CHAPTER 36

The Algebras pf, pu

36.1. THE ALGEBRA gf

36.1.1. In this chapter we assume that the Cartan datum is simply laced.
As in the previous chapter, we fix an integer [ > 1. We preserve the assump-
tions of 35.1.1- 35.1.3. Note that in this case, 35.1.2(a) is automatically
satisfied. Note also that in this case, we have [; = and v; = v for all 7.

36.1.2. We define an R-algebra gf as follows. If R = A’, then gf is the
R-subalgebra of gf generated by the elements 9§") for various %, n such that
0 < m < l. In the general case, we define gf = R® 4 (a-f). We have a direct
sum decomposition gf = @, (rf,) indexed by v € N[I]; for R = A, it is
induced by the analogous decomposition of gf and, in general, is obtained
by extension of scalars from the special case R = A'.

From the definitions we see that in the case where R is the quotient
field of A’, grf is the R-subalgebra of grf generated by the elements Hgn) for
various i,n such that 0 < n < [, or equivalently, by the elements 6; for
varigus i (if { > 2) and by 1. (We use the fact that ¢([n]') is non-zero in
this field for 0 < n < l.) It follows that in this case, gf is the same as the
algebra § defined in 35.4.1.

We shall need the following result.
Lemma 36.1.3. Leti,j € I be such that (i,5') # 0. Let m,n € N be such
that m € IN and n < L.

(a) og’")a;.") € 4f is an A'-linear combination of elements u,6'") where
s € [0,m] is divisible by | and us € 4/f.

(b) 0,(")0;-'") € af is an A'-linear combination of elements Ogs)u’s where
s € [0,m] is divisible by | and u), € 4.
We have (i, j') = —1, since the Cartan datum is simply laced. We prove

(a). We may assume that m > 0. Then m > [, hence m > n+1 and 7.1.7

is applicable. Thus we can express 0§m)0§") as an A’-linear combination of

9™ g(s")
i 3 i

terms where 7,8’ € N,7+ s =m,m —n < s < m. For such

a term, we have r < n < [, hence 0,(")05") € af and 01(3’) is either 01("’)
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or, if s’ < m, a power of v times 01(5’—m+1)01(m—1) (see 34.1.2). In the last
expression we have m —l € IZ and 0 < ' —m+ 1 < [; (a) follows. Now (b)
follows from (a) by using the involution o.

Theorem 36.1.4. The R-module gf, is free for any v € N[I].

Lemma 36.1.5. . Assume that the root datum is simply connected. Let
A € Xt be defined by (i,\) = l; — 1 for all i. Let n be the canonical
generator of pAx. The map x — x~ 1 is an isomorphism gf — RA.

It suffices to prove this in the case where R = A’; the general case
follows by change of rings. The fact that this map is injective follows
from Proposition 35.4.4 (over the quotient field). We prove surjectivity.
The argument is similar to the one in the proof of 35.4.2. Note that grf
is spanned as an R-module by products z,z;-- -z, where the factors are
either of the form 92(") with 0 < n < | (factors of the first kind) or of the
form 8™ with m € IN (factors of the second kind).

By Lemma 36.1.3, any product x;z,; with z; (resp. z;41) a factor of the
segond kind (resp. of the first kind) is an A’-linear combination of products
of the form z)z% - - -z _,z] where z},z),...,z,_, are factors of the first

kind and z.. is a factor of the second kind. Applying this fact repeatedly,

we see that 2122 - - - T is a linear combination of analogous words in which

any factor of the first kind appears to the left of any factor of the second
- kind.

Since the R-module rA) is generated by elements ™7 with =z € gf,
we see from the previous argument that gA, is generated by elements
I > ---x,n where z' € gf and z),22,...,z, € grf are factors of the
second kind.

Since (Hgm))‘n = 0, for any m such that m > (i,A) = l; — 1, we have
(0§"‘))—n = 0 for any m € [N such that m # 0. It follows that the R-module
rA, is generated by elements 2’ ~n with z’ € rf. The lemma follows.

36.1.6. Proof of Theorem 36.1.4. We may assume that the root datum
is simply connected. Hence Lemma 36.1.5 is applicable. The isomorphism
in that lemma is compatible with the direct sum decompositions according
to v; it remains to observe that the canonical basis of gA) provides a basis
for the summand corresponding to v.

The following result is an integral version of Theorem 35.4.2(b); here R
is not assumed to be a field.



282 36. The Algebras gf, ru

Theorem 36.1.7. The R-linear map x : grf* ®r (rf) — rf given by
z®y +— Fr'(z)y is an isomorphism of R-modules.

It is enough to prove this in the case where R = A’; the general case
follows by change of rings. The fact that x is surjective has already been
proved in the course of proving Lemma 36.1.5 (actually the products in that
proof are in the opposite order of what we need now, so we must apply o
to them). Next we note that x is a homomorphism between two free A’-
modules (the freeness of rf* and of grf is already known; the freeness of
rf follows from 36.1.4). Hence to prove that x is injective over A’, it is
enough to prove the corresponding statement for the quotient field of A’.
That statement is already known (see 35.4.2(b)). The theorem is proved.

36.1.8. Let pf — gf be the R-algebra homomorphism induced by change
of scalars from the analogous homomorphism for R = A’, which is the
obvious imbedding.

Corollary 36.1.9. The natural algebra homomorphism grf — grf is an
imbedding; its image is the R-subalgebra of rf generated by the elements
95") for various i,n such that 0 <n < .

We shall identify rf with a subalgebra of rf, as above.
36.2. THE ALGEBRAS gl, g

36.2.1. Let pu be the R-subalgebra of U generated by the elements
E'i(n)lc, Fi(")lc for various i, n such that 0 < n < ! and various ( € X. Note
that gi is the free rf ®r (rf°PP)-submodule of gU with basis (1¢) (the
module structure being (z ® z') : u — zTuz’~); the same statement holds
for the module structure (z ® z’) : u — z~uz'*.

Lemma 36.2.2. gpu is closed under comultiplication.

This is easily proved by checking on the algebra generators of git.

36.2.3. In the rest of this chapter we assume that | = !’ is odd. Then
vl = 1. We introduce a certain completion gii of git as follows. Note that
any element pu can be written uniquely as a sum

(a‘) E(,('ex T¢ ¢
where z¢ ¢ € 1¢(ru)1¢ are zero except for finitely many pairs (¢, ().

We now relax the last condition and we consider infinite formal sums (a)
in which the only requirement is that there exists a finite subset F C X
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such that z¢ ¢+ € 1¢(rtt)1¢/ are zero unless { — ¢’ € F. The set of all such
formal sums is denoted by gii. (Note that the set F varies from element to
element of gil.) The R-algebra structure of ril extends in an obvious way
to an R-algebra structure on gi; this algebra has a unit element ZC 1.
Note that that the two gf ®r (rf°PP)-module structures on gu extend in
an obvious way to two rf ®g (rf°P?)-module structures on gii.

For any X*-coset ¢ in X, we define 1. = ZCEC 1. € gu. Let J
(resp. J') be the R-submodule of gil generated by the elements z+1.2'~
(resp. z~1.z't) for various ¢ € X/X* and z,z’ € gf.

Lemma 36.2.4. (a) Fi(b)u C J for any u € J and any i,b such that
0<b<l.
(b) J is an R-subalgebra of gii and J = J'.

To prove (a), we may assume that u = Ei(f‘)---Ei(:”)lcm’ ~ where
ai,...,ap € [0,l — 1],c € X/X* and ' € gf. We argue by induction on p.
If p = 0, the result is trivial. Assume that p > 1. Let z; = 95:2) . -9§:”).
We have

. u=1sE"afa'~
for some ¢ € X/X*. If i # ), the desired result follows immediately.
Assume that i = ¢;. We have

ay +b— (i, - - _
Z Z ¢ ([ ' Y ( C>:|> Ei(al t)lC—(‘11+b—t)i'Fi(b t):l"-l"ml .

CeC t>0it<a;t<b
For each t,( in the sum we have 0 < ¢ < ! and a1 +b— (3,{)= a1 +b— (3, (o)
mod !Z, for some fixed element (o of ¢. We have

([0 ) e )

(see 34.1.2); here we use the hypothesis that [ is odd. Hence we have
Fi(b)u _

Z p ([m + bt— (i,C0>]) E,'(al_t)Fi(b_t)(Z le—ayir)xia’™.

t>0;t<a;;t<b ¢ec’
Note that Zce o l¢—a,ir = 1cv for some ¢” € X/X*. Using now the induc-
tion hypothesis, we see that Fi(b)u € J; (a) is proved. Using repeatedly
(a) and the identities 1c1¢ = 6c o 1c, for ¢,/ € X/X*, we see that J is a
subalgebra of pii. Again, using (a) repeatedly, starting with 1.2'* € J for
c € X/X*,z' € gf, we see that J' C J. By symmetry, we have J C J',
hence J = J’. The lemma is proved.
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36.2.5. Definition. gu is the R-subalgebra J = J' of gii.

Note that the algebra gru has a unit element ) _1.; here c runs through
the set X/X*. The set X/X* is finite, since by the definition of X*, the
map ¢ — (i,¢) mod [ defines an injective map X/X* — (Z/1Z)!.

From the definition, we see that pu is the free gf ® g (rf°P?)-submodule
of rtt with basis {1.|c € X/X*} (the module structure being (z®z’) : u —
ztuz’~); the same statement holds for the module structure (x®z') : u —
z-uz't.



Notes on Part V

1. The results in Chapter 32 are due to to Drinfeld, for R = Q(v). The extension
to the case where R is a field and v is a root of 1 in R is new; it answers a
question that Drinfeld asked me in January 1990.

2. The fact that the simple integrable modules of a Kac-Moody Lie algebra admit
a8 quantum deformation (Chapter 33) was proved in [4]; for Cartan data of
finite type this was also stated in [8], but the proof there has a serious gap.
(It appears [2] that, for Cartan data of finite type, this result was known to
Drinfeld.) The results in 33.2 are new.

3. The results in Chapter 34 have appeared (for ! odd) in [5].

4. The quantum Frobenius homomorphism, for Cartan data of finite type and
with some restrictions on I , was implicit in [5] and explicit in [7]; its general-
ization given in Chapter 35 is new.

5. In the case where R is a field of characteristic zero, v is a root of 1 in R, and
the Cartan datum is of finite type, RU is the finite dimensional Hopf algebra
defined in [6], [7] (with some restrictions on the order of v). The extension to
infinite types is new.
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