CHAPTER 27

Based Modules

27.1. IsoTYPICAL COMPONENTS

27.1.1. In this chapter we assume that (I,-) is of finite type.

Let M € C. We assume that M is finite dimensional over Q(v). For any
A € X*, we denote by M|[)\] the sum of simple subobjects of M that are
isomorphic to Ay. Then M = ®,M|[)\]. We also define for any A € X*:

M[> A = @yex+nsaM[N]

and

M[> )] = @,\fex+;,\f>>‘M[)\’].
Clearly, M[> }] is a subobject of M[> A] and M[\] @ M[> A\] = M[> )]
as objects in C.

27.1.2. A based module is an object M of C, of finite dimension over Q(v)
with a given Q(v)-basis B such that
" (a) BN MS is a basis of M¢, for any ¢ € X;
(b) the A-submodule 4M generated by B is stable under AU;
(¢) the Q-linear involution = : M — M defined by fb = fb for all
f € Q(v) and all b € B is compatible with the U-module structure in the
sense that um = am for all u € U, m € M,

(d) the A-submodule L(M) generated by B, together with the image of
B in L(M)/v—'L(M), forms a basis at co for M (see 20.1.1).

We say that ~ : M — M in (c) is the associated involution of (M, B).
The direct sum of two based modules (M, B) and (M’, B) is again a based
module (M & M’, BU B’).

27.1.3. The based modules form the objects of a category C; a morphism
from the based module (M, B) to the based module (M’, B’) is by definition
a morphism f : M — M’ in C such that

(a) for any b € B we have f(b) € B’U {0} and
(b) B Nker f is a basis of ker f.
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27.1.4. Let (M, B) be a based module and let M’ be a U-submodule of
M such that M’ is spanned as a Q(v)-subspace of M by a subset B’ of
B. Then (M',B’) is a based module; moreover, M/M’ together with the
image of B — B’ is a based module.

For any A € X, A together with its canonical basis, is a based module.
(See 19.3.4, 23.3.7, 20.1.4.)

27.1.5. Let (M, B) be a based module with associated involution ~ and let
m € M be an element such that m = m,m € 4M and m € B+ v~!L(M)
(resp. m € v~!L(M)). Then we have m € B (resp. m = 0). Indeed, we can
write m = ), g cpb with ¢, € A. By our assumption, we have ¢, € A for
all b. Hence ¢, € Z[v™!] for all b. We have &, = ¢, for all b. Hence ¢, € Z
for all b. Moreover, by our assumption, we have c, € v~ ! A for all b, except
possibly for a single b for which we have ¢, = 0 or 1 mod v='A. It follows
that ¢, = 0 for all b, except possibly for a single b for which we have ¢, =0
or 1. Our assertion follows.

27.1.6. Let (M, B) be a based module. Assume that M # 0. Let Ay € X+
be‘such that M*t # 0 and such that A, is maximal with this property. Let
B; = BN M™. It is a non-empty set. Let M’ = @ven, Ar, b € C. Here
Ay, b is a copy of Ay, corresponding to b; we denote its canonical generator
M by 7.

For any b € B;, we have E;b = 0 for all ¢ € I by the maximality of A,.
" Hence there is a unique homomorphism ¢ : M’ — M of objects in C whose
restriction to any summand Ay, ; carries 7, to b. Let B’ be the basis of M’
given by the union of the canonical bases of the various summands Ay, 5.

Proposition 27.1.7. In the setup above, B N M[A1] is a basis of M[)\]
and ¢ defines an isomorphism M’ = M[\] carrying B’ onto BN M[\1].
Thus ¢ is an isomorphism of based modules (M', B') = (M[A1], BN M[\{]).

Let = : M’ — M’ be the Q-linear involution whose restriction to each
summand Ay, is the canonical involution = : Ay, 5 — Ax, 5. The invo-
lution ~— : M’ — M’ is compatible under ¢ with that of M. Indeed, both
involutions are the identity on B;. (We regard B; as a subset of M’ by
b ) B L _

Let ¥ € B’ N Ay, 5. We have b’ = V'; hence ¢p(V') = ¢(b') = ¢(b'). Thus
o(b') is fixed by — : M — M.

We know from 19.3.5 that there exists a sequence 1,42, ...,%p in I such
that ¥ is equal to F; F;, - F; .M plus a v~ ! A-linear combination of ele-
ments of the same kind. Now the action of F; on M’ is compatible with
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the action of F; on M. Hence ¢(b') is equal to Fj F;, ...ﬁ’ipb plus a lin-
ear combination with coefficients in v"!A of elements of the same kind.
By property 27.1.2(d) of B, we see that either ¢(b') € B + v"1L(M) or
é(b') € v IL(M).

On the other hand, by the definition of the canonical basis of M’, we
have that b’ belongs to the 4U-submodule of M’ generated by 7; hence
#(b') belongs to the 4U-submodule of M generated by b; by the property
27.1.2(b), we then have ¢(b’) € 4M. These properties of ¢(b’) imply that
@(b') € B or ¢(b') = 0 (see 27.1.5). The second alternative does not occur:
indeed, the restriction of ¢ to the summand A,  is injective since Ay, 3 is
simple. Thus we have ¢(b') € B. We see that ¢ defines a bijection of the
canonical basis of Ay, ; with a subset B(b) of B.

Next we consider an element b € B distinct from b. We show that B (b)
is disjoint from B(b). Indeed, assume that b; € B belongs to B(b) N B(b).
Then we have

by = F,, Fi, - F,,b mod v"'L(M)
and
b = Fjlﬁjz . 'qui) mod 'U_IL(M)

for some sequences i;,iy,...,i, and ji,ja,. .. ,Jg¢ in I. By property
27.1.2(d), we then have

P b=E; Ej,_, - E; F,F,---F, b mod v 'L(M).

Hence b is equal to some element in B(b) plus an element of v IL(M). Tt
follows that b € B(b).

In particular, we have b = #(b') for some b’ € Ay, b Since b # b, we
have b’ # my; hence b’ € Aﬁl’b with )’ < A;. It follows that b € M* with
X < A1. This contradicts the assumption that b € B;. We have proved
therefore that B(b) is disjoint from B(b).

Since B’ is the disjoint union of the canonical bases of the various A ALb
and these subsets are carried by ¢ injectively onto disjoint subsets of B, it
follows that ¢ restricts to an injective map B’ — B. Since B’ is a basis
of M’, it follows that ¢ : M’ — M is injective. Thus we may identify M’
with a U-submodule of M (via ¢) in such a way that B’ becomes a subset
of B. This submodule is clearly equal to M[A;]. The proposition follows.

Proposition 27.1.8. Let (M, B) be a based module and let A € Xt. Then
(a) BN M|[> )] is a basis of the vector space M[> \] and
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(b) BN M[> )] is a basis of the vector space M[> A].

First note that (b) follows from (a). Indeed, the vector space M[> A
is a sum of subspaces of form M[> )\'] for various X' > A. To prove (a),
we argue by induction on dim M. If dim M = 0, there is nothing to prove.
Therefore we may assume that dim M > 1.

For fixed M, we argue by descending induction on A. To begin the
induction we note that if ) (i, \) is sufficiently large, then M[> A] = 0
and there is nothing to prove. Assume that )\ is given. If M[A] = 0, then
M[> )] is a sum of subspaces M[> X] with X’ > A; hence the desired
result holds by the induction hypothesis (on A). Thus we may assume that
M]|)] # 0. Then clearly M* # 0. We can find A\; € Xt such that A\; > A,
M?*1 £ 0 and )\, is maximal with these properties.

Let M’ = M[)\,] and let B' = BN M’'. Then (M',B’) € C by 27.1.7.
Hence, by 27.1.4, M" = M/M', together with the image B” of B—B’, is an
object of €. Since M’ # 0, we have dim M"” < dim M; hence the induction
hypothesis (on M) is applicable to M"”. We see that B”NM"[> )] is a basis
of M"[> A]. Since M’ = M’[A\;] and A\; > A, we see that M[> ] is just the
inverse image of M"”[> A] under the canonical map M — M"; moreover, a
basis for this inverse image is given by the inverse image of B” N M"[> J]
under the canonical map B — B”. The proposition is proved.

27.2. THE SUBSETS B[}

27.2.1. Let (M, B) be a based module. Let b € B. We can find A € X+
such that b € M[> )] and A is maximal with this property. Actually, A is
unique. Indeed, assume that we also have b € M[> A'] and A’ is maximal
with this property. We note that M[> A\]N M[> X'] is a sum of subspaces
M([> X'] for various A\’ such that A < A\’ and X' < ) and from 27.1.8 it
follows that b € M[> A"] for some such X”.

If A # X, then )" satisfies A < A and ' < A", and we find a contradic-
tion with the definition of A\. Thus the uniqueness of A is proved.

Let B[)] be the set of all b € B which give rise to A € X+ as above.
These sets clearly form a partition of B. From 27.1.8, we see that, for
any A € X1, the set Uyex+,x>aB[N] is a basis of M[> )] and the set
Uxex+a>aB[N] is a basis of M[> A].

Proposition 27.2.2. Let f be a morphism in C from the based module
(M, B) to the based module (M’,B’) (see 27.1.3). For any A € X, we
have f(B[A]) Cc B’[A] U {0}.
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From the definitions, we see that f(M[> A]) C M'[> A] and f(M[>
A]) € M’[> A]. Hence if b € B[)], then either f(b) € B’[)N] for some
A'> Xor f(b) = 0. Assume that f(b) ¢ B’[\]. Then f(b) € M'[> ).
Using the obvious inclusion f(M)NM'[> A] C f(M[> }A]), we deduce that
b € M[> A] + ker f. Since both M[> )] and ker f are generated by their
intersection with B, it follows that either b € M[> A] or b € ker f. The first
alternative contradicts b € B[)]; hence the second alternative holds and we
have f(b) = 0. The proposition follows.

27.2.3. Let (M, B) be a based module. Let A € X*. We define B[\]*
to be the set of all b € B such that b € M* and E;b € v"!L(M) for all
i € I. We define B[)]' to be the set of all b € B such that b € M*°() and
Fbev L(M)foralliel.
Proposition 27.2.4. (a) We have B[A|" C B[)| and B[\ C B[)].

(b) Let p: M[> \] = M[> \]/M[> A\] = M be the canonical map. Note
that p defines a bijection of B[\ with a basis B of M and that (M, B)

belongs to C so that B[\" and B[M\' are defined. Then p restricts to
bijections B[A\|" — B[\" and B[A]'> — B[]l

We prove (a). Let b € B[A]*. There is a unique A’ € X* such that
b € B[\']. We must prove that A = \'. We have b € M[> \']. Replacing M
with M[> )|, we may assume that M = M[> )']. Let m be the canonical
map of M onto M "= M/M[> X]. Then B[)] is mapped by 7 bijectively
onto a basis B” of M" and we have 7(b) € B”. Moreover, m(b) belongs to
B"[A]* and we are therefore reduced to the case where M = M". Thus
we may assume that M = M[N]. Now 27.1.7 reduces us further to the
case where (M, B) is Ay with its canonical basis. In this case, there are
two possibilities for b: either b is in the \’-weight space or there exist ¢ and
b € B such that F;b' —b € v=L(M). In the first case we have b € M*’;
in the second case we have E;b — &' € v~1L(M); hence E;b ¢ v='L(M),
in contradiction with our assumption on b. Thus we have b € M, hence
A = X, as required. We have proved that B[A]* C B[)]. The proof of the
inclusion B[)\]'® C B[)] is entirely similar.

We prove (b). We assume that M = M[> )]. It is clear that p(B[A]") C
B[A* and p(B[\"®) c B[\)". Assume that b € B[)] satisfies b ¢ B[\J*.
We show that p(b) ¢ B[M". By our assumption, we have that either
be M with X # X or that E;b ¢ v L(M) for some i.

If b€ MY with N # )\, then p(b) € M> with X # X; hence p(b) ¢
BI)\™, as required. If E;b ¢ v='L(M) for some i € I, then there exists
b € B such that E;b— b’ € v=1L(M) and therefore F;b' — b € v 1L(M).
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We consider two cases according to whether or not & € M[> ). In
the first case (b’ € M[> )]), we have F;b/ € M[> )] (since M[> )] is a
subobject of M) hence b € M[> A]+v~1L(M); this implies that b € M[> )]
(using that BN M[> )] is a basis of M[> )]). Then we have p(b) = 0 and,
in particular, p(b) ¢ B[\]*, as required. In the second case (b’ ¢ M[> )]),
we have b’ € B[)]; hence m (V') € B.

Let L(M) be the A-submodule of M generated by B. From E;b —
¥ € v L(M), we deduce E;((b)) — n(t') € v~'L(M). In particular, we
have E;(m(b)) ¢ v~ 'L(M); hence p(b) ¢ B[A]", as required. Thus we
have proved the equality p(B[M\*) = B[A|*. The proof of the equality
p(B[)\]"°) = B[\ is entirely similar.

27.2.5. Coinvariants. Let (M, B) € C. Let M[# 0] = ®xz0M[)\]. The
space of coinvariants of M is by definition the vector space M, = M/M[#
0]. Clearly, M[# 0] is equal to the sum of the subspaces M[> )] for various
X € X+ — {0}; hence, from 27.2.8, it follows that Uy 2oB[)'] is a basis of
M([# 0]. We deduce that under the canonical map m : M — M, the subset
B[0] of B is mapped bijectively onto a basis B. of M,.

‘Note that 7 is a morphism in C if we regard M, with the U-module
structure such that M, = M,[0]. We see that

(a) (M., B.) is a based module with trivial action of U.

- Proposition 27.2.6. We have B[0] = B[0 hi — B[0)'°. This set is mapped
‘bijectively by m : M — M, onto B,.

To prove the first statement, we are reduced by 27.2.4(a),(b) to the case
where M = M|0], where it is obvious. The second statement has already
been noted.

27.3. TENSOR ProODUCT OF BASED MODULES

27.3.1. Let (M, B),(M’, B') be two based modules with associated involu-
tions ~: M — M,” : M’ — M'. We will show that the U-module M @ M’
is in a natural way a based module.

The obvious basis B ® B’ does not make M ® M’ into a based module,
since the involution ~: M @ M’ - M @ M’ given by m @ m/ = m ® m/ is
not, in general, compatible with the U-module structure.

We will define a new involution ¥ : M@ M’ — M ® M’ by ¥(z) = ©(Z)
foralze M@M';here ®: MM’ — M®M'is as in 24.1.1. Eventually,
¥ will be the associated involution of our based module.



220 27. Based Modules

Let L (resp. 4L) be the Z[v~!]-submodule (resp. .A-submodule) of
M ® M’ generated by the basis B ® B’. From 24.1.6, we see that ©
leaves 4L stable and clearly = : M @ M’ — M ® M’ leaves 4L stable;
it follows that we have ¥(4L) C 4£. From 24.1.2 and 4.1.3, it follows
that ¥2 = 1 and ¥(uz) = a¥(z) forallu € Uand allz € M @ M’. We
shall regard B x B’ as a partially ordered set with (by,b}) > (b2, b}) if and
only if by € M1, b) € M'™1,by € M*2, b, € M'*2 where A\; > A, N, <

2 A1 + AL = A2 + A,
From the definition we have, for all b; € B, b, € B,

UB1®W) = D poypbabyb2 @b
ba€BbHEB’

where pp, b1:6,,8; € A and py, prip, 5, = 0 unless (by, b)) > (be,b}). Note
also that

Pby by by =1

and

E  Pbublsba,by Pba,bibabh, = Obsbs b4 4
b2€B,byeB’

for any by, b3 € B and b}, b; € B’; the last condition follows from ¥2 = 1.
Applying 24.2.1 to the partially ordered set H = B x B’, we see that there

is a anique family of elements 7y, 4.5, 5, € Z[v~!] defined for by,by € B
and b}, by € B’, such that
by by sbr,bf = 1
Moy ,bysba,by € VT Z[UT A (b1, b)) # (b2, b);
ﬂ-bl,b'l;bz,ba = 0 unless (bl,bll) > (bz,blz);
Tby byiba,by = Dby by Tba,b)iba,b Pba,bl:bs,b)
for all (by,b}) > (be, b5).
We have the following result.

Theorem 27.3.2. (a) For any (b1,b]) € B x B’, there is a unique element
b1 Ob) € L such that ¥ (b, Oby) = by Ob) and (b, b)) — by @ by € v~ L.

(b) The element by Ob) in (a) is equal to by @b} plus a linear combination
of elements by ® by with (bs,b3) € B x B’, (by,by) < (b1, b)) and with
coefficients in v=1Z[v71).

(c) The elements b1 $by with by, b) as above, form a Q(v)-basis By of
M ® M’, an A-basis of AL and a Z[v~']-basis of L.
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b1 {b] just defined satisfy the requirements of (b),(c) and that (d) holds.
It remains to show the uniqueness in (a). It is enough to show that an
element z € v™1L such that # = z is necessarily 0. But this follows from

(d).

27.3.3. The previous result, together with the known behaviour of bases
at oo under tensor product, (see 20.2.2) shows that (M ® M’, Bg) is a
based module with associated involution ¥. This is by definition the tensor
product of the objects (M, B), (M’', B').

27.3.4. Let A\, X € X*. Applying the previous construction to M = “A,
and M’ = A, regarded as based modules (with respect to the canonical
bases), we obtain a basis of “A\ ® A/, which clearly is the same as that
constructed in 24.3.3. Thus, “A) ® Ay, together with its canonical basis
in 24.3.3, is a based module.

Proposition 27.3.5. Let \, N, \" € X+.

(a) The U-modules M = “Axyx ® Axyar and M' = YAx ® Ay with
thefr canonical bases B, B’ constructed i~n 24.83.3, are in C; moreover, t :
M — M’ (see 25.1.5) is a morphism in C.

(b) For any Ay € X, we have t(B[A1]) C B'[M\] U {0}.

The fact that (M, B), (M’, B') are objects of C has been pointed out in
-27.3.4. The second assertion of (a) follows from Proposition 25.1.10. Now
(b) follows from (a) and 27.2.2.

27.3.6. Associativity of tensor product. Let (M, B),(M’, B'), and
(M",B") be three based modules. On the U-module M ® M’ @ M",
we can introduce two structures of based module: one by applying the
construction in 27.3.2 first to M ® M’ and then to (M ® M’) ® M"’; the
second one by applying the construction in 27.3.2 first to M’ ® M” and
then to M ® (M’ ® M"). Let By, By be the bases of M ® M’ ® M" obtained
by these two constructions.

We show that B, = Bs;. By definition, the associated involutions to
these two structures are given by

Y (Ae1)(6,)8% (" ® ")

V’,V“

and
d_(1enr)®e.)8R (8" 8")

’ 17
v
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respectively. These coincide by 4.2.4.

Next from the definitions, we see that the Z[v~!]-submodules of
M @ M'® M" generated by B; or B; coincide; they both coincide with the
Z[v~!]-submodule £ of M @ M’ ® M" generated by B® B’ ® B"; moreover,
if # : £ — L£/v™1L is the canonical projection, then n(B;) = n(Bz2) =
m(B® B’ ® B").

To show that B, = By, it suffices to show that (bOY )OO’ = bO(H Ob”)
for any b € B,b € B',b” € B”. Let by = (bV)Ob” € By and by =
bO(Y' Ob’) € B, From the definitions, we have that (b)) = 7(b® V' ® V")
and 7(b) = T(b® b ®b"). Hence m(by) = m(bz). Then by — by € v71L
and b; — by is fixed by the associated involution. This forces b = by,
as required. Thus we may omit brackets and write bOY Ob” instead of
(bOY YO or bO(H Ob”). This implies automatically that the analogous
associativity result is also true for more than three factors.

27.3.7. Coinvariants in a tensor product. Let (M, B), (M’,B’) be
two based modules. We form their tensor product (M ® M’, By,). The
following result describes the subset B¢ [0] of By

Proposition 27.3.8. Let b€ B,b € B’. We have
Bo[0] = Unex+{bOb'|b € Bl—wo(X))',b' € B'[N]™}.

- Let b € B,b € B’ be two elements such that b € M A e M. Accord-
ing to 27.2.6, the condition that b{b’ belongs to B¢ [0] is that A+ X =0
and F;(bOY) € v~!L(M ® M) for all 4; the last condition is clearly equiv-
alent to the condition that F;(b® b') € v~ 'L(M ® M'). By 20.2.4, our
condition is equivalent to the following one: A + X = 0, Fi(b) € v~ 'L(M)
and E;(b') € v-L(M’) for all i € I. The proposition follows.

27.3.9. We consider a sequence A1, Ao, ..., A, of elements of X*. Accord-
ing to 27.3.6, the tensor product Ay, ® Ay, --- ® Ay, is in a natural way
a based module (hence has a distinguished basis) and according to 27.2.5,
the space of coinvariants (Ay, ® Ay, - ® Ay, ). inherits a natural based
module structure (hence has a distinguished basis).

27.3.10. Let us assume, for example, that the root datum is simply con-
nected of type D,,, that n = 2n’ and that A\; = Ay =--- = A, = Ais such
that A, is the standard (2m)-dimensional module. Then we may identify
the space of coinvariants (A, ® Ay, -+ ® Ay, )« naturally with the dual
space of EndU(A?"'). Hence, from 27.3.9, we obtain a distinguished basis
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for the algebra EndU(Af’"'), the quantum analogue of the Brauer central-
izer algebra. This basis is of the same nature as the basis of the Hecke
algebra of type A defined in [3].



