Gaussian Binomial Coefficients at Roots of 1

34.1.1. Let l be an integer ≥ 1 . In this chapter we assume that the \mathcal{A} -algebra R, with $\phi: \mathcal{A} \to R$ and with $\mathbf{v} = \phi(v)$, is such that R is an integral domain and the following hold

$$\mathbf{v}^{2l} = 1$$
 and $\mathbf{v}^{2t} \neq 1$ for all $0 < t < l$.

All the identities proved in 1.3 for Gaussian binomial coefficients imply, after applying ϕ , corresponding identities in R. However, certain identities will be satisfied only in R. We shall now give some examples of such identities.

Lemma 34.1.2. (a) If $t \ge 1$ is not divisible by l, and $a \in \mathbb{Z}$ is divisible by l, then $\phi(\begin{bmatrix} a \\ t \end{bmatrix}) = 0$.

(b) If $a_1 \in \mathbf{Z}$ and $t_1 \in \mathbf{N}$, then we have

$$\phi\left(\begin{bmatrix} la_1\\lt_1\end{bmatrix}\right) = \mathbf{v}^{l^2(a_1+1)t_1} \binom{a_1}{t_1}.$$

(c) Let $a \in \mathbf{Z}$ and $t \in \mathbf{N}$. Write $a = a_0 + la_1$ with $a_0, a_1 \in \mathbf{Z}$ such that $0 \le a_0 \le l-1$ and $t = t_0 + lt_1$ with $t_0, t_1 \in \mathbf{N}$ such that $0 \le t_0 \le l-1$. We have

$$\phi\left(\begin{bmatrix} a\\t\end{bmatrix}\right)=\mathbf{v}^{(a_0t_1-a_1t_0)l+(a_1+1)t_1l^2}\phi\left(\begin{bmatrix} a_0\\t_0\end{bmatrix}\right)\binom{a_1}{t_1}.$$

Here $\binom{a_1}{t_1} \in \mathbf{Z}$ is an ordinary binomial coefficient. We prove (a) for $a \geq 0$ by induction on a. If a = 0, we have trivially $\begin{bmatrix} a \\ t \end{bmatrix} = 0$; if a = l, the equality $\phi(\begin{bmatrix} a \\ t \end{bmatrix}) = 0$ follows directly from the definitions.

Assume now that $a \ge 2l$ and that (a) holds for a - l instead of a. By 1.3.1(e), we have

$$\phi\left(\begin{bmatrix} a \\ t \end{bmatrix}\right) = \sum_{t'+t''=t} \mathbf{v}^{(al-l)t''-lt'} \phi\left(\begin{bmatrix} al-l \\ t' \end{bmatrix}\right) \phi\left(\begin{bmatrix} l \\ t'' \end{bmatrix}\right).$$

For each term in the sum, we have that either t' or t'' is not divisible by l; hence the sum is zero by the induction hypothesis. This proves (a) for $a \geq 0$. We now prove (a), assuming that a < 0. Write $t = t_0 + lt_1$ with $0 < t_0 < l$. We have

$$\phi\left(\begin{bmatrix} a \\ t \end{bmatrix}\right) = (-1)^t \phi\left(\begin{bmatrix} -a+t-1 \\ t \end{bmatrix}\right)$$

$$= \sum_{t'+t''=t} \mathbf{v}^{(-a+lt_1)t''-(t_0-1)t'} \phi\left(\begin{bmatrix} -a+lt_1 \\ t' \end{bmatrix}\right) \phi\left(\begin{bmatrix} t_0-1 \\ t'' \end{bmatrix}\right).$$

Consider a term in the sum corresponding to (t',t''). Since $-a+lt_1 \geq 0$ is divisible by l, we see from the earlier part of the proof that $\phi({\begin{bmatrix} -a+lt_1 \\ t'\end{bmatrix}})=0$ unless t' is divisible by l. But then t'' is congruent to t modulo l. Hence t'' is congruent to t_0 modulo l. It follows that $t'' \geq t_0$, hence ${\begin{bmatrix} t_0-1 \\ t'' \end{bmatrix}}=0$. Hence our sum is zero and (a) is proved.

We prove (c), assuming (b). In the setup of (c) we have

$$\phi\left(\begin{bmatrix} a \\ t \end{bmatrix}\right) = \sum_{t'+t''=t} \mathbf{v}^{a_0t''-la_1t'} \phi\left(\begin{bmatrix} a_0 \\ t' \end{bmatrix}\right) \phi\left(\begin{bmatrix} la_1 \\ t'' \end{bmatrix}\right).$$

By (a), the sum may be restricted to indices such that $t'' = lt''_1$ for some $t''_1 \in \mathbb{N}$ and such that $t' \leq a_0$. Then t' is congruent to t modulo l, hence t' is congruent to t_0 modulo l. Since both t', t_0 are in [0, l-1], we must have $t' = t_0$ and therefore $t'' = lt_1$. Thus,

(d)
$$\phi\left(\begin{bmatrix} a \\ t \end{bmatrix}\right) = \mathbf{v}^{la_0t_1 - la_1t_0}\phi\left(\begin{bmatrix} a_0 \\ t_0 \end{bmatrix}\right)\phi\left(\begin{bmatrix} la_1 \\ lt_1 \end{bmatrix}\right).$$

This shows that (c) is a consequence of (b).

We prove (b) for $a_1 \ge 0$ by induction on a_1 . The case where $a_1 = 0$ or 1 is trivial. Assume now that $a_1 > 0$. By 1.3.1(e), we have

$$\phi\left(\begin{bmatrix}la_1\\lt_1\end{bmatrix}\right) = \sum_{t'+t''=lt_1} \mathbf{v}^{l(a_1-1)t''-lt'} \phi\left(\begin{bmatrix}la_1-l\\t'\end{bmatrix}\right) \phi\left(\begin{bmatrix}l\\t''\end{bmatrix}\right).$$

By (a), we may assume that the sum is restricted to indices divisible by l, namely $t' = lt'_1, t'' = lt''_1$ with $t'_1 + t'_2 = t_1$. Using the induction hypothesis, we get

$$\phi\left(\begin{bmatrix} la_1\\ lt_1 \end{bmatrix}\right) = \sum_{t_1' + t_1'' = t_1} \mathbf{v}^{l^2(a_1t_1 - t_1' + t_1'')} \binom{a_1 - 1}{t_1'} \binom{a_1 - 1}{t_1''} = \mathbf{v}^{l^2(a_1 + 1)t_1} \binom{a_1}{t_1}.$$

We have used the identity 1.3.1(e), specialized for v = 1. This proves (b) for $a_1 \ge 0$.

We now prove (b) assuming that $a_1 < 0$. We have

$$\begin{split} \phi\left(\begin{bmatrix} la_{1} \\ lt_{1} \end{bmatrix}\right) &= (-1)^{lt_{1}} \phi\left(\begin{bmatrix} -la_{1} + lt_{1} - 1 \\ lt_{1} \end{bmatrix}\right) \\ &= (-1)^{lt_{1}} \phi\left(\begin{bmatrix} (l-1) + l(-a_{1} + t_{1} - 1) \\ lt_{1} \end{bmatrix}\right) \\ &= (-1)^{lt_{1}} \mathbf{v}^{l(l-1)t_{1}} \phi\left(\begin{bmatrix} l(-a_{1} + t_{1} - 1) \\ lt_{1} \end{bmatrix}\right). \end{split}$$

The last equality follows from (d). By the part of (b) that is already proved, we have

$$\phi\left(\begin{bmatrix} l(-a_1+t_1-1)\\ lt_1 \end{bmatrix}\right) = \mathbf{v}^{l^2(-a_1+t_1)t_1} \begin{pmatrix} -a_1+t_1-1\\ t_1 \end{pmatrix}$$
$$= \mathbf{v}^{l^2(-a_1+t_1)t_1} (-1)^{t_1} \begin{pmatrix} a_1\\ t_1 \end{pmatrix}.$$

It follows that

$$\phi\left(\begin{bmatrix} la_1\\lt_1\end{bmatrix}\right) = (-1)^{lt_1+t_1}\mathbf{v}^{l(l-1)t_1+l^2(-a_1+t_1)t_1}\begin{pmatrix} a_1\\t_1\end{pmatrix}$$
$$= (-1)^{(l+1)t_1}\mathbf{v}^{lt_1+l^2t_1}\mathbf{v}^{l^2(a_1+1)t_1}\begin{pmatrix} a_1\\t_1\end{pmatrix}.$$

It remains to observe that

(e)
$$\mathbf{v}^{l^2+l} = (-1)^{l+1}$$
.

Indeed, if l is even, we have $\mathbf{v}^l = -1$ and both sides of (e) are -1; if l is odd, then $\mathbf{v}^l = \pm 1$ and both sides of (e) are 1. The lemma is proved.

34.1.3. Let $p \ge 0$. We have

(a)
$$\phi([lp]!/([l]!)^p) = p! \mathbf{v}^{l^2 p(p-1)/2}$$
.

We prove (a) by induction on p. If p = 0 or 1, then (a) is trivial. Assume that $p \ge 2$. We have

$$\phi([lp]!/([l]!)^p) = \phi([l(p-1)]!/([l]!)^{p-1})\phi\left(\begin{bmatrix} lp\\l \end{bmatrix}\right).$$

Using 34.1.2 and the induction hypothesis, we see that

$$\phi([lp]!/([l]!)^p) = (p-1)!p\mathbf{v}^{l^2(p-1)(p-2)/2+l^2(p+1)} = p!\mathbf{v}^{l^2p(p-1)}.$$

This proves (a).

Lemma 34.1.4. Assume that $0 \le r \le a < l$. We have

(a)
$$\sum_{q=0}^{l-a-1} (-1)^{l-r+1+q} \mathbf{v}^{-(l-r)(a-l+1+q)+q} \phi(\begin{bmatrix} l-r \\ q \end{bmatrix}) = \mathbf{v}^{l(a-r)} \phi(\begin{bmatrix} a \\ r \end{bmatrix}).$$

In the left hand side of (a) we may replace \mathbf{v}^{l^2-l} by $(-1)^{l+1}$. Note also that l-r > 1; hence

$$\sum_{q=0}^{l-r} (-1)^q v^{q(1-l+r)} {l-r \brack q} = 0$$

(see 1.3.4). Hence the left hand side of (a) equals

$$(-1)^{r+1} \mathbf{v}^{r(a+1-l)-la} \sum_{q=l-a}^{l-r} (-1)^{q} \mathbf{v}^{q(1-l+r)} \phi \left(\begin{bmatrix} l-r \\ q \end{bmatrix} \right)$$

$$= (-1)^{r+1} \mathbf{v}^{r(a+1-l)-la} \sum_{q'=0}^{a-r} (-1)^{l-r-q'} \mathbf{v}^{(l-r-q')(1-l+r)} \phi \left(\begin{bmatrix} l-r \\ q' \end{bmatrix} \right).$$

For any q' in the last sum, we have by 34.1.2(c), $\phi(\begin{bmatrix} l-r \\ q' \end{bmatrix}) = \mathbf{v}^{lq'}\phi(\begin{bmatrix} -r \\ q' \end{bmatrix})$. Thus the left hand side of (a) is

$$(-1)^{a+l-r+1}\mathbf{v}^{r(a+1-l)-la}\sum_{q'=0}^{a-r}(-1)^{a-r-q'}\mathbf{v}^{lq'+(l-r-q')(1-l+r)}\phi\left(\begin{bmatrix} -r\\q'\end{bmatrix}\right)$$

$$=(-1)^{a+l-r+1}\mathbf{v}^{l-(l-r)l-la}\sum_{q'=0}^{a-r}\mathbf{v}^{-q'+r(a-r-q')}\phi\left(\begin{bmatrix} -1\\a-r-q'\end{bmatrix}\right)\phi\left(\begin{bmatrix} -r\\q'\end{bmatrix}\right)$$

$$=(-1)^{a+l-r+1}\mathbf{v}^{l-(l-r)l-la}\phi\left(\begin{bmatrix} -r-1\\a-r\end{bmatrix}\right)$$

$$=(-1)^{l+1}\mathbf{v}^{l-(l-r)l-la}\phi\left(\begin{bmatrix} a\\a-r\end{bmatrix}\right)=\mathbf{v}^{l(a-r)}\phi\left(\begin{bmatrix} a\\r\end{bmatrix}\right).$$

We have used $\mathbf{v}^l = \mathbf{v}^{-l}$. The lemma is proved.