Relation with Kac-Moody Lie Algebras

33.1. THE SPECIALIZATION v=1

33.1.1. Let $_R$ ' \mathbf{f} be the free associative algebra over R with generators θ_i $(i \in I)$. As for ' \mathbf{f} , which corresponds to the case $R = \mathbf{Q}(v)$, we have a natural direct sum decomposition $_R$ ' $\mathbf{f} = \bigoplus_{\nu} (_R$ ' $\mathbf{f}_{\nu})$ where ν runs over $\mathbf{N}[I]$; each ' \mathbf{f}_{ν} is a free R-module of finite rank.

Let $_R\tilde{\mathbf{f}}$ be the quotient of the algebra $_R'\mathbf{f}$ by the two-sided ideal of $_R'\mathbf{f}$ generated by the elements

$$\Phi_{i,j} = \sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} \phi(\begin{bmatrix} p+p' \\ p \end{bmatrix}_i) \theta_i^p \theta_j \theta_j^{p'}$$

for various $i \neq j$ in I. Recall that $\phi : A \to R$ is given.

Let $_R\tilde{\mathbf{f}}_{\nu}$ be the image of $_R'\mathbf{f}_{\nu}$ under the natural map $_R'\mathbf{f} \to _R\tilde{\mathbf{f}}$. It is clear that we have a direct sum decomposition $_R\tilde{\mathbf{f}} = \bigoplus_{\nu}(_R\tilde{\mathbf{f}}_{\nu})$. From the definition, we have, for any ν , an exact sequence of R-modules

$$\bigoplus_{\nu',\nu'';i\neq j} ({_{R}}'\mathbf{f}_{\nu'}) \otimes_{R} ({_{R}}'\mathbf{f}_{\nu''}) \to {_{R}}'\mathbf{f}_{\nu} \to {_{R}}\tilde{\mathbf{f}}_{\nu} \to 0$$

where the indices satisfy $\nu', \nu'' \in \mathbf{N}[I]$ and $\nu' + \nu'' + (1 - \langle i, j' \rangle)i + j = \nu$; the first map has components $x, x' \mapsto x\Phi_{i,j}x'$. If we take this exact sequence for $R = \mathbf{Q}[v, v^{-1}]$ and we tensor it over $\mathbf{Q}[v, v^{-1}]$ with $\mathbf{Q}(v)$ or with R_0 (a field of characteristic zero, regarded as an \mathcal{A} -algebra or $\mathbf{Q}[v, v^{-1}]$ -algebra via $v \mapsto 1$), we obtain again exact sequences, by the right exactness of tensor product. We deduce that

$$R_0 \tilde{\mathbf{f}}_{\nu} = R_0 \otimes (\mathbf{Q}_{[v,v^{-1}]} \tilde{\mathbf{f}}_{\nu})$$

and

$$_{\mathbf{Q}(v)}\tilde{\mathbf{f}}_{\nu} = \mathbf{Q}(v) \otimes (_{\mathbf{Q}[v,v^{-1}]}\tilde{\mathbf{f}}_{\nu}).$$

Since $\mathbf{Q}[v,v^{-1}]\tilde{\mathbf{f}}_{\nu}$ is a finitely generated $\mathbf{Q}[v,v^{-1}]$ -module and $\mathbf{Q}(v)$ is the quotient field of $\mathbf{Q}[v,v^{-1}]$, we deduce that

(a)
$$\dim_{\mathbf{Q}(v)}(\mathbf{Q}(v)\tilde{\mathbf{f}}_{\nu}) \leq \dim_{R_0}(R_0\tilde{\mathbf{f}}_{\nu}).$$

By 1.4.3, there is a unique (surjective) algebra homomorphism $\mathbf{Q}(v)\tilde{\mathbf{f}} \to \mathbf{f}$ which takes θ_i to θ_i for all i (and preserves 1). It is clear that this homomorphism maps $\mathbf{Q}(v)\tilde{\mathbf{f}}_{\nu}$ onto \mathbf{f}_{ν} , hence

(b) $\dim_{\mathbf{Q}(v)} \mathbf{f}_{\nu} \leq \dim_{\mathbf{Q}(v)} (\mathbf{Q}(v) \tilde{\mathbf{f}}_{\nu})$ for any $\nu \in \mathbf{N}[I]$.

Note that R_0 is the R_0 -algebra defined by the generators θ_i $(i \in I)$ and the Serre relations

$$\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (\theta_i^p/p!) \theta_j (\theta_i^{p'}/p'!) = 0$$

for various $i \neq j$ in I. Thus it is the enveloping algebra of (the upper triangular part of) the corresponding Kac-Moody Lie algebra over R_0 .

- **33.1.2.** Assume now that the root datum is Y-regular and X-regular. Let $\lambda \in X^+$ and let $M = {}_{R_0}\Lambda_{\lambda} \in {}_{R_0}\mathcal{C}'$. The linear maps $E_i, F_i : M \to M$ satisfy in our case:
 - (a) $E_i M^{\zeta} \subset M^{\zeta+i'}$, $F_i M^{\zeta} \subset M^{\zeta-i'}$ for any $i \in I$ and $\zeta \in X$;
 - (b) $(E_iF_j F_jE_i)m = \delta_{i,j}\langle i,\zeta\rangle m$ for any $i,j\in I$ and $m\in M^{\zeta}$;
- (c) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (E_i^p/p!) E_j(E_i^{p'}/p'!) = 0 : M \to M$ for any $i \neq j$ in I:
- (d) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (F_i^p/p!) F_j(F_i^{p'}/p'!) = 0: M \to M$ for any $i \neq j$ in I.

This shows that M is an integrable highest weight module of the Kac-Moody Lie algebra attached to the root datum. By results in [3], namely, the complete reducibility theorem of Weyl-Kac and the Gabber-Kac theorem, M is simple as a module of that Lie algebra and the R_0 -linear map

$$_{R_0} ilde{\mathbf{f}}/\sum_i {}_{R_0} ilde{\mathbf{f}} heta_i^{\langle i,\lambda
angle+1} o M$$

given by

$$\theta_{i_1}\theta_{i_2}\cdots\theta_{i_p}\mapsto F_{i_1}F_{i_2}\cdots F_{i_p}\eta_{\lambda}$$

is an isomorphism. It follows that

- (e) $_{R_0}\Lambda_{\lambda}$ is a simple object of $_{R_0}\mathcal{C}$ and
- (f) for given $\nu \in \mathbb{N}[I]$, we have

$$\dim_{R_0}({}_{R_0}\tilde{\mathbf{f}}_{\nu})=\dim_{R_0}({}_{R_0}\Lambda_{\lambda}^{\lambda-\nu})$$

provided that $\langle i, \lambda \rangle$ are large enough for all i.

From the definition of Λ_{λ} and $R_0\Lambda_{\lambda}$, it is clear that

- (g) $\dim_{R_0}(R_0\Lambda_{\lambda}^{\lambda-\nu}) = \dim_{\mathbf{Q}(v)} \Lambda_{\lambda}^{\lambda-\nu}$ for any λ, ν and
- (h) for given $\nu \in \mathbf{N}[I]$, we have $\dim_{\mathbf{Q}(\nu)}(\mathbf{f}_{\nu}) = \dim_{\mathbf{Q}(\nu)} \Lambda_{\lambda}^{\lambda-\nu}$ provided that $\langle i, \lambda \rangle$ are large enough for all i.

From (f),(g),(h) we deduce that

$$\dim_{\mathbf{Q}(v)}(\mathbf{f}_{\nu}) = \dim_{R_0}(R_0\tilde{\mathbf{f}}_{\nu})$$

for all ν . Combining this with the inequalities 33.1.1(a),(b), we see that those inequalities are in fact equalities. In particular, the natural surjective homomorphism $\mathbf{Q}(v)\tilde{\mathbf{f}} \to \mathbf{f}$ must be an isomorphism. Similarly, the natural surjective homomorphism $R_0\tilde{\mathbf{f}} \to R_0\mathbf{f}$ is an isomorphism since

$$\dim_{R_0}(_{R_0}\tilde{\mathbf{f}}_{\nu}) \geq \dim_{R_0}(\mathbf{f}_{\nu}) = \dim_{\mathbf{Q}(v)}(\mathbf{f}_{\nu}) = \dim_{R_0}(_{R_0}\tilde{\mathbf{f}}_{\nu})$$

for all ν .

Thus we have the following result.

Theorem 33.1.3. (a) The natural algebra homomorphism $\mathbf{Q}(v)\tilde{\mathbf{f}} \to \mathbf{f}$ is an isomorphism.

- (b) We have $\dim_{\mathbf{Q}(v)} \mathbf{f}_{\nu} = \dim_{R_0}(R_0 \tilde{\mathbf{f}}_{\nu})$ for any ν .
- (c) The natural algebra homomorphism $R_0 \tilde{\mathbf{f}} \to R_0 \mathbf{f}$ is an isomorphism.
- (d) If $\lambda \in X^+$, then the dimension of the weight spaces of Λ_{λ} are the same as those of the simple integrable highest weight representation of the corresponding Kac-Moody Lie algebra.
- **33.1.4.** Remark. Parts (a), (b) and (c) of the theorem hold for arbitrary root data, since only the Cartan datum is used in their statement.

Corollary 33.1.5. The algebra U can be defined by the generators E_i ($i \in I$), F_i ($i \in I$), K_{μ} ($\mu \in Y$) and the relations 3.1.1(a)-(d), together with the quantum Serre relations for the E_i 's and for the F_i 's.

33.2. The Quasi-Classical Case

33.2.1. In this section we assume that the \mathcal{A} -algebra R is a field of characteristic zero and $\phi(v_i) = \pm 1$ in R for all $i \in I$. We then say that we are in the *quasi-classical* case; this is justified by the results in this section. We also assume that (I,\cdot) is without odd cycles (see 2.1.3). Then, by 2.1.3, we can find a function

(a) $i \mapsto a_i$ from I to $\{0,1\}$ such that $a_i + a_j = 1$ whenever $\langle i, j' \rangle < 0$.

Let R_0 be the ring R with a new \mathcal{A} -algebra structure in which $v \in \mathcal{A}$ is mapped to $1 \in R$. We want to relate the algebras ${}_R\tilde{\mathbf{f}}$ and ${}_{R_0}\tilde{\mathbf{f}}$. We cannot do this directly, but must enlarge them first as follows. Let A be the R-algebra defined by the generators θ_i , \tilde{K}_i $(i \in I)$ subject to the following relations: the θ_i satisfy the relations of ${}_R\tilde{\mathbf{f}}$, the \tilde{K}_i commute among themselves and $\tilde{K}_i\theta_j = \phi(v_i)^{\langle i,j'\rangle}\theta_j\tilde{K}_i$, for all $i,j \in I$.

Let A_0 be the R-algebra defined by the generators $\theta_i, \tilde{K}_i \quad (i \in I)$ subject to the following relations: the θ_i satisfy the relations of $R_0 \tilde{\mathbf{f}}$, the \tilde{K}_i commute among themselves and $\tilde{K}_i \theta_j = \phi(v_i)^{\langle i,j' \rangle} \theta_j \tilde{K}_i$, for all $i, j \in I$.

It is clear that, as an R-vector space, A (resp. A_0) is the tensor product of $R^{\tilde{\mathbf{f}}}$ (resp. $R_0^{\tilde{\mathbf{f}}}$) with the group algebra of \mathbf{Z}^I over R, with basis given by the monomials in \tilde{K}_i .

Proposition 33.2.2. (a) The assignment $E_i \mapsto E'_i = E_i \tilde{K}_i^{a_i}$ and $\tilde{K}_i \mapsto \tilde{K}_i$ for all i, defines an isomorphism of R-algebras $A_0 \to A$.

- (b) $\dim_R({}_R\tilde{\mathbf{f}}_{\nu}) = \dim_R({}_{R_0}\tilde{\mathbf{f}}_{\nu}) \text{ for all } \nu.$
- (c) The natural algebra homomorphism ${}_R\tilde{\mathbf{f}} \to {}_R\mathbf{f}$ is an isomorphism.

Let $i, j \in I$ be distinct. A simple computation shows that we have in A:

$$E_i'^p E_j' E_i'^{p'} = \phi(v_i)^{a_i(p+p')(p+p'-1)} \phi(v_i)^{\langle i,j' \rangle (pa_i+p'a_j)} E_i^p E_j E_i^{\ p'} \tilde{K}_i^{(p+p')a_i} \tilde{K}_j^{a_j}.$$

The factor $\phi(v_i)^{a_i(p+p')(p+p'-1)}$ is 1 since $\phi(v_i) = \pm 1$ and the exponent is even. By the definition of a_i , we have

$$\phi(v_i)^{\langle i,j'\rangle(pa_i+p'a_j)} = \phi(v_i)^{\langle i,j'\rangle(p+p')a_j}\phi(v_i)^{\langle i,j'\rangle p}$$

and this equals $\phi(v_i)^{\langle i,j'\rangle p}$, if $p+p'=1-\langle i,j'\rangle$. Note also that $\phi([n]_i^!)=\phi(v_i)^{n(n-1)/2}n!$, since $\phi(v_i)=\pm 1$. Hence, if $p+p'=1-\langle i,j'\rangle$, then

$$\begin{split} \phi([p]_i^!)\phi([p']_i^!) &= \phi(v_i)^{(p(p-1)+p'(p'-1))/2}p!p'! \\ &= \phi(v_i)^{(p+p')(p+p'-1)/2}\phi(v_i)^{-pp'}\phi(v_i)^{p(1-p)}p!p'! \\ &= \phi(v_i)^{(p+p')(p+p'-1)/2}\phi(v_i)^{\langle i,j'\rangle p}p!p'!. \end{split}$$

It follows that

$$\begin{split} \sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (E_i'^p/p!) E_j' (E_i'^{p'}/p'!) &= \phi(v_i)^{\langle i,j'\rangle(1-\langle i,j'\rangle)/2} \\ \sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (E_i^p/\phi([p]_i^!)) E_j (E_i^{p'}/\phi([p']_i^!)) \tilde{K}_i^{(1-\langle i,j'\rangle)a_i} \tilde{K}_j^{a_j}. \end{split}$$

This shows that the assignment in (a) preserves relations, hence defines an algebra homomorphism $A_0 \to A$. The same proof shows that the assignment $E_i \mapsto E_i \tilde{K}_i^{-a_i}$ and $\tilde{K}_i \mapsto \tilde{K}_i$ defines an algebra homomorphism $A \to A_0$; it is clear that this is the inverse of the previous homomorphism. This proves (a).

For any ν , the isomorphism in (a) maps the subspace $R_0 \tilde{\mathbf{f}}_{\nu}$ isomorphically onto the subspace $(R_0 \tilde{\mathbf{f}}_{\nu}) \tilde{K}$ where \tilde{K} is a monomial in the \tilde{K}_i depending only on ν . This proves (b).

The homomorphism in (c) maps $_{R}\tilde{\mathbf{f}}_{\nu}$ onto $_{R}\mathbf{f}_{\nu}$ for any ν . Using (b), it follows that this restriction $_{R}\tilde{\mathbf{f}}_{\nu} \to _{R}\mathbf{f}_{\nu}$ is an isomorphism. This implies (c). The proposition is proved.

The next result compares the algebras $R_0\dot{\mathbf{U}}$ and $R\dot{\mathbf{U}}$.

Proposition 33.2.3. There is a unique isomorphism of R-algebras $f: R_0 \dot{\mathbf{U}} \to R \dot{\mathbf{U}}$ such that

$$f(E_i 1_{\zeta}) = \phi(v_i)^{a_i \langle i, \zeta \rangle} E_i 1_{\zeta}, f(F_i 1_{\zeta}) = \phi(v_i)^{(1-a_i)\langle i, \zeta \rangle + 1} F_i 1_{\zeta}, f(1_{\zeta}) = 1_{\zeta}$$

for all $i \in I, \zeta \in X$. Here a_i is as in 33.2.1(a).

To construct f, we take advantage of the fact that for the algebra $_{R_0}\dot{\mathbf{U}}$, we know a simple presentation by generators and relations, while for $_R\dot{\mathbf{U}}$ we do not. It will be easier to first construct a functor from $_R\mathcal{C}$ to $_{R_0}\mathcal{C}$ and then to show that it comes from an algebra homomorphism.

Let M be an object of ${}_{R}\mathcal{C}$. The linear maps $E_i, F_i: M \to M \quad (i \in I)$ satisfy

- (a) $E_i M^{\lambda} \subset M^{\lambda + i'}$, $F_i M^{\lambda} \subset M^{\lambda i'}$ for any $i \in I$ and $\lambda \in X$;
- (b) $(E_iF_j F_jE_i)m = \delta_{i,j}\phi(v_i)^{\langle i,\lambda \rangle 1}\langle i,\lambda \rangle m$ for any $i,j \in I$ and $m \in M^{\lambda}$;
- (c) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} \phi(v_i)^{p\langle i,j'\rangle} (E_i^p/p!) E_j(E_i^{p'}/p'!) = 0: M \to M$ for any $i \neq j$ in I;
- (d) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} \phi(v_i)^{p\langle i,j'\rangle} (F_i^p/p!) F_j(F_i^{p'}/p'!) = 0: M \to M$ for any $i \neq j$ in I.

For any $a \in \mathbf{Z}$, we define linear maps $P_{i,a}: M \to M$ by $P_{i,a}(m) = \phi(v_i)^{a\langle i,\lambda\rangle}m$ for $m \in M^{\lambda}$. We define linear maps $E'_i, F'_i: M \to M$ in terms of the function 33.2.1(a) by $E'_i = E_i P_{i,a_i}, F'_i = \phi(v_i) F_i P_{i,1-a_i}$. As in the proof of the previous proposition, we can check that:

- (a1) $E_i'M^{\lambda} \subset M^{\lambda+i'}$, $F_i'M^{\lambda} \subset M^{\lambda-i'}$ for any $i \in I$ and $\lambda \in X$;
- (b1) $(E_i'F_j' F_j'E_i')m = \delta_{i,j}\langle i, \lambda \rangle m$ for any $i, j \in I$ and $m \in M^{\lambda}$;

(c1) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (E_i'^p/p!) E_j' (E_i'^{p'}/p'!) = 0: M \to M$ for any $i\neq j$ in I;

(d1) $\sum_{p+p'=1-\langle i,j'\rangle} (-1)^{p'} (F_i'^p/p!) F_j'(F_i'^{p'}/p'!) = 0 : M \to M$ for any $i \neq j$ in I. Since $R_0 \mathbf{f} = R_0 \tilde{\mathbf{f}}$ (see 33.1.3) has the presentation given by the Serre relations, it follows that M with its weight space decomposition and with the linear maps E_i', F_i' is an object of $R_0 \mathcal{C}$.

Thus, we have defined a functor $\Gamma: {}_R\mathcal{C} \to {}_{R_0}\mathcal{C}$. This functor has the following obvious property: it associates to M an object $\Gamma(M)$ with the same underlying R-module as M and any endomorphism of M in ${}_R\mathcal{C}$ is at the same time an endomorphism of $\Gamma(M)$ in ${}_{R_0}\mathcal{C}$. Applying the functor Γ to ${}_R\dot{\mathbf{U}}$, regarded as a left module over itself, we obtain a structure of a unital left ${}_{R_0}\dot{\mathbf{U}}$ -module on ${}_R\dot{\mathbf{U}}$. Thus, we have an R-bilinear pairing ${}_{R_0}\dot{\mathbf{U}}\times{}_R\dot{\mathbf{U}}\to {}_R\dot{\mathbf{U}}$, denoted by $a,b\mapsto a*b$; this has the properties (aa')*b=a*(a'*b) and (a*b)b'=a*(bb'). The last property holds since right multiplication by b is an endomorphism of ${}_R\dot{\mathbf{U}}$ in ${}_R\mathcal{C}$, hence also in ${}_{R_0}\mathcal{C}$. We define a map $f:{}_{R_0}\dot{\mathbf{U}}\to{}_R\dot{\mathbf{U}}$ by $f(a)=\sum_{\zeta\in X}a*1_\zeta$; only finitely many terms in the sum are non-zero. We have

$$\begin{split} f(a)f(a') &= \sum_{\zeta,\zeta'} (a*1_{\zeta})(a'*1_{\zeta'}) \\ &= \sum_{\zeta'} a*\sum_{\zeta} 1_{\zeta}(a'*1_{\zeta'}) \\ &= \sum_{\zeta'} a*(a'*1_{\zeta'}) = \sum_{\zeta'} aa'*1_{\zeta'} = f(aa'). \end{split}$$

It is clear that f has the specified values on the algebra generators $E_i 1_{\zeta}$, $F_i 1_{\zeta}$, 1_{ζ} of $R_0 \dot{\mathbf{U}}$.

We show that f is an isomorphism. The elements $E_i 1_{\zeta}$, $F_i 1_{\zeta}$, 1_{ζ} are algebra generators of ${}_R\dot{\mathbf{U}}$, since $\phi([n]_i^!)=\pm n!$ is invertible in R for any $i\in I$ and any $n\geq 0$. It follows that f is surjective. As in 31.1.2, ${}_R\dot{\mathbf{U}}$ (resp. ${}_{R_0}\dot{\mathbf{U}}$) is a free ${}_R\mathbf{f}\otimes{}_R\mathbf{f}^{opp}$ -module (resp. ${}_{R_0}\mathbf{f}\otimes{}_{R_0}\mathbf{f}^{opp}$ -module) with generators 1_{ζ} (under $(x\otimes x'): u\mapsto x^+ux'^-$), and f carries the subspace of ${}_{R_0}\dot{\mathbf{U}}$ spanned by $x^+1_{\zeta}x'^-$ with

$$x \in \bigoplus_{\operatorname{tr} \nu \leq N(R_0 \mathbf{f}_{\nu}), x' \in \bigoplus_{\operatorname{tr} \nu \leq N'(R_0 \mathbf{f}_{\nu})}$$

and fixed ζ onto the analogous subspace of $_R\dot{\mathbf{U}}$. Since these subspaces are both of the same (finite) dimension over R, the restriction of f must be an isomorphism between them. This implies that f is an isomorphism. The uniqueness of f is obvious. The proposition is proved.

Corollary 33.2.4. Assume that the root datum is Y-regular and X-regular and that $\lambda \in X^+$. Then ${}_R\Lambda_{\lambda}$ is a simple object of ${}_R\mathcal{C}$.

By the proof of 33.2.3, this is equivalent to the statement that $_{R_0}\Lambda_{\lambda}$ is a simple object of $_{R_0}\mathcal{C}$. (See 33.1.2(e).)