CHAPTER 27

Based Modules

27.1. ISOTYPICAL COMPONENTS

27.1.1. In this chapter we assume that (I, \cdot) is of finite type.

Let $M \in \mathcal{C}$. We assume that M is finite dimensional over $\mathbf{Q}(v)$. For any $\lambda \in X^+$, we denote by $M[\lambda]$ the sum of simple subobjects of M that are isomorphic to Λ_{λ} . Then $M = \bigoplus_{\lambda} M[\lambda]$. We also define for any $\lambda \in X^+$:

$$M[\geq \lambda] = \bigoplus_{\lambda' \in X^+; \lambda' \geq \lambda} M[\lambda']$$

and

$$M[>\lambda] = \bigoplus_{\lambda' \in X^+; \lambda' > \lambda} M[\lambda'].$$

Clearly, $M[>\lambda]$ is a subobject of $M[\geq \lambda]$ and $M[\lambda] \oplus M[>\lambda] = M[\geq \lambda]$ as objects in C.

- **27.1.2.** A based module is an object M of C, of finite dimension over $\mathbf{Q}(v)$ with a given $\mathbf{Q}(v)$ -basis B such that
 - (a) $B \cap M^{\zeta}$ is a basis of M^{ζ} , for any $\zeta \in X$;
 - (b) the A-submodule $_{\mathcal{A}}M$ generated by B is stable under $_{\mathcal{A}}\dot{\mathbf{U}};$
- (c) the **Q**-linear involution $\bar{b}: M \to M$ defined by $\bar{b} = \bar{b}$ for all $f \in \mathbf{Q}(v)$ and all $b \in B$ is compatible with the **U**-module structure in the sense that $\bar{u}\bar{m} = \bar{u}\bar{m}$ for all $u \in \mathbf{U}, m \in M$;
- (d) the **A**-submodule L(M) generated by B, together with the image of B in $L(M)/v^{-1}L(M)$, forms a basis at ∞ for M (see 20.1.1).

We say that $\overline{}: M \to M$ in (c) is the associated involution of (M, B). The direct sum of two based modules (M, B) and (M', B') is again a based module $(M \oplus M', B \sqcup B')$.

- **27.1.3.** The based modules form the objects of a category $\tilde{\mathcal{C}}$; a morphism from the based module (M,B) to the based module (M',B') is by definition a morphism $f:M\to M'$ in \mathcal{C} such that
 - (a) for any $b \in B$ we have $f(b) \in B' \cup \{0\}$ and
 - (b) $B \cap \ker f$ is a basis of $\ker f$.

27.1.4. Let (M, B) be a based module and let M' be a $\dot{\mathbf{U}}$ -submodule of M such that M' is spanned as a $\mathbf{Q}(v)$ -subspace of M by a subset B' of B. Then (M', B') is a based module; moreover, M/M' together with the image of B - B' is a based module.

For any $\lambda \in X^+$, Λ_{λ} together with its canonical basis, is a based module. (See 19.3.4, 23.3.7, 20.1.4.)

- **27.1.5.** Let (M, B) be a based module with associated involution $^-$ and let $m \in M$ be an element such that $\bar{m} = m, m \in {}_{\mathcal{A}}M$ and $m \in B + v^{-1}L(M)$ (resp. $m \in v^{-1}L(M)$). Then we have $m \in B$ (resp. m = 0). Indeed, we can write $m = \sum_{b \in B} c_b b$ with $c_b \in \mathcal{A}$. By our assumption, we have $c_b \in \mathbf{A}$ for all b. Hence $c_b \in \mathbf{Z}[v^{-1}]$ for all b. We have $\bar{c}_b = c_b$ for all b. Hence $c_b \in \mathbf{Z}$ for all b. Moreover, by our assumption, we have $c_b \in v^{-1}\mathbf{A}$ for all b, except possibly for a single b for which we have $c_b = 0$ or $1 \mod v^{-1}\mathbf{A}$. It follows that $c_b = 0$ for all b, except possibly for a single b for which we have $c_b = 0$ or b. Our assertion follows.
- **27.1.6.** Let (M, B) be a based module. Assume that $M \neq 0$. Let $\lambda_1 \in X^+$ be such that $M^{\lambda_1} \neq 0$ and such that λ_1 is maximal with this property. Let $B_1 = B \cap M^{\lambda_1}$. It is a non-empty set. Let $M' = \bigoplus_{b \in B_1} \Lambda_{\lambda_1, b} \in \mathcal{C}$. Here $\Lambda_{\lambda_1, b}$ is a copy of Λ_{λ_1} corresponding to b; we denote its canonical generator η_{λ_1} by η_b .

For any $b \in B_1$, we have $E_i b = 0$ for all $i \in I$ by the maximality of λ_1 . Hence there is a unique homomorphism $\phi: M' \to M$ of objects in \mathcal{C} whose restriction to any summand $\Lambda_{\lambda_1,b}$ carries η_b to b. Let B' be the basis of M' given by the union of the canonical bases of the various summands $\Lambda_{\lambda_1,b}$.

Proposition 27.1.7. In the setup above, $B \cap M[\lambda_1]$ is a basis of $M[\lambda_1]$ and ϕ defines an isomorphism $M' \cong M[\lambda_1]$ carrying B' onto $B \cap M[\lambda_1]$. Thus ϕ is an isomorphism of based modules $(M', B') \cong (M[\lambda_1], B \cap M[\lambda_1])$.

Let $\bar{}$: $M' \to M'$ be the **Q**-linear involution whose restriction to each summand $\Lambda_{\lambda_1,b}$ is the canonical involution $\bar{}$: $\Lambda_{\lambda_1,b} \to \Lambda_{\lambda_1,b}$. The involution $\bar{}$: $M' \to M'$ is compatible under ϕ with that of M. Indeed, both involutions are the identity on B_1 . (We regard B_1 as a subset of M' by $b \mapsto \eta_b$.)

Let $b' \in B' \cap \Lambda_{\lambda_1,b}$. We have $\overline{b}' = b'$; hence $\overline{\phi(b')} = \phi(\overline{b}') = \phi(b')$. Thus $\phi(b')$ is fixed by $\overline{}: M \to M$.

We know from 19.3.5 that there exists a sequence i_1, i_2, \ldots, i_p in I such that b' is equal to $\tilde{F}_{i_1}\tilde{F}_{i_2}\cdots\tilde{F}_{i_p}\eta_b$ plus a $v^{-1}\mathbf{A}$ -linear combination of elements of the same kind. Now the action of \tilde{F}_i on M' is compatible with

the action of \tilde{F}_i on M. Hence $\phi(b')$ is equal to $\tilde{F}_{i_1}\tilde{F}_{i_2}\dots\tilde{F}_{i_p}b$ plus a linear combination with coefficients in $v^{-1}\mathbf{A}$ of elements of the same kind. By property 27.1.2(d) of B, we see that either $\phi(b') \in B + v^{-1}L(M)$ or $\phi(b') \in v^{-1}L(M)$.

On the other hand, by the definition of the canonical basis of M', we have that b' belongs to the $_{\mathcal{A}}\dot{\mathbf{U}}$ -submodule of M' generated by η_b ; hence $\phi(b')$ belongs to the $_{\mathcal{A}}\dot{\mathbf{U}}$ -submodule of M generated by b; by the property 27.1.2(b), we then have $\phi(b') \in _{\mathcal{A}}M$. These properties of $\phi(b')$ imply that $\phi(b') \in B$ or $\phi(b') = 0$ (see 27.1.5). The second alternative does not occur: indeed, the restriction of ϕ to the summand $\Lambda_{\lambda_1,b}$ is injective since $\Lambda_{\lambda_1,b}$ is simple. Thus we have $\phi(b') \in B$. We see that ϕ defines a bijection of the canonical basis of $\Lambda_{\lambda_1,b}$ with a subset B(b) of B.

Next we consider an element $\tilde{b} \in B_1$ distinct from b. We show that $B(\tilde{b})$ is disjoint from B(b). Indeed, assume that $b_1 \in B$ belongs to $B(b) \cap B(\tilde{b})$. Then we have

$$b_1 = \tilde{F}_{i_1} \tilde{F}_{i_2} \cdots \tilde{F}_{i_p} b \mod v^{-1} L(M)$$

and

$$b_1 = \tilde{F}_{j_1} \tilde{F}_{j_2} \cdots \tilde{F}_{j_q} \tilde{b} \mod v^{-1} L(M)$$

for some sequences i_1, i_2, \ldots, i_p and j_1, j_2, \ldots, j_q in I. By property 27.1.2(d), we then have

$$\tilde{b} = \tilde{E}_{j_q} \tilde{E}_{j_{q-1}} \cdots \tilde{E}_{j_1} \tilde{F}_{i_1} \tilde{F}_{i_2} \cdots \tilde{F}_{i_p} b \mod v^{-1} L(M).$$

Hence \tilde{b} is equal to some element in B(b) plus an element of $v^{-1}L(M)$. It follows that $\tilde{b} \in B(b)$.

In particular, we have $\tilde{b} = \phi(\tilde{b}')$ for some $\tilde{b}' \in \Lambda_{\lambda_1,b}$. Since $\tilde{b} \neq b$, we have $\tilde{b}' \neq \eta_b$; hence $\tilde{b}' \in \Lambda_{\lambda_1,b}^{\lambda'}$ with $\lambda' < \lambda_1$. It follows that $\tilde{b} \in M^{\lambda'}$ with $\lambda' < \lambda_1$. This contradicts the assumption that $\tilde{b} \in B_1$. We have proved therefore that $B(\tilde{b})$ is disjoint from B(b).

Since B' is the disjoint union of the canonical bases of the various $\Lambda_{\lambda_1,b}$ and these subsets are carried by ϕ injectively onto disjoint subsets of B, it follows that ϕ restricts to an injective map $B' \to B$. Since B' is a basis of M', it follows that $\phi: M' \to M$ is injective. Thus we may identify M' with a $\dot{\mathbf{U}}$ -submodule of M (via ϕ) in such a way that B' becomes a subset of B. This submodule is clearly equal to $M[\lambda_1]$. The proposition follows.

Proposition 27.1.8. Let (M, B) be a based module and let $\lambda \in X^+$. Then (a) $B \cap M[\geq \lambda]$ is a basis of the vector space $M[\geq \lambda]$ and

(b) $B \cap M[> \lambda]$ is a basis of the vector space $M[> \lambda]$.

First note that (b) follows from (a). Indeed, the vector space $M[>\lambda]$ is a sum of subspaces of form $M[\geq \lambda']$ for various $\lambda' > \lambda$. To prove (a), we argue by induction on dim M. If dim M=0, there is nothing to prove. Therefore we may assume that dim $M\geq 1$.

For fixed M, we argue by descending induction on λ . To begin the induction we note that if $\sum_i \langle i, \lambda \rangle$ is sufficiently large, then $M[\geq \lambda] = 0$ and there is nothing to prove. Assume that λ is given. If $M[\lambda] = 0$, then $M[\geq \lambda]$ is a sum of subspaces $M[\geq \lambda']$ with $\lambda' > \lambda$; hence the desired result holds by the induction hypothesis (on λ). Thus we may assume that $M[\lambda] \neq 0$. Then clearly $M^{\lambda} \neq 0$. We can find $\lambda_1 \in X^+$ such that $\lambda_1 \geq \lambda$, $M^{\lambda_1} \neq 0$ and λ_1 is maximal with these properties.

Let $M' = M[\lambda_1]$ and let $B' = B \cap M'$. Then $(M', B') \in \tilde{\mathcal{C}}$ by 27.1.7. Hence, by 27.1.4, M'' = M/M', together with the image B'' of B - B', is an object of $\tilde{\mathcal{C}}$. Since $M' \neq 0$, we have dim $M'' < \dim M$; hence the induction hypothesis (on M) is applicable to M''. We see that $B'' \cap M''[\geq \lambda]$ is a basis of $M''[\geq \lambda]$. Since $M' = M'[\lambda_1]$ and $\lambda_1 \geq \lambda$, we see that $M[\geq \lambda]$ is just the inverse image of $M''[\geq \lambda]$ under the canonical map $M \to M''$; moreover, a basis for this inverse image is given by the inverse image of $B'' \cap M''[\geq \lambda]$ under the canonical map $B \to B''$. The proposition is proved.

27.2. THE SUBSETS $B[\lambda]$

27.2.1. Let (M,B) be a based module. Let $b \in B$. We can find $\lambda \in X^+$ such that $b \in M[\geq \lambda]$ and λ is maximal with this property. Actually, λ is unique. Indeed, assume that we also have $b \in M[\geq \lambda']$ and λ' is maximal with this property. We note that $M[\geq \lambda] \cap M[\geq \lambda']$ is a sum of subspaces $M[\geq \lambda'']$ for various λ'' such that $\lambda \leq \lambda''$ and $\lambda' \leq \lambda''$ and from 27.1.8 it follows that $b \in M[\geq \lambda'']$ for some such λ'' .

If $\lambda \neq \lambda'$, then λ'' satisfies $\lambda < \lambda''$ and $\lambda' < \lambda''$, and we find a contradiction with the definition of λ . Thus the uniqueness of λ is proved.

Let $B[\lambda]$ be the set of all $b \in B$ which give rise to $\lambda \in X^+$ as above. These sets clearly form a partition of B. From 27.1.8, we see that, for any $\lambda \in X^+$, the set $\bigsqcup_{\lambda' \in X^+; \lambda' \geq \lambda} B[\lambda']$ is a basis of $M[\geq \lambda]$ and the set $\bigsqcup_{\lambda' \in X^+; \lambda' > \lambda} B[\lambda']$ is a basis of $M[> \lambda]$.

Proposition 27.2.2. Let f be a morphism in \tilde{C} from the based module (M,B) to the based module (M',B') (see 27.1.3). For any $\lambda \in X^+$, we have $f(B[\lambda]) \subset B'[\lambda] \cup \{0\}$.

From the definitions, we see that $f(M[\geq \lambda]) \subset M'[\geq \lambda]$ and $f(M[>\lambda]) \subset M'[>\lambda]$. Hence if $b \in B[\lambda]$, then either $f(b) \in B'[\lambda']$ for some $\lambda' \geq \lambda$ or f(b) = 0. Assume that $f(b) \notin B'[\lambda]$. Then $f(b) \in M'[>\lambda]$. Using the obvious inclusion $f(M) \cap M'[>\lambda] \subset f(M[>\lambda])$, we deduce that $b \in M[>\lambda] + \ker f$. Since both $M[>\lambda]$ and $\ker f$ are generated by their intersection with B, it follows that either $b \in M[>\lambda]$ or $b \in \ker f$. The first alternative contradicts $b \in B[\lambda]$; hence the second alternative holds and we have f(b) = 0. The proposition follows.

27.2.3. Let (M, B) be a based module. Let $\lambda \in X^+$. We define $B[\lambda]^{hi}$ to be the set of all $b \in B$ such that $b \in M^{\lambda}$ and $\tilde{E}_i b \in v^{-1} L(M)$ for all $i \in I$. We define $B[\lambda]^{lo}$ to be the set of all $b \in B$ such that $b \in M^{w_0(\lambda)}$ and $\tilde{F}_i b \in v^{-1} L(M)$ for all $i \in I$.

Proposition 27.2.4. (a) We have $B[\lambda]^{hi} \subset B[\lambda]$ and $B[\lambda]^{lo} \subset B[\lambda]$.

(b) Let $p: M[\geq \lambda] \to M[\geq \lambda]/M[>\lambda] = \tilde{M}$ be the canonical map. Note that p defines a bijection of $B[\lambda]$ with a basis \tilde{B} of \tilde{M} and that (\tilde{M}, \tilde{B}) belongs to \tilde{C} so that $\tilde{B}[\lambda]^{hi}$ and $\tilde{B}[\lambda]^{lo}$ are defined. Then p restricts to bijections $B[\lambda]^{hi} \to \tilde{B}[\lambda]^{hi}$ and $B[\lambda]^{lo} \to \tilde{B}[\lambda]^{lo}$.

We prove (a). Let $b \in B[\lambda]^{hi}$. There is a unique $\lambda' \in X^+$ such that $b \in B[\lambda']$. We must prove that $\lambda = \lambda'$. We have $b \in M[\geq \lambda']$. Replacing M with $M[\geq \lambda']$, we may assume that $M = M[\geq \lambda']$. Let π be the canonical map of M onto $M'' = M/M[>\lambda']$. Then $B[\lambda']$ is mapped by π bijectively onto a basis B'' of M'' and we have $\pi(b) \in B''$. Moreover, $\pi(b)$ belongs to $B''[\lambda]^{hi}$ and we are therefore reduced to the case where M = M''. Thus we may assume that $M = M[\lambda']$. Now 27.1.7 reduces us further to the case where (M, B) is $\Lambda_{\lambda'}$ with its canonical basis. In this case, there are two possibilities for b: either b is in the λ' -weight space or there exist i and $b' \in B$ such that $\tilde{F}_i b' - b \in v^{-1} L(M)$. In the first case we have $b \in M^{\lambda'}$; in the second case we have $\tilde{E}_i b - b' \in v^{-1} L(M)$; hence $\tilde{E}_i b \notin v^{-1} L(M)$, in contradiction with our assumption on b. Thus we have $b \in M^{\lambda'}$, hence $\lambda = \lambda'$, as required. We have proved that $B[\lambda]^{hi} \subset B[\lambda]$. The proof of the inclusion $B[\lambda]^{lo} \subset B[\lambda]$ is entirely similar.

We prove (b). We assume that $M=M[\geq \lambda]$. It is clear that $p(B[\lambda]^{hi})\subset \tilde{B}[\lambda]^{hi}$ and $p(B[\lambda]^{lo})\subset \tilde{B}[\lambda]^{lo}$. Assume that $b\in B[\lambda]$ satisfies $b\notin B[\lambda]^{hi}$. We show that $p(b)\notin \tilde{B}[\lambda]^{hi}$. By our assumption, we have that either $b\in M^{\lambda'}$ with $\lambda'\neq\lambda$ or that $\tilde{E}_ib\notin v^{-1}L(M)$ for some i.

If $b \in M^{\lambda'}$ with $\lambda' \neq \lambda$, then $p(b) \in \tilde{M}^{\lambda'}$ with $\lambda' \neq \lambda$; hence $p(b) \notin \tilde{B}[\lambda]^{hi}$, as required. If $\tilde{E}_i b \notin v^{-1}L(M)$ for some $i \in I$, then there exists $b' \in B$ such that $\tilde{E}_i b - b' \in v^{-1}L(M)$ and therefore $\tilde{F}_i b' - b \in v^{-1}L(M)$.

We consider two cases according to whether or not $b' \in M[> \lambda]$. In the first case $(b' \in M[> \lambda])$, we have $\tilde{F}_i b' \in M[> \lambda]$ (since $M[> \lambda]$ is a subobject of M) hence $b \in M[> \lambda] + v^{-1}L(M)$; this implies that $b \in M[> \lambda]$ (using that $B \cap M[> \lambda]$ is a basis of $M[> \lambda]$). Then we have p(b) = 0 and, in particular, $p(b) \notin \tilde{B}[\lambda]^{hi}$, as required. In the second case $(b' \notin M[> \lambda])$, we have $b' \in B[\lambda]$; hence $\pi(b') \in \tilde{B}$.

Let $L(\tilde{M})$ be the **A**-submodule of \tilde{M} generated by \tilde{B} . From $\tilde{E}_i b - b' \in v^{-1}L(M)$, we deduce $\tilde{E}_i(\pi(b)) - \pi(b') \in v^{-1}L(\tilde{M})$. In particular, we have $\tilde{E}_i(\pi(b)) \notin v^{-1}L(\tilde{M})$; hence $p(b) \notin \tilde{B}[\lambda]^{hi}$, as required. Thus we have proved the equality $p(B[\lambda]^{hi}) = \tilde{B}[\lambda]^{hi}$. The proof of the equality $p(B[\lambda]^{lo}) = \tilde{B}[\lambda]^{lo}$ is entirely similar.

27.2.5. Coinvariants. Let $(M, B) \in \tilde{\mathcal{C}}$. Let $M[\neq 0] = \bigoplus_{\lambda \neq 0} M[\lambda]$. The space of *coinvariants* of M is by definition the vector space $M_* = M/M[\neq 0]$. Clearly, $M[\neq 0]$ is equal to the sum of the subspaces $M[\geq \lambda']$ for various $\lambda' \in X^+ - \{0\}$; hence, from 27.2.8, it follows that $\bigcup_{\lambda' \neq 0} B[\lambda']$ is a basis of $M[\neq 0]$. We deduce that under the canonical map $\pi: M \to M_*$ the subset B[0] of B is mapped bijectively onto a basis B_* of M_* .

Note that π is a morphism in \mathcal{C} if we regard M_* with the U-module structure such that $M_* = M_*[0]$. We see that

(a) (M_*, B_*) is a based module with trivial action of **U**.

Proposition 27.2.6. We have $B[0] = B[0]^{hi} = B[0]^{lo}$. This set is mapped bijectively by $\pi: M \to M_*$ onto B_* .

To prove the first statement, we are reduced by 27.2.4(a),(b) to the case where M = M[0], where it is obvious. The second statement has already been noted.

27.3. Tensor Product of Based Modules

27.3.1. Let (M, B), (M', B') be two based modules with associated involutions $\overline{}: M \to M, \overline{}: M' \to M'$. We will show that the **U**-module $M \otimes M'$ is in a natural way a based module.

The obvious basis $B \otimes B'$ does not make $M \otimes M'$ into a based module, since the involution $\bar{} : M \otimes M' \to M \otimes M'$ given by $\overline{m \otimes m'} = \bar{m} \otimes \bar{m}'$ is not, in general, compatible with the U-module structure.

We will define a new involution $\Psi: M \otimes M' \to M \otimes M'$ by $\Psi(x) = \Theta(\bar{x})$ for all $x \in M \otimes M'$; here $\Theta: M \otimes M' \to M \otimes M'$ is as in 24.1.1. Eventually, Ψ will be the associated involution of our based module.

Let \mathcal{L} (resp. $_{\mathcal{A}}\mathcal{L}$) be the $\mathbf{Z}[v^{-1}]$ -submodule (resp. \mathcal{A} -submodule) of $M\otimes M'$ generated by the basis $B\otimes B'$. From 24.1.6, we see that Θ leaves $_{\mathcal{A}}\mathcal{L}$ stable and clearly $^-:M\otimes M'\to M\otimes M'$ leaves $_{\mathcal{A}}\mathcal{L}$ stable; it follows that we have $\Psi(_{\mathcal{A}}\mathcal{L})\subset_{\mathcal{A}}\mathcal{L}$. From 24.1.2 and 4.1.3, it follows that $\Psi^2=1$ and $\Psi(ux)=\bar{u}\Psi(x)$ for all $u\in \mathbf{U}$ and all $x\in M\otimes M'$. We shall regard $B\times B'$ as a partially ordered set with $(b_1,b_1')\geq (b_2,b_2')$ if and only if $b_1\in M^{\lambda_1},b_1'\in M'^{\lambda_1'},b_2\in M^{\lambda_2},b_2'\in M'^{\lambda_2'}$ where $\lambda_1\geq \lambda_2,\lambda_1'\leq \lambda_2',\lambda_1+\lambda_1'=\lambda_2+\lambda_2'$.

From the definition we have, for all $b_1 \in B, b'_1 \in B'$,

$$\Psi(b_1 \otimes b_1') = \sum_{b_2 \in B, b_2' \in B'} \rho_{b_1, b_1'; b_2, b_2'} b_2 \otimes b_2'$$

where $\rho_{b_1,b_1';b_2,b_2'} \in \mathcal{A}$ and $\rho_{b_1,b_1';b_2,b_2'} = 0$ unless $(b_1,b_1') \geq (b_2,b_2')$. Note also that

$$\rho_{b_1,b_1';b_1,b_1'}=1$$

and

$$\sum_{b_2 \in B, b_2' \in B'} \bar{\rho}_{b_1, b_1'; b_2, b_2'} \rho_{b_2, b_2'; b_3, b_3'} = \delta_{b_1, b_3} \delta_{b_1', b_3'}$$

for any $b_1, b_3 \in B$ and $b_1', b_3' \in B'$; the last condition follows from $\Psi^2 = 1$. Applying 24.2.1 to the partially ordered set $H = B \times B'$, we see that there is a unique family of elements $\pi_{b_1,b_1';b_2,b_2'} \in \mathbf{Z}[v^{-1}]$ defined for $b_1,b_2 \in B$ and $b_1',b_2' \in B'$, such that

 $\pi_{b_1,b_1';b_1,b_1'}=1;$

 $\pi_{b_1,b'_1;b_2,b'_2} \in v^{-1}\mathbf{Z}[v^{-1}] \text{ if } (b_1,b'_1) \neq (b_2,b'_2);$

 $\pi_{b_1,b'_1;b_2,b'_2} = 0 \text{ unless } (b_1,b'_1) \ge (b_2,b'_2);$

 $\pi_{b_1,b_1';b_2,b_2'} = \sum_{b_3,b_3'} \bar{\pi}_{b_1,b_1';b_3,b_3'} \rho_{b_3,b_3';b_2,b_2'}$

for all $(b_1, b'_1) \geq (b_2, b'_2)$.

We have the following result.

Theorem 27.3.2. (a) For any $(b_1, b'_1) \in B \times B'$, there is a unique element $b_1 \diamondsuit b'_1 \in \mathcal{L}$ such that $\Psi(b_1 \diamondsuit b'_1) = b_1 \diamondsuit b'_1$ and $(b_1 \diamondsuit b'_1) - b_1 \otimes b'_1 \in v^{-1} \mathcal{L}$.

- (b) The element $b_1 \diamondsuit b_1'$ in (a) is equal to $b_1 \otimes b_1'$ plus a linear combination of elements $b_2 \otimes b_2'$ with $(b_2, b_2') \in B \times B'$, $(b_2, b_2') < (b_1, b_1')$ and with coefficients in $v^{-1}\mathbf{Z}[v^{-1}]$.
- (c) The elements $b_1 \diamondsuit b'_1$ with b_1, b'_1 as above, form a $\mathbf{Q}(v)$ -basis B_{\diamondsuit} of $M \otimes M'$, an A-basis of ${}_{\mathcal{A}}\mathcal{L}$ and a $\mathbf{Z}[v^{-1}]$ -basis of ${}_{\mathcal{L}}$.

 $b_1 \diamondsuit b_1'$ just defined satisfy the requirements of (b),(c) and that (d) holds. It remains to show the uniqueness in (a). It is enough to show that an element $x \in v^{-1}\mathcal{L}$ such that $\bar{x} = x$ is necessarily 0. But this follows from (d).

- **27.3.3.** The previous result, together with the known behaviour of bases at ∞ under tensor product, (see 20.2.2) shows that $(M \otimes M', B_{\diamondsuit})$ is a based module with associated involution Ψ . This is by definition the tensor product of the objects (M, B), (M', B').
- **27.3.4.** Let $\lambda, \lambda' \in X^+$. Applying the previous construction to $M = {}^{\omega}\Lambda_{\lambda}$ and $M' = \Lambda_{\lambda'}$ regarded as based modules (with respect to the canonical bases), we obtain a basis of ${}^{\omega}\Lambda_{\lambda} \otimes \Lambda_{\lambda'}$, which clearly is the same as that constructed in 24.3.3. Thus, ${}^{\omega}\Lambda_{\lambda} \otimes \Lambda_{\lambda'}$, together with its canonical basis in 24.3.3, is a based module.

Proposition 27.3.5. Let $\lambda, \lambda', \lambda'' \in X^+$.

- (a) The U-modules $M = {}^{\omega}\Lambda_{\lambda+\lambda'} \otimes \Lambda_{\lambda'+\lambda''}$ and $M' = {}^{\omega}\Lambda_{\lambda} \otimes \Lambda_{\lambda'}$ with their canonical bases B, B' constructed in 24.3.3, are in \tilde{C} ; moreover, $t: M \to M'$ (see 25.1.5) is a morphism in \tilde{C} .
 - (b) For any $\lambda_1 \in X^+$, we have $t(B[\lambda_1]) \subset B'[\lambda_1] \cup \{0\}$.

The fact that (M, B), (M', B') are objects of $\tilde{\mathcal{C}}$ has been pointed out in 27.3.4. The second assertion of (a) follows from Proposition 25.1.10. Now (b) follows from (a) and 27.2.2.

27.3.6. Associativity of tensor product. Let (M,B), (M',B'), and (M'',B'') be three based modules. On the U-module $M\otimes M'\otimes M''$, we can introduce two structures of based module: one by applying the construction in 27.3.2 first to $M\otimes M'$ and then to $(M\otimes M')\otimes M''$; the second one by applying the construction in 27.3.2 first to $M'\otimes M''$ and then to $M\otimes (M'\otimes M'')$. Let B_1,B_2 be the bases of $M\otimes M'\otimes M''$ obtained by these two constructions.

We show that $B_1 = B_2$. By definition, the associated involutions to these two structures are given by

$$\sum_{\nu',\nu''} (\Delta \otimes 1)(\Theta_{\nu'}) \Theta^{12}_{\nu''}(^- \otimes ^- \otimes ^-)$$

and

$$\sum_{\nu',\nu''}(1\otimes\Delta)(\Theta_{\nu'})\Theta^{23}_{\nu''}(^-\otimes{}^-\otimes{}^-)$$

respectively. These coincide by 4.2.4.

Next from the definitions, we see that the $\mathbf{Z}[v^{-1}]$ -submodules of $M \otimes M' \otimes M''$ generated by B_1 or B_2 coincide; they both coincide with the $\mathbf{Z}[v^{-1}]$ -submodule \mathcal{L} of $M \otimes M' \otimes M''$ generated by $B \otimes B' \otimes B''$; moreover, if $\pi : \mathcal{L} \to \mathcal{L}/v^{-1}\mathcal{L}$ is the canonical projection, then $\pi(B_1) = \pi(B_2) = \pi(B \otimes B' \otimes B'')$.

To show that $B_1 = B_2$, it suffices to show that $(b \diamondsuit b') \diamondsuit b'' = b \diamondsuit (b' \diamondsuit b'')$ for any $b \in B, b' \in B', b'' \in B''$. Let $b_1 = (b \diamondsuit b') \diamondsuit b'' \in B_1$ and $b_2 = b \diamondsuit (b' \diamondsuit b'') \in B_2$. From the definitions, we have that $\pi(b_1) = \pi(b \otimes b' \otimes b'')$ and $\pi(b_2) = \pi(b \otimes b' \otimes b'')$. Hence $\pi(b_1) = \pi(b_2)$. Then $b_1 - b_2 \in v^{-1}\mathcal{L}$ and $b_1 - b_2$ is fixed by the associated involution. This forces $b_1 = b_2$, as required. Thus we may omit brackets and write $b \diamondsuit b' \diamondsuit b''$ instead of $(b \diamondsuit b') \diamondsuit b''$ or $b \diamondsuit (b' \diamondsuit b'')$. This implies automatically that the analogous associativity result is also true for more than three factors.

27.3.7. Coinvariants in a tensor product. Let (M, B), (M', B') be two based modules. We form their tensor product $(M \otimes M', B_{\diamondsuit})$. The following result describes the subset $B_{\diamondsuit}[0]$ of B_{\diamondsuit} .

Proposition 27.3.8. Let $b \in B, b' \in B'$. We have

$$B_{\Diamond}[0] = \bigcup_{\lambda' \in X^+} \{b \Diamond b' | b \in B[-w_0(\lambda')]^{lo}, b' \in B'[\lambda']^{hi}\}.$$

Let $b \in B, b' \in B'$ be two elements such that $b \in M^{\lambda}, b' \in {M'}^{\lambda'}$. According to 27.2.6, the condition that $b \diamondsuit b'$ belongs to $B_{\diamondsuit}[0]$ is that $\lambda + \lambda' = 0$ and $\tilde{F}_i(b \diamondsuit b') \in v^{-1}L(M \otimes M')$ for all i; the last condition is clearly equivalent to the condition that $\tilde{F}_i(b \otimes b') \in v^{-1}L(M \otimes M')$. By 20.2.4, our condition is equivalent to the following one: $\lambda + \lambda' = 0$, $\tilde{F}_i(b) \in v^{-1}L(M)$ and $\tilde{E}_i(b') \in v^{-1}L(M')$ for all $i \in I$. The proposition follows.

- **27.3.9.** We consider a sequence $\lambda_1, \lambda_2, \ldots, \lambda_n$ of elements of X^+ . According to 27.3.6, the tensor product $\Lambda_{\lambda_1} \otimes \Lambda_{\lambda_2} \cdots \otimes \Lambda_{\lambda_n}$ is in a natural way a based module (hence has a distinguished basis) and according to 27.2.5, the space of coinvariants $(\Lambda_{\lambda_1} \otimes \Lambda_{\lambda_2} \cdots \otimes \Lambda_{\lambda_n})_*$ inherits a natural based module structure (hence has a distinguished basis).
- **27.3.10.** Let us assume, for example, that the root datum is simply connected of type D_m , that n=2n' and that $\lambda_1=\lambda_2=\cdots=\lambda_n=\lambda$ is such that Λ_{λ} is the standard (2m)-dimensional module. Then we may identify the space of coinvariants $(\Lambda_{\lambda_1}\otimes\Lambda_{\lambda_2}\cdots\otimes\Lambda_{\lambda_n})_*$ naturally with the dual space of $\operatorname{End}_{\mathbf{U}}(\Lambda_{\lambda}^{\otimes n'})$. Hence, from 27.3.9, we obtain a distinguished basis

for the algebra $\operatorname{End}_{\mathbf{U}}(\Lambda_{\lambda}^{\otimes n'})$, the quantum analogue of the *Brauer centralizer algebra*. This basis is of the same nature as the basis of the Hecke algebra of type A defined in [3].