The Canonical Topological Basis of $(U^- \otimes U^+)^{\hat{}}$

30.1. THE DEFINITION OF THE CANONICAL TOPOLOGICAL BASIS

30.1.1. In this chapter we assume that (I, \cdot) is of finite type.

We denote by $(\mathbf{U}^- \otimes \mathbf{U}^+)$ the closure of $\mathbf{U}^- \otimes \mathbf{U}^+$ in $(\mathbf{U} \otimes \mathbf{U})$ (see 4.1.1). The elements of $(\mathbf{U}^- \otimes \mathbf{U}^+)$ are possibly infinite sums of the form $\sum_{b,b'\in\mathbf{B}} c_{b,b'}b^- \otimes b'^+$ with $c_{b,b'}\in\mathbf{Q}(v)$. In this chapter we shall construct a canonical topological basis of $(\mathbf{U}^- \otimes \mathbf{U}^+)$ which gives rise simultaneously to the canonical bases of all tensor products of type $\Lambda_{\lambda} \otimes {}^{\omega} \Lambda_{\lambda'}$.

Let $\bar{}$: $(\mathbf{U}^- \otimes \mathbf{U}^+) \to (\mathbf{U}^- \otimes \mathbf{U}^+)$ be the ring involution defined as the unique continuous extension of $\bar{}$ \otimes $\bar{}$: $\mathbf{U}^- \otimes \mathbf{U}^+ \to \mathbf{U}^- \otimes \mathbf{U}^+$. Note that we have $\Theta \in (\mathbf{U}^- \otimes \mathbf{U}^+)$ (see 4.1.2). By 24.1.6, we can write uniquely

$$\Theta = \sum_{b,b' \in \mathbf{B}: |b| = |b'|} a_{b,b'} b^- \otimes b'^+$$

where $a_{b,b'} \in \mathcal{A}$.

in the

30.1.2. From 4.1.2, 4.1.3, it follows that the **Q**-linear map

$$\Psi: (\mathbf{U}^- \otimes \mathbf{U}^+) \to (\mathbf{U}^- \otimes \mathbf{U}^+)$$

given by $\Psi(x) = \Theta \bar{x}$ (product in $(\mathbf{U}^- \otimes \mathbf{U}^+)$) satisfies $\Psi^2 = 1$. We clearly have $\Psi(fx) = \bar{f}\Psi(x)$ for all $f \in \mathcal{A}$ and all x. Hence if we set

$$\Psi(b_1^- \otimes b_1'^+) = \sum_{b,b' \in \mathbf{B}; |b| = |b'|} a_{b,b'} b^- b_1^- \otimes b'^+ b_1'^+ = \sum_{b_2,b_2' \in \mathbf{B}} r_{b_1,b_1';b_2,b_2'} b_2^- \otimes b_2'^+$$

for all $b_1, b_1' \in \mathbf{B}$, then we have

 $r_{b_1,b_1';b_2,b_2'} \in \mathcal{A};$

 $r_{b_1,b_1';b_2,b_2'} = 0$ unless $(b_1,b_1') \le (b_2,b_2')$ (\le as in 24.3.1);

 $r_{b_1,b_1';b_1,b_1'}=1;$

 $\textstyle \sum_{b_2,b_2' \in \mathbf{B}} \bar{r}_{b_1,b_1';b_2,b_2'} r_{b_2,b_2';b_3,b_3'} = \delta_{b_1,b_3} \delta_{b_1',b_3'} \text{ for any } b_1,b_1',b_3,b_3' \in \mathbf{B}.$

The last sum is finite by the previous statements. Applying 24.2.1 to the set $H = \mathbf{B} \times \mathbf{B}$ we see that there is a unique family of elements $p_{b_1,b_1';b_2,b_2'} \in \mathbf{Z}[v^{-1}]$ defined for $b_1,b_1',b_2,b_2' \in \mathbf{B}$ such that

$$p_{b_1,b_1';b_1,b_1'}=1;$$

.

$$p_{b_1,b_1';b_2,b_2'} \in v^{-1}\mathbf{Z}[v^{-1}] \text{ if } (b_1,b_1') \neq (b_2,b_2');$$

$$p_{b_1,b_1';b_2,b_2'} = 0$$
 unless $(b_1,b_1') \le (b_2,b_2')$;

$$p_{b_1,b_1';b_2,b_2'} = \sum_{b_3,b_3'} \bar{p}_{b_1,b_1';b_3,b_3'} r_{b_3,b_3';b_2,b_2'}$$

for all $(b_1, b_1') \leq (b_2, b_2')$. Thus we have the following result.

Proposition 30.1.3. For any $(b_1, b'_1) \in \mathbf{B} \times \mathbf{B}$, there is a unique element $\beta_{b_1, b'_1} \in (\mathbf{U}^- \otimes \mathbf{U}^+)$ such that $\Theta \overline{\beta_{b_1, b'_1}} = \beta_{b_1, b'_1}$ and such that $\beta_{b_1, b'_1} - b_1^- \otimes b'_1^+$ is an (infinite) linear combination of elements $b_2^- \otimes b'_2^+$ with $(b_2, b'_2) > (b_1, b'_1)$ and with coefficients in $v^{-1}\mathbf{Z}[v^{-1}]$.

We have
$$\beta_{b_1,b'_1} = \sum_{b_2,b'_2} p_{b_1,b'_1;b_2,b'_2} b_2^- \otimes b'_2^+$$
.

30.1.4. The elements $\beta_{b_1,b_1'} \in (\mathbf{U}^- \otimes \mathbf{U}^+)$, for various $(b_1,b_1') \in \mathbf{B} \times \mathbf{B}$, are said to form the *canonical topological basis* of $(\mathbf{U}^- \otimes \mathbf{U}^+)$. This is not a basis in the strict sense.

Taking $b_1=b_1'=1$, we obtain an element $\varUpsilon=\sum_{\nu}\varUpsilon_{\nu}=\beta_{1,1}$ where $\varUpsilon_{\nu}\in \mathbf{U}_{\nu}^{-}\otimes \mathbf{U}_{\nu}^{+}$ for all ν and

$$\Upsilon_0 = 1 \otimes 1.$$

Hence Υ is an invertible element of $(\mathbf{U}^- \otimes \mathbf{U}^+)$.

By definition, we have $\Theta \overline{\Upsilon} = \Upsilon$; hence

(b)
$$\Theta = \Upsilon \bar{\Upsilon}^{-1}$$
.

Note also, that if $\nu \neq 0$, then Υ_{ν} is a linear combination of elements $b^{-} \otimes b'^{+}$ $(b, b' \in \mathbf{B}_{\nu})$ with coefficients in $v^{-1}\mathbf{Z}[v^{-1}]$. This property, together with (a),(b), characterizes Υ .

30.1.5. Let $\lambda, \lambda' \in X^+$. By the general construction in 27.3.2, the **U**-module $\Lambda_{\lambda} \otimes {}^{\omega}\Lambda_{\lambda'}$ has a canonical basis B_{\diamondsuit} . It consists of elements $(b^-\eta_{\lambda})\diamondsuit(b'^+\xi_{-\lambda'})$ for various $b \in \mathbf{B}(\lambda)$ and $b' \in \mathbf{B}(\lambda')$.

Note that um is a well-defined element of $\Lambda_{\lambda} \otimes {}^{\omega}\Lambda_{\lambda'}$, for any $u \in (\mathbf{U}^{-} \otimes \mathbf{U}^{+})$ and any $m \in \Lambda_{\lambda} \otimes {}^{\omega}\Lambda_{\lambda'}$, by regarding the last space as a $\mathbf{U} \otimes \mathbf{U}$ -module. In particular, $\beta_{b_1,b'_1}(\eta_{\lambda} \otimes \xi_{-\lambda'})$ is well-defined.

Proposition 30.1.6. Let $b, b' \in \mathbf{B}$.

- (a) If $b \in \mathbf{B}(\lambda)$ and $b' \in \mathbf{B}(\lambda')$, then $\beta_{b,b'}(\eta_{\lambda} \otimes \xi_{-\lambda'}) = (b^{-}\eta_{\lambda}) \Diamond (b'^{+}\xi_{-\lambda'})$.
- (b) If either $b \notin \mathbf{B}(\lambda)$ or $b' \notin \mathbf{B}(\lambda')$, then $\beta_{b,b'}(\eta_{\lambda} \otimes \xi_{-\lambda'}) = 0$.

This follows immediately from the definitions and from 27.3.2.

30.1.7. Example.. Assume $I = \{i\}$ and $X = Y = \mathbf{Z}$ with $i = 1 \in Y, i' = 2 \in X$. The canonical topological basis of $(\mathbf{U}^- \otimes \mathbf{U}^+)$ consists of the elements

$$x_{c,d} = \sum_{s>0} v_i^{-s(s+c)} {s+d \brack s}_i F_i^{(s+c)} \otimes E_i^{(s+d)} \quad (c \ge d \ge 0)$$

and

$$y_{c,d} = \sum_{s>0} v_i^{-s(s+d)} \begin{bmatrix} s+c \\ s \end{bmatrix}_i F_i^{(s+c)} \otimes E_i^{(s+d)} \quad (d \ge c \ge 0)$$

with the identification $x_{c,d} = y_{c,d}$ for c = d.

- **30.2.** On the Coefficients $p_{b_1,b'_1;b_2,b'_2}$
- **30.2.1.** The canonical topological basis in the previous section is completely determined by the set of coefficients $p_{b_1,b'_1;b_2,b'_2} \in \mathbf{Z}[v^{-1}]$ defined for all b_1,b'_1,b_2,b'_2 in **B**. In this section we make a proposal for a possible topological interpretation of these coefficients, assuming that the Cartan datum is simply laced (of finite type). We shall assume that $(b_1,b'_1) \leq (b_2,b'_2)$; otherwise the coefficient is zero.
- **30.2.2.** Let (\mathbf{I}, H, \dots) be the graph of (I, \cdot) (see 14.1.3); note that $\mathbf{I} = I$. Assume that we have chosen an orientation for this graph. According to 14.5.1, to give b_1, b'_1, b_2, b'_2 in \mathbf{B} is the same as to give four objects $\mathbf{V}_1, \mathbf{V}'_1, \mathbf{V}_2, \mathbf{V}'_2$ of \mathcal{V} and orbits O_1, O'_1, O_2, O'_2 of $G_{\mathbf{V}_1}, G_{\mathbf{V}'_1}, G_{\mathbf{V}_2}, G_{\mathbf{V}'_2}$ on $\mathbf{E}_{\mathbf{V}_1}, \mathbf{E}_{\mathbf{V}'_1}, \mathbf{E}_{\mathbf{V}_2}, \mathbf{E}_{\mathbf{V}'_2}$, respectively (notation of 9.1.2). Hence we may write $p_{O_1,O'_1;O_2,O'_2}$ instead of $p_{b_1,b'_1;b_2,b'_2}$.

Let $\mathbf{V} = \mathbf{V}_2 \oplus \mathbf{V}_2' \in \mathcal{V}$ and let $x \in \mathbf{E}_{\mathbf{V}}$ be an element such that \mathbf{V}_2 and \mathbf{V}_2' are x-stable and the restriction of x to \mathbf{V}_2 (resp. \mathbf{V}_2') is in O_2 (resp. in O_2'). Let J be the stabilizer of x in $G_{\mathbf{V}}$ and let Z be the J-orbit of \mathbf{V}_2 in the variety of all I-graded subspaces of \mathbf{V} . Note that \mathbf{V}_2 is a point of Z and that any $\mathbf{W} \in Z$ is x-stable. Let Z' be the subvariety of Z consisting of all subspaces $\mathbf{W} \in Z$ such that

- (a) $\mathbf{W} \cap \mathbf{V}_2 \cong \mathbf{V}_1$ (in \mathcal{V});
- (b) $V/(W + V_2) \cong V'_1$ (in V);

- (c) the element of $\mathbf{E}_{\mathbf{W} \cap \mathbf{V}_2}$ defined by x corresponds under an isomorphism as in (a) to an element of $O_1 \subset \mathbf{E}_{\mathbf{V}_1}$;
- (d) the element of $\mathbf{E}_{\mathbf{V}/(\mathbf{W}+\mathbf{V}_2)}$ defined by x corresponds under an isomorphism as in (b) to an element of $O_1' \subset \mathbf{E}_{\mathbf{V}_1'}$.

One can hope that the coefficients of the various powers of v in $p_{O_1,O_1';O_2,O_2'}$ are equal to the dimensions of the stalks of the intersection cohomology complex of the closure of Z' in Z at the point $\mathbf{V}_2 \in Z$, and that they are zero if \mathbf{V}_2 is not in that closure.

Notes on Part IV

- 1. The algebra $\dot{\mathbf{U}}$ has appeared in [1], in a geometric setting (in type A_n), but its definition in the general case is the same as that in type A_n . One of the main results of [1] was a topological definition of a canonical basis of $\dot{\mathbf{U}}$ (in type A_n), generalizing the author's definition of the canonical basis of f. The method of [1] works in almost the same way for affine type A_n , but the extension to other types remains to be done.
- 2. In [2], Kashiwara conjectured the existence of a canonical basis of $\dot{\mathbf{U}}$, for Cartan data of finite type, and constructed a basis of the quantum coordinate algebra \mathbf{O} in which the structure constants were in $\mathbf{Q}[v,v^{-1}]$; this is presumably the same as the basis in 29.5.1, in which the structure constants are in $\mathbf{Z}[v,v^{-1}]$.
- 3. The definition of the canonical basis **B** of **U**, in the general case was given in [6]. Most results in Chapters 24 and 25 appeared in [6].
- 4. Something close to Lemma 24.2.1 has been used in [3] to attach a polynomial to two elements of a Coxeter group.
- 5. Expressions like those in 25.3.1 appeared in [2], and are implicit in [1].
- 6. I do not know what is the relation, if any, between the form (,) on U, in 26.1.2, and the form on U defined in [7].
- 7. Propositions 27.1.7, 27.1.8 (and also results similar to 27.2.4) appear in [2].
- 8. Theorem 27.3.2 is similar to results in [6]; the analogous result for more than two factors (see 27.3.6) is new.
- 9. The existence of a canonical basis on the space of coinvariants $(\Lambda_{\lambda_1} \otimes \Lambda_{\lambda_2} \dots \otimes \Lambda_{\lambda_n})_*$ (see 27.3.9) is new; it was known earlier for n=3, see [5]. It implies that the corresponding space of coinvariants over \mathcal{A} is a free \mathcal{A} -module; this answers a question of D. Kazhdan. (There is a somewhat analogous result about the space of "coinvariants in the tensor product" (see [4]) of several Weyl modules with the same negative central charge over an affine Lie algebra: this space has dimension independent of the central charge. There are other analogies between the two theories, for example the invariance property under cyclic permutations (28.2.9) has a counterpart in the theory over affine Lie algebras.)
- 10. The results in Chapters 28, 29 and 30 are new.
- 11. The positivity conjecture in 25.4.2 is made plausible by the results in [1].

REFERENCES

- 1. A. A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of GL_n , Duke Math. J. 61 (1990), 655-677.
- M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 69 (1993), 455-487.
- D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- 4. _____, Tensor structures arising from affine Lie algebras, parts I and II, J. Amer. Math. Soc. 6 (1993), 905-947, 949-1011.
 - _____, Tensor structures arising from affine Lie algebras, parts III and IV, J. Amer. Math. Soc. 7 (1994).
- 5. G. Lusztig, Canonical bases arising from quantized enveloping algebras, II, Common trends in mathematics and quantum field theories, (T. Eguchi et. al., eds.), Progr. Theor. Phys. Suppl., vol. 102, 1990, pp. 175-201.
- ——, Canonical bases in tensor products, Proc. Nat. Acad. Sci. 89 (1992), 8177–8179.
- M. Rosso, Analogues de la forme de Killing et du théorème d'Harish-Chandra pour les groupes quantiques, Ann. Sci. E. N. S. 23 (1990), 445-467.

. Fr

ar 20 (1)