CHAPTER 33

Relation with Kac-Moody Lie Algebras

33.1. THE SPECIALIZATION v =1

33.1.1. Let g’f be the free associative algebra over R with generators
6; (i € I). As for 'f, which corresponds to the case R = Q(v), we have a
natural direct sum decomposition g'f = @, (r’f,) where v runs over N[I];
each 'f, is a free R-module of finite rank.

Let grf be the quotient of the algebra g’f by the two-sided ideal of g’f
generated by the elements

D N i L4

p+p'=1-(i,j')

for various 7 # j in I. Recall that ¢ : A — R is given.

Let rf, be the image of g'f, under the natural map r’f — gf. It is
clear that we have a direct sum decomposition Rf = @, Rf,,). From the
definition, we have, for any v, an exact sequence of R-modules

@u’,u";i#j(R,fu') ®Rr (R,fu”) i R,fu — Rfu —0

where the indices satisfy v/, v” € N[I] and '+ 0" +(1—(¢,5'))i+7 = v; the
first map has components z,z’ — z®; jz’. If we take this exact sequence
for R = Q[v,v™!] and we tensor it over Q[v,v™!] with Q(v) or with Ry (a
field of characteristic zero, regarded as an .A-algebra or Q[v, v~!]-algebra
via v — 1), we obtain again exact sequences, by the right exactness of
tensor product. We deduce that

RO?V =Ro® (Q[v,v-l]fu)
and i )
Qi = Q(v) ® (qp,»-1f)-

Since Q[,,’,,_llf’,, is a finitely generated Q[v,v~!]-module and Q(v) is the
quotient field of Q[v,v~!], we deduce that

(a) dimQ(v)(Q(u)f‘u) < dlmRo (Ro?u)
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By 1.4.3, there is a unique (surjective) algebra homomorphism Q(v)f' —
f which takes 6; to 6; for all ¢ (and preserves 1). It is clear that this
homomorphism maps g»)f, onto f,, hence

(b) dimgy) £, < dimq(,,)(q(,,)f,,) for any v € N[I].

Note that g,f is the Ro-algebra defined by the generators 8; (i € I)
and the Serre relations

SO (-1 (er/p)e;eF fp') =0

p+p'=1-(i,j’)

for various i # j in I. Thus it is the enveloping algebra of (the upper
triangular part of) the corresponding Kac-Moody Lie algebra over Rp.

33.1.2. Assume now that the root datum is Y-regular and X-regular. Let
A€ Xt and let M = g Ay € g,C’. The linear maps E;, F; : M — M
satisfy in our case:

(a) E;M¢ ¢ M+ F;MS¢ < M~ for any i € I and ¢ € X;

(b) (E;F; — F;E;)m = 6;,;(i,{)m for any ¢,j €  and m € M¢;

(©) Xpaprmi—ijn(—1)P (EF/P)E;(EF [p') =0: M — M for any i # j
in I;

(d) Zpﬂ,:l_(i’j,)(—l)pl(F‘ip/p!)Fj (FP/p')=0:M — M for any i # j
in 1.
" This shows that M is an integrable highest weight module of the Kac-
Moody Lie algebra attached to the root datum. By results in [3], namely,
the complete reducibility theorem of Weyl-Kac and the Gabber-Kac theo-
rem, M is simple as a module of that Lie algebra and the Rp-linear map

rof/ Y R FOSN o M
i
given by
0,0i, -+ -0, — Fy Fyy - Fy s

is an isomorphism. It follows that
(e) roAn is a simple object of g,C and
(f) for given v € N[I], we have

dimpg, (Rofu) = dimRo(RoAlA\_y)

provided that (i, A) are large enough for all <.
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From the definition of Ay and g,A,, it is clear that
(g) dimp, (RoAi_") = dimgg) A:\\_" for any A, v and

(h) for given v € N[I], we have dimq(,)(f,) = dimq,) Ay~ provided
that (i, A) are large enough for all .
From (f),(g),(h) we deduce that

dimQ(v) (f,,) = dimRo (Roi:u)

for all v. Combining this with the inequalities 33.1.1(a),(b), we see that
those inequalities are in fact equalities. In particular, the natural surjective
homomorphism Q(v)f' — f must be an isomorphism. Similarly, the natural
surjective homomorphism g,f — g,f is an isomorphism since

dimp, (rof,) > dimp,(f,) = dimqq,)(f,) = dimpg, (r,f.)

for all v.
Thus we have the following result.

Theorem 33.1.3. (a) The natural algebra homomorphism Q(,,)f' — f is
an isomorphism.
(b) We have dimq(y) f, = dimp, (g, f,) for any v.
(c) The natural algebra homomorphism r,f — g, f is an isomorphism.
{d) If A € X, then the dimension of the weight spaces of Ax are the

same as those of the simple integrable highest weight representation of the
corresponding Kac-Moody Lie algebra.

33.1.4. Remark. Parts (a), (b) and (c) of the theorem hold for arbitrary
root data, since only the Cartan datum is used in their statement.

Corollary 33.1.5. The algebra U can be defined by the generators E; (i €
I, F, (t€l), K, (p€Y) and the relations 3.1.1(a)-(d), together
with the quantum Serre relations for the E;’s and for the F;’s.

33.2. THE QUASI-CLASSICAL CASE

33.2.1. In this section we assume that the A-algebra R is a field of char-
acteristic zero and ¢(v;) = £1 in R for all i € I. We then say that we are
in the quasi-classical case; this is justified by the results in this section. We
also assume that (I, -) is without odd cycles (see 2.1.3). Then, by 2.1.3, we
can find a function
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(a) i — a; from I to {0, 1} such that a; + a; = 1 whenever (i, ') < 0.

Let Rp be the ring R with a new A4-algebra structure in which v € A is
mapped to 1 € R. We want to relate the algebras rf and Rof' . We cannot do
this directly, but must enlarge them first as follows. Let A be the R-algebra
defined by the generators 6;, K; (i € I) subject to the following relations:
the ; satisfy the relations of rf, the K; commute among themselves and
I?,'Oj = ¢(’U¢)<i’j’)9jki, for all 3,5 € I. _

Let Ap be the R-algebra defined by the generators ;, K; (¢ € I} sub-
ject to the following relations: the 8; satisfy the relations of Rof' , the K;
commute among themselves and f{,ﬂj = ¢(v,-)<i'j')0jl~(i, for all 4,7 € I.

It is clear that, as an R-vector space, A (resp. Ap) is the tensor product
of gf (resp. g,f) with the group algebra of Z! over R, with basis given by
the monomials in K;.
Proposition 33.2.2. (a) The assignment E; — E] = Eil?f‘ and K; — K;
for all i, defines an isomorphism of R-algebras Ag — A.

(b) dimg(rf,) = dimg(g,f,) for all v.

:gc) The natural algebra homomorphism rf — &f is an isomorphism.

Let 7,7 € I be distinct. A simple computation shows that we have in A:
EE; EIP = ¢(v,) P04, )63 pastr' ) P B B f(i(P+P')a»' f{;:
_ The facter B(vi)*@+PIE+P'=1) 5 1 since ¢(v;) = +1 and the exponent is
even. By the definition of a;, we have

B(v;) (B3N Paitp'as) — 4y )BTV PP gy ) (TP

and this equals ¢(v;){3? if p + p’ = 1 — (i,5'). Note also that ¢([n]}) =
B (v;)™=1/2p), since ¢(v;) = £1. Hence, if p+p’ =1 — (i, '), then

$([p)([P'];) = plvs) PP~ D+ =10 2pi0

= ¢(vi)(p+p')(p+p'—1)/2¢(vi)—pp’ ¢(v;)PA—Pplp't
= ¢(v;)PHPIPHE =1)/2 40, VT WP 1)

It follows that

Z (—1)”/(E{”/p!)E;-(E{pl/p'!) - ¢(Ui)(i,j’)(1—(i,j'))/2
p+p'=1-(i,j’)
S VP ES /() E (B () R R.

p+p'=1-{i,j’)
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This shows that the assignment in (a) preserves relations, hence defines
an algebra homomorphism Ay — A. The same proof shows that the as-
signment E; +— Eiki_“‘ and K; — I?,- defines an algebra homomorphism
A — Ay; it is clear that this is the inverse of the previous homomorphism.
This proves (a).

For any v, the isomorphism in (a) maps the subspace Rof isomorphically
onto the subspace ( rE, )K where K is a monomial in the K; depending only
on v. This proves (b).

The homomorphism in (c) maps gf, onto gf, for any v. Using (b), it
follows that this restriction gf, — gf, is an isomorphism. This implies (c).
The proposition is proved.

The next result compares the algebras g, U and U.

Proposition 33.2.3. There is a unique isomorphism of R-algebras f :
roU — RU such that

F(Bil) = ¢(v)* OB, f(File) = ¢(vi) 7o EOH R, (1) = 1¢

forallie€ I, € X. Here a; is as in 33.2.1(a).

To construct f, we take advantage of the fact that for the algebra ROU,
we know a simple presentation by generators and relations, while for gU
we do not. It will be easier to first construct a functor from gC to g,C and
theh to show that it comes from an algebra homomorphism.

Let M be an object of rC. The linear maps E;, F; : M - M (i € I)
satisfy

(a) E;M> ¢ MY F;M*» ¢ M*¥ for any i € I and A € X;

(b) (E:;Fj — F;E))m = 6; ;¢(v:)»V~1(i, \ym for any 4,5 € I and m €
M'\'

(€) Xpprmr iy (1) $(vi)P 1) (EL [p) B (EY /p')) = 0: M — M for
any ¢ # j in I;

() St a7y (~ 17 G(02)P 7 (FP fp) F5 (FF [pY) = 0: M — M for
any ¢ # j in I.

For any a € Z, we define linear maps P;, : M — M by P, ,(m) =
¢(v;)*“m for m € M>. We define linear maps E!, F! : M — M in terms
of the function 33.2.1(a) by E; = E; P, ,,, F! = ¢(v;)F;Pi1_4,. As in the
proof of the previous proposition, we can check that:

(al) EIM> ¢ MMY, F!M> c M*~¥ forany i€ I and A € X;

(b1) (E{F; — F{E;)m = §; ;(i, \)m for any i,j € I and m € M?>;
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(c1) Zpﬂ’,:l_(i’j,)(—l)p'(E,fP/p!)E;(E{”'/p’!) =0: M — M for any
i#jin I;

(d1) 3,41 n (VP (FIP/P)F}(F/ [p'l) = 0 : M — M for any
i1# jin I. Since g, f = Rof' (see 33.1.3) has the presentation given by the
Serre relations, it follows that M with its weight space decomposition and
with the linear maps Ej, F] is an object of g,C.

Thus, we have defined a functor I" : gC — g,C. This functor has the
following obvious property: it associates to M an object I'(M) with the
same underlying R-module as M and any endomorphism of M in gC is at
the same time an endomorphism of I'(M) in g,C. Applying the functor I to
rU, regarded as a left module over itself, we obtain a structure of a unital
left ROU-module on rU. Thus, we have an R-bilinear pairing R{,U x gU —
rU, denoted by a,b — a  b; this has the properties (aa’) * b = a * (a’ * b)
and (a * b)b’ = a * (bb’). The last property holds since right multiplication
by b is an endomorphism of gU in gC, hence also in Rro,C. We define a map
f:r,U— rUby f(a) = > cex a*1¢; only finitely many terms in the sum
are non-zero. We have

' ’f(a)f(a') = Z(a *1¢)(a’ * 1¢/)

¢.¢'

=2 ax) L@ x1)
¢’ ¢

= Za* (' *1¢) = Zaa' * 1o = f(aa').
¢’ ¢’

It is clear that f has the specified values on the algebra generators
Eil¢, Filg,1¢ of g, U.

We show that f is an isomorphism. The elements E;l¢, Fil¢,1; are
algebra generators of rU, since ¢([n]}) = £n! is invertible in R for any
i € I and any n > 0. It follows that f is surjective. As in 31.1.2, rU
(vesp. r,U) is a free rf ® rf°PP-module (resp. g,f ® g, f°PP-module) with
generators 1¢ (under (z ® 2') : u — ztua’~ ), and f carries the subspace
of r,U spanned by z*1,z'~ with

TEDu VSN(RofV))x, € D ¢tr uSN’(Rofu)

and fixed ¢ onto the analogous subspace of rU. Since these subspaces are
both of the same (finite) dimension over R, the restriction of f must be an
isomorphism between them. This implies that f is an isomorphism. The
uniqueness of f is obvious. The proposition is proved.
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Corollary 33.2.4. Assume that the root datum is Y -regular and X -regular
and that A € X*. Then gAy is a simple object of rC.

By the proof of 33.2.3, this is equivalent to the statement that g A, is
a simple object of g,C. (See 33.1.2(e).)



