the case where the root datum is simply connected, hence Y-regular. In that case, using the characterization of integrable objects given in 31.2.7, we are reduced to the special case where $M = {}^{\omega}_R \Lambda_{\lambda} \otimes_R ({}_R \Lambda_{\lambda'})$ with $\lambda, \lambda' \in X^+$. Indeed, suppose that M is a sum of ${}_R\dot{\mathbf{U}}$ -submodules M_{α} and that the proposition holds for each M_{α} . Then it clearly holds for M. Suppose that M is a quotient of an integrable object M' such that the proposition holds for M'; then it clearly holds for M.

In this special case, the proposition follows by change of scalars from the case R = A which in turn follows from the already known case where $R = \mathbf{Q}(v)$. The proposition is proved.