Part V

CHANGE OF RINGS

Let R be a commutative A-algebra with 1. The main topic of Part V is
the R-algebra RfJ, obtained from _AU by tensoring with R over A, and its
modules.

Chapter 31 contains a general discussion of gU and its module category.

In Chapter 32, assuming that the Cartan datum is of finite type, and
that a certain root of v is given in R, we show that the integrable modules
of gU form a braided tensor category.

In Chapter 33 we consider the specialization v = 1 and we establish the
connection with Kac-Moody Lie algebras.

Chapters 34, 35, and 36 are concerned with the case where v is a root
of unity in R. In Chapter 34 we establish various properties of Gaussian
binomial coefficients at roots of 1. In Chapter 35 we construct a quan-
tum analogue of the Frobenius homomorphism (under some rather mild
assumptions). This includes as a special case the classical Frobenius ho-
momorphism over fields of positive characteristic and also the exceptional
isogenies (in small characteristic) defined by Chevalley [1]. In Chapter 36
we study the Hopf algebra ru, which in some sense, is the kernel of the
Frobenius homomorphism. This algebra is finite dimensional if R is a field
and the Cartan datum is of finite type.



CHAPTER 31

The Algebra zU

31.1. DEFINITION OF prU

31.1.1. From now on, R will be a fixed commutative ring with 1, with a
given invertible element v. We shall regard R as an .A-algebra via the ring
homomorphism ¢ : 4 — R such that ¢(v"™) = v™ for all n € Z.

We consider the R-algebras

rf = R®4 (4f) and RU = R®4 (4U).

We have a direct sum decomposition rf = &, (rf,) where v runs over
N[I] and. pf, = R®4 (4f,). The canonical bases B and B of 4f, 4U give
rise to R-bases of gf, RU consisting of elements 1 ® b where b is in B or
B; we write b instead of 1 ® b. In particular the elements 1, € rU are
well-defined for all A € X. They satisfy as in fJ, 1aly = 6a a1,

The structure constants m¢,, M2 of U (see 25.4.1) can be regarded as
. .elements of R via the ring homomorphism ¢ : A — R. The identities
25.4.1(a)-(d) are clearly satisfied in R.

The comultiplication of pU (a collection of maps as in 23.1.5) is defined
by the same formulas as in 25.4.1.

31.1.2. The 4f ® 4 (4f°PP)-module structure (z ® z’) : u — ztuz’~ on
AU, by change of scalars, induces a rf ® g (rf°PP)-module structure on rU
denoted in the same way. Similarly, the 4f ® 4 (4f°PP)-module structure
(z®z') : u— z-ux’* on 4U, by change of scalars, induces a rf ® g (RfPP)-
module structure on U denoted in the same way.

From 23.2.2 we deduce that

(a) the elements b*1,0'~ (b0’ € B,\ € X) form a basis of the R-
module rU;

(b) the elements b=1)b't (b, € B,X € X) form a basis of the R-
module grU;

(c) the R-algebra pU is generated by the elements Ei(")l A Fi(n)l A for
various i € I, n > 0and A € X.
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31.1.3. We will give an alternative construction of gU in terms of rf.

Let rA be the algebra generated by the symbols z2+1.2'~, 2 1,z'* with
z € rf,, 2’ € gf,, for various v,/, and { € X; these symbols are subject
to the following relations:

B 1c(057)™ = (0) Lesairsny (B if i # j

R | I DIC e R IR

t>0

O 16y = S ol * T ] 0 e 080

t>0

ztle = 1epzt, 271 =1,z for x € f,;
(@*1)(Agra’™) = 8¢ rxtlea’™, (z71)(Lea'*) = 6¢ o™ Lea't
(@*1)(Aa™) = b lern(az), (27 1) (12" ™) = b¢erle—w(za’)™ if
. x € pfy;

(re+r'z )Yl =ra*le + 2’1, (re +r'2’) "1 =rz1c + 7'z’ "1

if x,z’ € gf, and r,7’ € R.
If z or ' in z*1cz’™ or ™ 1¢2't is 1, we omit writing it.

We have an obvious surjective R-algebra homomorphism prA — rU.
Using the relations of rA, we easily see that the symbols z1,2'~ generate
rA as an R-module. In other words, the elements bt 1.0, with b0’ € B

and ( € X, generate gA as an R-module. Since they form an R-basis of
RU, they must also form an R-basis of A and we deduce that:

(a) the natural algebra homomorphism rA — gU is an isomorphism.

31.1.4. There is a natural R-linear involution ¢ : rf — gf; it is given by
a change of rings from the analogous involution for R = A, which is the
restriction of o : f — f.

The automorphism w : U — U restricts to an automorphism w : AU —
AU tensoring with R, we obtain an R-algebra automorphism w : gU —
rU.

31.1.5. As in 23.1.4, we say that a gpU-module M is unital if
(a) for any m € M we have 1ym = 0 for all but finitely many A € X;

(b) for any m € M we have >,y 1am = m.
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We then have a direct sum decomposition (as an abelian group) M =
®rex M> where M?* = 1, M; we can regard M as an R-module by rm =
Y5 (r1x)(m) for r € R,m € M. Then the decomposition above is as an
R-module. The unital gU-modules are the objects of an abelian category
rC with the morphisms being homomorphisms of rU-modules.

31.1.6. Let M € RrC, let i € I and let n € Z. We define R-linear
maps E( MM > M, F : M = M by EPm = ¥,( E(")l)‘)m and
F(")m EA F(")l,\)m for allm € M. (Recall that E(")l)\ and F( )1, are
elements of B C U, hence are well-defined in zgU.) It follows immediately
from the definitions that 8{™  (E™ : M — M) and 6™ — (F™ : M —
M) define two gf-module structures on M, denoted by z,m — ztm and
x, m +— z~m respectively. We have

(a) EMWM> ¢ MM F™M* ¢ M for any i € I,n € Z and
A€ X.
Moreover, for any ( € X and any m € M¢, we have

(b) EF®m = FPE®m if i # j;
7 (0) B FOm = S o[ FTIEE

(d) F‘i(b)Ei(a)m _ tho & [—a+bt— (i,()]i)Ei(a—t)Fi(b—t)m

31.1.7. Conversely, let M be an R-module with a given direct sum decom-
. position M = @¢ex M¢ and given R-linear maps E(") F; ). M — M (for
i € I,n € Z) satisfying 31.1.6(a)—(d) and such that E(") F(") = 0 for
n < 0. Assume that 6™ — (E™ : M — M) and o™ (F(") M — M)
define two gf-module structures on M, denoted by z,m — ztm and
z, m v £~ m, respectively. Then this structure comes from a well-defined
structure of unital gU-module on M. Indeed, it is clear that this structure
gives an gpA-module structure on M hence a RU—module structure (see
31.1.3).

31.1.8. Let M, M’ € grC. The tensor product M ®g M’ (as R-modules) will
be regarded as a gU-module by the rule c(z ® z') = 3, , ¢(Mm3®)az @ ba'.
(All but finitely many terms in the last sum are zero.) The fact that the rule
above defines an gpU-module structure follows from the identity 25.4.1(c).
This gkU-module is unital, by the identity 25.4.1(d). Thus M ®g M’ is
naturally an object of rC.

Now let M, M’, M" be three objects of gC. By the previous construction,
the R-module M ® g M’ ®p M" can be regarded as an object of rC in two
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ways, (M @r M') ®p M” and M @r (M’ ® g M"). In fact these two ways
coincide; this follows from the identity 25.4.1(b).

31.1.9. From the definitions it is clear that, in the case where R =
Q(v),v = v, we have rC = C and the tensor product just defined coin-
cides with the one introduced earlier for C.

31.1.10. To any object M of rC, we associate (as in 3.4.4) a new object
“M of gC as follows. “M has the same underlying R-module as M. By
definition, for any u € U, the operator u on “M coincides with the
operator w(u) on M.

31.1.11. If R" — R is a homomorphism of commutative .4-algebras with
1, we have U = R ®p (gU) and for any object M € grC, we may
regard R ® pr M naturally as an object in rC with the induced grU-module
structure. This gives a functor r2C — RgC called change of rings, or change
of scalars. It commutes with tensor products (as in 31.1.8) and with the
operation w in 31.1.10.

31.1.12. Let (Y',X’,...) be another root datum of type (I,-) and let
f:Y —Y,9g: X - X' be a morphism of root data. This induces a
homomorphism ¢ : U’ — U between the corresponding Drinfeld-Jimbo
algebras (see 3.1.2). For each ¢’ € X’ and ¢ € X such that g(¢) = ¢’ let
4¢: AU 1(1 & AUlc be as in 23.2.5. By tensormg with R this gives rise
to R¢ rU’ 1(: o RUlc Let M be a unital gU-module. We can regard M
as a unital RU -module by the following rule: if m € M¢ and u € gU’ 1
then um is defined to be (R¢(u))m if ¢’ = g(¢), and 0, otherwise. This
gives a functor from unital gU-modules to unital gU’-modules.

31.1.13. Let A € X. The A-submodule 4M, of the Verma module M, is
a unital 4U-submodule (see 23.3.2); by change of scalars, it gives rise to an
object M) of rC, called an R-Verma module. We have an exact sequence
in RC:

Bi,n>0(RULx4nir) — ULy — My — 0,

where the first map has components given by right multiplication by
1 )\+mlE and the second map is given by u +— ul (1 is the canonical
generator of My). This is deduced by tensoring with R from the analogous
exact sequence over A.
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Let M € gC and let m € M be such that Ei(")m =0forallie I and
all n > 0. From the previous exact sequence, we see that there is a unique
morphism ¢ : My — M such that ¢(1) = m.

31.2. INTEGRABLE rU-MODULES

31.2.1. In this section we assume that the root datum is Y-regular (except
in 31.2.4). Let A\, X € Xt. The A-submodule 4Ay of Ay is a unital 4U-
submodule (see 23.3.7); by change of scalars, it gives rise to an object
rRAN =R®4 (AA,\/) of gC.

Similarly, the A-submodule 4Ax ® 4 (4Ax) of YAy ® Ay is a unital
AU-submodule (see 23.3.9), in fact a tensor product in 4C; by change of
scalars, it gives rise to the object 4Ax ®r (rAN) of rC.

Let ( = X — A € X. Consider the following morphisms of rU-modules

(®in> (i3 (RULnir)) @ (Bin> (3,0 (RU L 4nir))
fv

rUL,

-

YA\ ®r (RAN)

~

0

where f has components given by right multiplication by 1 ,\_m-/Fi(") (in the
first group of summands), 1xyns Ei(n) (in the second group of summands)
and 7(u) = u(€—_, @ na) . We write £_, instead of 1 ® £&_, and similarly
for ny.

Proposition 31.2.2. The sequence above is exact.

When R is A and v = v, this is a restatement of 23.3.8. The general
case follows from this by taking the tensor product with R, by the right
exactness of tensor products.

We can state the previous proposition in the following equivalent form.

Corollary 31.2.3. 7 is surjective and its kernel is the left ideal

Z R(JFi(n)I(-F Z RUEi(n)lc of RU.

i,n> (i) ,n>(i,A)
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31.2.4. In this subsection, the root datum is arbitrary. An object M € rC
is said to be integrable if for any m € M and any i € I there exists
ng > 1 such that Ef")m = Fz-(")m = 0 for all n > ng. In the case where
R = Q(v), v = v, this coincides with the earlier definition of an integrable
object of C.

From the definitions we see immediately that:

(a) if M, M’ € gC are integrable, then M ®r M’ € grC is integrable;
(b) if R* — R is as in 31.1.11, and if M’ € gr.C is integrable, then
R®p M’ € gC is integrable.

Let rC’ be the the category of integrable unital rU-modules, regarded
as a full subcategory of gC.

31.2.5. Returning to the assumptions of 31.2.1, we note that gA, and
%Ax ®r (rAx) are integrable. Indeed, this is already known over Q(v);
from this, the result over A follows, since our objects over A are imbedded
in the corresponding objects over Q(v) and finally, this implies the general
case, by 31.2.4(b) with R’ = A.

Proposition 31.2.6. Let M € gC; let AN € X*+. Let M be the R-
submodule of M» —* consisting of all m such that Ei(n)m =0 for all i and
all n > (i, A) and such that Fi(")m =0 for all i and all n > (i,N'). Then
the map Hom_y;(%Ax ®r (rAN), M) — M given by f — f(_x @) is
an jsomorphism.

This follows immediately from Corollary 31.2.3.

Proposition 31.2.7. Let M € grC. Then M is integrable if and only if it
satisfies the following condition:

(a) M is a sum of subobjects each isomorphic to a quotient object of
some %A ®r (rRAN) with A\, N € XT.

We know already that any object of the form {A\®g (rAx) with A\, X €
X7 is integrable. It follows immediately that, if M is as in (a), then M is
integrable. We now prove the converse.

Assume that M is integrable and that m € M¢ where ¢ € X. We
can find integers a;,a] € N such that Ei(a)m =0 for all ¢ and all a > q;
and Fi(al)m = 0 for all 7 and all &’ > a]. Since the root datum is Y-
regular, we can find A € X such that (i,\) > a; and (i,A + ¢) > d
for all i. Let X = A+ (. Then (i, ') > a} for all i. By the previous
proposition, there exists a morphism f : 4A\ ®g (rRAx) — M in gC such
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that f(£é—x ®na) = m. The image of f is a quotient of 4Ax ®r (rAx) and
it contains m. Hence M satisfies (a).

31.3. HiIGHEST WEIGHT MODULES

31.3.1. In this section, we assume that the root datum is X-regular.
Let M be an object of gC. We say that M is a highest weight module,
with highest weight A € X, if there exists a vector m € M> such that

(a) E{™m =0 for all i and all n > 0;

(b) M = {z~m|z € gf}; and

(c) M?* is a free R-module of rank one with generator m.
In this case, we have M = 3", ., M.

Proposition 31.3.2. Assume that R is a field.

(a) For any A € X, there exists a simple object (unique up to isomor-
phism) rLx of rC which is a highest weight module with highest weight
A o

(b) If X # X then rL) is not isomorphic to rLy:.

(c) If M is a highest weight module in rC with highest weight A, then
M has a unique mazimal subobject; the corresponding quotient object is
isomorphic to rL).

Let M be asin (c). A subobject M’ of M is distinct from M if and only if
M’ C ¥y, MY This shows that the sum of all subobjects of M distinct
from M is a subobject distinct from M. Thus, M has a unique maximal
subobject, hence a unique simple quotient object, which is clearly a highest
weight module with highest weight A. Applying this to the Verma module
rM,, which is a highest weight module with highest weight A, we obtain a
simple quotient gLy of this Verma module; this proves the existence part
of (a). If L' is a simple object of gC which is a highest weight module
with highest weight A, then, by 31.1.13, we can find a non-zero morphism
rM, — L'. This is necessarily surjective. Since gM) has a unique simple
quotient, we must have that L’ is isomorphic to gLx. Thus (a) and (c) are
proved. (b) is now obvious.



