CHAPTER 28

Bases for Coinvariants
and Cyclic Permutations

28.1. MONOMIALS

28.1.1. In this chapter we assume that ([,-) is of finite type. Let A €
X*. For any sequence i = (¢1,12,...,ix) in I such that s; s;,---5;, is a
reduced expression of an element w € W, we consider the element 6(i, A) =
6192 ... g{*%) € £ where

a1 = (8in - 8, (1), A)y - - ,an—1 = (Siy (inN-1), A), an = (in, A);

note that ay,as,...,any € N, by 2.2.7.

Proposition 28.1.2. The element 0(i, \) depends only on w and not on
i.

Assume first that w is the longest element in the subgroup of W gen-
erated by two distinct elements i, j of I. In that case the assertion of the
lemma is the quantum analogue of an identity of Verma, whose proof will
be given in 39.3. We shall assume that this special case is known.

We now consider the general case. Let i’ = (j1,Jj2,...,j~n) be another
sequence like i (for the same w). To prove that 8(i, ) = 6(i’, \), we may
assume, by 2.1.2, that i’ is obtained from i by replacing a subsequence
i,4,4,7,... (m consecutive terms) of i by j,1, j,14,..., (m consecutive terms),
where 14, j are as above and m is the order of s;s;. But this follows imme-
diately from the special case considered above.

28.1.3. By Proposition 28.1.2, we may use the notation #(w, A) instead of
6(i, A) for w,i as above.
Proposition 28.1.4. The element 0(w, A) "1y € Ay is the unique element

of the canonical basis of Ax which lies in the w())-weight space.

We prove this by induction on N, the length of w. If N = 0, there
is nothing to prove. Assume now that N > 1. Let (i1,%2,...,ix) and
(a1,a2,...,any) be as in 28.1.1. Thus w = s;,8;, - Siy. Let w' =
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SigSiz ** * Siy SO that w = s;, w’. Let b’ (resp. b) be the unique element in the
canonical basis of Ay which lies in the w’())-weight space (resp. the w(\)-
weight space). Using the induction hypothesis, we see that it is enough to
prove that b= F{*V¥. We have w(}) = s;,w'(A) = w'()) — (i1, w'(A))i; =
w'(A) — a17] so that Fi(f‘)b' is a non-zero vector in the same weight space
as b; thus, Fi(la‘)b’ = fb for some f € A — {0}.

Next we note that E; b’ = 0, since the (w’(\) + 7} )-weight space is zero.
Otherwise, the w’~!(w’()) + 1} )-weight space would be non-zero, hence the
(A+w'~1(4}))-weight space would be non-zero, contradicting the fact that
A is the highest weight, since w'~1(i}) > 0. From the definition of F; , it
then follows that Fi(l“‘)b’ = Fi"l‘b' . By the properties of the basis at oo of
Ay, the previous equality implies that f = ¢ mod v~!A where cis 0 or 1.
Hence we have f = ¢ mod v~!'Z[v™!] where c is as above and f # 0.

The involution = : Ay — A keeps b,b fixed and we have Fi(la‘))b’ =
FVY = F*Y; hence fb=fb = fb. It follows that f = f; hence f = c.
Since f # 0 and cis 0 or 1, it follows that f = 1. The proposition is proved.

Praposition 28.1.5. We have o(6(wo, \)) = 8(wo, —wo())).

Let i = (i1,42,...,in) be a sequence in W such that s;,s;, -+ 58;, is a
reduced expression of wg. Define ay,ay,...,ax as in 28.1.1. Then i’ =
(in,iN-1,...,11) is such that s;, s;p_, -~ s;, is a reduced expression of wy.

Let bl,bz,‘,. .., by be defined by

by = (sil Tt Sinoy (iN)v —’LUO(/\)), o byor = <3i1 (i2)7 _wO()\»,
by = (i1, —wo(N));

then by = an,b2 = an_1,...,by = a;. Using 28.1.2, we have

a(8(wo, N) = o(8(3, N)) = o(6{6(2) ... g@))
(an) glan-1) (a1)
:olzN e'aN ! "'Oill

IN-1

=090 ..g*M) — (i, —wp(N)) = B(wo, —wo(N)).

IN-1

The proposition is proved.

28.1.6. We have

(a) S (6(wo, X)) = (=1)@PNy=nN*+a K, 5(0(wp, A))~
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where 2p and n are as in 2.3.1,
v = 3 (i), Vi
with u(i) € Y as in 2.3.2, and

& = D) N iy Wi+ /2.

iel

This follows from 2.3.2(a) and 3.3.1(d), applied to = §(wp, A). Note that
z € f,, where v is as above and tr v = E;:’:l(si” 85,0 (1p), A) = (2p, A).

28.2. THE ISOMORPHISM P

28.2.1. Coinvariants and antipode. Let M, M’ be two objects of C
and let u € U. For x € M,z’ € M’, we have

(a) ur ® ' = z ® S(u)z’ in the coinvariants (M ® M’),.

We may assume that € M*,z’ € M'*. First note that z ® ' = 0 (in
the coinvariants) unless A + A’ = 0.

We show (a) for u = E;. Both sides are zero unless A+ X’ + i’ = 0, when
we have

Exzex = —vfi‘—)‘u#)x QEiz = -2z K_Eix' =z ® S(E)z'

(iﬁ the coinvariants).
We show (a) for u = F;. Both sides are zero unless A+ A’ —4' = 0, when
we have

Fretz = —vfi"\l)x Q@ Fiz' = —z® F;K;z' = z ® S(F;)z’

(in the coinvariants).
We show (a) for u = K,,. We have

Kl‘:v ® xl = 'U("’)‘).'L' ® z,’w ® S(K“)xl o U_(/‘,A’)x ® (L'I.

But we can assume that v{#A) =y~ ()

Now if (a) holds for u,u’, then it also holds for linear combinations of
u,u’ and for uu’. Indeed wu'z @ ' = v'r ® S(u)z’ = 2z ® S(v')S(u)2’ =
z ® S(uu')z’ (in the coinvariants). Thus, (a) is proved.

An equivalent form of (a) is:

(b) S’(u)z ® ' =  ® uz’ in the coinvariants (M ® M’)..
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28.2.2. Let A = A, where A € X, and let (M, B) be a based module.
Let n = n) and let { be the unique element in the canonical basis of A

in the wp(A)-weight space. We define an isomorphism of vector spaces
P:A@M —- M®Aby

Pz ®y) = (1) 0y gz

forre A°and ye€ M. Here2p € Y,n: X — Z are as in 2.3.1.

We show that P maps E;(A ® M)~% into E;(M ® A); Fi(A ® M)¥
into F;(M ® A); and (A ® M)¢ into (M ® A)S for any ¢ € X. Indeed, if
zeA,ye M, and ¢+ (' +4 =0, then

P(Ei(z®y)) = P(Ez ®y + vz ® Eiy)

= (_1)(2p,C)v—n(C+i’)y ® Eiz 4 (—1)20¢ti0/2 2O By @ ¢
= (=1)@P0)iiti0)/2-00) By @ 7 + v i) /2y © Eiz)

= (=1){2p0)#i0 /2O B (y @ ).

Ifz e AS,y e M, and ¢ + ¢’ — i’ = 0, then

P(Fi(z ®y)) = P(z ® Fiy + v 2Rz )

= '(;—l)(z”'C)v_"(C)F'iy QT+ (_1)2P,Cv—i'i(in')/2—n(C—i')y ® Fix
— (=1)2p0 501 /2-0(~) (y @ Fig + v+ 02 Fy @ )

- (_1)(ZP,C)v—i-i(i,C’>/2—n(C—i')Fi(y ® z).

It follows that P induces an isomorphism of vector spaces P : (AQ M), —
(M ®A),.

28.2.3. Let = : M — M be the associated involution of the based module
(M, B). Recall that on A we also have an involution ~ associated with its
natural structure of based module. Then A ® M and M ® A are naturally
based modules with associated involution 6~ (see 27.3.3) and the spaces of
coinvariants (A ® M), and (M ® A), inherit from them structures of based
modules (see 27.2.5) with trivial action of U.

Proposition 28.2.4. P : (A® M), = (M ® A), is an isomorphism of
based modules.

The proof will be given in 28.2.8. It will be based on a number of lemmas.
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Lemma 28.2.5. For anyy € M~ we have

P ®y) = 0(wo, —wo(N)) "y ®n

(equality in (M @ A).).

Using 28.1.4, 28.2.1(b), 28.1.6(a), 28.1.5, we have

P(E®y) = (—1)Nynlwol)y @ £ = (—1)Z0My~n0M)y @ f(wo, A) 7y
= (=1){2pA) y=n(woN) 8 (o, ) )y ® 7

= v~ 2wy =nNter 0wy, —wo(A) "y @7

= p~Rwo M) —nNFertezg(y e (W) y @7

(equalities in coinvariants) where c; = — Y, v;i-4(3, A) /2 = —c;. Note also
that —n(we(A) — n(A) = 0 by 2.3.1(b). The lemma is proved.

Lemma 28.2.6. Let b€ B. Then
ERb=€EobeEARM

and
’ bn=>bdne M A.

From the definitions we see that £ ® b (resp. b ® n) is fixed by the
involution O~ of A® M (resp. M ® A). Hence the result follows from the
definition of £{¢b and b7.

In the following result, B[A]", B[\]!° are defined in terms of (M, B) as
in 27.2.3.

Lemma 28.2.7. There is a unique bijection B[A]* « B[A]'® such that the
following two conditions for b € B[A]M, b € B[A]'® are equivalent: b < b';
O(wo, A\)"b—0b" € M[> A].

Replacing M by M[> )], we are reduced to the case where M = M[> )]
(see 27.2.4(a)). Then replacing M by M/M[> A], we are reduced to the
case where M = M|[)] (see 27.2.4(b)). Using 27.1.7, we are reduced to
the case where (M, B) is A with its canonical basis. In this case, we have
B[MN" = {n} and B[\]** = {¢} and the result follows from 28.1.4.
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28.2.8. Proof of Proposition 28.2.4. Let B, (resp. BY ) be the basis
of A M (resp. M ® A)) defined as in 27.3.3, in terms of the based modules
(A, By) and (M, B). Here B; is the canonical basis of A. Let T : A®@ M —
(A M), and 7’ : M ® A — (M ® A). be the canonical maps. We know
that 7 defines a bijection of B¢ [0] onto a basis (By,). of (A ® M), and 7/
defines a bijection of Bg[0] onto a basis (Bg). of (M ® A)..

Let b € (Bj).- Let b be the unique element of B, [0] such that w(b) = b.
By 27.3.8, there exists A’ € X% and elements b; € By[—wo()\)]!°, by €
BIXN]" such that b = b1$by. In A, we have that Bi[-wo()X')] is empty
unless —wp()\’) = A and B[\ = {¢}. Thus we have b = £{by where
by € B[~wp(M\)]* and by Lemma 28.2.6, we have b= ¢®by. By Lemma
28.2.5, we then have P(b) = 6(wo, —wo(A)) “ba ® ) modulo the kernel of 7’

By Lemma 28.2.7, we can find an element b}, € B[—wp(\)]!® such that

0(’(1)0, —’w()(/\))_bz - b,2 € M[> —wo()\)]
Then we have P(b) = b}, ® 7 modulo the kernel of 7’. Note that
M[> —’wO(/\)] ®A

is contained in the kernel of 7’

By Lemma 28.2.6, we have b, ® n= b5$n. By 27.3.8, we have that
bodn € By[0]. It follows that m '(P(b)) belongs to 7(BZ[0]) = (BE)+-
have therefore proved that P maps (B ). into (Bg).. The proposmon is
- proved. ;

28.2.9. Let A\j, A2,..., A be a sequence of elements of X*+. As in 27.3.9,
the space of coinvariants (Ax, ® Ay, - - -® A, )« has a natural based module
structure (hence has a distinguished basis).

This last based module has the following property of invariance by a
cyclic permutation: there is a natural isomorphism

(AAl ® AAz ot ®AA,,)* = (AAQ ®AX3 e ® AA" ® AAI)*
induced by the map
21 ®T2 @ Tp o (1) gy @13 @2, @ Ty

where z, € AC“‘ This isomorphism maps the distinguished basis onto
the dlstmgulshed basis (see 28.2.4). If we compose the n iterates of this
isomorphism, we get the identity map of (Ax, ® Ay, -+~ ® Ay, )x, since we
may assume that {3 +(2+ -+ (, =0.



