S

CHAPTER 35

The Quantum Frobenius Homomorphism

35.1. STATEMENTS OF RESULTS

35.1.1. In this chapter we fix an integer [ > 1. Then the integers [; > 1,
the new Cartan datum (7, o) and the new root datum (Y™*, X*,...) of type
(I,0) are defined in terms of I, (I,-),(Y, X,...) as in 2.2.4, 2.2.5.

35.1.2. The assumptions (a),(b) below will be in force in this chapter.
(a) for any ¢ # j in I such that [; > 2, we have |; > —(¢,5') + 1;
(b) (1,-) is without odd cycles (see 2.1.3).

N(;te that (a) is automatically satisfied in the simply laced case: in that
case, we have [; = [ for all ¢; in the general case, the assumption (a) can
be violated only by finitely many I. Note also that (b) is automatically
satisfied if (I,-) is of finite type.

35.1.3. Let I’ be one of the integers [, 2, if | is odd, and let I’ be equal to
21, if | is even. Let A’ be the quotient of A by the two-sided ideal generated
by the I’-th cyclotomic polynomial fir € A. Thus, (f1, f2, f3,...) = (v —
Lv+1Lv2+v+1,...).

In this chapter, we assume that the given ring homomorphism ¢ : A — R
factors through a ring homomorphism A’ — R, or that R is an .A’-algebra
or, equivalently, that fi(v) =0 in R, where v = ¢(v).

35.1.4. When (I,-) is replaced by (I,0), the element v; € A, whose defi-

oy .. 12
nition depends on the Cartan datum, becomes v} = v*°¥/2 = (A

For any P € A, we denote by P} the element obtained from P by
substituting v by vj. For each ¢ € I, we set v; = ¢(v;) and v} = ¢(v}) =

2
Vi .

Lemma 35.1.5. (a) Leta € L,Z andt € ;N. We have ¢([],) = ¢( ['t'//ll']*)

(equality in R).
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(b) Let a € l;Z and lett € N be non-divisible by l;. We have ¢( [':]1) =0
(equality in R).

It suffices to prove this for R = A’. This is an integral domain in which
vZi = 1and vZ # 1 for all 0 < t < ;. We prove (a). Applying 34.1.2(b) to
v; and !; instead of v and I, we see that ¢( [‘t‘]z) = v,(-aH‘)t (?ﬁ:) Applying

the same result to v} and 1 instead of v and I, we see that ¢( [‘t’ﬁ]*) =
idq
2

via+le/i} (‘://ll‘) It remains to use the equality v} = vi . The proof of (b)
is entirely similar; it uses 34.1.2(a).

35.1.6. Let f* (resp. U*) be the Q(v)-algebra defined like f (resp. like U),
in terms of the Cartan matrix (I, o) (resp. in terms of (Y*, X*,...)). Then
the R-algebras gf, pf*, RU, gU* are well-defined.

We state the main results of this chapter.

Theorem 35.1.7. Recall that R is an A’-algebra. There is a unique R-
algebra homomorphism Fr : pf — gf* such that for alli € I and n € Z,
{ Fr(9§")) equals 05"/1‘) if n € ,Z, and equals 0, otherwise.
Theorem 35.1.8. There is a unique R-algebra homomorphism Fr’'
rE* — pf such that Fr'(6™) = 0™ for alli € I and alln € Z.
Theorem 35.1.9. There is a unique R-algebra homomorphism Fr : gU —
rRU? such that for alli € I,n € Z and { € X, we have:

Fr(Ei(")lc) equals E,-("/l")lc ifn € ,Z and ( € X*, and equals 0, other-
wise;

Fr(Fi(n)lc) equals Fi("/l‘)lc ifn € ,Z and ( € X*, and equals 0, other-
wise.

We give a proof of the last theorem, assuming that theorem 35.1.7 is
known. Using the presentation of the algebra gU in terms of rf given in

31.1.3, and the analogous presentation of the algebra rU* in terms of gf*,
we see that it is enough to prove that the assignment

ztlcz™ — Fr(zt)1 Fr(z7),z " 1czt v Fr(z7)1:Fr(z")
for z,z' € gf, ( € X*,
ztlez™ = 0,27 1czt — 0

for z,2’ € rf, ( € X — X* respects the relations described in 31.1.3. (Here,
Fr is the homomorphism given by Theorem 35.1.7.) This is immediate,
using Lemma 35.1.5.
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35.1.10. Remark. The homomorphism Fr constructed in Theorem
35.1.9 is called the quantum Frobenius homomorphism. It is compatible
with the comultiplication on rU and gU* (proof by verification on the
generators Ef")lc and Fi(n)lc).

35.1.11. The uniqueness part of Theorems 35.1.7 and 35.1.8 is clear. To
prove the existence part of these theorems, we note that the general case
follows by change of scalars from the case where R = A’. Since A’ is an
integral domain, it is contained in its quotient field K and the algebras
a'f, 4f* are naturally imbedded in the corresponding algebras over K.
Thus, if the theorems are known over K then, by restriction, we see that
they hold over A’. We are thus reduced to proving the theorems assuming
that R is the quotient field of A’. The proof in this case will be given in
35.2, 35.5.

35.2 PROOF OF THEOREM 35.1.8

35.2.1. In the rest of this chapter (except in 35.5.2, 35.5.3), we assume that
R js the quotient field of A’. Note that R is a field of characteristic zero and
that the order of v2 = ¢(v?) in the multiplicative group of R is I. Thus, we
have v2 =1 and v? # 1 for all 0 < t < I. By the definition of /;, we have
vZi = 1and v # 1forall 0 < ¢t < l;. In particular, ¢([n]}) is invertible
in R, if 0 < n < [;. For any ¢ we have v} = %1 since v?l‘? = 1; hence, when
dealing with the algebras rf*, glU*, we are in the quasi-classical case (see
33.2).

Lemma 35.2.2. The R-algebra gf is generated by the elements Of") (i€
I) and by the elements 6; for i € I such that l; > 2.

Recall that the R-algebra gf is generated by the elements 05") for various
iand n > 0. Writing n = @ + ;b with 0 € a < [; and b € N, we have
01(") = vgb‘*0§“)9§’*b) (using 34.1.2). On the other hand,

(a) 6/ = ¢([a]}) =262 (see 35.2.1) and
(b) 9(1 b) _ (b')_l l (b~ 1)/2(9(1 ))b
The equality (b) follows from the equalities
(68) = b/ ()6 in £
and
BB/ (1)) = bo(wy ")
(see 34.1.3). The lemma is proved.
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35.2.3. We now give the proof of Theorem 35.1.8. As observed in 35.1.11,
it is enough to prove the existence statement in 35.1.8, assuming that R is
as in 35.2.1.

We will show that there exists an algebra homomorphism grf* — gf
such that 6; — 9?‘) for all i. Since the assumption 35.1.2(b) is in force, the
algebra gf* has a presentation given by the generators 8; and the Serre-

2
type relations; this follows from 33.2.2(c) . Since ¢(([n]')?) = vi""("_l)/ %n!
(see the proof of Lemma 35.2.2), we see that it suffices to prove that, for
any 7 # j, we have the following identity in gf:
' 2p(p—1)/2, 12p' (0 —1)/2 (8L3)P o(15) (68+))?
(a) Ep+pl=l—(‘i,j,)l]‘/l|’(_1)p v; p(p—1)/ v; ?'(p )2 ( ‘p!) 0§ i) ( p’!) =0

Using (Bfl‘))b = b!v:?b(b_])/zggl‘b) (equality in gf, see 34.1.3), we can

rewrite (a) in the following equivalent form:
! A(L; l; Lip
(b) 2p+p'=1—(i,j')t,-/z,-(_1)p 9§ p)9§' 1)01( )= 0.
It remains to prove (b). Let a = —(¢,j’). For any g € [0,!; — 1] we set
ga= 3. (=)roftTim0gglgl) ¢ Lt
r+s=alj+li—q
 This is f; j1;,a1;+1,—¢;—1 in the notation of 7.1.1.

Let g = Zf]:ol(—l)qvf qu“‘q_ng&(q). By the higher order quantum
Serre relations (see 7.1.5(b)), we have g, = 0 for all ¢ € [0,l; — 1];
hence ¢ = 0. On the other hand, setting s’ = s + ¢, we have g =
L cr,310£')0;-l" 16" where

1

li—l ’

Z li—1— lijqg+liqg—q|S
Cr,sr = (_1)T+q'U:( )t 39+hg q[ ] .
i

Er,s{;;r+s'=alj+

q=0 ERE

Taking the image of ¢ = 0 under the obvious map 4f — gf, we obtain
S Bene)80800 =0 in gf.
r,s'ir+s'=alj+l;
For fixed s’, we write s’ = a + I;b where 0 < a < |; — 1. We have
&( [2]1) = v_bql"qﬁ([‘;]i) (see 34.1.2); hence

i

li—-1
Blers) = (=17 v 3 (c1)avil Dbl <[a] )

9=0 a1

= (-1)rvD i(—l)qvg(a—l)q& ([Z])

g=0 '
1 —1b. (i—1)(cd;+1;—1;b
—60,,,(—1)"’1“' z‘bvl(. Hal;+1;—1:b)

=& a(_l)l—b+alj/l,» .
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We have used the identity vi*"™1) = (—1)k+1) see 34.1. 2(e). (b) fol-

lows. Thus, we have an algebra homomorphlsm Fr' : gf* — gf such
that Fr'(8;) = 0,([‘) for all 1.
To complete the proof we must compute Fr’ (GE")) for n > 0. We have

Fr'(0) = ¢((In])3) " Fr'(8:)" = v "7V 2 () =1 (610)m = (™0,
Theorem 35.1.8 is proved.

35.3. STRUCTURE OF CERTAIN HIGHEST WEIGHT MODULES OF gU

Proposition 35.3.1. Assume thati # j in I satisfy l; > —(i,5') + 1. The
following identity holds in gf:

(17 _ . 3
609, = Z V(-G r>¢([ (21:3 )} )Hf’)f’j@i(“")-
i

We set a = —(i,j’). Using Corollary 7.1.7 with m = [;,n = 1, we see
that we are reduced to checking the identity

Li—a—1
i (- 1)1;—T+1+q —(li-r)(a— l+1+q)+q¢ i =T =v’.‘(°‘_r)¢ a
q 1 ¢ T i

q=0

““for any # € [0, a)]. This follows from Lemma 34.1.4.

Proposition 35.3.2. Assume that the root datum is X -regular. Let \ € X
be such that (i,\) € ;Z for alli € I. Let M be a simple highest weight
module with highest weight A in gC and let 1 be a generator of the R-vector
space M.

(a) If ¢ € X satisfies M¢ # 0, then { = A — Y, lin;i’, where n; € N. In
particular, {i,() € ,Z for alli € I.

(b) If i € I is such that l; > 2, then E;, F; act as zero on M.

(c) For any r > 0, let M/ be the subspace of M spanned by the vectors

F(l“)F(“z) . F(l")n for various sequences iy,is,...,%, in I. Let M’ =
Z M. Then M =M.

Clearly, M is spanned by vectors in M¢ where ( is of the form ¢ =
A — Y, lLinid’, with n; € N. Such ( satisfies (i,¢) € [;Z for all i € I. We
use the fact that, for j € I, the integer (¢, j') is divisible by ;.

We show by induction on r > 0, that
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(d) E;M] =0,F;M. =0 for any i € I such that [; > 2.
Assume first that r = 0. Then E; Mg = 0 is obvious. Assume that for
some i € I such that [; > 2, we have x = F;n # 0. For any j € I, we have

Ejz = EjFin = FEjn+ 66 ([(i, i) n = 6i,;0 ([(%1)0] ) 7
Since (i,A) € [;Z, and l; > 2, we have qﬁ([(if‘)]i) = 0; thus, E;z = 0. If
n > 2, then E](-"):z: = EJ(")Fm is an R-linear combination of FiEJ(.")n and of
E'J(-"_l)n, hence is again zero. Thus, E](.")x =0 for all j € I and all n > 0;
since £ € M~ there exists a unique morphism in gC from the Verma
module M) _; into M which takes the canonical generator to z; its image
is a subobject of M containing = but not 1. Since M is simple, we must
have z = 0. Thus (d) holds for r = 0.

Assume now that » > 1 and that (d) holds for r — 1. To show that it
holds for r, it suffices to show that E,-Fj(lj I = O,F,-Fj(lj dm = 0 for any
i, in I such that I; > 2 and any m € M]_,¢. If [; > 2, then EiF]-(lj)m

- is an R-linear combination of F ]-(lj)Eim and of F;"_lm, hence is zero since
E;m = 0, F;m = 0, by the induction hypothesis. If [; = 1, then E;F;m =
FE;m + 6; j¢( [(i’f)]i)m where (i,¢) € 1;Z, hence ¢( [(i’IC)]i) = 0, as above;
since E;m = 0, by the induction hypothesis, we have again E;F;m = 0.

If i # j, then from the identity in 35.3.1, we deduce by interchang-
ing" 4,7 and applying o, that F,-FJ-(I’ )m is an R-linear combination of
Fj(lj_r)FiF}r)m for various r with 0 < r < —(j,%') < l;. For such r we
have F;F\'m = 0. (Indeed, if [; > 2, then F;F;”'m = 0, by the induc-
tion hypothesis; if /; = 1, then r = 0 and FiFj(r)m = Fym = 0, again by
the induction hypothesis.) Thus, we have FiFj(l" dm =0 Ifi = 7, then
F}F}"' ‘m = Fj(l")Fim = 0, by the induction hypothesis. This completes the
inductive proof of (d).

Next we show by induction on r > 0 that

(e) EMIM! c M!_, for any i € I,
where, by convention, M’ , = 0. This is clear for 7 = 0. Assume now that
r > 1. We must show that Ei(l‘)Fj("')m’ € M/_, for any j and any m €
M]_,. Now Ei(l“)Fj(l" )m’ is an R-linear combination of F}(lj ) Ei(l‘)m’ (which
is in M]_, by the induction hypothesis) and of elements Fj(l"_t)E'i(l"—t)m'
with ¢t > 0 such that ¢t <[;,t < I; (which are zero if t < l; orif t =1;,t < I,
by (d), and are in M/ _, if t =1; = ;). Thus, (e) is proved.
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From (d), (e), 35.2.2, and the obvious inclusion Fi(l‘)M; C M/, we
see that 3° M/ is an grU-submodule of M. (It is certainly equal to the
sum of its intersections with the weight spaces of M since it is spanned by
homogeneous elements.) Since M is simple, we must have M = " M.
Thus (c) is proved. Now (b) follows from (d) and (c).

We prove (a). Let ¢ € X be such that M¢ # 0. By (c), we have M’S # 0.
Then, as we have seen at the beginning of the proof, ¢ is of the required
form. The proposition is proved.

Corollary 35.3.3. There is a unique unital RU* -module structure on M
in which the -weight space is the same as that in the gU-module M, for any
( € X* C X, and such that E;, F; € gf* act as El.(l‘),Fi(l‘) € rf. Moreover,
this is a simple highest weight module for gU* with highest weight A € X*.

We define operators e;, f; : M — M fori € I by e; = Egl"),_fi = Fi(l‘).
Using Theorem 35.1.8, we see that the e; satisfy the Serre-type relations of
rf* and that the f; satisfy the Serre-type relations of pf*.

If { € X — X* we have M¢ = 0, by 35.3.2(a). If { € X* and m € M¢,
then, by 31.1.6(c), we have that (e; f; — fje;)(m) is equal to §; ;&( [(iif)]i)m
plus an R-linear combination of elements of the form F}*~*EX~*(m) with
0 < t < I; which are zero by 35.3.2(b). Since (i, () € l;Z, we see from 35.1.5

([571) =+ (["3"])

Therefore, (e; f; — fjei)(m) = 6,-,j¢([(i’cl)/l‘]:)m. It is clear that e;(M¢) C
MSH and fi(MS) ¢ MS4Y,

Thus, we have a unital fU*-module structure on M. By 35.3.2(c), thisis
a highest weight module of g U* with highest weight A. This gU*-module is
simple. Indeed, assume that M” is a non-zero gU*-submodule of M. Then
M" is the sum of its intersections with the various M¢ (with ¢ € X) and is
stable under all Ei(l"), Fi(z") : M — M (in the gU-module structure). Now
M?" is automatically stable under E?, F? (in the rU-module structure) for
any ¢ and a such that 0 < a < [;, since these act as zero on M. Using now
lemma 35.2.2, we see that M” is stable under E™, F™ for any i and any
n € N. Thus, M” is a (non-zero) pU-submodule of M; hence M” = M.
The corollary is proved.

Corollary 35.3.4. Assume, in addition, that the root datum is Y -regular
and that A € X*. Then the simple highest weight module for RU* defined
in Corollary 35.3.8 is grA,.
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Indeed, the module gA, of gU* is simple. By the assumption 35.1.2(b),
we may apply 33.2.4.

35.4. A TENSOR PrRODUCT DECOMPOSITION OF gf

35.4.1. Definition. Let f be the R-subalgebra of grf generated by the
elements 6; for various ¢ such that [; > 2. (Note that without the assump-
tion 35.1.2(a), the definition of § should be more complicated.) We have
f = @uf, where f, = gf, Nf.

Theorem 35.4.2. (a) If ¢ € I and y € f,, the difference 9,([")3/ _

vi_l‘(i’")yﬂgl‘) belongs to §.

(b) The R-linear map x : rf* @r f — rf given by x @ y — Fr'(z)y is
an isomorphism of vector spaces.

We prove (a). If (a) holds for y and y/, then it also holds for yy’. Hence
it suffices to prove (a) when y is one of the algebra generators of f. Thus,
we may assume that y = 0; where j satisfies /; > 2. By our assumption,
we then have l; > —(i,5’) + 1. Therefore, we may use the identity in
Proposition 35.3.1, and we see that 9?")9]- -v; i ,)0j9§l‘) is an R-linear
combination of products 61(7)0]-91(1"_’) with 0 < 7 < —(4,j') < l;; these
products are contained in f, by the definition of f. This proves (a).

We prove (b). We first show that x is surjective. Using Lemma 35.2.2,
we see that gf is spanned as an R-vector space by products z,z3-- -z,
where the factors are either in f, for some v (factors of the first kind) or of
the form 01(1‘) (factors of the second kind).

By (a), any product z,z54+1 with z, (resp. z,41) a factor of the first kind
(resp. of the second kind) is equal to vl'z,1+125 plus an element of f,. for
some 7 and some v'. Applying this fact repeatedly, we see that z,z2-- -z,
is a linear combination of analogous words in which any factor of the second
kind appears to the left of any factor of the first kind. It follows that x is
surjective.

It remains to show that yx is injective. Recall that the elements of B
may be regarded as an R-basis of gpf*. Assume that for each b € B, we are
given an element y; € f such that y, = 0 for all but finitely many b and
such that we have a relation ), Fr'(b)ys = 0 in gf. We must prove that
yp = 0 for all b. We may assume that each y, belongs to f, for some v.
Assume that yp # 0 for some b. Then we may consider the largest integer
N such that there exists b with y, # 0 and tr |b] = N.
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In this proof we shall assume, as we may, that (Y, X,...) is both Y-
regular and X-regular. Let A € X+ and )\’ € X; assume that (i,)\) € [;Z
for all 7 (i.e., that A € X*). We consider the objects M = gLy, M’ = My,
of rC (see 31.3.2, 31.1.13); let 1,1’ be generators of the R-vector spaces
M> M’ Then M' ® M € gC.

In M’ ® M we have ), Fr'(b)"y, ( ® n) = 0. We have y, (/ ® ) =
v”(")yb~ (7’) ® 5, for some integer n(b), since any element of f, with v # 0
annihilates 7 (see 35.3.2(b)). Hence we have

(©) X o™ Fr' ()~ (y; (n') ®n) =0 in M’ ® M.

Let M, = @M™* C M where the sum is taken over all \; € X of the
form A — ", lip;t’ with 3", pi = N. Let m : M — M; be the obvious
projection. We apply 1® 7 : M’ ®@ M — M’ ® M, to the equality (c). We
obtain

(d) 32, vy, (') ® Fr'(b)~(n) = 0
where the sum is taken over b subject to tr |b] = N.

By 35.3.3, we may regard M as a gU*-module; this is a simple highest
weight module of pU* which is just gAy (see 35.3.4). Note also that
F#'(b)~17j in the g U-module structure is the same as b~ in the gU*-module
structure.

We shall assume, as we may, that (i, A) are not only divisible by [;, but
are also large for all 2, so that the vectors b—n € M are linearly independent
when b is subject to tr |b] = N (a finite set of b’s). Here we use that
"“M = gA, as a gU*-module. Then from (d) we deduce that y, (n') = 0,
hence y, = 0 for all b such that tr |b| = N. (We use the fact that M’ is a
Verma module.) This is a contradiction. The theorem is proved.

35.4.3. We assume that the root datum is simply connected. Then there
is a unique A € X% such that (i, \) = ; — 1 for all i. Let 7 be the canonical
generator of gAj.

Proposition 35.4.4. The map x — z~7n is an R-linear isomorphism f —
rAL.

Let J = Ei,n>l¢(Rf01(n))' It suffices to show that J @ § = rf. An
equivalent statement is that o(J) @ f = gf since § is o-stable. We have
o(J) = 2> 0§")Rf. If i,n are such that n > [;, then we can write
n=a-+ l,'b‘ with 0 < a < I; and b > 1 and we use the formulas in the
proof of Lemma 35.2.2. We see that 95") C 051‘)31‘. It follows that o(J) =
> 9§[‘) rf. The fact that >, 051") rf and f are complementary subspaces of
rf follows easily from Theorem 35.4.2(b). The proposition follows.
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35.5. PROOF OF THEOREM 35.1.7

35.5.1. As we have seen in 35.1.11, we only have to prove existence in
35.1.7, assuming that R is as in 35.2.1.

By Theorem 35.4.2, there exists a unique R-linear map P : gf — gf*
such that P(Hg"‘) - -0&‘")9,-1 -+-8;,)isequal to 6;, ---6;, if r =0 and to 0
if r > 0. (Here 4,,...,1, is any sequence in I and ji,...,Jr is any sequence
in I such that {;, >2,...,l; >2.)

We show that P is an algebra homomorphism. It suffices to show that
(a) P(z0;) = P(z)P(6;) for any = € rf and any 7 such that I; > 2 and
(b) P(xegl")) = P(z)P(0§l")) for any z € gf and any 1.

(a) is obvious. We prove (b) for z = 051“) e oﬁ‘"’ojl -+ -6, by induction
on r > 0. The case where r = 0 is trivial. Assume that r > 1. We have
z = z'0; where j = j, and 2’ = 02") e oﬁ‘"’o]-l @,

If 7 # j then, using the identity in 35.3.1 (after applying o to it), we see
that z’ 0,-01("') is equal to a multiple of =’ 95"')9,- plus a linear combination of
- terms of the form 266,60 where 0 < r < ;.

By (a) and the induction hypothesis, we have

P(z'6{0;) = P(a'6{"")P(6;) = 0

and *
P(«'6{76;6%"7) = P(z'9"0;)P(6“ ") = 0.

It follows that P(m’HjB?‘)) =0. If i = 7, then x’9j0,(l‘) = x’ezf")o,- and the
same proof as the one above shows that P(:v’0j0§l‘)) = 0. On the other
hand, we have from the definition P(z) = P(z'6;) = 0. Hence (b) holds in
this case; both sides are zero.

To complete the proof we must compute P(Bg")) for n > 0. Writing
n=a+1bwith0<a<landbe N, we have 8™ = v3¥:g{®g{®) a5 in
Lemma 35.2.2, hence P(6{™) = v@% P(6{)P({"*?)). This is zero if a > 0,
i.e., if n is not divisible by ;. If a = 0, then

P(6(™) = P(O{*) = (o) v *C D2 a0y
= (b))~} (v} /20 = 6.

The theorem is proved.
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35.5.2. We now discuss to what extent the assumptions 35.1.2(a),(b) are
necessary. Theorem 35.1.8 depends only on the assumption 35.1.2(b). This
assumption can be replaced by the assumption that ! is odd; then essentially
the same proof will work (using the results in 33.1, instead of those in 33.2).
If the Cartan datum is of finite type, then as pointed out in 35.1.2, the
assumption 35.1.2(b) is automatically satisfied; hence 35.1.8 holds in this
case.

We now discuss Theorem 35.1.7. Here we may again substitute the as-
sumption 35.1.2(b) by the assumption that [ is odd. If the Cartan datum is
irreducible, of finite type, 35.1.2(b) is automatically satisfied, but 35.1.2(a)
can fail; more precisely, if 35.1.2(a) is not satisfied, then we may assume
that

(a) we have (i,j') = —2 for some i,j € I and [ = 2 or

(b) we have I = {i,j} with (i,5') = -3, (j,i) = ~1 and l =2 or 3.

In case (a), the algebra gf is known in terms of explicit generators and

relations (see [6]) and the statement of 35.1.7 can be verified by checking
that these relations are satisfied in pf*.
' “In case (b), the explicit presentation of the algebra gf is not known for
general [; however, for small ! (for example | = 2 or 3), it is possible to
again write generators and relations, using the formulas in [6], and with
their help to verify 35.1.7. We omit further details.

We see that 35.1.8, 35.1.7 (hence also 35.1.9) hold unconditionally in the

“case where the Cartan datum is of finite type. It is likely that they hold
without any restriction whatsoever.

35.5.3. Frobenius homomorphism in the classical case. We now
assume that [ is a prime number and that the A-algebra R is such that
v=1and ! =0 in R. (For example, R could be the finite field with [
elements.) Let I’ =l if l is odd and let I’ = 4 if [ = 2. Then the value of the
I’-th cyclotomic polynomial at v = 1 is divisible by /; hence if we define A’
as in 35.1.3 (with the present choice of I), we have that R is an A’-algebra.
Hence Theorems 35.1.7, 35.1.8, 35.1.9 hold in this case. (For Cartan data
of finite type, the assumptions in 35.1.2 are not needed; for infinite types,
35.1.2(a) is needed, and 35.1.2(b) is needed only if | = 2.) For Cartan data
of finite type, we thus obtain the transpose of the classical Frobenius map
or of an exceptional isogeny in the sense of Chevalley.



